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The purpose of this research is to provide a theoretical framework for future 

commercial vehicle user-charging using real-time vehicle weight and configuration 

information collected using weigh-in-motion (WIM) systems.  This work provides an 

extensive review of both mechanisms and technologies employed for commercial and 

passenger vehicle user-charging worldwide.  Existing commercial vehicle-user charging 

structures use only broad vehicle classifications to distinguish between vehicles for the 

pricing of user-fees.  The methodology proposed in this study employs highway cost 

allocation methods for development of an “Axle-Load” toll structure.  A theoretical case 

study, based on information from Texas State Highway 130, is performed to explore the 

equity improvements that could be achieved through implementation of this proposed 

structure.  Some sensitivity analysis is also performed to examine the potential revenue 

impacts due to uncertainties in different data inputs under existing and proposed 

structures. 
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CHAPTER 1: INTRODUCTION 

In recent years, it has become clear that America’s system of road user charging 

is “broken.”  At both the federal and state levels, highway system needs are far 

outpacing available funds for construction, maintenance and operations.  While fuel and 

construction materials have increased in price, the nation’s primary source of 

transportation revenue, the federal fuel tax, has lost value per mile.  Excessive demand 

on insufficient capacity in the nation’s urban areas has created gridlock that costs the 

nation billions of dollars in lost productivity and fuel, and leads to increased harmful 

vehicle emissions.     

Recent research and legislation in the US and abroad indicate a future 

fundamental shift in the way that roads will be priced.  It is likely that fuel taxes, and the 

other indirect user fees currently employed to recover costs from commercial vehicles, 

such as oversize and overweight permits and equipment sales taxes, will be replaced or 

supplemented with a more direct form of user charging – likely a distance-based fee per 

mile.  Three primary system costs will need to be considered in development of these 

future fees; vehicles will pay more or less depending on their contributions to 

congestion, their vehicle emissions, and their consumption of highway infrastructure. 

The final report of the National Surface Transportation Policy and Revenue Study 

Commission concluded that for commercial vehicles, this future form of user-charging 

should “charge trucks based on infrastructure wear and tear”.1   The report also 
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concluded that with changes in total user fees, freight-specific charges should be 

adjusted to maintain the “current allocation of highway cost responsibility.”  However, 

these two goals are not necessarily compatible.  Highway Costs Allocation (HCA) studies 

performed at both state and federal levels have found that currently, truck user fees do 

not equitably recover costs from all system users.  Looking forward, it is unclear how 

future mechanisms for truck highway user charging will achieve the necessary gains in 

equity to ensure sustainable funding for the nation’s highway network.   

Advanced technologies offer an opportunity to better measure the real impact of 

individual vehicles.  Throughout the world, new technologies are being implemented for 

real-time road pricing.  However, so far, these projects have primarily focused on better 

recovering congestion costs; those traveling during peak periods or on congested 

facilities pay a higher fee for the marginal social cost they are imposing on system users.  

Mechanisms employed for this purpose include area- and cordon-based congestion 

charges.  Managed lanes projects also try to better match user fees with congestion 

costs; users who choose to pay to use a managed lane must pay a fee for a higher level 

service.  Otherwise, they would have “paid” the fee in lost time and fuel while idling in 

congestion.  This relationship is particularly evident on dynamically priced facilities, 

where real-time traffic data is used for toll rate variation. 

The only advanced mechanism that has been developed to significantly improve 

recovery of infrastructure consumption costs from trucks is the distance-based truck 

mile tax.  In the US, four states charge a fee per mile for trucks traveling within state 
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borders; however, for collection of these fees mileage must be self-reported.  Recent 

European applications have employed a variety of technologies, including automatic 

vehicle identification systems, vehicle monitoring systems, and on-board measurement, 

for automatic collection of information on vehicle miles traveled, as well as for 

automatic collection of related user fees.  Better measurement of distance traveled will 

provide some equity improvement, as vehicles traveling more often and over longer 

distances will pay a higher share of costs. 

 However, distance is not the only variable that should be measured in estimation 

of “wear and tear.”  All trucks do not consume infrastructure at the same rate; vehicles 

with varying weight and axle configurations will impact pavements and bridges very 

differently, even when traveling equivalent distances.  Distance-based fees, like more 

traditional forms of truck user charging, distinguish between different classes of trucks 

based on either gross vehicle weight or vehicle number-of-axles.  Neither or these 

variables alone is a very good indicator of infrastructure consumption.  Advanced 

technologies may also offer a solution here.  Weigh-in-motion (WIM) systems, already 

employed throughout the world for collection of data for planning and for motor vehicle 

size and weight enforcement, could be employed to capture real-time axle weight and 

configuration information from individual trucks. 

This research explores the possibility for using WIM systems for real-time toll 

collection.  A methodology is proposed to use HCA methods for estimation of a more 

equitable fee structure that would recover costs from users based on individual axle 
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weights rather than on vehicle number of axles.  WIM systems could then be employed 

for real-time axle-load classification within the proposed structure.  The broader 

purpose of this research is to begin to answer the question – what future method of 

truck user charging can be employed to equitably recover infrastructure costs from 

individual vehicles based on real-time operations? 

                                                      

1 Transportation for Tomorrow: Report of the National Surface Transportation Policy and Revenue Study 
Commission.  National Surface Transportation Policy and Revenue Study Commission, Washington, D.C., 
January 2008.  
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CHAPTER 2: CURRENT MECHANISMS FOR HIGHWAY FUNDING IN THE US 

2.1 USER FEES 

The first step in identifying an improved method for commercial vehicle highway 

user-charging in the US is to examine the current system of charges employed at both 

state and federal levels, as well as on individual highway facilities.  Through this 

examination, the current rate variables used to distinguish between classes within 

existing charging structures can be identified.  Additionally, these methods of charging 

can be evaluated to determine the weaknesses that prevent existing user fees from 

providing adequate revenue for system operations.  This chapter provides an overview 

of the current methods employed by federal and state government entities, as well as 

public and private toll road operators, to recover costs from truck users. 

2.1.1 Federal User Fees 

The highway system in the United States is primarily funded at both federal and 

state levels through a series of indirect user fees.  The main federal source of highway 

user revenue is the fuel tax, which imposes a cent per gallon fee on different fuel types.  

The rates of this tax for gasoline, diesel, and alternative types of fuel are shown in Table 

1.2  In addition to federal fuel taxes, other federal highway user fees for commercial 

vehicles include sales taxes on certain tires, trucks, tractors, and trailers, and a heavy 

vehicle use tax annually charged to large trucks based on registered gross vehicle weight 
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(GVW).  Detailed information on the rates and requirements governing these fees are 

also provided in Table 1. 

Table 1.  Federal Highway User Fees, 2005 
(Source: Table FE-21B, Highway Statistics 2005) 

Fee Rate

Fuel Taxes cents/gallon

Gasoline 18.4

Gasohol 18.4

Diesel and Kerosene 24.4

Liquefied Petroleum Gas 13.6

Liquefied Natural Gas 11.9

Other Special Fuels 18.4

Neat Alcohol 9.25

Compressed Natural Gas 4.3

Tires

Tax is imposed on tires sold by manufacturers, 
producers, or importers at the rate of $.0945  
($.04725 in the case of a bias ply or super single 
tire) for each 10 pounds of the maximum rated 
load capacity over 3,500 pounds.

Truck and trailer sales

12 percent of retailer's sales price for tractors 
and trucks over 33,000 pounds gross vehicle 
weight (GVW) and trailers over 26,000 pounds 
GVW.  The tax applies to parts and accessories 
sold in connection with the vehicle sale.

Heavy vehicle use tax

Trucks 55,000-75,000 pounds GVW: $100 plus 
$22 for each 1,000 pounds (or fraction thereof) 
in excess of 55,000 pounds.  Trucks over 75,000 
pounds GVW: $550

Other Taxes

 

 

2.1.2 State User Fees 

At the state level, the primary source of user revenue is the state fuel tax.  All 50 U.S. 

states and the District of Columbia charge a volume-based state fuel tax, although heavy 

trucks paying the weight-mile tax (WMT) in Oregon do not pay state tax on diesel fuel.  
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For diesel fuel, state tax rates vary from a high of 38.1 cents per gallon in Pennsylvania 

to 7.5 cents per gallon in Georgia, with a national average cost of 21.8 cents per gallon.3  

The Texas fuel tax rates of 20 cents per gallon on both gasoline and diesel are very close 

to this average.  Fifteen states tax diesel fuel at a higher rate than gasoline, while 26 

states and the District of Columbia tax diesel and gasoline at the same rate.  The 

remaining 9 states tax gasoline at a higher rate than diesel.  Some states also charge an 

additional sales tax on fuel.  In some states, local municipalities can levy their own local 

fuel taxes.4  At the state level, highway user fees are also collected through licensing 

fees, vehicle registration fees, heavy vehicle permits, sales tax on motor fuel, and toll 

road operations.  In Texas, user fees for commercial vehicles on non-tolled facilities 

include vehicle registration fees, sales tax on motor oil, and a series of overweight and 

over-dimensional permits (Table 2).5 
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Table 2.  Texas State Highway User Fees, 2005 
(Sources:  Highway Statistics 2005, Texas Highway Cost Allocation Study) 

Fee Rate

Fuel Taxes cents/gallon

Gasoline 20

Gasohol 20

Diesel 20

Liquefied Petroleum Gas 15

Other Fees

Registration
Combination Trucks:  $148 - $840 (varies by 
weight).  Semi-trailer: $15.  Full  trailers assessed 
according to weight:  approximately $225.*

Motor Oil  Sales Tax

Texas State Sales tax of 6.25 percent collected on 
motor oil  purchases.  Additional city or county 
taxes up to total state and local tax of 8.25 
percent may be collected.

Overweight/Over-
Dimension Permits

See Table 3 for permit types and costs.

* Estimated in Texas Highway Cost Allocation Study.  

Overweight and over-dimensional vehicle permits may be issued for single trips, 

for short time periods (30-90 days), or annually.  Permits may also be issued for both 

divisible and non-divisible loads.  The complete list of available permits for the state of 

Texas is provided in Table 3.6  As many of these permits are offered at a fixed cost and 

apply over lengthy time periods, the actual distances traveled and operating weights of 

vehicles traveling under the same permit types likely vary considerably.   
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Table 3.  TxDOT General Oversize/Overweight Vehicle Permits, 2005 
(Source: TxDOT) 

Permit Type Requirement Cost ($) Valid

General Single Trip 
Permit

Vehicle or load exceeds legal size 
and weight l imits

30*
One origin to destination 
trip

General Single Trip 
Mileage Permit

Vehicle or load exceeds legal size 
and weight l imits

31 
(minimum)

Max 7 days.  Vehicle may 
return to origin on same 
permit.

30 Day Overwidth/ 
Overlength Permit

Oversize load traveling on state-
maintained roads

60 30 days from begin date

60 Day Overwidth/ 
Overlength Permit

Oversize load traveling on state-
maintained roads

90 60 days from begin date

90 Day Overwidth/ 
Overlength Permit

Oversize load traveling on state-
maintained roads

120 90 days from begin date

Vehicle Specific 
Annual Envelope 
Permit

Oversize load (with specific 
dimensions) traveling on state-
maintained roads.  Only valid for 
commodities unable to be 
reasonably dismantled

2,000 1 year

Company Specific 
Annual Envelope 
Permit

Oversize load (with specific 
dimensions) traveling on state-
maintained roads.  Only valid for 
commodities unable to be 
reasonably dismantled

2,000 1 year

Annual Over 
Axle/Over Gross 
Weight Tolerance 
Permits

Vehicle weight exceeds allowable 
axle weight by less than 12% for 
agricultural commodities or 10% for 
non-agricultural commodities

205 - 2,080 
(varies by # 
of counties)

1 year

Super Heavy 
Vehicle/Load Single 
Trip Permit

Vehicle weight exceeds 254,300 lbs 
gross weight, exceeds maximum 
weight on any axle or axle group, or 
exceeds 200,000 lbs with less than 
95 feet axle spacing

155 + 
vehicle 

supervision 
fee

One origin to destination 
trip

WASHTO Permit
Optional for multi-state travel of 
oversize/overweight vehicles

Varies by 
route

One origin to destination 
trip (max 5 days)

* Vehicles over 80,000 lbs must pay additional road maintenance fees  

Four U.S. states, Kentucky, New Mexico, New York, and Oregon, currently charge 

a distance-based tax on heavy vehicles (Figure 1).  Truck operators are required to self 

report total mileage traveled in the state and pay a fee per mile.  In Kentucky, this 
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charge is simply a flat rate per mile for all trucks over 60 kilopounds (kips).7  In New 

Mexico the rate is graduated based on maximum registered gross vehicle weights; the 

fee per mile increases for each 2000 pound weight class up to the federal weight limit of 

80 kips, after which it is constant.8  In New York, the fee is also graduated by GVW, 

although the rate increases up to 105.5 kips, the maximum weight of a permitted 

vehicle.9  New York is the only state that distinguishes empty truck trips from loaded 

truck trips, so trips made when the truck is empty and lighter pay a lower fee.  Oregon is 

the only state that distinguishes between vehicles by number-of-axles.10  For trucks 

greater than 80,000 pounds the distance based fee per mile actually decreases for each 

additional axle. 



11 

 

 

Figure 1.  US State Weight-Distance Taxes 
 

2.1.3 Toll Road User Fees 

Toll road and bridge facilities are currently operational in 31 states.11  Although 

the role of the private sector in providing transportation facilities in the U.S. is 

increasing, the majority of tolled facilities are operated by public entities.  A few states 

receive a considerable portion of their total state user revenues from toll roads and 

bridges.  The states of Florida and New Jersey both receive more than 15 percent of 

their transportation user revenues from tolling, and Illinois, Pennsylvania, and Texas 

collect between 5 and 10 percent of user revenues through direct tolling.12   

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

18 38 58 78 98

Ta
x 

ra
te

 p
er

 m
ile

 ($
/m

i)

Gross Vehicle Weight (kips)

Kentucky HUL

New Mexico WDT

New York HUT

Oregon HUT, All Trucks

Oregon HUT, 5 Axle Trucks

Oregon HUT, 6 Axle Trucks

Oregon HUT, 7 Axle Trucks

Oregon HUT, 8 Axle Trucks

Oregon HUT, 9 Axle Trucks



12 

 

Toll roads and bridges usually define separate rates for different types of 

vehicles.  In the U.S., most toll roads establish user rates for trucks based on vehicle 

number-of-axles, with vehicles paying a higher toll for each additional axle, regardless of 

vehicle weight (Figure 2).13  As the figure shows, number-of-axle based toll rate 

structures vary from as few as three classes to systems where each additional axle is 

tolled.  Figure 3 demonstrates the estimated toll rates per mile for selected US toll 

roads.  It is clear that there is significant variability in the rates per mile paid on these 

facilities.  Those facilities operated by private operators in congested regions, including 

the Pocahontas Parkway, 73 Toll Roads, and Chicago Skyway, charge higher tolls across 

all classes.  A few toll facilities, including the Ohio and Pennsylvania Turnpikes, establish 

toll rates for heavy vehicles based on gross vehicle weight (GVW) (Figure 2).  On these 

facilities, heavier vehicles pay a higher rate per mile, regardless of axle configuration.  
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Number of Axles 

State Facility 2 3 4 5 6 7 8 9 10 
CA The Toll Roads                   
IL Illinois Tollway System                   
VA Richmond Metropolitan Authority System                   
DE I-95/SR 1                   
FL Miami-Dade Expressway System                   
IN Indiana Toll Road                   
MD JFK Memorial Highway (I-95)                   
NJ New Jersey Turnpike/Garden State Parkway                   
NJ Atlantic City Expwy                   
PA Mon-Fayette Expwy/Southern Beltwaya                   
TX Harris County Toll Road Authority System                   
TX North Texas Toll Road Authority System                   
TX Central Texas Turnpike System                   
VA Dulles Toll Road                   
VA Dulles Greenway                   
VA Chesapeake Expressway                   
WV West Virginia Turnpike                   
IL Chicago Skyway                   
NY New York Thruway                   
FL Florida Turnpike System                   
CO E-470/Northwest Parkway                   
FL Orlando-Orange County Expwy System                   
KS Kansas Turnpike                   
FL Tampa Hillsborough Expwy System                   
GA Georgia 400 Toll Road                   
UT Adams Avenue Parkway                   
VA Pocohontas Parkway                   

 

State Facility

PA Penn. Turnpikeb

OH Ohio Turnpikec

110 12090 100
Gross Vehicle Weight (kips)

0 10 20 30 40 50 60 70 80

 

a The Mon-Fayette Expressway and Southern Beltway are part of the Pennsylvania Turnpike System, however they use a different  
toll rate structure than other components 
b Includes all components of the Pennsylvania Turnpike System except the Mon-Fayette Expressway, the Southern Beltway, and  
Turnpike 66. 

c Classes 7 and 8 are LCV only and require a special permit 

Figure 2.  Basic Rate Structures for US Toll Roads 
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Figure 3.  Estimated Toll Rates per Mile for Selected US Toll Roads 
  

2.2 USER FEE REVENUES 

In 2005, total highway user fee receipts for all levels of government in the U.S. 

totaled $114.6 billion.14  After redistribution of funds for collection expenses, mass 

transit, and other non-highway purposes, total revenues available for highway purposes 

totaled $90.3 billion.  About 91 percent of these revenues were collected through motor 

fuel and vehicle taxes (Table 4).  Overall, direct tolling revenues contributed about 9 

percent of highway user fees.  All of these toll revenues were collected at the state level 
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at the local level, which likely reflects the difficulty of levying user taxes or requiring 

vehicles to purchase permits for use of local facilities.  The $90.3 billion in user-fees 

collected by all levels of government totaled about 59 percent of total highway 

disbursements for 2005.  Additional sources of income providing highway revenue 

included non-highway state and local taxes such as property taxes, appropriations from 

general funds, investment income, and bond proceeds. 

Table 4.  Revenues Used for Highways, All Levels of Government, 2005 
(Source: Table FE-21B, Highway Statistics 2005) 

Federal State Local Total
Motor-Fuel and Vehicle Taxes 35 54 2 91
Tolls 0 7 2 9
Total 35 61 4 100

Percent of Total Highway User Revenues
Source

 

2.2.1 Federal User Fee Revenues 

At the federal level, the vast majority of user fees are deposited to the Highway 

Trust Fund, which was established through the Highway Revenue Act of 1956 as the 

nation’s dedicated source of highway funding.15  In their report The Fuel Tax and 

Alternatives for Transportation Funding, the Transportation Research Board (TRB) 

Committee for the Study of the Long-Term Viability of Fuel Taxes for Transportation 

Finance described the Highway Trust Fund as a “bookkeeping device to make apparent 

the relation of user fee collections to spending.”16  Receipts from the federal fuel taxes 

are divided between the Highway Account and the Mass Transit Account of the Highway 

Trust Fund (HTF), and the Leaking Underground Storage Tank Trust Fund.  The 

percentage of tax distributed to each fund varies based on fuel type (Table 5).17   In 
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2005, Highway Trust Fund Receipts from user fees totaled about $39.5 billion, of which 

$32 billion was deposited to the Highway Account and $7.5 billion to the Mass Transit 

Account.18  Total Highway Account expenditures in 2005 totaled $33.1 billion.  $31.5 

billion was distributed to states as federal aid to the National Highway System; the 

remainder was distributed directly to U.S. Department of Transportation (DOT) and 

other federal agencies. 

Table 5.  Federal Fuel Tax Revenue Distribution 
(Source: Table FE-21B, Highway Statistics 2005) 

Highway 
Account

Mass Transit 
Account

Fuel Type

Gasoline 15.44 2.86 0.1

Gasohol 15.44 2.86 0.1

Diesel and Kerosene 21.44 2.86 0.1

Liquefied Petroleum Gas 11.47 2.13 0.0

Liquefied Natural Gas 10.04 1.86 0.0

Other Special Fuels 15.44 2.86 0.1

Neat Alcohol 7.72 1.43 0.1

Compressed Natural Gas 3.44 0.86 0.0

cents/gallon

Fee
Highway Trust Fund Leaking 

Underground 
Storage Tank T.F.

 

The most recent transportation funding bill passed in congress, the Safe, 

Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-

LU), signed on August 10, 2005, guaranteed $224.6 B in highway funding for FY 2004 to 

2009.  The bill defined annual guaranteed funding limits for each year, starting at $34.4 

billion in 2004, and including 4.4 percent annual increases in spending.19  However, due 

to inflation and related increases in costs of construction, real annual growth is only 

about 1.8 percent.  Overall, SAFETEA-LU fell more than $88 billion short of U.S.DOT 
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estimates to simply maintain and operate the existing system.  As the 2005 figures 

above demonstrate, Highway Account disbursements are exceeding receipts; as a result, 

the balance in the Highway Trust Fund has been steadily declining in recent years.  The 

U.S. Department of Treasury and the Congressional Budget Office projected that the 

Highway Account will reach a balance of negative $4 to $5 billion by the end of fiscal 

year 2009.20  Although this negative balance may not have an immediate impact on 

highway funding since the HTF can borrow from the General Fund to meet expenses in 

the short term, a precedent of borrowing general revenues may negatively impact 

future legislation.21 

It is clear from the declining health of the Highway Trust Fund that the existing 

system of user-charging through indirect fees is not achieving adequate revenue for the 

continued operation and maintenance of the nation’s highway network.  Many user 

fees, including the federal fuel tax, have not been indexed for inflation; as a result, fees 

charged at the same rate have lost value per mile.22  Table 6 shows the progression of 

federal gasoline and diesel tax rates since the Interstate Highway Act of 1956.23  Figure 4 

demonstrates the purchasing power of these rates as an equivalent share of a 2009 

dollar; these values were estimated using the Consumer Price Index issued by the 

Bureau of Labor Statistics.24  Since 1997, when the 4.3 cents of the tax previously 

deposited to the General Fund was dedicated to the HTF, the fuel tax rate has remained 

constant, while the purchasing power of the dollar has decreased by nearly 25 percent.  

As can be seen from the graph, the purchasing power of diesel tax revenue reached its 
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peak in 1993, and has been steadily declining since as a result of inflation (although the 

economic downturn has slightly reversed the impact of inflation for 2009).  Even if 

vehicle fuel efficiency remained constant, the amount of construction and maintenance 

that can be funded through fuel tax revenues has decreased.     

Table 6.  Federal Fuel Tax Rates, 1956-1997 
(Source: Table FE-101A, Highway Statistics 2007) 

Gasoline Diesel

1956 0.030 0.030

1959 0.040 0.040

1983 0.090 0.090

1984 0.090 0.150

1987 0.091 0.151

1990 0.141 0.201

1993 0.184 0.244

1994 0.184 0.244

1995 0.184 0.244

1996 0.183 0.243

1997 0.184 0.244

Fuel Tax Rate ($)
Year
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Figure 4.  Purchasing Power of Fuel Taxes, 1956-2009 
 

In addition to its decreasing value per vehicle mile due to inflation, the primarily 

fuel tax-based system of user fees is subject to uncertainties in both demand and 

supply.25  Since fuel availability for the U.S. is dependent on international supply as well 

as demand elsewhere in the world, future prices are subject to international influence.  

Figure 5 demonstrates the impact of selected world political, economic, and natural 

events on crude oil prices, as well as the considerable growth in the cost of crude oil.26   
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Figure 5.  Impact of Selected World Events on Crude Oil Prices 
(Source: Energy Information Administration 2009) 

As the recent rise in fuel costs in the summer of 2008 demonstrated, when gas 

prices rise, system users may choose to switch their travel to other modes.  Although 

this result may be desirable for the operational efficiency of the nation’s multimodal 

transportation system, it leads to a real decrease in available funding to operate and 

maintain the highway system.  Also, according to the American Road and Transportation 

Builders Association’s Highway Construction Producer Prices, between 2004 and 2009, 

the costs of highway construction materials increased by nearly 40 percent.27   
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Additionally, future technology improvements that will improve vehicle fuel 

economies and increase the market share for alternative-fueled vehicles are difficult to 

predict.  Although current projections do not predict that either price increases or 

technology improvements will “have a dramatic effect on fleet average fuel economy by 

2025,” according to the TRB Committee for the Study of the Long-Term Viability of Fuel 

Taxes for Transportation Finance, “reducing the risk of unintended funding disruptions 

in the future might be a worthwhile goal of reforms to the transportation finance 

system.”28 

While the cost of travel per mile is decreasing, use of the system, and as a result, 

congestion, is rapidly increasing.  According to the 2007 Texas Transportation Institute 

(TTI) Urban Mobility Report, congestion in America’s 437 urban areas costs drivers $78 

billion in wasted time and fuel.29  Traffic volumes are only expected to continue to 

increase.  Freight traffic is expected to grow at an even faster rate than passenger 

traffic.  According to a 2003 study by the TRB Committee for the Study of Freight 

Capacity for the Next Century, highway freight traffic is expected to increase 40 percent 

from 2003 levels by 2020.30  While in the U.S., the overall ratio of receipts to 

expenditures for highways is close to 1:1, in Western Europe, revenues on average 

exceed expenditures 2:1, and in some countries, outpace expenditures at a rate of 3:1.31   

The need to establish federal user-fees that achieve adequate revenues for 

system maintenance and improvement is especially important when considering the 

Revenue Aligned Budget Authority (RABA) created under TEA-21, the 1998 
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transportation bill that preceded SAFETEA-LU.32  When it was introduced in TEA-21, 

RABA set the annual guaranteed funding limit for highways equal to estimated Highway 

Account receipts from the previous year.  If actual account receipts differed from 

projections used to establish funding limits, RABA automatically increased or decreased 

guaranteed funding limits using a formula based on the previous year’s revenues and 

projected revenues for a future budget year.  Under SAFETEA-LU, RABA was adjusted so 

that the new funding level would be calculated based on the previous year’s revenues 

and the estimate for the current year rather than a future budget year.  If account 

receipts are lower than projected revenues and the RABA adjustment is negative, 

funding will not be reduced if the balance of the HTF is more than $6 billion.  However, 

as the balance is projected to fall below $6 billion during fiscal year 2009, funding for 

2009 could be reduced, and inclusion of RABA in a future transportation funding bill 

could further threaten future funding.   

2.2.2 State User Fee Revenues 

Most states have finance arrangements “analogous” to those at the federal level, 

including fuel tax revenues deposited to a dedicated transportation fund.33  Only Alaska, 

Georgia, and the District of Columbia deposit highway user fees to a general fund.  In 

Texas, the dedicated account for highway funding is the State Highway Fund (SHF).  The 

sources of revenue to this fund and their levels of contribution during the fiscal year 

ending in August 2007 are provided in Table 7.34  The Texas Mobility Fund, which 
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contributed 21 percent of revenues, is a special fund established in 2001 which allows 

the state to issue bonds secured by future revenue from the state’s toll roads. 

 
Table 7.  Revenue Sources, Texas State Highway Fund, FY2007 

(Source: TxDOT 2007) 

Source Percent

State Fees, Taxes, and Other 40

Federal Reimbursements 24

Texas Mobility Fund Reimbursements 21

Bonds/Notes Issued 13

Local Contributions 2  

Although more recent figures are not available, the percentages of user fee 

revenues from various sources are likely similar to the 2005 figures, when 51 percent of 

state user revenues were collected through fuel taxes, 44 percent were from motor 

vehicle and motor carrier fees, and five percent were collected as direct tolls.35  State 

fuel taxes, in general, have better maintained value per vehicle mile than federal fuel 

taxes, as many states do have fuel tax rates that are automatically adjusted for inflation 

or that are tied directly to fuel prices.36  However, while state fees may produce 

revenues that better recover vehicle costs, these revenues are often diverted for non-

highway purposes.  In Texas, not all highway user fees are reserved for transportation 

projects through the SHF.  While 72 percent of motor fuel taxes are deposited to the 

SHF, 24 percent are dedicated for the state’s public schools.37  Similarly, while 69 

percent of motor vehicle registration fees are deposited to the SHF, 31 percent are 

returned to individual counties.   
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Just as federal transportation funds are falling short of needs, the state of Texas 

is also lacking the available funding to maintain and provide necessary capacity 

expansion.  According to the 2005 ASCE Infrastructure Report Card, between 1991 and 

2002, population in Texas grew by 28 percent and state vehicle miles traveled (VMT) 

grew by 48 percent, while road capacity only grew by 3 percent.38  As a result of the 

state’s rapid growth and resulting transportation needs, the Texas Transportation 

Commission can only provide funding for 40 percent of projects deemed “worthy.”   

Although in recent years the state has developed a number of innovative 

methods to address funding shortfalls and streamline construction practices, including 

establishment of the Texas Mobility Fund, use of design-build Comprehensive 

Development Agreements, and signing long-term lease agreements with private 

operators, needs are still far outpacing available funds at the state level.  Additionally, 

the legislature passed a moratorium through September 1, 2009 on public-private 

partnerships for toll road delivery to allow for review of pending projects and their 

potential implications for the state; it is unclear how this review will impact the long-

term role of private operators in Texas.39 

2.3 USER FEE EQUITY 

2.3.1 Federal User Fee Equity 

In addition to failing to provide adequate revenue at both federal and state 

levels, existing highway user fees are becoming increasingly inequitable for both 



25 

 

passenger and commercial traffic.  Recent development of more fuel efficient vehicles 

has increased the variability of the cost per mile paid through the fuel tax paid by 

vehicles operating on the U.S. highway network.  According to Department of Energy 

estimates, freight traffic VMT will grow by 70 percent between 2006 and 2025, while 

truck fuel efficiency will improve by nine to 10 percent per mile over the same period.40  

As a result, truck VMT will grow at a faster rate than truck fuel consumption, and as a 

result the percentage of user fee payments collected through truck fuel taxes will 

decline.   

The 1997 Federal Highway Cost Allocation (HCA) Study examined the equity of 

existing user fees both within and between 13 FHWA vehicle classes and identified 

sources of inequity.41  Equity ratios were calculated to examine the ratio of share of user 

fees paid to share of cost responsibilities for each class .  While the total ratio of user 

revenues to costs was close to one, the study found that overall, commercial trucks do 

not contribute user fee revenues adequate to cover their share of cost responsibilities 

for construction, maintenance, operations, and agency costs.  While the equity ratio for 

passenger vehicles was found to be about 1.1, the ratios for both single-unit trucks and 

combination trucks were about .9.    Within these broad vehicle classifications, however, 

it is clear that while many truck classes do pay less than their share of user costs, some 

classes actually pay more than their share (Table 8).  An examination of equity ratios for 

vehicles of varying weights operating within each of these vehicle classes reveals further 

inequity:  in each class, the lightest vehicles pay considerably more than their share of 
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user costs, while the heaviest vehicles pay much less than their share (Table 9).  One 

source of this inequity within the vehicle classes is the Heavy Vehicle User Tax (HVUT) 

(Table 1).  Although the rate of this tax increases for additional gross vehicle weight for 

trucks between 55 thousand and 75 thousand pounds, the rate is capped at $550 

annually for all vehicles over 75 thousand pounds; as a result, the heaviest trucks 

operating on US highways are not charged incrementally for their additional weight.  

Since trucks pay a higher percentage of their user fees through non mileage-based fees 

than passenger vehicles, as truck VMT continues to increase, truck equity ratios will only 

decrease. 

Table 8.  Equity Ratios and Associated Over/Under-Payment Estimates for Selected 
Truck Classes, 1997 Federal HCA Study 

(Source: FHWA 1997) 

Class Equity Ratio
Over/Under-

payment ($1000)

2 Axle Single Unit 1.20 297784.00

3 Axle Single Unit 0.60 -306739.00

4+ Axle Single Unit 0.50 -11115.00

5 Axle Semi-Trailer 0.90 -692624.00

6 Axle Semi-Trailer 0.80 -134212.00

5 Axle Twin Trailer 1.00 3499.00

6 Axle Twin Trailer 1.30 11188.00

8 Axle Twin Trailer 0.80 -22659.00

7 Axle Triple Trailer 0.80 -2141.00  
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Table 9.  Equity Ratios by Class and Weight for Selected Truck Classes, 1997 Federal 

HCA Study 
(Source: FHWA 1997) 

Reg. Weight 
(1000 lbs.)

SU2 SU3 SU4+ 5 Ax. ST 6 Ax. ST
5 Ax. 
Twin

6 Ax. 
Twin

8 Ax. 
Twin

7 Axle 
Triple

0-10 1.7

20 1.5 2.0

30 1.0 1.9 4.3

40 0.5 1.4 3.3

50 0.2 0.8 1.2 1.9 2.7

60 0.5 0.7 1.6 2.3 1.4

70 0.3 0.5 1.1 1.6 1.1 1.7 1.7

80 0.2 0.4 0.9 1.1 1.0 1.4 1.6 1.4

90 0.4 0.5 0.6 0.9 1.1 1.3 1.1

100 0.4 0.5 0.5 0.9 1.0 1.1 0.9

110 0.3 0.8 0.9 1.0 0.7

120 0.3 0.8 0.8 0.6

130 0.8 0.7 0.5

140 0.6

150 0.5 0.4

Overall 1.2 0.6 0.5 0.9 0.8 1.0 1.3 0.8 0.8  

Although the purpose of the federal HCA Study was not to identify a more 

equitable source of user fee revenues, researchers did perform basic evaluation for 

potential solutions, including increasing the rate of the diesel fuel tax, restructuring the 

HVUT, and introduction of a federal weight-distance tax (WDT).42  Their analyses found 

that while each of these solutions could achieve some improvements in “vertical” equity 

between vehicle classes, they caused new inequities within the classes between vehicles 

of different weights and distances traveled.  Introducing a higher diesel tax would 

reduce the “under-payment” of the single unit and combination trucks currently paying 

less than their share, but increase the “over-payment” of the lightest vehicles within 
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these classes.  Restructuring of the HVUT to more closely equate costs with weight and 

removal of the 75 thousand pound cap could achieve considerable gains in equity 

between truck classes and between weight classes within each class.  However, raising 

the rates of the HVUT could increase the disparity between the per-mile user fees paid 

by vehicles with different annual VMT.  The most promising solution examined was 

introduction of a WDT.  Two rate structures were considered: 1) registered weight and 

2) registered weight and number-of-axles.  While both rates achieved some equity 

gains, the structure which considered both registered GVW and number-of-axles was 

most successful, especially for single unit trucks.  

2.3.2 State User Fee Equity 

The Federal HCA study suggested that since a primary source of inequity in 

federal user fees is the HVUT, state user fees provide better mechanisms for equitable 

cost recovery.  Overall, state highway cost allocation studies have found considerable 

variability on equity for truck users.  A review of 26 state HCA studies performed 

between 1982 and 2007 found that in 6 states, heavy vehicles paid less than 60 percent 

of their share of costs, while in 3 states, trucks paid more than their share of costs.43  

The most recent Texas HCA Study suggests that, at least in Texas, equity is not much 

better when additionally considering state user fees (Table 10).44  Methodologies 

employed in these federal and state HCA studies are discussed in detail in Chapter 5.   It 

is clear in Table 10 that most truck classes are still paying shares of user fees very 

different than their cost responsibilities.  Only one of the examined vehicle classes, two-
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axle single unit trucks, pays more than its share under four of the five allocation 

methods.  Nearly all of the truck classes are estimated to pay considerably less than 

their share of user costs, and the largest vehicle class, seven+-axle multi-trailers, pay 

only about one-fifth to one-third of their cost responsibilities. 

Table 10.  Equity Ratios for Selected Truck Classes, Texas HCA Study 
(Source: Texas HCA) 

Class
Generalized 

Method

Modified 
Incremental 

Analysis

Proportional 
ESALs

Variable # 
Lanes

FHWA State 
HCA 

Software

2 Axle Single Unit 1.26 1.11 1.04 1.19 0.94

3 Axle Single Unit 0.73 0.68 0.51 0.68 0.75

4+ Axle Single Unit 0.62 0.71 0.41 0.25 0.18

4- Axle Semi-Trailer 1.02 0.96 0.75 0.86 1.13

5 Axle Semi-Trailer 0.58 0.6 0.5 0.67 0.62

6+ Axle Semi-Trailer 0.65 0.66 0.48 0.45 0.44

5- Axle Multi-Trailer 0.55 0.55 0.44 0.46 1.18

6 Axle Multi-Trailer 0.72 0.81 0.61 0.33 1.51

7+ Axle Multi-Trailer 0.26 0.36 0.33 0.21 0.26  

2.3.3 Toll Road Equity 

Even on toll road facilities, where trucks are charged directly for their use, 

considerable inequities likely exist between the rates paid by vehicles and the costs of 

infrastructure consumption and contributions to congestion for vehicles within these 

classes.  Although little research has been done to examine the equity of existing toll 

road fee rate structures, a nation-wide study examining toll rates by Holguin-Veras et al. 

concluded that, in general, commercial vehicles are over-charged relative to their facility 

use.45  However, this study could not provide a clear result of whether equity was 

achieved between and within individual vehicle classes on U.S. toll facilities.  As 
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described in the Toll Road User Fee section of this report, most toll facilities in the U.S. 

define their rate structures based on vehicle number-of-axles.  A few facilities also 

define toll rates based on vehicle GVW.  Neither of these variables provides a good 

measure of either infrastructure consumption or contribution to congestion.  While in 

general heavy vehicles cause more pavement and bridge damage than lighter vehicles, 

the distribution of that weight over different numbers and configurations of axles can 

considerably change the impact of that weight on bridge and pavement infrastructure.  

Similarly, more axles do not necessarily equate to more infrastructure damage; the 

addition of an axle to a vehicle carrying a certain amount of weight can actually reduce 

the impact of that weight on a pavement.   
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CHAPTER 3: FUTURE MECHANISMS FOR HIGHWAY FUNDING 

3.1 USER FEE ALTERNATIVES 

In recent years, inadequacies and inequities in existing user fee structures have 

become widely acknowledged.  A number of recent traffic, freight, and economic 

studies have recognized the need for new user charging mechanisms to address 

congestion, improve equity, and raise revenues.  In defining solutions to the nation’s 

congestion problems, the TTI Urban Mobility Report calls for adding capacity, changing 

highway usage patterns, and providing highway users with travel options.46  With 

existing funding shortages, providing needed capacity improvements will require 

innovative funding mechanism, including direct tolling, on both publicly and privately 

operated facilities.  Both changing highway usage patterns and providing users with 

travel options can be achieved with road pricing.  Already, variable tolls (which will be 

discussed in detail in the next section) are encouraging travelers to move unnecessary 

trips to less expensive off-peak hours.  Similarly, express lanes and high-occupancy toll 

(HOT) lanes are providing travelers in congested urban areas with more reliable routes 

in exchange for additional user fees. 

In TRB Special Report 271, which examined the freight capacity of the nation’s 

highway network, researchers concluded that “the best way to control all the costs of 

accommodating existing and future traffic is by coordinating practices in engineering, 

highway user regulations, and highway user fees”.47  Establishment of user fees more 
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closely aligned to actual infrastructure consumption and contributions to congestion 

would allow for better recovery of costs due to trucks and encourage efficient truck 

operations and use of road-friendly vehicle configurations and technologies.  Reducing 

the under-payment of commercial traffic for road use would provide additional 

revenues to improve existing facilities and provide additional passenger and freight 

capacity.  Truck-only facilities, which could be provided in the form of managed Truck-

Only Toll (TOT) lanes or separate toll roads, could eliminate some of the safety concerns 

that have prevented the operation of longer-combinations vehicles (LCVs) on most U.S. 

highways by separating freight and passenger traffic.48  These facilities could provide 

more reliable routes on which trucks, including more productive LCVs, could operate. 

A U.S. DOT study of the Issues and Options for Increasing the Use of Tolling and 

Pricing to Finance Transportation Improvements concluded that currently, highway 

travel is viewed as an “un-priced commodity” to users, especially passenger vehicles.49  

Although vehicles operating on congested highways actually do accrue significant costs 

in wasted time and fuel, since these vehicles are currently operating on facilities that 

have “zero perceived cost” users recognize little impetus to change their travel 

behavior.  The study suggests that in order to encourage efficient operations, vehicle 

operators must recognize the costs that they are imposing on the system through their 

highway use.  In order to achieve this recognized cost, a system of “market-based” 

pricing reflecting each vehicle’s highway use should be imposed on the system.  In its 

publication “Transportation Vision for 2030: Ensuring personal freedom and economic 
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vitality for a Nation on the move,” the Research and Innovative Technologies 

Administration (RITA) of the U.S. Department of Transportation was even more specific 

in its call for cost-based pricing of road use on all highways.50   

In TRB Special Report 285: The Fuel Tax and Alternatives to Transportation 

Funding, the TRB Committee for the Study of the Long-Term Viability of Fuel Taxes for 

Transportation Finance specifically examined the future of the fuel tax and examined 

alternatives for future transportation financing.51  While the committee concluded that 

some revenue improvements could be made by increasing fuel taxes in the short term, 

they also concluded that in order to address long term transportation financing needs, 

new user charging methods must be implemented.  The study identified road metering 

and mileage charging as the highway user fee of the future, and recognized that toll 

roads and toll lanes must play an important role in transitioning between the current 

fuel-tax based system and the future cost-based system.  In addition to potential gains 

in financial efficiency and equity, the committee identified using cost-based revenues to 

identify capacity expansions that would provide maximum benefits as an additional 

benefit to system-wide road pricing. 

The need to examine alternative methods for highway user charging and 

transition to more direct methods was recognized in the SAFETEA-LU legislation.  The 

bill provided funding for a variety of projects that will advance the progress of road 

pricing initiatives.52  The legislation created two Transportation Financing Commissions, 

the National Surface Transportation Policy and Revenue Study Commission and the 
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National Surface Transportation Infrastructure Financing Commission to make 

recommendations for future highway financing.  SAFETEA-LU also provided funding for a 

feasibility study of a nation-wide distance-based user fee.  The legislation continued the 

TEA-21 Value Pricing Pilot Program (VPPP), which allows states to convert high 

occupancy vehicle (HOV) lanes to high occupancy toll (HOT) lanes if automatic toll 

collection and variable toll prices are implemented to maintain a minimum LOS.  It also 

established the Express Lanes Demonstration Program for 15 projects to toll Interstate 

facilities using automatic toll collection to manage congestion, reduce emissions, or 

provide highway expansion for congestion reduction.  Additionally, the legislation 

established the Interstate System Construction Toll Pilot Program (ISCTPP), which allows 

3 states or compacts of states to toll an Interstate to finance a construction project if 

they can demonstrate that tolls are the most economical way to advance the project. 

The final report of the National Surface Transportation Policy and Revenue Study 

Commission was released on January 15, 2008.53  Like TRB Special Report 285, the 

Commission’s report concluded that while in the short term, the fuel tax should 

continue to provide the primary source of transportation user revenue, in the long term, 

user fees that more directly reflect costs should be implemented.  The committee 

recommended that over the next five years, the federal fuel tax should be raised at a 

rate of five to eight cents per gallon per year, after which it should be indexed to 

inflation.  In addition, the commission recommended that the legislature remove 

barriers to tolling and pricing that currently exist and provide individual states with the 
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flexibility to toll as needed, including to fund new capacity on the Interstate Highway 

System and to price new and existing Interstates in large urban areas to manage system 

performance.  In order to ease operations costs and interoperability on these tolled 

facilities, the commission also recommended development of a national interoperable 

electronic toll collection (ETC) system.  The committee also encouraged the use of 

Public-Private Partnerships (PPPs) to fund new capacity and managed lanes and 

enactment of enabling legislation in states where none is currently in effect. 

  The commission also provided a number of freight-specific recommendations.54  

In addition to increases in the fuel tax, the commission recommended that existing 

Federal truck taxes should be adjusted proportionately to “maintain the current 

allocation of highway cost responsibility.”  The commission suggested that specific funds 

should be allocated to a Freight Transportation Program, including diesel tax revenues, 

tax credits, a portion of customs duty revenues, toll revenues, revenue from private 

operators of PPPs, as well as introduction of a Federal Freight Fee.  This fee should be 

structured in a way that the “ultimate consumer,” not the carrier, bares the cost.  The 

committee additionally recommends changing truck hours of service to allow drivers to 

take short rest periods during peak hours to take advantage of congestion pricing and 

prohibiting restrictions that discourage use of a facility by certain vehicle classes.   

The study identified a vehicle-mile tax as the preferred option for future user fee 

collection.55  The commission determined that rates should be adjusted to reflect 

congestion levels, to encourage the use of fuel-efficient vehicles, and to “charge trucks 
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based on factors contributing to infrastructure wear and tear.”  Finally, the commission 

recommended that the next surface transportation legislation should require “a major 

national study to develop the specific mechanisms and strategies for transitioning to an 

alternative to the fuel tax.” 

Recent legislation in Europe also indicates a shift toward cost-based pricing for 

commercial vehicles that considers congestion, infrastructure, and environmental costs.  

In 1999, Article 7 of Directive 1999/62/EC established rules for tolls and user charges for 

heavy goods vehicles.56  This directive limited EU member states to establishing toll 

rates that could only be applied on motorways (or the nation’s highest class of roads), 

bridges, and tunnels.  The directive required that user charges “shall be in proportion to 

the duration of the use made of the infrastructure” and that the “weighted average tolls 

shall be related to the costs of constructing, operating and developing the infrastructure 

network concerned.”  The directive also allowed member states to vary rates based on 

emissions class or time-of-day within defined constraints.  The directive only allowed for 

user charges to be applied to trucks weighing more than 12000 kg (26455 lb).  In 2006, 

Directive 2006/38/EC amended the 1999 directive to allow applications of pricing to all 

trucks over 3500 kg (7716 lb) for broader policy goals.57  The directive amended the 

definition of the primary goal of road user charges to the following: 

 

Tolls shall be based on the principle of the recovery of infrastructure 

costs only.  Specifically the weighted average tolls shall be related to 
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the construction costs and the costs of operating, maintaining and 

developing the infrastructure network concerned. The weighted 

average tolls may also include a return on capital or profit margin 

based on market conditions. 

 

The directive also allows for rate variations for the purposes of “combating 

environmental damage, tackling congestion, minimising infrastructure damage, 

optimising the use of the infrastructure concerned or promoting road safety” given that 

the rate remains non-discriminatory based on the truck’s nation or place of 

origin/destination and “is not designed to generate additional tolling revenue.” If a rate 

structure does produce excess revenues, it must be amended within two fiscal years.  

Specifically, rates may be varied according to EU-defined (Euro) emissions class, time-of-

day, type of day, or season with some constraints on maximum rate increases.  The 

directive requires that all member states vary rates according to emissions class by 

2010, except in cases where implementing such a rate would be technologically 

infeasible, would encourage polluting vehicles to divert to alternative routes and 

negatively impact health and safety, or would “undermine the coherence of the tolling 

systems in its territory.” 
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3.2 ROAD PRICING MOTIVATIONS 

Several types of road pricing have already been implemented in the U.S. and 

abroad to achieve a variety of system goals.  In the US, mechanisms are limited to 

variable tolls and managed lanes.   Systems employed abroad include area and cordon-

based congestion tolls, weight-distance truck tolls, and low emissions zones.  Due to the 

political sensitivity of tolling, little research has been published to indicate what factors 

are considered in establishing rates under most of these tolling structures.  However, in 

their Review and Synthesis of Road-Use Metering and Charging Systems, Sorenson and 

Taylor identify and define nine policy goals that can be achieved through road pricing. 58  

These goals include raising or preserving revenue streams, charging users for their 

“marginal cost of social use,” charging external users (e.g. out-of-state or international 

users), streamlining the toll collection process, reducing road wear, improving safety, 

optimizing road capacity, reducing demand for scarce resources, and improving the 

environment.  In their analysis, the authors identify which of these goals current 

applications of each type of pricing seek to realize; their results are provided in Table 11.    
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Table 11.  Road Pricing Policy Goals 
(Source:  Sorenson 2005) 

Facility 
Congestion 

Tolls

Cordon 
Congestion 

Tolls

Weight-
Distance 

Truck Tolls

Raise or Preserve Revenue X X
Charge Users for Marginal 
Cost of Social Use X

Charge External Users X
Streamline Toll  Collection 
Process X X X

Reduce Road Wear X

Improve Safety X X

Optimize Road Capacity X X
Reduce Demand for Scarce 
Resources X X X
Improve the Environment X X

System Goals

Type of Road Pricing

 

Holguin-Veras at al. established a series of regional and national-level models to 

examine what motivating factors affect toll rates in the U.S.59  Although the results of 

these models were less specific than those in Sorenson and Taylor’s policy study, the 

general conclusion of the authors was that nation-wide, toll facilities follow similar 

patterns and that in most cases, toll rates appear to be established to generate revenue 

or to both generate revenue and manage demand. 

In addition to examining the policy goals of different types of pricing projects, 

Sorenson and Taylor also identified the vehicle, time, and location variables considered 

in rate establishment.60  Vehicle variables identified include registered weight class, 

actual GVW, number-of-axles, and vehicle emissions class.  Time variables include 
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congestion and enforcement levels, and location variables include a geographic area, 

road class, or specific road link.   

Conway and Walton performed a similar review of road pricing applications with 

a specific focus on trucks.61  Table 12 identifies the policy goals for a number of 

worldwide road pricing systems.  Table 13 identifies the variables considered in the toll 

rate structures of these systems.  The next section provides detailed information about 

the variables considered, technologies applied, and goals achieved through these 

specific road pricing applications. 

Table 12.  Truck-Related Road Pricing Policy Goals 
(Source:  Conway and Walton 2008) 

Collect 
Revenue 
for Profit

Improve 
Access

Reduce 
Congestion

Improve 
Multi-
Modal 

Efficiency

Charge 
External 

Users

Recover 
Truck 
Costs

Improve 
Environment

London Congestion Charge X X X X X

London LEZ X

Mi lan LEZ X X X

Singapore ERP X X X X

Bergen Cordon Tol l X X X X X

Os lo Cordon Tol l X X X X X

Stockholm Cordon Charge X X X X X

Austrian Go Box X X X

Czech Truck Tol l X X X X

German Tol l  Col lect X X X X

Swiss  Heavy Vehicle Fee X X X X

Melbourne Ci tyLink X X X X

Santiago Open Tol l  Roads X X X X X

Toronto 407 X X X X X

Area-Based Charges

Cordon-Based Charges

Distance-Based Tolls

Open Toll Roads
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Table 13.  Truck-Related Road Pricing Variables 
(Source:  Conway and Walton 2008) 

Gross 
Vehicle 
Weight

Number 
of Axles

Vehicle 
Type

Distance
Time 

of Day
Emissions 

Class

Area-Based Charges

London Congestion Charge X

London Low Emissions Zone Min X

Milan Low Emissions Zone X X

Singapore Electronic Road Pricing X X

Cordon-Based Charges

Bergen Cordon Toll X X

Oslo Cordon Toll X X

Stockholm Cordon Charge X

Distance-Based Tolls

Austrian Go Box Min X X

Czech Truck Toll Min X X X

German Toll  Collect Min X X X

Swiss Heavy Vehicle Fee X X X

Open Toll Roads

Melbourne CityLink X X X

Santiago Open Toll  Roads X X X

Toronto 407 X X X  

3.3 ROAD PRICING TECHNOLOGIES AND APPLICATIONS 

While in the past, the high cost of system operation has prevented 

implementation of road pricing projects, the recent emergence of a variety of new 

technologies that allow for relatively inexpensive system establishment and operation 

has spurred a vast number of pricing projects.  To date, the primary source of federal 

funding for these pricing studies and applications has been the VPPP program 

established under TEA-21 and continued under SAFETEA-LU.  Funds have been allocated 

for nine different types of projects62; these include conversion of HOV lanes to HOT 
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lanes, introduction of cordon tolls, introduction of fast and intertwined regular (FAIR) 

lanes which offer parallel tolled and “free lanes” in which those traveling on the more 

congested lanes receive credits63, pricing on new lanes, pricing on toll facilities, usage-

based vehicle charges, parking pricing, regional pricing, and truck-only toll facilities.   

The participating states and total number of funded projects of each type is provided in 

Table 14.   

Table 14.  VPPP Projects Funded to Date by State and Project Type 
(Source: VPPP Quarterly Report 2007) 

State
HOV 

to 
HOT

Cordon 
Tolls

Fair 
Lanes

Priced 
New 
Lanes

Pricing 
on Toll 

Facilities

Usage-
based 

vehicle 
charges

"Cash-
Out" 

Strategies
/ Parking 

Pricing

Regional 
Pricing

Truck-
Only Toll 
Facilities

Total

CA 3 1 1 5 1 1 2 1 1 16

FL 1 1 1 5 1 1 10

MN 1 2 1 2 6

TX 1 6 1 2 10

WA 1 2 2 1 6

GA 2 1 1 1 5

MD 2 1 3

NC 1 1

OR 1 1 2

IL 1 1 2

NJ 4 4

PA 1 1

VA 2 2

Total 7 2 1 18 14 8 5 11 2 68  

In addition to VPPP funding, U.S. DOT has established the Urban Partners 

Program, which provides federal discretionary funding to partner cities to implement 

pricing for congestion relief.64  In August 2007, five partner cities and projects were 

chosen.  Chosen cities and projects include a priced, managed multi-lane network in 
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Miami, a priced, managed multi-lane network with peak-period transit discounts in 

Minneapolis/St. Paul, full cordon pricing in New York City, partial cordon pricing and 

parking pricing in San Francisco, and full-facility congestion pricing in Seattle.   

In the U.S., many of the VPPP funded projects as well as state and locally funded 

projects have reached full implementation.  Fully implemented projects abroad, 

particularly in Europe, have also served as an example for the projects currently under 

study in the U.S.  The following are descriptions of the technologies and specific pricing 

applications that have achieved success worldwide. 

3.3.1 Electronic Toll Collection 

Since the 1990s, electronic toll collection (ETC) has become increasingly popular 

on American and international toll roads.  Transponder based ETC allows vehicles 

equipped with a dedicated short range communication (DSRC) device to pass through a 

toll booth or under an overhead gantry without stopping to pay a toll.  Roadside or 

overhead readers communicate with the onboard transponder to identify the vehicle 

and charge a pre-paid or credit card linked account for the vehicle’s use of the tolled 

facility.   Operators in 22 states currently use transponder-based ETC systems; in 16 of 

these, as well as in Puerto Rico, these tolled facilities contain part of the Interstate 

Highway System.65  The largest of these systems is the EZ-Pass system, currently 

operational by 23 agencies in 12 eastern states.66  This system allows users registered in 

any state to travel throughout the network using a single transponder.  On the most 

recent facility to join the EZ-Pass network, the Indiana Toll Road, ETC was introduced as 
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part of the lease agreement signed with the private operator, the Indiana Toll Road 

Concession Company.67  Systems in the other 11 states using ETC are operated strictly 

within state borders.  At the state level, Texas68, California, and Florida69 (although not 

all of the state’s systems are included) use tags that can be used on facilities operated 

by multiple authorities.  Most ETC facilities in the US still require vehicles to slow down, 

although not stop, when passing through a tolling point.  However several states, 

including Pennsylvania, Delaware, Illinois, and Florida have converted facilities for high-

speed electronic toll-collection (ETX), which allow vehicles to pass under gantries at 

highway speeds. 

“Open Road” tolling systems not only take advantage of ETX systems, but also 

use cameras and optical character recognition (OCR) software for enforcement and 

tolling of vehicles not equipped with a transponder.  Frequent facility users’ vehicles are 

generally equipped with transponders, while infrequent users are identified and tolled 

using license-plate recognition.  In order to cover additional operations costs, vehicles 

charged through photographic identification are usually charged at a higher rate than 

those using transponders.  “Open Road” tolling was first introduced by a private 

operator on Canada’s Toronto 40770, although all trucks on that facility are required to 

be equipped with a transponder.71  The concept has since been applied on the 

Melbourne CityLink72 and Sydney Westlink M773 in Australia and on the Central Texas 

Turnpike system.74   
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3.3.2 Facility Congestion Tolls 

Variable Pricing 

Variable pricing has been introduced on a number of tolled facilities in the U.S. 

to manage congestion during peak periods and encourage efficient facility use.  Variable 

pricing systems introduce higher tolls during peak periods to encourage users to move 

time-flexible trips to less expensive off peak hours.  The following are facilities on which 

variable tolls have been employed: 

New Jersey Turnpike 

Variable pricing was implemented on the 148-mile New Jersey Turnpike in 

2000.75  At implementation, peak hour tolls were collected at a rate 12 percent higher 

than off-peak tolls.  Although variable pricing did not curb overall traffic growth, it did 

shift growth rates so that traffic rate increases during off-peak hours are higher than 

those during peak hours.  Additional phased increases in peak hour toll rates are also 

planned. 

Port Authority of NY/NJ 

The Port Authority of New York/New Jersey introduced variable tolling in March 

2001 on six of its bridges and tunnels.76  The variable charging scheme that they 

employed charged a high cash toll and provided discounts for passenger vehicles 

equipped with EZ-pass at all times; during off-peak hours, passenger EZ-pass users could 

use the road at an even greater discount, and trucks using EZ-Pass could also receive a 
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discount.  The purpose of this scheme was to increase use of EZ-pass and to reduce 

traffic during peak hours; as a result of application, EZ-pass use for cars increased 8.7 

percent, for trucks increased 7.7 percent, and traffic during the morning peak decreased 

7 percent.77  Ozbay, Yanmaz-Tuzel, and Holguin-Veras examined the truck specific 

impacts of introducing these tolls.78  Although analysis of the general traffic impacts had 

found a 7 percent decrease in traffic during peak periods, the study found that 

increased toll rates had no significant impact on truck travel hours and that inflexible 

delivery times prevented trucks from changing their behavior. 

San Joaquin Hills Toll Road, Orange County 

In California, variable pricing was implemented on the 15-mile San Joaquin Toll 

Road connecting Interstate 5 near San Juan Capistrano to Interstate 405 in Newport 

Beach in February 2002.79  A 25 cent “premium” was introduced for use of the toll 

facility during peak hours; in July 2005, this “premium” was increased to 50 cents, and in 

July 2006, it was again increased to 75 cents.  The goal of this pricing project is to control 

congestion while also ensuring adequate revenue collection.   

Bridges, Lee County 

In Florida, Lee County implemented variable tolling in 1998 on two bridges 

connecting Fort Meyers and Cape Coral.80  The tolling scheme charged higher rates 

during peak hours than during off-peak; in the 30 minutes immediately preceding and 

the 2 hours following the peak period, a 50 percent discount was offered.  Surveys 
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found that more than 71 percent of motorists shifted their travel times at least once per 

week to take advantage of lower tolls. 

Other Facilities 

In California, toll rates at some plazas on the Toll Roads increase for all car and 

truck users paying by cash or electronic toll collection (ETC) during peak periods.81  In 

Delaware, toll rates for all users on SR 1, a road that links the state’s densely populated 

north to its southern beaches, increase on weekends.82  On the Chicago Skyway, Illinois 

Tollway, and New York Thruway, variable tolls specifically target commercial truck users.  

On the Chicago Skyway, vehicles with 3 or more axles pay discounted rates between 8 

PM and 4 AM.83  The Illinois Tollway also discounts toll rates overnight for all trucks, and 

charges a discounted rate for trucks using ETC during weekend and non-peak weekday 

time periods.84  The New York Thruway uses “incentive pricing” for trucks during the 

morning peak period at the Tappan Zee Bridge and during the evening peak at the 

Spring Valley Toll Barrier.85  A two-hour peak period is defined, during which the highest 

toll is paid.  In the 45 minutes before the peak, the toll gradually increases every 15 

minutes, and in the 45 minutes after, the toll gradually decreases every 15 minutes.  

Some discounts on these rates are given to specific ETC users. 

HOT Lanes and Express Lanes 

Express lanes and high-occupancy toll (HOT) lanes are tolled facilities operated 

parallel to or in the median of congested “free” facilities.  These lanes offer drivers the 



51 

 

opportunity to pay a toll using ETC to use a less congested, more reliable facility.  HOT 

lanes generally allow certain high-occupancy vehicle (HOV) classes to use the tolled 

facility without paying some or all of the toll rate.  HOT and Express lane applications in 

the US include the SR 91 Express Lanes in Orange County, HOT Lanes on Interstate 15 in 

San Diego, HOT Lanes in Minneapolis, HOT Lanes in Denver, HOT Lanes on the Katy 

Freeway in Houston, HOT Lanes on SR71 in Seattle, and Express Lanes on I-95 through 

Miami.  Two major projects in the Washington, D.C. area have also reached advanced 

stages of development.86 

Express Lanes, State Route 91, Orange County 

The SR 91 Express Lanes, four 10-mile long lanes located in the median of the 

Riverside/SR 91 freeway in Orange County, California were opened in December 1995.87  

Toll rates charged on these express lanes vary by day and time “to reflect the levels of 

congestion avoided on the adjacent free lanes” from $1.20 during off peak hours to $10 

during the highest “super-peak” hours on Fridays.88  Since the toll structure is relatively 

complicated, variable message signs on the adjacent freeway indicate the current toll 

rate for the use of the facility.  Vehicles must be equipped with a FasTrak™ transponder 

linked to a credit card account.  Some discounts are offered during certain periods to 

vehicles with 3 or more occupants, zero-emissions, and handicapped license plates.  By 

2005, these Express Lanes were carrying 40 percent of freeway traffic on only one-third 
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of freeway capacity, achieving a 33 percent increase in lane throughput compared to 

“free” lanes. 

Although trucks are not currently allowed to use these lanes, Kawamura 

performed a study examining the perceived benefits for trucks which could be achieved 

through use of the facility.89  The study found that, with appropriate toll rates, the social 

costs of truck use of the facility, including pavement damage, air pollution, noise, and 

accidents, could be recovered.  System-wide, truck use of the facility could achieve time 

and capacity benefits, and benefits to for-hire truck drivers would be particularly 

evident. 

I-15 HOT Lanes, San Diego 

Eight-mile long HOT lanes were introduced in the median of I-15 in San Diego in 

July 1997 (VPPP SOURCE).  In these lanes, HOVs with two or more occupants can 

operate for “free” while enrolled single occupancy vehicles pay a toll for use of the 

facility.  While initially, users were simply provided with a window permit, drivers on 

these barrier-separated lanes currently pay a toll using a FasTrak™ transponder; 

overhead gantries interrogate the tag as vehicles pass for charging.90  While maximum 

toll rates are established for different day and time periods, a dynamic tolling system 

uses loop detectors to monitor real-time traffic conditions and adjust toll rates within 

those limits every six minutes to maintain a level of service (LOS) of C on the lanes.91  

Rates vary from as little as 50 cents during normal off-peak periods to as much as $8 
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during the most congested periods.  Current toll rates are displayed on variable message 

signs for entering vehicles.  Vehicle occupancies are enforced by police who visually 

inspect vehicles to determine vehicle occupancy and system enrollment.  Annually, I-15 

generates close to $2 million in revenue; about $1 million of this covers operational 

costs, while the remainder is used to subsidize express bus service along corridor.92  

Surveys of about 800 corridor users performed by the San Diego Association of 

Governments (SANDAG) has found broad support from users: 90 percent consider the 

HOT lanes to be valuable as a time-saving travel alternative, and despite potentially high 

toll rates, 75 percent consider the tolling structure to be fair. 

I-394 HOT Lanes, Minneapolis/St.Paul 

In May 2005, the state of Minnesota introduced an HOT lane on I-394 in the twin 

cities.93  This facility introduced several innovations to the HOT concept.  Because of 

high costs, as well as impracticality in Minnesota’s winter climate, the HOT lane is not 

barrier separated from the adjacent “free” lanes.  While users in California pay one fee 

to use the length of the facility, the Minnesota system uses dynamic segmented tolling; 

users pay a different rate, which may change as often as every 3 minutes, for each 

segment of the road that they drive.  Minnesota also uses innovative enforcement 

technologies; police, who visually inspect occupancy as in California, also have vehicles 

equipped with a transponder that detects whether a vehicle passing under the toll 
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gantry sends a successful toll payment signal.  Additionally, the Minnesota project was 

developed as a PPP, with an operational contract renewable every year for five years. 

I-25 HOT Lanes, Denver 

The I-25 Express Toll Lanes in Denver were opened on June 2, 2006.94  These two 

6.6-mile reversible, barrier separated lanes are located in the median of I-125.  Like the 

I-15 HOT lanes in California, HOV vehicles operate on this facility without paying a toll, 

while single-occupant passenger vehicles, who constitute about a third of users, can 

utilize the lanes for a fee paid using ETC.  Buses also operate on this facility without toll 

payment.  Toll rates vary across times and days, from 50 cents to $3.25.  Introduction of 

the lanes has improved traffic operations for both buses and passenger traffic by 

achieving better traffic distribution across existing capacity and encouraging carpooling. 

I-10/US 290 TX 

The QuickRide program, established in Houston in January 1998, allows 2-

occupant vehicles (HOV2) to utilize HOV facilities during the morning and evening peak 

periods when the lanes are restricted for 3 or more-occupant vehicles (HOV3+).  Users 

enroll in the Quickride program to take advantage of HOV facilities on the Northwest 

and Katy Freeways.  A $2 fee per use is collected automatically using a Toll Tag.95  The 

program has encouraged formerly single-occupant travelers to carpool, and revenues 

from the program are used to fund program operation.96 
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SR 167 HOT Lanes, Seattle 

Seattle’s SR 167 Express lanes opened in May 2008.97  Nine-mile lanes in each 

direction are separated from parallel “free lanes” by striping, not barriers.  While 2+ 

occupancy vehicles can use the lanes without paying a toll, single-occupancy vehicles 

must be equipped with a transponder.  Toll rates on individual segments are adjusted 

dynamically using real-time traffic information.  If the average speed on the facility 

drops below 45 miles per hour, the toll is automatically increased. 

I-95 Express Lanes, Miami 

The I-95 Express Lanes in Miami were opened in December 2008.98  These 

limited access lanes are also tolled dynamically.  Toll rates range from as little as $.25 to 

as much as $6.20.  Rates are adjusted to maintain a speed of 45 to 50 mph.  Users are 

required to pay a toll using a “Sunpass” transponder.  Although not considered HOT 

lanes, these lanes do allow registered vanpools, carpools of 3+, hybrids, motorcycles, 

buses, and emergency vehicles to use the lane for no charge. 

I-95/I-395 and I-495 HOT Lanes, Northern Virginia 

Two major HOT projects in the Northern Virginia portion of the Washington, D.C. 

metropolitan area have reached advanced stages of development.99  The I-495 (Capital 

Beltway) project includes plans for introduction of 2 new lanes in each direction 

connecting from the Springfield Interchange to the Dulles Toll Road.  These HOT 

facilities will provide seamless connection to area’s existing HOV network.  Once 
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completed, these lanes are expected to offer improved reliability for both passenger 

and transit vehicles.  The lanes will be operated under a PPP; the final partnership 

agreement between the Virginia Department of Transportation (VDOT) and Fluor-

Transurban  to finance, construct, design, operate, and maintain the facility was 

completed in December 2007.  Construction is expected to begin in Spring 2008 and be 

completed by 2013.  

The I-95/395 project, which includes a planned expansion of existing reversible 

HOV lanes from two to three lanes and extension of the road 28 miles south to 

Massaponax, is currently under environmental review.100  An interim PPP agreement 

between VDOT and Fluor-Transurban has been completed.  Pending necessary 

approvals, construction should begin by the end of 2009.  

Additional Studies 

Many major US metropolitan areas are currently examining the feasibility of HOT 

and Express Lane projects.101  HOT Lane projects currently under study include I-680 

carpool lanes in Alameda County, CA,  extension of the I-15 lanes in San Diego, new 

lanes on I-140 in Raleigh, I-30 and LBJ Freeway lanes in Dallas, I-35 and I-10 lanes in San 

Antonio, and Loop 1 Lanes in Austin.  Express lane projects include lanes on the C-740 in 

Denver, the I-95/JFK Expressway in Baltimore, and Highway 217 in Portland. 
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TOT Lanes and Truck-Only Facilities 

Very few of the managed lane projects introduced on U.S. highways have 

achieved direct benefits for commercial trucks.  None of the HOT or Express lanes 

currently in operation allow heavy trucks to use the facilities.  However, recent research 

has suggested that considerable benefits in productivity, efficiency, and safety could be 

achieved through introduction of truck-only toll facilities, including truck-only toll (TOT) 

lanes and truck-only tollways.  A study for the Georgia State Road and Tollway Authority 

(SRTA) examined the feasibility of applying a dynamic TOT network in the Atlanta 

region.102  This study used regional travel demand models to examine the potential 

benefits of and provide a “proof of concept” for TOT lanes.  Benefits identified in the 

study included increasing transportation options for freight carriers, increasing network-

wide freight mobility and productivity, reducing freight congestion, and improving both 

safety and congestion over the entire network by changing the vehicle mix on non-tolled 

lanes.  The study concluded that both truck travel times and general network congestion 

could be improved through implementation of a TOT network, and that adequate 

revenues to maintain and operate the system could be achieved.103 

A policy study performed by the Reason Foundation and researchers at 

Rensselaer Polytechnic Institute examined both the feasibility and potential benefits of 

truck-only tollways.104  These facilities, financed through user fees, could allow trucks to 

operate separately from passenger traffic, reducing the risk of accidents in mixed traffic.  

These truck-only roads could be designed and built to handle heavier and longer-
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combination vehicles (LCVs) than are currently allowed to operate on most of the U.S. 

highway network.  The productivity gains for trucking companies that could be achieved 

by allowing operation of these heavier vehicles would likely outpace the user fees 

required to build, maintain, and operate such a network; as a result, trucks would likely 

take advantage of the availability of such facilities.   

3.3.3 Cordon and Area Congestion Pricing 

Cordon and area congestion pricing systems require users to pay a toll to enter a 

defined geographic area.  While no cordon tolls have yet been implemented in the U.S., 

major projects have been successfully demonstrated and implemented in London, 

Stockholm, Singapore, and Rome.  As previously discussed, the feasibility of 

implementing these charges in San Francisco is currently being examined.   

London Congestion Charge 

The congestion charging scheme in London is area based; vehicles that enter the 

zone during the 7:00 AM to 6:00 PM peak period pay a daily fixed rate, currently £8.105  

The system uses a series of cameras located at the area’s boundaries, as well as within 

the zone, to enforce payment.  The cameras capture license plate images and transmit 

them to a central computer where the images are processed and a list of vehicles 

required to pay the toll is generated.  Although cameras may only successfully identify 

vehicles about 80 percent of the time, most vehicles pass more than one camera while 

traveling in the zone; accuracy increases to 96 percent with 2 camera passes.  Users 
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have 24 hours to pay the toll, either online, by phone or text message, or in person.  If 

they do not pay in the specified time, a £100 penalty is assessed.  Since its inception, the 

London congestion charging scheme has reduced traffic in the zone by 30 percent.  

About £100 million of net revenue, which is reinvested in the city’s transportation 

system, has been collected.106  Due to the extremely high costs of system operation, 

Transport for London (TfL) is currently testing several new technology systems that may 

change system operations and the structure of the toll rate.107  While GPS technologies 

have been essentially ruled out, a transponder-based “tag and beacon” system is still 

under consideration.108  TfL’s contract with Capita, the system operator, expires in 2010; 

it is likely that technology changes would be introduced during this period. 

Stockholm Congestion Charge 

From January 1 to July 31, 2006, Stockholm tested a cordon-based congestion 

charge.109  The system utilized a combination of dedicated short range communications 

(DSRC) transponders and camera/OCR technologies.  Vehicles were charged at entry 

points to the zone during the peak period, which during the testing phase encompassed 

11.4 square miles in central Stockholm.  Those equipped with transponders were 

charged automatically; this included 60 percent of payments.  Non-equipped vehicles 

were required to pay the toll online or in stores within 14 days.  Toll rates varied by time 

of day from 10 to 20 SEK, with a maximum daily charge of about 60 SEK.  The testing 

was considered extremely successful, as congestion reduction exceeded expectations:  
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while a 10 to 15 percent decrease was expected, a 22 percent reduction was achieved 

for the 6:30 AM to 6 PM peak period.  In September 2006, a referendum was held to 

determine the fate of the scheme; despite initial public outcry before the testing phase, 

this post-testing referendum passed in the city of Stockholm, with 53 percent of 

residents supportive.  Referendums were also held in 15 of the 26 municipalities in 

Stockholm’s “commuter belt”; they were not as successful in these surrounding regions, 

where 52 percent of voters voted against the referendum.  Since the toll is charged to 

vehicles entering the city, and not to those traveling within it, it is not surprising that 

voters residing within the zone support the charge at higher levels than those whose 

trips originate outside the city.  Despite this lack of support in outlying areas and a 

change of government that was expected to delay implementation, the Stockholm 

congestion charge was permanently implemented on August 1, 2007.110 

Singapore Congestion Charge 

Singapore also operates a congestion charging system.111  Vehicles are equipped 

with DSRC transponders with built-in, pre-paid smart cards.  These cards can be 

purchased at a variety of locations, including banks and gas stations.  As a vehicle passes 

a charging gantry, located at 28 entry points, the toll is deducted from the smart card; 

toll rates vary according to location and time of day.112  Toll rates are reviewed every 3 

months and adjusted to maintain the desired speeds of 20 to 30 kilometers per hour in 

the zone.  Camera/OCR technologies are used to capture license plates and identify toll 
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violators.  Introduction of this Electronic Road Pricing (ERP) system, which replaced a 

previous manual payment system, immediately reduced traffic by 13 percent and 

increased average vehicle speeds by 22 percent.  In addition to overall traffic reduction, 

the scheme also improved the distribution of traffic across peak and off-peak periods. 

Rome Limited Access Zone 

In Rome, an annual permit is required to enter a limited access zone (historical 

area) on weekdays between 6:30 AM and 6:00 PM and on Saturday between 2:00 and 

6:00 PM.113  While local residents are exempt from the charge, other vehicles wishing to 

enter the zone must purchase the permit.  Access is controlled with an automated 

system.  Permitted vehicles must be equipped with an on-board unit (OBU) with an 

integrated SMART card.  DSRC technologies at zone entry points interrogate the OBU to 

ensure permitting.  Violators are identified using camera/OCR technologies for license 

plate recognition.  Introduction of this automated access-control scheme has achieved a 

10 percent reduction in daily traffic. 

Studies for US Cordon Charges 

The city of San Francisco is currently performing a Mobility, Access, and Pricing 

Study to examine the feasibility of a partial cordon charge in the region.114  The study is 

examining a variety of technologies and potential rate structures, and estimating the 

associated potential traffic improvements and revenues.  Additionally, researchers are 

seeking public input. 
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The city of New York proposed a 3-year pilot study to examine congestion pricing 

to reduce traffic in the Manhattan CBD.115  The proposed rate structure included an $8 

fee per day to travel into or within the zone for passenger vehicles and a $21 per day 

charge for trucks.  Discounts would be offered for travel strictly within the zone:  cars 

traveling only within the zone would pay $4 per day and trucks would pay $5.50.  The 

proposed technologies for fee collection were EZ-pass readers that can identify 

transponder-equipped vehicles and camera/OCR technologies for license plate 

recognition to identify non-transponder equipped vehicles.  Users could either pay 

directly through their EZ-pass account, through a pre-paid account linked to their license 

plate, or pay within 48 hours of zone entry by internet, phone, text, or cash transaction 

at retail partners.  City models suggested that such a system could achieve reductions in 

daily vehicle volumes around 7 percent while increasing transit use by 1 percent.  

However, the program was rejected by the New York State legislature in April 2008, so 

the future of the plan remains uncertain.116  

3.3.4 Distance-Based Charges 

As discussed previously, the National Surface Transportation Policy and Revenue 

Study Commission concluded that the best available option for future highway user 

charging is introduction of a distance-based VMT that that reflects system use for each 

vehicle.117  Currently, distance-based charging on non-toll-road facilities is limited to 

heavy vehicle applications.  Only a few U.S. states currently charge a weight-distance tax 

for heavy vehicle operations, and these charges require user self-reporting of distances 
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traveled.  Germany, Austria, Switzerland, and the Czech Republic have all introduced 

technology systems for collection of distance information and charging of a distance-

based heavy vehicle tax.  With several variables considered in toll rate determination, 

these systems offer a step toward development of distance-based fees that better 

reflect user costs. 

Swiss Heavy Vehicle Fee 

In January 2001, the Swiss Customs Authority (SCA) introduced a distance-based 

heavy vehicle fee charged per mile of travel for all vehicles over 3.5 tons operating on 

the Swiss public road network.118  Both registered weight and emissions class are 

considered in determining the rate per mile for each vehicle.119  Domestic vehicles 

operating on the network are required to be equipped with an OBU that includes a 

SMART card reader and DSRC and GPS communications technologies, and is connected 

to a digital tachograph, which records vehicle distances traveled.120  At border crossings, 

DSRC communications are used to activate and deactivate the OBU’s distance counter.  

The driver must submit the distance data collected on the SMART card from the digital 

tachograph and GPS to authorities for fee payment.  While the tachograph data is legally 

recognized as the distance traveled, the GPS data is used to check for inconsistencies.  

International vehicles are not required to use the OBU, but are required to submit 

distance data manually and pay the heavy vehicle fee.  In introducing this system, the 

Swiss government hoped to not only reduce truck freight traffic and raise revenues, but 
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also to encourage the use of low-emissions vehicles and shift some traffic to alternative 

modes.121  In the first year following introduction of the system, truck freight traffic 

trends reversed, from an annual increase of seven percent to a decrease of five percent. 

Austrian Heavy Vehicle Tax 

In January 2004, Austria introduced a DSRC-based technology system for 

collection of a distance-based heavy vehicle tax on its toll roads.122  Toll rates are based 

on vehicle number-of-axles.  Trucks are equipped with a GO Box that stores information 

on the license plate, vehicle class, and mode of payment for the truck.    Four-hundred 

twenty portable and stationary gantries interrogate the GO Box for tax collection, and 

an additional 120 gantries are used solely for enforcement to ensure truck registration.  

Trucks may pre-pay or pay after network use.  The goals of implementing this system 

were to raise revenue to fund future transportation projects, to reduce empty-trips by 

trucks, and to slow the growth in freight traffic that preceded introduction of the system 

by encouraging use of other modes.   

German Toll Collect 

In Germany, a system combining DSRC and GNSS technologies is also used for 

collection of a distance-based heavy vehicle fee for trucks weighing more than 12 tons 

operating on the Autobahn.123  Enrolled trucks are equipped with an OBU that collects 

distance information using GPS; un-enrolled vehicles are not required to use an OBU, 

but are still required to pay the fee through manual reporting.  Both types of users are 
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required to submit intended routes before travel.  DSRC technologies are used to 

identify vehicles to ensure toll payment and to ensure adherence to the pre-reported 

route.  Toll rates are based on both number-of-axles and emissions class.  Unlike in 

Switzerland, in Germany, the satellite tracking data is actually used directly for fee 

determination.  The primary concern before implementation of this system was the 

accuracy of GPS-based on-board units (OBU) in determining distance traveled; however, 

the system has performed extremely well, with the technologies performing at more 

than 99 percent accuracy consistently.124 

Czech Republic MYTO CZ 

The Czech Republic has also implemented a technology system for collection of a 

distance-based truck fee on a 600 mile (970 km) long network of roads.125  Similar to the 

Austrian system, the Czech Republic system uses overhead gantries to communicate 

with an on-board DSRC transponder for toll collection.  Two different classes of roads 

are tolled: motorways and class 1 roads.  Rates vary by road class, number-of-axles, and 

emissions rating.  Like in Germany, only trucks weighing more than 12 tons are required 

to pay the toll. 

Current Distance-Based User Fee Studies 

The United Kingdom was planning to implement its own distance-based lorry 

charge; however, the government decided to abandon the truck-only charging to 

instead focus on development of a nation-wide tolling scheme for all vehicles.126  In the 
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U.S., the states of Oregon and Washington are both studying mileage based user 

charging concepts for all vehicles.    

The Oregon Road User Fee Task Force (RUFTF) was established in 2001 to 

identify an alternative form of highway user charging that could be applied in the long 

term to provide a stable source of funding and replace the gas tax.127  Researchers 

developed the Oregon Mileage Fee Concept.  Under this concept, users are charged 

varying distance-based fees for travel within different geographic zones.  Under the 

proposed payment system, referred to by the state as Vehicle Miles Traveled Collected 

at Retail (VMTCAR), vehicles are equipped with OBUs that use GPS technologies to 

identify locations in zones and use odometer readings to determine distance traveled.  

When a user arrives at an equipped gas pump, point-of-sale (POS) technologies 

recognize that the vehicle is equipped with the mileage charging technology.  The 

vehicle is then charged a value equal to cost of miles traveled calculated for each zone, 

plus the cost of fuel minus the state fuel tax.  By collecting the fee at gas pumps rather 

than at a centralized location, many of the potential problems of implementing the fee 

are mitigated.  By requiring payment at the gas pump, costs of administration and 

enforcement are minimized.  Since the gas distributor has already paid state tax on the 

fuel being sold, only the difference between the gas tax already paid and the mileage 

fee collected must be paid to (or refunded) by the state.  Instead of each individual user 

having to submit payment, only fuel distributors pay directly to the state.  Additionally, 

since cars are still required to pay the mileage fee in order to receive fuel, they will not 
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be able to evade payment.  Results of a recently completed pilot test demonstrate that 

although some minor technology improvements must be made, application of the 

system to collect a VMT is definitely feasible.  Under the proposed methodology, trucks 

would not be charged using this concept.  Since trucks in Oregon are already charged a 

mileage-based distance tax variable by weight and do not pay a fuel tax on diesel, they 

would not be charged under the Oregon Mileage Concept. 

Washington has begun a similar pilot study of flexible distance-based charging 

for the Puget Sound region.  In the Washington study, users are charged different rates 

per mile depending on location and time.  Vehicles are equipped with “black boxes” 

with a $100 credit pre-installed.128  Satellite monitoring systems deduct road-user fees 

in real-time from the box based on location, time, or real-time traffic conditions.  Drivers 

can see real-time fee rates on the “in-vehicle meter.”   

3.3.5 Emissions Based Charges 

Button and Pearman recognized that focusing solely on congestion reduction as 

a goal of road pricing could lead to increased costs in infrastructure damage and 

pollution.129  Recently, a number of cities in Europe have introduced specific charges to 

discourage high polluting vehicles from traveling into congested urban regions.  The 

EU130, like the US131, limits emissions for a number of specific pollutants that are 

potentially harmful to human health and the environment.  Regulated emissions in 

Europe include carbon monoxide (CO), hydrocarbons, including methane (CH4) and non-

methane categories, nitrogen oxides (NOX), and particulate matter (PM).  EU standards 
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also regulate smoke emissions, which include visible particles larger than invisible PM.  

More recently, carbon dioxide (CO2) has also been classified as a greenhouse gas.  A 

vehicle’s Euro emissions class is generally determined according to its registration date, 

which coincides with implementation of Euro I, II, III, IV, and V standards.  Use of 

alternative fuels or on-board technologies may impact its rating. 

Low Emissions Zones 

Milan 

In Milan, a Low Emissions Zone (LEZ) was implemented in January 2008 to reduce PM in 

the city’s air.132  Entry to the zone for all passenger and commercial vehicles during a 

weekday peak requires purchase of an “EcoPass.”  Prices for the pass, which is displayed 

as a sticker on the truck’s windshield, vary from €2 to €10 per day according to Euro 

emissions class. 

London 

The London LEZ, which was also introduced in an effort to reduce PM emissions, began 

in January 2008.133  Currently, any truck over 3500 kg operating in the zone that does 

not meet Euro III standards for PM must pay a £250 daily penalty; by 2012, penalties will 

be assessed to any vehicle not meeting Euro IV PM standards. 
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Berlin, Cologne, and Hanover 

Although not considered tolls, LEZs have also been introduced in Berlin, Cologne, and 

Hanover.134  Drivers in these cities are required to purchase a sticker that displays their 

vehicle’s emissions class.  Currently, those classified as Euro 0 are banned from entering 

the zones. 

Carbon Charging 

London also proposed a plan to incorporate carbon dioxide (CO2) emissions 

criteria into pricing for it Congestion Charge.135  This plan would have increased the 

congestion charge for any vehicle entering the zone that emitted more than 225 g/km 

(0.8 lbs/mi) of carbon dioxide (CO2) from £8 to £25.  The plan would also have allowed 

some low emissions vehicles to enter the zone for free.  However, after a change of 

mayor and a lawsuit brought forth by a car manufacturer, the plan was dropped. 

Emissions Criteria in Other Road Pricing Schemes 

Although not explicitly introduced to target emissions, a number of the distance-based 

charges discussed above do use vehicle emissions ratings as criteria for determining a 

truck’s per-kilometer toll rate.  Figure 6 shows emissions classifications for each of these 

charges. 
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High Fee Medium Fee Low Fee No Fee No Entry

 

User Charge Dates Effective Euro V Euro IV Euro III Euro II Euro I Euro 0

London Until  01/02/12

After 01/02/12

Milan All

Germany All

German Toll  Collect Until  09/30/09

After 09/30/09

Swiss HVF

Czech Truck Toll

Distance-Based Taxes

Area-Based Low Emissions Zones

Emissions Class

 

Figure 6.  Euro Emissions Criteria for Road Pricing 
 

3.3.6 Truck-Related Road Pricing Impacts 

The effectiveness of using road pricing to influence freight traffic is complicated 

by industry constraints.  Button and Pearman identified several factors that might 

influence the effectiveness of freight road pricing, including the demand elasticity for 

the products being delivered, the impact of transportation costs on total production and 

distribution costs, and the market structure.136  More recently, Vilain and Wolfram137 

and Holguin-Veras et al.138 have identified a number of challenges that may limit the 

effectiveness of road pricing in shifting truck traffic to off-peak periods.  For example, 

Holguin-Veras at al. evaluated the impacts of variable pricing on trucks using Port 

Authority of New York and New Jersey (PANYNJ) facilities.139,140  Their findings suggest 

that while local delivery trucks are unlikely to change their travel times due to delivery 
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time constraints and passing through of toll costs, full truckload traffic traveling through 

the region to more distant destinations is more likely to respond to higher prices.  A 

survey performed in Atlanta by ATRI also found that inflexible delivery times may limit 

truck response to time-of-day pricing.141  Recognizing the ability of carriers to pass 

through costs to receivers and ultimately consumers, Hicks suggested that congestion 

charges should be “levied on businesses that generate freight.”142  Building on the 

PANYNJ results, Holguin-Veras has examined the introduction of tax incentives in 

addition to road pricing to encourage receivers to accept off-peak deliveries (15).   

As is clear from the varied success of a number of road pricing alternatives, it is 

impossible to determine exactly how future pricing initiatives will impact truck traffic or 

the recovery of user fees from trucks.  A few recent studies have examined how changes 

in tolling on individual facilities would impact trucks.  A study performed for the Virginia 

Department of Rail and Public Transportation modeled the impact of tolling at various 

levels on truck diversion from I-81.143  This study concluded that diversions would 

increase approximately linearly with cost of tolls per mile; however impacts varied 

depending on toll rates, length of trip and somewhat on market segment.  A toll rate of 

one to 10 cents per mile diverted little traffic, especially non-local trips.  However, once 

toll rates exceeded 20 cents per mile, a considerable number of trips up to 100 miles in 

length diverted.  While the study found that no specific commodities would be unduly 

impacted by tolls, it did find that some trucks carrying bulk shipments would likely 

divert. 
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Swan and Belzer modeled the impacts of toll increases during the 1990s and 

decreases in 2004 on traffic levels on the Ohio Turnpike.144  During the 1990s, truck toll 

rates were increased considerably on the Turnpike.  Legislators concluded that these 

increases had caused a considerable amount of truck traffic to divert to adjacent “free” 

roads.  As a result, the Turnpike Authority introduced a number of truck friendly 

strategies in 2004 to draw truck traffic back.145  These changes included decreases in toll 

rates averaging 25 percent across all truck classes and as high as 57 percent for the 

heaviest classes, restructuring and simplification of weight classification, expansion of 

an existing VMT-based distance program to allow smaller carriers to pool miles with 

other small carriers to achieve required total VMT for discounts, and turnpike authority 

negotiations with gas station facilities to provide lower rents in exchange for lower fuel 

tax rates.  In their models, Swan and Belzer estimated truck elasticities to changes in toll 

rates146; they concluded that a toll operator operating under a “profit maximizing” 

strategy could lead to increases in diversions as high as four times the rate that Ohio 

realized before subsidizing truck tolls.  However, since their models did not account for 

the other truck-friendly strategies applied at the same time as toll decreases, it is 

unclear what impact these other strategies realized.   

The U.S. DOT study Issues and Options for Increasing the Use of Tolling and 

Pricing to Finance Transportation Improvements identified an additional issue that must 

be considered in implementing pricing for trucks.147  In the past, the trucking industry 

has objected to replacing fuel taxes with more direct forms of user charging because of 
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the difficulty of estimating fees to pass through to the shipper.   In its call for 

establishment of a Freight Fee to finance freight projects, the National Surface 

Transportation Policy and Revenue Study Commission recognized a to need to structure 

the fee in a manner that could be passed on to the ultimate consumer.148  However, 

direct forms of user charging, with the possible exception of congestion charges, are not 

necessarily more difficult to estimate.  If user fees can be established that use clearly 

defined distance and vehicle criteria for rate determination, the cost of transportation 

fees for specific point to point shipments should not be much more difficult than the 

fuel tax to pre-estimate. 

3.4 FUTURE ROAD PRICING ALTERNATIVES 

It is clear from this review that a variety of technologies have already been 

implemented, with varying degrees of success, to allow for better recovery of user costs 

for impacts on congestion.  On dynamically priced facilities, real-time data is employed 

to measure real congestion impacts.  Technologies have also been employed for 

distance-based charging to better estimate system use as a functions of mileage 

traveled.  This ability to measure the exact distance traveled has improved system 

operator ability to match user fees with infrastructure costs.  However, these distance-

based fees rely on registered GVW and number-of-axle information to distinguish 

between trucks.  No studies have examined the potential for collection of real-time 

vehicle configuration and weight information using advanced technologies.  Weigh-in-
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Motion systems, which are already used on highways throughout the world for planning 

and enforcement, could potentially be used in an integrated technology system for real-

time road pricing.
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CHAPTER 4: WEIGH-IN-MOTION SYSTEMS AND TECHNOLOGIES 

Although a number of truck road pricing mechanisms use individual vehicle 

weight or vehicle number-of-axles for rate determination, no system has yet been 

implemented that uses real-time axle weights for real-time tolling.  Axle loads and axle 

configurations provide a much better measure of both pavement and bridge 

infrastructure impacts than the registered GVW and number-of-axle variables 

commonly used for rate determination in existing pricing applications.  Weigh-in-motion 

(WIM) technologies provide a potential means of collecting vehicle axle information 

from vehicles traveling at highway speeds.  Different types of WIM technologies can 

measure both axle loads and the distances between axles for passing vehicles.  As 

technologies continue to improve, it is feasible that a system combining WIM 

technologies and vehicle identification technologies could be applied for direct 

enforcement of a cost-based user fee. 

4.1 WIM TECHNOLOGIES 

The American Society for Testing and Materials  (ASTM) defines WIM as “the 

process of measuring the dynamic tire forces of a moving vehicle and estimating the 

corresponding tire loads of the static vehicle.”149  WIM systems can be used to estimate 

the static loads carried by tires, axles, and axle groups.  WIM data is collected 

throughout the U.S. for a variety of purposes, including overweight vehicle 

enforcement, transportation and enforcement planning, and highway cost allocation.  
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The type of WIM system used, and its required level of accuracy, varies according to 

specific application.  ASTM has developed standards for four different classes of WIM 

systems.150  While Type I and Type II systems, which exhibit axle load accuracies of ± 20 

to 30 percent at a 95 percent confidence level for vehicles traveling at highway speeds, 

can be used for transportation planning purposes, more accurate systems must be used 

for weight enforcement.  Type III systems, which exhibit accuracies of ± 15 percent at a 

95 percent confidence level for vehicles traveling at speeds up to 50 mph, are used for 

weight pre-screening.  Type IV systems, which have been conceptually designed, but not 

yet approved for use in the U.S. for direct weight enforcement, exhibit accuracies of ± 

about 4.2 percent at a 95 percent confidence level for vehicles traveling below 10 mph.   

Two major types of WIM error can be identified; these include random error and 

systematic error.151  Random error is defined as the “statistical fluctuation of 

measurement” due to the “inability of the device to determine the truth precisely.”  

Systematic errors can result from environmental effects, such as pavement roughness, 

or from improper calibration.  A WIM system experiencing systematic error will 

consistently overestimate or underestimate loads.  Both of these errors represent the 

amount of differentiation from a measured static load value.  However, as a truck 

moves over a pavement, the dynamic load actually fluctuates due to a number of road, 

vehicle, and load characteristics.152  As a result, the value measured is not fixed, but 

rather represents a sample from a wave form that fluctuates about the static load.  For 
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the purpose of weight classification and comparison, it is necessary to use the sampled 

dynamic load to estimate a static load. 

In the U.S., three types of WIM technologies are widely applied:  bending beam 

plates, load cells, and piezoelectric sensors.153  Although costs vary heavily from site to 

site, Table 15 provides estimated construction and maintenance costs for the three 

commonly used WIM system.154  These values were estimated in 2000, and provide only 

a rough estimate of WIM system costs.  According to one technology provider, the 

typical life of a traditional WIM system is about 15 years, a length determined more by 

pavement conditions than scale life.155 

Table 15.  WIM System Cost Comparison 
(Source: IRD) 

Initial Cost Installation Cost Installation Time Life-Cycle Cost

($) ($/lane) (days) ($ per lane)

Bending Beam 8,000 13,500 3 6,400
Load Cell 39,000 20,800 3 6,200

Piezoelectric Sensor 2,500 6,500 <1 4,750

Technology

 

A bending beam plate consists of a single piece of metal with no welding or 

bolting.156  Attached strain gauges measure the deflection in the beam when a truck 

crosses it.  For most efficient operation of a bending plate system, staggered plates 

should be placed in highway lanes to weigh both the left and right side of each axle.  The 

overall axle weight should be calculated as the sum of the axles. Bending beams exhibit 

an approximate absolute error of 10 percent at a 95 percent conformity rate at highway 
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speeds.157  However, the installation of multiple plates may reduce 95th percentile error 

to as little as 5 percent.158   

A single load cell system should consist of two independent platforms located 

adjacent to one another in a single travel lane, with each platform bolted to a scale 

module.159  The adjacent placement allows all wheel sets on an axle to be weighed 

simultaneously; together the platforms should cover the width of a travel lane.  The axle 

weight is calculated as the sum of the left and right wheels.  Each scale includes a single 

hydraulic loading cell, and load transfer torque tubes to transfer the load to the load 

cell, regardless of the location of the tires on the platform.  Load cells provide the lowest 

probability of error for the commonly used WIM technologies at highway speeds, with 

approximate error of 6 percent at a 95 percent level of conformity.160   

Unlike the other technologies which measure only vertical force, piezoelectric 

sensors measure the total energy transferred to a pavement by a passing truck.161   

Piezoelectric sensors directly measure axle weights, unlike load cells and bending beams 

which measure individual wheel weights.  The force measured is affected by 

acceleration and deceleration of the trucks.  As a result, piezoelectric scales exhibit 

higher absolute errors of about 15 percent at highway speeds and a 95 percent 

conformity rate.162  Like bending beam systems, the installation of multiple sensors may 

reduce errors by as much as 50 percent.163  Piezoelectric sensors are typically ceramic, 

and are often encased in aluminum to reduce effects of lateral forces.164   
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A number of additional WIM technologies are currently in development to 

address shortcomings of the commonly used technologies.  Quartz piezoelectric sensors 

have been developed to provide a more linear output and demonstrate improved 

stability over long periods of time and various temperatures compared to traditional 

ceramic piezoelectric sensors.165  In addition, quartz is an extremely stiff material that 

deflects very little; therefore it provides a high frequency response to a truck passage, 

and is good for fast changing measurements.  Under normal conditions, quartz sensors 

exhibit an improved error rate at a 95 percent confidence interval.166  However, the 

error of the sensor is highly sensitive to the flatness of the pavement surrounding it.  

Technology tests performed under controlled conditions with extremely flat pavements 

on a straight path achieved a maximum error of only two percent at speeds up to 45 

miles per hour. 

Although not yet in use commercially, several types of fiber-optic sensors are 

also in development for WIM.  These include fiber grating sensors167 and forward time 

division multiplexing (FTDM) dual-core sensors.168  Fiber-optic sensors have lower power 

requirements and are less sensitive to harsh environments than traditional sensors.169  

As a result, fiber-optic technology could eventually achieve a highly accurate sensor for 

about the same cost as a ceramic piezoelectric sensor.   

Another system that has been tested for research, but is not yet in commercial 

use is a seismic WIM system (SWIM).170  This system uses geophones and speed 

measurement devices to measure the speed and the strength and spectrum of the 
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seismic signal emitted from a passing truck.  These measurements can be used to derive 

the weight of the truck.  Studies of seismic WIM systems performed in Florida and 

Alabama found these technologies are most useful when applied on asphalt pavements.  

Seismic WIM systems are not yet ready for real world application; measurements are 

highly dependent on truck, pavement, and soil properties, and are highly sensitive to 

temperature, moisture, and wind.   

4.2 WIM APPLICATIONS 

4.2.1 Planning 

Transportation planning agencies collect WIM data to characterize truck traffic in 

a given region.  Planners use this data to examine relative vehicle classification volumes 

as well as to establish standard truck profiles within individual vehicle classes.  The 

Federal Highway Administration’s (FHWA) Traffic Monitoring Guide recommends that 

states operate at least 90 WIM sites for collection of truck information, and that at least 

one third of these sites collect data quarterly each year.171  The state of California 

utilizes 90 piezoelectric and bending plate WIM systems to collect data continuously for 

pavement management and highway monitoring applications.172  In Texas, the 

Department of Transportation’s (TxDOT) Planning and Programming division collects 

WIM data from bending plate systems at 15 sites throughout the state.173   Truck 

profiles can be used to examine the distribution of loading contributions within each 

vehicle class.  The distribution of total 18-kip equivalent single axle loads (ESALs) applied 
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to a pavement by a single vehicle pass can be estimated from axle weights collected.  

When combined with traffic data, WIM data can provide information about the overall 

ESAL contribution of a vehicle class within a given region.  This information is used in 

highway cost allocation to assign proportional responsibility for highway costs across 

vehicle classes.174   

4.2.2 Weigh Enforcement 

WIM systems are also widely used in the U.S. for weight enforcement 

applications.  Weigh-station pre-clearance systems combine WIM technologies and 

vehicle identification technologies to prescreen trucks for weight enforcement while 

they travel at highway speeds.  Pre-clearance systems in the US utilize radio frequency 

identification (RFID) transponders to identify vehicles.  An antenna, generally located 

about a mile before a weigh station, sends a signal to a transponder located in the truck, 

triggering the transponder to send its identifying data to a remotely located 

computer.175  In addition, weight data is transmitted from WIM scales located in 

highway main lanes and a height detector verifies that a truck is not over its height limit.  

The computer then verifies the credentials for the truck and ensures that it is within its 

weight and height requirements.  The computer sends a transmission back to the truck’s 

transponder instructing the driver to either bypass or pull into the weigh station. 

RFID transponders are easy and accurate devices for identifying vehicles.  The largest 

pre-clearance system in the US is the PrePass system, which operates 280 sites in 28 

states.  PrePass collects a monthly user fee for enrolled trucks to maintain and operate 
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its system.  PrePass members must be pre-certified, and their safety records and 

credentials are continuously verified by state agencies.176  While its technologies are 

compatible, PrePass is not currently integrated with the other state operated weigh-

station bypass systems in the US and Canada because of operational differences.   

Several U.S. and Canadian studies have been completed to examine the 

feasibility and performance of “Virtual Weigh Station” (VWS) systems that combine 

cameras, OCR technologies, and WIM for remote, portable weight enforcement.  As 

vehicles pass a VWS, the camera is triggered, either by the WIM or by other sensors.  

The camera then captures an image of identifying numbers on a truck, usually the 

USDOT identification numbers required on the truck or its license plate.  The image is 

then transmitted with WIM data to a remote system which reads the captured ID 

numbers and compares them with an existing database to check credentials.  Operating 

these systems in the mainline of a roadway can eliminate the need for off-road weigh 

stations.  A study performed in Indiana identified benefits in the efficiency of identifying 

overweight trucks for weighing when using mobile enforcement.177  This enforcement 

would be particularly useful on secondary roadways to catch trucks evading static 

stations.  Unlike the RFID systems, these systems can be used to check credentials for all 

trucks, not just enrolled carriers.  However, VWS systems have not achieved the 

accuracies of weigh station bypass systems for vehicle identification.  The Kentucky DOT 

performed tests on a system architecture consisting of two loops for triggering of a fast-

shutter, high resolution camera combined with WIM scales.  While 92 percent of system 
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triggers represented actual truck passes, only 78 percent of those valid triggers captured 

the truck’s USDOT numbers.178  Of those captured, only 44 percent were readable, 

resulting in only a 34 percent success rate in capturing readable USDOT numbers for 

trucks.  Factors contributing to inability of the system to read the numbers included 

camera placement, truck speed, lighting conditions, and inconsistencies of the size, font, 

color, and contrast of the USDOT numbers on the trucks.179  In addition, researchers 

faced problems finding a reliable, efficient, and affordable communications network.   

A similar study was performed in Saskatoon, Canada, where 2 highway lanes 

were equipped with WIM and video license plate readers.180  This study also used cable 

modems for data transmission from the devices and wireless communications to 

transmit data to police laptops.  This study was able to identify the most frequently 

weight violating class of users, two-axle trucks. 

The most recent application of a VWS is Florida’s remotely operated compliance 

station (Rocs™).181  The system, installed in July 2006, includes an upstream loop 

detector, an ASTM Type III quartz-piezo WIM system, and digital camera technologies.   

WIM measurements are used to identify several types of violating vehicles.  These 

include “off scale,” overweight, and speeding vehicles and out-of-balance loads.  Truck 

weight triggers a camera that takes 3 digital photographs that are then transmitted to a 

remote enforcement site, where violating vehicles are identified. 
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4.2.3 WIM for Highway Cost Allocation 

The same WIM data used for transportation planning is employed in cost-

allocation studies.  In these studies, which will be discussed in detail in the next chapter, 

traffic loadings for individual vehicle classes can be identified from WIM data.  Load-

related costs can then be assigned to individual vehicle classes based on their share of 

contributions to infrastructure damage, congestion, and other marginal costs.  However, 

in directly applying this WIM data for cost allocation, vehicle dynamic effects are not 

considered.  As was described above, WIM systems measure a vehicle’s dynamic load, 

and convert that force to a static load.  Depending on a vehicle’s suspension system, 

axle configuration, and speed at the time of measurement, as well as on the roughness 

of the pavement at the location of a scale, the dynamic load measured by a WIM system 

will change.  Under current cost allocation methods, all vehicles within a vehicle class, 

regardless of suspension system, are assigned equal cost responsibilities.  Fekpe 

explored and quantified the potential impacts on cost allocation of different suspension 

systems for varying speeds and pavement roughness values.182 
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CHAPTER 5: HIGHWAY COST ALLOCATION STUDIES 

Highway cost allocation (HCA) studies are performed to determine the share of 

system user costs, including operations, infrastructure construction and maintenance, as 

well as marginal social costs such as contributions to congestion, that should be 

attributed to individual vehicle classes.  These studies are performed at both federal and 

state levels using a variety of methodologies.  In addition to allocating costs, HCA studies 

can be used to examine the equity of existing user fees.  There are several approaches 

to allocating highway costs; these include a cost-occasioned approach, a benefit-based 

approach, and a marginal cost approach.183   

5.1 GENERAL COST ALLOCATION METHODS 

A cost occasioned approach relates physical and operational vehicle 

characteristics to expenditures for infrastructure improvements.  Cost occasioned 

approaches include both an incremental method and the mixed “Federal” Method.184  

An incremental approach calculates the cost of a minimum facility for the smallest user 

class, and incrementally assigns additional costs to subsequent classes.  All vehicle 

classes pay for a share of the costs for the base facility equivalent to their usage of the 

system.185  Research has found that the order in which classes are added using the 

incremental method impacts the resulting cost responsibility shares186; as a result, a 

modified incremental method has been proposed.  This method determines cost 

portions attributable to individual classes, then determines portions attributable to 
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groups of vehicles.187  The final portion of costs attributable to a class is calculated as 

the sum of total cost portions attributable solely to that class plus the fractions of cost 

portions attributable to groups to which that class belongs.  The “Federal” Method uses 

a “consumption” method to allocate pavement maintenance costs and uses an 

incremental approach to allocate other costs.188   

In a benefit based approach, costs are allocated to vehicle classes based on the 

relative benefits of highway improvements for those classes.  A benefits-based approach 

actually allocates some costs to non-users of the system, as social and economic 

benefits of highway improvements extend beyond system users.189  However, 

quantification of benefits to apply such an approach is extremely difficult.  A marginal 

cost approach estimates the marginal impacts of vehicle classes on infrastructure, 

congestion, the environment, and other marginal social costs (e.g. noise). 

The 1997 Federal HCA Study, the most recent comprehensive federal study, 

applied a cost-based approach to assign load and non-load related infrastructure cost 

responsibilities across 20 passenger and commercial vehicle classes.190  In the federal 

study, highway costs were divided into four primary categories: pavement costs, bridge 

costs, system enhancement costs, and other attributable costs.  Within each of these 

categories, costs were further divided into sub-categories so that different variables 

could be used to allocate costs.  These subcategories and the associated vehicle 

characteristics used for cost allocation are shown in Table 16. 
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Table 16.  Cost Categories and Allocation Variables, 1997 Federal HCA Study 
(Source: 1997 Federal HCA) 

Cost Category Specific Cost Variable

New lane construction, base facil ity PCE weighted VMT
New lane construction, additional 
thickness ESALs

Reconstruction, rehabil itation, and 
resurfacing

Pavement distress contributions, 
NAPCOM model

New bridge construction, base facil ity PCE weighted VMT
New bridge construction, additional 
strength Weight and axle spacings

Reconstruction and rehabil itation VMT or weight/axle spacings

System 
Enhancement

System management, safety 
improvements, ITS, envronmental 
mitigation, highway beautification, 
transit/intermodal/pedestrian 
projects

Varies by cost, many use PCE

Attributable
Geometric elements, grading, 
drainage, width, ridesharing 
facil ities, truck specific facil ities

Varies based on relationship 
between cost element and vehicle 
characteristic

Pavement

Bridge

 

The largest individual cost category for the federal HCA is load-related pavement 

maintenance costs, which accounted for 25 percent of total federal highway costs in 

2000.191  In the 1997 study, these costs were allocated incrementally using Long Term 

Pavement Performance (LTPP) data and results from 11 National Pavement Cost Model 

(NAPCOM) mechanistic pavement distress models.192  Pavement construction and 

bridge construction costs were allocated using incremental design methods.  Bridge 

maintenance costs were allocated both incrementally and proportionally depending on 

the specific maintenance cost. 

A 2008 synthesis of state highway cost allocation studies identified 85 studies 

that have been completed in 30 states.193  Most of these studies utilized a cost 
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occasioned approach, using either Incremental or “Federal” methods.  A marginal 

approach has been employed for a study in Ontario.194 

The most recent Texas HCA study, performed in 2002, examined user revenues 

and expenditures for Texas Department of Transportation (TxDOT) operated facilities.195  

The study allocated costs across 12 user classes using five different cost allocation 

methods.  Texas costs were also divided into four categories: pavement construction 

costs, pavement rehabilitation and maintenance costs, bridge costs, and common costs.  

Common costs, defined as non-load related costs, were allocated according to class 

VMT.   Pavement construction costs attributable to each vehicle class for rigid and 

flexible pavements were estimated using models to calculate construction costs based 

on the number of expected ESALs for each class.  Regression analysis was performed to 

estimate a function to determine costs per lane mile as a function of GVW.  Class VMT 

by weight class was then used to allocate bridge construction costs to vehicle classes.  

Although theoretically superior methods were considered for allocation of load-related 

rigid pavement costs, a lack of necessary data to implement these methods led 

researchers to allocate pavement rehabilitation and maintenance costs proportionally 

using ESAL estimates.196   

Five allocation methods for flexible pavement rehabilitation costs were 

examined; these methods include a generalized method, developed by Villarreal to 

apply the theory of cooperative games for highway costs allocation, a modified 

incremental method, a proportional ESAL method, the FHWA developed State Highway 
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Cost Allocation Method, and a variable-lane method that allows the number-of-lanes on 

a facility to increase.197  This variable number-of-lanes scenario could increase the share 

of costs attributable to passenger vehicles, as these vehicles demonstrate much higher 

volumes than more damaging commercial vehicles.  Although it is hard to definitely 

identify the “most accurate” method of HCA, authors of the Texas study recommend 

use of the generalized method for load-related pavement cost allocation.  Bridge costs 

were allocated using an incremental design method. 

5.2 QUANTIFYING INFRASTRUCTURE COSTS 

For this study, which will attempt to directly link tolls with infrastructure costs, a 

cost-occasioned approach will be employed.  Methods of quantifying infrastructure 

consumption that can be employed to link costs to individual classes, vehicles, and loads 

are discussed in the following sections. 

5.2.1 Pavement Consumption 

As the Texas HCA demonstrates, no definitive method for quantifying truck 

contributions to pavement deterioration has yet been developed.  The traditional 

method for relating vehicle loads to pavement deterioration is empirical estimation of 

Equivalent Single Axle Loads (ESALs).  ESALs represent the ratio of pavement distresses 

caused by a specific axle load or vehicle to distresses caused by an 18-kip standard axle 

load.  These ratios are calculated using the empirical pavement design formulas 

developed in the 1950s during the American Association of State Highway Officials’ 
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(AASHO) road tests.  These formulas relate axle load and pavement performance in 

terms of present serviceability index (PSI).198  This PSI factor integrates different types of 

pavement distress, including cracking, patching, rutting, and longitudinal profile, into a 

single term.  When two consecutive axles are between 40 and 96 inches apart, they are 

classified as a tandem axle, and a single ESAL ratio is calculated for the tandem axle 

group.  Three consecutive axles with axle spacings between 40 and 96 inches are 

classified as a tridem axle.  The empirical AASHTO formulas for estimation of ESALs for 

flexible (Eq. 1) and rigid (Eq. 2) pavements are below. 
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where    Ex = number of ESALs applied to a pavement by load Lx 
  Lx = axle load being evaluated (kips) 
  L18 = standard axle load (kips) 
  L2 = code for axle configuration (1 for single, 2 for tandem, etc.) 
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(Eq. 2) 
where   Ex = number of ESALs applied to a pavement by load Lx 
  Lx = axle load being evaluated (kips) 
  L18 = 18 kip standard axle load  
  L2 = code for axle configuration (1 for single, 2 for tandem, 3 for tridem) 
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Empirical ESALs are widely applied in pavement design and in HCA for ease of 

application.  In incremental allocation of pavement construction costs, ESALs can be 

used directly as a cost allocator to determine class responsibilities for pavement design 

thickness.  In allocation of pavement maintenance costs, many studies assign class 

responsibilities based on ESAL-miles. 

However, there has been much debate in recent years over the utility of the 

ESAL function.  These empirical formulas were developed under very specific 

environmental conditions using vehicles different than those available in today’s fleets.  

More recently, mechanistic models have been developed to better quantify the impact 

of loads on specific pavement distresses.  Mechanistic models directly relate load 

repetitions to the progression of different types of distresses such as cracking, rutting, 

and faulting.  Mechanistic models were first used for HCA in the 1982 Federal HCA 
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Study.  The 1997 Federal HCA Study employed the same methods; however for the 1997 

study, a new nationwide pavement cost model (NAPCOM) was developed.199 This model 

incorporated 11 distress models that were developed using data collected from the 

Long Term Pavement Performance (LTTP) study. 

In 2004, a new Guide for Mechanistic-Empirical (M-E) Design of New and 

Rehabilitated Structures was developed through a National Cooperative Highway 

Research Program (NCHRP) Project.200  The new guide uses mechanistic-empirical 

models to estimate pavement performance over time or use.  Under the new design 

guide, individual pavement distresses can be examined; for flexible pavements, these 

include fatigue, rutting, and thermal cracking, and for rigid pavements, these include 

cracking and faulting.201  Additionally, the new guide allows the user to calibrate the 

models for local conditions.  The M-E guide can be used to examine long-term pavement 

performance under varying traffic loading conditions.  By entering the axle load spectra 

for a given class, which can be easily obtained from WIM data, the number of 

repetitions to a defined type of failure can be calculated.   

While this method can be relatively easily applied to compare the impacts of 

vehicle classes, examining the impact of individual axle loads is more difficult.  In 

mechanistic models, axle load data is input in the form of axle load spectra for vehicle 

classes.  Hong, Pereira, and Prozzi proposed a method for calculation of “mechanistic 

ESALs.”202  By inputting a single 18-kip axle load in the model, rather than an axle load 

spectra, the number of repetitions to failure for a “mechanistic ESAL” can be calculated.  
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A “mechanistic” load equivalency factor for an individual vehicle could be calculated in a 

similar manner.  By inputting the specific axle loads for an individual vehicle, the number 

of repetitions to failure for that vehicle could be obtained.  Expanding on the concept of 

“mechanistic ESALs”, a load equivalency factor could then be calculated as the ratio of 

repetitions to failure for the individual vehicle divided by the repetitions to failure for an 

18-kip single axle load.  While this method for calculating “mechanistic” load 

equivalency is simple in theory, calculation of “mechanistic” ESALs for a series of 

individual axle loads would be extremely time intensive using the existing models.  

However, if specific maintenance and rehabilitation costs could be linked to specific 

distress types, the ability to calculate distress-specific “mechanistic” load equivalency 

factors could allow for better allocation of distress-specific costs. 

5.2.2 Bridge Consumption 

The impact of a truck on a bridge varies depending on both axle loads and the 

distance between axles.203  Heavier axle loads increase the stress on bridge girders or 

beams.  In general, the longer the distance between axles, the less impact a truck will 

have on a bridge (although in some continuously supported bridges, more distantly 

spaced axles can increase pier stresses).  The most commonly used method for 

allocating bridge construction costs is an incremental approach which relates individual 

vehicle classes to AASHTO design vehicles.204  AASHTO has defined a series of vehicles 

that are used in bridge design.  These vehicles do not represent common truck 

configurations, but rather were specifically designed to simulate the most severe live 
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loads on a structure.  Table 17 provides the axle loads and spacings for these defined 

vehicles.  Like in incremental pavement cost allocation, a base facility required to carry 

the lightest vehicle class (H2.5) is identified.  The costs of additional strengthening 

elements to allow for each subsequent class to operate are then allocated only to the 

responsible truck classes. 

Table 17.  AASHTO Bridge Design Vehicles 

A B C AB BC

H2.5 1 4 - 14 -

H5 2 8 - 14 -

H10 4 16 - 14 -

H15 6 24 - 14 -

H20 8 32 - 14 -

HS15 6 24 24 14 14 to 30

HS20 8 32 32 14 14 to 30

HS25 10 40 40 14 14 to 30

Design 
Vehicle Type

Axle Spacings (ft)Axle Loads (kips)

 

 

Tee, Sinha, and Ting reviewed early methods of incremental bridge cost 

allocation.205  The 1982 Federal Highway Cost Allocation study, as well as early studies in 

Georgia, Florida, Iowa, and Wisconsin, used gross vehicle weight (GVW) to assign study 

truck classes to bridge design vehicle classes for both simply and continuously 

supported bridges.  A study in Maryland used both axle spacing and axle loads to 

correlate study classes with design classes for simply supported bridges.  Tee, Sinha, and 
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Ting’s  own Indiana study used the live-load moment created on simply and 

continuously supported bridges to correlate study vehicle classes with design vehicle 

classes.  The 1997 Federal HCA Study and the last Texas HCA Study also used an 

incremental analysis that related study classes to design vehicle classes using live-load 

moments for different highway classes (defined by mean span length) and support 

type.206,207  Both the Indiana study and the 1997 Federal HCA Study introduced 

intermediate design vehicle classes (e.g. H17.5) to reduce the number of medium-

weight trucks paying for the highest cost bridges.  Since live-load moment is a function 

of both axle load and axle spacing, this method cannot be applied to assign bridge cost 

responsibilities directly for individual loads. 

Quantifying a measure to relate truck characteristics with bridge maintenance 

costs is more difficult.  If maintenance includes specific improvement of structures that 

are “structurally deficient,” or unable to carry the required traffic, costs are considered 

“load-related.”  These costs can be allocated to responsible classes using the same 

incremental method,208 or by some other method of quantifying truck-only costs, such 

as heavy vehicle miles traveled (HVMT).209  Laman and Ashbaugh have also examined a 

method employing Miner’s Hypothesis, the same theory used in “mechanistic” 

pavement design models, for allocation of fatigue-related costs for steel bridges.210   

If improvements are made to a bridge that is “functionally obsolete” due to 

capacity, geometric, or other safety deficiencies, no good allocator for these costs can 

be defined to distinguish between vehicle cost responsibilities.  Generally, highway cost 
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allocation studies assign these costs to vehicle classes according to their system use 

(VMT).   
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CHAPTER 6: METHODOLOGY FOR TOLL RATE DETERMINATION AND ANALYSIS 

As discussed in previous chapters, there is a need to develop mechanisms for 

future road pricing that will better recover infrastructure consumption costs from 

individual users.  Existing user charges rely on number-of-axles or registered GVW to 

distinguish between classes of users.  Generally, a vehicle with more axles or more GVW 

pays a higher user fee.  However, depending on the vehicle’s configuration, its bridge 

and pavement impacts may actually be lower than that of a vehicle paying a lower toll.  

Weigh-in-motion (WIM) systems have the capability, with varying degrees of accuracy, 

to collect real-time axle load and axle spacing data from individual trucks.  As system 

accuracies improve, these technologies could be deployed both to collect better 

information about the types of trucks operating on a given roadway and as part of an 

integrated road pricing technology system to toll vehicles based on real-time weight and 

vehicle configuration.   

6.2. DETERMINATION OF TOLL STRUCTURE 

The first step in implementing a new WIM tolling system that will better recover 

infrastructure costs is to determine the structure of the toll.  Ideally, a vehicle’s exact 

infrastructure impacts could be measured as a function of its axle loads and axle 

spacings for each bridge and pavement section that it crosses.  However, implementing 

such a toll to exactly recover these costs would require a multi-part structure with 

separate charges for pavements and individual bridges.  Pavement impacts could be 
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calculated as a function of individual axle loads, whether through empirical or 

mechanistic methods; an axle-load based structure could be implemented to recover 

these costs.  For each bridge, a truck would have to be classified to a design vehicle 

class, likely using live-load moment as a measure.  Since this variable is calculated as a 

function of the bridge length, a truck’s rating would vary for different bridges.  A toll 

structure to best recover these costs would distinguish trucks by design vehicle class and 

would be paid for each individual bridge crossing.  A third tolling element would need to 

be paid per vehicle for non-load related costs to use a facility. 

Clearly, implementing such a structure would be extremely difficult.  Although 

every driver would pay almost exactly their share of infrastructure consumption costs, 

the toll structure would no longer be transparent.  On a facility such as a toll road, 

where users choose whether or not to pay to use it, a lack of transparency in the toll 

structure would serve as a deterrent to potential users.  Even on a facility where a driver 

has no choice, a complex tolling structure would be confusing to drivers. 

The toll structure proposed in this study to improve equity while maintaining 

transparency is a two part toll.  An initial base toll is charged to all commercial and 

passenger vehicles to recover all common costs and the costs of basic infrastructure.  

Heavy vehicles pay an additional cost per axle-load to recover additional infrastructure 

costs necessary to accommodate their weight.  The toll is designed to recover 

infrastructure costs from all legally operating vehicles.  It is assumed that if overweight 
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vehicles are allowed to operate, an additional cost would be paid to recover these costs.  

The problem of pricing for overweight vehicles will not be addressed in this study.   

 The next step in developing this new toll structure is determination of load class 

limits.  As discussed previously, the two types of infrastructure costs that must be 

considered in the “Axle-Load” portion of the toll are pavement costs and bridge costs.  

In general, over the life of a highway facility, the largest type of load-related 

infrastructure cost that it will incur will be the cost of pavement maintenance.  Since 

pavement impacts are estimated as a function of individual axle loads, initial load 

classes can be proposed by examining the relative pavement impacts caused by loads 

belonging to individual classes.  In order to examine the relative impacts of each class, 

the traffic volumes, truck profile, and axle load distributions for the facility must first be 

identified.  Total vehicle volumes over the design life of the facility should be estimated 

through traffic analysis.  The truck profile and axle load distributions are obtained from 

WIM data.  Figure 7 shows the process for estimating the truck profile from raw WIM 

data. 
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 Axle load spectra can also be obtained from the WIM data by examining 

individual load types.  In planning and design applications, axle load spectra are 

estimated separately for different vehicle classes and axle types.  In this study, the 

distribution of interest is the overall distribution for each axle type: single, tandem, and 

tridem.  The probability that a load of a given type belongs to a given load class can be 

estimated discretely from the observed data (Eq. 3). 

 

 

Raw WIM Data 

Classify Vehicles 

Vehicle Type Number of Axles 

Classify Axle Groups 

Tandem Single Tridem 

Axle Spacing Axle Loads 

Semi-
Trailer 

Single 
Unit 

3 2 5 4 

Identify Overweight Vehicles 

Gross 
Vehicle 
Weight 

Axle  
Weight 

Federal 
Bridge 

Formula 

Remove Overweight Vehicles 

Figure 7.  WIM Data Processing 
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N
nP L

L =  

(Eq. 3) 
where:   nL = number of observed loads belonging to class L 
  N = total number of observed loads 

 

This probability may also be estimated from a continuous distribution.  Research 

has found that the distribution of axle loads for a given vehicle and axle type can be 

estimated as a mixed-lognormal distribution.211,212  The lognormal distribution is 

described by the following probability density function (PDF): 
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(Eq. 4) 
where:   xv,a = axle load belonging to vehicle type v and axle type a 
  µ,σ= parameters of the lognormal function 

 

In a mixed lognormal distribution, the overall probability distribution is 

estimated as a weighted sum of several lognormally distributed probability 

distributions.  Past studies have found that different vehicle and axle loads types are 

best represented as a sum of two or three lognormal distributions.213,214 

These distributions do have physical meaning, as load spectra may include empty, 

moderately loaded, and fully loaded vehicles.215  The weights of the distributions may 
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represent the share of vehicles that fall into these loading levels.  The PDF for the final 

mixed-lognormal distribution is described by the following function: 
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(Eq. 5) 
where:   xv,a = axle load belonging to vehicle type v and axle type a 
  µi, σi= parameters of the ith lognormal function 
  Wi = weight of distribution i 
  I = total number of weight distributions 
 
 

Once the axle load distributions for each vehicle and axle type are estimated, the 

overall distribution of each axle type can also be estimated as a mixed lognormal 

distribution.  Weights for each vehicle class can be determined from the observed data 

and traffic estimates as a conditional probability. 

a

av
v N

n
P ,=  

(Eq. 6) 
where:  Pv = probability that an axle load of type a is on a vehicle of type v 
  nv,a= number of axle loads of type a on a vehicle of type v 
  Na = total axle loads of type a 
 

Finally, the mixed lognormal distribution representing the entire axle type class can be 

formulated as: 
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(Eq. 7) 
where:   xv,a = axle load belonging to vehicle type v and axle type a 
  Pv = probability that an axle load is on a vehicle of type v given that it  

belongs to axle type a 
V = total number of vehicle types 
µi, σi= parameters of the ith lognormal function 

  Wi = weight of distribution i 
  I = total number of weight distributions 
 
 

The continuous distribution function (CDF) can then be found by integrating (Eq. 7): 
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(Eq. 8) 
where:   xv,a = axle load belonging to vehicle type v and axle type a 
  Pv = probability that an axle load belonging to vehicle type v given that it  

belongs to axle type A 
V = total number of vehicle types 
µi, σi= parameters of the ith lognormal function 

  Wi = weight of distribution i 
  I = total number of weight distributions 
  dxa = incremental change in load weight 
 

Although this function cannot be directly evaluated, because it is simply the 

weighted sum of a number of lognormal functions, it can easily be evaluated using 

common statistical software programs.  The probability of a load belonging to a given 

weight class can then be calculated by evaluating the CDF at the upper and lower limits 

of the weight class. 
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)()( lul xFxFP −=  

(Eq. 9) 
where:   Pl = probability that a load belongs to class l 

xu = upper weight limit of load class l 
  xl  = lower weight limit of load class l 
 

After the probability that a load belongs to a given class is estimated, some 

measure of relative pavement impact for each load class must also be estimated.  Again, 

depending on the method of analysis, different methods of estimation can be used.  If 

equivalent single axle loads, estimated through either empirical or mechanistic methods 

are employed, the relative damage can be estimated discretely from the observed data.  

First, for each observed load, the number of ESALs contributed by that load should be 

calculated (Eq. 2).  Next, the total pavement impact for a given load class can be 

estimated: 

∑=
X

xl EE  

(Eq. 10) 
  

where:   El= number of ESALs applied to a pavement by load class l 
  Ex = number of ESALs applied to a pavement by load x 
  X = the set of all loads belonging to class l 
 

Finally, the expected number of ESALs applied to a pavement by a load belonging 

to a given class can be estimated: 
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l
l n

E
E =exp  

(Eq. 11) 
where:   expEL = expected number of ESALs for a load belonging to class l 

El= number of ESALs applied to a pavement by load class l 
n = number of loads belonging to class l 

 

Once relative impacts have been quantified, load classes should be defined so 

that classes of different axle types causing the same relative impacts pay equal shares.  

Iteration of load class limits will be required to identify optimal classes. 

Currently, a continuous distribution cannot be used to estimate the relative 

pavement impacts of individual load classes.  Research has found that the pavement 

damage caused by an individual vehicle and axle class can be estimated as the fourth 

moment of the load distribution function.216  However this method cannot be employed 

in this study for several reasons.  First, although the moment function can be used to 

obtain the overall damage from the load distribution function, it cannot distinguish the 

damage caused by individual load classes within that distribution.  Additionally, in this 

study, only legal loads are of interest.  Because the lognormal distribution is continuous, 

even if regression analysis to estimate the parameters of the mixed lognormal 

distribution is performed using only legal loads, some portion of loads will be estimated 

to be overweight.  For example, Table 18 shows the parameters estimated for the 

distribution functions for the WIM data used in the case study to be described in the 

next chapter.  These distributions were estimated using the non-linear least square 
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(NLLS) technique previously employed by Prozzi and Hong217 and Timm, Tisdale, and 

Turochy218.  As can be seen from the R2 values, the data fit for most of the vehicle and 

axle type classes is very good.  However, Figure 8  shows that the resulting functions, 

especially for tandem axles, predict a noticeable portion of overweight loads.  Just as 

load classes cannot be distinguished, there is currently no good method to determine 

the share of the estimated ESALs contributed by overweight loads.  

 

Table 18.  Estimated Parameters for the Mixed Lognormal Distribution 
Truck 
Type

Axle 
Type

µ1 µ2 µ3 σ1 σ2 σ3 w1 w2 w3 R2

Steering 1.404 1.965 - 0.134 0.292 - 0.806 0.194 - 0.99998

Single 1.168 1.398 2.247 0.222 0.267 0.369 0.577 0.216 0.207 0.99996

Steering 2.344 2.397 2.197 0.087 0.169 0.476 0.210 0.670 0.120 0.99961

Tandem 2.145 2.648 3.333 0.193 0.533 0.136 0.177 0.453 0.370 0.98913

Steering 1.430 1.893 2.172 0.135 0.144 0.138 0.502 0.144 0.354 0.99995

Single 0.736 1.434 2.333 0.358 0.224 0.377 0.270 0.224 0.506 0.99783

4SU Steering 2.021 2.342 2.774 0.038 0.103 0.064 0.348 0.440 0.212 0.90080

Steering 1.466 2.225 1.678 0.090 0.143 0.362 0.410 0.442 0.148 0.99962

Single 1.615 1.542 2.399 0.183 0.575 0.425 0.238 0.316 0.446 0.99425

Tandem 1.552 2.134 2.625 0.250 0.486 0.439 0.142 0.359 0.499 0.99820

Steering 1.573 2.401 2.284 0.330 0.080 0.119 0.016 0.640 0.344 0.99949

Single 1.727 2.822 2.558 0.412 0.095 0.236 0.335 0.232 0.433 0.99795

Tandem 2.592 3.216 3.466 0.331 0.225 0.068 0.408 0.341 0.251 0.99543

ALL Tridem 1.950 2.288 2.639 0.190 0.088 0.192 0.351 0.091 0.558 0.99096

2SU

3SU

3ST

4ST

5ST
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Figure 8.  Mixed Lognormal PDFs for Single, Tandem, and Tridem Axles 
 

6.3 AXLE-LOAD TOLL RATE ESTIMATION 

Once the individual load classes have been defined, the next step is to estimate 

the toll rates that should be paid by each class.  Figure 9 shows the process used for 

estimating individual elements of a toll rate.  
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Figure 9.  Cost Allocation Method for Toll Rate Determination 
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First, all construction, maintenance, and operations costs must be quantified for 

the design life of the toll.  Additionally, if new facility construction is being financed 

through the use of bonds or long-term loans, costs of debt service must also be 

quantified.  If a facility is being operated for profit, desired revenue projections should 

also be estimated.  Once all costs have been identified, individual costs must be 

classified as common or load-related.  In this study, “Load-Related” costs are those that 

can be directly attributed to heavy trucks.   

6.3.1  Common Base Toll Estimation 

Common costs are assigned to individual vehicles based on some measure of 

their use of the facility; for example, a limited access facility could charge a cost per 

vehicle, while an open facility might charge a cost per vehicle-mile.  Here, common costs 

are assigned to base toll, tb, as a common cost per vehicle: 

n
C

t c
b =  

(Eq. 12) 
where:   tb = base toll rate per vehicle ($/vehicle) 
  Cc = total common costs ($) 

n = number of vehicles expected over life of facility 
 

 At this stage, in a traditional highway cost allocation (HCA) study, “Load-Related” 

costs would be assigned to individual vehicle classes, and possibly to GVW classes within 

those vehicle classes.  However, in this study, costs must be assigned to individual axle-

load classes.  For pavement cost allocation, this process is relatively straightforward.  
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Since pavement impacts are estimated as a direct function of axle loads whether using 

empirical or mechanistic methods, both incremental and proportional methods of HCA 

can be used to assign costs to individual load classes.   

6.3.2 Pavement Construction Toll Share 

Traditional HCA uses an iterative pavement design method to allocate pavement 

construction costs.  First, a base facility is designed to accommodate the lowest 

consuming class of vehicles or loads.  Depending on the method of design used, this 

consumption can be quantified by a number of measures.  The most commonly used are 

ESALs and “mechanistic” repetitions to failure .  Next, individual classes are added one 

by one to estimate the total costs of a facility to accommodate each class.  As discussed 

in Chapter 5, in traditional HCA, the order in which vehicle classes are added may impact 

the results.  However, in this study, since it is load classes, not vehicle classes, being 

added to the base facility, loads belonging to a higher consuming class will definitely be 

assigned higher cost responsibility than vehicles belonging to lower consuming classes.  

Figure 10 shows the iterative pavement design process using the AASHTO 

traditional design method for a rigid concrete pavement.  To estimate load-class ESALs, 

first ESALs for individual loads are calculated for a given thickness using the empirical 

ESAL equation (Eq. 2).219  Total load-class ESALs can then be calculated by summing the 

contributions of individual vehicles (Eq. 10). 
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Once ESALs are estimated for each load class, the required pavement thickness 

can be estimated by solving for the pavement thickness, D, using AASHTO’s pavement 

design equation: 

 

 

Assume a base pavement thickness 

Estimate the required pavement thickness for load class(es) under 
evaluation using AASHTO’s Rigid Pavement design equation 

Estimate the expected number of ESALs for 
each load class 

Record required pavement thickness for load class 

Add the estimated ESALs for the next load class 

If calculated thickness ≠ assumed thickness If calculated thickness = assumed thickness 

 
Figure 10.  Iterative Pavement Design Process 
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(Eq. 13) 
where:   W18 = predicted ESALs over life of pavement 
  ZR = reliability 
  So = combined standard error of traffic and performance prediction 
  D = slab depth 
  po = initial serviceability index 
  pt = terminal serviceability index 
  S’c =modulus of rupture 
  Cd = drainage coefficient 
  J = load transfer coefficient 
  Ec = elastic modulus 
  K =  modulus of subgrade reaction 
 

Once the total pavement thickness required for each load class has been 

identified, the total cost of each layer of pavement thickness can be identified.  Figure 

11  demonstrates how cost responsibilities for layers of thickness of a rigid pavement 

designed using this procedure would be divided between five classes of vehicles. 
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Figure 11.  Pavement Construction Cost Responsibility Example 
 

To estimate the pavement construction portion of the load-based toll rate, a cost 

per load should be determined for each additional incremental thickness.  This cost per 

load is calculated by dividing the total cost of a thickness layer by the number of loads 

responsible for that layer: 

∑
=

L
l

i
i n

C
c  

(Eq. 14) 
where:   ci = cost per load for increment i ($/load) 
  Ci = total cost of constructing increment I ($) 

n = number of loads belonging to load class l 
L = the set of load classes for which i must be constructed 
 

 
The total pavement construction toll share for each load class can then be 

calculated by summing the per-load costs across all increments required by that class: 

 

 
 
 
 

Costs allocated to All Classes 

Costs allocated to Classes 2, 3, 4, 5 

Costs allocated to Classes 3, 4, 5 

Costs allocated to Classes 4, 5 

Costs allocated to Class 5 
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∑=
I

ilPC ct ,  

(Eq. 15) 
where:   tPC,l = pavement construction share of load-related toll for class L ($/load) 

ci = cost per load for pavement increment i  
I= the set of pavement increments required to accommodate L 

 

6.3.3 Pavement Maintenance Toll Share 

To allocate pavement maintenance costs, the proportional responsibility of 

vehicles or load classes for pavement distress must be identified.  As discussed 

previously, empirical methods can be used to estimate ESALs directly for individual loads 

(Eq. 2).  Once individual load ESALs are calculated, load class ESALs can be calculated 

(Eq. 10).  Finally, the total number of ESALs applied to a pavement over its design life 

can be calculated:  

∑=
V

xV EE  

(Eq. 16) 
where:   EV = number of ESALs applied to a pavement by all vehicles 
  Ex = number of ESALs applied to a pavement by load x 
  V = the set of all vehicles 
 

A cost per ESAL can then be estimated by dividing maintenance costs by the total 

number of ESALs: 
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v
m E

Mc =  

(Eq. 17) 
where:   cm = maintenance cost per ESAL ($/ESAL)  

M = total load-related pavement maintenance costs over design life 
Ev = number of ESALs applied to a pavement by all vehicles 

 

Next, the expected number of ESALs applied to a pavement by a load belonging 

to a given class can be estimated (Eq. 11).  Finally, the maintenance toll rate share for a 

load belonging to a given load class can be estimated by multiplying the estimated cost 

per ESAL by the expected ESAL: 

lmlPM Ect exp, ×=  

(Eq. 18) 
where:   tPM,l = pavement maintenance share toll for load belonging to class l ($/load) 

cm = maintenance cost per ESAL($/ESAL) 
expEl = expected ESAL for load belonging to class l 

 
 
6.3.4 Bridge Construction Toll Share 

 For bridges, allocating costs to individual classes is less direct.  As discussed  

in Chapter 5, bridge costs can also be allocated using an incremental design method.  In 

order to estimate a single toll rate share for each class, either one design bridge type or 

a series of weighted design bridges should be identified for calculation of a toll rate. 

Once the design bridge(s) have been identified, total bridge costs should be allocated 

using an incremental design method.  Just as in incremental pavement design, a base 

bridge facility should be identified.  The additional cost of adding structural elements to 
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carry heavier design vehicle classes should then be quantified.  In traditional HCA, study 

vehicle classes are assigned to design vehicle classes by correlating the expected live-

load moment (LLM) for that class with the LLM of AASHTO design vehicles.  With WIM 

data, the LLM for individual vehicles can be directly estimated, so vehicles can easily be 

assigned to design vehicle classes.  Once the total number of vehicles belonging to a 

design class is estimated, a cost per vehicle for each vehicle belonging to that class can 

be estimated using: 

 

∑
=

D
d

i
i n

C
c  

(Eq. 19) 
where:   ci = cost per vehicle for increment i ($/load) 
  Ci = total cost of constructing increment i ($) 

n = number of vehicles belonging to design vehicle class d 
D= the set of design vehicle classes for which i must be constructed 

 

However, the value required for toll rate estimation is a cost per load, not a cost 

per vehicle.  In order to identify the relationship between vehicle moment classes and 

load classes, a matrix analysis should be performed.  Conditional probabilities should be 

calculated to examine the likelihood of individual axle types on a vehicle belonging to a 

certain vehicle moment class: 
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(Eq. 20) 
where:   nl|m = number of loads belonging to class l on vehicles belonging to class m  

L = set of all axle load classes 
 

These probabilities can then be examined to determine the load class 

responsibilities for each moment class (Table 19).  These probabilities cannot be used to 

directly allocate costs, as costs for lighter design vehicle classes must be assigned to all 

load classes, even though it is unlikely that the heaviest load classes will appear on the 

lightest design vehicles.  However, this method does allow for some estimation of the 

additional cost responsibilities that should be assigned to the heaviest load classes.  

Using this matrix analysis, load classes can be assigned proportional responsibilities for 

each design vehicle cost increment. 

Table 19.  Matrix Analysis: Vehicle Moment Class vs. Axle Load Class 
 

1 2 3 …

H2.5 P1,H2.5 P2,H2.5 P3,H2.5 …

H5 P1,H5 P2,H5 P3,H5 …

H10 P1,H10 P2,H10 P3,H10 …

H15 P1,H15 P2,H15 P3,H15 …

HS15 P1,HS15 P2,HS15 P3,HS15 …

H20 P1,H20 P2,H20 P3,H20 …

HS20 P1,HS20 P2,HS20 P3,HS20 …

HS25 P1,HS25 P2,HS25 P3,HS25 …

Design Vehicle 
Class

Load Class
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A cost per load for each design increment can then be estimated for each load 

class: 

l

il
li n

Cp
c =,  

(Eq. 21) 
where:   ci,l = cost per load for increment i for load belonging to class l ($/load) 
  pl = share of cost responsibility for increment i assigned to load class l (%) 

Ci = total costs for increment i ($) 
nl= total number of loads of class l 

 
 

The total bridge construction toll share for each load class can then be calculated by 

summing the per-load costs across all increments required by that class: 

 

∑=
L

lilBC ct ,,  

(Eq. 22) 
where:   tBC,l = bridge construction share of load-related toll for class l ($/load) 

ci,l = cost per load of type l for pavement increment i ($/load) 
L= the set of increments required to accommodate l 

 

6.3.5 Bridge Maintenance Toll Share 

As was discussed in Chapter 5, no definitive method for bridge maintenance cost 

allocation to individual load classes has been developed.    If maintenance activities can 

be specifically linked to individual vehicle classes, incremental costs can be estimated 

using the same method as for bridge construction.  The total bridge maintenance toll 

share for each load class can then be calculated by summing the per-load costs across all 

increments required by that class: 



129 

 

∑=
L

lilBM ct ,,  

(Eq. 23)  
where:   tBM,l = bridge maintenance share of load-related toll for class l ($/load) 

ci,l = cost per load of type l for pavement increment i ($/load) 
L= the set of pavement increments required to accommodate l 

 

If not, costs can be assigned according to system use as part of the base toll.  In 

general, cost allocation studies indicate that load-related bridge maintenance costs will 

be very low compared to other cost categories over the life of the system, particularly 

for newer bridge construction. 

6.3.6 Final Axle-Load  Toll 

The final toll rate for each load class can then be estimated by simply summing 

the toll rate shares for each load class across all cost types. 

lBMlBClPMlPCl ttttt ,,,, +++=  

(Eq. 24) 
where:   tl = final “Axle-Load”-based rate for toll class l ($/load) 

tPC,l = pavement construction share of load-related toll for class l ($/load) 
tPM,l = pavement maintenance share of load-related toll for class l ($/load) 
tBC,l = bridge construction share of load-related toll for class l ($/load) 
tBM,l = bridge maintenance share of load-related toll for class l ($/load) 

 
The final toll rate paid by an individual vehicle can then be calculated by 

summing the base toll rate per vehicle and the individual per-axle tolls paid for each axle 

belonging to that vehicle: 
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∑+=
A

lbvAL ttt ,  

(Eq. 25) 
where:   tAL,v = total toll paid by vehicle  v in “Axle-Load” structure ($) 

tb = base toll paid per vehicle ($) 
tl = toll paid for load l ($) 
A= the set of all axles belonging to vehicle v 

 

6.4  NUMBER-OF-AXLE TOLL RATE ESTIMATION 

In a “number-of-axle (n-1)” tolling structure, each vehicle pays a toll equal to a 

base two-axle toll rate multiplied by a value z, which is equal to its number of axles 

minus one: 

1−= vv az  

(Eq. 26) 
where:   zv = toll multiplier for toll rate paid by vehicle v 
  av= total number of axles on vehicle v 
 

The total toll paid by vehicle v is then calculated by multiplying the toll multiplier 

by a base two-axle vehicle toll rate: 

2, tzt vvNA ×=  

(Eq. 27) 
where:   tNA,v= toll paid by vehicle v in “number-of-axle” structure 

zv = toll multiplier for toll rate paid by vehicle v 
  t2= base toll rate for two-axle vehicle 
 

For the purpose of equity comparison, this toll rate should be set so that the 

total toll collected over the life of the facility is equal to that collected using the “Axle-
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Load” based toll rate, and for this analysis, the sum of all costs.  The following equation 

can be used to solve for the value of t2: 

∑ ××=
A

aa tznC 2  

(Eq. 28) 
where:   C= sum of all costs over life of facility 

na = expected number of vehicles with number of axles a 
  za= toll multiplier for vehicles of number of axles a 

t2= base toll rate for two-axle vehicle 
A = set of all number of axle classes a 

 

6.5. COST RESPONSIBILITY ESTIMATION 

Once the new toll structure and rates have been established, an equity analysis 

can be performed to compare the share of cost responsibilities paid by individual 

vehicles and vehicle classes under a “number-of-axle (n-1)” tolling structure and the 

proposed “axle-load” toll rate structures.  The first step in the equity comparison is to 

determine the cost responsibility for each vehicle.  The process used for assigning 

individual vehicle cost responsibilities is very similar to that used for allocation of costs 

to different toll classes.  Figure 12 show the process used for allocating cost 

responsibilities. 
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Figure 12.  Cost Allocation Method for Estimating Cost Responsibilities 
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As can be seen from the figure the same methods of cost allocation are used to 

determine the “Common” and “Load-Related” costs.  “Common” costs are assigned to 

all vehicles based on their share of consumption.  Here this cost is assigned as common 

cost per vehicle rc.  However, unlike in the toll estimation, “Load-Related” costs must be 

allocated to individual vehicles rather than load classes. 

6.5.1 Pavement Construction Cost Responsibility Estimation 

 To determine the pavement construction cost responsibility for each individual 

vehicle, a combined incremental/proportional method can be employed.  The same 

iterative design process is used to estimate the design cost for individual pavement 

increments.  However, instead of estimating an average cost per vehicle within each 

load class for each increment (Eq. 14), a cost per ESAL for the total ESALs contributed by 

all classes responsible for that class is estimated: 

∑
=

L
l

j
j E

C
c  

(Eq. 29) 
where:   cj = cost per ESAL for increment j ($/ESAL) 
  Cj = total cost of constructing increment j ($) 

El = total ESALs contributed to pavement by load class l 
L = the set of load classes for which j must be constructed 

 

To determine the pavement cost responsibility for each individual load, the costs 

per ESAL are then summed across all increments for which that load’s class shares 

responsibility: 
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∑=
J

jxE cc ,  

(Eq. 30) 
where:   cE,x = cost per ESAL for load x ($/ESAL) 

cj = cost per ESAL for pavement increment j 
J = the set of pavement increments required to accommodate load x 

 

 The total cost responsibility for a given load can then be estimated by 

multiplying the estimated cost per ESAL by the total ESALs contributed to the pavement 

by that load: 

xxExPC Ecr ×= ,,  

(Eq. 31) 
where:   rPC,x = pavement construction cost responsibility for load x($) 

cE,x = cost per ESAL for load x ($/ESAL) 
Ex = ESALs contributed by load x 

 

Finally, the total cost responsibility can be estimated by summing the individual 

load costs across all loads contributed by an individual vehicle: 

 

∑=
V

xPCvPC rr ,,  

(Eq. 32) 
where:   rPC,v = pavement construction cost responsibility for vehicle v($) 
  rPC,x = pavement construction cost responsibility for load x($) 

V = the set of loads belonging to vehicle v 
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6.5.2 Pavement Maintenance Cost Responsibility Estimation 

 A vehicle’s pavement maintenance cost responsibility, like the pavement 

maintenance toll rate, is estimated as a proportional share of total maintenance costs.  

The cost per ESAL estimated from (Eq. 17) can be directly applied to individual loads to 

estimate a maintenance cost share for that load: 

 xmxPM Ecr ×=,  

(Eq. 33) 
where:   rPM,l = pavement maintenance cost responsibility for load x ($) 

cm = maintenance cost per ESAL($/ESAL) 
Ex = ESALs contributed to pavement by load x 

 

The vehicle’s total cost responsibility can then be estimated by summing the 

individual load costs across all loads contributed by an individual vehicle: 

 

∑=
V

xPMvPM rr ,,  

(Eq. 34) 
where:   rPC,v = pavement maintenance cost responsibility for vehicle v($) 
  rPM,x = pavement maintenance cost responsibility for load x($) 

V = the set of loads belonging to vehicle v 
 

6.5.3  Bridge Construction Responsibility Estimation 

A vehicle’s bridge cost responsibility can be estimated directly from the 

incremental bridge design process.  No good allocator exists for distinguishing between 

individual vehicles within a given design vehicle moment class, so cost responsibilities 
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per vehicle for each design increment can be estimated directly from Eq. 19.  The 

vehicle’s total cost responsibility can then be estimated by summing the increment costs 

across all bridge design type increments which are required to accommodate the 

vehicle: 

∑=
D

ilBC cr ,  

(Eq. 35) 
where:   rBC,v = bridge construction cost responsibility for vehicle v($) 

ci = cost per load for bridge design vehicle increment i  
D= the set of all bridge design vehicle increments required to accommodate v 

 

6.5.4 Bridge Maintenance Responsibility Estimation 

Like the bridge maintenance toll rate share, bridge maintenance cost 

responsibilities per vehicle, rBM,v, may be estimated using the same incremental method 

used for bridge construction costs (Eq. 19, 34, 35).  These costs may also be allocated as 

common costs, where each vehicle pays a share in proportion to its consumption (e.g. 

per vehicle, per vehicle-mile). 

6.5.5 Final Vehicle Cost Responsibility 

The final vehicle cost responsibility for each vehicle can then be estimated by 

summing the cost responsibilities for each type of cost. 
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vBMvBCvPMvPCcv rrrrrr ,,,, ++++=  

(Eq. 36) 
where:   rv = final cost responsibility for vehicle v ($) 

rc = common cost responsibility per vehicle ($) 
rPC,v = pavement construction cost responsibility for vehicle v($) 
rPM,v = pavement maintenance cost responsibility for vehicle v($) 
rBC,v = bridge construction cost responsibility for vehicle v($) 
rBM,v = bridge maintenance cost responsibility for vehicle v($) 
 
 

6.6 TOLL RATE EQUITY ANALYSIS 

The equity of tolls paid under each tolling structure can then be estimated by 

calculating “responsibility ratios” for toll structure for each vehicle.  These ratios are 

calculated according to the following formulas: 

v

vAL
vAL r

t
R ,

, =  

(Eq. 37) 
where:   RAL,v = “Axle-Load responsibility ratio” for vehicle v 

tAL,v = “Axle-Load” toll paid by vehicle v  
rv= total cost responsibility of vehicle v 

 

v

vNA
vNA r

t
R ,

, =  

(Eq. 38) 
where:   RNA,v = “Number-of-Axle responsibility ratio” for vehicle v 

tNA,v = “Number-of-Axle” toll paid by vehicle v  
rv= total cost responsibility of vehicle v 

 

In a perfectly equitable toll structure, R would equal exactly one for every 

vehicle.  The overall equity of these toll structures can be examined by estimating both 
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the mean and standard deviation of these “responsibility ratios”.  The means are 

calculated by: 

 

V

V
vAL

AL n

R
R

∑
=

,

exp  

(Eq. 39) 
where:   expRAL = mean “Axle-Load responsibility ratio” for all observed vehicles 

RAL,v = “Axle-Load responsibility ratio” for vehicle v 
V = the set of all observed vehicles 
nv= total number of observed vehicles 

 
 

V

V
vNA

NA n

R
R

∑
=

,

exp  

(Eq. 40) 
where:   expRNA = mean “Number-of-Axle responsibility ratio” for all observed vehicles 

RNA,v = “Number-of-Axle responsibility ratio” for vehicle v 
V = the set of all observed vehicles 
nv= total number of observed vehicles 

 
 

The standard deviations can then be estimated as: 

( )∑ −=
V

ALvAL
v

AL RR
n

sdR 2
, exp1

 

(Eq. 41) 
where:   sdRAL = standard deviation of “Axle-Load responsibility ratio” 

nv= total number of observed vehicles 
RAL,v = “Axle-Load responsibility ratio” for vehicle v 
expRAL = mean “Axle-Load responsibility ratio” for all observed vehicles 
V = the set of all observed vehicles 
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( )∑ −=
V

NAvNA
v

NA RR
n

sdR 2
, exp1

 

(Eq. 42) 
where:   sdRNA = standard deviation of “Number-of-Axle responsibility ratio” 

nv= total number of observed vehicles 
RNA,v = “Number-of-Axle responsibility ratio” for vehicle v 
expRNA = mean “Number-of-Axle responsibility ratio” for all observed vehicles 
V = the set of all observed vehicles 

 

The mean values are used to compare overall which toll rate is more equitable; 

the rate for which expR is closer to one is more equitable.  The equity of tolls paid by 

individual vehicle classes can also be examined by replacing nv and V in equations 39 

and 40 with nvc and Vc, where nvc is the number of vehicles belonging to a class c and Vc 

is the set of all vehicles belonging to that class. 

The standard deviation is a measure of the dispersion of equity ratios.   The sdR 

values are used to examine the comparative equity of tolls paid by individual vehicles.  A 

low value of sdR indicates that most vehicles will pay a toll close to their share of costs.  

A high sdR value indicates that more vehicles will pay a value more or less than their 

share of costs.  Again, the dispersion of R values for individual vehicle classes can be 

examined by replacing nv and V in equations 41 and 42 with nvc and Vc. 
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CHAPTER 7: CASE STUDY 

The design facility considered in this case study is based on Texas State Highway 

(SH) 130 Segments 1-4, a 49 mile toll road that provides an alternative route to IH-35 

through Austin.  The design facility in this study is assumed to have opened in 2008, and 

a 30 year life, through 2037, will be used for toll rate analysis.  Currently, SH 130 tolls 

vehicles using a “Number-of-Axle (n-1)” toll rate structure. 

7.1  PROPOSED TECHNOLOGY SYSTEM FOR TOLLING 

Currently, tolls are collected on SH 130 using an “Open Road” tolling system.  

There are four mainline gantries: one located in each of the four segments.  It is 

assumed that for axle load identification, a bending plate WIM system will be installed 

in each lane and integrated with the fiber-optic communications systems at the location 

of these gantries to measure and communicate the truck axle weights for each passing 

vehicle.   

7.2  TRAFFIC VOLUME ESTIMATION 

Before construction of the facility began, daily, weekly, and annual screenline 

traffic volumes for each segment of SH 130 were estimated.220  Since this analysis 

requires estimation of a single toll rate to be applied to the entire length of the facility, 

these screenline volumes were averaged to estimate a single projected volume for 

trucks traveling the length of the facility.  These trucks were also assumed to be 

traveling at a single free flow speed.   
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The exact share of vehicles classified as trucks is not provided in the report for 

every analysis year; however, the truck share for the first year of operation is provided 

as 10 percent.221   Back-calculating from the other truck share years provided, an annual 

growth in truck share of 3 percent was estimated.  No information is provided in the 

report to estimate a split between truck types.  The truck and passenger volumes and 

shares for each design year are shown in Table 20.  
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Table 20.  Estimated Truck and Passenger Car Volumes, Case Study Facility 

Volume Share Volume Share

2008 406,944 0.100 3,662,496 0.900 4,069,440

2009 567,464 0.103 4,941,896 0.897 5,509,360

2010 716,990 0.106 6,041,330 0.894 6,758,320

2011 893,029 0.109 7,279,451 0.891 8,172,480

2012 1,031,119 0.113 8,130,241 0.887 9,161,360

2013 1,178,147 0.116 8,984,653 0.884 10,162,800

2014 1,305,462 0.119 9,627,578 0.881 10,933,040

2015 1,439,356 0.123 10,263,924 0.877 11,703,280

2016 872,153 0.087 9,178,727 0.913 10,050,880

2017 894,320 0.089 9,111,840 0.911 10,006,160

2018 969,057 0.092 9,557,503 0.908 10,526,560

2019 1,065,345 0.095 10,170,095 0.905 11,235,440

2020 1,166,545 0.098 10,777,855 0.902 11,944,400

2021 1,272,851 0.101 11,380,429 0.899 12,653,280

2022 1,384,485 0.104 11,977,675 0.896 13,362,160

2023 1,573,568 0.107 13,171,152 0.893 14,744,720

2024 1,757,597 0.110 14,231,843 0.890 15,989,440

2025 1,937,567 0.113 15,175,713 0.887 17,113,280

2026 1,519,627 0.092 14,975,253 0.908 16,494,880

2027 1,672,867 0.095 15,956,493 0.905 17,629,360

2028 1,833,935 0.098 16,929,905 0.902 18,763,840

2029 2,003,169 0.101 17,895,231 0.899 19,898,400

2030 2,102,923 0.104 18,177,957 0.896 20,280,880

2031 2,250,836 0.107 18,824,284 0.893 21,075,120

2032 2,427,072 0.110 19,636,288 0.890 22,063,360

2033 2,606,871 0.113 20,400,729 0.887 23,007,600

2034 2,788,869 0.117 21,108,091 0.883 23,896,960

2035 2,971,555 0.120 21,749,165 0.880 24,720,720

2036 2,582,651 0.111 20,724,149 0.889 23,306,800

2037 2,729,378 0.114 21,184,142 0.886 23,913,520

Total 47,921,753 401,226,087 449,147,840

Trucks Passenger Cars
TotalDesign 

Year

 

As can be seen in this table, truck shares are projected to drop in 2016, 2026, 

and 2036.  These years coincide with the implementation of higher toll rates.  Toll rates 

are expected to be increased by 50 percent in 2016, 33.3 percent in 2026, and 16.7 
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percent in 2036.  The traffic analysis performed for SH130 estimated toll rate elasticities 

of -.44 for two-axle vehicles and -.71 for multi-axle vehicles.  These elasticities were 

estimated by evaluating a single design year, therefore eliminating the effects of 

inflation.  In this study, it is assumed that the toll rate will be inflated annually according 

to the consumer price index (CPI), so that it will maintain the same value in 2008 dollars 

throughout the design period, except where it is increased by the previously discussed 

amounts in 2016, 2026, and 2036.  It is assumed that volume changes resulting from 

inflation are negligible.  Although in the past, toll rates have not generally been indexed 

for inflation, many recent public-private partnership agreements for privately operated 

toll roads explicitly allow operators to index toll rates to account for inflation 

effects.222,223  For the purpose of volume estimation, these elasticities were assumed to 

remain valid regardless of the structure of the toll.  These values were employed for this 

case study to estimate the drops in vehicle volumes that would result from increasing 

the toll rate in each year when a change occurred. 

 Since SH 130 has only recently opened, truck profile data is not yet available for 

the facility; however, data is available to establish the truck profile for IH-35, the 

interstate which the toll road parallels.  Data from two TxDOT WIM Stations located on 

I-35 north and south of SH-130 were analyzed to establish the truck profile for this case 

study.  Station 513 is located on I-35 near the Williamson County line, about 15 miles 

north of SH-130’s northern terminus at I-35.  Station 516 is located on I-35 southwest of 

San Antonio, approximately 30 miles southwest of the southern terminus of Segment 6 
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(one of two segments yet to be constructed under a PPP contract) at I-10.  Data for the 

years 2000, 2001, and 2002 were analyzed.   

Table 21 shows the truck profile estimated for the case study facility, including 

projected volumes for each truck types.  These values were estimated from the WIM 

data using the process described in Figure 7.  These six truck types constituted more 

than 99 percent of all trucks on I-35.  Other truck classes, including vehicles with more 

than five axles, were not considered in this study.  

Table 21.  Case Study Truck Profile 
 

Number 
of Axles 

Configuration 
Trucks 

Total Percent 

2 SU 
 

14,579,569 30.4 

3 

SU 
 

2,342,292 4.9 

ST 
 

342,716 0.7 

4 

SU 
 

60,012 0.01 

ST 
 

2,095,096 4.4 

5 ST 
 

28,555,386 59.6 

 
Total 47,921,753 

 

 

Once the truck profile was established, axle type profiles could also be estimated 

for steering, single, tandem, and tridem axles within each axle group.  The resulting axle 
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type estimates are provided in Table 22.  Because the toll rate changes over the design 

life, vehicle and axle volumes during each tolling period must also be identified.  These 

are provided in Tables 23-26.   

Table 22.  Vehicle and Axle Load Type Estimates, Design Life 
 

Steering Single Tandem Tridem

2 SU 14,579,569 14,579,569 14,579,569 - -

3 ST 342,716 342,716 685,433 - -

3 SU 2,342,292 2,342,292 2,342,292 -

4 ST - All Single 60,012 60,012 180,037 - -

4 ST - 1 Tandem 2,035,084 2,035,084 2,035,084 2,035,084 -

4 SU 6,693 6,693 - 6,693

5 ST - All Single 1,154,413 1,154,413 4,617,652 - -

5 ST - 1 Tandem 1,979,156 1,979,156 3,958,312 1,979,156 -

5 ST - 2 Tandems 25,278,537 25,278,537 50,557,073 -

5 ST - 1 Tridem 143,281 143,281 143,281 - 143,281

Total 47,921,753 47,921,753 26,199,367 56,913,605 149,974

Vehicle 
Configuration

Estimated Axle LoadsEstimated 
Vehicles

 

Table 23.  Vehicle and Axle Load Type Estimates, 2008-2015 

Steering Single Tandem Tridem

2 SU 2,293,494 2,293,494 2,293,494 - -

3 ST 53,912 53,912 107,825 - -

3 SU 368,463 368,463 368,463 -

4 ST - All Single 9,440 9,440 28,321 - -

4 ST - 1 Tandem 320,137 320,137 320,137 320,137 -

4 SU 1,053 1,053 - 1,053

5 ST - All Single 181,599 181,599 726,397 - -

5 ST - 1 Tandem 311,339 311,339 622,677 311,339 -

5 ST - 2 Tandems 3,976,535 3,976,535 7,953,070 -

5 ST - 1 Tridem 22,539 22,539 22,539 - 22,539

Total 7,538,511 7,538,511 4,121,390 8,953,008 23,592

Vehicle Configuration
Estimated 
Vehicles

Estimated Axle Loads
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Table 24.  Vehicle and Axle Load Type Estimates, 2016 to 2025 

Steering Single Tandem Tridem

2 SU 3,922,676 3,922,676 3,922,676 - -

3 ST 92,209 92,209 184,418 - -

3 SU 630,201 630,201 630,201 -

4 ST - All Single 16,146 16,146 48,439 - -

4 ST - 1 Tandem 547,545 547,545 547,545 547,545 -

4 SU 1,801 1,801 - 1,801

5 ST - All Single 310,598 310,598 1,242,393 - -

5 ST - 1 Tandem 532,498 532,498 1,064,995 532,498 -

5 ST - 2 Tandems 6,801,264 6,801,264 13,602,529 -

5 ST - 1 Tridem 38,550 38,550 38,550 - 38,550

Total 12,893,488 12,893,488 7,049,016 15,312,772 40,351

Vehicle Configuration
Estimated 
Vehicles

Estimated Axle Loads

 

Table 25.  Vehicle and Axle Load Type Estimates, 2026 to 2035 

Steering Single Tandem Tridem

2 SU 6,747,284 6,747,284 6,747,284 - -

3 ST 158,606 158,606 317,212 - -

3 SU 1,083,990 1,083,990 1,083,990 -

4 ST - All Single 27,773 27,773 83,319 - -

4 ST - 1 Tandem 941,817 941,817 941,817 941,817 -

4 SU 3,098 3,098 - 3,098

5 ST - All Single 534,251 534,251 2,137,005 - -

5 ST - 1 Tandem 915,934 915,934 1,831,868 915,934 -

5 ST - 2 Tandems 11,698,663 11,698,663 23,397,326 -

5 ST - 1 Tridem 66,309 66,309 66,309 - 66,309

Total 22,177,725 22,177,725 12,124,814 26,339,067 69,406

Vehicle Configuration
Estimated 
Vehicles

Estimated Axle Loads
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Table 26.  Vehicle and Axle Load Type Estimates, 2036 to 2037 

Steering Single Tandem Tridem

2 SU 1,616,116 1,616,116 1,616,116 - -

3 ST 37,989 37,989 75,979 - -

3 SU 259,638 259,638 259,638 -

4 ST - All Single 6,652 6,652 19,957 - -

4 ST - 1 Tandem 225,585 225,585 225,585 225,585 -

4 SU 742 742 - 742

5 ST - All Single 127,964 127,964 511,857 - -

5 ST - 1 Tandem 219,385 219,385 438,771 219,385 -

5 ST - 2 Tandems 2,802,074 2,802,074 5,604,149 -

5 ST - 1 Tridem 15,882 15,882 15,882 - 15,882

Total 5,312,029 5,312,029 2,904,146 6,308,757 16,624

Vehicle Configuration
Estimated 
Vehicles

Estimated Axle Loads

 

7.2 COST ESTIMATION 

The next step in the analysis was to estimate construction costs and project 

maintenance costs over the 30 year analysis period.  Generalized costs estimated for SH 

130 construction were available from the 2002 Project and Engineering Report for the 

Central Texas Turnpike System.224  The total construction element costs for SH130 were 

estimated to be approximately $985 million.  However, this value was not directly 

employed in this study.  This estimate includes construction of frontage roads, which are 

not included in this analysis.  Additionally, since SH 130 was developed under a 

Comprehensive Development Agreement (CDA), no further breakdown of costs to 

identify specific element costs was available.   However, the report did include an 

itemized cost breakdown for construction of the other elements of the Central Texas 

Turnpike System, SH 45 and Loop 1, which were built during the same period but were 

not constructed under a CDA. 
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7.2.1 Bridge Cost Estimation 

Based on the detailed cost breakdown for the other elements of the CTTS, bridge 

construction costs for SH 130 were assumed to be one fourth of total element costs for 

SH 130.225  A total of 19 bridges constructed for SH130 were identified from the National 

Bridge Inventory, totaling about 18.42 centerline miles.226  While the shortest bridges 

were constructed to HS20 standards, the majority of bridges were constructed for HS25 

design vehicles.  According to the 2002 Texas Highway Cost Allocation Study, HS20 

bridge construction per centerline mile was estimated to cost five percent less than 

HS25 bridge construction; this study assumed this value to remain true.227  Costs per 

centerline mile were estimated for both HS20 and HS25 bridges from the total bridge 

costs.    These values were adjusted for inflation using the CPI for final bridge costs of 

$12,705,295 per centerline mile for HS20 bridges and $13,373,995 per centerline mile 

for HS 25 bridges in 2008 dollars.  Although they were included to determine the cost 

per centerline mile, bridges constructed on the frontage road were not included in the 

cost estimation for this study.  Table 27 provides statistics for the 3 types of bridges, 

short, medium, and long, examined in this study.  All short bridges were constructed for 

HS20 vehicles, while all other bridges were constructed for HS25 vehicles.  In this study, 

all bridges are assumed to be simply supported. 
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Table 27.  Case Study Bridge Statistics 

Bridge 
Type

Total 
Number

Maximum Span 
Range (ft)

Average Maximum 
Span (ft)

Average 
Length (ft)

Total 
Length (ft)

Total Lane-
Miles (mi)

Short 9 15 to 24 18.3 140.8 1267.0 0.48

Medium 4 27 to 37 31.0 131.0 524.0 0.20

Long 94 244 to 524 370.4 1959.8 184218.0 69.78

Total 107 186009.0 70.46  

7.2.2 Pavement Cost Estimation 

While SH 130 was constructed using rigid concrete pavement, the other 

elements of the CTTS were constructed using flexible asphalt pavement; as a result, 

pavement costs were not estimated as a share of actual construction costs for SH 130.  

Instead, a cost per mile was estimated for a typical rigid pavement section of urban 

freeway in Central Texas.  Pavement structure information and material costs were 

provided by Dr. Mike Murphy from the Center for Transportation Research at the 

University of Texas.  Figure 13 shows the design pavement cross section used for this 

study.  Table 28 provides the estimated material costs for pavement construction. 
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Table 28.  Case Study Pavement Construction Costs 

Material Thickness (in)
Cost ($ per square 
yard per inch thick)

Cost per 
Centerline Mile ($)

Total Cost ($)

CRCP 13 4.75 2,753,227 134,908,107

ACP Non-Erodable Base 4 3.85 686,635 33,645,099

Lime Treated Subgrade 6 0.26 69,555 3,408,205

Subgrade 6 0.17 45,478 2,228,442

Total 174,189,852  

7.2.3 Other Construction Costs 

Based on data from the other CTTS toll roads, Earthwork, Drainage, Retaining 

Walls, and Mobilization cost about one and a half times the cost of constructing an 

asphalt pavement; however, because rigid concrete pavement is more expensive, a 

multiplier of  one was assumed to estimate the total cost for these elements for this 

4’ 12’ 12’ 10’ 

13” CRCP Pavement 

4” ACP Non-Erodable Base 

6” Lime Treated Subgrade 

6” Subgrade 

 
Figure 13.  Case Study Pavement Design Cross-Section 
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case study.  All other element construction costs were estimated to cost about 2 times 

as much as “Earthwork, Drainage, Retaining Walls, and Mobilization” so a multiplier of 2 

was used to estimate the cost of remaining construction elements.  Costs for tollbooths, 

toll technologies, the fiber optic network, construction management, and engineering 

were taken directly from the SH130 report.  WIM technologies were assumed to be 

located in each lane at each main line toll booth, costing $28,000 per bending plate 

system (as discussed in Chapter 4, and adjusted for inflation) for a total cost of 

$448,000. 

Final cost estimates for all construction costs are provided in Table 29.  Although 

some additional costs, such as Earthwork or engineering, could potentially be allocated 

to trucks only, because of the lack of availability of detailed data, in this study, only 

bridge construction costs and pavement material costs are initially considered as “Load-

Related” costs.  These “Bridge and Pavement” costs also include the costs of the base 

facility, which will be allocated to both passenger vehicles and trucks. 
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Table 29.  Final Construction Cost Estimates 
Construction Costs Total Cost ($)

Earthwork, Drainage, Retaining Walls, and Mobilization 174,189,852

Other 348,379,704

Right of Way 152,000,000

Toll  Booths 4,202,000

Toll  Technologies 27,600,000

WIM Technologies 448,000

Fiber Optic Network 15,350,000

Construction Management 115,352,000

Engineering 160,000,000

Common Costs 997,521,556

Pavements 174,189,852

Bridges 235,435,812

Bridge and Pavement Costs 409,625,664

Total Construction Costs 1,407,147,220  

7.2.4  Operations and Maintenance Cost Estimation 

Average annual operations and maintenance costs were assumed to be five 

percent of total construction costs, a value estimated from previous research examining 

toll road maintenance expenditures.228  The Project and Engineering report for SH130 

provided cost estimates for Operations Costs, Major and Routine Technology 

Maintenance, and Major and Routine Bridge/Building/Pavement Maintenance.229  The 

shares for each of these costs identified from the report were retained in this study: 50 

percent of costs were allocated for operations, 18 percent for technology maintenance, 

and 32 percent for infrastructure maintenance.  Although WIM operations and 

maintenance will add some technology costs, these costs are extremely low compared 

to toll system costs, so no additional share is assumed for these costs.   
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No detailed information was provided to estimate the share of infrastructure 

costs contributed by building, bridge, and pavement maintenance.  For routine road and 

building maintenance, pavement shares were assumed to be 70 percent, bridges 15 

percent, and buildings 15 percent.  In the 1997 Federal HCA study, system-wide, 

pavement rehabilitation costs were estimated to be about 4.5 times the cost of major 

bridge rehabilitation and other bridge maintenance costs.230  No information is available 

on building maintenance costs, so these costs are assumed to be equal to bridge costs.  

Of the 70 percent of costs assumed for routine pavement maintenance, about 28 

percent is assumed to be for non-load related pavement maintenance and 42 percent 

for load-related routine pavement maintenance.   

For major road and building maintenance, a higher share, 80 percent, was 

assumed for pavement costs, and a lower percentage, 5 percent, was assumed for 

bridges.  This change was assumed after discussion with bridge experts who indicated 

that new HS25 bridges are very unlikely to require major reconstruction during the first 

thirty years in use with the projected bridge loadings.  All major pavement maintenance 

costs were considered to be load-related.  Total estimated maintenance costs are shown 

in Table 30. 
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Table 30.  Final Maintenance Cost Estimates 
Maintenance Costs Total Cost ($)

Operations 1,055,360,415

Routine Toll/WIM Maintenance 147,750,458

Major Toll/WIM Maintenance 232,179,291

Environment-Related Routine Pavement Maintenance 153,660,476

Routine Bridge Maintenance 82,318,112

Routine Building Maintenance 82,318,112

Major Bridge Maintenance 6,332,162

Major Building Maintenance 18,996,487

Total Common Costs 1,778,915,515

Load-Related Routine Pavement Maintenance 230,490,715

Load-Related Major Pavement Maintenance 101,314,600

Total Load-Related Costs 331,805,314

Total Maintenance Costs 2,110,720,829  

7.2.5 Debt Service Cost Estimation 

Most toll roads are funded through debt, either by issuing bonds or through a 

long-term loan.  SH 130 construction was funded through state-issued bonds and a 

federal TIFIA loan.231  The annual blended interest rate for debt service on SH 130 was 

5.14 percent.  For this case study, it was assumed that a $900 million loan with an 

annual interest rate of five percent was used to finance construction.  Annual payments 

on this loan were assumed to begin in 2013 at a rate of $77,618,840 per year.  Total 

interest accrued was estimated to be $1,040,470,994 over the life of the loan.  Since this 

debt was acquired to finance construction, it should be allocated proportionally to 

individual construction cost elements. 
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7.3 LOAD-RELATED CLASS DETERMINATION 

 As was discussed in Chapter 6, before cost allocation for toll rate determination 

can begin, the load-class structure for the “Axle-Load” toll must be determined.  The 

first step in allocating costs to load-classes was to define the load classes.  Although the 

load-based toll that will be estimated in this study will include both bridge and 

pavement components, only pavement impacts can be directly estimated as a function 

of individual loads.  Additionally, pavement maintenance costs are by far the largest cost 

being allocated to trucks.  As a result, the ESAL was chosen as the measure to be used 

for load class determination.   

First, five load classes were chosen at the 20th percentiles of the legal load 

ranges for each of the three load types.  Next, the expected ESAL for a given load within 

the range was estimated from the observed data (Eq. 11).  The expected ESALs were 

then compared across load types.  For the purpose of this analysis, steering and single 

axles were both classified into one “single” axle category.  Generally, steering axles are 

equipped with single tires while other single axles are equipped with dual tires.  In this 

ESAL analysis, no distinction in pavement impacts is made based on number of tires; 

however, more advanced methods of analysis, including mechanistic models, could 

differentiate the pavement impacts of different loading points due to different tire 

configurations.  If a mechanistic method was employed, steering axles could be 

segregated from single axles for the purpose of tolling. 



157 

 

The ranges were iterated in 500 pound increments until the expected ESALs 

across the single and tandem load types within each class were approximately equal.  

Two additional load classes were also introduced during the iterating process to 

improve the equity across load ranges.  Because of the very small number of 

observations of tridem axles, particularly in the higher load classes, the expected ESAL 

was not used to determine the limits of the tridem load classes.  For tridem load classes, 

minimum and maximum weights were approximated by comparing the estimated ESALs 

for these weights with the limits of the single and tandem load classes.  The final load 

classes determined through this iterative process, as well as the expected ESAL for a 

load belonging to each class, are provided in Table 31. 

Table 31.  Final Load Classes 
Weighted

Weight 
(kips)

Expected 
ESAL

Weight (kips)
Expected 

ESAL
Weight 

(kips)
Expected 

ESAL
Expected 

ESAL

Class 1 < 4 1.282E-03 < 5.5 8.218E-04 < 8 2.531E-04 1.239E-03

Class 2 4 to 6.5 0.005 5.5 to 10 0.007 8 to 12.5 0.004 0.006

Class 3 6.5 to 9 0.034 10 to 15.5 0.035 12.5 to 20 0.020 0.026

Class 4 9 to 12 0.107 15.5 to 18.5 0.106 20 to 25 0.082 0.101

Class 5 12 to 15 0.258 18.5 to 23.5 0.256 25 to 31.5 0.217 0.242

Class 6 15 to 18 0.650 23.5 to 28.5 0.642 31.5 to 38.5 0.735 0.646

Class 7 > 18 1.223 > 28.5 1.401 > 38.5 1.148 1.301

Load Class

Single Axles Tandem Axles Tridem Axles

 

7.4 AXLE-LOAD TOLL RATE DETERMINATION 

Once the “Axle-Load” classes are defined for each axle type, the next step in the 

analysis is to estimate the toll rates paid for axles within each given class.  In this 

analysis, it is assumed that all costs – construction, maintenance, and debt service – are 
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paid off at the end of the 30 year analysis period.  The 30 year analysis period was 

chosen as the estimated life of the roadway’s pavements.  Many construction elements, 

including both buildings and bridges, will likely have a longer life period, and as a result, 

will have remaining service life at the end of the 30 year analysis period.  However, the 

value of these remaining elements is not considered in the zero sum calculation used to 

estimate toll rates. 

As was discussed in Chapter 6, once costs have been estimated, the first step in 

toll rate determination is to decide which costs should be allocated as “Common Costs” 

and which should be allocated as “Load Related”.  As was discussed in the previous 

section, for this study, all costs except Bridge Construction, Pavement Construction, 

Load-Related Pavement Maintenance, and the cost of debt associated with Bridge and 

Pavement Construction were allocated as “Common Costs.”  It is likely that in future 

applications of this method, additional costs could be allocated as “Load-Related” if 

better cost estimating data was available.  If this value was considered as revenue, toll 

rates resulting from the following analysis would decrease. 

7.4.1 Common Toll Share Determination 

 Total “Common Costs” were calculated by summing the costs identified as 

common for construction and maintenance.  Additionally, since 71 percent of 

construction costs were allocated as “Common Costs,” 71 percent of Debt Service costs 

were also allocated as common.  Table 32 shows the total value of costs identified as 

common within each category. 
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Table 32.  Total Common Costs 
Common Costs Total Cost ($)

Construction 997,521,556

Debt 738,734,406

Maintenance 1,778,915,515

Total Common Costs 3,515,171,477  

As was discussed in Chapter 6, a base toll rate to recover common costs can be 

estimated using equation 12.  However, because toll rates are expected to be increased 

at three different times over the design life of the facility, these percentage increases 

must be considered in estimating the base toll rate, and the increased rates to be 

charged during the three later tolling periods.  In order to estimate the starting base toll 

rate, the volumes of vehicles expected during each rate period must be estimated.  

Rearranging equation 12, we see that: 

 

ntC bc ×=  

(Eq. 43) 
where:   Cc = total common costs ($) 

tb = base toll rate per vehicle ($/vehicle)  
n = number of vehicles expected over life of facility 

 

Adding an additional variable, a toll rate multiplier for each tolling period, we can 

write the equivalent equation: 

∑ ××=
T

ttc nmtC 1  

(Eq. 44) 
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where:   Cc = total common costs ($) 
t1 = base toll rate per vehicle during period 1 ($/vehicle)  
mt = toll rate multiplier for time period t 
nt = number of vehicles expected on facility during time period t 
T = the set of all tolling periods 

 

Solving for t1 and multiplying this base rate by the toll rate multipliers for 

subsequent periods, we obtain the following base common toll rates for each period: 

Table 33.  Base Common Toll Shares 
Toll Period Rate ($)

2008 to 2015 4.49

2016 to 2025 6.74

2026 to 2035 8.98

2036 to 2037 10.48

Weighted Average 7.83  

7.4.2 Pavement Construction Toll Share Determination 

 Pavement construction toll shared were estimated using the incremental 

method described in section 6.3.2.    Table 34 shows the total pavement costs allocated 

using this method. 

 

Table 34.  Total Pavement Construction Costs 
Pavement Costs Total Cost ($)

Pavement 135,274,052

Pavement Debt 100,025,679

Pavement Base Costs 235,299,731

Pavement Increments 38,915,800

Pavement Increment Debt 28,212,371

Incremental Pavement Costs 67,128,171

Total Pavement Construction Costs 302,427,902  
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Standard TXDOT input values for Austin were employed in the rigid pavement 

design equation (Eq. 13).  These values are shown in Table 35. 

Table 35.  TxDOT Rigid Pavement Design Input Values 
Variable Input Value

28-Day Concrete Modulus of Rupture (psi) 620
28-Day Concrete Elastic Modulus (psi) 5,000,000
Effective Modulus of Subbase/Subgrade Reaction (pci) 3
Initial Servicabil ity 4.5
Terminal Servicabil ity 2.5
Load Transfer Coefficient 3.2
Drainage Coefficient 1.05
Overall  Standard Deviation 0.39
Reliabil ity (%) 95  

The base pavement thickness was determined to be 5.5 inches; this thickness 

was required to accommodate passenger cars, and no additional thickness was required 

to accommodate Class I truck loads.  The cost of this base facility was allocated as part 

of a base toll for all vehicles.  The per-vehicle share for each rate period was determined 

by replacing the total common cost in equation 44 with the base pavement facility cost 

and solving for the first period toll rate. 

∑ ××=
T

ttPBPB nmtC 1  

(Eq. 45) 
where:   CPB = total pavement base costs ($) 

tPB1 = base toll rate per vehicle during period 1 ($/vehicle)  
mt = toll rate multiplier for time period t 
nt = number of vehicles expected on facility during time period t 
T = set of all time periods 

 

The total pavement base shares calculated per vehicle for each time period are 

shown in Table 36. 
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Table 36.  Pavement Base Toll Share 
Tolling Period Cost ($/vehicle)

2008 to 2015 0.30

2016 to 2025 0.45

2026 to 2035 0.60

2036 to 2037 0.70

Weighted Average 0.52  

 Additional increment costs were then allocated to individual load classes using 

equation 14.  The costs for each pavement increment and the resulting costs per load 

are shown in Table 37. 

Table 37.  Increment Costs for Pavement Construction 

Pavement 
Thickness (in)

Cost ($)
Responsible 

Classes
Total Expected Loads 

Cost Per Load 
($)

6 4,512,754 2,3,4,5,6,7 18,941,108 0.04

7.5 13,538,261 3,4,5,6,7 20,341,132 0.14

10 22,563,769 4,5,6,7 35,009,109 0.30

10.5 4,512,754 5,6,7 14,686,242 0.12

11.5 9,025,507 6,7, 10,662,350 0.37

13 13,538,261 7 13,769,153 0.98  

 Per-axle costs for pavement construction were then estimated for each load 

class using equation 15.  However, because costs must be obtained for each tolling 

period, these costs were used to estimate toll multipliers for each class as a ratio of the 

Class 2 toll: 

2,

,
,

PC

lPC
lPC t

t
m =  

(Eq. 46) 
where:   mPC,L = toll multiplier for load class l 

tPC,l = estimated pavement construction share of load-related toll for class l  
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($/load) 
tPC,2 = estimated pavement construction share of load-related toll for class 2  
($/load) 
 
 

Individual tolling period rates were then obtained by solving the following 

equation for the Class 2 incremental toll rate for the 2008-2015 tolling period. 

∑ ××=
T

ltlPCCPI nmtC ,,1,2  

(Eq. 47) 
where:   CPB = total pavement increment costs ($) 

tC2,1 = class 2 toll rate per load during period 1 ($/vehicle)  
mPC,L = toll multiplier for load class l 
nt,l = number of loads of class l expected on facility during time period t 
T = set of all time periods 

 

 The resulting per-axle toll shares for pavement construction during each tolling 

period are provided in Table 38. 

Table 38.  Pavement Construction Toll Shares 

2008 to 2015 2016 to 2025 2026 to 2035 2036 to 2037 Weighted Average

Class 1 0.00 0.00 0.00 0.00 0.00

Class 2 0.02 0.03 0.05 0.05 0.04

Class 3 0.10 0.16 0.21 0.24 0.18

Class 4 0.28 0.42 0.55 0.65 0.48

Class 5 0.34 0.51 0.69 0.80 0.60

Class 6 0.55 0.83 1.11 1.29 0.96

Class 7 1.11 1.67 2.22 2.59 1.94

Load Class
Rate ($)
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7.4.3 Pavement Maintenance Toll Share Determination 

 Load-related pavement maintenance toll shares were estimated using the 

process described in section 6.3.3.  The total costs allocated using this process are 

provided in Table 39. 

Table 39.  Total Load-Related Pavement Maintenance Costs 
Load-Related Pavement Maintenance Costs Total Cost ($)

Load-Related Routine Pavement Maintenance 230,490,715

Load-Related Major Pavement Maintenance 101,314,600

Total Load-Related Costs 331,805,314  

 An initial estimated cost per ESAL of $9.62 was calculated using equations 16 and 

17.  Estimated costs per load were then estimated for each load class using equations 

18, and 19.  However, these values again cannot be applied directly but must be used to 

estimate toll multipliers to calculate the expected toll rate during each tolling period.  

For pavement maintenance, Class 1 vehicles do pay an additional toll cost, so the Class 1 

toll is defined as the base rate for calculation of the multiplier. 

1,

,
,

PM

lPM
lPM t

t
m =  

(Eq. 48) 
where:   mPM,L = toll multiplier for load class l 

tPM,l = estimated pavement maintenance share of load-related toll for class l  
($/load) 
tPM,1 = estimated pavement maintenance share of load-related toll for class 1  
($/load) 

 

Individual tolling period rates were then obtained by solving the following 

equation for the Class 1 incremental toll rate for the 2008-2015 tolling period. 
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∑ ××=
T

ltlPMCPM nmtC ,,1,1  

(Eq. 49) 
where:   CPM = total pavement maintenance costs ($) 

tC1,1 = class 1 toll rate per load during period 1 ($/vehicle)  
mPM,L = toll multiplier for load class l 
nt,l = number of loads of class l expected on facility during time period t 
T = set of all time periods 

 

 The final resulting pavement maintenance toll shares per load for each class 

during each time period are provided in Table 40. 

 
Table 40.  Pavement Maintenance Toll Shares 

2008 to 2015 2016 to 2025 2026 to 2035 2036 to 2037 Weighted Average

Class 1 0.01 0.01 0.01 0.02 0.01

Class 2 0.03 0.05 0.06 0.07 0.05

Class 3 0.19 0.28 0.38 0.44 0.33

Class 4 0.59 0.89 1.18 1.38 1.03

Class 5 1.42 2.13 2.83 3.31 2.47

Class 6 3.55 5.33 7.10 8.29 6.20

Class 7 7.71 11.57 15.43 18.00 13.46

Load Class
Rate ($)

 

7.4.4 Bridge Construction Toll Share Determination 

 The bridge construction toll share was estimated using the incremental design 

method described in section 6.3.4.  The total bridge construction costs to be allocated 

are provided in Table 41.   
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Table 41.  Total Bridge Construction Costs 
Bridge Costs Total Cost ($)

Bridge 181,109,295

Bridge Debt 133,593,874

Bridge Base Costs 314,703,169

Bridge Increments 54,326,517

BridgeIncrement Debt 39,904,664

Incremental Bridge Costs 94,231,180

Total Bridge Costs 408,934,350  
 

Incremental bridge costs were developed using the relative cost estimates for 

bridges of each design type provided in the 2002 Texas Highway Cost Allocation 

Study.232  The relative costs of an HS25 bridge used to calculate increment costs are 

provided in Table 42.  

Table 42.  Relative Costs for Design Bridge Types 
Design Bridge Type Share of HS25 Cost

H2.5 0.77

H5 0.78

H10 0.82

H15 0.86

HS15 0.9

H20 0.91

HS20 0.95

HS25 1.00  

 In this study, the base bridge costs were defined as the cost of constructing an 

H2.5 bridge for all bridge segments.   As was discussed in the Cost Estimation Section, in 

this study, bridges were categorized into 3 length types: short, medium, and long.  The 

total estimated base and increment costs for bridges of each type, as well as the design 

vehicles responsible for those classes, are provided in Table 43.   
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Table 43.  Bridge Type Increment Costs 

Design 
Bridge Type

Total Cost 
($)

Responsible 
Classes

Total Cost 
($)

Responsible 
Classes

Total Cost 
($)

Responsible 
Classes

H2.5 2,139,198
PC, H2.5, H5, 
H10, H15, 
H20, HS20

893,179

PC, H2.5, 
H5, H10, 
H15, HS15, 
H20, HS20, 
HS25

311,540,887

PC, H2.5, H5, 
H10, H15, 
HS15, H20, 
HS20, HS25

H5 48,462
H5, H10, 
H15, H20, 
HS20

20,907

H5, H10, 
H15, HS15, 
H20, HS20, 
HS25

7,292,244

H5, H10, 
H15, HS15, 
H20, HS20, 
HS25

H10 103,544
H10, H15, 
H20, HS20

42,975
H10, H15, 
HS15, H20, 
HS20, HS25

14,989,614
H10, H15, 
HS15, H20, 
HS20, HS25

H15 103,544
H15, H20, 
HS20

42,975
H15, HS15, 
H20, HS20, 
HS25

14,989,614
H15, HS15, 
H20, HS20, 
HS25

HS15 n/a n/a 46,459
HS15, H20, 
HS20, HS25

16,204,988
HS15, H20, 
HS20, HS25

H20 142,207 H20, HS20 12,776
H20, HS20, 
HS25

4,456,372
H20, HS20, 
HS25

HS20 111,223 HS20 46,459 HS20, HS25 16,204,988 HS20, HS25

HS25 n/a n/a 55,751 HS25 19,445,985 HS25

Total 2,648,177 1,161,481 405,124,691

Base Facility

Additional Cost

Short Bridges Medium Bridges Long Bridges

 

 Like base pavement costs, base bridge costs were allocated to all vehicles as a 

share of the per-vehicle base toll.  An estimated cost per vehicle was determined using 

equation 19.  Individual tolling period rates were again obtained by replacing the 

common costs in equation 44 with the total bridge base cost.  

 ∑ ××=
T

ttBBBB nmtC 1  

(Eq. 50) 
where:   CBB = total bridge base costs ($) 

tBB1 = base toll rate per vehicle during period 1 ($/vehicle)  
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mt = toll rate multiplier for time period t 
nt = number of vehicles expected on facility during time period t 

 The resulting bridge base toll shares per vehicle for each time period are 

provided in Table 44. 

Table 44.  Bridge Base Toll Share 
Toll Period Rate ($)

2008 to 2015 0.40

2016 to 2025 0.60

2026 to 2035 0.80

2036 to 2037 0.93

Weighted Average 0.70  

In order to allocate costs to individual vehicles, each vehicle must be classified to 

one of the design vehicle class categories.  In this study, three design span lengths were 

used to represent all bridges.  Simply supported span lengths of 18, 31, and 370 feet 

were evaluated to determine moment classes for short, medium, and long bridges.  In 

order to estimate the maximum live-load moments (LLM) for each individual truck 

observation, a C++ program was developed using a series of basic moment functions to 

“virtually” run a truck across the design bridge.  Figure 14 describes the program.  A 

detailed description of the program, as well as source code, is provided in Appendix A.  

In order to ensure the success of the program in estimating maximum LLMs, results 

from the program were compared to known values provided in AASHTO’s Standard 

Specification for Highway Bridges for the design vehicles.233 
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Initialize variables: 
Truck position, x = 0. 

Length of bridge, L = 17, 31, or 370. 
Maximum Moment M = 0. 

Input WIM Data 

Move truck forward .1 ft (x = x+.1) 

Axle Spacings Axle Loads 

Determine number of axles on bridge 

Call appropriate moment calculating function 

oneax twoax threeax fourax fiveax 

Determine value of moment calculation dummy variables 

Move moment position forward .1 ft (m = m+.1) 

Calculate live-load moment, Mc.  If Mc >M, M = Mc 

x1, x2, x3, x4 d1, d2, d3, d4, d5 

A, B, C, D, E AB, BC, CD, DE 

If m < L 

Maximum moment for truck position = M 

If m >= L 

If x < L + sum of axle spacings If x >= L + sum of axle spacings 

Truck maximum moment = M 

Initialize variable: 
Moment position, m = 0. 

Figure 14.  Program for Calculating Maximum Live-Load Moment 
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First, maximum live-load moments were estimated for each design vehicle type 

for each design bridge.  Table 45 shows the LLM values for the design vehicles for each 

bridge type. 

Table 45.  Design Vehicle Live Load Moments 

17 31 370

H2.5 18.0 32.1 455.0

H5 36.0 64.1 910.1

H10 72.0 128.3 1820.1

H15 108.0 192.4 2730.2

H20 144.0 256.5 3640.2

HS 15 108.0 216.5 4785.8

HS 20 144.0 288.6 6381.0

HS 25 180.0 360.8 7976.3

Bridge Length

Live Load Moment (kip-ft)

Design 
Vehicle

 

These values were used to determine the design vehicle class for each observed 

vehicle.  After the maximum LLM for each bridge type was calculated for each 

observation, each truck was classified according to its live-load moment.  Vehicles were 

classified to the smallest design truck category whose design LLM it did not exceed.  For 

short and medium span bridges, there was some overlap in the moment categories for 

two and three axle design vehicles.  When overlap occurred, two axle vehicles were 

assigned to the two axle design vehicle class, while three or more axle vehicles were 

assigned to the three axle design class.  The classification criteria are shown in Table 46. 
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Table 46.  Bridge Type Design Moment Classification Criteria 

Minimum Maximum Minimum Maximum Minimum Maximum

H2.5 0.0 18.0 0.0 32.1 0.0 455.0

H5 18.0 36.0 32.1 64.1 455.0 910.1

H10 36.0 72.0 64.1 128.3 910.1 1820.1

H15 72.0a 108.0a 128.3a 192.4a 1820.1 2730.2

H20 108.0a 144.0a 192.4a 256.5a 2730.2 3640.2

HS 15 72.0b 108.0b 128.3b 216.5b 3640.2 4785.8

HS 20 - - 256.5a 288.6a - -
108.0b 144.0 216.5b 288.6b 4785.8 6381.0

HS 25 144.0 180.0 288.6 360.8 6381.0 7976.3

a Two Axle Trucks Only

b Three or more axle trucks

17 31 370Design 
Vehicle

Bridge Span Length (ft)

Live Load Moment (kip-ft)

 

As was discussed in section 6.3.4, for determining toll rates, load-related bridge 

costs must not be assigned to design bridge vehicle classes but to individual load classes.  

More than 99 percent of total bridge construction costs are for long bridges; as a result, 

long bridge moment classes were evaluated for toll rate estimation.   In order to 

determine which costs should be assigned to which classes, a matrix of the conditional 

probabilities estimated by equation 20 was developed; this matrix is shown in Table 47. 

Table 47.  Design Vehicle Moment Class vs. Axle-Load Class Matrix 

1 2 3 4 5 6 7

H2.5 1.00 0.00 0.00 0.00 0.00 0.00 0.00

H5 0.83 0.17 0.00 0.00 0.00 0.00 0.00

H10 0.32 0.44 0.16 0.07 0.01 0.00 0.00

H15 0.05 0.29 0.50 0.14 0.02 0.01 0.00

HS15 0.01 0.07 0.48 0.36 0.07 0.02 0.00

H20 0.00 0.01 0.06 0.30 0.47 0.15 0.01

HS20 0.00 0.00 0.01 0.15 0.07 0.25 0.53

HS25 0.00 0.00 0.00 0.11 0.06 0.01 0.83

Design Vehicle 
Moment Class

Axle-Load Class
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 Although exact shares to allocate to each class cannot be determined from this 

matrix, some decisions can be made about how to allocate design bridge costs to 

individual load classes.  The percentages shown in this table indicate the share of axle 

loads of each type contributed within each moment class.  For example, 83 percent of 

the loads on vehicles classified as HS25 vehicles are Class 7 loads.  For H5 to H20 

bridges, costs were allocated equally to all load classes identified as responsible for a 

given moment class.  For the heaviest design classes, HS20 and HS25, the heaviest load 

classes were allocated a higher share of responsibility than other responsible classes.  

The class responsibilities, expected loads, and estimated costs per load within each 

given class are provided in Table 48.  These costs per load were estimated using 

equation 21. 

Table 48.  Increment Costs for Bridge Construction 

Bridge 
Increment

Cost ($)
Responsible 
Load Classes

Total Expected Loads 
Cost Per Load 

(%)

H5 7,364,653 All 131,184,699 0.06

H10 15,142,383 All 131,184,699 0.12

H15 15,142,383 All 131,184,699 0.12

HS15 16,258,158 2,3,4,5,6,7 113,409,113 0.14

H20 4,613,259 3,4,5,6,7 94,467,998 0.05

HS20 16,369,427
4 and 5 (22%), 6 
(25%), 7 (53%)

49,695,370 (4 and 5), 
10,662,348 (6), 

13,769,148(7)

.07 (4 and 5), 
.38 (6),              
.63 (7)

HS25 19,509,790
4,5, and 6 (17%), 

7 (83%)
60,357,718 (4, 5, and 6), 

13,769,148(7)
.06 (4,5, and 6), 

1.17 (7)  

 Total construction cost shares for each load class were calculated using equation 

22.  Again, these values were used to calculate toll multipliers for estimation of final toll 
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rates during each tolling period.  The Class 1 rate is used as the base for calculation of 

the multiplier: 

1,

,
,

BC

lBC
lBC t

t
m =  

(Eq. 51) 
where:   mBC,l = toll multiplier for load class l 

tBC,l = estimated bridge construction share of load-related toll for class l  
($/load) 
tBC,1 = estimated bridge construction share of load-related toll for class 1 
($/load) 

 

Individual tolling period rates were then obtained by solving the following 

equation for the Class 1 incremental toll rate for the 2008-2015 tolling period: 

∑ ××=
T

ltlBCCBC nmtC ,,1,1  

(Eq. 52) 
where:   CBC= total bridge construction costs ($) 

tC1,1 = class 1 toll rate per load during period 1 ($/vehicle)  
mBC,l = toll multiplier for load class l 
nt,l = number of loads of class l expected on facility during time period t 
T = set of all time periods 

 

 The final bridge construction toll shares for each time period are provided in 

Table 49. 
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Table 49.  Bridge Construction Toll Shares 

2008 to 2015 2016 to 2025 2026 to 2035 2036 to 2037 Weighted Average

Class 1 0.16 0.25 0.33 0.38 0.29

Class 2 0.25 0.37 0.49 0.57 0.43

Class 3 0.27 0.41 0.55 0.64 0.48

Class 4 0.35 0.52 0.70 0.81 0.61

Class 5 0.35 0.52 0.70 0.81 0.61

Class 6 0.53 0.79 1.05 1.23 0.92

Class 7 1.30 1.96 2.61 3.04 2.28

Load Class
Rate ($)

 

7.4.4 Final Axle-Load Toll Rate 

 The final base toll rate for each vehicle within the “Axle-Load” toll was calculated 

by summing the base toll shares for common costs, pavement construction, and 

pavement maintenance.  The resulting estimated base toll for each period is provided in 

Table 50.  Since toll rates need to be easily understood and toll elements easily added, 

these values were rounded up to the nearest five-cent increment.  A weighted average 

of this final toll was calculated for use in the equity analysis. 

Table 50.  Final Base Toll Rate 
Toll Period Estimated Rounded

2008 to 2015 5.19 5.20

2016 to 2025 7.79 7.80

2026 to 2035 10.38 10.40

2036 to 2037 12.11 12.15

Weighted Average 9.06 9.08  

 The final per-load tolls for each class were calculated by summing the estimated 

per-load toll shares for pavement construction, pavement maintenance, and bridge 

construction.  These values were also rounded to the nearest five-cent increment for 
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user ease of calculation.  The final load class toll, as well as the weighted average for 

equity analysis, are provided in Table 51. 

Table 51.  Final Toll Rate per Load 

Single Tandem Tridem
2008 to 

2015
2016 to 

2025
2026 to 

2035
2036 to 

2037
Weighted 
Average

Class 1 < 4 < 5.5 < 8 0.20 0.30 0.35 0.40 0.32

Class 2 4 to 6.5 5.5 to 10 8 to 12.5 0.30 0.45 0.60 0.70 0.52

Class 3 6.5 to 9 10 to 15.5 12.5 to 20 0.60 0.90 1.15 1.35 1.02

Class 4 9 to 12 15.5 to 18.5 20 to 25 1.25 1.85 2.45 2.85 2.14

Class 5 12 to 15 18.5 to 23.5 25 to 31.5 2.15 3.20 4.25 4.95 3.71

Class 6 15 to 18 23.5 to 28.5 31.5 to 38.5 4.65 6.95 9.30 10.85 8.11

Class 7 > 18 > 28.5 > 38.5 10.15 15.20 20.30 23.65 17.70

Load 
Class

Weight (kips) Toll per Load ($)

 

7.5 NUMBER-OF-AXLE TOLL RATE 

 Rates for a number-of-axle based toll rate were also estimated using equations 

26 and 27.  Equation 28 was restructured with an additional toll multiplier to allow for 

calculation of rates within each time period.  The values of the new toll multiplier are 

provided in Table 52. 

Table 52.  Time Period Toll Multipliers 
Time Period Multiplier

2008 to 2015 1.00

2016 to 2025 1.50

2026 to 2035 2.00

3067-2037 2.33  

 Rewriting equation 28, we get: 
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∑ ×××=
T

tata tmznC 2,  

(Eq. 53) 
where:   C= sum of all costs over life of facility 

na,t = expected number of vehicles with number of axles a during time t 
  za= toll multiplier for vehicles of number of axles a 
  mt = toll multiplier for vehicle in time period t 

t2= base toll rate for two-axle vehicle 
 

Individual time period rate estimates were again rounded to the nearest five-

cents for clarity.  The final rates for each time period, as well as a weighted average paid 

by each class over the design period, are provided in Table 53. 

Table 53.  Final Number-of-Axle Toll Rates 

2008 to 
2015

2016 to 
2025

2026 to 
2035

2037-
2037

Weighted 
Average

2 4.85 7.25 9.65 11.30 8.43

3 9.65 14.50 19.30 22.55 16.85

4 14.50 21.70 28.95 33.80 25.26

5 19.30 28.95 38.60 45.05 33.68

Toll per Vehicle ($)
Number of 
Axle Class

 

7.6 COST RESPONSIBILITY ESTIMATION 

 Individual vehicle cost responsibilities were estimated using the methods 

described in section 6.5.  Since in this study, common costs are allocated using the same 

method for both toll rate estimation and cost allocation, all vehicles are assumed to 

have paid exactly their share for “Common Costs,” base pavement construction, and 

base bridge construction.  As discussed previously, because of the the assumed 30 year 
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analysis period, shares of construction costs are allocated only to users during this 

period, regardless of the actual service life of individual elements.  

7.6.1 Pavement Construction Cost Responsibility Determination 

 As was discussed in section 6.5.1, pavement construction cost responsibilities 

are estimated using both incremental and proportional methods.  The same pavement 

increments identified for toll rate determination (Table 37) were used for allocation of 

cost responsibilities to individual load classes.  However, within each load class, rather 

than a cost per vehicle, a cost per ESAL was estimated (Eq. 29).  Total costs per ESAL for 

individual load classes were then estimated by summing across all increments for which 

the class shares responsibility (Eq. 30).  The resulting costs per ESAL for each load class 

are provided in Table 54. 

Table 54.  Incremental Pavement Cost Responsibilities 

Load Class
Cost Responsibility 

($/ESAL)

Class 1 0.00

Class 2 0.13

Class 3 0.52

Class 4 1.19

Class 5 1.34

Class 6 1.68

Class 7 2.38  

 For each individual vehicle, the overall pavement construction cost responsibility 

was then calculated by multiplying the total ESALs contributed by each load by its 

corresponding cost per ESAL, and summing the costs for all loads on a vehicle. (Eq. 31, 

32) 
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7.6.1 Pavement Construction Cost Responsibility Determination 

 Pavement maintenance cost responsibilities were estimated directly using 

proportional allocation.  Each truck was assigned a cost responsibility directly in 

proportion to its share of total truck ESALs (Eq. 33, 34).  The estimated cost per ESAL for 

pavement maintenance was $9.62. 

7.6.1 Bridge Construction Cost Responsibility Determination 

 Bridge construction cost responsibilities were estimated directly as a cost per 

vehicle within each bridge design increment.  The same bridge increment costs and class 

responsibilities identified for toll rate estimation were used for cost responsibility 

allocation (Table 43).  Using equation 18, costs per vehicle for each design increment 

were calculated; these are provided in Table 55. 

Table 55.  Incremental Bridge Cost Responsibilities 

Short Medium Long

H2.5 0.000 0.000 0.000

H5 0.001 4.369E-04 0.152

H10 0.004 0.002 0.561

H15 0.010 0.004 1.028

HS15 n/a 0.006 1.645

H20 0.019 0.007 1.879

HS20 0.038 0.018 3.273

HS25 n/a 1.344 24.843

Bridge Type

Cost Responsibility ($)

Bridge 
Design 
Increment

 

 Individual vehicle responsibilities were identified by summing the incremental 

costs across all increments required to support the vehicle (Eq. 35). 
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7.6.1 Final Cost Responsibility 

 The vehicle’s final cost responsibility was then calculated by summing its cost 

responsibilities for “Common Costs,” pavement construction, pavement maintenance, 

and bridge construction (Eq. 36). 

7.7 TOLL EQUITY ANALYSIS 

For the purpose of toll equity analysis, the weighted mean tolls collected over 

the design life of the facility under each tolling structure were analyzed.  Tolls paid 

under each structure were calculated for each observed truck.  A “responsibility ratio” 

was then calculated for each truck under each tolling structure (Eq. 37 and 38). 

The overall equity of the tolls paid under each structure can be examined by 

estimating the average responsibility ratio for the tolls paid by the entire truck 

population (Eq. 39 and 40).  Table 56 shows the estimated mean responsibility ratios for 

each class.  Clearly, in general, vehicles paying the “Axle-Load” toll are paying a share of 

costs much closer to their consumption than when paying the “Number-of-Axle” toll.  

Under the “Axle-Load” toll, the average vehicle pays about 5 percent more than its 

share of costs.  A value greater than one is expected here for two reasons.  First, 

because pavement consumption increases exponentially with weight, and pavement 

construction cost responsibilities within each load class were allocated according to 

ESALs, most loads within each load class will be paying for an amount of consumption 

higher than that for which they are responsible.  Additionally, since toll rates were 
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rounded up to the nearest 5 cents, a very small amount of excess revenue will be 

expected due to rounding error.  Under the “Number-of-Axle” structure, the average 

vehicle pays more than one and a half times its cost responsibilities. 

Table 56.  Mean Responsibility Ratios 

Truck 
Type

Axle-Load Number-of-Axle

2SU 1.07 0.88

3SU 1.05 1.21

3ST 1.09 1.49

4SU 1.04 2.01

4ST 1.08 2.17

5ST 1.04 1.83

Total 1.05 1.52  

More detailed information about the equity of these toll structures can be 

examined by looking at individual vehicle class equities.  As can be seen from Table 56, 

the only class which underpays for its use under either tolling structure is the two-axle 

single unit truck.  The value of common costs allocated to all vehicles, $9.05, was higher 

that the base toll calculated for two-axle trucks under the “Number-of-Axle” scenario, 

$8.43.  Since most two-axle trucks have axle loads that fall into the lowest load 

categories, the load-related tolls paid are very low.  As a result, nearly all two-axle trucks 

underpay for their use (Figure 15).  If fewer costs were allocated as common costs, it is 

likely that this value would be closer to one.   
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Figure 15.  Distribution of R for 2 Axle Single Unit Trucks 
 

However, from examining the ratios across all classes, it is clear that the “Axle-

Load” toll provides a more equitable means of recovering costs.  While the equity ratios 

paid by different truck classes under the “Number-of-Axle” toll range from .88 to 2.17, 

all of the mean values for the “Axle-Load” classes are between 1.04 and 1.09.  

The equity of the tolls within each class can be examined by looking at the 

dispersion of R values within each class.  In addition to the minimum and maximum 

observed values, the standard deviation provides a measure of this dispersion.  Table 57 
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shows the minimum and maximum “responsibility ratios” observed within each class, as 

well as the standard deviation of R, for each toll rate structure.   

Table 57.  Toll Rate Dispersion Measures 

Minimum Maximum
Standard 
Deviation

Minimum Maximum
Standard 
Deviation

2SU 0.79 1.26 0.03 0.24 0.93 0.09

3SU 0.77 1.28 0.08 0.36 1.83 0.39

3ST 0.84 1.27 0.06 0.51 1.82 0.34

4SU 0.88 1.17 0.05 0.68 2.61 0.61

4ST 0.79 1.29 0.06 0.53 2.74 0.52

5ST 0.52 1.33 0.11 0.37 3.49 0.86

Total 0.52 1.33 0.09 0.24 3.49 0.82

Number-of-Axle
Truck 
Type

Axle-Load

 

Again, it is clear from this table that under the “Axle-Load” structure, most 

vehicles will pay a toll much closer to their share of allocated costs than under the 

“Number-of-Axle” structure.  For every vehicle class except two-axle trucks, the 

maximum value of R is higher under the “Number-of-Axle” toll, and the minimum is 

lower.  This means that the vehicles that are most severely under-paying are paying 

even less of their share under the “Number-of-Axle” scenario, and those over-paying are 

over-paying by even more.  Even for two-axle trucks, the minimum R value identified for 

the “Number-of-Axle” scenario was much lower than for the “Axle-Load” scenario.  

Examining the standard deviation values, we see that across all truck classes, the 

dispersion of R values is much lower in the “Axle-Load” scenario.  Figure 16 shows the 

distribution of R values for five-axle semi-trailers.  It is clear from this graphic that even 

in the vehicle class with the highest standard deviation under the “Axle-Load” scenario, 
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the majority of vehicles are paying much closer to their share of costs than under the 

“Number-of-Axle” scenario. 

 

Figure 16.  Distribution of R for 5 Axle Semi-Trailer Trucks 
 

7.8 SENSITIVITY ANALYSIS 

A number of types of sensitivity analysis can be performed to examine the 

revenue impact of changes in different variables under these different toll rate 

structures.  This study will focus on the impact of three different measures: change in 

truck share, change in truck profile, and WIM scale error.  Table 58 summarizes the 

revenue information for the existing toll rate structures. 
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Table 58.  Toll Rate Summary 

Revenue
Revenue 

Share
Average 

Toll
Revenue

Revenue 
Share

Average 
Toll

Axle-Load 931,023,144 0.20 19.42 3,643,132,868 0.80 9.08

Number-of-Axle 1,182,950,427 0.26 24.68 3,382,335,911 0.74 8.43

Trucks Cars
Variable

 

 It is clear from this table that trucks pay a much higher share of costs under the 

“Number-of-Axle” Toll Structure than under the “Axle-Load” structure.  Because the toll 

rate for passenger cars (and two-axle trucks) under the “Number-of-Axle” structure is 

less than the base toll determined from allocation of common costs, under the 

“Number-of-Axle” toll, some passenger car common costs are allocated to trucks.  As a 

result, the average truck toll paid under this structure is more than $5 more expensive 

than the average truck “Axle-Load” toll.  Because of this higher cost and the higher 

share of total revenue collected from trucks, it is expected that revenue from the 

“Number-of-Axle” toll will be more sensitive to changes in volume. 

 

7.8.1 Truck Share Sensitivity 

Table 59 examines the impacts of changes in truck share on revenue for each toll 

structure.  Since trucks pay a higher toll than cars, revenue will increase when truck 

share is increased, and decrease when truck share is decreased.  As expected, the 

“Number-of-Axle” toll is more sensitive to changes in truck volume share, with a two 

percent increase in truck share resulting in a 3.2 percent increase in revenue.  When 
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truck share is decreased by two percent, the impact on revenue is much more severe.  

Because trucks pay a toll close to four times as expensive as cars under the “Number-of-

Axle” structure, a two percent decrease in truck share results in a more than 11 percent 

decrease in revenue.  The “Axle-Load” toll is also very sensitive to the decrease in truck 

share, with a revenue decrease of 10.7 percent. 

Table 59.  Truck Share Revenue Sensitivities 

Revenue
Change in 
Revenue

% Change 
in Revenue

Revenue
Change in 
Revenue

% Change in 
Revenue

Truck 0.107

Car 0.893

Truck 0.127

Car 0.873

Truck 0.087

Car 0.913

Vehicle 
Type

Volume 
Share

Axle-Load Number-of-Axle

4,565,286,3384,574,156,012

-11.3

3.2

-514,975,697

146,018,328

4,050,310,642

4,711,304,666

-10.7

2.0

-490,361,549

92,955,510

4,083,794,463

4,667,111,522

 

7.8.2 Truck Profile Sensitivity 

 The next variable examined for toll rate sensitivity was change in the truck 

profile.  Table 60 shows the average toll rate paid by each vehicle type under each toll 

structure. 

Table 60.  Average Vehicle Type Toll Rates 

Truck Type
Average Axle-

Load Toll
% Increase from 

2SU Toll
Average Number-

of-Axle Toll
% Increase from 

2SU Toll

2SU 10.45 8.43

3SU 16.59 0.59 16.85 1

3ST 13.12 0.26 16.85 1

4SU 15.1 0.44 25.26 2

4ST 13.75 0.32 25.26 2

5ST 24.74 1.37 33.68 3  
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Again, from this table, it appears that revenue for the “Number-of-Axle” toll will 

be more sensitive to changes in truck profile than that for the “Axle-Load” toll.  Under 

the “Axle-Load” Toll, percentage rate increases for additional axles are much lower than 

in the “Number-of-Axle” toll.  Even for the most expensive class, the five-axle 

semitrailer, the percentage increase in toll rate for the “Axle-Load” toll is less than half 

the increase in the “Number-of-Axle” toll. 

 Table 61 shows the expected revenues under different truck split scenarios.  

Shares for the two most populous classes, the two-axle single unit truck and the five 

axle semi-trailer, were increased and decreased to determine the change in revenue. 

Table 61.  Truck Profile Revenue Sensitivites 

Vehicle 
Type

Volume 
Share Revenue

Change in 
Revenue

% Change 
in Revenue Revenue

Change in 
Revenue

% Change 
in Revenue

2SU 0.30

5ST 0.60

2SU 0.35

5ST 0.55

2SU 0.25

5ST 0.65

2SU 0.28

5ST 0.62

2SU 0.32

5ST 0.58

Axle-Load Number-of-Axle

-2.05-24,203,0531,158,747,374-1.47-13,694,259

24,197,918 2.05

5.1160,498,6461,243,449,073

-5.11-60,503,7811,122,446,646-34,232,599

931,023,144

917,328,885

1,182,950,427

-3.68

944,713,338 13,690,194 1.47 1,207,148,345

3.6834,228,533965,251,677

896,790,545

 

As expected, the “Number-of-Axle” toll is more sensitive to the change in profile.  

A five percent increase in two-axle single unit volume share, with a corresponding five 

percent decrease in five-axle semitrailer volume share, results in more than a five 
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percent decrease in revenue under the “Number-of-Axle” toll.  The effect is much less 

under the “Axle-Load” structure, for which revenues decreased by only 3.68 percent. 

 

7.8.3 WIM Error Sensitivity 

 The final variable examined to determine toll rate sensitivity was WIM 

measurement error.  As was discussed in Chapter 4, two different types of error can 

occur in a WIM system, random error and systematic error.  This examination focuses 

on systematic calibration error.  When a WIM system is not properly calibrated, it 

systematically overestimates or underestimates the weight of individual axle loads.  

Weight measurement will not have any impact on the revenue collected by a “Number-

of-Axle” toll, but it could potentially have a very serious impact on “Axle-Load” 

revenues.  Table 62 shows the changes in load classification that would result from 

systematic WIM error and the resulting impacts on revenue. 
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Table 62.  WIM Error Sensitivities 

Load Class
Load 

Share
% 

Change
Load 

Share
% 

Change
Load 

Share
% 

Change
Load 

Share
% 

Change

Class 1 0.08 -0.38 0.11 -0.17 0.15 0.14 0.17 0.27

Class 2 0.17 0.18 0.15 0.06 0.14 -0.04 0.14 -0.04

Class 3 0.13 -0.17 0.14 -0.10 0.17 0.11 0.21 0.34

Class 4 0.21 -0.21 0.25 -0.08 0.27 0.00 0.24 -0.10

Class 5 0.18 0.61 0.14 0.27 0.10 -0.10 0.10 -0.11

Class 6 0.08 -0.01 0.08 0.00 0.09 0.07 0.10 0.19

Class 7 0.15 0.40 0.13 0.21 0.08 -0.25 0.05 -0.57

Revenue

Change in Revenue

% Change in Revenue

10% 5% 5% 10%

874,322,435

6.1

56,667,365

987,690,509

Overestimates Underestimates

11.7

108,909,321

1,039,932,465

-13.7

-127,367,215

803,655,929

-6.1

-56,700,709

 

If a WIM system overestimates axle loads, then the toll paid for each load could 

potentially be higher than the toll actually owed for that load.  For the truck population 

examined in this case study, a 10 percent overestimation of weight results in a 40 

percent increase in the number of loads classified to the most expensive load class, and 

a 38 percent decrease in those classified to the lightest class.  As a result of these and 

other shifts in load class, total revenues increase by more than 11 percent. 

An even more severe impact on revenue results from underestimation of weight.  

A systematic 10 percent underestimation of axle load weights results in a 57 percent 

decrease in the number of loads classified as Class 7 loads.  This shifting of load classes 

results in more than a 13 percent decrease in revenues.  In estimation and 

implementation of an “Axle-Load” toll, potential for this loss in revenue is likely to be a 

primary concern.  Real implementation of an “Axle-Load” toll will require improvements 



189 

 

in WIM accuracy or inclusion of significant factors of safety in estimation of load-class 

toll rates.  
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CHAPTER 8: CONCLUSIONS AND FUTURE RESEARCH 

8.1  GENERAL FINDINGS 

In general, the case study results indicate that Highway Cost Allocation (HCA) 

methods can be used for estimation of an “Axle-Load” based tolling structure that 

recovers costs for heavy vehicle consumption more equitably than a commonly 

employed “Number-of-Axle (n-1)” structure.  In the case study, the tolls paid by 

individual vehicle classes, as well as the tolls paid by individual vehicles within those 

classes, more closely mirror their estimated consumption costs under the proposed 

“Axle-Load” structure than under the “Number-of-Axle” structure.  It is clear from this 

analysis that the potential infrastructure impacts of different vehicles, all operating 

legally, within each number-of-axle class, are very different.   

Within a “Number-of-Axle” toll structure, vehicles pay a higher toll for each 

additional axle; however, addition of an axle can potentially reduce pavement and 

bridge impacts by lessening the load being applied at a given point.  Since pavement 

consumption increases exponentially, splitting a single load across two axles will 

severely reduce the pavement impact; for example, for the design pavement examined 

in this case study, applying two-10 thousand pound loads instead of a single 20 

thousand pound load will reduce the estimated equivalent single axle loads (ESALs) by 

nearly 90 percent.  It is clear in examining Figure 17 that the “Axle-Load” structure 

captures this exponential relationship.   
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Figure 17.  Axle-Load Toll Rates by Class 
 

Table 63 shows the toll rates paid by each vehicle class, as well as the average 

ESALs, loads, and axle spacings observed in each class.  Comparing the three-axle single 

unit truck and the four-axle semi-trailer, it is clear that the “Axle-Load” toll better 

relates a vehicle’s toll cost and its consumption.  Here, the average three-axle single-unit 

truck carries more gross vehicle weight (GVW) distributed over fewer axles and a 

shorter distance.  Despite clearly lower levels of infrastructure consumption, in the 

“Number-of-Axle Structure,” the four-axle truck pays a 50 percent higher average toll 

than the four-axle truck.   However, under the proposed “Axle-Load” structure, the four-

axle truck pays a toll that is about 83 percent of the three-axle single unit truck toll. 
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Table 63.  Vehicle Type Toll Rates and Configurations 

Single Tandem Tridem

2SU 10.45 8.43 0.04 4810 9619 12.9

3SU 16.59 16.85 0.50 10633 17970 28603 23.0

3ST 13.12 16.85 0.21 6615 19845 33.4

4SU 15.1 25.26 0.38 9707 19869 29576 25.6

4ST 13.75 25.26 0.24 7459 11265 26123 43.8

5ST 24.74 33.68 1.12 10418 20948 11474 52294 58.2

Average 0.72 8566 20105 11849 36773 41.9

Average 
GVW

Average 
Length

Truck Type
Average 

Axle-Load 
Toll

Average 
Number-

of-Axle 
Toll

Expected 
ESALs

Average Axle Load

 

 Despite the clear improvement in equity that results from the new structure, a 

number of improvements will need to be made to this model for real estimation and 

implementation of an “Axle-Load” tolling structure.  The purpose of this study was to 

demonstrate that HCA methods can be employed to better relate toll rate variables and 

measures of infrastructure consumption.  This study also demonstrates that methods 

used to allocate costs to vehicle classes can also be used to allocate costs to load 

classes.  However, this study employed basic methods of both cost estimation and cost 

allocation that could be improved with more detailed models.  The following sections 

detail the future improvements that could be implemented for applications of this 

method, as well as future areas of research that will be required for their realization. 

8.2 IMPROVED COST ESTIMATION 

It is clear from the final toll rates identified in this study that the resulting toll 

structure will be heavily dependent on the share of costs allocated as common costs and 

load-related costs.  In this study, only about 11 percent of total system construction, 
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operation, and maintenance costs were determined to be “Load-Related.”  This value 

was determined by making a number of assumptions based on information from a 

variety of sources.  Additionally, in this study, all bridge maintenance costs were 

considered to be non-“Load-Related”, and were allocated as common costs.  As a result 

of the small share of costs allocated to trucks only, the total share of revenue collected 

from truck users is five percent lower under the “Axle-Load” toll than under the 

“Number-of-Axle” toll.   Under the proposed structure, all passenger cars and two-axle 

trucks pay a higher share of costs than under the “Number of Axle” toll employed on 

SH130; this may indicate that an insufficient share of costs was allocated in the “Load-

Related” toll.  In future applications of this method, the availability of much more 

detailed construction and maintenance estimates – including a breakdown of specific 

bridge and pavement maintenance costs expected over the facility life – would allow for 

more accurate determination of costs to be allocated under each cost type for both toll 

rate and cost responsibility estimation. 

8.3 IMPROVED METHODS OF COST ALLOCATION 

8.3.1  Pavement Cost Allocation 

In this study, the primary allocator used to determine load class and vehicle 

shares of pavement and construction maintenance costs was the ESAL.  This method 

was chosen because the empirical ESAL formula provides a direct method for calculation 

of a single measure of pavement consumption for each observed load.  However, as was 
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discussed in Chapter 5, a number of more advanced “mechanistic” pavement models 

have been developed in recent years for cost allocation and other purposes.   

“Mechanistic” models directly relate axle load repetitions to the progression of different 

distress types.  Ideally, if individual maintenance cost estimates could be linked to 

different distress types, these models would provide a much more accurate means of 

allocating specific pavement maintenance costs.  These models also allow for inclusion 

of variables representing local environmental conditions; this addresses one of the 

primary concerns of using the empirical ESAL equation, which was developed using 

1950-s era trucks in Illinois.   

Both the NAPCOM model developed for the 1997 Federal Highway Cost 

Allocation Study and the Mechanistic-Empirical Design Guide require inputs of axle load 

spectra; in HCA, axle load spectra are estimated for different axle types for each class of 

vehicle.  However, in this study, it is load classes and individual vehicles, not vehicle 

classes, for which consumption must be examined.  Since each load class will represent 

the sum of pieces of a number of mixed-lognormally distributed axle load spectra for 

different vehicle classes, statistical estimation of the distribution within each class will 

be very difficult.   

Additionally, for cost responsibility estimation, a measure of consumption must 

be estimated for each individual load.  As discussed in Chapter 5, Hong, Pereira, and 

Prozzi developed a method for estimation of “mechanistic ESALs” that could be used to 

develop a single measure of consumption from multiple distress types.234  If each 
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observation could be evaluated, “mechanistic” load class ESALs could also be estimated 

discretely using this method.  Currently the computation time required for evaluation of 

individual loads using “mechanistic” models is extremely high; as a result, this method 

was not employed in this study.  However, as “mechanistic” models continue to evolve, 

they will provide a better method for linking pavement costs to individual loads and load 

classes for future toll estimation and cost allocation. 

8.3.2  Bridge Cost Allocation 

The bridge cost allocation methods employed in this study were also very basic.  

In this study, because of the complexity of estimating live-load moments for long 

bridges and the resulting long computation time, spans of three different lengths were 

used to characterize all short, medium, and long bridges.  Additionally, all bridges were 

assumed to be simply supported.  The costs of individual structural elements were not 

identified; rather, relative bridge type costs from the most recent Texas Highway Cost 

Allocation Study were used to estimate the share of additional costs required to 

accommodate subsequent design vehicles.235  Because these relative costs were only 

provided for eight design bridge types, additional intermediate costs which have been 

used to improve allocation of costs to medium weight trucks in other studies could not 

be estimated here.236,237   

Additionally, in the absence of detailed maintenance information and an 

appropriate allocator to assign bridge maintenance costs to individual load classes, and 

because all of the bridges on this facility are newly constructed, this study assigned all 
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bridge maintenance costs equally to all vehicles as non-load related costs.  Most HCA 

studies allocate non-load related bridge rehabilitation costs using a similar method.238  

Because a truck’s stress impacts on a bridge are determined both by its axle weights and 

by its axle spacings, no good measure for allocating shares of bridge costs to individual 

vehicles within design increments has been identified.  In future studies, bridges should 

be distinguished as simply supported or continually supported, and additional 

intermediate design increments should be evaluated. 

8.3.3 Common and Base Infrastructure Cost Allocation 

This study allocated common costs to all vehicles equally: the share for all 

operational costs, non-load-related maintenance, and base facility construction was 

assumed to be the same for all vehicles.  Since all vehicles in this study are assumed to 

travel the same distance, this is equivalent to the measure used in many HCA studies to 

allocate these - vehicle-miles traveled (VMT).  In order to account for the additional 

space requirements of heavy trucks in providing highway capacity, the 1997 Federal 

Highway Cost Allocation did not assign base facility construction costs according to VMT; 

instead, the study assigned costs to individual classes according to passenger-car 

equivalent (PCE) weighted VMT.239  PCEs provide a measure of the additional space 

requirements, and resulting traffic impacts, for longer and heavier vehicles.  For the 

1997 study, PCEs for individual vehicle classes were estimated using simulation models 

under different traffic loadings.240  It is likely that in the future, simulation modeling 
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could be used to develop functions for estimating individual vehicle PCEs for 

determining cost responsibilities.   

However, integrating a PCE variable into the existing “Axle-Load” toll structure 

would be difficult.  Assigning higher shares of non-load related costs to individual 

vehicles classes would require introduction of multiple base toll rates, adding a layer of 

complexity for system users to estimate their toll.  If just a few PCE-related classes can 

be distinguished, application of multiple base toll rates might be feasible.  Future 

analysis should be performed to determine the impacts of weighting base facility costs 

by PCE and the toll structure that would be required to equitably incorporate these 

costs. 

8.4 ADDITION OF LARGER VEHICLE CLASSES 

This study focused only on legally operating two to five axle trucks, which 

constituted more than 99 percent of the vehicles observed in the WIM data.  However, 

future studies should explore the application of this same methodology to incorporate 

larger vehicle classes.  With the nation’s highway system becoming increasingly 

congested, and freight flows expected to increase at a rate even higher than general 

traffic, several concepts for improving the productivity of the nation’s freight 

transportation system are being explored.  Two potential solutions for improving trucks 

freight productivity include 1) changing regulations to allow longer, heavier, more 

productive vehicles to operate and 2) constructing separate capacity for trucks, where 
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more productive vehicles would likely operate.  With federal and state governments 

struggling to fund system improvements, it is likely that if these truck-only facilities are 

constructed, they will need to be funded through user fees.  In an environment where 

extremely heavy vehicles would be operating regularly, it will be important to ensure 

that costs recovered from users will be sufficient to construct and maintain the system.  

If new capacity is not constructed, but more productive vehicles are allowed to operate 

on existing capacity, future methods for recovering infrastructure costs from these users 

will also be required.  In addition to expanding on this existing methodology to account 

for larger vehicle classes for direct-toll estimation, methods for employing HCA methods 

to estimate other types of user costs, such as overweight permits, should also be 

explored. 

8.5 DYNAMIC LOAD MEASUREMENT 

This study assumed that all vehicles would be traveling at the same free-flow 

speed when crossing over a WIM system.  As a result, dynamic effects of load 

measurement were not considered.  However, as was discussed in Chapter 4, 

suspension systems, pavement roughness, and speeds can all affect load measurement.  

Since WIM is used directly to classify loads, loads on vehicles using more road-friendly 

suspension systems, such as air suspension systems, will be classified to lower classes 

than vehicles with the same real static load using steel suspension systems.  Pavement 

roughness impacts in WIM error can be controlled by maintaining a high pavement 
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quality in the area of the WIM; however, if the pavement of the system is not 

maintained at a high quality, then the impacts of roughness on load classification will 

need to be quantified.  This problem should be explored in future research.   

Vehicles traveling at different speeds will impose different dynamic forces on a 

pavement and on a WIM system.  If a WIM system is employed for load classification in 

an environment with variable travel speeds, then it may be necessary to estimate the 

dynamic effect of a vehicle traveling at a higher or lower speed, and to convert the 

measured load to an adjusted value for a design speed before toll rate classification.  

Classifying vehicles under dynamic loading conditions would require collection of real-

time vehicle speeds as well as weights.  Future research should explore the effects of 

changes in speed on measured loads, and the potential misclassification of loads that 

would result. 

 Speed implications for toll estimation must also be explored.  If an entire system 

is priced for a given design speed, but traffic operates at much slower speeds on some 

of its elements, then the actual cost of pavement damage may exceed the revenue 

recovered by the toll.  Similarly, if trucks crossing a bridge are moving slower than was 

expected in estimating costs, then the real damage is likely to exceed that which was 

estimated.  Future research should explore the impacts of dynamic effects on cost 

estimation and allocation, and the changes in toll rate and structure that would result 

for different design speeds.   
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8.6 TOLL ELASTICITIES 

 An additional measure that could not be estimated in this study, but that will be 

important to examine in future research, is the impact that the change in toll structure 

will have on overall vehicle volumes and revenue.  In this study, toll rates for the 

majority of road users (passenger vehicles) would increase under the “Axle-Load” 

structure.  However, toll rates for trucks would generally decrease.  The percentage of 

truck users paying an increased toll under the “Axle-Load” structure varies across truck 

classes, with a total of 49 percent of trucks paying a higher toll (Table 64).  The 

maximum tolls paid within each class by the highest consuming users are much higher 

than the “Number-of-Axle” toll rates. 

Table 64.  Vehicle Class Extreme Tolls 

Truck Type Minimum Maximum
Share Paying 

Higher Toll

2SU 9.72 34.89 1.00

3SU 9.72 44.48 0.36

3ST 10.04 32.63 0.15

4SU 9.92 34.89 0.14

4ST 10.04 32.63 0.05

5ST 10.04 58.44 0.28

Total 9.72 58.44 0.49  

Because some vehicles will be paying a higher toll and some paying a lower toll, 

it is impossible to use the elasticities identified through stated preference surveys for SH 

130 to estimate changes in volume.  Additionally, the elasticities estimated for SH130 

were only aggregately estimated for all two-axle and all multi-axle vehicles.  Much more 

detailed data will be required to understand the response of road users within each 
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class to changes in the toll structure.  Since the rates for the “Axle-Load” toll structure 

increase exponentially, it will be especially important to understand the behavior of the 

heaviest vehicles, and to estimate the likelihood that they will divert from a facility to 

avoid paying a toll.   

In examining the impacts of diversion, the policy goals of the system should be 

considered.  If a user-charge is going to be implemented system-wide for the primary 

purpose of recovering infrastructure costs, then diversion should not be a major 

consideration in setting toll rates.  However, if users do not have a choice of whether or 

not to pay, then it is likely that they would adjust vehicle configurations for more road-

friendly loading.  Future research should examine the potential impacts of changes in 

truck configuration that would result from a load-based toll. 

If a tolling structure is being implemented on a facility where users choose 

whether or not to pay, and where the primary goal is revenue maximization, then 

diversion would be very likely.  While diversion of the heaviest trucks from a facility 

would lead to considerable loss of revenue, it would also lead to considerable savings in 

maintenance costs on the facility in question (although it would have the opposite effect 

on alternative routes, especially if they are lower classes of road).  Economic analysis 

should examine the potential impacts of resulting diversion not only on the priced 

facility, but also on alternative routes. 
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8.7  INTEGRATION OF CONGESTION AND EMISSIONS COSTS 

This research focused specifically on using HCA methods to develop a more 

equitable toll structure for recovery of infrastructure costs.  However, as was discussed 

in Chapter 3, there are two other costs that will be important to consider in future road 

pricing for trucks: emissions impacts and congestion.  Recent cost allocation studies, 

including the 1997 Federal HCA, have allocated marginal social costs, such as 

congestion, to individual vehicle classes.241  Future research should explore the 

possibility of using HCA methods to allocate congestion and emissions costs as part of 

the base or per-load toll in an “Axle-Load” tolling structure.  These costs might be 

included as part of the basic toll rate, or they might be imposed as a multiplier.  In order 

to determine the exact structure to recover these costs, it is likely that research 

examining the relationships between length, GVW, or axle loads and traffic impacts 

(possibly using PCE as a measure), and length, GVW, or  axle load and emissions levels 

will be required. 

8.8  QUANTIFICATION OF WIM ERROR 

Weigh-In-Motion system error will be important to quantify for toll rate 

estimation, cost allocation, and toll rate collection.  In the previous section, the high 

sensitivity of revenue collected under the proposed tolling structure to systematic WIM 

error was quantified.  However, future research should explore the how both random 

and systematic WIM error would affect the toll rate structure and rates.  It is assumed 
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that the same WIM data used to design a pavement will be used to estimate the toll 

rate for that structure; if loads are underestimated, then the pavement will be under-

designed, and maintenance costs will likely be much higher than estimated.  However, if 

a correctly calibrated scale is used for toll classification, then a higher share of vehicles 

than expected will be classified to higher load classes.  Relative and absolute net 

changes in revenue will need to be quantified for different levels of error.  If loads are 

overestimated, maintenance costs will likely decrease, but the number of vehicles 

classified to the highest load class will be fewer than expected, resulting in less toll 

revenue.  Again the net change in revenue will need to be evaluated for a variety of 

levels of error. 

In addition to examining potential impacts for toll estimation, future research 

should further examine the impacts of WIM error on toll rate classification.   For a WIM 

system to be directly applied for tolling, a very high level of accuracy in load 

classification must be achieved.  Research should be performed to explore methods for 

quantifying the likelihood of misclassification due to both random and systematic scale 

error.  An important policy question that must be answered in implementation of an 

“Axle-Load” tolling structure will be to determine what error tolerance must be 

achieved before WIM can be used directly for tolling at highway speeds.  Currently, no 

WIM system in the U.S. has been approved for direct weight enforcement; however, as 

discussed in Chapter 4, a number of new technologies are being explored for future 
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WIM applications.  Future research must also examine the impact of environmental 

conditions on any new technology proposed for WIM applications. 

8.9  DATA UNCERTAINTY 

In this analysis, toll rates were estimated simply to recover costs; in solving for 

the basic toll rates, expected revenue was set equal to the expected costs.  However, in 

real implementation, an operator will not implement a toll structure that could 

potentially lead to a loss in revenue.  Future research should examine methods for 

quantifying all of the uncertainties in estimating toll rates for a load-based structure: 

these include overall vehicle volumes, truck share, truck profile, axle load spectra, 

random and systematic scale errors, and toll rate elasticities.  If these uncertainties can 

be quantified, then a reliability-based method of analysis can be developed for better 

measurement and management of risk.  Safety factors can then be introduced into the 

toll rate to guard against net losses in revenue. 

8.10  FINAL CONCLUSIONS 

As the United States moves toward new “cost-based” forms of user-charging, 

whether in the form of distance-based fees, congestion charges, or some other yet-to-

be determined method, it will be necessary to link the costs imposed on the system by 

individual vehicles with the rates that these vehicles pay.  The three major costs that will 

likely be necessary to measure are infrastructure consumption, contributions to 

congestion, and vehicle emissions.  Already, advanced technologies have been 
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employed in user-charging mechanisms to measure congestion contributions using real-

time traffic data.  This dissertation provides a theoretical framework for a user-charging 

mechanism that would use real-time weight data to measure infrastructure 

consumption for heavy vehicles.  The results of this research indicate that employing 

WIM systems for real-time load classification would allow system operators to better 

measure and recover the costs of infrastructure consumption from individual users.  

Looking ahead, this research provides a basis upon which future research in toll rate 

estimation and technology implementation for real-time truck tolling can be built.
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APPENDIX A:  PROGRAM FOR LIVE-LOAD MOMENT CALCULATION 

This program was developed to estimate the maximum live-load moment for 

individual vehicles crossing a simply supported bridge span of a user-defined length.  

The program “virtually” runs the truck over the bridge span by incrementing its axle load 

positions by a user-defined distance.  In this study, three lengths – 18, 31, and 370 feet - 

were evaluated, and trucks were moved across the bridge in .1 ft increments. 

Five different moment calculating functions were defined for estimation of the 

live-load moment when one, two, three, four, or five of a truck’s axles are on a bridge.  

“While” loops using boundary conditions estimated as a function of bridge length and 

axle spacing to control the loadings considered in the moment calculation.  Each change 

in loading corresponds to an additional axle entering or leaving the bridge.  The number 

of potential loading patterns increases with the number of axles on a vehicle.  For two-

axle trucks, there are two potential loading patterns; the second axle either enters the 

bridge before or after the first leaves it.  For three-axle trucks there are five, and for 

four-axle trucks there are 14 patterns.  For five-axle trucks, there are 42 different 

potential loading patterns. 

Since the maximum moment will occur in different locations for different trucks 

and bridge lengths, moments are also measured at incremental distances along the 

bridge (.1 ft for this study, which will allow for measurement at the critical points where 

each load is applied).  Each moment calculating function uses dummy variable functions 
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to determined the correct formula for calculation of a moment due to its location 

relative to loads on the bridge.  Figure A1 demonstrates how these variables identify the 

moment region for calculation for a 3 axle truck when all of its loads are on a bridge. 

 

 

 

 

 

 

Figure A1.  Dummy Variables for Moment Calculation 
 

 

The following pages provide the source code for the program.

C B A 

R1 R2 

x1=1 x1=0 

x2=1 x2=0 

x3=1 x3=0 
d1=1 d1=0 

d2=0 d2=1 d2=0 

d3=0 d3=1 d3=0 

d4=1 d4=0 



208 

 

global.h 
//  This file contains all the global input variables 
 
//  Variables 
 
float inc = .1;    // Increments (ft) 
float  L  = 18;    // Bridge span length (ft) 
int axlnum = 3 ;   //Number of axles on the truck class 
 
ofstream fout; 
 
int o = 1;    //O = Observation Number counter 
int obs; 
int MT; //MT = Moment Type - first num = #axles, 2nd 

num = option 
 
float A;   //A = Load on Axle A 
float B;    //B = Load on Axle B 
float C;    //C = Load on Axle C 
float D;    //D = Load on Axle D 
float E;    //E = Load on Axle E 
 
float AB;    //AB = Axle spacing from A to B 
float BC;    //BC = Axle spacing from B to C 
float CD;    //CD = Axle spacing from C to D 
float DE;    //DE = Axle spacing from D to E 
 
float MaxT;   //Location of Axle A when Max Moment Occurs 
float MaxM;   //Maximum Moment 
float MaxL;   //Location of Maximum Moment 
 
float pM;    //Point where moment evaluated 
float pX;            //Location of axle A 
float pY;    //Location of axle B 
float pZ;   //Location of axle C 
float pU;   //Location of axle D 
float pV;   //Location of axle E 
 
float r1;    //Reaction at Left Girder 
float r2;    //Reaction at Right Girder 
 
float EL;   //Limit for single axle on two axle truck  

entering bridge 
float LL;   //Limit for single axle on two axle truck  

leaving bridge 
float UL;            // Upper Limit 
 
 
 
//  Functions 
 
void oneax(float pLoad, float Load ); 
void twoax(float pLoad_1, float pLoad_2, float Load_1, float Load_2); 
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void threeax(float pLoad_1, float pLoad_2, float pLoad_3, float Load_1, 
float Load_2, float Load_3); 
void fourax(float pLoad_1, float pLoad_2, float pLoad_3, float pLoad_4, 
float Load_1, float Load_2, float Load_3, float Load_4); 
void fiveax (float pLoad_1, float pLoad_2, float pLoad_3, float 
pLoad_4, float pLoad_5, float Load_1, float Load_2, float Load_3, float 
Load_4, float Load_5); 
void position_increment(); 
void position_increment_2_axle(); 
void position_increment_3_axle(); 
void position_increment_4_axle(); 
void position_increment_5_axle(); 
void init_variables(); 

 

#include <iostream> 
using std::ios; 
using namespace std; 
using std::ifstream; 
#include <fstream> 
#include <stdlib.h> 
#include <time.h> 
#include <math.h> 
#include <iomanip> 
#include <stdio.h> 
#include "global.h" 
 
int main() 
{ 
 init_variables(); 
 cout <<endl<< "Thank you: Look for output in axle_load.txt"; 
 return 0;   
} 
 
//*********************************************************************
****************************** 
//function to initialize the variables 
//*********************************************************************
***************************** 
 
void init_variables() 
{ 
    ifstream fin; 
    switch(axlnum) { 
          case 1: 
          case 2: 
             fin.open("2_input_loads.txt"); 
             if(fin.fail())  
             { 
                 cout<<endl<<" Cannot open input file 2_input_loads.txt 
"; 
                 exit(-1); 
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             } 
             while(!fin.eof()) {  
                     fin >> A >> B >> AB ; 
                     position_increment_2_axle(); 
                     } 
             fin.close(); 
             break; 
          case 3: 
             fin.open("3_input_loads.txt"); 
             if(fin.fail())  
             { 
                 cout<<endl<<" Cannot open input file 3_input_loads.txt 
"; 
                 exit(-1); 
             } 
             while(!fin.eof()) {  
                     fin >> A >> B >> C >> AB >> BC; 
                     position_increment_3_axle(); 
                     } 
             fin.close(); 
             break; 
          case 4: 
             fin.open("4_input_loads.txt"); 
             if(fin.fail())  
             { 
                 cout<<endl<<" Cannot open input file 4_input_loads.txt 
"; 
                 exit(-1); 
             } 
             while(!fin.eof()) {  
                     fin >> A >> B >> C >> D >> AB >> BC >> CD; 
                     position_increment_4_axle(); 
                     } 
             fin.close(); 
             break;              
          case 5: 
             fin.open("5_input_loads.txt"); 
             if(fin.fail())  
             { 
                 cout<<endl<<" Cannot open input file 5_input_loads.txt 
"; 
                 exit(-1); 
             } 
             while(!fin.eof()) {  
                     fin >> obs >> A >> B >> C >> D >> E >> AB >> BC >> 
CD >> DE; 
                     position_increment_5_axle(); 
                     } 
             fin.close(); 
             break;   
          default: 
             cout<<endl<<"Please ensure number of axles is less than 
5"; 
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     } 
    
} 
 
 
 
//*********************************************************************
****************************** 
//function to increment the position of the truck for 2 axle truck 
//*********************************************************************
**************************** 
 
void position_increment_2_axle() 
{ 
     fout.open("axle_load.txt", ios::app); 
     if(AB < L )  //  if the distance between axles is less than the 
span of the bridge 
     { 
           pX = 0; 
     pY = 0; 
     MT = 21; 
     MaxT = 0; 
     MaxM = 0; 
     MaxL = 0; 
           while(pX <= AB) {                    
                    oneax( pX, A ); 
                    pX = pX + inc; 
                    } 
     while(pX <=  L){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
                    pY = pY + inc;            
                    }                     
          while(pX <= (L + AB)){ 
                    oneax(pY, B); 
         
                    pY = pY + inc; 
       pX = pX + inc; 
                    } 
     fout << endl << setw(10) << MaxM;       
     } 
      
     if( AB >= L ) 
     { 
         pX = 0; 
   pY = 0; 
   MT = 22; 
   MaxT = 0; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX <= L){                     
                    oneax( pX, A ); 
                    pX = pX + inc; 
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                    } 
   while(pX <= AB ){                   
     pX = pX + inc; 
                    } 
          
   while(pX <= (L + AB)){              
                    oneax(pY, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
  fout << endl << setw(10) << MaxM; 
  } 
     fout.close(); 
      
} 
 
//*********************************************************************
****************************** 
//Function to increment the position of the truck for 3 axle truck. 
//*********************************************************************
**************************** 
 
void position_increment_3_axle() 
{ 
    fout.open("axle_load.txt", ios::app); 
 
 if( (AB >= L) && (BC >= L) ) 
 { 
   pX = 0; 
   pY = 0; 
   pZ = 0; 
   MaxT = 0; 
   MT = 31; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < L){                       
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
 
   while(pX <  AB ){                    
                    pX = pX + inc; 
                    } 
 
 
   while(pX < (L + AB) ){              
                    oneax(pY, B ); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
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   while(pX < (AB + BC) ){  
                    pX = pX + inc; 
     pY = pY + inc; 
     } 
 
   while(pX < (L + AB + BC)){ 
                    oneax(pZ, C ); 
     pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
    fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB >= L) && (BC < L) ) 
 { 
   pX = 0; 
   pY = 0; 
   pZ = 0; 
   MaxT = 0; 
   MT = 32; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < L){                       
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
   while(pX <  AB ){                    
                    pX = pX + inc; 
                    } 
   while(pX < (AB + BC) ){              
                    oneax(pY, B ); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
   while(pX < (L + AB) ){  
     twoax(pY, pZ, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
   while(pX < (L + AB + BC)){ 
                    oneax(pZ, C ); 
     pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    }  
    fout << endl << setw(10) << MaxM; 
 } 
 if( (AB < L) && (BC >= L) ) 
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 { 
   pX = 0; 
   pY = 0; 
   pZ = 0; 
   MaxT = 0; 
   MT = 33; 
   MaxM = 0; 
   MaxL = 0; 
 
             while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
   while(pX < L ){                   
     twoax( pX , pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
             while(pX < (L + AB) ){                   
                    oneax(pY, B ); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
 
   while(pX < (AB + BC) ){  
                    pX = pX + inc; 
     pY = pY + inc; 
     } 
 
   while(pX < (L + AB + BC)){ 
                    oneax(pZ, C ); 
       pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC < L) && ( AB + BC >= L) ){ 
   pX = 0; 
   pY = 0; 
   pZ = 0; 
   MaxT = 0; 
   MT = 34; 
   MaxM = 0; 
   MaxL = 0; 
           while(pX < AB){                     
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
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   while(pX < L ){                   
          twoax( pX , pY, A, B); 
                    pX = pX + inc; 
      pY = pY + inc; 
                    } 
 
 
   while(pX < (AB + BC) ){                    
                    oneax(pY, B ); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
   while(pX < (L + AB)){ 
     twoax( pY, pZ, B, C); 
     pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                  } 
 
    while(pX < (L + AB + BC)){ 
     oneax( pZ, C); 
     pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                  } 
   fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC < L) && ( AB + BC < L) ){ 
   pX = 0; 
   pY = 0; 
   pZ = 0; 
   MaxT = 0; 
   MT = 35; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
         while(pX < (AB + BC) ){                   
     twoax( pX , pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
   while(pX < L ){ 
     threeax(pX, pY, pZ, A, B, C); 
     pX = pX + inc; 
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                    pY = pY + inc; 
     pZ = pZ + inc; 
                  } 
 
    while(pX < (L + AB )){ 
       twoax( pY , pZ, B, C); 
     pX = pX + inc; 
                    pY = pY + inc; 
     pZ = pZ + inc; 
                  } 
 
    while(pX < (L + AB + BC )){ 
     oneax( pZ, C); 
     pX = pX + inc; 
                    pY = pY + inc; 
     pZ = pZ + inc; 
                  } 
    fout << endl << setw(10) << MaxM; 
 } 
 fout.close(); 

 
//*********************************************************************
****************************** 
//function to increment the position of the truck for 4 axle truck. 
//*********************************************************************
**************************** 
 

void position_increment_4_axle() 
{ 
 fout.open("axle_load.txt", ios::app); 
 
 if( (AB >= L) && (BC >= L) && ( CD >= L)) { 
 
   pX = 0; 
   pY = 0; 
   pZ = 0; 
   pU = 0; 
   MaxT = 0; 
   MT = 41; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX <= L){                     
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
         while(pX <  AB ){                    
                    pX = pX + inc; 
                    } 
 
         while(pX <= (L + AB) ){                     
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                    oneax(pY, B ); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
  while(pX < (AB + BC) ){  
                    pX = pX + inc; 
     pY = pY + inc; 
     } 
 
  while(pX <= (L + AB + BC)){ 
                    oneax(pZ, C ); 
     pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
   
    while(pX < (AB + BC + CD) ){  
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
    while(pX <= (L + AB + BC +  CD)){ 
                    oneax(pU, D ); 
     pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 
 if( (AB >= L) && (BC >= L) && ( CD < L)) {            
 
   pX = 0; 
   pY = 0; 
   pZ = 0; 
   pU = 0; 
   MaxT = 0; 
   MT = 42; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX <= L){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
         while(pX <  AB ){                 
                    pX = pX + inc; 
                    } 
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         while(pX <= (L + AB) ){                     
                    oneax(pY, B ); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
  while(pX < (AB + BC) ){  
                    pX = pX + inc; 
     pY = pY + inc; 
     } 
 
  while(pX < (AB + BC + CD)){ 
                    oneax(pZ, C ); 
     pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
    while(pX <= (L + AB + BC ) ){  
          twoax(pZ, pU, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pU = pU + inc; 
     pZ = pZ + inc; 
     } 
 
    while(pX <= (L + AB + BC +  CD)){ 
                    oneax(pU, D ); 
     pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
    fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB >= L) && (BC < L) && ( CD >= L)) {    
  
 
   pX = 0; 
   pY = 0; 
   pZ = 0; 
   pU = 0; 
   MaxT = 0; 
   MT = 43; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX <= L){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
         while(pX <  AB ){                    
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                    pX = pX + inc; 
                    } 
 
         while(pX < (AB + BC) ){                    
                    oneax(pY, B ); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
  while(pX < (L + AB ) ){  
     twoax(pY, pZ, B, C ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
  while(pX <= (L + AB + BC)){ 
                    oneax(pZ, C ); 
     pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
    while(pX < (AB + BC + CD) ){  
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
    while(pX <= (L + AB + BC +  CD)){ 
                    oneax(pU, D ); 
     pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
 fout << endl << setw(10) << MaxM; 
 } 
 
 
 if( (AB >= L) && (BC < L) && ( CD <  L) && ((BC + CD) >= L ) )     
 { 
   pX = 0; 
   pY = 0; 
   pZ = 0; 
   pU = 0; 
   MaxT = 0; 
   MT = 44; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX <= L){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
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                    } 
 
         while(pX <  AB ){                    
                    pX = pX + inc; 
                    } 
         while(pX < (AB + BC) ){                     
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
  while(pX < (L + AB ) ){  
     twoax(pY, pZ, B, C ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
  while(pX < (AB + BC + CD ) ){  
     oneax(pZ, C ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
    while(pX <= (L + AB + BC ) ){  
          twoax(pZ, pU, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pU = pU + inc; 
     pZ = pZ + inc; 
     } 
 
    while(pX <= (L + AB + BC +  CD)){ 
                    oneax(pU, D ); 
     pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB >= L) && (BC < L) && ( CD <  L) && ((BC + CD) < L ) )  
 { 
 
   pX = 0; 
   pY = 0; 
   pZ = 0; 
   pU = 0; 
   MaxT = 0; 
   MT = 45; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX <= L){                    
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                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
         while(pX <  AB ){                    
                    pX = pX + inc; 
                    } 
 
         while(pX < (AB + BC) ){                   
                    oneax(pY, B ); 
                    pX = pX + inc; 
       pY = pY + inc; 
                    } 
 
   while(pX < (AB + BC + CD) ){                     
                    twoax(pY, pZ, B, C ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
   while(pX <= (L + AB ) ){ 
     threeax(pY, pZ, pU, B, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
   } 
 
   while(pX <= (L + AB + BC ) ){ 
     twoax(pZ, pU, C, D); 
     pX = pX + inc; 
     pY = pY + inc; 
     pU = pU + inc; 
     pZ = pZ + inc; 
   } 
 
   while(pX <= (L + AB + BC + CD ) ){ 
     oneax( pU, D); 
     pX = pX + inc; 
     pY = pY + inc; 
     pU = pU + inc; 
     pZ = pZ + inc; 
   } 
 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC < L) && ( CD <  L) && ((AB + BC) >= L )&& 
((BC + CD) >= L ) )      
 { 
   pX = 0; 
   pY = 0; 
   pZ = 0; 
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   pU = 0; 
   MaxT = 0; 
   MT = 46; 
   MaxM = 0; 
   MaxL = 0; 
           while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
           while(pX <= L){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
  
          while(pX < (AB+ BC)){                      
                    oneax(pY, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
          while(pX <= (L + AB)){                      
                    twoax(pY, pZ, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
   while(pX < (AB + BC + CD)){                      
                    oneax(pZ, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
   while(pX <= (L + AB + BC )){                      
                    twoax(pZ, pU, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pU = pU + inc; 
     pZ = pZ + inc; 
                    } 
 
   while(pX <= (L + AB + BC + CD )){                      
                    oneax(pU, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pU = pU + inc; 
     pZ = pZ + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
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 } 
 
 if( (AB < L) && (BC < L) && ( CD <  L) && ((AB + BC) >= L )&& 
((BC + CD) < L ) )     
 { 
   pX = 0; 
   pY = 0; 
   pZ = 0; 
   pU = 0; 
   MaxT = 0; 
   MT = 47; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
         while(pX <= L){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
   
         while(pX < (AB+ BC)){                      
                    oneax(pY, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
   while(pX < (AB+ BC + CD)){ 
     twoax(pY, pZ, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
   } 
 
   while(pX <= (L + AB)){ 
     threeax(pY, pZ, pU, B, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
   } 
 
   while(pX <= (L + AB + BC)){ 
     twoax(pZ, pU, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
   } 
 



224 

 

   while(pX <= (L + AB + BC + CD)){ 
     oneax( pU,  D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
   } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC < L) && ( CD <  L) && ((AB + BC) < L )&& ((BC 
+ CD) >= L ) ) 
 { 
   pX = 0; 
   pY = 0; 
   pZ = 0; 
   pU = 0; 
   MaxT = 0; 
   MT = 48; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
   while(pX < (AB + BC)){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
   while(pX <= L){                      
                    threeax(pX, pY, pZ, A, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
   while(pX <= (L + AB)){                      
                    twoax(pY, pZ, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
    
   while(pX < ( AB + BC + CD)){                      
                    oneax(pZ, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
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   while(pX <= (L + AB + BC)){                      
                    twoax(pZ, pU, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
  while(pX <= (L + AB + BC + CD)){                      
                    oneax(pU, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC < L) && ( CD <  L) && ((AB + BC) < L )&& ((BC 
+ CD) < L ) && ((AB + BC + CD) >=L) ) 
 { 
   pX = 0; 
   pY = 0; 
   pZ = 0; 
   pU = 0; 
   MaxT = 0; 
   MT = 49; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
   while(pX < (AB + BC)){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
   while(pX <= L){                      
                    threeax(pX, pY, pZ, A, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
   while(pX < (AB + BC + CD)){                      
                    twoax(pY, pZ, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
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   while(pX <= (L + AB)){                      
                    threeax(pY, pZ, pU, B, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
  while(pX <= (L + AB + BC)){                      
                    twoax(pZ, pU, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
  while(pX <= (L + AB + BC + CD)){                      
                    oneax(pU, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC < L) && ( CD <  L) && ((AB + BC) < L )&& ((BC 
+ CD) < L ) && ((AB + BC + CD) < L) ) 
 { 
   pX = 0; 
   pY = 0; 
   pZ = 0; 
   pU = 0; 
   MaxT = 0; 
   MT = 410; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
   while(pX < (AB + BC)){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
       pY = pY + inc; 
                    } 
 
   while(pX < (AB + BC + CD)){                      
                    threeax(pX, pY, pZ, A, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
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     pZ = pZ + inc; 
                    } 
 
   while(pX <= L){                      
                    fourax(pX, pY, pZ, pU, A, B, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
   while(pX <= (L + AB)){                      
                    threeax(pY, pZ, pU, B, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
  while(pX <= (L + AB + BC)){                      
                    twoax(pZ, pU, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
  while(pX <= (L + AB + BC + CD)){                      
                    oneax(pU, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 fout << endl << setw(10) << MaxM;   
 } 
 if( (AB < L) && (BC < L) && ( CD >=  L) && ((AB + BC) >= L) )             
 { 
 
   pX = 0; 
   pY = 0; 
   pZ = 0; 
   pU = 0; 
   MaxT = 0; 
   MT = 411; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
         while(pX <= L){                      
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                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
  
         while(pX < (AB+ BC)){                      
                    oneax(pY, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
         while(pX <= (L + AB)){                      
                    twoax(pY, pZ, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
  while(pX <= (L + AB + BC)){ 
                    oneax(pZ, C ); 
     pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
    while(pX < (AB + BC + CD) ){  
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
    while(pX <= (L + AB + BC +  CD)){ 
                    oneax(pU, D ); 
     pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC < L) && ( CD >=  L) && ((AB + BC) < L) )       
 { 
 
   pX = 0; 
   pY = 0; 
   pZ = 0; 
   pU = 0; 
   MaxT = 0; 
   MT = 412; 
   MaxM = 0; 
   MaxL = 0; 



229 

 

         while(pX < AB){                      
                    pX = pX + inc; 
                    } 
 
   while(pX < (AB + BC)){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
   while(pX <= L){                      
                    threeax(pX, pY, pZ, A, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
   while(pX <= (L + AB)){                      
                    twoax(pY, pZ, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
  while(pX <= (L + AB + BC)){ 
                    oneax(pZ, C ); 
     pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
    while(pX < (AB + BC + CD) ){  
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
    while(pX <= (L + AB + BC +  CD)){ 
                    oneax(pU, D ); 
     pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 fout << endl << setw(10) << MaxM; 
 } 
 if( (AB < L) && (BC >= L) && ( CD < L))   
 { 
   pX = 0; 
   pY = 0; 
   pZ = 0; 
   pU = 0; 
   MaxT = 0; 



230 

 

   MT = 413; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
         while(pX <= L){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
           
         while(pX <= (L + AB) ){                    
                    oneax(pY, B ); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
  while(pX < (AB + BC) ){  
                    pX = pX + inc; 
     pY = pY + inc; 
     } 
 
  while(pX < (AB + BC + CD)){ 
                    oneax(pZ, C ); 
     pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
   
    while(pX <= (L + AB + BC ) ){  
          twoax(pZ, pU, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pU = pU + inc; 
     pZ = pZ + inc; 
     } 
    while(pX <= (L + AB + BC +  CD)){ 
                    oneax(pU, D ); 
     pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC >= L) && ( CD >= L))  
 { 
   pX = 0; 
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   pY = 0; 
   pZ = 0; 
   pU = 0; 
   MaxT = 0; 
   MT = 414; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
         while(pX <= L){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
       pY = pY + inc; 
                    } 
 
  while(pX <= (L + AB) ){                     
                    oneax(pY, B ); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
  while(pX < (AB + BC) ){  
                    pX = pX + inc; 
     pY = pY + inc; 
     } 
 
  while(pX <= (L + AB + BC)){ 
                    oneax(pZ, C ); 
     pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
    while(pX < (AB + BC + CD) ){  
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
    while(pX <= (L + AB + BC +  CD)){ 
                    oneax(pU, D ); 
     pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 fout << endl << setw(10) << MaxM; 
 } 
      fout.close(); 
} 
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//*********************************************************************
****************************** 
//Function to increment the position of the truck for 5 axle truck. 
//*********************************************************************
**************************** 
 
void position_increment_5_axle() 
{ 
 fout.open("axle_load.txt", ios::app); 
 if( (AB >= L) && (BC >= L) && ( CD >= L) && ( DE >= L))     // 
Option 1 
 { 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 51; 
  MaxM = 0; 
  MaxL = 0; 
     while(pX < L){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
  while(pX <  AB ){                                        

  pX = pX + inc; 
                    } 
 
  while(pX < (L + AB) ){                    
                    oneax(pY, B ); 
                    pX = pX + inc; 
      pY = pY + inc; 
                    } 
 
  while(pX < (AB + BC) ){  
                    pX = pX + inc; 
     pY = pY + inc; 
     } 
 
  while(pX < (L + AB + BC)){ 
                    oneax(pZ, C ); 

  pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
     
  while(pX < (AB + BC + CD) ){  
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
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       while(pX < (L + AB + BC +  CD)){ 
                    oneax(pU, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
        while(pX < (AB + BC + CD + DE) ){  
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
  while(pX <= (L + AB + BC +  CD + DE)){ 
                    oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
                    } 
 fout << endl << setw(10) << MaxM: 

} 
 
 if( (AB >= L) && (BC >= L) && ( CD >= L) && ( DE < L))       // 
Option 2 
 { 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 52; 
  MaxM = 0; 
  MaxL = 0; 
     while(pX < L){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
  while(pX <  AB ){                  
                    pX = pX + inc; 
                    } 
 
  while(pX < (L + AB) ){                     
                    oneax(pY, B ); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
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  while(pX < (AB + BC) ){  
                   pX = pX + inc; 
    pY = pY + inc; 
     } 
 
  while(pX < (L + AB + BC)){ 
                    oneax(pZ, C ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
     
  while(pX < (AB + BC + CD) ){  
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
    while(pX < (AB + BC +  CD + DE)){ 
                    oneax(pU, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
    while(pX < (L + AB + BC + CD ) ){  
     twoax( pU, pV, pU, pV); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 
  while(pX <= (L + AB + BC +  CD + DE)){ 
                    oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
                    } 
 fout << endl << setw(10) << MaxM: 
 } 
 
 if( (AB >= L) && (BC >= L) && ( CD < L) && ( DE >= L))            
// Option 3 
 { 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
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  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 53; 
  MaxM = 0; 
  MaxL = 0; 
     while(pX < L){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
  while(pX <  AB ){                    
                    pX = pX + inc; 
                    } 
 
  while(pX < (L + AB) ){                     
                    oneax(pY, B ); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
  while(pX < (AB + BC) ){  
                    pX = pX + inc; 
     pY = pY + inc; 
     } 
 
  while(pX < (AB + BC + CD)){ 
                    oneax(pZ, C ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
   
    while(pX < (L + AB + BC ) ){  
          twoax(pZ, pU, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
    while(pX < (L + AB + BC +  CD)){ 
                    oneax(pU, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
       pZ = pZ + inc; 
       pU = pU + inc; 
                    } 
 
   while(pX < (AB + BC + CD + DE) ){  
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
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     pU = pU + inc; 
     } 
 
   while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
         pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
fout << endl << setw(10) << MaxM: } 
 
 if( (AB >= L) && (BC < L) && ( CD >= L) && ( DE >= L))            
// Option 4 
 { 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 54; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX <= L){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
         while(pX <  AB ){                    

     pX = pX + inc; 
                    } 
 
         while(pX < (AB + BC) ){                     
                    oneax(pY, B ); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
  while(pX < (L + AB ) ){  
           twoax(pY, pZ, B, C ); 
                    pX= pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
  while(pX <= (L + AB + BC)){ 
                    oneax(pZ, C ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
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    while(pX < (AB + BC + CD) ){  
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
    while(pX < (L + AB + BC +  CD)){ 
                    oneax(pU, D ); 
                    pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
   while(pX < (AB + BC + CD + DE) ){  
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
   while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 

fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB >= L) && (BC >= L) && ( CD < L) && ( DE < L) && ( (CD + 
DE) >= L))     //Option 5 
 { 
 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 55; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX <= L){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
         while(pX <  AB ){                    
                   pX = pX + inc; 
                    } 
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         while(pX < (L + AB) ){                     
                    oneax(pY, B ); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
  while(pX < (AB + BC) ){  
                    pX = pX + inc; 
     pY = pY + inc; 
     } 
 
  while(pX < (AB + BC + CD)){ 
                    oneax(pZ, C ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
   
    while(pX < (L + AB + BC ) ){  
          twoax(pZ, pU, C, D); 
                    pX = pX + inc; 
       pY = pY + inc; 
       pU = pU + inc; 
       pZ = pZ + inc; 
     } 
      
    while(pX < (AB + BC +  CD + DE)){ 
                    oneax(pU, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pU = pU + inc; 
     pZ = pZ + inc; 
                 } 
 
    while(pX < (L+ AB + BC +  CD)){ 
                    twoax(pU, pV, D, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pU = pU + inc; 
     pZ = pZ + inc; 
     pV = pV + inc; 
               } 
 
   while(pX <= (L + AB + BC +  CD + DE)){ 
                    oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
                    } 
 fout << endl << setw(10) << MaxM; 
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 } 
  
      if( (AB >= L) && (BC >= L) && ( CD < L) && ( DE < L) && ( (CD + 
DE) < L))    //Option 6 
 { 
 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 56; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX <= L){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
         while(pX <  AB ){                    
                    pX = pX + inc; 
                    } 
 
         while(pX < (L + AB) ){                     
                    oneax(pY, B ); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
    while(pX < (AB + BC) ){  
                    pX = pX + inc; 
     pY = pY + inc; 
     } 
 
    while(pX < (AB + BC + CD)){ 
                    oneax(pZ, C ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 

   while(pX < (AB + BC + CD + DE)){ 
                    twoax(pZ, pU, C, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
  while(pX < (L + AB + BC )){ 
                    threeax(pZ, pU, pV, C, D, E ); 
                    pX = pX + inc; 
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     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
                    } 
 
    while(pX < (L+ AB + BC +  CD)){ 
                    twoax(pU, pV, D, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
                 } 
 
   while(pX <= (L + AB + BC +  CD + DE)){ 
                    oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
                    } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB >= L) && (BC < L) && ( CD < L) && ( DE >= L) && ( (BC + 
CD)>= L))         //Option 7 
 { 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 57; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < L){                     
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
         while(pX <  AB ){                    

  pX = pX + inc; 
                    } 
 
         while(pX < (AB + BC) ){                       

  pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
  while(pX < (L + AB ) ){  
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     twoax(pY, pZ, B, C ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
  
  while(pX < (AB + BC + CD ) ){  
     oneax(pZ, C ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
  while(pX < (L  + AB + BC ) ){  
     twoax(pZ, pU, C, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
  while(pX < (L + AB + BC + CD ) ){  
     oneax(pU, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
     while(pX < (AB + BC + CD + DE) ){  
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
     while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB >= L) && (BC < L) && ( CD < L) && ( DE >= L) && ( (BC + 
CD) < L))        // Option 8 
 { 
  pX = 0; 
  pY = 0; 
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  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 58; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < L){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
         while(pX <  AB ){                    
                    pX = pX + inc; 
                    } 
 
 
         while(pX < (AB + BC) ){                     
                    oneax(pY, B ); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
  while(pX < (AB + BC + CD ) ){  
     twoax(pY, pZ, B, C ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
   
  while(pX < (L + AB ) ){  
     threeax(pY, pZ, pU, B, C, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
 
  while(pX < (L  + AB + BC ) ){  
     twoax(pZ, pU, C, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
  while(pX < (L + AB + BC + CD ) ){  
     oneax(pU, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
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     } 
 
     while(pX < (AB + BC + CD + DE) ){  
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
     while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
 if( (AB >= L) && (BC < L) && ( CD >= L) && ( DE < L) )     
//Option 9 
 { 
 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 59; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < L){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
         while(pX <  AB ){                    
                    pX = pX + inc; 
                    } 
 
         while(pX < (AB + BC) ){                     
                    oneax(pY, B ); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 

   while(pX < (L + AB ) ){  
     twoax(pY, pZ, B, C ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
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    while(pX < (L + AB + BC ) ){  
     oneax(pZ, C ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
   
  while(pX < (AB + BC + CD ) ){  
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
   
  while(pX < (AB + BC + CD + DE ) ){  
     oneax(pU, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
     while(pX < (L + AB + BC + CD ) ){ 
     twoax(pU, pV, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pV = pV + inc; 
     pU = pU + inc; 
     } 
 
     while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pV = pV + inc; 
     pU = pU + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
 if( (AB >= L) && (BC < L) && ( CD < L) && ( DE < L) && ((CD + DE) 
>= L) && ( (BC + CD)>= L))     

/
/
O
p
t
i
o
n
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1
0 

 { 
 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 510; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < L){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
         while(pX <  AB ){                   
                    pX = pX + inc; 
                    } 
 
         while(pX < (AB + BC) ){                     
                    oneax(pY, B ); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 

   while(pX < (L + AB ) ){  
     twoax(pY, pZ, B, C ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
  while(pX < (AB + BC + CD ) ){  
     oneax(pZ, C ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
  while(pX < (L  + AB + BC ) ){  
     twoax(pZ, pU, C, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
 
  while(pX < (AB + BC + CD + DE ) ){  
     oneax(pU, D ); 
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                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
     while(pX < (L + AB + BC + CD ) ){ 
     twoax(pU, pV, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 
     while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB >= L) && (BC < L) && ( CD < L) && ( DE < L) && ((CD + DE) 
< L) && ( (BC + CD)>= L))   //Option 11 
 { 
 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 511; 
  MaxM = 0; 
  MaxL = 0; 
         while(pX < L){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
         while(pX <  AB ){                    

pX = pX + inc; 
                    } 
 
         while(pX < (AB + BC) ){                    // Only axle B is 
on the bridge 
                    oneax(pY, B ); 
                    pX = pX + inc; 
     pY = pY + inc; 
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                    } 
 
  while(pX < (L + AB ) ){  
     twoax(pY, pZ, B, C ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     } 
 
  while(pX < (AB + BC + CD ) ){  
     oneax(pZ, C ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
  while(pX < (AB + BC + CD + DE ) ){  
     twoax(pZ, pU, C, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
  while(pX < (L + AB + BC ) ){  
     threeax(pZ, pU, pV, C, D, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 
   
     while(pX < (L + AB + BC + CD ) ){ 
     twoax(pU, pV, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 
     while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
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 if( (AB >= L) && (BC < L) && ( CD < L) && ( DE < L) && ((CD + DE) 
>= L) && ( (BC + CD) < L))    

/
O
p
t
i
o
n
 
1
2 

 { 
 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 512; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < L){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
         while(pX <  AB ){                    

  pX = pX + inc; 
               } 
 
         while(pX < (AB + BC) ){                     
                    oneax(pY, B ); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
  while(pX < (AB + BC + CD ) ){  
     twoax(pY, pZ, B, C ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
   
  while(pX < (L + AB ) ){  
     threeax(pY, pZ, pU, B, C, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
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  while(pX < (L  + AB + BC ) ){  
     twoax(pZ, pU, C, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
 
  while(pX < (AB + BC + CD + DE ) ){  
     oneax(pU, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
     while(pX < (L + AB + BC + CD ) ){ 
     twoax(pU, pV, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pV = pV + inc; 
     pU = pU + inc; 
     } 
 
     while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pV = pV + inc; 
     pU = pU + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB >= L) && (BC < L) && ( CD < L) && ( DE < L) && ((CD + DE) 
< L) && ( (BC + CD) < L) && ( (BC + CD + DE) >= L))      
        //Option 13 
 { 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 513; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < L){                      
                    oneax(pX, A); 
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                    pX = pX + inc; 
                    } 
 
         while(pX <  AB ){                    
                    pX = pX + inc; 
                    } 
 
         while(pX < (AB + BC) ){                     
                    oneax(pY, B ); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
  while(pX < (AB + BC + CD ) ){  
     twoax(pY, pZ, B, C ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
   
  while(pX < (L + AB ) ){  
     threeax(pY, pZ, pU, B, C, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
   
  while(pX < (AB + BC + CD + DE ) ){  
     twoax(pZ, pU, C, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
  while(pX < (L + AB + BC ) ){  
     threeax(pZ, pU, pV, C, D, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
   
       while(pX < (L + AB + BC + CD ) ){ 
     twoax(pU, pV, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
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     } 
 
       while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB >= L) && (BC < L) && ( CD < L) && ( DE < L) && ((CD + DE) 
< L) && ( (BC + CD) < L) && ( (BC + CD + DE) < L))       
        //Option 14 
 { 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 514; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < L){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
         while(pX <  AB ){                    
                    pX = pX + inc; 
                    } 
 
         while(pX < (AB + BC) ){                     
                    oneax(pY, B ); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
  while(pX < (AB + BC + CD ) ){  
     twoax(pY, pZ, B, C ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
  while(pX < (AB + BC + CD + DE ) ){  
     threeax(pY, pZ, pU, B, C, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
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     pU = pU + inc; 
     } 
 
  while(pX < (L + AB ) ){  
     fourax(pY, pZ, pU, pV, B, C, D, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
   
  while(pX < (L + AB + BC ) ){  
     threeax(pZ, pU, pV, C, D, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 
   
     while(pX < (L + AB + BC + CD ) ){ 
     twoax(pU, pV, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 
     while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC < L) && ( CD < L) && ( DE < L) && ((CD + DE) 
>= L) && ( (BC + CD) >= L) && ( (AB + BC) >= L))         
        //Option 15 
 { 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 515; 
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   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
         while(pX < L){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
  
         while(pX < (AB+ BC)){                      
                    oneax(pY, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
         while(pX < (L + AB)){                      
                    twoax(pY, pZ, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
   while(pX < (AB + BC + CD)){                      
                    oneax(pZ, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
   while(pX < (L + AB + BC )){                      
                    twoax(pZ, pU, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
   while(pX < (AB + BC + CD + DE ) ){  
     oneax(pU, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
     while(pX < (L + AB + BC + CD ) ){ 
     twoax(pU, pV, D, E); 
                    pX = pX + inc; 
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     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 
     while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
 if( (AB < L) && (BC < L) && ( CD < L) && ( DE < L) && ((CD + DE) 
< L) && ( (BC + CD) >= L) && ( (AB + BC) >= L))       
        //Option 16 
 { 
 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 516; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 

  pX = pX + inc; 
                    } 
 
         while(pX < L){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
  
         while(pX < (AB+ BC)){                      
                    oneax(pY, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
         while(pX < (L + AB)){                      
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
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   while(pX < (AB + BC + CD)){                      
                    oneax(pZ, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
   while(pX < (AB + BC + CD + DE)){                      
                    twoax(pZ, pU, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
   while(pX < (L + AB + BC) ){  
     threeax(pZ, pU, pV, C, D, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 
   
     while(pX < (L + AB + BC + CD ) ){ 
     twoax(pU, pV, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pV = pV + inc; 
     pU = pU + inc; 
     } 
 
     while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pV = pV + inc; 
     pU = pU + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC < L) && ( CD < L) && ( DE < L) && ((CD + DE) 
>= L) && ( (BC + CD) < L) && ( (AB + BC) >= L))      
        //Option 17 
 { 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
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  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 517; 
  MaxM = 0; 
  MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
         while(pX < L){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
  
         while(pX < (AB+ BC)){                      
                    oneax(pY, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
         while(pX < (AB + BC + CD)){                      
                    twoax(pY, pZ, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
   while(pX < (L + AB)){                      
                    threeax(pY, pZ, pU, B, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
    
   while(pX < (L + AB + BC)){                      
                    twoax(pZ, pU, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
 
   while(pX < (AB + BC + CD + DE) ){  
     oneax(pV, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
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     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
     while(pX < (L + AB + BC + CD ) ){ 
     twoax(pU, pV, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 
     while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC < L) && ( CD < L) && ( DE < L) && ((CD + DE) 
< L) && ( (BC + CD) < L) && ( (AB + BC) >= L) && ( (BC + CD + DE) >= L) 
)              //Option 18 
 { 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 518; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
 
         while(pX < L){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
  
         while(pX < (AB+ BC)){                      
                    oneax(pY, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
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                    } 
 
         while(pX < (AB + BC + CD)){                      
                    twoax(pY, pZ, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
   while(pX < (L + AB)){                      
                    threeax(pY, pZ, pU, B, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
    
   while(pX < (AB + BC + CD + DE)){                      
                    twoax(pZ, pU, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
   while(pX < (L + AB + BC) ){  
     threeax(pZ, pU, pV, C, D, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 
   
     while(pX < (L + AB + BC + CD ) ){ 
     twoax(pU, pV, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
                    } 
 
     while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
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 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC < L) && ( CD < L) && ( DE < L) && ((CD + DE) 
< L) && ( (BC + CD) < L) && ( (AB + BC) >= L) && ( (BC + CD + DE) < L) 
)               //Option 19 
 { 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 519; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
    
         while(pX < L){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
   while(pX < (AB+ BC)){                      
                    oneax(pY, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
         while(pX < (AB + BC + CD)){                      
                    twoax(pY, pZ, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
   while(pX < (AB + BC + CD + DE)){                      
                    threeax( pY, pZ, pU, B, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
   while(pX < (L + AB )){                      
                    fourax(pY , pZ, pU, pV, B, C, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
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     pU = pU + inc; 
     pV = pV + inc; 
                    } 
 
          
   while(pX < (L + AB + BC) ){  
     threeax(pZ, pU, pV, C, D, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 
   
     while(pX < (L + AB + BC + CD ) ){ 
     twoax(pU, pV, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
                    } 
 
     while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC < L) && ( CD < L) && ( DE < L) && ((CD + DE) 
< L) && ( (BC + CD) < L) && ( (AB + BC) < L) && ( (BC + CD + DE) >= L) 
&& ( (AB + BC + CD) >= L) )         //Option 20 
 { 
 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 520; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
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         while(pX < (AB + BC)){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
   while(pX < L ){                      
                    threeax(pX, pY, pZ, A, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
    
         while(pX < (AB + BC + CD )){                      
                    twoax( pY, pZ, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
   while(pX < (L + AB )){                      
                    threeax( pY, pZ, pU, B, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
    
   while(pX < (AB + BC + CD + DE )){                      
                    twoax( pZ, pU, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
   while(pX < (L + AB + BC) ){  
     threeax(pZ, pU, pV, C, D, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 
   
     while(pX < (L + AB + BC + CD ) ){ 
     twoax(pU, pV, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
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     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
                    } 
 
     while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 

fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC < L) && ( CD < L) && ( DE < L) && ((CD + DE) 
< L) && ( (BC + CD) < L) && ( (AB + BC) < L) && ( (BC + CD + DE) < L) 
&& ( (AB + BC + CD) >= L) )          //Option 21 
 { 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 521; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
    
         while(pX < (AB + BC)){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
   while(pX < L ){                      
                    threeax(pX, pY, pZ, A, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
    
         while(pX < (AB + BC + CD )){                      
                    twoax( pY, pZ, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
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                    } 
 
   while(pX < (AB + BC + CD + DE)){                      
                    threeax( pY, pZ, pU, B, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
   while(pX < (L + AB )){                      
                    fourax(pY , pZ, pU, pV, B, C, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
                    } 
 
          
   while(pX < (L + AB + BC) ){  
     threeax(pZ, pU, pV, C, D, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 
   
     while(pX < (L + AB + BC + CD ) ){ 
     twoax(pU, pV, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
                    } 
 
     while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 

fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC < L) && ( CD < L) && ( DE < L) && ((CD + DE) 
< L) && ( (BC + CD) < L) && ( (AB + BC) < L) && ( (BC + CD + DE) >= L) 
&& ( (AB + BC + CD) < L) )             //Option 22 
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 { 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 522; 
  MaxM = 0; 
  MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
    
         while(pX < (AB + BC)){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
   while(pX < (AB + BC + CD) ){                      
                    threeax(pX, pY, pZ, A, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
   while(pX < L ){                      
                    fourax(pX, pY , pZ, pU, A, B, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pU = pU + inc; 
     pZ = pZ + inc; 
                    } 
 
    
   while(pX < (L + AB )){                      
                    threeax( pY, pZ, pU, B, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
    
   while(pX < (AB + BC + CD + DE )){                      
                    twoax(pZ, pU, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
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   while(pX < (L + AB + BC) ){  
     threeax(pZ, pU, pV, C, D, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 
   
     while(pX < (L + AB + BC + CD ) ){ 
     twoax(pU, pV, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
                    } 
 
     while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
    pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC < L) && ( CD < L) && ( DE < L) && ((CD + DE) 
< L) && ( (BC + CD) < L) && ( (AB + BC) < L) && ( (BC + CD + DE) < L) 
&& ( (AB + BC + CD) < L) && ( (AB + BC + CD + DE) >= L) )   
//Option 23 
 { 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 523; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
    
         while(pX < (AB + BC)){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
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     pY = pY + inc; 
                    } 
 
   while(pX < (AB + BC + CD) ){                      
                    threeax(pX, pY, pZ, A, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
   while(pX < L){                      
                    fourax(pX, pY , pZ, pU, A, B, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
               } 
 
       
   while(pX < (AB + BC + CD + DE)){                      
                    threeax( pY, pZ, pU , B, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
   while(pX < (L + AB )){                      
                    fourax(pY , pZ, pU, pV, B, C, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
                    } 
 
          
   while(pX < (L + AB + BC) ){  
     threeax(pZ, pU, pV, C, D, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 
   
     while(pX < (L + AB + BC + CD ) ){ 
     twoax(pU, pV, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
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     pV = pV + inc; 
                    } 
 
     while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC < L) && ( CD < L) && ( DE < L) && ((CD + DE) 
< L) && ( (BC + CD) < L) && ( (AB + BC) < L) && ( (BC + CD + DE) < L) 
&& ( (AB + BC + CD) < L) && ( (AB + BC + CD + DE) < L) )       
// Option 24 
 { 
 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 524; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX <= AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
    
         while(pX <= (AB + BC)){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
   while(pX <= (AB + BC + CD) ){                      
                    threeax(pX, pY, pZ, A, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
   while(pX <= (AB + BC + CD + DE) ){                      
                    fourax(pX, pY , pZ, pU, A, B, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
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               } 
 
   while(pX <= L){                      
                    fiveax( pX, pY, pZ, pU, pV, A, B, C, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
                    } 
 
    
   while(pX <= (L + AB )){                      
                    fourax(pY , pZ, pU, pV, B, C, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
                    } 
 
          
   while(pX <= (L + AB + BC) ){  
     threeax(pZ, pU, pV, C, D, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
   } 
   
     while(pX <= (L + AB + BC + CD ) ){ 
     twoax(pU, pV, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
                    } 
 
     while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
    pV = pV + inc; 
     } 

fout << endl << setw(10) << MaxM; 
} 
 
if( (AB < L) && (BC < L) && ( CD < L) && ( DE >= L) && ( (BC + 
CD) >= L) && ( (AB + BC) >= L) )     
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//Option 25 
 { 

  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 525; 
  MaxM = 0; 
  MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
    
         while(pX < L){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
     while(pX < (AB + BC) ){                      
                    oneax(pY, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
     } 
 
   while(pX < (L+AB) ){                      
                    twoax(pY , pZ, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                 } 
 
    while(pX < (AB + BC + CD)){                      
                    oneax( pZ, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
   while(pX < (L + AB + BC )){                      
                    twoax(pZ, pU, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
          
   while(pX < (L + AB + BC + CD) ){  
     oneax(pU, D ); 
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                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
   
     while(pX < (AB + BC + CD + DE ) ){ 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
     while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC < L) && ( CD < L) && ( DE >= L) && ( (BC + 
CD) < L) && ( (AB + BC) >= L) )      
//Option 26 
 { 
 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 526; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
    
         while(pX < L){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
     while(pX < (AB + BC) ){                      
                    oneax(pY, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
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     } 
 
   while(pX < (AB + BC + CD) ){                      
                    twoax(pY , pZ, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
               } 
 
    while(pX < (L + AB)){                      
                    threeax( pY, pZ, pU, B, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
    
   while(pX < (L + AB + BC )){                      
                    twoax(pZ, pU, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
      } 
         
   while(pX < (L + AB + BC + CD) ){  
     oneax(pU, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
       while(pX < (AB + BC + CD + DE ) ){ 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
     while(pX <= (L + AB + BC + CD + DE) ){  
              oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
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 if( (AB < L) && (BC < L) && ( CD < L) && ( DE >= L) && ( (BC + 
CD) >= L) && ( (AB + BC) < L) )     
//Option 27 
 { 
 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 527; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
    
         while(pX < (AB + BC) ){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
     while(pX < L ){                      
                    threeax(pX, pY, pZ, A, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
     while(pX < (L + AB) ){                      
                    twoax(pY , pZ, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
               } 
 
           
     while(pX < (AB + BC + CD)){                      
                    oneax( pZ, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
   while(pX < (L + AB + BC )){                      
                    twoax(pZ, pU, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
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     } 
 
          
   while(pX < (L + AB + BC + CD) ){  
     oneax(pU, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
   
     while(pX < (AB + BC + CD + DE ) ){ 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
     while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC < L) && ( CD < L) && ( DE >= L) && ( (BC + 
CD) < L) && ( (AB + BC) < L) && ( (AB + BC + CD) >= L)  )         
        //Option 28 
 { 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 528; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
    
         while(pX < (AB + BC)){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 



275 

 

 
     while(pX < L ){                      
                    threeax(pX, pY, pZ, A, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
    
   while(pX < (AB + BC + CD) ){                      
                    twoax(pY , pZ, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
               } 
 
    while(pX < (L + AB)){                      
                    threeax( pY, pZ, pU, B, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
    
   while(pX < (L + AB + BC )){                      
                    twoax(pZ, pU, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
          
   while(pX < (L + AB + BC + CD) ){  
           oneax(pU, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
   
     while(pX < (AB + BC + CD + DE ) ){ 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
     while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
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     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC < L) && ( CD < L) && ( DE >= L) && ( (BC + 
CD) < L) && ( (AB + BC) < L) && ( (AB + BC + CD) < L)  )               
        //Option 29 
 { 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 529; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
    
         while(pX < (AB + BC)){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
   while(pX < (AB + BC + CD) ){                      
                    threeax(pX, pY, pZ, A, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
   while(pX < L){                      
                    fourax(pX, pY , pZ, pU, A, B, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                 } 
 
   while(pX < (L + AB)){                      
                    threeax( pY, pZ, pU, B, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
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     } 
 
    
   while(pX < (L + AB + BC )){                      
                    twoax(pZ, pU, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
          
   while(pX < (L + AB + BC + CD) ){  
     oneax(pU, D ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
   
     while(pX < (AB + BC + CD + DE ) ){ 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
     while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC < L) && ( CD >= L) && ( DE < L) && ( (AB + 
BC) >= L)  )   // Option 30 
 { 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 530; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
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                    pX = pX + inc; 
                    } 
 
         while(pX < L){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
  
         while(pX < (AB+ BC)){                      
                    oneax(pY, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
         while(pX < (L + AB)){                      
                    twoax(pY, pZ, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
   while(pX < (L + AB + BC)){                      
                    oneax(pZ , C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
   while(pX < (AB + BC + CD)){                      
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc;  
                    } 
 
   while(pX < (AB + BC + CD + DE)){                      
                    oneax(pU , D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
    while(pX < (L + AB + BC + CD )){                      
                    twoax(pU , pV, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 



279 

 

   while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 

fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC < L) && ( CD >= L) && ( DE < L) && ( (AB + 
BC) < L)  )             
//Option 31 
 { 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 531; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
    
         while(pX < (AB + BC) ){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
     while(pX < L ){                      
                    threeax(pX, pY, pZ, A, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
  while(pX < (L + AB)){                      
                    twoax(pY, pZ, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
   while(pX < (L + AB + BC)){                      
                    oneax(pZ , C); 
                    pX = pX + inc; 
     pY = pY + inc; 
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     pZ = pZ + inc; 
                    } 
 
   while(pX < (AB + BC + CD)){                      
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc;  
                    } 
 
   while(pX < (AB + BC + CD + DE)){                      
                    oneax(pU , D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
    while(pX < (L + AB + BC + CD )){                      
                    twoax(pU , pV, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 
   while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC >= L) && ( CD < L) && ( DE < L) && ( (CD + 
DE) >= L)  )    //Option 32 
 { 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 532; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
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         while(pX < L ){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
   
     while(pX < (L + AB) ){                      
                    oneax(pY, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
     } 
 
  while(pX < (AB + BC)){                      
                    pX = pX + inc; 
     pY = pY + inc;    
                    } 
 
         while(pX < (AB + BC + CD)){                      
                    oneax(pZ, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
   while(pX < (L + AB + BC)){                      
                    twoax(pZ, pU, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
   while(pX < (AB + BC + CD + DE)){                      
                    oneax(pU , D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
    while(pX < (L + AB + BC + CD )){                      
                    twoax(pU , pV, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 
   while(pX <= (L + AB + BC + CD + DE) ){  
          pX = pX + inc; 
     pY = pY + inc; 
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     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC >= L) && ( CD < L) && ( DE < L) && ( (CD + 
DE) < L)  )       //Option 33 
 { 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 533; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
    
         while(pX < L ){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
   
     while(pX < (L + AB) ){                      
                    oneax(pY, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
     } 
 
  while(pX < (AB + BC)){                      
                    pX = pX + inc; 
     pY = pY + inc;    
                    } 
 
         while(pX < (AB + BC + CD)){                      
                    oneax(pZ, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
   while(pX < (AB + BC + CD + DE)){                      
                    twoax(pZ, pU, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
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     pU = pU + inc; 
                    } 
 
   while(pX < (L + AB + BC )){                      
                    threeax(pZ, pU, pV, C, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
                    } 
 
   while(pX < (L + AB + BC + CD )){                      
                    twoax(pU , pV, D, E); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 
   while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC < L) && ( CD >= L) && ( DE >= L) && ( (AB + 
BC) >= L)  )   //Option 34 
 { 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 534; 
  MaxM = 0; 
  MaxL = 0; 
        while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
    
         while(pX < L ){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
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                    } 
   
     while(pX < (AB + BC) ){                      
                    oneax(pY, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
     } 
         
  while(pX < (L + AB )){                      
     twoax(pY, pZ, B, C); 
                    pX = pX + inc;     
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
  while(pX < (L+ AB + BC)){                      
                    oneax(pZ, C); 
                    pX = pX + inc;     
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
   
   while(pX < (AB + BC + CD )){                      
                    pX = pX + inc;     
     pY = pY + inc; 
     pZ = pZ + inc;   
                    } 
 
   while(pX < (L + AB + BC + CD )){                      
                    oneax(pU, D); 
                    pX = pX + inc;     
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
   while(pX < (AB + BC + CD + DE )){                      
                    pX = pX + inc;     
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc;  
   } 
 
   while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc;     
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
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 } 
 
 if( (AB < L) && (BC < L) && ( CD >= L) && ( DE >= L) && ( (AB + 
BC) < L)  )     //Option 35 
 { 
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 535; 
       MaxM = 0; 
  MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
    
         while(pX < (AB + BC) ){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
 
     while(pX < L ){                      
                    threeax(pX, pY, pZ, A, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
   while(pX < (L + AB) ){                      
                    twoax(pY , pZ, B, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
               } 
 
   while(pX < (L + AB + BC )){                      
                    oneax(pZ, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
   
   while(pX < (AB + BC + CD )){                      
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc;  
                    } 
 
   while(pX < (L + AB + BC + CD )){                      
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                    oneax(pU, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
   while(pX < (AB + BC + CD + DE )){                      
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc;    
     } 
 
   while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC >= L) && ( CD < L) && ( DE >= L) )     
  // Option 36 
 { 
   
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 536; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
    
         while(pX < L ){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
   
     while(pX < (L + AB) ){                      
                    oneax(pY, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
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     } 
 
  while(pX < (AB + BC)){                      
                    pX = pX + inc; 
     pY = pY + inc;    
                    } 
 
         while(pX < (AB + BC + CD)){                      
                    oneax(pZ, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
   while(pX < (L + AB + BC)){                      
                    twoax(pZ, pU, C, D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
   while(pX < (L + AB + BC + CD )){                      
                    oneax(pU , D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
   
    while(pX < (AB + BC + CD + DE )){                      
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc;  
     } 
 
   while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 }    
 
 if( (AB < L) && (BC >= L) && ( CD >= L) && ( DE < L) )       
//Option 37 
 { 
  pX = 0; 
  pY = 0; 
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  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 537; 
   MaxM = 0; 
   MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
    
         while(pX < L ){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
   
     while(pX < (L + AB) ){                      
                    oneax(pY, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
     } 
 
  while(pX < (AB + BC)){                      
                    pX = pX + inc; 
     pY = pY + inc;    
                    } 
 
         while(pX < (L + AB + BC )){                      
                    oneax(pZ, C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
                    } 
 
  
   while(pX < (AB + BC + CD)){                      
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
               } 
 
   while(pX < (AB + BC + CD + DE )){                      
                    oneax(pU , D); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
    while(pX < (L + AB + BC + CD )){     
     twoax(pU, pV, D, E); 
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                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 
          while(pX <= (L + AB + BC + CD + DE) ){  
          oneax(pV, E ); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
 
 if( (AB < L) && (BC >= L) && ( CD >= L) && ( DE >= L) )       
//Option 38 
 { 
   
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 538; 
  MaxM = 0; 
  MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
    
         while(pX < L ){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
   
     while(pX < (L + AB) ){                      
                    oneax(pY, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
     } 
 
  while(pX < (AB + BC)){                      
                    pX = pX + inc; 
     pY = pY + inc;   
                    } 
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         while(pX < (L + AB + BC )){                      
                    oneax(pZ, C); 
                    pX = pX + inc; 
     pY = pY + inc;  
     pZ = pZ + inc; 
                    } 
 
  
   while(pX < (AB + BC + CD)){                      
                    pX = pX + inc; 
     pY = pY + inc;  
     pZ = pZ + inc; 
               } 
 
   while(pX < (L + AB + BC + CD )){                      
                    oneax(pU , D); 
                    pX = pX + inc; 
     pY = pY + inc;  
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
 
          while(pX < (AB + BC + CD + DE) ){  
                    pX = pX + inc; 
     pY = pY + inc;  
     pZ = pZ + inc; 
     pU = pU + inc; 
    } 
 
    while(pX < (L + AB + BC + CD + DE )){     
     oneax(pV, E); 
                    pX = pX + inc; 
     pY = pY + inc;  
     pZ = pZ + inc; 
     pU = pU + inc;  
     pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
 
  if( (AB < L) && (BC < L) && ( CD < L) && ( DE < L) && ((AB + BC) 
< L) && ((BC + CD) >= L) && ((CD+DE) >= L)  )         
        //Option 39 
 { 
   
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 539; 
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  MaxM = 0; 
  MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
    
         while(pX < (AB +BC) ){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
   
     while(pX < L ){                      
                    threeax(pX,pY,pZ,A,B,C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
  while(pX < (L + AB)){                      
                    twoax(pY,pZ,B,C); 
     pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc;   
                    } 
 
         while(pX < (AB + BC + CD)){                      
                    oneax(pZ,C); 
                    pX = pX + inc; 
     pY = pY + inc;  
     pZ = pZ + inc; 
                    } 
 
  
   while(pX < (L + AB + BC)){                      
                    twoax(pZ,pU,C,D);        
     pX = pX + inc; 
     pY = pY + inc;  
     pZ = pZ + inc; 
     pU = pU + inc; 
               } 
 
   while(pX < (AB + BC + CD + DE)){                      
                    oneax(pU , D); 
                    pX = pX + inc; 
     pY = pY + inc;  
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
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          while(pX < (L + AB + BC + CD) ){  
                    twoax(pU,pV,D,E); 
     pX = pX + inc; 
     pY = pY + inc;  
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 
    while(pX < (L + AB + BC + CD + DE )){     
     oneax(pV, E); 
                    pX = pX + inc; 
     pY = pY + inc;  
     pZ = pZ + inc; 
     pU = pU + inc;  
     pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
 
  if( (AB < L) && (BC < L) && ( CD < L) && ( DE < L) && ((AB + BC) 
< L) && ((BC + CD) >= L) && ((CD+DE) < L)  )         
        //Option 40 
 { 
   
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 540; 
  MaxM = 0; 
  MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
    
         while(pX < (AB +BC) ){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
   
    while(pX < L ){                      
                    threeax(pX,pY,pZ,A,B,C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
    while(pX < (L + AB)){                      
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                    twoax(pY,pZ,B,C); 
     pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc;   
                    } 
 
         while(pX < (AB + BC + CD)){                      
                    oneax(pZ,C); 
                    pX = pX + inc; 
     pY = pY + inc;  
     pZ = pZ + inc; 
                    } 
 
  
    while(pX < (AB + BC + CD + DE)){                      
                   twoax(pZ,pU,C,D);        
    pX = pX + inc; 
    pY = pY + inc;  
    pZ = pZ + inc; 
    pU = pU + inc; 
              } 
 
    while(pX < (L + AB + BC)){                      
                    threeax(pZ, pU, pV, C, D, E); 
                    pX = pX + inc; 
     pY = pY + inc;  
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 
          while(pX < (L + AB + BC + CD) ){  
                    twoax(pU,pV,D,E); 
     pX = pX + inc; 
     pY = pY + inc;  
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 
    while(pX < (L + AB + BC + CD + DE )){     
     oneax(pV, E); 
                    pX = pX + inc; 
     pY = pY + inc;  
     pZ = pZ + inc; 
     pU = pU + inc;  
     pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
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  if( (AB < L) && (BC < L) && ( CD < L) && ( DE < L) && ((AB + BC) 
< L) && ((BC + CD) < L) && ((CD + DE) >= L) && ((AB + BC + CD) >= L))  
       //Option 41 
 { 
   
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 541; 
  MaxM = 0; 
  MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
    
         while(pX < (AB + BC) ){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
     pY = pY + inc; 
                    } 
   
     while(pX < L ){                      
                    threeax(pX,pY,pZ,A,B,C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
  while(pX < (AB + BC + CD)){                      
                    twoax(pY,pZ,B,C); 
     pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc;   
                    } 
 
         while(pX < (L + AB)){                      
                    threeax(pY,pZ,pU,B,C,D); 
                    pX = pX + inc; 
     pY = pY + inc;  
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
  
   while(pX < (L + AB + BC)){                      
                    twoax(pZ,pU,C,D);        
     pX = pX + inc; 
     pY = pY + inc;  
     pZ = pZ + inc; 
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     pU = pU + inc; 
               } 
 
   while(pX < (AB + BC + CD + DE)){                      
                    oneax(pU, D); 

  pX = pX + inc; 
     pY = pY + inc;  
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
          while(pX < (L + AB + BC + CD) ){  
                    twoax(pU,pV,D,E); 
     pX = pX + inc; 
     pY = pY + inc;  
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 
    while(pX < (L + AB + BC + CD + DE )){     
     oneax(pV, E); 
                    pX = pX + inc; 
     pY = pY + inc;  
     pZ = pZ + inc; 
     pU = pU + inc;  
     pV = pV + inc; 
     } 
 fout << endl << setw(10) << MaxM; 
 } 
 
  if( (AB < L) && (BC < L) && ( CD < L) && ( DE < L) && ((AB + BC) 
< L) && ((BC + CD) < L) && ((CD + DE) >= L)  && ((AB + BC + CD) < L))  
//Option 42 
 { 
   
  pX = 0; 
  pY = 0; 
  pZ = 0; 
  pU = 0; 
  pV = 0; 
  MaxT = 0; 
  MT = 542; 
  MaxM = 0; 
  MaxL = 0; 
         while(pX < AB){                      
                    oneax(pX, A); 
                    pX = pX + inc; 
                    } 
    
         while(pX < (AB + BC) ){                      
                    twoax(pX, pY, A, B); 
                    pX = pX + inc; 
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     pY = pY + inc; 
                    } 
   
     while(pX < (AB + BC + CD) ){                      
                    threeax(pX,pY,pZ,A,B,C); 
                    pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc; 
     } 
 
  while(pX < L){                      
                    fourax(pX,pY,pZ,pU,A,B,C,D); 
     pX = pX + inc; 
     pY = pY + inc; 
     pZ = pZ + inc;  
     pU = pU + inc; 
                    } 
 
         while(pX < (L + AB)){                      
                    threeax(pY,pZ,pU,B,C,D); 
                    pX = pX + inc; 
     pY = pY + inc;  
     pZ = pZ + inc; 
     pU = pU + inc; 
                    } 
 
  
    while(pX < (L + AB + BC)){                      
                    twoax(pZ,pU,C,D);        
     pX = pX + inc; 
     pY = pY + inc;  
     pZ = pZ + inc; 
     pU = pU + inc; 
               } 
 
    while(pX < (AB + BC + CD + DE)){                      
                    oneax(pU, D); 

  pX = pX + inc; 
     pY = pY + inc;  
     pZ = pZ + inc; 
     pU = pU + inc; 
     } 
 
         while(pX < (L + AB + BC + CD) ){  
                    twoax(pU,pV,D,E); 
     pX = pX + inc; 
     pY = pY + inc;  
     pZ = pZ + inc; 
     pU = pU + inc; 
     pV = pV + inc; 
     } 
 
    while(pX < (L + AB + BC + CD + DE )){     
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     oneax(pV, E); 
                    pX = pX + inc; 
     pY = pY + inc;  
     pZ = pZ + inc; 
     pU = pU + inc;  
     pV = pV + inc; 
     } 

fout << endl << setw(10) << MaxM; 
} 

 
  fout.close(); 
} 
 
 
 
//*********************************************************************
//Function to calculate the maximum moment when one axle is on the 
bridge. 
//*********************************************************************
****************************** 

 
void oneax(float pLoad, float Load ) 
{ 
 float Ma, AbsMa; 
 pM = 0; 
 AbsMa = 0; 
 
 while (pM < L){       
  r2 = (pLoad*Load)/L; 
  r1 = Load - r2; 
  if (pLoad <= pM){ 
   Ma = r2*(L-pM); 
   AbsMa = fabs (Ma); 
   } 
  else { 
   Ma = -r1*(pM); 
   AbsMa = fabs (Ma); 
   } 
  if (AbsMa>MaxM){ 
   MaxT = pX; 
   MaxM = AbsMa; 
   MaxL = pM; 
   } 
  pM = pM + inc; 
  } 
} 
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//*********************************************************************
****************************** 
//Function to calculate the maximum moment when two axles are on the 
bridge. 
//*********************************************************************
****************************** 
 
 
void twoax (float pLoad_1, float pLoad_2, float Load_1, float Load_2) 
{ 
 int x1, x2; 
 int d1, d2, d3; 
 float Ma, AbsMa; 
 pM = 0; 
 AbsMa = 0; 
  
 while (pM < L){    
  r2 = (pLoad_1*Load_1 + pLoad_2*Load_2)/L; 
  r1 = Load_1 + Load_2 - r2; 
  x1 = x2 = 0; 
  d1 = d2 = d3 = 0; 
  if (pLoad_1 >= pM) { x1 = 1;  } 
  if (pLoad_2 >= pM) { x2 = 1;  } 
  d1 = 1 - x1; 
  d2 = x1 * (1 - x2); 
  d3 = x1 * x2; 
  Ma = d1*r2*(L-pM) +  

     d2*(r2*(L-pM)-(pLoad_1-pM)*Load_1) –  
     d3*r1*pM;  

  AbsMa = fabs (Ma); 
  if (AbsMa > MaxM){ 
   MaxT = pX; 
   MaxM = AbsMa; 
   MaxL = pM; 
   } 
  pM = pM + inc; 
  } 
} 

 

 

//*********************************************************************
****************************** 
//Function to calculate the maximum moment when three axles are on the 
bridge. 
//*********************************************************************
****************************** 
void threeax(float pLoad_1, float pLoad_2, float pLoad_3, float Load_1, 
float Load_2, float Load_3) 
{ 
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 int x1, x2, x3; 
 int d1, d2, d3, d4; 
 float Ma, AbsMa; 
 pM = 0; 
 AbsMa = 0; 
  
 while (pM < L){    
  r2 = (pLoad_1*Load_1 + pLoad_2*Load_2 + pLoad_3*Load_3)/L; 
  r1 =  Load_1 + Load_2 + Load_3 -r2; 
  x1 = x2 = x3 = 0; 
  d1 = d2 = d3 = d4 = 0; 
   
        if (pLoad_1 >=  pM) { x1 = 1; } 
  if (pLoad_2 >=  pM) { x2 = 1; } 
  if (pLoad_3 >=  pM) { x3 = 1; } 
   
  d1 = 1- x1; 
  d2 = x1 * (1 - x2); 
  d3 = x1 * x2 * (1 - x3); 
  d4 = x1 * x2 * x3; 
   

Ma = d1*r2*(L-pM) +  d2*(r2*(L-pM)-(pLoad_1-pM)*Load_1)+  
 d3*(-r1*pM+(pM-pLoad_3)*Load_3) +   
 d4*(-r1*pM); 

  AbsMa = fabs (Ma); 
   
        if (AbsMa>MaxM){ 
   MaxT = pX; 
   MaxM = AbsMa; 
   MaxL = pM; 
   } 
  pM = pM + inc; 
  } 
} 

//*********************************************************************
****************************** 
//Function to calculate the maximum moment when four axles are on the 
bridge. 
//*********************************************************************
****************************** 
 
void fourax (float pLoad_1, float pLoad_2, float pLoad_3, float 
pLoad_4, float Load_1, float Load_2, float Load_3, float Load_4) 
{ 
 int x1, x2, x3, x4; 
 int d1, d2, d3, d4, d5; 
 float Ma, AbsMa; 
 pM = 0; 
 AbsMa = 0; 
 
 while (pM < L){    
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  r2 = (pLoad_1*Load_1 + pLoad_2*Load_2 + pLoad_3*Load_3 + 
pLoad_4*Load_4)/L; 
  r1 = Load_1 + Load_2 + Load_3 + Load_4 - r2; 
  x1 = x2 = x3 = x4 = 0; 
  d1 = d2 = d3 = d4 = d5 = 0; 
 
  if (pX >= pM) { x1 = 1;  } 
  if (pY >= pM) { x2 = 1;  } 
  if (pZ >= pM) { x3 = 1;  } 
  if (pU >= pM) { x4 = 1;  } 
 
  d1 = 1- x1; 
  d2 = x1 * (1 - x2); 
  d3 = x1 * x2 * (1 - x3); 
  d4 = x1 * x2 * x3 * (1 - x4); 
  d5 = x1 * x2 * x3 * x4; 
   
  Ma = d1*r2*(L-pM) + d2*(r2*(L-pM)-(pLoad_1-pM)*Load_1) +  
       d3*(r2*(L-pM)-(pLoad_1-pM)*Load_1 -(pLoad_2- 

pM)*Load_2) + 
       d4*(-r1*pM+(pM-pLoad_4)*Load_4) + d5*(-r1*pM); 
   
  AbsMa = fabs (Ma); 
  if (AbsMa > MaxM){ 
   MaxT = pX; 
   MaxM = AbsMa; 
   MaxL = pM; 
   } 
  pM = pM + inc; 
  } 
} 

//*********************************************************************
****************************** 
//Function to calculate the maximum moment when five axles are on the 
bridge. 
//*********************************************************************
****************************** 
 

void fiveax (float pLoad_1, float pLoad_2, float pLoad_3, float 
pLoad_4, float pLoad_5, float Load_1, float Load_2, float Load_3, float 
Load_4, float Load_5) 
{ 
 int x1, x2, x3, x4, x5; 
 int d1, d2, d3, d4, d5, d6; 
 float Ma, AbsMa; 
 pM = 0; 
 AbsMa = 0; 
 
 while (pM < L){    
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r2 = (pLoad_1*Load_1 + pLoad_2*Load_2 + pLoad_3*Load_3 + 
pLoad_4*Load_4 + pLoad_5*Load_5)/L; 

  r1 = Load_1 + Load_2 + Load_3 + Load_4 + Load_5 - r2; 
  x1 = x2 = x3 = x4 = x5 = x6 = x7 = x8 = x9 = x10 = 0; 
  d1 = d2 = d3 = d4 = d5 = d6 = d7 = d8 = d9 = d10 = d11 = 0; 
 
  if (pX >= pM) {  x1 = 1; } 
  if (pY >= pM) { x2 = 1; } 
  if (pZ >= pM) {  x3 = 1; } 
  if (pU >= pM) { x4 = 1; } 
  if (pV >= pM) { x5 = 1; } 
 
  d1 = 1- x1; 
  d2 = x1 * (1 - x2); 
  d3 = x1 * x2 * (1 - x3); 
  d4 = x1 * x2 * x3 * (1 - x4); 
  d5 = x1 * x2 * x3 * x4 * (1-x5); 
  d6 = x1 * x2 * x3 * x4 * x5; 
   
  Ma = d1*r2*(L-pM) + d2*(r2*(L-pM)-(pLoad_1-pM)*Load_1) + 
       d3*(r2*(L-pM)-(pLoad_1-pM)*Load_1-(pLoad_2-pM)*Load_2)  

+ 
       d4*(-r1*pM + (pM-pLoad_4)*Load_4 +(pM-pLoad_5)*Load_5)  

+ 
       d5*(-r1*pM+(pM-pLoad_5)*Load_5) + d6*(-r1*pM); 
  AbsMa = fabs (Ma); 
  if (AbsMa>MaxM){ 
   MaxT = pX; 
   MaxM = AbsMa; 
   MaxL = pM; 
   } 
  pM = pM + inc; 
  } 
} 
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