
 

 

 

 

 

 

 

 

 

Copyright 

by 

Pamela Murray-Tuite 

2003 

 

 



 

 
The Dissertation Committee for Pamela Marie Murray-Tuite Certifies that 

this is the approved version of the following dissertation: 

 

IDENTIFICATION OF VULNERABLE TRANSPORTATION 

INFRASTRUCTURE AND HOUSEHOLD DECISION MAKING 

UNDER EMERGENCY EVACUATION CONDITIONS 

 

 

 
Committee: 
 

Hani S. Mahmassani, Supervisor 

Randy B. Machemehl 

Chandra Bhat 

Daene McKinney 

David Eaton 

 

 



IDENTIFICATION OF VULNERABLE TRANSPORTATION 

INFRASTRUCTURE AND HOUSEHOLD DECISION MAKING 

UNDER EMERGENCY EVACUATION CONDITIONS  

 

 

by 

Pamela Marie Murray-Tuite, B.S.C.E., M.S.E. 

 

 

Dissertation 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Doctor of Philosophy 

 

 

 

The University of Texas at Austin 

December, 2003 



 
UMI Number: 3122770

 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright 2003 by 

 Murray-Tuite, Pamela Marie 
  

All rights reserved. 
 
 
 
 
 
 
 
 
 

________________________________________________________ 
 

UMI Microform 3122770

Copyright 2004 ProQuest Information and Learning Company. 

All rights reserved.  This microform edition is protected against 

unauthorized copying under Title 17, United States Code. 

____________________________________________________________ 
 
 

ProQuest Information and Learning Company 
300 North Zeeb Road 

PO Box 1346 
Ann Arbor, MI 48106-1346 



 

 

 

 

Dedication 

 

  This dissertation is dedicated to the memory of all lives lost during the 

September 11, 2001 terrorist attacks and their families. 

 

 



 

 

 

 

Acknowledgements 

 

My tenure as a graduate student has spanned the most enjoyable four years 

of my life.  I would like to take this opportunity to thank all of the Transportation 

Engineering professors at the University of Texas at Austin for their support, 

guidance, and instruction.  Dr. Mahmassani has made the development of my 

research interests possible and served as a mentor, encouraging me to grow both 

personally and academically.  Much appreciation is owed to Dr. Bhat and Dr. 

Machemehl who offered advice on personal and professional matters.  The 

comments and constructive criticism offered by the committee members has been 

instrumental to the completion and focus of this dissertation.   

Furthermore, I acknowledge the blessings of family bestowed upon me.  I 

thank my husband Kenneth for his support, encouragement, and love.  My 

parents, Sandra and Thomas Murray, and brother, Jeffrey Murray, have been 

unwavering in their support of my work and career. 

This dissertation work was funded by the Southwest Region University 

Transportation Center.   

 v



IDENTIFICATION OF VULNERABLE TRANSPORTATION 

INFRASTRUCTURE AND HOUSEHOLD DECISION MAKING 

UNDER EMERGENCY EVACUATION CONDITIONS 

 

Publication No._____________ 

 

 

Pamela Marie Murray-Tuite, Ph.D. 

The University of Texas at Austin, 2003 

 

Supervisor:  Hani S. Mahmassani 

 

This dissertation combines two primary problems under general disaster 

considerations.  First, a methodology is presented to identify vulnerable 

transportation infrastructure, which is defined as the set of network links, the 

damage of which results in the maximum disruption of the network’s origin-

destination connectivity.  The disrupting agent is permitted a limited number of 

resources with which to damage the network.  The measure of disruption, 

resulting from the damage, is based on a given set of traffic conditions, the 

availability of alternate paths, and roadway design characteristics.  A bi-level 

mathematical programming model represents the interaction of the traffic 

assignment and the disruption measure.  This bi-level model allows the problem 

to be viewed as a game between an evil entity, who seeks to disrupt the network, 
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and a traffic management agency that routes vehicles so as to avoid vulnerable 

links to the greatest degree possible while meeting origin-destination demands.   

The second problem is to mathematically describe household decision 

making behavior in an emergency evacuation.  Traditional transportation network 

evacuation models have omitted a commonly observed sociological phenomenon 

– that families gather together before evacuating an area.  This omission can lead 

to overly optimistic evacuation times, and the evacuation models fail to capture 

underlying traffic patterns that only arise during times of crises.  Two linear 

integer programs are developed to model the decision making behavior; the first 

describes a meeting location selection process and the second assigns trip chains 

for drivers to pick up family members who may not have access to a vehicle.  The 

mathematical programs are combined with a traffic assignment-simulation 

package for evacuation analysis. 

Interactions between the two problems are also explored.  Evacuation 

conditions are examined when the traffic management agency routes traffic 

around vulnerable links.  The impact of the unusual traffic patterns, that arise 

using the household decision making behavior evacuation model, is evaluated in 

terms of shifts in the relative vulnerability of the transportation links.  Finally, the 

routing strategies are evaluated for extensions in network evacuation times. 
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Chapter 1   

  Introduction 

 

Threats of terrorism, war, and natural disasters have created an 

environment in which the evacuation of a city or region may be necessary.  The 

transportation network of the affected area plays a crucial role in the success of 

moving the area residents to safety.  Transportation engineers and planners 

continually seek to improve the mobility of residents through the network, 

particularly during emergency situations.  In preparation for these times of 

unusual and extreme traffic conditions, the ability to identify vulnerable 

transportation infrastructure, an understanding of evacuation behavior at the 

household level, and the associated simulation tools are of critical importance.   

This chapter introduces the motivation for this work, the problem and 

related objectives, the contributions of this work to the fields of transportation 

engineering, evacuation planning, and critical infrastructure protection, and 

outlines the remainder of this dissertation. 

 

1.1 MOTIVATION  
 

Disaster management and related emergency evacuation are not new fields 

of study.  Analyses of literature trends indicate that prior to the Cold War, much 

of the research was focused on evacuation procedures and the determination of 

factors that were more likely to cause people to leave their homes in response to 

natural threats, such as floods and hurricanes.  Fear of nuclear attacks and the 

construction of nuclear power plants motivated a great deal of evacuation 
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planning activity in the 1970’s in response to a new type of threat.  In the late 

twentieth and early twenty-first centuries, hurricanes caused the timing of 

evacuation orders to be evaluated more carefully.  Now, amid the rising fear of 

terrorism in the United States, there has been another shift in focus from natural 

disasters to those caused by mankind.   

Three time periods can be associated with a disaster.  The first is the pre-

disaster phase.  During this time, especially for natural events, authorities may 

initiate the evacuation process.  Warning technology, such as weather tracking 

devices, can be extremely valuable at this time.  The second phase is the actual 

disaster strike and the limited time period that immediately follows.  This period 

may encompass an earthquake or bombing and the immediate aftermath.  During 

this time, victims may suddenly flee while rescue workers respond to the site.  In 

the third phase, evacuees have abandoned the disaster area and only the rescue 

workers remain.  At this time recovery begins.  Due to the wide array of different 

evacuation scenarios, the focus of this work is on the first two phases, which are 

associated with the actual evacuation process. 

Simulation methods are commonly used for transportation strategy 

evaluation.  The transportation network is modeled and traffic movements are 

simulated through a series of behavior rules.  However, previous models have not 

adequately captured the interaction among the existing transportation 

infrastructure, the provision and exchange of information enabled by modern 

information and communications technologies, and the behavior of evacuees.  

Traditional evacuation models assume that residents immediately leave the 

threatened area; however, this is not always the case.  Parents may actually head 

toward danger to gather family members prior to evacuating the area.  In this 

work, some of the apparently disorganized traffic caused by this behavior is 

explained by a series of mathematical programs, which emulate household 

decision-making behavior.  To determine the importance of specific roads to the 
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connectivity of origins and destinations, a measure called the vulnerability index 

was developed.  For each link, the vulnerability indices are then aggregated across 

all origin-destination pairs into a disruption index, which allows for the 

identification of roadways that should be protected or where redundancy is 

needed in the transportation network.   

 

1.2  PROBLEM STATEMENT AND OBJECTIVES 
 

The overall problem investigated in this dissertation is to develop a 

decision-aiding methodology for emergency evacuation planning for a city that 

considers transportation infrastructure vulnerability, realistic evacuee behavior, 

and the potential of information and communication technology.  There are two 

primary problems addressed within the overall problem. The first involves the 

identification of vulnerable transportation infrastructure elements.  The second 

pertains to accurately emulating network evacuation flow patterns resulting from 

the depiction of individual behavior at the household level.  Each of these is 

explained further in the following sections. 

 

1.2.1 Identification of Vulnerable Transportation Infrastructure Elements 

 
The identification of vulnerable transportation infrastructure elements 

poses numerous challenges to the planning, engineering, and infrastructure 

protection communities.  The definition of vulnerable, or critical, infrastructure 

elements may vary depending on the specific problem context.  For instance, a 

bridge may be vulnerable to flooding.  Another bridge may be vulnerable to a 

terrorist attack because of its history or landmark status.  The definition of 

vulnerable, or critical, infrastructure used in this dissertation applies to a link, or 
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set of links, the damage of which causes the most disruption to the origin-

destination connectivity of the network.  The problem of interest is to characterize 

the vulnerability of transportation infrastructure elements and identify the most 

vulnerable elements in a network for particular threat scenarios.  More formally, 

the problem is to identify a set of transportation network links, the damage of 

which will maximally disrupt the origin-destination connectivity of the network. 

The objectives pertaining to this problem are 

1. To develop a mathematical measure of origin-destination 

connectivity vulnerability for a link, or set of links; 

2. To extend the origin-destination vulnerability measure to the 

network level; and 

3. To examine the impact of routing strategies and information on 

the vulnerability of transportation network links. 

These objectives are addressed in detail in chapter 3.  In chapter 5, the 

measures developed for objectives (1) and (2) are applied to a larger network.  

Objective (3) is explored in both chapters 3 and 5. 

 

1.2.2 Model of Household Decision Making in an Emergency Evacuation  

 
Accurately modeling emergency evacuation conditions is extremely 

difficult due to the lack of empirical evidence.  Each emergency presents a 

different set of conditions.  The differences may be due to the type of emergency, 

the experience of the community with similar events, the amount of warning that 

precedes the incident, the predicted severity and scope of the disaster, and 

conditions external to the community.  Transportation evacuation model 

verification is highly impractical to conduct prior to an evacuation because there 

are ethical and practical constraints to conducting a “test” evacuation of a city.   
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Numerous evacuation studies have been conducted after the event has 

occurred.  The majority of these have been conducted by agencies whose primary 

responsibility is not related to transportation engineering.  A key finding from 

these studies that has been omitted from the majority of the transportation 

evacuation models is that families tend to gather together and then evacuate as a 

single unit.  This omission leads to inaccuracy in many aspects of the evacuation 

model.  Underlying traffic patterns, such as those that arise when parents go to 

schools to collect their children, are not captured in traditional models.  

Congestion is not properly predicted.  As a result, the evacuation time prediction 

may be biased to the low side. 

The problem addressed in chapter 4 of this dissertation is to develop a 

mathematical model of intra-household logistics during an emergency evacuation, 

including the processes by which family members gather and meet to evacuate 

jointly.  The model would then be incorporated into a traffic assignment-

simulation methodology to represent the dynamics of the resulting network flow 

patterns during the evacuation.  Intra-household logistics modeling entails two 

primary decision dimensions: meeting location selection and the sequencing of 

pick-up assignments, resulting in trip chains to be completed by the household 

members using the transportation network, parts of which may be damaged or 

operationally modified (due to traffic management or vulnerability protection 

actions).  The objectives associated with this problem consist of the following: 

1. Formulate an optimization-based model of intra-household 

logistics decision-making behavior; the formulation captures 

trade-offs among key factors considered by the household in 

the decision process.   

2. Examine the sensitivity of the decision behavior outcomes 

with respect to the relative weights associated in the above 
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trade-offs, and identify switchover points at which changes in 

behavior or pick-up  assignments might result. 

3. Represent and characterize the traffic conditions that arise 

when the resulting emergency trip chaining behavior of 

multiple households interact through the transportation 

network, using a state-of-the-art dynamic network traffic 

simulation-assignment methodology. 

These three objectives are addressed in chapter 4.  The model developed 

in objective (1), the results of objective (2), and the combined household decision 

making behavior – traffic simulation package of objective (3) are further explored 

in chapter 5.  The difference in the approach to objective (3) in chapters 4 and 5 is 

the influence of non-driving entities, such as a traffic management agency.  In 

chapter 4, the traffic management agency allows the use of any network link.  In 

chapter 5, some links are assigned a very high cost which influences the route 

selection between origin-destination pairs. 

 

1.2.3 Combining the Problems: Vulnerability of Networks under 
Evacuation Flow Patterns 

 
 The two primary problems discussed in sections 1.2.1 and 1.2.2 are 

considered jointly in chapter 5.  This gives rise to two types of problem situations: 

(1) determining the vulnerability of network infrastructure elements under 

evacuation flow patterns; and (2) designing or inducing evacuation patterns that 

are less susceptible to disruption and are hence more likely to successfully and 

safely complete the evacuation process in the event of disruptive action.  Traffic 

management agency routing strategies can then be devised and evaluated in terms 

of the effect on evacuation time and associated impact on transportation 

infrastructure vulnerability rankings.   
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1.3  RESEARCH SIGNIFICANCE AND CONTRIBUTIONS 
 

This research contributes to the field of transportation engineering in two 

main arenas.  The first area is network reliability and vulnerability.  In this 

dissertation, an index is developed to characterize the relative importance of a 

given link, or set of links, to the network’s origin-destination connectivity, for a 

given set of network flow conditions.  The second area of significance is in 

evacuation modeling.  Traditional engineering models have omitted an important 

factor at the family, or household, level.  In this work, a series of linear integer 

programs is presented to describe the meeting location selection and the trip 

chaining assignment decisions for gathering family members, prior to evacuation.  

Without this component, evacuation models fail to capture an essential portion of 

the travel made within the city.  The interaction of the drivers seeking to pick up 

family members and the drivers leaving the city has not been adequately studied.  

Integration of the mathematical programs for intra-household logistics decision 

with a network traffic simulation-assignment methodology leads to a more 

realistic representation of evacuation scenarios and the associate vehicular traffic 

flow patterns in the network.   

 

1.4  STRUCTURE AND OVERVIEW OF THE DISSERTATION 
 

This dissertation is organized in six chapters.  Following the problem 

definition, motivation, and objectives discussed in the present chapter, the next 

chapter presents a general overview of the literature related to network reliability, 

evacuation behavior, and vehicle routing problems.  Chapter 3 presents the 

modeling framework for the identification of vulnerable transportation 
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infrastructure elements and an example of the methodology applied to a small 

transportation network.  The underlying problem in chapter 3 is considered from a 

game theoretic perspective, in which an evil entity seeks to disrupt the network 

flow and a traffic management agency employs advanced traveler information 

systems and other means to route vehicles around vulnerable links. In the fourth 

chapter, the household evacuation behavior models are developed, including an 

application to a sample network.  The behavior models assume that family 

members gather together prior to evacuating the city.  Chapter 5 presents a 

hypothetical case study in which the models from Chapters 3 and 4 are applied to 

a moderately sized network.  Finally, in chapter 6, the summary, conclusions, and 

directions for future work are presented. 
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Chapter 2 

  General Background 

 

This chapter presents general background literature for this dissertation and is 

divided into three sections.  In the first section, a general overview of previous 

studies pertaining to network reliability and vulnerability, which is the subject of  

chapter 3, is presented.  The second part of the chapter discusses observed 

evacuation behavior.  The third section identifies mathematical models that are 

related to the household evacuation model presented in Chapter 4.   

 

2.1 NETWORK RELIABILITY 
 

Network reliability has been a growing area of interest to the transportation 

community.  Other fields, such as telecommunications and water resources, have 

addressed network reliability over the years (see for example Lee, 1980; 

Aggarwal, 1985; Yang et al, 1996).  The definition of network reliability that is of 

interest here pertains to connectivity.  Specifically, the network reliability is the 

probability that the origin and destination are connected due to the probabilities of 

link existence.  Difficulties exist in directly applying the definitions and 

methodologies of the fields of telecommunications and water resources to the 

transportation arena.   
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2.1.1 Other fields  
 

There are several characteristics of telecommunications systems that 

create difficulties in directly applying methodologies to the transportation 

networks.  For example, the radio or optical signal, or whatever is flowing on the 

network, may degrade over the distance of the link (Caccetta, 1984).  Another 

example is the treatment of the flow that is on the network.  If a communications 

link is damaged, the calls using that link are dropped with little impact to the 

remainder of the network.  In the transportation network, the vehicles may 

become damaged and cause queueing in the network. Finally, simplified versions 

of telecommunication networks can be represented as having equal probabilities 

of operating (Nel and Colbourn, 1990).  Rarely, if ever, is this the case in a 

transportation network.  Instead of information, there are vehicles flowing through 

the network and these vehicles are dispersed across nearly all competitive paths 

from an origin to a destination; only in extreme cases are roads completely closed, 

for any reason.   

The use of nearly all paths, with similar travel times, is due to the fact that 

the vehicles are driven by people who have the ability to choose routes based on 

their perception of the state of the transportation network and not necessarily the 

actual state of the system.  Furthermore, each driver may place different weights 

on factors that affect his or her route choice.  For instance, one driver may decide 

that travel time is the most important criterion, regardless of the number of turns, 

the type of road, the safety of the road, and the number of traffic calming 

measures.  Other drivers may prefer a simple route, with very few road changes 

and turns, even if the travel time is slightly longer.   
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2.1.2 Transportation Engineering 
 

Unlike information or water, drivers have the ability to act as individual 

particles.  Since there are differences in the commodity flowing on the network, 

methods from telecommunications and water resources need to be carefully 

adapted to the particular characteristics of a transportation system. 

From the transportation engineering perspective, the focus of recent works 

related to network reliability has been on the probability of a pathway being 

completely operational and with damage to none of the links.  Numerous 

methodologies, such as game theory (see Bell, 2000; Cassir and Bell, 2000; Bell, 

1999), Monte Carlo simulation (see Chen et al, 1999), stochastic user equilibrium, 

and minimum cut sets have been employed, albeit for different problem 

formulations.   

Iida and Wakabayashi (1989) proposed two approximation methods for 

determining the connectivity reliability between a pair of nodes in a transportation 

network.  These methods were based on reliability graph analysis using minimal 

path sets and cut sets.  In this work, Iida and Wakabayashi noted that to find an 

exact value for the reliability, complete enumeration of the minimal path sets 

and/or minimum cut sets was necessary.  Due to the cumbersome nature of 

finding the exact solution, the authors presented a method that would approximate 

the reliability by using only partial sets.  One of the assumptions that is critical to 

the use of this work is that the reliability of individual links is known a priori.   

Iida (1999) presented basic equations for connectivity reliability when a 

system is in a series or in parallel.  For Iida’s (1999) work to apply to a network, 

one must be able to predict the probability that a link would be damaged and to 

what extent.  In the case of terrorism a great deal of uncertainty exists in 

identifying specific transportation links that may be impacted.  Additionally, even 
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if the link is correctly identified as a target, slight miscalculations on the part of 

the actor may lead to that link being missed and an adjacent one being hit. 

Asakura (1999) incorporated a stochastic user equilibrium model into a 

performance reliability model.  In this work, he examined the role of information 

on user’s route choice.  Like Iida’s (1999) work, the probability of the links 

existing was assumed known. 

Many of the previous works presented above are more applicable to 

vehicle accidents or natural disasters, particularly flooding, where the probability 

of a roadway being affected is more easily quantifiable due to either historical 

data or the surrounding environment.  The development of a mathematical 

measure of importance for links under any conditions and in any network, with or 

without a history of flooding or earthquake damage, will greatly aid both public 

and private sectors.  By defining the value to be within given limits, one may 

determine the importance of a link in connecting an origin and a destination.   

In the field of operations research, some work has addressed determining 

vital arcs in a network.  Corley and Sha (1982), Malik, Mittal, and Gupta (1989) 

and Ball, Golden, and Vohra (1989) defined the most vital arcs problem as 

determining the subset of arcs whose removal from the network would result in 

the greatest increase in the shortest path between a given pair of nodes.  This 

problem concept is similar to that found in the definition of edge persistence in 

the telecommunications industry (Caccetta, 1984).  However, edge persistence 

pertains to the number of links that must be removed from the network and not 

the identification of the importance of particular links.  Malik, Mittal, and Gupta 

(1989) proposed an exact algorithm for determining the k most vital arcs.  Ball, 

Golden and Vohra (1989) showed that the most vital arcs problem is closely 

related to the most relevant arcs problem, the solution of which provides a lower 

bound on the optimal solution of the most vital arcs problem.  The authors 

described an algorithm to solve the most relevant arcs problem.  The most vital 
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arcs problem is NP hard but the most relevant arcs problem admits a polynomial 

time solution algorithm.   

Studies conducted in the operations research field are more directly 

applicable to the work presented here.  The problems examined by the authors 

mentioned above are related to the links in the shortest path.  In this work, all 

links are evaluated, not just the most critical ones.  In chapter 3, a methodology 

for determining the relative importance of links in the network is presented.  By 

examining the values of the disruption indices (see chapter 3), one can rank the 

links in terms of importance; the arcs with the highest rank correspond to the links 

that would be identified using the approaches of Corley and Sha (1982), Malik, 

Mittal, and Gupta (1989), and Ball, Golden and Vohra (1989). 

 

2.1.3 Aggregation 

 
In Chapter 3, a methodology for the determination of the vulnerability of a 

link, or set of links, is developed.  An index is presented that represents the 

importance of the set of links to the connectivity of an origin-destination pair.  

This index is then aggregated over all origin-destination pairs to obtain a network 

level measure. 

The issues of aggregating data with different units and different 

perspectives have been studied in detail.  There are numerous approaches to 

grouping data and group decision making.  Regarding the decision making, 

common methods include game theory and utility theory.  As recognized by 

Keeney and Raiffa (1976), the decision maker can be a group of individuals, each 

of whom have a stake in the outcome, or a single individual, who must consider 

the groups but develop his or her own utility measure.  The research presented 

here is related to the second type of decision maker, that of the single individual. 
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The vulnerability index that was developed for the links in a path 

connecting a single origin to a single destination can be likened to the concept of 

utility.  Both measures are functions of variables in the immediate environment of 

the individual.  If the strict utility (the utility measure is directly proportional to 

the choice probability) model holds, then both the criticality index and utility 

value are between 0 and 1 (see Luce, 1959; Ben-Akiva and Lerman, 1985).  Due 

to these similarities, further discussion of previous works will focus on those 

related to utility aggregation.  

One of the most common uses of utility aggregation can be found in the 

social welfare arena.  Harsanyi (1955) supported the formulation of the social 

welfare function as a sum of the weighted utilities.  This particular formulation 

has been prevalent even before the 1900’s (Sen, 1973).  Sen recognized the 

possibility of bypassing individual utilities and defining the welfare function 

directly on the distribution of incomes.  This functional form is frequently used in 

public policy.  Furthermore, Sen (1973) recognized that when utilities are 

employed, the function with the utilities is simply a special case of the more 

general form. 

Keeney and Raiffa (1976) employed the formulation discussed above and 

reduced the problem of group preference aggregation to one of determining the 

relative weights that should be given to each party.  The weights are assigned to 

the individual’s utility function in the overall decision maker’s utility function; 

thus, the decision maker’s utility function is a function of the weighted individual 

parties’ utility functions.   

Kantor and Nelson (1979) introduced the concept of conditional utilities to 

the method employed by Keeney and Raiffa.  The conditional utilities depended 

on the present state of the system and the possible actions by the decision maker, 

rather than the possible outcome of the actions by the decision maker.  

Conditional utilities allow for a more flexible model as states change over time. 
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Brock (1980) presented a theory of preference aggregation that 

characterizes an equitable distribution of utility gains.  Brock’s contribution to 

this area of weighted utilities is the distinction between hypothetical and 

operational interpersonal comparisons.  In the hypothetical realm, utility 

distributions are identified for any possible situation which may arise.  However, 

when the plan is put into practice, there may not be a need for interpersonal 

comparisons of utility.  

Rawls (1971) acknowledged that there is no single answer to the problem 

of assigning weights when there are competing principles of justice.  Intuition 

plays a role at this juncture.  Based on this observation, the work presented here 

will provide the opportunity for the decision maker to employ his/her intuition for 

the particular environment in which he/she works. 

The research presented in this dissertation draws from a variety of fields 

including operations research, water resources, telecommunications, and decision 

making.  The initial formulation of the vulnerability index is related to the 

concepts of network reliability and vital arcs.  Adjustment factors to this index are 

based on the idea of weighting, which comes from multiple decision maker 

problems.  (Weights and multi-objective decision making are also employed in 

chapter 4).  The vulnerability index is a new measure, and the adjustment factor is 

a response to initial difficulties identified with the interpretation of the index.  The 

literature presented above shows the relationship of this work to that of previous 

researchers. 

 

2.2  EVACUATION BEHAVIOR 
 

A large number of studies have been conducted after all types of disasters.  

The majority of these works are more than twenty years old.  More recent 

publications focus less on the evacuation itself and more on the technology 
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employed during recovery and reconstruction efforts.  This section presents an 

overview of evacuation literature. 

 

2.2.1. Early Studies 

 
Many of the early publications on evacuations were the result of 

observations of human behavior while others outlined plans for community 

preparedness.  Advanced modeling of evacuation procedures, however, did not 

occur until computers were easily accessible.   

Fritz and Mathewson (1957) observed a “convergence behavior” that 

occurs once a disaster has struck.  People, information, and supplies have been 

noted to head toward the disaster area.  This observation is related to the search 

and recovery aspects of a modern disaster.   

Gillespie and Perry (1976) also focused on collective behavior during 

mass emergencies.  They observed that when typical societal conditions no longer 

exist, a new “norm” is, at least temporarily, established.  The establishment of a 

new “norm” is particularly observable during riots and other violent outbursts, but 

can also be found in panic situations, such as those that may be present in 

unexpected evacuation scenarios. 

Herr (1984) reported that the work of Hans and Sell found that in 70 

events, a state of panic, manifested in excessive driving speed, did not exist.  

Zelinsky and Kosinkski (1991) also rejected the idea that panic evacuations do not 

occur.  Sattayhatewa and Ran (2000), however, stated that people do panic and 

disregard others while seeking to evacuate.   

Regardless of whether panic occurs while people are driving, the time to 

evacuate an area using vehicles needs to be estimated so that officials can know 

when to give warnings and orders to evacuate an area.  There have been numerous 
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studies pertaining to community preparedness and estimations for evacuation 

times in the case of nuclear events (see, for example: Moore, et al, 1963; 

McLuckie, 1975; Brand, 1984; Gillespie, et al, 1993; Lindell and Perry, 1992).  

Other works, such as Palm and Hodgson (1993) and Perry and Mushkatel (1984) 

used surveys to identify characteristics of individuals who are more likely to 

evacuate in the event of natural disasters.  Zelinsky and Kosinski (1991) also 

studied the importance of a number of variables to the propensity for an 

individual to evacuate.  

As noted in Dow and Cutter (2002), one of the most important 

observations obtained from the early research is that household members being 

together is important to the decision to evacuate.  This issue was researched by 

Perry, Lindell and Greene (1981), Johnson (1988), Sime (1993), and Zelinsky and 

Kosinski (1991), among others. 

The use of survey information and advances in technology can improve 

the understanding of evacuees’ behavior.  Many of the survey studies were 

mentioned above.  Some of the advances in technology and their application to 

evacuations is discussed in the next section. 

 

2.2.2  Technological Advances 

 
The most important advances in technology for evacuation have been in 

the area of information transfer.  Satellites have become available for evacuation 

efforts.  Walter (1990) explained the use of satellites for advanced warning and 

search-and-rescue efforts.  Cellular phones are another example of how 

information may be relayed.  Comfort (2000) observed the use of two-way radios, 

satellite telephones, cellular telephones, aerial photography, geographic 
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information systems, satellite imagery, and computer modeling in the first three 

days following an earthquake in Turkey on August 17, 1999. 

While rescue workers use the satellites and other technological advances 

for detailed information, more general information can be passed on to the public 

through other mass communication media, such as television, radio, and the 

world-wide-web.  Rattien (1990) discusses the role of the media in disaster 

management.  The influence of information on drivers’ behavior leads to new 

modeling challenges.  A brief overview of some of the evacuation models is 

presented in the next section. 

 

2.2.3 Modeling 

 
 The need to model transportation related evacuation issues has been 

identified by numerous researchers.  Ardekani and Hobeika (1988) sited the need 

for a “real-time microcomputer-based transportation decision tool” (p.123) in 

their aftermath study of the Mexico City Earthquake in 1985.  Plowman (2001) 

sited a modeling tool for hurricane evacuations; however, the considerable 

advanced warning associated with hurricane scenarios leads to difficulty in 

directly applying tools for modeling hurricane evacuations to disasters, such as 

terrorist incidents, which occur with little advanced warning. 

There have been numerous models developed to simulate evacuations of 

both structures and cities.  Helbing has modeled pedestrian evacuation of a room 

using the principles of physics.  For the transportation aspects, dynamic traffic 

assignment has become a common methodology; see for instance: Sattayhatewa 

and Ran (2000); and Sheffi, et al (1981).  Two examples of urban or regional 

evacuation models are NETVAC (Sheffi, et al, 1981), a macroscopic traffic 

simulation model, and REMS (Tufekci and Kisko, 1991), a model with both 
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macro- and microscopic features.  Karbowicz and Smith (1983) employed a 

heuristic to determine the shortest  (in terms of both time and distance) evacuation 

route in a stochastic network; the type of network they examined was that of a 

building.  The concept of the heuristic is easily transferable to a transportation 

network, although the number of decision points increases dramatically from that 

of a building. 

Use of simulation models can aid decision makers in determining where 

the important links are in a network.  By examining queue lengths, one can easily 

identify problem areas; however, the relative importance of a particular link to the 

connectivity of specific origins and destinations is not always easily determined.  

This issue is examined more thoroughly in this dissertation.   

 

2.3 VEHICLE ROUTING 
 

This section of the literature review focuses on vehicle routing, which is 

instrumental to modeling the decisions of a household during an evacuation 

scenario.  Vehicle routing and many of its variants have been studied extensively.  

The problem and several examples of prior research are presented below. 

 

2.3.1. The Basic Vehicle Routing Problem  

 
In the basic vehicle routing problem (VRP), there is a set of customers 

with a given demand.  A fleet of vehicles is originally stationed at a central depot.  

The vehicles are sent to the customers to meet their demands.  The problem is to 

minimize the travel cost for the fleet.  Capacity constraints for the vehicles must 

be considered.  A common simplifying assumption made by researchers is that the 

capacities of all of the vehicles are identical. 
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The VRP, adapted from the formulation of the vehicle routing problem 

with time windows by Desrochers et al (1988) is as follows: 
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where cij is the cost of using arc (i,j), 

xij is an integer variable, taking the value 1 if arc (i,j) is used and 0 

otherwise, 

 N is the set of nodes in the graph, 

 A is the set of arcs in the graph, 

 I is the set of customers requiring service, 

 Di is the departure time from node i,  

 yi is the load in the vehicle arriving at node i, 

 qi is the demand at customer i, and 

 Q is the capacity of the vehicle. 

 

The constraints are interpreted as follows.  Constraint 2.2 requires every 

family member to be picked up only once.   Equation (2.3) is the constraint that 

requires the number of vehicles entering an intermediate node is the same as the 

number of vehicles leaving that intermediate node.  Constraint 2.4 ensures that the 
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departure time from j must be greater than the departure time from i and the travel 

time from i to j.  If a link between 2 nodes is used, then the load of the vehicle 

arriving at the first node is at most the load of the vehicle arriving at the second 

node plus the demand that was picked up from the first node.   Equation 2.6 

ensures that the load of the vehicle arriving at node i is less than capacity.  

The vehicle routing problem has often been likened to the traveling 

salesman problem (TSP), in which a salesman starts at the home city and must 

visit each of the cities in the network once and only once and finally return home 

(see for example Lin and Kernighan, 1972).  Due to the similarities, TSP 

heuristics can be employed in the solution of VRP’s.   

In the traveling salesman problem realm, one of the variants is the 

existence of multiple salesmen, who together must meet all of customer 

visitations.    Simchi-Levi and Berman (1990) investigated the optimal locations 

and districting for the case where there are two salesmen.  In this dissertation, the 

starting locations of the vehicles is fixed, but among the household’s drivers, 

districting may be performed. 

 Clarke and Wright (1963) considered a case in which the capacities of the 

vehicles in the fleet varied.  In their work, they noted that if the capacity of the 

largest vehicle was greater than the sum of all of the customer demands, the 

problem became a TSP.  Some of the assumptions made by Clarke and Wright 

may not be applicable when the commodity being picked up is people and the 

household has a limited number of vehicles.  The first assumption that may not be 

applicable is that the demand at the pick-up locations is such that each customer 

may be serviced by its own vehicle.   The second assumption allows for the 

splitting of loads among vehicles.  Initially, this assumption seems ridiculous 

when the commodity is people; however, this may be allowable when there are 

multiple children at one school and one of the vehicles has insufficient space for 

all of the children.  Clarke and Wright provide a methodology for solving the 
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problem by hand.  The savings associated with connecting two pick-up locations 

is calculated and locations are linked so as to maximize the savings. 

Nag et al (1988) also examined the vehicle routing problem with a 

heterogeneous fleet and the inability of certain types of vehicles to service some 

customers.  This problem particularly relates to the evacuation problem where a 

household has more than one vehicle, such as a sports car and a sports utility 

vehicle (SUV), and different numbers of children at different schools.  For 

instance, the SUV would be needed to pick up three children at elementary school 

because the sports car only has one additional seat.  The sports car could be used 

to pick up the one child at middle school, or the SUV could be used to collect all 

of the children.  Nag et al propose four heuristic methods to solve this more 

complicated version of the vehicle routing problem.  In the simplest heuristic, the 

authors create an artificial capacity for all of the vehicles of the same type.  This 

artificial capacity is not applicable to the evacuation scenario since uneven load 

concerns are ignored, rather, the goal is to collect everyone as rapidly as possible.  

Like other methodologies, clusters are formed and the nodes within the cluster are 

sequenced using traveling salesman techniques; again, this needs to be carefully 

adapted to the evacuation scenario since the vehicles are not necessarily returning 

to their points of origin.   

Another variation of the VRP, that is relevant to the evacuation problem, 

has been investigated by Laporte, et al (1984).  The variation was to constrain the 

maximum distance traveled by any vehicle.  This distinction is particularly 

relevant to the case when family members are attempting to reach a meeting place 

at approximately the same time (see Chapter 4).  Laporte, et al, treats the upper 

bounds on the maximum distance as constraints; whereas the formulation for this 

dissertation incorporates the desire for similar arrival times as part of the objective 

function. 
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In earlier work, Russell (1977) bounded the maximum travel distance for 

the M-tour TSP.  Russell’s (1977) description of the M-tour traveling salesman 

problem is nearly identical to that of the vehicle routing problem with differences 

being found in the constraints.  Another of the constraints was related to timing.  

Some cities, or customers, were only available for visitation during certain time 

windows.  This work appears to be an early generalization of the vehicle routing 

problem with time windows, which is discussed in the following section. 

 

2.3.2. Vehicle Routing with Time Windows 

 
The vehicle routing problem with time windows (VRPTW) is similar to 

the vehicle routing problem with additional constraints that require the vehicles to 

arrive at the customer location within a given time frame.  Any early arrivals 

incur waiting time.  Golden and Assad (1986) present a general description of the 

problem.   

The VRPTW is known to be NP-hard, meaning that solution procedure is 

known to exist that is of polynomial computational complexity (Baker and 

Schaffer, 1986).  Many of the previous works in this area present heuristic 

methods for solving this problem.   

Solomon (1987) presented heuristics to solve the VRPTW that were 

extensions of previously developed VRP heuristics.  The added complexity was in 

the incorporation of time.  The assumption of a homogeneous fleet simplifies the 

problem by eliminating the need to associate different capacity constraints with 

individual vehicles.  Among the heuristics extended were savings, time-oriented 

nearest neighbor, and insertion.  The insertion technique was recommended based 

on the problems considered. 
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Kolen, et al (1987) used branch-and-bound techniques to solve the 

VRPTW.  The underlying assumptions of Kolen, et al’s research match those of 

Solomon (1987) in that there is a single depot for a fleet of homogeneous 

vehicles. 

 Baker and Schaffer (1986) modified the branch exchange techniques 

commonly used to solve the VRP to account for the additional constraints of time 

windows.  The use of branch exchange techniques to improve existing heuristics 

was an extension of a then working paper by Solomon.  For the branch exchange 

procedure, there may be a reordering of the nodes within a given vehicle’s route 

or there may be a switching of two arcs between two vehicles’ routes.  By 

employing the branch exchange techniques, Baker and Schaffer (1986) were able 

to find solutions that were closer to optimality than the original tours generated 

using the original nearest neighbor and insertion heuristics. 

Solomon, Baker, and Schaffer (1988) focused on the extension of the 

branch exchange solution improvement procedures to the time window 

constrained vehicle routing and scheduling problem and implementation methods 

for these procedures.  In order to reduce computation time, the authors eliminated 

unnecessary feasibility checks that were due to the nature of the problem.  The 

complexity of the algorithms is actually increased while the running time was 

decreased. 

There are several differences between previous works and the research 

presented here.  First, the vehicles are not located at a single depot.  In this 

problem, the vehicles are assumed to be located wherever their drivers are at the 

time the evacuation begins.  For instance, the starting location of vehicles may 

include work places, shopping or recreation areas, home, and high schools.  

Second, the fleet of vehicles available to a household is not assumed to be 

homogeneous.  In the case where a household owns more than one vehicle, one 
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may be a sports utility vehicle, a family sedan, or a sports car.  The capacities of 

these vehicles vary. 

 The time windows as defined for the typical VRPTW are not directly 

applicable to the case at hand.  In the initial formulation considered here, no time 

windows are considered; however, time windows could be included in certain 

scenarios, such as flooding or hazardous materials incidents.  The nature of some 

emergencies requires that people close to the incident be evacuated first.  In these 

situations, there may not be a specific time window for the affected citizens to be 

picked up; rather, if they are not picked up before a certain time, another agency 

will move them to a safer location. 

 This work shares several assumptions with the previous studies discussed 

in this section.  Like Solomon (1987), all vehicles are initially assumed to leave 

their starting locations at the earliest possible time.  In the evacuation problem, 

the driver sees no benefit to waiting at the origin.  This assumption may be 

modified in the event that the incident is localized and initially contained, but 

allowed to spread after an initial evacuation has begun.  Each vehicle is assumed 

to have a pre-specified capacity, though not all of the vehicles are assigned the 

same capacity.  Additional similarities between the vehicle routing problem and 

the research presented here will be shown in chapter 4. 

 

2.4 SUMMARY 
 

This chapter has presented an overview of the literature related to this 

dissertation.  The first section was related to network reliability and vulnerability, 

which pertains to chapter 3.  In the second portion of this chapter, observed 

evacuation behavior was discussed.  In the third section, the vehicle routing 

problem and some of its variants was presented.  Both the second and third parts 

of this chapter relate to chapter 4.  Since chapter 5 incorporates the methodologies 
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from chapters 3 and 4, all of the literature presented in this chapter pertains to 

chapter 5. 
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Chapter 3 

Identification Of Vulnerable Transportation Infrastructure 

 

Critical transportation infrastructure consists of links that are particularly 

important to the connectivity of origins and destinations.  Intuitively, these links 

are bridges, tunnels, or other roadways that connect multiple origins and 

destinations and carry heavy volumes of traffic.  Proving that intuition is indeed 

correct can be difficult.  As noted in chapter 2, the most vital links are defined as 

those whose removal from the network results in the greatest increase in shortest 

path travel time (Corley and Sha, 1982; Malik, Mittal, and Gupta, 1989; and Ball, 

Golden, and Vohra, 1989).  Identifying the optimal solution to the most vital arcs 

problem is extremely difficult because it requires complete enumeration of all of 

the options.  Furthermore, the most vital arc problem primarily applies to single 

origin-destination pairs and not the network as a whole.  The classic minimum cut 

problem also identifies a set of links whose removal from the network will 

completely sever the destination from the origin.  Neither of these two approaches 

allows for the determination of relative importance of links other than these vital 

arcs.  The relative importance of all links can be used by traffic management 

agencies under emergency conditions due to natural disasters as well as anthropic 

disasters.  Furthermore, the solution to the minimum cut problem may not be 

unique.  Neither the most vital arcs problem nor the minimum cut problem 

accounts for the resources that may be required to remove the links from the 

network. 

With the increase in global awareness of terrorism, the issue of physically 

disabling roadways, bridges, and tunnels has become of greater concern.  

Terrorists, or evil entities, have a limited amount of resources with which to cause 
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damage to a transportation network.  With the resources available, the evil entity 

seeks to inflict the maximum disruption to the network in terms of both 

connectivity and the amount of vehicles that are impacted. 

In this chapter, a vulnerability index is developed that identifies the 

relative importance of a link, or set of links, to the connectivity of a given origin-

destination pair.  An aggregation of the vulnerability indices over the network’s 

origin-destination pairs yields the disruption index.  This disruption index is used 

to address the problem: given a limited amount of resources for causing damage 

to a transportation network, the transportation network itself, and a traffic 

assignment determine the set of links whose damage causes the maximum 

disruption to the network.  The problem is formulated as a bi-level mathematical 

programming model.  At the lower level is the system optimal traffic assignment 

problem.  At the upper level is a linear integer program that has the objective of 

maximizing the damage to the network in terms of the disruption index. 

This bi-level mathematical program can be viewed as a game between a 

traffic management agency and an evil entity.  The evil entity’s objective is 

represented by the upper level problem while the traffic management agency 

(TMA) is represented at the lower level.  The evil entity selects a set of roads to 

target from a list of scenarios based on the available resources.  The selected 

scenario has the greatest disruption index.  The TMA’s strategy depends on the 

information available to it. Four games of varying information are examined in 

this chapter.  In the first, the traffic management agency has no knowledge of the 

threat from the evil entity.  In the second game, the traffic management agency 

knows that the evil entity is planning to disrupt the network, but the evil entity is 

unaware that the traffic management agency has this information.  In the third 

game, the traffic management agency knows that the evil entity is planning an 

attack and reroutes vehicles to avoid these links while ensuring that origin-

destination demands are met.  For this scenario, all of the resources are consumed 
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simultaneously.  Finally, the fourth game is similar to the third except that links 

are damaged sequentially, rather than simultaneously.  In this chapter, the games 

are conducted on a simple network for ease of explanation.  In chapter 5, a larger 

network is examined. 

 The remainder of this chapter is divided into the following sections.  First, 

the vulnerability and disruption indices are developed.  Second, the bi-level 

mathematical formulation of the problem is presented.  Third, a small sample 

network is evaluated in terms of the four games.  Finally, a summary of the 

chapter is presented. 

 

3.1 DEVELOPMENT OF THE DISRUPTION INDEX 
 

In this section, a methodology for the determination of two indices is 

presented.  First, a vulnerability index is developed.  This index is a measure of 

importance of a link, or set of links, to the connectivity of an origin-destination 

pair based on current traffic and infrastructure states.  Second, a disruption index 

is developed.  The disruption index is the aggregation of the vulnerability indices 

across all origin-destination pairs, thus providing a state-based measure of 

network vulnerability.  The disruption index is the measure by which the “evil-

entity” is envisioned to select links to damage.   

The vulnerability index explicitly accounts for flow, the availability of 

alternate paths, travel time, marginal costs, and capacity of links.  Traffic 

conditions may be generated by different methods.  User equilibrium minimizes 

travel time from the individual driver’s perspective.  System optimal traffic 

assignment, used in this chapter, minimizes travel time at the network level.  This 

assignment yields the best possible traffic conditions from the network, not the 

individual driver’s perspective.  When the traffic management agency has control 

over the traffic, the vehicles are routed to optimize conditions at the network 
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level.  In the games discussed in this chapter, the TMA seeks to route vehicles so 

as to avoid threatened links.  Without guidance from the TMA, more drivers than 

necessary may choose paths containing vulnerable links and unnecessarily put 

themselves in danger. 

Within a scenario, a set of links is examined.  The amount of resources 

available to an evil entity determines the number of links in the scenario.  The 

number of possible scenarios increases combinatorially with an increase in the 

amount of available resources.  To determine the vulnerability index for a given 

origin-destination (O-D) pair, the flow on the scenario’s links is examined.  The 

formulation of the index seeks to find other paths, with excess capacity, for the 

flow on the link(s) of interest.  Scenarios that consist of more than one link 

present a challenge.  The flows are not necessarily additive.  For instance, two 

links may lie on the same path and the flow exits one of the links and enters the 

other.  This is the same flow and, therefore, cannot be added to itself.  Therefore, 

the relationship between link and path flows must be known.  In this work, the 

relationships between the links and paths are known.   

When the flow on the scenario’s link(s) belongs to more than one O-D 

pair (multi-commodity flow), the allocation of excess capacity becomes an issue.  

For this dissertation, no prioritization among the O-D pairs is permitted.  If there 

is insufficient excess capacity to accommodate the flow on the links of interest for 

a given origin-destination pair, the links are critical to that O-D pair and the 

vulnerability index takes its maximum value of 1.0. 

Examination of alternate paths for the accommodation of the flow on the 

link(s) of interest implements a utility of the alternate path.  This utility 

incorporates the amount of excess capacity available for a given O-D pair, the 

maximum flow service rate, the free flow travel time, and the marginal path cost 

(travel time).  Provided there is sufficient excess capacity to accommodate the 

flow on the scenario’s link(s), greater utilities of the alternate paths indicate less 
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vulnerable links.  The methodology for the determination of the vulnerability 

index, and subsequently, the disruption index is presented below.  The notation 

that is used for the development of the index and subsequent sections of this 

chapter is given in table 3.1. 

The transportation network is represented as a directed graph G(N,A) 

consisting of a set of nodes N and a set of arcs A connecting those nodes.  Some 

of these nodes are origins (R), some are destinations (S), and some are 

intermediate nodes with no vehicles entering or leaving the network at those 

points.  The total demand from a given origin to a given destination qr,s is given as 

a parameter.  Traffic is assigned to paths connecting the origin-destination pairs; 

the path flows are known.  The non-negative cost tl of using each link is 

known, as well as the current link demand x

Al ∈

l.   

 

 

 31



Table 3.1  Notation for the Development of the Disruption Index and the Bi-Level 
Formulation  

Notation Interpretation 
 Sets and Indices 

hj Bottleneck link of path j 
I Set of possible scenarios for link damage 
i Scenario index 
j Path index 
l, a Link indices  
Lj Set of links in path j 
Li Set of links in scenario i 
R Set of origin nodes 
r Origin index 
S Set of destination nodes 
s Destination index 

Parameters 
Kr,s Total number of paths connecting r and s – may be limited by user 
ρl Maximum service flow rate of link l (vph) 
ρj

r,s Maximum service flow rate of path j from origin r to destination s (vph) 
qr,s Total origin-destination demand (vph) from r to s 
T0

r,s Path travel time threshold for origin-destination pair (r,s) 
T0

j Free flow path travel time for path j (min) 
Variables 

cl Excess capacity of link l (vph)  [ 0, ρl ] 
Cj

r,s Excess capacity on path j available to r,s (vph) 
Di Value of disruption for scenario i [ 0, |R|x|S| ] 
fj

r,s Flow on path j from r to s (vph) 
gj

r,s Utility of alternate path j [ 0, 1 ] 
ki

r,s Number of alternate paths needed to accommodate xi
r,s

Mi
r,s Adjusted vulnerability index for link l evaluated for r,s 

tl(xl) Flow dependent link travel time (min) on link l 
τj Marginal travel time (min) of path j 
U Value to be maximized in the upper level problem 
Vi

r,s Vulnerability index for scenario i evaluated for origin-destination pair  (r,s) 
xl Total link flow (vph) 
xl

r,s Flow on link l from r to s (vph) 
Xi,j Amount of flow on link in Li to be accommodated by alternate path j 
Xi Total flow on the links in Li

Xi
r,s Total flow on the links in Li corresponding to origin r and destination s 

yi Integer decision variable; = 1 if scenario i is selected and 0 otherwise 
Φ Arc-path incidence matrix 
Φi Arc-path incidence matrix for links in scenario i 
 

For a given scenario i, the O-D flow that is affected is the sum of the O-D 

flows on the paths containing the links (Li) in scenario i: 
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The total flow is the sum of the flows on paths containing the links of interest, or 

the sum of the origin-destination specific flows: 
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If the set of links (Li) in the scenario were damaged, Xi is the amount of flow that 

would have to be accommodated by excess capacity on alternate paths.  These 

alternate paths cannot contain any of the links in Li. 

Let Lj be the set of links in path j. Let hj be the bottleneck link of path j, 

where the bottleneck is defined as the link with the minimum excess capacity cl.  

Excess capacity is calculated as the difference in the link maximum service flow 

rate ρl and the current flow xl on link l.   

lll xc −= ρ       (3.3) 

The path service rate ρj
r,s is the minimum service rate of the links in the path:  

l
Ll

sr
j

j
ρρ

∈
= min, .    (3.4) 

As a cursory first step to determining whether Xi
r,s can be accommodated 

by the remainder of the network, the classical maximum flow problem is 

employed.  Flow from and an origin is maximized, subject to flow conservation 

constraints, capacity constraints, and non-negativity constraints (Bertsimas and 

Tsitsiklis, 1997).  This step is repeated for every O-D pair with flow on links in 

Li.  In this cursory step, all of the excess capacity is allocated to the O-D pair 

under consideration.  If the maximum flow through the network, without Li, using 

cl as the capacity of link l is less than Xi
r,s, there is no need to continue, the origin-

destination vulnerability Vi
r,s is the maximum (1.0). 

Once it has been determined that Xi
r,s can be accommodated by the 

remaining network, the alternate paths that are considered are restricted by several 
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factors.  First, as previously mentioned, the path may not contain any of the links 

in the set Li.  Second, the travel time Tj
r,s on the alternate path j must be less than 

some threshold value T0
r,s.  This threshold is determined by the analyst and serves 

two purposes: (1) to eliminate paths with endless cycles and (2) to reduce the 

number of paths considered.  Alternate paths are considered in order of marginal 

path travel times with the lowest marginal travel time path being considered first.  

The number of alternate paths (ki
r,s) considered depends on the excess path 

capacity available to the O-D pair (Cj
r,s), which is defined as the minimum of 

adjusted link excess capacities.  These link excess capacities are adjusted by the 

ratio of the scenario O-D flow to the total scenario flow that could use the link 

(see equation 3.5).  In other words, a portion of the link’s excess capacity is 

allocated for all of the affected origin-destination pairs that could use the link. 
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 where (r’,s’) is an O-D pair with flow on the scenario’s links. 

Alternate paths are considered until Xi
r,s has been accommodated, a predetermined 

maximum number of alternate paths Kr,s have been considered, or no additional 

alternate paths exist.  When Xi
r,s has been accommodated on alternate paths, the 

number of paths used to accommodate this flow is kr,s.  If Xi
r,s has not been 

accommodated by alternate paths before Kr,s is reached or no additional alternate 

paths are available, the set of links Li forms a “flow dependent cut set.”  For the 

purposes of this work, a flow dependent cut set is a set of links whose removal 

from the network will result in the inability of the network to transmit the origin-

destination demand.  The vulnerability index (Vi
r,s ) takes its maximum value (1.0) 

for a scenario in which a flow dependent cut set is formed.  

 If the set of links Li forms neither a cut-set (from the cursory step) nor a 

flow dependent cut set, the flow Xi
r,s can be accommodated by alternate paths.  
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The utility (gj) of alternate path j is then determined for the given r and s.  The 

utility of the alternate path is a measure of the relative usefulness of the alternate 

path.  In this dissertation, “utility” is the combination of the relative capacity and 

the ratio of the free flow path travel time and the marginal path travel time for 

alternate path j shown in equation (3.6).   
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, =     (3.6) 

In the denominator of the first term of the right hand side, the saturation 

flow is a characteristic of the link type, such as freeway or arterial, signalized or 

unsignalized.  For the period of analysis, the saturation flow is treated as a 

constant.  The excess capacity of the alternate path, in the numerator of the first 

term, may vary among evaluation periods (such as peak and off-peak).  The 

excess capacity cannot exceed the saturation flow, resulting in a maximum value 

of 1.0 for that ratio.  The first term indicates that as the excess capacity of the 

bottleneck link increases, the feasibility of that alternate path increases.  If the 

excess capacity of path j (Cj
r,s) is zero, the bottleneck link is at capacity and that 

path is not a viable alternative. 

As in the first term, the second ratio of the right hand side of equation 

(3.6) contains a term describing characteristics of the baseline path and a term 

describing the current state of the path/network.  The ratio of the free flow travel 

time on path j and the marginal path travel time is bounded by 0.0 and 1.0.  The 

upper bound may be reached but the lower bound is never achieved, only 

approached.  Since each of the ratios in equation (3.6) are bounded by 0.0 and 1.0, 

the utility gj
r,s of alternate path j is bounded by 0.0 and 1.0, inclusive.   

 In the formulation of the vulnerability index (equation 3.7), the utility of 

the alternate paths required to accommodate the flow on the damaged link are 

multiplied by the proportion of that flow that would be diverted to that path.  Use 

of the proportion bounds the vulnerability index when the adjusted utilities are 
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aggregated to form the disruption index.  The vulnerability index for scenario i 

with respect to origin r and destination s (Vi
r,s) ranges from 0.0 to 1.0 with 1.0 

indicating that links in Li are extremely important to the connectivity of r and s 

given the current state of the network. 
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When ki
r,s exceeds Kr,s, an insufficient number of alternate paths available 

are to accommodate the O-D flow from the link of interest due to network 

constraints or the method in which excess capacity is allocated.  In order for 

scenario i to have an index of 0.0, there must be at least one alternate path that 

currently has no flow and can accommodate Xi
r,s. This unlikely set of conditions 

suggests that each link will have a positive vulnerability index. 

To complete the interpretation of the vulnerability index at the origin-

destination level, an adjustment factor is applied to Vi
r,s based on the proportion of 

the origin-destination flow carried on the link(s) of interest. Let χi
r,s denote the 

coefficient of Vi
r,s.  
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The general form of the adjusted vulnerability index Mi
r,s is given in equation 

(3.9). 
sr

i
sr

i
sr

i VM ,,, χ=     (3.9) 

 Finally, the disruption index (Di) for scenario i is defined in equation 

(3.10) as the sum, over all origin-destination pairs, of the adjusted vulnerability 

indices of scenario i. 
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The disruption index is bounded by 0.0 and the number of origin-

destination combinations ( |R|x|S| ).  A value of 0.0 indicates that, for the given 

traffic conditions, damaging the set of links Li, would have no impact on the 

given traffic.  A value at the upper bound indicates that the set of links Li affects 

every origin-destination pair in the network, these links carry all of the flow, and 

there is insufficient capacity to accommodate this flow on alternate paths. 

 

3.2 BI-LEVEL FORMULATION 
 

In this section, a bi-level formulation is presented to identify vulnerable 

links and sets of links in the transportation network.  Game theory can be used to 

solve the formulation.  In the game context, one player represents an “evil entity” 

seeking to disrupt the network to the greatest degree given the resources available.  

The disruption index, developed in section 3.1, is the criterion by which this 

player makes decisions.  The other player in the game is a traffic management 

agency who seeks to route traffic away from the vulnerable links. 

The transportation network is represented by a directed graph G(N,A) 

consisting of a set of nodes N and arcs A.  A flow dependent cost is associated 

with traversing each arc l, and is in terms of travel time tl(xl).   

 

3.2.1 Formulation 

 
The upper level problem (P1) is a decision making problem for the “evil 

entity.”  This decision maker first examines his resources to determine how many 

links (n) he can damage.  Based on the resources, he creates scenarios, which are 

 37



sets of n links to be damaged simultaneously.  The scenario selected maximizes 

the disruption across all origin-destination pairs in the network.   
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 The decision variables of P1 are binary integers which take the value 1 if 

scenario i is selected and 0 otherwise.  Equation (3.12) ensures that only one 

scenario is chosen. 

The lower level problem (P2) represents the minimization of travel time 

for all users in the network.  This system optimal traffic assignment (Sheffi, 1985) 

represents the case where traffic managers direct vehicles to different paths.  By 

using this formulation, the network is at its best possible state from the collective 

view of the users. 
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 where xA is the vector of arc flows   and  A
l xx ∈

f J be the vector of path flows. 

 The objective function of P2 minimizes the flow dependent travel time for 

all network users.  Equation (3.15) ensures that the sum of the flows on the paths 
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connecting r and s meet the demand for the origin-destination pair.  The second 

constraint is the non-negativity constraint.  The final equation relates the link and 

path flows through an arc-path incidence matrix Φ|A|x|J|  (Jahn, et al, 2002); the 

values of the entries of this matrix are 0 if link l does not lie on path j and 1 if link 

l does lie on path j. 

Since the lower level problem is to be solved before the upper level 

problem, P2 can be incorporated into the constraint set of P1 (see Shimizu, et al., 

1997).  Let X* be an optimal solution vector of flows from the system optimal 

formulation.  The coefficient Di is a function of X* and can be represented as 

Di(X*).  The two problem formulations P1 and P2 are combined into a bi-level 

formulation in P3. 
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 The lower level problem is a nonlinear programming formulation in terms 

of the decision variables xl
r,s.  The coefficients (Di) of the decision variables of P1 

are functions of the decision variables of P2’.  Because the lower level problem is 
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solved before the upper level problem, the upper level problem is linear in terms 

of yi.  The upper level problem is solved for each alternative optimum found in 

the lower level problem.   

 

3.2.2 Solution Framework 

 
The bi-level problem is solved sequentially.  The lower level problem is 

continuously differentiable over the allowable range of x.  As noted by Lee and 

Nie (2001) and Mouskos and Mahmassani (1989), the system optimal traffic can 

be solved by modified versions of the Frank-Wolfe algorithm (Bertsekas, 1999, 

p.215-218).  The resulting vector of link flows is used in the calculation of the 

upper level decision variable coefficients.  The upper level problem is not 

continuously differentiable in y, due to the discrete nature of the variable.  The 

linear nature of the upper level problem allows for solution methodologies such as 

the Simplex Algorithm (see Bertsimas and Tsitsiklis, 1997, Ch.3, pp. 81-137). 

 

3.2.3 Sample Network 

 
The simple network shown in figure 3.1 will be used for this discussion.  

The network consists of six nodes and eight links.  Two of the nodes (1 and 5) are 

origins and two are destinations (2 and 6), resulting in four origin-destination 

pairs. 
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Figure 3.1  Sample Network 

The link characteristics for the network shown in figure 3.1 are presented in table 

3.2. 

Table 3.2  Link Characteristics for the Sample Network 

Link 1 2 3 4 5 6 7 8 
Max Service Rate 
(vphpl) 

2000 1700 1600 1700 1800 1800 1800 2000 

Number of Lanes 2 1 1 1 2 1 1 2 

Free Flow Travel 
Time 

10 2 2 1.5 6 2 3 11 

 

For the example presented in this paper, the flow dependent travel times 

are determined from the BRP formula (equation 3.26).  The variable tf represents 

the free flow travel time on the link. 
4
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   (3.26) 

For illustration purposes, three different demand levels are examined.  The 

first set of total origin-destination demands are q1,2 = 3000 vph, q1,6 = 1000 vph, 
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q5,2 = 1100 vph, and q5,6 = 2500 vph.  The second set of demands are three 

quarters of the first set: q1,2 = 2250 vph, q1,6 = 750 vph, q5,2 = 825 vph, and q5,6 = 

1875 vph.  The third set of demands is half of the first set: q1,2 = 1500 vph, q1,6 = 

500 vph, q5,2 = 550 vph, and q5,6 = 1250 vph.  The resulting flow distributions and 

disruption indices are presented in table 3.3. 

 

3.2.4 Results and Discussion for Single Links 

 
The results for the sample network shown in figure 3.1 and the link 

characteristics in table 3.2 are displayed in tables 3.3 and 3.4.  The first table 

presents one of the optimal flow distributions resulting from the system optimal 

traffic assignment and the resulting values of the vulnerability indices.  The 

second table presents the values of the disruption indices for each of the links.   
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Table 3.3 Flow Distribution and Vulnerability Indices Results 

 Demand 
Level 

Arc 1 Arc 2 Arc 4 Arc 5 Arc 6 Arc 7 Arc 8 

Original 2300 1700 1700 3400 1800 1600 1900 
¾ 2250 750 1306.67 2056.67 825 1231.67 1393.33 

 (xl) 

½ 1500 500 1314.98 1814.98 550 1264.98 485.02 
q1,2 = 3000 2300 700 0 700 700 0 0 
q1,2 = 2250 2250 0 0 0 0 0 0 

xl
1,2

q1,2 = 1500 1500 0 0 0 0 0 0 
q1,6 = 1000 0 1000 0 1000 0 1000 0 
q1,6 = 750 0 750 0 750 0 750 0 

xl
1,6

q1,6 = 500 0 500 0 500 0 500 0 
q5,2 = 1100 0 0 1100 1100 1100 0 0 
q5,2 = 825 0 0 825 825 825 0 0 

xl
5,2

q5,2 = 550 0 0 550 550 550 0 0 
q5,6 = 2500 0 0 600 600 0 600 1900 
q5,6 = 1875 0 0 481.67 481.67 0 481.67 1393.33 

xl
5,6

q5,6 = 1250 0 0 764.98 764.98 0 764.98 485.02 
q1,2 = 3000 0.7667 0.1350 0* 0.1350 0.1350 0 0 
q1,2 = 2250 1 0* 0* 0* 0* 0 0 

Ml
1,2

q1,2 = 1500 1 0* 0* 0* 0* 0 0 
q1,6 = 1000 0 0.0029 0* 0.0029 0 0.0029 0* 
q1,6 = 750 0 0.0411 0* 0.0008 0 0.0008 0* 

Ml
1,6

q1,6 = 500 0 0.0036 0* 0.00001 0 0.00001 0* 
q5,2 = 1100 0 0 1 1 1 0 0 
q5,2 = 825 0 0 1 1 1 0 0 

Ml
5,2

q5,2 = 550 0 0 1 1 1 0 0 
q5,6 = 2500 0 0 0.1144 0.1144 0 0.1144 0.7600 
q5,6 = 1875 0 0 0.0899 0.0899 0 0.0899 0.7431 

Ml
5,6

q5,6 = 1250 0 0 0.0749 0.0749 0 0.0749 0.3880 
* indicates that the value is zero based solely on the flow assignment; a path including that link 

does exist for the origin-destination pair.  Arc 3 was omitted from the table because no flow was 

assigned to it and the resulting values of the vulnerability indices were 0 for all cases. 

 

 The data in the table above show some general trends and a couple of 

points that fall outside of generalities.  The flow for origin-destination pair (1,2), 

is assigned to link 1 the majority of the time.  For the highest demand case, not all 

of the demand is assigned to this path, unlike the lower demand cases.  The reason 

for this result is that the alternate path (links 2, 5, and 6) becomes competitive, in 

terms of flow dependent travel time. For ODs (1,6) and (5,2) all of the flow is 
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assigned to the same path for each of the demand levels examined.  Only one path 

connects node 5 to node 2, but for (1,6), the traffic assignment is a result of travel 

time.  Origin-destination pair (5,6) offers the opportunity to examine capacity 

constraints.  The path consisting of links 4, 5, and 7 has a smaller travel time than 

the alternate path (link 8).  The existence of only one path connecting nodes 5 and 

2 leads to a priority assignment of this OD flow to the links in the single path, 

which shares links with the shortest time path for (5,6).  At the highest demand 

level, the capacity constraint on link 4 prohibits any additional flow (above 

600vph) for (5,6) from being assigned to path 4, 5, 7.  The traffic assignments at 

the lower demand levels reflect the dependency of travel time on the link flow 

levels. 

 Although intuition may lead to the expectation that increased demand will 

lead to higher vulnerability indices, this is not always true.  The index formulation 

captures more of the intricacies of traffic assignment and network design than 

intuition.  The value of the indices for the links connecting node 5 and node 2 do 

not change, as expected, since there is only one path, and therefore, each link is 

critical.  At the highest demand level in this example, link 1 achieves its lowest 

vulnerability index.  This result captures the fact that only at this level is the OD 

flow distributed between two possible paths.  The most counter-intuitive result 

occurs for OD pair (1,6).  The lower two demand levels follow the expected trend 

of more traffic leads to a higher vulnerability index.  This generalization is 

followed by links 5 and 7 for all demand levels.  However, link 2 has a higher 

vulnerability index than links 5 and 7 for the lower two demand levels.  The 

design of the network allows for three alternate paths to exist between node 1 and 

node 6.  Only one of these paths contains link 2, while two of the paths contain 

links 5 and 7.  This difference allows the value of the index to vary between link 2 

and links 5 and 7.  The reason for the index being greater for link 2 is that the 

alternate path with the lower marginal travel time also has less excess capacity so 
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the overall utility for the vehicles that would be reassigned to that path is lower, 

resulting in a higher vulnerability index.  The network does better as a whole 

using the marginal path cost as the order for reassignment rather than ordering by 

path excess capacity.  At the highest demand level, the index is the same for all of 

the links in the path; this is due to one of the alternate paths having no excess 

capacity to accommodate the flow on link 2.  Origin-destination pair (5,6) does 

follow the intuitive trend and the results show an increase in vulnerability indices 

for both paths as demand increases (see also figure 3.2). 
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Figure 3.2  Comparison of Vulnerability Indices for Alternate Paths for OD (5,6) 

Figure 3.2 shows some of the complexities in predicting the relative 

importance of a specific link to the connectivity of an origin-destination pair.  The 

curve connecting the data points for link 8 is linear and has a positive slope; this 

reflects two attributes of the network state.  First, insufficient capacity exists on 

alternate paths to accommodate the flow on link 8 from node 5 to node 6.  
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Second, the proportion of the OD flow assigned to link 8 maps directly to the 

vulnerability index.  Links 4, 5, and 7 have the same vulnerability index for the 

given origin-destination pair.  This result reflects the fact that these three links lie 

on the same path and no alternate path for that OD pair shares one of these links.  

The non-linear nature of the curve connecting the data points for these links 

indicates that an alternate path can accommodate the flow on the path consisting 

of links 4, 5, and 7, for at least some demand levels.  Furthermore, the relatively 

low value of the vulnerability index emphasizes the existence of a viable 

alternative path with sufficient excess capacity.   

The vulnerability index is an appropriate measure for determining the 

importance of a link to origin-destination connectivity, but the disruption index 

needs to be calculated for the network level.  The disruption indices are calculated 

as the sum of the vulnerability indices across all origin-destination pairs.  The 

disruption indices for the single arcs and different demand levels are given in 

table 3.4.  This measure allows for an ordering of links in terms of vulnerability 

from the network perspective. 

Figure 3.3 provides a demonstration of how the disruption index can be 

vastly different from the vulnerability index shown in figure 3.2.  In the figure 

below, the disruption indices are not identical for links 4, 5, and 7.  This is due to 

the assignment of various other OD flows to these links.  The disruption index for 

link 8 is the same as the vulnerability index because the only traffic assigned to 

that link is for the origin-destination pair (5,6). 
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Figure 3.3 Comparison of Disruption Indices and Percentage of OD (5,6) Flow 
Assigned to Link 

Table 3.4  Disruption Indices for the Sample Network and Various Demand 
Levels 

Demand 
Level 

Arc 1 Arc 2 Arc 
3 

Arc 4 Arc 5 Arc 6 Arc 7 Arc 8 

Original 0.7667 0.1379 0 1.1144 1.2523 1.1350 0.1173 0.7600 

¾ 1.0000 0.0411 0 1.0899 1.0907 1.0000 0.0907 0.7431 

½ 1.0000 0.0036 0 1.0749 1.07491 1.0000 0.07491 0.3880 

 

From the results shown in table 3.4, for all three demand levels, the evil 

entity would select link 5 as the target.  One of the obvious reasons for this 

selection is that link 5 lies on paths connecting each of the origin-destination 

pairs.  For any single origin-destination pair, link 5 does not dominate all of the 
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other links in the network, but when the network is considered as a whole, link 5 

becomes the most vulnerable link.   

This section has presented results of single link vulnerability and 

disruption analysis.  The next section allows for links to be considered jointly. 

 

3.2.5  Results and Discussion for Joint Link Consideration 
 

Due to the small nature of the sample network and for ease of discussion, 

the scenarios considered for multiple arc damage are first limited to two links.  

The results for the joint consideration of the links are presented below.  The 

demand levels from the previous section are used here.  The results are separated 

by origin-destination pair.  Table 3.5 is for (1,2), table 3.6 is for (1,6), table 3.7 is 

for (5,2), and table 3.8 is for (5,6). 

Table 3.5  Joint Vulnerability Indices for Origin-Destination (1,2) 

 Demand Link 2 Link 3 Link 4 Link 5 Link 6 Link 7 Link 8 
Original 1.0000 0.7667 0.7667 1.0000 1.0000 0.7667 0.7667 Link 

1 ¾ & ½ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
Original  0.1350 0.1350 0.1350 0.1350 0.1350 0.1350 Link 

2 ¾ & ½  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Original   0.0000 0.1350 0.1350 0.0000 0.0000 Link 

3 ¾ & ½   0.0000 0.0000 0.0000 0.0000 0.0000 
Original    0.1350 0.1350 0.0000 0.0000 Link 

4 ¾ & ½    0.0000 0.0000 0.0000 0.0000 
Original     0.1350 0.1350 0.1350 Link 

5 ¾ & ½     0.0000 0.0000 0.0000 
Original      0.1350 0.1350 Link 

6 ¾ & ½      0.0000 0.0000 
Original       0.0000 Link 

7 ¾ & ½       0.0000 
 

 For the origin-destination pair (1,2), at the highest demand level, only 

links 1, 2, 5, and 6 had a vulnerability index greater than 0.0 due to the traffic 
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assignment.  These links represent two of the three possible paths connecting that 

O-D pair.  Let path 1 contain link 1 and path 2 consist of links 2, 5, and 6.  The 

third path (arcs 3, 4, 5, and 6) had no excess capacity available.  Any combination 

of link 1 and a link from path 2 resulted in a joint vulnerability index of 1.0 since 

no alternate path was available.  When one link from path 2 was considered with 

another arc from the same path, the joint index was the maximum of the 

individual link vulnerability indices, which in this case were identical.  Any 

combination of links 3, 4, 7, and 8 resulted in a joint vulnerability index of 0.0 

because none of the flow from node 1 to node 2 was assigned to these arcs.  

Finally, consideration of links 3, 4, 7, or 8 and one of the links from paths 1 or 2 

yielded a joint index equivalent to the individual index for the arc from path 1 or 

2. 

 At the lower demand levels, all of the flow for (1,2) was assigned to path 

1.  When link 1 was combined with any other link, the join vulnerability index 

was 1.0.  If the combination of arcs did not include link 1, the joint index was 0.0. 
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Table 3.6 Joint Vulnerability Indices for Origin-Destination (1,6) 

 Demand Link 2 Link 3 Link 4 Link 5 Link 6 Link 7 Link 8 

Original 0.0029 0.0000 0.0000 0.0029 0.0000 0.0029 0.0000 

¾ 0.0411 0.0000 0.0000 0.0008 0.0000 0.0008 0.0000 

Link 

1 

½ 0.0036 0.0000 0.0000 0.00001 0.0000 0.00001 0.0000 

Original  1.0000 0.0029 0.0029 0.0029 0.0029 1.0000 

¾  1.0000 0.0411 0.0411 0.0411 0.0411 1.0000 

Link 

2 

½  1.0000 0.0036 0.0036 0.0036 0.0036 0.0036 

Original   0.0000 1.0000 0.0000 1.0000 0.0000 

¾   0.0000 1.0000 0.0000 1.0000 0.0000 

Link 

3 

½   0.0000 1.0000 0.0000 1.0000 0.0000 

Original    0.0029 0.0000 0.0029 0.0000 

¾    0.0008 0.0000 0.0008 0.0000 

Link 

4 

½    0.00001 0.0000 0.00001 0.0000 

Original     0.0029 0.0029 1.0000 

¾     0.0008 0.0008 1.0000 

Link 

5 

½     0.00001 0.00001 1.0000 

Original      0.0029 0.0000 

¾      0.0008 0.0000 

Link 

6 

½      0.00001 0.0000 

Original       1.0000 

¾       1.0000 

Link 

7 

½       1.0000 

 

 Table 3.6 presents the joint vulnerability indices for origin-destination pair 

(1,6).  There are three possible paths connecting this pair of nodes.  Let path 4 

consist of links 2, 5, and 7; path 5 consist of arcs 3, 4, 5, and 7; and path 6 consist 

of links 3 and 8. 

 Examination of the joint index of links 2 and 8 at different demands 

reveals that traffic levels play a crucial role in the calculation of vulnerability 

 50



indices.  At the two higher demands, link 4 does not have sufficient excess 

capacity to accommodate the flow on link 2, which means that path 5 is 

insufficient as the only alternate path from node 1 to node 6.  Since arcs 2 and 8 

are members of paths 4 and 6, respectively, their joint vulnerability index is 1.0.  

At the lowest demand level, path 5 can accommodate the flow on path 4.  As a 

result, the joint vulnerability index of links 2 and 8 is the same as the individual 

index of link 2 (since arc 8 carries no flow from node 1 to node 6). 

Arcs 2 and 3 form an obvious cut set for this OD pair; consequently, their 

joint vulnerability index is 1.0.  Link combinations 3 and 5, 3 and 7, 5 and 8, and 

7 and 8 also form cut sets and have joint indices of 1.0 for all demand levels. 

Links 1 and 6, by the network configuration, cannot carry any flow 

between OD (1,6) so either of these links in combination with any other arc has a 

joint vulnerability index equivalent to that other arc’s individual index. 

Table 3.7  Joint Vulnerability Indices for Origin-Destination (5,2) and All 
Demand Levels 

 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7 Link 8 

Link 1 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 

Link 2  0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 

Link 3   1.0000 1.0000 1.0000 0.0000 0.0000 

Link 4    1.0000 1.0000 1.0000 1.0000 

Link 5     1.0000 1.0000 1.0000 

Link 6      1.0000 1.0000 

Link 7       0.0000 

 

 Table 3.7 demonstrates the simplicity of the case when only one path 

exists between an origin-destination pair, such as (5,2) in this example.  The path 

(path 7) consists of links 4, 5, and 6.  Each arc is a cut set for this OD pair.  As 
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such, any combination of links with arcs 4, 5, or 6 yields a joint vulnerability 

index of 1.0.  If none of the links of path 7 are in the combination under 

consideration, the index is 0.0. 

Table 3. 8  Joint Vulnerability Indices for Origin-Destination (5,6) 

 Demand Link 2 Link 3 Link 4 Link 5 Link 6 Link 7 Link 8 

Original 0.0000 0.0000 0.1144 0.1144 0.0000 0.1144 0.7600 

¾ 0.0000 0.0000 0.0899 0.0899 0.0000 0.0899 0.7431 

Link 

1 

½ 0.0000 0.0000 0.0749 0.0749 0.0000 0.0749 0.3880 

Original  0.0000 0.1144 0.1144 0.0000 0.1144 0.7600 

¾  0.0000 0.0899 0.0899 0.0000 0.0899 0.7431 

Link 

2 

½  0.0000 0.0749 0.0749 0.0000 0.0749 0.3880 

Original   0.1144 0.1144 0.0000 0.1144 0.7600 

¾   0.0899 0.0899 0.0000 0.0899 0.7431 

Link 

3 

½   0.0749 0.0749 0.0000 0.0749 0.3880 

Original    0.1144 0.1144 0.1144 1.0000 

¾    0.0899 0.0899 0.0899 1.0000 

Link 

4 

½    0.0749 0.0749 0.0749 1.0000 

Original     0.1144 0.1144 1.0000 

¾     0.0899 0.0899 1.0000 

Link 

5 

½     0.0749 0.0749 1.0000 

Original      0.1144 0.7600 

¾      0.0899 0.7431 

Link 

6 

½      0.0749 0.3880 

Original       1.0000 

¾       1.0000 

Link 

7 

½       1.0000 

 Origin-destination pair (5,6) is slightly more complex than (5,2) but less 

so than (1,2) and (1,6).  There are only two paths connecting nodes 5 and 6.  Let 

path 8 consist of link 8 and path 9 consist of arcs 4, 5, and 7.  The joint 

vulnerability index of one of the remaining four links in the network and one of 
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the arcs in path 8 or 9 is equivalent to the individual index of the link in path 8 or 

9.  Since only one alternate path to path 9 exists in the sample network, each link 

in path 9 has the same index value and this holds true when any combination of 

those arcs is considered.  Finally, when link 8 is examined jointly with any of the 

links in path 9, a cut set is formed and the joint vulnerability index is 1.0. 

The joint vulnerability indices reflect two interesting points.  First, 

although links that lie on the same path have identical joint vulnerability indices 

for a given OD pair for the highest demand level, there are exceptions.  One of 

these exceptions would occur when (1,6) is considered; either links 2 and 5 or 2 

and 7 would have a higher index than links 5 and 7.  When links lie on the same 

path, the maximum index for those arcs is taken as the joint vulnerability index.  

The second point is that a joint index of 1.0000 indicates either (a) only one path 

connects the OD pair, as in (5,2) or (b) those links taken together may indicate a 

cut set for that OD pair.  An exception to (b) is: an alternate path may exist but 

has insufficient excess capacity to accommodate the necessary flow. 

Like in the single link example, the disruption index is simply the sum of 

the vulnerabilities indices across all OD pairs.  The following table provides the 

disruption indices for the pair-wise joint consideration of arcs in the sample 

network.   

 53



Table 3.9  Joint Disruption Indices for Sample Network 

 Demand Link 2 Link 3 Link 4 Link 5 Link 6 Link 7 Link 8 

Original 1.0029 0.7667 1.8811 2.1173 2.0000 0.8840 1.5267 

¾ 1.0411 1.0000 2.0899 2.0907 2.0000 1.0907 1.7431 

Link 1 

½ 1.0036 1.0000 2.0749 2.07491 2.0000 1.07491 1.3880 

Original  1.1350 1.2523 1.2523 1.1379 0.2523 1.8949 

¾  1.0000 1.1310 1.1310 1.0411 0.1310 1.7431 

Link 2 

½  1.0000 1.0785 1.0785 1.0036 0.0785 0.3916 

Original   1.1144 2.2494 1.1350 1.1144 0.7600 

¾   1.0899 2.0899 1.0000 1.0899 0.7431 

Link 3 

½   1.0749 2.0749 1.0000 1.0749 0.3880 

Original    1.2523 1.2494 1.1173 2.0000 

¾    1.0907 1.0899 1.0907 2.0000 

Link 4 

½    1.07491 1.0749 1.07491 2.0000 

Original     1.2523 1.2523 3.1350 

¾     1.0907 1.0907 3.0000 

Link 5 

½     1.07491 1.07491 3.0000 

Original      1.2523 1.8950 

¾      1.0907 1.7431 

Link 6 

½      1.07491 1.3880 

Original       2.0000 

¾       2.0000 

Link 7 

½       2.0000 

 

For all demand levels, the maximum value of the disruption index occurs 

when links 5 and 8 are damaged simultaneously.  Damage to these links will 

provide a cut set for origin-destination pairs (1,6), (5,2), and (5,6). 

For the OD pair (1,2) the results for three or more links being damaged 

simultaneously can frequently be summarized in terms of the results for the n=2 

case.  The most interesting result occurs when links 1,2, and 3 or 1,2, and 4 are 
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considered.  Either of these two groups forms a traditional cut set for the origin-

destination pair and the joint vulnerability index is 1.0.  Any additional links 

examined with one of these triplets cannot contribute any vulnerability and the 

index remains at 1.0.  Since link pairs 1 and 5 and 1 and 6 already form a cut set, 

any additional links that are considered with them will have a joint vulnerability 

index of 1.0.   Links 7 and 8 cannot carry flow for OD (1,2) so disabling either or 

both of these two links will yield the same index as in the n-1 case (or n-2, if both 

are damaged).  Links 3 and 4 lie on the same alternate path for OD pair (1,2) and 

only one alternate path contains each of these links; therefore, the vulnerability 

index for both of these links will be the same.  Damaging both links 3 and 4 

would be redundant for (1,2).  Combinations of these two arcs and other arcs will 

yield an index equivalent to the n-1 case.  A similar case arises with links 5 and 6 

which lie on the same two alternate paths for OD (1,2) and the indices are treated 

in a similar manner to the case of links 3 and 4.  Links 2, 3, and 4 are upstream of 

link 5 so damaging any of the previous links is redundant to damaging link 5.  

The value of the joint index is taken as the maximum value of the (n-1) index 

without consideration of link 5 and the (n-1) index without links 2, 3, or 4, 

respectively.  A similar situation arises when links 2, 3, or 4 are examined in 

conjunction with link 6 since this link is downstream of the others. 

 Joint analysis of three or more links for OD (1,6) can also be summarized 

in terms of the n=2 scenario.  Links 1 and 6 cannot contribute to the vulnerability 

of another grouping of arcs, so consideration of n-1 other links and one of these 

links yields a joint index equivalent to the joint index of the n-1 links.  If both 

links 1 and 6 are considered with n-2 additional links, the joint index for the n 

links is the same as that for the n-2 additional arcs.  Links 2 and 3, 5 and 8, and 7 

and 8 form cut sets for this OD pair.  Damage to any other link in conjunction 

with one of these pairs would be redundant and the value of the index remains at 

1.0 as in the n=2 case.  The triplet {2,4,8} also forms a cut set and in cases where 
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n > 3, damage to any link in combination with this triplet would be redundant and 

the joint index value remains at 1.0. Link 7 is downstream of link 5 and is the 

only arc to which OD (1,6) traffic can flow after leaving link 5; therefore, from 

the single OD perspective, damaging both links 5 and 7 is redundant.  The joint 

vulnerability index for a set of links containing both arcs 5 and 7 is the maximum 

of the joint vulnerability index of the set of links without link 5 and the joint index 

of the set of links without link 7.  Using the set {2,5,7} as an example, the joint 

vulnerability index would be the maximum of M1,6
{2,5} and M1,6

{2,7}, which are 

equivalent and the values for different demand levels are given in table 3.6. Links 

2 and 4 are upstream of link 5 and no other path for this OD pair uses link 5 so 

damage to the pair {2,4} is redundant to disabling link 5.  The joint vulnerability 

index for n links including {2,4,5} is the maximum of the index for the n-1 case 

where link 5 is not in the set and the n-2 set where links 2 and 4 are not in the set.  

For the triplet {2,4,5} and the ¾ demand case, M1,6
{2,4,5} is the maximum of 

M1,6
{2,4} (=0.0411) and M1,6

{5} (=0.0008).  A comparable scenario arises when 

links 2,4, and 7 are among the links of interest.  (Recall that link 7 is the only 

downstream arc of link 5 for this OD pair).  As previously mentioned, link 5 is 

downstream of link 4 and damage to link 4 is redundant to disabling link 5; 

however, the converse is not true since link 5 is on two of the possible paths.  

When links 4 and 5 are in the set of links of interest, the joint vulnerability index 

is the maximum of the n-1 case without link 4 and the n-1 case without link 5.  

This analysis further extends to the situation in which links 4 and 7 are in the set 

of arcs of interest.  Finally, traffic from link 3 must enter either link 4 or link 8. 

Damaging link 3 and the pair {4,8} is redundant.  The joint vulnerability index for 

a set of n links containing {3,4,8} can be calculated as the maximum of the n-2 

index without {4,8} and the n-1 index without link 3. 

 Joint vulnerability indices for OD (5,2) for any number of links can be 

easily determined since one path connects this pair of nodes.  If the arc 
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combination contains links 4, 5, and/or 6, the index is 1.0.  If none of the three 

links are present, the value is 0.   

 Recall that for OD (5,6) there are only two possible paths - {4,5,7} and 

{8}.  As in the n=2 case, any combination of link 8 and one of {4,5,7} results in a 

cut set and the joint vulnerability index is 1.0.  Any additional link considered 

with the pair will have no impact on the value of the index; M5,6
{4,8,n-2} = M5,6

{5,8,n-

2}= M5,6
{7,8,n-2} = 1.0.  If the triplet {4,5,7} is considered by itself or with links 

from the set {1,2,3,6} the joint index is the maximum value of the individual 

index for links 4, 5, and 7, such as in the n=2 case.  If any combination of links 1, 

2, 3, and 6 are considered jointly with link 8, the joint index is simply the value of 

M5,6
{8} or the n=1 case for link 8.  When the links of interest solely consist of 

members of {1,2,3,6}, the joint index for this OD pair is 0.0. 

 

3.3  APPLICATION OF GAME THEORY 
 
A two player non-zero sum game is envisioned where one player is an evil entity, 

such as a terrorist cell, intent on destroying a transportation infrastructure link, or 

set of links, and the other player is the traffic management agency who tries to 

keep as many drivers safe as possible.  The secondary objective of the traffic 

management agency is to allow each driver to reach their destination, if possible. 

There are four cases of information in this game.  In the first, the traffic 

management agency is not aware of an impending threat to the transportation 

system.  In the second situation, the traffic management agency is suspects that 

the terrorists will take action, but the cell is not aware of that information has 

reached its opponent.  Third, the agency perceives a general threat and the cell 

suspects that information has been leaked to the other team.  Finally, the two 

players alternate moves with perfect information; the terrorists damage one link, 

the traffic management agency re-routes traffic, then the terrorists damage another 
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link, and so on until either all of the resources have been used or there are no 

origin-destination pairs that remain connected. 

Let Player M be the traffic management agency and Player T be the 

terrorist cell.  Player M routes traffic to minimize the network travel time (system 

optimal).  Let the payoff for player M be the percentage of vehicles that arrive 

safely at their destinations.   Player T will seek to cause as much disruption to the 

flow of traffic as possible.  Let the payoff for player T be the disruption index 

discussed in section 3.1; the objective function and constraints are given in P1 in 

section 3.2.1.   

 

3.3.1 Game 1:  No-Information for the Traffic Management Agency 

 
When Player M is not aware that it should be involved in a game, the 

game becomes the bi-level mathematical program discussed in the previous 

section.  For the sake of consistency, Player M routes traffic according to the 

system-optimal traffic assignment, but, in this game, does not try to avoid any 

links.  Since this game reduces to the formulation in section 3.2, the results are the 

same. 

 

3.3.2 Game 2:  Some Information for the TMA 

 
If Player M suspects that Player T will make a move, Player M will route 

traffic so as to minimize travel time around the suspected targeted set of links.  

Player M moves first in this game.  Player M is aware of the objective function 

for player T; therefore, the game is simple to solve.  Little guess work is required 

on the part of player M and none on the part of player T.  In the event that there 

are multiple optima for player T, player M assigns probabilities to the strategies. 
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The mathematical program (P4) used by player M is a modified version 

(P2).   
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where l* is a link selected for damage by Player T and Hl* is a high cost for using 

link l*.  In this game, l* is known by Player M.  Equation (3.30) represents 

capacity constraints for every link in the network. 

From the results in table 3.4 for n=1, Player M will seek to avoid link 5 for 

all of the demand levels.  Player M knows that Player T will target link 5 based on 

the system optimal traffic assignment when Player M has no information about 

Player T.  Examination of table 3.9 for the n=2 case reveals that Player M avoids 

routing traffic on links 5 and 8 for all of the demand cases.  When n is 3 or higher, 

Player M cannot route traffic away from links 1, 5, and 8 simultaneously.  These 

three links have a joint disruption index of 4.0 (for all demand levels), indicating 

that all four of the network’s origin-destination pairs would be severed.  Any 

higher value of n cannot disrupt the OD connectivity of this sample network 

further than the n=3 case.   

Since Player T is unaware of the information that Player M has received, 

Player M’s strategy is to maximize its own payoff, which in this case also 

minimizes the payoff to Player T (see table 3.11 in the next section).  The next 

game allows for knowledge on the part of both players.   
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3.3.3 Game 3:  One Move for Each Player, Full Information 

 
In this game, each player optimizes their own position while trying to 

predict the opponent’s strategy.  Assume that each player has full knowledge of 

the other’s payoffs.  Player M investigates various strategies through the 

equations in (P4) and Player T employs (P1) for each of Player M’s possible 

strategies.  Let m denote the strategy of Player M and e denote the strategy of 

Player T.  Let pm,e be the payoff to Player M and Dm,e be the payoff to Player T, 

where Dm,e is the value of the disruption index for strategy e when traffic is routed 

by strategy m.  The payoff to Player M is calculated in the following manner: 
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Equation (3.31) represents the percentage of network demand that is not routed on 

targeted links l* dictated by Player T’s strategy e. 

Assume that each player has full knowledge of the other’s payoffs.  The 

general payoff matrix for both players is given in table 3.10. 

Table 3.10 General Payoff Matrix 

 Link Set 1 Link Set 2 … Link Set y 
Routing 1 p1,1, D1,1 p1,2, D1,2 … p1,y, D1,y
Routing 2 p2,1, D2,1 p2,2, D2,2 … p2,y, D2,y
…     
Routing w pw,1, Dw,1 pw,2, Dw,2 … pw,y, Dw,y

 

Player M moves first.  Player M may approach the same from several 

perspectives such as: 

1. Minimize the maximum payoff to Player T: 
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2. Maximize the minimum payoff to Player M: 

⎟
⎠
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em
pz ,2 minmax     (3.33) 

3. A combination of (1) and (2): 

),( 213 zzfz =      (3.34) 

There may be an equilibrium point that is not an optimal solution for 

either player.  According to Nash equilibrium, deviating from this point will cause 

at least one of the players to do “no better” than the equilibrium point.   

For the original demand level, the resulting payoff matrix, evaluated for 

the potential damage of only one link, is given below.  Table 3.11 is interesting in 

that one can observe the exact consequences of an error in Player M’s prediction 

of player T’s move. The flow distributions on which table 3.11 can be found in 

Appendix B.  
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Table 3.11  Payoff Matrix for n=1, Original Demand Level   

 Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7 Link 8 
Do 
nothing 

60.52, 
1.000 

86.84, 
0.110 

100.00, 
0 

82.49, 
1.053 

69.33, 
1.059 

85.53, 
1.000 

83.80, 
0.059 

70.14, 
0.908 

Avoid 1 69.74, 
0.767 

77.63, 
0.138 

100.00, 
0 

77.63, 
1.114 

55.26, 
1.252 

76.32, 
1.135 

78.95, 
0.117 

75.00, 
0.760 

Avoid 2 60.52, 
1.000 

100.00, 
0 

86.84, 
0.336 

77.63, 
1.202 

77.63, 
1.380 

85.52,  
1.000 

92.11, 
0.380 

61.84, 
1.134 

Avoid 3 60.52, 
1.000 

86.84, 
0.110 

100.00, 
0 

82.49, 
1.053 

69.33, 
1.059 

85.53, 
1.000 

83.80, 
0.059 

70.14, 
0.908 

Avoid 4 60.52, 
1.000 

86.84, 
0.698 

100.00, 
0 

85.53, 
1.000 

72.34, 
1.628 

85.53, 
1.000 

86.84, 
0.628 

67.11, 
1.000 

Avoid 5 60.52, 
1.000 

100.00, 
0 

86.84, 
0.001 

85.53, 
1.000 

85.53, 
1.000 

85.53, 
1.000 

100.00, 
0 

53.95, 
1.000 

Avoid 6 60.52, 
1.000 

86.84, 
0.132 

100.00, 
0 

82.82, 
1.048 

69.66, 
1.054 

85.53, 
1.000 

84.13, 
0.054 

69.82, 
0.918 

Avoid 7 62.60, 
0.947 

97.92, 
0.038 

86.84, 
0.089 

85.53, 
1.000 

83.45, 
1.038 

83.45, 
1.038 

100.00, 
0 

53.95, 
1.089 

Avoid 8 60.52, 
1.000 

86.84, 
0.003 

100.00, 
0 

77.63, 
1.114 

64.47, 
1.117 

85.53, 
1.000 

78.95, 
0.117 

75.00, 
0.760 

 

The strategy “avoid 3” is redundant to the “do-nothing” alternative, so this 

row may be eliminated as a viable strategy for Player M.  For 7 of the 8 (non-

redundant) cases, Player T receives the greatest payoff by damaging link 5.  The 

one exception is when Player M uses the strategy “avoid link 7” and Player T then 

damages link 8.  From Player T’s perspective, column “Link 5” dominates “Link 

1,” “Link 2,” “Link 3,” “Link 4,” “Link 6,” and “Link 7.”  From the resulting 

matrix, consisting of columns “Link 5” and “Link 8,” one can see that row “Avoid 

5” dominates “Avoid 7.”  Once this row is eliminated, column “Link 5” 

dominates “Link 8.”  Therefore, Player T’s best strategy is to damage arc 5.  To 

both maximize his own payoff and minimize the payoff to Player T, Player M will 

choose the strategy “Avoid Link 5.” 

 By playing the strategy “Avoid Link 5” and “Link 5” is selected by Player 

T, the payoff for Player M is 85.53%, which means that 85.53% of the vehicles 

were able to safely reach their destinations.  The “Do Nothing” alternative for 
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Player M only allows 69.33% of the vehicles to safely reach their destinations.  

By correctly predicting Player T’s strategy, Player M is able to theoretically save 

1231.2 vehicles/hour from damage or from becoming trapped in the network due 

to the directional nature of the links. 

 Table 3.12 is the payoff matrix for the two player game when the demand 

is at the ¾ level and Player T has limited resources and can damage only one link.  

The corresponding flow distributions for each of Player M’s strategies are found 

in Appendix B. 

Table 3.12  Payoff Matrix for n=1, 3/4 Demand Level   

 Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7 Link 8 
Do 
nothing 

60.53, 
1.000 

86.84, 
0.041 

100.00, 
0 

77.08, 
1.090 

63.92, 
1.091 

85.53, 
1.000 

78.39, 
0.091 

75.56, 
0.743 

Avoid 1 77.63, 
0.567 

70.18, 
0.194 

99.56, 
0.004 

80.10, 
1.064 

50.28, 
1.215 

68.42, 
1.138 

81.86, 
0.077 

72.09, 
0.848 

Avoid 2 
(opt 1) 

60.53, 
1.000 

100.00, 
0 

86.84, 
0.396 

73.10, 
1.182 

73.10, 
1.182 

85.52,  
1.000 

87.57, 
0.182 

66.38, 
1.018 

Avoid 2 
(opt 2) 

60.53, 
1.000 

100.00, 
0 

86.84, 
0.396 

73.10, 
1.372 

73.10, 
1.443 

85.52,  
1.000 

87.57, 
0.443 

66.38, 
1.022 

Avoid 3 60.53, 
1.000 

86.84, 
0.041 

100.00, 
0 

77.08, 
1.090 

63.92, 
1.091 

85.53, 
1.000 

78.39, 
0.091 

75.56, 
0.743 

Avoid 4 60.53, 
1.000 

86.84, 
0.513 

100.00, 
0 

85.53, 
1.000 

72.37, 
1.003 

85.53, 
1.000 

86.84, 
0.003 

67.11, 
1.000 

Avoid 5 60.53, 
1.000 

100.00, 
0 

86.84, 
2 x 10-4

85.53, 
1.000 

85.53, 
1.000 

85.53, 
1.000 

100.00, 
0 

53.95, 
1.000 

Avoid 6 60.53, 
1.000 

86.84, 
0.038 

100.00, 
0 

77.02, 
1.090 

63.86, 
1.091 

85.53, 
1.000 

78.34, 
0.091 

75.61, 
0.741 

Avoid 7 62.61, 
0.947 

97.92, 
0.028 

86.84, 
0.066 

85.53, 
1.000 

83.44, 
1.028 

83.44, 
1.028 

100.00, 
0 

53.95, 
1.066 

Avoid 8 60.53, 
1.000 

86.84, 
2 x 10-4

100.00, 
0 

70.18, 
1.117 

57.02, 
1.117 

85.53, 
1.000 

71.49, 
0.117 

82.46, 
0.533 

*Options 1 and 2 for strategy Avoid 2 yielded equivalent objective value 

functions to four decimal places. 

 The results in table 3.12 are similar to those in table 3.11.  Like the higher 

demand case, Player T’s strategy Target Link 5 dominates all of the others except 

Target Link 8; the matrix can thus be reduced to the columns titled “Link 5” and 

“Link 8.”  For Player M, strategy Avoid Link 3 is equivalent to the “Do Nothing” 
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alternative.  “Avoid 1” is an inferior strategy to the “Do Nothing” alternative and 

can be eliminated from consideration.  “Avoid 5” dominates “Avoid 7.”  From the 

remaining matrix, Player T would target link 5.  The cell “Avoid 5”, “Link 5” is a 

Nash equilibrium point; deviation from this point results in Player M doing worse.   

 Table 3.13 represents the payoff matrix for the case where Player T has 

the resources to damage only one link and the demand is half of the original.   

Table 3.13  Payoff Matrix for n=1, 1/2 Demand Level 

 Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7 Link 8 
Do 
nothing/ 
Avoid 3 

60.53, 
1.000 

86.84, 
0.004 

100.00, 
0 

77.08, 
1.075 

63.92, 
1.075 

85.53, 
1.000 

78.39, 
0.075 

75.56, 
0.388 

Avoid 1  93.42, 
0.167 

55.26, 
0.087 

98.68, 
0.095 

70.54, 
1.083 

25.81, 
1.164 

52.63, 
1.052 

73.18, 
0.112 

80.77, 
0.639 

Avoid 2 
(opt 1) 

60.53, 
1.000 

100.00, 
0 

86.84, 
0.518 

73.10, 
1.153 

73.10, 
1.153 

85.52,  
1.000 

87.57, 
0.153 

66.38, 
0.777 

Avoid 2 
(opt 2) 

60.53, 
1.000 

100.00, 
0 

86.84, 
0.518 

73.10, 
1.589 

73.10, 
1.384 

85.52,  
1.000 

87.57, 
0.383 

66.38, 
0.659 

Avoid 4 60.53, 
1.000 

86.84, 
0.662 

100.00, 
0 

85.53, 
1.000 

72.37, 
1.001 

85.53, 
1.000 

86.84, 
0.001 

67.11, 
1.000 

Avoid 5 60.53, 
1.000 

100.00, 
0 

86.84, 
4 x 10-5

85.53, 
1.000 

85.53, 
1.000 

85.53, 
1.000 

100.00, 
0 

53.95, 
1.000 

Avoid 6 60.53, 
1.000 

86.84, 
0.005 

100.00, 
0 

65.40, 
1.075 

52.24, 
1.075 

85.53, 
1.000 

66.72, 
0.075 

87.23, 
0.388 

Avoid 7 60.53, 
1.000 

100.00, 
0 

86.84, 
4 x 10-5

85.53, 
1.000 

85.53, 
1.000 

85.53, 
1.000 

100.00, 
0 

53.95, 
1.000 

Avoid 8 60.53, 
1.000 

86.84, 
0.000 

100.00, 
0 

70.18, 
1.023 

57.02, 
1.023 

85.53, 
1.000 

71.49, 
0.023 

82.46, 
0.078 

  

 For Player T, the strategy “Target Link 5” dominates “Target Link 1,” 

“Target Link 2,” “Target Link 3,” “Target Link 6,” “Target Link 7,” and “Target 

Link 8.”   From the payoff matrix consisting of only the columns “Link 4” and 

“Link 5,” Player M would select either “Avoid Link 5” or “Avoid Link 7.”  

Referring to table B.3, one can see that these two strategies yield equivalent flow 

distributions. 

 When Player T has the resources to damage two links simultaneously, 

there are numerous alternative optima for the routing strategies of Player M.  A 
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sample of the resulting flow distributions are included in Appendix B for the three 

demand levels.  The payoff matrices, based on those flow distributions, are 

presented in tables 3.14, 3.16, and 3.18. 

Table 3.14  Payoff Matrix for n=2, Original Demand Level 

 Links 
1,2 

Links 
1,3 

Links 
1,4 

Links 
1,5 

Links 
1,6 

Links 
1,7 

Links 
1,8 

Avoid 1,2 (opt 1) 68.42 
0.800 

47.37 
2.000 

46.05 
2.000 

46.05 
2.000 

46.05 
2.000 

68.42 
0.800 

22.37 
0.800 

Avoid 1,2 (opt 2) 68.42 
0.800 

48.69 
1.967 

47.37 
1.967 

46.05 
2.000 

46.05 
2.000 

69.74 
0.767 

23.68 
2.767 

Avoid 1,3 47.37 
2.000 

69.74 
0.767 

47.37 
1.944 

25.00 
3.240 

46.05 
2.000 

48.68 
2.007 

44.74 
1.527 

Avoid 1,4 47.37 
2.000 

69.74 
0.767 

55.26 
1.767 

32.90 
3.000 

46.05 
2.000 

56.58 
1.767 

36.84 
1.767 

Avoid 1,5 (opt 
1); 1,6 (opt 1); 
1,7 

60.53 
1.000 

56.58 
1.767 

55.26 
1.767 

46.05 
2.000 

46.05 
2.000 

69.74 
0.767 

23.69 
2.767 

Avoid 1,5 (opt 
2); 1,6 (opt 2) 

60.53 
1.000 

47.37 
2.000 

46.05 
2.000 

46.05 
2.000 

46.05 
2.000 

60.53 
1.000 

14.47 
3.000 

Avoid 1,5 (opt 
3); 1,6 (opt 3) 

60.53 
1.000 

51.97 
1.883 

50.66 
1.883 

46.05 
2.000 

46.05 
2.000 

65.13 
0.883 

19.08 
2.883 

Avoid 1,8 (opt 1) 60.53 
1.000 

56.58 
1.767 

47.37 
2.007 

38.16 
2.240 

46.05 
2.000 

61.84 
1.007 

31.58 
2.527 

Avoid 1,8 (opt 2) 60.53 
1.000 

56.58 
1.767 

47.37 
2.295 

38.16 
3.000 

46.05 
2.000 

61.84 
1.367 

31.58 
2.167 

Avoid 1,8 
(opt 3) 

60.53 
1.000 

56.58 
1.767 

47.37 
2.167 

38.16 
2.380 

46.05 
2.000 

61.84 
1.187 

31.58 
2.347 

Avoid 2,3 (opt 1) 47.37 
2.000 

60.53 
1.000 

43.01 
2.073 

29.86 
3.092 

46.05 
2.000 

44.33 
2.092 

30.67 
1.908 

Avoid 2,3 (opt 
2); 2,8 (opt 3); 
7,8 (opt 3) 

60.53 
1.000 

47.37 
2.000 

38.16 
2.357 

38.16 
2.351 

46.05 
2.000 

52.63 
1.372 

22.37 
2.627 

Avoid 2,3 (opt 3) 53.84 
1.508 

54.05 
1.492 

40.43 
2.241 

33.75 
3.112 

46.05 
2.000 

48.22 
1.767 

26.78 
2.233 

Avoid 2,4; 2,5; 
2,7; 3,5 (opt 2); 
4,5; 5,6; 5,7; 6,7 

60.53 
1.000 

47.37 
2.000 

46.05 
2.000 

46.05 
2.000 

46.05 
2.000 

60.53 
1.000 

14.47 
3.000 

Avoid 2,6 (opt 
1); 2,8 (opt 2); 
5,8 (opt 2); 7,8 
(opt 2) 

60.53 
1.000 

47.37 
2.000 

38.16 
2.240 

38.16 
2.240 

46.05 
2.000 

52.63 
1.240 

22.37 
2.760 

Avoid 2,6 (opt 2) 60.53 
1.000 

47.37 
2.000 

38.16 
2.500 

38.16 
3.000 

46.05 
2.000 

52.63 
1.600 

22.37 
2.400 

Avoid 2,6 (opt 3) 60.53 
1.000 

47.37 
2.000 

38.16 
2.393 

38.16 
2.380 

46.05 
2.000 

52.63 
1.420 

22.37 
2.580 
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Avoid 2,8 (opt 
1); 3,6; 3,7 (opt 
2); 3,8; 4,8; 5,8 
(opt 1); 6,8; 7,8 
(opt 1) 

47.37 
2.000 

60.53 
1.000 

38.16 
2.177 

25.00 
3.240 

46.05 
2.000 

39.47 
2.240 

35.53 
1.760 

Avoid 3,4; 3,5 
(opt 1); 3,7 (opt 
1); 4,6 

47.37 
2.000 

60.53 
1.000 

46.05 
2.000 

32.90 
3.000 

46.05 
2.000 

47.37 
2.000 

27.63 
2.000 

Avoid 3,5 (opt 
3); 3,7 (opt 3) 

53.84 
1.508 

54.05 
1.492 

46.05 
2.000 

39.37 
3.000 

46.05 
2.000 

53.84 
1.508 

21.16 
2.492 

Avoid 4,7 60.53 
1.000 

49.45 
1.947 

48.13 
1.947 

46.05 
2.000 

46.05 
2.000 

62.60 
0.947 

16.55 
2.947 

Avoid 5,8 (opt 3) 49.42 
1.844 

58.48 
1.156 

46.05 
2.000 

34.94 
3.000 

46.05 
2.000 

49.42 
1.844 

25.58 
2.156 

 
 Links 

2,3 
Links 
2,4 

Links 
2,5 

Links 
2,6 

Links 
2,7 

Links 
2,8 

Links 
7,8 

Avoid 1,2 (opt 1) 78.95 
1.121 

77.63 
1.121 

77.63 
1.121 

77.63 
1.121 

100.00 
0.000 

53.95 
2.000 

53.95 
2.000 

Avoid 1,2 (opt 2) 77.63 
1.135 

76.32 
1.135 

76.32 
1.135 

76.32 
1.135 

98.68 
0.019 

52.63 
2.019 

53.95 
2.000 

Avoid 1,3 77.63 
1.135 

55.26 
2.375 

55.26 
2.375 

63.16 
2.135 

69.74 
1.375 

52.63 
1.895 

53.95 
2.000 

Avoid 1,4 77.63 
1.135 

63.16 
2.135 

63.16 
2.135 

63.16 
1.676 

77.63 
1.135 

44.74 
2.135 

53.95 
2.000 

Avoid 1,5 (opt 
1); 1,6 (opt 1); 
1,7 

77.63 
1.135 

76.32 
1.135 

76.32 
1.135 

76.32 
1.135 

90.79 
0.135 

44.74 
2.135 

53.95 
2.000 

Avoid 1,5 (opt 
2); 1,6 (opt 2) 

88.84 
1.000 

85.53 
1.000 

85.53 
1.000 

85.53 
1.000 

100.00 
0.000 

53.95 
2.000 

53.95 
2.000 

Avoid 1,5 (opt 
3); 1,6 (opt 3) 

82.24 
1.078 

80.92 
1.078 

80.92 
1.078 

80.92 
1.078 

95.39 
0.078 

49.34 
2.078 

53.95 
2.000 

Avoid 1,8 (opt 1) 77.63 
1.135 

68.42 
1.375 

68.42 
1.375 

76.32 
1.135 

82.89 
0.375 

52.63 
1.895 

53.95 
2.000 

Avoid 1,8 (opt 2) 77.63 
1.135 

68.42 
2.135 

68.42 
2.135 

76.32 
1.135 

82.89 
0.735 

52.63 
1.535 

53.95 
2.000 

Avoid 1,8 
(opt 3) 

77.63 
1.135 

68.42 
1.515 

68.42 
1.515 

76.32 
1.135 

82.89 
0.555 

52.63 
1.715 

53.95 
2.000 

Avoid 2,3 (opt 1) 86.84 
1.000 

69.33 
2.092 

69.33 
2.092 

72.37 
1.537 

83.80 
1.092 

56.99 
1.908 

53.95 
2.000 

Avoid 2,3 (opt 
2); 2,8 (opt 3); 
7,8 (opt 3) 

86.84 
1.000 

77.63 
1.351 

77.63 
1.351 

85.53 
1.000 

92.11 
0.351 

61.84 
1.628 

53.95 
2.000 

Avoid 2,3 (opt 3) 86.84 
1.000 

73.22 
2.112 

73.22 
2.112 

78.84 
1.351 

87.70 
1.112 

59.57 
1.741 

53.95 
2.000 

Avoid 2,4; 2,5; 
2,7; 3,5 (opt 2); 
4,5; 5,6; 5,7; 6,7 

86.84 
1.000 

85.53 
1.000 

85.53 
1.000 

85.53 
1.000 

100.00 
0.000 

53.95 
2.000 

53.95 
2.000 
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Avoid 2,6 (opt 
1); 2,8 (opt 2); 
5,8 (opt 2); 7,8 
(opt 2) 

86.84 
1.000 

77.63 
1.240 

77.63 
1.240 

85.53 
1.000 

92.11 
0.240 

61.84 
1.760 

53.95 
2.000 

Avoid 2,6 (opt 2) 86.84 
1.000 

77.63 
2.000 

77.63 
2.000 

85.53 
1.000 

92.11 
1.000 

61.84 
1.400 

53.95 
2.000 

Avoid 2,6 (opt 3) 86.84 
1.000 

77.63 
1.380 

77.63 
1.380 

85.53 
1.000 

92.11 
0.380 

61.84 
1.580 

53.95 
2.000 

Avoid 2,8 (opt 
1); 3,6; 3,7 (opt 
2); 3,8; 4,8; 5,8 
(opt 1); 6,8; 7,8 
(opt 1) 

86.84 
1.000 

64.47 
2.240 

64.47 
2.240 

72.37 
2.000 

78.95 
1.240 

61.84 
1.760 

53.95 
2.000 

Avoid 3,4; 3,5 
(opt 1); 3,7 (opt 
1); 4,6 

86.84 
1.000 

72.37 
2.000 

72.37 
2.000 

72.37 
1.557 

86.84 
1.000 

53.95 
2.000 

53.95 
2.000 

Avoid 3,5 (opt 
3); 3,7 (opt 3) 

86.84 
1.000 

78.84 
2.000 

78.84 
2.000 

78.84 
1.335 

93.32 
1.000 

53.95 
2.000 

53.95 
2.000 

Avoid 4,7 84.76 
1.038 

83.45 
1.038 

83.45 
1.038 

83.45 
1.038 

97.92 
0.038 

51.87 
2.038 

53.95 
2.000 

Avoid 5,8 (opt 3) 86.84 
1.000 

74.42 
2.000 

74.42 
1.508 

74.42 
1.508 

88.89 
1.000 

53.95 
2.000 

53.95 
2.000 

 
 Links 

3,4 
Links 
3,5 

Links 
3,6 

Links 
3,7 

Links 
3,8 

Links 
6,7 

Links 
6,8 

Avoid 1,2 (opt 1) 64.47 
1.498 

64.47 
2.121 

64.47 
1.124 

78.95 
1.121 

46.05 
2.121 

77.63 
1.121 

31.58 
3.121 

Avoid 1,2 (opt 2) 64.47 
1.530 

63.16 
2.135 

63.16 
1.198 

78.95 
1.116 

46.05 
2.116 

76.32 
1.135 

30.26 
3.135 

Avoid 1,3 77.63 
1.114 

55.26 
2.249 

76.32 
1.135 

78.95 
1.114 

75.00 
0.760 

55.26 
2.375 

51.32 
1.895 

Avoid 1,4 85.53 
1.000 

63.16 
2.135 

76.32 
1.135 

86.84 
1.000 

67.11 
1.000 

63.16 
2.135 

43.42 
2.135 

Avoid 1,5 (opt 
1); 1,6 (opt 1); 
1,7 

72.37 
1.415 

63.16 
2.135 

63.16 
1.550 

86.84 
1.000 

53.95 
2.000 

76.32 
1.135 

30.26 
3.135 

Avoid 1,5 (opt 
2); 1,6 (opt 2) 

72.37 
1.001 

72.37 
2.000 

72.37 
1.001 

86.84 
1.000 

53.95 
2.000 

85.53 
1.000 

39.47 
3.000 

Avoid 1,5 (opt 
3); 1,6 (opt 3) 

72.37 
1.207 

67.76 
2.078 

67.76 
1.285 

86.84 
1.000 

53.95 
2.000 

80.92 
1.078 

34.87 
3.078 

Avoid 1,8 (opt 1) 64.47 
2.421 

55.26 
3.135 

63.16 
1.556 

78.95 
2.000 

61.84 
1.760 

68.42 
1.375 

38.16 
2.895 

Avoid 1,8 (opt 2) 72.37 
1.421 

63.16 
2.135 

63.16 
1.556 

86.84 
1.000 

53.95 
2.000 

68.42 
2.135 

38.16 
2.535 

Avoid 1,8 
(opt 3) 

68.42 
2.421 

59.21 
2.223 

63.16 
1.556 

82.89 
1.088 

57.89 
1.880 

68.42 
1.515 

38.16 
2.715 

Avoid 2,3 (opt 1) 82.49 
1.053 

69.33 
2.053 

85.53 
1.000 

83.80 
1.053 

70.14 
0.908 

69.33 
2.092 

55.67 
1.908 

 67



Avoid 2,3 (opt 
2); 2,8 (opt 3); 
7,8 (opt 3) 

67.38 
2.336 

67.38 
2.111 

72.37 
1.336 

81.85 
1.111 

58.94 
1.848 

77.63 
1.351 

47.37 
2.628 

Avoid 2,3 (opt 3) 75.361 
1.331 

68.68 
2.072 

79.05 
1.259 

83.15 
1.072 

64.32 
1.380 

73.22 
2.112 

51.78 
2.233 

Avoid 2,4; 2,5; 
2,7; 3,5 (opt 2); 
4,5; 5,6; 5,7; 6,7 

72.37 
1.001 

72.37 
2.000 

72.37 
1.001 

86.84 
1.000 

53.95 
2.000 

85.53 
1.000 

39.47 
3.000 

Avoid 2,6 (opt 
1); 2,8 (opt 2); 
5,8 (opt 2); 7,8 
(opt 2) 

64.47 
2.336 

64.47 
3.000 

72.37 
1.336 

78.95 
2.000 

61.84 
1.760 

77.63 
1.240 

47.37 
2.760 

Avoid 2,6 (opt 2) 72.37 
1.337 

72.37 
2.000 

72.37 
1.336 

86.84 
1.000 

53.95 
2.000 

77.63 
2.000 

47.37 
2.400 

Avoid 2,6 (opt 3) 68.42 
2.336 

68.42 
2.088 

72.37 
1.336 

82.89 
1.088 

57.89 
1.880 

77.63 
1.380 

47.37 
2.580 

Avoid 2,8 (opt 
1); 3,6; 3,7 (opt 
2); 3,8; 4,8; 5,8 
(opt 1); 6,8; 7,8 
(opt 1) 

77.63 
1.114 

64.47 
2.114 

85.53 
1.000 

78.95 
1.114 

75.00 
0.760 

64.47 
2.240 

60.53 
1.760 

Avoid 3,4; 3,5 
(opt 1); 3,7 (opt 
1); 4,6 

85.53 
1.000 

72.37 
2.000 

85.53 
1.000 

86.84 
1.000 

67.11 
1.000 

72.37 
2.000 

52.63 
2.000 

Avoid 3,5 (opt 
3); 3,7 (opt 3) 

79.05 
1.148 

72.27 
2.000 

79.05 
1.148 

86.84 
1.000 

60.63 
1.492 

78.84 
2.000 

46.16 
2.492 

Avoid 4,7 72.37 
1.094 

70.29 
2.038 

70.29 
1.132 

86.84 
1.000 

53.95 
2.000 

83.45 
1.038 

37.40 
3.038 

Avoid 5,8 (opt 3) 83.48 
1.079 

72.37 
2.000 

83.48 
1.079 

86.84 
1.000 

65.06 
1.156 

74.42 
2.000 

50.58 
2.156 

 
 Links 

4,5 
Links 
4,6 

Links 
4,7 

Links 
4,8 

Links 
5,6 

Links 
5,7 

Links 
5,8 

Avoid 1,2 (opt 1) 77.63 
1.121 

77.63 
1.121 

77.63 
1.121 

31.58 
2.498 

77.63 
1.121 

77.63 
1.121 

31.58 
3.121 

Avoid 1,2 (opt 2) 76.32 
1.135 

76.32 
1.135 

77.63 
1.116 

31.58 
2.530 

76.32 
1.135 

76.32 
1.135 

30.26 
3.135 

Avoid 1,3 55.26 
2.375 

68.42 
1.312 

64.47 
2.240 

52.63 
2.000 

55.26 
2.375 

55.26 
2.375 

30.26 
3.135 

Avoid 1,4 63.16 
2.135 

76.32 
1.135 

72.37 
2.000 

52.63 
2.000 

63.16 
2.135 

63.16 
2.135 

30.26 
3.135 

Avoid 1,5 (opt 
1); 1,6 (opt 1); 
1,7 

76.32 
1.135 

76.32 
1.135 

85.53 
1.000 

39.47 
2.415 

76.32 
1.135 

76.32 
1.135 

30.26 
3.135 

Avoid 1,5 (opt 
2); 1,6 (opt 2) 

85.53 
1.000 

85.53 
1.000 

85.53 
1.000 

39.47 
2.001 

85.53 
1.000 

85.53 
1.000 

39.47 
3.000 

Avoid 1,5 (opt 
3); 1,6 (opt 3) 

80.92 
1.078 

80.92 
1.078 

85.53 
1.000 

39.47 
2.207 

80.92 
1.078 

80.92 
1.078 

34.87 
3.078 
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Avoid 1,8 (opt 1) 68.42 

1.375 
68.42 
1.375 

77.63 
1.240 

39.47 
2.421 

68.42 
1.375 

68.42 
1.375 

30.26 
3.135 

Avoid 1,8 (opt 2) 68.42 
2.135 

68.42 
1.388 

77.63 
2.000 

39.47 
2.421 

68.42 
2.135 

68.42 
2.135 

30.26 
3.135 

Avoid 1,8 
(opt 3) 

68.42 
1.515 

68.42 
1.381 

77.63 
1.380 

39.47 
2.421 

68.42 
1.515 

68.42 
1.515 

30.26 
3.135 

Avoid 2,3 (opt 1) 69.33 
2.092 

82.49 
1.073 

69.33 
2.092 

52.63 
2.000 

69.33 
2.092 

69.33 
2.092 

39.47 
3.000 

Avoid 2,3 (opt 
2); 2,8 (opt 3); 
7,8 (opt 3) 

77.63 
1.351 

77.63 
1.226 

77.63 
1.351 

39.47 
2.336 

77.63 
1.351 

77.63 
1.351 

39.47 
3.000 

Avoid 2,3 (opt 3) 73.22 
2.112 

79.91 
1.176 

73.22 
2.112 

46.16 
2.259 

73.22 
2.112 

73.22 
2.112 

39.47 
3.000 

Avoid 2,4; 2,5; 
2,7; 3,5 (opt 2); 
4,5; 5,6; 5,7; 6,7 

85.53 
1.000 

85.53 
1.000 

85.53 
1.000 

39.47 
2.001 

85.53 
1.000 

85.53 
1.000 

39.47 
3.000 

Avoid 2,6 (opt 
1); 2,8 (opt 2); 
5,8 (opt 2); 7,8 
(opt 2) 

77.63 
1.240 

77.63 
1.240 

77.63 
1.240 

39.47 
2.336 

77.63 
1.240 

77.63 
1.240 

39.47 
3.000 

Avoid 2,6 (opt 2) 77.63 
2.000 

77.63 
1.202 

77.63 
2.000 

39.47 
2.336 

77.63 
2.000 

77.63 
2.000 

39.47 
3.000 

Avoid 2,6 (opt 3) 77.63 
1.380 

77.63 
1.221 

77.63 
1.380 

39.47 
2.336 

77.63 
1.380 

77.63 
1.380 

39.47 
3.000 

Avoid 2,8 (opt 
1); 3,6; 3,7 (opt 
2); 3,8; 4,8; 5,8 
(opt 1); 6,8; 7,8 
(opt 1) 

64.47 
2.240 

77.63 
1.177 

64.47 
2.240 

52.63 
2.000 

64.47 
2.240 

64.47 
2.240 

39.47 
3.000 

Avoid 3,4; 3,5 
(opt 1); 3,7 (opt 
1); 4,6 

73.37 
2.000 

85.53 
1.000 

72.37 
2.000 

52.63 
2.000 

72.37 
2.000 

72.37 
2.000 

39.47 
3.000 

Avoid 3,5 (opt 
3); 3,7 (opt 3) 

78.84 
2.000 

85.53 
1.000 

78.84 
2.000 

46.16 
2.148 

78.84 
2.000 

78.84 
2.000 

39.47 
3.000 

Avoid 4,7 83.45 
1.038 

83.45 
1.038 

85.53 
1.000 

39.47 
2.094 

83.45 
1.038 

83.45 
1.038 

37.40 
3.038 

Avoid 5,8 (opt 3) 74.42 
2.000 

85.53 
1.000 

74.42 
2.000 

50.58 
2.079 

74.42 
2.000 

74.42 
2.000 

39.47 
3.000 
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 Reduction of the matrix shown in table 3.14 reveals a single equilibrium 

point.  For Player T, “Target Links 5,8” dominates all other strategies except 

“Target Links 1,5.”  Using only these two columns, Player M’s strategy “Avoid 

1,5 (option 2); 1,6 (option 2)” dominates all other strategies except the strategy 

beginning with “Avoid 2,4; 2,5.”  The two remaining strategies for Player M are 

equivalent and referring to table B.4, they yield identical flow distributions.  

Although Player M’s dominant strategy did not include a reference to “avoid 5,8,” 

the flow distribution for the dominant strategy is also an alternative optimal flow 

pattern for “avoid 5,8.”  The original tables did not reflect this fact because the 

sample of alternative optimal solutions was limited to three for each set of links. 

  As a side note, if Player M had been misinformed about the amount of 

resources available to the “evil entity,” the routing strategy selected would not 

have yielded as high a payoff as when Player M had the correct information.  If 

Player T really only had the resources to damage one link but Player M thought 

there were enough resources to damage two links, the payoff matrix in table 3.15 

would have resulted.  This table is based on Player M’s dominant routing strategy, 

determined from table 3.14. 

Table 3.15  Payoff Matrix for Misinformation about Player T’s Resources, 
Original Demand Scenario 

Player Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7 Link 8 

M 60.52 100.00 86.84 85.53 85.53 85.53 100.00 53.95 

T 1.000 0 0.001 1.000 1.000 1.000 0 2.000 

 

 Based on the payoffs in table 3.15, Player T would select link 8 as the 

target.  The payoff to Player T would be 2.000.  Player M would receive a payoff 

of 53.95, which is greater than the predicted 39.47 from table 3.14.  However, if 

Player M had known that Player T only had the resources to damage one link, and 
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that link had still been link 8 (although this is not the optimal strategy for Player 

T), Player M would have routed traffic so as to receive a payoff of 75.00 (see 

table 3.11).  Player T’s payoff would have been only 0.760.  The misinformation 

about the amount of resources would have been an advantage to Player T. 

 

Table 3.16  Payoff Matrix for n=2, 3/4 Demand Level 

 Links 
1,2 

Links 
1,3 

Links 
1,4 

Links 
1,5 

Links 
1,6 

Links 
1,7 

Links 
1,8 

Avoid 1,2  
(opt 1) 

75.44 
0.622 

47.37 
2.000 

45.61 
2.011 

45.61 
2.011 

46.61 
2.000 

75.00 
0.633 

29.83 
2.609 

Avoid 1,2 
(opt 2) 

75.44 
0.622  

49.56 
1.944 

48.25 
1.944 

46.05 
2.000 

46.05 
2.000 

77.63 
0.567 

31.58 
2.567 

Avoid 1,3 (opt 
1) 

47.37 
2.000 

77.19 
0.578 

57.61 
1.687 

27.79 
3.001 

46.05 
2.000 

58.93 
1.720 

49.41 
1.422 

Avoid 1,3(opt 
2); 1,6(opt 2) 

47.81 
1.967 

77.19 
0.600 

57.97 
1.677 

28.15 
3.017 

46.05 
2.000 

59.73 
1.677 

49.48 
1.442 

Avoid 1,3(opt 
3) 

47.81 
1.967 

77.19 
0.600 

57.97 
1.703 

28.15 
3.017 

46.05 
2.000 

59.73 
1.700 

49.48 
1.422 

Avoid 1,4 47.81 
1.967 

77.19 
0.600 

63.16 
1.567 

33.33 
2.018 

46.05 
2.000 

64.91 
1.533 

44.30 
1.600 

Avoid  
1,5(opt 1); 2,4; 
2,5; 2,7; 
3,5(opt 2); 
3,7(opt 2); 4,5; 
5,6; 5,7; 
5,8(opt 2); 6,7; 
7,8(opt 1) 

60.53 
1.000 

47.37 
2.000 

46.05 
2.000 

46.05 
2.000 

46.05 
2.000 

60.53 
1.000 

14.47 
3.000 

Avoid  
1,5(opt 2); 1,7 

60.53 
1.000 

64.47 
1.567 

63.16 
1.567 

46.05 
2.000 

46.05 
2.000 

77.63 
0.567 

31.58 
2.567 

Avoid 1,5(opt 
3) 

60.53 
1.000 

55.73 
1.788 

54.41 
1.789 

46.05 
2.000 

46.05 
2.000 

68.88 
0.788 

22.83 
2.788 

Avoid 1,6(opt 
1); 2,3(opt 1); 
3,6; 5,8(opt 1) 

47.37 
2.000 

60.53 
1.000 

37.55 
2.174 

24.38 
3.604 

46.05 
2.000 

38.86 
2.226 

36.14 
1.741 

Avoid 1,6  
(opt 3) 

47.37 
2.000 

68.88 
0.788 

47.09 
1.940 

25.58 
3.001 

46.05 
2.000 

48.41 
1.986 

43.31 
1.566 

Avoid 1,8 
(opt 1) 

47.37 
2.000 

77.19 
0.578 

47.37 
1.869 

17.54 
3.121 

46.05 
2.000 

48.68 
2.044 

59.65 
1.111 

Avoid 1,8 
(opt 2) 

47.81 
1.967 

77.19 
0.600 

47.81 
1.860 

17.98 
3.108 

46.05 
2.000 

49.56 
2.000 

59.65 
1.133 

Avoid 1,8 
(opt 3) 

47.81 
1.967 

77.19 
0.600 

47.81 
1.889 

17.98 
3.105 

46.05 
2.000 

49.56 
2.020 

59.65 
1.113 
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Avoid 2,3(opt 
2); 2,6(opt 3); 
2,8(opt 1) 

60.53 
1.000 

47.37 
2.000 

30.70 
2.653 

30.70 
3.236 

46.06 
2.000 

45.18 
1.724 

29.83 
2.233 

Avoid 2,3(opt 
3); 7,8(opt 3) 

54.20 
1.481 

53.69 
1.519 

35.00 
2.295 

28.68 
3.416 

46.05 
2.000 

43.15 
1.807 

31.85 
2.141 

Avoid 2,6 
(opt 1) 

60.53 
1.000 

47.37 
2.000 

33.62 
2.280 

33.62 
2.280 

46.05 
2.000 

48.10 
1.280 

26.90 
2.622 

Avoid 2,6 
(opt 2) 

60.53 
1.000 

47.37 
2.000 

33.62 
2.720 

30.70 
2.346 

46.05 
2.000 

45.18 
1.346 

29.83 
2.533 

Avoid 2,8 
(opt 2) 

60.53 
1.000 

47.37 
2.000 

30.70 
2.346 

30.70 
2.346 

46.05 
2.000 

45.18 
1.346 

29.82 
2.533 

Avoid 2,8 
(opt 3) 

60.53 
1.000 

47.37 
2.000 

30.70 
3.752 

30.70 
3.471 

46.05 
2.000 

45.18 
2.064 

29.82 
1.933 

Avoid 3,4; 
3,5(opt 1); 
3,7(opt 1); 4,6; 
4,8(opt 2) 

47.37 
2.000 

60.53 
1.000 

46.05 
2.000 

32.89 
2.003 

46.05 
2.000 

47.37 
2.000 

27.63 
2.000 

Avoid 3,5(opt 
3); 3,7(opt 3) 

54.82 
1.500 

54.82 
1.500 

46.05 
2.000 

40.35 
2.104 

46.05 
2.000 

54.82 
1.500 

21.93 
2.500 

Avoid 3,8; 
4,8(opt 1); 
5,8(opt 3); 6,8; 
7,8(opt 2) 

47.37 
2.000 

60.53 
1.000 

30.70 
2.292 

17.54 
3.121 

46.05 
2.000 

32.02 
2.467 

42.98 
1.533 

Avoid 4,7 
 

60.53 
1.000 

49.46 
1.947 

48.15 
1.947 

46.05 
2.000 

46.05 
2.000 

62.62 
0.947 

16.57 
2.947 

Avoid 4,8 
(opt 3) 

47.37 
2.000 

60.53 
1.000 

37.28 
2.18 

24.12 
3.607 

46.05 
2.000 

38.60 
2.232 

36.40 
1.733 

 
 Links 

2,3 
Links 
2,4 

Links 
2,5 

Links 
2,6 

Links 
2,7 

Links 
2,8 

Links 
7,8 

Avoid 1,2  
(opt 1) 

71.93 
1.132 

70.18 
1.144 

70.18 
1.144 

70.61 
1.133 

99.56 
0.011 

54.39 
1.987 

53.95 
2.000 

Avoid 1,2 
(opt 2) 

69.74 
1.138 

68.42 
1.138 

68.42 
1.138 

68.42 
1.138 

97.81 
0.018 

51.75 
2.018 

53.95 
2.000 

Avoid 1,3 (opt 
1) 

70.18 
1.138 

50.59 
2.139 

50.59 
2.139 

55.70 
1.651 

65.07 
1.280 

42.39 
1.982 

53.95 
2.000 

Avoid 1,3(opt 
2); 1,6(opt 2) 

69.74 
1.138 

50.52 
2.155 

50.52 
2.155 

55.70 
1.643 

64.99 
1.249 

42.03 
1.981 

53.95 
2.000 

Avoid 1,3(opt 
3) 

69.74 
1.138 

50.52 
2.155 

50.52 
2.155 

55.70 
1.643 

64.99 
1.271 

42.03 
1.961 

53.95 
2.000 

Avoid 1,4 69.74 
1.138 

55.70 
1.156 

55.70 
1.156 

55.70 
1.634 

70.18 
1.105 

36.84 
2.138 

53.95 
2.000 

Avoid  
1,5(opt 1); 2,4; 
2,5; 2,7; 3,5(opt 
2); 3,7(opt 2); 
4,5; 5,6; 5,7; 
5,8(opt 2); 6,7; 
7,8(opt 1) 

86.84 
1.000 

85.53 
1.000 

85.53 
1.000 

85.53 
1.000 

100.00 
0.000 

53.95 
2.000 

53.95 
2.000 
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Avoid  
1,5(opt 2); 1,7 

69.74 
1.138 

68.42 
1.138 

68.42 
1.138 

68.42 
1.138 

82.89 
0.138 

36.84 
2.138 

53.95 
2.000 

Avoid 1,5(opt 
3) 

78.48 
1.094 

77.17 
1.094 

77.17 
1.094 

77.17 
1.094 

91.64 
0.094 

45.59 
2.094 

53.95 
2.000 

Avoid 1,6(opt 
1); 2,3(opt 1); 
3,6; 5,8(opt 1) 

86.84 
1.000 

63.86 
2.604 

63.86 
2.604 

72.37 
1.512 

78.34 
1.604 

62.45 
1.741 

53.95 
2.000 

Avoid 1,6  
(opt 3) 

79.48 
1.094 

56.70 
2.095 

56.70 
2.095 

64.01 
1.607 

71.17 
1.483 

52.91 
1.872 

53.95 
2.000 

Avoid 1,8 
(opt 1) 

70.18 
1.138 

40.35 
2.258 

40.35 
2.258 

55.70 
1.638 

54.82 
1.604 

52.63 
1.671 

53.95 
2.000 

Avoid 1,8 
(opt 2) 

69.74 
1.138 

40.35 
2.246 

40.35 
2.246 

55.70 
1.629 

54.82 
1.571 

52.19 
1.672 

53.95 
2.000 

Avoid 1,8 
(opt 3) 

69.74 
1.138 

40.35 
2.243 

40.35 
2.243 

55.70 
1.629 

54.82 
1.592 

52.19 
1.652 

53.95 
2.000 

Avoid 2,3(opt 
2); 2,6(opt 3); 
2,8(opt 1) 

86.84 
1.000 

70.18 
2.236 

70.18 
2.236 

85.53 
1.000 

84.65 
1.236 

69.30 
1.233 

53.95 
2.000 

Avoid 2,3(opt 
3); 7,8(opt 3) 

86.84 
1.000 

68.15 
2.416 

68.15 
2.416 

79.20 
1.305 

82.63 
1.416 

65.00 
1.621 

53.95 
2.000 

Avoid 2,6 
(opt 1) 

86.84 
1.000 

73.10 
1.280 

73.10 
1.280 

85.53 
1.000 

87.57 
0.280 

66.38 
1.622 

53.95 
2.000 

Avoid 2,6 
(opt 2) 

86.84 
1.000 

73.10 
1.446 

73.10 
1.446 

85.53 
1.000 

87.57 
0.446 

66.38 
1.055 

53.95 
2.000 

Avoid 2,8 
(opt 2) 

86.84 
1.000 

70.18 
1.346 

70.18 
1.346 

85.53 
1.000 

84.65 
0.346 

69.30 
1.533 

53.95 
2.000 

Avoid 2,8 
(opt 3) 

86.84 
1.000 

70.18 
2.471 

70.18 
2.471 

85.53 
1.000 

84.65 
1.471 

69.30 
0.933 

53.95 
2.000 

Avoid 3,4; 
3,5(opt 1); 
3,7(opt 1); 4,6; 
4,8(opt 2) 

86.84 
1.000 

72.37 
1.003 

72.37 
1.003 

72.37 
1.503 

86.84 
0.003 

54.95 
2.000 

53.95 
2.000 

Avoid 3,5(opt 
3); 3,7(opt 3) 

88.60 
1.000 

79.82 
1.104 

79.82 
1.104 

79.82 
1.302 

94.30 
0.104 

55.70 
2.000 

53.95 
2.000 

Avoid 3,8; 
4,8(opt 1); 
5,8(opt 3); 6,8; 
7,8(opt 2) 

86.84 
1.000 

57.02 57.02 
2.121 

72.37 
1.500 

71.49 
1.121 

69.30 
1.533 

53.95 
2.000 

Avoid 4,7 
 

84.75 
1.028 

83.43 
1.028 

83.43 
1.028 

83.43 
1.028 

97.91 
0.028 

51.85 
2.028 

53.95 
2.000 

Avoid 4,8 
(opt 3) 

86.84 
1.000 

63.60 
2.607 

63.60 
2.607 

72.37 
1.507 

78.07 
1.607 

62.72 
1.733 

53.95 
2.000 

 
 Links 

3,4 
Links 
3,5 

Links 
3,6 

Links 
3,7 

Links 
3,8 

Links 
6,7 

Links 
6,8 

Avoid 1,2  
(opt 1) 

57.02 
1.674 

57.02 
2.141 

57.46 
1.136 

71.49 
1.141 

39.47 
2.119 

70.18 
1.144 

25.00 
3.119 

Avoid 1,2 
(opt 2) 

57.46 
2.121 

55.26 
2.138 

33.26 
1.216 

71.93 
1.121 

39.04 
2.121 

68.42 
1.138 

22.37 
3.138 
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Avoid 1,3 (opt 
1) 

80.42 
1.062 

50.59 
2.199 

68.86 
1.137 

81.73 
1.06 

72.21 
0.845 

50.59 
2.139 

41.07 
1.982 

Avoid 1,3(opt 
2); 1,6(opt 2) 

79.90 
1.097 

50.08 
2.202 

67.98 
1.172 

81.66 
1.064 

71.85 
0.876 

50.52 
2.155 

40.27 
2.014 

Avoid 1,3(opt 
3) 

80.34 
1.092 

50.52 
2.197 

67.98 
1.172 

82.10 
1.058 

71.41 
0.889 

50.52 
2.155 

40.27 
1.994 

Avoid 1,4 85.09 
1.033 

55.26 
2.138 

67.98 
1.172 

86.84 
1.000 

66.67 
1.033 

55.70 
1.156 

35.09 
2.172 

Avoid  
1,5(opt 1); 2,4; 
2,5; 2,7; 
3,5(opt 2); 
3,7(opt 2); 4,5; 
5,6; 5,7; 
5,8(opt 2); 6,7; 
7,8(opt 1) 

72.37 
1.000 

72.37 
2.000 

72.37 
1.000 

86.84 
1.000 

53.95 
2.000 

85.53 
1.000 

39.47 
3.000 

Avoid  
1,5(opt 2); 1,7 

72.37 
2.000 

55.26 
2.138 

55.26 
2.138 

86.84 
1.000 

53.95 
2.000 

68.42 
1.138 

22.37 
3.138 

Avoid 1,5(opt 
3) 

72.37 
1.281 

64.01 
2.094 

64.01 
1.376 

86.84 
1.000 

53.95 
2.000 

77.17 
1.094 

31.12 
3.094 

Avoid 1,6(opt 
1); 2,3(opt 1); 
3,6; 5,8(opt 1) 

77.02 
1.090 

63.86 
2.090 

85.53 
1.000 

78.34 
1.090 

75.61 
0.741 

63.86 
2.604 

61.14 
1.741 

Avoid 1,6  
(opt 3) 

78.21 
1.081 

56.70 
2.176 

77.17 
1.094 

79.53 
1.081 

74.42 
0.778 

56.70 
2.095 

51.59 
1.872 

Avoid 1,8 
(opt 1) 

70.18 
1.117 

40.35 
2.254 

68.86 
1.137 

71.49 
1.117 

82.46 
0.533 

40.35 
2.258 

51.32 
1.671 

Avoid 1,8 
(opt 2) 

69.74 
1.15 

39.91 
2.258 

67.98 
1.172 

71.49 
1.120 

82.02 
0.567 

40.35 
2.246 

50.44 
1.705 

Avoid 1,8 
(opt 3) 

70.18 
1.150 

40.35 
2.255 

67.98 
1.172 

71.93 
1.116 

81.58 
0.580 

40.35 
2.243 

50.44 
1.685 

Avoid 2,3(opt 
2); 2,6(opt 3); 
2,8(opt 1) 

63.60 
1.607 

63.60 
2.117 

72.37 
1.490 

78.07 
1.117 

62.72 
1.733 

70.18 
2.236 

54.82 
2.233 

Avoid 2,3(opt 
3); 7,8(opt 3) 

68.58 
1.415 

62.259 
2.126 

78.69 
1.289 

76.73 
1.126 

70.38 
1.212 

68.15 
2.416 

56.85 
2.141 

Avoid 2,6 
(opt 1) 

59.94 
2.396 

59.94 
2.182 

72.37 
1.396 

74.41 
1.182 

66.38 
1.622 

73.10 
1.280 

51.90 
2.622 

Avoid 2,6 
(opt 2) 

72.37 
1.396 

72.37 
2.000 

72.37 
1.396 

86.84 
1.000 

53.95 
2.000 

73.10 
1.446 

51.90 
2.055 

Avoid 2,8 
(opt 2) 

57.02 
2.396 

57.02 
2.224 

73.37 
1.396 

71.49 
1.224 

69.30 
1.533 

70.18 
1.346 

54.82 
2.533 

Avoid 2,8 
(opt 3) 

70.18 
1.519 

70.18 
2.029 

72.37 
1.490 

84.65 
1.029 

56.14 
1.933 

70.18 
2.471 

54.82 
1.933 

Avoid 3,4; 
3,5(opt 1); 
3,7(opt 1); 4,6; 
4,8(opt 2) 

85.53 
1.000 

72.37 
2.000 

85.53 
1.000 

86.84 
1.000 

67.11 
1.000 

72.37 
1.003 

52.63 
2.000 

Avoid 3,5(opt 
3); 3,7(opt 3) 

79.82 
1.096 

74.12 
2.000 

79.82 
1.096 

88.60 
1.000 

61.40 
1.500 

79.82 
1.104 

46.93 
2.500 
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Avoid 3,8; 
4,8(opt 1); 
5,8(opt 3); 6,8; 
7,8(opt 2) 

70.18 
1.117 

57.02 
2.117 

85.53 
1.000 

71.49 
1.117 

82.47 
0.533 

57.02 
2.121 

67.98 
1.533 

Avoid 4,7 
 

72.37 
1.070 

70.28 
2.028 

70.28 
1.099 

86.84 
1.000 

53.95 
2.000 

83.43 
1.028 

37.38 
3.028 

Avoid 4,8 
(opt 3) 

76.75 
1.092 

63.60 
2.092 

85.53 
1.000 

78.07 
1.092 

75.88 
0.733 

63.60 
2.607 

61.40 
1.733 

 
 Links 

4,5 
Links 
4,6 

Links 
4,7 

Links 
4,8 

Links 
5,6 

Links 
5,7 

Links 
5,8 

Avoid 1,2  
(opt 1) 

70.18 
1.144 

70.18 
1.144 

70.18 
1.144 

24.56 
2.665 

70.18 
1.144 

70.18 
1.144 

24.56 
3.132 

Avoid 1,2 
(opt 2) 

68.42 
1.138 

68.42 
1.138 

70.61 
1.121 

24.56 
3.121 

68.42 
1.138 

68.42 
1.138 

22.37 
3.138 

Avoid 1,3 (opt 
1) 

50.59 
2.139 

63.75 
1.246 

67.26 
2.001 

52.63 
2.000 

50.59 
2.139 

50.59 
2.139 

22.81 
3.137 

Avoid 1,3(opt 
2); 1,6(opt 2) 

50.52 
2.155 

63.23 
1.249 

67.62 
2.017 

52.19 
2.033 

50.52 
2.155 

50.52 
2.155 

22.37 
3.138 

Avoid 1,3(opt 
3) 

50.52 
2.155 

63.23 
1.275 

67.62 
2.107 

52.19 
2.033 

50.52 
2.156 

50.52 
2.155 

22.37 
3.138 

Avoid 1,4 55.70 
1.156 

68.42 
1.138 

72.81 
1.018 

52.19 
2.033 

55.70 
1.156 

55.70 
1.156 

22.37 
3.138 

Avoid  
1,5(opt 1); 2,4; 
2,5; 2,7; 
3,5(opt 2); 
3,7(opt 2); 4,5; 
5,6; 5,7; 
5,8(opt 2); 6,7; 
7,8(opt 1) 

85.53 
1.000 

85.53 
1.000 

85.53 
1.000 

39.47 
2.000 

85.53 
1.000 

85.53 
1.000 

39.47 
3.000 

Avoid  
1,5(opt 2); 1,7 

68.42 
1.138 

68.42 
1.138 

85.53 
1.000 

39.47 
3.000 

68.42 
1.138 

22.37 
3.138 

22.37 
3.138 

Avoid 1,5(opt 
3) 

77.17 
1.094 

77.17 
1.094 

85.53 
1.000 

39.47 
2.281 

77.17 
1.094 

77.17 
1.094 

31.12 
3.094 

Avoid 1,6(opt 
1); 2,3(opt 1); 
3,6; 5,8(opt 1) 

63.86 
2.604 

77.02 
1.174 

63.86 
2.604 

52.63 
2.000 

63.86 
2.604 

63.86 
2.604 

39.47 
3.000 

Avoid 1,6  
(opt 3) 

56.70 
2.095 

69.85 
1.246 

65.05 
2.001 

52.63 
2.000 

56.70 
2.095 

56.70 
2.095 

31.12 
3.094 

Avoid 1,8 
(opt 1) 

40.35 
2.258 

53.51 
1.429 

57.02 
2.121 

52.63 
2.000 

40.35 
2.258 

40.35 
2.258 

22.81 
3.137 

Avoid 1,8 
(opt 2) 

40.35 
2.246 

53.07 
1.432 

57.46 
2.108 

52.19 
2.033 

40.35 
2.246 

40.35 
2.246 

22.37 
3.138 

Avoid 1,8 
(opt 3) 

40.35 
2.243 

53.07 
1.461 

57.46 
2.105 

52.19 
2.033 

40.35 
2.243 

40.35 
2.243 

22.37 
3.138 

Avoid 2,3(opt 
2); 2,6(opt 3); 
2,8(opt 1) 

70.18 
2.236 

70.18 
1.469 

70.18 
2.236 

39.47 
2.490 

70.18 
2.236 

70.18 
2.236 

39.47 
3.000 
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Avoid 2,3(opt 
3); 7,8(opt 3) 

68.15 
2.416 

74.48 
1.264 

68.15 
2.416 

45.80 
2.289 

68.15 
2.416 

68.15 
2.416 

39.47 
3.000 

Avoid 2,6 
(opt 1) 

73.10 
1.280 

73.10 
1.280 

73.10 
1.280 

39.47 
2.396 

73.10 
1.280 

73.10 
1.280 

39.47 
3.000 

Avoid 2,6 
(opt 2) 

73.10 
1.446 

73.10 
1.374 

73.10 
1.446 

39.47 
2.396 

73.10 
1.446 

73.10 
1.446 

39.47 
3.000 

Avoid 2,8 
(opt 2) 

70.18 
1.346 

70.18 
1.346 

70.18 
1.346 

39.47 
2.396 

70.18 
1.346 

70.18 
1.346 

39.47 
3.000 

Avoid 2,8 
(opt 3) 

70.18 
2.471 

70.18 
2.490 

70.18 
2.471 

39.47 
2.490 

70.18 
2.471 

70.18 
2.471 

39.47 
3.000 

Avoid 3,4; 
3,5(opt 1); 
3,7(opt 1); 4,6; 
4,8(opt 2) 

72.39 
1.003 

85.53 
1.000 

72.37 
1.003 

52.63 
2.000 

72.37 
1.003 

72.37 
1.003 

39.47 
3.000 

Avoid 3,5(opt 
3); 3,7(opt 3) 

79.82 
1.104 

85.53 
1.000 

79.82 
1.104 

46.93 
2.096 

79.82 
1.104 

79.82 
1.104 

41.23 
3.000 

Avoid 3,8; 
4,8(opt 1); 
5,8(opt 3); 6,8; 
7,8(opt 2) 

57.02 
2.121 

70.18 
1.292 

57.02 
2.121 

52.63 
2.000 

57.02 
2.121 

57.02 
2.121 

39.47 
3.000 

Avoid 4,7 
 

83.43 
1.028 

83.43 
1.028 

85.53 
1.000 

39.47 
2.070 

83.43 
1.028 

83.43 
1.028 

37.38 
3.028 

Avoid 4,8 
(opt 3) 

63.60 
2.607 

76.75 
1.179 

63.60 
2.607 

52.63 
2.000 

63.60 
2.607 

63.60 
2.607 

39.47 
3.000 

 

The payoff matrix shown in table 3.16 can be reduced to a six by three 

matrix.  Player T’s strategy “Target Links 5,8” dominates all other strategies 

except “Target Links 1,4” and “Target Links 1,5.”  The resulting three column 

matrix is further reduced by noting that Player M’s strategy “Avoid 1,5 (option 2); 

1,7” dominates “Avoid 1,2 (option 2),” “Avoid 1,3 (option 2); 1,6 (option 2),” 

“Avoid 1,3 (option 3),” “Avoid 1,4,” “Avoid 1,8 (option 2),” and “Avoid 1,8 

(option 3).”  The strategy that begins “Avoid 1,5 (option 1); 2,4…” dominates 

“Avoid 1,2 (option 1),” “Avoid 1,6 (option 1);…,” “Avoid 2,3 (option 2); …,” 

“Avoid 2,3 (option 3); …,” “Avoid 2,6 (option 1),” “Avoid 2,6 (option 2),” 

“Avoid 2,8 (option 2),” “Avoid 2,8 (option 3),” “Avoid 3,4; …,”  “Avoid 3,8; 

…,” and “Avoid 4,8 (option 3).”  Strategy “Avoid 4,7” dominates “Avoid 1,6 

(option 3)” and “Avoid 1,8 (option 1).”   

The 6 row, 3 column matrix can be further reduced.  Player T’s strategy 

“Target Links 5,8” dominates the other two columns.  Player M chooses the 
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routing strategy “Avoid 3,5 (option 3); 3,7 (option 3)” to receive the payoff of 

41.22.  Player T’s resulting payoff is 3.00.  Although the strategy label does not 

include “Avoid 5,8,” the strategy is actually a fourth option for “Avoid 5,8.” 

If Player M had over-estimated the amount of resources available to 

Player T, would have received an advantage and Player M a disadvantage.  The 

payoff matrix associated with the routing strategy selected by Player M as a result 

of table 3.16 is presented in table 3.17. 

Table 3.17  Payoff Matrix for Misinformation about Player T’s Resources, 3/4 
Demand Scenario 

Player Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7 Link 8 

M 60.53 94.30 94.30 85.53 79.82 85.53 94.30 61.40 

T 1.000 0.302 0.096 1.000 1.104 1.000 0.104 1.500 

 

As in the previous demand case, Player T would select link 8 as the target.  

Player M would receive a higher payoff than in the case where Player T actually 

had the resources to damage two links, but had Player M known that link 8 was 

the only target, traffic could have been routed appropriately.  As in table 3.12, 

Player M would have received a payoff of 82.46 if the correct information about 

Player T’s resources had been obtained.  By providing misinformation, Player T 

would have obtained a payoff of 1.500 instead of 0.533. 
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Table 3.18  Payoff Matrix for n=2, 1/2 Demand Level 

 Links 
1,2 

Links 
1,3 

Links 
1,4 

Links 
1,5 

Links 
1,6 

Links 
1,7 

Links 
1,8 

Avoid 1,2  
(opt 1) 

89.47, 
0.267 

51.32, 
1.900 

48.68, 
1.929 

44.74, 
2.029 

46.05, 
2.000 

92.11, 
0.195 

48.68, 
2.127 

Avoid 1,2 
(opt 2) 

89.47, 
0.333 

51.32, 
1.833 

48.68, 
1.933 

44.74, 
2.100 

46.05, 
2.000 

92.11, 
0.267 

48.68, 
2.067 

Avoid 1,3 47.37, 
2.000 

92.11, 
0.200 

63.08, 
1.460 

18.34, 
2.954 

46.05, 
2.000 

64.39, 
0.922 

73.76, 
0.758 

Avoid 1,4 48.68 
1.761 

92.11 
0.267 

78.95 
1.167 

34.21 
2.029 

46.05, 
2.000 

81.58 
0.507 

59.21 
1.267 

Avoid  
1,5(opt 1); 1,7 

60.53 
1.000 

80.26 
1.167 

78.95 
1.167 

46.05, 
2.000 

46.05, 
2.000 

93.42 
0.167 

47.37 
1.995 

Avoid  
1,5(opt 2); 2,4; 
2,5; 3,5(opt 2); 
3,7(opt 2); 4,5; 
4,7; 5,6; 5,7; 
5,8(opt 2); 6,7; 
7,8(opt 2) 

60.53 
1.000 

47.37 
2.000 

46.05 
2.000 

46.05 
2.000 

46.05 
2.000 

60.53 
1.000 

14.47 
3.000 

Avoid 1,6  
(opt 1) 

47.37 
2.000 

60.53 
1.000 

25.93 
2.343 

12.77 
3.102 

46.05 
2.000 

27.24 
2.450 

47.76 
1.388 

Avoid 1,6  
(opt 2) 

48.68 
1.900 

92.11 
0.267 

64.50 
1.428 

19.77 
2.912 

46.05 
2.000 

67.13 
0.848 

73.66 
0.828 

Avoid 1,8 
(opt 1) 

48.68 
1.900 

92.11 
0.267 

48.68 
1.644 

3.95 
3.258 

46.05 
2.000 

51.32 
1.108 

89.47 
0.347 

Avoid 1,8 
(opt 2) 

48.68 
1.900 

93.42 
0.267 

48.68 
1.737 

3.95 
3.258 

46.05 
2.000 

51.32 
1.521 

89.47 
0.287 

Avoid 2,3 
(opt 1) 

47.37 
2.000 

60.53 
1.000 

26.16 
2.340 

13.01 
3.096 

46.05 
2.000 

27.48 
2.445 

47.52 
1.395 

Avoid 2,3 
(opt 2) 

60.53 
1.000 

49.57 
2.000 

21.75 
2.589 

21.75 
2.585 

46.05 
2.000 

36.23 
1.597 

38.77 
2.161 

Avoid 2,3  
(opt 3) 

56.42 
1.312 

55.10 
1.688 

22.63 
2.647 

18.53 
2.876 

46.05 
2.000 

33.00 
2.011 

42.00 
1.811 

Avoid 2,6 
(opt 1) 

60.53 
1.000 

47.37 
2.000 

21.67 
2.447 

21.67 
2.447 

46.05 
2.000 

36.14 
1.447 

38.86 
2.259 

Avoid 2,6 
(opt 2) 

60.53 
1.000 

60.53 
2.000 

21.67 
3.031 

21.67 
2.592 

46.05 
2.000 

36.14 
2.279 

38.86 
1.659 

Avoid 2,6 
(opt 3) 

60.53 
1.000 

47.37 
2.000 

21.67 
2.814 

21.67 
2.778 

46.05 
2.000 

36.14 
1.885 

38.86 
1.959 

Avoid 2,8 
(opt 1) 

60.53 
1.000 

47.37 
2.000 

15.79 
2.529 

15.79 
2.529 

46.05 
2.000 

30.26 
1.529 

44.74 
2.080 

Avoid 2,8 
(opt 2) 

60.53 
1.000 

47.37 
2.000 

15.79 
3.149 

15.79 
2.708 

46.05 
2.000 

30.26 
2.395 

44.74 
1.480 

Avoid 2,8 
(opt 3) 

60.53 
1.000 

47.37 
2.000 

15.79 
2.910 

15.79 
2.888 

46.05 
2.000 

30.26 
1.981 

44.74 
1.780 

 78



 
Avoid 3,4; 
3,5(opt 1); 
3,7(opt 1); 4,6; 
4,8(opt 2) 

47.37 
1.831 

60.53 
1.000 

46.05 
2.000 

32.90 
2.001 

46.05 
2.000 

47.37 
2.000 

27.63 
2.000 

Avoid 3,5(opt 
3); 3,7(opt 3) 

53.95 
1.452 

53.95 
1.500 

46.05 
2.000 

39.47 
2.079 

46.05 
2.000 

53.95 
1.500 

21.05 
2.500 

Avoid 3,6 47.37 
2.000 

60.53 
1.000 

25.93 
2.343 

12.77 
3.102 

46.05 
2.000 

27.24 
2.450 

47.76 
1.388 

Avoid 3,8; 
4,8(opt 1); 
5,8(opt 3); 6,8; 
7,8(opt 1) 

47.37 
2.000 

60.53 
1.000 

15.79 
2.472 

2.63 
3.705 

46.05 
2.000 

17.11 
2.607 

57.90 
1.080 

Avoid 4,8 
(opt 3) 

47.37 
2.000 

60.53 
1.000 

29.61 
2.289 

16.45 
3.008 

46.05 
2.000 

30.92 
2.383 

44.08 
1.500 

Avoid 5,8 
(opt 1) 

47.37 
2.000 

60.53 
1.000 

25.93 
2.343 

12.77 
3.102 

46.05 
2.000 

27.24 
2.450 

47.76 
1.388 

Avoid 7,8 
(opt 3) 

53.95 
1.500 

53.95 
1.500 

22.37 
2.414 

15.79 
2.888 

46.05 
2.000 

30.26 
1.981 

44.74 
1.780 
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 Links 
2,3 

Links 
2,4 

Links 
2,5 

Links 
2,6 

Links 
2,7 

Links 
2,8 

Links 
7,8 

Avoid 1,2 (opt 1) 53.95, 
1.052 

51.32, 
1.081 

51.32, 
1.081 

52.63, 
1.052 

94.74, 
0.035 

51.32, 
1.966 

53.95,  
2.000 

Avoid 1,2 
(opt 2) 

53.95, 
1.052 

51.32, 
1.152 

51.32, 
1.152 

51.63, 
1.152 

96.05, 
0.104 

51.32, 
2.004 

53.95,  
2.000 

Avoid 1,3 55.26, 
1.060 

26.24, 
2.014 

26.24, 
2.014 

40.79, 
1.563 

40.71, 
1.407 

36.92, 
1.618 

53.95,  
2.000 

Avoid 1,4 53.95, 
1.052 

40.79, 
1.081 

40.79, 
1.081 

40.79, 
1.521 

55.26, 
0.952 

21.05, 
2.052 

53.95,  
2.000 

Avoid  
1,5(opt 1); 1,7 

53.95, 
1.052 

52.63, 
1.052 

52.63, 
1.052 

52.63, 
1.052 

67.11, 
0.052 

21.05, 
2.052 

53.95,  
2.000 

Avoid  
1,5(opt 2); 2,4; 
2,5; 3,5(opt 2); 
3,7(opt 2); 4,5; 
4,7; 5,6; 5,7; 
5,8(opt 2); 6,7; 
7,8(opt 2) 

86.84, 
1.000 

85.53, 
1.000 

85.53, 
1.000 

85.53, 
1.000 

100.00, 
0.000 

53.95, 
2.000 

53.95,  
2.000 

Avoid 1,6 (opt 1) 86.84, 
1.000 

52.24, 
2.102 

52.24, 
2.102 

72.37, 
1.502 

66.72, 
1.102 

74.07, 
1.388 

53.95,  
2.000 

Avoid 1,6 (opt 2) 53.95, 
1.052 

26.35, 
1.964 

26.35, 
1.964 

40.79, 
1.523 

40.82, 
1.293 

35.50, 
1.613 

53.95,  
2.000 

Avoid 1,8(opt 1) 53.95, 
1.052 

10.53, 
2.310 

10.53, 
2.310 

40.79, 
1.516 

25.00, 
1.554 

51.32, 
1.132 

53.95,  
2.000 

Avoid 1,8(opt 2) 53.95, 
1.052 

10.53, 
2.751 

10.53, 
2.751 

40.79, 
1.516 

25.00, 
1.641 

51.32, 
1.072 

53.95,  
2.000 

Avoid 2,3(opt 1) 86.84, 
1.000 

52.48, 
2.096 

52.48, 
2.096 

72.37, 
1.507 

66.95, 
1.096 

73.84, 
1.395 

53.95,  
2.000 

Avoid 2,3(opt 2) 86.84, 
1.000 

61.23, 
1.585 

61.23, 
1.585 

85.53, 
1.000 

75.70, 
0.585 

78.25, 
1.161 

53.95,  
2.000 

Avoid 2,3 (opt 3) 86.84, 
1.000 

58.00, 
1.876 

58.00, 
1.876 

81.42, 
1.191 

72.47, 
0.876 

77.37, 
1.123 

53.95,  
2.000 

Avoid 2,6(opt 1) 86.84, 
1.000 

61.14, 
1.447 

61.14, 
1.447 

85.53, 
1.000 

75.61, 
0.447 

78.34, 
1.259 

53.95,  
2.000 

Avoid 2,6(opt 2) 86.84, 
1.000 

61.14, 
1.592 

61.14, 
1.592 

85.53, 
1.000 

75.61, 
0.592 

78.34, 
0.659 

53.95,  
2.000 

Avoid 2,6(opt 3) 86.84, 
1.000 

61.14, 
1.778 

61.14, 
1.778 

85.53, 
1.000 

75.61, 
0.778 

78.34, 
0.959 

53.95,  
2.000 

Avoid 2,8(opt 1) 86.84, 
1.000 

55.26, 
1.529 

55.26, 
1.529 

85.53, 
1.000 

69.74, 
0.529 

84.21, 
1.080 

53.95,  
2.000 

Avoid 2,8(opt 2) 86.84, 
1.000 

55.26, 
1.708 

55.26, 
1.708 

85.53, 
1.000 

69.74, 
0.708 

84.21, 
0.480 

53.95,  
2.000 

Avoid 2,8(opt 3) 86.84, 
1.000 

55.26, 
1.888 

55.26, 
1.888 

85.53, 
1.000 

69.74, 
0.888 

84.21, 
0.780 

53.95,  
2.000 
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Avoid 3,4; 
3,5(opt 1); 3,7(opt 
1); 4,6; 4,8(opt 2) 

86.84, 
1.000 

72.37, 
1.001 

72.37, 
1.001 

72.37, 
1.501 

86.84, 
0.001 

53.95, 
2.000 

53.95, 
2.000 

Avoid 3,5(opt 3); 
3,7(opt 3) 

86.84, 
1.000 

78.95, 
1.079 

78.95, 
1.079 

78.95, 
1.289 

93.42, 
0.079 

53.95, 
2.000 

53.95, 
2.000 

Avoid 3,6 86.84, 
1.000 

52.24, 
2.102 

52.24, 
2.102 

72.37, 
1.502 

66.72, 
1.102 

74.07, 
1.388 

53.95, 
2.000 

Avoid 3,8; 
4,8(opt 1); 5,8(opt 
3); 6,8; 7,8(opt 1) 

86.84, 
1.000 

42.11, 
2.705 

42.11, 
2.705 

72.37, 
1.500 

56.58, 
1.705 

84.21, 
1.080 

53.95, 
2.000 

Avoid 4,8(opt 3) 86.84, 
1.000 

55.92, 
2.008 

55.92, 
2.008 

72.37, 
1.557 

70.40, 
1.008 

70.40, 
1.500 

53.95, 
2.000 

Avoid 5,8(opt 1) 86.84, 
1.000 

52.24, 
2.102 

52.24, 
2.102 

72.37, 
1.502 

66.72, 
1.102 

74.07, 
1.388 

53.95, 
2.000 

Avoid 7,8(opt 3) 

 

 

86.84, 
1.000 

55.26, 
1.888 

55.26, 
1.888 

78.95, 
1.289 

69.74, 
0.888 

77.63, 
1.280 

53.95, 
2.000 

 Links 
3,4 

Links 
3,5 

Links 
3,6 

Links 
3,7 

Links 
3,8 

Links 
6,7 

Links 
6,8 

Avoid 1,2 (opt 1) 42.11, 
2.069 

38.16, 
2.069 

39.47, 
1.145 

56.58, 
1.063 

26.32, 
2.006 

51.32, 
1.081 

7.89, 
3.012 

Avoid 1,2 (opt 2) 43.42, 
1.948 

39.47, 
2.052 

40.79, 
1.135 

56.58, 
1.048 

25.00, 
1.948 

51.32, 
1.152 

7.89, 
2.952 

Avoid 1,3 70.97, 
1.077 

26.24, 
2.137 

53.95, 
1.060 

72.29, 
1.077 

81.66, 
0.558 

26.24, 
2.014 

35.61, 
1.618 

Avoid 1,4 84.21, 
1.100 

39.47, 
2.052 

51.32, 
1.152 

86.84, 
1.000 

65.79, 
1.100 

40.79, 
1.081 

18.42, 
2.152 

Avoid  
1,5(opt 1); 1,7 

72.37, 
2.000 

39.47, 
2.052 

39.47, 
2.052 

86.84, 
1.000 

53.95, 
2.000 

52.63, 
1.052 

6.58, 
2.935 

Avoid  
1,5(opt 2); 2,4; 
2,5; 3,5(opt 2); 
3,7(opt 2); 4,5; 
4,7; 5,6; 5,7; 
5,8(opt 2); 6,7; 
7,8(opt 2) 

72.37, 
1.000 

72.37, 
2.000 

72.37, 
1.000 

86.84, 
1.000 

53.95, 
1.714 

85.53, 
1.000 

39.47, 
2.778 

Avoid 1,6 (opt 1) 65.40, 
1.075 

52.24, 
2.075 

85.53, 
1.000 

66.72, 
1.075 

87.23, 
0.388 

52.24, 
2.102 

72.76, 
1.388 

Avoid 1,6 (opt 2) 69.77, 
1.183 

25.03, 
2.135 

51.32, 
1.152 

72.40, 
1.083 

80.23, 
0.661 

26.35, 
1.964 

32.87, 
1.713 

Avoid 1,8(opt 1) 53.95, 
1.135 

9.21, 
2.087 

51.32, 
1.152 

56.58, 
1.035 

96.05, 
0.180 

10.53, 
2.310 

48.68, 
1.232 

Avoid 1,8(opt 2) 55.26, 
1.133 

10.53, 
2.085 

51.32, 
1.152 

57.90, 
1.033 

94.74, 
0.220 

10.53, 
2.751 

48.68, 
1.172 

Avoid 2,3(opt 1) 65.64, 
1.075 

52.48, 
2.075 

85.53, 
1.000 

66.95, 
1.075 

86.99, 
0.395 

52.48, 
2.096 

72.52, 
1.395 
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Avoid 2,3(opt 2) 50.27, 
1.655 

50.27, 
2.139 

72.37, 
1.516 

64.75, 
1.139 

76.04, 
1.328 

61.23, 
1.585 

63.77, 
2.161 

Avoid 2,3 (opt 3) 56.68, 
1.509 

52.57, 
2.106 

76.47, 
1.403 

67.05, 
1.106 

77.85, 
1.086 

58.00, 
1.876 

67.00, 
1.772 

Avoid 2,6(opt 1) 47.98, 
1.671 

47.98, 
2.153 

72.37, 
1.518 

62.45, 
1.153 

78.34, 
0.966 

61.14, 
1.447 

63.86, 
2.259 

Avoid 2,6(opt 2) 61.14, 
1.589 

61.14, 
2.071 

72.37, 
1.518 

75.61, 
1.071 

65.18, 
1.659 

61.14, 
1.592 

63.86, 
1.659 

Avoid 2,6(opt 3) 54.56, 
1.630 

54.56, 
2.112 

72.37, 
1.518 

69.03, 
1.112 

71.76, 
1.459 

61.14, 
1.778 

63.86, 
1.903 

Avoid 2,8(opt 1) 42.11, 
1.782 

42.11, 
2.138 

72.37, 
1.644 

56.58, 
1.138 

84.21, 
0.783 

55.26, 
1.529 

69.74, 
2.080 

Avoid 2,8(opt 2) 55.26, 
1.722 

55.26, 
2.078 

72.37, 
1.644 

69.74, 
1.078 

71.05, 
1.480 

55.26, 
1.708 

69.74, 
1.480 

Avoid 2,8(opt 3) 48.68, 
1.752 

48.68, 
2.108 

72.37, 
1.644 

63.16, 
1.108 

77.63, 
1.280 

55.26, 
1.888 

69.74, 
1.780 

Avoid 3,4; 3,5(opt 
1); 3,7(opt 1); 4,6; 
4,8(opt 2) 

85.53, 
1.000 

72.37, 
2.000 

85.53, 
1.000 

86.84, 
1.000 

67.11, 
1.000 

72.37, 
1.001 

52.63, 
2.000 

Avoid 3,5(opt 3); 
3,7(opt 3) 

78.95, 
1.074 

72.37, 
2.000 

78.95, 
1.074 

86.84, 
1.000 

60.53, 
1.428 

78.95, 
1.079 

46.05, 
2.439 

Avoid 3,6 65.40, 
1.075 

52.24, 
2.075 

85.53, 
1.000 

66.72, 
1.075 

87.23, 
0.388 

52.24, 
2.102 

72.76, 
1.388 

Avoid 3,8; 4,8(opt 
1); 5,8(opt 3); 6,8; 
7,8(opt 1) 

55.26, 
1.023 

42.11, 
2.023 

85.53, 
1.000 

56.58, 
1.023 

97.37, 
0.080 

42.11, 
2.705 

82.90, 
1.080 

Avoid 4,8(opt 3) 69.08, 
1.078 

55.92, 
2.078 

85.53, 
1.000 

70.40, 
1.078 

83.55, 
0.500 

55.92, 
2.008 

69.08, 
1.500 

Avoid 5,8(opt 1) 65.40, 
1.075 

52.24, 
2.075 

85.53, 
1.000 

66.72, 
1.075 

87.23, 
0.388 

52.24, 
2.102 

72.76, 
1.388 

Avoid 7,8(opt 3) 55.26, 
1.430 

48.68, 
2.108 

78.95, 
1.322 

63.16, 
1.108 

84.21, 
0.706 

55.26, 
1.888 

69.74, 
1.780 

 

 82



 Links 
4,5 

Links 
4,6 

Links 
4,7 

Links 
4,8 

Links 
5,6 

Links 
5,7 

Links 
5,8 

Avoid 1,2 (opt 1) 51.32, 
1.081 

51.32, 
1.081 

55.26, 
1.074 

10.53, 
3.046 

51.32, 
1.081 

51.32, 
1.081 

6.58, 
3.052 

Avoid 1,2 
(opt 2) 

51.32, 
1.152 

52.63, 
1.052 

53.95, 
1.148 

10.53, 
2.948 

51.32, 
1.152 

51.32, 
1.152 

6.58, 
3.052 

Avoid 1,3 26.24, 
2.014 

39.39, 
1.320 

57.82, 
1.954 

52.63, 
2.000 

26.24, 
2.014 

26.24, 
2.014 

7.89, 
3.060 

Avoid 1,4 40.79, 
1.081 

52.63, 
1.052 

73.68, 
1.029 

51.32, 
2.100 

40.79, 
1.081 

40.79, 
1.081 

6.58, 
3.052 

Avoid  
1,5(opt 1); 1,7 

52.63, 
1.052 

52.63, 
1.052 

85.53, 
1.000 

39.47, 
3.000 

52.63, 
1.052 

52.63, 
1.052 

6.58, 
3.052 

Avoid  
1,5(opt 2); 2,4; 
2,5; 3,5(opt 2); 
3,7(opt 2); 4,5; 
4,7; 5,6; 5,7; 
5,8(opt 2); 6,7; 
7,8(opt 2) 

85.53, 
1.000 

85.53, 
1.000 

85.53, 
1.000 

39.47, 
2.000 

85.53, 
1.000 

85.53, 
1.000 

39.47, 
3.000 

Avoid 1,6 (opt 1) 52.24, 
2.102 

65.40, 
1.343 

52.24, 
2.102 

52.63, 
2.000 

52.24, 
2.102 

52.24, 
2.102 

39.47, 
3.000 

Avoid 1,6 (opt 2) 26.35, 
1.964 

38.19, 
1.313 

59.24, 
1.912 

51.32, 
2.100 

26.35, 
1.964 

26.35, 
1.964 

6.58, 
3.052 

Avoid 1,8(opt 1) 10.53, 
2.310 

22.37, 
1.529 

43.42, 
2.258 

51.32, 
2.100 

10.53, 
2.310 

10.53, 
2.310 

6.58, 
3.052 

Avoid 1,8(opt 2) 10.53, 
2.751 

22.37, 
1.623 

43.42, 
2.699 

51.32, 
2.100 

10.53, 
2.751 

10.53, 
2.751 

6.58, 
3.052 

Avoid 2,3(opt 1) 52.48, 
2.096 

65.64, 
1.340 

52.48, 
2.096 

52.63, 
2.000 

52.48, 
2.096 

52.48, 
2.096 

39.47, 
3.000 

Avoid 2,3(opt 2) 61.23, 
1.585 

61.23, 
1.517 

61.23, 
1.585 

39.47, 
2.516 

61.23, 
1.585 

61.23, 
1.585 

39.47, 
3.000 

Avoid 2,3 (opt 3) 58.00, 
1.876 

62.10, 
1.554 

58.00, 
1.876 

43.58, 
2.403 

58.00, 
1.876 

58.00, 
1.876 

39.47, 
3.000 

Avoid 2,6(opt 1) 61.14, 
1.447 

61.14, 
1.447 

61.14, 
1.447 

39.47, 
2.518 

61.14, 
1.447 

61.14, 
1.447 

39.47, 
3.000 

Avoid 2,6(opt 2) 61.14, 
1.592 

61.14, 
1.797 

61.14, 
1.592 

39.47, 
2.518 

61.14, 
1.592 

61.14, 
1.592 

39.47, 
3.000 

Avoid 2,6(opt 3) 61.14, 
1.778 

61.14, 
1.644 

61.14, 
1.778 

39.47, 
2.518 

61.14, 
1.778 

61.14, 
1.778 

39.47, 
3.000 

Avoid 2,8(opt 1) 55.26, 
1.529 

55.26, 
1.529 

55.26, 
1.529 

39.47, 
2.644 

55.26, 
1.529 

55.26, 
1.529 

39.47, 
3.000 

Avoid 2,8(opt 2) 55.26, 
1.708 

55.26, 
2.039 

55.26, 
1.708 

39.47, 
2.644 

55.26, 
1.708 

55.26, 
1.708 

39.47, 
3.000 

Avoid 2,8(opt 3) 55.26, 
1.888 

55.26, 
1.803 

55.26, 
1.888 

39.47, 
2.644 

55.26, 
1.888 

55.26, 
1.888 

39.47, 
3.000 
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 An equilibrium solution was determined for the payoff matrix shown in 

table 3.18.  Examination of the columns revealed that Player T’s option to target 

1,4 dominated strategy target 1,3.  Targeting links 2 and 4 yielded a greater payoff 

to Player T than disrupting links 2 and 3.  Option (2,5) had equivalent payoffs to 

option (2,4) for Player T.  The strategy to target 1,5 dominated options (1,2), 

(1,6), (1,7), (2,5), (3,7), (3,8), (4,5), (4,6), (4,7), (5,6), and (5,7).  Damaging links 

5 and 8 provided Player T with a greater payoff than disrupting (1,8), (2,6), (2,7), 

(2,8), (3,4), (3,5), (3,6), (4,8), (6,7), (6,8), and (7,8).  Player M’s payoffs were 

then examined for the remaining three columns [(1,4), (1,5), and (5,8)] of the 

matrix.  Strategy “avoid (1,5) option 1” dominated alternatives “avoid (1,2) 

options 1 and 2,” “avoid (1,4),” “avoid (1,6) option 2,” and “avoid (1,8) options 1 

and 2.”  Strategy “avoid (1,5) option 2” dominated alternatives “avoid (1,6) 

option 1,” “avoid (2,3) options 1, 2, and 3,” “avoid (2,6) options 1, 2, and 3,” 

“avoid (2,8) options 1, 2, and 3,” “avoid (3,4),” “avoid (3,5) option 3,” “avoid 

(3,6),” “avoid (3,8),” “avoid (4,8) option 3,” “avoid (5,8) option 1,” and “avoid 

(7,8) option 3.”  Only three strategies remained for Player M: “avoid (1,3),” 

“avoid (1,5) option 1,” and “avoid (1,5) option 2.”  Examination of the remaining 

Avoid 3,4; 3,5(opt 
1); 3,7(opt 1); 4,6; 
4,8(opt 2) 

72.37, 
1.001 

85.53, 
1.000 

72.37, 
1.000 

52.63, 
2.000 

72.37, 
1.001 

72.37, 
1.001 

36.84, 
3.000 

Avoid 3,5(opt 3); 
3,7(opt 3) 

78.95, 
1.079 

85.53, 
1.000 

78.95, 
1.079 

46.05, 
2.074 

78.95, 
1.079 

78.95, 
1.079 

39.47, 
3.000 

Avoid 3,6 52.24, 
2.102 

65.40, 
1.343 

52.24, 
2.102 

52.63, 
2.000 

52.24, 
2.102 

52.24, 
2.102 

39.47, 
3.000 

Avoid 3,8; 4,8(opt 
1); 5,8(opt 3); 6,8; 
7,8(opt 1) 

42.11, 
2.705 

55.26, 
1.472 

42.11, 
2.705 

52.63, 
2.000 

42.11, 
2.705 

42.11, 
2.705 

39.47, 
3.000 

Avoid 4,8(opt 3) 55.92, 
2.008 

69.08, 
1.289 

55.92, 
2.008 

52.63, 
2.000 

55.92, 
2.008 

55.92, 
2.008 

39.47, 
3.000 

Avoid 5,8(opt 1) 52.24, 
2.102 

65.40, 
1.343 

52.24, 
2.102 

52.63, 
2.000 

52.24, 
2.102 

52.24, 
2.102 

39.47, 
3.000 

Avoid 7,8(opt 3) 55.26, 
1.888 

61.84, 
1.414 

55.26, 
1.888 

46.05, 
2.322 

55.26, 
1.888 

55.26, 
1.888 

39.47, 
3.000 
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matrix revealed “target links (5,8)” as the dominant strategy for Player T.  Player 

M’s best strategy was “avoid (1,5) option 2,” which was equivalent to “avoid 

(5,8) option 2.”  At this equilibrium point, Player M received a payoff of 39.47% 

of drivers safely reaching their destinations and Player T’s payoff was 3.000. 

 If Player M had overestimated Player T’s resources and Player T really 

only had enough supplies to damage one of the links, the following payoff matrix, 

shown in table 3.19 would have resulted from the routing strategy “avoid (1,5) 

option 2 / avoid (5,8) option 2”. 

 

 Table 3.19  Payoff Matrix for Misinformation about Player T’s Resources, ½ 
Demand Scenario 

Player Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7 Link 8 

M 60.53 100.00 86.84 85.53 85.53 85.53 100.00 53.95 

T 1.000 0.000 3.7 x 10-5 1.000 1.000 1.000 0.000 1.778 

 

 Player T would select link 8 as the target to obtain the largest payoff.  

Player M’s payoff would then be 53.95% of the drivers safely reaching their 

destinations.  This payoff was greater than the case where Player T actually did 

have the resources to damage both links 5 and 8.  However, recall from table 3.13, 

that if Player M knew that Player T had selected link 8, Player M could have 

implemented a routing strategy that would have allowed 82.46% of travelers to 

safely reach their destinations.  By employing misinformation about the amount 

of resources, Player T was able to obtain a payoff of 1.778 (table 3.19), which is 

more desirable than 0.533 (table 3.13). 

The  payoff matrices are not presented here for the n=3 case because 

Player T has a single dominant strategy.  To achieve the largest payoff, Player T 

would target links 1, 5, and 8.  These three links form a traditional cut set for the 
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network and Player M cannot route traffic to avoid links 1, 5, and 8 

simultaneously.  The payoff for Player T is 4.0 and the payoff to Player M is 0. 

 

3.3.4  Game 4:  Perfect Information for Both Players, Multiple Moves 

 
In Game 4, Player M and Player T alternate moves.  First Player M assigns 

traffic to avoid a predicted set of links.  Player T then damages a set of links.  

Player M then reassigns traffic to avoid the set that was damaged.  Player T 

selects the next set of links to be damaged, and so on until Player T’s resources 

are gone or Player M cannot route traffic to connect any origin-destination pair. 

Due to the small nature of the sample network, assume that each 

successive set of damaged links only consists of one arc.  For this game, the 

original demand levels are used. 

From the results in the previous games, Player M first chooses the strategy 

“Avoid Link 5” and Player T selects “Link 5.”  The origin-destination pair (5,2) 

has now been severed – no route exists between the two nodes.  The demand for 

this O-D pair is removed from consideration of the remaining links.  The modified 

network is shown below in figure 3.4. 
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Figure 3.4  Sample Network after Player T's First Move 
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Clearly, links 2, 4, 6, and 7 are of no use to the connectivity of the 

remaining origin-destination pairs and the only links of interest are 1, 3, and 8.  

Recall that the O-D demands are q1,2 = 3000, q1,6 = 1000, and q5,6 = 2500.  Since 

only one path connects each origin-destination pair and sufficient capacity is 

available on that path, all of the vehicles are assigned to link 1 for (1,2) and to 

links 3 and 8 for (1,6) and to link 8 for (5,6).  The resulting vulnerability indices 

are M1
1,2 = 1.0,  M3

1,6 = 1.0, M8
1,6= 1.0, and M8

5,6 = 1.0.  Summing over the O-D 

pairs, link 8 has the highest disruption index and will be targeted by Player T.  

Destroying this link will sever origins 1 and 5 from destination 6.  After this move 

by T, only one O-D pair (1,2) is still connected.  In the final move, Player T will 

damage link 1.  Thus, after 3 moves by Player T, a cut set of the network has been 

determined. 

 

3.4  SUMMARY 
 

In this chapter, a bi-level mathematical programming formulation has been 

presented to identify vulnerable links in a road transportation network.  Game 

theory may be used to solve this formulation, or interesting variants thereof.  For 

illustrative purposes, a two player, non-zero sum game was presented, with four 

different cases of information.  The payoff for the “evil entity” was the disruption 

index.  The development of this measure was also presented in this chapter.  

Various attributes of the network were incorporated into the index, including 

current traffic flow, travel time, availability of alternate paths, and relative excess 

capacity on the alternate paths.   

A small sample network was provided to illustrate the application of all of 

the concepts developed in this chapter.   For each of the games envisioned, the 

most vulnerable link in the network was the one connecting the most origin-

destination pairs and currently carrying flow to each of the destinations.  The 
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interplay of traffic assignment, flow dependent travel time, and network design 

allow the disruption index to capture effects of damage to one link, or set of links, 

on origin-destination connectivity and the network as a whole. 
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Chapter 4 

Model Of Household Decision Making In An  

Emergency Evacuation 

 

This chapter presents the mathematical modeling of household behavior in 

an emergency evacuation and integrates this behavior with a traffic simulation-

assignment methodology to estimate network evacuation time.  As noted in 

Chapter 2, families tend to unite prior to the evacuation of a building or town.  

Conventional evacuation models disregard this observed behavior.  Stern and 

Sinuany-Stern (1989) and Sinuany-Stern and Stern (1993) did include some 

human factors into their evacuation model, but these aspects are related to the 

diffusion of evacuation instructions and individual’s preparation time.  These 

studies still overlook family gathering behavior.  Omission of this phenomenon in 

simulation models has two major implications.  First, the models fail to capture 

some of the complex travel patterns and the resulting network traffic patterns that 

are exhibited only during emergency situations.  Second, the estimated evacuation 

times may be overly optimistic. 

In this chapter, each household is modeled as a single entity that makes 

two primary decisions sequentially.  The first decision is the location where the 

family will meet; this site may have been selected well in advance of the 

evacuation.  The second decision is the assignment of drivers to pick up other 

family members who may not have access to vehicles.  These decisions result in 

forming trip chains, thus addressing the first implication mentioned in the 

previous paragraph – that complex travel patterns have not been adequately 

captured by traditional engineering models. 
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The second implication, that predicted evacuation times are overly 

optimistic, is examined through traffic simulation.  The impacts of trip chains and 

the factors involved in the activity chain generation process on evacuation time 

are examined in this chapter.  Furthermore, network clearance comparisons are 

made with cases in which no trip chains are considered. 

 The remainder of this chapter is organized as follows.  The first section 

presents the modeling framework and formulation, corresponding to the first 

objective identified in section 1.2.2 of chapter 1.  The second portion of this 

chapter explains the experimental design.  In the third section, the results are 

presented and discussed in terms of objectives 2 and 3 of section 1.2.2.  Finally, a 

summary is provided. 

 

4.1 MODELING FRAMEWORK AND PROBLEM FORMULATION  

 
The notation used in this formulation is presented in table 4.1.  The 

general problem can be stated as follows: given a set of households, their decision 

making rules, and a transportation network G(N,A) consisting of a set of nodes N 

and arcs A, determine the evacuation time for the network.  The characteristics of 

the network’s nodes and links are known, and the associated time-varying OD 

demand pattern for regular (non emergency) peak period conditions is given.   

The evacuation time (E) is defined as the time elapsed between the instant 

the evacuation is ordered and the instant the last vehicle exits the network. 

orderfinal TTE −=    (4.1) 

where    .  (4.2) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑+∑+=
∈∈ ψξ

θ
j

v
j

i

v
i

v
v

final tpT max

 ξ is the subset of intermediate nodes visited by vehicle v and hI∈ξ
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 ψ is the set of paths used by vehicle v.   

Equation (4.2) determines the maximum time a vehicle takes to evacuate a 

particular area.  The vehicle time is the elapsed time (θ v) between the instant the 

evacuation order is given and the instant the vehicle enters the network or an entry 

queue to the network plus the dwell time (pi
v) at each intermediate location i 

visited by vehicle v plus the travel time (tj
v) of each path j used by vehicle v.  In 

the final term of equation (4.2), the path travel time is flow dependent and 

calculated as the sum of the travel times (tl(xl)) on the links in path j.  To identify 

a lower bound on the evacuation time, the flow dependent link travel time is 

determined from the system optimal traffic assignment (Sheffi, 1985): 

      (4.3) ∑ ∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑=

∈Al sr sr

sr
ll

sr
l xtxxz

, ,

,,)(min

 subject to      (4.4) srqf
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srsr
j ,,, ∀∑ =

        (4.5) srlx sr
l ,,0, ∀≥

       (4.6) srjf sr
j ,,0, ∀≥

JJAA fx |||| ×Φ=     (4.7) 

 where xA is the vector of arc flows  ,  A
l xx ∈

∑=
sr

sr
ll xx

,

,       (4.8) 

f J is the vector of path flows. 

In the system optimal traffic assignment, the objective function (4.3) 

minimizes the total network travel time.  The first constraint ensures that origin-

destination demands are met and the second and third constraints are for non-

negativity.  Equation (4.7) relates the vector of arc flows to the path flows through 
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an arc-path incidence matrix Φ (Jahn, et al, 2002), the entries of which are 1 if 

link l lies on path j and 0 otherwise. 

Table 4.1  Summary of Notation 

 
Notation Interpretation 
E Network evacuation time 
Tfinal Time at which the final vehicle exits the network 
Torder Time at which the evacuation order is given 
v, w Vehicle index 
θv Initial delay/waiting time of a vehicle entering the network 
ξh Set of intermediate destinations for vehicle v of household h 
i Index of the set Iv

h  
Ih Set of intermediate destinations for household h, not including the meeting location 
pi Time spent at intermediate destination i  
r,s Origin-destination pair 
l Link index 
Lj Set of links in path j 
tl Link travel time 
xl

r,s Flow on link l pertaining to r,s 
qr,s Origin-destination demand 
Gh Graph representing the household’s evoked network 
Nh Set of nodes in Gh

Ah Set of arcs in Gh

Vh Set of vehicles belonging to household h 
Rh Set of origin nodes where household h has a vehicle 
Uh  Set of possible meeting places for household h 
u Member of the set Uh

τr,s Perceived travel time from location r to s 
S Final destination/place of safety, such as a shelter 
du,S Distance between the meeting place and S  
bS

Maximum tolerable distance between u and S 

F Location of destruction, fire, storm, or other danger 
du,F

Distance between u and F 

bF Minimum tolerable distance between u and F 
mu Maximum distance between u and the nodes in sets Iv

h and Rh

yu The decision variables are yu which take the value 1 if location u is selected and 0 
otherwise. 
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 The set of intermediate destinations (ξ) visited by a vehicle is determined 

by a sequence of decisions at the household level.  These intermediate 

destinations are determined through two linear integer programs.  The first 

addresses the selection of a meeting location where the family gathers prior to 

evacuating the town, or threatened area.  The second mathematical program 

assigns drivers to pick up sites where other family members, who may not have 

access to vehicles, are located.  The second program also determines the sequence 

of these pick ups. 

 When making decisions, the household is assumed to ignore the actual 

nodes of the network and to consider the intermediate destinations as the “nodes” 

of their overall path.  Thus, for decision making purposes, the family uses a 

perceived aggregated network that extracts relevant information from the actual 

underlying network.  In other words, they create an evoked network that is 

specific to that household Gh(Nh,Ah), and solve their logistical problems without 

further consideration of the actual transportation network.  In this household-

specific network, the only nodes included in the set Nh are the origins of the 

household vehicles Rh and the intermediate household destinations Ih, including 

possible meeting locations Uh,   (where the superscript h denotes the 

household).  

hh IU ⊆

hhh RIN ∪=     (4.6) 

The formulation for deciding the household meeting location minimizes 

the maximum travel time from any of the locations at which there are family 

members ( )hh RI ∪ .  The set of possible meeting locations is determined by the 

household’s decision makers; this set may consist of home, schools, shopping 

areas, parks, or any subset of these.  If the danger prevents two or more family 

members from meeting safely, they are considered separate entities.  In order for a 

location to be considered, the site must be a minimum distance from the danger 
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and within a given distance from the final shelter location. This last constraint 

ensures that the meeting location that is selected is not on the side of town furthest 

from the final evacuation path and safety.  Once all family members have reached 

the meeting location, the family continues on to the final shelter as a single unit. 

The linear integer programming formulation is presented next, with the applicable 

notation defined in table 4.1.   

The mathematical programming formulation is as follows: 

u
h

U
mZ

h
=min     (4.7) 

subject to 

   ( ) hhh
u

uj
u UuRIjmy ∈∀∪∈∀≤,τ  (4.8) 

   ∑ =
∈ hUu

uy 1      (4.9) 

   SSu bd ≤,       (4.10) 

         (4.11) FFu bd ≥,

   { } h
u Uuy ∈∀∈ 1,0      (4.12) 

The objective function (4.7) minimizes the maximum perceived travel 

time of all family members’ initial locations from the meeting place.  The first 

constraint (4.8) determines the maximum travel time for every possible meeting 

place u.  The second constraint (4.9) ensures that only one meeting location is 

selected.  The third (4.10) and fourth (4.11) constraints are distance requirements.  

Finally, the fifth constraint (4.12) is the requirement that the decision variables yu 

be zero or one (Desrochers et al, 1988). 

The intermediate destination nodes are determined by the assignment of 

vehicles to pick up non-driving household members, based on the meeting 

location.  The definition of the variables for the trip chain assignments is found in 

table 4.1.  Additionally, Vh is the set of vehicles available to household h.  The 
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decision variables are xv
ij which take the value 1.0 if vehicle v uses the hyperlink 

connecting nodes i and j.    Indices for the vehicles are denoted by v and w;  Cv is 

the capacity of vehicle v. 

Two, possibly conflicting, objectives are involved in the pick-up, and 

resulting trip chain, assignments.  Household decision makers may wish to (1) 

minimize the total travel time for household’s fleet of vehicles and (2) minimize 

the waiting time at the meeting location.  Risk is associated with traveling on the 

network because there could be an incident on the roadway; more household 

drivers on the network increases the risk to the household as whole.  However, 

having one driver wait at the meeting location while another driver picks up all of 

the children could cause frustration and concern on the part of the driver who is 

waiting and one of the children may be waiting for the parent for a considerable 

amount of time.  Thus, household decision makers must make trade offs between 

the dangers of multiple household vehicles traveling and waiting at the meeting 

location for an extended period of time.  To minimize the time that family 

members in one vehicle are waiting for family members in another vehicle, their 

arrival times at the meeting location should be close together.  This part of the 

objective function is given by:   

 

∑ ∑ ∑−
∈ ∈ ∈h h hVwv Nji Nji

ij
w

ijij
v

ij xx
, , ,

min ττ     (4.13) 

 

The trade off between waiting time and multiple vehicles traveling can be 

mathematically expressed as a linear combination of equation (4.13) and the 

objective function of the classic VRP (see chapter 2).  This second part of the 

overall objective function is as follows: 
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∑
∈ h

ij

Nji

ij x
,

min τ    

Let λ be the weight associated with the total fleet travel time and (1-λ) be 

the weight assigned to the waiting time; [ ]0.1,0.0∈λ .  The specific weight 

assigned to each of the objectives may vary from household to household. 

Recall that the links in the household’s evoked network correspond to the 

paths (in the original network) between the intermediate destinations (nodes).  For 

capacity considerations, each non-driving family member is considered an 

individual customer, regardless of whether there is another non-driving family 

member at the same location.  If there is more than one family member at the 

same physical location, the evoked, aggregated network is modified to reflect 

virtual nodes connected by zero cost virtual links.  In this manner, the driver with 

sufficient capacity does not incur any further cost for picking up more than one 

passenger at a given location.  The capacity is adjusted appropriately. 

Equation (4.13) is not a linear programming formulation, but may be 

converted to one (Bertsimas and Tsitsiklis, 1997) by observing that    

∑ ∑−
∈ ∈h hNji Nji

ij
w

ijij
v

ij xx
, ,

ττ      (4.14) 

is the smallest number nv,w that satisfies  
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The complete objective function, incorporating trade offs, is: 
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 The objective function is subject to the following constraints: 
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The first constraint (equation 4.17) ensures that each customer is picked 

up and delivered.  The second constraint (4.18) is for the conservation of flow 

through the pick-up nodes.  The third constraint (4.19) ensures that each family 

member that is picked up by a specific vehicle is delivered to the meeting location 

by the same vehicle.  The fourth (4.20) indicates that each vehicle arrives at the 

meeting place only once.  The fifth constraint (4.21) is the capacity constraint for 

the number of seats available in each vehicle.  The sixth constraint (4.22) 

specifies the set of values that the binary decision variables may take.  Equation 

(4.23) is required for the transformation of the absolute value in equation (4.14) 

into a linear programming formulation. 
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The two linear integer programs result in the selection of a meeting 

location and the trip chains assigned to each driving member of the household.  In 

the following section, the experimental design for the application of this model is 

presented. 

 

4.2 EXPERIMENTAL DESIGN 

 
Three main steps are involved in the incorporation of the household 

behavior model for emergency evacuations within a network traffic modeling and 

simulation framework.  First, a simulation is run to generate “typical” travel times 

to given locations.  Then, these expected travel times are used in the linear integer 

programs that describe the decision-making process of the household meeting 

place selection and activity chain assignment of the family’s vehicles. These 

linear integer programs are solved for each household in the network.  Finally, the 

trip chains are employed in time-dependent traffic assignment-simulation 

software.  
 

Step 1. 

In the first step, an initial time-varying assignment is performed to 

generate the travel time characteristics on the network links for “everyday” traffic 

conditions, employing a k-shortest paths algorithm and the user equilibrium 

traffic assignment. Alternatively, actual measured travel times might be used, if 

available. These times serve as the perceived travel times (τr,s) for the households’ 

decision makers in the evoked network Gh(Nh,Ah).  The time to reach family 

members and the meeting location greatly affect both the selection of the meeting 

location and the assignment of drivers to pick-up sites.   
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Step 2. 

In the second step of the ar integer programs 

described in the previous section, are solved sequentially.  These formulations are 

used to determine the household meeting location and then, simultaneously, the 

assignment of drivers to pick-up locations and the sequence of those pick-ups. 

In the third step, the traffic is simulated using   The 

sequence of intermediate nodes in the trip chain is followed by the simulator.  The 

availability and use of information may cause the driver to follow alternate paths 

in the underlying transportation network (which may not be part of the 

household’s evoked network when the decisions were made).  These decisions are 

handled according to the logic of the simulation-assignment methodology with 

trip chaining described in Abdelghany, Mahmassani, and Chiu (2001). The 

simulator keeps track of congestion levels and operating speeds, allowing for 

information on real-time travel conditions, which may be vastly different from 

those anticipated at the time household members made their decisions.  

Depending on information supply strategies, and the particular problem 

formulation and operational scenario, the drivers may make changes to their 

original plans.   

approach, the two line

The results from the linear integer programs are a set of trip chains for 

each participating vehicle in the household.  This information is then used in step 

3. 

 

Step 3. 

 the results from step 2.

The traffic simulation-assignment tool providing the network modeling 

capability for steps 1 and 3 is DYNASMART (DYnamic Network Assignment 

Simulation Methodology for Advanced Road Telematics), developed at the 

University of Maryland and the University of Texas at Austin.  The key features 
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of this software that are employed in this work included activity chains, zones, 

virtual centroids, user equilibrium traffic assignment, and system optimal traffic 

assignment (Mahmassani and Sbayti, 2003).   

A simplified network model of the south-central portion of Fort Worth, 

Texas is used as a test bed for this work (see figure 4.1).  The network consists of 

184 nodes (only 180 are shown in the figure).  In this model, two elementary 

schools (nodes 123 and 165), two middle schools (nodes 122 and 169), and one 

high school (node 170) are located throughout the network (Fort Worth 

Independent School District, 2003).  Each school is modeled as a distinct zone 

because in DYNASMART, every zone has a virtual centroid to which demand is 

attracted or from which it is produced.  The centroid may be connected to 

multiple links, but in this work, it is particularly important that only links entering 

or leaving the schools’ nodes carry traffic related to picking up the children.  

Overall, the network shown in figure 4.1 is divided into 14 zones.  Three of these 

are designated as business zones (7-9) ; five are school zones (10-14); and the 

remaining six are residential areas (see figure 4.2).  

Four additional nodes (300, 301, 302, and 303) and seven links, not shown 

in figure 1, were added to the network to represent final shelter destinations.  

These nodes are considered to be outside of the evacuation area. 
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Census 2000 data for the Fort Worth, TX area indicated that of the 

195,058 households, 65.4% are families and 34.6% are nonfamily households.  

The following data is relevant to the families, but is given in terms of percentage 

of the total households: 34.7% have children under 18 years old, 45.8% are 

married couple families, and 14.7% are single mother households.  The average 

family size is slightly over 3 persons (Census 2000).   

The percentages reported in the census tables are used to generate 

household types and the relative numbers of each type.  Thirty different basic 

households are generated using the computer code found in Appendix C:  

1. Single individual 

2. Single parent with one elementary school child  

3. Single parent with one middle school child  

4. Single parent with one high school child  

5. Single parent with two elementary school children  

6. Single parent with two middle school children  

7. Single parent with two high school children  

8. Single parent with one elementary school child and one middle school 

child  

9. Single parent with one elementary school child and one high school child 

10. Single parent with one middle school aged child and one high school aged 

child  

11. Couple (no children) 

12. Two parents with one elementary school aged child  

13. Two parents with one middle school aged child  

14. Two parents with one high school aged child  

15. Two parents with two elementary school aged children  

16. Two parents with two middle school aged children  
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17. Two parents with two high school aged children  

18. Two parents with one elementary school aged child and one middle school 

aged child  

19. Two parents with one middle school aged child and one high school aged 

child  

20. Two parents with one elementary school child and one high school child 

21. Two parents with three elementary school children 

22. Two parents with two elementary school children and one middle school 

child 

23. Two parents with one elementary school child and two middle school 

children 

24. Two parents with one elementary school, one middle school, and one high 

school child 

25. Two parents with three middle school children 

26. Two parents with two middle school children and one high school child 

27. Two parents with one middle school and two high school children 

28. Two parents with three high school children 

29. Two parents with two high school children and one elementary school 

child 

30. Two parents with one high school child and two elementary school 

children 

These thirty are then repeated in the proportions previously mentioned 

until a total of 20,000 households are generated.  The household’s business and 

residential zones are assigned by a random number generator.  The choice set for 

meeting locations of a household with two parents is limited to schools where the 

family had children in attendance and the home.  In the case of single parents, 

only the school locations of the children are in the set.  If the household does not 

have any children, the couple meets at the home.  When the household is a single 

 104



individual, there is no meeting location and the individual is assigned an 

immediate shelter destination. 

 Further assumptions that are used in the model include: 

1. Households do not contain more than three children. 

2. All household vehicles are capable of carrying the entire family. 

3. Children are only transported by their parents’ vehicles. 

4. High school children would not drive themselves. 

5. Traffic management agencies, combined with law enforcement personnel, 

would provide route guidance in an emergency situation so as to assign 

traffic according to the system optimum. 

6. The order to evacuate would be given during school hours. 

Once the households are generated, the framework developed in section 

4.1 is followed.  In accordance with step 1, a slight increase to typical peak period 

traffic is simulated using the user equilibrium traffic assignment.  The travel times 

from business zones to residential zones, business zones to school zones, school 

zones to other school zones, and school zones to residential zones are used as the 

perceived trip costs for household decision making.  The meeting locations and 

pick-up assignments are then generated for each household (step 2).  Finally, the 

activity chains determined by the pick-up assignments are used in the system 

optimal traffic assignment (step 3).  

 

4.3 EXPERIMENTAL RESULTS 

 
Using the simulation tools, 20,000 households and 30,141 vehicles were 

generated.  Approximately 49% of the households had only one adult and 51% 

had two.  No children were present in 49% of the households, including both 

single and dual parent homes.  Elementary school aged children (at least one) 
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were found in 23% of the households; middle school aged children were in 23% 

of the households, and high school aged children were in 24% of the households.  

Approximately 13% of the households had multiple children in different schools.  

Based on these household characteristics, between 33 and 57% of the total 

generated vehicles would stop at schools to pick-up the children. 

Typical travel times for the households were generated based on 34,021 

vehicles.  This increased number of vehicles allowed for a small amount of 

additional travel time, which may be part of the perceived travel time in an 

emergency situation.  Based on 120 second cycle times for the lights, a delay of 1 

minute was added for each traffic light.  Delays at stop signs were assumed to be 

30 seconds.  The perceived zonal travel times with intersection delays are given in 

minutes in tables 4.2 and 4.3.   

Table 4.2  Perceived Zonal Travel Times to Residential Zones 

                                                          To 
Zone 1 2 3 4 5 6 
1 - - - - - - 
2 - - - - - - 
3 - - - - - - 
4 - - - - - - 
5 - - - - - - 
6 - - - - - - 
7 1.44 4.71 9.11 9.13 7.95 8.78 
8 3.15 6.25 2.21 2.83 10.22 16.81 
9 13.01 9.60 9.32 7.38 3.68 5.49 
10 3.85 9.31 1.56 - - - 
11 5.08 - 1.54 - 7.79 - 
12 - 5.31 - 1.08 - 6.91 
13 - - - 6.04 12.03 1.08 

 
 
 
 
 
 
 
From 

14 21.09 13.35 12.96 5.02 9.41 2.59 
 
 The blanks in tables 4.2 and 4.3 indicate that travel for that origin-

destination (OD) zone pair is forbidden except when the vehicle is “passing 

through” one or both of those zones. 
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Table 4.3  Perceived Travel Times to School Zones 

Zone 10 11 12 13 14 
1 8.11 10.62 - - 23.52 
2 15.53 - 14.27 - 18.42 
3 5.53 8.38 - - 22.56 
4 - - 6.13 4.74 9.98 
5 - 4.71 - 16.02 15.16 
6 - - 10.58 8.71 5.85 
7 10.89 13.14 16.66 23.85 15.02 
8 7.15 3.48 9.13 21.38 20.34 
9 9.72 7.50 17.44 10.39 9.36 
10 - 3.33 13.42 - 18.79 
11 3.31 - - 17.58 16.54 
12 14.35 - - 8.27 7.78 
13 - 16.49 8.59 - 3.72 
14 19.34 17.02 9.11 2.13 - 

 
Using the perceived travel times given in tables 4.2 and 4.3 and equations 

(4.7-4.12), meeting locations were assigned to the households.  Table 4.4 presents 

the relative frequency of meeting location selection based on household type.  

Due to the assumptions of household size and vehicles being able to 

accommodate all household members, several of the household types were 

grouped.  For instance, household types 12, 15, and 21 differ only by the number 

of elementary school children; since all of these children were at the same 

location and vehicle capacity constraints were not an issue, household types 15 

and 21 can be modeled as type 12.  Household types 1-7 were limited to choice 

sets consisting of only one option, as described in the previous section.  However, 

the particular node in the set was allowed to vary within household types; for 

instance, there were two possible elementary schools that were assigned based on 

the location of the home.  When the home zone was available for consideration as 

a meeting location, families select this option the majority of the time.  This result 

was due to the assignment of schools based on the zone in which the home was 

sited; such an assignment rule frequently placed the home zone in a central 

location relative to the schools. 
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Table 4.4  Meeting Location Selection  

Household 
Type 

Meet at 
Elementary 
School 

Meet at 
Middle 
School 

Meet at 
High 
School 

Meet at 
Home 

Evacuate 
immediately 

1 NA NA NA NA 100% 
2 or 5 100% NA NA NA NA 
3 or 6 NA 100% NA NA NA 
4 or 7 NA NA 100% NA NA 
8 50.43% 49.57% NA NA NA 
9 1.54% NA 98.46% NA NA 
10 NA 1.31% 98.69% NA NA 
11 NA NA NA 100% NA 
12, 15, or 
21 

14.29% NA NA 85.71% NA 

13, 16, or 
25 

NA 18.16% NA 81.84% NA 

14, 17, or 
28 

NA NA 29.21% 70.79% NA 

18, 22, or 
23 

9.87% 6.89% NA 83.24% NA 

19, 26, or 
27 

NA 0 18.39% 81.61% NA 

20, 29, or 
30 

0.63% NA 18.56% 80.81% NA 

24 17.21% 0 0 82.79% NA 
 
 After the meeting location was selected, the activity chains were 

determined using equations (4.16-4.23).  Initially, a minimum dwell time, or 

delay, of five minutes was assumed for each of the intermediate destination 

nodes; smaller values of this waiting time were later considered (see below).  This 

delay was intended to allow for parents to find their children in the mass of 

students that was likely to be awaiting transportation and secure them in the car.  

If the household had two vehicles, one of them was left at the meeting location 

and all of the family members evacuated in a single vehicle.   
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The value of the weight λ, associated with the total fleet travel time was 

varied from 0 to 1.0.  The effect of varying this weight on the pick up assignments 

for one household of each type is shown in table 4.5 for the case when the waiting 

time at each intermediate node is 2.10 minutes.  The vehicle and fleet times are 

the perceived travel times, including waiting times at the school nodes.   

Table 4.5  Sample Trip Chains for Various Household Types   

House
-hold 
Type 
(hh #) 

Weights  
(Total 
Fleet 
Time, 

Waiting 
Time at 
Meeting 
Node) 

(λ, 1−λ) 

Car 
(start 
zone) 

Stop 1  
(zone) 

Stop 2 
(zone) 

Stop 3 
(zone) 

Vehicle 
Time 
(min) 

Fleet 
Time 
(min) 

1  Any 1 (9) - - - - - 
2 Any 1 (7) Elementary (11) - - 13.14 13.14 
3  Any 1 (7) Middle (10) - - 10.89 10.89 
4  Any 1 (7) High (14)   15.02 15.02 
5  Any 1 (7) Elementary (12) - - 16.66 16.66 
6  Any 1 (7) Middle (13) - - 23.85 23.85 
7  Any 1 (9) High (14) - - 9.36 9.36 
8  Any 1 (9) Middle (10) Elementary (11) - 15.15 15.15 
9  Any 1 (9) Elementary (12) High (14) - 27.32 27.32 
10  Any 1 (7) Middle (10) High (14) - 31.78 31.78 

1 (9) Home (4) - - 7.38 11  Any 
2 (7) Home (4) - - 9.13 

16.51 

1 (9) Home (2) - - 9.60 (0.0,1.0)
(0.1,0.9) 
(0.2,0.8)
(0.3,0.7) 
(0.4,0.6)
(0.5,0.5) 

2 (7) Elementary (12) Home (2) - 24.07 
33.67 

1 Elementary (12) Home (2) - 24.85 

12  

(0.6,0.4) 
(0.7,0.3) 
(0.8,0.2) 
(0.9,0.1) 
(1.0,0.0) 

2 Home (2) - - 4.71 
29.56 

1 (7) Home (5) - - 7.95 13  Any 
2 (9) Middle (13) Home (5) - 24.52 

32.47 
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1 (7) Home (6) - - 8.78 14  Any 
2 (9) High (14) Home (6)  14.05 

22.83 

1 (7) Home (4) - - 9.13 15  Any 
2 (7) Elementary (12) Home (4) - 19.84 

28.97 

1 (7) Home (5) - - 7.95 (0.0,1.0)
(0.1,0.9) 
(0.2,0.8) 
(0.3,0.7) 
(0.4,0.6)
(0.5,0.5) 
(0.6,0.4)
(0.7,0.3) 
(0.8,0.2)
(0.9,0.1)  

2 (5) Middle (13) Home (5) - 29.15 
37.10 

1 Middle (13) Home (5) - 37.98 

16  

(1.0,0.0) 
2 Home (5) - - 0 

37.98 

1 (9) High (14) - - 9.36 17  Any 
2 (7) High (14) - - 15.02 

24.38 

1 (9) Middle (13) Home (5) - 24.52 18  Any 
2 (9) Elementary (11) Home (5) - 17.39 

41.91 

1 (9) High (14) Home (3) - 24.42 19  Any 
2 (7) Middle (10) Home (3) - 14.55 

38.97  

1 (7) High (14) Home (6) - 19.71 (0.0,1.0)
(0.1,0.9) 
(0.2,0.8)
(0.3,0.7) 
(0.4,0.6)  

2 (9) Elementary (12) Home (6) - 26.45 
46.16 

1 Elementary (12) Home (6) Home 
(6) 

25.67 (0.5,0.5) 
(0.6,0.4)
(0.7,0.3) 
(0.8,0.2)  

2 High (14) Home (6) - 14.05 

39.72 

1 Elementary (12) High (14) Home 
(6) 

31.23 

20  

(0.9,0.1)
(1.0,0.0) 

2 Home (6) - - 5.49 

36.72 

1 (9) Elementary (11) - - 7.50 21  Any 
2 (9) Elementary (11) - - 7.50 

15.00 
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1 (7) Middle (13) Home (6) - 27.03 (0.0,1.0) 

(0.1,0.9)
(0.2,0.8) 
(0.3,0.7)
(0.4,0.6) 
(0.5,0.5) 

2 (7) Elementary (12) Home (6) - 25.67 
52.70 

1 Home (6) - - 8.78 

22  

(0.6,0.4)
(0.7,0.3) 
(0.8,0.2)
(0.9,0.1) 
(1.0,0.0) 

2 Elementary (12) Middle (13) Home 
(6) 

30.21 
38.99 

1 (9) Middle (10) Home (3) - 13.38 (0.0,1.0) 
2 (7) Elementary (11) Home (3) - 16.78 

30.16 

1 Elementary (11) Home (3) - 11.14 (0.1,0.9) 
(0.2,0.8) 
(0.3,0.7) 
(0.4,0.6) 
(0.5,0.5) 
(0.6,0.4) 
(0.7,0.3) 
(0.8,0.2) 
(0.9,0.1) 

2 Middle (10) Home (3) - 14.55 
25.69 

1 Elementary (11) Middle (10) Home 
(3) 

16.57 

23  

(1.0,0.0) 

2 Home (3) - - 9.11 

25.68 

1 (7) Elementary (11) Middle (10) Home 
(3) 

22.21 (0.0,1.0)
(0.1,0.9)
(0.2,0.8) 
(0.3,0.7) 
(0.4,0.6) 
(0.5,0.5) 

2 (9) High (14) Home (3) - 24.42 

46.63 

1 (7) Middle (10) Elementary (11) Home 
(3) 

19.96 

24  

(0.5,0.5)
(0.6,0.4) 
(0.7,0.3)
(0.8,0.2)  
(0.9,0.1)
(1.0,0.0) 

2 (9) High (14) Home (3) - 24.42 

44.38 

1 (9) Middle (13) Home (4) - 18.53 25  Any 
2 (7) Home (4) - - 9.13 

27.66 
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1 (7) Middle (13) Home (4) - 31.99 (0.0,1.0)

(0.1,0.9) 
(0.2,0.8) 
(0.3,0.7) 

2 (7) High (14) Home (4) - 22.14 
54.13 

1 (7) Home (4) - - 9.13 

26  

(0.4,0.6) 
(0.5,0.5) 
(0.6,0.4) 
(0.7,0.3) 
(0.8,0.2) 
(0.9,0.1) 
(1.0,0.0) 

2 (7) High (14) Middle (13) Home 
(4) 

27.39 
36.52 

1 (9) Middle (10) Home (3) - 13.38 27  Any 
2 (9) High (14) Home (3) - 24.42 

37.80 

1 (7) Home (4) - - 9.13 28  Any 
2 (9) High (14) Home (4) - 16.48 

25.61 

1 (9) High (14) - - 9.36 29  Any 
2 (9) Elementary (12) High (14) - 27.32 

36.68 

1 (9) Elementary (12) Home (6) - 26.45 (0.0,1.0) 
(0.1,0.9) 
(0.2,0.8) 
(0.3,0.7) 
(0.4,0.6)  

2 (7) High (14) Home (6) - 19.71 
46.16 

1 High (14) Home (6) - 14.05 (0.5,0.5) 
(0.6,0.4) 
(0.7,0.3) 
(0.8,0.2)  

2 Elementary (12) Home (6) - 25.67 
39.72 
 

1 Home (6) - - 5.49 

30  

(0.9,0.1) 
(1.0,0.0) 2 Elementary (12) High (14) Home 

(6) 
31.23 

36.72 

 

Some of the household types did not show any change in the pick-up 

assignments when the weights on the total fleet time and the dwell time at the 

intermediate destinations varied.  According to the assumptions made previously, 

type 1 households evacuated directly from their starting nodes so there was no 

opportunity to change pick-up assignments.  As shown in table 4.5,  household 

types 2-10 did not vary their intermediate nodes.  These families consisted of one 

or two children and only one adult.  Due to the restriction of the meeting location 

to one of the school nodes where the household’s children were in attendance, 

once the meeting location was selected, there was only one (maximum) 

intermediate node on the evoked network before the meeting node.  Household 
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type 11 had no children, so there were no pick-ups to be made.  In table 4.5, types 

13, 14, 25, and 28 did not change which driver would collect the child.  The 

starting location of the two household vehicles and the location of the home (and 

consequently the school) placed the child in much closer proximity to one of the 

adults.  The other driver had a long trip to reach both the school and the meeting 

location (home) so minimization of the total fleet time and minimization of the 

waiting time at the meeting location yielded the same assignment.  In the case of 

the household selected to represent type 15, the two household drivers started 

from the same zone making the perceived travel times identical for both adults 

and reassignment unnecessary.  Household types 17 and 21 did not show any 

change in pick ups because the meeting locations were the schools where the 

household’s children were located.  For the household selected for type 18, the 

business zones for the two drivers were the same.  Since there were two schools at 

which to stop, each driver went to one.  In this case, the schools were relatively 

far apart and the assignment minimizes both the total fleet time and the waiting 

time at the meeting location.  In the household for type 19, each driver picked up 

the child that was closest to him/her; thus minimizing both total fleet time and 

waiting time.  The assignment shown in table 4.5 for the household of type 27 is 

optimal in terms of both total fleet time and waiting time so the weights in 

equation (4.16) have no effect.  The representative of type 29 had two drivers 

starting at the same zone, the meeting location was one of the school zones, and 

there was only one additional pick-up to be made.  These conditions led to there 

being no need to alter the assignments.  For each of household types 13, 14, 15, 

17, 18, 19, 21, 25, 27, 28, and 29, this lack of variation in assignment would not 

hold for every household of these types because of different residential, school, 

and work zones. 

Changing the weights did affect the pick-up assignments for the 

representatives of household types 12, 16, 20, 22, 23, 24, 26, and 30.  The first set 
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of assignments represented the case where the waiting time at the meeting 

location was minimized.  The last set of assignments resulted from the 

minimization of total fleet travel time.  In the representative households with 

types 12, 22, and 24, when less than half of the weight was placed on the waiting 

time, the decision makers selected the second set of assignments.  The case of 24 

offered one additional interesting observation; the equilibrium point between the 

two solutions was captured at weights (0.5,0.5).  The other cases that show 

multiple optimal solutions also had equilibrium points, but these were not 

captured by the weights selected for exploration.  In the case of household type 

16, the solution that minimized the total fleet time was only selected when that 

term was the only one considered (1.0, 0.0).  The total fleet time for this second 

set of assignments was less than one minute below that of the first set while the 

waiting time was nearly 38 minutes, or approximately 16 minutes greater than the 

first set of trip chains.  The representative of household type 20 had three optimal 

solutions.  The first set minimized the waiting time at the meeting location and the 

third set minimized the total fleet travel time.  The middle set had values of the 

total fleet travel time and waiting time between those of the first and third sets of 

assignments.  Correspondingly, the mid-ranged weights made the second set of 

assignments optimal.  This second set was also the most intuitive solution where 

each adult collected the child/children closest to him/her and the schools were 

considered on the way to the meeting location.  A similar result occurred for the 

households representing types 23 and 30 and, again, the second set of assignments 

making the most intuitive sense of the three.  Finally, the household for type 26 

used the solution that minimized the total fleet time for the majority of the 

weights considered.  The school locations corresponding to this household were 

relatively close together and could be considered on the way to both each other 

and the meeting location.  Sending two drivers to the same relative area was not 

beneficial in the majority of the cases considered. 
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One of the key components to the pick-up assignments was the time each 

driver anticipated spending at the intermediate destination nodes collecting the 

children.  The effect of varying these delay times at the school nodes and the 

weights in equation (4.16) was examined for household types 12-30.  Three 

delays were examined – 1.00, 3.00, and 5.00 minutes.  The household types that 

showed a change in the pick-up assignment due to the interaction of the weights 

and delays are shown in table 4.6.  Only four representative households showed 

variation; the remainder yielded the same results as in table 4.5.   

 

Table 4.6.  Comparison of Pick-Up Assignments Due to Variation in Dwell Time 
and Weight on Perceived Total Fleet Travel Time  

House-
hold 
Type 

Delay 
(p) at 

Pick-up 
(min) 

Weight on Total 
Fleet Time (λ) 

Vehicle Trip Chain 
(zones) 

Trip 
Chain 
Time 
(min) 

Fleet 
Time 
(min) 

Wait 
Time 
(min) 

1  7–13-6 25.93 0.0, 0.1, 0.2, 0.3, 
0.4, 0.5 2 7–12-6 24.57 

50.5 1.36 

1 7-6 8.78 

1.00 

0.6, 0.7, 0.8, 0.9, 1.0 
2 7–12–13-6 28.01 

36.79 19.23 

1  7–13-6 27.93 0.0, 0.1, 0.2, 0.3, 
0.4, 0.5, 0.6 2 7–12-6 26.57 

54.5 1.36 

1 7-6 8.78 

3.00 

0.7, 0.8, 0.9, 1.0  
2 7–12–13- 6 32.01 

40.79 23.23 

1  7–13-6 29.93 0.0, 0.1, 0.2, 0.3, 
0.4, 0.5, 0.6 2 7–12-6 28.57 

58.5 1.36 

1 7-6 8.78 

22 

5.00 

0.7, 0.8, 0.9, 1.0  
2 7–12–13-6 36.01 

44.79 27.23 
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1 7-11-10-3 20.01 0.0, 0.1, 0.2, 0.3, 

0.4, 0.5 2 9-14-3 23.32 
43.33 3.31 

1 7-10-11-3 17.76 

1.00 

0.5, 0.6, 0.7, 0.8, 
0.9, 1.0  2 9-14-3 23.32 

41.08 5.56 

1 7-11-10-3 24.01 0.0, 0.1, 0.2, 0.3, 
0.4, 0.5 2 9-14-3 25.32 

49.33 1.31 

1 7-10-11-3 21.76 

3.00 

0.5, 0.6, 0.7, 0.8, 
0.9, 1.0  2 9-14-3 25.32 

47.08 3.56 

1 7-11-10-3 28.01 0.0, 0.1, 0.2 
2 9-14-3 27.32 

55.33 0.69 

1 7-10-11-3 25.76 

24 

5.00 

0.3, 0.4, 0.5, 0.6, 
0.7, 0.8, 0.9, 1.0 2 9-14-3 27.32 

53.08 1.56 

1 7-13-4 30.89 0.0, 0.1, 0.2 
2 7-14-4 21.04 

51.93 9.85 

1 7-4 9.13 

1.00 

0.3, 0.4, 0.5, 0.6, 
0.7, 0.8, 0.9, 1.0 2 7-14-13-4 25.19 

34.32 16.06 

1 7-13-4 32.89 0.0, 0.1, 0.2, 0.3 
2 7-14-4 23.04 

55.93 9.85 

1 7-4 9.13 

3.00 

0.4, 0.5, 0.6, 0.7, 
0.8, 0.9, 1.0 2 7-14-13-4 29.19 

38.32 20.06 

1 7-13-4 34.89 0.0, 0.1, 0.2, 0.3, 0.4 
2 7-14-4 25.04 

59.93 9.85 

1 7-4 9.13 

26 

5.00 

0.5, 0.6, 0.7, 0.8, 
0.9, 1.0 2 7-14-13-4 33.19 

42.32 24.06 

1 9-12-6 25.35 0.0, 0.1, 0.2, 0.3, 0.4 
2 7-14-6 18.61 

43.96 6.74 

1 9-14-6 12.95 0.5, 0.6, 0.7 
2 7-12-6 24.57 

37.52 11.62 

1 9-6 5.49 

1.00 

0.8, 0.9, 1.0 
2 7-12-14-6 29.03 

34.52 23.54 

1 9-12-6 27.35  0.0, 0.1, 0.2, 0.3, 0.4 
2 7-14-6 20.61  

47.96  6.74 

1 9-14-6 14.95 0.5, 0.6, 0.7, 0.8  
2 7-12-6 26.57 

41.52 11.62 

1 9-6 5.49 

3.00 

0.9, 1.0 
2 7-12-14-6 33.03 

38.52 27.54 

1 9-12-6 29.35 0.0, 0.1, 0.2, 0.3, 0.4 
2 7-14-6 22.61 

51.96 6.74 

1 9-14-6 16.95 0.5, 0.6, 0.7, 0.8  
2 7-12-6 28.57 

45.52 11.62 

1 9-6 5.49 

30 

5.00 

0.9, 1.0 
2 7-12-14-6 37.03 

42.52 31.54 

 

 In table 4.6, it was assumed that the household decision makers would 

know the dwell time at each pick up location, or that their perceived value of the 
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delay was as stated.  This delay time was simply added to the perceived travel 

time in the network. 

 Changing the value of the delay and varying the weight on the total fleet 

time did not cause any additional optimal solutions to be generated.  As can be 

seen in table 4.6, the weights of the total fleet time associated with each 

assignment shifted.  For the representatives of household types 22 and 26, there 

were two optimal routings on the household’s evoked network.  The first one 

presented in table 4.6 minimized the waiting time at the meeting location and 

assigned one pick-up to each driver.  Since each driver saw the same increase in 

the dwell time at the school, the waiting time at the meeting location did not 

change for this assignment.  The second set of routings minimized the total fleet 

time.  All of the pick-ups were assigned to one of the vehicles; thus the increase in 

delay was experienced twice by the same vehicle.  As the dwell time increased, 

the waiting time at the meeting location became greater for the second assignment 

than for the first (which remained constant); thus, greater weight on the total fleet 

time was required to shift the solution from the trip chain assignment that 

minimized the waiting time to the one that minimized the total fleet time.  In the 

case of the household representing type 24, a delay of 5.00 minutes caused the 

individual vehicle time of driver 1 to become greater than that of driver 2 in the 

first assignment and less than that of driver 2 for the second assignment.  The 

opposite situation held for dwell times of 1.00 and 3.00 minutes.  The difference 

between the total fleet times and waiting times of the two assignments for the 1.00 

and 3.00 minute delay cases both were 2.25 minutes.  While the difference in the 

total fleet time remained the same for the 5.00 minute case, the difference in the 

waiting time was smaller thus making the second sequencing more appealing at 

lower weight on the total fleet time.  Finally, the representative of household type 

30 had three optimal solutions.  The first set of trip chains shown in table 4.6 

minimized the waiting time, the third minimized the total fleet time, and the 
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second fell in between the first and the third.  Switching from the second to the 

third solution required greater weight on the total fleet time for the greater delay 

cases because the waiting time increased by more than 15 minutes while the total 

fleet time decreased by only 3 minutes. 

The activity chains for all of the households, not just the representatives,  

served as input to the traffic simulation-assignment package DYNASMART.  The 

vehicles generated for the activity chains were distributed over slightly more than 

3 minutes allowing for some delay in the receipt of the evacuation order.  

Referring to equation (4.2), the delay wv of the vehicles ranged from 0.00 to 3.01 

minutes.  Several different waiting times (pi) at each intermediate node were 

considered.  At school locations, the waiting times varied from 1.0 to 5.0 minutes.  

The final waiting time at the meeting location was also allowed to vary.  The 

meeting location waiting time was taken to be the expected waiting time until the 

other vehicle arrived plus a constant.  The average travel times (including entry 

queue waiting times) corresponding to the third term of the right hand side of 

equation (4.2) and evacuation times (left hand side of equation (4.2)) for these 

different cases are also displayed in table 4.7.  The time of the evacuation order 

Torder was taken as 0.0; thus equation (4.1) reduced to equation (4.2).  The 

resulting evacuation time of the network is presented in table 4.7 for the case 

where the weight on the total fleet time was 0.5; this weight was selected based on 

the results of tables 4.5 and 4.6.  Two additional weights were examined and the 

results are provided in table 4.8.   

 Table 4.7 also presents times required to clear the network when various 

percentages of the peak period traffic (30,141 vehicles) were considered.   Two 

methods for generating the traffic were employed.  First, all of the vehicles were 

given the same start time.  Second, the start times were distributed over 45 

minutes.   
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Table 4.7  Network Clearance Times for Various Vehicle Loading Methods 

Generation Method Number 
of 
Vehicles 

Percentage 
of Activity 
Chain 
Vehicles 

Average 
Network 
Travel 
Time 
(min) 

Average 
travel time 
+ entry 
queue time 
(min) 

Network 
Clearance 
Time 
(min) 

Activity Chain (minimum 
wait 5.0 min at school and 
meeting location)  

30141 100% 45.5 123.2 459.6 

Activity Chain (minimum 
wait 4.0 min at school and 
meeting location) 

30141 100% 43.3 
 

118.8 440.5 

Activity Chain (minimum 
wait 3.0 min at school and 
meeting location) 

30141 100% 45.9 122.3 450.2 

Activity Chain (minimum 
wait 2.0 min at school and 
meeting location) 

30141 100% 42.3 
 

117.7 436.4 

Activity Chain (minimum 
wait 1.0 min at school and 
meeting location) 

30141 100% 43.7 119.0 432.0 

No activity chain, all at once 30141 100% 33.3 78.4 229.1 
No activity chain, all at once 37675 125% 45.9 115.9 335.5 
No activity chain, all at once 45206 150% 40.9 125.0 343.5 
No activity chain, all at once 48221 160% 42.9 145.7 361.6 
No activity chain, all at once 49732 165% 42.0 142.7 371.1 
No activity chain, all at once 51240 170% 42.5 147.2 378.0 
No activity chain, all at once 52742 175% 50.7 164.5 455.2 
No activity chain, distribute 
over 45 minutes 

30098 99.9% 17.2 18.9 157.7 

No activity chain, distribute 
over 45 minutes 

55259 183% 40.7 57.5 275.1 

No activity chain, distribute 
over 45 minutes 

60306 200% 41.5 60.7 334.9 

No activity chain, distribute 
over 45 minutes 

63336 210% 45.3 67.9 379.7 

 
Examination of table 4.7 revealed that although decreasing the waiting 

times at intermediate nodes for activity chains resulted in shorter evacuation 

times,  these clearance times are still between seven and eight hours.  To achieve 

similar results without trip chains, approximately 175% of the original demand 

must be loaded simultaneously or between 180 and 207% of the original demand 

when vehicles were loaded over 45 minutes. 
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The measure of effectiveness of an evacuation may not be 100% of the 

vehicles clearing the network.  Figures 4.3-4.9 and table 4.8 illustrate the 

interaction of the dwell times at the home and schools and the weight on the total 

fleet time. 

5 0

5 5

6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

1 0 0

7 5 1 7 5 2 7 5 3 7 5 4 7 5

E la p s e d  T im e

W a it  1 .0 0
W a it  3 .0 0
W a it  5 .0 0
W a it  R a n d o m

P
er

ce
nt

ag
e 

of
 V

eh
ic

le
s 

E
va

cu
at

ed
  %

) 

Figure 4.3  Network Clearance for All Weight (λ = 1.0) on Total Fleet Time 

 When all of the weight was placed on the total fleet time, the network 

clearance profile found in figure 4.3 was generated.  All of the dwell times 

considered yielded similar time requirements to evacuate 50% of the population.  

At the 60% mark, the scenario of a 5.0 minute dwell time exhibited an increase in 

time requirements compared to the other three waiting time cases; this deviation 

persisted until approximately the 85% mark where the elapsed time for the 5.0 
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minute scenario was similar to the 1.0 minute case.  This result was anticipated 

since the larger waiting times delay vehicles from reaching their final 

destinations. When the measure of effectiveness was 75% (or greater) of the 

population evacuated, a dwell time of 3.0 minutes yielded the quickest 

evacuation.  This dwell time resulted in lower time requirements than the other 

cases because holding the vehicles at their intermediate destinations prevented 

some of the congestion that arose in the 1.0 minute case.  The fact that the dwell 

time of 3.0 minutes was an improvement to the 5.0 minute case suggests that 5.0 

minutes, although reducing network congestion, impeded the vehicles making 

stops. Finally, the randomly generated dwell time scenario produced evacuation 

times between the best case (3.0 min) and the worst case (5.0 min).   
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Figure 4.4  Network Clearance for Half Weight (λ = 0.5) on Total Fleet Time 
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 There was less disparity in the evacuation times for the various dwell 

times when half of the weight was placed on minimizing the total fleet time and 

the other half on minimizing the waiting time at the meeting location than in the 

case where all of the weight was placed on the total fleet time.  In figure 4.4, as in 

figure 4.3, the dwell time of 5.0 minutes yields longer evacuation times than the 

other three cases.  However, in this weighting scenario, the 1.0 minute delay time 

yielded a faster evacuation than the 3.0 minute case.  Recall from table 4.5 that 

the household pick-up assignments sometimes changed when the weight on the 

total fleet time was varied from 1.0 to 0.5.  This trip chain alteration caused the 

difference in evacuation time requirements.   Finally, when the measure of 

effectiveness was 85% or greater of the population evacuated, the randomly, 

uniformly generated dwell time produced the least network clearance time; this 

suggested that the interaction of various pick-up assignments and dwell times 

could improve the evacuation speed, compared to the uniform assignment of 

delays to all households. 
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Figure 4.5  Network Clearance for No Weight on (λ = 0.0) Total Fleet Time  

 As noted in table 4.5, changing the weight among 1.0, 0.5, and 0.0 on the 

minimization of the total fleet time in equation 4.16 may result in up to three 

different household pick-up assignments.  These variations in assignments 

account for the differences found in figures 4.3-4.5.  As in figure 4.4, figure 4.5 

showed that the randomly generated dwell time yielded the lowest evacuation 

time when the measure of effectiveness was 85%, or greater, of the population 

evacuated.  At 70% and greater, the 3.0 minute dwell time required the most time 

to evacuate the network; this was opposite of the case where the weight of the 

total fleet time was 1.0.  Figure 4.5 shows that a delay time of 5.0 minutes 

performed better than a dwell time of 1.0 minutes where the measure of 
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effectiveness between 80 and 95% network clearance.  The interaction of the 

pick-up assignments, dwell time of 1.0 minute, and congestion delayed vehicles 

more than the conditions associated with the case where the dwell time was 5.0 

minutes. 

Some of the particular points of interest from figures 4.3-4.5 are displayed 

in table 4.8, which presents the amount of time required to evacuate different 

percentages of the population for various delays when the weight on the total fleet 

time (see equation 4.16) was 1.0, 0.5, 0.0, and randomly, uniformly generated. 
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Table 4.8  Network Clearance Profiles for Various Dwell Times and Weights  

Weight 

on Total 

Fleet 

Time  

Min. 

Dwell 

Time at 

School & 

Home  

Time for 

50% to 

Evacuate 

(min) 

Time for 

60% to 

Evacuate 

(min) 

Time for 

70% to 

Evacuate 

(min) 

Time for 

80% to 

Evacuate 

(min) 

Time for 

90% to 

Evacuate 

(min) 

Time for 

100% to 

Evacuate 

(min) 

1.00 77.03 96.52 151.69 219.01 297.75 456.4 

2.00 76.81 95.73 149.01 208.45 280.36 443.4 

3.00 76.56 95.14 146.14 206.35 267.75 422.8 

4.00 77.70 96.19 147.71 208.37 284.56 456.5 

5.00 80.03 108.81 186.41 246.41 294.23 486.3 

1.0 

Random 78.06 98.61 154.37 214.65 285.96 478.0 

1.00 78.72 100.23 162.88 232.11 292.04 432.0 

2.00 79.63 102.70 162.67 232.12 286.21 436.4 

3.00 81.20 104.75 167.27 240.8 305.39 450.2 

4.00 81.66 105.06 164.55 232.61 291.97 440.5 

5.00 82.11 108.00 173.14 246.89 308.07 459.6 

0.5 

Random 80.64 104.16 165.08 231.27 287.81 425.8 

1.00 79.46 103.29 170.40 250.32 315.09 453.2 

2.00 80.41 105.58 169.96 244.44 303.74 450.1 

3.00 83.04 111.94 182.05 266.66 322.38 478.0 

4.00 81.77 107.98 170.26 248.07 306.90 444.3 

5.00 82.70 109.87 175.13 247.76 300.32 449.7 

0.0 

Random 81.09 104.50 162.93 240.66 292.33 425.8 

1.00 79.01 98.78 152.00 216.49 274.94 413.0 

2.00 79.50 100.25 155.30 223.45 276.13 398.4 

3.00 81.90 108.76 173.58 264.84 324.85 465.7 

4.00 80.98 104.12 164.20 232.86 282.94 413.9 

5.00 82.40 109.59 176.78 252.33 310.87 476.3 

Random 

Random 80.09 102.94 161.41 230.84 290.24 432.3 
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 Examination of table 4.8 revealed several interesting points.  Within each 

weighting scenario, the time to evacuate 50% of the population varied by less than 

3.5 minutes, regardless of the dwell time.  Over all of the weighting and dwell 

time cases, the evacuation time for 50% of the population differed by less than 6.5 

minutes.  The higher levels of evacuation showed greater disparity within a given 

weighting scenario and overall.  At the 60% level, the difference in times varied 

between approximately 8 and 14 minutes within a given weighting case and just 

over 14 minutes for the entire sample.  For the 70% level, the disparity increased 

and ranged between 19 and 40 minutes for the weighting cases and 40 minutes 

overall.  The 80% level showed an even further spread of evacuation times with 

60 minutes between the λ = 1, 3.0 minute dwell time and the λ = 0, 3.0 minute 

dwell time.  Within a given weighting value, the difference in time requirements 

varied between 16 and 48 minutes.  The 90% evacuation level presented less 

overall disparity (57 minutes) than the 80% clearance level.  The range within a 

weight was 22 to 50 minutes.  Finally, to completely clear the network, the time 

required varied between 34 and 78 minutes within a given weight and 88 minutes 

overall.  Except for the 100% evacuation level, the λ = 1, 3.0 minute dwell time 

combination yielded the smallest time requirements; for the 100% level, the 

shortest evacuation time was obtained when the weight was randomly generated 

and the dwell time was 2.0 minutes.  The combination of factors that generated 

the highest clearance times changed with the evacuation level.  A dwell time of 

3.0 minutes and λ = 0 yielded the highest evacuation time for the 50% and 80% 

clearance levels.  For the 60% level, the combination yielding the highest network 

clearance time was randomly generated weights and 5.0 minute dwell times.  At 

the 70% and 100% levels, the factors with the greatest evacuation time 

requirements were λ = 1 and 5.0 minute dwell time.  Finally, for the 90% 

clearance level, randomly generated weights and 3 minute delay times yielded the 

highest evacuation times.   
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The data from table 4.8 for the measure of effectiveness 80% network 

clearance was used to create figure 4.6.   
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Figure 4.6  Comparison of 80% Network Clearance Times and Minimum Dwell 
Times for Various Total Fleet Time Weights 

 The complex interactions of dwell times, the weights on the two 

minimization objectives, and the related pick-up assignments were further 

demonstrated in figure 4.6.  The nonlinear nature of the graphs demonstrated 

these complexities.  The randomly generated weights led to the greatest distance 

between the peaks and valleys of the curve.  The curve for λ = 0 was the most 

symmetrical about dwell time of 3.0 minutes.  When none of the weight was 

placed on the minimization of total fleet travel time, the lowest point of the curve 

occurred at a dwell time of 3.0 minutes; this result was opposite to that of the case 

where all of the weight was placed on the minimization of total fleet travel time 

and the highest point of the curve was at a dwell time of 3.0 minutes.  A weight of 
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1.0 on the total fleet time led to a fairly linear curve for dwell times of 1.0 to 4.0 

minutes.  This trend was broken for dwell times between 4.0 and 5.0 minutes.   

There are several more observations of note pertaining to figure 4.6.  The 

times for 80% of the population to evacuate for the 5.0 minute dwell time were 

fairly close for all of the fleet time weights examined.  Excluding the random 

generation case, the weight of 0.0 on the minimization of the total fleet travel time 

(consequently all of the importance was placed on the minimization of the waiting 

time at the meeting location) yielded the highest evacuation time for all dwell 

times.  Again, excluding the random scenario, the 80% evacuation time was the 

lowest when all of the weight was placed on the minimization of the total fleet 

time.  Finally, equal weights on the minimization of total fleet time and the 

minimization of the difference in arrival times at the meeting location yielded 

80% evacuation times between those associated with the extreme weights, for all 

dwell times considered. 

Figures 4.7-4.9 allow the interaction of dwell time and weight on the total 

fleet time to be examined from the reverse perspective of figures 4.3-4.5.  Figures 

4.7, 4.8, and 4.9 present the time required to evacuate various percentages of the 

population for minimum dwell times of 1.0, 3.0, and 5.0 minutes, respectively. 
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Figure 4.7  Comparison of Network Clearance for Total Fleet Time Weights with 
Minimum Dwell Time 1 Minute at School and Meeting Locations 

 The four curves shown in figure 4.7 had approximately the same shape 

although the slope varied.  At 60% network clearance, the curve for the case 

where none of the weight was placed on the minimization of the total fleet travel 

time indicated that more time was needed than for the other weights.  This trend 

persisted until the 93% network clearance level.  The randomly generated weight 

scenario showed an improvement over the deterministic cases for 80% or higher 

levels of population evacuation.  The case where equal weight was placed on the 

minimization of total fleet travel time and the minimization of waiting time at the 

meeting location yielded evacuation times that were between the two extreme 

weighting cases for 50-85% network clearance.  After the 85% mark, the equal 

weight scenario produced lower evacuation times than either of the two extremes.  

This last observation, combined with the results for the randomly generated 
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weights suggested that variable assignments improved the evacuation speed over 

the strict minimization of one of the two criteria in equation 4.16.    
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Figure 4.8  Comparison of Network Clearance for Total Fleet Time Weights with 
Minimum Dwell Time 3 Minutes at School and Meeting Locations 

 

 The results for a dwell time of 3.0 minutes were very different from those 

of a dwell time of 1.0 minute.  At no point in figure 4.8 did the randomly 

generated weight scenario perform better than all of the deterministic waiting  

cases.  Placing all of the weight on minimizing the total fleet travel time yielded 

the least evacuation times.  As in the 1.0 minute dwell time case, the minimization 

of the waiting time at the meeting location required the most time to evacuate a 

given percentage of the population.  Splitting the weight equally between the two 

criteria led to evacuation times between the two extremes. 
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Figure 4.9  Comparison of Network Clearance for Total Fleet Time Weights with 
Minimum Dwell Time 5 Minutes at School and Meeting Locations 

 The most noticeable difference between figure 4.9 and figures 4.7 and 4.8 

was the closeness of the four curves; the evacuation times varied little for the four 

weighting cases.  For 60-75% network clearance levels, minimizing the total fleet 

travel time produced greater time requirements than the other three weighting 

scenarios.  At the 78-92% evacuation level, the randomly generated weighting 

case yielded slightly higher time requirements than the other scenarios. 

Part of the reason for the extensive evacuation time was the structure of 

the network.  For the original results presented above, the links connecting four of 

the five schools to the rest of the network were extremely short.  Although these 

lengths simulate an appropriate length of a driveway to the school, they do not 

capture the effects of parents parking in other areas during these usual conditions.  

To examine the scenario where additional space may be used, various lengths of 
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the links connecting the schools at nodes 122, 123, 165, and 170 were examined 

for the case where waiting time at the school was 5.0 minutes and the minimum 

waiting time at the meeting location was 5.0 minutes.  Table 5 shows the results 

for 1.25, 1.5, 1.75, and 2.0 times the original lengths of the links of interest.  From 

these results, one can observe the complexities of the network simulation.  

Moderate increases (1.25 and 1.50) in the length of the link actually increases the 

total evacuation time and the corresponding average travel time, with and without 

entry queue delays.  Higher multiples (1.75 and 2.0) of the original length 

decrease the total evacuation time from the original case, decrease the average 

network travel time, but slightly increase the average entry queue waiting time.  

Clearly, doubling the length of the school links provides the most significant 

improvement.  The evacuation time decreases by slightly more than thirty minutes 

and the average travel times with and without entry queue delays decrease.  For 

all of the cases examined, the average distance traveled did not vary by more than 

0.9% of the original. 

 

Table 4.9  Comparison of Average Times, Distances, and Evacuation Times for 
Different Lengths of School Links for Activity Chains with 
Minimum Waiting Times of 5.0 Minutes at Intermediate Nodes 

Length of Link 
Leading To and 
From School 
Nodes (ft) 

Average 
Network 
Travel 
Time 
(minutes) 

Average Travel 
Time + Entry 
Queue Time 
(minutes) 

Average 
Distance 
Traveled 
(mi) 

Network 
Clearance 
Time 
(minutes) 

528 (original) 45.8 115.9 6.9020 383.4 
660 (1.25x orig) 46.9 127.6 6.9045 398.5 
792 (1.50 x orig) 48.7 127.6 6.9150 399.5 
924 (1.75x orig) 40.9 119.5 6.9456 381.4 
1056 (2.00x orig) 43.5 114.2 6.9613 351.7 
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Comparing the evacuation times for the extended link length scenarios 

(table 4.9) with the various vehicle loading strategies displayed in table 4.7, 

indicates that between 150 and 175% of the original demand would be required 

when all of the vehicles are loaded at the same time.  For the case when the length 

is doubled, this range can be narrowed to 150-160%.  When the vehicles are 

spread over 45 minutes of generation time, more than 200% of the original 

demand would be required to achieve a similar network clearance time.   

 

4.4  SUMMARY  

The framework presented in this chapter allows for representation of more 

realistic evacuation scenarios, by incorporating critical aspects of household travel 

behavior that have been omitted from traditional evacuation models.  The 

omission resul  overly optimistic evacuation times.  This framework was 

incorporated into a traffic assignment-simulation tool.  The methodology used 

here allows for an evacuation simulation to more accurately capture the traffic 

flows that arise when parents pick up their children at the schools before 

evacuating the city.  Such an emergency situation may arise in the case of sudden 

disasters or threats like earthquakes or terrorist incidents. 

ts in

The results presented in this work are specific to the geometry of the 

network and the relative locations of schools, residential areas, and work areas, 

but some results can be generalized.  First, the household’s decision of where to 

meet plays a crucial role in the assignment of pick-ups to vehicles.  Second, 

allowing the household’s decision makers to assign weights to the total fleet travel 

time and the waiting time leads to a small solution set (in this work one, two, or 

three options) to be considered for vehicle routing.  Two of the solutions were the 

one that minimized total fleet travel time and the one that minimized waiting time. 
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Third, attempting to coordinate arrival times is better applied to larger households 

than to smaller ones.   

 Comparison of network clearance times suggests that at least 175% of the 

original demand should be used if trip chains are ignored and vehicles proceed to 

their homes.   Additional link length at school locations allows this factor to be 

reduced to some degree. The exact multiplicative factor depends on the loading 

scenario employed by the planning agency and any additional special emergency 

considerations that may be taken into account.  The complex interactions of all of 

these factors require careful consideration by evacuation planners and 

transportation engineers. 
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Chapter 5 

 

 

Case Study 

This chapter presents a case study that illustrates how the concepts 

developed in chapters 3 and 4 interrelate.  Following a  threat to the transportation 

infrastructure, the public is advised to evacuate; the traffic management agency 

lacks the ability to control the heavy demand that will be placed on the network. 

Residents in a  threatened area will logically attempt to evacuate, regardless of 

whether this sudden rush of traffic causes or exacerbates any transportation 

problems.  Evacuations due to imminent disasters have somewhat different 

characteristics than those associated with advanced warning evacuations, such as 

those due to hurricanes.  The immediate nature of the disaster causes the traffic to 

be concentrated over a much shorter period than for a planned evacuation. This 

chapter focuses on evacuations due to an immediate threat, whether natural or 

man-made. 

As noted in chapters 2 and 4, a common observation about evacuating 

households is that the family members tend to gather prior to fleeing the area.  

The household level decision making model developed in chapter 4 is applied in 

this chapter.  The household selects a meeting location and then assigns drivers to 

pick up family members without access to vehicles.  All of the drivers then gather 

at the meeting location and evacuate as a single unit. 

The evacuating traffic may create vulnerabilities in the network that do not 

exist under typical, everyday conditions.  In this chapter, the network links are 

evaluated from the perspective of the evil entity for the unusual traffic patterns 

that arise in an emergency evacuation.   
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The specific objectives covered in this chapter are (1) to examine the 

impact of emergency trip-chaining behavior on the vulnerability of transportation 

network links and (2) to examine the impact of strategies, designed to route 

vehicles around vulnerable transportation infrastructure, on city evacuation times.  

 Several tasks are required to meet these objectives.  First, baseline traffic 

conditions are simulated.  Second, as in chapter 3, the vulnerabilities of the 

transportation network links are determined for this traffic pattern.  Third, an 

evacuation is simulated using the trip-chaining assignment model developed in 

chapter 4.  Fourth, the vulnerability of the links is determined under the 

evacuation conditions. Finally a comparison is made between the baseline case 

and the evacuation scenario. 

The remainder of this chapter is directed toward accomplishing the tasks 

listed above and is organized in the following manner.  First, the simulation test 

bed is described.  Second, the experimental design is presented.  Third, the 

experimental procedure is outlined.  Fourth, the results are discussed.  Finally, a 

summary of the chapter is provided. 

5.1 SIMULATION TEST BED 

 
 The simulation test bed used for this case study was adapted from the 

network representing the south-central I-35 portion of Fort Worth, Texas.  As in 

chapter 4, the original network was modified to include estimated school 

locations.  The network is repeated in figure 5.1 for ease of discussion. 

 The network consists of 184 nodes (only 180 are shown in the figure).  In 

this model, two elementary schools (nodes 123 and 165), two middle schools 

(nodes 122 and 169), and one high school (node 170) are located on the network.  

Each school is modeled as its own zone, and the remainder of the nodes are 

divided into three business zones and six residential zones. 
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Figure 5.1  Simplified Version of South Central Fort Worth, TX 
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The link information pertaining to figure 5.1 is presented in Appendix D.  

The appendix contains the link number, the upstream and downstream nodes, the 

length of the link, the maximum service capacity, and the free flow speeds and 

travel times for each link.  

 

5.2 EXPERIMENTAL DESIGN 

 

5.2.1 Household Characteristics 

 

This chapter takes the lessons learned from the variable exploration in 

chapters 3 and 4 and applies them to the network shown in figure 5.1.  The 

following sections describe the values of the variables that are used in this case 

study.  These variables include household characteristics, household decision 

making objective function weights, household dwell times at intermediate nodes 

in the trip chain, evil entity resources and targets, traffic management agency 

strategies, traffic assignment, number of alternate paths, and evaluation times.  

The final portion of section 5.2 outlines the combinations of these variables that 

are explored in this study. 

 

In the simulations 20,000 households produced 30,141 vehicles.  The 

household composition (number of adults and children of various ages) is 

identical to that found in chapter 4.  Approximately 49% of the households have 

only one adult, and 51% have two.  No children are present in 49% of the 

households, including homes with one or two adults.  At least one elementary 

school aged child is found in 23% of the households, at least one middle school  

child  in 23%, and at least one high school child in 24% of the households.  

Approximately 13% of the households have multiple children in different schools.  
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Due to these household characteristics, between 33 and 57% of the total generated 

vehicles would stop at schools to pick-up their children.   

 

5.2.2 Household Decision Making Objective Function Weights 

 

5.2.3 Household Dwell Times 

 

As in chapter 4, the network impacts of several weights associated with 

the components of the household trip chaining objective function – the 

minimization of total household fleet travel time and the minimization of waiting 

time spent at the meeting location - are examined.  However, the ranges of values 

of these factors are more limited in this chapter.  Based on the results in chapter 4, 

three deterministic weights on the minimization of the total fleet time are 

considered (λ = 0.0, 0.5, and 1.0).  Case 1 reflects a weight of 0.0 on the 

minimization of total household fleet travel time; case 2 indicates a weight of 0.5 

on the minimization of total fleet travel time; and case 3 reflects a weight of 1.0.  

These cases are the ones known to generate different household trip chains. 

 

Dwell times at intermediate nodes reflect the ease with which parents are 

able to locate their children at the schools and secure them in the vehicles.  

Recognizing that these dwell times will not be deterministic, households are 

assigned dwell times from a random uniform distribution that ranges from 1 to 5 

minutes.   
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5.2.4 Evil Entity Resources and Targets and Traffic Management Agency 
Strategies 

 
 In this case study, the evil entity has the resources to damage only one 

link.  For the baseline conditions and each of the evacuation weighting cases, each 

link is examined in a scenario where the evil entity targets that particular link.  By 

limiting the number of links in the set of possible targets to one, different types of 

links can be more precisely examined.   

Based on baseline vulnerability and trip chaining information, a sample of 

different types of links from figure 5.1 is presented for discussion.  Both the 

traffic management agency and the evil entity consider this sample of links 

potential targets.  Traffic management agency strategies avoid only one of the 

links in the sample.  Similarly the evil entity’s targeting scenario focuses on 

damaging only one of the sample links.  The total sample includes arterial (link 

306), overpass (link 43), freeway (link 123), frontage road (link 83), and 

residential (link 191) arcs.  Also included are links between two schools (link 

148) and between a school and a residential area (link 146).  These links are 

circled denoted in figure 5.2.  The link characteristics can be found in Appendix 

D. 
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Figure 5.2  Selected Links



 

5.2.5 Traffic Assignment 

 

5.2.6 Alternate Paths 

 

5.2.7 Evaluation Times 

 

 The vehicle routing is roughly based on the system optimal traffic 

assignment.  Only one additional iteration of the assignment procedure is used; 

thus generating an imperfect system optimal traffic assignment that is more likely 

to be seen in a true evacuation scenario.  A traffic management agency would 

seek to influence vehicles but in the stress caused by danger, the response to 

guidance is variable. 

 Another advantage to the traffic assignment approach is the ability to add 

costs to threatened links, while maintaining connectivity.  To incorporate this 

additional cost in DYNASMART-P, the links are converted to tolled facilities.  

By charging a toll, the threatened link can still be used for connectivity purposes, 

but the cost prohibits vehicles from using the link when an alternative path is 

available.    

 

 The disruption index developed in chapter 3 allows for the network 

analyst to limit the number of alternate paths considered for an origin-destination 

pair.  In this case study, up to five paths are generated for each pair.   

 

In a dynamic network, flows are not at steady state; thus, time instances 

must be selected for evaluation purposes.  The vulnerability and disruption indices 
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are calculated at 30 minutes. This time point is selected for two reasons.  First, the 

simulation tool has enough time to load the network.  Second, approximately 50% 

of the vehicles are still in the network for all of the simulations conducted.  Two 

additional time points (60 and 120 minutes) are examined for a selected traffic 

management agency strategy.  These additional time instances reveal changes in 

the traffic patterns as the simulation progresses. 

Using a specific time instance in a dynamic network raises the question of 

how to measure the flow.  In this work, instantaneous flow is used.  Due to the 

nature of instantaneous flow, it may exceed link capacity; to adjust for this 

temporary condition, the maximum flow value is set to the maximum flow service 

rate of the link.   

 

5.2.8 Combinations of Factors Examined 

 
Table 5.1 provides a summary of the combinations of factors examined in 

the simulations.  This table indicates that the weighting cases identified in section 

5.2.2, the sample of links from section 5.2.4, and the time instances from section 

5.2.7 are explored in different combinations.  The remainder of the variables 

identified in above sections are treated as constants. 
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Table 5.1  Combinations of Experimental Factors 

Time 

Instant 

(min) 

Traffic 

Management 

Agency 

Strategy 

Evil Entity Target 

Scenario 

Baseline / Evacuation Case*

Baseline (30,149 vehicles) 

Evacuation Case 1 (λ = 0.0) 

Evacuation Case 2 (λ = 0.5) 

30 Do nothing Each of links 1-452, 

individually 

Evacuation Case 3 (λ = 1.0) 

Evacuation Case 1 (λ = 0.0) 

Evacuation Case 2 (λ = 0.5) 

30 Avoid Link 

123 

Each of links 123, 146, 

148, 191, 306, 43, and 

83, individually Evacuation Case 3 (λ = 1.0) 

Evacuation Case 1 (λ = 0.0) 

Evacuation Case 2 (λ = 0.5) 

30 Avoid Link 

146 

Each of links 123, 146, 

148, 191, 306, 43, and 

83, individually Evacuation Case 3 (λ = 1.0) 

Evacuation Case 1 (λ = 0.0) 

Evacuation Case 2 (λ = 0.5) 

30 Avoid Link 

148 

Each of links 123, 146, 

148, 191, 306, 43, and 

83, individually Evacuation Case 3 (λ = 1.0) 

Evacuation Case 1 (λ = 0.0) 

Evacuation Case 2 (λ = 0.5) 

30 Avoid Link 

191 

Each of links 123, 146, 

148, 191, 306, 43, and 

83, individually Evacuation Case 3 (λ = 1.0) 

Evacuation Case 1 (λ = 0.0) 

Evacuation Case 2 (λ = 0.5) 

30 Avoid Link 

43 

Each of links 123, 146, 

148, 191, 306, 43, and 

83, individually Evacuation Case 3 (λ = 1.0) 
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Evacuation Case 1 (λ = 0.0) 

Evacuation Case 2 (λ = 0.5) 

30 Avoid Link 

83 

Each of links 123, 146, 

148, 191, 306, 43, and 

83, individually Evacuation Case 3 (λ = 1.0) 

Evacuation Case 1 (λ = 0.0) 

Evacuation Case 2 (λ = 0.5) 

30 Avoid Link 

306 

Each of links 123, 146, 

148, 191, 306, 43, and 

83, individually Evacuation Case 3 (λ = 1.0) 

Evacuation Case 1 (λ = 0.0) 

Evacuation Case 2 (λ = 0.5) 

60 Avoid Link 

306 

Each of links 123, 146, 

148, 191, 306, 43, and 

83, individually Evacuation Case 3 (λ = 1.0) 

Evacuation Case 1 (λ = 0.0) 

Evacuation Case 2 (λ = 0.5) 

120 Avoid Link 

306 

Each of links 123, 146, 

148, 191, 306, 43, and 

83, individually Evacuation Case 3 (λ = 1.0) 

*  All of the evacuation cases use 30,141 vehicles. 

 Table 5.1 presents the combinations of variables that will be investigated 

in this chapter.  The experimental procedure that outlines how these variables will 

be allowed to interact is presented in the following section. 

 

5.3 XPERIMENTAL PROCEDURE  E
 
 The five steps of the experimental procedure outlined at the beginning of 

this chapter are explored in further detail in the following sections.  The first 

portion describes tasks 1 (establishing baseline traffic conditions)  and 2 

(determining the link vulnerabilities associated with the baseline conditions).  The 

second section corresponds to the third step (simulating evacuation conditions).  

The fourth (determining link vulnerabilities for evacuation conditions) and fifth 
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tasks (comparing network conditions and link vulnerabilities from tasks 1-4) are 

described in section 5.3.3 and 5.3.4, respectively.   

 

5.3.1 Establish Baseline Conditions 

 
The first step to making a comparison is to establish a baseline.  There are 

actually two reference points to be established.  The first baseline reveals typical 

traffic patterns and network clearance time.  The second is the set of disruption 

indices associated with the everyday traffic patterns at a given time.  These points 

of reference correspond to the first two tasks previously described.   

In the first task, peak period traffic conditions are simulated.  The test bed 

is shown in section 5.1 (and in chapter 4).  As in chapter 4, approximately 30,100 

vehicles, generated over 45 minutes, are simulated to establish peak period 

conditions.  The traffic simulation-assignment software DYNASMART-P 

(DYnamic Network Analysis Simulation Methodology for Advanced Road 

Telematics) is used for this purpose. 

The network is then evaluated using the gaming approach developed in 

chapter 3 to establish the baseline vulnerabilities (task 2).  To summarize the 

gaming approach, an evil-entity seeks to maximize disruption to the network by 

damaging a set of links.  This damage disrupts origin-destination flows and 

possibly disconnects some destinations from certain origins.  The opponent to the 

evil entity is a traffic management agency who, upon receiving information about 

a threat, seeks to route vehicles around the vulnerable links.  In establishing the 

baseline, the traffic management agency is assumed to have no information of a 

threat to the infrastructure (this corresponds to game 1 developed in chapter 3).   
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5.3.2  Simulate Evacuation Conditions with Trip Chains 
 

As in chapter 4, the number of households remains constant at 20,000.  

The number of vehicles that are associated with these households is also constant 

at 30,141; these vehicles are generated over 3.1 minutes.  For each of the 

household decision making weights described in section 5.2.2, trip chains are 

generated using the code found in Appendix C.  The activity chains generated in 

each case are used by DYNASMART-P to simulate corresponding traffic 

conditions.   

 

5.3.3 Determine Infrastructure Vulnerabilities under Evacuation Conditions 
and Traffic Management Agency Strategies 
 
 For each weight on the total fleet travel time mentioned in section 5.2.2, 

the link vulnerabilities are evaluated at a given point in time using two gaming 

approaches.  Link vulnerabilities are determined using the procedure developed in 

chapter 3.  The disruption index is the measure of vulnerability and is calculated 

based on the state of the network.  Recall that the disruption index directly 

accounts for the availability of alternate paths, traffic flow, excess path capacity, 

free flow travel time, and marginal path cost.  

In the first game, the traffic management agency (Player M) is assumed to 

have no information about the evil entity’s (Player T’s) target.  Recall that this 

lack of information corresponds to both game 1 in chapter 3 and the baseline 

established in task 2.  In the second game, Player M has general information about 

the type of link to be targeted (e.g. freeway, arterial in a residential zone, arterial 

near a school zone) while Player T has perfect information about the other’s 

moves and payoffs.  Player M can route vehicles to avoid links but cannot 

prohibit vehicles from reaching their destinations.     
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5.3.4 Comparison of Peak Period and Evacuation Conditions 

 
The network is examined from two perspectives – network clearance and 

link vulnerabilities.  Each evacuation case is compared to the other evacuation 

cases and the baseline peak period conditions in terms of those two aspects.  The 

traffic management strategies of avoiding types of targeted links are compared to 

the evacuation cases where none of the links are avoided and the peak period 

baseline.  The comparison step of the evaluation framework is covered in the 

results section, presented next. 

  

5.4  RESULTS 
 
 Using the experimental procedure described in section 5.3 and the factors 

outlined in section 5.2, results are generated.  These results focus of link 

vulnerabilities and network clearance times for the baseline peak period 

conditions and the combinations of evacuation cases, traffic management agency 

strategies, and evil entity scenarios. The payoff matrix for Game 1 with the 

baseline peak period conditions is presented in Appendix E for time 30.  Also 

displayed are the payoffs for the evacuation conditions where no links are 

intentionally avoided.  The payoff to the evil entity is the value of the disruption 

index.  As in chapter 3, the payoff to the traffic management agency (Player M) is 

the percent of vehicles safely reaching their destinations.  Recall that in Game 1, 

Player M has no information about a threat to the network and  Player T has the 

resources to damage only one link. 

 At such a large network scale and typical traffic patterns, the damage of a 

single link would have little effect on the network.   Only eighteen links resulted 
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in a payoff to Player M of less than 80%, of which six yielded payoffs of less than 

70% (see Appendix E).  In the peak-period baseline case, links 14 and 306 

connected forty-one origin-destination pairs, which was the maximum of any of 

the 452 links.   

The ten most vulnerable roadways under typical peak period conditions 

are discussed below and shown in figure 5.3.  The highest disruption index value 

is 16.681, associated with link 306 (labeled 1 on figure 5.3).  This link leads to the 

high school zone, a middle school zone, a residential zone, and an evacuation 

shelter.  The second greatest disruption index (16.374) occurs for link 310 

(numbered 2), which connects to link 306.  Link 323 (labeled 3) has the third 

highest index; this link is a freeway section which leads from one of the major 

business zones.  The fourth most vulnerable link is 107 (numbered 4), which is a 

freeway link downstream from link 323.  The fifth greatest disruption index 

(13.712) is associated with link 123 (labeled 5), which is the freeway link 

between links 323 and 107.  Sixth (11.692) is link 43 (numbered 6), which crosses 

the freeway.  The seventh highest disruption index (11.488) is associated with link 

117 (labeled 7), which is a freeway link downstream of link 306.  The difference 

in the disruption index values for the freeway links are due to the presence of on 

and off ramps.  Link 48 (numbered 8) had the eighth highest disruption index 

value (11.363); this link leads to link 310 and ias one of the downstream links 

from link 43.  Ninth, link 105 (labeled 9) has an index of 11.005; this roadway 

segment is also on the freeway, downstream from link 117.  Finally, the tenth 

greatest disruption index (9.000) is associated with link 305 (numbered 10), 

which is the approach to the high school. 
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Figure 5.3  Ten Most Vulnerable Links for Peak Period Conditions 



 

The peak period baseline conditions yielded the greatest disruption index 

of the four traffic patterns in Appendix E.  It is important to note that the 

disruption index (payoff to Player T) did not capture vehicles that were not on the 

network at the instant under consideration.  Any vehicle that was stopped at an 

intermediate node was not part of the index calculations.    

Among the evacuation cases in Appendix E, the maximum disruption 

value increased with greater values of the weight associated with the total 

household fleet travel time.  For each of the weights, the greatest disruption index 

was associated with link 305, which led to the high school.  Since only one high 

school was available for all of the households in this particular network, this link 

could affect every other zone.  Under typical traffic conditions, link 305 was the 

tenth most vulnerable; thus changes in vulnerability occur when parents pick up 

their children at school in an emergency compared to typical daily child transport.  

The ten most vulnerable links for each weighting case described in section 5.2.4 

are shown in figures 5.4 (case 1), 5.5 (case 2), and 5.6 (case 3). 
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Figure 5.4 shows the ten most vulnerable links for evacuation case 1 when 

the traffic management agency strategy is to “do nothing,” i.e.  no links are 

intentionally avoided.  The most vulnerable link is the one leading to the high 

school.  This particular link connects 13 different origin-destination pairs.  The 

high school represents a high demand node; it is also a unique node because no 

alternative high school was available to households in the network.  The second 

most vulnerable link is an evacuation freeway link leading out of the network to a 

shelter.  This link is one of four possible links leaving the endangered area and 

may be used to connect 14 origin-destination pairs.  The third most vulnerable 

link is an overpass; under peak period conditions, this link is the sixth most 

vulnerable.  In this evacuation case, the fourth most vulnerable arc is the freeway 

link that corresponds to the fourth most vulnerable link under peak period 

conditions.  The link leading from the high school to the remainder of the network 

is the fifth most vulnerable link in evacuation case 1.  As with the most vulnerable 

link, this result is heavily dependent on the network design – there is only one link 

leading to/from a heavy demand node.  Four links are tied as the sixth most 

vulnerable.  Three of these links are associated with travel to and from the middle 

and elementary schools.  Comparing this result to the peak period conditions 

emphasizes the impact of trip chaining on the traffic patterns.  The fourth of the 

tied links leads to both the high school and a middle school.  This particular link 

is the eighth most vulnerable under peak period conditions.  Finally, the tenth 

most vulnerable link for evacuation case 1 is a freeway on ramp that connects to 

the fourth most vulnerable link.   
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Figure 5.5  Ten Most Vulnerable Links for Evacuation Case 2 
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Figure 5.5 presents the ten most vulnerable links for evacuation case 2.  

As in the previous case, shown in figure 5.4, the first and fifth most vulnerable 

links are associated with the unique high demand node (the high school, in this 

study).  The second most vulnerable link (arc 306) in case 2 is the most vulnerable 

link under baseline peak period conditions.  This link leads to two different 

schools and (not shown on the map) one of the shelters outside of the endangered 

network.  The third most vulnerable link in case 2 is the freeway link that is the 

fourth most vulnerable for baseline conditions and evacuation case 1.  The fourth 

most vulnerable link (310) in case 2 is the upstream link of the second most 

vulnerable link (306).  Link 310 is the second most vulnerable under peak period 

conditions.  Case 2’s sixth most vulnerable link is a freeway on ramp 

corresponding to the tenth most vulnerable link in case 1.  The seventh most 

vulnerable link is the overpass that is the sixth most vulnerable for baseline 

conditions and the third most vulnerable for case 1.  The eighth most vulnerable 

link leads from the high school and nearby middle school toward the freeway.  

Case 2 is the only case where this link is in the top ten, indicating that the three 

different sets of trip chains have different impacts on the link vulnerabilities.  The 

ninth most vulnerable link is upstream of link 310 and corresponds to the sixth 

most vulnerable link in case 1 and the eighth most vulnerable link for baseline 

conditions.  Finally, the tenth most vulnerable link for case 2 leads out of the 

endangered area and is the same link that is the second most vulnerable in case 1. 
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Figure 5.6  Eleven Most Vulnerable Links for Evacuation Case 3 
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Figure 5.6 shows the eleven most vulnerable links for evacuation case 3.  

One interesting observation is the freeway links that are in the top ten most 

vulnerable for the other evacuation cases and the baseline conditions are not in the 

top ten in this case.  The traffic patterns generated by the trip chains vary across 

the cases examined.  However, several links are found in the top ten for every 

case.  The most vulnerable link is the one leading to the single high school in the 

network.  The overpass (seventh most vulnerable in this case), one of the links 

immediately downstream of the overpass (fifth most vulnerable in this case), one 

of the links leading from the endangered network to shelter (sixth most 

vulnerable), and the link leading from the high school (fourth most vulnerable 

here) are also in the top ten of cases 1 and 2.  Recall that the impact of the high 

school location is related to the network design which limits access to and egress 

from this unique node.  As in case 2, the second most vulnerable link in case 3 is 

link 306, which also corresponds to the most vulnerable link for the baseline 

conditions.  The third most vulnerable link is link 310, which is the fourth most 

vulnerable in case 2 and the second most vulnerable for peak period conditions.  

The one link unique to case 3 is the freeway link ranking eight in the most 

vulnerable links.  As in case 1, links associated with middle and elementary 

schools (tied for ninth here) are among the most vulnerable.   

Greater weights on the minimization of total household fleet travel time do 

not uniformly increase the vulnerabilities of school related links.  For instance, 

link 147 has the same value of the disruption index for weights 0.5 and 1.0, but 

link 151 has higher values of the disruption index for weights 0 and 1.0 than for 

0.5.  These results reflect the fact that the weights generate different trip chains. 

The effects of the weights are further investigated in the game where  

Player M (the traffic management agency) has general information about a threat 

to a type of link.  As mentioned in section 5.2.4 and shown in figure 5.2, the types 

 157



of links considered are arterial (link 306), freeway (link 123), arterial between two 

schools (148), arterial connecting a school and residential zone (146), frontage 

road (83), residential (191), and an overpass (link 43).  Each one of these links is 

avoided, individually, by the traffic management agency.  Table 5.2 provides the 

payoff matrices when these links are avoided and targeted, in turn, at time 30. 
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Table 5.2  Payoff Matrices for the General Information Game 

Player T λ = 0.0 λ = 0.5 λ = 1.0
Player M Strategy: Player M Player T Player M Player T Player M Player T
Strategy Target Payoff Payoff Payoff Payoff Payoff Payoff
Avoid 123 123 99.86 0.183 99.95 0.852 99.82 0.328

146 94.48 2.991 94.21 2.023 97.13 1.186
148 97.67 2.623 96.68 1.02 98.43 3.088
191 100 0 100 0 100 0
306 85.62 8.619 79.33 10.06 79.69 9.505
43 88.56 6.618 89.63 7.54 86.34 6.218
83 100 0 100 0 100 0

Avoid 146 123 99.64 1.378 99.46 1.821 99.73 0.951
146 98.03 0.864 100 0 100 0
148 99.47 1.409 99.09 1.831 92.9 4.236
191 100 0 100 0 100 0
306 86.61 10.19 81.96 10.066 84.77 12.4
43 88.66 8.764 84.36 8.95 89.17 9.206
83 99.86 0.143 99.85 0.25 99.84 0.143

Avoid 148 123 98.95 1.924 98.25 2.19 98.99 1.999
146 93.99 3.332 99.41 2.904 95.93 2.305
148 94.72 2.473 99.71 0.834 97.74 1.248
191 100 0 100 0 100 0
306 90.49 8.161 87.6 9.94 89.73 9.119
43 90.3 6.969 87.11 8.229 90.66 6.213
83 100 0 100 0 100 0

Avoid 191 123 99.7 0.84 99.32 1.05 99.85 0.377
146 96.3 1.884 96.67 2.668 96.96 1.369
148 98.26 3.523 97.4 2.48 93.06 3.556
191 100 0 100 0 100 0
306 85.7 9.568 86.42 9.192 83.55 10.84
43 87.67 7.529 86.97 8.961 88.81 7.12
83 100 0 99.85 0.2 99.84 0.2

Avoid 306 123 99.72 1.438 99.57 2.576 99.56 0.716
146 95.82 3.361 97.42 4.423 96.38 0.917
148 98.56 3.218 95 2.506 94.69 3.203
191 100 0 100 0 100 0
306 99.1 0.49 100 0 100 0
43 96.54 6.046 96.08 6.079 97.13 6.285
83 100 0 100 0 100 0  

 159



Player T λ = 0.0 λ = 0.5 λ = 1.0
Player M Strategy: Player M Player T Player M Player T Player M Player T
Strategy Target Payoff Payoff Payoff Payoff Payoff Payoff
Avoid 43 123 97.47 1.597 96.79 1.68 96.75 1.59

146 97.95 2.675 94.15 3.275 96.89 3.078
148 95.47 3.842 96.48 3.583 97.2 2.599
191 100 0 100 0 99.9 0.176
306 88.8 7.323 90.72 7.191 85.12 6.886
43 99.6 0.738 99.36 1.111 96 1.016
83 100 0 100 0 100 0

Avoid 83 123 99.63 0.838 99.66 1.124 99.75 0.455
146 96.71 2.727 96.62 2.692 94.44 3.603
148 85.01 5.138 98.36 2.234 97.19 2.43
191 100 0 100 0 100 0
306 82.86 8.288 85.05 12.567 89.42 8.136
43 85.22 8.006 90.51 7.297 91.21 6.635
83 100 0 100 0 100 0  

 The weight associated with the minimization of total fleet travel time (and 

consequently the weight associated with the minimization of waiting time at the 

meeting location) cause different trip chains to be generated for the households.  

Avoiding a link affects the actual routing of the vehicles on the network but, in 

the simulations examined here, is not permitted to impact the sequencing of stops 

at intermediate nodes.  Since the weights affect the trip chains and not the actual 

routing, no particular weight of the total fleet travel time consistently yields a 

higher payoff to Player M or Player T. 

A comparison of the results from Appendix E and 5.2 indicates that 

charging an additional cost for using the link successfully reduces lane usage from 

the baseline peak period conditions and the evacuation cases where no links are 

intentionally avoided, regardless of the weight associated with the total household 

fleet travel time.  The payoffs for Player M increase when a toll is charged for 

using link 123 (freeway) and that link is targeted by Player T.  The payoff to 

Player T decreases for this strategy-targeting scenario combination.  The same 

trend is observed for the arterial link (306), frontage road link (83), overpass (43), 

and the arterial road leading from a school zone to a residential zone (146).  
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However, this trend did not initially hold for link 148, which is an arterial 

roadway between two closely located schools.  The weight of 0.5 on the 

minimization of total household fleet travel time follows the previously described 

pattern.  The 0 and 1.0 weight cases result in a lower payoff for Player M than the 

baseline peak period conditions, but these payoffs are also lower than those for 

the evacuation conditions when no links were avoided.  This result is explained by 

alternate paths becoming congested and drivers being willing to pay the additional 

cost of using the link.  Subsequently examined higher tolls prohibited the use of 

link 148, resulting in a payoff of 100% to Player M and a payoff of 0 to Player T. 

Link 191 (residential) carries no flow in any of the evacuation case – traffic 

management agency strategy combinations so Player M received a payoff of 

100%, which is higher than the payoff for the baseline peak period conditions. 

 For the majority of Player M’s strategies shown in table 5.2 and the “do-

nothing” evacuation strategies in Appendix E, targeting link 306 yields the 

highest payoff for Player T.  The one exception occurs when Player M correctly 

anticipates Player T’s move and avoids link 306.  These observations indicate that 

link 306 lies on the shortest paths for many origin destination pairs, but there are 

alternate paths available.  When link 306 is avoided, less flow is found on the 

link, but the times required for various percent network clearances are greater 

than for the other traffic management agency strategies.   

The impact of the passage of time on the link vulnerabilities is further 

examined for Player M’s strategy “avoid link 306.”  Table 5.3 displays the payoff 

values for times 30, 60, and 120 minutes for the different evacuation cases. 
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Table 5.3  Payoff Values for Player M’s Strategy “Avoid Link 306” at Different 
Time Points 

Player T λ = 0 λ = 0.5 λ = 1.0
Target Time Player M Player T Player M Player T Player M Player T

123 30 99.72 1.438 99.57 2.576 99.56 0.716
60 99.48 1.457 99.21 2.032 99.80 0.392

120 100.00 0.000 100.00 0.000 100.00 0.000
146 30 95.82 3.361 97.42 4.423 96.38 0.917

60 97.42 2.459 95.73 3.139 97.09 2.871
120 98.93 1.235 98.97 0.736 95.57 2.645

148 30 98.56 3.218 95.00 2.506 94.69 3.203
60 99.87 0.066 98.84 2.188 97.87 2.867

120 98.78 0.232 97.90 0.489 99.39 0.693
191 30 100.00 0.000 100.00 0.000 100.00 0.000

60 100.00 0.000 100.00 0.000 100.00 0.000
120 100.00 0.000 100.00 0.000 100.00 0.000

306 30 99.10 0.490 100.00 0.000 100.00 0.000
60 100.00 0.000 100.00 0.000 99.86 0.720

120 100.00 0.000 100.00 0.000 100.00 0.000
43 30 96.54 6.046 96.08 6.079 97.13 6.285

60 95.90 4.445 96.76 4.840 97.96 4.897
120 100.00 0.000 99.18 2.000 100.00 0.000

83 30 100.00 0.000 100.00 0.000 100.00 0.000
60 100.00 0.000 100.00 0.000 100.00 0.000

120 100.00 0.000 100.00 0.000 100.00 0.000  
 

 The general trend observed from table 5.3 is that as the simulation 

progresses, the payoffs to Player M increase and the payoffs to Player T decrease.  

The results pertaining to Player T are consistent with intuition because as vehicles 

reached their destinations, the network became less congested, leading to 

additional excess capacity on alternate paths.   As can be seen when link 123 is 

targeted, the payoff to Player M may not increase when the payoff to Player T 

decreases; this is due to the nature of Player M’s payoff calculation as a 

percentage of the vehicles safely reaching their destinations based on the amount 

of vehicles in the network at the given time point.  As the simulation progresses, 

links 146 and 148 showed an increase in the payoff to Player T, thus supporting 

the concept of traffic patterns evolving over time.   
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 Player M’s strategy affects the network clearance times during the 

evacuation.  Figures 5.7-5.9 present the time required to clear different 

percentages of the network for the various Player M strategies.  Figure 5.7 

corresponds to the evacuation case 1 (no weight on the minimization of total fleet 

travel time); figure 5.8 is for evacuation case 2 (0.5 weight); and figure 5.9 is for 

the evacuation case 3 (1.0 weight). 
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Figure 5.7  Network Clearance for Evacuation Case 1  

 Compared to the baseline peak period conditions, evacuation case 1, 

combined with traffic management agency strategies of avoiding threatened links, 

shows an increase in  the time required to clear a given percentage of the network.  

Avoiding link 306 increases the network clearance time to the greatest degree.  

Referring to figure 5.1, avoiding this link would intuitively result in longer paths 

to reach two of the schools.  Avoiding the freeway link (123) leads to the next 
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largest increase in network clearance time.  This link allows for the highest speeds 

and not using the link would force the vehicles to use slower roads and thus 

increase the network clearance times.  Avoiding any of the remaining links, 

except 43, yields network clearance times similar to those of the “do nothing” 

strategy for the traffic management agency, suggesting that these links have little 

individual impact on the network.  The clearance times for Player M’s strategy to 

avoid link 43 are actually lower than those for the do nothing strategy.  This result 

is due to the traffic simulation approach described in section 5.2.5.  . 
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Figure 5.8  Network Clearance for Evacuation Case 2  

 Figure 5.8 reveals similar pattern to figure 5.7.  The network clearance 

times for the case where the households place half of the weight on the 

minimization of total household fleet travel time and half on the minimization of 
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waiting time at the meeting locations are lower than for the case shown in figure 

5.7.   
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 Figure 5.9  Network Clearance for Evacuation Case 3  

 Figure 5.9 shows that network clearance times for evacuation case 3 

follow the same trends as in figures 5.7 and 5.8.  In figure 5.9, the network 

clearance times for Player M’s strategy “avoid 123” are consistently greater than 

the majority of the other traffic management agency strategies.  In evacuation 

cases 1 and 2, the times for 70% clearance for strategy “avoid 123” are close to 

those for strategies “avoid 146,” “avoid 148,” “avoid 191,” and “avoid 83.”  

Overall, the network clearance times are smaller for case 3 compared to cases 1 

and 2. 
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5.5  SUMMARY 

 
 In this chapter, a simplified model of a portion of Fort Worth, Texas was 

used to illustrate the logical and methodological interrelation between the 

approaches developed in chapters 3 and 4.  Baseline peak period traffic conditions 

and the infrastructure vulnerabilities associated with those conditions were 

determined for the cases where the evil entity had the resources to damage one 

link.  

 In the baseline peak period case, the most vulnerable links were freeway 

links near a major business zone and the links leading to a node common to the 

most origin-destination pairs.  These links would have intuitively been the most 

vulnerable, and this intuition was supported by the mathematical model. 

 The link vulnerabilities were also determined for evacuation conditions.  

The different traffic patterns that result from evacuations produced different 

disruption index values.  Link vulnerability rankings changed as a consequence of 

the unusual traffic patterns.  In both the evacuation and baseline scenarios, the 

most vulnerable link connected the greatest number of origin-destination pairs. 

The type of link selected for damage, or avoidance, plays a critical role in 

the determination of payoffs and the resulting network clearance times.  Seeking 

to avoid the vulnerable links generally yielded longer evacuation times; however, 

had those links been targeted, a high percentage of the vehicles would still safely 

reach their destinations.  Thus, correctly predicting the target and avoiding the 

threatened link lengthens evacuation times (relative to the no-damage scenario) 

but ensures that a greater percentage of the population would successfully 

complete the evacuation in the event the link is indeed damaged.   
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Chapter 6 

 

Summary And Conclusions 

  

This chapter presents a summary and the conclusions of this dissertation.  

Both the conclusions specific to the examples presented in chapters 3, 4, and 5 

and generalized conclusions are found in the following pages.  This chapter is 

organized as follows.  First, a summary of the work is given.  Second, the 

conclusions specific to the networks shown in this dissertation and general 

conclusions and recommendations for the methodologies developed for this work 

are presented.  Finally, directions for future work are suggested. 

 

6.1 SUMMARY 
 

In this dissertation two primary contributions are made to the 

transportation engineering field of knowledge.  The first is in the area of network 

vulnerability.  The second is in evacuation modeling.  These two contributions 

have implications for fields outside of transportation engineering, such as 

evacuation planning, community and urban planning, military strategic strike 

planning, national defense, and antiterrorism defense. 

 The contribution to network vulnerability is primarily found in chapter 3 

with a larger application provided in chapter 5.  In chapter 3, two mathematical 

indices are presented.  The vulnerability index is a measure of the importance of a 

specific link, or set of links, to the connectivity of an origin-destination pair.  This 

index ias based on existing flow patterns, traffic conditions, and network design.  

The second measure, the disruption index, is an aggregation of the vulnerability 
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indices across all origin-destination pairs in the network.  The disruption index is 

a measure of the impact of damaging a specific link, or set of links, on the 

network as a whole.  The disruption index - and the vulnerability index at the OD 

level – allows for the links of the network to be ranked in order of importance.  A 

bi-level formulation, that uses the disruption index as one of its factors, was 

developed for the identification of the most vulnerable link, or set of links, in the 

transportation network.  Several games were envisioned based on the bi-level 

formulation.  The games consisted of two players: an evil entity, who seeks to 

maximize disruption of the network, and a traffic management agency, who 

routes vehicles in order to maximize the number of drivers who safely reach their 

destinations.  Various rules and information for the games were considered, the 

conclusions for which are presented in section 6.2. 

 The second contribution to the field is related to evacuation modeling.  In 

chapter 4, a series of mathematical expressions for household decision making 

under emergency evacuation conditions was presented.  First, a family’s decision 

makers select a meeting location.  In this work, the objective is to minimize the 

maximum cost (time or distance) of reaching the meeting location from all of the 

sites at which household members are located at the time the evacuation order is 

given.  Once the meeting location is chosen, the drivers are assigned to pick up 

other household members (such as school children) who are not able to drive 

themselves.  The mathematical expression presented in chapter 4 allowes for trade 

offs between two criteria: (1) the minimization of total fleet travel time and (2) the 

minimization of waiting time at the meeting location.  The advantage of the first 

criterion is the most efficient trip chains were generated.  The disadvantage of (1) 

is that a single driver (in a two driver household) may be assigned to pick up all of 

the children allowing for the compilation of unforeseen delays.  Criterion (2) also 

allows for the possibility of one driver picking up all of the children, but this 

result only occurs when the other driver has a longer perceived time to reach the 
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meeting location.  The disadvantage of the second criterion is more of the family 

members could be in the network (instead of waiting and worrying) and counter-

intuitive assignments may be generated; for instance, a driver may be given a 

sequence of pick ups that requires more time than if the intermediate nodes are in 

a different order.  The factors that influenced the trip chain assignments were 

thoroughly explored in chapters 4 and 5. 

 Chapter 5 presented a case study in which the methodologies of chapters 3 

and 4 were applied to the same network.  The impact of vulnerable link avoidance 

strategies on evacuation time was examined.  The vulnerabilities of the links were 

determined at different times during an evacuation to identify weaknesses in the 

network design that are not evident under typical traffic conditions. 

 

6.2 CONCLUSIONS AND RECOMMENDATIONS 
 

The methodologies presented in the previous chapters are applicable to 

any transportation network.   From the network designs and results obtained in 

this work, several conclusions and recommendations can be made. 

For small networks, such as that in chapter 3, and a limited number of 

resources available to an evil entity, the disruption index can lead to the 

identification of cut sets.  Larger, well connected networks, such as that found in 

chapter 5, require a substantially greater number of resources to completely sever 

the origins from the destinations.  The vulnerability and disruption indices can, 

however, identify the links that are most vulnerable to damage given a specified 

number of resources.   

Having accurate information about the amount of resources available to an 

evil entity is integral to the strategy selection of a traffic management agency.  

Underestimation leads to fewer vehicles safely reaching their destinations.  

Overestimation also yields an advantage to the evil entity.  Although a greater 
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number of vehicles will safely reach their destinations than originally anticipated, 

the routing strategy selected may cause a different set of links to be targeted.  

These links may not require as many resources to damage and the evil entity will 

receive a higher payoff than if the traffic management agency had perfect 

information. 

Routing vehicles to avoid vulnerable transportation infrastructure yields 

longer evacuation times.  Emergency evacuation scenarios utilize virtually all 

available capacity.   

Using the decision making model presented in chapter 4 yields a more 

accurate evacuation model.  Incorporating household interactions captures traffic 

patterns that do not exist under daily network demands.   These traffic patterns 

lead to changes in link vulnerabilities from the typical conditions. 

When the weights associated with the minimization of total fleet time and 

the minimization of the waiting time at the meeting locations are unknown, a 

deterministic dwell time of 5.0 minutes at the intermediate destinations should be 

used for the combination of network design and household characteristics 

employed in chapter 4.  This dwell time yields the least disparity among the 

evacuation times for the different weights.  However, using a random dwell time 

is more realistic.  Varying the weight associated with the total fleet time across 

households should also yield a more realistic evacuation scenario since decision 

makers have different values. 

Although no more than three solutions to the trip chain assignments were 

generated in this work, that is not the limit on the number of possible pareto 

optimal solutions to the problem, depending on the weights of the objective 

function criteria.  The beginning and meeting locations of the household members 

may create a case where only one solution exists to the objective function 

regardless of the weight applied to the two criteria – provided that the sum of the 

weights is 1.0.  The actual weights applied to the two criteria depend on the 
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values of the household decision makers; for a generalized modeling scenario, an 

intermediate value for each weight should be selected. 

 The other factor that plays a critical role in the pick up assignment and 

sequencing of intermediate destinations is the dwell time at those intermediate 

destinations.  Certain values of the dwell time may produce vastly different 

evacuation times, depending on the weights assigned to the two criteria.  The 

dwell time not only affects the trip chain assignment but also allows for the 

possibility of overall network congestion alleviation.  Removing some vehicles 

from the roads for a period of time (the delay) permits the drivers that are still in 

the network to proceed at a higher speed, thus resulting in a shorter evacuation.  

Simulation is required to find both the dwell time that offers the least disparity in 

evacuation times, regardless of the household’s weighting selections, and the 

dwell time that minimizes evacuation time.  Evacuation planners using this model 

should also keep in mind that they have little control over the individual 

household’s delays at the intermediate nodes. 

 As should be obvious to planners, antiterrorists, and the military, the 

mostly likely targeted roads in an non-prioritized network are the links whose 

damage that can have the most impact on the transportation network as a whole.  

These links tend to be heavily traveled and used by drivers from more than one 

origin-destination pair.  The joint disruption index for these links is higher than 

the joint index for other sets of links.  In a prioritized network, where a particular 

origin-destination pair is valued more than other origin-destination pairs, the most 

likely targeted road is the most heavily traveled link connecting the OD pair of 

interest.  If only the one origin-destination pair is considered, the vulnerability 

index aides in the identification of the most vulnerable link.  Building additional 

roads to divert traffic away from these highly vulnerable links can save lives 

when limited threats (i.e. the disaster causing agent cannot destroy every 

roadway) are realized.  Furthermore, this redundancy in the network can allow 
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drivers to reach their desired destinations in a timely manner even if their primary 

route is unavailable. 

 

6.3  FUTURE WORK 
 

The work performed for this dissertation has lead to three future 

directions.  First, the vulnerability and disruption indices may be used in location 

analysis.  These indices may be used in the site selection for schools, government 

centers, and other buildings of interest.  In terms of combining location analysis 

and evacuations, if a terrorist threat is perceived, officials may want to move the 

school children to another location, close to the original.  The relocation may 

serve several functions including, but not limited to, the minimization of the 

disruption indices of the roads within a given radius of the school and the 

provision of greater access for the parents to reach their children and complete the 

evacuation in a more timely manner.  Second, additional information levels for 

further gaming applications may be considered.  Finally, the role and impacts of 

information supply strategies for travelers may be evaluated for evacuation 

purposes and routing around vulnerable transportation infrastructure. 
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APPENDIX A 

Joint Vulnerability Index Computer Code 

 

A.1  MODULE COMMON_VAR 
 

parameter (imaxlink=8) 
parameter (imaxnode=6) 
parameter (imaxO=2) 
parameter (imaxD=2) 
parameter (imaxpath=3) 
parameter (itotp=9) 
integer iorigin 
integer idest 
integer ican 
integer indlink ! number of damaged links 
integer inumpath(imaxnode,imaxnode) 
integer ipODid(imaxnode,imaxnode,itotp) ! assigns path number to OD 
integer iplink(itotp,imaxlink) !1 if link on path 
integer idlink(imaxlink) ! damaged link(s) 
integer jO(itotp) ! origin node of path 
integer jD(itotp)  ! destination node of path 
integer iODaf(imaxnode,imaxnode) ! 1 if OD affected, 0 o.w. 
integer inODaf ! number of ODs affected 
integer ishare(itotp,itotp,imaxlink) ! 1 if paths share link 
integer imshared(imaxlink) !1 if link is shared 
integer ishrsmOD(imaxlink) !1 if link is shared by paths with same OD 
integer ishrdfOD(imaxlink) !1 if link is shared by paths with dif OD 
integer icantpath(itotp) ! path can't be used for reassignment 
integer ibneklink(itotp) ! bottleneck link of path j 
integer ibestp(imaxnode,imaxnode) !current best path from O to D 
integer iflag(itotp) !flags path when full due to reassignment 
integer iadflow(imaxnode,imaxnode,itotp) !flow reassigned to OD path 
integer ictOsh(imaxlink) !counts the number of origins shared by a link 
integer ictDsh(imaxlink) !counts the number of destinations shared 
integer iOsh(imaxlink,imaxlink) !origins shared by link 
integer iDsh(imaxlink,imaxlink) !destinations shared by link 
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integer ict_alt(imaxnode,imaxnode) !counts number of alt paths for OD 
 
real totafl 
real flow(imaxlink) ! flow on link 
real extern(imaxlink) ! externality imposed by additional user to 1 other 
real cap(imaxlink)  ! capacity of link 
real excapOD(imaxnode,imaxnode) !excess capacity on all undamaged pathsOD 
real exper(imaxlink) ! time experienced by traveler n+1 
real marginal(imaxlink) ! link marginal time 
real tfree(imaxlink) ! free flow travel time 
real ptfree(itotp) ! free flow path travel time 
real pathflow(itotp) 
real pathmarg(itotp) 
real plinkflow(itotp,imaxlink) !flow on link due to existing on path 
real ODlinkfl(imaxnode,imaxnode,imaxlink) !flow on link from O to D 
real ODflow(imaxnode,imaxnode) ! total OD flow 
real proplfOD(imaxnode,imaxnode,imaxlink) !proportion of link flow for OD 
real flowaOD(imaxnode,imaxnode) !flow on damaged link from O to D 
real bnkexcap(itotp) ! minimum excess cap on path 
real util(itotp) ! utility of alternate path 
real utlp(imaxnode,imaxnode) !sum of adjusted path utilities  
real cindex(imaxnode,imaxnode) !critical index 
real mdftr(itotp) !modification factor for allocating excess capacity 
real modfctr(imaxnode,imaxnode,imaxlink) 
 
end 
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A.2  SUBROUTINE BOTTLENECK(IPATH)  
! this subroutine finds the bottleneck of each path 
use common_var 
ibneklink(ipath)=0 
bnkexcap(ipath)=0.0 
temp_val=99999.9 
do j=1,imaxlink 
    if(iplink(ipath,j).eq.1)then 
        if(ictOsh(j).gt.1)then 
            call modify_xcap(j) 
            mdftr(j)=modfctr(jO(ipath),jD(ipath),j) 
            if(mdftr(j)*(cap(j)-flow(j)).lt.temp_val)then 
                ibneklink(ipath)=j 
                bnkexcap(ipath)=mdftr(j)*(cap(j)-flow(j)) 
                temp_val=bnkexcap(ipath) 
            endif 
        else 
            if(cap(j)-flow(j).lt.temp_val)then 
                ibneklink(ipath)=j 
                bnkexcap(ipath)=cap(j)-flow(j) 
                temp_val=bnkexcap(ipath) 
            endif 
        endif 
    endif 
enddo 
return 
end 

A.3  SUBROUTINE FIND_BPATH(IORIG,JDEST,ICANPATH) 
 

! this subroutine finds the best path for the OD pair that does not contain the  
! damaged links 
use common_var 
integer icanpath 
icanpath=0 
temppm=999999.9 
do iii=1,itotp 
    do jjj=1,inumpath(iorig,jdest) 
        if(ipODid(iorig,jdest,jjj).eq.iii)then 
            call bottleneck(iii) 
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            if(bnkexcap(iii).lt.1.0) iflag(ipODid(iorig,jdest,jjj))=1 
            if(icantpath(ipODid(iorig,jdest,jjj)).ne.1.and. 
     +     iflag(ipODid(iorig,jdest,jjj)).ne.1)then 
                icanpath=1 
                call find_pathmarg(iii) 
                if(pathmarg(iii).lt.temppm)then 
                    temppm=pathmarg(iii) 
                    ibestp(iorig,jdest)=ipODid(iorig,jdest,jjj) 
                endif 
            endif 
        endif 
    enddo 
enddo 
return 
end 

A.4  SUBROUTINE FIND_PATHMARG(IPATH) 
 

use common_var 
      
pathmarg(ipath)=0 
ptfree(ipath)=0 
do il=1,imaxlink 
    if(iplink(ipath,il).eq.1)then 
       call totmarg(il) 
       pathmarg(ipath)=pathmarg(ipath)+iplink(ipath,il)*marginal(il) 
       ptfree(ipath)=ptfree(ipath)+tfree(il)*iplink(ipath,il) 
    endif 
enddo 
return 
end 
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A.5  PROGRAM MAINPROG 
 

use common_var 
REAL DISRUPT 
real playerM !payoff to player M 
 
CALL read_input 
Do i=1,imaxnode 
    Do j=1,imaxnode 
        inumpath(i,j)=0 
    enddo 
enddo 
  
Do k=1, itotp 
    inumpath(jO(k),jD(k))=inumpath(jO(k),jD(k))+1 
    ipODid(jO(k),jD(k),inumpath(jO(k),jD(k)))=k 
    call bottleneck(k) 
    call utility(k) 
enddo 
Call ODaffected 
Call SharedLinks 
! DETERMINE IF A PATH HAS ANY EXCESS CAPACITY 
do ii=1,itotp 
    do jj=1,imaxlink 
         if(iplink(ii,jj).eq.1.and.cap(jj)-flow(jj).lt.0.0) icantpath(ii)=1 
    enddo 
enddo 
! DETERMINE AMOUNT OF OD FLOW THAT MUST BE  
! ACCOMMODATED ON ALTERNATE PATHS 
do i=1,imaxnode 
    do j=1,imaxnode 
        if(iODaf(i,j).eq.1)then  
            do k=1,itotp 
                 jointpath=0 
                 if(jO(k).eq.i.and.jD(k).eq.j)then 
                    do idk=1,indlink 
                        if(iplink(k,idlink(idk)).eq.1.and.jointpath.ne.1)then 
                            flowaOD(i,j)=flowaOD(i,j)+plinkflow(k,idlink(idk))  
       totafl=totafl+plinkflow(k,idlink(idk)) ! total damaged flow 
                            jointpath=1 
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                        endif 
                    enddo 
                 endif 
              enddo 
            endif 
    enddo 
enddo  
 
! DETERMINE IF THERE ARE ANY ALTERNATE PATHS 
DO i=1,imaxnode 
    do j=1,imaxnode 
        if(iODaf(i,j).eq.1)then 
           do k=1,itotp 
                if(jO(k).eq.i.and.jD(k).eq.j)then 

                 endif 

                     ict_alt(i,j)=ict_alt(i,j)+1 
                endif 
           enddo 
        endif 
    enddo 
enddo 
  
do i=1,imaxnode 
    do j=1,imaxnode 
        if(iODaf(i,j).eq.1)then  
          do k=1,itotp 
             if(jO(k).eq.i.and.jD(k).eq.j)then 
                 if(icantpath(k).ne.1)then 
                     excapOD(i,j)=excapOD(i,j)+bnkexcap(k) 
                     call utility(k) 

             endif 
          enddo 
        endif 
    enddo 
enddo 
 
open(unit=75, file='utility_n.dat', status='unknown') 
do k=1,itotp 
    write(75,700) k,util(k) 
enddo 
close(75) 
! index needs to be adjusted by flow 
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do i=1,imaxnode 
    do j=1,imaxnode 
        if(iODaf(i,j).eq.1.and.flowaOD(i,j).gt.0.0)then  
            ! if OD pair affected then need reassignment 
            if(inumpath(i,j).eq.1)then 
              ! no reassignment is possible 
              cindex(i,j)=1.0 
            else 
                if(excapOD(i,j).lt.flowaOD(i,j))then 
                   cindex(i,j)=flowaOD(i,j)/ODflow(i,j) 
                else 
                    Call Reassignment(i,j) 
                    if(ican.eq.0) then 
                        cindex(i,j)=1.0 
                    else 
                        do k=1,itotp 
                            if(jO(k).eq.i.and.jD(k).eq.j)then 
                               if(icantpath(k).ne.1)then 
                                  utlp(i,j)=utlp(i,j)+iadflow(i,j,k)/flowaOD(i,j)*util(k) 
                                  write(*,*)k,iadflow(i,j,k),flowaOD(i,j),util(k) 
                               endif 
                            endif 
                        enddo 
                        cindex(i,j)=(1-utlp(i,j))*flowaOD(i,j)/ODflow(i,j) 
                    endif 
                endif 
            endif 
        else 
            cindex(i,j)=0 
        endif   
    enddo 
enddo 
 
DISRUPT=0.0 
open(unit=71, file='index.dat', status='unknown') 
do i=1,imaxnode 
    do j=1,imaxnode 
        if(iODaf(i,j).eq.1) write(71,711) i,j,cindex(i,j) 
        DISRUPT=DISRUPT+cindex(i,j) 
    enddo 
enddo 
write(71,712) DISRUPT 
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playerM=(1-totafl/3800)*100  ! for ½ demand scenario 
write(71,*) 'Percent safely reaching destinations: ' 
write(71,712) playerM 
close(71) 
  
700  format(I6, f15.9) 
711  format(2I6,f15.9) 
712  format(f15.9) 
 
end program mainprog 

 

A.6  SUBROUTINE MODIFY_XCAP(IILINK) 
 

! this subroutine modifys the excess capacity of the bottleneck link 
! by xa(O"D")/sum(xaO'D') where O"D" is the OD pair currently being 
! examined and O'D' is the set of OD pairs affected by the damaged link 
! and the bottleneck link of the path 
! for the joint case, the denominator is the sum over all a and O'D' 
  
use common_var 
integer iODlflwck(imaxnode,imaxnode,imaxlink) 
real modflow(imaxnode,imaxnode,imaxlink) 
real modjflow(imaxlink) 
  
do imo=1,imaxnode 
    do imd=1,imaxnode 
        iODlflwck(imo,imd,imaxlink)=0 
    enddo 
enddo 
  
if(ictOsh(iilink).gt.1)then  
    do imi=1,ictOsh(iilink) 
        if(iODaf(iOsh(iilink,imi),iDsh(iilink,imi)).eq.1.and. 
+      iODlflwck(iOsh(iilink,imi),iDsh(iilink,imi),iilink).ne.1.and. 
+      ict_alt(iOsh(iilink,imi),iDsh(iilink,imi)).gt.1)then 
            DO K=1,itotp 
                IF(jO(K).eq.iOsh(iilink,imi).and.jD(K).eq. 
     +        iDsh(iilink,imi))then 
                  if(icantpath(K).ne.1)then 
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                      if(iplink(K,iilink).eq.1)then 
                          modjflow(iilink)=modjflow(iilink)+ 
     +                   flowaOD(iOsh(iilink,imi),iDsh(iilink,imi)) 
                          iODlflwck(iOsh(iilink,imi),iDsh(iilink,imi),iilink)=1 
                      endif 
                  endif 
               endif 
           enddo 
       endif 
    enddo 
    do imi=1,ictOsh(iilink) 
        if(iODaf(iOsh(iilink,imi),iDsh(iilink,imi)).eq.1)then 
            modfctr(iOsh(iilink,imi),iDsh(iilink,imi),iilink)= 
     +      flowaOD(iOsh(iilink,imi),iDsh(iilink,imi))/modjflow(iilink) 
        endif 
        if(iODaf(iOsh(iilink,imi),iDsh(iilink,imi)).eq.1.and. 
     +   modjflow(iilink).le.0.000001)then 
            modfctr(iOsh(iilink,imi),iDsh(iilink,imi),iilink)=1.0 
        endif 
    enddo 
endif 
return 
end 
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A.7  SUBROUTINE ODAFFECTED 
 

! this subroutine identifies the OD pairs affected by the damaged link 
! due to path ODs and the presence of OD flow on that link 
use common_var 
inODaf=0 
do i=1, itotp 
    do j=1, imaxlink 
        do k=1, indlink 
            if(iplink(i,j).eq.1.and.j.eq.idlink(k)) then 
                iODaf(jO(i),jD(i))=1 
                inODaf=inODaf+1 
                icantpath(i)=1 
            endif 
        enddo 
    enddo 
enddo   
 
return  
end 
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A.8  SUBROUTINE READ_INPUT 
 

use common_var 
integer ilink, jpath 
 
open(unit=1, file='linkstate.dat', status='old') 
do i=1,imaxlink 
    read(1,100) ilink, tfree(ilink), cap(ilink), flow(ilink) 
enddo 
close(1) 
open(unit=2, file='paths.dat', status='old') 
do i=1,itotp 
    read(2,200) jpath,jO(jpath),jD(jpath),pathflow(jpath) 
    do k=1, imaxlink 
        read(2,201) iplink(i,k) 
        plinkflow(i,k)=pathflow(jpath)*iplink(i,k) 
    enddo 
enddo 
close(2) 
do i=1,imaxnode 
    do j=1,imaxnode 
        do k=1,itotp 
            if(jO(k).eq.i.and.jD(k).eq.j)then 
                ODflow(i,j)=ODflow(i,j)+pathflow(k) 
            endif 
        enddo 
    enddo 
enddo 
open(unit=3, file='damage_link.dat', status='old') 
read(3,201) indlink 
do i=1,indlink 
    read(3,201) idlink(i) 
    write(*,*) idlink(i) 
enddo 
close(3) 
100   format(I6, 3f10.2) 
200   format(3I6, f10.2) 
201   format(I3) 
return 
end 
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A.9  SUBROUTINE REASSIGNMENT(IOR,JDE) 
 

! this subroutine reassigns the traffic from the damaged link 
! to the other paths connecting the O-D pair 
use common_var 
real freqrd(imaxnode,imaxnode) 
freqrd(iOr,jDe)=0 
do k=1,inumpath(iOr,jDe) 
    if(icantpath(ipODid(iOr,jDe,k)).eq.1)then 
        freqrd(iOr,jDe)=freqrd(iOr,jDe)+pathflow(ipODid(iOr,jDe,k)) 
    endif 
enddo 
CALL find_bpath(iOr,jDe,ican) 
! now reassign one at a time  
if(ican.ne.0)then 
    do iflow=1, int(freqrd(iOr,jDe)) 
        pathflow(ibestp(iOr,jDe))=pathflow(ibestp(iOr,jDe))+1 
        do il=1,imaxlink 
            if(iplink(ibestp(iOr,jDe),il).eq.1)then 
                flow(il)=flow(il)+1 
            endif 
        enddo 
        iadflow(iOr,jDe,ibestp(iOr,jDe))=iadflow(iOr,jDe,ibestp(iOr,jDe))+1 
        if(iflow.lt.int(freqrd(iOr,jDe)))then 
            call find_bpath(iOr,jDe,ican) 
        endif 
        if(ican.eq.0) goto 666 
    enddo 
endif 
666  return 
return 
end 
 

A.10  SUBROUTINE SHAREDLINKS 
 

! this subroutine identifies which paths share links 
use common_var 
integer ickODPL(itotp,imaxlink) 
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integer idfODpl(itotp,imaxlink) 
do i=1,imaxlink 
    ictOsh(i)=0 
    ictDsh(i)=0 !THESE 2 VARIABLES HAVE IDENTICAL VALUES 
enddo 
do i=1, itotp-1 
    do j=i+1, itotp 
        do k=1, imaxlink 
            if(iplink(i,k).eq.1.and.iplink(i,k).eq.iplink(j,k))then 
                ishare(i,j,k)=1 
                imshared(k)=1 
                if(jO(i).eq.jO(j).and.jD(i).eq.jD(j))then 
                    ishrsmOD(k)=1 
                    if(ickODPL(i,k).ne.1)then 
                        ODlinkfl(jO(i),jD(i),k)=ODlinkfl(jO(i),jD(i),k)+ 
     +                 plinkflow(i,k)+plinkflow(j,k) 
                        ickODPL(i,k)=1 
                        ickODPL(j,k)=1 
                    endif 
                else 
                    ishrdfOD(k)=1 
                    if(ickODPL(i,k).ne.1)then 
 ODlinkfl(jO(i),jD(i),k)=ODlinkfl(jO(i),jD(i),k)+plinkflow(i,k) 
                      ickODPL(i,k)=1 
                    endif 
                    if(iODaf(jO(i),jD(i)).eq.1.and.iODaf(jO(j),jD(j)).eq.1. 
     +             and.idfODpl(i,k).ne.1)then 
                        ictOsh(k)=ictOsh(k)+1 
                        ictDsh(k)=ictDsh(k)+1 
                        iOsh(k,ictOsh(k))=jO(i) 
                        iDsh(k,ictDsh(k))=jD(i) 
                        idfODpl(i,k)=1 
                    endif 
                    if(ickODPL(j,k).ne.1)then 
   ODlinkfl(jO(j),jD(j),k)=ODlinkfl(jO(j),jD(j),k)+plinkflow(j,k) 
                       ickODPL(j,k)=1 
                    endif 
                    if(iODaf(jO(i),jD(i)).eq.1.and.iODaf(jO(j),jD(j)).eq.1. 
     +             and.idfODpl(j,k).ne.1)then 
                        ictOsh(k)=ictOsh(k)+1 
                        ictDsh(k)=ictDsh(k)+1 
                        iOsh(k,ictOsh(k))=jO(j) 
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                        iDsh(k,ictDsh(k))=jD(j) 
                        idfODpl(j,k)=1 
                     endif 
                 endif 
             else 
                 ishare(i,j,k)=0 
             endif 
        enddo 
    enddo 
enddo 
! this section checks for the OD being affected 
! if not, then the OD flow is not counted in the proportion 
! calculated in the next section 
do i=1,imaxnode 
    do j=1,imaxnode 
        if(iODaf(i,j).ne.1)then 
            do ip=1,itotp 
                do k=1,imaxlink 
                    ODlinkfl(i,j,k)=ODlinkfl(i,j,k)-plinkflow(ip,k) 
                    if(ODlinkfl(i,j,k).lt.0.00001)ODlinkfl(i,j,k)=0.0 
                enddo 
            enddo 
        endif 
    enddo 
enddo 
do i=1,imaxnode 
    do j=1,imaxnode 
        if(iODaf(i,j).eq.1)then 
            do ip=1,itotp 
                if(jO(ip).eq.i.and.jD(ip).eq.j)then 
                    do k=1,imaxlink 
                        if(flow(k).le.0.00001)then 
                             proplfOD(i,j,k)=0.0 
                        else 
                             if(imshared(k).ne.1) proplfOD(i,j,k)=1.0 
                             if(iplink(ip,k).eq.1.and.imshared(k).eq.1)then 
     if(ishrdfOD(k).eq.1.and.plinkflow(ip,k).gt.0.00001) 
     +                         then 
                                     proplfOD(i,j,k)=ODlinkfl(i,j,k)/flow(k) 
                                else 
                                    proplfOD(i,j,k)=0.0 
                                endif 
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                                if(ishrsmOD(k).eq.1.and.ishrdfOD(k).ne.1)then 
                                    proplfOD(i,j,k)=1.0 
                                endif 
                                if(ishrsmOD(k).eq.1.and.ishrdfOD(k).eq.1)then 
                                    proplfOD(i,j,k)=ODlinkfl(i,j,k)/flow(k) 
                                endif  
                            endif 
                        endif 
                    enddo 
                endif 
            enddo 
         endif 
    enddo 
enddo    
return 
end 
 

A.11  SUBROUTINE TOTMARG(L)  
 
! This subroutine calculates the total marginal cost of adding one user to the link 
use common_var 
if(flow(l).lt.cap(l))then 
    extern(l)=0.6*((flow(l))**3)/((cap(l))**4) 
    exper(l)=tfree(l)+0.15*((flow(l)/cap(l))**4) 
    marginal(l)=exper(l)+flow(l)*extern(l) 
endif  
return 
end 
 

A.12  SUBROUTINE UTILITY(KPATH) 
 
! this subroutine calculates the utility of an alternate path 
use common_var 
call find_pathmarg(kpath) 
util(kpath)=(bnkexcap(kpath)/cap(ibneklink(kpath)))* 
+   ptfree(kpath)/pathmarg(kpath) 
return 
end 
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Appendix B 

Flow Distributions 

 

Table B.1 Flow Distributions For Table 3.11, Original Demand Level 

Player M 
Strategy 

Flow Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7 Link 8 

xl 2300 1700 0 1700 3400 1800 1600 1900 
xl

1,2 2300 700 0 0 700 700 0 0 
xl

1,6 0 1000 0 0 1000 0 1000 0 
xl

5,2 0 0 0 1100 1100 1100 0 0 

Do 
nothing / 
Avoid 3 

xl
5,6 0 0 0 600 600 0 600 1900 

xl 2300 1700 0 1700 3400 1800 1600 1900 
xl

1,2 2300 700 0 0 700 700 0 0 
xl

1,6 0 1000 0 0 1000 0 1000 0 
xl

5,2 0 0 0 1100 1100 1100 0 0 

Avoid 1 

xl
5,6 0 0 0 600 600 0 600 1900 

xl 3000 0 1000 1700 1700 1100 600 2900 
xl

1,2 3000 0 0 0 0 0 0 0 
xl

1,6 0 0 1000 0 0 0 0 1000 
xl

5,2 0 0 0 1100 1100 1100 0 0 

Avoid 2 

xl
5,6 0 0 0 600 600 0 600 1900 

xl 3000 1000 0 1100 2100 1100 1000 2500 
xl

1,2 3000 0 0 0 0 0 0 0 
xl

1,6 0 1000 0 0 1000 0 1000 0 
xl

5,2 0 0 0 1100 1100 1100 0 0 

Avoid 4 

xl
5,6 0 0 0 0 0 0 0 2500 

xl 3000 0 1000 1100 1100 1100 0 3500 
xl

1,2 3000 0 0 0 0 0 0 0 
xl

1,6 0 0 1000 0 0 0 0 1000 
xl

5,2 0 0 0 1100 1100 1100 0 0 

Avoid 5 

xl
5,6 0 0 0 0 0 0 0 2500 

xl 3000 1000 0 1306 2306 1100 1206 2294 
xl

1,2 3000 0 0 0 0 0 0 0 
xl

1,6 0 1000 0 0 1000 0 1000 0 
xl

5,2 0 0 0 1100 1100 1100 0 0 

Avoid 6 

xl
5,6 0 0 0 206 206 0 206 2294 

xl 2842 158 1000 1100 1258 1258 0 3500 
xl

1,2 2842 158 0 0 158 158 0 0 
xl

1,6 0 0 1000 0 0 0 0 1000 
xl

5,2 0 0 0 1100 1100 1100 0 0 

Avoid 7 

xl
5,6 0 0 0 0 0 0 0 2500 
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xl 3000 1000 0 1700 2700 1100 1600 1900 
xl

1,2 3000 0 0 0 0 0 0 0 
xl

1,6 0 1000 0 0 1000 0 1000 0 
xl

5,2 0 0 0 1100 1100 1100 0 0 

Avoid 8 

xl
5,6 0 0 0 600 600 0 600 1900 
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Table B.2  Flow Distributions for Table 3.12 (n=1, 3/4 Demand) 

Player M 
Strategy 

Flow Link 1 Link 2 Link 
3 

Link 4* Link 5* Link 
6* 

Link 7 Link 8 

x * l 2250 750 0 1306.67 2056.67 825 1231.67 1393.33 
xl

1,2 2250 0 0 0 0 0 0 0 
xl

1,6 0 750 0 0 750 0 750 0 

Do 
nothing / 
Avoid 3 

xl
5,6 0 0 0 481.67 481.67 0 481.67 1393.33 

xl 1275 1700 25 1134.13 2834.13 1800 1034.13 1590.87 
xl

1,2 1275 950 25 25 975 975 0 0 
xl

1,6 0 750 0 0 750 0 750 0 

Avoid 1 

xl
5,6 0 0 0 284.13 284.13 0 284.13 1590.87 

xl 2250 0 750 1533.49 1533.49 825 708.49 1916.51 
xl

1,2 2250 0 0 0 0 0 0 0 
xl

1,6 0 0 750 0 0 0 0 750 

Avoid 2 
(opt 1) 

xl
5,6 0 0 0 708.49 708.49 0 708.49 1166.51 

xl 2250 0 750 1533.50 1533.50 825 708.50 1916.50 
xl

1,2 2250 0 0 0 0 0 0 0 
xl

1,6 0 0 750 700 700 0 700 50 

Avoid 2 
(opt 2) 

xl
5,6 0 0 0 8.50 8.50 0 8.50 1866.50 

xl 2250 750 0 825 1575 825 750 1875 
xl

1,2 2250 0 0 0 0 0 0 0 
xl

1,6 0 750 0 0 750 0 750 0 

Avoid 4 

xl
5,6 0 0 0 0 0 0 0 1875 

xl 2250 0 750 825 1575 825 0 2625 
xl

1,2 2250 0 0 0 0 0 0 0 
xl

1,6 0 0 750 0 750 0 0 750 

Avoid 5 

xl
5,6 0 0 0 0 0 0 0 1875 

xl 2250 750 0 1309.79 2059.79 825 1234.79 1390.21 
xl

1,2 2250 0 0 0 0 0 0 0 
xl

1,6 0 750 0 0 750 0 750 0 

Avoid 6 

x 5,6
l 0 0 0 484.79 484.79 0 484.79 1390.21 

xl 2131.22 118.78 750 825 943.78 943.78 0 2625 
xl

1,2 2131.22 118.78 0 0 118.78 118.78 0 0 
xl

1,6 0 0 750 0 0 0 0 750 

Avoid 7 

xl
5,6 0 0 0 0 0 0 0 1875 

xl 2250 750 0 1700 2450 825 1625 1000 
xl

1,2 2250 0 0 0 0 0 0 0 
xl

1,6 0 750 0 0 750 0 750 0 

Avoid 8 

xl
5,6 0 0 0 875 875 0 875 1000 

* Links 4, 5, and 6 always carry all of the OD (5,2) flow which is 825 vph in this 

case. 
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Table B.3  Flow Distributions for Table 3.13(n=1, 1/2 Demand) 

Player M 
Strategy 

Flow Link 1 Link 2 Link 
3 

Link 4* Link 5* Link 
6* 

Link 7 Link 8 

xl* 1500 500 0 1314.98 1814.98 550 1264.98 485.02 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 500 0 0 500 0 500 0 

Do 
nothing / 
Avoid 3 

xl
5,6 0 0 0 764.98 764.98 0 764.98 485.02 

xl 250 1700 50 1119.35 2819.35 1800 1019.35 730.65 
xl

1,2 250 1250 0 0 1250 1250 0 0 
xl

1,6 0 450 50 0 450 0 450 50 

Avoid 1+

(opt 1) 

xl
5,6 0 0 0 569.35 569.35 0 569.35 680.65 

xl 1500 0 500 1476.75 1476.75 550 926.75 823.25 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 0 500 0 0 0 0 500 

Avoid 2 
(opt 1) 

xl
5,6 0 0 0 926.75 926.75 0 926.75 323.25 

xl 1500 0 500 1476.84 1476.84 550 926.84 823.16 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 0 500 500 500 0 500 0 

Avoid 2 
(opt 2) 

xl
5,6 0 0 0 426.84 426.84 0 426.84 823.16 

xl 1500 500 0 550 1050 550 500 1250 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 500 0 0 500 0 500 0 

Avoid 4 

xl
5,6 0 0 0 0 0 0 0 1250 

xl 1500 0 500 550 550 550 0 1750 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 0 500 0 0 0 0 500 

Avoid 5 

xl
5,6 0 0 0 0 0 0 0 1250 

xl 1500 500 0 1314.81 1814.81 550 1264.81 485.19 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 500 0 0 500 0 500 0 

Avoid 6 

xl
5,6 0 0 0 764.81 764.81 0 764.81 485.19 

xl 1500 0 500 550 550 550 0 1750 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 0 500 0 0 0 0 500 

Avoid 7 

xl
5,6 0 0 0 0 0 0 0 1250 

xl 1500 500 0 1700 2200 550 1650 100 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 500 0 0 500 0 500 0 

Avoid 8 

xl
5,6 0 0 0 1150 1150 0 1150 100 

* Links 4, 5, and 6 always carry all of the OD (5,2) flow which is 550 vph in this case. 
+  Options 1 and 2 for Avoid 2 have the equivalent values of the objective function to four decimal 
places. 
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Table B.4  Flow Distribution Corresponding to Table 3.14, n=2, Original Demand 

Player 
M 
Strategy 

Flow Link 1 Link 2 Link 3 Link 4* Link 5* Link 6* Link 7 Link 8 

xl* 2400 0 1600 1700 1700 1700 0 3500 
xl

1,2 2400 0 600 600 600 600 0 0 
xl

1,6 0 0 1000 0 0 0 0 1000 

Avoid 
1,2 (opt 
1) 

xl
5,6 0 0 0 0 0 0 0 2500 

xl* 2300 100 1600 1700 1800 1800 0 3500 
xl

1,2 2300 100 600 600 700 700 0 0 
xl

1,6 0 0 1000 0 0 0 0 1000 

Avoid 
1,2 (opt 
2) 

xl
5,6 0 0 0 0 0 0 0 2500 

xl* 2300 1700 0 1700 3400 1800 1600 1900 
xl

1,2 2300 700 0 0 700 700 0 0 
xl

1,6 0 1000 0 0 1000 0 1000 0 

Avoid 
1,3 

xl
5,6 0 0 0 600 600 0 600 1900 

xl* 2300 1700 0 1100 2800 1800 1000 2500 
xl

1,2 2300 700 0 0 700 700 0 0 
xl

1,6 0 1000 0 0 1000 0 1000 0 

Avoid 
1,4 

xl
5,6 0 0 0 0 0 0 0 2500 

xl* 2300 700 1000 1100 1800 1800 0 3500 
xl

1,2 2300 700 0 0 700 700 0 0 
xl

1,6 0 0 1000 0 0 0 0 1000 

Avoid 
1,5 (opt 
1); 
1,6(opt 
1); 1,7 

xl
5,6 0 0 0 0 0 0 0 2500 

xl* 3000 0 1000 1100 1100 1100 0 3500 
xl

1,2 3000 0 0 0 0 0 0 0 
xl

1,6 0 0 1000 0 0 0 0 1000 

Avoid 
1,5 (opt 
2); 
1,6(opt 
2) 

xl
5,6 0 0 0 0 0 0 0 2500 

xl* 2650 350 1000 1100 1450 1450 0 3500 
xl

1,2 2650 350 0 0 350 350 0 0 
xl

1,6 0 0 1000 0 0 0 0 1000 

Avoid 
1,5 (opt 
3); 
1,6(opt 
3) 

xl
5,6 0 0 0 0 0 0 0 2500 

xl* 2300 700 1000 1700 2400 1800 600 2900 
xl

1,2 2300 700 0 0 700 700 0 0 
xl

1,6 0 0 1000 0 0 0 0 1000 

Avoid 
1,8(opt 
1) 

xl
5,6 0 0 0 600 600 0 600 1900 

xl* 2300 700 1000 1700 2400 1800 600 2900 
xl

1,2 2300 700 0 0 700 700 0 0 
xl

1,6 0 0 1000 300 300 0 600 400 

Avoid 
1,8(opt 
2) 

xl
5,6 0 0 0 300 300 0 0 2500 

xl* 2300 700 1000 1700 2400 1800 600 2900 
xl

1,2 2300 700 0 0 700 700 0 0 
xl

1,6 0 0 1000 300 300 0 300 700 

Avoid 
1,8(opt 
3) 

xl
5,6 0 0 0 300 300 0 300 2200 

xl* 3000 1000 0 1330.96 2330.96 1100 1230.96 2269.04 
xl

1,2 3000 0 0 0 0 0 0 0 
xl

1,6 0 1000 0 0 1000 0 1000 0 

Avoid 
2,3(opt 
1) 

xl
5,6 0 0 0 230.96 230.96 0 230.96 2269.04 
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xl* 3000 0 1000 1700 1700 1100 600 2565.03 
xl

1,2 3000 0 0 0 0 0 0 0 
xl

1,6 0 0 1000 220.66 220.66 0 220.66 345.53 

Avoid 
2,3(opt 
2); 
2,8(opt 
3); 
7,8(opt 
3) 

xl
5,6 0 0 0 379.34 379.34 0 280.50 2219.50 

xl* 3000 507.95 492.05 1527.02 2034.97 1100 934.97 2565.03 
xl

1,2 3000 0 0 0 0 0 0 0 
xl

1,6 0 507.95 492.05 146.51 654.45 0 654.47 345.53 

Avoid 
2,3(opt 
3) 

xl
5,6 0 0 0 280.50 280.50 0 280.50 2219.50 

xl* 3000 0 1000 1100 1100 1100 0 3500 
xl

1,2 3000 0 0 0 0 0 0 0 
xl

1,6 0 0 1000 0 0 0 0 1000 

Avoid 
2,4; 2,5; 
2,7; 
3,5(opt 
2); 4,5; 
5,6; 5,7; 
6,7 

xl
5,6 0 0 0 0 0 0 0 2500 

xl* 3000 0 1000 1700 1100 1100 600 2900 
xl

1,2 3000 0 0 0 0 0 0 0 
xl

1,6 0 0 1000 0 0 0 0 1000 

Avoid 
2,6(opt 
1); 
2,8(opt 
2); 
5,8(opt 
2); 
7,8(opt 
2) 

xl
5,6 0 0 0 0 0 0 600 1900 

xl* 3000 0 1000 1700 1700 1100 600 2900 
xl

1,2 3000 0 0 0 0 0 0 0 
xl

1,6 0 0 0 600 600 0 600 400 

Avoid 
2,6(opt 
2) 

xl
5,6 0 0 0 0 0 0 0 2500 

xl* 3000 0 1000 1700 1700 1100 600 2900 
xl

1,2 3000 0 0 0 0 0 0 0 
xl

1,6 0 0 1000 300 300 0 300 700 

Avoid 
2,6(opt 
3) 

xl
5,6 0 0 0 300 300 0 300 2200 

xl* 3000 1000 0 1700 2700 1100 1600 1900 
xl

1,2 3000 0 0 0 0 0 0 0 
xl

1,6 0 1000 0 0 1000 0 1000 0 

Avoid 
2,8(opt 
1); 3,6; 
3,7(opt 
2); 3,8; 
4,8; 
5,8(opt 
1); 6,8; 
7,8(opt 
1) 

xl
5,6 0 0 0 600 600 0 600 1900 

xl* 3000 1000 0 1700 2700 1100 1000 2500 
xl

1,2 3000 0 0 0 0 0 0 0 
xl

1,6 0 1000 0 0 1000 0 1000 0 

Avoid 
3,4; 
3,5(opt 
1); 
3,7(opt 
1); 4,6 

xl
5,6 0 0 0 600 600 0 0 2500 

xl* 3000 507.95 492.05 1100 1607.95 1100 507.95 2992.05 
xl

1,2 3000 0 0 0 0 0 0 0 
Avoid 
3,5(opt 
3); xl

1,6 0 507.95 492.05 0 507.95 0 507.95 492.05 
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3,7(opt 
3) 

xl
5,6 0 0 0 0 0 0 0 2500 

xl* 2842.07 157.93 1000 1100 1257.93 1257.93 0 3500 
xl

1,2 2842.07 157.93 0 0 157.93 157.93 0 0 
xl

1,6 0 0 1000 0 0 0 0 1000 

Avoid 
4,7 

xl
5,6 0 0 0 0 0 0 0 2500 

xl* 3000 844.35 155.65 1100 1944.35 1100 844.35 2655.65 
xl

1,2 3000 0 0 0 0 0 0 0 
xl

1,6 0 844.35 155.65 0 844.35 0 844.35 155.65 

Avoid 
5,8(opt 
3) 

xl
5,6 0 0 0 0 0 0 0 2500 
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Table B.5 Flow Distribution Corresponding to Table 3.16, n=2, 3/4 Demand 

M’s 
Strat. 

Flow Link 1 Link 2 Link 3 Link 4* Link 5* Link 6* Link 7 Link 8 

xl* 1400 0 1600 1700 1700 1675 25 2600 
xl

1,2 1400 0 850 850 850 850 0 0 
xl

1,6 0 0 750 0 0 0 25 750 

Avoid 
1,2 
(opt 1) 

xl
5,6 0 0 0 25 25 0 0 1850 

xl* 1275 125 1600 1675 1800 1800 0 2625 
xl

1,2 1275 0 850 850 975 975 0 0 
xl

1,6 0 0 750 0 0 0 0 750 

Avoid 
1,2 
(opt 2) 

xl
5,6 0 0 0 0 0 0 0 1875 

xl* 1300 1700 0 1116.16 2816.16 1775 1041.16 1583.84 
xl

1,2 1300 950 0 0 950 950 0 0 
xl

1,6 0 750 0 0 750 0 750 0 

Avoid 
1,3 
(opt 1) 

xl
5,6 0 0 0 291.16 291.16 0 291.16 1583.84 

xl* 1275 1700 25 1120.61 2820.61 1800 1020.61 1604.39 
xl

1,2 1275 975 0 0 975 975 0 0 
xl

1,6 0 725 25 0 725 0 725 25 

Avoid 
1,3 
(opt 
2); 1,6 
(opt 2) 

xl
5,6 0 0 0 295.61 295.61 0 295.61 1579.39 

xl* 1275 1700 25 1120.61 2820.61 1800 1020.61 1604.39 
xl

1,2 1275 975 0 0 975 975 0 0 
xl

1,6 0 725 25 25 750 0 750 0 

Avoid 
1,3 
(opt 3) 

xl
5,6 0 0 0 270.61 270.61 0 270.61 1604.39 

xl* 1275 1700 25 825 2525 1800 725 1900 
xl

1,2 1275 975 0 0 975 975 0 0 
xl

1,6 0 725 25 0 725 0 725 25 

Avoid 
1,4 

xl
5,6 0 0 0 0 0 0 0 1875 

xl* 2250 0 750 825 825 825 0 2625 
xl

1,2 2250 0 0 0 0 0 0 0 
xl

1,6 0 0 750 0 0 0 0 750 

Avoid  
1,5 
(opt1); 
2,4; 
2,5; 
2,7; 
3,5 
(opt2); 
3,7 
(opt2); 
4,5; 
5,6; 
5,7; 
5,8 
(opt2); 
6,7; 
7,8 
(opt 1) 

xl
5,6 0 0 0 0 0 0 0 1875 

xl* 1275 975 750 825 1800 1800 0 2625 
xl

1,2 1275 975 0 0 975 975 0 0 
xl

1,6 0 0 750 0 0 0 0 750 

Avoid  
1,5 
(opt2); 
1,7 xl

5,6 0 0 0 0 0 0 0 1875 
xl* 1773.64 476.36 750 825 1301.36 1301.36 0 2625 Avoid 

1,5 xl
1,2 1773.64 476.36 0 0 476.36 476.36 0 0 
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xl
1,6 0 0 750 0 0 0 0 750 (opt 3) 

xl
5,6 0 0 0 0 0 0 0 1875 

xl* 2250 750 0 1309.79 2059.79 825 1234.79 1390.21 
xl

1,2 2250 0 0 0 0 0 0 0 
xl

1,6 0 750 0 0 750 0 750 0 

Avoid 
1,6 
(opt1); 
2,3 
(opt1); 
3,6; 
5,8 
(opt 1) 

xl
5,6 0 0 0 484.79 484.79 0 484.79 1390.21 

xl* 1773.64 1226.36 0 1242.00 2468.36 1301.36 1167.00 1458 
xl

1,2 1773.64 476.36 0 0 476.36 476.36 0 0 
xl

1,6 0 750 0 0 750 0 750 0 

Avoid 
1,6 
(opt 3) 

xl
5,6 0 0 0 417 417 0 417 1458 

xl* 1300 1700 0 1700 3400 1775 1625 1000 
xl

1,2 1300 950 0 0 950 950 0 0 
xl

1,6 0 750 0 0 750 0 750 0 

Avoid 
1,8 
(opt 1) 

xl
5,6 0 0 0 875 875 0 875 1000 

xl* 1275 1700 25 1700 3400 1800 1600 1025 
xl

1,2 1275 975 0 0 975 975 0 0 
xl

1,6 0 725 25 0 725 0 725 25 

Avoid 
1,8 
(opt 2) 

xl
5,6 0 0 0 875 875 0 875 1000 

xl* 1275 1700 25 1700 3400 1800 1600 1025 
xl

1,2 1275 975 0 0 975 975 0 0 
xl

1,6 0 725 25 25 750 0 750 0 

Avoid 
1,8 
(opt 3) 

xl
5,6 0 0 0 850 850 0 850 1025 

xl* 2250 0 750 1700 1700 825 875 1750 
xl

1,2 2250 0 0 0 0 0 0 0 
xl

1,6 0 0 750 375 375 0 375 375 

Avoid 
2,3 
(opt2); 
2,6 
(opt3); 
2,8 
(opt 1) 

xl
5,6 0 0 0 500 500 0 500 1375 

xl* 2250 360.48 389.52 1454.89 1815.37 825 990.37 1634.63 
xl

1,2 2250 0 0 0 0 0 0 0 
xl

1,6 0 360.48 389.52 53.64 414.12 0 414.12 335.88 

Avoid 
2,3 
(opt3); 
7,8 
(opt 3) 

xl
5,6 0 0 0 576.25 576.25 0 576.25 1298.75 

xl* 2250 0 750 1533.48 1533.48 825 708.48 1916.52 
xl

1,2 2250 0 0 0 0 0 0 0 
xl

1,6 0 0 750 0 0 0 0 750 

Avoid 
2,6 
(opt 1) 

708.48 xl
5,6 0 0  708.48 0 708.48 1916.52 

xl* 2250 0 750 1533.48 1533.48 825 708.48 1916.52 
xl

1,2 2250 0 0 0 0 0 0 0 
xl

1,6 0 0 750 708.48 708.48 0 708.48 41.52 

Avoid 
2,6 
(opt 2) 

0 xl
5,6 0 0 0 0 0 0 1875 

xl* 2250 0 750 1700 1700 825 875 1750 
xl

1,2 2250 0 0 0 0 0 0 0 
xl

1,6 0 0 750 0 0 0 0 750 

Avoid 
2,8 
(opt 2) 

xl
5,6 0 0 0 875 875 0 875 1000 

xl* 2250 0 750 1700 1700 825 875 1750 
xl

1,2 2250 0 0 0 0 0 0 0 
xl

1,6 0 0 750 750 750 0 750 0 

Avoid 
2,8 
(opt 3) 

xl
5,6 0 0 0 125 125 0 125 1750 
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xl* 2250 750 0 825 1575 825 750 1875 
xl

1,2 2250 0 0 0 0 0 0 0 
xl

1,6 0 750 0 0 750 0 750 0 

Avoid 
3,4; 
3,5 
(opt1); 
3,7 
(opt1); 
4,6; 
4,8 
(opt 2) 

xl
5,6 0 0 0 825 0 0 0 1875 

xl* 2250 325 325 825 1150 825 325 2200 
xl

1,2 2250 0 0 0 0 0 0 0 
xl

1,6 0 325 325 0 325 0 325 325 

Avoid 
3,5 
(opt3); 
3,7 
(opt 3) 

 xl
5,6 0  0 0 0 0 1875 

xl* 2250 750 0 1700 2450 825 1625 1000 
xl

1,2 2250 0 0 0 0 0 0 0 
xl

1,6 0 750 0 0 750 0 750 0 

Avoid 
3,8; 
4,8 
(opt1); 
5,8 
(opt3); 
6,8; 
7,8 
(opt 2) 

xl
5,6 0 0 0 875 875 0 875 1000 

xl* 2130.69 119.31 750 825 944.31 944.31 0 2625 
xl

1,2 2130.69 119.31 0 0 119.31 119.31 0 0 
xl

1,6 0 0 750 0 0 0 0 750 

Avoid 
4,7 

xl
5,6 0 0 0 0 0 0 0 1875 

xl* 2250 750 0 1325 2075 825 1250 1375 
xl

1,2 2250 0 0 0 0 0 0 0 
xl

1,6 0 750 0 0 750 0 750 0 

Avoid 
4,8 
(opt 3) 

xl
5,6 0 0 0 500 500 0 500 1375 

* Links 4, 5, and 6 always carry all of the OD (5,2) flow which is 875 vph in this case. 
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Table B.6  Flow Distribution for Table 3.18, n=2, ½ Demand Level  

Player M 
Strategy 

Flow Link 1 Link 2 Link 
3 

Link 4* Link 5* Link 
6* 

Link 7 Link 8 

xl* 1500 500 0 1314.98 1814.98 550 1264.98 485.02 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 500 0 0 500 0 500 0 

Do 
nothing  

xl
5,6 0 0 0 764.98 764.98 0 764.98 485.02 

xl 250 150 1600 1700 1850 1800 50 1700 
xl

1,2 250 150 1100 1100 1250 1250 0 0 
xl

1,6 0 0 500 0 0 0 0 500 

Avoid 
1,2 
(opt 1) 

xl
5,6 0 0 0 50 50 0 50 1200 

xl 250 150 1600 1700 1850 1800 50 1700 
xl

1,2 250 100 1150 1150 1250 1250 50 0 
xl

1,6 0 50 450 0 50 0 0 450 

Avoid 
1,2 
(opt 2) 

xl
5,6 0 0 0 0 0 0 0 1250 

xl 300 1700 0 1103 2803 1750 1053 697 
xl

1,2 300 1200 0 0 1200 1200 0 0 
xl

1,6 0 500 0 0 500 0 500 0 

Avoid 
1,3 
 

0 xl
5,6 0 0 553 553 0 553 697 

xl 250 1700 50 550 2250 1800 450 1300 
xl

1,2 250 1250 0 0 1250 1250 0 0 
xl

1,6 0 450 50 0 450 0 450 50 

Avoid 
1,4 

xl
5,6 0 0 0 0 0 0 0 1250 

xl 250 1250 500 550 1800 1800 0 1750 
xl

1,2 250 1250 0 0 1250 1250 0 0 
xl

1,6 0 0 500 0 0 0 0 500 

Avoid 
1,5 
(opt 1); 
1,7 xl

5,6 0 0 0 0 0 0 0 1250 
xl 1500 0 500 550 550 550 0 1750 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 0 500 0 0 0 0 500 

Avoid 
1,5(opt 
2); 2,4; 
2,5; 2,7; 
3,5(opt 
2); 3,7 
(opt 2); 
4,5; 4,7; 
5,6; 5,7; 
5,8(opt 
2); 6,7; 
7,8(opt 
2) 

xl
5,6 0 0 0 0 0 0 0 1250 

xl 1500 500 0 1314.81 1814.81 550 1264.81 485.19 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 500 0 0 500 0 500 0 

Avoid 
1,6 
(opt 1) 

xl
5,6 0 0 0 764.81 764.81 0 764.81 485.19 
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xl 250 1700 50 1098.90 2798.90 1800 998.90 751.10 
xl

1,2 250 1250 0 0 1250 1250 0 0 
xl

1,6 0 450 50 0 450 0 450 50 

Avoid 
1,6 
(opt 2) 

xl
5,6 0 0 0 548.90 548.90 0 548.90 701.10 

xl 250 1700 50 1700 3400 1800 1600 150 
xl

1,2 250 1250 0 0 1250 1250 0 0 
xl

1,6 0 450 50 0 450 0 450 50 

Avoid 
1,8 
(opt 1) 

xl
5,6 0 0 0 1150 1150 0 1150 100 

xl 250 1700 50 1700 3400 1800 1600 150 
xl

1,2 250 1250 0 0 1250 1250 0 0 
xl

1,6 0 450 50 50 500 0 500 0 

Avoid 
1,8  
(opt 2) 

xl
5,6 0 0 0 1100 1100 0 1100 150 

xl 1500 500 0 1305.76 1805.76 550 1255.76 494.24 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 500 0 0 500 0 500 0 

Avoid 
2,3 
(opt 1) 

xl
5,6 0 0 0 755.76 755.76 0 755.76 494.24 

xl 1500 0 500 1473.40 1473.40 550 923.40 826.60 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 0 500 83.82 83.82 0 83.82 419.18 

Avoid 
2,3 
(opt 2) 

xl
5,6 0 0 0 839.58 839.58 0 839.58 410.42 

xl 1500 155.95 344.
05 

1440.06 1596.01 550 1046.01 703.99 

xl
1,2 1500 0 0 0 0 0 0 0 

xl
1,6 0 155.95 344.

05 
137.83 293.78 0 293.78 206.22 

Avoid 
2,3 
(opt 3) 

xl
5,6 0 0 0 752.23 752.23 0 752.23 497.77 

xl 1500 0 500 1476.75 1476.75 550 926.75 823.25 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 0 500 0 0 0 0 500 

Avoid 
2,6 
(opt 1) 

xl
5,6 0 0 0 926.75 926.75 0 926.75 323.25 

xl 1500 0 500 1476.75 1476.75 550 926.75 823.25 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 0 500 500 500 0 500 0 

Avoid 
2,6 
(opt 2) 

xl
5,6 0 0 0 426.75 426.75 0 426.75 823.25 

xl 1500 0 500 1476.75 1476.75 550 926.75 823.25 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 0 500 250 250 0 250 250 

Avoid 
2,6 
(opt 3) 

xl
5,6 0 0 0 676.75 676.75 0 676.75 573.25 
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xl 1500 0 500 1700 1700 550 1150 600 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 0 500 0 0 0 0 500 

Avoid 
2,8 
(opt 1) 

xl
5,6 0 0 0 1150 1150 0 1150 100 

xl 1500 0 500 1700 1700 550 1150 600 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 0 500 500 500 0 500 0 

Avoid 
2,8 
(opt 2) 

xl
5,6 0 0 0 650 650 0 650 600 

xl 1500 0 500 1700 1700 550 1150 600 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 0 500 250 250 0 250 250 

Avoid 
2,8  
(opt 3) 

xl
5,6 0 0 0 900 900 0 900 350 

xl 1500 500 0 550 1050 550 500 1250 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 500 0 0 500 0 500 0 

Avoid 
3,4; 3,5 
(opt 1); 
3,7(opt 
1); 4,6; 
4,8(opt 
2) 

xl
5,6 0 0 0 0 0 0 0 1250 

xl 1500 250 250 550 800 550 250 1500 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 250 250 0 250 0 250 250 

Avoid 
3,5  
(opt 3); 
3,7 
(opt 3) 

xl
5,6 0 0 0 0 0 0 0 1250 

xl 1500 500 0 1314.81 1814.81 550 1264.81 485.19 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 500 0 0 500 0 500 0 

Avoid 
3,6 

xl
5,6 0 0 0 764.81 764.81 0 764.81 485.19 

xl 1500 500 0 1700 2200 550 1650 100 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 500 0 0 500 0 500 0 

Avoid 
3,8; 4,8 
(opt 1); 
5,8(opt 
3); 6,8; 
7,8(opt 
1) 

xl
5,6 0 0 0 1150 1150 0 1150 100 

xl 1500 500 0 1175 1675 550 1125 625 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 500 0 0 500 0 500 0 

Avoid 
4,8 (opt 
3) 

xl
5,6 0 0 0 625 625 0 625 625 

xl 1500 500 0 1314.82 1814.82 550 1264.82 485.18 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 500 0 0 500 0 500 0 

Avoid 
5,8 (opt 
1) 

xl
5,6 0 0 0 764.82 764.82 0 764.82 485.18 
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xl 1500 250 250 1700 1700 550 1150 600 
xl

1,2 1500 0 0 0 0 0 0 0 
xl

1,6 0 250 250 250 250 0 250 250 

Avoid 
7,8 
(opt 3) 

xl
5,6 0 0 0 900 900 0 900 600 

* Links 4, 5, and 6 always carry all of the OD (5,2) flow which is 550 vph in this case. 
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Appendix C 

Household Generation Code 

 

C.1 MODULE COMMON_VAR 
parameter(ihhs=20000) 
parameter(imaxkid=3) 
parameter(imaxveh=35000) 
 
integer iagek(ihhs,imaxkid) 
integer ihomez(ihhs) 
integer ibusz(ihhs,2) 
integer ieschlz(ihhs) 
integer imschlz(ihhs) 
integer ihschlz(ihhs) 
integer itype(ihhs) 
integer inumkids(ihhs) 
integer ivehnum(ihhs,2) 
integer ictnofam 
integer ictfam 
integer ictmcf 
integer ictsmf 
integer ictkids 
integer ictveh 
integer iupn(imaxveh) 
integer idwn(imaxveh) 
integer iuserc(imaxveh) 
integer ivehtype(imaxveh) 
integer ivehocc(imaxveh) 
integer inumndp(imaxveh) !number of nodes in path 
integer inumdest(imaxveh) 
integer iinfo(imaxveh) 
integer ivtohh(imaxveh) !based on veh number tells hh number 

  
real nofam 
real fam 
real mcf 
real smf 
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real kids 
real startt(imaxveh) 
real sband(imaxveh) 
real response(imaxveh) ! percent response for BR users, else 0 
real acttime(6) ! activity duration 

 
end 
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C.2 PROGRAM FAMILY_GEN 
c *********** Ft. Worth Census 2000 data ****************** 
c Total number of households = 195,058 for entire city  

c  6. Single parent with two middle school children  

c Since we are only modeling a portion of the city, generate 20,000 hhs  
c Non families = 34.6%  (type 1) 
c Families = 65.4% 
c  34.7% (of the total hhs) have children 
c  45.8% (of the total hhs) are married couple families 
c  14.7% (of the total hhs) are single mother families 
c ************************************************************ 
 use portlib 
 use common_var 
c ******************* Family types *******************  
c  1. Single individual 
c  2. Single parent with one elementary school child  
c  3. Single parent with one middle school child  
c  4. Single parent with one high school child  
c  5. Single parent with two elementary school children  

c  7. Single parent with two high school children  
c  8. Single parent with one elementary school child and one middle school 

child  
c  9. Single parent with one elementary school child and one high school 

child 
c  10. Single parent with one middle school aged child and one high school 

aged child  
c  11. Couple (no children) 
c  12. Two parents with one elementary school aged child  
c  13. Two parents with one middle school aged child  
c  14. Two parents with one high school aged child  
c  15. Two parents with two elementary school aged children  
c  16. Two parents with two middle school aged children  
c  17. Two parents with two high school aged children  
c  18. Two parents with one elementary school aged child and one middle 

school aged child  
c  19. Two parents with one middle school aged child and one high school 

aged child  
c  20. Two parents with one elementary school child and one high school 

child 
c  21. Two parents with three elementary school children 
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c  22. Two parents with two elementary school children and one middle 
school child 

c  23. Two parents with one elementary school child and two middle school 
children 

c  24. Two parents with one elementary school, one middle school, and one 
high school child 

c  25. Two parents with three middle school children 
c  26. Two parents with two middle school children and one high school 

child 
c  27. Two parents with one middle school and two high school children 
c  28. Two parents with three high school children 
c  29. Two parents with two high school children and one elementary school 

child 
c  30. Two parents with one high school child and two elementary school 

children 
c***************************************************************** 
 
 nofam=0.346*ihhs 
 fam=0.654*ihhs 
 mcf=0.458*ihhs 
 smf=0.147*ihhs 
 kids=0.347*ihhs 
  
 ictveh=0 
 
 do ii=1, ihhs 
   r1=random(0) 
   if(r1.lt.0.50.and.ictnofam.lt.int(nofam))then 
  itype(ii)=1 
  ictveh=ictveh+1 
  ivehnum(ii,1)=ictveh 
  ivehnum(ii,2)=0 
  ivtohh(ictveh)=ii 
  ictnofam=ictnofam+1 
  inumkids(ii)=0 
  ieschlz(ii)=0 
  imschlz(ii)=0 
  ihschlz(ii)=0 
  r2=random(0) 
  if(r2.lt.0.17)ihomez(ii)=1 
  if(r2.ge.0.17.and.r2.lt.0.34)ihomez(ii)=2 
  if(r2.ge.0.34.and.r2.lt.0.51)ihomez(ii)=3 
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  if(r2.ge.0.51.and.r2.lt.0.68)ihomez(ii)=4 
  if(r2.ge.0.68.and.r2.lt.0.85)ihomez(ii)=5 
  if(r2.ge.0.85)ihomez(ii)=6 
  r3=random(0) 
  if(r3.le.0.50)then 
   ibusz(ii,1)=7 
   call zone7(ictveh) 
  endif 
  if(r3.gt.0.50.and.r3.le.0.51)then 
   ibusz(ii,1)=8 
   call zone8(ictveh) 
  endif 
  if(r3.gt.0.51)then 
   ibusz(ii,1)=9 
   call zone9(ictveh) 
  endif 
  ibusz(ii,2)=0 
   else !family 
  ictfam=ictfam+1 
  r4=random(0) 
  if(r4.lt.0.30.and.ictsmf.lt.int(smf))then 
    ictsmf=ictsmf+1 
    ictveh=ictveh+1 
    ivehnum(ii,1)=ictveh 
    ivehnum(ii,2)=0 
    ivtohh(ictveh)=ii 
    ictkids=ictkids+1 
    r2=random(0) 
    if(r2.lt.0.17)ihomez(ii)=1 
    if(r2.ge.0.17.and.r2.lt.0.34)ihomez(ii)=2 
    if(r2.ge.0.34.and.r2.lt.0.51)ihomez(ii)=3 
    if(r2.ge.0.51.and.r2.lt.0.68)ihomez(ii)=4 
    if(r2.ge.0.68.and.r2.lt.0.85)ihomez(ii)=5 
    if(r2.ge.0.85)ihomez(ii)=6 
    r3=random(0) 
    if(r3.le.0.49)then 
   ibusz(ii,1)=7 
   call zone7(ictveh) 
    endif 
    if(r3.gt.0.49.and.r3.le.0.51)then 
   ibusz(ii,1)=8 
   call zone8(ictveh) 
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      endif 
    if(r3.gt.0.51)then 
   ibusz(ii,1)=9 
   call zone9(ictveh) 
    endif 
    ibusz(ii,2)=0 
    r5=random(0) ! number of kids 
   if(r5.lt.0.6)then ! 1 kid 
     inumkids(ii)=1 
     r6=random(0) ! age of kid  
     if(r6.le.0.33) then 
       iagek(ii,inumkids(ii))=1 
    itype(ii)=2 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.3.or.ihomez(ii). 
      eq.5)then 
     ieschlz(ii)=11 
    else 
     ieschlz(ii)=12 
    endif 
    imschlz(ii)=0 
    ihschlz(ii)=0 
     endif 
     if(r6.gt.0.33.and.r6.le.0.66) then 
       iagek(ii,inumkids(ii))=2 
    itype(ii)=3 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.2.or.ihomez(ii). 
      eq.3)then 
     imschlz(ii)=10 
    else 
     imschlz(ii)=13 
    endif 
    ieschlz(ii)=0 
    ihschlz(ii)=0 
     endif 
     if(r6.gt.0.66) then 
    iagek(ii,inumkids(ii))=3 
    itype(ii)=4 
    ieschlz(ii)=0 
    imschlz(ii)=0 
    ihschlz(ii)=14 
     endif 
   else ! 2 kids 
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    do k=1,2 
     r6=random(0) ! age of kid  
     if(r6.le.0.33) iagek(ii,k)=1 
     if(r6.gt.0.33.and.r6.le.0.66) iagek(ii,k)=2 
     if(r6.gt.0.66) iagek(ii,k)=3 
    enddo 
    if(iagek(ii,1).eq.1.and.iagek(ii,2).eq.1)then 
    itype(ii)=5 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.3.or.ihomez(ii). 
      eq.5)then 
     ieschlz(ii)=11 
    else 
     ieschlz(ii)=12 
    endif 
    imschlz(ii)=0 
    ihschlz(ii)=0 
     endif 
    if(iagek(ii,1).eq.2.and.iagek(ii,2).eq.2)then 
    itype(ii)=6 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.2.or.ihomez(ii). 
      eq.3)then 
     imschlz(ii)=10 
    else 
     imschlz(ii)=13 
    endif 
    ieschlz(ii)=0 
    ihschlz(ii)=0 
     endif 
    if(iagek(ii,1).eq.3.and.iagek(ii,2).eq.3)then 
    itype(ii)=7 
    ieschlz(ii)=0 
    imschlz(ii)=0 
    ihschlz(ii)=14 
    endif 
    if((iagek(ii,1).eq.1.and.iagek(ii,2).eq.2).or. 
      (iagek(ii,2).eq.1.and.iagek(ii,1).eq.2))then 
 itype(ii)=8 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.3.or.ihomez(ii). 
      eq.5)then 
     ieschlz(ii)=11 
    else 
     ieschlz(ii)=12 
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    endif 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.2.or.ihomez(ii). 
      eq.3)then 
     imschlz(ii)=10 
    else 
     imschlz(ii)=13 
    endif 
    ihschlz(ii)=0 
     endif 
    if((iagek(ii,1).eq.1.and.iagek(ii,2).eq.3).or. 
      (iagek(ii,2).eq.1.and.iagek(ii,1).eq.3))then 
 itype(ii)=9 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.3.or.ihomez(ii). 
      eq.5)then 
     ieschlz(ii)=11 
    else 
     ieschlz(ii)=12 
    endif 
    imschlz(ii)=0 
    ihschlz(ii)=14 
    endif 
    if((iagek(ii,1).eq.2.and.iagek(ii,2).eq.3).or. 
      (iagek(ii,2).eq.2.and.iagek(ii,1).eq.3))then 
 itype(ii)=10 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.2.or.ihomez(ii). 
      eq.3)then 
     imschlz(ii)=10 
    else 
     imschlz(ii)=13 
    endif 
    ieschlz(ii)=0 
    ihschlz(ii)=14 
    endif 
   endif 
 
  else !married couple fam 
    ictmcf=ictmcf+1 
    r2=random(0) 
    if(r2.lt.0.17)ihomez(ii)=1 
    if(r2.ge.0.17.and.r2.lt.0.34)ihomez(ii)=2 
    if(r2.ge.0.34.and.r2.lt.0.51)ihomez(ii)=3 
    if(r2.ge.0.51.and.r2.lt.0.68)ihomez(ii)=4 
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    if(r2.ge.0.68.and.r2.lt.0.85)ihomez(ii)=5 
    if(r2.ge.0.85)ihomez(ii)=6 
    ictveh=ictveh+1 
    ivehnum(ii,1)=ictveh 
    ivtohh(ictveh)=ii 
    r3=random(0) 
     if(r3.le.0.49)then 
   ibusz(ii,1)=7 
   call zone7(ictveh) 
    endif 
    if(r3.gt.0.49.and.r3.le.0.50)then 
   ibusz(ii,1)=8 
   call zone8(ictveh) 
    endif 
    if(r3.gt.0.50)then 
   ibusz(ii,1)=9 
   call zone9(ictveh) 
    endif 
    ictveh=ictveh+1 
    ivehnum(ii,2)=ictveh 
    ivtohh(ictveh)=ii 
    r8=random(0) 
    if(r8.le.0.48)then 
   ibusz(ii,2)=7 
   call zone7(ictveh) 
    endif 
    if(r8.gt.0.48.and.r8.le.0.49)then 
   ibusz(ii,2)=8 
   call zone8(ictveh) 
    endif 
    if(r8.gt.0.49.and.r8.le.0.99)then 
   ibusz(ii,2)=9 
   call zone9(ictveh) 
    endif 
    if(r8.gt.0.99)then 
   ibusz(ii,2)=ihomez(ii) 
   if(ihomez(ii).eq.1)call zone1(ictveh) 
   if(ihomez(ii).eq.2)call zone2(ictveh) 
   if(ihomez(ii).eq.3)call zone3(ictveh) 
   if(ihomez(ii).eq.4)call zone4(ictveh) 
   if(ihomez(ii).eq.5)call zone5(ictveh) 
   if(ihomez(ii).eq.6)call zone6(ictveh) 
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    endif 
    r7=random(0)  
    if(r7.le.0.30) then 
   inumkids(ii)=0  
   itype(ii)=11 
    endif 
    if(r7.gt.0.30.and.r7.le.0.60)then 
   inumkids(ii)=1 
   r6=random(0) ! age of kid  
   if(r6.le.0.33) then 
     iagek(ii,inumkids(ii))=1 
     itype(ii)=12 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.3.or.ihomez(ii). 
      eq.5)then 
     ieschlz(ii)=11 
    else 
     ieschlz(ii)=12 
    endif 
    imschlz(ii)=0 
    ihschlz(ii)=0 
   endif 
   if(r6.gt.0.33.and.r6.le.0.66) then 
     iagek(ii,inumkids(ii))=2 
     itype(ii)=13 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.2.or.ihomez(ii). 
      eq.3)then 
     imschlz(ii)=10 
    else 
     imschlz(ii)=13 
    endif 
    ieschlz(ii)=0 
    ihschlz(ii)=0 
   endif 
   if(r6.gt.0.66) then 
     iagek(ii,inumkids(ii))=3 
     itype(ii)=14 
    ieschlz(ii)=0 
    imschlz(ii)=0 
    ihschlz(ii)=14 
   endif 
    endif 
    if(r7.gt.0.60.and.r7.le.0.88)then 
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   inumkids(ii)=2 
      do k=1,2 
     r6=random(0) ! age of kid  
     if(r6.le.0.33) iagek(ii,k)=1 
     if(r6.gt.0.33.and.r6.le.0.66) iagek(ii,k)=2 
     if(r6.gt.0.66) iagek(ii,k)=3 
      enddo 
   if(iagek(ii,1).eq.1.and.iagek(ii,2).eq.1)then 
    itype(ii)=15 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.3.or.ihomez(ii). 
      eq.5)then 
     ieschlz(ii)=11 
    else 
     ieschlz(ii)=12 
    endif 
    imschlz(ii)=0 
    ihschlz(ii)=0 
   endif 
   if(iagek(ii,1).eq.2.and.iagek(ii,2).eq.2)then 
    itype(ii)=16 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.2.or.ihomez(ii). 
      eq.3)then 
     imschlz(ii)=10 
    else 
     imschlz(ii)=13 
    endif 
    ieschlz(ii)=0 
    ihschlz(ii)=0 
   endif 
   if(iagek(ii,1).eq.3.and.iagek(ii,2).eq.3)then 
    itype(ii)=17 
    ieschlz(ii)=0 
    imschlz(ii)=0 
    ihschlz(ii)=14 
   endif 
   if((iagek(ii,1).eq.1.and.iagek(ii,2).eq.2).or. 
      (iagek(ii,1).eq.2.and.iagek(ii,2).eq.1))then 
 itype(ii)=18 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.3.or.ihomez(ii). 
      eq.5)then 
     ieschlz(ii)=11 
    else 
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     ieschlz(ii)=12 
    endif 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.2.or.ihomez(ii). 
      eq.3)then 
     imschlz(ii)=10 
    else 
     imschlz(ii)=13 
    endif 
    ihschlz(ii)=0 
   endif 
   if((iagek(ii,1).eq.1.and.iagek(ii,2).eq.3).or. 
      (iagek(ii,1).eq.3.and.iagek(ii,2).eq.1))then 
 itype(ii)=20 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.3.or.ihomez(ii). 
      eq.5)then 
     ieschlz(ii)=11 
    else 
     ieschlz(ii)=12 
    endif 
    imschlz(ii)=0 
    ihschlz(ii)=14 
   endif 
   if((iagek(ii,1).eq.2.and.iagek(ii,2).eq.3).or. 
      (iagek(ii,1).eq.3.and.iagek(ii,2).eq.2))then 
 itype(ii)=19 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.2.or.ihomez(ii). 
      eq.3)then 
     imschlz(ii)=10 
    else 
     imschlz(ii)=13 
    endif 
    ihschlz(ii)=14 
    ieschlz(ii)=0 
   endif 
    endif 
    if(r7.gt.0.88)then 
   inumkids(ii)=3 
      do k=1,3 
     r6=random(0) ! age of kid  
     if(r6.le.0.33) iagek(ii,k)=1 
     if(r6.gt.0.33.and.r6.le.0.66) iagek(ii,k)=2 
     if(r6.gt.0.66) iagek(ii,k)=3 
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      enddo 
   if(iagek(ii,1).eq.1.and.iagek(ii,2).eq.1.and. 
      iagek(ii,3).eq.1)then 
 itype(ii)=21 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.3.or.ihomez(ii). 
      eq.5)then 
     ieschlz(ii)=11 
    else 
     ieschlz(ii)=12 
    endif 
    imschlz(ii)=0 
    ihschlz(ii)=0 
   endif 
   if((iagek(ii,1).eq.1.and.iagek(ii,2).eq.1.and. 
      iagek(ii,3).eq.2).or.(iagek(ii,1).eq.1.and.iagek(ii,2) 
      .eq.2.and.iagek(ii,3).eq.1).or.(iagek(ii,1).eq.2.and. 
      iagek(ii,2).eq.1.and.iagek(ii,3).eq.1))then 
    itype(ii)=22 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.3.or.ihomez(ii). 
      eq.5)then 
     ieschlz(ii)=11 
    else 
     ieschlz(ii)=12 
    endif 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.2.or.ihomez(ii). 
      eq.3)then 
     imschlz(ii)=10 
    else 
     imschlz(ii)=13 
    endif 
    ihschlz(ii)=0 
   endif 
   if((iagek(ii,1).eq.1.and.iagek(ii,2).eq.2.and. 
      iagek(ii,3).eq.2).or.(iagek(ii,1).eq.2.and.iagek(ii,2) 
      .eq.2.and.iagek(ii,3).eq.1).or.(iagek(ii,1).eq.2.and. 
      iagek(ii,2).eq.1.and.iagek(ii,3).eq.2))then 
    itype(ii)=23 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.3.or.ihomez(ii). 
      eq.5)then 
     ieschlz(ii)=11 
    else 
     ieschlz(ii)=12 
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    endif 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.2.or.ihomez(ii). 
      eq.3)then 
     imschlz(ii)=10 
    else 
     imschlz(ii)=13 
    endif 
    ihschlz(ii)=0 
   endif 
   if((iagek(ii,1).eq.1.and.iagek(ii,2).eq.2.and. 
      iagek(ii,3).eq.3).or.(iagek(ii,1).eq.1.and.iagek(ii,2) 
      .eq.3.and.iagek(ii,3).eq.2).or.(iagek(ii,1).eq.2.and. 
      iagek(ii,2).eq.1.and.iagek(ii,3).eq.3).or.(iagek(ii,1) 
      .eq.2.and.iagek(ii,2).eq.3.and.iagek(ii,3).eq.1).or. 
      (iagek(ii,1).eq.3.and.iagek(ii,2).eq.2.and.iagek(ii,3) 
      .eq.1).or.(iagek(ii,1).eq.3.and.iagek(ii,2).eq.1.and. 
      iagek(ii,3).eq.2))then 
    itype(ii)=24 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.3.or.ihomez(ii). 
      eq.5)then 
     ieschlz(ii)=11 
    else 
     ieschlz(ii)=12 
    endif 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.2.or.ihomez(ii). 
      eq.3)then 
     imschlz(ii)=10 
    else 
     imschlz(ii)=13 
    endif 
    ihschlz(ii)=14 
   endif 
   if(iagek(ii,1).eq.2.and.iagek(ii,2).eq.2.and. 
      iagek(ii,3).eq.2)then 
    itype(ii)=25 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.2.or.ihomez(ii). 
      eq.3)then 
     imschlz(ii)=10 
    else 
     imschlz(ii)=13 
    endif 
    ieschlz(ii)=0 
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    ihschlz(ii)=0 
   endif 
   if((iagek(ii,1).eq.2.and.iagek(ii,2).eq.2.and. 
      iagek(ii,3).eq.3).or.(iagek(ii,1).eq.2.and.iagek(ii,2) 
      .eq.3.and.iagek(ii,3).eq.2).or.(iagek(ii,1).eq.3.and. 
      iagek(ii,2).eq.2.and.iagek(ii,3).eq.2))then 
    itype(ii)=26 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.2.or.ihomez(ii). 
      eq.3)then 
     imschlz(ii)=10 
    else 
     imschlz(ii)=13 
    endif 
    ieschlz(ii)=0 
    ihschlz(ii)=14 
   endif 
   if((iagek(ii,1).eq.3.and.iagek(ii,2).eq.3.and. 
   iagek(ii,3).eq.2).or.(iagek(ii,1).eq.3.and.iagek(ii,2) 
      .eq.2.and.iagek(ii,3).eq.3).or.(iagek(ii,1).eq.2.and. 
      iagek(ii,2).eq.3.and.iagek(ii,3).eq.3))then 
    itype(ii)=27 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.2.or.ihomez(ii). 
      eq.3)then 
     imschlz(ii)=10 
    else 
     imschlz(ii)=13 
    endif 
    ieschlz(ii)=0 
    ihschlz(ii)=14 
   endif 
   if(iagek(ii,1).eq.3.and.iagek(ii,2).eq.3.and. 
      iagek(ii,3).eq.3)then 
    itype(ii)=28 
    ieschlz(ii)=0 
    imschlz(ii)=0 
    ihschlz(ii)=14 
   endif 
   if((iagek(ii,1).eq.3.and.iagek(ii,2).eq.3.and. 
        iagek(ii,3).eq.1).or.(iagek(ii,1).eq.3.and.iagek(ii,2) 
      .eq.1.and.iagek(ii,3).eq.3).or.(iagek(ii,1).eq.1.and. 
      iagek(ii,2).eq.3.and.iagek(ii,3).eq.3))then 
    itype(ii)=29 
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    if(ihomez(ii).eq.1.or.ihomez(ii).eq.3.or.ihomez(ii). 
      eq.5)then 
     ieschlz(ii)=11 
    else 
     ieschlz(ii)=12 
    endif 
    imschlz(ii)=0 
    ihschlz(ii)=14 
   endif 
   if((iagek(ii,1).eq.1.and.iagek(ii,2).eq.1.and. 
      iagek(ii,3).eq.3).or.(iagek(ii,1).eq.1.and.iagek(ii,2) 
      .eq.3.and.iagek(ii,3).eq.1).or.(iagek(ii,1).eq.3.and. 
      iagek(ii,2).eq.1.and.iagek(ii,3).eq.1))then 
    itype(ii)=30 
    if(ihomez(ii).eq.1.or.ihomez(ii).eq.3.or.ihomez(ii). 
      eq.5)then 
     ieschlz(ii)=11 
    else 
     ieschlz(ii)=12 
    endif 
    imschlz(ii)=0 
    ihschlz(ii)=14 
   endif 
 
    endif 
  endif 
   endif 
 enddo 
 
 call output_gen 
 
 stop 
 end
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C.3 subroutine output_gen 
 
use common_var 
 
 ! this subroutine writes the output files 
 crt_time=0.00 
 do i=1, ictveh 
   iuserc(i)=2 
   ivehtype(i)=1 
   ivehocc(i)=1 
   inumndp(i)=1 
   inumdest(i)=1 
   iinfo(i)=0 
   sband(i)=0.0 
   response(i)=0.0 
   if((mod(i,100)).eq.0)then 
  crt_time=crt_time+0.01 
   endif 
   startt(i)=crt_time 
c   startt(i)=0.0 
 enddo 
 
 ! normal rush hour file 
 open(unit=1, file='rushhour.dat', status='unknown') 
 write(1,*) ictveh, 1, ' household data' 
 write(1,*) '      #',' upstrm','  dnsm ',' start  ',' class', 
      ' type ',' occp ','#node ','#dest ',' info ',' band ',  
      '  respns' 
 do i=1, ictveh 
c  if(i.gt.60281)then 
   write(1,100) i,iupn(i),idwn(i),startt(i),iuserc(i),ivehtype(i), 
      ivehocc(i),inumndp(i),inumdest(i),iinfo(i),sband(i), 
      response(i) 
   do j=1,inumdest(i) 
  write(1,101) ihomez(ivtohh(i)),0  
   enddo 
c  endif 
 enddo 
 close(1) 
 
 open(unit=2, file='members.dat', status='unknown') 
 write(2,*) '   ihh# ',' type ',' e zone ',' m zone ',' h zone ', 
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       ' home  ',' numv ' 
 do i=1,ihhs 
   if(ivehnum(i,2).eq.0)inumhhv=1 
   if(ivehnum(i,2).ne.0)inumhhv=2 
   write(2,200) i,itype(i),ieschlz(i),imschlz(i),ihschlz(i), 
         ihomez(i),inumhhv 
  write(2,201) ivehnum(i,1), ibusz(i,1) 
  if(ivehnum(i,2).ne.0)write(2,201) ivehnum(i,2), ibusz(i,2) 
 enddo 
 close(2)  
 
 
100 format(3I7,F8.2,6I6,2F8.4) 
101 format(I12,F7.2) 
200 format(7I8) 
201 format(2I10) 
 return 
 end 
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C.4 SUBROUTINE ZONE1(IVEH) 
 
! this subroutine assigns up and downstream nodes of origin links in zone 1 to veh 
 
 use portlib 
 use common_var 
 
 r101=random(0) 
 r102=random(0) 
 
 if(r101.lt.0.50)then 
  if(r102.lt.0.10)then 
   iupn(iveh)=81 
   idwn(iveh)=82 
  endif 
  if(r102.ge.0.10.and.r102.lt.0.20)then 
   iupn(iveh)=82 
   idwn(iveh)=83 
  endif 
  if(r102.ge.0.20.and.r102.lt.0.30)then 
   iupn(iveh)=130 
   idwn(iveh)=131 
  endif 
  if(r102.ge.0.30.and.r102.lt.0.40)then 
   iupn(iveh)=131 
   idwn(iveh)=80 
  endif 
  if(r102.ge.0.40.and.r102.lt.0.50)then 
   iupn(iveh)=68 
   idwn(iveh)=69 
  endif 
  if(r102.ge.0.50.and.r102.lt.0.60)then 
   iupn(iveh)=69 
   idwn(iveh)=68 
  endif 
  if(r102.ge.0.60.and.r102.lt.0.70)then 
   iupn(iveh)=80 
   idwn(iveh)=131 
  endif 
  if(r102.ge.0.70.and.r102.lt.0.80)then 
   iupn(iveh)=131 
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   idwn(iveh)=130 
  endif 
  if(r102.ge.0.80.and.r102.lt.0.90)then 
   iupn(iveh)=80 
   idwn(iveh)=132 
  endif 
  if(r102.ge.0.90)then 
   iupn(iveh)=82 
   idwn(iveh)=81 
  endif 
 else 
  if(r102.lt.0.10)then 
   iupn(iveh)=81 
   idwn(iveh)=130 
  endif 
  if(r102.ge.0.10.and.r102.lt.0.20)then 
   iupn(iveh)=82 
   idwn(iveh)=131 
  endif 
  if(r102.ge.0.20.and.r102.lt.0.30)then 
   iupn(iveh)=130 
   idwn(iveh)=81 
  endif 
  if(r102.ge.0.30.and.r102.lt.0.40)then 
   iupn(iveh)=131 
   idwn(iveh)=82 
  endif 
  if(r102.ge.0.40.and.r102.lt.0.50)then 
   iupn(iveh)=68 
   idwn(iveh)=131 
  endif 
  if(r102.ge.0.50.and.r102.lt.0.60)then 
   iupn(iveh)=69 
   idwn(iveh)=80 
  endif 
  if(r102.ge.0.60.and.r102.lt.0.70)then 
   iupn(iveh)=80 
   idwn(iveh)=83 
  endif 
  if(r102.ge.0.70.and.r102.lt.0.80)then 
   iupn(iveh)=131 
   idwn(iveh)=68 
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  endif 
  if(r102.ge.0.80.and.r102.lt.0.90)then 
   iupn(iveh)=80 
   idwn(iveh)=69 
  endif 
  if(r102.ge.0.90)then 
   iupn(iveh)=82 
   idwn(iveh)=3 
  endif 
 endif 
 
 return 
 end 
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C.5 SUBROUTINE ZONE2(IVEH) 
 
use portlib 
 use common_var 
 
 r201=random(0) 
 r202=random(0) 
 
 if(r201.lt.0.50)then 
  if(r202.lt.0.10)then 
   iupn(iveh)=139 
   idwn(iveh)=97 
  endif 
  if(r202.ge.0.10.and.r202.lt.0.20)then 
   iupn(iveh)=97 
   idwn(iveh)=144 
  endif 
  if(r202.ge.0.20.and.r202.lt.0.30)then 
   iupn(iveh)=98 
   idwn(iveh)=151 
  endif 
  if(r202.ge.0.30.and.r202.lt.0.40)then 
   iupn(iveh)=151 
   idwn(iveh)=96 
  endif 
  if(r202.ge.0.40.and.r202.lt.0.48)then 
   iupn(iveh)=102 
   idwn(iveh)=103 
  endif 
  if(r202.ge.0.48.and.r202.lt.0.58)then 
   iupn(iveh)=103 
   idwn(iveh)=104 
  endif 
  if(r202.ge.0.58.and.r202.lt.0.68)then 
   iupn(iveh)=97 
   idwn(iveh)=139 
  endif 
  if(r202.ge.0.68.and.r202.lt.0.78)then 
   iupn(iveh)=144 
   idwn(iveh)=97 
  endif 
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  if(r202.ge.0.78.and.r202.lt.0.88)then 
   iupn(iveh)=151 
   idwn(iveh)=98 
  endif 
  if(r202.ge.0.88.and.r202.lt.0.95)then 
   iupn(iveh)=96 
   idwn(iveh)=151 
  endif 
  if(r202.ge.0.95)then 
   iupn(iveh)=104 
   idwn(iveh)=103 
  endif 
 else 
  if(r202.lt.0.10)then 
   iupn(iveh)=139 
   idwn(iveh)=98 
  endif 
  if(r202.ge.0.10.and.r202.lt.0.20)then 
   iupn(iveh)=98 
   idwn(iveh)=139 
  endif 
  if(r202.ge.0.20.and.r202.lt.0.30)then 
   iupn(iveh)=97 
   idwn(iveh)=151 
  endif 
  if(r202.ge.0.30.and.r202.lt.0.40)then 
   iupn(iveh)=151 
   idwn(iveh)=97 
  endif 
  if(r202.ge.0.40.and.r202.lt.0.50)then 
   iupn(iveh)=103 
   idwn(iveh)=151 
  endif 
  if(r202.ge.0.50.and.r202.lt.0.60)then 
   iupn(iveh)=144 
   idwn(iveh)=96 
  endif 
  if(r202.ge.0.60.and.r202.lt.0.70)then 
   iupn(iveh)=96 
   idwn(iveh)=144 
  endif 
  if(r202.ge.0.70.and.r202.lt.0.80)then 
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   iupn(iveh)=96 
   idwn(iveh)=104 
  endif 
  if(r202.ge.0.80.and.r202.lt.0.90)then 
   iupn(iveh)=104 
   idwn(iveh)=96 
  endif 
  if(r202.ge.0.90)then 
   iupn(iveh)=151 
   idwn(iveh)=103 
  endif 
 
 endif 
 
 return 
 end 
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C.6 SUBROUTINE ZONE3(IVEH) 
 
use portlib 
 use common_var 
 
 r301=random(0) 

   if(r302.ge.0.85)then 

 r302=random(0) 
  
 if(r301.lt.0.50)then 
   if(r302.lt.0.10)then 
  iupn(iveh)=84 
  idwn(iveh)=132 
   endif 
   if(r302.ge.0.10.and.r302.lt.0.20)then 
  iupn(iveh)=132 
  idwn(iveh)=70 
   endif 
   if(r302.ge.0.20.and.r302.lt.0.30)then 
  iupn(iveh)=84 
  idwn(iveh)=85 
   endif 
   if(r302.ge.0.30.and.r302.lt.0.50)then 
  iupn(iveh)=85 
  idwn(iveh)=86 
   endif 
   if(r302.ge.0.50.and.r302.lt.0.60)then 
  iupn(iveh)=73 
  idwn(iveh)=74 
   endif 
   if(r302.ge.0.60.and.r302.lt.0.70)then 
  iupn(iveh)=74 
  idwn(iveh)=75 
   endif 
   if(r302.ge.0.70.and.r302.lt.0.85)then 
  iupn(iveh)=73 
  idwn(iveh)=40 
   endif 

  iupn(iveh)=74 
  idwn(iveh)=11 
   endif 
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 else 
   if(r302.lt.0.10)then 
  iupn(iveh)=74 
  idwn(iveh)=73 
   endif 
   if(r302.ge.0.10.and.r302.lt.0.20)then 
  iupn(iveh)=86 
  idwn(iveh)=9 
   endif 
   if(r302.ge.0.20.and.r302.lt.0.30)then 
  iupn(iveh)=86 
  idwn(iveh)=85 
   endif 
   if(r302.ge.0.30.and.r302.lt.0.40)then 

  iupn(iveh)=70 

  iupn(iveh)=85 
  idwn(iveh)=7 
   endif 
   if(r302.ge.0.40.and.r302.lt.0.50)then 
  iupn(iveh)=84 
  idwn(iveh)=65 
   endif 
   if(r302.ge.0.50.and.r302.lt.0.60)then 
  iupn(iveh)=84 
  idwn(iveh)=83 
   endif 
   if(r302.ge.0.60.and.r302.lt.0.70)then 
  iupn(iveh)=132 
  idwn(iveh)=84 
   endif 
   if(r302.ge.0.70.and.r302.lt.0.80)then 
  iupn(iveh)=132 
  idwn(iveh)=80 
   endif 
   if(r302.ge.0.80.and.r302.lt.0.90)then 
  iupn(iveh)=70 
  idwn(iveh)=132 
   endif 
   if(r302.ge.0.90)then 

  idwn(iveh)=69 
   endif 
 endif 
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 return  
 end 
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C.7 SUBROUTINE ZONE4(IVEH) 
 
use portlib 
 use common_var 
 
 r401=random(0) 
 r402=random(0) 
 
 if(r401.le.0.50)then 
  if(r402.lt.0.10)then 
   iupn(iveh)=145 
   idwn(iveh)=146 
  endif 
  if(r402.ge.0.10.and.r402.lt.0.20)then 
   iupn(iveh)=99 
   idwn(iveh)=176 
  endif 
  if(r402.ge.0.20.and.r402.lt.0.30)then 
   iupn(iveh)=105 
   idwn(iveh)=106 
  endif 
  if(r402.ge.0.30.and.r402.lt.0.40)then 
   iupn(iveh)=141 
   idwn(iveh)=93 
  endif 
  if(r402.ge.0.40.and.r402.lt.0.50)then 
   iupn(iveh)=177 
   idwn(iveh)=147 
  endif 
  if(r402.ge.0.50.and.r402.lt.0.60)then 
   iupn(iveh)=153 
   idwn(iveh)=198 
  endif 
  if(r402.ge.0.60.and.r402.lt.0.70)then 
   iupn(iveh)=148 
   idwn(iveh)=177 
  endif 
  if(r402.ge.0.70.and.r402.lt.0.80)then 
   iupn(iveh)=154 
   idwn(iveh)=95 
  endif 
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  if(r402.ge.0.80.and.r402.lt.0.90)then 
   iupn(iveh)=110 
   idwn(iveh)=109 
  endif 
  if(r402.ge.0.90)then 
   iupn(iveh)=92 
   idwn(iveh)=140 
  endif 
 else 
  if(r402.lt.0.10)then 
   iupn(iveh)=145 
   idwn(iveh)=176 
  endif 
  if(r402.ge.0.10.and.r402.lt.0.20)then 
   iupn(iveh)=176 
   idwn(iveh)=105 
  endif 
  if(r402.ge.0.20.and.r402.lt.0.30)then 
   iupn(iveh)=106 
   idwn(iveh)=99 
  endif 
  if(r402.ge.0.30.and.r402.lt.0.40)then 
   iupn(iveh)=99 
   idwn(iveh)=152 
  endif 
  if(r402.ge.0.40.and.r402.lt.0.50)then 
   iupn(iveh)=152 
   idwn(iveh)=146 
  endif 
  if(r402.ge.0.50.and.r402.lt.0.60)then 
   iupn(iveh)=141 
   idwn(iveh)=147 
  endif 
  if(r402.ge.0.60.and.r402.lt.0.70)then 
   iupn(iveh)=153 
   idwn(iveh)=155 
  endif 
  if(r402.ge.0.70.and.r402.lt.0.80)then 
   iupn(iveh)=198 
   idwn(iveh)=177 
  endif 
  if(r402.ge.0.80.and.r402.lt.0.90)then 
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   iupn(iveh)=154 
   idwn(iveh)=109 
  endif 
  if(r402.ge.0.90)then 
   iupn(iveh)=110 
   idwn(iveh)=95 
  endif 
 endif 
 
 return 
 end 
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C.8 SUBROUTINE ZONE5(IVEH) 
 
use portlib 
 use common_var 
 
 r501=random(0) 
 r502=random(0) 
 
 if(r501.lt.0.50)then 
  if(r502.lt.10)then 
   iupn(iveh)=133 
   idwn(iveh)=75 
  endif 
  if(r502.ge.0.10.and.502.lt.0.20)then 
   iupn(iveh)=75 
   idwn(iveh)=76 
  endif 
  if(r502.ge.0.20.and.r502.lt.0.25)then 
   iupn(iveh)=76 
   idwn(iveh)=77 
  endif 
  if(r502.ge.0.25.and.r502.lt.0.50)then 
   iupn(iveh)=77 
   idwn(iveh)=78 
  endif 
  if(r502.ge.0.50.and.r502.lt.0.62)then 
   iupn(iveh)=135 
   idwn(iveh)=87 
  endif 
  if(r502.ge.0.62.and.r502.lt.0.78)then 
   iupn(iveh)=137 
   idwn(iveh)=88 
  endif 
  if(r502.ge.0.78)then 
   iupn(iveh)=134 
   idwn(iveh)=77 
  endif 
 else 
  if(r502.lt.0.10)then 
   iupn(iveh)=75 
   idwn(iveh)=74 
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  endif 
  if(r502.ge.0.10.and.r502.lt.0.25)then 
   iupn(iveh)=76 
   idwn(iveh)=75 
  endif 
  if(r502.ge.0.25.and.r502.lt.0.35)then 
   iupn(iveh)=77 
   idwn(iveh)=76 
  endif 
  if(r502.ge.0.35.and.r502.lt.0.50)then 
   iupn(iveh)=76 
   idwn(iveh)=13 
  endif 
  if(r502.ge.0.50.and.r502.lt.0.62)then 
   iupn(iveh)=87 
   idwn(iveh)=88 
  endif 
  if(r502.ge.0.62.and.r502.lt.0.75)then 
   iupn(iveh)=79 
   idwn(iveh)=78 
  endif 
  if(r502.ge.0.75)then 
   iupn(iveh)=79 
   idwn(iveh)=17 
  endif 
 endif 
 
 return 
 end 
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C.9 SUBROUTINE ZONE6(IVEH) 
 
use portlib 
 use common_var 
 r601=random(0) 
 if(r601.lt.0.30)then 
  iupn(iveh)=111 
  idwn(iveh)=110 
 endif 
 if(r601.ge.0.30.and.r601.lt.0.60)then 
  iupn(iveh)=110 
  idwn(iveh)=111 
 endif 
 if(r601.ge.0.60.and.r601.lt.0.70)then 
  iupn(iveh)=113 
  idwn(iveh)=112 
 endif 
 if(r601.ge.0.70.and.r601.lt.0.80)then 
  iupn(iveh)=112 
  idwn(iveh)=113 

  idwn(iveh)=111 

 endif 
 if(r601.ge.0.80.and.r601.lt.0.85)then 
  iupn(iveh)=115 
  idwn(iveh)=173 
 endif 
 if(r601.ge.0.85.and.r601.lt.0.90)then 
  iupn(iveh)=173 
  idwn(iveh)=115 
 endif 
 if(r601.ge.0.90.and.r601.lt.0.95)then 
  iupn(iveh)=111 
  idwn(iveh)=112 
 endif 
 if(r601.ge.0.95)then 
  iupn(iveh)=112 

 endif 
 
 return 
 end 
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C.10 SUBROUTINE ZONE7(IVEH) 
 
! assigns up and downstream nodes of origin links to veh 
 
 use portlib 
 use common_var 
 
 r701=random(0) 
 r702=random(0) 
 r703=random(0) 
 
 if(r701.lt.0.97)then !southbound 
   if(r703.lt.0.97)then !frontage road 
  if(r702.lt.0.96)then 
   iupn(iveh)=199 
   idwn(iveh)=116 
  endif 
  if(r702.ge.0.96.and.r702.lt.0.97)then 
   iupn(iveh)=116 
   idwn(iveh)=1 
  endif 
  if(r702.ge.0.97.and.r702.lt.0.98)then 
   iupn(iveh)=1 
   idwn(iveh)=20 
  endif 
  if(r702.ge.0.98.and.r702.lt.0.99)then 
   iupn(iveh)=3 
   idwn(iveh)=24 
  endif 
  if(r702.ge.0.99)then 
   iupn(iveh)=5 
   idwn(iveh)=27 
  endif 
   else 
  if(r702.lt.0.15)then 
   iupn(iveh)=116 
   idwn(iveh)=81 
  endif 
  if(r702.ge.0.15.and.r702.lt.0.27)then 
   iupn(iveh)=1 
   idwn(iveh)=81 
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  endif 
  if(r702.ge.0.27.and.r702.lt.0.40)then 
   iupn(iveh)=3 
   idwn(iveh)=82 
  endif 
  if(r702.ge.0.40.and.r702.lt.0.52)then 
   iupn(iveh)=5 
   idwn(iveh)=83 
  endif 
  if(r702.ge.0.52.and.r702.lt.0.65)then 
   iupn(iveh)=83 
   idwn(iveh)=80 
  endif 
  if(r702.ge.0.65.and.r702.lt.0.77)then 
   iupn(iveh)=83 
   idwn(iveh)=82 
  endif 
  if(r702.ge.0.77.and.r702.lt.0.90)then 
   iupn(iveh)=83 
   idwn(iveh)=84 
  endif 
  if(r702.ge.0.90)then 
   iupn(iveh)=83 
   idwn(iveh)=5 
  endif 
   endif 
 else !northbound 
   if(r703.lt.0.20)then !frontage road 
  if(r702.lt.0.10)then 
   iupn(iveh)=2 
   idwn(iveh)=116 
  endif 
  if(r702.ge.0.10.and.r702.lt.0.50)then  
   iupn(iveh)=4 
   idwn(iveh)=22 
  endif 
  if(r702.ge.0.50)then  
   iupn(iveh)=6 
   idwn(iveh)=26 
  endif 
   else 
  if(r702.lt.10)then 
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   iupn(iveh)=2 
   idwn(iveh)=139 
  endif 
  if(r702.ge.0.10.and.r702.lt.0.13)then 
   iupn(iveh)=4 
   idwn(iveh)=89 
  endif 
  if(r702.ge.0.13.and.r702.lt.0.25)then 
   iupn(iveh)=89 

   iupn(iveh)=90 

   idwn(iveh)=97 
  endif 
  if(r702.ge.0.25.and.r702.lt.0.28)then 
   iupn(iveh)=89 
   idwn(iveh)=4 
  endif 
  if(r702.ge.0.28.and.r702.lt.0.40)then 
   iupn(iveh)=89 
   idwn(iveh)=90 
  endif 
  if(r702.ge.0.40.and.r702.lt.0.45)then 
   iupn(iveh)=6 
   idwn(iveh)=90 
  endif 
  if(r702.ge.0.45.and.r702.lt.0.50)then 

   idwn(iveh)=6 
  endif 
  if(r702.ge.0.50.and.r702.lt.0.65)then 
   iupn(iveh)=90 
   idwn(iveh)=89 
  endif 
  if(r702.ge.0.65.and.r702.lt.0.72)then 
   iupn(iveh)=90 
   idwn(iveh)=91 
  endif 
  if(r702.ge.0.72.and.r702.lt.0.78)then 
   iupn(iveh)=91 
   idwn(iveh)=90 
  endif 
  if(r702.ge.0.78.and.r702.lt.0.89)then 
   iupn(iveh)=91 
   idwn(iveh)=140 
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  endif 
  if(r702.ge.0.89)then 
   iupn(iveh)=91 
   idwn(iveh)=144 
  endif 
   endif 
 endif    
  
 return 
 end    
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C.11 SUBROUTINE ZONE8(IVEH) 
 
use portlib 

  endif 

 use common_var 
 
 r801=random(0) 
 r802=random(0) 
 r803=random(0) 
 
 if(r801.lt.0.50)then ! southbound 
   if(r802.lt.0.45)then !frontage road 
  if(r803.lt.0.20)then 
   iupn(iveh)=65 
   idwn(iveh)=7 
  endif 
  if(r803.ge.0.20.and.r803.lt.0.40)then 
   iupn(iveh)=7 
   idwn(iveh)=31 
  endif 
  if(r803.ge.0.40.and.r803.lt.0.65)then 
   iupn(iveh)=9 
   idwn(iveh)=40 

  if(r803.ge.0.65.and.r803.lt.0.93)then 
   iupn(iveh)=40 
   idwn(iveh)=11 
  endif 
  if(r803.ge.0.93)then 
   iupn(iveh)=11 
   idwn(iveh)=43 
  endif 
   else 
  if(r803.lt.0.20)then 
   iupn(iveh)=65 
   idwn(iveh)=84 
  endif 
  if(r803.ge.0.20.and.r803.lt.0.40)then 
   iupn(iveh)=7 
   idwn(iveh)=85 
  endif 
  if(r803.ge.0.40.and.r803.lt.0.60)then 
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   iupn(iveh)=9 
   idwn(iveh)=86 
  endif 
  if(r803.ge.0.60.and.r803.lt.0.80)then 
   iupn(iveh)=40 
   idwn(iveh)=73 
  endif 
  if(r803.ge.0.80)then 
   iupn(iveh)=11 
   idwn(iveh)=74 
  endif 
   endif 
 else !northbound 
   if(r802.lt.0.45)then !frontage road 
  if(r803.lt.0.25)then 
   iupn(iveh)=12 
   idwn(iveh)=42 
  endif 
  if(r803.ge.0.25.and.r803.lt.0.50)then 
   iupn(iveh)=10 
   idwn(iveh)=38 
  endif 
  if(r803.ge.0.50.and.r803.lt.0.75)then 
   iupn(iveh)=8 
   idwn(iveh)=66 
  endif 
  if(r803.ge.0.75)then 
   iupn(iveh)=66 
   idwn(iveh)=29 
  endif 
   else 
  if(r803.lt.0.15)then 
   iupn(iveh)=12 
   idwn(iveh)=94 
  endif 
  if(r803.ge.0.15.and.r803.lt.30)then 
   iupn(iveh)=94 
   idwn(iveh)=12 
  endif 
  if(r803.ge.0.30.and.r803.lt.50)then 
   iupn(iveh)=94 
   idwn(iveh)=142 
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  endif 
  if(r803.ge.0.50.and.r803.lt.0.70)then 
   iupn(iveh)=94 

 endif 

   idwn(iveh)=149 
  endif 
  if(r803.ge.0.70.and.r803.lt.0.80)then 
   iupn(iveh)=10 
   idwn(iveh)=93 
  endif 
  if(r803.ge.0.80.and.r803.lt.0.90)then 
   iupn(iveh)=8 
   idwn(iveh)=92 
  endif 
  if(r803.ge.0.90)then 
   iupn(iveh)=66 
   idwn(iveh)=140 
  endif 
   endif     

 
 return 
 end 
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C.12 SUBROUTINE ZONE9(IVEH) 
 
use portlib 
 use common_var 
 
 r901=random(0) 
 r902=random(0) 
 r903=random(0) 
 
 if(r901.lt.0.03)then !southbound 
   if(r902.lt.0.50)then !frontage road 
  if(r903.lt.0.50)then 
   iupn(iveh)=13 
   idwn(iveh)=50 
  endif 
  if(r903.ge.0.50.and.r903.lt.0.75)then 
   iupn(iveh)=15 
   idwn(iveh)=56 
  endif 
  if(r903.ge.0.75)then 
   iupn(iveh)=17 
   idwn(iveh)=61 
  endif 
   else 
  if(r903.lt.0.20)then 
   iupn(iveh)=13 
   idwn(iveh)=76 
  endif 
  if(r903.ge.0.20.and.r903.lt.0.40)then 
   iupn(iveh)=15 
   idwn(iveh)=88 
  endif 
  if(r903.ge.0.40.and.r903.lt.0.60)then 
   iupn(iveh)=17 
   idwn(iveh)=79 
  endif 
  if(r903.ge.0.60.and.r903.lt.0.80)then 
   iupn(iveh)=88 
   idwn(iveh)=15 
  endif 
  if(r903.ge.0.80)then 
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   iupn(iveh)=88 
   idwn(iveh)=87 
  endif 
   endif 
 else !northbound 
   if(r902.lt.0.98)then !frontage road 
  if(r903.lt.0.96)then 
   iupn(iveh)=200 
   idwn(iveh)=117 
  endif 
  if(r903.ge.0.96.and.r903.lt.0.97)then 
   iupn(iveh)=117 
   idwn(iveh)=63 
  endif 
  if(r903.ge.0.97.and.r903.lt.0.98)then 
   iupn(iveh)=18 
   idwn(iveh)=59 
  endif 
  if(r903.ge.0.98.and.r903.lt.0.99)then 
   iupn(iveh)=16 
   idwn(iveh)=54 
  endif 
  if(r903.ge.0.99)then 
   iupn(iveh)=14 
   idwn(iveh)=47 
  endif 
   else 
  if(r903.lt.0.30)then 
   iupn(iveh)=117 
   idwn(iveh)=79 
  endif 
  if(r903.ge.0.30.and.r903.lt.0.60)then 
   iupn(iveh)=117 
   idwn(iveh)=115 
  endif 
  if(r903.ge.0.60.and.r903.lt.0.65)then 
   iupn(iveh)=114 
   idwn(iveh)=16 
  endif 
  if(r903.ge.0.65.and.r903.lt.0.80)then 
   iupn(iveh)=114 
   idwn(iveh)=113 
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  endif 
  if(r903.ge.0.80.and.r903.lt.0.95)then 
   iupn(iveh)=114 
   idwn(iveh)=173 
  endif 
  if(r903.ge.0.95)then 
   iupn(iveh)=16 
   idwn(iveh)=114 
  endif 
      
   endif 
 endif 
 
 return 
 end 
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Appendix D 

Link Characteristics For Figure 5.1 

 
Link Upstream Downstream Length Speed Max Service Rate 

Node Node  (ft) (mph) (vphpl)
1 1 2 420 40 1800
2 1 20 1190 40 1800
3 1 81 1640 40 1800
4 2 1 420 40 1800
5 2 116 1410 40 1800
6 2 139 1200 40 1800
7 3 4 450 40 1800
8 3 24 1350 40 1800
9 3 82 1280 40 1800

10 4 3 450 40 1800
11 4 22 200 40 1800
12 4 89 390 40 1800
13 5 6 320 40 1800
14 5 27 700 40 1800
15 5 83 1450 40 1800
16 6 5 320 40 1800
17 6 26 400 40 1800
18 6 90 380 40 1800
19 7 8 320 40 1800
20 7 31 400 40 1800
21 7 85 1610 40 1800
22 8 7 320 40 1800
23 8 66 1500 40 1800
24 8 92 580 40 1800
25 9 10 320 40 1800
26 9 40 1730 40 1800
27 9 86 1830 40 1800
28 10 9 320 40 1800
29 10 38 670 40 1800
30 10 93 550 40 1800
31 11 12 320 40 1800
32 11 43 200 40 1800
33 11 74 3270 40 1800
34 12 11 320 40 1800
35 12 42 950 40 1800  
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Link Upstream Downstream Length Speed Max Service Rate 
Node Node  (ft) (mph) (vphpl)

36 12 94 480 40 1800
37 13 14 320 40 1800
38 13 50 2720 40 1800
39 13 76 3790 40 1800
40 14 13 320 40 1800
41 14 47 2400 40 1800
42 14 150 100 30 1800
43 15 16 580 40 1800
44 15 56 1100 40 1800
45 15 88 1350 40 1800
46 16 15 580 40 1800
47 16 54 480 40 1800
48 16 114 250 40 1800
49 17 18 320 40 1800
50 17 61 650 40 1800
51 17 79 3370 40 1800
52 18 17 320 40 1800
53 18 59 1790 40 1800
54 18 173 330 40 1800
55 19 20 600 40 1800
56 19 23 1000 65 2200
57 20 3 400 40 1800
58 21 116 2200 65 2200
59 22 2 1390 40 1800
60 22 21 600 40 1800
61 23 24 1300 40 1800
62 23 28 3820 65 2200
63 24 5 450 40 1800
64 25 21 1200 65 2200
65 26 4 1400 40 1800
66 26 25 1180 40 1800
67 27 28 1370 40 1800
68 27 65 250 40 1800
69 28 32 2180 65 2200
70 29 6 150 40 1800
71 30 25 3520 65 2200
72 30 29 1220 40 1800
73 31 32 1400 40 1800
74 31 36 3740 40 1800
75 32 35 1160 65 2200  
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Link Upstream Downstream Length Speed Max Service Rate 
Node Node  (ft) (mph) (vphpl)

76 33 8 700 40 1800
77 34 30 2180 65 2200
78 34 33 1200 40 1800
79 35 36 1180 40 1800
80 35 39 1890 65 2200
81 36 9 630 40 1800
82 37 34 950 65 2200
83 38 33 3400 40 1800
84 38 37 1250 40 1800
85 39 40 1650 40 1800
86 39 44 3690 65 2200
87 40 11 850 40 1800
88 40 73 3270 40 1800
89 41 37 2450 65 2200
90 42 10 1630 40 1800
91 42 41 1100 40 1800
92 43 44 990 40 1800
93 43 46 2770 40 1800
94 44 45 510 65 2200
95 45 46 1270 40 1800
96 45 49 2630 65 2200
97 46 13 280 40 1800
98 47 12 850 40 1800
99 48 41 4520 65 2200

100 48 47 1620 40 1800
101 49 50 1640 40 1800
102 49 55 2600 65 2200
103 50 15 1880 40 1800
104 51 14 450 40 1800
105 52 48 2730 65 2200
106 52 51 1500 40 1800
107 53 52 850 65 2200
108 54 51 3670 40 1800
109 54 53 1320 40 1800
110 55 56 2020 40 1800
111 55 58 3500 65 2200
112 56 57 200 40 1800
113 57 17 1350 40 1800  
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Link Upstream Downstream Length Speed Max Service Rate 
Node Node  (ft) (mph) (vphpl)

114 57 58 1280 40 1800
115 58 62 1670 65 2200
116 59 16 860 40 1800
117 60 53 4000 65 2200
118 60 59 1340 40 1800
119 61 62 950 40 1800
120 61 117 3050 40 1800
121 62 117 2500 65 2200
122 63 18 650 40 1800
123 64 60 1650 65 2200
124 64 63 550 40 1800
125 65 7 1500 40 1800
126 65 84 1410 40 1800
127 66 29 800 40 1800
128 66 140 580 40 1800
129 67 68 1860 40 1800
130 67 118 100 30 1800
131 67 130 500 40 1800
132 68 67 1860 40 1800
133 68 69 1930 40 1800
134 68 119 100 30 1800
135 68 131 500 40 1800
136 69 68 1930 40 1800
137 69 70 900 40 1800
138 69 80 580 40 1800
139 69 120 100 30 1800
140 70 69 900 40 1800
141 70 71 1730 40 1800
142 70 121 100 30 1800
143 70 132 500 40 1800
144 71 70 1730 40 1800
145 71 72 4240 40 1800
146 71 85 1610 40 1800
147 71 122 528 30 1800
148 72 71 4240 40 1800
149 72 73 1730 40 1800
150 72 86 1540 40 1800
151 72 123 528 30 1800
152 73 40 3270 40 1800  
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Link Upstream Downstream Length Speed Max Service Rate 
Node Node  (ft) (mph) (vphpl)

153 73 72 1730 40 1800
154 73 74 1350 40 1800
155 73 124 100 30 1800
156 74 11 3270 40 1800
157 74 73 1350 40 1800
158 74 75 1280 40 1800
159 74 125 100 30 1800
160 75 74 1280 40 1800
161 75 76 1350 40 1800
162 75 126 100 30 1800
163 75 133 100 30 1800
164 76 13 3790 40 1800
165 76 75 1350 40 1800
166 76 77 580 40 1800
167 76 175 100 30 1800
168 77 76 580 40 1800
169 77 78 4410 40 1800
170 77 127 100 30 1800
171 77 134 100 30 1800
172 78 77 4410 40 1800
173 78 79 2510 40 1800
174 78 87 960 40 1800
175 78 128 100 30 1800
176 79 17 3370 40 1800
177 79 78 2510 40 1800
178 79 117 8040 40 1800
179 79 129 100 30 1800
180 80 69 580 40 1800
181 80 83 1190 40 1800
182 80 131 1930 40 1800
183 80 132 900 40 1800
184 81 1 1640 40 1800
185 81 82 1990 40 1800
186 81 116 2890 40 1800
187 81 130 1320 40 1800
188 82 3 1280 40 1800
189 82 81 1990 40 1800
190 82 83 1800 40 1800
191 82 131 1500 40 1800  
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Link Upstream Downstream Length Speed Max Service Rate 
Node Node  (ft) (mph) (vphpl)

192 83 5 1450 40 1800
193 83 80 1190 40 1800
194 83 82 1800 40 1800
195 83 84 900 40 1800
196 84 65 1410 40 1800
197 84 83 900 40 1800
198 84 85 1730 40 1800
199 84 132 1730 40 1800
200 85 7 1610 40 1800
201 85 71 1610 40 1800
202 85 84 1730 40 1800
203 85 86 4240 40 1800
204 86 9 1830 40 1800
205 86 72 1540 40 1800
206 86 85 4240 40 1800
207 87 78 960 40 1800
208 87 88 800 40 1800
209 87 135 100 30 1800
210 87 136 100 30 1800
211 88 15 1350 40 1800
212 88 87 800 40 1800
213 88 137 100 30 1800
214 88 138 100 30 1800
215 89 4 390 40 1800
216 89 90 1700 40 1800
217 89 97 960 40 1800
218 90 6 380 40 1800
219 90 89 1700 40 1800
220 90 91 320 40 1800
221 91 90 320 40 1800
222 91 140 800 40 1800
223 91 144 800 40 1800
224 92 8 580 40 1800
225 92 140 1600 40 1800
226 92 141 900 40 1800
227 92 146 900 40 1800
228 93 10 550 40 1800
229 93 141 3830 40 1800
230 93 142 960 40 1800  
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Link Upstream Downstream Length Speed Max Service Rate 
Node Node  (ft) (mph) (vphpl)

231 93 177 800 40 1800
232 94 12 480 40 1800
233 94 142 1650 40 1800
234 94 143 100 30 1800
235 94 149 800 40 1800
236 95 110 2510 40 1800
237 95 149 1000 40 1800
238 95 154 1650 40 1800
239 96 104 2580 40 1800
240 96 144 1300 40 1800
241 96 151 2100 40 1800
242 96 176 1300 40 1800
243 97 89 960 40 1800
244 97 139 2280 40 1800
245 97 144 2100 40 1800
246 97 151 1100 40 1800
247 98 103 3400 40 1800
248 98 116 2310 40 1800
249 98 139 1200 40 1800
250 98 151 1450 40 1800
251 99 106 1280 40 1800
252 99 152 1570 40 1800
253 99 155 1320 40 1800
254 99 176 1040 40 1800
255 100 101 1280 40 1800
256 100 116 5000 40 1800
257 100 156 100 30 1800
258 100 181 16000 40 1800
259 101 100 1280 40 1800
260 101 102 510 40 1800
261 101 157 100 30 1800
262 101 158 100 30 1800
263 102 101 510 40 1800
264 102 103 1410 40 1800
265 102 159 100 30 1800
266 102 160 100 30 1800
267 103 98 3400 40 1800
268 103 102 1410 40 1800
269 103 104 2090 40 1800  
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Link Upstream Downstream Length Speed Max Service Rate 
Node Node  (ft) (mph) (vphpl)

270 103 151 2300 40 1800
271 103 161 100 30 1800
272 104 96 2580 40 1800
273 104 103 2090 40 1800
274 104 105 650 40 1800
275 104 162 100 30 1800
276 105 104 650 40 1800
277 105 106 1060 40 1800
278 105 176 1650 40 1800
279 106 99 1280 40 1800
280 106 105 1060 40 1800
281 106 107 1230 40 1800
282 106 163 100 30 1800
283 107 106 1230 40 1800
284 107 108 3210 40 1800
285 107 155 1000 40 1800
286 107 164 100 30 1800
287 108 107 3210 40 1800
288 108 109 1610 40 1800
289 108 165 528 30 1800
290 108 166 100 30 1800
291 109 108 1610 40 1800
292 109 110 1730 40 1800
293 109 154 2640 40 1800
294 109 167 100 30 1800
295 110 95 2510 40 1800
296 110 109 1730 40 1800
297 110 111 7330 40 1800
298 110 168 100 30 1800
299 111 110 7330 40 1800
300 111 112 1930 40 1800
301 111 169 3800 40 1800
302 112 111 1930 40 1800
303 112 113 5210 40 1800
304 112 169 3800 40 1800
305 112 170 528 30 1800
306 113 112 5210 40 1800
307 113 114 1990 40 1800
308 113 172 100 30 1800  
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Link Upstream Downstream Length Speed Max Service Rate 
Node Node  (ft) (mph) (vphpl)

309 114 16 250 40 1800
310 114 113 1990 40 1800
311 114 171 100 30 1800
312 114 173 2800 40 1800
313 115 117 2730 40 1800
314 115 173 3530 40 1800
315 115 174 100 30 1800
316 116 1 1410 40 1800
317 116 19 2000 65 2200
318 116 81 2890 40 1800
319 116 98 2310 40 1800
320 116 100 8000 40 1800
321 116 179 8000 65 2200
322 117 63 3050 40 1800
323 117 64 2500 65 2200
324 117 79 8040 40 1800
325 117 115 2730 40 1800
326 117 180 5000 65 2200
327 118 67 100 30 1800
328 119 68 100 30 1800
329 120 69 100 30 1800
330 120 183 16000 30 1800
331 121 70 100 30 1800
332 122 71 528 30 1800
333 123 72 528 30 1800
334 124 73 100 30 1800
335 125 74 100 30 1800
336 126 75 100 30 1800
337 127 77 100 30 1800
338 128 78 100 30 1800
339 128 183 16000 30 1800
340 129 79 100 30 1800
341 130 67 500 40 1800
342 130 81 1320 40 1800
343 130 131 1860 40 1800
344 131 68 500 40 1800
345 131 80 1930 40 1800
346 131 82 1500 40 1800
347 131 130 1860 40 1800  
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Link Upstream Downstream Length Speed Max Service Rate 
Node Node  (ft) (mph) (vphpl)

348 132 70 500 40 1800
349 132 80 900 40 1800
350 132 84 1730 40 1800
351 133 75 100 30 1800
352 134 77 100 30 1800
353 135 87 100 30 1800
354 136 87 100 30 1800
355 137 88 100 30 1800
356 138 88 100 30 1800
357 139 2 1200 40 1800
358 139 97 2280 40 1800
359 139 98 1200 40 1800
360 140 66 580 40 1800
361 140 91 800 40 1800
362 140 92 1600 40 1800
363 140 145 800 40 1800
364 141 92 900 40 1800
365 141 93 3830 40 1800
366 141 147 800 40 1800
367 142 93 960 40 1800
368 142 94 1650 40 1800
369 142 148 800 40 1800
370 143 94 100 30 1800
371 144 91 800 40 1800
372 144 96 1300 40 1800
373 144 97 2100 40 1800
374 144 145 920 40 1800
375 145 140 800 40 1800
376 145 144 920 40 1800
377 145 146 1580 40 1800
378 145 176 2300 40 1800
379 146 92 900 40 1800
380 146 145 1580 40 1800
381 146 147 900 40 1800
382 146 152 1000 40 1800
383 147 141 800 40 1800
384 147 146 900 40 1800
385 147 153 1000 40 1800
386 147 177 3830 40 1800  
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Link Upstream Downstream Length Speed Max Service Rate 
Node Node  (ft) (mph) (vphpl)

387 148 142 800 40 1800
388 148 149 1650 40 1800
389 148 154 1000 40 1800
390 148 177 960 40 1800
391 149 94 800 40 1800
392 149 95 1000 40 1800
393 149 148 1650 40 1800
394 150 14 1600 40 1800
395 151 96 2100 40 1800
396 151 97 1100 40 1800
397 151 98 1450 40 1800
398 151 103 2300 40 1800
399 152 99 1570 40 1800
400 152 146 1000 40 1800
401 152 153 1000 40 1800
402 153 147 1000 40 1800
403 153 152 1000 40 1800
404 153 155 1500 40 1800
405 153 178 3830 40 1800
406 154 95 1650 40 1800
407 154 109 2640 40 1800
408 154 148 1000 40 1800
409 154 178 960 40 1800
410 155 99 1320 40 1800
411 155 107 1000 40 1800
412 155 153 1500 40 1800
413 156 100 100 30 1800
414 157 101 100 30 1800
415 158 101 100 30 1800
416 159 102 100 30 1800
417 160 102 100 30 1800
418 161 103 100 30 1800
419 162 104 100 30 1800
420 163 106 100 30 1800
421 164 107 100 30 1800
422 165 108 528 30 1800
423 166 108 100 30 1800
424 167 109 100 30 1800
425 168 110 100 30 1800  
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Link Upstream Downstream Length Speed Max Service Rate 
Node Node  (ft) (mph) (vphpl)

426 168 184 16000 30 1800
427 169 111 3800 40 1800
428 169 112 3800 40 1800
429 169 184 16000 40 1800
430 170 112 528 30 1800
431 171 114 100 30 1800
432 172 113 100 30 1800
433 173 18 330 40 1800
434 173 114 2805 40 1800
435 173 115 3530 40 1800
436 174 115 100 30 1800
437 175 76 100 30 1800
438 176 96 1300 40 1800
439 176 99 1040 40 1800
440 176 105 1650 40 1800
441 176 145 2300 40 1800
442 177 93 800 40 1800
443 177 147 3830 40 1800
444 177 148 960 40 1800
445 177 178 960 40 1800
446 178 153 3830 40 1800
447 178 154 960 40 1800
448 178 177 960 40 1800
449 179 116 8000 65 2200
450 179 181 8000 65 2200
451 180 117 8000 65 2200
452 180 182 11000 65 2200  
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Appendix E   

Payoff Matrix for Baseline Conditions 

No Evacuation λ = 0 λ = 0.5 λ = 1
Link Player M Player T Player M Player T Player M Player T Player M Player T

1 100.00 0.000 98.68 1.163 99.15 0.876 99.53 0.946
2 99.82 0.072 99.1 0.402 98.88 0.262 98.97 0.333
3 95.42 2.506 100 0 100 0 100 0
4 99.15 0.379 99.27 0.518 99.94 0.074 100 0
5 100.00 0.000 99.07 0.663 98.9 0.949 99.41 1.052
6 100.00 0.000 99.41 0.645 99.28 0.736 100 0
7 99.51 0.539 97.24 0.879 96.13 1.089 94.41 0.963
8 98.92 0.603 98.21 0.566 96 1.355 98.23 0.54
9 79.17 3.359 100 0 100 0 100 0

10 78.44 2.625 99.89 0.027 99.96 0.008 99.96 0.009
11 99.33 0.307 93.29 2.534 93.26 2.042 89.68 2.725
12 99.51 0.539 100 0 97.03 1.233 100 0
13 91.02 3.844 96.23 2.901 96.95 2.28 97.84 1.233
14 93.86 2.423 97.23 1.321 94.19 2.805 94.87 2.78
15 92.86 2.050 93.21 2 95.88 1.191 97.72 1.65
16 91.51 2.327 98.74 1.677 98.91 1.197 98.24 1.887
17 86.42 1.734 96.53 2.211 92.78 2.65 91.26 2.645
18 86.32 5.099 97.83 1.775 97.14 2.082 99.82 0.265
19 100.00 0.000 96.89 2.571 97.26 1.508 94.08 2.463
20 91.71 3.593 98.64 1.8 98.32 2.065 97.18 2.301
21 93.40 3.041 99.27 3 98.99 3 99.21 3
22 93.62 3.079 98.95 3.4 98.84 3.167 99.21 3
23 96.89 1.434 99.57 0.123 99.45 0.3 94.72 1.892
24 97.40 1.585 97.43 2.247 97.46 1.252 95.34 2.596
25 99.57 1.000 92.82 2.758 90.57 2.222 91.79 2.851
26 95.73 2.268 100 0 99.64 0.083 100 0
27 94.97 3.045 93.98 2 91.91 2 95.2 2
28 91.86 3.854 95.35 1.764 93.45 1.802 96.69 1.683
29 98.17 0.948 94.37 0.97 98.8 1.104 94.84 0.831
30 98.18 2.261 97.36 1.495 97.01 0.753 94.31 1.852
31 94.64 2.871 95.43 1.488 94.16 2.28 94.2 2
32 92.40 3.629 97.59 0.67 98.15 1.456 96.91 2.065
33 99.52 0.147 98.61 2 98.68 2.285 99.57 1.268
34 99.52 0.147 98.61 2 96.94 3.525 98.38 1.666
35 92.56 4.518 92.81 3.052 98.48 2.125 94.69 2.319
36 91.34 4.817 95.53 3 92.78 4.98 94.2 2
37 97.63 1.022 99.68 0.286 99.68 0.131 99.72 0.167  
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No Evacuation λ = 0 λ = 0.5 λ = 1
Link Player M Player T Player M Player T Player M Player T Player M Player T

38 87.91 6.156 99.3 1.178 99.22 1.001 98.89 1.289
39 85.98 4.459 100 0 98.95 0.875 99.11 0.974
40 82.36 6.700 99.3 1.178 98.4 1.72 98.46 1.986
41 98.13 1.841 100 0 99.81 0.819 99.26 0.184
42 96.68 1.048 100 0 100 0 100 0
43 75.25 11.692 89.52 7.688 88.46 8.696 89.75 7.683
44 84.71 2.595 95.04 1.29 95.78 2.985 95.55 1.348
45 86.96 5.246 98.28 2 99.53 1.268 98.23 2.108
46 90.98 0.345 94.81 3.118 96.8 3.8 93.44 3.987
47 87.55 5.346 97.64 4.411 95 6.617 97.62 3.884
48 70.23 11.363 90.05 7 88.48 8.638 89.34 9.051
49 88.19 0.860 98.53 2.079 96.44 2.444 95.63 3.315
50 95.80 0.902 95.99 1.114 96.27 2.013 99.43 0.634
51 98.16 0.466 100 0 100 0 100 0
52 99.37 0.096 99.04 1.347 97.2 2.401 99.33 1.262
53 97.71 0.862 98.96 1.88 98.74 2.543 99.52 2.216
54 83.77 3.185 99.51 0.213 96.75 1.352 95.86 2.139
55 99.51 0.539 100 0 100 0 100 0
56 97.28 0.994 80.96 3.679 81.67 4.142 85.24 4.386
57 99.34 0.612 98.26 0.558 96.19 0.847 98.27 0.53
58 99.49 0.025 79.84 5.091 89.66 3.937 78.42 4.654
59 99.33 0.307 100 0 100 0 99.88 0.017
60 100.00 0.000 93.29 3.325 93.26 2.042 89.8 2.618
61 100.00 0.000 93.37 1 96.03 1 97.86 1
62 97.28 0.994 87.58 2.679 85.64 3.142 87.38 3.386
63 98.92 0.339 91.39 1.604 91.66 2.414 96.02 1.566
64 99.49 0.025 86.55 3.07 96.4 1.884 88.62 2.036
65 86.53 1.734 97.85 1.581 95.12 1.898 95.52 1.452
66 99.49 0.025 98.64 0.638 97.61 0.761 95.7 1.203
67 94.86 1.229 97.23 1.321 94.82 1.996 96.06 1.78
68 99.00 0.203 99.68 0.4 98.77 1.475 98.12 1.833
69 92.14 2.221 84.82 4 80.46 5.138 83.44 5.167
70 75.39 5.879 99.54 0.445 96.23 2.354 91.96 3.204
71 100.00 0.000 87.91 2.433 98.78 1.229 92.92 0.834
72 95.30 0.707 99.54 0.445 97.56 1.079 97.44 1.133
73 92.87 1.666 98.48 2 98.32 2.065 97.18 2.301
74 98.84 0.584 100 0 100 0 100 0
75 85.01 3.888 83.3 6 78.79 7.203 80.62 7.467
76 88.43 7.397 98.95 3.4 98.84 3.167 99.02 3.522
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No Evacuation λ = 0 λ = 0.5 λ = 1
Link Player M Player T Player M Player T Player M Player T Player M Player T

77 95.30 0.707 87.44 2.878 96.35 2.202 90.36 1.966
78 90.26 6.433 99.11 3.2 98.99 3 99.02 3.522
79 100.00 0.000 94.2 1 92.22 1 95.3 1
80 85.01 3.888 89.1 5 86.57 6.203 85.32 6.467
81 98.84 0.584 94.2 1 92.22 1 95.3 1
82 85.56 6.989 86.55 6.078 95.33 5.202 89.37 5.489
83 98.17 0.948 99.84 0.2 99.85 0.167 100 0
84 100.00 0.000 94.21 1.771 98.8 1.104 94.84 0.831
85 98.29 0.325 97.4 1 94.77 2 94.2 2
86 86.72 3.707 91.7 4 91.8 4.203 91.12 4.467
87 94.84 2.123 97.4 1 93.49 2.297 92.48 3.198
88 99.01 0.050 100 0 100 0 100 0
89 85.56 6.989 92.33 5.306 96.53 4.162 94.54 4.658
90 93.52 4.703 99.58 1.052 98.83 2 99.16 1.184
91 98.89 0.449 93.23 2 99.64 0.189 95.52 1.135
92 99.15 0.770 97.59 0.658 98 1.518 96.91 2.054
93 92.58 2.844 100 0 100 0 100 0
94 85.86 4.477 89.29 4.658 89.8 5.722 88.03 6.521
95 97.02 0.588 100 0 100 0 99.96 0.026
96 88.84 3.889 89.29 4.658 89.8 5.722 88.07 6.495
97 89.60 3.432 100 0 100 0 99.96 0.026
98 89.26 6.952 97.92 3 97.86 3.943 99.12 1.219
99 86.67 6.690 99.11 3.306 96.89 3.973 99.02 3.522

100 92.50 4.749 97.92 3 98.34 3 99.86 1.035
101 91.14 3.340 91.7 4 91.65 4.11 92.74 4
102 97.70 0.540 97.59 0.658 98.15 1.611 95.33 2.495
103 73.62 9.767 90.51 5.869 89.97 5.821 90.92 6.043
104 82.01 6.823 99.3 1.178 98.22 2.539 97.72 2.17
105 79.17 11.005 97.02 6.306 95.23 6.973 98.87 4.557
106 90.99 4.289 99.3 1.178 98.22 2.539 98.68 1.624
107 70.16 15.215 96.32 7.485 93.45 9.513 97.56 6.181
108 91.02 2.635 100 0 100 0 99.04 0.547
109 96.28 3.705 96.48 6.635 93.6 8.782 97.74 5.098
110 97.92 0.511 99.56 0.199 98.64 0.513 96.66 1.669
111 99.79 0.038 98.03 0.459 99.52 1.16 98.67 0.827
112 78.06 5.392 93.81 2.689 93.67 4.268 91.97 4.205
113 87.08 0.942 95.98 2.181 96.54 1.686 96.42 2.852
114 90.97 3.070 97.84 0.508 97.13 2.589 95.55 1.338
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No Evacuation λ = 0 λ = 0.5 λ = 1
Link Player M Player T Player M Player T Player M Player T Player M Player T
115 90.77 3.108 95.86 0.953 96.65 3.666 94.22 2.161
116 80.36 3.743 98.44 2.417 97.81 3.232 98.47 2.954
117 73.88 11.488 99.84 0.85 99.85 0.731 99.81 1.083
118 91.67 1.933 99.95 0.108 99.82 0.379 99.93 0.154
119 95.86 0.785 95.89 1.56 96.04 2.607 99.31 0.874
120 99.38 0.157 99.95 0.012 99.95 0.017 100 0
121 86.63 3.891 91.75 2.483 92.68 5.217 93.53 3.023
122 93.74 2.731 100 0 100 0 100 0
123 65.55 13.712 99.79 0.958 99.67 1.11 99.75 1.237
124 98.58 1.038 100 0 100 0 100 0
125 94.48 1.149 98.43 1.902 98.49 1.598 98.61 1.649
126 99.81 0.032 100 0 99.37 0.809 98.82 1
127 80.09 4.363 100 0 98.67 1.275 94.52 2.071
128 98.96 1.052 99.57 0.123 100 0 100 0
129 98.21 0.781 100 0 100 0 100 0
130 100.00 0.000 100 0 100 0 100 0
131 99.82 0.024 99.52 1 99.83 0.114 99.94 0.04
132 99.82 0.024 99.52 1 99.83 0.114 99.94 0.04
133 95.43 1.252 100 0 100 0 100 0
134 98.96 0.459 100 0 100 0 100 0
135 97.97 0.814 100 0 96.74 0.896 100 0
136 100.00 0.000 99.52 1 96.56 1.01 99.94 0.04
137 93.97 3.483 93.79 0.937 96.26 0.943 98.01 0.929
138 98.92 0.147 97.3 1.91 97.78 1.648 95.38 1.487
139 98.07 1.040 100 0 99.81 0.198 100 0
140 97.07 0.405 93.91 3.91 94.24 3.244 95.31 1.777
141 94.37 2.800 92.65 2.538 94.42 3.891 95.77 3.947
142 99.88 0.020 97.25 1.135 98.26 1.27 94.4 1.554
143 94.75 1.066 95.32 2.7 98.24 1.708 96.76 1.681
144 92.34 1.213 92.94 5.598 92.15 5.838 92.34 3.204
145 98.97 0.211 98.39 2.131 99.56 1.087 98.06 1.193
146 94.48 1.991 98 1.645 97.61 2.599 92.62 3.957
147 92.95 4.000 91.43 6 93.61 7 95.29 7
148 91.32 2.123 95.17 2.836 95.87 3.633 98.58 2.069
149 100.00 0.000 98.7 1.556 97.07 2.25 96.31 3.375
150 99.42 1.027 93.93 2.806 94.9 1.204 94.05 2.302
151 94.16 3.000 93.43 4 91.6 3 93.85 4
152 99.82 0.040 100 0 99.08 0.213 98.28 1.198
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No Evacuation λ = 0 λ = 0.5 λ = 1
Link Player M Player T Player M Player T Player M Player T Player M Player T
153 90.50 3.507 99.74 1.067 99.85 1 99.59 1.553
154 100.00 0.000 98.92 1.199 98.65 1.037 98.77 1.138
155 99.82 0.040 99.63 0.43 100 0 99.7 0.229
156 94.32 4.112 95.62 1.659 99.12 0.438 98.63 0.856
157 90.50 3.507 99.65 1.132 99.85 1 99.85 1.35
158 99.51 0.112 99.35 1 97.78 2.16 98.97 1
159 99.51 0.084 97.13 1.21 98.5 1.431 99.54 0.607
160 83.25 8.129 98.03 0.308 98.51 0.906 97.99 1.523
161 98.09 1.131 99.06 0.152 98.81 0.287 99.6 0.201
162 100.00 0.000 100 0 100 0 99.06 0.422
163 99.43 0.350 99.78 0.333 99.32 0.775 99.78 0.169
164 97.88 1.384 100 0 99.77 0.148 99.58 0.25
165 83.25 8.129 100 0 98.95 0.875 98.97 1.082
166 99.49 0.372 99.06 0.152 98.9 0.286 99.32 0.367
167 99.31 0.365 100 0 99.96 0.011 100 0
168 97.43 2.990 100 0 100 0 99.86 0.108
169 99.34 0.468 99.06 0.152 98.9 0.286 99.32 0.367
170 100.00 0.000 100 0 100 0 100 0
171 100.00 0.000 100 0 100 0 100 0
172 97.43 2.990 100 0 100 0 99.86 0.108
173 99.51 0.411 100 0 100 0 100 0
174 97.37 1.919 98.37 0.791 98.6 0.953 99.32 0.367
175 99.88 0.093 100 0 100 0 100 0
176 97.08 0.898 99.24 0.267 99.35 0.501 99.16 0.5
177 96.55 4.156 99.31 0.639 99.7 0.667 100 0
178 94.70 3.195 99.95 0.009 99.96 0.011 99.96 0.02
179 97.87 0.717 100 0 99.95 0.001 100 0
180 97.63 1.512 93.65 0.967 96.26 0.943 98.01 0.929
181 93.57 1.018 96.6 2.726 97.55 1.429 93.13 1.93
182 100.00 0.000 97.41 1.637 99.29 0.261 100 0
183 99.65 0.048 99.43 1.063 99.62 0.248 99.71 0.721
184 100.00 0.000 98.39 1.433 99.18 0.835 99.49 0.969
185 99.15 0.424 99.55 0.416 99.05 0.737 98.85 0.671
186 100.00 0.000 97.91 1.247 97.93 1.447 99.88 0.05
187 96.09 2.200 100 0 100 0 100 0
188 99.82 1.000 97.24 0.879 95.98 1.589 94.41 0.963
189 100.00 0.000 98.95 0.287 99.23 0.477 99.65 0.206
190 96.09 2.200 99.16 0.916 98.9 1.237 98.85 0.671
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No Evacuation λ = 0 λ = 0.5 λ = 1
Link Player M Player T Player M Player T Player M Player T Player M Player T
191 96.09 1.162 100 0 100 0 100 0
192 87.31 4.484 96.22 3.477 96.45 2.665 96.17 2.21
193 92.34 2.308 93.21 2 95.71 1.721 97.72 1.65
194 99.76 0.033 98.22 0.529 98.21 1.337 94.06 1.168
195 94.30 0.995 100 0 100 0 100 0
196 95.30 0.979 98.75 1.502 99.09 0.931 99.31 0.816
197 91.95 2.419 98.67 0.365 98.04 1.866 98.25 0.777
198 98.98 0.300 100 0 100 0 99.13 0.287
199 96.71 0.752 97.28 1.11 99.37 0.809 98.62 1.492
200 97.01 1.097 97.57 1.768 97.49 1.489 92.79 2.866
201 96.20 2.256 99.27 3 98.86 3.25 98.58 4.297
202 91.18 2.704 97 1.188 98.59 0.978 98.47 0.993
203 98.76 0.425 100 0 100 0 99.71 0.084
204 99.57 1.000 97.36 1.495 96.66 0.837 95.05 1.668
205 95.44 2.789 93.98 2 91.91 2 95.2 2
206 97.01 1.096 96.57 1.312 98.24 0.367 98.72 0.718
207 98.75 0.576 100 0 100 0 99.86 0.108
208 97.37 1.919 98.18 0.971 98.07 1.292 99.32 0.367
209 100.00 0.000 100 0 100 0 100 0
210 100.00 0.000 100 0 100 0 100 0
211 82.33 8.256 97.42 2.071 96.9 2.442 98.89 1.517
212 98.75 0.576 100 0 100 0 98.97 1.218
213 94.99 1.682 98.48 1.056 99.61 0.343 99.45 0.419
214 99.79 0.075 99.92 0.158 99.62 0.84 99.44 0.654
215 91.24 1.333 98.16 0.872 99.15 0.275 99.7 0.319
216 99.16 0.611 100 0 100 0 100 0
217 100.00 0.000 100 0 97.75 0.994 100 0
218 97.69 1.241 97.86 1.743 95.65 1.296 99.52 0.36
219 93.95 0.720 100 0 100 0 99.82 0.126
220 85.84 4.951 98.23 1.487 96.95 2.138 99.82 0.265
221 91.99 1.907 98.84 1.352 95.8 1.265 99.64 0.416
222 94.85 3.085 99.65 0.345 100 0 100 0
223 94.72 1.625 98.18 1.615 96.99 2.111 99.82 0.265
224 99.27 0.151 99.95 0.1 99.41 0.364 96.04 1.75
225 94.97 1.755 99.6 0.474 99.01 0.207 99.29 1.257
226 96.98 4.000 97.58 1.878 99.04 0.681 97.2 0.89
227 99.72 0.107 99.9 0.269 100 0 98.9 0.366
228 95.13 1.453 94.57 1.52 99.66 0.144 94.84 0.831  
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No Evacuation λ = 0 λ = 0.5 λ = 1
Link Player M Player T Player M Player T Player M Player T Player M Player T
229 95.53 1.560 99.6 0.474 100 0 100 0
230 100.00 0.000 99.66 0.275 99.05 0.39 99.3 0.517
231 98.84 2.000 98.15 0.887 97.46 0.726 97.24 1.025
232 99.52 0.089 93.61 3.052 97.61 3.285 95.14 2.368
233 98.26 2.989 95.55 1.509 99.42 0.54 97.62 0.256
234 100.00 0.000 94.04 2 97.16 2.018 93.39 2.338
235 93.56 4.488 95.94 2.491 93.11 4.48 97.08 1.023
236 99.10 3.119 94.66 2.808 93.85 1.732 94.48 2.215
237 94.74 2.014 97.15 2.877 98.68 2.285 99.42 1.896
238 85.54 3.814 99.03 0.967 99.55 0.667 100 0
239 100.00 0.000 100 0 100 0 100 0
240 98.33 1.137 99.69 1.114 99.61 0.266 99.88 0.029
241 98.81 0.038 99.86 0.103 99.34 0.298 99.73 0.066
242 99.84 0.006 93.99 2.962 92.27 2.029 98.24 1.25
243 96.94 0.685 98.16 0.872 99.87 0.036 99.88 0.193
244 100.00 0.000 100 0 100 0 100 0
245 100.00 0.000 100 0 99.85 0.021 100 0
246 100.00 0.000 99.61 1 100 0 100 0
247 100.00 0.000 100 0 99.85 0.333 99.86 0.25
248 99.33 0.137 98.27 1.671 95.98 1.692 97.07 1.388
249 100.00 0.000 100 0 99.74 0.073 100 0
250 99.20 0.076 95.35 1.346 93.27 0.955 98.38 1
251 100.00 0.000 99.03 0.865 99.77 0.04 99.92 0.05
252 100.00 0.000 100 0 100 0 100 0
253 100.00 0.000 94.77 2.135 92.21 2.655 98.04 1.7
254 96.39 1.253 99.41 1.257 96.12 2.11 99.61 0.095
255 99.60 0.405 100 0 100 0 100 0
256 97.17 1.863 100 0 100 0 100 0
257 98.36 0.390 100 0 100 0 100 0
258 100.00 0.000 100 0 100 0 100 0
259 98.63 1.152 100 0 100 0 100 0
260 99.60 0.405 100 0 100 0 100 0
261 100.00 0.000 100 0 100 0 100 0
262 100.00 0.000 100 0 100 0 100 0
263 99.20 1.036 100 0 100 0 100 0
264 99.60 0.405 100 0 100 0 100 0
265 100.00 0.000 100 0 100 0 100 0
266 100.00 0.000 100 0 100 0 100 0
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No Evacuation λ = 0 λ = 0.5 λ = 1
Link Player M Player T Player M Player T Player M Player T Player M Player T
267 100.00 0.000 99.04 0.724 97.27 0.856 97.58 0.797
268 99.82 0.036 100 0 100 0 100 0
269 100.00 0.000 100 0 99.85 0.333 99.86 0.25
270 98.76 0.576 100 0 100 0 100 0
271 99.82 0.036 100 0 97.63 0.737 99.8 0.323
272 100.00 0.000 100 0 100 0 100 0
273 100.00 0.000 99.04 0.724 97.27 0.856 97.58 0.797
274 100.00 0.000 100 0 99.85 0.333 99.86 0.25
275 100.00 0.000 97.2 1.174 99.29 0.248 97.24 0.957
276 100.00 0.000 95.75 2.724 96.91 0.991 94.53 1.951
277 100.00 0.000 100 0 99.85 0.333 99.86 0.25
278 100.00 0.000 100 0 99.76 0.114 100 0
279 100.00 0.000 99.77 1.052 99.7 0.145 100 0
280 100.00 0.000 95.75 2.724 96.67 1.104 94.53 1.951
281 100.00 0.000 99.03 0.865 99.62 0.373 99.78 0.3
282 100.00 0.000 99.9 0.174 100 0 100 0
283 100.00 0.000 95.52 3.775 96.84 1.022 94.53 1.951
284 97.73 3.000 93.51 3.731 91.67 3.133 93.39 3.917
285 95.89 1.420 98.87 1.036 95.82 2.295 95.18 2.24
286 100.00 0.000 99.92 0.053 97.63 0.824 99.42 0.384
287 95.89 1.420 94.39 4.811 92.51 3.421 89.05 4.925
288 100.00 0.000 95.13 3.117 96.41 2.8 95.56 4.351
289 89.15 5.000 91.42 7 90.91 5 90.4 4
290 93.11 5.000 95.84 3.748 95.84 3.523 92.96 2.953
291 89.23 5.493 97.31 4.269 98.43 3.027 95.61 2.294
292 100.00 0.000 96.24 2.957 95.01 3.036 95.36 3.708
293 90.60 1.468 100 0 98.57 0.773 99.38 0.536
294 98.04 3.000 96.77 1.687 97.73 0.66 97.06 1.317
295 81.72 5.533 97.15 2.877 98.68 2.285 98.72 2.283
296 87.78 3.969 98.76 2.753 98.88 2.181 95.6 2.297
297 99.34 3.000 92.06 4.801 89.27 4.624 91.26 5.361
298 85.59 3.327 98.61 2.301 97.43 1.581 98.06 2.284
299 68.14 8.738 97.04 5.694 97.57 4.493 94.76 6.177
300 99.66 2.000 91.76 4.269 92.96 4.517 91.6 6.262
301 86.28 2.912 94.22 2.833 88.87 4.329 95.45 2.754
302 69.84 8.617 93.29 5.641 94.13 5.486 92.49 6.497
303 99.93 0.028 93.61 3.844 89.05 8.655 92.36 5.117
304 85.66 5.853 97.55 1.721 97.76 2.603 94.81 4.545
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No Evacuation λ = 0 λ = 0.5 λ = 1
Link Player M Player T Player M Player T Player M Player T Player M Player T
305 88.70 9.000 81.89 9.491 77.17 12.8 78.02 13.36
306 51.37 16.681 89.54 6.504 83.07 11.77 84.8 10.96
307 95.54 1.412 93.7 3.511 91.96 6.211 89.9 5.09
308 98.57 0.155 98.74 1.035 97.64 1.078 97.01 1.305
309 93.14 1.687 93.55 5.737 93.9 7.469 91.77 6.626
310 52.05 16.374 89.72 6.199 85.98 9.376 85.15 10.639
311 99.22 0.157 98.88 0.739 97.46 2.469 97.72 1.41
312 100.00 0.000 98.94 0.287 97.43 1.587 97.35 0.311
313 92.08 5.994 99.53 0.589 99.95 0.5 97.64 1.232
314 97.92 1.366 100 0 99.09 2 99.52 2
315 95.29 1.869 100 0 100 0 100 0
316 99.38 1.000 100 0 100 0 100 0
317 96.97 1.461 80.96 3.679 81.67 4.142 85.24 4.386
318 99.88 0.004 100 0 100 0 100 0
319 99.45 0.026 95.22 1.637 93.06 1.377 98.2 1.429
320 100.00 0.000 100 0 100 0 100 0
321 100.00 0.000 74.95 8.184 82.08 8.29 74.53 7.717
322 96.69 1.463 100 0 100 0 100 0
323 66.30 15.388 99.79 0.958 99.67 1.11 99.75 1.237
324 99.07 0.322 100 0 100 0 100 0
325 98.66 0.361 100 0 100 0 99.81 1
326 100.00 0.000 91.29 3.205 92.74 5.704 91.3 3.555
327 100.00 0.000 100 0 100 0 100 0
328 98.96 0.459 100 0 100 0 100 0
329 97.90 1.064 100 0 99.81 0.198 100 0
330 100.00 0.000 100 0 100 0 100 0
331 99.88 0.020 97.25 1.135 98.26 1.27 94.5 1.554
332 100.00 0.000 93.58 7 93.66 6 85.19 6
333 100.00 0.000 89.23 6 88.12 6 89.94 7
334 99.82 0.040 99.77 0.14 100 0 99.7 0.229
335 99.51 0.084 97.13 1.21 98.5 1.431 99.54 0.607
336 100.00 0.000 100 0 99.48 0.033 99.06 0.422
337 100.00 0.000 100 0 100 0 100 0
338 99.88 0.093 100 0 100 0 100 0
339 100.00 0.000 100 0 100 0 100 0
340 97.87 0.717 100 0 99.95 0.001 100 0
341 98.56 0.733 100 0 100 0 100 0
342 100.00 0.000 98.96 1 98.7 0.513 99.94 0.04
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No Evacuation λ = 0 λ = 0.5 λ = 1
Link Player M Player T Player M Player T Player M Player T Player M Player T
343 97.36 1.490 100 0 100 0 100 0
344 95.61 1.228 100 0 100 0 100 0
345 99.47 0.072 100 0 100 0 100 0
346 96.09 2.199 97.97 0.637 97.15 0.758 100 0
347 100.00 0.000 99.44 1 98.87 0.399 100 0
348 99.08 0.162 95.56 3.395 98.66 1.948 98.27 2.382
349 97.98 0.497 97.38 0.831 99.03 0.497 98.21 0.638
350 94.05 1.208 98.61 0.749 99.55 0.32 98.81 0.381
351 99.43 0.350 100 0 99.43 0.033 99.74 0.189
352 100.00 0.000 100 0 100 0 100 0
353 100.00 0.000 100 0 100 0 100 0
354 100.00 0.000 100 0 100 0 100 0
355 94.99 1.682 99.67 0.056 99.25 0.282 99.58 0.25
356 99.79 0.075 99.34 0.108 99.58 0.031 99.67 0.149
357 100.00 0.000 99.8 0.145 99.02 0.809 100 0
358 100.00 0.000 100 0 100 0 100 0
359 100.00 0.000 99.5 0.553 99.59 0.406 99.8 0.347
360 82.40 2.846 100 0 99.37 0.809 99.94 0.013
361 95.47 1.881 99.02 0.637 97.59 0.605 99.88 0.193
362 97.97 2.000 100 0 100 0 100 0
363 98.17 1.443 99.81 0.038 100 0 99.29 1.257
364 94.95 1.832 99.6 0.474 100 0 97.27 0.668
365 98.26 0.856 99.58 0.233 99.49 0.362 99.67 0.094
366 96.32 5.110 98 1.645 99.55 0.32 97.52 0.796
367 97.18 1.257 95.38 1.152 99.87 0.04 97.62 0.256
368 100.00 0.000 99.66 0.275 99.1 0.495 98.93 1
369 98.82 2.000 99.6 0.509 98.6 0.89 99.47 0.358
370 100.00 0.000 91.15 1 98.73 1.018 93.32 0.781
371 98.33 1.137 99.42 1.189 98.21 0.66 99.76 0.223
372 100.00 0.000 99.03 0.615 98.8 1.132 99.86 0.25
373 100.00 0.000 98.16 0.872 99.87 0.036 99.88 0.193
374 100.00 0.000 100 0 98.28 1.065 99.6 0.693
375 82.84 1.613 99.85 0.04 97.95 1.207 99.88 0.193
376 96.51 0.754 100 0 100 0 99.29 1.257
377 99.03 1.224 100 0 100 0 100 0
378 100.00 0.000 99.81 0.038 99.7 0.667 99.72 0.5
379 100.00 0.000 100 0 100 0 98.82 1
380 80.21 3.618 100 0 100 0 100 0
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No Evacuation λ = 0 λ = 0.5 λ = 1
Link Player M Player T Player M Player T Player M Player T Player M Player T
381 99.20 1.122 99.9 0.269 100 0 99.17 0.274
382 99.83 0.073 100 0 100 0 99.72 0.092
383 97.58 1.163 100 0 100 0 97.27 0.668
384 81.62 1.718 100 0 100 0 98.82 1
385 96.89 5.000 99.45 1.074 100 0 96.52 1.092
386 99.12 0.577 98.45 0.84 100 0 99.44 0.162
387 97.74 0.268 99.42 0.152 99.1 0.495 99.1 0.841
388 100.00 0.000 99.88 0.056 99.08 0.505 99.61 0.224
389 94.94 3.356 97.24 1.864 95.4 2.598 98.94 0.614
390 94.64 0.763 100 0 100 0 99.94 0.013
391 99.15 1.415 97.53 2.777 96.7 3.79 98.9 1.982
392 98.14 1.251 96.11 2.204 94.81 1.827 96.91 1.224
393 91.87 2.670 99.12 0.495 99.55 0.833 100 0
394 97.81 0.651 100 0 100 0 100 0
395 99.84 0.006 94.96 2.346 93.47 0.897 98.38 1
396 96.94 0.685 100 0 100 0 100 0
397 99.82 0.036 99.86 0.103 99.13 0.356 99.73 0.066
398 100.00 0.000 100 0 100 0 100 0
399 99.25 0.078 100 0 100 0 100 0
400 98.87 0.311 100 0 100 0 100 0
401 99.83 0.073 100 0 100 0 99.72 0.092
402 94.94 1.249 100 0 99.7 0.165 96.08 1.668
403 98.12 0.388 100 0 100 0 100 0
404 97.73 3.000 99.72 0.731 100 0 96.24 1.184
405 97.80 2.073 98.97 1.174 99.7 0.165 99.49 0.477
406 99.52 2.000 97.58 1.572 98.59 0.571 98.27 0.604
407 92.06 5.000 96.78 2.818 96.12 2.864 99 0.533
408 96.94 0.375 100 0 98.78 0.67 99.38 0.536
409 79.94 3.928 100 0 99.79 0.104 100 0
410 97.14 1.175 99.63 0.206 96.42 1.965 99.61 0.095
411 97.73 3.000 94.48 2.865 92.21 2.655 94.28 2.884
412 98.74 0.245 99.24 0.83 99.4 0.33 95.57 2.145
413 98.36 0.390 100 0 100 0 100 0
414 100.00 0.000 100 0 100 0 100 0
415 100.00 0.000 100 0 100 0 100 0
416 100.00 0.000 100 0 100 0 100 0
417 100.00 0.000 100 0 100 0 100 0
418 99.82 0.036 100 0 97.63 0.737 99.8 0.323
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No Evacuation λ = 0 λ = 0.5 λ = 1
Link Player M Player T Player M Player T Player M Player T Player M Player T
419 100.00 0.000 97.47 0.941 99.79 0.072 97.78 0.721
420 100.00 0.000 99.9 0.174 100 0 100 0
421 100.00 0.000 99.92 0.053 97.63 0.824 99.42 0.384
422 100.00 0.000 89.95 7 89.56 6 87.81 7
423 93.11 5.000 95.84 3.748 95.92 3.054 91.01 3.359
424 98.04 3.000 96.92 1.395 97.73 0.66 97.06 1.317
425 85.59 3.328 98.7 1.442 97.93 0.487 98.56 1.202
426 100.00 0.000 99.81 1.059 99.48 1.102 99.22 1.164
427 84.90 2.614 98.68 3.465 96.39 2.459 97.69 4.574
428 94.17 1.665 94.04 3.185 93.63 4.846 97.06 2.449
429 100.00 0.000 96.32 0.861 97.91 2.296 96.66 1.067
430 100.00 0.000 90.8 7.206 88.77 8.796 85.32 9.559
431 99.78 0.070 98.88 0.739 97.46 2.469 97.72 1.41
432 98.57 0.155 98.74 1.035 97.7 1.026 94.8 1.537
433 98.93 0.587 99.26 0.711 96.43 3.517 99.22 1.63
434 79.06 5.175 99.56 0.199 97.35 1.738 95.72 2.588
435 98.48 0.292 99.58 0.089 100 0 97.78 0.232
436 95.29 1.869 100 0 100 0 100 0
437 99.31 0.365 100 0 99.96 0.011 100 0
438 96.39 1.253 99.55 1.218 96.51 1.415 99.61 0.095
439 100.00 0.000 93.8 3 91.97 2.695 97.96 1.75
440 100.00 0.000 100 0 100 0 100 0
441 100.00 0.000 99.85 0.04 99.37 0.809 100 0
442 95.40 0.644 99.66 0.275 99.79 0.104 99.77 0.172
443 84.74 1.024 100 0 100 0 99.26 0.184
444 99.69 0.467 97.82 1.068 96.65 1.205 98.75 0.798
445 98.69 2.000 98.78 0.659 99.76 0.171 98.33 0.523
446 93.13 2.392 100 0 100 0 100 0
447 97.36 3.134 98.09 1.558 99.76 0.171 98.33 0.523
448 85.93 0.855 99.66 0.275 99.49 0.269 99.49 0.477
449 100.00 0.000 100 0 100 0 100 0
450 100.00 0.000 74.95 8.184 82.08 8.29 74.53 7.717
451 100.00 0.000 100 0 100 0 100 0
452 100.00 0.000 91.29 3.205 92.74 5.704 91.3 3.555  
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