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Application of a Subnetwork Characterization Methodology for 

Dynamic Traffic Assignment 
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Supervisor:  Randy Machemehl 

 

The focus of this dissertation is a methodology to select an appropriate subnetwork 

from a large urban transportation network that experiences changes to a small fraction of 

the whole network. Subnetwork selection techniques are most effective when using a 

regional dynamic traffic assignment model. The level of detail included in the regional 

model relieves the user of manually coding subnetwork components because they can be 

extracted from the full model. This method will reduce the resources necessary for an 

agency to complete an analysis through time and cost savings. Dynamic traffic assignment 

also has the powerful capability of determining rerouting due to network changes. 

However, the major limitation of these new dynamic models is the computational demand 

of the algorithms, which inhibit use of full regional models for comparing multiple 

scenarios. By examining a smaller window of the network, where impacts are expected to 

occur, the burden of computer power and time can be overcome. These methods will 

contribute to the accuracy of dynamic transportation systems analysis, increase the 

tractability of these advanced traffic models, and help implement new modeling techniques 

previously limited by network size. The following describes how to best understand the 

effects of reducing a network to a subarea and how this technique may be implemented in 

practice. 
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SECTION 1: ORIGIN 

This dissertation is divided into three major sections to emphasize the importance 

of the origin, route, and destination assumptions behind traffic assignment. These elements 

and how they are modeled are a fundamental limitation in traffic simulation. The 

aggregation of trip ends to zones and algorithms that predict vehicle routing influence the 

behavior of traffic models. These are the structures that traffic engineers and planners 

assume to be most effective. Since these are the standard assumptions for analyzing 

transportation systems, users must keep them in mind when developing new methods. 

Although the overall structure in this paper is unique, it will still follow the standard 

dissertation format. The origin focuses on the root of the problem through an introduction 

and literature review, the route describes the methodology and research design, and the 

destination focuses on a discussion of the analysis and conclusions. 

The origin section will introduce the state of the art in traffic network modeling. 

Network assignment plays a large role in the current need for effective multimodal dynamic 

transportation modeling. These models are necessary to make informed decisions as 

developments are made to the transportation system. Several issues need to be addressed 

including multi-resolution modeling, geospatial data requirements, and model components. 

A survey of the appropriate literature will provide context for the role and contribution of 

these research efforts.  
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Chapter 1: Introduction 

Networks are ubiquitous in modern civilization. Telecommunications, electrical 

transmission, air travel, and city development all function with similar network principles. 

The size of the network that is of interest for investigation is dependent on the analysis 

questions and the operations of the network type. A global network represents the largest 

extents of the system and may be of interest for large scale impacts, but when a change to 

the network is minor it is often not necessary to consider the entire network for operational 

analysis. Intuition would indicate that the area of the network of interest for analysis is 

related to the magnitude of the proposed perturbation. Depending on the alteration in the 

network structure the analysis extents could be reduced to a nation, state, city, or even 

smaller. This concept is most relevant in a robust network such as an urban roadway 

system. There are numerous applications for examining smaller portions of a transportation 

system such as incident management, construction work zones, or adding lanes to a 

roadway. 

1.1 BACKGROUND 

Dynamic traffic assignment is an emerging regional traffic network simulation 

technology that is being investigated by transportation planners and engineers alike. A 

DTA model’s most powerful capabilities is predicting impacts of changes to a 

transportation network, particularly in locations where rerouting is anticipated (Hardy, 

2009). For instance, work zones in a downtown area can be modeled to evaluate what 

impact they may have on local traffic. This type of analysis could be used to help prepare 

and evaluate traffic control plans (TCP) and subsequently mitigate the increase in user cost 

incurred during proposed construction. But, in order to do this in the most effective manner, 

identification of the precise difference between base network conditions and those resulting 
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from a network impact is required. It is likely that an analyst would wish to implement 

multiple scenarios - a task that is lengthy enough without having to address variability in 

the results. As the Federal Highway Administration (FHWA) traffic analysis toolbox for 

DTA warns, “The number of model runs and the time it takes to run the model set should 

be considered in the scope. For a smaller model this may not be significant effort, but in 

larger models this could take longer and impact the schedule and resources” (Sloboden et 

al., 2012). 

One strategy for efficiently using the power of DTA while managing the 

computational requirements is subnetwork analysis. Rather than simulating an entire 

regional network, a modeler can investigate a subarea around a network modification. 

Current practices involve using jurisdictional or physical boundaries to select a subarea. 

However, these subnetwork procedures, also known as windowing because of the limited 

focus relative to the whole picture, often rely on engineering judgment with no rigorous 

defense of the window implemented. The detailed analysis described in this dissertation 

uses statistical techniques to compare the efficiency of different subareas used for an 

impact analysis. The major concepts behind these subnetwork recommendations are 

presented as methods for comparison, prediction, and implementation.  

Static traffic assignment (STA) has been the primary traffic modeling tool used by 

metropolitan planning organizations (MPO) for long range planning. Most MPOs continue 

to use STA because their datasets and travel demand procedures have been designed around 

it. There is a strong motivation to move to DTA because it is a better model for predicting 

more realistic results. A few MPOs are working on the transition to DTA much like the 

transition from trip-based travel demand to activity-based travel demand. The major 

problem for this transition is the input requirements for these advanced models (requiring 
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extensive data collection) and the potential issues in coordinating activity-based travel 

demand and dynamic traffic assignment. Historically, iterative methods for generating trip-

based origins, destinations, modes, and routes have been implemented in practice. A 

standardized procedure has not been finalized for combining activity based modeling and 

DTA although some issues have been addressed (Lin et al., 2008). However, based on the 

current incorporation of DTA in practice it is likely to become the dominant traffic 

assignment method in the future. 

The basic structure of dynamic traffic assignment combines elements of 

microsimulation and STA, the two most common traffic modeling tools. STA uses network 

optimization algorithms to assign commuters to a route that minimizes their travel time, 

with the assumption that all users know the available path travel times. Microsimulation 

uses traffic flow theory to propagate users through the network by tracking the movement 

of every vehicle. DTA uses a slightly more aggregate traffic flow model than 

microsimulation, and also incorporates user equilibrium principles from STA.  

 

Figure 1: Iterative Process for DTA Algorithms 
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Figure 1 depicts the iterative process for DTA algorithms to reach convergence. 

Shortest paths are calculated with respect to time periods of simulation, called time 

dependent shortest paths (TDSP). Then, a variety of path assignment algorithms can be 

used to set the route choice for individual vehicles. The traffic flow model in the DTA 

software then simulates the vehicles using their assigned paths. Each of these steps 

corresponds to a fundamental principle of a true DTA simulation (Chiu et al., 2010). Figure 

2 reveals these relationships to elements in Figure 1. DTA must use experienced travel 

times, that is, travel times determined from simulation rather than instantaneous travel 

times like those generated for STA. TDSP algorithms account for this principle. DTA must 

also incorporate the principle of dynamic user equilibrium (DUE). Like STA user 

equilibrium (UE), DUE must have all vehicles on equal and minimal travel time paths; but, 

for DTA UE must hold for each simulation time period. Path assignment algorithms aim 

to move towards DUE. Finally, DTA must have time varying traffic flow conditions, this 

principle is what makes it dynamic rather than static. Time varying conditions are 

incorporated by simulating vehicles with the traffic flow model.  

 

Figure 2: Corresponding Required DTA Components to the Iterative Algorithm 
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1.2 MOTIVATION 

As the adaptation of regional DTA models becomes more prevalent in regional 

planning organizations, the availability of these networks will motivate traffic engineers to 

utilize this data for traffic simulation. Creation of the network for traffic modeling is one 

of the most time consuming steps of the traffic modeling process. Not only will engineers 

have access to high quality network features and attributes (expected to improve as 

geospatial data standardization efforts continue), but they will also have traffic counts – 

from DTA results – at all locations in the network. This investigation into the influence of 

network attributes on results can aid decisions on what area to use for network alteration 

evaluation; in addition, practitioners may use this information to predict the impacts of 

reducing a DTA network.  

1.3 CHALLENGES 

Subnetwork selection is not a trivial issue because of the complex nature of 

dynamic traffic assignment. Understanding the relationship between traffic simulation 

inputs and outputs is difficult enough without random model components. DTA is not a 

deterministic model because it can contain stochastic elements to imitate real-world 

behavior and other random model components. Whether the source of this randomness 

adds realism or is an artifact of an algorithm, it may be dealt with similarly if the 

appropriate metrics are chosen. This randomness is difficult to track because of the 

disaggregate, dynamic nature of the model operations. 

DTA model convergence is also an area that has not been fully defined. The cause 

and effect relationship for DTA processes is obfuscated by considering time dependent 

operations. Since DTA simulation is influenced by both spatial and temporal factors, 

randomness may propagate throughout the network in an unpredictable manner. In 
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addition, the potentially large scale of a DTA network provides more opportunity for 

deviation to occur. For these reasons, users of DTA models require a means to predict and 

understand the error associated with model results. This error can also be a valuable 

indicator for what happens when reducing a full network to a subnetwork. A primary need 

for dealing with the complexity of DTA is controlled data inputs in order to isolate the 

outcome of the DTA algorithms. This experimental control is best accomplished through 

implementing standards for geospatial data including link attributes, node characteristics, 

and demand data. 

As transportation modelers improve planning tools the quality of data can be a 

limiting factor for the accuracy of predictions. DTA models require extra consideration 

because of their sensitivity to errors in input data. This sensitivity is a response to DTA 

capturing the temporal changes in traffic flow by generating a time dependent network user 

equilibrium. DTA incorporates the STA assumption that users choose their shortest path 

travel time and simulates vehicle operations using principles of traffic flow theory, which 

give it a level of sophistication that most traffic simulations do not have. The best available 

DTA algorithms are computationally demanding because they combine elements of 

regional planning models and microsimulation. In the future, this complexity will increase 

as even more model components are disaggregated. The geographic information systems 

(GIS) environment has provided transportation professionals with a means for coordinating 

and standardizing data collection efforts. 

The growth of digital datasets for transportation modeling has been a gift and a 

curse. Sharing and standardizing information – a primary advantage of geographic 

databases – has been neglected. Instead, agencies have focused on taking advantage of new 

computing capabilities without foresight for the potential that this data, in a standard form, 
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has for interoperability. Transportation engineers and planners have been excited by the 

potential of implementing geodata, but they also need to address data redundancy, security, 

storage, and integrity. Ultimately, the traffic industry hopes to continue to sharpen its 

engineering tools with these spatiotemporal datasets – transportation data is of little use 

without a time and space stamp – to produce more accurate results for simulation and 

modeling. The greatest tasks related to geospatial tools and data are establishing a data 

structure that harmonizes the needs of different transportation models, implementing them 

in professional engineering guidelines, and coordinating the development of experimental 

algorithms. The latter is of most importance to accomplish the goal of bridging the gap 

between the state of the art research and practice. 

In an ideal world, transportation professionals would follow the same set of data 

requirements and evaluation platforms for decision making. In reality there exists a wide 

range of software options and levels of data quality. While this is a great burden, it was 

also a necessity for the evolution of software tools in traffic engineering. The competition 

in technological development for simulating transportation operations has taken us from a 

naïve understanding of an annual average daily traffic with some temporal resolution and 

growth factors (time of day, day of year, rate of change etc.) to a disaggregate 

conceptualization of vehicle by vehicle traffic flow. In this process, multiple software 

packages emerged and created potential issues when we are trying to use computer-aided 

informatics for allocating resources to projects. This may happen within modeling 

resolution (e.g. VISSIM and CORSIM) or between modeling resolution (e.g. Synchro, 

CORSIM, TransCAD, and VISTA). If city A wants to promote project B with results 

produced by simulation program C and city D wants to promote project E with results 

produced by simulation program F, then the decisions made will only be informed given 
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that platforms C and F are comparable. Different organizations develop the alterative 

platforms which makes it difficult to quantify their comparability. A more noble concern 

such as selecting design alternative X, Y and Z to maximize safety and effectiveness of the 

transportation network may be derailed by an inappropriate input or a failure to identify 

anomalies in the mathematical setup. To prevent a negative reputation, practitioners require 

an impartial means to verify outputs. Such objectivity demands providing access to 

controlled input data and communicating functionality of the analysis tools. 

Great strides have been made in the inventory of roadway data, most centrally by 

the National States Geographic Information Council (NSGIC) and the Federal Highway 

Administration (FHWA). These central agencies taking the lead is critical to eliminate 

redundancy of datasets across city, state, and federal levels of government. In NSGIC’s 

strategic plan, known as Transportation for the Nation (TFTN), the council proposes its 

vision for a unified geospatial transportation dataset beginning with a need for high quality 

centerline data (NSGIC, 2011). As the Transportation for the Nation plan moves forward, 

considerations for geographic information systems (GIS) inventory should extend to 

different levels of traffic analysis identified by Tamminga, et al. 2013. The Federal 

Highway Administration efforts to standardize use of modeling tools have been published 

in the Traffic Analysis Tools program (FHWA, 2014). Coordinating these standards by 

viewing them as the data inputs and data processing of the same problem could benefit 

both endeavors as they move forward. As geometric design engineers need accurate field 

measurements from professional surveyors, traffic engineers are increasingly in need of 

high quality information – the only difference is that their “field” is often digital, rather 

than physical.   
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1.4 PROBLEM STATEMENT 

DTA models are often created from regional networks and their algorithms require 

a large number of calculations, which makes running a full network a computationally 

intensive process. The largest regional models can take days or weeks to converge at an 

acceptable outcome, a problem that may be overcome by examining a subarea. Even 

advanced computing strategies like parallel processing have limitations, since certain 

algorithms, such as the dynamic traffic simulation, are not easily parallelized. Oftentimes, 

new algorithms are proposed for DTA but are limited to a small test network, like Sioux 

Falls, due to difficulties associated with large networks. In addition to testing multiple 

impact scenarios this subnetwork method may help to advance DTA by enabling the use 

of some innovative breakthroughs.  

The aim of this research is to define how measures may be used to determine the 

appropriate selection of a subnetwork, such that it maintains much of the capability of the 

full model to predict impacts. Statistical error measures are robust in this application 

because they can account for the randomness and complexity of the DTA model. 

Understanding how statistical measures quantify the error between the subnetwork inputs, 

their time-dependent origin-destination (OD) matrices, can help identify the proper 

subnetwork selection metrics. Developing a statistical model is ideal for providing the user 

with evidence to defend the subnetwork used for analysis. This process will help generate 

effective subnetworks that can allow users to evaluate multiple scenarios efficiently. 

Ideally, the user could find a balance between the accuracy of the model (large enough to 

contain an impact’s effects) and the time it takes to run the model (small enough to reduce 

computation time). 

Although advances in computer technology will likely reduce the amount of time 

to run current DTA models, corresponding increases in the complexity of future models 
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and burden on the analyst to provide more detailed results are likely to offset these 

advances. Research efforts have been and will continue enhancing the detail of DTA traffic 

flow models (Jin and Boyles, 2014; Yperman, 2007); addressing intersection control 

(Mitsakis et al., 2011; Paz and Chiu, 2011); disaggregating zones and intelligently locating 

centroids (Qian and Zhang, 2012); simulating with a shorter time step or continuously 

simulating (Han et al., 2012; Nezamuddin and Boyles, 2012); interfacing intelligent 

transportation systems and DTA output (Chiu, 2013; Mahmassani, 2001); and 

incorporating reliability into vehicle routing (Boyles and Waller, 2011). The use of 

subnetworks will be an important approach for advanced DTA applications where 

computational power is limited compared to the scope of data processing. 

1.5 CONTRIBUTION 

Advancements in traffic modeling provide higher resolution results at the cost of 

computational demand that has yet to be matched by processing power. In an attempt to 

more accurately predict real world impacts, modelers will continue to disaggregate inputs 

and add complexity to the solution algorithms. As these developments continue, 

consideration must be made for the spatial scale at which the transportation system is being 

modeled. While it may seem easier to simulate the entire network, resource constraints 

necessitate a better method. Subnetwork analysis provides an understanding of what inputs 

may be aggregated to maintain the level of detail desired for the outputs.  

The primary contributions of this dissertation are a concise literature review of 

subnetwork concepts, a procedure for comparing subarea demand inputs, a method for 

predicting the effect of a network impact on subarea demand inputs, and how to implement 

these methods in a GIS platform for subnetwork analysis. This study builds on the concepts 

developed in Mason Gemar’s dissertation, Subnetwork Analysis for Dynamic Traffic 
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Assignment: Methodology and Application (Gemar, 2013). The resulting techniques of 

these studies will provide a robust toolset for practitioners to begin creating informed 

subnetworks. Integrating these methods with existing traffic control analysis tools can add 

an extra level of sophistication. Most traffic microsimulators rely on existing traffic data, 

limited to a “before case” information, but using DTA results can provide microsimulation 

with rerouting in the “after case.” DTA subarea selection is a critical tool in multi-

resolution modeling. The ultimate goal is to enhance the accuracy of traffic simulation 

analysis and reduce the time required for carrying it out. 

1.6 OVERVIEW 

This investigation was also incorporated into a previously created tool for making 

traffic control calculations in GIS (Bringardner, 2012). By integrating the GIS tool with 

this subnetwork selection process better decisions can be made based on dynamic data. 

This technique is ideal for implementing capacity reductions to a network such as in the 

development of a traffic control plan. Given a particular construction plan an engineer may 

want to determine what control scenario will limit congestion in the surrounding area.  An 

engineer could use this GIS interface to input the location and magnitude of a proposed 

traffic control plan and the tool would extract a recommended subnetwork. This 

information could be communicated to DTA software to create a network model that can 

be simulated in a fraction of the time it would take for the full model. This process could 

be repeated for each proposed traffic control scenario and the model outputs could be 

compared for desirable measures of effectiveness. 

Figure 3 displays a flow chart of the overall approach for developing this 

methodology. Addressing the current state of knowledge, examining the appropriate tools 
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for this type of analysis, and selecting an optimal approach through validation are the key 

components to this process.  

 

 

Figure 3: Flow Chart of the Research Approach for this Dissertation  

This dissertation will be divided into seven chapters organized into three major 

sections. The major sections are named to emphasize the importance of the origin, route, 

and destination assumptions behind traffic assignment. All traffic equilibrium solutions 
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require demand to be moved from an origin zone on the network to a destination zone via 

the route with the shortest travel time. This framework is both a power and a limitation of 

this modeling procedure, but is of utmost importance to keep in mind when discussing 

network assignment capabilities. The first two chapters constitute the origin, or the 

background of the problem and the current state of the practice. The next two chapters 

describe the route, or the methodology and proposed solution to the problem. The final 

chapters define the destination, or validation using a case study analysis, implementation 

of the solution methods, and conclusions.  

Chapter 1 Introduction This chapter provides an overview of the background, 

motivation, challenges, problem statement, and contribution of this study. 

Chapter 2 Literature Review This chapter will discuss the current body of 

knowledge associated with the implementation of subnetworks, the use of DTA for traffic 

impact analysis, the integral role of GIS in advance traffic assignment procedures, and the 

current analysis techniques for transportation system subareas. 

Chapter 3 Comparison This chapter describes the statistical comparison 

techniques for analyzing the impacts of subnetwork size on the accuracy of the DTA model 

inputs. 

Chapter 4 Prediction This chapter develops the results of the comparison analysis 

by allowing the user to predict the effects of their subnetwork size based on the 

characteristics of a network alteration. It proposes a method for identifying a sufficient 

subnetwork size relative to the users’ unique network configuration. 

Chapter 5 Case Study Analysis This chapter outlines the final case study data 

analysis, practical recommendations of these concepts, and geospatial network structure 

considerations for this procedure.  
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Chapter 6 Implementation This chapter addresses the implementation of the 

methodology for practical applications. It focuses on the general approach for 

incorporating traffic analysis tools in GIS. 

Chapter 7 Conclusion The final chapter summarizes the overall contributions and 

issues for the methodology.   
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Chapter 2: Literature Review 

This literature review will elaborate on the concepts in the introduction that can 

build a foundation for this subnetwork research. Particularly, it will focus on the application 

based studies involving dynamic traffic assignment (DTA) and geographic information 

systems (GIS) for transportation. The use of DTA in practice requires some review of the 

origin of DTA and the major researchers behind its development. There are a number of 

impact analyses, subnetwork concepts, and GIS traffic modeling practices documented in 

literature that have inspired elements of this subnetwork study. The goal of the literature 

review is to provide support for the chosen methodology, and establish the framework for 

this contribution within DTA development. This dissertation addresses a specific topic 

within the large realm of DTA, but may have significant implications on the 

implementation of multi-resolution modeling. While the previous research review will 

primarily be organized chronologically, certain studies are understood better by connecting 

them through the contribution of particular research groups.  

2.1 IMPACT ANALYSIS USING DYNAMIC TRAFFIC ASSIGNMENT  

Dynamic traffic assignment origins begin with a number of individuals working in 

the traffic network assignment field. DTA, as it is known today, is primarily simulation 

based computer software that models regional trips from origins to destinations via time 

dependent shortest paths. Before simulation algorithms were available, analytical DTA 

models were used to build the theoretical background for this new form of time based 

traffic assignment. Simulation allowed for the implementation of DTA for impact analysis 

related to any network changes – such as incident management and evacuation scenarios. 

These early simulation models were worked on by Hani Mahmassani (Mahmassani, 

1995), his advisor’s advisor Carlos Daganzo (Daganzo, 1995), and Moshe Ben-Akiva 
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(Ben-Akiva 1998).  Mahmassani’s effort to create DynaSMART was among one of the 

first software platforms to provide a fully functioning DTA model. Daganzo developed the 

traffic flow theory concept of the cell transmission model used in current DTA models. 

This space and time discretized traffic flow model was constructed around basic traffic 

flow theory concepts with consideration for the computational demand of DTA algorithms. 

By dividing links into sublinks, or cells, of equal length, the capacity of the individual cells 

could be used to propagate traffic on a road network with the added capability of 

accounting for congestion. Ben-Akiva’s DynaMIT was another early software platform 

which has been used as a study tool for several applications including short-term planning 

(Sundaram et al., 2011). 

The early software initiated the testing of a large number of possible applications 

for such traffic predictions. Many of these efforts came from the successors of 

Mahmassani, but the popularity of DTA in recent years has increased the number of 

researchers in this still relatively small area. It would be difficult to enumerate all people 

working on DTA development, but some of the major leaders are Ziliaskopoulos, Waller, 

Chiu, Peeta, and Mouskos. Ziliaskopoulos has developed aspects of DTA such as stochastic 

modeling and routing problems, and he has documented many of the wide-ranging issues 

of DTA such as large-scale applications and GIS integration (Peeta and Ziliaskopoulos, 

2001; Ziliaskopoulos and Waller, 2000; Ziliaskopoulos et al., 2004). Ziliaskopoulos also 

helped develop the VISTA (Visual Interactive System for Transportation Algorithms) 

DTA software with his student Waller. Waller helped bring VISTA (the software used for 

this project) to implementation ready status and continued investigation of many aspects 

of DTA.  Chiu also went on to develop his own DTA software, DynusT, and has conducted 

many impact analyses, most notably on predicting the operation of evacuation procedures 
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(Chiu and Zheng, 2007). Peeta investigated real time deployment of DTA and stability of 

DTA solutions. Mouskos lead the investigation into several smaller scale impact analyses 

in the New York area that are more relevant to this dissertation. The efforts of those listed 

above have sometimes been a collaboration as well as further building off one another’s 

efforts. 

Mouskos’ efforts are most relevant to this study because he has investigated 

impacts on different size scales and focused primarily on implementation. One of his early 

projects, in collaboration with Ziliaskopoulos, was for the New Jersey Department of 

Transportation using DTA for major corridor analysis (Chien et al., 2005). In the 

documentation of this project several issues with impact analysis are addressed including 

data integration such as the geographic road network, origin-destination demand, and 

model calibration. While the study found DTA to be an effective tool for improving traffic 

modeling predictions compared to static traffic assignment, one of the greatest obstacles 

was the lack of a universal data model for the creation of a DTA network. Although the 

initial coding of a detailed DTA compatible network is a large investment, the model only 

needs to be updated as permanent changes are made to the roadway inventory. Another 

major project that Mouskos worked on was an examination of the ability of DTA to predict 

incident impacts (Sisiopiku et al., 2007; Kamga et al., 2011). This project, which would 

eventually lead to Kamga’s dissertation, quantified the delay and rerouting expected from 

an incident. The results could then be used to create more informed incident response plans, 

similar to the potential analysis that could be used for traffic control planning. Building off 

their previous work they later performed another large scale project for the Alabama 

Department of Transportation, this time investigating lane reversal (Sisiopiku et al., 2010). 



 19 

These efforts provided the groundwork for DTA to address problems associated with 

analyzing multiple scenarios.  

The majority of the investigations discussed thus far are from academic projects. 

Private and research consulting firms have also contributed to the use of DTA in impact 

analysis. In the 2000s, DTA adaptation began catching on and consulting firms such as 

Parsons Brinckerhoff were beginning to get involved (Hicks, 2006). INRO, a Canadian 

based transportation software developer, produced the leading private commercial DTA 

software, Dynameq. They have documented calibration and application techniques of DTA 

including comparing results to observed data and implementing improved traffic 

assignment algorithms (Mahut et al., 2004; Florian et al., 2008). Regional impacts were 

analyzed by the Texas Transportation Institute to determine rerouting around planned 

construction (Pesti et al., 2010). More recently, the North Carolina Department of 

Transportation generated a work zone analysis and impact statement using DTA to 

supplement traditional microsimulation analysis (Schroeder et al., 2014). These efforts 

represent the infiltration that DTA models have had in the market for traffic simulation.  

The history of dynamic traffic assignment at the University of Texas at Austin 

continued after Mahmassani’s tenure through Waller, a student of Ziliaskopoulos. Waller’s 

student, Boyles, furthered the investigation into many aspects of DTA including the 

potentials of multi-resolution modeling. Two of his recent students, Matt Pool and Chris 

Melson, have studied enhancing the applications of DTA by incorporating it into current 

planning models, transit planning, and improving convergence (Pool, 2013; Melson, 2013). 

The University of Texas has strong support from the Network Modeling Center (NMC) at 

Center for Transportation Research (CTR) and its leaders, Duthie and Ruiz. The NMC has 

worked on several projects to encourage utilizing DTA in practice. A recent technical 
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report published through their efforts identified issues with the use of DTA for bottleneck 

analysis (Waller et al., 2013). Their analysis involved the selection of a software platform, 

performance metrics, model calibration and validation, and data requirements. It provides 

a good summary of the practical aspects of DTA that have been investigated by the NMC. 

They have also used DTA as a supplemental simulation tool to investigate projects in the 

central Texas area much like the North Carolina DOT. 

The implementation of DTA is an ongoing research goal, and all researchers in this 

field have identified the need for a unified effort. The Network Modeling Committee of 

the Transportation Research Board helped assemble a group of experts to generate the DTA 

Primer, which is the standard introductory document to dynamic traffic assignment for 

people unfamiliar with the topic (Chiu et al., 2010). The purpose of the document is to 

classify true DTA and standardize certain concepts that have been put forth by different 

studies including the obligatory summary article written by Peeta and Ziliaskopoulos, 

2001. The primer set the definition of a true DTA model to require time varying traffic 

flows, dynamic user equilibrium, and experienced travel times. However, much of the 

primer focuses on conceptual aspects of DTA. The FHWA traffic modeling toolbox has 

provided a guidebook for practical implementation. 

The FHWA Guidebook on the Utilization of Dynamic Traffic Assignment aims to 

provide practitioners with best practices for using DTA models (Sloboden et al., 2012). 

One of the first considerations the guidebook mentions is the scope of the analysis. This 

includes the time scale, the modeling scale, and the spatial scale. With respect to time the 

guidebook classifies long term, interim, near term, and real time frames. For this 

dissertation, it is assumed that the demand is available for the appropriate project time 

period. Implementing results with different modeling resolutions is a tradeoff between the 
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detail of the traffic simulation and the desired model accuracy. DTA is considered 

mesoscopic simulation and DTA results may be exported to a more disaggregate traffic 

model. For those reasons the spatial scale, or network size, is the focus of this dissertation. 

Rather than specifying an arbitrary network size of a region, subregion, or corridor this 

analysis will specify the real geographic limits of the traffic impacts created by a network 

alteration. 

The guidebook makes recommendations for geographic limits and project planning. 

The primary guideline is that the physical extents of the subnetwork include possible 

alternate routes. Although, the rules presented are mostly ad hoc – suggesting the use of 

natural barriers and the creation of subarea boundary origins where traffic counts are 

available. Ideally, the guidebook recommends queuing and congestion due to the scenario 

should be contained within the subarea. These insights indicate that focusing on rerouting 

created by congestion may be the best method for subnetwork analysis. The guidebook 

also includes a number of parameters to establish before investigating: study area, type of 

facilities, travel modes, management strategy, traveler responses, performance metrics, and 

operational characteristics. One description of the goal of this study is to supplement the 

recommendations regarding geographic scope in this guidebook. 

2.2 SUBNETWORK ANALYSIS FOR DYNAMIC TRAFFIC ASSIGNMENT 

Subnetwork analysis has been around as long as traffic modeling. Any 

microsimulation model that is built is technically a subnetwork. They were usually built as 

a standalone network because no larger network existed from which to extract a subarea. 

However, the concept has been defined prior to any understanding of what influence they 

had on model results. As early as 1976, subnetworks were recommended for urban traffic 

networks as a means to reduce the size of the optimization problem (Gartner et al., 1976). 
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Subarea selection for networks is not only a transportation problem, it has also been used 

to simplify analysis for telecommunications (Galaand and Scotton, 1996). However, the 

most useful research on procedures for selecting the appropriate subarea came much later.  

Many existing research efforts assume that the subnetwork has been predetermined. 

Once an appropriate subarea is selected the network elements must be extracted including 

links, nodes, connectors, and centroids. After the network data has been isolated, several 

techniques have been proposed for building the subarea origin-destination matrix. The 

most relevant is what has come to be known as an induced origin-destination matrix 

(Larsson et al., 2001). This method extracts the vehicle routes from a full model run and 

identifies the new subnetwork boundary origin. Induced subarea demand has become the 

framework to expand upon for subnetwork demand creation techniques. Initially, this 

demand extraction was used for static traffic assignment, but it can easily be applied to 

DTA by assigning a time period to the subnetwork boundary origin.  

A primary application of subnetwork creation is the prospect of multi-resolution 

modeling. This idea of hybrid mesoscopic-microscopic simulation is popular because it 

allows for complete coverage of data results, with higher quality data in the areas that are 

most important (Burghout et al., 2005). This technique also allows the mesoscopic DTA 

model to make predictions about rerouting or future demand to inform the microscopic 

simulator of the expected impacts. Hybrid modeling commonly uses the induced subarea 

demand to more accurately depict vehicle trajectories based on the known distribution of 

vehicle locations from DTA (Ni, 2011).  

 Xuesong Zhou was one of the first to detail many of the aspects of subarea DTA 

analysis (Zhou et al., 2006). Working with Mahmassani, their major focus was on dynamic 

origin-destination demand estimation. They developed an algorithm for updating the 
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induced traffic assignment route output used to create an OD demand matrix for 

subnetworks with real world traffic counts. Despite a large number of STA subarea demand 

estimation studies, implementation of subnetwork demand updates has been shown to 

provide limited modeling improvements for DTA relative to the effort needed for the 

updates (Gemar et al., 2014). Zhou, nonetheless, identified a classification of subarea OD 

pairs: Internal-Internal, External-Internal, Internal-External, and External-External. The 

external portion of the network was defined as the complement network, and a dummy link 

that simplifies portions of the complement network is denoted a virtual link. These 

definitions are important when discussing subnetwork concepts. Although they assumed 

the subarea boundaries to be known for their study, they identify that further work is 

required for specifying the appropriate subarea. They also address the common need for 

subarea analysis when analyzing a large number of scenarios and the importance of data 

structures to limit the building of analysis networks. 

A different approach to identifying the portion of a network impacted by a network 

alteration has been addressed by several transportation planners. The emphasis for these 

researches offers an alternative to traditional engineering concepts like flow, speed and 

density. Instead, they suggest looking at principles like accessibility and vulnerability. One 

approach was to determine the importance of links in a network by correlating the 

proportion of OD pairs that use each link to the increase in travel time experienced by those 

OD pairs (Jenelius et al., 2006). In a study by Knoop et al. (2007) various link robustness 

indicators were evaluated for their effectiveness in predicting the scale of a link’s influence 

on network congestion. Accessibility and network structure were also analyzed to predict 

the connectivity value of a link added to the overall network (Chen et al., 2007; Taylor, 

2008; Jenelius, 2009). The problem is that these studies offer information about the 
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vulnerability of a link for any given scenario, but do not predict the extents of a particular 

impact. However, these indicators of robustness may be used to understand the factors 

behind the spread of network queues, since a more robust system is likely to dissipate traffic 

congestion in a more contained area. 

In recent years, many subnetwork concepts have been developed, but have typically 

been uncoordinated. Developing a method for dynamic OD estimation from static traffic 

assignment results reveals the importance of tracking path flows into the subnetwork (Choi 

et al., 2009). Another dynamic OD estimation method based on static traffic assignment 

results used an algorithm similar to the one used by Zhou using traffic counts (Xie et al., 

2010). A return to the planning concepts translated the network robustness indicators into 

a capacity-disruption value, something more intuitive for application with traffic 

engineering models (Sullivan et al., 2010). An investigation of the reach of traffic impacts 

due to the collapse of a bridge identifies the measurable changes at cordon count lines 

surrounding the bridge’s location at different radii (Danczyk et al., 2010). Yet another 

different approach attempted to use coordinated signal systems as a means to define a 

unified subarea (Li et al., 2010). The problem with so many unique efforts is that their 

application may be limited to a particular type of problem. However, if a complete network 

model is used to produce induced subarea demand, it is possible to capture capacity or 

volume disruption at cordon counts around an impact. By accounting for flow change 

experienced at a chosen distance away and accounting for network features like signals or 

corridors, a unified subarea method could be developed. Combining elements of the efforts 

of Sullivan, Danczyk, and Li may help to create a new subarea technique. 

The most recent efforts have made advances that are valuable to the future of 

subnetwork analysis. A major contribution is a conversion of the vulnerability analysis into 
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the concept of an impact area (Chen, 2012). This study introduced the concept of an impact 

area size parameter representing the number of connected links that extend out from the 

altered link. In this dissertation, this concept, referred to as “connected order” has been 

adopted as the primary method of identifying a subnetwork area. Although a simple 

distance or radius concept was initially considered, preliminary testing found the connected 

order to be a more robust descriptor. It allows for an understanding of what happens to the 

flow at the boundary as the subarea incrementally increases, and equally grows the 

subnetwork in all directions.  

The subnetwork analysis process has yet to be fully matured. More specific tools 

that were used for this research project will be elaborated in section 2.4. The goal is to 

provide an ideal subnetwork so that the appropriate procedures for estimating dynamic OD 

demand can be most effective (Deng and Cheng, 2013). Despite the lack of information 

around the effects of subnetwork aggregation, subareas are a necessary process of most 

DTA investigations (Binkowski and Hicks, 2013; Hadi et al., 2013). The network modeling 

teams for any project that uses a subnetwork depends on engineering judgment to produce 

the appropriate subarea. By providing systematic guidelines, this process may be 

streamlined and automated to reduce the effort required and improve the appropriateness 

for such an analysis.  

2.3 GEOGRAPHIC INFORMATION SYSTEMS AND ADVANCED TRAFFIC MODELS 

Geographic information systems for transportation (GIS-T) have been used for a 

few decades, but applications have generally incorporated few of the GIS capabilities. GIS-

T has evolved from a data inventory framework to a means of operating on geographic 

features and their attributes. Traffic engineers are often called upon to make quick planning 

decisions with potentially wide-ranging impacts on travel time (such as lane(s) availability 
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during maintenance or construction activities).  In order to make these decisions, they are 

relying on disparate, non-integrated data sources some of which were originally conceived 

during the era of mainframe computers with terminal access. This time-consuming process 

can benefit tremendously from automated procedures coupled with the commonality of the 

GIS platform which has emerged as the platform of choice for transportation planning and 

visualization. 

Plans for GIS integration should be designed to harvest its true potential by 

considering horizontal as well as vertical integration. Transportation for the Nation (a plan 

to produce a road center-line data set for the entire country) has addressed vertical 

integration from the federal, state and local agencies perspectives. Horizontally, it has been 

more difficult to assess the needs of the numerous industries that depend on transportation 

data inputs and outputs. Within each of the following realms a different level of detail and 

focus is desired: pavement management, energy, environment, operations research, city 

and regional planning, geography, travel demand, public transit, traffic engineering, 

geometric design, site planning, and economic policy (Boxill, 2005).  Each of these 

addresses a component of the same transportation system and these efforts may be 

coordinated by providing a common language for communication. A broad spectrum of 

issues from safety analysis to DTA data management can be managed through a well-

designed transportation GIS framework (Scopatz et al., 2013). New methods can be 

implemented in practice faster if redundancy is reduced and integrity of shared data 

resources is increased (Quiroga and Koncz, 2008; Quiroga et al., 2009).  

The key for allowing GIS tools and different transportation models to communicate 

is a database structure (Hossack and Ortega, 2012). All major features, links and nodes for 

transportation data, should be labeled with a unique identifier (UID). This allows for 



 27 

database operations to be used for editing data and extracting information. GIS provides 

an intuitive graphical user interface (GUI) for accessing and changing information without 

the need for users to remember UIDs. Geographic locations known from familiarity with 

the project or geocoding of street names can be used to find the feature of interest, and 

selecting the feature in the GUI corresponds to accessing the database with the UID. These 

IDs must remain stable as changes are made to the planning network in order to maintain 

consistency. 

When relating two databases or interfacing tools with the dataset, the UID should 

be used as a variable input. This allows for the function to be performed not only on other 

features in the dataset, but also the same features of a new dataset. GIS adds another level 

of flexibility by allowing spatial operations to be performed on features based on their 

geographic attributes. Rather than hardcoding the ID of a feature or geographic coordinates 

they should be left as an input that can be altered the next time the code is used. Then 

spatial relationships between the input feature and neighboring features can be determined 

using GIS analysis tools. The GIS GUI can also be used to visualize changes in network 

datasets.  

Many GIS transportation applications for planning tools and model integration have 

been documented (Wang, 2005; Carsjens and Ligtenberg, 2007; Khalesian et al., 2009). A 

major misconception is the need for traffic simulation to be performed within GIS software. 

Various traffic modeling and analysis packages, many of which have a GIS interface, have 

been produced by public and private agencies. The leading traffic simulation software has 

capabilities that surpass the network analysis included in the standard GIS package. GIS 

software is often produced for a multitude of applications that are not intended to keep up 

with the latest microsimulation techniques, traffic flow theory, and dynamic routing 
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capabilities. Analysis based on elementary GIS tool estimations of an origin-destination 

(OD) cost matrix or shortest path identification should be scrutinized. These tools can be 

useful for preliminary assessments and it is expected that more transportation models will 

be incorporated in GIS, but the greatest contribution is the interactive data structure that 

can coordinate with higher level simulation software (Evangelidis et al., 2005). As 

transportation models and GIS develop, the database connection between them should be 

considered their common language. 

The benefits that GIS brings to DTA modeling are greater than the ability to edit 

and organize geodatabases. GIS platforms that are available in DTA software often do not 

have cartographic capabilities. They may have a general coordinate system, but they will 

not be able to generate projected data necessary for accurate spatial analysis. Projected 

spherical coordinates onto a Cartesian plane will allow for accurate distance calculations 

required to determine spatial relationships. GIS provides a handy tool for creation of a 

subnetwork or using spatial relationships for making adjustment to subarea demand. 

Flexibility and customizability provided through GIS can enable emerging subnetwork 

procedures. 

Most DTA software has some capability of geographically displaying the network, 

which is required for generating a subnetwork. If there is no GUI for interacting with the 

data, then network connectivity is described using intersection node numbers. This type of 

coding will make the network difficult to update because attributes like link lengths will 

have to be hardcoded and manually changed. For ease of use a GIS interface and data 

formats are the best way to verify and import new networks. The network can be viewed 

as an interchangeable part or input to a DTA model. A new network or an updated 
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nationally organized dataset such as the Transportation for the Nation concept can replace 

the existing configuration. 

2.4 SUBNETWORK ISSUES AND ORIGIN-DESTINATION ANALYSIS 

When planning a roadway construction work zone, the primary consideration is 

safety and effectiveness of the traffic control scheme. Limiting congestion around the 

construction area is the key to achieving both of these goals. Traffic simulation is the best 

way to predict how people will choose to reroute to avoid construction caused by lane 

closures.  Some microsimulation models can perform user equilibrium assignments that 

could describe traveler path choice changes due to construction, but this capability requires 

the availability of traffic demand in origin-destination matrix form.  Even though such data 

may be available for the whole urban area, microsimulation of an entire urban area is not 

feasible due to the network coding effort and compute cycle requirements. Deriving an 

appropriate subnetwork trip table for microsimulation is the essence of the problem that 

this dissertation will address. The area-wide origin-destination matrix or “trip table” is a 

basic input to a dynamic traffic assignment model and the DTA is designed to provide area-

wide traffic assignments, so DTA is the ideal tool for making traffic control predictions. 

However, DTA models created for regional analysis provide detailed link volume 

information outside the construction area zone of influence at the cost of extensive 

computation time. Creating a method for identifying this zone of influence (likely a fraction 

of the whole urban area) and the appropriate trip table could enable much more efficient 

DTA or microsimulation support for traffic control planning. 

Traffic impacts of construction related lane closures are often assumed to be 

localized to the area near the network modification. Closing down a lane for construction 

can be represented in a network as a capacity reduction. The Highway Capacity Manual 
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(HCM) procedure for determining roadway capacity includes the number of lanes as a 

parameter. However, in practice the capacity reduction is commonly applied as a percent 

reduction corresponding to the fraction of lanes closed. If traffic demand exceeds the 

construction site capacity, the capacity reduction is represented in the DTA model as the 

road segment “filling up” with vehicles which limits the volume of upstream traffic 

entering the link. Travel times for vehicles on a congested construction route will 

correspondingly increase. When that route travel time exceeds that of alternative routes, 

vehicles using it get assigned a different route in the process of moving toward user 

equilibrium.  

Traffic simulation relies on GIS network structures and most simulation methods 

use random number generators to attempt to capture the stochastic nature of traffic 

operations (Gartner et al., 2005). Typically, allowing the model to approximate the 

stochasticity of the real world is desirable. However, when model output is analyzed to 

determine the true effects of an impact, it becomes difficult to discern the variation 

associated with random processes from the systematic impacts. Other elements in DTA 

models have the potential to add randomness without adding realism and can have 

inconsistent effects on outputs. This study also aims to develop statistical tools robust 

enough to capture all randomness and isolate the true impacts of a network modification. 

If a subnetwork and a full network receive statistically similar demands, resulting 

link traffic volumes should be similar. The DTA algorithm applied for the subarea and full 

network scenarios are identical and primary differences should be traceable to the 

subnetwork boundary. Inside the subnetwork boundary, the DTA will produce results with 

greater convergence (smaller network can be processed through more iterations relatively 

quickly) and should correspond to the full network predicted volumes if the boundary 
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conditions have been adequately characterized. Characterizing the subnetwork boundary 

conditions requires a procedure for collapsing the urban area trip table from possibly 

several million cells to a very small fraction of the original size. Therefore, the key is to 

provide the subnetwork with appropriate boundary demands, or at least understand the 

acceptable level of deviation due to the innate variability of the simulation results.  

A fundamental component of the subnetwork analysis process is comparison of 

large trip matrices to determine statistical or practical significance of differences. There are 

a number of methods that have been introduced for determining differences in OD 

matrices, primarily for assessing the quality of dynamic OD tables relative to activity travel 

surveys or traffic counts (Cools et al., 2010; Marzano et al., 2008). For this study, they will 

be reviewed for application to subnetwork OD matrices to account for inconsistencies 

inherent to simulating subnetworks and full networks. Two traditional statistics for 

measuring differences between OD matrices are the root mean square error (RMSE) and 

the mean absolute percent error (MAPE) (Djukic et al., 2013). The RMSE and MAPE 

provide estimates of the variance between the induced subnetwork OD matrices extracted 

from two different simulations of the same full network. The RMSE is calculated using 

Equation 1: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑑̅𝑖𝑗𝑡 − 𝑑𝑖𝑗𝑡)2

∀𝑖,𝑗,𝑡          (1) 

where 

𝑖 =  𝑜𝑟𝑖𝑔𝑖𝑛 

𝑗 =  𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 

𝑡 =  𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 

𝑑 =  𝑠𝑢𝑏𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑑𝑒𝑚𝑎𝑛𝑑 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑎𝑛 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 
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𝑑̅ = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑢𝑏𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑑𝑒𝑚𝑎𝑛𝑑 𝑜𝑓 𝑎𝑙𝑙 𝑏𝑎𝑠𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠  

𝑛 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝐷 𝑝𝑎𝑖𝑟𝑠 𝑏𝑒𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 

The mean censored absolute percentage error (MCAPE) is a censored version of 

MAPE because it prevents any individual absolute percent error from exceeding 100% 

(Cools et al., 2010). MAPE calculations can produce values over 100% if the difference 

between the demand and the average demand is greater than the average demand. By using 

a MCAPE, issues stemming from this result can be avoided. Therefore, this paper proposes 

incorporating the MCAPE by using Equation 2: 

 

𝑀𝐶𝐴𝑃𝐸 =
1

𝑛
∑ 𝑚𝑖𝑛 {100, |

𝑑̅𝑖𝑗𝑡−𝑑𝑖𝑗𝑡

𝑑̅𝑖𝑗𝑡
| ∗ 100}∀𝑖,𝑗,𝑡       (2) 

where the notation is the same as Equation 1 

Both of these measures assume that the simulation runs are independent and come 

from the same distribution. However, “more often than not, output data from simulation 

experiments are auto-correlated and non-stationary. This precludes analysis using classical 

statistical techniques which are based on independent and identically distributed (IID) 

observations (Gartner et al., 2005).” Despite this violation of assumptions, valuable results 

have been found from both of these measures and they will be compared to a recently 

proposed method of measuring the magnitude of differences between OD matrices, the 

structural similarity (SSIM) index.  

The SSIM index was initially proposed as a measure of the differences between 

two images based on structural degradation (Wang et al., 2004). After gaining acceptance 

in the image processing field, the SSIM index was later applied to the assessment of OD 

matrices, with OD pair demands replacing pixel values, to help account for the spatial 

autocorrelation ignored by traditional statistics (Djukic et al., 2013). In essence, the SSIM 
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index calculates a measure based on the location and variability statistics of the demand 

values by incorporating the surrounding OD cells. A major assumption for the SSIM index 

is that the matrix orientation represents geospatial characteristics, which is addressed in 

Chapter 3.3. 

The SSIM index is capable of capturing spatial effects through the concept of a 

spatial weights matrix, which is also known as a roving window or convolution kernel 

(Lillesand et al., 2008). The spatial weights matrix is often a 3x3, 5x5, or 7x7 matrix, but 

can generally be any odd number by odd number matrix so the central value is unique. The 

normalized spatial weights are then applied beginning with the upper left corner so that the 

first central value is surrounded by enough values to match the dimensions of the roving 

window. The window is then applied to every other OD pair surrounded by enough cells 

to fit the dimensions of the spatial weights matrix. Due to this restriction, the border cells 

will not be included in the analysis for the SSIM index. SSIM indices are bounded by one 

and negative one, where a SSIM value of one indicates the matrices are identical. SSIM 

values are calculated across an entire OD matrix using the mean of the individual spatial 

weights matrices, as demonstrated in Equation 3: 

 

𝑀𝑆𝑆𝐼𝑀(𝐷, 𝐷̅) =
1

𝑛
∑

(2𝜇𝑑𝑛𝜇𝑑̅𝑛
+𝐶1)(2𝜎𝑑𝑛𝑑̅𝑛

+𝐶2)

(𝜇2
𝑑𝑛

+𝜇2
𝑑̅𝑛

+𝐶1)(𝜎2
𝑑𝑛+𝜎2

𝑑̅𝑛
+𝐶2)

∀𝑛      (3) 

where 

𝐷 =  𝑠𝑢𝑏𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑂𝐷 𝑚𝑎𝑡𝑟𝑖𝑥 𝑓𝑟𝑜𝑚 𝑎𝑛 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

𝐷̅ = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑢𝑏𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑂𝐷 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑎𝑙𝑙 𝑏𝑎𝑠𝑒 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠  

𝑛 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 𝑤𝑎𝑠 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 

𝑑𝑛 =

𝑡ℎ𝑒 𝑛𝑡ℎ 𝑒𝑛𝑡𝑟𝑦𝑤𝑖𝑠𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 & 𝐷  
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𝑑̅𝑛 =

𝑡ℎ𝑒 𝑛𝑡ℎ 𝑒𝑛𝑡𝑟𝑦𝑤𝑖𝑠𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 & 𝐷̅  

𝜇 = 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑑𝑛, 𝑑̅𝑛 

𝜎2 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑑𝑛, 𝑑̅𝑛; 𝜎 = 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑑𝑛, 𝑑̅𝑛 

𝐶1, 𝐶2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑡𝑜 𝑝𝑟𝑒𝑣𝑒𝑛𝑡 𝑖𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑆𝑆𝐼𝑀 (𝑑𝑖𝑣𝑖𝑑𝑖𝑛𝑔 𝑏𝑦 𝑧𝑒𝑟𝑜)  

The goal of these statistics is to test the appropriate metrics for quantifying the 

sufficiency of subnetwork size. First, the metrics will be tested for their ability to capture 

changes in the boundary demand as the size of the subnetwork grows. Then, the metrics 

will be used to gauge the amount of rerouting experienced at the subnetwork boundary 

relative to the magnitude of capacity reduction. In other words, the proposed metric will 

be capable of relating the impact size of a traffic control scenario to the accuracy of the 

demand input for the subnetwork, while accounting for the randomness of the model. 

2.5 SUMMARY 

Bringing together the concepts of DTA impact analysis, subnetworks, GIS and 

transportation modeling, and the initial procedures for this project helps to lay the 

foundation for defining an appropriate subnetwork area. The greatest power of DTA impact 

analysis is the ability to predict rerouting. Recent subnetwork studies have focused on 

adjusting the subarea boundary demand to capture this rerouting, but a new means of 

extracting an area that captures the majority of rerouting may make the demand adjustment 

step unnecessary. Developing a controlled subnetwork experiment requires a standard 

method for extracting the subnetwork GIS elements from the full DTA model. The 

database and spatial relationship tools of GIS can accommodate the data setup. After 

building the subnetwork, the most effective way to analyze changes in the full network is 

to compare the induced traffic flows across the subnetwork boundary. This requires the 
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examination of the origin-destination matrix for the subnetwork, which can be 

accomplished using a number of metrics. These error measures can provide a thorough 

analysis for comparing the impacts of subnetwork sizes, and statistical methods may be 

used to predict these impacts. 
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SECTION 1 SUMMARY: ORIGIN 

In transportation planning, the origin represents the traffic analysis zone where trips 

begin. Typical trip generation begins with identifying the characteristics within the zone 

that influence the number of trips produced, then using historical data to define those 

relationships. Similarly, the origin section of this dissertation has provided a summary of 

the issues surrounding subnetworks and used historical literature to address those issues. 

In essence, the origin defines the current state of the knowledge and where this dissertation 

begins. After the origin of the problem has been addressed it important to identify the 

possible routes that may be used solve it, which are covered in Section 2. 

To summarize the focus of this problem, the primary scenario that is addressed in 

this study, corresponding to the key parameters addressed in the FHWA Guidebook on the 

Utilization of Dynamic Traffic Assignment introduced in Chapter 2.2, are: 

 Study area: Small network 

 Type of facilities: Arterials and freeway 

 Travel modes: Passenger cars and trucks 

 Management strategy: Work zone 

 Traveler responses: Pre-trip route diversion 

 Performance measures: Volume, travel time 

 Operational characteristics: Computer run time 

This subnetwork selection methodology contributes to the need for intelligently 

designed subnetworks rather than ad hoc procedures. The techniques proposed here aim to 

improve the traffic analysis of networks that requires multiple scenarios. The use of 

sufficient subnetworks will enable DTA advancements to be implemented more quickly as 

size is often a prohibitive factor for new algorithms.  
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SECTION 2:  ROUTE 

The route section of this dissertation elaborates on the methodology and the 

research design for solving the subnetwork problem revealed in the origin section. Vehicle 

routing in DTA is the process of searching for the minimal travel time path between an 

origin zone and destination zone for a specified analysis time period. This is accomplished 

through implementing a shortest path algorithm based on the link costs in the transportation 

network. These costs can be travel time alone or be generalized to include monetary costs, 

reliability, and other types of impediments to travel. The origin section described where 

this study began and the route section will expand on how to get to the destination in the 

most efficient manner. The goal is to take the lessons learned from previous subarea 

analysis research and synthesize new methods, with technically rigorous reasoning, for 

identifying an appropriate subnetwork. 

The next two chapters will identify the path set for accomplishing a subnetwork 

characterization and focus on the most effective methods. These methods were tested using 

an experimental setup based on representative case studies to verify their applicability. 

Details of the case study are provided to aid the description of the method. Two effective 

means for establishing subnetworks, a comparison and prediction technique, are described 

in detail with reference to their theoretical backgrounds. The comparison method 

introduces a statistical analysis framework that identifies the difference between two 

induced subnetwork OD matrices; thus, measuring the difference between full network 

scenarios at the subarea boundary. Information from the comparison analysis led to a 

predictive model so that an estimate of the error can be produced without the need to run 

the full network impact or base scenario. The predictive model will also help to generalize 
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the methodology such that other users may adapt the proposed theory to their unique 

network. 

As a reference for the terms used in this section, the following definitions apply to 

this subnetwork study: 

 Full network: a pre-existing, well calibrated regional model 

 Subnetwork: the fraction of the full network used for detailed study 

 Complement network: the area of the full network not included in the subnetwork 

 Base scenario: the output of the full network model run in its original state 

 Impact scenario: the output of the full network model run with an alteration or 

modification made to some link(s) 

 Subnetwork OD matrices: the origin-destination demand input for the subnetwork 

produced form the induced demand of the base or impact scenario 

 Boundary demand: this refers to the flow entering the centroids created at the 

extents of the subnetwork 

 Cold start: beginning the DTA model simulation with no initial path set information 

 GIS features: geospatial data types containing information on the geographic 

location of network components including points used to represent nodes and 

centroids and lines used to represent links and connectors 
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Chapter 3: Comparison 

This chapter describes a standard method for creating a DTA subnetwork and a 

means to estimate the possible error associated with removing part of a network. The 

methodology that evolved first identifies the differences between the full network and the 

subnetwork and then compares the induced subnetwork demand matrices for a base 

scenario and impact scenario. The primary limitation caused by creating a subnetwork is 

the treatment of trips that originate in the complement network, which is why the boundary 

demand is of greatest interest. The solution presented in this chapter creates subnetwork 

trip tables extracted from the base and impact scenario full network and then tests for 

statistical similarity to determine if the impact scenario effects are detectable at the subarea 

boundary. Three statistical measures found in the literature are used to compare the 

subnetwork OD matrices. This chapter will discuss how to compare random subnetwork 

inputs using these three metrics, how to use statistical tests to compare subnetwork sizes 

for the three methods, and how these results can be used to build subnetwork 

recommendations.  

3.1 SUBNETWORK PERFORMANCE COMPARISON 

Imagine dropping a rock in a puddle. The effects are intuitive, waves of disturbed 

water would radiate from the location of the rock’s impact in all directions. Now imagine 

if the water were channelized by walls similar to a simple rat maze (seen in Figure 4). To 

complicate things even more, suppose different segments of the maze were filled with 

liquids of different viscosities. Now the influence of the rock on the surrounding water is 

not so trivial. The effects on one edge of the maze may be drastically different than the 

other side of the maze. Using this analogy, the maze represents an abstract form of 

transportation network and the viscosity of the liquid represents the resistance of the traffic 
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flow to change. If one wishes to predict the effects of the size of the rock, the chaos in the 

perturbation of the water makes it difficult to use basic kinematic wave principles. Instead, 

examining the maximum wave height at different points in the maze could provide insight 

into how the rock’s influence spreads.  Similarly, DTA results have a behavior that is very 

sensitive to small changes in condition, which suggest the effects of these changes is best 

understood by investigating empirical observations. 

 

Figure 4: Analogy for the Complexity of Understanding Network Impacts 

In the process of developing this methodology for determining subnetwork 

sufficiency several alternative approaches were evaluated. These approaches were based 

on standard practices for researching and analyzing transportation problems. A lengthy 

analysis of link-based statistics for multiple scenarios involved investigating the 

fundamental traffic parameters: flow, density, and speed. Other metrics were examined as 

well including travel time and level of service. Upon analyzing the traditional link 

measures, there was a large amount of variation within multiple simulations of the same 

scenario. The primary difficulty associated with the randomness of these measures was 

deriving a summary metric for the entire subnetwork. Comparing different sizes of 
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subnetworks requires an aggregated performance metric, and examining link statistics 

alone was not robust enough. 

An entirely different approach to the subnetwork creation problem was the potential 

for updating boundary demand. In concept, it is similar to the proposal of Zhou et al. 2006 

for estimating subnetwork demand. Rather than using traffic counts, the investigation 

focused on updating induced boundary demand based on the network model. Initially, an 

attempt of updating boundary demand with static traffic assignment results was tested. The 

basic principle was to transform the dynamic network into a static network, using the same 

demand and links. Then, the base and impact scenario were implemented on the static 

network through the same capacity reduction. The percent change of flows into and out of 

the subnetwork were then compared to the results from the DTA model. This method was 

abandoned after the static traffic assignment results were considered inconsistent with the 

DTA simulation, the models experienced different magnitudes and locations of changes. 

While STA shares the principles of user equilibrium, this optimization approach did not 

improve the DTA model inputs. However, the goal of updating boundary demand was not 

given up completely. 

Another means of updating the subnetwork OD matrix inputs was derived from the 

destination choice principles used in stochastic network loading (Sheffi, 1984). This is an 

example where statistical models and optimization methods have been combined in 

practice. The essence of the discrete destination choice model is using a logit probabilistic 

model to choose between a set of alternatives with a given utility. In this case, the utility 

may be represented by the travel times associated with different paths. This concept was 

applied to trips originating in the complement network. An approximation of the travel 

times from external regions where used as the utility to select between feasible subnetwork 
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entry point choices. Several configurations of the model were tested, but the algorithms 

used to extract travel times and estimate the logit model became a limiting factor. The 

model results recommended adjustments that generated more realistic boundary demand, 

but the improvements were minor and were offset by the extra time required for running 

the logit model. Therefore, this was not accepted as a viable method for reducing the time 

of running the full network model impact scenario. 

The methodology was evolving based on the investigation of common tools used 

for transportation system analysis: standard link-based output metrics, optimization results, 

and statistical regression models. Insight from testing link-based measures and updating 

the boundary demand led to a shift of focus toward the interaction of the extents of the 

subnetwork and the flows across the boundary. This focus inspired the standardization of 

subnetwork construction. An intuitive method for building the subnetwork is to specify a 

subarea within a radial distance from the impact location. Using a Euclidian distance does 

not account for network topology, but it was a valuable first method for testing boundary 

effects.  

Producing analytical measures of the boundary demand involved consideration for 

the nature of DTA. Since rerouting is a powerful capability of DTA, identifying a method 

of quantifying rerouting at the subarea boundary became the next goal. After a base and 

impact scenario have been run, the routes generated in the simulation can be visualized and 

compared (further discussion of this technique is in Chapter 6.2). It was hypothesized that 

measuring the distance from the impact to the furthest point of rerouting in the network 

could be used as the radial distance for the standard subnetwork creation method. 

Implementing this technique with a few scenarios indicated that it produced too large of a 

subnetwork. The fraction of the full network included was too large to effectively reduce 
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the time for simulation. Another measure of rerouting was designed to quantify the 

percentage of displaced vehicles using the impacted link(s) that crossed the boundary. This 

measure appeared to move the investigation in the right direction, but did not account for 

the cascading effects of displaced vehicles on other paths – any displaced vehicles use 

another path causing that path travel time to increase and subsequently rerouting more 

vehicles away from that path. The method now called for a global measure that summarized 

the overall impact at the subnetwork boundary. 

These steps for building the methodology were critical for the completion of this 

project. They helped identify the concerns behind what it means for a subnetwork to be 

sufficient. The issues associated with building an appropriate subnetwork are twofold – the 

complexity of the model operations and the potential random variation. These problems 

appear to not be easily captured with an optimization method or new algorithm, and could 

be addressed more robustly with statistical analysis. This requires a more thorough 

understanding of the sources of the randomness in DTA outputs. 

DTA analyses are desirable because they have been demonstrated to provide more 

detailed network conditions because of the DTA ability to track temporal changes in 

demand and traffic, while incorporating user behavior. Within DTA random number 

generators may introduce variability to replicate real life processes. Examples applications 

include traffic flow model rounding, loading times for vehicles, creating new shortest 

paths, OD demand distribution, vehicle class designation, or when vehicles move from one 

path to another (Peeta and Ziliaskopoulos, 2001). Other random model components may 

not clearly translate to real world variability. When trying to compare impact scenarios, it 

is crucial to understand the amount of deviation created by the randomization processes, 

otherwise “an analyst has no way to tell whether the change of traffic condition in the 
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compared scenario is strictly due to the scenario or is affected by artifacts introduced by 

the solution algorithm (Chiu et al., 2010).”  

Initial tests for this project began to characterize the randomized variation of link-

based statistics. Accounting for the randomness in DTA results can be accomplished 

through traditional statistical analysis on a link by link basis, aggregated over a subarea, or 

for the entire network. Attempting to perform a link by link examination for a subnetwork 

selection process poses a problem.  

Once the subnetwork boundaries have been established, the demand information 

must be extracted from the vehicle trajectories of a full network simulation. Demands from 

external centroids are summarized to a new boundary centroid by extracting and summing 

the volumes of links entering the boundary centroid at the edge of the subnetwork in each 

time period; each vehicle entering the subnetwork also has its destination stored in this 

demand extraction process. The new, induced time-dependent OD matrix includes only the 

centroids located within the subnetwork and the newly created boundary centroids. 

Subnetwork analysis requires running the network from a cold start with the newly 

created subnetwork OD demand matrix, which makes comparing the variability of link 

travel times and volumes nontrivial. The subnetwork assignment produces flows and 

volumes that contain randomness associated with both the induced boundary demand and 

the subnetwork simulation. This random variability can be accounted for by treating several 

simulation results as a sample. This study proposes a methodological framework of 

statistically comparing OD matrices from multiple scenarios rather than the more common 

link-level metrics. The error between the base and impact induced subnetwork OD matrices 

are compared using a two sample equal means test. If the test finds statistical similarity 

between the errors of the OD matrices, then it may be concluded that the impact scenario 
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does not have significant effects at the boundary of the subnetwork. This indicates that the 

subarea is sufficiently capable of simulating the impact scenario.  

3.2 STANDARD SUBNETWORK PROCEDURE 

The experimental framework is presented here to demonstrate the feasibility of the 

methodology. The data for this study was received from the Network Modeling Center 

(NMC) of the Center for Transportation Research (CTR) at the University of Texas at 

Austin. This analysis uses the Visual Interactive System for Transport Algorithms (VISTA) 

DTA software. The representative case study used to support this methodology is based on 

the downtown Austin DTA network extracted from the original Capital Area Metropolitan 

Planning Organization (CAMPO) five county regional network. The downtown network 

has been calibrated through an in-depth network characteristic review and validated using 

available traffic counts. The full network was simulated ten times with base conditions, 

and ten additional times with each impact scenario. Each of these full network runs was 

investigated using subnetworks of varying size. 

In this study a robust method for characterizing the subnetwork was needed, so the 

subnetwork elements were selected based on the study performed by Chen et al., 2012 This 

method of selection, discussed in the literature review in Chapter 2.2, selects network links 

extending in all directions from the modified link. (The “modified link” is the impact 

location under study, such as the location of a potential maintenance project, the site of a 

traffic accident, or a marathon route).  A number of additional links, equal to the size 

parameter, that are topologically connected to the modified link are selected. The larger the 

size parameter specified, the larger the subnetwork will be. A size parameter of one is one 

connective link beyond the modified link. Likewise, a size parameter of two is one 

connective link extending beyond the links included in a size parameter of one. As the size 
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parameter increases by one, the selection includes all contiguous links not included in the 

previous size parameter selection. Figure 5 shows an example of subnetwork selection 

using the connected order. Such a selection method is most effective on a homogeneous 

network structure, but the equal treatment of surrounding links makes it generalizable to 

common types of networks. The ability to apply this procedure to any network is the goal 

for tractability of this subnetwork analysis.   

 

 

Figure 5: Visualization of the Connected Order Subnetwork Selection Process (from 

Gemar, 2013) 

For the initial subnetwork analysis, this study investigated size parameters of five, 

seven, and nine because Chen et al., 2012 recommends using size parameters between three 

and ten to balance the accuracy and efficiency of the subnetwork.  The impact scenarios 

created to assess the limits of the method are defined by three characteristics: roadway 
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identification, link(s) capacity reduction, and the number of modified links. To test the 

subnetwork size selection, three locations with distinctive characteristics were chosen 

within the downtown network, including modifications to Guadalupe Street, a southbound 

one-way arterial with four lanes; 7th Street, an eastbound one-way arterial with four lanes; 

and 15th Street, an east-west two-way arterial with six lanes (three in each direction). These 

locations are shown in Figure 6. In addition, capacity reductions of 25 percent, 50 percent, 

and 100 percent were chosen in combinations involving one link, two links, or three links. 

These capacity reductions and numbers of links were selected to represent the range within 

the extremes of potential traffic control scenarios. The same capacity reductions were 

applied to all links in the scenario. Three options for each of the three impact scenario 

characteristics led to a total of 81 different scenarios evaluated, each of which was assessed 

using size parameters of five, seven, and nine. For some of the larger impact scenarios, 

with three links impacted or 100% capacity reduction, impact scenarios with a size 

parameter of eleven were investigated because statistical similarity was not found with a 

subnetwork of connected order nine. These magnitudes of traffic control scenarios were 

selected to cover typical impact scenarios requiring subarea analysis. 
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Figure 6: Maps of Impact Scenario Subnetworks in the Downtown Austin Area 
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The procedure for this experiment included the development of software code for 

manipulating data and calculating statistics. The procedure that evolved is described in the 

following eight steps: 

 

Procedure for Statistical Calculations 

STEP 1: Select and extract subnetwork data elements using GIS models 

STEP 2: Use NMC Java code to extract the induced subarea demand from simulations 

STEP 3: Extract dynamic OD tables from VISTA and import into spreadsheet 

STEP 4: Join scenario OD tables with MATLAB code based on time period OD pair 

STEP 5: Convert joined OD tables to a matrix format as required for SSIM calculations 

STEP 6: Average values from all the base runs to use as a baseline 

STEP 7: Calculate error measures comparing each base and impact run to the baseline 

STEP 8: Compare the base and impact scenario errors using an equal means hypothesis 

 

In this procedure, the term OD table refers to the format that VISTA uses for its 

demand database. The OD table has three columns that represent the origin, destination, 

and demand value. An OD matrix is designed so that the rows represent origins, the 

columns represent destinations, and the cells represent the demand between each row and 

column OD pair. Only subnetwork OD pairs with demand originating at subnetwork 

boundary centroids were considered in this analysis because rerouting occurring in the 

complement network only change the induced demand at the boundary. In other words, 

subnetwork boundary origin demand values exhibit all of the variability input into the 

subnetwork between the base and impact scenarios. 
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As listed in step 4, a procedure was created in MATLAB to match OD pairs with 

the same time period. This code guarantees that the corresponding demand from each of 

the different runs of the base scenario and the impact scenario are matched with the 

identical time-based OD pair for the error calculations. Several demand values from each 

of the time-dependent OD matrices were not included in all runs (a node was not used 

during a time period for a particular simulation), which is difficult to account for with 

typical database join operations. This special code was useful in aligning the appropriate 

demand values in each subnetwork scenario for accurate error calculations. This was 

necessary for each of the error measures tested, but extra consideration was needed for the 

SSIM index. 

The MATLAB SSIM index code, written by Wang et al. 2004, requires the standard 

OD matrix format with rows representing origins and columns representing destinations. 

The fully joined time-dependent OD table was then parsed and converted to the appropriate 

format for processing; thus, ensuring the OD matrix dimensions were consistent across 

base and impact scenario subnetworks. The primary inputs for Wang’s code are the 

subnetwork OD matrices; a few other input parameters for the SSIM code are needed for 

initialization. The other SSIM factors are described in section 3.3. 

The following tests can be completed based on the assumptions that the runs are 

independent and the simulation output values are identically distributed. The assumption 

of independence between the runs can be justified by ensuring the individual model runs 

will be completed from a cold start. Although the network and the demand inputs are the 

same, the path sets, route assignments, and simulation results will be reset between runs. 

The assumption of the results coming from the same distribution, in this case normal, can 

be verified using a Lilliefors or Anderson-Darling test. The Lilliefors test is commonly 
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implemented for small sample sizes (n < 30). The assumption of equal variances between 

the base and impact scenario sample sets can be verified using a standard F-test. The 

findings from testing the theoretical assumptions are provided in Chapter 3.5. 

After verifying the assumptions, the next step is to determine whether the means of 

the error measures across the multiple simulations are statistically different between the 

base and impact scenarios for a given subnetwork. As discussed in Chapter 2.4, these error 

measures include the root mean square error, the mean absolute percentage error, and the 

structural similarity index. In order to manage the data processing requirements six 

representative scenarios were selected to perform ten simulations, and the rest were 

simulated twice. The six chosen scenarios were Guadalupe Street (one link impact with 

25% capacity reduction), Guadalupe Street (two link impact with 50% capacity reduction), 

Guadalupe Street (three link impact with 100% capacity reduction), 7th Street (two link 

impact with 50% capacity reduction), 7th Street (three link impact with 100% capacity 

reduction), and 15th Street (two link impact with 50% capacity reduction). A statistically 

sufficient comparison requires not only ten runs of the full network base scenario, but also 

ten runs of each of the full network impact scenarios. A sample size of ten was chosen 

since each of the models for the full network takes considerable computation time and it 

has been shown that above this number of samples there are diminishing returns. As a result 

of the smaller sample size, a two sample t-test for equal means will be used to determine 

whether the subnetwork boundary demand error is statistically different between the base 

and impact scenarios. In this test, the null hypothesis is the induced boundary demand error 

for the base and impact scenario subnetworks are the same. 

In addition to the equal means test, a prediction interval was calculated to further 

examine the hypothesis. For this interval, the base scenario simulations were used to 



 52 

establish a range of boundary demand error that would be expected due to random 

differences. If the demand extracted at the subnetwork boundary from an impact scenario 

does not fall within the prediction interval generated from the base scenario, it can be 

reasonably assumed that this subnetwork is not large enough to capture the influence of the 

impact scenario. Equation 4 represents the calculation for the prediction interval: 

 

𝑃𝐼 = 𝑥̅ ± 𝑡𝛼/2,𝑛−1𝑠√1 + (
1

𝑛
)        (4) 

where 𝑥̅ is the mean,  𝑡𝛼/2,𝑛−1 is the t-statistic for 𝛼 level of significance and a sample size 

of 𝑛, and 𝑠 is the sample standard deviation. This concept was compared with the 

hypothesis test to determine if the prediction interval is robust for evaluating whether the 

impact scenario demand error measure falls within the expected (model random variation) 

range of the base scenarios. It is intended that the prediction interval could be used to 

evaluate subnetwork sizes in place of the more time consuming full hypothesis test. The 

hypothesis tests require simulating the base and impact scenario multiple times, but the 

prediction interval method would only require multiple base runs. Since multiple impact 

scenarios are likely to be tested for traffic control planning process, the prediction interval 

could save a significant amount of time.  

In summary, the three error measures of the subnetwork demand were calculated 

using the joined OD matrices of each of the ten base and impact scenarios. These error 

measures were calculated comparing each base and impact scenario to the average of all 

the base runs. Averaging the demand values in the induced subnetwork OD matrix of all 

the base runs is the best available estimate for a true baseline. A 95% prediction interval 

was chosen for the error, and the errors for impact scenarios were compared using a two 
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sample t-test with a 95% confidence level to determine if the difference was statistically 

significant. The same procedure was carried out for the RMSE, MCAPE and SSIM index. 

3.3 STRUCTURAL SIMILARITY INDEX 

The structural similarity index is intended to be a more sophisticated measure of 

error that captures spatial and temporal effects. Since the SSIM index was originally 

introduced for image analysis some special considerations must be made for use in an OD 

matrix analysis context. In particular, selecting the appropriate spatial weights matrices is 

one of the biggest factors in calculating the SSIM index. For this analysis, the spatial 

weights matrix represents how strong the correlation is between an OD pair and the 

surrounding OD pairs in the subnetwork OD matrix. The spatial weights matrix is applied 

to each OD pair to determine individual SSIM indices, and then the SSIM indices are 

averaged to determine the overall SSIM index, or MSSIM. This means the spatial weights 

matrix selected should be general for the entire OD matrix structure. As illustrated in Figure 

7, the correlation pattern should emphasize the central feature OD pair of the spatial 

weights matrix as this is the demand value used to calculate the individual SSIM index, 

which can be done by giving it the highest weight. In fact, the RMSE and MAPE 

calculations can be thought of as having a 1x1 spatial weights matrix with a central value 

of one.  
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Figure 7: SSIM Spatial Weights Matrices Tested for the Analysis 

Figure 7 and Figure 8 together present a representation of the relationship between 

spatial weight matrices and the corresponding geographic locations of the OD pairs. 

Potential weights to be tested for a 3x3 matrix are illustrated in Figure 7. A 3x3 window 

includes only the immediately adjacent origin and destination centroids from the central 

feature OD pair used to calculate the SSIM index and was chosen because this concept 

relates to a k-nearest neighbors weighting scheme, where k = 2. K-nearest neighbors is a 

common GIS concept for a spatial relationship that identifies and selects a specified 

number, k, of the surrounding GIS features that are the shortest distance from the central 

feature being analyzed. These features can be points, lines, or polygons, and in this case 

the features are a centroid (point). The cross window implies that demand from the same 

origin and to the same destination should play a dominant role in the analysis. 
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Alternatively, the vertical window only factors in the demand from nearby origins going 

to the same destination. The normal window, or a Gaussian distribution matrix, and the 

“ones” window are two different schemes that include all combinations of surrounding 

origins and destinations. The central feature OD pair is circled in a bold outline in Figure 

8.  

 

 

 

Figure 8: Geospatial Representation of Applying a Spatial Weights Matrix to an Origin-

Destination Matrix 

O/D D1 D2 D3

O1 1 2 3
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Figure 8 reveals the importance of the row and column cell location in the OD 

matrix corresponding to geographic location of the centroid. The figure only contains nodes 

(points) for boundary centroids for added clarity. O1, O2, O3, D1, D2, and D3 are the 

representative boundary centroids that depict the location of origins and destinations 

designated by rows (origins, O) and columns (destinations, D), respectively in Figure 8. 

The connections 1 through 9 represent the OD pairs that receive the weightings in the 3x3 

matrix. Without a proper ordering of the rows and columns in the OD matrix, it is likely 

the cells surrounding an OD pair would not be geographically related. A unique method of 

constructing the OD matrix was developed to ensure the geospatial correlation between 

nearby cells. In order for the windows in Figure 7 to be applied as demonstrated in Figure 

8, the subnetwork OD matrix ordering scheme was focused on the subnetwork boundary. 

Subnetwork boundary centroids were considered first since the application of the error 

measures was limited to the demand originating at the boundary, where the differences 

between the base and impact scenario are expected. Subnetwork boundary centroid origins 

were listed in a clockwise order by traversing the periphery of the subarea starting from 

the northeastern most point. This order was used for the arrangement of rows in the OD 

matrix. Then, boundary destinations were listed in the same manner to form the columns 

of the matrix. The internal destination centroids were investigated to determine if their 

assigned node identifiers corresponded to geographic location. Generally, sequentially 

numbered internal destination centroids corresponded with their geographically nearest 

neighbors (a consideration that should be made as MPOs choose centroid numbers to allow 

for easier implementation of a variety of geospatial analyses). Internal destinations have 

far less impact on the SSIM analysis than nearby entry points at the boundary. After 
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addressing the ordering of the subnetwork OD matrix rows and columns, a few more 

complex considerations can be made for the SSIM analysis. 

The basic SSIM index only incorporates spatially related OD cells. In order to 

incorporate the time dimension into this analysis, another modification to the construction 

of the origin-destination matrix was considered. Rather than using a matrix organized by 

geographic location for both origin and destination, only the geographic relationships for 

origins were used. This again focuses the error measures on capturing the switching of 

vehicle entry points due to rerouting. The columns, instead, were set up by placing the OD 

pairs for the previous time period to the left and OD pairs for the subsequent time period 

to the right of the current time period OD pair. For example, this new OD matrix could 

have columns with the following order: column 1 from time period 1, column 1 from time 

period 2, column 1 from time period 3, column 2 from time period 1, column 2 from time 

period 2, column 2 from time period 2, etc. This is particularly advantageous because of 

the time-dependent OD matrices used for DTA. Another advantage of only considering the 

spatial relationship of nearby origins is that it alleviates the issues with ordering the internal 

destinations in the OD matrix based on their unique identifiers. With this method the SSIM 

will capture the relationships of vehicles entering at different boundary locations or those 

boundary locations in different time periods. 

With this temporal setup of the SSIM index, the output will have extra columns on 

either side of the time period of interest. After the SSIM index matrix, or map, is created 

the SSIM values associated with the current time can be isolated from the previous and 

subsequent time periods. This creates a SSIM index map with the same number of origins 

(rows) as boundary origins, and the same number of destinations (columns) as all the 

destinations within the subnetwork. The spatiotemporal weights matrix used for this test is 
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represented in Figure 9. The MSSIM was calculated for a time only window, space only 

window, and a time-space window. 

 

 

 

 

Figure 9:  Comparison of Time and Space Weight Matrices for the Temporal SSIM Index 

One last issue with the setup of the origin destination table is the exclusion of the 

border OD cells. An additional effort was made to include border cells in the SSIM analysis 

by inserting a fake first row identical to the last row and a fake last row identical to the first 

row (also done for columns). This enables all of the OD pairs in the matrix to be included 

in the MSSIM calculation. This also enables a complete loop of the organization of the 

origins by clockwise orientation around the subnetwork boundary. 

Another parameter for the SSIM index is the dynamic range. For an image, the 

dynamic range represents the value stored in each pixel of an image, which ranges from 0 

to 255 for 8-bit color or grayscale. To translate this concept for an OD matrix, the dynamic 

range should be the maximum of all OD demand values. The dynamic range is used to 
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SSIM Spatial Window

O/D DT1 DT2 DT3
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SSIM Spatiotemporal Window
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calculate the constants C1 and C2 to prevent instability in the calculation (i.e. prevent 

dividing by zero).  

Each spatial weights matrix, time period aggregation of simulation results, and even 

time-based variation will be analyzed to select the optimal SSIM configuration. If the SSIM 

index has difficulty finding similarity between the base and impact scenarios, an equal 

distribution of the weights may be used to reduce the error associated with spatial and 

temporal variability. The added level of sophistication proposed here for the SSIM index 

has potential application outside this subnetwork methodology. These DTA time-

dependent OD matrix and topological considerations contribute to the utilization of this 

metric for transportation analysis. 

3.4 INITIAL IMPLEMENTATION OF THE METHODOLOGY 

The statistical equal means tests were implemented for each error measure using 

one hour and two hour time periods for each of the subnetwork sizes, impact scenarios, and 

locations. The one hour time period corresponds to the peak hour of the DTA simulation 

and the two hour time period corresponds to the peak period. In these cases, the induced 

boundary demands were summed over the peak hour and peak periods. Considerations 

were made for these time periods to avoid the initial loading of the DTA network and the 

unloading during the end of the simulation, as these output are less reliable. This analysis 

revealed that the RMSE was the best tool for determining subnetwork size because it was 

able to identify a transition to statistical similarity of the induced boundary demand as the 

subnetwork size increased. The SSIM index found the base and impact subnetwork OD 

matrices to be statistically different no matter what size parameter, spatial weights, or time 

period was used. This indicated that the SSIM index was too sensitive to the error between 

base and impact scenarios. The MAPE was also found to be too sensitive to the error and 
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not useful for determining a subnetwork size. Since previous studies have shown the 

chosen ranges of subnetwork sizes to be sufficient for capturing network alterations, the 

MAPE and SSIM index were eliminated from the study. 

 The RMSE gave the most promising results for comparing induced demand error 

associated with incrementally increasing the size of the subnetwork. For each of the 

scenarios, the RMSE indicates that boundary demands for smaller sized subnetworks are 

statistically different compared to the base, and for larger subnetworks, these demands are 

statistically the same. This transition to statistical similarity indicates that the subnetwork 

is large enough to contain a majority of the traffic impacts. The RMSE results demonstrate 

an ability to identify this threshold; therefore, it is a viable candidate for a subnetwork size 

metric.  

Using RMSE as a base for comparison the three different weighting concepts in 

Figure 9 were tested. To address the oversensitivity of the spatial only SSIM index, the 

subnetwork impact scenario with the smallest recommended size from the RMSE results 

was used. The Guadalupe impact scenario with a capacity reduction of 25% on one link 

found similarity between the base and impact scenarios at a subnetwork of size parameter 

five. It was hypothesized that incorporating more time periods in the SSIM analysis would 

increase the sensitivity of the time periods used for simulation results. Therefore, the 

proposed temporal SSIM was tested on a number of time period subsets to determine if any 

time period would enhance the tractability of the SSIM index. The time periods referenced 

here are 15 minute intervals of the simulation period. For instance, time period 2 through 

5 represent the standard peak hour for this study, or 30 minutes into simulation through 90 

minutes into simulation. Table 1 documents the results of the spatiotemporal SSIM from 

the different time periods. 
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Table 1:  Statistical Tests of the Proposed Spatiotemporal SSIM Index for 10 Base 

Scenarios and 10 Impact Scenarios across Different Time Periods 

Scenario Location 
Subnetwork 
Size (Order) Impact Size Time Periods 

Hypothesis Testing 

Equal 
Variance* 

Normality 
Lilliefors** 

Normality   
A-D** 

Equal 
Mean*** 

Base Guadalupe St 5 1, 25% All 
Y 

Y Y 
Y 

Impact Guadalupe St 5 1, 25% All Y Y 

Base Guadalupe St 7 1, 25% All 
Y 

Y Y 
Y 

Impact Guadalupe St 7 1, 25% All Y Y 

Base Guadalupe St 9 1, 25% All 
Y 

Y Y 
Y 

Impact Guadalupe St 9 1, 25% All Y Y 

Base Guadalupe St 5 1, 25% 2 to 5 
Y 

Y Y 
N 

Impact Guadalupe St 5 1, 25% 2 to 5 Y Y 

Base Guadalupe St 7 1, 25% 2 to 5 
Y 

Y Y 
N 

Impact Guadalupe St 7 1, 25% 2 to 5 Y Y 

Base Guadalupe St 9 1, 25% 2 to 5 
Y 

Y Y 
N 

Impact Guadalupe St 9 1, 25% 2 to 5 Y N 

Base Guadalupe St 5 1, 25% 4 to 7 
Y 

Y Y 
Y 

Impact Guadalupe St 5 1, 25% 4 to 7 Y Y 

Base Guadalupe St 7 1, 25% 4 to 7 
Y 

Y Y 
N 

Impact Guadalupe St 7 1, 25% 4 to 7 Y Y 

Base Guadalupe St 9 1, 25% 4 to 7 
Y 

Y Y 
N 

Impact Guadalupe St 9 1, 25% 4 to 7 Y Y 

Base Guadalupe St 5 1, 25% 6 to 9 
Y 

Y Y 
N 

Impact Guadalupe St 5 1, 25% 6 to 9 Y Y 

Base Guadalupe St 7 1, 25% 6 to 9 
Y 

Y Y 
Y 

Impact Guadalupe St 7 1, 25% 6 to 9 Y Y 

Base Guadalupe St 9 1, 25% 6 to 9 
Y 

Y Y 
N 

Impact Guadalupe St 9 1, 25% 6 to 9 Y Y 

Base Guadalupe St 5 1, 25% 3 to 5 
Y 

N N 
N 

Impact Guadalupe St 5 1, 25% 3 to 5 Y Y 

Base Guadalupe St 7 1, 25% 3 to 5 
Y 

Y Y 
N 

Impact Guadalupe St 7 1, 25% 3 to 5 Y Y 

Base Guadalupe St 9 1, 25% 3 to 5 
Y 

Y Y 
Y 

Impact Guadalupe St 9 1, 25% 3 to 5 Y N 

Base Guadalupe St 5 1, 25% 2 to 9 
Y 

Y Y 
N 

Impact Guadalupe St 5 1, 25% 2 to 9 Y N 

Base Guadalupe St 7 1, 25% 2 to 9 
Y 

N Y 
N 

Impact Guadalupe St 7 1, 25% 2 to 9 Y Y 

Base Guadalupe St 9 1, 25% 2 to 9 
N 

Y Y 
N 

Impact Guadalupe St 9 1, 25% 2 to 9 Y Y 

 
* Y = Accept 𝐻𝑜: σ1

2 = σ2
2; N = Reject 𝐻𝑜, conclude 𝐻𝑎: σ1

2 ≠ σ2
2     

** Y = Accept 𝐻𝑜: Distribution is normal; N = Reject 𝐻𝑜, conclude 𝐻𝑎: Distribution is not normal  

*** Y = Accept 𝐻𝑜: μ1
2 = μ2

2; N = Reject 𝐻𝑜 conclude 𝐻𝑎: μ1
2 ≠ μ2

2  

Unfortunately, the results in Table 2 indicate that the temporal SSIM index 

performs inconsistently. For the peak hour, which was also used for the RMSE analysis, 

all subnetwork sizes were found to be dissimilar. In other time periods, the statistical test 

performed on the temporal SSIM index indicates that the incremental increase in 
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subnetwork size does not capture more of the rerouting at the boundary. In particular, time 

periods 4 to 7 (or an hour into the simulation to two hours into the simulation) found a 

subnetwork of size 5 to be adequate, but larger subnetworks to not be sufficient. Also, time 

periods 6 to 9, the second hour of the peak period, found size 7 to be adequate, but size 

parameters 5 and 9 were not. This sort of erratic behavior is not acceptable for the type of 

metric necessary for these predictions. It was hypothesized that if the temporal SSIM 

predicted results similar to RMSE, and possibly even identify smaller, adequate size 

parameters, that it would have been a more robust metric. Adding the time domain, which 

is pertinent to DTA analysis, would have allowed the SSIM index to incorporate the 

temporal effects of DTA simulation. However, the results from the statistical procedure 

find the spatiotemporal SSIM to be as unreliable as the MAPE and ordinary SSIM index. 

Therefore, it was also be removed from further testing. 

These statistics that were abandoned may still have a place in transportation 

analysis. However, their potential for addressing subnetwork boundary rerouting has 

limited their usefulness for this methodology. The SSIM index had the potential to provide 

another component to the analysis by incorporating spatial effects, which traditional 

statistical methodologies do not address despite their prevalence in transportation data. 

This investigation did find that a spatial weights matrix with a cross-shaped distribution 

incorporated the appropriate spatial relationships, and should be implemented if used for 

further OD matrix study. The MAPE error measure had the potential to normalize the 

changes in boundary demand, which may be beneficial for OD matrices associated with 

heterogeneous network characteristics. This investigation found that it may be useful to 

censor the MAPE by taking the minimum of the individual MAPE values and 100%. The 
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MCAPE can prevent overestimation of the OD matrix error. Further development of the 

subnetwork methodology will focus on the use of the RMSE. 

3.5 REFINING THE STATISTICAL SUBNETWORK CHARACTERIZATION 

The preliminary investigation of the error measures, evaluated a subset of scenarios 

representative of a comprehensive range of possible network modifications. The RMSE 

was found to produce the most valuable results during the one hour period of the simulation 

time for the trial scenarios, representing the peak hour. Practitioners have also suspected 

that this time period is the most reliable portion of the simulation output. The trial scenarios 

included a 25 percent capacity reduction to one link, a 50 percent reduction to two 

consecutive links, and a 100 percent capacity reduction across three consecutive links. To 

control for location, all three scenarios were tested along Guadalupe Street.  To control for 

impact scope, the mid-range scenario characteristic of a 50 percent capacity reduction to 

two links was tested at all three locations. A second, 100 percent capacity reduction was 

also tested to further investigate the most substantial impact scenario.  
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Table 2:  Statistical Tests of the RMSE for 10 Base and 10 Impact Scenarios during the 

Peak-Hour 

Scenario Location 
Subnetwork 

Size (Order) 

Impact 

Size 

Capacity 

Reduction 

Hypothesis Testing Prediction Interval 
Impact Runs 

Within Base 

Range 
Equal 

Variance* 

Normality 

Lilliefors*

* 

Normality   

A-D** 

Equal 

Mean*** 
Lower Upper Range 

Base Guadalupe St 5 1 25 
Y 

Y Y 
Y 

1.73 4.81 3.08 10 

Impact Guadalupe St 5 1 25 Y Y 2.42 4.27 1.85 9 

Base Guadalupe St 7 1 25 
Y 

Y Y 
Y 

1.57 4.37 2.80 10 

Impact Guadalupe St 7 1 25 Y Y 2.33 3.90 1.57 9 

Base Guadalupe St 9 1 25 
Y 

Y Y 
Y 

1.64 3.40 1.76 10 

Impact Guadalupe St 9 1 25 Y Y 1.84 3.33 1.49 10 

Base 15th St 5 2 50 
Y 

Y Y 
N 

1.89 3.60 1.72 10 

Impact 15th St 5 2 50 Y Y 2.19 4.05 1.86 10 

Base 15th St 7 2 50 
N 

N N 
Y 

0.33 5.30 4.97 10 

Impact 15th St 7 2 50 Y Y 2.45 3.75 1.30 5 

Base 15th St 9 2 50 
Y 

Y Y 
Y 

1.24 3.15 1.91 9 

Impact 15th St 9 2 50 Y Y 1.71 3.27 1.56 10 

Base 7th St 5 2 50 
Y 

Y N 
N 

1.93 2.97 1.04 5 

Impact 7th St 5 2 50 Y Y 2.31 3.52 1.21 8 

Base 7th St 7 2 50 
Y 

Y Y 
N 

1.36 2.32 0.96 6 

Impact 7th St 7 2 50 Y Y 1.58 2.74 1.16 9 

Base 7th St 9 2 50 
N 

Y Y 
Y 

0.85 2.16 1.31 10 

Impact 7th St 9 2 50 Y Y 1.15 1.77 0.62 6 

Base Guadalupe St 5 2 50 
N 

Y N 
Y 

1.53 4.69 3.16 10 

Impact Guadalupe St 5 2 50 Y Y 2.40 3.90 1.50 8 

Base Guadalupe St 7 2 50 
Y 

Y Y 
Y 

1.53 4.51 2.98 10 

Impact Guadalupe St 7 2 50 Y Y 2.23 4.16 1.94 9 

Base Guadalupe St 9 2 50 
N 

N Y 
Y 

1.57 3.90 2.34 10 

Impact Guadalupe St 9 2 50 Y Y 2.20 3.25 1.05 6 

Base 7th St 5 3 100 
Y 

N N 
N 

1.92 2.93 1.01 0 

Impact 7th St 5 3 100 Y Y 8.98 10.68 1.70 0 

Base 7th St 7 3 100 
Y 

N Y 
N 

1.23 2.81 1.58 6 

Impact 7th St 7 3 100 Y Y 2.12 3.36 1.24 4 

Base 7th St 9 3 100 
Y 

Y Y 
N 

0.84 2.18 1.34 10 

Impact 7th St 9 3 100 Y Y 1.36 2.17 0.81 6 

Base Guadalupe St 5 3 100 
Y 

Y Y 
N 

1.55 4.50 2.95 0 

Impact Guadalupe St 5 3 100 Y Y 6.01 7.56 1.56 0 

Base Guadalupe St 7 3 100 
Y 

Y Y 
N 

2.23 4.78 2.56 7 

Impact Guadalupe St 7 3 100 Y Y 3.43 5.64 2.21 5 

Base Guadalupe St 9 3 100 
Y 

Y Y 
Y 

1.25 4.00 2.75 10 

Impact Guadalupe St 9 3 100 Y Y 2.16 3.70 1.54 7 

 
* Y = Accept 𝐻𝑜: σ1

2 = σ2
2; N = Reject 𝐻𝑜, conclude 𝐻𝑎: σ1

2 ≠ σ2
2     

** Y = Accept 𝐻𝑜: Distribution is normal; N = Reject 𝐻𝑜, conclude 𝐻𝑎: Distribution is not normal 

*** Y = Accept 𝐻𝑜: μ1 = μ2; N = Reject 𝐻𝑜 conclude 𝐻𝑎: μ1 ≠ μ2  

Table 2 summarizes the RMSE statistical test results for the peak hour of all 10 

simulations of the base scenario and 10 simulations of the impact scenario. The table can 

be interpreted using the first five columns to establish the scenario: base or impact; location 

by street name; subnetwork selection size parameter, or connected order; impact size in 

number of links; and impact magnitude in percent capacity reduction. As seen in Table 2 

the majority of scenarios passed the equal variance, Lilliefors, and Anderson-Darling tests, 
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which indicates that the independent and identical distribution assumption is correct. The 

last four columns represent the results of the prediction interval analysis. The lower bound, 

upper bound, and range of the prediction interval of the base scenario induced subnetwork 

demand errors are listed first; the last column represents the number of impact run errors 

that fell in the range of the base simulation error prediction interval. A greater number of 

impact runs within the base range is intended to indicate that the subnetwork may be 

sufficient. The prediction interval, although valuable in concept, has a limited application 

for making subnetwork recommendations because the results were not as consistent or 

meaningful as the equal means hypothesis test.  

The most important column in Table 2 is the equal means test results. The RMSE 

indicated that for minor impact scenarios (1 link, 25% capacity reduction) the base and 

impact subnetwork demand errors were equivalent at all subnetwork sizes, indicating that 

a subnetwork of size parameter 5 is sufficient. For larger impacts, the transition from 

statistical similarity to a statistical difference in boundary demand error was also captured. 

For instance, the 7th Street, 2 link, 50% capacity reduction scenario indicated that a size 

parameter of 7 was insufficient, but 9 was sufficient. It was anticipated that the threshold 

size for each scenario could be established using these comparisons, providing a means for 

determining the appropriate subnetwork selection necessary for capturing the majority of 

traffic impacts resulting from a network modification. The results in Table 2 suggesting an 

incremental change in the sufficiency of a subnetwork as the size grows, corroborate 

intuition and imply that the proposed statistical analysis can account for and eliminate the 

random variation associated with the model.  

Once the results had shown that the RMSE is capable of identifying when there is 

no longer a statistically significant difference between the base and impact subnetwork 
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boundary demand, the RMSE was used to evaluate all scenario combinations to derive 

systematic recommendations. This includes the scenarios that were only simulated twice. 

Although, two simulations does not provide a detailed distribution, two runs do protect 

against a single value coming from an outlier in the distribution and alleviated the burden 

of computational time needed for more simulations. The results from this extended analysis 

are shown in Figure 10. Figure 10 can be understood by reading the number of links 

modified for a given scenario (to the left) and the percent capacity reduction (on top), and 

tracing each to the point of intersection within the region of the recommended subnetwork 

size parameter. For example, a 2 link impact with 50% capacity reduction corresponds to 

a size parameter of 7, which corresponds to the results from the trial scenarios in Table 2. 

These recommendations may be used by practitioners to construct subareas for analysis 

corresponding to real world scenarios. However, the limitation of the connected order is 

that it does not address the peripheral structure of the subnetwork. Manual editing of the 

boundary should be used to ensure that connectivity of corridors is maintained around the 

edge of the subnetwork as well as not disconnecting approaches of intersections. 
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Figure 10: Detailed Results of the Subnetwork Size Evaluation (from Gemar, 2014) 

Through an evaluation of both traditional and unconventional statistical measures, 

the root mean square error was found to be the most useful measure for evaluating the 

subnetwork size relative to an impact scenario. Subsequently, a set of guidelines and 

recommendations has been established to determine the approximate subnetwork size 

required to evaluate a network modification based on the designated number of links to be 

altered and the associated capacity reduction. Final recommendations produced from the 

RMSE investigation of all representative scenarios are presented in Figure 10. 
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In order for any statistic to provide insight into this analysis for required size of 

subnetwork, it must be able to reveal changes through a hypothesis test comparing base 

and impact scenario demand errors. That is, it should show that boundary demands for 

insufficiently-sized subnetworks are statistically different, and for an adequate subnetwork 

size these demands are statistically the same. This transition to statistical similarity 

indicates that the subnetwork is large enough to contain a majority of the local traffic 

impacts, and it is assumed that the subnetwork size is sufficient. By capturing this transition 

rather than comparing outputs directly, the random variation associated with stochastic 

model components can be separated from the analysis. Removing this variation allows the 

user to identify potential extent of impacts from imposed network modifications. 

3.6 SUMMARY 

This chapter covers the evolution of the methodology for using subnetwork OD 

comparison as a means to identify an appropriate subnetwork size. The random variation 

of model results required a statistical test for comparing OD errors rather than a measure 

of the absolute difference. DTA model complexity lends itself to this benchmarking 

methodology based on simulations rather than an optimization framework. The procedure 

for the statistical test using each error measure (RMSE, MAPE, and SSIM) is documented 

in Chapter 3.2. The complexity of the SSIM index required further explanation of the 

geographic and time based methods used to capture the OD error. A brief summary of the 

preliminary sensitivity analysis results are used to demonstrate what makes an error 

measure capable of identifying the appropriate subnetwork size. Then, further scenarios 

were used to provide a solid foundation for subnetwork size recommendations based on 

the RMSE metric. The results of this analysis are summarized in Figure 10.  Since the 

RMSE found an incremental decrease in error between the base and impact scenarios as 
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the size of the subarea increased, this error measure will be used as the basis for a potential 

statistical prediction model. An overview of the development of this methodology is 

presented in Figure 11. 

 

Figure 11: Flow Chart for the Subnetwork Comparison Methodology  
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Chapter 4: Prediction 

Statistical comparison of the subarea origin-destination (OD) demand matrices 

proved to be an appropriate method for finding a sufficient subnetwork. By examining 

flows in the base and the impact network scenarios the root mean square error metric of 

rerouting can be used to identify statistical similarity of the subnetwork inputs. For a 

particular network configuration, the same statistical comparison could be applied to derive 

recommendations similar to the results from Figure 10. However, the effort required to 

perform this analysis may be prohibitive and it is hypothesized that certain characteristics 

of the impact scenario and the network may be used to predict this error without multiple 

network simulations. Specifying this relationship may help to characterize an appropriate 

subarea in significantly less time and effort. This technique may also have the potential to 

adapt this subnetwork characterization methodology to a variety of network types. 

The comparison technique is a trial and error process for analyzing subnetwork OD 

matrices that can support subnetwork recommendations based on average results for a 

given scenario. It may be possible to produce a prediction of error expected at the 

subnetwork boundary due to vehicles rerouting. The statistical tests used to investigate the 

comparison method indicate that the data also fulfill the assumptions for a linear regression 

model. Since the trial and error approach of the comparison technique requires multiple 

simulations of both the base and impact scenarios, a large portion of the computational 

effort could be eliminated through the use of a predictive model. A closed form prediction 

of error associated with subnetwork size is desirable to eliminate the effort required by the 

trial and error process. The predictive model should relate multiple impact scenario 

variables to the induced boundary demand error. This technique has the potential to be a 

more robust method for designating a subnetwork size. This chapter will cover the 
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methodology for building a predictive model and how the model may be used to establish 

an appropriate subnetwork size based on an error threshold.  

4.1 TRANSPORTATION FORECAST MODELS 

Historically, results from traffic simulation models have been a primary means for 

developing traffic impact analyses. The process is as follows: a simulation network is 

constructed, the before and after case scenarios are simulated multiple times, and averages 

of the results are compared to identify changes in performance metrics. These performance 

metrics are commonly fundamental traffic flow characteristics including density, speed, 

and delay. A more intuitive interpretation is generated using the level of service concept 

that relates these principle metrics to a letter grade scale. It is a novel idea to attempt to 

determine the relationship between the imposed network impacts and the changes 

experienced in the simulation results. In addition, performing such an analysis to examine 

the spatial scale at which significant changes occur introduces a more sophisticated form 

of traffic analysis. Now questions can be asked regarding what spatial extent is necessary 

for the traffic simulation to be an effective estimate of the changes to a network. 

Identifying the appropriate spatial scale that captures the impacts of a given 

scenario opens up more possibilities for enhancing the accuracy of traffic simulation. This 

methodology provides a theoretical framework for multi-resolution modeling. Statistical 

analysis, like the concepts used to estimate level of service from multiple runs, may also 

be used to address when the different levels of simulation detail– macroscopic, mesoscopic, 

and microscopic – should be applied. That is, these methods can predict where aggregate 

measures of rerouting, more detailed rerouting, and second by second vehicle trajectories 

are necessary. Attempting to use a statistical hypothesis test to answer this question, 

recognizes the significant role played by real world variability. Taking this methodology 
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one step further with a regression model designed to predict error associated with 

alternative subnetwork sizes provides insight to the variance of network measure outputs 

with the input variables. 

This direction for the methodology was also guided by analyzing the spatial scale 

associated with different network types. The comparison methodology was verified with a 

fairly homogeneous, well-connected grid network. While this type of network is common 

for most urban areas, this subnetwork procedure would be valuable if it could also be used 

for rural networks and mature freeway network applications. Mature freeway networks, 

such as multiple ring roads, common to many of the largest cities, and rural networks 

represent the two extremes of network connectivity. In order to address these different 

types of connectivity, alternative techniques of subnetwork selection were hypothesized. 

For instance, on freeway networks one could conceive of a connected order related to 

intersections of freeways, rather than treating freeways as being similar to collector or local 

links; or using the connected order selection method for links with capacity greater than 

2,000 first, then applying a second connected order selection for all links. These techniques 

would have led to a similar comparison analysis and associated recommendations, but 

would not have added to the methodology. Instead, developing a new research method 

could allow for a greater understanding of how the network type influences simulation 

behavior. The potential for using a characterization of the network topology as a variable 

can generalize this process for recommending a sufficient subnetwork size. 

Previously addressed considerations for the application of linear regression to 

transportation will help clarify some of the concepts used for this analysis. The basic 

objective of linear regression is to estimate the value of a dependent variable using known 

independent, or predictor, variables. In this case, rather than using multiple observations of 
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the root mean square error (RMSE) of the subnetwork OD matrix to provide a sufficient 

subnetwork size, one can use known independent variable values and a regression equation 

to create an estimate of the RMSE. These independent variables would ideally be 

characteristics of the network and impact scenario that influence the propagation of 

rerouting. There are four major assumptions that are required for using a linear regression 

model. 1) The dependent variable should have a linear relationship with the independent 

variable. 2) The error of the predicted value should be normally distributed. 3) The data 

should be independent. 4) The variance of the predictor should be constant across the range 

of the independent variable. Each of these assumptions must be verified for the dataset of 

subnetwork OD matrix errors.  

There has been widespread adaptation of linear regression techniques in 

transportation planning and engineering. The standard four step transportation planning 

model often uses linear regression models to predict numbers of trips beginning and ending 

in traffic analysis zones (Martin and McGuckin, 1998). More recent advances have adapted 

linear regression techniques to estimate time-dependent OD trip matrices based on known 

traffic counts (Bierlaire and Critten, 2004; Zhou et al. 2003). These studies related the 

deviation in actual and historical OD flow to sensor data of traffic volumes. This 

application provides further support that the deviations in OD matrices are normally 

distributed and may be predicted using other known variables. Given the common use of 

linear regression for transportation analysis, it appears suitable for the analysis of 

subnetwork OD matrices.  

The motivation behind these countless applications of linear regression in 

transportation is the capability of predictive models to forecast future conditions. Large 

data collection efforts made available via mobile telecommunication systems are getting 
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the industry closer to an accurate depiction of the state of the transportation system. 

However, most decisions transportation planners and engineers face require analysis of the 

state of the transportation systems years into the future. Current model calibration data are 

usually expensive and the overall model value is determined by the ease and cost of 

predicting future predictor variable values. Time series analysis tools are often used to 

develop predictive models for parameters whose values change with time, but many of 

these tools rely on ordinary least squares estimation. Beyond time series analysis, linear 

regression allows for enhanced predictive power by exploring relationships between the 

predicted variable and almost any predictor variable hypothesized by the analyst. For the 

particular problem described in this dissertation, the predictive regression approach means 

that it can be a more robust method for creating a subnetwork. The variables included in 

the recommended model will make the procedure more applicable to different types of 

networks and scenarios.   

4.2 CONSTRUCTING A BASIC MODEL 

The first consideration for creating a linear model is the potential variables that 

intuitively influence the dependent variable. The RMSE of the subnetwork OD matrices is 

the dependent variable, or response variable. The model will assume the RMSE is linearly 

influenced by the proposed factors related to the impact scenario. This makes sense because 

the error expected at each OD pair is a result of vehicles changing paths due to changes 

inside the subnetwork, and the amount of path changing should be proportional to the scale 

of the changes or impact. Therefore, the most valuable predictor, or explanatory, variables 

would be characteristics of the impact scenario and the subnetwork. The initial three 

predictor variables that were considered are the capacity reduction on the modified links, 
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the number of links modified, and the subnetwork size parameter. Further tests of other 

variables determined their significance, if any, for predicting the RMSE.  

The data used for calibration of this model was generated during the comparison 

test procedure. Using the same data allows for a comparison of the previous 

recommendations and the capability of the linear model. Again, the predicted error is the 

difference between the demands recorded at the subnetwork boundary from runs of the 

entire network and demands recorded at the subnetwork boundary from runs of the entire 

network with the impact scenario. A RMSE of one indicates that each boundary centroid 

was off by an average demand of one vehicle in each time period. This error is caused by 

the rerouting of vehicles to avoid the capacity reduction in favor of a shorter path. In total 

there were 306 distinct RMSE calculations associated with a variety of impact scenario 

characteristics. This sample data will be used to build a predictive model for the overall 

magnitude of rerouting at the subnetwork boundary. 

The creation of a subnetwork requires a method to determine the area around the 

network modification that experiences significant change. While changes may occur 

throughout the entire network, the comparison of subnetwork OD matrices has provided 

evidence that these changes decrease with distance from the network modification. This is 

an important step in understanding the spatial scale of network effects and making 

recommendations for appropriate subnetwork sizes. However, although potentially robust, 

a trial and error approach would rely on average values based on hundreds of runs of a full 

network. This procedure would be time consuming and would not be feasible each time a 

new network is used and a new user wants to calibrate to their needs. Based on the statistical 

tests used for the comparison method, the next step in the statistical analysis is to build a 

predictive model that may be used to estimate the relationship between subnetwork size 
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and error. Preliminary testing of the comparison model provides a statistical foundation for 

the predictive linear regression model. 

In order to use an equal means t-test on the error measures between the base and 

impact scenarios, the error had to pass a normality test. The majority subnetwork boundary 

demand error for the sample simulations in both the base and impact scenarios were found 

to be normally distributed. The limited number of runs used for the data analysis may be 

the cause of the few cases where the error did not appear to be normally distributed. Further 

runs of the same scenario were avoided due to computational time required for this effort. 

The tests that were used to confirm normality of the RMSE values were the Lilliefors and 

Anderson-Darling tests. The results of these tests were documented in Table 2.  

As noted earlier, the outputs are assumed to be independent because each run was 

started from scratch. Each simulation was run independently, so path sets, shortest paths, 

and route choices were generated without previous information. The independence of each 

simulation is also justified by the use of a random seed for the random number generator 

for each simulation process. The error of each link flow relative to a “true” value is 

independent of previous simulations.  

The equal variance has been addressed previously with a two sample F-test for 

equal variance, which also passed in a majority of cases across base and impact scenario 

subnetwork demand. Previously, the two sample t-test for equal means only required 

justification for the variance to be equal between the base and impact scenarios for each 

subnetwork size. This proof was presented in the form of a two sample F-test for equal 

variance. Further proof is provided here to demonstrate equal variance across subnetwork 

size and impact scenario magnitude. The Bartlett and Brown-Forsythe tests may be used 

to determine if multiple scenarios have equal variance. Each of these tests has a null 
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hypothesis that the variances are equal. This means that a p-value less than 0.05 for the 

95% confidence level indicates the samples do not have an equal variance. Otherwise, the 

hypothesis of equal variance cannot be rejected.  

The sample data from the ten simulations of each Guadalupe street scenario was 

used to test the hypothesis of equal variance across impact size. Guadalupe Street, which 

had ten simulations of each of the representative number of links impacted and percent 

capacity reductions, is the most controlled set of data for this analysis. A subnetwork size 

parameter of nine was used to control all variables besides the impact magnitude for 

Guadalupe Street. The three scenarios on Guadalupe Street follow the Goldilocks principle, 

accounting for the extremes and the middle with 25 percent capacity reduction to one link, 

a 50 percent reduction to two consecutive links, and a 100 percent capacity reduction across 

three consecutive links. The results of these equal variance tests and a boxplot of data are 

presented in Table 3 and Figure 12, respectively.  

 

Table 3: Summary of Equal Variance Tests across Impact Scenario Magnitudes 

 

 

 

No. Links Count Mean Std Dev

1 10 2.54 0.30

2 10 2.68 0.20

3 10 2.95 0.30

Pooled 30 2.72 0.27

Degrees of freedom 2

Bartlett's statistic 1.6881

p-value 0.4300

Brown-Forsythe statistic 0.5479

p-value 0.5845
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Figure 12: Boxplot of RMSE Values for the Impact Scenario Magnitude (Guadalupe 

Street, Subnetwork Size 9) 

Table 3 indicates for both the Bartlett and Brown-Forsythe tests that the variance 

of the subnetwork OD matrix error is constant across impact magnitudes. The p-values 

were 0.43 and 0.58, which is outside the rejection region. Therefore, we assume that the 

null hypothesis is true and the variance is constant between impact magnitudes. The 

boxplot in Figure 12 graphically supports the results of the hypothesis test statistics and p-

values. This boxplot also indicates the quantity of rerouting increases (captured by the 

RMSE) with an increase in the impact scenario magnitude. This trend follows intuition for 

the linear regression model, more vehicles will have to find other shortest paths as more 

lanes on their route are blocked. 
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The sample data from the common impact magnitudes was used to test this 

hypothesis across subnetwork size. Similar to the control method used for the equal 

variance test performed on impact magnitude, 50% capacity reduction scenarios were used 

to test for equal variance across different subnetwork sizes. These scenarios on 7th Street, 

15th Street, and Guadalupe Street are the most controlled for analyzing the variance due to 

subnetwork size. The results of these tests and a boxplot of data are presented in Table 4 

and Figure 13, respectively. 

Table 4: Summary of Equal Variance Tests across Subnetwork Size Parameters 

 

 

Subnetwork Size Count Mean Std Dev

5 30 2.95 0.55

7 30 2.76 0.61

9 30 2.21 0.57

Pooled 90 2.64 0.58

Degrees of freedom 2

Bartlett's statistic 0.3083

p-value 0.8572

Brown-Forsythe statistic 0.8429

p-value 0.4339
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Figure 13: Boxplot of RMSE Values versus the Subnetwork Size (2 Links Impacted, 50% 

Capacity Reduction) 

Table 4 and Figure 13 also indicate equal variance of the RMSE across subnetwork 

size parameters. The p-values, 0.86 and 0.43, are outside the rejection region for the null 

hypothesis. Again, we conclude that the null hypothesis should not be rejected and the 

variance of rerouting is constant with respect to subnetwork size. The boxplot in Figure 13 

also indicates a decrease in rerouting as the subnetwork size increases.  

These tests support the assumption of equal variance across the ranges of the 

independent variables, or homoscedasticity. Independence of the variables has been 

defended based on the randomness of the model variation. The normality of the dependent 

variable error has been established using normality tests. The final assumption that needs 

to be addressed for multiple regression is the linear relationship. Further analysis of the 
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linear relationships between independent and dependent variables is presented in Chapter 

4.3. Now that the primary assumptions for the linear regression analysis have been tested, 

it is important to address how to construct the model. 

When formulating a predictive model, the predictor variables should be as simple 

as possible to maintain ease of use and interpretation. This is even more relevant for this 

particular use because the goal of the subnetwork creation process is to reduce the overall 

computational effort. The variables should at least be easy for the user to measure or 

lookup, and it is ideal for the values to be automatically calculated by the code creating the 

subnetwork. Therefore, the initial test model will include the variables that the user inputs 

for the impact scenario: capacity reduction, number of links, and subnetwork size 

parameter.  

Capacity reduction can be designated through the number of closed lanes or the 

percentage of overall capacity eliminated. The case study was designed with percentage 

capacity reductions of 25, 50, and 100 regardless of the number of lanes on the given 

roadway. This will make it easier for a direct translation of the input variable, but it may 

also be a better representation of the size of the closure. If the chosen variable was the 

number of lanes closed, then closing a single lane on a one-lane or two-lane road would be 

represented with the same magnitude, but percent reduction captures the potential impact 

as the fraction of original capacity being reduced. 

The number of links impacted can similarly be represented in two different ways. 

The experimental case study setup specified the number of links as represented in the GIS 

component of the DTA model. In this way, important connections to other features in the 

network, such as signalized intersections, were preserved. However, the physical length of 

the links may vary across different areas of the network. GIS can be used to determine the 
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length of the actual links that are selected. This variable may have an advantage at 

predicting effects because it represents the actual extent of the network that is being 

modified. However, it may be desirable to maintain the number of links impacted as a 

predictor to conform to the inputs for the comparison method. Significance of these 

proposed variables will be evaluated with the output of different linear regression model 

specifications. 

The subnetwork size parameter is the most critical variable for the prediction 

model. The size parameter, or connected order value, that has been explained previously, 

represents the size of the network. Incrementing the size parameter increases the extent of 

the subnetwork by one more link extending from the boundary. As the subnetwork size 

increases, more of the rerouting due to the impact should be captured. The ability of the 

subnetwork to capture more of the rerouting should be reflected in the decrease of the 

boundary error. Estimation of a coefficient that describes the linear relationship between 

the size parameter and the error at the boundary is what may be used to select an appropriate 

subnetwork size. Another value that is related to the size parameter may be the number of 

links included in the subnetwork. The model will be most useful if it can specifically 

include the size parameter, but these two options will be tested.    

Within the context of this subnetwork methodology, this prediction model will 

provide the flexibility to estimate error for a wider range of scenarios and networks. Similar 

network types with different roadway characteristics or connectivity may be addressed 

through other variables that can be added to the model that will make it more robust. In 

this way, there is the potential to allow for a variable that designates a particular network 

type. With more data from a variety of network configurations (e.g. freeway, rural) this 

parameter could be calibrated. Similarly, a variable could be used for the time period of the 
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analysis. This could provide more information for impact scenarios that are known to occur 

in a particular time frame, the AM peak, PM peak, or off-peak hours. The goal is to provide 

a robust methodology for constructing a model with respect to the data that are available. 

The value of the predictive model comes from being able to determine an 

appropriately sized subnetwork without the need for multiple full network runs. This is 

made possible in the proposed model by including subnetwork size as a variable. A 

calibrated model will estimate the decrease in RMSE relative to an increase in subnetwork 

size, and different size parameters can be tested using the specified model. A strategy can 

then be developed for selecting the appropriate size parameter using judgment about the 

allowable error informed by the comparison model recommendations. 

4.3 SPECIFYING AN EFFECTIVE MODEL 

The critical step for the linear regression approach is determining the appropriate 

relationship between the forecasted variable, RMSE of the induced subnetwork demand, 

and the predictor variables. The preliminary statistical assumptions have been addressed in 

Chapter 4.2, but the correlation between independent and dependent variables needs further 

exploration. Testing should help to indicate if the dependent variable is proportional to the 

predictor variables, and whether it is directly or inversely proportional. Once the 

proportionality is established, then it is necessary to define the nature of this 

proportionality: linear, logarithmic, exponential, or something else. Typical analysis for 

answering these questions begins with constructing and inspecting a cross tabulation of the 

variables and scatter plot.   

The primary predictor variable required for this analysis is the size parameter, and 

it is expected that the RMSE decreases with an increase in subnetwork size. Cross 

tabulations of the boundary demand error (RMSE) ranges and the size parameters are 
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provided in Table 5. A majority, 64.5%, of the low range of boundary demand error 

subnetworks were the largest subnetwork size, nine. As the RMSE range values increase 

there is a greater number of smaller subnetwork sizes. The largest subnetwork OD matrix 

error, above four, was mostly (75.0%) a subnetwork size of five and contained none of the 

largest subnetwork size. These cross tabulation results indicate the expected trend of 

decreasing RMSE for increasing subnetwork size. 

Table 5: RMSE Range versus Size Parameter Cross Tabulation 

 Scatter plots are presented in Figure 14, Figure 15, and Figure 16 showing RMSE 

versus size parameter relative to different impact scenarios. The RMSE from these impact 

scenarios represent averaged values. These plots were used as an original test of the 

relationship, but have some limitations since many of the scenarios were only simulated 

twice. This means there is a great likelihood that the errors for these two runs may depict 

the extremes of the boundary demand error distribution. For instance, in Figure 14 the two 

runs of the 1 link scenario for 7th street in Figure 14 were found to have greater error than 

the 7th Street, 2-link scenario. This is not intuitive, since more impacted links should 

increase rerouting, but is most likely due to the 2 link, 25% capacity reduction scenarios 

only having two runs, while the 1 link, 25% capacity reduction scenario had ten runs. 

5 7 9

Count 12 21 60

% within RMSE Range 12.9% 22.6% 64.5%

Count 54 69 42

% within RMSE Range 32.7% 41.8% 25.5%

Count 36 12 0

% within RMSE Range 75.0% 25.0% 0.0%

Size Parameter

RMSE Range

Below 2.5

Between 2.5 and 4

Above 4
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However, the following figures provide insight to the overall trend between RMSE and 

subnetwork size. 

 

 

Figure 14: RMSE versus Size Parameter for 25 Percent Capacity Reduction Scenarios 

 Figure 15 provides more proof that the linear relationship is consistent for the 50% 

capacity reduction scenarios. Each of the two link scenarios in this figure were simulated 

ten times. In Figure 15, a similar issue can be seen for the 7th Street, 3 link, 50% capacity 

reduction scenario with a deviation from the linear trend at subnetwork size five. Again, 

this is potentially due to the small number of runs, two, for this scenario. The scenarios that 

were simulated ten times tend to appear more linear, but ten simulations is still a small 

sample size. While ten observations is far more likely to span the range of the distribution, 

there is still a possibility for capturing outliers. More than ten simulations reveals 

diminishing returns for capturing the average of the distribution, and this was avoided due 

to the computational time and effort required for a greater number of simulations. The 
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differences between the RMSE for the 2 link, 50% capacity reduction scenarios in Figure 

15 indicates that other variables may be influencing the rerouting. 

 

 

Figure 15: RMSE versus Size Parameter for 50 Percent Capacity Reduction Scenarios 

Comparing Figure 15 and Figure 16, particularly the 15th, 2 link, 25% and the 15th, 

2 link, 50% scenario indicates that there may be some interaction effect between capacity 

reduction and subnetwork size. This is depicted by the different trend in RMSE outcomes 

as subnetwork size increases with different levels of capacity reduction. This potential 

interaction will be investigated as more variables are added to the model. 

Figure 16 reveals the linearity for the largest possible capacity reduction of 100%. 

In this case, the three link scenario was simulated ten times, while the one and two link 

were only simulated twice. Therefore, the inconsistency of the two-link scenario producing 

higher rerouting error at subnetwork size five and nine is probably due to the sample size. 

This preliminary analysis provides evidence for defending the use of linear regression, but 
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a more thorough analysis including the multiple observations of each scenario can reveal 

more about the variance at the different subnetwork sizes. 

 

 

Figure 16: RMSE versus Size Parameter for 100 Percent Capacity Reduction Scenarios 

Further exploration of this relationship for multiple simulations of the same 

scenario is presented in Figure 17, Figure 18, Figure 19. The data in the figures reaffirms 

that there is a linear relationship between the size parameter (connected order) and RMSE. 

They show that error defined at the boundaries decreases with increases in subnetwork size. 

As stated before, the data was found to be normally distributed and the variance (or error) 

appears to remain constant. These findings are corroborated with the RMSE values 

appearing to be evenly distributed around the trend line at each subnetwork level. Figure 

17 demonstrates these linear regression assumptions for the smallest impact scenario 

magnitude. 
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Figure 17: RMSE versus Size Parameter for Guadalupe Street, 1 Link Impacted, 25% 

Capacity Reduction Scenario 

Figure 18 also supports the verification of the linear assumptions. The greater 

spread that is exhibited in the subnetwork size five is probably a result of some of the ten 

simulations producing outliers in the subnetwork OD matrix error. It is still clear from 

Figure 18 that the errors are evenly spread above and below the trend line. 
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Figure 18: RMSE versus Size Parameter for 15th Street, 2 Links Impacted, 50% Capacity 

Reduction Scenario 

Figure 19 also shows a linear relationship between RMSE and the size parameter. 

And again, the distribution of errors appears to fall all around the best-fit line. The 

differences between Figure 17, Figure 18, and Figure 19 indicate that increasing the impact 

scenario magnitude does increase the RMSE of the subnetwork boundary demand. Other 

differences, including the slope of the trend lines and the average value of the RMSE at 

each subnetwork size, may be the result of other variables. It is very likely that more factors 

than just the subnetwork size, number of links impacted, and the capacity reduction 

influence the amount of rerouting that occurs in a traffic network. It is desirable to develop 

an appropriate model for predicting the RMSE that can account for other transportation 

system characteristics. 
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Figure 19: RMSE versus Size Parameter for Guadalupe Street, 3 Link Impacted, 100% 

Capacity Reduction Scenario 

The spread of the RMSE values around the trend lines in Figure 17, Figure 18, and 

Figure 19 is further proof that there is a large amount of variation in simulation results, 

which needs to be addressed for this analysis (or any measure of effectiveness). The 

comparison test was a first step for separating the variation of the base model from the 

variation of the impact model. This proposed prediction model will be able to use more 

input variables to determine the average level of RMSE expected in the impact scenario 

subnetwork boundary demand. 

After the linear relationship between the subnetwork size parameter and the RMSE 

has been established, investigating the impact scenario magnitude relationship to RMSE 

will address the correlation between the primary independent variables and the rerouting 

metric. The same type of cross tabulation and scatter plots generated for subnetwork size 

was created for both the number of links and the percent capacity reduction. 
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Table 6 reveals that the fewest number of links impacted, one, resulted in the lowest 

range of RMSE values. As the number of links impacted increased the proportion of 

scenarios within the higher error ranges increased. This trend supports the intuition that 

more links being impacted will induce more rerouting. 

Table 6: RMSE Range versus Number of Links Impacted Cross Tabulation 

 

Table 7 reveals the same trend that is indicated in Table 6. As the reduction in 

capacity increases the number of scenarios that produced larger boundary demand error 

also increases. The cross tabulations reassure the assumptions about these independent 

variables, and further analysis will include the scatter plots comparing them to RMSE. 

Table 7: RMSE Range versus Percent Capacity Reduction Cross Tabulation 

 

1 2 3

Count 9 2 1

% within RMSE Range 75.0% 16.7% 8.3%

Count 30 35 25

% within RMSE Range 33.3% 38.9% 27.8%

Count 3 5 16

% within RMSE Range 12.5% 20.8% 66.7%

Number of Links Impacted

RMSE Range

Below 2.5

Between 2.5 and 4

Above 4

25 50 100

Count 7 4 1

% within RMSE Range 58.3% 33.3% 8.3%

Count 34 38 18

% within RMSE Range 37.8% 42.2% 20.0%

Count 1 0 23

% within RMSE Range 4.2% 0.0% 95.8%

Percent Capacity Reduction

RMSE Range

Below 2.5

Between 2.5 and 4

Above 4
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Figure 20, Figure 21, and Figure 22 depict the linear trend between the RMSE and 

both number of links impacted and the capacity reduction for the ten simulation scenarios. 

This is due to the Goldilocks selection method of 1 link, 25%; 2 link, 50%; and 3 link, 

100% for the ten link scenarios matching the low end of capacity reduction values to the 

low end of links impacted, the middle with the middle, and the high with the high. This is 

not a problem in the overall analysis because each scenario combination was included with 

supplemental scenarios run twice (e.g. 2 link, 25%; 1 link, 100%; 3 link, 50%; etc.). 

However, for the purpose of establishing the linearity the results in Figure 20, Figure 21, 

and Figure 22 are sufficient.  

The linear trend for the Guadalupe Street, subnetwork size five is generally 

represented in Figure 20. There are some inconsistencies with the 2 link, 50% scenario 

depicted by all of the values falling below the trend line. This is a reminder that the data 

from these select simulations are not perfect. However, the relationships will be tested for 

statistical significance and they have the potential for increasing the power of this 

subnetwork selection technique. The equal variance of the RMSE data points at each level 

of impact scenario magnitude is also visually indicated in the Figure 20 scatter plot. 
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Figure 20: RMSE versus Impact Magnitude for Guadalupe Street, Subnetwork Size 5 

Figure 21 also indicates a linear trend between impact magnitude and subnetwork 

OD matrix error. As the impact magnitude increases, the RMSE captures a greater amount 

of rerouting. 

 

 

Figure 21: RMSE versus Impact Magnitude for Guadalupe Street, Subnetwork Size 7 
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Figure 22 depicts the same trends that are presented in Figure 20 and Figure 21. A 

comparison of Figure 20, Figure 21, and Figure 22 also shows the trend already established 

between RMSE and subnetwork size – as the subnetwork size increases the RMSE 

decreases. Different linear regression specifications will be used to determine appropriate 

predictor variables that can account for other variations observable in these scatter plots. 

 

 

Figure 22: RMSE versus Impact Magnitude for Guadalupe Street, Subnetwork Size 9 

The preliminary model construction includes the basic input variables for the 

impact scenario: subnetwork size, capacity reduction, and number of links impacted. This 

model was built using RMSE data from three locations with ten model (the Goldilocks 

cases) simulations for each base and impact scenario, and various other locations with two 

runs for each scenario accounting for all other combinations of the three primary input 

variables. The ordinary least squares technique was used to estimate the parameters of the 

linear regression model. The model equation for this initial test is represented by Equation 

5. For the practical reason of using these models to predict the RMSE the error term of the 
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linear regression equation will be left out of the equations representing the model 

specification. 

 

𝑅𝑀𝑆𝐸 = 𝛽0 + 𝛽1 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑 𝑙𝑖𝑛𝑘𝑠 + 𝛽2 ∗ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 +

𝛽3 ∗ 𝑠𝑖𝑧𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟          (5) 

 

The data was processed in SPSS and produced the results in Table 8. 

Table 8:  Results of the Preliminary Linear Regression Analysis 

 

The preliminary results indicate that a little less than half the variation in the 

dependent variable is explained by the independent variables. The linear regression 

intercept is 5.2, such an RMSE value corresponds to each OD pair in each time period 

being off by about 5 vehicles. In other words, on average 5 vehicles were rerouted at each 

boundary origin in each time period. This can be quite substantial since the rerouting is 

probably concentrated in a particular region at the boundary. However, the intercept, 5.2, 

in this model is not useful as it corresponds to a subnetwork size of zero and no impact 

R R Square

0.685 0.469

Sum of Squares df Mean Square F Sig.

Regression 402.141 3 134.047 88.894 0.000

Residual 455.398 302 1.508

Total 857.538 305

Standardized

B Std. Error Beta t Sig.

Constant 5.198 0.371 14.029 0.000

Size Parameter -0.512 0.043 -0.499 -11.908 0.000

Capacity Reduction 0.026 0.003 0.456 9.991 0.000

No. Links Impacted 0.064 0.1 0.029 0.641 0.522

Model Summary

Adjusted R Square Std. Error of the Estimate

0.464 1.228

ANOVA

Coefficients

Unstandardized Coefficients
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scenario, which has no meaningful interpretation. The null hypothesis for the t-statistic for 

each explanatory variable is that the parameter coefficient is zero. If the p-value is less than 

the chosen probability threshold for the hypothesis rejection region (in this case 0.05), then 

it indicates that the predictor is significantly correlated to the dependent variable and that 

its coefficient is not zero.  

The size parameter and the capacity reduction were both found to be statistically 

significant because the t-statistics were in the rejection region. This implies that the beta 

coefficients for these variables are valuable predictors of their correlation with the RMSE. 

A preliminary interpretation of the coefficients on the capacity reduction and the size 

parameter relate the change in an independent variable to the dependent variable. The 

negative (-0.512) coefficient on the size parameter means that an increase in one of the 

connected order of links in the subnetwork decreases the RMSE at the boundary by half a 

vehicle. Another way to put this is an increase of two in the size parameter decreases the 

RMSE by a vehicle at each origin-destination pair and time period. The 0.026 coefficient 

on the capacity reduction indicates that decreasing the capacity by one percent decreases 

the RMSE by .02 vehicles. More intuitively, a 25 percent reduction in capacity increases 

the RMSE by 0.5 vehicles, a 50 percent reduction in capacity increases the RMSE by 1 

vehicle, and a 100 percent reduction in capacity increases the RMSE by 2 vehicles. The 

number of links variable had a p-value of 0.5, which indicates it is not a significant variable 

in the linear model. This may indicate that other variables may be interacting with the 

number of links impacted and further variables are necessary to understand its effects. 

While the general trend of these results appears intuitive, further investigation into the 

specification of the model will provide more power to predictive capability. 
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The results of the preliminary model, informed the selection of several additional 

variables to be generated and tested.  Alternate variables were previously mentioned in the 

discussion of the three primary impact scenario variables, including the length of roadway 

impacted was included as a surrogate for the number of links impacted and the number of 

links in the subnetwork was included as a substitute for the subnetwork size parameter. The 

number of links included in the connected order process has the potential to account for 

some characteristics of the surrounding network. If the network is richly connected, then 

the same size parameter will include more links. The other variables tested were related to 

the vehicular flows on the links and link characteristics. This assumes that a full model has 

been run and calibrated in order to establish a base flow as an input to the linear model, 

which is typical for DTA implementation. The base volume for each link provides the 

number of vehicles that are currently using that link along their path. The capacity value 

sets a limit on the potential increase in flow that the link can accommodate. The volume to 

capacity ratio is a metric for the utilization of the link in the base case. It was speculated 

that the volume to capacity ratio accounts for the current level of congestion in the impact 

scenario area and could significantly influence whether rerouting would occur and the 

magnitude of the rerouting. These variables also have the potential to account for 

directional differences in flow that may be experienced between AM and PM peak hours. 

Results of the different model specifications are tabulated in Table 9. The following is a 

description of the independent variables used. 
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Key For the Model Variables 

 Size Parameter: The connected order of links from the impacted link; a variable 

indicating the size of the subnetwork. 

 Capacity Reduction: The reduced capacity of an impacted link represented as a percent 

of the original capacity level. 

 No. Links Impacted: The number of links with an altered capacity in the impact 

scenario. 

 Length Impacted: The sum of the physical lengths of each impacted link. 

 No. Subnet Links: The total number of links included in the subnetwork based on the 

size parameter used.  

 Volume/1,000: The total or sum of the volumes (vehicles per hour) across the impacted 

link(s), scaled by dividing by 1,000 to provide a nonzero coefficient. 

 Capacity/1,000: The total or sum of capacities (vehicles per hour) of each impacted 

link(s), scaled by dividing by 1,000 to provide a nonzero coefficient. 

 Average Capacity/1,000: The sum of the capacities of each impacted link(s) divided by 

the number of links, scaled by dividing by 1,000 to provide a nonzero coefficient. 

 Volume/Capacity: The volume to capacity ratio calculated using the computed 

averages. 

 Size and Cap. Red. Interaction: The interaction term for subnetwork size parameter and 

the percent capacity reduction, calculated as the product of the two independent 

variables. 
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Table 9: Model Specifications Tested Using Link Variables 

 

 

 

*Bold font indicates statistical significance of that variable 

Predictor Variables A B C D

Size Parameter 0.971 (1.333) -0.512 (-11.919) — -0.512 (-11.093)

Capactiy Reduction 0.026 (9.891) 0.026 (11.168) 0.027 (11.249) 0.026 (-12.097)

No. Links Impacted 2.568 (2.818) — — —

Length Impacted 0.000 (-0.104) — — —

No. Subnet Links -0.021 (-2.040) — -0.007 (-10.600) —

Volume/1,000 0.155 (0.196) — — —

Capacity/1,000 -0.371 (-2.695) — — —

Volume/Capacity -28.207 (-3.054) — — -8.540 (-3.175)

Constant 5.318 (2.483) 5.292 (15.575) 3.772 (14.882) 6.707 (12.034)

Number of Cases 306 306 306 306

R2 0.512 0.468 0.430 0.485

Estimate (t-statistic)

Goodness of Fit and Sample Data

Predictor Variables E F G H

Size Parameter -0.512 (-11.911) -0.512 (-11.908) -0.512 (-12.073) -0.512 (-12.170)

Capactiy Reduction 0.026 (10.128) 0.026 (9.991) 0.026 (10.169) 0.026 (10.250)

No. Links Impacted — 0.064 (0.641) 0.548 (2.946) 0.719 (2.374)

Length Impacted 0.000 (0.766) — — —

No. Subnet Links — — — —

Volume/1,000 — — -0.557 (-3.069) —

Capacity/1,000 — — — -0.117 (-2.315)

Volume/Capacity — — — -9.610 (-3.537)

Constant 5.176 (13.909) 5.198 (14.029) 5.237 (14.321) 6.740 (11.663)

Number of Cases 306 306 306 306

R2 0.469 0.469 0.485 0.495

Estimate (t-statistic)

Goodness of Fit and Sample Data

Predictor Variables I J Final Impact Model Base Model

Size Parameter -0.512 (-12.193) -0.512 (-12.240) 0.430 (5.877) -0.115 (-5.429)

Capactiy Reduction 0.026 (10.116) 0.026 (10.420) 0.135 (17.208) —

No. Links Impacted 0.060 (0.615) 0.717 (2.379) 0.719 (3.080) —

Length Impacted — — — —

No. Subnet Links — — — —

Volume/1,000 — 1.220 (2.103) — —

Capacity/1,000 — -0.305 (-2.973) -0.117 (-3.004) -0.018 (-2.415)

Ave. Capacity/1,000 -0.207 (-1.949) — — —

Volume/Capacity -8.958 (-3.329) -25.448 (-3.181) -9.610 (-4.589) -15.487 (-11.493)

Size and Cap. Red. 

Interaction
— — -0.016 (-14.353) —

Constant 7.826 (9.243) 9.200 (7.061) 0.145 (.227) 6.004 (20.985)

Number of Cases 306 306 306 306

R2 0.492 0.502 0.701 0.381

Estimate (t-statistic)

Goodness of Fit and Sample Data
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4.4 TOWARDS PREDICTING A SUFFICIENT SUBNETWORK 

Table 9 summarizes the tested model specifications that provided insight to the 

selection of a final RMSE prediction model. Model A represents an attempt at using all of 

the predictor variables and indicated that the size parameter, capacity reduction, number of 

links impacted, number of links in the subnetwork, scaled capacity, and volume to capacity 

ratio are significant variables. Models B and C indicate that there is a greater significance 

for the size parameter than the number of subarea links. This is a desirable result because 

the size parameter is a user input. Model D was an initial test of the volume to capacity 

ratio as a predictor and it was found to be significant, which was expected and desired from 

a traffic engineering perspective. Model E and F indicate that the number of links impacted 

performed about the same as a predictor variable as the length of roadway impacted, so the 

user input (number of links) will be examined further. Model F represents the preliminary 

linear regression model tested and showcased in Table 8. Model G reveals that using the 

scaled volume of the links was significant, but it was not significant when volume/capacity 

ratio was added to the model. This lead to removing the scaled volume variable from the 

model. An analysis of Table 9 indicates that Model H was a valuable specification to begin 

refining and investigating model outputs. 

Testing multiple specifications for the regression model indicates that more 

variables are significant than indicated in the preliminary test. Model H, Model J, and the 

Final Impact Model in Table 9 incorporates the size parameter, the capacity reduction, the 

number of links impacted, the scaled capacity, and the volume to capacity ratio. Model I 

used the average capacity to address some of the collinearity between the number of links 

impacted and the total capacity. Although it was tested, mulitcollinearity is not a primary 

concern for this model for three reasons: the model is being used to predict the dependent 

variable, some of the collinear variables were control variables, and some of the collinear 
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variables were products of other variables. However, Model I also reduced the significance 

of the number of links impacted and was rejected. Model H, Model J, and the Final Impact 

Model are each slight variations of one another and were all tested for their ability to predict 

subnetwork size. Model J includes a variable for the scaled capacity, which introduced a 

large amount of multicollinearity without much improvement in the coefficient of 

determination. The Final Impact Model was labeled as such because it was selected as the 

most appropriate model for predicting subnetwork size.  

 The final impact model is the same as Model H with the addition of the interaction 

term between subnetwork size and the capacity reduction identified in Chapter 4.3. Each 

of these variables was significant at a 95% confidence level, except for the intercept. This 

may be desirable since no impact scenario (zero values of all parameters) the RMSE should 

be zero. The initial interpretation of the coefficient for size parameter and capacity 

reduction are difficult to translate because the interaction term prevents a direct 

understanding of the individual parameter coefficients. For this model, each additional link 

altered in the impact scenario results in an increase in boundary error of 0.719 vehicles. A 

change in the base scenario capacity of 1,000 vehicles per hour of the impacted link 

increases the RMSE by approximately one vehicle. Also, for an increase in the original 

volume to capacity ratio (measured prior to the modification) of 10% there is a decrease in 

the subnetwork boundary error of 0.961. The interaction term has a significant impact on 

the prediction capabilities of the model. The coefficient of determination, or R squared, for 

this model was 0.701, a significant increase from 0.495 for Model H. The Final Impact 

Model is represented by Equation 6. The summary of the entire Final Impact Model is 

presented in Table 10. 

. 
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𝑅𝑀𝑆𝐸 = 0.430 ∗ 𝑠𝑖𝑧𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟  + 0.135 ∗ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 + 0.719 ∗

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑 𝑙𝑖𝑛𝑘𝑠 − 0.117 ∗ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 1000⁄ − 9.610 ∗

𝑣𝑜𝑙𝑢𝑚𝑒 𝑡𝑜 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 − 0.016 ∗ 𝑠𝑖𝑧𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ∗ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑟𝑒𝑑𝑢𝑐𝑒𝑑  

           (6) 

Table 10: Results of the Final  

 

It is intuitive that adding a link to the impact scenario will increase the rerouting 

experienced at the boundary. However, it might not be intuitive that an increase in the 

volume to capacity ratio in the base scenario would decrease the rerouting. This may be 

due to inability of vehicles to reroute when the volume to capacity is really high and the 

network is more congested. This coefficient may also be difficult to interpret due to 

interaction with the capacity scaled independent variable. The values in Equation 6, and 

the data for each scenario may be used to predict the RMSE of the subarea demand. This 

was done for each of the scenarios that were tested. A base model was also generated in 

R R Square

0.837 0.701

Sum of Squares df Mean Square F Sig.

Regression 601.121 6 100.187 116.824 0.000

Residual 256.418 299 0.858

Total 857.538 305

Standardized

B Std. Error Beta t Sig.

Constant 0.145 0.640 0.227 0.821

Size Parameter 0.430 0.073 0.420 5.877 0.000

Capacity Reduction 0.135 0.008 2.408 17.208 0.000

No. Links Impacted 0.719 0.233 0.328 3.080 0.002

Capacity Scaled -0.117 0.039 -0.324 -3.004 0.003

Volume/Capacity -9.610 2.094 -0.148 -4.589 0.000

Size and Cap. Red. Interaction -0.016 0.001 -2.199 -14.353 0.000

Coefficients

Unstandardized Coefficients

Model Summary

Adjusted R Square Std. Error of the Estimate

0.695 0.926

ANOVA
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Table 9, with the few variables available for the base scenario. The RMSE values can be 

compared for a predicted base and impact scenario. This comparison was performed for 

Model H and Model J, but only the Final Impact Model will be included here because it 

performed significantly better than Model H or Model J. The results are shown in Table 

11. 

.  
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Table 11: Comparison of the Final Impact and Base Model  

 
 

 

Scenario
Subnetwork 

Size
True Base True Impact

True 

Difference
Base Model

Impact 

Model 

Model 

Difference

Base Model 

Percent Error

Impact Model 

Percent Error

5 2.84 2.94 0.10 3.15 2.36 -0.80 11.0 20.0

7 3.20 3.24 0.04 2.92 2.42 -0.51 8.6 25.3

9 2.33 2.28 -0.05 2.69 2.48 -0.22 15.8 8.8

5 2.84 3.44 0.60 3.15 3.73 0.58 11.0 8.5

7 3.20 3.85 0.65 2.92 2.99 0.07 8.6 22.4

9 2.33 2.51 0.19 2.69 2.25 -0.44 15.8 10.4

5 2.84 6.89 4.05 3.15 6.48 3.33 11.0 6.0

7 3.20 2.51 -0.68 2.92 4.14 1.22 8.6 64.8

9 2.33 2.93 0.60 2.69 1.80 -0.89 15.8 38.5

5 2.73 3.49 0.75 2.60 2.26 -0.35 4.7 35.2

7 2.92 3.27 0.35 2.37 2.32 -0.06 18.6 29.1

9 2.22 2.25 0.03 2.14 2.38 0.23 3.5 5.5

5 2.73 3.46 0.73 2.60 3.63 1.03 4.7 5.0

7 2.92 3.11 0.19 2.37 2.89 0.52 18.6 6.9

9 2.22 2.44 0.22 2.14 2.15 0.01 3.5 11.9

5 2.73 6.56 3.83 2.60 6.38 3.78 4.7 2.7

7 2.92 3.85 0.93 2.37 4.04 1.67 18.6 5.0

9 2.22 3.13 0.91 2.14 1.70 -0.44 3.5 45.6

5 2.69 3.42 0.72 2.43 2.39 -0.04 9.7 29.9

7 3.19 3.35 0.16 2.20 2.45 0.25 30.9 26.8

9 2.23 2.54 0.31 1.97 2.51 0.54 11.4 0.8

5 2.69 2.74 0.04 2.43 3.77 1.34 9.7 37.7

7 3.19 3.71 0.52 2.20 3.03 0.83 30.9 18.3

9 2.23 2.41 0.18 1.97 2.29 0.32 11.4 5.0

5 2.69 6.71 4.02 2.43 6.52 4.09 9.7 2.9

7 3.19 5.53 2.34 2.20 4.18 1.98 30.9 24.5

9 2.23 2.76 0.54 1.97 1.84 -0.13 11.4 33.4

5 2.16 2.45 0.28 2.23 1.62 -0.61 3.0 33.7

7 1.89 2.23 0.34 2.00 1.68 -0.32 5.9 24.6

9 1.63 1.65 0.01 1.77 1.74 -0.03 8.4 6.0

5 2.16 2.36 0.20 2.23 3.00 0.77 3.0 27.0

7 1.89 2.01 0.12 2.00 2.26 0.26 5.9 12.5

9 1.63 1.67 0.04 1.77 1.52 -0.25 8.4 9.2

5 2.16 7.69 5.53 2.23 5.75 3.52 3.0 25.2

7 1.89 2.68 0.79 2.00 3.41 1.41 5.9 27.3

9 1.63 1.74 0.11 1.77 1.07 -0.70 8.4 38.5

5 2.09 2.13 0.04 2.17 1.67 -0.50 3.8 21.5

7 1.66 1.71 0.04 1.94 1.73 -0.21 16.3 1.3

9 1.52 1.60 0.07 1.71 1.79 0.08 11.9 11.9

5 2.09 2.49 0.40 2.17 3.04 0.88 3.8 22.2

7 1.66 2.01 0.34 1.94 2.30 0.37 16.3 14.8

9 1.52 1.50 -0.03 1.71 1.56 -0.14 11.9 4.5

5 2.09 9.29 7.20 2.17 5.79 3.63 3.8 37.6

7 1.66 3.14 1.47 1.94 3.45 1.52 16.3 10.1

9 1.52 1.97 0.44 1.71 1.11 -0.59 11.9 43.4

5 2.04 2.27 0.23 2.32 1.85 -0.47 13.8 18.5

7 1.88 2.40 0.52 2.09 1.91 -0.18 11.3 20.3

9 1.53 1.78 0.25 1.86 1.97 0.11 21.9 10.8

5 2.04 2.42 0.38 2.32 3.22 0.90 13.8 33.2

7 1.88 2.21 0.33 2.09 2.48 0.39 11.3 12.3

9 1.53 1.52 -0.01 1.86 1.74 -0.12 21.9 14.8

5 2.04 9.31 7.27 2.32 5.97 3.65 13.8 35.8

7 1.88 3.03 1.15 2.09 3.63 1.54 11.3 19.9

9 1.53 1.82 0.30 1.86 1.29 -0.57 21.9 29.0

15th, 2, 100

15th, 1, 25

15th, 1, 50

15th, 1, 100

15th, 2, 25

15th, 2, 50

7th, 3, 100

15th, 3, 25

15th, 3, 50

15th, 3, 100

7th, 1, 25

7th, 1, 50

7th, 1, 100

7th, 2, 25

7th, 2, 50

7th, 2, 100

7th, 3, 25

7th, 3, 50
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Table 11: Continued 

 

In Table 11 the subnetwork size that was recommended by the comparison test was 

highlighted. On the left side, the true impact scenario and base scenario errors are tabulated. 

Only the scenarios with ten simulations were highlighted with the corresponding 

subnetwork recommendation from the equal means tests. On the right side the base and 

impact model predictions are tabulated with the subnetwork recommendations from Figure 

10. The errors between the model prediction and true values were also calculated. These 

errors averaged between 10% and 20%, but more importantly they were capable of 

recommending similar results to the comparison test. The results indicate that it may be 

possible to designate a threshold for boundary error of the impact scenario model compared 

to the base scenario model that can identify a sufficient subnetwork. As the predicted error 

from the linear regression model decreases below the predicted error of the base model, the 

corresponding subnetwork size is comparable to the recommended size parameter from the 

comparison model. These results mean that the Final Impact Model linear regression 

5 2.99 3.08 0.08 3.08 2.15 -0.93 2.9 30.0

7 2.91 3.05 0.14 2.85 2.21 -0.64 1.8 27.4

9 2.46 2.54 0.08 2.62 2.27 -0.35 6.8 10.5

5 2.99 3.51 0.51 3.08 3.53 0.45 2.9 0.6

7 2.91 3.33 0.42 2.85 2.79 -0.06 1.8 16.3

9 2.46 2.24 -0.22 2.62 2.05 -0.57 6.8 8.4

5 2.99 5.18 2.19 3.08 6.28 3.20 2.9 21.2

7 2.91 3.98 1.08 2.85 3.94 1.09 1.8 1.1

9 2.46 2.62 0.16 2.62 1.60 -1.02 6.8 38.9

5 2.89 3.21 0.32 2.95 2.16 -0.80 2.3 32.8

7 2.95 3.82 0.87 2.72 2.22 -0.51 7.7 41.9

9 2.65 2.93 0.27 2.49 2.28 -0.22 6.0 22.2

5 2.89 2.90 0.01 2.95 3.53 0.58 2.3 21.9

7 2.95 3.15 0.20 2.72 2.79 0.07 7.7 11.5

9 2.65 2.68 0.02 2.49 2.05 -0.44 6.0 23.4

5 2.89 6.63 3.74 2.95 6.28 3.33 2.3 5.2

7 2.95 4.14 1.19 2.72 3.94 1.22 7.7 4.9

9 2.65 3.27 0.62 2.49 1.60 -0.89 6.0 51.0

5 2.84 2.75 -0.10 3.24 2.42 -0.82 14.2 11.8

7 3.45 3.86 0.41 3.01 2.48 -0.53 12.5 35.7

9 2.58 2.98 0.41 2.78 2.54 -0.24 8.1 14.8

5 2.84 2.75 -0.09 3.24 3.80 0.55 14.2 37.9

7 3.45 3.21 -0.23 3.01 3.06 0.04 12.5 4.8

9 2.58 2.63 0.05 2.78 2.32 -0.47 8.1 11.8

5 2.84 5.69 2.85 3.24 6.55 3.30 14.2 15.0

7 3.45 4.37 0.92 3.01 4.21 1.19 12.5 3.7

9 2.58 2.95 0.37 2.78 1.87 -0.92 8.1 36.7

Guad, 3, 25

Guad, 3, 50

Guad, 3, 100

Guad, 1, 25

Guad, 1, 50

Guad, 1, 100

Guad, 2, 25

Guad, 2, 50

Guad, 2, 100
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specification in Table 9 has the potential to be used as a closed form method for 

recommending a subnetwork size for a given network impact scenario. Correlating the 

results from the prediction method and the comparison method can provide reassurance of 

the validity of this model.  

A more intuitive description of the relationship between the base scenario model 

and impact scenario regression model is represented in graphical form in Figure 23 through 

Figure 28. These graphs depict the representative scenarios that were each run with ten 

simulations. The lines represent the impact and base model predictions, and the arrow 

represents the recommended subnetwork size from the comparison method. Comparing the 

location of the arrow and the intersection of the impact model and base model regression 

lines shows the ability of the linear regression model to predict the comparison model 

results. 

 

Figure 23: Subnetwork Recommendation from Prediction (Intersection) Model vs. 

Comparison Method (Vertical Arrow) for 15th Street, 2 Links, 50% Capacity 

Reduction Scenario  
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Figure 24: Subnetwork Recommendation from Prediction (Intersection) Model vs. 

Comparison Method (Vertical Arrow) for 7th Street, 2 Links, 50% Capacity 

Reduction Scenario 

 

Figure 25: Subnetwork Recommendation from Prediction (Intersection) Model vs. 

Comparison Method (Vertical Arrow) for 7th Street, 3 Links, 100% Capacity 

Reduction Scenario 
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Figure 26: Subnetwork Recommendation from Prediction (Intersection) Model vs. 

Comparison Method (Vertical Arrow) for Guadalupe Street, 1 Links, 25% 

Capacity Reduction Scenario 

 

Figure 27: Subnetwork Recommendation from Prediction (Intersection) Model vs. 

Comparison Method (Vertical Arrow) for Guadalupe Street, 2 Links, 50% 

Capacity Reduction Scenario 
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Figure 28: Subnetwork Recommendation from Prediction (Intersection) Model vs. 

Comparison Method (Vertical Arrow) for Guadalupe Street, 3 Links, 100% 

Capacity Reduction Scenario 

4.5 SUMMARY 

This study addressed previous recommendations for a sufficient DTA subnetwork 

selection. Moving from average results of a statistical comparison test to a prediction model 

will make this procedure more robust for different scenarios and network types. The model 

is most useful for its ability to develop a strategy for a cutoff for subnetwork size relative 

to the error predicted. The original comparison process, documented in Figure 10, was used 

to establish a recommended subnetwork size based on tests used to determine when the 

base and impact models were statistically different. The results of the comparison method 

were used to help establish a method for using the prediction model to determine 

subnetwork sufficiency. Estimating the boundary error for multiple subnetwork sizes due 

to a specified impact can also predict the expected error for a recommended subnetwork 

size. 
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As noted earlier, given an operational RMSE predictive model, a recommended 

subnetwork size can be established based on what is judged to be an acceptable RMSE 

value relative to the base scenario. When examining the results of the comparison method 

with the data from the predictive model, it appears that such an RMSE threshold can be 

established by comparing a predicted RMSE in the base and impact scenarios. The 

recommendation for this linear regression prediction model is to use the first subnetwork 

size where the predicted impact RMSE decreases below the predicted base RMSE. Using 

this as the appropriate method will require only one run of the base scenario, to generate 

the volume and capacity parameters, to determine a sufficient subnetwork for multiple 

scenarios. 

The contribution of this research is development of a robust method for selecting a 

sufficient subnetwork without the need for multiple runs of the base and impact scenarios. 

The major issues with the prior comparison method are the limited input variables and the 

time it takes to process the data. However, the comparison technique gave insight into the 

relationships and distributions of the data. Scatter plots indicate a linear relationship 

between the impact scenario characteristics and the RMSE. Statistical tests indicated that 

the linear regression assumptions were verified for the sample network measures. A 

predictive linear regression model was then used to relate subnetwork size and impact 

scenario characteristics to the subarea demand error. This linear equation and a similar base 

scenario linear equation can be used to predict the RMSE for various impact scenarios 

across a variety of subnetwork sizes. Finding the intersection of the predicted RMSE lines 

allows the user to save time in producing a more efficient subnetwork model. This 

methodology is presented as a flow chart in Figure 29. 
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Figure 29: Flow Chart for the Subnetwork Prediction Methodology 
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SECTION 2 SUMMARY: ROUTE 

The route section of this dissertation describes the evolution of the tools and 

techniques used to solve the subnetwork selection problem. The data and experimental 

design for this study was used to test hypotheses for representative scenarios. This 

subnetwork analysis can be divided into two major steps: a statistical comparison test and 

a statistical prediction model. These developments are a substantial contribution because 

they establish methods for evaluating the effects of spatial extent on subarea accuracy, 

identify characteristics that influence spatiotemporal congestion in dynamic traffic 

assignment, and expose the limitations of certain metrics for subnetwork applications. 

The methodology for subnetwork analysis was whittled down from the common 

methodologies within transportation systems analysis. This section identified the 

appropriate analysis tools (analogous to path generation), tested their effectiveness 

(calculated shortest paths), and determined the most efficient method to pursue (path 

assignment). Route generation, shortest route identification, and altering route assignments 

are the three components of routing in DTA and are analogous to the strategy used to 

develop this methodology, or the strategy for developing any new procedure. This study 

attempted several methods in the following order: 1) link-based statistics, 2) static traffic 

assignment subarea boundary demand adjustment, 3) logit (utility) formulation for 

boundary demand adjustment, 4) distance measure of furthest extent of rerouting, 5) 

percent displacement of vehicles at the boundary for users on paths containing the primary 

impacted link(s), 6) standard subnetwork selection technique (connected order), 7) 

induced, dynamic subarea origin-destination demand comparison, 8) altered connected 

order subnetwork selection techniques for different types of network structure, 9) 

prediction of the impact scenario subnetwork OD error, 10) selection of a subnetwork at 
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the intersection of regression lines for base and impact scenario subnetwork demand. The 

final linear regression analysis was chosen as the optimal method because it relieves the 

user from the burden of running the network multiple times, accounts for other network 

details like volume to capacity (important for addressing base scenario network 

congestion), and can be easily automated. The intersection point of the regression lines 

finds when the impact and base subnetwork boundary demand are statistically similar, just 

like the comparison model. At this subnetwork size the boundary rerouting in the impact 

scenario is no greater than the base scenario and the subarea inputs are sufficient; therefore, 

the subnetwork size is sufficient. 

The transferability of the proposed methods is the greatest issue that must be 

addressed prior to implementation. Section 3 will elaborate on the results of the case study, 

including an additional test network to help define the recommendations associated with 

this procedure. A summary of the subnetwork models and their performance will help to 

address the scope of these techniques. Also, an attempt to develop a quantitative metric for 

classifying the dynamic traffic assignment network structure will be introduced. Finally, a 

conclusion will briefly summarize the contribution of this dissertation. 
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SECTION 3: DESTINATION 

The destination section of this dissertation describes how the methods proposed in 

the route section may be validated through travel time analysis, transferred to other types 

of networks, and implemented in practice. It also aims to further define the scope of the 

contribution and where further research is needed. The findings of this dissertation are not 

limited to the specific application of subnetwork studies, but reveal many issues with the 

general dynamic traffic assignment process. The methodology proposed here adds one 

more step forward in the progress on multi-resolution analysis.  

In transportation planning, the destination is analyzed for the demand needs 

associated with the facilities located in the traffic analysis zone. For this dissertation, the 

destination section will address the needs of those who will actually perform the traffic 

analysis. The destination section focuses on the desired goals of this dissertation and how 

they were accomplished. It also represents how the methodology in Chapter 4 and Chapter 

5 develops the state of subnetwork research. Section 1 introduced the current state of 

subnetworks (origin), Section 2 establishes a new means for addressing the subarea 

selection need (route), and Section 3 will describe where the state of the art now stands 

(destination).  
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Chapter 5: Case Study Analysis 

The methodology in this dissertation presents a novel metric for identifying the 

spatial scale to which traffic flow changes may propagate due to a capacity perturbation in 

the network. This metric focuses on the demand input to the subnetwork region, and the 

incremental time required to simulate larger subnetworks. Analyzing the induced subarea 

demand allows for an aggregate measure of the rerouting that occurs at the boundary. While 

this is the most appropriate metric for determining sufficient subnetwork size, the best 

measure of effectiveness of a candidate subnetwork is travel time. 

Travel time can be directly related to user cost and it is the most desirable traffic 

simulation output for multiple reasons. The primary reason is the underlying assumption 

of user equilibrium – every vehicle is attempting to complete its trip in minimal time. In 

DTA, travel time is also a more reliable link performance metric than flow because at low 

flow conditions, small increases in link flow may cause no change in travel time (free flow 

speeds remain and users are not affected). Although, density or possibly speeds are 

typically used for characterizing levels of service, in construction work zone scenarios 

where the traffic engineers’ goal is to minimize user cost, the most effective way of 

measuring that is by measuring travel times. Therefore, accurately predicting the travel 

time, in other words the delay or impedance to the user, is a primary concern of this 

analysis. Travel time may also be implicitly derived from a fundamental flow parameter, 

speed, for a given link length.  

This chapter will analyze the case study data from the Austin subnetwork procedure 

and an alternate case for the Dallas regional network. Results from these case studies will 

then be used to generate qualitative and quantitative recommendations for users that wish 

to implement this subnetwork technique. 
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5.1 EVALUATION OF THE AUSTIN SUBNETWORK CASE STUDY RESULTS 

The model validation for this analysis will assume that if the recommended 

subnetwork size produces reliable travel times, then the model is effective. Travel times 

will never remain constant from simulation to simulation, regardless of the size of the 

network, due to the innate variation in the model algorithms. However, it is anticipated that 

a high level of error in travel times is likely if a subnetwork is too small and the error should 

decrease with increasing subnetwork size. It is desirable for the linear regression model 

process to recommend a size that minimizes the error in the travel time output. 

This validation step aims to determine the ability of a subnetwork to predict 

measures of effectiveness with respect to the full network. Errors in the link travel times 

predicted by the different models will be compared across the range of tested subnetwork 

sizes. In order to derive the error in the subnetwork travel time predictions without 

geographic bias it is important to compare the same set of links. In other words, the data 

should be aggregated over the same spatial extent. For this analysis the full network 

simulation of the impact scenario will be treated as the true value for travel times. Then, 

each link’s travel time in the full network will be compared to the travel times generated 

by subnetworks of connected order size five, seven, and nine. Since the smaller 

subnetworks are a subset of the larger subnetworks, the links in the smallest subnetwork 

size, five, will be used for comparison. The root mean square error of the travel times will 

be calculated on a link by link basis (for the most reliable simulation data – the peak hour), 

and then averaged to produce an overall travel time error for all links in the connected order 

of five.  

Table 12 documents the results of the travel time analysis for the Austin subnetwork 

case study. Generally, the travel time error decreases with an increase in subnetwork size. 

It also appears that for each scenario there is a point of significant decrease in the error. 
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For almost all network sizes this decrease occurs at or below the recommended subnetwork 

size from the regression model. This is a desirable feature of the subnetwork selection 

method based on the linear regression model. By slightly overestimating the size of 

subnetwork needed it guarantees that the accuracy of the subnetwork model will be 

maintained. The time savings of a smaller network would improve efficiency, but is not as 

important as the accuracy of the predictions. 

Table 12: Travel Time Validation of Austin Subnetwork Recommendations, RMSE of 

Travel Times on Each Shared Link (Seconds) 

 

The magnitude of the error for the Austin subnetwork is generally between five 

seconds and one minute. This may not seem like a substantial variation in travel time, but 

Scenario Five Seven Nine

7th, 1, 50 9.37 3.98 3.43

7th, 2, 50 6.13 4.06 3.41

7th, 3, 50 5.87 3.93 3.52

7th, 1, 100 8.53 4.31 4.33

7th, 2, 100 8.60 3.05 4.14

7th, 3, 100 8.60 3.34 3.49

15th, 1, 50 10.19 7.87 10.71

15th, 2, 50 8.26 46.65 6.97

15th, 3, 50 8.84 43.19 7.16

15th, 1, 100 11.86 6.97 7.46

15th, 2, 100 7.26 8.27 8.73

15th, 3, 100 17.20 32.17 14.00

Guad, 1, 25 4.70 3.07 3.36

Guad, 1, 50 4.48 2.95 3.07

Guad, 2, 50 8.55 8.41 8.60

Guad, 3, 50 4.51 3.01 3.04

Guad, 1, 100 4.81 3.07 3.24

Guad, 2, 100 4.74 3.00 2.95

Guad, 3, 100 9.45 9.73 9.67
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if this variation is added over dozens of links within a path, it could potentially result in 

calculating path travel times that significantly deviate from the true, expected value. 

Therefore, it is essential to apply this methodology and reduce (or understand) the error in 

subarea performance metrics. The RMSE of the induced subarea boundary demand error 

provides a measure of the reliability of input data for the subnetwork. The subnetwork size 

recommendations of the predictive models are likely to overestimate the network size 

needed to generate accurate results, as determined from Table 12. This assertion follows 

the assumption that for a given induced demand matrix the subarea should be able to 

replicate the output data (travel time) of the full network under the same scenario 

conditions. Therefore, minimal differences in the subnetwork OD matrix, detected by the 

regression models, may indicate a need for a larger subnetwork, while a smaller 

subnetwork may have been capable of producing reliable travel times. This travel time 

analysis is the desired proof of the efficiency of the linear regression model for informing 

subarea selection. 

In order to provide some intuition about the characteristics of the subnetwork, 

several graphs are presented to explain the influence of spatial extent on: simulation time, 

relative gap, the number of vehicles, the number of links, and the number of nodes. The 

simulation time is represented by the DTA algorithm computation time only, so it does not 

include user processing. The relative gap is a convergence criteria for network traffic 

assignment, which is calculated using Equation 7: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐺𝑎𝑝 =  
𝑇𝑜𝑡𝑎𝑙 𝑆𝑦𝑠𝑡𝑒𝑚 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑜𝑛 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑃𝑎𝑡ℎ

𝑇𝑜𝑡𝑎𝑙 𝑆𝑦𝑠𝑡𝑒𝑚 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑜𝑛 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑃𝑎𝑡ℎ
− 1  (7) 

The number of vehicles is the total count of all vehicles that traverse the subnetwork. 

Finally, the number of links and nodes is the count of links and nodes included in the 
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connected order of the subnetwork. The number of centroids and connectors follow a 

similar trend as the number of links and is not presented here.  

 

 

Figure 30: Summary of the Number of Links versus Subnetwork Size, Austin 

 

Figure 31: Summary of the Number of Links versus Subnetwork Size, Austin 
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Figure 32: Summary of the Number of Vehicles versus Subnetwork Size, Austin 

 

Figure 33: Summary of the Simulation Time (Hours) versus Subnetwork Size, Austin 
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Figure 34: Summary of the Relative Gap versus Subnetwork Size, Austin 

Table 13: Representative Characteristics for Full Network versus Subnetwork 

Characteristics, Austin 

 

Table 14: Representative Percent of Full Network Characteristics for Subnetworks, 

Austin 
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Spatial 

Extent

Number of 

Vehicles

Number of 

Links

Number of 

Nodes

Simulation Time 

(Hours)

Relative 

Gap

Full 97606 1578 717 2.37 1.39

Nine 37988 645 290 0.83 0.86

Seven 25710 466 212 0.65 0.22
Five 19628 296 142 0.55 0.17

Spatial 

Extent

Number of 

Vehicles

Number of 

Links

Number of 

Nodes

Simulation Time 

(%)

Relative 

Gap

Full 100% 100% 100% 100% 100%

Nine 39% 41% 40% 35% 62%

Seven 26% 30% 30% 28% 16%
Five 20% 19% 20% 23% 12%
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 It can be seen in Figure 30 through Figure 34, and in Table 13 and Table 14 

subnetwork analysis offers significant reductions in computation time and a valuable 

improvement in convergence of the DTA model. The number of nodes and links have a 

linearly increasing relationship with subnetwork size. Improvements in the relative gap and 

simulation time as subnetwork size deceases is expected and desirable. Although, a 

majority of the percentage decrease occurs at the first subnetwork size of nine, the 

incremental improvements at sizes below nine are critical to reducing simulation time. It is 

likely that multiple scenarios with two to ten simulations will be necessary for a thorough 

traffic analysis. The savings of a half to one hour for simulation time could mean a saved 

half work day for practitioners.  

5.2 DALLAS SUBNETWORK CROSS CASE STUDY 

A cross case study was included to test the transferability of the proposed method. 

This methodology and the trends identified in this dissertation are intended to provide 

insight into all types of traffic network analysis and help other researchers understand the 

key factors in spatial resolution for transportation modeling. A Dallas downtown model 

was generated to test aspects of how this methodology may be applied in other regions and 

scenarios.  

The downtown Dallas model, which is analogous to the downtown Austin model, 

was generated from the Dallas-Fort Worth regional model. The 2007 network model was 

created at the Center for Transportation Research. An extensive revision of the network 

attributes and topology attempted to update the data to match the newly available 2012 

regional origin-destination demand matrix. The current model was calibrated with the best 

available Dallas traffic counts at a number of critical locations in the downtown area. The 

DTA simulation output was typically within 20-30% of the real world count volumes.  
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Greater deviations between traffic counts and model results likely occurred due to inflated 

capacities at particular locations. This may be due to an over generalization of roadway 

capacity in the regional model or an aggregate representation of links in certain portions of 

the network. The downtown Dallas model was also not to a typical level of convergence 

desired for a DTA network, but was acceptable considering the network size. 

Table 15: Downtown Dallas DTA Model Validation with Traffic Counts 

 

The Dallas subnetworks were selected in a similar manner to the Austin 

subnetworks. The same ranges were used for the number of links impacted, percent 

Roadway Reference Street Direction
Number of 

Lanes
Traffic Count

DTA Volume 

Output
Percent Error

IH 345 Pacific Ave NB 5 6483 6126 6%

IH 345 Pacific Ave SB 5 4267 3965 7%

SP 366 Lamar St EB 4 5169 4101 21%

SP 366 Griffin St WB 4 3089 2463 20%

IH 35E
Woodall 

Rodgers Fwy
NB 5 1845 6734 265%

IH 35E
Woodall 

Rodgers Fwy
SB 5 5245 4097 22%

IH 30 Jefferson Blvd EB 4 3365 4365 30%

IH 30 Jefferson Blvd WB 4 4040 4902 21%

IH 30 Akard St EB 3 4200 5148 23%

IH 30 Akard St WB 3 3793 6472 71%

IH 30 2nd Ave EB 4 5522 4366 21%

IH 30 2nd Ave WB 4 4327 5842 35%

IH 35E Hi Line Dr NB 5 5948 10901 83%

IH 35E Hi Line Dr SB 5 6770 6119 10%

IH 30 Beckley Ave EB 3 4355 5985 37%

IH 30 Beckley Ave WB 3 3865 4209 9%

IH 35E Colorado Blvd NB 5 5759 6729 17%

IH 35E Colorado Blvd SB 4 4108 2617 36%
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capacity reduction, and subnetwork size. The representative scenario locations were north 

bound Pearl Street, a three lane north-south arterial; west bound Jackson Street, a three lane 

one-way arterial; and north bound Woodall Rodgers Freeway, a four lane freeway on the 

northwest side of the downtown loop roadway. Link capacity perturbations examined 

included 1 Link, 25%; 2 Links, 50%; and 3 links, 100% for Jackson Street and Pearl Street. 

A 25% capacity reduction on one link was simulated on Woodall Rodgers Freeway.  

 

 

Figure 35: Example Subnetwork Connected Order Selection for Woodall Rodgers 

Freeway Impact Scenario, Dallas 
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There are several differences between the Dallas and Austin regional network and 

subnetwork analyses. Each of the Dallas networks were only simulated once. The Austin 

networks were either run ten times or twice, which allowed the capture of the within base 

scenario rerouting. Using a fixed random number seed to control variability, only one run 

of the Dallas network was tested to examine the exact difference between the base and 

impact scenarios. This allows for the opportunity to isolate changes in travel time and 

induced subarea demand as a result of the impact scenario.  

The Dallas network was simulated in a slightly different manner than the Austin 

network. For the Dallas regional network a time step of 6 seconds was used to make the 

simulation of the full network manageable. This 6 second time step was maintained for 

consistency across the Dallas networks. Another major difference is time period of the 

demand data for the models – the Dallas model uses AM peak period demand and the 

Austin model uses PM peak period demand. The Dallas regional demand data also included 

trucks in addition to passenger cars, while the calibrated Austin network only had 

passenger cars. The routing of trucks is identical to routing for passenger cars; although, 

the length of the trucks is a factor in the congestion on certain links. Also, the prevalence 

of trucks varies throughout areas in the network – the greatest concentration of trucks 

occurs on the freeway. The downtown Dallas model required a total of 90 iterations to 

reach an acceptable level of convergence, compared to the 50 iterations used for the Austin 

network.  

Several issues may have led to the poor convergence of the Dallas model. Primarily, 

the 2007 network was updated to match recent changes to the Dallas regional roadways. 

However, this process focused mostly on downtown freeways, so less significant 
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improvements may not be reflected in the updated network. This means that there is likely 

an overestimation of congestion in the network simulation. The worse convergence, or 

higher relative gap, is also a result of less calibration for the Dallas model compared to the 

downtown Austin network. The downtown Austin model is a smaller region and had an 

extensive review process of all link attributes. The detail in the downtown Dallas network 

is not as complete as Austin and several minor streets are not included in the network. This 

has the potential to create problems for convergence because alternative routes are limited 

relative to reality.  

The results of calculating the RMSE of the induced subarea boundary demand are 

organized in Table 16. The true impact column tabulates the one to one comparison of the 

subnetwork origin destination matrix error between the base and impact scenarios. Using 

the linear regression models from the Austin network provides reasonable 

recommendations, but there may be differences between the Austin and Dallas network 

that are not taken into consideration. An examination of the volume to capacity ratio for 

Jackson Street reveals that the base model predicted low volumes resulting in volume to 

capacity values below 0.1. It is possible that a greater network connectivity interacts with 

such a low volume to capacity ratio to prevent rerouting, or the capacity reduction could 

be less than the available capacity in the base scenario. This is indicated by the lack of 

correlation between rerouting at the subnetwork boundary and subnetwork size in each of 

the Jackson Street Scenarios. The smallest impact scenario for Pearl Street also has no 

correlation with subnetwork size. 

For the larger impact scenarios, there appears to be a similar trend between 

subnetwork size and rerouting at the boundary as detected in the Austin network. As 

subnetwork size increases, rerouting at the boundary decreases. It was anticipated that the 
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greater connectivity of the Dallas network would provide more alternatives for rerouting; 

thus, the linear regression model was expected to under predict the quantity of rerouting. 

This is demonstrated in Table 16 by the much larger true error than the predicted error. It 

also appears that characteristics of freeway scenarios are not fully represented in the linear 

regression model generated from the Austin data. 

Table 16: Comparison of the Final Impact and Base Model for Dallas Scenarios 

 

Scenario
Subnetwork 

Size
True Impact Base Model

Impact 

Model

Model 

Difference

Impact Model 

Percent Error

5 6.98 2.05 1.89 -0.16 73%

7 9.03 1.82 1.95 0.13 78%

9 6.21 1.59 2.01 0.42 68%

5 12.51 2.86 4.24 1.38 66%

7 8.59 2.63 3.50 0.87 59%

9 7.73 2.40 2.76 0.36 64%

5 15.75 1.17 6.40 5.23 59%

7 9.38 0.94 4.06 3.12 57%

9 6.83 0.71 1.72 1.01 75%

5 3.92 4.10 3.17 -0.94 19%

7 6.21 3.87 3.23 -0.65 48%

9 8.75 3.64 3.29 -0.36 62%

5 4.13 2.84 4.22 1.38 2%

7 5.92 2.61 3.48 0.87 41%

9 5.93 2.38 2.74 0.36 54%

5 5.64 3.38 7.77 4.39 38%

7 5.90 3.15 5.43 2.28 8%

9 6.44 2.92 3.09 0.17 52%

5 12.47 -0.74 -0.56 0.18 104%

7 8.24 -0.97 -0.50 0.47 106%

9 6.25 -1.20 -0.44 0.76 107%

Jackson, 3, 100

Woodall Rodgers, 

1, 25

Pearl, 1 , 25

Pearl, 2, 50

Pearl, 3, 100

Jackson, 1, 25

Jackson, 2, 50



 128 

 

Figure 36: RMSE (Boundary Rerouting) versus Subnetwork Size, Dallas 2 Link 

Scenarios (1 Link for Woodall Rodgers) 

 Figure 36 indicates a decrease in rerouting at the subnetwork boundary as the 

subnetwork size increases for the mid-range scenario on Pearl Street and the Woodall 

Rodgers freeway scenario. The lack of volume on Jackson Street in the base scenario is 

likely the primary reason for such a low amount of rerouting at the extent of the subarea.  
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Table 17: Travel Time Validation of Dallas Subnetwork Recommendations, RMSE of 

Travel Times on Each Shared Link 

 

Table 17 indicates that the lack of convergence for the Dallas network has a large 

impact on the ability of the subnetwork to produce accurate travel times. It appears that the 

Austin regression models may be used as a default method for determining a sufficient 

subnetwork size. However, calibration of local characteristics may be necessary when 

applying the methodology to different datasets. It is also possible that some metric may be 

able to account for the differences in the regions. Further examination of data from a DTA 

simulation with a lower level of convergence could provide information to calibrate such 

a metric. 

A summary of all network characteristics is presented in Figure 37 through Figure 

41. Each graph depicts a similar trend to the Austin network summary characteristics. The 

convergence does not appear to decrease as subnetwork size decreases for Pearl Street, 

which may be a result of the poor convergence of the downtown Dallas network.  

Scenario Five Seven Nine

Pearl, 1 , 25 276.48 59.49 98.41

Pearl, 2, 50 103.72 60.13 50.83

Pearl, 3, 100 158.30 56.20 67.80

Jackson, 1, 25 65.09 62.19 32.34

Jackson, 2, 50 63.15 62.64 35.28

Jackson, 3, 100 79.09 117.36 94.05

Woodall Rodgers, 1, 25 112.15 60.38 49.94
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Figure 37: Summary of the Number of Links versus Subnetwork Size, Dallas 

 

Figure 38: Summary of the Number of Nodes versus Subnetwork Size, Dallas 
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Figure 39: Summary of the Number of Vehicles versus Subnetwork Size, Dallas 

 

 

Figure 40: Summary of Simulation Time (Hours) versus Subnetwork Size, Dallas 
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Figure 41: Summary of the Relative Gap versus Subnetwork Size, Dallas 

Table 18: Representative Characteristics for Full Network versus Subnetwork, Dallas 

 

Table 19: Representative Percent of Full Network Characteristics for Subnetworks, 

Dallas 

 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e 
G

ap

Subnetwork Size

Pearl Street Jackson Street Woodall Rodgers Freeway

Spatial 

Extent

Number of 

Links

Number of 

Nodes

Number of 

Vehicles

Number of 

Cars

Simulation Time 

(Hours)

Relative 

Gap

DFW 71721 31364 3119540 3015438 1,022.30 13.00

Dallas 16434 7408 858613 814312 72.20 7.15

Downtown 3958 1845 245752 230144 16.14 7.55

Nine 1725 967 217494 201651 2.51 4.60

Seven 996 595 163863 151114 1.54 4.38
Five 475 302 90782 84319 0.50 1.87

Spatial 

Extent

Number of 

Links

Number of 

Nodes

Number of 

Vehicles

Number of 

Cars

Simulation Time 

(%)

Relative 

Gap

DFW 100% 100% 100% 100% 100% 100%

Dallas 23% 24% 28% 27% 7% 55%

Downtown 6% 6% 8% 8% 2% 58%

Nine 2% 3% 7% 7% 0.25% 35%

Seven 1.4% 2% 5% 5% 0.15% 34%
Five 0.7% 1.0% 3% 3% 0.05% 14%
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Table 18 and Table 19 reveal how great a difference using subnetwork analysis can 

make when dealing with a regional network as large as Dallas.  The simulation time statistic 

is particularly revealing as the full network required over 1,000 hours while the order five 

subnetwork required only 30 minutes.  

5.3 PRACTICAL RECOMMENDATIONS TO ACCOUNT FOR NONUNIFORMITY 

The methodology for subnetwork creation aims to capture the extent of congestion 

due to a network alteration. For dynamic traffic assignment, this means determining the 

quantity of rerouting that occurs with respect to time and space. This can be difficult due 

to the complex algorithms that are involved in the DTA process – this was emphasized 

with the analogy of water displacement in a channelized system from Chapter 3.1.  

Nonuniformity in network topology introduces another level of complexity to 

generating a universal subarea selection technique. The uniqueness of regional traffic 

networks is not simple to classify because network structure characteristics can vary 

greatly. These physical network factors can include spatial resolution, connectivity, 

density, and geometry. Besides network topology other differences between regions can 

include population, demand, travel behavior, multimodal options, and traffic operations. 

These unique features can create noise in the results.  

Homogeneity in the roadway network may be an effective characteristic to remove 

noise. Tsekeris and Geroliminis (2014) examine network structure effects on traffic 

congestion from an aggregate, economic perspective using a uniform grid network. This 

type of experimental control can frame the concept of a network connectivity metric as a 

deviation from complete homogeneity. A proper network topology metric should decrease 

as the spacing of a uniform roadway grid increases (the network becomes more sparse) or 

as the network form deviates from a completely connected grid.  
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Qualitatively, the ideal scenario is a perfectly uniform grid network. That means all 

links of the uniform grid network have equal lengths, number of lanes, capacities, and 

speeds. This would be the equivalent scenario to the rock being dropped in the middle of a 

uniform puddle (from the analogy in Chapter 3.1). In this case, it is expected that the 

impacts should spread symmetrically about the location of capacity reduction. As soon as 

the network deviates from the ideal grid, these effects become more complex and tracking 

them becomes more difficult.  Therefore, the user should be aware that analyzing portions 

of the network that are nonhomogeneous may reduce the accuracy of this subnetwork 

characterization methodology. However, this does not necessarily prevent this method 

from being appropriately applied.  

There may be ways to quantitatively account for the differences in network 

structure. Classification of transportation networks for traffic analysis has been limited to 

primarily qualitative measures. The FHWA Traffic Analysis Toolbox Volume 2 (Jeannotte 

et al., 2004) provides a nominal classification of study area, or geographic scope, limited 

to: isolated location, segment, corridor/small network, and region. These general terms add 

no valuable distinction between regional differences. Development of network topology 

characterization has been addressed, foremost, by the transportation planning community 

in pursuit of urban form metrics. These metrics tend to focus on connectivity from a level 

of service perspective such as mobility or accessibility. Since these metrics do not address 

the fundamental principles of traffic flow they have little capability in providing a reliable 

quantitative metric. 

Zhang and Kukadia (2005) provide a grouping of commonly applied metrics for 

urban connectivity including: geometric, context sensitive, and behavioral measures. The 

geometric measures attempt to address connectivity by determining the ratio of the number 
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of links to the number of nodes in the network.  A better geometric measure is the use of 

roadway density, miles of road per square miles of area. Context sensitive measures hope 

to capture the population characteristics of surrounding area, and since this is already 

accounted for in the origin-destination demand input has less value to characterizing 

topology for traffic theory. The behavioral metric is defined as accessibility in the form of 

a gravity model relating origin-destination impedances to opportunities in the traffic 

analysis zones. Dynamic traffic assignment aims to more accurately define these network 

impedances and uses destination demand to determine the desirability of zones, which 

makes accessibility a less valuable measure in this context.  

Some additions have been made to Zhang’s classification of network structure. 

Jenelius (2009) identified many of the same network structure measures as Zhang, but 

labeled the geometric measures as “link redundancy” (links to nodes ratio). Jenelius also 

mentions a potential metric of network scale, the average link length. The average link 

length may be biased, or influenced, by the arbitrary method used to code the individual 

links in the network, but is an important consideration for spatial analysis of traffic 

networks – and could have implications for the connected order method. Jenelius discusses 

the use of roadway density (miles of road per square mile), and suggests that higher density 

should increase the availability of the number of routes. Lowry and Lowry (2013) 

identified a more thorough list of urban from metrics including density (population), 

centrality (gravity model), accessibility (street connectivity), and neighborhood mix 

(demographic diversity). The four metrics they investigate for street connectivity are the 

ratio of links to nodes, mean neighborhood block perimeter, ratio of cul-de-sac to streets, 

and median length of cul-de-sac. Some improvement is needed for these planning metrics 

to make them more applicable to engineering problems.  
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Road density may be the best characterization of urban form from a traffic 

engineering perspective, but is still limited in the capability to represent the fundamental 

traffic flow parameters. In a general sense, measuring the total length of roadway in a 

subnetwork captures an aggregate measure of the denominator used to calculate traffic 

density (vehicles per unit length). Another fundamental traffic parameter, flow, could be 

partially captured if capacity was included in the roadway density calculation. This 

technique has the potential to differentiate roadway classes by including the number of 

lanes and the differing capacity per lane based on HCM procedures. For example, typical 

traffic engineering simulation has a much higher capacity coded for freeway links 

compared to arterials. A metric including these characteristics may take the form of lane 

miles per square mile, which will be referred to as road lane density, or lane mile capacity 

per square mile, which will be referred to as road capacity density. 

5.4 ADDRESSING NONUNIFORMITY IN THE DALLAS AND AUSTIN REGIONAL AREAS 

The network data used for this analysis includes two different regional networks 

with differing types of connectivity, the Dallas and Austin regional areas. Road lane density 

and road capacity density were calculated for each of the subnetworks created (in both 

regions). The areas used for the subnetwork were defined by the minimum bounding 

geometry. The most appropriate geometry method to use is the convex hull, seen in Figure 

42 since it uses a polygon to connect the minimum area containing the furthest extents of 

the network links. The lane miles term can be calculated by summing the product of each 

link’s length and number of lanes. The lane miles capacity term can be calculated by 

summing the product of each link’s length, number of lanes, and lane capacity. Then, the 

area of the convex hull of subnetwork links can be used to normalize the quantity metrics 

for the roadways. 
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Figure 42: Convex Hull Minimum Bounding Geometry for the Calculation of Area used 

in Network Connectivity Metrics 

The aim of this analysis is to determine the nature of the relationship between the 

connectivity of the subnetwork to the quantity of rerouting that occurs at the subarea 

boundary, which has been defined as the root mean square error of the induced boundary 

demand. For each subnetwork size and number of links impacted, each impact location was 

plotted with the connectivity metric on the x-axis and the measure of rerouting on the y-

axis. Due to the differences in the level of convergence for the two regional networks, they 

will be displayed separately to identify potential trends. Other factors that are included in 

the linear regression equations are no longer being controlled, leading to a great deal of 
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variation around the best fit line. However, Figure 43 through Figure 46 indicate a likely 

influence of the traffic network connectivity on rerouting. 

 

Figure 43: Relationship of Network Connectivity to Vehicular Rerouting at the Boundary 

of the Subnetwork, Road Lane Density for Dallas   

 

Figure 44: Relationship of Network Connectivity to Vehicular Rerouting at the Boundary 

of the Subnetwork, Road Capacity Density for Dallas 
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Figure 45: Relationship of Network Connectivity to Vehicular Rerouting at the Boundary 

of the Subnetwork, Road Lane Density for Austin 

 

Figure 46: Relationship of Network Connectivity to Vehicular Rerouting at the Boundary 

of the Subnetwork, Road Capacity Density for Austin 

The general trend reveals that rerouting at the boundary increases as network 
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Figure 44 indicate that including capacity in the calculation of network connectivity 

increases the predictor capability of the metric, measured by the higher coefficient of 

determination (0.30 compared to 0.12). There is a great deal of variation in each Figure 43 

through Figure 46, particularly Figure 45 and Figure 46. This is due to the many other 

factors that characterize each scenario, particularly the impact scenario magnitude and 

level of congestion in the subnetwork. However, these factors are included in the linear 

regression model and including this network connectivity metric could improve the model 

as well as address the variation seen in Figure 43 through Figure 46. 

A further examination of this analysis is recommended for future research as 

network connectivity metrics for traffic simulation could potentially improve network 

analysis. Such a metric can help to estimate rerouting, differentiate between network 

topology, and recommend/measure spatial resolutions for subareas of analysis. Further 

attempts to include the traffic network connectivity metric into the predictive linear 

regression model would require more data from a greater number of different regions.  

The use of the convex hull also has potential to enhance the connected order 

selection method. An additional step to the connected order selection technique of 

generating the convex hull area for the subarea links, then adding links within the convex 

hull will prevent discontinuities in the subnetwork. In Figure 42, it can be seen that the 

connected order has the potential to leave gaps in the network, which could be corrected 

with the use of the minimum bounding geometry geospatial tool.  

Geographic bias is a major problem for any spatial statistical analysis. Since 

transportation analysis is inherently spatial, accounting for this bias in the engineering and 

planning simulation process can increase the reliability of model results. The primary 

consideration for geographic information analysis is the modifiable areal unit problem 
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(O’Sullivan, 2010). Most geographic data is aggregated when analyzed, and this was 

especially true for this study since each measure was calculated with respect to the data 

within the subarea. The aggregation of this data at different scales can cause potential issues 

with regard to (1) defining the appropriate aggregation scale and (2) the impacts of using 

different aggregation scales. This study addresses both of the issues through (1) the use of 

an unbiased geographic area method of increasing subnetwork size and (2) proposing the 

use of a network connectivity metric that can account for the difference between 

aggregation scales. 

With any spatial metric there is an inherent geographic bias associated with the 

data. However, the controls in this experimental setup have limited the issues associated 

with geographic data. Other concerns still exist with the input data for this analysis, 

including Jenelius’ mention of the average link length in the network. The biases that can 

occur within the initial data creation step are a critical reason why there is a great need for 

standardizing geospatial datasets used for transportation analysis. The development of 

databases for traffic analysis zones, centroid connector placement, link location and length, 

link capacities, and other network and demand characteristics must be controlled to reduce 

bias in transportation modeling and analysis.  

5.5 SUMMARY 

The Austin model has been validated through a comparison of the travel time 

prediction capability of the different size of subnetworks. The ability of the linear 

regression model to predict a sufficient subnetwork is supported by the travel times being 

fairly similar at the recommended subnetwork size. The predicted sufficient subnetwork 

size from the linear regression also matches the results of the comparison test. 
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A Dallas DTA model was simulated with scenarios comparable to the Austin case 

study used to develop the subnetwork methodology. There may exist network 

characteristics that are not captured by the regression model built for Austin. However, 

there is still potential for using the linear regression model in its current state to predict an 

appropriate subnetwork size. If users wish, they may adapt the model to their region and 

calibrate the coefficients on the parameters.  

It is possible that another metric, which describes network topology, may be used 

as an explanatory variable. This metric could account for the differences seen in the 

different network regions. If a metric that characterizes the network could be identified, it 

would prevent the data collection effort required by the comparison linear regression 

methodology. There are several network structure metrics in literature, but they rarely 

address traffic operations by incorporating the fundamental flow characteristics. Road lane 

density and road capacity density are introduced here to capture network structure with 

respect to traffic flow principles.  
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Chapter 6: GIS Implementation 

Geographic information systems have changed the way engineers store data, 

interface models, and perform analysis. Transportation was in great need of this new 

technology because topology dictates traffic operational interactions. As high quality 

geospatial data becomes a standard in the industry, considerations should be made so that 

all disciplines solving transportation system problems can coordinate their efforts. 

Standardizing a geodatabase format will help to realize the full potential for this data to 

improve modeling and analysis procedures. Spatial analysis and interfacing different 

modeling software inputs and outputs are only a first step in utilizing geographically 

referenced data. GIS can be used to automate routine processes and provides potential for 

interfacing with new real time ITS data. A tool for interfacing dynamic traffic assignment 

outputs and traffic control plans is described in this section to demonstrate the capability 

of GIS and considerations for the future. These applications are only a small component of 

the transportation field transitioning to digital solutions, rather than paper manuals. 

Oversight will be necessary to ensure decisions based on software outputs are objective.   

6.1 GEOSPATIAL DATA CONSIDERATIONS FOR TRAFFIC ANALYSIS 

In an attempt to capture more factors of reality the complexity of theoretical models 

have increased. Simultaneously, as the tools change to describe ground truth more 

accurately, so has the level of detail for our data and the software used for processing. GIS 

capabilities have grown as a result of needs from a variety of different fields. For example, 

coordinate system science provides a means to standardize representation of geographic 

location and ensure the accuracy of geospatial calculations. The adaptation of the World 

Geodetic System (WGS 1984) for global positioning systems (GPS) created a new 

standard; although, many public GIS datasets rely on the North American Datum of 1983 
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(NAD 1983). Awareness of these ellipsoidal referencing systems and the corresponding 

Cartesian projections is critical in the development of a centralized database. Most GIS 

packages allow for translating datasets between coordinates to provide consistency for 

georeferencing and geocoding. Conveniently for traffic engineers, geocoding is commonly 

based on roadway networks. Using the spatial relationships of data features allows for 

automation of operations on their attributes. 

A consistent framework for geolocating data features is the backbone of spatial 

analysis. With an accurate representation of the topology, transportation professionals can 

apply geostatistics that have already been developed for other fields including geography 

and environmental sciences. These tools provide insight on the street network and its 

relationship to other relevant geodata including pavement management information 

systems (PMIS), land use, crash records, and traffic analysis zones (TAZ). The real power 

in this platform is the ability to customize automated procedures consisting of preexisting 

tools and user defined subroutines. Laborious processes can be simplified with a script, 

saving the user time that could otherwise be spent improving data analysis.  

Specifications for data structures, quality, and formats could help to provide a level 

playing field for traffic analysis. Traffic engineers could rely on data sharing formats 

similar to the general transit feed specifications (GTFS) to ensure interoperability. It will 

be important to orient the Highway Capacity Manual (HCM) analysis and other FHWA 

procedures to focus on topographical interactions of transportation systems. Publication of 

future professional manuals should account for the digital solutions needed to address the 

new form of traffic data. Intelligent transportation systems will progressively be adapted 

as the primary source for data and the procedures outlined in engineering guidebooks 

should reflect these digital formats.  
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Major limitations in the available datasets can be addressed through the TFTN 

initiative, FHWA, MPOs, state departments of transportation (DOT), and local agencies. 

The question of the proper data structure is not a trivial one. Accounting for the needs of 

multiple disciplines makes a universal database format difficult to establish, and issues 

with the absence of desirable data adds a level of complexity. Two major issues that a 

standard GIS dataset should address for transportation are the attributes required for 

different resolutions of traffic simulation and a method for integrating traffic signal timing 

plans into the network database. Once an inventory of the transportation system have been 

addressed, then the advantages of applying data from the digitally connected infrastructure 

data sources can be realized. Figure 47 is one example of how data integrity is rapidly 

improving. 

 

 

Figure 47: Difference between New and Old MPO Networks 
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6.2 GIS CONSIDERATIONS OF THE SUBNETWORK PROCEDURE 

GIS has a large role in organizing, editing and analyzing traffic simulation results. 

As the models used within the simulators become more complex, visualizing changes in 

network performance becomes even more important. Better quality data will help to 

improve the accuracy of these advanced traffic models. Throughout this process it is 

valuable for traffic engineers to understand the fundamentals of GIS and for the GIS 

developer to understand the needs of traffic engineers. The commonality of the GIS data 

format and the development platform make it a useful tool for customizing geospatial 

procedures.  

In order to take advantage of the power of DTA, visualizing the routes that are used 

by vehicles can provide unique insight into the output of the simulation. This can be done 

in several ways. The more common way is to investigate all routes used between an origin 

and a given destination. This method can identify the most used route between a particular 

origin-destination (OD) pair and what alternative routes are available for the vehicles using 

that OD pair. For a traffic control analysis it can also be useful to select the link(s) that are 

going to be modified and find the set of paths that use that link. In this case it is easier to 

analyze the results if the number of routes is limited to the top ten route volumes. Then, 

the vehicles that use these routes can be tracked in the impact scenario to determine the 

alternate routes they use. This can reveal the network distance from the modified link where 

the impact has spread. This was one of the initial methods mentioned in Chapter 3, and a 

map representing the distance calculation for this technique is represented in Figure 48. 

Even though it was not implemented for the subarea selection, it is still a useful tool for 

investigating impacts. 
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Figure 48: Visualization of Paths Rerouting Vehicles around the Impacted Link 

The investigation of absolute distance for the furthest rerouting directed the method 

in a new direction. In geographic analysis terms, the focus transferred from straight line, 

Euclidean distance (as the crow flies) to network distance. Network distance uses links as 

a measure of length. The GIS components of the subnetwork procedure introduce in this 

dissertation use spatial analysis tools and, assuming that the DTA model data is properly 
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formatted, the GIS algorithm could be run on any transportation network. The subarea 

selection procedure referred to as connected order may be automated by comparing the 

geographic coordinates of the nodes comprising the ends of the links. A user may select a 

link, then the nodes connected to this link are automatically selected using a select by 

location tool. Then, the connectors and links emanating from the selected nodes will be 

added to the selected features. Finally, the centroids that are used by the selected connectors 

will be added. This procedure will automatically iterate until the appropriate number of 

links extending (user input) from the primary selection are included. This standardized 

method of creating a subnetwork was designed to enable investigation of how far the 

impacts extend, and provide a means for automating this process. Figure 49 and Figure 50 

are the GIS interface for the connected order tool. 

 

 

Figure 49: User Input Prompt for the GIS Connected Order Selection Model 
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Figure 50: Sample Connected Order Selection with Size Parameter of Five in GIS 

6.3 CREATING A GIS TOOL FOR UTILIZING DTA SUBNETWORK DATA 

The first step in creating a customized tool is to synthesize the procedure and 

identify inputs, processes, and outputs. The example flowchart in Figure 51, provides an 

organizational overview to the scripts that were developed for a preexisting traffic control 

planning tool (Bringardner, 2012). Each major step may require several actions, and each 

action may be carried out with a tool set provided by the development platform or may be 

automated in GIS. Online forums are the best resource for code templates and advice for 

GIS development. As with all programming, debugging errors will be the final step to this 

process. Troubleshooting is even more prevalent with geodatabases due to the quantity of 

manually input data and the high probability of human error. These data issues cannot be 

Impacted 

Link 
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overlooked in the development stages of a new algorithm and can be minimized if the 

proper data sources are found. 

 

 

Figure 51: Sample Flow Diagram for the Example GIS Traffic Engineering Tool 

In light of the TFTN (Transportation for the Nation) planned timeline for 

completing a consolidated centerline and transportation GIS database, choosing the best 

input data for analysis often relies on contacting the regional metropolitan planning 

organization (MPO). MPOs are often one of the few organizations that update network GIS 

data with attributes necessary for traffic modeling. Consultants and contractors should 

begin to digitally upload the data used for their projects to streamline the quality control of 

the TFTN, or other centralized datasets. Requiring their updates for various projects as a 

digital deliverable could help remove redundancy and keep track of previous decisions for 

future projects – much like a set of plans documents engineering decisions. 

Interacting with the data requires an understanding of the attributes associated with 

the features of interest. Transportation network models are made up of links and nodes, 

represented in GIS by lines and points. Geographic coordinates are assigned to ends of the 
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roadway links and each intersection node. Most traffic models require a directed network, 

or separate representation for opposing flows of traffic on a roadway. Desirable attributes 

for the links are the name, unique identifier, number of lanes, lane configuration, speed 

limits, geometry, traffic volumes, and vehicle type distribution. The level of detail and the 

method of labeling these attributes varies greatly between datasets. Node data should 

classify name, unique identifier, the type of stop control, contain timing plans for signalized 

intersections, and coordinate turning movements of the intersection links. 

6.4 A DTA INTEGRATED GIS TOOL FOR TRAFFIC CONTROL PLANS 

An example development of a GIS tool is described in this section to present an 

approach for integrating transportation models and geographic information software. This 

tool allows for a user to make sketch planning calculations for capacity changes and 

interface with a dynamic traffic assignment (DTA) model to predict routing in the case of 

a traffic control plan. If a lane closure is imposed on the network, then vehicle routing is 

likely to change near the capacity reduction. To investigate these impacts the GIS model 

incorporates HCM procedures for calculating roadway capacity. Functions have been 

designed to import and export outputs to and from DTA software for a more accurate 

representation of the after scenario network flows.   

The automation of these calculations, which would otherwise require manual inputs 

in traffic software, relies on the spatial relationship of the road network. Identifying the 

signal location and incoming links through nearest neighbor calculations simplifies the task 

of extracting the relevant information from the database. To allow for the interoperability 

of new input datasets, in particular DTA updates, all calculations are based on the unique 

identifiers of the features. The inherent structure of the database format requires an 

association between every feature and each attribute in the dataset. Each process operates 
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on the features attributes connected to their unique identifiers to allow for reproduction, 

flexibility, and improvements.  

The integration of the DTA subnetwork procedure is essential to the GIS tool for 

improved network alteration analysis. A user could select a link(s) that is under study for 

potential capacity alterations. The user could then input the range of capacity reduction 

impacts that they wish to implement on the work zone roadway. Using this information 

and output data from a validated full regional model run (volume to capacity ratio), the 

predictive linear regression algorithm can determine the appropriate subnetwork size. It 

does this by automatically extracting data and calculating the estimated rerouting 

associated with possible network sizes. If the user wishes, they could use the default 

recommendation or they could choose an option to view the estimated errors associated 

with subnetwork size. The automated system could then produce the final input data 

required to build and run the subnetwork in the DTA software.  

In the future, if a coefficient is calibrated for the network connectivity metric in the 

linear regression equation this could also be automated in the recommended subnetwork 

size specification. A GIS model has already been constructed for calculating the area using 

the minimum bounding geometry and the corresponding road lane density and road 

capacity density. These automated procedures can send the calculated network connectivity 

parameter to the linear regression model for creating subnetwork recommendations. This 

would prevent the user from having to input any information other than the scenarios they 

are interested in analyzing. 

The strength of the database calculations is the ability to generate digital results that 

can be used by other software. In this case, initial input volumes for the previously 

developed traffic control planning tool came from a static traffic assignment model, which 
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means calculations were based on an average hourly volume per link. Figure 51 reveals the 

GIS processes that were used to calculate volume to capacity ratios for an intersection 

involved in a network alteration. Although the capacities were recalculated to adjust for 

the network changes, the volume is static and does not represent the corresponding changes 

in traffic flow. Combining the dynamic traffic assignment model results allows for more 

detailed analysis and data that reflects the new state of the network. The GIS processes 

include selecting the subnetwork and calculating the volume to capacity ratios on desired 

links with the DTA output data reflecting rerouting. The subnetwork procedures allows for 

short simulation times and the generated output from the DTA model can be used for the 

subarea in the traffic control planning tool. 

 

Procedure for Using DTA Subnetwork Results for Traffic Control Planning 

STEP 1: Select and extract subnetwork data elements using the GIS model interface 

STEP 2: Simulate the subnetwork in a DTA software platform 

STEP 3: Extract updated volume results from the DTA model 

STEP 4: Import DTA output for the subarea into the traffic control planning tool 

STEP 5: Use the GIS traffic control planning tool to calculate volume to capacity ratios 

6.5 SUMMARY 

The process of creating a GIS traffic control planning tool was described as a 

generalized method that may be used to implement other GIS decision making tools for 

traffic simulation data. Each component of this subnetwork methodology was automated 

within a GIS software platform. The issues associated with integrating traffic simulation 

and GIS tools were identified. The most important concerns for GIS data are database 

structure, interoperability of functions, and geographic relationships. Geospatial data 



 154 

considerations are becoming more important as engineers rely on large datasets with minor 

details that have a large impact on simulation and modeling results. Developing a standard, 

digital structure for this data is the primary means for improving the integrity of 

transportation analysis.  
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Chapter 7: Conclusion 

The aim of this dissertation was to add another level to the current understanding 

of spatial interactions in advanced traffic models. Geographic resolution analysis is 

particularly complex because of the potential for spatial interaction to bias typical analysis. 

Dynamic traffic assignment is at the forefront of traffic engineering simulation tools, and 

contains a great deal of spatial complexity. DTA also operates within the time domain, 

which means changes must be tracked over time. A robust set of tools were needed to 

account for the model variation in time and space. 

7.1 SUMMARY OF CONTRIBUTION 

This methodology created a means to identify a sufficient subnetwork, which 

means that it is large enough to accurately simulate traffic and small enough for significant 

reductions in computer time required to process the algorithms. The key to this technique 

is statistically comparing the subnetwork demand inputs. If the subarea is run in the same 

DTA platform, then the same demand matrix input should generate the same output. After 

identifying the trends involved in the growth of subnetwork size, a more sophisticated 

method was developed for relating the inputs in the full network to the outputs used by the 

full network. This contribution extends beyond subarea analysis because it identifies 

factors that influence the propagation of congestion through traffic networks. For instance, 

this process identified that the current level of congestion in the base scenario, represented 

by the volume to capacity ratio, is a good indicator of the quantity of rerouting caused by 

new congestion as a result of network alterations. It was also discovered through simulation 

data that network topology likely has an influence on the possibility of rerouting. A metric 

that quantifies the network structure and connectivity could be applied to this subnetwork 

analysis, but can also help to compare and quantify differences between regions. 
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Accurately identifying a sufficient subnetwork is critical not only for practical 

implementation, but can also help develop dynamic traffic assignment and traffic 

simulation research. The use of this method will allow practitioners to understand the error 

associated with the selected subnetworks for traffic analysis. It may also be used as an 

automated tool to more quickly create subnetworks for multiple scenarios. The use of the 

subarea selection techniques proposed here may also help the implementation of 

experimental algorithms. Typically, researchers rely on abstract networks, like Sioux Falls, 

to test new ideas. With assurance of the quality of subnetwork data supplied by this 

dissertation, researches can use real world scenarios in areas they are familiar with to test 

the particular scenarios they are attempting to address. The results of the cause and effect 

regression analysis has also identified issues that must be considered when examining 

multi-resolution analysis. In particular, network topology and geographic study area are 

critical issues in transportation network analysis. 

7.2 SUMMARY OF COMPARISON TECHNIQUE 

Generating the methodology for subnetwork analysis required identifying the 

appropriate techniques for spatial and temporal investigation. A review of typical tools in 

transportation systems analysis found shortcomings for particular methods when dealing 

with varying geospatial areas. For instance, these windowing techniques create an issue for 

link level statistics because simulation at a smaller spatial scale generates additional 

variation in results that already exists from the demand input extracted from the full 

network. Another example is the limited capability of a utility base logit model for route 

choice. Although it can be effectively used in network traffic assignment, when applying 

it to a subarea it requires the generation of more data outside the window of analysis. This 

means that the destination choice logit model is a less effective means of improving subarea 
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analysis because the data required for its input is comparable to simulating the DTA 

process on a larger area. These shortcomings were identified and guided the research in a 

new direction for adequately addressing the needs of subareas. 

The primary contribution of this method is a novel application of a metric for 

identifying the spatial extent of impacts in DTA. Rather than investigating the outputs of 

the subnetwork for identifying what is sufficient, the methodology focused on the inputs. 

Most commonly in practice, the input to the subarea is the induced boundary demand 

extracted from the vehicle trajectories of the full network. This transition in focus from link 

based statistics was a significant step in the subarea methodology. This study found that 

the standard measure of variation, root mean square error, was the most appropriate for 

subnetwork creation. The other metrics evaluated, mean absolute percent error and the 

structural similarity index, may have a great potential for enhancing other types of 

transportation system analysis. However, these metrics had a limited potential to identify 

the important aspects of subarea input variation. The root means square error, or RMSE, 

of the induced subnetwork origin-destination matrices was determined to be the most 

effective measure of rerouting occurring at the boundary of the subnetwork. Now the 

investigation focused on developing a means of accurately comparing this metric to 

determine the differences in impact scenario and base scenario inputs to the subnetwork. 

For typical traffic simulation, use of multiple simulations (replicate runs) of a 

network to account for real world variability, which is also imperative to the subarea inputs. 

Incorporating the variation prevents the use of a general quantification of the input 

deviations. Instead, a more appropriate statistical technique like a two sample equal means 

test can account for the randomness in simulation results. Using the average of the induced 

subarea demand in the base scenario as the true value for the input, each impact scenario 
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and base scenario simulation result was compared to the true values by calculating the 

RMSE. These RMSE values are then compared using a two sample equal means test for 

the base scenario sample and the impact scenario sample. This test accomplishes the need 

for determining if the rerouting in the impact scenario simulation is statistically 

significantly greater than the base scenario simulations. Applying the equal means test 

across different subnetwork sizes reveals that increasing the subnetwork size increases the 

capability of the subnetwork to capture the rerouting and congestion within its extents. At 

this subnetwork size, when the majority of rerouting is captured, the sufficient subnetwork 

size has been identified. This method captured the trends that were expected with an 

increase in subnetwork size. This verification was an essential step, but a new method that 

could equally predict a sufficient subnetwork without the need for multiple simulations 

was desired. 

7.3 SUMMARY OF PREDICTION TECHNIQUE 

In order to reduce the burden of reproducing the subnetwork analysis performed for 

the comparison technique, it was hypothesized that a statistical prediction model could 

enhance the comparison analysis. This would also enable dynamic traffic assignment users 

to diagnose the inputs that have an impact on their analysis. The variables used to make 

recommendations for the capacity analysis, the capacity reduction and number of links 

impacted, were included in an initial model to verify the applicability of this direction for 

the analysis. Subnetwork size was included in the model as the primary variable of study, 

so that a user may input a variety of subnetwork sizes in order to predict the expected 

RMSE of the boundary demand. Promising results from a preliminary model were used as 

justification for examining further variables that have a significant influence on DTA 

rerouting. 
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Testing a variety of model specifications revealed the important variables for 

investigating an impact analysis.  The key additional data that was provided for the model 

was based on link information from the full network base scenario. This included the 

original capacity and volume to capacity ratio of the impacted links for the scenario. These 

values incorporate into the rerouting prediction model the amount of traffic that the impact 

location can handle and the level of congestion in the area prior to network alterations. 

Another important factor that was included was the interaction term between subnetwork 

size and capacity reduction. This indicates that for some small levels of capacity reduction, 

there may be limited change in rerouting as subnetwork size increases. This is intuitive 

because the variation in rerouting would be expected to be constant in the near base 

condition (small impact) scenario. After generating an effective model for predicting 

rerouting in the impact scenario induced subarea demand, a method was sought for 

implementing the model to generate a sufficient subnetwork. 

The comparison method was capable of determining when the base scenario 

subnetwork demand was statistically similar to the impact scenario subnetwork demand. 

Therefore, if two regression models could accurately predict when the base and impact 

scenario are no longer very different then this could provide similar results to the 

comparison model. When the final impact model was selected, a base model was generated 

using the same variables as the impact model, excluding those that applied only to the 

impact. These final base and impact models were found to accurately predict the amount 

of rerouting that occurred at the subarea boundaries in each scenario. More importantly, 

the intersection point of the lines generated by the two models predicted similar 

recommendations as the comparison technique. This now provides a means for automating 

and generalizing the sufficient subnetwork size recommendations. 
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7.4 CONCLUDING REMARKS AND RECOMMENDATIONS 

This dissertation developed a methodology based on case study data. This is an 

appropriate approach for this type of analysis for a few reasons. Primarily, case study 

theory is most suited to new research areas (Eisenhardt, 1989). Since subnetwork analysis 

has been primarily ad hoc until this contribution, the testability of the empirical validity is 

essential for building a foundation for subarea methodology. This study began with a 

“within case” study, Austin, to generate the theory and used a “cross case” study, Dallas, 

to address the validity. The theoretical sampling, ten simulations with a random seed of 

representative scenarios (the golden rule for traffic simulations), allowed for the 

examination of useful, practical scenarios. Two simulations are also commonly used in 

practice to reduce the burden of time required to simulate traffic ten times. Also, the cross 

case study fixed the seed for random number generation to addressing the exact difference 

between base and impact scenarios. Application of the case study approach has identified 

a verified, transferable method of analysis.  

If a user is concerned about the validity of this modeling approach for a particular 

region or scenario, then the framework for building the model can be reapplied. This 

technique is akin to the Mechanistic-Empirical Pavement Design Guide, where models are 

generated for predicting results and default coefficients are provided for the parameters. 

However, it is acknowledged that differences occur between different regions and suggests 

that calibrating the model to the parameters of the region can improve analysis. The 

coefficients presented here are a good default for practitioners, but if desired the 

methodology may be performed to account for potential differences. 

This method is both a common technique in transportation engineering, but also 

addresses a common effect seen in transportation networks. In geographic terms, things 

that are closer together tend to have a greater impact than things that are farther away. This 
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magnitude of effect decreasing with distance has been demonstrated in transportation when 

looking at environmental effects of a rail corridor (Wang, 2014). It is suspected that in a 

perfect grid network impacts may take the form of a three dimensional normal distribution 

decreasing as the distance from impact increases. These effects may become less 

symmetrical as the network becomes less homogeneous. However, the regression model 

proposed in this dissertation attempts to capture this trend with distance (connected order 

size). 

There are many applications that can extend from this analysis. Particularly, a 

further investigation of the network topology metrics may improve the understanding of 

subnetwork and multi-resolution analysis. It is important to characterize the network when 

presenting measures of effectiveness because an equal level of service may actually be 

dramatically different in terms of desired performance. An extremely sparse network 

cannot expect to have great levels of service during major roadway construction since there 

exist few alternative routes. Network uniqueness is an obstacle due to the large number of 

factors, but creating some method of classification can help. Results in this dissertation 

also indicate that network size may have some influence on convergence. Perhaps, 

convergence is more of a model resolution issue than it is a matter of algorithms reducing 

the number of iterations needed to provide accurate results. It should be addressed whether 

examining subareas of a regional network may be used to parallelize dynamic traffic 

assignment more effectively and generate results with a greater coverage more quickly. 
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SECTION 3 SUMMARY: DESTINATION 

This dissertation has arrived at its final destination by effectively applying tools 

and techniques to enhance the understanding of subnetwork analysis. It accomplished this 

through a new application of common transportation analysis tools to measure the spatial 

and temporal extents of congestion effects in traffic simulation. This contribution is 

substantial to the development of multi-resolution analysis because it offers insight into the 

important causes and effects to consider when analyzing the geographic scope of analysis. 

The tools and techniques developed in this dissertation may be used by practitioners to 

understand and defend their decisions when generating a network for traffic simulation. In 

transportation planning the destination zone is the ultimate goal for each vehicle user, and 

providing a means for implementation is the ultimate goal of this dissertation. 

Recommendations for use of this method and what can be done in the future are also 

included in this destination section. 

The contribution of this dissertation has many applications for future research and 

development of dynamic traffic assignment and transportation simulation. Primarily, major 

strides have been made to improve DTA algorithms such as time-dependent shortest path 

calculations and route choice algorithms. Using a real subnetwork as a test network for 

these algorithms will enhance their development. Other algorithms that may cause a 

dramatic increase in simulation time could become more tractable from the use of 

subnetworks. Managing simulation time will become more important as more sophisticated 

levels of modeling are introduced including: variability of link performance, multimodal 

transportation options, intersection treatment, and new or modified traffic flow models. 

This dissertation has documented the considerations one must make when implementing a 

subnetwork procedure on network modeling.  
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