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 This research focused on the development of a hierarchical approach for 

classification that is robust with respect to training data that are limited both in 

quantity and spatial extent.  Many difficult classification problems involve a high 

dimensional input and output space (candidate labels).  Due to the �curse of 

dimensionality�, it is necessary to reduce the size of the input space when there is 

only a limited quantity of training data available.  While a significant amount of 

research has focused on transforming the input space into a reduced feature space 

that accurately discriminates between the classes in a fixed output space, 

traditional approaches fail to capitalize on the domain knowledge and flexibility 

gained by transforming the feature space and the output space simultaneously.  A 

new approach is proposed that utilizes domain knowledge, which is automatically 

discovered from the data, to combat the �small sample size� problem. 
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Spatially limited training data can result in poor inference concerning the 

true populations.  The detrimental impact that can result if this issue is ignored is 

explored and demonstrated.  Transferal of information that was previously 

acquired is used to update the signatures with the new clusters if the hypothesis 

that the new clusters are indeed just deformed versions of what already exists in 

the spectral library is accepted.   

Independent of limited training data, both in terms of the spatial 

implications and limited quantity, different sampling subsets of the same ground 

truth may result in slightly different classifiers.  This issue has not been addressed 

rigorously.  The advantages gained by using an ensemble of classifiers built from 

sub-samples of training data are widely acknowledged but have not previously 

been used in the context of a hierarchical classifier for remote sensing data or for 

hyperspectral data in general.  The ensemble of classifiers is used to identify a 

suitable level of the tree for situations where the resolution of the output space 

cannot be supported.  Further decisions of how the classification structure should 

be adapted and at what level need to be made are explored.  Furthermore, pseudo-

labeled data are utilized to improve classification results at that level of 

resolution. 
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Chapter 1:  Introduction 

1.1 THE CLASSIFICATION PROBLEM 

The classification of a pattern � identifying the �label� of an observation - 

is an essential task humans perform every day [1-2, 13, 14, 65].  Almost 

effortlessly, individuals identify each other by sight or touch, food by its smell, or 

animals by their sound.  However, the development of statistical pattern 

recognition algorithms to automate many of these seemingly simple tasks 

continues to be an active area of research.  Specifically, a classification problem 

arises when an observation from some pattern needs to be identified, but no given 

label is available.  Instead, a label must be assigned to the observation based upon 

a vector of measurements.  For example, it may be necessary for a fish-packing 

plant to separate the incoming fish according to species.  Although no label is 

available, it may be possible to classify the fish as the correct species with a high 

level of accuracy based on measurements such as length, color, width, number 

and shape of fins, position of the mouth, and weight [1]. 

When classifying an observation, the number of labels from which to 

choose is typically assumed to be finite.  Each label can be characterized by the 

probability distribution of the observations associated with that label, and 

therefore, each observation can be considered as a random observation from a 

label population.  In this context, the labeling of observations can be resolved by 

using �statistical decision functions� in which there are a number of hypotheses; 

each hypothesis purports that the probability distribution of the population from 

which the observation is acquired is that of a given label [2].  Given a random 
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observation with a vector of measurements, one of the hypotheses (labels) must 

be selected in favor of the others.  Pattern classification and recognition problems 

are often categorized as �supervised� when it is assumed that a set of samples has 

been acquired that is representative of the patterns to be classified.  Typically, a 

randomly selected portion of the sample is used to estimate the parameters of the 

label specific probability distributions for classification (training), and the 

remaining labeled samples are used to estimate the classification accuracy 

(testing).  Necessary revisions to the classification model could be made, and the 

training and testing cycle repeated.  With supervised classification, there is a 

training and test set for which the state of nature (class label) for each sample is 

known [1, 3, 5].  Therefore, for supervised approaches, the 

classification/recognition of an input/pattern is essentially the task of identifying 

the predefined class to which it belongs, where the user defines the classes.  The 

proposed research is based on this statistical perspective of the classification 

problem. 

1.2 MOTIVATION 

With most difficult classification problems, it is advantageous to make full 

use of the domain knowledge specific to the application area.  In particular, the 

problem specific characteristics of the data, quantity of data available for analysis, 

and information about the data acquisition process can be extremely important.  

One such problem, land cover classification, is an important application that can 

potentially benefit from remotely sensed data acquired by space-based and 

airborne platforms.  Of particular interest is the potential of new hyperspectral 
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sensors that simultaneously acquire information at hundreds of wavelengths.  

They characterize the response of targets (spectral signatures) in greater detail 

than traditional sensors and thereby can improve discrimination between targets 

[8, 9, 51].   Data from these sensors are classified to create maps required for 

monitoring many critical earth resources problems.   

A classification problem arises when an observation of a pattern, for 

which no specified label is given, needs to be identified.  Instead, a vector of 

measurements ( )1 2 dx ,x ,�,x  for the observation is used to assign a label to the 

pattern, where d is the dimensionality of the data. Typically the number of labels 

( )iL  from which to select is assumed to be a finite number C such that 

( )1 2 CL ,L ,�,L . Each label is a random variable that can be characterized by the 

joint probability distribution of the observations associated with that label, and 

therefore, each vector valued data point can be considered as a random 

observation from a label-conditional probability density function 

( )1 2 d iP x ,x ,�,x L , the probability density function (pdf) for x  given that the 

label is iL .  The estimates of the parameters of these pdfs are used to form the 

decision rules that divide the feature space, F , into C decision regions, each 

representative of a label [1, 2, 5, 14, 21, 22].  Where possible, the most 

appropriate land cover label is determined using supervised classification in 

which training data (labeled �ground truth�) X  are used to estimate the label-
conditional probability density functions ( ), = 1,...,1 2 d iP x ,x ,�,x L i C .  Typically, 

for practical reasons, the training data are collected only at a limited number of 

sites and, unfortunately, in a limited quantity X .   



 4

In many cases, the criteria for selection of training and test samples are 

dictated by factors that are independent of the statistical analysis.  Even if the 

sampling scheme has been developed using rigorous statistical methods, it may be 

impractical or impossible to implement these plans in real world applications.  For 

example, land cover classification is typically performed based on the spectral 

response of land cover classes from �pockets� of a region, whereas the goal is to 

classify the entire region and possibly to even utilize the information for 

classification of other data acquired over regions for which ground truth cannot be 

acquired.  When obtaining �ground truth� for land cover classes over an extensive 

region, it would be impractical, in terms of time and cost, to obtain samples at 

randomly chosen locations.  A much more realistic scenario would involve 

acquisition of samples at reasonably accessible sites, with the quantity of samples 

(the number of labeled pixels available for the researcher) being dependent upon 

many external factors.  In addition to the limitations of time and money, other 

issues, such as physical access and cloud cover during the acquisition of the 

remotely sensed data, can only serve to further reduce the quantity of usable data 

and the variety of sites.  This research is motivated by the shortcomings of 

traditional classification methods for dealing with land cover classification in the 

context of limited quantities of non-global samples.   

1.2.1 Estimation problems with limited amount of training data 

Many difficult classification problems, such as land cover classification, 

involve a high dimensional input space and a large number of candidate labels.  

However, due to the �curse of dimensionality� and the Hughes phenomena [1, 3, 
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6, 7, 13, 56], it is necessary to reduce the dimensionality of the input space ( )I  

when only limited quantities of training data are available.  It is particularly 

problematic that almost all conventional statistical approaches require computing 

and inverting covariance matrices ( ) ( )( )Cov =E µ µ ′Σ = X X - X - , which are 

typically unknown and are estimated by the sample covariance matrices 

( )( )
1

1

1 j j
j

S
=−

′= − −∑
X

X
X X X X .  For example, Fisher�s linear discriminant 

function is commonly used in linear discriminant analysis and is defined in terms 

of the within class covariance matrix and the between class covariance matrix.  

Any classifier using Fisher�s linear discriminant function requires inversion of the 

within class covariance matrix.  For the covariance matrix of d-dimensional data, 
there are ( )1 2+d d  parameters to estimate and, at a minimum, 1+d  

observations are required to ensure a non-singular/invertible sample covariance 

matrix [57].   

Numerous studies have considered what the minimum number of training 

samples should be, in relation to the dimensionality, for trustworthy estimation of 

a covariance matrix [3, 5, 19, 26].  In general, the literature recommends having 

4-10 times the number of observations as the dimensionality for linear classifiers.  

While quadratic classifiers may perform better than linear classifiers in certain 

situations, the recommended number of observations is related to the square of the 

dimensionality [24, 25, 27].  This relationship is even worse for non-parametric 

classifiers, where it has been estimated that the required quantity of training data 

increases exponentially as the dimensionality increases in order to accurately 



 6

estimate the multivariate densities [3].  Regardless of the actual classifier being 

used, while hyperspectral data provide the opportunity for improved 

discrimination between different land cover types, the problems with limited 

training data in relation to dimensionality become more critical and can have a 

significant impact on classification accuracies [19, 25, 53].  Hereafter, this 

dilemma is referred to as the �small sample size� problem. 

1.2.2 Samples do not fully characterize the population 

For this research, classification focused on development of statistical 

methods for classification of objects for which there is a large number of 

descriptive attributes, thereby yielding a vector of inputs that is of high 

dimension.  The methods are demonstrated on problems in land cover mapping 

using sensors that acquire data simultaneously in a large number of windows of 

the electromagnetic spectrum.   The recent advancement in airborne and space 

based-sensors have made it possible to acquire hyperspectral data in over 200 

bands. Bands of hyperspectral data are narrow, contiguous windows of the 

electromagnetic spectrum.  Unlike the traditional multi-sensors, which use 

recorded electromagnetic spectral responses in a smaller number of wide bands, 

often of at least 100 nm, these new hyperspectral sensors can acquire spectral 

responses in hundreds of narrow windows of 5-10 nm width.  Where possible, the 

most appropriate land cover label is determined using supervised classification.  

Typically, methods are trained and tested for classification accuracy from data in 

a �closed world�; all of the training and testing data are selected from a 
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contiguous subset(s) of the region.  Furthermore, for practical reasons, the labeled 

data are collected only at a limited number of sites.   

It is common to randomly select 50% of the labeled data for training, 

resulting in �testing� points that are neighboring - or even surrounded by - points 

on which the classifier was trained.  Due to the limited spatial extent of the 

available data, it is possible that the training data are not representative of the 

entire population.  In essence, inferences are being made about the underlying 

characteristics of the population based on local information.  Consequently, the 

resulting classifier probably performs poorly on the other �segments� of the 

population where no labeled data are available.  The true classification 

performance is compromised, and the generalization accuracy (the classification 

accuracy of labeled data not in the training set) may also be deceptive, inaccurate, 

and inflated.  Thus, these results likely result in a poor representation of both the 

populations that are known to exist in an area and even worse characterization of 

the even more difficult problem:  where the data have not been �seen�. 

A classifier that is �trained� on the responses of land cover types from 

certain sites may ultimately be used to classify the land cover types of other areas 

where no immediate data are available.  Natural variation within classes during an 

acquisition is increased by the impact of spatially varying characteristics such as 

in soil composition, elevation, and environmental factors.  While the issue of 

within sample variance has been recognized, the problem of spatial non-

stationarity has not been studied.  The limited spatial context of the acquired 

training data can result in a biased estimate of the true underlying populations.  
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Not only is the likely outcome diminished classification accuracy over the entire 

scene, but the researcher may also be misled that the accuracies are very high 

based upon test set results. 

1.3 PROBLEM STATEMENT:  LIMITED TRAINING DATA AND DYNAMIC 

CLASSIFICATION METHODS  

This research focused on the development of a hierarchical approach for 

classification that is robust with respect to training data that are limited both in 

quantity and spatial extent.  Because the general problem of robust classification 

is quite broad, the research focuses on specific problems.  The problems are 

outlined here, in order of increasing difficulty and decreasing domain knowledge, 

and presented completely in Chapters 3-5.    

1. Many difficult classification problems involve a high dimensional 

input and output space (candidate labels).  Due to the �curse of 

dimensionality�, it is necessary to reduce the size of the input 

space when there is only a limited quantity of training data 

available.  While a significant amount of research has focused on 

transforming the input space into a reduced feature space that 

accurately discriminates between the classes in a fixed output 

space, traditional approaches fail to capitalize on the domain 

knowledge and flexibility gained by transforming the feature space 

and the output space simultaneously.  A new approach is proposed 

in this research that utilizes domain knowledge, which is 
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automatically discovered from the data, to combat the �small 

sample size� problem. 

2. Spatially limited training data can result in poor inference 

concerning the true populations.  The detrimental impact that can 

result if this issue is ignored is explored and demonstrated.  

Transferal of information that was previously acquired is used to 

update the signatures with the new clusters if the hypothesis that 

the new clusters are indeed just deformed versions of what already 

exists in the spectral library is accepted.   

3. Independent of limited training data, both in terms of the spatial 

implications and limited quantity, different sampling subsets of the 

same ground truth may result in slightly different classifiers.  This 

issue has not been addressed rigorously.  The advantages gained by 

using an ensemble of classifiers built from sub-samples of training 

data are widely acknowledged but have not previously been used 

in the context of a hierarchical classifier for remote sensing data or 

for hyperspectral data in general.  The ensemble of classifiers is 

used to identify a suitable level of the tree for situations where the 

resolution of the output space cannot be supported.  Further 

decisions of how the classification structure should be adapted and 

at what level need to be made are explored.  Furthermore, pseudo-

labeled data are utilized to improve classification results at that 

level of resolution. 
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This research focuses on the development of a hierarchical approach for 

classification that is robust with respect to populations that exhibit spatial 

variability in the context of limited �both in quantity and spatially - training data.  

The framework on which this research is developed is reviewed in Chapter 2.  

The specific problems that are addressed were outlined in Section 1.3 and are 

presented more completely in Chapters 3-5 followed by some concluding 

comments.   
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Chapter 2:  Background and Related Work 

Statistical classification of high dimensional input and output problems 

has been studied intensively for the past decade.  This has been motivated by 

acquisition of higher dimensional information and made possible by advances in 

computational hardware.  This chapter contains a review of the literature related 

to both feature extraction and the classification problem.   A detailed description 

of the hierarchical classifier, which provided the foundation for the research 

reported here, is provided, including a description of the pairwise classifier 

framework upon which it was based.  The presentation of the Bayesian Pairwise 

Classifier framework entails a description of the feature selection/extraction 

process by way of pairwise Fisher projection and forward feature selection, the 

Bayesian Pairwise Classifier itself, and the process of combining the pairwise 

classifiers using �hard� and �soft� techniques.  Domain knowledge specific to the 

application area of land cover classification with hyperspectral data motivated the 

development of a best-bases feature extraction algorithm, to be used within the 

Bayesian Pairwise Classifier, so it too is discussed in detail.  The explanation of 

the best-bases algorithm highlights the strengths of a �top-down� search and a 

�bottom-up� search for best bases.  Scalability issues with the Bayesian Pairwise 

Classifier, as well as the desire to automatically discover and use domain 

knowledge, motivated the development of the Binary Hierarchical Classifier 

framework that ultimately provided the foundation for the new methods 

developed in this research.  Thus, the Binary Hierarchical Classifier is presented 
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in detail, inclusive of an explanation of the �top-down� and �bottom-up� building 

approaches and feature extraction.   

2.1 THE CLASSIFICATION FRAMEWORK 

The general classification problem includes the following steps (depicted 

in Figure 2.1). 

Data Preprocessing involves radiometric, geometric, and atmospheric 

correction of the data and conversion to a format that is usable by a 

classifier.  The selection of the set of ground cover types that is used by 

the classifier is also assumed to occur during this step.  

Define Input Space 

Data Preprocessing

Feature Space Extraction

Decision / Output Space

Evaluate Classifier 

Train Classifier 

Figure 2.1:  The general classification framework 
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Define Input Space ( )( )1 2; 1, ; 1, ; 1,x n y n l d= = =I x, y,l  is assumed to 

be the preprocessed d -dimensional data points, each associated with a 

location ( )x y,  on a regular grid. 

 
Feature Space ( )F  Extraction is the transformation of the input space I  

into the feature space F .  The feature space is selected using domain 

knowledge or statistical techniques such that the classes are more easily 

discriminated. 

 
Train Classifier stage uses the training data to estimate the parameters of 

the probability density functions representing the responses of the 

individual classes.    

  
Evaluate Classifier includes labeling/classifying every pixel in the image 

as one of the given ground cover types by using the trained classifier.  The 

assessment of the classifier performance is accomplished by any 

combination of options such as accuracy tables, confusion matrices, and 

expert opinions. 

 
Decision / Output Space ( )O  is the set of all �observed� classes.  

Domain knowledge helps determine the appropriate application dependent 

output space 

2.2 STATISTICAL PATTERN CLASSIFICATION 

As noted in Chapter 1, a classification problem arises when an observation 

of a pattern needs to be identified, but no given label is available.  Instead, one of 

C labels ( )iL  must be assigned to the observation based on a vector of 
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measurements ( )1 2 dx ,x ,�,x  obtained from the d dimensional data.  Each label 

can be considered a random variable characterized by a probability distribution of 

the observations associated with that label.  Likewise, each observation can be 

considered as a random observation from a label-conditional 
pdf ( )1 2 d iP x ,x ,�,x L .  The estimates of the parameters of these pdfs are used to 

form the decision rules that divide F into C decision regions, each representative 

of a label [1, 2, 5, 14, 21, 22].  Selection of a �good� feature space F is application 

dependent.  Further, there is also a class of these problems where the inputs 

represent sequential measurements over some domain � such as the spectrum. 

2.2.1 High dimensional hyperspectral input space 

The recent advancement in airborne and space borne sensors have made it 

possible to acquire hyperspectral data in over 200 bands. Bands of hyperspectral 

data are narrow, contiguous windows of the electromagnetic spectrum.  Unlike 

the traditional multi-sensors, which recorded spectral responses in wide bands, 

often of at least 100 nm, modern sensors can acquire spectral responses in 

hundreds of narrow windows of 5-10 nm width.  In the remote sensing 

community, these instruments are referred to as hyperspectral sensors.  The data 
consist of a three-dimensional array: ( )I x, y,d - where ( )x,y  denotes the location 

of the pixel in an image and � d � represents the spectral band. The value stored in 

the ( )x, y,d  location is the spectral response from that particular pixel.  Figure 2.2 

illustrates the data composition.  The potential increased utility of hyperspectral 

data is being investigated for land cover mapping.  Data from hyperspectral 

sensors characterize the response of targets (spectral signatures) with greater 
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detail than traditional sensors and thereby can potentially improve discrimination 

between targets [8, 9, 51, 72].  When possible, �supervised� classification 

methods are used where label-conditional probability density functions 

( ), = 1,...,1 2 d iP x ,x ,�,x L i C  are estimated by available labeled training data 

(�ground truth�) X  to determine the most appropriate land cover label.  Practical 

Figure 2.2:  An example of hyperspectral data where d=224 
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limitations may only allow the acquisition of a limited quantity X  of training 

data collected at a limited number of locations.   

2.2.2 Dimensionality of output space dependent upon resolution 

In many application areas, the dimensionality of the output space (the 

number of candidate labels from which to choose) is clearly defined.  An example 

would be the classification of the letters in the English alphabet.  For example, 

nearly everyone, if informed that they also need to discriminate between upper 

case and lower case letters, would identify fifty-two possible labels.  That is not 

the case with land cover classification.  The dimensionality of the output space 

will depend upon the researcher�s judgment and the spatial and spectral usage of 

the data coupled with the intended usage of the information.  While land cover 

classification schemes have been devised as an attempt to standardize mapping 

across multiple scales, the specific selection of classes remains task dependent. 

The decision on how fine or coarse the "resolution" on the general classes will be, 

and the resulting dimensionality of the output space, is important and has a 

significant impact on the resulting classification accuracies. 

2.3 PAIRWISE CLASSIFIER FRAMEWORK 

To maximize classification accuracy, features must be used that provide 

the best discrimination between classes.  For high dimensional input problems, 

feature extraction is required prior to classification - to reduce both the 

computational burden and the effect of highly correlated inputs.  Because 

different groups of classes are best distinguished by different sets of features 
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(typically spectral bands in remote sensing applications), it is often desirable that 

the feature extractors extract group-specific features [10, 11].  Additionally, each 

feature space selected to discriminate between the class pairs should be less 

complex than the feature space necessary for the entire C-class problem.  These 

issues motivated the development of the Pairwise Classifier (PC) framework of 

Kumar et. al [8, 10, 15-17].  In the PC framework of Figure 2.3, the original C-
class problem is decomposed into 

2
C 

 
 

 2-class problems.  Feature selection is 

accomplished for each class pair such that the classifier for each pair ( ),i jL L  has 

an associated feature extractor :  Ψ →ij ijI F  where I is the input (vector) space 

•    
     •  
          •

•    
     •  
       •

(i, j)

•      •      •  

(1,C)(1,2) 

combiner

decision/output space 

(C-1, C)input 

feature 
selector

classifier

Figure 2.3:  Pairwise classifier framework: 
2
C 
 
 

pairwise classifiers with

respective extractors, feature spaces, and classifiers 
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and ijF  is the extracted feature vector for each pair ( ),i jL L  [10-11, 48].  Each of 

the two-class problems is solved independently, using a Bayesian pairwise 

classifier, and the results are combined by either the �voting� method or the MAP 

(maximum a posteriori probability) method [6, 66]. 

2.3.1 Feature selection/extraction 

In [8, 10, 15] Kumar et al. proposed a generic relevance measure, 

( ) ( )( )
( )( )

( )( )
( )( ) ( )
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based on the estimated log-odds of posterior probabilities.  Since this relevance 

measure does not assume anything about the data set or the nature of the 

classifier, it can be used in any case where the output of the pairwise classifier is 
the estimated posterior ( )( )�

ij i ijP L Ψ x .  This relevance measure (2.1) is a filter 

type goodness measure according to Langley�s taxonomy, where the idea is to 

exploit the differences of the posterior probabilities when a point belongs to one 

class versus the other [39].  Following Baye�s rule: 

By substituting (2.2) into (2.1), and estimating the priors by the class 

proportionality, the estimated log-odds of posterior probabilities reduces to: 
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While the mapping :  Ψ →ij ijI F  could be any feature extraction 

transforming the input space I into a feature space ijF  that is more suitable for 

discriminating the class pair ( ),i jL L , Kumar used a greedy forward feature 

selection algorithm [8] where, for each pair ( ),i jL L , the first band selected is that 

which maximizes (2.3).  Additional bands are added in order of their respective 

incremental contributions if the corresponding increase in (2.3) is greater than a 

specified threshold. 

2.3.2 Hard and soft Bayesian pairwise classification with Gaussian(s)  

Although any classifier whose output can be used to infer the respective 

probabilities of class occurrence satisfy the requirements for the 2-class 

classifiers, Kumar et al. investigate both a single and mixture of Gaussians to 
model the probability density functions ( )( )� ,   Ψij ij kP L k = i, jx  for use in 

Bayesian classifiers [10, 15].  Once the pdfs are obtained for each pair in the 
feature space ijF  resulting from the ( )ijΨ x  transformation, the Bayesian pairwise 

classifier (BPC) framework uses Baye�s rule to obtain the posteriors (2.2).  In the 
single Gaussian (BPC1) formulation, each pdf ( )( )� ,   Ψij ij kP L k = i, jx  is 

modeled as a Gaussian ( )1( , ) ( , ),ij ij ijd d di j i j
k k

× ×∈ ℜ Σ ∈ ℜµ  in the =ij ijd F  reduced 

dimensional space.  The sample means and covariances for any feature extractor 

( )ijΨ x  transformation are given by: 

( ) ( )( , ) 1 ,                                                2.4
k

i j
k ij

Xk

k = i, j,
X

µ
∈

= Ψ∑
x

x  
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X
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Alternatively, in the mixture of Gaussian (MOG) formulation (BPCn), the class 

conditional pdfs are represented as 

where ( ),
kn i j  is the number of Gaussians in the mixture for kL , and 

( ) ( ) ( ){ }, ,
, ,,i j i j

k ij kFα α∈ Σµ  are the mean vector and covariance matrix for the thα  

Gaussian in the mixture for class kL of the ( ),i jL L  classifier.  The multivariate 

Gaussian pdf Γ is given by: 

Additionally, a �growing and pruning� algorithm selects the number of 

Gaussians and the parameters for the resulting mixtures, while simultaneously 

greedily selecting the feature space via the forward feature selection algorithm 

[8].  For either a single Gaussian or a MOG, the estimated class conditional pdfs 

are used to obtain the classifier output by Baye�s rule:   

2.3.3 Hard and soft combiners  

The PC framework generates 
2
C 

 
 

outputs per pixel, one for each of the 

pairwise classifiers.  In a �hard� combiner, a simple voting scheme proposed by 

Friedman [6] is followed, whereby the pixel is assigned the class label that occurs 
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the maximum number of times in the 
2
C 

 
 

classifiers.  Conversely, in a �soft� 

combiner approach, estimates of the true posteriors 
( )( )   =1, ,Ki 1 2 nP L x ,x ,�,x i C  of the classes are obtained using a hill-climbing 

algorithm proposed by Hastie and Tibshirani [66].  The estimated posteriors can 

then be used in the MAP methodology where the pixel is assigned the class label 

that corresponds to the maximum estimated posterior probability. 

2.4 BEST-BASES FEATURE EXTRACTION 

While the PC framework reduces the dimensionality of the input space, it 

ignores correlation between individual inputs.  From the domain knowledge in 

this field, it is already known that the original input features, called bands, are 

narrow, contiguous windows of the electromagnetic spectrum and that bands that 

are �spatially close� to each other tend to be highly correlated. Kumar et al. 

developed �best-bases� feature extraction algorithms which tie the feature space 

selection to the classification process by exploiting the correlation between 

adjacent spectral inputs for use in the PC framework [8, 16, 17].  The bottom-up 

and top-down algorithms they developed for combining subsets of adjacent bands 

are presented in the remainder of this section. 

2.4.1 Previous work 

Jia and Richards previously investigated band-combining algorithms and 

proposed a feature extraction technique for hyperspectral data based on 

Segmented Principal Components Transformation (SPCT) [62, 63].  With SPCT, 

image processing-based edge detection algorithms are used to transform the D 
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individual bands into subsets of adjacent bands that are highly correlated based 

upon the estimated population correlation matrix. From each subset, a small 

number of principal components that capture most of the variance in the data are 

selected to yield a feature vector that is of significantly lower dimension than the 

original input dimensionality.  Although this approach utilizes the highly 

correlated adjacent bands in hyperspectral data to reduce the input feature space, 

it does not guarantee good discrimination capability because the principal 

component transform focuses on extracting orthogonal linear combinations with 

maximum variance rather than maximizing discrimination among classes.  

Additionally, the segmentation approach of SPCT is based upon the correlation 

matrix over all of classes and, because the interband correlation can vary 

significantly among the C classes, a good band-combining algorithm should 

exploit the class-conditional correlation matrices.  Furthermore, estimating the 

correlation matrix in the original high dimensional input space requires an 

adequate amount of training data, and this dependence is not addressed. 

2.4.2 Top-down Generalized Local Discriminant Bases 

Saito and Coifman [67] developed a local discriminant bases (LDB) 

algorithm for classification of signals and images.  In LDB, a binary tree of bases 

is searched for complete bases, called the best bases, which maximize a 

discrimination information function.  Although this algorithm takes advantage of 

the correlation between adjacent bands, it is severely limited because its binary 

structure does not allow flexible` lengths for the bases.  Additionally, LDB 

searches for bases that help discriminate all the classes simultaneously rather 
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allowing for class dependencies.  These limitations motivated the development of 

a top-down procedure generalized from LDB referred to as TD-GLDB.   
For decomposing bands ( ) , 1l u l u d   ≤ ≤ ≤ , the relevance measure (2.1), 

a log-odds ratio of the posterior probabilities, was extended to determine which 

bands should be split [10], [15]: 

A function, ( ),l uxM , is necessary to represent each group-band.  For simplicity, 

the mean of the bands is used (2.10): 

Initially, 1l = , u d= , and k%  is sought using (2.11): 
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Figure 2.4:  Example of an arbitrary binary tree obtained from TD-GLDB.  
The dark blocks are the bases. 
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If ( ) ( ), ,l k l u>%J J , ,l k 
  

%  is decomposed and if ( ) ( )1, ,k + u l u>%J J , 1,k u 
  

+%  

is decomposed.  Group-bands such as those depicted in Figure 2.4 are generated, 

and a subset of the group-bands that best discriminates between ( ),i jL L  is 

selected using a forward feature selection algorithm [68].   

2.4.3 Bottom-up Generalized Local Discriminant Bases 

A bottom-up algorithm, also generalized from the LDB algorithm and 

hence named GLDB-BU, was also developed by Kumar et al.[17].  Rather than 

searching for bases that help discriminate all the classes simultaneously - such as 

in LDB - GLDB-BU restricts its search for best bases specific to each pair of 

classes (groupings).  An additional improvement is that any set of adjacent bands 

can be merged versus the recursive binary split of the bands as in LDB.  For each 
class pair ( ),i jL L  the estimated correlation matrix q and covariance matrix Q 

between all pairs of bands are given by (2.12): 

The correlations between the bands, as well as the discrimination between 

the two classes when the bands are projected in the Fisher direction, are used as 
the criteria to group the bands ( ) , 1l u l u d   ≤ ≤ ≤ .  The goal is to merge highly 

correlated bands in a way that also yields good discrimination between ( ),i jL L .  

A �correlation measure� ( ),l uC  is defined as the minimum pairwise correlation 

( ) ( ){ } ( )= arg max max , , 1, .                                    2.11
l k u

k l k k u
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+% J J
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qi, j  over the ,l u    subset.  Similarly, a �discrimination measure� ( ),l uD  is 

defined as the Fisher discriminant over the ,  l u  subspace.  The algorithm 

searches for the maximal value of the product ( ) ( ) ( ), = , ,∗l u l u l uJ C D , 

(restricted to pairs of bands/group-bands only). The pair is merged, the 

corresponding basis given by the Fisher projection over the subset is added, and 
the algorithm continues unless the resulting ( ),l uJ  is less than that of both 

previous subsets [ ( )lJ  and ( )uJ ].  As in GLDB-TD, after the algorithm 

generates the group-bands such as those depicted in Figure 2.5, forward feature 

selection is used to choose an appropriate number of the bases.  When used in 

conjunction with these best-bases feature extraction algorithms, the PC 

framework provides features that are of lower dimension and result in high 

classification accuracy [8].  

2.5 BINARY HIERARCHICAL CLASSIFIER FRAMEWORK 

In the single stage PC framework, the original C-class problem is 

decomposed into 
2
C 

 
 

 simpler 2-class problems where each meta-class is a 

Figure 2.5:  Example of an arbitrary binary tree obtained from BU-
GLDB.  The dark blocks are the bases. 
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unique class.  By reducing the size of the output space to a 2-class problem, the 

feature extractor is allowed the flexibility of obtaining a more group-specific 

feature space that should be less complex than the feature space necessary for 

comparable results for the entire C-class problem [10, 11].   

However, the number of pairwise classifiers grows as ( )2O C .  

Furthermore, many of these pairwise classifiers are not directly applicable to the 

{ }4A+3 CΩ ={ }4A +2 3Ω =

{ }2A+1 3, CΩ =

{ }2 A 6Ω =

{ }12 5Ω = { }13 9Ω =

{ }5 1CΩ = −{ }4 1Ω =

{ }6 5,9Ω =

{ }2 , , 2 ,3Ω = −K C C{ }2 1, 1CΩ = −

1

Leaf node

2 

  

3

6

2A+
1

 

{ }1 1, ,Ω = K C

A

{ }A 3, 6, CΩ =

Internal node

Figure 2.6: An example of a Binary Hierarchical Classifier (BHC) with C
classes.  Each internal node n comprises of a feature extractor, a
classifier, a left child 2n, and a right child 2n+1.  Each node n is
associated with a meta-class nΩ . 
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true underlying label, and they pass on the discriminatory burden to the 

�combiner�.  These issues motivated the multistage Binary Hierarchical Classifier 

(BHC) framework that creates a binary tree structured hierarchical classifier with 

C leaf nodes and C-1 internal nodes [8, 71, 73].  Not only is the number of 2-class 
problems reduced from ( )2O C  to ( )O C , but the tree structure also allows the 

more natural and easier discriminations to be accomplished earlier [14].  Figure 

2.6 depicts an example of a C-class BHC.  New observations are directed down 

the tree into the leaf nodes representative of the C labels.  In this section, both a 

bottom-up (combining meta-classes) and a top-down (splitting meta-classes) 

method for building the hierarchical trees are presented.  Fisher�s linear 

discriminant function is used as the feature extractor at each internal node of the 

BHC. 

2.5.1 Fisher feature extraction 

In order to determine where to split (top-down) or merge (bottom-up) a set 

of meta-classes, some measure of the distance between the meta-classes in a 

discriminatory feature space is necessary.  Kumar [8] proposed using the Fisher 

discriminant, which is commonly used in linear discriminant analysis, to 

accomplish this task.  The Fisher discriminant is not only used for constructing 

the tree, but also as the feature extractor at each internal node of the BHC.  For a 
d-dimensional input space, there is a maximum of { }M = min , -1d C  Fisher�s 

sample linear discriminants [57].  At each partition of the BHC, let { }2 2 1
,

n n
µ µ

+Ω Ω , 

{ }2 2 1
,

n n
S S

+Ω Ω , and { }2 2 1( ), ( )n nP P +Ω Ω  denote the respective mean vectors, sample 
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covariance matrices, and priors for the meta-class pair { }2 2 1,n n+Ω Ω .  For 

{ }2 2 1,n n+Ω Ω , Fisher�s linear discriminant function is defined as 

 
2 2 1 1, arg max                                               (2.13)
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In (2.13) and (2.14), ( )( )2 2 1 2 2 1 2 2 1,n n n n n n
µ µ µ µ

+ + +Ω Ω Ω Ω Ω Ω
′= − −B = B  is the between 

class covariance matrix and 
2 2 1 2 2 1, 2 2 1( ) ( )

n n n nn nP S P S
+ +Ω Ω Ω + Ω= Ω + ΩW = W  is the 

within class covariance matrix.  Since two meta-classes are used to define the 

within and between class covariance, Fisher (1) is the first, and only, sample 

discriminant.  This projection is always 1-dimensional because of the between 

class covariance matrix is of rank one.   

2.5.2 Bottom-up BHC 

The Bottom-Up Binary Hierarchical Classifier (BU-BHC) is based on a 

basic agglomerative clustering algorithm in which each input is initially 

considered to be a unique cluster and, at each step, the two most �similar� clusters 

are merged and thereafter considered as a single cluster.  In BU-BHC, each class 

represents one of the initial clusters, so the tree is built by merging the two most 

�similar� meta-classes until only one meta-class remains.  Fisher�s discriminant is 

used as the distance measure D  for determining the order in which the classes 
are merged.  A disadvantage of the BU-BHC algorithm is that it is ( )2O C  as the 



 29

distance between all pairs of classes must be computed at the very first stage, with 
each subsequent stage being ( )O C . 

2.5.3 Top-down BHC 

In [18], Kumar et al. extended the work of Rose et al. [58-59] and 

proposed Generalized Associative Modular Learning Systems (GAMLS) for class 

decomposition through soft partitioning of the training set.  In the unsupervised 

GAMLS framework, decomposition is achieved by softly associating data with 

different �sub-classes�.  The GAMLS framework motivated the Top-Down 

Binary Hierarchical Classifier (TD-BHC) algorithm.  In TD-BHC, all the classes 

are initially considered to be in one meta-class and, as the algorithm iterates, one 
of the meta-classes nΩ  is partitioned into two meta-classes ( )2 2 1,n n+Ω Ω .  In the 

meta-class nΩ  being partitioned, each class nL ∈Ω  is initially associated (A) 

with 2nΩ  and 2 1n+Ω  equally.  The association is defined as the posterior 

probability ( )iP LρΩ  of a class iL  belonging to a particular meta-class 

{ },  2 , 2 1n nρΩ ρ∈ +  and the �completeness constraint� of the GAMLS framework 

implies that ( ) ( )2 2 1 1  n i n i i nP L P L L+Ω + Ω = ∀ ∈Ω .  After a randomly selected 

class is selected to be associated with only one of the partitions, the feature 
extractor ( ) ( ):  ,F i jIΨ → Ω ΩAX  that maximally discriminates between 2nΩ  

and 2 1n+Ω  is sought using the Fisher�s linear discriminant function (1).  This 

feature space is used to estimate the log-likelihood of class L ∈Ω : 

( ) ( )( ) { } ( )1 log ,   , ,                         2.15ρ ρ
∈

Ω = Ψ Ω ρ ∈ ∀ ∈ Ω∑
LXL

L p i j L
N x

x AL
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The estimated log-likelihood (2.15) is used as the basis for updating the 

association rules until a threshold is reached, at which time each class in the meta-

class being partitioned is assigned entirely to 2nΩ  or 2 1n+Ω . 

2.5.4 Combining in BHC 

Either a hard combiner or a soft combiner can be used with the BHC 
framework.  The Fisher projection(s) ( )Ψ x A  between two meta-classes 

{ },Ω Ωi j  are used to model the pdfs ( )( ) ,  ,Ψ Ω =kp k i jx A .  The hard 

combiner follows the same procedure as a decision tree where each new 

observation starts at the root node and is pushed to the meta-class child into which 

it is classified until it reaches a leaf node whose label it is assigned [69].  

Therefore, the hard combiner requires each observation to go through at most 

( )1C -  classifiers.  Alternatively, the soft combiner estimates the posteriors of the 

labels ( )( )  =1, ,i ijP L i CΨ Kx  and then applies the MAP rule to assign each 

observation a label.  The posteriors for each label are estimated by Baye�s rule by 

taking the product of posterior probabilities of all the internal node classifiers on 

the path to that particular label�s leaf node [8].  As a result, when the soft 
combiner is used, each observation is processed by exactly ( )1C -  classifiers. 

An important, yet sometimes overlooked, issue central to the classification 

process is the dependency upon the labeled data for training.  The quantity of 

training data, with respect to the dimensionality, is critical for accurate parameter 

estimation.  Furthermore, even when an adequate amount of training data is 

available, if the population on which the classifier is being applied is not properly 

represented, then a high level of classification accuracy cannot be expected.   
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Chapter 3: Adaptive Best-Basis Bayesian Hierarchical Classifier 

An important application area for the dimensional, narrow spectral band, 

hyperspectral data is land cover classification.  Data from hyperspectral sensors 

characterize the response of targets (spectral signatures) with greater detail than 

traditional sensors and thereby can improve discrimination between targets [8, 9, 

51, 72].  The labeled ground truth for training are typically limited both in 
quantity of data X  and variety of sites at which they are collected.  These data 

are used to estimate the label-conditional probability density functions 
( ), = 1,...,1 2 d iP x ,x ,�,x L i C  that are essential for determining the most 

appropriate land cover label.  Because the data are of such high dimension, and 

there is only a limited quantity of ground truth, the �small sample size� problem is 

prevalent and must be dealt with foremost in the classification process.  A new 

approach is proposed in this chapter that utilizes domain knowledge, which is 

automatically discovered from the data, to combat the �small sample size� 

problem. 

While many difficult classification problems, including land cover 

classification with hyperspectral data, involve a high dimensional input space and 

a large number of candidate labels, it is necessary to reduce the dimensionality of 
the input space ( )I  when only limited quantities of training data are available 

because of the Hughes phenomena and the �curse of dimensionality� [1, 3, 6, 7, 

13, 56].   To improve classification results beyond those obtainable by using a 

�mean distance classifier�, more information is needed and, because of this fact, 
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almost all conventional statistical approaches use the sample covariance matrices 

( )( )
1

1

1 j j
j

S
=−

′= − −∑
X

X
X X X X .  For example, Fisher�s linear discriminant 

function is defined in terms of the within class covariance matrix 

, ( ) ( )i j i jP i P j= Σ + ΣW  and the between class covariance matrix 

( )( ),i j i j i jµ µ µ µ ′= − −B .  Any classifier using Fisher�s linear discriminant 

function (2.13) or discriminant distance measure (2.14) would require the 
inversion of the within class covariance matrix ,i jW .  For the covariance matrix 

of d-dimensional data, there are ( )1 2+d d  parameters to estimate and, at a 

minimum, there needs to be 1d +  observations to ensure a non-singular/invertible 

sample covariance matrix [57].  Therefore, to utilize the improved spectral 

signature estimates provided by hyperspectral sensors compared to traditional 

sensors, the increased dimensionality must be taken into consideration. 

Numerous studies have considered what the minimum number of training 

samples should be, in relation to the dimensionality, for trustworthy estimation of 

a covariance matrix [3, 5, 19, 26].  In general, literature recommends having 4-10 

times the number of observations as the dimensionality for linear classifiers.  

While quadratic classifiers may perform better than linear classifiers in certain 

situations, rather than a linear relationship, the recommended number of 

observations is related to the square of the dimensionality [24, 25, 27].  This 

relationship is even worse for non-parametric classifiers, where it has been 

estimated that the required quantity of training data increases exponentially as the 

dimensionality increases in order to accurately estimate the multivariate densities 
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[3].  Regardless of the actual classifier being used, while hyperspectral data 

provide a greater opportunity for discrimination between different land cover 

types, the problems with limited training data in relation to dimensionality 

become more relevant and can have a significant impact on classification 

accuracies [19, 25, 53].  This dilemma will be referred to hereafter as the �small 

sample size� problem. 

A significant amount of research has focused on transforming the input 

space into a reduced feature space that accurately discriminates between the 

classes in a fixed output space, thus helping mitigate the small sample size 

problem.  To a lesser extent, decomposition of the output space (reducing the 

number of candidate labels) has also been considered in view of the fact that the 

decision boundaries for a reduced output space should be easier to learn and 

model than the original output space.  As a shortcoming, traditional approaches 

fail to capitalize on the flexibility gained by transforming the feature space and 

the output space simultaneously or the domain knowledge specific to 

hyperspectral data.  The simultaneous transformation of the input space and the 

output space in search of a good feature space had not been rigorously explored 
until Kumar et al. decomposed a ( )2C > -class problem into a binary hierarchy of 

( )1C −  simpler 2-class problems, each with its own feature space and classifier 

that are independently trained using the labeled training data [8, 10, 11, 15-18].  

However, that classification framework, the Binary Hierarchical Classifier, does 

not address the classifier�s dependency upon an adequate quantity of training data 

or make full use of the domain knowledge specific to hyperspectral data.  A new 
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approach, used within a classification framework extended from the work of 

Kumar et al., is proposed in this dissertation that automatically makes use of 

domain knowledge to combat the �small sample size� problem. 

3.1 RELATED WORK WITH LIMITED TRAINING DATA 

The �small sample size� problem and the associated degradation of 

classification accuracy are widely acknowledged.  Generally, previous work that 

addresses the small sample size problem follows one of three general approaches 

[30, 38].  The first, parameter stabilization techniques, try to improve the 

parameter estimates directly.  Some other methods seek to avoid the problem by 

improving the ratio of training data to dimensionality.  While these two general 

approaches attempt to stabilize the parameter estimates, the third method, using 

an ensemble of classifiers, attempts to improve classification by considering a 

combination of �weaker� classifiers.  The three approaches are reviewed in the 

following sub-sections. 

3.1.1 Parameter stabilization techniques 

A widely used technique for stabilizing the estimated covariance matrix 

directly consists of weighting the sample covariance matrix as well as 

�supplemental� matrices and is generally referred to as �regularization� or 

�shrinkage�.  In particular, when the sample covariance matrix is �shrunk� 

towards the identity matrix, it is referred to as the ridge estimate of the covariance 

matrix and is the basis for regularized discriminant analysis [29, 38].  Similar to 

the ridge estimates, the covariance matrix can be �shrunk� toward values other 
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than diagonal weights, and there are hybrids that give weights to sample 

covariance (normal and diagonal) and a pooled covariance (normal and diagonal) 

matrix [12, 32].  When training data are limited, using the pooled estimate of the 

covariance can yield better results than using the class dependent covariance 

matrices [29].  However, if the class dependent covariance matrices are accurately 

estimated, they provide important discrimination not available from a pooled 

estimate [25].  Additionally, while the variance of the parameter estimates has 

been reduced, the bias of the parameter estimates may increase dramatically, 

depending upon the differences between the true parameter values and those 

towards which they are being shrunk.  Furthermore, when the covariance matrix is 

severely shrunk toward the identity matrix, the classifier would simply assign 

each new observation to the class whose mean vector is closest in terms of 

Euclidean distance.   

Rather than stabilizing the covariance matrix directly, the pseudo-inverse 

of the covariance matrix can be used instead of the true inverse.  Pseudo-

inversion, based upon singular value decomposition, utilizes the non-zero 

eigenvalues of the covariance matrix [34, 38].  However, in addition to poor 

performance when the ratio of training data to dimensionality is very small, the 

pseudo-inverse has a �peaking effect� in its performance.  It has been shown that 
the pseudo-inverse performs best when 2d=X  and that the performance 

degrades as X  approaches d [30, 37].  Thus, the pseudo-inverse has the 

undesirable characteristic that there are situations where, counter-intuitively, if the 

quantity of training data is increased, the classification accuracy could actually be 
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reduced.  Therefore, if possible, it would be advantageous to exploit the �sweet 
spot� characteristic of the pseudo-inverse.  Additionally, for > dX , the pseudo-

inverse is the same as the traditional inverse, even though the covariance matrix is 

most likely poorly estimated.   

3.1.2 Improve ratio of training data to input dimensionality 

Because it is often not possible to acquire more training data, methods 

have attempted to improve the ratio of labeled data to dimensionality either by 

transforming the input space into a reduced feature space or by artificially 

increasing the quantity of labeled data.    One such method is feature extraction.  

These methods, which include Principle Component Analysis, Fisher�s linear 

discriminant function, and MNF transforms, can be used to project the original 

data into an adequately reduced feature space [23, 34, 100].  The transformations, 

however, are data dependent.  Furthermore, not only can the limited data result in 

poor estimation of the transformations, but also these techniques do not address 

estimation of the covariance matrix in the original feature space with limited data, 

which is generally required for estimating the projections.  Lastly, a great deal of 

interpretability is lost when the original features are no longer being used.  This is 

important for many applications. 

Alternatively, the selection of critical features is often used to reduce the 

size of the input space.  Interpretability is preserved because a subset of the 

features is used instead of the original feature space such that the features can still 

be directly related to the information content of the data [39].  While this method 

combats the �small sample size� problem, it should be noted that sample 
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estimates of the �effectiveness� of the feature subsets are being used. Therefore, 

poor estimates due to a small sample size could also be reflected in the subset [19, 

52].  Also, this can be computationally very expensive because all subsets must be 

investigated to find the �best� subset (there are 2d subsets), so it is only practical 

when the original dimensionality d is small.  Furthermore, aside from the 

difficulties associated with determining the optimal subset size and performing 

feature selection, this approach would not be beneficial for combating the small 

sample size problem unless the size of the best subset were small compared to the 

original dimensionality of the data.  Finally, much like feature extraction 

techniques, any feature selection technique that utilizes the covariance matrix in 

the original d dimensional feature space must address its estimation in the context 

of limited training data. 

Assuming it is not possible to acquire more training data, if the ratio of 
quantity of training data X  to dimensionality d is to be improved by increasing 

X , then it must be accomplished artificially.  One such method augments the 

original training data by using pseudo-labeled data, which are usually identified 

by a classifier constructed from the original training data.  Specific techniques for 

identifying and augmenting the existing training data with unlabeled data already 

exist and have been shown to enhance strictly supervised classification [4, 20, 41-

46].  However, not only can convergence of the updating scheme be problematic, 

but the method is also affected by selection of the initial training samples and by 

outliers.  Therefore, even if the limited training data are sufficient to design a 

classifier for pseudo-data identification, the poor initial parameter estimates due 
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to the small sample size problem may lead to incorrect pseudo-labels and poor 

updates.   

3.1.3 Subsampling/Combining schemes 

The ensemble of �weaker� classifiers approach does not explicitly address 

the diminished accuracy of an individual classifier.  Rather, multiple classifiers 

are designed with the hope that an assessment of the group�s aggregated output 

will result in higher accuracies.  These methods, such as simple random sampling 

without replacement, bagging, and arcing, involve selecting subset samples for 

the original data and generating a classifier specific to each sub-sample [31, 33, 

35, 36, 49, 70].  While the aggregate output of the ensemble can be combined in 

many different ways, the two most popular approaches are the �voting� method, 

where the pixel is assigned the class label that occurs the maximum number of 

times, and the MAP (maximum a posteriori probability) method, where the pixel 

is assigned the class label that corresponds to the maximum estimated posterior 

probability [6, 50, 54, 55].  However, because these methods are based upon 

altering the sample distribution by selecting subsets of the available data, and the 

context being considered here already involves problems with limited data, the 

sub-sampling approach is very problematic and may not even be an option 

because the quantity of training data is effectively reduced for each classifier in 

the ensemble.  Additionally, when the quantity of data does allow sub-sampling, 

these methods may still have problems since the degradation in individual 

classifier performance (because of the reduced data) cannot be compensated for 

by the gains from using an ensemble [70].  Furthermore, due to the large quantity 
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of data involved in land cover classification, the additional computation for an 

ensemble may be prohibitive for certain applications such as on-board target 

identification via sensors on unmanned platforms. 

3.2 BEST BASIS BAYESIAN HIERARCHICAL CLASSIFIER (BB-BHC) 

While traditional approaches fail to capitalize on the domain knowledge 

specific to hyperspectral data or the flexibility gained by transforming the feature 

space and the output space simultaneously, the new methodology developed in 

this study exploits both of these practices, while specifically addressing the small 
sample size problem.  This method decomposes a ( )2C > -class problem into a 

binary hierarchy of ( )1C −  simpler 2-�meta-class� problems, each with its own 

feature space and classifier that are independently trained using the labeled 

training data.  The size of the feature space is dependent upon the quantity of 

labeled data available, specific to each 2-meta-class problem.  While other 

methods have sought to combat the small sample size problem by using parameter 

stabilization techniques, improving the ratio of training data to dimensionality, or 

by sub-sampling and combining schemes, this method focuses on a feature 

reduction rule specific to hyperspectral data that avoids the drawbacks 

characteristic of traditional feature selection or feature extraction.  Bands are 

aggregated in a manner that not only allows for an analytic evaluation and 

intuitive understanding of the feature space, but also adds domain knowledge in 

the process.  Additionally, this methodology actually reduces the quantity of data 

that must be stored, since there is no need to retain all of the original features.   
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From the domain knowledge in this field, it is already known that the 

original input features, the bands of hyperspectral data, that are �spectrally close� 

to each other tend to be highly correlated.  While the original BHC classification 

framework accomplished the simultaneous transformation of the input space and 

the output space in search of a good feature space, using a discriminant function 

on the original input space failed to exploit the correlation structure of the bands 

or the fact that the bands are ordered.  It also failed to leverage this information 

with respect to the quantity of training data available.  This domain knowledge 

must be utilized in order to take advantage of the fact that hyperspectral sensors 

characterize the spectral signature of targets with greater detail than traditional 

sensors.  The new �adaptive best-basis� method utilizes a best-basis band-

combining algorithm in conjunction with the BHC framework.  This approach has 

not been previously investigated and it both utilizes the domain knowledge 

specific to hyperspectral data and has value in terms of acquiring additional 

domain knowledge. 

3.2.1 Best-Basis and the Binary Hierarchical Classifier framework 

Unlike the BHC, the BB-BHC performs a band-combining algorithm prior 

to the partitioning (TD-BB-BHC) or combining (BU-BB-BHC) of meta-classes.  

Unlike the original BHC algorithm, this algorithm partitions the spectrum and 

maximizes the discrimination among classes in two stages. It is assumed that 

highly correlated ordered bands �behave� most similarly, relative to other 

combinations of bands, so that combining them has the least detrimental effect on 

the potential for discrimination among classes. To capitalize on this characteristic 
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of the data, this feature extraction technique is comprised of two independent 

stages.  In the first stage, a band reduction algorithm intelligently generates a set 

of customized bands to discriminate among the classes.  Then, in the second 

stage, once the number of �group� bands is small enough with respect to the 

amount of training data, the algorithm maximizes the discrimination between the 

classes.  The TD-GLDB (partitioning) and BU-GLDB (combining) algorithms of 

Kumar et al., which also address feature extraction specifically for hyperspectral 

data, utilize the ordering of the bands and yield excellent discrimination [11, 17].  

However, they were not intended to be used in a two-stage feature extractor and 

have proved to be very computationally intensive due to repetitive calculation of a 

discrimination function for all candidate splits (TD-GLDB) or merges (BU-

GLDB).  Additionally, the quality of the discrimination functions, and thus the 

structure of the resulting feature space, is affected by the amount of training data 

and this critical issue is not addressed. 

Performing the feature extraction in two stages allows for the band-

combining algorithm to focus more on preserving the most distinct characteristics 

of the data while discovering domain knowledge without constraining the results 

to also account for the discrimination between classes.  Because the correlation 

between bands varies among classes, the band reduction algorithm must be class 

dependent.  In order to estimate the �correlation� for a group of bands (meta-
bands) [ ]:p q=B  over a set of classes Ω , the correlation measure ( )Q B  is 

defined as the minimum of all the correlations within that group:  
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Also, kL
i, jS  is defined as the row i, column j element of the sample 

covariance matrix for class kL .   The correlation measure (3.1) is used to 

determine which set of adjacent meta-bands should be merged at each successive 

step of the algorithm.  Therefore, this band-combining algorithm works with the 

class specific correlation matrices and is not hindered by the additional objective 

of discriminating between the classes.  BB-BHC was designed to either construct 

a �best-basis� for the entire BHC structure or have the basis determined for each 

partition of the BHC.   

3.2.2 Adaptive feature space for the BB-BHC 

The BB-BHC framework, like other statistical approaches, relies on the 

inversion of class-specific covariance matrices for all classes.  The Fisher 

discriminant, which is used for constructing the tree and as the feature extractor at 

each internal node of the BHC, requires the inversion of the within class 
covariance matrix 

2 2 1,n n+Ω ΩW  and, when the data are d-dimensional, the training 

samples must include at least d+1 independent samples in order for the sample 
covariance matrix to be nonsingular.  Furthermore, even if there are ( )1+> dX  

training samples, the ( )1 2+d d  parameter estimates may be very poor.  Initial 

research with the BB-BHC indicated that while the BB-BHC has comparable 

classification performance to the traditional BHC classifier when there are large 

quantities of training data, the degradation in performance for the BHC was much 

more pronounced than that of the BB-BHC when the quantity of training data was 
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reduced.  This motivated the design of an adaptive feature space, using the best-

basis algorithm at each partition of the BHC, whose size is directly dependent 

upon the quantity of labeled training data available at each partition.  Therefore, 

rather than using a threshold on the correlation measure to determine whether 

bands or group-bands should be merged, the new algorithm focuses on preserving 

as many of the original bands as possible, dependent upon an adequate amount of 

training data.  If band reduction is necessary, the band-combining algorithm 

ensures that the least amount of discriminatory information is lost to achieve a 

satisfactory ratio of training data to dimensionality.  Because literature 

recommends different thresholds for the minimum  ratio ≤
d

α
X

, it was allowed to 

be a user-defined input.  In pseudo-code, the adaptive band-combining algorithm 

that is performed before partitioning or merging meta-classes is: 
 

1. 
 ratio

min ,∗  
=  

 
d d

α
X

 

2. Initialize 0l = , 0 =N d , and [ ]: , 1,...,= ∀ =k
l k k k d  B  

3. If ∗>lN d  then continue.  Otherwise, stop. 

4. Find the best pair of band to merge: ( )1

1,..., 1
arg max

l

k k
l l

k N
K +

= −
= = ∪Q B B  

5. Update band structure: 
•  1l l= + , 1 1l lN N −= −  
•  If 1K >  then 1, 1,..., 1  k k
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•  1
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•  If lK N<  then 1
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l l lk K N+

−= ∀ = +B B  

6. Return to step 3. 
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3.2.3 Best-Basis and Limited Data 

When constructing a basis specific to each split in the BB-BHC, the 

quality of the correlation measure, computed from the class condition covariance 

matrices, is dependent on the quantity of training data available to estimate the 

meta-class covariance matrices.  This will become even more relevant for the 

�low branches� of the BB-BHC as the meta-classes become smaller in cardinality 

and the amount of training data strictly decreases.  In particular, the class specific 

correlation matrices 
k

k

k k

L
i, jL

i, j L L
i,i i, j

S
Q =

S S
 are required in (3.1) to estimate the 

correlation measure ( )Q B .  However, if the label specific k
LS  covariance 

matrices are not suitable for inversion, failure to stabilize their estimates before 

constructing the basis unsatisfactorily passes the disadvantage of the small sample 

size from the estimate of Fisher�s disciminant and linear discriminant function to 

the basis construction.  Therefore, the label specific sample covariance matrices 

need to be stabilized.  The ancestor sample covariance matrix AncS  is defined as 

the sample covariance matrix which is estimated from at least  ratioα X  

observations and is most closely related to kL  based upon the BB-BHC structure.  

Because the trees are constructed using both top-down and bottom-up approaches, 

the search for AncS  is performed uniquely for each type.  In the top-down 

framework, if meta-class kΩ  is being considered for partitioning, then 

( )
i k

k i

L

L
iS P L S

∈Ω

Ω = ∑  is the first candidate for AncS .  However, if  ratioΩ < α
k

dX , 

then the BB-BHC tree structure is climbed in search of a meta-class where 

 ratioΩ ≥ α
k

dX .  With the bottom-up framework, if { }2 2 1,n n+Ω Ω  are being 

considered for agglomeration, the first candidate for AncS  is 
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+= Ω + Ω .  However, because the BB-BHC is being 

constructed bottom-up, the structure cannot be climbed in search of a suitable 
AncS .  Therefore, if ratioΩ +Ω <
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estimate for AncS  is used, even when the total quantity of training data available 

is less than  ratiodα .  The stabilized estimates of the label specific covariance 

matrices are defined as:   
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These stabilized class dependent covariance matrices (3.2) are used to estimate 

the correlation measure (3.1).   

3.3 APPLICATION OF ADAPTIVE BB-BHC TO CLASSIFICATION OF 

HYPERSPECTRAL DATA  

Hyperspectral data acquired over two sites were used to evaluate the proposed 

algorithms.  The adaptive BB-BHC algorithm was evaluated on airborne 

hyperspectral data acquired over Bolivar Peninsula, located at the mouth of 

Galveston Bay, Texas and NASA's John F. Kennedy Space Center (KSC) in 

Florida. 

3.3.1 Bolivar Peninsula 

Bolivar Peninsula, part of the low relief barrier island system on the Texas 

Gulf coast, is an area of interest due to the shoreline changes that occur as a result 

of sedimentary processes such as high-energy wave and low-energy tidal and 

wind processes.  The University of Texas Bureau of Economic Geology closely 
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monitors shoreline dynamics in this area.  An overview map with a mosaic image 

of the two test sites considered in this research are depicted in Figure 3.1    The 

area contains two general vegetation types, wetlands and uplands, with the marsh 

area further characterized in terms of sub-environments defined by the wetland 

maps.  For classification purposes, 11 classes representing the various land cover 

types that occur in this environment have been identified for the site.  These 

include:  water, wetlands (low proximal marsh, high proximal marsh, high distal 

marsh, and pure salicornia) and uplands (trees, general uplands, two agricultural 

classes, sand flats, and a transition zone) [48].  The low proximal marsh 

corresponds to tidal flats comprised of Spartina alterniflora, which experiences 

frequent flooding.  The high proximal marsh, which is composed of a mixture of 

Figure 3.1:  Overview image and hyperspectral (HyMap) images of Area 1 and
Area 2 at Bolivar Peninsula 
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Spartina alterniflora and Salicornia virginica, is flooded less frequently and has 

more continuous vegetation cover.  The high distal marsh, which is inundated 

even less frequently than the proximal marshes, contains Spartina patens, 

Salicornia virginica and Juncus roemerianus.  Adjacent to the high distal marsh, a 

small highly saline region of sand flats surrounded by pure Salicornia virginica 

delineates the boundary between the wetlands and uplands.  The quantity of 

ground truth available for each class at the two test sites is given in Table 3.1.   

The topography of these areas is mainly a function of sedimentary 

processes such as high-energy wave and low-energy tidal and wind processes.  As 

a result, the frequency of the inundation, soil salinity, and vegetation cover all 

Class Name Area1 Area2 Total Obs
1 Water 1019 4529 5548
2 Low Proximal Marsh 1127 647 1774
3 High Proximal Marsh 910 1083 1993
4 High Distal Marsh 752 494 1246
5 Sand Flats 148 112 260
6 Ag 1 (pasture) 3073 2454 5527
7 Trees 222 238 460
8 General Uplands 704 534 1238
9 Ag 2 (bare soil) 1095 1127 2222
10 Transition Zone 114 210 324
11 Pure Silicornia 214 129 343

TOTAL 9378 11557 20935

Table 3.1:  Number of observations per class for Bolivar Peninsula at two
different areas used for testing 
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depend on this topography [48].  HyMap (Hyperspectral Mapper) acquired data 

over Bolivar Peninsula on September 17, 1999, at a spatial resolution of 5m.  

HyMap, an airborne hyperspectral optical sensor developed in Australia, acquired 

the data in 126 bands with almost contiguous spectral coverage over the 

wavelength range of 0.44-2.48 [47].  For this particular acquisition, only four 

bands {63, 64, 95, 126} were dominated by water absorption, resulting in a low 

signal to noise ratio, and therefore not considered in subsequent analysis.  In this 

case, the practical dimensionality d is 122. 

3.3.1.1 Classification accuracies across decreasing sampling percentages 

Multiple experiments were performed on data from Site 1 using stratified 

(class specific) sampling at percentages of:  75, 50, 30, 15, 5, and 1.5.  The 

quantity of ground truth for each class, indicated by sampling percentage, is listed 

in Table 3.2.  It is interesting to note that even at the sampling percentage of 75, 

Table 3.2:  Classes for Bolivar Peninsula, Site 1, and the quantity of training 
data per class by sampling percentage  

Class Name Total Obs 75% 50% 30% 15% 5% 1.5%
1 Water 1019 764 510 306 153 51 15
2 Low Proximal Marsh 1127 845 564 338 169 56 17
3 High Proximal Marsh 910 683 455 273 137 46 14
4 High Distal Marsh 752 564 376 226 113 38 11
5 Sand Flats 148 111 74 44 22 7 2
6 Ag 1 (pasture) 3073 2305 1537 922 461 154 46
7 Trees 222 167 111 67 33 11 3
8 General Uplands 704 528 352 211 106 35 11
9 Ag 2 (bare soil) 1095 821 548 329 164 55 16
10 Transition Zone 114 86 57 34 17 6 2
11 Pure Silicornia 214 161 107 64 32 11 3

9378 7035 4691 2814 1407 470 140
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the amounts of training data for classes 5 and 10 are still less than d (sand flats 

5
111L =X  and transition zone 

10
86L =X ).  For all sampling percentages except 

for 1.5%, the value of  ratio 5α =  was used.  At 1.5%, the value was reduced to 

 ratio 1.5α =  to ensure there were at least two observations per label iL .  Ten 

experiments using simple random sampling, were performed at each percentage 

for the bottom-up and top-down frameworks of the traditional BHC [TD-BHC, 

BU-BHC], the traditional BHC using the pseudo-inverse for tree construction 

(estimating Fisher�s discriminant as a distance measure) and feature extraction 

(calculating Fisher�s linear discriminant function) [TD-P-BHC, BU-P-BHC], and 

the adaptive best-basis BHC [TD-BB-BHC, BU-BB-BHC].  Additionally, results 

from two �nearest distance to mean� classifiers are also presented, one using the 

Euclidean distance [EUCL-D] and the other using the sum of squared deviations 

from the respective class means [SQRD-D].  These two classifiers are intended to 

establish a baseline for the results one could expect by simply assigning labels to 

pixels based upon their proximity to the mean spectral signatures of the class 

training data, regardless of their variance structure.  The results are presented in 

Figure 3.2. 

By adapting the size of the feature space to reflect the amount of training 

data available, a high level of classification accuracy is preserved for an 

extremely small sample size.  At the 50th percentage of sampling, the value 

typically used to separate data sets into training and testing, the BB-BHC actually 

performs slightly better that the BHC.  Importantly, even though using the 

pseudo-inverse does not improve the results at the 50th percentage, because there 
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are at least 1+d  observations per iL , the results indicate that the covariance 

matrices are still poorly estimated, so the estimates of corresponding inverses will 

also be poor.  Not only do the BB-BHC methods perform the best at every 

sampling percentage relative to the other TD and BU classifiers, but also the 

accuracies are generally more stable (smaller variation of the classification 

accuracies).  This is important because different investigators may select 

somewhat different ground truth.  Combating the limited training data by using 

the correlation matrix for feature reduction helps retain the information necessary 

for successful land cover prediction.  Classification accuracies of over 80% were 
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still achieved, even with only 140 total labeled samples and only 2 labeled pixels 

available for classes 5 (sand flats) and 10 (transition zone).  Furthermore, 

retaining the use of the class specific covariance matrices helped increase the 

accuracies dramatically for these experiments.  Overall, the adaptive BB-BHC 

classifiers use the retained covariance information to achieve much higher 

accuracies, and comparable variation, at every level except the 1.5% sampling 

rate, at which point the accuracies are still higher for the adaptive BB-BHCs but 

the variation is worse.  

3.3.1.2 Domain knowledge and image evaluation 

Classified images were examined to study how well scene information 

was retained as the quantity of training data was reduced.  A classified image 

obtained using all of the available data was compared to images obtained at each 

of the sampling percentages (75, 50, 30, 15, 5, and 1.5) for both the adaptive BB-

BHC (%Y) and the BHC using the pseudo-inverse (%N).   

Examining the results for the BU classifiers [Appendix A], the quality of 

the images obtained by both techniques remains high for sampling rates 15%≥  

[Figure A.1].  However, at the 5% sampling rate, the adaptive BB image [Figure 

A.2] is markedly better than that obtained using pseudo-inversion.   While the 

overall results for the adaptive BB still appear better than it�s pseudo-inverse 

counterpart at the 1.5% sampling rate, they both have deteriorated markedly from 

the results obtained using 100% of the available ground truth.  Analyzing the 

images obtained with the TD classifiers suggests similar results except that the 

differences at the 5% sampling rate are even more distinctive than those with the 
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BU classifiers and is more comparable to the image obtained using 3 times as 

much data and pseudo-inversion [Figure A.4].  This result that is also suggested 

by a smaller difference in classification accuracies for the BU classifiers at that 

sampling percentage  [Figure 3.2]. 

3.3.2 Kennedy Space Center 

The wetlands of the Indian River Lagoon system, located on the western 

coast of the Kennedy Space Center (KSC), are part of the closely monitored 

Merritt Island National Wildlife Refuge.  Over 1,000 plant species have been 

identified on the 140,000-acre Refuge and 16 of the more than 500 species of 

wildlife have been federally listed as either threatened or endangered.  Accurate 

classification and mapping of upland vegetation is important for monitoring this 

critical habitat for species of waterfowl and aquatic life.   An overview image 

depicting the two test sites for research in the area is shown in Figure 3.3.  The 

test sites for this research consist of a series of impounded estuarine wetlands of 

the northern Indian River Lagoon (IRL) that reside on the western shore of the 

Kennedy Space Center.  The impoundments were created during the 1950�s and 

1960�s for the purpose of mosquito control.  The marshes along the IRL contain 

both high and low marsh communities. The three dominant marsh groups that 

comprise the high marsh communities are cabbage palm savanna, sand cordgrass, 

and black rush.  The cabbage palm savanna consists of isolated canopies of 

Cabbage Palm (Sabal palmetto) and a graminoid layer of sand cordgrass 

(Spartina bakerii) and black rush marsh (Juncus roemerianus).  Salt tolerant 

grasses and halophytes dominate the low marsh communities.  The primary salt 
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tolerant grass is Distichilis spicata.  Halophytes typically include Batis maritima 

and Salicornia virginica Upland vegetation is also mapped, as it is adjacent to the 

impounded wetlands.  The majority of the upland vegetation at KSC is oak scrub 

and saw palmetto scrub.  Other upland communities include slash pine (Pinus 

elliottii) and hardwood swamps that are dominated by deciduous trees such as 

Red Maple (Acer rubrum).  Dense hammocks of Cabbage Palm (S. palmetto) and 

Live Oaks (Quercus virginiana) are also common [40].  Classification of land 

cover for this environment is difficult due to the similarity of spectral signatures 

Test Site 1

Test Site2 

Figure 3.3:  An overview image of the two test sites at Kennedy Space Center;
Cape Canaveral Florida. 
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for certain vegetation types.   

The NASA AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) 

spectrometer was used to acquire data over the Kennedy Space Center, Florida on 

March 23, 1996.  AVIRIS acquires data in 224 bands of 10 nm widths in the 

reflected visible and near infrared spectrum (400 - 2500 nm).  The data, acquired 

from an altitude of approximately 20km, have a spatial resolution of 18 m [42].  

Forty-eight bands collected by the AVIRIS sensor are dominated by water 

absorption, which results in a low signal noise ratio, and are not considered in 

Table 3.3:  Number of observations per class for Cape Canaveral at two 
different areas used for testing 

Class Name Area 1 Area 2 Total Obs
1 Scrub 761 422 1183
2 Willow Swamp 243 180 423
3 CP Hammock 256 431 687
4 CP/Oak Hammock 252 132 384
5 Slash Pine 161 166 327
6 Oak/Broadleaf Hammock 229 274 503
7 Hardwood Swamp 105 248 353
8 Graminoid Marsh 420 453 873
9 Spartina Marsh 520 241 761

10 Cattail Marsh 396 396
11 Salt Marsh 419 156 575
12 Mud Flats 447 447
13 Water 927 1392 2319
14 Slash Pine (Dense) 393 393
15 Citrus 269 269
16 Slash Pine/Oak Hammock 142 142

TOTAL 5136 4899 10035
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subsequent analysis.  In this case, d=176 bands of AVIRIS data are used {bands 

1-4, 102-116, 151-172, and 218-224 have been removed}.  For classification 

purposes, 16 classes representing the various land cover types that occur in this 

environment have been defined for the two combined test sites, with some of the 

classes not present in each specific site.  The amount of ground truth acquired for 

each class is given in Table 3.3.  KSC is a more difficult application area than 

Bolivar Peninsula, due to the complexity of the land cover, the mixed classes, and 

the spatial resolution of the data.   

The primary research site at Kennedy Space Center is Test Site 1 and, for 

each of the 13 identified classes at that site Table 3.4 indicates the quantity of 

available training data for the classes at each of the sampling percentages that 

were used for the experiments.  While the entire scene of Test Site 1 includes a 

Table 3.4:  Classes for Cape Canaveral and the quantity of training data per
class by sampling percentage 

Class Name Total Obs 75% 50% 30% 15% 5% 1.5%
1 Scrub 761 571 381 228 114 38 11
2 Willow Swamp 243 182 122 73 36 12 4
3 CP Hammock 256 192 128 77 38 13 4
4 CP/Oak Hammock 252 189 126 76 38 13 4
5 Slash Pine 161 121 81 48 24 8 2
6 Oak/Broadleaf Hammock 229 172 115 69 34 11 3
7 Hardwood Swamp 105 79 53 32 16 5 2
8 Graminoid Marsh 420 315 210 126 63 21 6
9 Spartina Marsh 520 390 260 156 78 26 8
10 Cattail Marsh 396 297 198 119 59 20 6
11 Salt Marsh 419 314 210 126 63 21 6
12 Mud Flats 447 335 224 134 67 22 7
13 Water 927 695 464 278 139 46 14

5136 3852 2572 1542 769 256 77
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portion of the Indian River Lagoon (IRL) and the IRL�s west embankment, it is 

important to note that the area of interest is the western shore of the Kennedy 

Space Center and that the west embankment, as well as a large section of the IRL 

itself, are masked not being analyzed.  The AVIRIS data being used have a spatial 

resolution of 18m and a practical dimensionality d of 176. 

3.3.2.1 Classification accuracies across decreasing sampling percentages 

Multiple experiments were performed on this site using stratified (class 

specific) sampling at percentages of:  75, 50, 30, 5, and 1.5.  At the sampling 

percentage of 75, the amounts of training data for classes 5, 6, and 7 are still less 

than d and, at the 50th percentage, so are classes 2, 3, and 4.  A threshold  ratio 5α =  

was used for all sampling percentages except for 1.5 (  ratio 1.5α = ).  Ten 

experiments, using simple random sampling, were performed at each percentage 

for the bottom-up and top-down frameworks of the traditional BHC [TD-BHC, 

BU-BHC], the traditional BHC using the pseudo-inverse for tree construction 

(estimating Fisher�s discriminant) and feature extraction (calculating Fisher�s 

linear discriminant function), [TD-P-BHC, BU-P-BHC], and the adaptive best-

basis BHC [TD-BB-BHC, BU-BB-BHC].  The results are presented in Figure 3.4. 

The test set accuracies for KSC are very similar to those of Bolivar 

Peninsula, except that the pseudo-inverse classifiers perform better at the 1.5% 

sampling rate, with the accuracies for the pseudo-inverse BHC classifiers 

maintaining the accuracy level that had been achieved at the 5% sampling rate.  

At the lower sampling percentages, the covariance matrices are very poorly 

estimated in the full dimensional space, yet the accuracies are still fairly high 
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using pseudo-inversion, indicating that the differences in class means is the main 

reason the level of discrimination is being maintained.  This result is also reflected 

by the standard deviations of the accuracies, which �spike� in the 15%-30% 

sampling rate range for the pseudo-inverse classifiers where the covariance 

matrices are still helping maintain a higher level of classification accuracy (than 

in the 1.5%-5% range), though unstable.  The lower classification accuracies of 

the BB-BHC at the 1.5% sampling rate might be explained by a minimum 

requirement, the �intrinsic dimensionality� [26, 60, 61], for the number of bands, 

after which the results degrade sharply.  While the benefit relative to �nearest 

Figure 3.4:  Classification (test set) accuracies for KSC, Cape Canaveral FL 
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distance to mean� classifiers is significant at higher sampling rates, the use of the 

retained covariance information may be unwarranted at the 1.5% sampling rate 

because the quantity of training data, relative to the original dimensionality, is 

severely limited.  As noted in [64], when the quantity of training data is very 

small, a simpler classifier (such as the mean distance classifiers) may perform 

better than one that attempts to properly estimate the covariance structure.  

However, using the adaptive BB-BHC classifiers has served to extend the range 

of training data quantity over which the covariance information is useful for 

improving the classification results. 

3.3.2.2 Domain knowledge and image evaluation 

Classified images were studied to determine, at least qualitatively, how the 

adaptive BB-BHC classifier performed in the context of the entire areas the 

quantity of training data was reduced.  Images obtained using the adaptive BB-

BHC (%, BB) were compared to those obtained using the BHC with pseudo-

inversion (%, Pseudo) at each of the percentages (75, 50, 30, 15, 5, and 1.5) for 

both the TD and BU methodologies.  Analyzing the images obtained using the BU 

algorithms indicates that the algorithm still performed well overall, at 30% 

sampling rate [Appendix B].  However, at the 15% and 5% sampling rates the 

results of the adaptive BB image [15 BB] are slightly better than those from the 

pseudo-inverse approach, whose output shows classes that are not spatially 

cohesive. [15 Pseudo, 5 Pseudo].  However, at the 1.5% sampling rate, the 

adaptive BB image is quite poor, whereas the results shown in the one obtained 

using pseudo-inversion have not deteriorated much from the one obtained at the 
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5% sampling rate.  This insight is consistent with the classification accuracy 

performance of the classifiers [Figure 3.1]. 

Examining the results from the TD framework, it is interesting to note that 

both techniques have trouble discriminating the shallow water areas where 

reflectance from the sand bottom is visible in the imagery [Appendix B].  While 

some researches may find this disconcerting, others may be alarmed that the BU 

algorithms didn�t identify these shallow water areas.  This research focuses on 

discrimination of land cover classes and prior studies in this area had entirely 

masked out the Gulf waters.  Comparing the images at the 30% sampling rate and 

with their respective images obtained using 100% of the data, the adaptive BB 

image is slightly superior to the one obtained using pseudo-inversion [Figure 

B.1], which exhibits isolated classes associated with overlapping distributions that 

cannot be well characterized.  Further yet, the adaptive BB image is noticeably 

better at the 15% sampling rate [Figure B.2].  While the adaptive BB images at 

the 5% and 1.5% sampling rate appear to be slightly better than the pseudo-

inverse counter-parts, the quality is poor.  This is a very interesting result due to 

the fact that the pseudo-inverse based classifier performs better on the labeled 

data than the adaptive BB classifier, both for the TD and the BU frameworks, at 

the 1.5% sampling rate.  However, the differences in accuracies at the 1.5% 

sampling rate between the TD classifiers is slightly greater than 5%, whereas the 

difference is more than 20% for the BU classifiers.  This indicates that in 

situations where the pseudo-inverse technique yields better accuracies for training 

and test data, but where the difference is not too large, the adaptive BB algorithm 
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may still perform better on the entire scene due to over-training of the pseudo-

inverse classifier. 

3.3.2.3 Intrinsic dimensionality 

Further investigation was performed to determine how the possible 

violation of the �intrinsic dimensionality� of the data by the adaptive BB-BHC 

might have impacted the classification results.  To achieve this, the advantages of 

the adaptive BB-BHC and the pseudo-inverse were both utilized.  For partitions 

of the BHC where the ratio of data to dimensionality would result in a number of 

bands less than the threshold, the pseudo-inverse was utilized.  Because of the 
peaking performance of the pseudo-inverse, when ratio< α dX  at a partition of 

the BB-BHC structure, the algorithm sets ( )min , 2∗ =d d X , achieves this 

dimensionality of the data using BB, and then uses the pseudo-inverse [30, 37].  

Based on some preliminary results, thresholds of 10 and 50 were used.  

Additionally, the pseudo-inverse optimized to the �sweet spot� at each partition 

was investigated.  The results for the TD-BHC and the BU-BHC are presented in 

Appendix C.  Using a threshold on the number of bands helps improve the 

classification accuracies at the lower sampling percentages, but they still fail to do 

better than the full dimensional model with the pseudo-inverse.  While it extends 

the advantage of the BB-BHC, there will still be a point at which a nearest 

Euclidean mean classifier is a better option than trying to get a stable covariance 

estimate.  It appears that the intrinsic dimensionality is somewhere between 10 

and 50:  performance is better with a 50 band minimum for the 5 and 1.5 

percentages but it is better at the 0 and 10 band minimum for the other 
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percentages.  Furthermore, for both the TD and BU frameworks, the optimized 

pseudo-inverse classifier performs worse than the non-optimized pseudo-inverse 

classifier at the 1.5% sampling rate.  The degradation of performance of the 

�optimized� pseudo-inverse classifier indicates that the improvement of the 

pseudo-inverse classifiers over the adaptive BB-BHC classifiers at that quantity of 

data is due to an increased emphasis on the differences between class means 

rather than an improved preservation of the covariance information.  

Summary   

The dependency of classification accuracy upon an adequate quantity of 

training data, as compared to the dimensionality of the data, is widely noted and 

needs to be addressed during the design of a classifier.  While the advent of 

hyperspectral sensors has provided unique opportunities in the application area of 

land cover classification, the increased dimensionality of the data necessitates that 

researchers pay even more attention to the classifier dependence on the quantity 

of training data.  Our proposed multi-classifier framework utilizes the flexibility 

gained by transforming the output space and input space simultaneously to 

combat the small sample size problem.  By reducing the size of the feature space 

in a directed manner, dependent upon the quantity of training data available in the 

binary hierarchy of meta-classes, a high level of classification accuracy is 

preserved even when faced with low quantities of training data for some of the 

classes. 

Further research is necessary to support the lower bounds on the intrinsic 

dimensionality of the feature space.  Additionally, the algorithm currently uses the 
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average spectral response for representing the spectral response of the group-

bands, a more sophisticated representation of the group-bands may result in better 

performance, particularly when the group-bands grow quite large.  While 

combating the small sample size problem with the dynamic best-basis algorithm 

helps preserve the interpretability of the data, using Fisher�s linear discriminant 

function as the feature extractor at each internal node of the BHC diminishes this 

attractive characteristic.  While the discriminant function weights on each 

band/group-band could be analyzed to determine the respective band�s 

importance, the interpretation and insight would be less complicated if feature 

selection was performed rather than feature extraction.  Therefore, feature 

selection rather than feature extraction, and the likely trade-off between 

classification accuracy and retention of domain knowledge, should be 

investigated.  Investigation has also been performed using two different pair-wise 

correlation measures for constructing the basis rather than trying to stabilize the 

estimates with the pooled covariance from an �ancestor� meta-class.  While, in 

preliminary experiments, the computation time was greater and performance was 

degraded, more investigation is required.  Additionally, a researcher should 

consider using a nearest Euclidean mean distance classifier instead of the pseudo-

inverse for partitions where the amount of training data available does not support 

the intrinsic dimensionality. 
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Chapter 4:  Spatially Limited Ground Truth and Knowledge 
Transfer 

The adaptive Best-Basis BHC demonstrated a remarkable ability to 

preserve a high level of classification accuracy when only limited quantities of 

data are available.  However, other �limitations� on the data may also exist.  

Another difficult problem is encountered when it is necessary to �transfer� a 

classifier to a population that is not properly represented by the training data.  In 

essence, the data are of limited (poor) quality.  This may happen for many 

reasons, including lack of adequate information on the populations of interest and 

changes in populations from the set where the training data are acquired to a set 

on which the classifier is to be applied.  Furthermore, there may be domains, such 

as remote sensing, where there is a spatial context. 

 Both Bolivar Peninsula and Kennedy Space Center are environmentally 

important, inaccessible areas that contain dynamic classes (spatially varying 

within class variation), some of which are very hard to separate.  Further, there is 

concern that if the training data sites do not adequately cover the regions, 

characteristics of certain classes that are not exhibited for all �pockets� of those 

classes may be overlooked or, even worse, entire classes may not be included in 

the results.  However, due to time and financial limitations, it is not possible to 

field verified ground truth that covers the entire region. Therefore, it is often 

necessary to acquire ground truth data over a spatially limited area and assume 

that the data contained in this �closed world� is representative of the entire region 

of interest.  While the classification and mapping of land cover types for these 
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environments is difficult due to the similarity of spectral signatures for certain 

vegetation types, discrimination between the land cover types is reduced even 

further when ground truth is limited.  A novel approach for preserving the 

classification accuracies when the researcher is faced with a limited quantity of 

ground truth was presented in Chapter 3.  A different limitation occurs when 

training data are acquired on only a limited portion of the test site: results can be 

biased and discrimination reduced.  The dramatic impact this limitation can have 

on classification results and image analysis is investigated in this chapter.  

Furthermore, it is demonstrated that this problem can be viewed as a (spatially) 

limited training data problem.  An adaptive approach for combating this problem 

is presented in which previously acquired information is transferred and applied 

for classification of regions for which spatially proximal ground truth cannot be 

acquired.  

4.1 MOTIVATION 

In many cases the criteria for selection of training and test samples are 

dictated by factors that are independent of the statistical analysis.  Even if the 

sampling scheme has been developed using rigorous statistical methods, it may be 

impractical or impossible to implement these plans in real world applications.  A 

much more realistic scenario involves acquisition of samples at reasonably 

accessible sites, with a large number of samples collected at each site; in practice, 

this is exactly how the labeled ground truth is acquired.  Furthermore, land cover 

classification is typically performed based on the spectral response of the ground 

truth from spectrally homogeneous �pockets� of a region, whereas the goal is to 
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classify the entire region and possibly to even utilize the information for 

classification of other data acquired over regions for which ground truth cannot be 

acquired.   

4.1.1 Shortcomings of traditional classification 

Current land cover classification methods are not designed to deal with 

spatially dynamic classes � exhibiting trends within classes from region to region 

- in the context of non-global samples.  Typically, methods are trained and tested 

for classification accuracy from data in a �closed world�; all of the training and 

testing data are selected from a contiguous subset(s) of the region and, for 

practical reasons, the labeled data are collected only at a limited number of sites.  

Random selection of labeled data for training can result in �testing� points that are 

neighboring - or even surrounded by - points on which the classifier was trained.  

Due to the limited spatial extent of the available data, it is possible that the 

training data are not representative of the entire population.  In essence, inferences 

are made about the underlying characteristics of the population based upon local 

information.  Consequently, the resulting classifier usually performs poorly on the 

other �segments� of the population where no labeled data are available.  The true 

classification performance is compromised, and the implied generalization 

accuracy (the classification accuracy of labeled data not in the training set) may 

also be deceptive, inaccurate, and inflated.  Thus, these results likely result in a 

poor representation of both the populations that are known to exist in an area and 

even worse characterization of the even more difficult problem:  where the data 

have not been �seen�. 
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4.1.2 Dynamic application area 

The natural variation of the spectral signatures within each class is 

increased by the impact of environmental characteristics that are spatially non-

stationary such as soil composition, terrain, and weather.  Because pixels in an 

image often are not entirely pure due the resolution of the sensors [5 meter at 

Bolivar Peninsula and 20m at KSC], the presence of mixed and small classes, can 

also impact the spectral signature of individual pixels.  While the issue of �within 

sample variance� has been recognized, the problem of between sample spatial 

variability of class spectral signatures has not been formally addressed within the 

remote sensing community.  Natural differences can be further exacerbated by 

factors related to the acquisition of the data.  For example, an airborne sensor 

cannot typically acquire data over an entire study area on one flight line because 

of limited swath width. Differences can result from the sun angle and bi-

directional response of the targets observed on different flight lines.  An example 

where the natural variation is possibly confounded with differences related to 

multiple acquisitions and the radiance-to-reflectance transformation would be the 

flight lines of Bolivar Peninsula, the mosaic of which is depicted in Figure 3.1.   

The HyMap sensor, which is usually flow on light, twin-engine aircraft platform, 

has an operational altitude of 2000-5000 m Above Ground Level (AGL), a swath 

width of 60-70 degrees, and, in general, a spatial resolution of 2-10 m.  At low 

altitudes, swaths are narrow, with the maximum width being about 5 km [47].  As 

a result multiple acquisitions were required to achieve full coverage of the two 

focus areas on Bolivar Peninsula.  Figure 4.1 depicts the spectral signatures for 
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the ground truth of the General Uplands class on Bolivar Peninsula.  While the 

visible range of the spectrum (bands 1-20: 0.45 � 0.89�m) appears very similar 

for both sites, the spectral responses acquired at the second test site (labeled blue) 

are, in general, noticeably higher than those for the same class at test site one 

(labeled red) for bands 21-62 (NIR:  0.89 � 1.35�m), slightly higher for bands 

63-94 (SWIR1:  1.40 � 1.80�m), but slightly lower for bands 95-122 (SWIR2:  

1.95 � 2.48�m).  The similarity of the spectral signature of this class to other 

classes determines the amount of classification degradation.  The spectral 

signatures, with the respective test sites identified, for each of the 11 classes used 

at Bolivar Peninsula are in Appendix D.  

Figure 4.1 Spectral signatures for Class 8 (General Upland) at Bolivar
Peninsula for the two different test sites 

■ Flight Line 4 
■ Flight Line 5
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An example where most of the �controllable� factors are negated would be 

the KSC, Cape Canaveral Florida test sites depicted in Figure 3.3.  The two test 

sites are from the same acquisition, with the time difference just being that of the 

travel time of the ER-2 whose speed is about 730 km/hr [42].  AVIRIS is able to 

acquire a larger swatch (approximately 11km) than HyMap because it flies at a 

much higher altitude (20km vs 5km) and acquires data at a coarser spatial 

resolution (20m vs 10m).  However, even when it is possible to control for non-

natural spatial variability, dramatic differences can be present in supposedly 

�pure� ground truth collected at different locations as depicted for the Hardwood 

Swamp class at KSC [Figure 4.2].  Much like the HyMap data of Bolivar 

Figure 4.2 Spectral signatures for Hardwood Swamp at the two different
Kennedy Space Center sites  

■ Test Site 1 
■ Test Site 2 
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Peninsula, the differences in the spectral signatures between the two test sites at 

KSC are not always dramatic, but they differ enough to impact identification of 

the true land cover label.  The spectral signatures for the 16 classes used at 

Kennedy Space Center are in Appendix E.  Additionally, five of the land cover 

classes identified at KSC are only found at one or the other test site but not both 

sites.  A researcher that used a classifier trained and tested on one of the test sites 

to classify the other test site, without any modifications, would fail to identify 

most of the original classes and would not detect the new class. 

4.2 IMPACT OF LIMITED SPATIAL COVERAGE OF THE GROUND TRUTH 

A classifier that is �trained� on the ground truth of land cover types from 

certain sites is ultimately used to classify the land cover types of other areas 

where no immediate data are available.  Multiple experiments were performed in 

which the ground truth was partitioned into training and testing subsets in order to 

evaluate the �performance� of the trained classifier.  Here, the average 

classification accuracy on the test sets is generally used as the measure for how 

well the classifier identifies the correct label, although the fully classified images 

are evaluated qualitatively.  In regions where no immediate ground truth is 

available, it is obvious that there is a lack of adequate domain knowledge to 

determine whether a classifier is performing poorly.  Therefore, even if the 

available ground truth is not representative of the populations on which the 

classifier will be applied, the test set accuracies could mislead a researcher to 

assume a high level of performance.  The �purity� of the available ground truth is 

highly dependent on the selection process, which can be very subjective, and will 
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directly impact the test set accuracies. The concern here is what happens when the 

possible impact of the spatially limited ground truth is not accounted for and how 

that coincides with the implied performance obtained on the ground truth 

available.  

4.2.1 Transferring the classifiers 

In addition to noting the overall classification accuracy rate, the confusion 

matrix that depicts the number of pixels for each class given a specific label is 

also evaluated.  While a confusion matrix can be helpful for succinctly presenting 

the overall results, it does not effectively utilize the available domain knowledge.  

Because a hierarchical classifier is being used, it would be advantageous when 

analyzing the results to be able to evaluate what types of misclassifications are 

occurring in relation to the structure of the classifier being used.  While the 

information in the confusion matrix is useful, it is not helpful in evaluating the 

locations in a tree where the mistakes are made.  With a �precision tree�, which 

was motivated during this research by the shortcomings of confusion matrices, the 

tree is structurally identical to the hierarchical classifier being used.  However, at 

each partition of the applicable BHC structure, an accuracy measure is given that 

is indicative of how well the classifier performs at the meta-class level.  This 

measure is the percentage of correctly labeled pixels for each meta-class.  

Therefore, the top node �precision� will always be 100% since it contains all 

classes, whereas the leaf node precisions are reflective of the purity of the pixels 

labeled that specific class.  
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4.2.1.1 Bolivar Peninsula Classification Accuracies 

The average classification accuracies, based on 10 experiments with 

different seeds, for the TD and BU Adaptive BB-BHC classifiers were obtained 

by using a 50% stratified (by class) random partition of the data sets, these results 

are listed in Table 4.1.  Based upon the high level of classification accuracy being 

obtained, it would be plausible to build a classifier based on all available ground 

truth to classify the entire image and possibly use it for areas where no immediate 

ground truth are available.  To increase the diversity of the observed sample the 

BHC structures based on all the available ground truth are used to evaluate the 

performance of the classifier when it is transferred to the alternate site. 

Region Classifier Training Set Accuracy Test Set Accuracy 

Bolivar Site 1 TD 0.9925 0.9923 

Bolivar Site 1 BU 0.9956 0.9894 

Bolivar Site 2 TD 0.9987 0.9973 

Bolivar Site 2 BU 0.9990 0.9981 

Table 4.1: Bolivar Peninsula average training and test set accuracies when      
classifier is applied to the site at which the ground truths were acquired. 
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Whereas the practitioner may expect to achieve highly accurate results, 

when the classifiers are transferred from one site to the other, the accuracies are 

actually reduced dramatically as shown in Table 4.2.  Furthermore, analysis of the 

resulting precision trees and confusion matrices indicates that a large number of 

the errors are occurring at early partitions of the hierarchy [Appendix F].  For 

instance, for the TD classifier built on Site 2, the first partition of the hierarchy 

discriminates 2 [1,2,3,10]Ω =  from 3 [4,5,6,7,8,9,11]Ω =  which can qualitatively 

be described as separating the water type classes from the land type classes.  

However, when this classifier is applied to Site 1, almost half of the ground truth 

pixels labeled as 2Ω  are incorrect [Figure F.4].  The distributions in the Fisher 

projected space for the training data (Site 2) and the testing data (Site 1) are 

depicted in Figure 4.3.  The classifier trained on one region and tested on the 

From Region To Region Classifier Classification 
Accuracy 

Bolivar 1 Bolivar 2 TD 0.7229 

Bolivar 1 Bolivar 2 BU 0.6259 

Bolivar 2 Bolivar 1 TD 0.3524 

Bolivar 2 Bolivar 1 BU 0.4020 

Table 4.2: Bolivar Peninsula classification accuracies when classifier is applied to 
the alternate site at which the ground truths were acquired. 
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other is failing because the spectral signatures deformations have resulted in a 

subsequent change in the distributions in the projected space.   

Image Analysis 

Analysis of the images reinforces the fact that the transferred classifier 

performs much differently than expected given the performance of the classifiers 

Figure 4.3:  Deformation of the meta-class distributions in the Fisher
projected space calculated from the ground truth acquired at
Bolivar Peninsula Site 2 
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on the training sites [Appendix G].  Additionally, the images reinforce the implied 

disparity between transferring the classifiers from Site 1 to Site 2 versus from Site 

2 to Site 1:  while the images of Site 2 are quite poor, those of Site 1 are even 

worse. 

4.2.1.2 Cape Canaveral Classification Accuracies 

While not as high as those obtained at Bolivar Peninsula, accuracies for 

KSC data are very good [Table 4.3].  However, when the classifiers are trained on 

one of the sites and then applied to the alternate site, the accuracies are extremely 

poor, even for classes that exist in both regions [Table 4.4].   

 

Region Classifier Training Set Accuracy Test Set Accuracy 

KSC Site 1 TD 0.9659 0.9258 

KSC Site 1 BU 0.9729 0.9369 

KSC Site 2 TD 0.9282 0.8633 

KSC Site 2 BU 0.9242 0.8530 

Table 4.3: KSC average training and test set accuracies when classifier is 
applied to the site at which the ground truths were acquired. 
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Image Analysis 

Similar to the results obtained at Bolivar Peninsula, if it is assumed that 

visual evaluation of the fully classified data sets obtained by using all of the 

ground truth specific to each site are the standard by which to judge the 

classification of the land cover types, the fully classified data sets obtained by 

directly transferring the classifiers from one site to the other are poor [Appendix 

G]. 

4.2.2 Combined classification results 

The classifiers were developed using the combined data sets to investigate 

whether the classes from the alternate sites were truly different or whether 

training data sets are too small (unrepresentative).  Classification accuracies 

obtained from the combined training data are high, which indicate that the 

problem can be attributed to (spatially) limited training data [Table 4.5].  

Although the level of accuracy retained at KSC is not as high as that observed for 

From Region To Region Classifier Accuracy on 
Identical Classes 

Accuracy on All 
Classes 

KSC 1 KSC 2 TD 0.4720 0.3946 

KSC 1 KSC 2 BU 0.4901 0.4097 

KSC 2 KSC 1 TD 0.5141 0.4297 

KSC 2 KSC 1 BU 0.5213 0.4357 

Table 4.4: KSC classification accuracies when classifier is applied to the alternate 
site at which the ground truths were acquired. 
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Bolivar Peninsula, the land cover classification problem at KSC is more difficult 

for the combined data than the site specific data because the combined output 

space size has 16 classes, whereas individually there are only 13 classes at Site 1 

and 14 classes at KSC Site 2. 

Furthermore, analysis of the classified images provides visual evidence 

that the classifiers built on the combined data are applicable for both areas 

[Appendices H].  Whereas the images obtained using the classifiers trained on one 

site and applied to the other are dramatically different from those obtained using 

the classifier built on each of the respective site�s ground truth, the images 

obtained using the classifiers built with the combined training data are very 

similar to the site specific images.  This supports the formulation of the problem 

as still being one of a small sample size where, in this context, the �smallness� 

refers to the limited spatial coverage of the ground truth. 

Region Classifier Training Set Accuracy Test Set Accuracy 

Bolivar 1 and 2 TD 0.9875 0.9863 

Bolivar 1 and 2 BU 0.9857 0.9832 

KSC 1 and 2 TD 0.9063 0.8506 

KSC 1 and 2 BU 0.8893 0.8352 

Table 4.5: Bolivar Peninsula and KSC average training and test set accuracies 
when classifier is applied to the ground truths combined from both sites 
at which the ground truths were acquired. 
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4.3 KNOWLEDGE TRANSFER OF TREES AND FISHER PROJECTIONS 

If no training data are available for the new area, current land cover 

classification methods do not address how a trained classifier can be applied to 

the �new� region.  While the BHC classifiers do not specifically address the 

problem of spatial variability in the signatures of given classes, the framework is 

advantageous for performing this task.   

4.3.1 Background 

When the underlying labels of the pixels are not known, the similarity of 

the spectral signatures and/or spatial characteristics of the images can be used to 

form groupings or clusters.  Basic unsupervised clustering algorithms group 

pixels into N different clusters, ,  1, ,iC i N= K , based on the spectral 

characteristics of the pixels.  A commonly used algorithm in pattern classification 

and image analysis for partitioning the data is k-means, which moves data points 

from one cluster to another to improve on a predetermined criterion such as sum-

of-squared-error [1, 28].  Extensive research has been completed in the 

classification/clustering area in the context of no training data (referred to as 

�unsupervised�) with applications to spectral data [85-87, 95, 96].  Additionally, 

the basic ideas of unsupervised clustering have been extended to account for 

spatial relationships within neighborhoods of data points [92-94].  While 

accounting for the spatial information in clustering on a grid is a desired 

characteristic, the added computational effort can be quite prohibitive.  An 

additional, and nontrivial, concern is the determination of the number of clusters 

(cluster validation) [1, 88-91].  These topics are outside the scope of this work.   
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4.3.2 Updating parameter estimates by pseudo-labeled data 

Finding a feature space in which the underlying labels are easily 

discriminated is central to clustering.  When training data are available for the 

BHC framework, the projected values, based upon the Fisher projection(s) 

( )Ψ x A  between two meta-classes { },Ω Ωi j , are used to model the pdfs 

( )( ) ,  ,Ψ Ω =kp k i jx A .  However, in the context of this problem, the spectral 

signatures may be �deformed� due to spatial variation and hence the pdfs 

�learned� in the old area may no longer be strictly applicable.  However, rather 

than trying to cluster the pixels into class homogenous clusters and then 

determining their underlying label without any prior information, the domain 

knowledge acquired from the old area should be utilized as much as possible.  

The BHC structure is conducive because the hierarchy has already been 

discovered in which the easiest discriminations are performed first. Iteratively, it 

is much easier to discriminate between two classes at a time rather than 

attempting to identify the label as 1 of C while simultaneously solving the 

complicated issue of cluster validation.  Furthermore, the space in which the 

discrimination should be attempted has already been found based upon the 

characteristics of the Fisher projections that are generally robust to moderate 

changes in distributions. 

While the idea of transferring classifiers, or �knowledge reuse�, is not new 

for problems in which there are limited data and/or long training times, previous 

work focused on transferring classifiers or data sets based upon the assumptions 

that the old trained classifier will be able to correctly identify the labels for a 
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portion of the new data or it is assumed that there is at least a small quantity of 

training data available [97-99].  Here, an alternative method is proposed to 

adaptively update and transfer the BHC framework to regions where there is no 

immediate ground truth available, and the old classifier is not assumed to 

necessarily correctly identify the label of new data.  It is assumed that the 

deformations in the spectral signatures are similar across the classes, and therefore 

the domain knowledge acquired previously is still relevant for discrimination.  

The BHC framework learned in an area where there is ground truth available can 

be transferred in the following manner:  
1. For the meta-class pair { },Ω Ωi j , project the unlabeled data into 

the Fisher space by applying the projection ( )Ψ x A  learned from 

the �old� area, specific to that split, to the new data y: 

( )⋅ Ψz = y x A  

2. Cluster the projected values z in the Fisher space using k-means to 

form two clusters { }1, 2C C .  Record the cluster means { }1 2,C Cµ µ , 

variances { }2 2
1 2,C Cσ σ , and membership.   

3. Assign the meta-class labels { },Ω Ωi j to the members of each 

cluster such that the distance measure [ ( ) ( )22

i jCi Cjµ µ µ µΩ Ω− + − ] is 

minimized. 

4. Return to Step 1 if any remaining meta-classes have not been 

partitioned down to the leaf (specific label) node level and if there 

are pseudo-labeled data available to cluster. 
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This methodology uses the BHC structure to �push� pseudo-labeled pixels 

to a leaf (specific label) node.  The pseudo-labeled data are then used to update 

the parameter estimates necessary for classification. 

4.3.3 Performance 

In general, the updating scheme improved the classifier�s transferability.  

On average, the classification accuracy improved by nearly 25% (from 52.58% to 

76.17%) [Table 4.6].  Additionally, it is important what �type� of errors where 

made.  Comparison of the precision trees obtained with and without the parameter 

updating scheme indicates that the classifiers using the updated parameters make 

errors that would be �more acceptable�, in terms of the class hierarchy indicated 

by the respective BHC framework, then the non-updated counter-part classifier.  

For instance, for the BU classifier trained on Site 1 and tested on Site 2, the 

From Region To Region Classifier Classification 
Accuracy 

Bolivar 1 Bolivar 2 TD  0.7492 

Bolivar 1 Bolivar 2 BU  0.7576 

Bolivar 2 Bolivar 1 TD  0.9102 

Bolivar 2 Bolivar 1 BU  0.6299 

Table 4.6: Bolivar Peninsula classification accuracies when classifier is 
updated using pseudo-labeled data to estimate the new parameters and 
applied to the alternate site at which the ground truths were acquired. 
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updated classifier only identifies Class 2 correctly 19% of the time whereas the 

original classifier has an accuracy of 42.4%.  However, for the meta-class 

{ }1, 2Ω =  the updated classifier has an accuracy level of 99.4% versus 98.3% for 

the non-updated classifier.  For the other classifiers, for which the updated 

classifiers have a higher classification rate than the corresponding non-updated 

classifiers, the superiority of the precision matrices is even more pronounced.   

Unfortunately, the updated classifier did not yield clearly superior 

classification results for the KSC sites.  In fact, in all but one case (TD BHC 

trained on Site 1 and tested on Site 2), the classification accuracy was slightly 

worse [Table 4.7].  Furthermore, analysis of the precision trees between the 

updated and non-updated classifiers indicates that those obtained from the non-

updated classifier are comparable to the updated counterparts [Figures F.5-F.8, 

F.13-F.16].  These results highlight one of the major drawbacks of the updating 

scheme:  if a class exists that has not previously been seen, or if a previous class is 

no longer present, the updating scheme fails from that level of the BHC hierarchy 

downward as future partitions are dependent upon the quality of their �ancestors� 

in the hierarchy.    
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Table 4.7: KSC classification accuracies when classifier is updated using pseudo-
labeled data to estimate the new parameters and applied to the 
alternate site at which the ground truths were acquired. 

4.4 CONCLUSIONS 

The impact of spatial variability of class signatures on classification 

accuracy was demonstrated to be quite significant.  While it would be convenient 

to simply attribute the deterioration of classification accuracy to a change in 

classes and that the problem is in fact a �new� one, it is also demonstrated that the 

problem can be framed in the context of limited training data.  While the proposed 

parameter updating methodology performs fairly well for problems where the 

output space does not change, the presence or absence of classes during the 

knowledge transferal process poses too difficult of a situation for the updating 

scheme. 

 

 

 

From Region To Region Classifier Accuracy on 
Identical Classes 

Accuracy on 
All Classes 

KSC 1 KSC 2 TD 0.4886  0.4085  

KSC 1 KSC 2 BU 0.4481  0.3746  

KSC 2 KSC 1 TD 0.4500  0.3762  

KSC 2 KSC 1 BU 0.4682  0.3914  
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Chapter 5:  Ensembles and Output Space Precision 

Recently, sub-sampling methods have been investigated as means to create 

an ensemble of classifiers for use with classification trees similar to the BHC 

framework [33, 49, 50, 79], with the goal of improving overall classification 

accuracy.  However, with applications such as land cover classification with 

hyperspectral data that already suffer from a poor ratio of quantity of training data 

to dimensionality, the use of sub-sampling has gone largely unexplored and 

uninvestigated.  This issue has not been addressed rigorously, and approaches that 

mitigate the effect have not been developed. 

The Adaptive BB-BHC framework, which preserves classification 

accuracies when the available training data are limited, can also be used with sub-

sampling techniques.   Independent of spatial variation and limited training data, 

different sampling subsets of the same ground truth may result in slightly different 

classification results due to differences in the parameter estimates.  In Chapter 4, 

the serious classification problems that can arise if a classifier trained on one area 

is �blindly� applied to a seemingly very similar area where no immediate ground 

truth is available were demonstrated.  To mitigate this problem, a new �classifier 

transferal� method for updating the parameters of the meta-class conditional 

distributions was proposed.  While the application of the method to the Bolivar 

Peninsula and KSC data sets indicated that the updating scheme has potential and 

performs relatively well at the meta-class levels, the accuracies can still be quite 

poor in terms of the class-specific precision.  Additional domain knowledge 
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gained from transferring classifiers with different hierarchies indicates that certain 

splits of the hierarchy can be more advantageous for the transferability process 

than others.  For instance, when the classifiers were transferred from Site 2 to Site 

1 at Bolivar Peninsula, the TD structure outperformed the BU structure by nearly 

30% [Table 4.6].  In this chapter, the methodology is outlined for constructing a 

single hierarchy, a �master tree� MT , when multiple hierarchies are available due 

to different combinations of samples and classification algorithms.  The ability to 

identify a single framework that incorporates information from all the structures, 

rather than having several, such as both a TD BHC and a BU BHC classifier, is 

advantageous because it helps preserve interpretability of the class hierarchy and 

should be more robust for transferal than any of the individual structures.  The 

MT  structure is utilized in two different ways:  the structure can be used as the 

hierarchy to be transferred by training it with all the available ground truth, or it 

can be used as an evaluation tool for the aggregate output of the individual 

classifiers.  Furthermore, techniques for determining the appropriate precision of 

the output space are developed specific to each type of application of the master 

tree.  These methods are applied to the transferal of classifiers between the 

different test sites at Bolivar Peninsula and KSC. 

5.1 CONSTRUCTING A MASTER TREE 

Different classification methods, as well as different samples of ground 

truth, can produce different hierarchies.  Previous research has investigated the 

search for exact tree structures or matching partitions within different structures 

[80-82].  None of this previous research addresses the problem of consolidating 
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the structurally different trees ,  1,i i S= KT  that result from the S combinations of 

different samples and classifier.  However, the domain knowledge inherent in the 

S structures can be used to make inferences about inter-class relationships, such as 

which classes are always separated first and which ones� locations are the least 

�stable�.  A distance based approach for utilizing this information is proposed.   

The method involves tabulating tree structures for each of the hierarchies 

in terms of the meta-class tree structure and using a greedy �bottom-up� 

agglomerative clustering algorithm to form the collective association rules.  The 

average number of internal nodes , ,
i

i j i j
S

S
 =  
 
∑O O T  that exist between the leaf 

nodes for label pairs { } , i jL ,L i < j∀  and the meta-class kΩ  that contains them 

both ({ },i j kL L ∈ Ω ) is determined.  This �distance�, a measure of how far the 

labels are from the meta-class in which they are partitioned, is not symmetric and 
must be calculated in both directions ( i kL → Ω  and j kL → Ω ).  As a minimum, 

if there is a meta-class { },k i jL LΩ =  present in all of the hierarchies, , 2i j =O .  

Conversely, the maximum ( ), 2i j C=O  is realized if, for each of the trees, the 

leaf nodes of iL  and jL  cannot be structurally connected without traveling 

through all the internal nodes in the hierarchy.  As an example, six possible BHC 

tree configurations are depicted in Figure 5.1.  For this example, 
3 3 3 2 3 4

1,2 6 3+ + + + += =O  because 1,2 2 23 ( 2, 1)1 2L L= → Ω = → Ω =O 1T , 

2
1,2 2 23 ( 2, 1)1 2L L= → Ω = → Ω =O T , 3

1,2 2 23 ( 1, 2)1 2L L= → Ω = → Ω =O T , 

4
1,2 5 52 ( 1, 1)1 2L L= → Ω = → Ω =O T , 5

1,2 2 23 ( 2, 1)1 2L L= → Ω = → Ω =O T , and 

1,2 1 14 ( 2, 2)1 2L L= → Ω = → Ω =O 6T .   
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The greedy algorithm for constructing the master tree MT  from the 

distance measures ,i jO  is initialized by selecting the class pair { },i jL L  to 

combine such that ,i jO  is the minimum individual value.  The distance measure to 

the meta-class { },i jL LΩ =  that results from combination is calculated for the 

remaining classes (or meta-classes) by merging M  the distance measures 
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Figure 5.1: An example of 6 possible hierarchies involving 4 classes. 
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{ }, ,, ,i k j k k i j∀ ≠O O  to form the new distance measure 

{ } { }, ,, , ,i k j ki j k k i j= ∀ ≠O M O O .  The merging can be based upon the average, the 

minimum, or the maximum of the pair.  Investigation of the different merge 

functions indicated that using the minimum results in class hierarchies that were 

most appealing.  Class and meta-class pairs are combined in this manner until a 

single meta-class, the top node in the hierarchy, remains and the resulting Master 

Tree can be constructed by recreating the binary combinations.  An algorithm was 

also developed that identifies a master tree based upon the most common 

partitions.  It was not as robust in terms of dealing with a variety of hierarchies 

whose structures are not very similar and did not perform well when S was not 

large, so it was not pursued further. 

5.2 TRANSFERRING THE MASTER TREE AND IDENTIFYING AN APPROPRIATE 

OUTPUT SPACE PRECISION 

The Master Tree can be utilized in two different manners.  Rather than 

using the classification algorithm to determine the appropriate hierarchy, the MT  

structure can be used during the training process.  Conversely, rather than having 

a single re-trained classifier with the MT  structure, each classifier in the ensemble 

can be retained.  The aggregate �vote� of the ensemble can then be represented 

and evaluated in terms of the MT  structure.  Recent research related the 

classification accuracies to the precision with which classes are defined and the 

complexity of the classifier algorithm being used [64].  Another factor that 

dramatically impacts all three problems investigated here is the precision of the 

ultimate output space.  For example, it may be much easier to identify a tree in 
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general versus specific types of trees such as Slash Pine or Oak Hammock.  Two 

different methods, each specific to the two different usages of the MT , are 

presented here that are valuable tools for a researcher evaluating the appropriate 

output space precision for transferring a classifier.  One is based on distance 

measures between pseudo-labeled clusters and the other on the purity (diversity) 

of the ensemble of classifiers. 

5.2.1 Distance measure between the pseudo-labeled clusters  

When the Master Tree is transferred to the region in which there is no 

immediate ground truth and it is applied to the data, clusters are formed at each 

partition of the MT  framework, matched to the original meta-classes, and then 

used to update the parameter estimates at each partition.  While no labeled data 

are available, if it is assumed at each partition that the pseudo-labels are correct, a 

distance measure of the �separation� of the two classes can be compared to the 

same measure on the previously acquired ground truth.  If the distance measure 

differs greatly from what would be expected based upon the known ground truth, 

it would signal a potential failure at that level of the MT  framework to correctly 

identify the pseudo-labeled data.  The researcher should consider redefining the 

output space at the corresponding meta-class level and conduct further 

investigation.  A popular distance measure of the separation between two classes 

{ },i jL L  is the Bhattacharyya distance (5.1) [1,65]: 

( )
1 ( ) 2

1 1
8 2( ) 2 ln                       5.1

− Σ +Σ

Σ Σ

′     = − Σ + Σ − +     
L Li j

i j i j i j
L Li j

L L L L L LD µ µ µ µ

where the first term is a measure of the separation due to differences in the mean 
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vectors { },
i jL Lµ µ  and the second terms accounts for separation due to differences 

in the covariance matrices { },Σ Σ
i jL L .  For any distance measure that utilizes the 

class conditional covariance matrices, an adequate ratio of data quantity to 

dimensionality must be achieved for reliable calculation.  When the ratio is 

inadequate, the Best-Basis algorithm is utilized to reduce the data dimensionality.  

This method can use the distance measure with the Master Tree because the MT  

structure is being used, and therefore all of the partitions are applicable. 

5.2.2 Purity of the ensemble at each partition  

Rather than retraining a classifier with a forced MT  structure, each the 

ensemble of individual classifiers can be evaluated simultaneously by considering 

how each of the classifiers in the ensemble agrees or disagrees with the voted 

label.  This �purity� P  can be measured in terms of classifier agreement on the 
meta-class { },i jL LΩ = levels.  For example, if the ensemble votes are 

{ }1 1, , , , ,Ω = 1 2 3 4L L L L L L  then the vote label would be 1L  and the purity for this 

particular observation would be evaluated for all of the meta-classes containing 

1L .  For instance, if there is a meta-class { }3, ,Ω = 1 2L L L  in the hierarchy, then 

the purity at that meta-class for that pixel is 

{ }( ) ( )3, , 1 1 1 1 0 1 6 0.8333Ω = = + + + + + =1 2L L LP , where the zero indicates 

that the 5th classifier in the ensemble did not indicate the pixel was of that 

particular meta-class (it�s vote was for 4L  which is not with-in the meta-class).  

The purity never decreases as the applicable meta-class grows.  Both measures, 

the comparison of distance measures and the ensemble purity, can be used to 
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determine the appropriate level of the hierarchy at which they are comfortable 

with the results. 

5.3 APPLICATION TO HYPERSPECTRAL DATA 

The Master Tree approach was applied to both KSC and Bolivar Peninsula 

data for transferring an ensemble of classifiers to regions where ground truth is 

not immediately available.  For both data sets, the ensemble consists of 21 

different classifiers.  Using multiple 50% stratified samples of the available 

ground truth, 10 TD Adaptive BB-BHC classifiers and 10 BU Adaptive BB-BHC 

classifiers were trained and then transferred, with parameter updates, for 

classification of the alternate test sites from which they were trained.  Lastly, all 

of the ground truth was used to train the Master Tree, and it was also transferred 

for classification of the alternate site.  The sub-sample classifiers were combined 

using the voting method to obtain a unique predicted label.  The voted prediction 

was compared to the vote of the Master Tree and, if they were in disagreement, 

the vote of the Master Tree was adopted only if the posterior probability for that 

observation was higher than the percentage of the sub-sample classifier that had 

agreed on the voted prediction.    

Bolivar Peninsula 
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Both ensembles, when transferred from Site 1 to Site 2 and when 

transferred from Site 2 to Site 1, have a higher classification rate than the similar 

TD or BU classifiers that did not utilize the ensemble and Master Tree method.  

The accuracies are reported in Table 5.1.  The classifier trained on Site 2 and 

tested on Site 1 performs really well, correctly identifying the label over 93% of 

the time. Unfortunately, the classifier trained on Site 1 and tested on Site 2 still 

has a difficult time with a classification rate of just over 75%.  The precision 

trees, the confusion matrices, and the �separation� distance and purity measures 

were evaluated to gain additional insight [Appendix I].  For Site 1, the precision 

tree can be used to quickly identify the partition of 1L  (Water) and 2L  (Low 

Proximal Marsh) as being difficult.  Fortunately, analysis of the distance measure 

and the purities probably would lead a researcher to find this problem because the 

From Region To Region Classifier Classification 
Accuracy 

Bolivar 1 Bolivar 2 TD 0.7492 

Bolivar 1 Bolivar 2 BU 0.7576 

Bolivar 1 Bolivar 2 Master Tree 0.7585 

Bolivar 2 Bolivar 1 TD 0.9102 

Bolivar 2 Bolivar 1 BU 0.6299 

Bolivar 2 Bolivar 1 Master Tree 0.9342 

Table 5.1: Bolivar Peninsula classification accuracies when classifier is 
updated using pseudo-labeled data to estimate the new parameters and applied 
to the alternate site at which the ground truths were acquired. 
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perceived separation between the two classes has dropped by over 50%, and the 

purity of both classes is ~50% [Figure I.1].  Unfortunately, while the partitioning 

of 1L  and 2L  is the source of almost all the error at Site 2, the distance measures 

fail to indicate this may be the case as the lowest purity measure is over 82 

percent and the biggest decrease in the distance measure is less than 40% [Figure 

I.2] 

Kennedy Space Center 

The classification accuracies obtained at KSC are contained in Table 5.2.  

For this application area, the ensemble results do not outperform the original TD 

or BU transferred classifiers.  However, analysis of the distance and purity 

measures indicates that this approach is still very beneficial.  For example, at Site 

From Region To Region Classifier Accuracy on 
Identical Classes 

Accuracy on 
All Classes 

KSC 1 KSC 2 TD 0.4886 0.4085 

KSC 1 KSC 2 BU 0.4481 0.3746 

KSC 1 KSC 2 Master 0.4029 0.3386 

KSC 2 KSC 1 TD 0.4500 0.3762  

KSC 2 KSC 1 BU 0.4682 0.3914  

KSC 2 KSC 1 Master 0.4577 0.3826 

Table 5.2: KSC classification accuracies when classifier is updated using 
pseudo-labeled data to estimate the new parameters and applied to the 
alternate site at which the ground truths were acquired.
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1 [Figure I.3], the distance measure for the partitioning of { },Ω = 13 15L L  is just 

4% of the distance measured on the training data.  This would indicate some 

severe problems and may lead a researcher to discover the absence of 15L  from 

Site 1.  Similar insight can be gained at Site 2 [Figure I.4], the distance measure 
from partitioning { }, ,Ω = 10 11 13L L L  has increase 1500%, indicating a very severe 

problem that can be attributable to the absence of 10L  from Site 2.  Furthermore, if 

{ }, ,Ω = 10 11 13L L L  is considered as a unique label rather than 3 sub-labels, the 

accuracy improves by over 13.5%. 

5.4 CONCLUDING REMARKS 

While these sub-sampling methods are not new, they have not previously 

been applied to a hierarchical classifier in the context of the limited training data 

problem.  However, the new Adaptive BB-BHC framework makes it possible to 

use sub-sampling techniques to create an ensemble of classifiers.  Furthermore, 

the Master Tree structure helps preserve the interpretability of inter-class 

relationship, an important factor in this domain, and is a useful tool, along with 

the distance and purity measures, for identifying when the resolution of the output 

classes being sought is too fine for knowledge transfer.   
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Chapter 6:  Concluding Remarks 

Many classification problems involve a high dimensional input space and 

several possible output classes.  While such problems are challenging 

theoretically, numerically, and computationally, they potentially provide 

flexibility via decomposition that can be utilized by classification methods to 

achieve a high level of accuracy.  Classification algorithms must accommodate 

these issues to fully exploit the additional information a high dimensional input 

space provides.  While it is desirable to develop classification techniques in as 

general a framework as possible so that they can be applied to a wide variety of 

domains, the quantity and quality of available data for training and testing must be 

a primary factor during model development.  Ultimately, high levels of accuracy 

may be achieved consistently on these difficult problems only if extensive domain 

knowledge is incorporated.  Generalization can be improved by techniques that 

seek to automatically discover this critical information. 

6.1 SUMMARY OF CONTRIBUTIONS 

This research focused on the development of a hierarchical approach for 

classification that is robust with respect to training data that is limited both in 

quantity and spatial extent. 

6.1.1 Limited quantity of training data 

 Many difficult classification problems involve a high dimensional input 

space.  Due to the �curse of dimensionality�, it is necessary to reduce the size of 

the input space when there is only a limited quantity of training data available.  A 
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new approach was developed that preserves as much of the discriminatory 

�power� of the data as possible, conditioned on the actual quantity of data 

available.  The ability of this technique to mitigate the degradation of classifier 

performance when the quantity of training data is reduced was  demonstrated.  

6.1.3 Spatially limited training data 

Spatially limited training data can result in poor inference concerning the 

true populations.  The detrimental impact that can result, if this issue is ignored, is 

explored and demonstrated.    Furthermore, it is shown that the problem can be 

viewed as one of a �spatially limited� acquisition of training data.  This insight is 

critical for achieving successful classification of areas where no training data are 

available.  Rather than beginning the classification process afresh without any 

training data, which would be required if the two populations were totally 

different, viewing two samples as just spatially deformed versions from the same 

population indicates that the classifier trained on one sample may be of use on the 

alternate sample.  This discovery led to the development of a dynamic algorithm 

that automatically updates parameter estimates.  Transferal of information that 

was previously acquired, such as the discriminatory feature space and output 

space, is used to form clusters representative of the deformed classes which in 

turn are used to update the parameter estimates of the transferred classifier. 

6.1.4 Ensemble of classifiers 

Independent of limited training data, both in terms of the spatial 

implications and limited quantity, different sampling subsets of the same ground 
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truth may result in slightly different classifiers.  This issue was not previously 

addressed rigorously.  The advantages gained by using an ensemble of classifiers 

built from sub-samples of training data are widely acknowledged but have not 

previously been used in the context of a hierarchical classifier for remotely sensed 

data.  The ability of the adaptive BB-BHC now makes sub-sampling a viable 

option.  Using this technique, an ensemble of classifiers is used to identify a 

Master Tree that provides interpretability to the ensemble and is more robust for 

classifier transferal.  Furthermore, tools are provided that help identify a suitable 

meta-class level of the transferred classifier for situations where the full resolution 

of the output space may not be appropriate.   

6.2 FUTURE WORK 

The difficult and exciting application area of classification offers a wide 

variety of research problems.  Within the application area of land cover/land use 

mapping and monitoring, classification is of growing importance due to 

heightened interest in global ecological monitoring that must be performed using 

remote sensing technologies.  Hyperspectral data can potentially contribute to 

capability for discriminating between targets that has heretofore been impossible.   

Although it is operationally a new technology, the quantity and variety of 

hyperspectral data available are growing rapidly.  While most of these data are 

still being acquired from airborne platforms, a hyperspectral sensor (Hyperion) is 

now successfully acquiring hyperspectral data, and other missions are planned 

internationally.  New methodology will be required to effectively extract 
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information from these sensors.  Several extensions to the current work could be 

pursued in the immediate future. 

6.2.1 Feature selection 

In the BHC framework, feature selection has not been explored.  Feature 

selection at each partition of the BHC could be accomplished similarly to the way 

features were selected for the BPC framework.  Feature selection, rather than 

feature extraction, would help preserve the interpretability of the feature space.  

The method for transferring classifiers would be identical to that described for the 

Fisher projected space considered in this research.  Clusters could be formed in 

the reduced feature space and matched to the respective meta-classes so that a 

measure of   total distance between the clusters and old classes, in that feature 

space, is minimized.  However, as more features are required to attain a higher 

level of classification accuracy, the updating will become more challenging and it 

will be difficult to visualize the results during algorithm development. 

6.2.2 Unsupervised clustering 

Unsupervised clustering on the entire image is necessary when no ground 

truth is available.  A large amount of research has been completed in the 

unsupervised classification/clustering area with applications to spectral data [85-

87, 95, 96].  Additionally, the basic ideas of unsupervised clustering have been 

extended to account for spatial relationships of the pixels [92-94].  While 

accounting for spatial information is a desired characteristic, the added 

computational effort may be prohibitive, and selection of the specific approach 
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should compromise between the computational requirements and the goal of 

obtaining spatially and spectrally contiguous clusters.  An additional concern is 

determining the number of clusters (cluster validation) [88].  However, given the 

intended usage of the clusters, it is more advantageous to allow more clusters in 

hopes that they will be more �class pure� rather than a smaller number of �mixed� 

clusters.  Furthermore, at this stage it may be advantageous to eliminate or at least 

hold in reserve some of the N clusters from immediate consideration in classifier 

development either due to their size or their perceived potential to be �class 

impure�. 

6.2.3 Deformable models 

The methodology of using the features that were determined to be highly 

discriminatory in the training data to form clusters and update parameter estimates 

in a new testing site may not be very robust.  Features that were the �best� in the 

old region may no longer be suitable for discrimination.  Having access to a larger 

number of data sets would allow the investigation of which features may not be 

the best for any one area, but are suitable for all of the areas.  This additional 

domain knowledge could be utilized by comparing and matching the signatures 

obtained from the �new� region to the existing spectral library derived from 

previous training data.  Automation of the matching problem has been addressed 

by a significant amount of research in the fields of signal processing and time-

series data [101-104].  However, despite the high degree of correlation between 

adjacent bands, no research has investigated the possibility that the hyperspectral 

bands could be treated as points in a signal/time series and applied pattern-
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matching algorithms to identify new �training� data.  A simple approach to this 

problem would be to develop a distance measure to estimate the similarity of the 

old spectral label signatures and the new clusters.  However, construction of an 

effective distance measure can be highly non-trivial, very problem-dependent, 

inflexible to �deformations� in the patterns, and cannot quantify the certainty 

associated with a �match�.   

Various distance-based methods have been modified to be more �flexible� 

but they still suffer from the problems inherent in distance measures [102, 103].  

In the probabilistic generative modeling approach proposed by Ge and Smyth 
[101], a model QM  is constructed for pattern Q  that typically consists of both a 

mean shape and a distribution function that describes variation about the mean 

shape.  Therefore, the similarity of new patterns to the original pattern can be 
computed by ( )new Qp Q M  and this approach could be applied for identifying 

deformed spectral signatures by comparison to existing spectral libraries.  
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Figure A.1:  Bolivar Peninsula BU-BHC classified images (sampling %, BB vs 
Pseudo)                                                                                             
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Figure A.2:  Bolivar Peninsula BU-BHC classified images (sampling %, BB vs 
Pseudo)                                                                                             
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Figure A.3:  Bolivar Peninsula TD-BHC classified images (sampling %, BB vs 
Pseudo)                                                                                             
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Figure A.4:  Bolivar Peninsula TD-BHC classified images (sampling %, BB vs 
Pseudo)                                                                                             
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Appendix B 
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Figure B.1:  KSC BU-BHC classified images (sampling %, BB vs 
Pseudo)                                                                                             
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Figure B.2:  KSC BU-BHC classified images (sampling %, BB vs 
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Figure B.3:  KSC TD-BHC classified images (sampling %, BB vs Pseudo)    
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Figure B.4:  KSC TD-BHC classified images (sampling %, BB vs Pseudo)        
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Appendix D 
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Class 5: Sand Flats 

Class 6: Ag1 (Pasture) ■ Flight Line 1 
■ Flight Line 2 
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Class 7: Trees 
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Class 9: Ag2 (Bare Soil) 

Class 10: Transition Zone
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Class 11: Pure Salicarnia ■ Flight Line 1 
■ Flight Line 2 
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Appendix E 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Class 1:  Scrub 

Class 2:  Willow Swamp 
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Class 3:  CP Hammock 

Class 4: CP/Oak Hammock 
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■ Area 2 
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Class 6: Oak Hammock 

Class 5:  Slash Pine 
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■ Area 2 
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Class 7:  Hardwood Swamp 

Class 8:  Graminoid Marsh 
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Class 15: Citrus 
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Class 16: Slash 
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Appendix F 

 
 
 

Bolivar Peninsula:  Training on A rea 1 and Testing on A rea 2
Bo ttom-U p C lass and M eta-C lass C lassification Accuracies

 1  2  3   4  5   6   7   8   9  10  11

1  2   3  4   5  6   7  8    9   10  11
98.3% 100%

1 2       3  4  6  7 8 9 10 5 11
97.5% 42.4% 100.0% 85.2%

      3 4  6  8 9 10 7 5 11
100% 7.8% 97.4% 76.8%

      3   4  6   8  10 9
100.0% 100.0%

3 4 10 6 8
66.8% 100.0%

3  4 10 6 8
66.6% 44.4% 98.8% 100.0%

3 4
59.7% 97.2%

PRE D ICT E D
1 2 3 4 5 6 7 8 9 10 11

1 3764 765 0 0 0 0 0 0 0 0 0 4529
2 52 595 0 0 0 0 0 0 0 0 0 647
3 44 44 713 0 0 0 282 0 0 0 0 1083
4 0 0 28 173 1 0 292 0 0 0 0 494
5 0 0 0 0 112 0 0 0 0 0 0 112

ACT U AL 6 0 0 307 2 0 1241 884 0 0 20 0 2454
7 0 0 0 0 2 0 236 0 0 0 0 238
8 0 0 113 3 0 15 313 35 0 55 0 534
9 0 0 0 0 0 0 920 0 176 0 31 1127

10 0 0 34 0 0 0 108 0 0 60 8 210
11 0 0 0 0 0 0 0 0 0 0 129 129

3860 1404 1195 178 115 1256 3035 35 176 135 168 11557

Figure F.1 Bolivar Peninsula Precision Tree and Confusion Matrix for BU-BHC, trained on 
Site 1 and tested on Site 2 
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Bolivar Peninsula:  Training on Area 1 and Testing on Area 2
Top-Down Class and Meta-Class Classification Accuracies

1 2 3 4  5  6  7  8  9  10  11

1 2 3 4  5  6  7 8  9 10 11
99.0% 87.8%

1 2 3 4 10 11 5 6 7 8 9
93.7% 58.4% 46.1% 100.0%

2 3 4 10 11 5 6 7 8 9
55.9% 71.7% 52.8% 27.7% 100.0% 100.0%

10 11 6 8 7 9
18.2% 70.4% 100.0% 47.4%

6 8 7 9
97.9% 100.0% 100.0% 42.1%

PREDICTED
1 2 3 4 5 6 7 8 9 10 11

1 4048 471 0 10 0 0 0 0 0 0 0 4529
2 49 598 0 0 0 0 0 0 0 0 0 647
3 222 0 142 125 0 0 0 0 0 584 10 1083
4 0 0 0 494 0 0 0 0 0 0 0 494
5 0 0 0 10 102 0 0 0 0 0 0 112

ACTUAL 6 0 0 17 7 0 1285 0 0 1145 0 0 2454
7 0 0 2 11 0 0 225 0 0 0 0 238
8 0 0 25 53 0 27 0 268 161 0 0 534
9 0 0 12 128 0 0 0 0 950 0 37 1127

10 0 0 0 80 0 0 0 0 0 130 0 210
11 0 0 0 17 0 0 0 0 0 0 112 129

4319 1069 198 935 102 1312 225 268 2256 714 159 11557

Figure F.2 Bolivar Peninsula Precision Tree and Confusion Matrix for TD-BHC, 
trained on Site 1 and tested on Site 2 
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Bolivar Peninsula:  Training on Area 2 and Testing on Area 1
Bottom-Up Class and Meta-Class Classification Accuracies

  1 2 3 4 5 6 7 8  9 10 11

1  2  3  4  6  7  8  9 10 11 5
100.0% 87.6%

1 2 3 4 6 7 8 9 10 11
100.0% 100.0%

      1  2  3  4  10 6 7 8 9
43.6% 100.0%

1 2 3 4 10 6 8 9 7
99.3% 34.4% #DIV/0! 100.0%

2 3 4 10 6  8 9
58.3% 27.2% #DIV/0! #DIV/0!

3  4 10 6 8
28.0% 11.4% #DIV/0! #DIV/0!

3 4
22.5% 40.0%

PREDICTED
1 2 3 4 5 6 7 8 9 10 11

1 562 456 1 0 0 0 0 0 0 0 0 1019
2 4 1123 0 0 0 0 0 0 0 0 0 1127
3 0 0 910 0 0 0 0 0 0 0 0 910
4 0 7 0 745 0 0 0 0 0 0 0 752
5 0 0 0 0 148 0 0 0 0 0 0 148

ACTUAL 6 0 0 2509 402 0 0 0 0 0 162 0 3073
7 0 0 5 185 0 0 24 0 0 8 0 222
8 0 0 268 349 0 0 0 0 0 87 0 704
9 0 336 332 156 0 0 0 0 0 271 0 1095

10 0 0 22 24 0 0 0 0 0 68 0 114
11 0 3 0 0 21 0 0 0 0 0 190 214

566 1925 4047 1861 169 0 24 0 0 596 190 9378

Figure F.3 Bolivar Peninsula Precision Tree and Confusion Matrix for BU-
BHC, trained on Site 2 and tested on Site 1



 126 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bolivar Peninsula:  Training on Area 2 and Testing on Area 1
Top-Down Class and Meta-Class Classification Accuracies

1 2  3  4  5  6  7  8  9 10  11

1 2 3 10 4  5  6  7 8   9  11
53.2% 99.9%

1 2 3 10 4 11      5  6  7  8  9
93.1% 38.4% 27.9% 100.0%

2 3 10 4 11 5 6 7 8 9
61.4% 27.1% 22.6% 98.0% #DIV/0! 100.0%

3 10 6 8 7 9
26.9% 20.6% 58.1% 100.0%

6 8 7 9
0.0% 0.0% 100.0% #DIV/0!

PREDICTED
1 2 3 4 5 6 7 8 9 10 11

1 336 682 1 0 0 0 0 0 0 0 0 1019
2 3 1124 0 0 0 0 0 0 0 0 0 1127
3 0 0 910 0 0 0 0 0 0 0 0 910
4 0 0 22 725 0 0 0 0 0 5 0 752
5 0 0 0 148 0 0 0 0 0 0 0 148

ACTUAL 6 0 0 2036 856 0 0 0 0 0 181 0 3073
7 0 0 2 76 0 27 87 1 0 29 0 222
8 0 0 359 229 0 50 0 0 0 66 0 704
9 0 19 24 1035 0 8 0 0 0 8 1 1095

10 0 1 33 5 0 0 0 0 0 75 0 114
11 22 6 0 138 0 0 0 0 0 0 48 214

361 1832 3387 3212 0 85 87 1 0 364 49 9378

Figure F.4 Bolivar Peninsula Precision Tree and Confusion Matrix for TD-BHC, 
trained on Site 2 and tested on Site 1 
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KSC:  Training on Area 1 and Testing on Area 2
Bottom-Up Class and Meta-Class Classification Accuracies

1   2   3   4   5   6   7   8   9  10  11  12  13

1   2   3   4   5   6   7   8   9  10  11  12 13
77.1% 100.0%

1   2   3   4   5   6   7   8   9  11  12 10
81.9% 0.0%

1   3   4   5   6    8   9  11  12 2 7
73.6% 72.2%

1   3   4   5   6   8   9  12 11 2 7
70.7% 30.8% 0.0% 11.0%

1  3  4  5  6  8  9 12
70.6% 0.0%

1  3  4  5  6 8  9
61.6% 95.9%

1  6 3  4  5 8 9
19.5% 36.8% 91.6% 2.9%

1 6 3 4  5
43.1% 0.8% 47.9% 10.8%

4 5
8.5% 10.4%

PREDICTED
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 81 0 0 11 294 26 1 9 0 0 0 0 0 0 0 0 422
2 0 0 4 16 3 5 142 0 0 3 0 7 0 0 0 0 180
3 0 0 45 332 50 0 3 0 0 0 0 1 0 0 0 0 431
4 0 0 5 72 12 30 4 0 0 9 0 0 0 0 0 0 132
5 82 0 0 10 71 1 0 0 0 0 2 0 0 0 0 0 166

ACTUAL 6 0 0 0 108 113 3 7 0 0 43 0 0 0 0 0 0 274
7 5 0 4 130 30 34 24 0 0 21 0 0 0 0 0 0 248
8 1 7 1 4 2 0 3 174 97 0 151 13 0 0 0 0 453
9 0 0 35 65 6 0 3 7 3 0 113 9 0 0 0 0 241

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 5 0 0 0 0 0 0 3 6 142 0 0 0 0 0 156
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 1392 0 0 0 1392
14 19 0 0 34 56 274 4 0 0 6 0 0 0 0 0 0 393
15 0 0 0 0 0 0 0 0 0 216 53 0 0 0 0 0 269
16 0 0 0 61 47 3 27 0 0 4 0 0 0 0 0 0 142

188 12 94 843 684 376 218 190 103 308 461 30 1392 0 0 0 4899

Figure F.5 KSC Precision Tree and Confusion Matrix for BU-BHC, trained on Site 
1 and tested on Site 2 
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KSC:  Training on Area 1 and Testing on Area 2
Top-Down Class and Meta-Class Classification Accuracies

 1  2  3  4  5  6  7  8  9  10  11  12  13

1 3 4 5 6 2 7 8 9 10 11 12 13
57.2% 84.1%

1  6 3 4 5 2 7 8 9 10 11 12 13
18.2% 33.1% 66.1% 71.1%

1 6 3 4  5 2 7  8 9 12 10 11  13
38.7% 3.6% 20.5% 9.5% 0.0% 41.6% 1.4% 98.8%

4 5 7 8 9 12 10 11  13
6.5% 10.0% 8.4% 89.3% 2.1% 0.0% 0.0% 98.7%

11 13
85.0% 100.0%

PREDICTED
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 67 0 0 7 292 22 22 4 4 0 0 4 0 0 0 0 422
2 0 0 4 22 6 2 107 1 30 0 0 8 0 0 0 0 180
3 0 0 47 308 66 0 3 0 6 0 0 1 0 0 0 0 431
4 0 0 9 50 10 29 28 0 4 0 0 2 0 0 0 0 132
5 82 0 0 10 73 0 0 0 0 0 0 1 0 0 0 0 166

ACTUAL 6 0 1 0 107 121 14 2 0 28 0 0 1 0 0 0 0 274
7 4 0 9 125 42 34 22 0 12 0 0 0 0 0 0 0 248
8 0 4 2 1 1 0 6 151 263 0 18 7 0 0 0 0 453
9 1 0 146 61 10 1 4 8 9 0 1 0 0 0 0 0 241

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 5 11 0 0 0 0 5 25 2 108 0 0 0 0 0 156
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 1392 0 0 0 1392
14 19 0 0 18 55 287 4 0 10 0 0 0 0 0 0 0 393
15 0 0 0 0 0 0 46 0 38 0 0 185 0 0 0 0 269
16 0 0 1 64 53 4 17 0 3 0 0 0 0 0 0 0 142

173 10 229 773 729 393 261 169 432 2 127 209 1392 0 0 0 4899

Figure F.6 KSC Precision Tree and Confusion Matrix for TD-BHC, trained on 
Site 1 and tested on Site 2
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KSC:  Training on Area 2 and Testing on Area 1
Bottom-Up Class and Meta-Class Classification Accuracies

1   2   3   4   5   6   7   8   9  11  13  14  15  16
13

1 2  3  4  5  6  7  8  9 11 14 15 16 82.1%
83.6% 15

1  2  3  4  5  6  7  8  9  11  14  16 0.0%
86.0% 11

  1  2  3  4  5  6  7  8  9  14  16 26.2%
84.4% 8

    1  2  3  4  5  6  7  9  14  16 39.8%
94.6% 9

  1  2  3  4  5  6  7  14  16 2.2%
98.5% 2

1 3 4 5 6 7 14 16 66.2%
99.8% 5

1 3 4  6  7 14 16 0.0%
88.0%  3  4  6  7  14  16

1 71.3%    4  6  7  14  16
93.9% 3 65.7% 6 7 14 16

33.5% 4 19.5%
6.8% 6  7  16 14

0.0% 0.0%
6 7  16

0.0% 7 0.0% 16
0.0% #DIV/0!

PREDICTED
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 294 12 25 39 286 0 1 5 19 0 13 0 0 67 0 0 761
2 0 208 0 1 0 0 0 2 25 0 7 0 0 0 0 0 243
3 0 0 218 0 0 0 0 1 32 0 5 0 0 0 0 0 256
4 0 0 221 16 0 0 0 6 8 0 0 0 0 1 0 0 252
5 7 0 142 1 0 1 0 2 8 0 0 0 0 0 0 0 161

ACTUAL 6 12 1 40 141 4 0 0 0 5 0 9 0 0 17 0 0 229
7 0 67 2 36 0 0 0 0 0 0 0 0 0 0 0 0 105
8 0 10 2 0 0 0 0 303 14 0 91 0 0 0 0 0 420
9 0 0 0 0 0 0 0 88 4 0 428 0 0 0 0 0 520

10 0 0 0 0 0 0 0 3 18 0 189 0 186 0 0 0 396
11 0 0 0 0 0 0 0 83 23 0 268 0 15 0 30 0 419
12 0 16 0 0 0 0 0 269 30 0 14 0 1 0 117 0 447
13 0 0 0 0 0 0 0 0 0 0 0 0 927 0 0 0 927
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

313 314 650 234 290 1 1 762 186 0 1024 0 1129 85 147 0 5136

Figure F.7 KSC Precision Tree and Confusion Matrix for BU-BHC, trained on 
Site 2 and tested on Site 1 
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KSC:  Training on Area 2 and Testing on Area 1
Top-Down Class and Meta-Class Classification Accuracies

 1  2  3  4  5  6  7  8  9  11 13  14  15 16

1 3 4 5 6 7 14 16 2 8 9 11 13 15
94.6% 70.6%

1 3 5   4  6  7  14  16 2   9 8  11  13  15
71.8% 63.1% 21.8% 68.6%

1 3  5 4 6 7 14 16 2 9 8  11 13  15
74.0% 29.1% 10.3% 20.8% 40.2% 2.8% 49.4% 100.0%

3 5 6  7 16 14 8 11 13 15
31.5% 5.6% 0.0% 0.0% 36.2% 38.4% 100.0% #DIV/0!

6     7  16
0.0% #DIV/0!

7 16
#DIV/0! #DIV/0!

PREDICTED
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 288 3 3 24 339 0 0 22 17 0 7 0 0 58 0 0 761
2 0 222 0 0 0 0 0 18 0 0 3 0 0 0 0 0 243
3 24 1 148 3 0 0 0 5 73 0 2 0 0 0 0 0 256
4 4 0 192 22 9 1 0 5 18 0 0 0 0 1 0 0 252
5 18 0 94 5 25 1 0 3 15 0 0 0 0 0 0 0 161

ACTUAL 6 6 1 9 121 60 0 0 0 10 0 6 0 0 16 0 0 229
7 0 66 1 38 0 0 0 0 0 0 0 0 0 0 0 0 105
8 2 1 3 0 0 0 0 401 8 0 5 0 0 0 0 0 420
9 2 0 0 0 0 0 0 338 15 0 165 0 0 0 0 0 520

10 12 252 16 0 5 0 0 0 60 0 51 0 0 0 0 0 396
11 23 2 2 0 0 0 0 188 45 0 159 0 0 0 0 0 419
12 10 4 2 0 10 0 0 129 276 0 16 0 0 0 0 0 447
13 0 0 0 0 0 0 0 0 0 0 0 0 927 0 0 0 927
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

389 552 470 213 448 2 0 1109 537 0 414 0 927 75 0 0 5136

Figure F.8 KSC Precision Tree and Confusion Matrix for TD-BHC, trained 
on Site 2 and tested on Site 1 
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Bolivar Peninsula:  Training on Area 1 and Testing on Area 2
Parameters Updated Based Upon Pseudo-Labeled Data

Bottom-Up Class and Meta-Class Classification Accuracies

 1 2  3  4  5  6  7  8  9 10  11

1  2   3  4  5  6  7 8   9  10  11
99.4% 100%

1 2       3 4 6 7 8 9 10 5 11
100.0% 19.0% 100.0% 100.0%

      3 4 6 8 9 10 7 5 11
100% 97.5% 100.0% 100.0%

      3  4  6  8  10 9
99.9% 100.0%

3 4 10 6 8
99.8% 100.0%

3  4 10 6 8
99.0% 92.0% 99.8% 99.6%

3 4
98.8% 99.6%

PREDICTED
1 2 3 4 5 6 7 8 9 10 11

1 1806 2723 0 0 0 0 0 0 0 0 0 4529
2 0 647 0 0 0 0 0 0 0 0 0 647
3 0 32 1049 0 0 0 0 0 0 2 0 1083
4 0 0 0 482 0 0 0 0 0 12 0 494
5 0 0 0 0 112 0 0 0 0 0 0 112

ACTUAL 6 0 0 0 0 0 2452 0 2 0 0 0 2454
7 0 0 0 0 0 1 234 0 0 3 0 238
8 0 0 0 0 0 5 6 523 0 0 0 534
9 0 0 0 0 0 0 0 0 1127 0 0 1127

10 0 0 13 2 0 0 0 0 0 195 0 210
11 0 0 0 0 0 0 0 0 0 0 129 129

1806 3402 1062 484 112 2458 240 525 1127 212 129 11557

Figure F.9 Bolivar Peninsula Precision Tree and Confusion Matrix for BU-
BHC, trained on Site 1 and tested on Site 2, Parameters Updated 
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Bolivar Peninsula:  Training on Area 1 and Testing on Area 2
Parameters Updated Based Upon Pseudo-Labeled Data

Top-Down Class and Meta-Class Classification Accuracies

1 2 3 4  5  6  7  8  9  10  11

1 2 3 4  5  6  7 8  9 10 11
99.9% 99.8%

1 2 3 4 10 11 5 6 7 8 9
100.0% 38.6% 91.6% 100.0%

2 3 4 10 11 5 6 7 8 9
18.8% 99.5% 92.6% 87.2% 100.0% 100.0%

10 11 6 8 7 9
93.4% 79.1% 99.7% 99.7%

6 8 7 9
99.8% 98.5% 98.2% 100.0%

PREDICTED
1 2 3 4 5 6 7 8 9 10 11

1 1806 2723 0 0 0 0 0 0 0 0 0 4529
2 0 647 0 0 0 0 0 0 0 0 0 647
3 0 66 1004 3 0 0 0 0 0 10 0 1083
4 0 0 1 490 0 0 0 0 0 3 0 494
5 0 0 0 3 98 0 0 0 0 0 11 112

ACTUAL 6 0 0 0 0 0 2452 1 1 0 0 0 2454
7 0 0 0 7 0 1 222 7 0 1 0 238
8 0 0 0 9 0 5 3 517 0 0 0 534
9 0 0 0 9 0 0 0 0 1095 0 23 1127

10 0 0 4 8 0 0 0 0 0 198 0 210
11 0 0 0 0 0 0 0 0 0 0 129 129

1806 3436 1009 529 98 2458 226 525 1095 212 163 11557

Figure F.10 Bolivar Peninsula Precision Tree and Confusion Matrix for TD-BHC, 
trained on Site 1 and tested on Site 2, Parameters Updated 
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Bolivar Peninsula:  Training on Area 2 and Testing on Area 1
Parameters Updated Based Upon Pseudo-Labeled Data

Bottom-Up Class and Meta-Class Classification Accuracies

  1 2 3 4 5 6 7 8  9 10 11

1  2  3  4  6  7  8  9 10 11 5
100.0% 69.5%

1 2 3 4 6 7 8 9 10 11
100.0% 6.9%

      1  2  3  4  10 6 7 8 9
81.0% 98.5%

1 2 3 4 10 6 8 9 7
1.0% 78.4% 99.7% 77.5%

2 3 4 10 6  8 9
49.6% 89.3% 99.6% 100.0%

3  4 10 6 8
96.4% 49.4% 99.9% 89.9%

3 4
97.3% 93.7%

PREDICTED
1 2 3 4 5 6 7 8 9 10 11

1 10 0 0 0 0 0 6 0 0 0 1003 1019
2 313 177 0 0 0 0 51 0 0 0 586 1127
3 127 0 571 0 0 0 0 0 0 10 202 910
4 351 0 0 178 0 0 0 13 0 0 210 752
5 0 0 0 0 148 0 0 0 0 0 0 148

ACTUAL 6 27 0 4 0 0 2982 0 60 0 0 0 3073
7 0 0 0 0 0 0 220 1 0 0 1 222
8 9 0 10 4 0 2 7 657 0 15 0 704
9 114 180 2 4 0 0 0 0 729 63 3 1095

10 11 0 0 4 0 0 0 0 0 86 13 114
11 0 0 0 0 65 0 0 0 0 0 149 214

962 357 587 190 213 2984 284 731 729 174 2167 9378

Figure F.11 Bolivar Peninsula Precision Tree and Confusion Matrix for BU-BHC, 
trained on Site 2 and tested on Site 1, Parameters Updated
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Bolivar Peninsula:  Training on Area 2 and Testing on Area 1
Parameters Updated Based Upon Pseudo-Labeled Data

Top-Down Class and Meta-Class Classification Accuracies

1 2  3  4  5  6  7  8  9 10  11

1 2 3 10 4  5  6  7 8   9  11
100.0% 99.3%

1 2 3 10 4 11      5  6  7  8  9
95.2% 85.8% 74.4% 99.3%

2 3 10 4 11 5 6 7 8 9
76.1% 99.9% 75.5% 69.3% 92.0% 99.5%

3 10 6 8 7 9
99.9% 70.2% 99.5% 97.8%

6 8 7 9
99.9% 91.7% 91.7% 99.2%

PREDICTED
1 2 3 4 5 6 7 8 9 10 11

1 676 342 1 0 0 0 0 0 0 0 0 1019
2 34 1093 0 0 0 0 0 0 0 0 0 1127
3 0 0 857 16 0 0 0 0 0 37 0 910
4 0 0 0 727 0 0 10 13 0 0 2 752
5 0 0 0 0 69 0 0 0 0 0 79 148

ACTUAL 6 0 0 0 190 0 2823 6 45 9 0 0 3073
7 0 0 0 0 0 0 221 1 0 0 0 222
8 0 0 0 1 0 2 4 697 0 0 0 704
9 0 0 0 4 0 0 0 0 1081 0 10 1095

10 0 1 0 22 0 0 0 4 0 87 0 114
11 0 0 0 3 6 0 0 0 0 0 205 214

710 1436 858 963 75 2825 241 760 1090 124 296 9378

Figure F.12 Bolivar Peninsula Precision Tree and Confusion Matrix for TD-BHC, 
trained on Site 2 and tested on Site 1, Parameters Updated 
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KSC:  Training on Area 1 and Testing on Area 2
Parameters Updated Based Upon Pseudo-Labeled Data

Bottom-Up Class and Meta-Class Classification Accuracies

1   2   3   4   5   6   7   8   9  10  11  12  13

1   2   3   4   5   6   7   8   9  10  11  12 13
77.1% 100.0%

1   2   3   4   5   6   7   8   9  11  12 10
77.7% 0.0%

1   3   4   5   6    8   9  11  12 2 7
80.3% 30.3%

1   3   4   5   6   8   9  12 11 2 7
75.9% 10.1% 41.8% 5.0%

1  3  4  5  6  8  9 12
64.8% 0.0%

1  3  4  5  6 8  9
61.2% 64.9%

1  6 3  4  5 8 9
9.5% 45.7% 44.1% 15.8%

1 6 3 4  5
20.3% 0.5% 78.1% 7.1%

4 5
2.2% 8.7%

PREDICTED
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 28 0 13 10 117 5 0 15 0 99 5 130 0 0 0 0 422
2 0 110 0 0 0 0 0 0 0 64 0 6 0 0 0 0 180
3 0 7 196 30 13 1 1 12 3 18 4 146 0 0 0 0 431
4 0 19 14 3 0 8 30 0 0 58 0 0 0 0 0 0 132
5 49 2 2 3 20 2 0 1 0 7 12 68 0 0 0 0 166

ACTUAL 6 0 20 9 29 43 1 21 1 0 139 0 11 0 0 0 0 274
7 9 40 9 34 6 17 14 0 0 109 0 10 0 0 0 0 248
8 0 6 0 0 0 0 0 26 29 19 206 167 0 0 0 0 453
9 0 3 2 1 0 0 0 2 6 70 117 40 0 0 0 0 241

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 3 0 0 0 0 0 0 0 114 39 0 0 0 0 0 156
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 1392 0 0 0 1392
14 52 16 1 5 18 184 18 2 0 94 1 2 0 0 0 0 393
15 0 0 0 0 0 0 189 0 0 78 2 0 0 0 0 0 269
16 0 37 5 20 12 3 5 0 0 56 0 4 0 0 0 0 142

138 263 251 135 229 221 278 59 38 925 386 584 1392 0 0 0 4899

Figure F.13 KSC Precision Tree and Confusion Matrix for BU-BHC, trained on 
Site 1 and tested on Site 2, Parameters Updated
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PREDICTED
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 108 20 4 13 259 13 0 5 0 0 0 0 0 0 0 0 422
2 1 131 13 19 0 11 1 1 1 0 0 2 0 0 0 0 180
3 0 4 250 144 30 1 0 0 0 0 0 2 0 0 0 0 431
4 0 19 22 5 0 61 23 2 0 0 0 0 0 0 0 0 132
5 85 0 5 9 63 4 0 0 0 0 0 0 0 0 0 0 166

ACTUAL 6 1 31 10 96 80 36 20 0 0 0 0 0 0 0 0 0 274
7 20 39 19 119 11 37 3 0 0 0 0 0 0 0 0 0 248
8 2 263 4 1 0 0 0 17 113 0 0 53 0 0 0 0 453
9 8 14 170 39 0 6 0 0 3 0 0 1 0 0 0 0 241

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 16 20 0 0 0 0 0 45 26 4 45 0 0 0 0 156
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 1 0 0 0 0 0 0 0 10 0 0 1381 0 0 0 1392
14 84 7 0 11 16 260 15 0 0 0 0 0 0 0 0 0 393
15 0 2 0 0 0 0 53 211 0 0 0 3 0 0 0 0 269
16 0 26 7 70 26 13 0 0 0 0 0 0 0 0 0 0 142

309 573 524 526 485 442 115 236 162 36 4 106 1381 0 0 0 4899

KSC:  Training on Area 1 and Testing on Area 2
Parameters Updated Based Upon Pseudo-Labeled Data

Top-Down Class and Meta-Class Classification Accuracies

 1  2  3  4  5  6  7  8  9  10  11  12  13

1 3 4 5 6 2 7 8 9 10 11 12 13
56.8% 83.0%

1  6 3 4 5 2 7 8 9 10 11 12 13
21.0% 34.4% 49.2% 89.7%

1 6 3 4  5 2 7  8 9 12 10 11 13
35.0% 8.1% 47.7% 7.6% 22.9% 5.7% 1.5% 100.0%

4 5 7 8 9 12 10 11  13
1.0% 13.0% 2.6% 7.2% 1.9% 0.0% 0.0% 100.0%

11 13
100.0% 100.0%

Figure F.14 KSC Precision Tree and Confusion Matrix for TD-BHC, trained 
on Site 1 and tested on Site 2, Parameters Updated
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KSC:  Training on Area 2 and Testing on Area 1
Parameters Updated Based Upon Pseudo-Labeled Data

Bottom-Up Class and Meta-Class Classification Accuracies

1   2   3   4   5   6   7   8   9  11  13  14  15  16
13

1 2  3  4  5  6  7  8  9 11 14 15 16 86.6%
82.6% 15

1  2  3  4  5  6  7  8  9  11  14  16 0.0%
85.9% 11

  1  2  3  4  5  6  7  8  9  14  16 24.4%
85.8% 8

    1  2  3  4  5  6  7  9  14  16 39.8%
96.9% 9

  1  2  3  4  5  6  7  14  16 0.5%
99.9% 2

1 3 4 5 6 7 14 16 62.0%
100.0% 5

1 3 4  6  7 14 16 0.0%
87.6%  3  4  6  7  14  16

1 76.6%    4  6  7  14  16
88.8% 3 72.8% 6 7 14 16

41.7% 4 52.3%
15.5% 6  7  16 14

16.0% 0.0%
6 7  16

13.3% 7 13.9% 16
0.0% 0.0%

PREDICTED
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 174 8 5 3 426 7 13 11 64 0 15 0 0 34 0 1 761
2 0 150 0 0 0 0 0 2 75 0 6 0 0 0 10 0 243
3 0 0 165 0 0 1 0 3 82 0 5 0 0 0 0 0 256
4 0 1 142 15 0 11 7 7 61 0 0 0 0 1 0 7 252
5 9 0 77 5 0 20 0 4 45 0 0 0 0 0 0 1 161

ACTUAL 6 13 6 7 50 13 6 2 1 22 0 9 0 0 100 0 0 229
7 0 76 0 24 0 0 0 0 0 0 0 0 0 0 0 5 105
8 0 1 0 0 0 0 0 311 17 0 91 0 0 0 0 0 420
9 0 0 0 0 0 0 0 90 2 0 428 0 0 0 0 0 520

10 0 0 0 0 0 0 0 4 15 0 241 0 135 0 1 0 396
11 0 0 0 0 0 0 0 104 2 0 260 0 8 0 45 0 419
12 0 0 0 0 0 0 0 244 27 0 11 0 0 0 165 0 447
13 0 0 0 0 0 0 0 0 0 0 0 0 927 0 0 0 927
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

196 242 396 97 439 45 22 781 412 0 1066 0 1070 135 221 14 5136

Figure F.15 KSC Precision Tree and Confusion Matrix for BU-BHC, trained on 
Site 2 and tested on Site 1, Parameters Updated 
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KSC:  Training on Area 2 and Testing on Area 1
Parameters Updated Based Upon Pseudo-Labeled Data

Top-Down Class and Meta-Class Classification Accuracies

 1  2  3  4  5  6  7  8  9  11 13  14  15 16

1 3 4 5 6 7 14 16 2 8 9 11 13 15
90.6% 71.8%

1 3 5   4  6  7  14  16 2   9 8  11 13  15
67.8% 29.5% 37.0% 58.6%

1 3  5 4 6 7 14 16 2 9 8  11 13  15
40.4% 7.0% 30.2% 22.6% 54.4% 16.4% 56.9% 56.2%

3 5 6  7 16 14 8 11 13 15
25.0% 0.0% 14.8% 0.0% 63.0% 35.7% 100.0% 0.0%

6     7  16
2.2% 19.3%

7 16
15.6% 0.0%

PREDICTED
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 84 10 9 24 236 50 30 1 2 0 3 0 0 311 0 1 761
2 0 211 0 9 0 6 0 0 0 0 0 0 0 0 14 3 243
3 0 3 19 181 0 19 0 3 14 0 1 0 0 0 0 16 256
4 0 1 10 159 0 20 24 1 5 0 1 0 0 2 0 29 252
5 3 0 3 40 0 80 4 1 2 0 0 0 0 7 0 21 161

ACTUAL 6 1 0 2 77 2 4 6 0 1 0 1 0 0 129 0 6 229
7 0 33 0 34 0 3 12 0 0 0 0 0 0 1 0 22 105
8 16 15 7 2 0 0 1 344 17 0 17 0 0 0 0 1 420
9 103 0 26 0 0 0 0 115 54 0 222 0 0 0 0 0 520

10 0 89 0 0 0 0 0 0 0 0 21 0 0 0 286 0 396
11 0 0 0 0 0 0 0 42 167 0 155 0 0 0 55 0 419
12 1 26 0 0 0 0 0 39 30 0 13 0 0 0 338 0 447
13 0 0 0 0 0 0 0 0 37 0 0 0 890 0 0 0 927
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

208 388 76 526 238 182 77 546 329 0 434 0 890 450 693 99 5136

Figure F.16 KSC Precision Tree and Confusion Matrix for TD-BHC, 
trained on Site 2 and tested on Site 1, Parameters Updated 
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Distance Measure          Purities
Master Tree Partition New Old Ratio Left Right
1 2 3 4 5 6 7 8 9 10 11 into 3 4 5 6 7 8 9 10 11 and 1 2 35.9211 41.2021 0.8718 0.9784 0.9976
3 4 5 6 7 8 9 10 11 into 5  6  7  8  9 11 and 3 4 10 13.6639 15.3359 0.8910 0.9889 0.9958
1  2 into 1 and 2 15.8391 12.6821 1.2489 0.9998 0.9668
5   6   7   8   9  11 into 5  11 and 6  7  8  9 44.4579 26.6221 1.6700 0.9166 0.9923
3  4 10 into 3 and 4 10 13.4598 15.9916 0.8417 0.9724 0.9884
5  11 into 5 and 11 21.3458 12.7528 1.6738 0.8259 0.9523
6  7  8  9 into  6  8 and 7  9 16.4928 16.9576 0.9726 0.9970 0.9770
4 10 into 4 and 10 5.2256 8.6687 0.6028 0.9664 0.9485
7  9 into 7 and 9 68.5864 96.2060 0.7129 0.9348 0.9859
6  8 into 6 and 8 11.5039 10.6350 1.0817 0.9948 0.9836

Bolivar Peninsula Ensemble Results:  Training on Area 1 and Testing on Area 2
Master Tree Class and Meta-Class Classification Accuracies

1 2 3 4 5  6 7 8 9 10 11

1  2   3  4  5  6 7  8  9 10 11
99.4% 100.0%

1 2 3 4 10    5  6 7  8  9 11
100.0% 19.0% 99.8% 100.0%

3 4 10 5 11 6 7 8 9
99.0% 100.0% 100.0% 100.0%

4 10 5 11 6 8 7  9
99.6% 96.2% 100.0% 100.0% 99.8% 99.8%

6 8 7 9
99.8% 98.7% 98.7% 100.0%

PREDICTED
1 2 3 4 5 6 7 8 9 10 11

1 1806 2723 0 0 0 0 0 0 0 0 0 4529
2 0 644 3 0 0 0 0 0 0 0 0 647
3 0 31 1052 0 0 0 0 0 0 0 0 1083
4 0 0 0 486 0 0 0 0 0 8 0 494
5 0 0 0 0 112 0 0 0 0 0 0 112

ACTUAL 6 0 0 0 0 0 2452 0 2 0 0 0 2454
7 0 0 0 0 0 1 232 5 0 0 0 238
8 0 0 0 0 0 5 3 526 0 0 0 534
9 0 0 0 0 0 0 0 0 1127 0 0 1127

10 0 0 8 2 0 0 0 0 0 200 0 210
11 0 0 0 0 0 0 0 0 0 0 129 129

1806 3398 1063 488 112 2458 235 533 1127 208 129 11557

Figure I.1 Bolivar Peninsula Precision Tree and Confusion Matrix for Master Tree, 
trained on Site 1 and tested on Site 2 
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PREDICTED
1 2 3 4 5 6 7 8 9 10 11

1 621 397 1 0 0 0 0 0 0 0 0 1019
2 25 1102 0 0 0 0 0 0 0 0 0 1127
3 0 0 869 6 0 0 4 0 0 31 0 910
4 5 0 0 706 0 0 28 12 0 0 1 752
5 0 0 0 0 148 0 0 0 0 0 0 148

ACTUAL 6 0 0 0 13 0 3007 10 43 0 0 0 3073
7 0 0 0 0 0 0 221 1 0 0 0 222
8 0 0 0 0 0 2 6 696 0 0 0 704
9 0 0 0 3 0 0 0 0 1087 0 5 1095

10 0 0 0 9 0 0 6 5 0 94 0 114
11 0 0 0 3 1 0 0 0 0 0 210 214

651 1499 870 740 149 3009 275 757 1087 125 216 9378

Bolivar Peninsula Ensemble Results:  Training on Area 2 and Testing on Area 1
Master Tree Class and Meta-Class Classification Accuracies

1 2 3 4 5 6 7 8 9 10 11

1 2 3 10 4  5  6  7 8   9  11
99.8% 99.5%

1 2 3 10 4 5 11 6 7 8 9
99.8% 99.9% 96.7% 98.9%

1 2 3 10 4 5 11 6 8 7 9
95.4% 73.5% 99.9% 75.2% 95.4% 98.4% 99.5% 96.0%

5 11 6 8 7 9
99.3% 97.2% 99.9% 91.9% 80.4% 100.0%

Distance Measure          Purities
Master Tree Partition New Old Ratio Left Right
1 2 3 4 5 6 7 8 9 10 11 into 1 2 3 10 and 4 5 6 7 8 9 11 16.5312 20.5504 0.8044 0.5889 0.9442
4   5   6   7   8   9  11 into 4   5  11 and 6  7  8  9 12.7054 25.2349 0.5035 0.7344 0.8879
1  2  3 10 into 1 2 and 3 10 43.7629 28.9055 1.5140 0.4990 0.7020
4   5  11 into 4 and 5  11 29.2969 48.7344 0.6012 0.5995 0.8132
6  7  8  9 into  6  8 and 7  9 12.7092 16.1384 0.7875 0.8920 0.8645
3 10 into 3 and 10 4.6700 3.7950 1.2306 0.6765 0.7822
1  2 into 1 and 2 13.6638 33.2083 0.4115 0.4886 0.5008
5  11 into 5 and 11 11.8273 19.5537 0.6049 0.6951 0.6779
7  9 into 7 and 9 33.5644 58.2448 0.5763 0.9398 0.8489
6  8 into 6 and 8 10.7646 11.2133 0.9600 0.8817 0.8937

Figure I.2 Bolivar Peninsula Precision Tree and Confusion Matrix for 
Master Tree, trained on Site 2 and tested on Site 1
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KSC Ensemble Results:  Training on Area 2 and Testing on Area 1
Master Tree Class and Meta-Class Classification Accuracies

 1  2  3  4  5  6  7  8  9  11 13  14  15 16

1 3 4 5 6 7 14 16 2 8 9 11 13 15
98.0% 72.2%

1 3 5   4  6  7  14  16 2   9 8  11 13  15
88.8% 38.5% 45.5% 56.9%

1 3 5 4 6 14     7  16 2 9 8  11 13  15
67.0% 0.0% 44.0% 6.2% 61.8% 14.5% 50.8% 56.8%

1 3 4 14 6 7 16 8 11 13 15
68.1% 64.9% 6.2% 8.1% 7.4% 0.0% 64.9% 30.8% 98.1% 0.0%

4 14
10.3% 0.0%

PREDICTED
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 64 10 1 84 350 5 98 2 4 0 3 0 0 139 0 1 761
2 0 235 0 0 0 0 2 0 0 0 0 0 0 0 5 1 243
3 0 3 63 3 1 30 3 3 21 0 3 0 0 0 0 126 256
4 0 0 22 29 1 50 48 3 7 0 0 0 0 0 0 92 252
5 4 0 2 11 0 50 17 2 6 0 0 0 0 0 0 69 161

ACTUAL 6 4 0 1 131 3 12 19 0 0 0 1 0 0 50 0 8 229
7 0 49 0 23 0 1 15 0 0 0 0 0 0 0 0 17 105
8 2 4 2 0 0 0 1 396 2 0 13 0 0 0 0 0 420
9 19 0 6 0 0 0 0 102 29 0 364 0 0 0 0 0 520

10 0 68 0 0 0 0 0 1 1 0 51 0 18 0 257 0 396
11 0 0 0 0 0 0 0 27 118 0 195 0 0 0 79 0 419
12 1 11 0 0 0 0 0 74 12 0 3 0 0 0 346 0 447
13 0 0 0 0 0 0 0 0 0 0 0 0 927 0 0 0 927
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

94 380 97 281 355 148 203 610 200 0 633 0 945 189 687 314 5136

Distance Measure          Purities
Master Tree Partition New Old Ratio Left Right
1-9 11 13-16 into 1 3 4  5  6  7 14  16 and 2 8 9 11 13 15 10.6805 10.6602 1.0019 0.9388 0.9443
2   8   9  11  13  15 into 2  9 and 8  11  13  15 2.9704 9.5979 0.3095 0.7294 0.8695
1  3  4  5  6  7 14 16 into 1  3  5 and 4   6   7  14  16 5.6812 5.0183 1.1321 0.6929 0.7516
8  11  13  15 into 8 11 and 13  15 10.0915 38.3694 0.2630 0.7798 0.7936
2  9 into 2 and 9 5.8057 10.6792 0.5437 0.7702 0.5040
4   6   7  14  16 into 4   6  14 and 7  16 2.6827 3.1096 0.8627 0.6988 0.6247
1  3  5 into 1  3 and 5 3.9032 3.1452 1.2410 0.5642 0.6460
13  15 into 13 and 15 12.8545 320.9514 0.0401 0.7304 0.7685
8 11 into 8 and 11 2.1803 4.9953 0.4365 0.7480 0.6513
7  16 into 7 and 16 1.9007 1.5275 1.2444 0.5227 0.5590
4   6  14 into 4  14 and 6 2.3620 2.6118 0.9044 0.6605 0.5066
1  3 into 1 and 3 2.4802 3.2954 0.7526 0.5731 0.5409
4  14 into 4 and 14 2.2243 2.7329 0.8139 0.6337 0.6120

Figure I.3 KSC Precision Tree and Confusion Matrix for Master Tree, trained on Site 
2 and tested on Site 1 
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Distance Measure          Purities
Master Tree Partition New Old Ratio Left Right
1 - 13 into 1 3  4  5  6 and 2  7  8  9  10  11  12  13 8.4476 12.9524 0.6522 0.8025 0.9011
2 7 8 9 10 11 12 13 into 2 7 and 8  9  10  11  12  13 11.8797 15.5532 0.7638 0.7627 0.8274
1  3  4  5  6 into 1  6 and 3  4  5 5.3817 10.0524 0.5354 0.8002 0.7639
8   9  10  11  12  13 into 8   9  12 and 10  11  13 16.6825 10.3318 1.6147 0.5492 0.7839
2  7 into 2 and 7 3.3441 4.3648 0.7662 0.7114 0.7811
1  6 into 1 and 6 2.4795 3.3011 0.7511 0.6989 0.7447
3  4  5 into 3 and 4  5 3.0361 3.9611 0.7665 0.6629 0.7207
10  11  13 into 10  13 and 11 100.7571 6.4289 15.6724 0.7088 0.5397
8   9  12 into 8 and  9  12 4.1069 5.0674 0.8105 0.4793 0.5250
4  5 into 4 and 5 2.1861 2.6197 0.8345 0.6142 0.6931
10  13 into 10 and 13 2.1707 70.8571 0.0306 0.5014 0.6552
9  12 into 9 and 12 1.0726 9.4190 0.1139 0.6452 0.4917

PREDICTED
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 102 13 3 10 279 9 0 4 0 1 0 1 0 0 0 0 422
2 0 161 0 12 0 5 0 0 0 2 0 0 0 0 0 0 180
3 0 3 291 109 24 0 0 0 0 0 0 4 0 0 0 0 431
4 0 37 15 7 0 52 16 0 0 5 0 0 0 0 0 0 132
5 101 0 0 5 58 2 0 0 0 0 0 0 0 0 0 0 166

ACTUAL 6 0 31 6 76 94 26 28 0 0 13 0 0 0 0 0 0 274
7 12 43 14 127 7 31 11 0 0 2 0 1 0 0 0 0 248
8 1 29 4 1 0 0 0 215 117 0 15 71 0 0 0 0 453
9 7 8 169 40 0 4 0 5 2 1 3 2 0 0 0 0 241

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 10 17 0 0 0 0 1 35 16 31 46 0 0 0 0 156
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 646 0 0 746 0 0 0 1392
14 58 16 0 6 8 297 6 0 0 2 0 0 0 0 0 0 393
15 0 0 0 0 0 0 267 2 0 0 0 0 0 0 0 0 269
16 0 41 4 58 24 11 1 0 0 3 0 0 0 0 0 0 142

281 392 523 451 494 437 329 227 154 691 49 125 746 0 0 0 4899

KSC Ensemble Results:  Training on Area 1 and Testing on Area 3
Master Tree Class and Meta-Class Classification Accuracies

 1  2  3  4  5  6  7  8  9  10  11  12  13

1 3 4 5 6 2 7 8 9 10 11 12 13
58.1% 81.8%

1  6 3 4 5 2 7 8 9 10 11 12 13
19.1% 34.7% 29.8% 98.0%

1 6 3 4  5 2 7 8 9 12 10 11 13
36.3% 5.9% 55.6% 7.4% 41.1% 3.3% 34.5% 96.8%

4 5 8 9 12 10  13 11
1.6% 11.7% 94.7% 1.4% 96.9% 63.3%

9 12 10 13
1.3% 0.0% 0.0% 100.0%

Figure I.4 KSC Precision Tree and Confusion Matrix for Master Tree, trained on 
Site 1 and tested on Site 2
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