

A Simple proof of a Known Result in Random Walk Theory

Author(s): Austin J. Lemoine

Source: The Annals of Probability, Vol. 2, No. 2 (Apr., 1974), pp. 347-348

Published by: <u>Institute of Mathematical Statistics</u> Stable URL: http://www.jstor.org/stable/2959234

Accessed: 18-06-2015 18:29 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve and extend access to The Annals of Probability.

http://www.jstor.org

A SIMPLE PROOF OF A KNOWN RESULT IN RANDOM WALK THEORY¹

BY AUSTIN J. LEMOINE

The University of Texas at Austin

Let $\{X_n, n \geq 1\}$ be a stationary independent sequence of real random variables, $S_n = X_1 + \cdots + X_n$, and α_A the hitting time of the set A by the process $\{S_n, n \geq 1\}$, where A is one of the half-lines $(0, \infty)$, $[0, \infty)$, $(-\infty, 0]$ or $(-\infty, 0)$. This note provides a simple proof of a known result in random walk theory on necessary and sufficient conditions for $E\{\alpha_A\}$ to be finite. The method requires neither generating functions nor moment conditions on X_1 .

Let $\{X_n, n \geq 1\}$ be a stationary independent process of real random variables defined on some probability space (Ω, \mathcal{F}, P) , $S_0 \equiv 0$, and $S_n = X_1 + \cdots + X_n$ for $n \geq 1$. Set $\alpha_A = n$ if $n = \inf\{k : k \geq 1 \text{ and } S_k \in A\}$ and $\alpha_A = +\infty$ if no such n exists, where A is one of $(0, \infty)$, $[0, \infty)$, $(-\infty, 0]$, or $(-\infty, 0)$; that is, α_A is the hitting time of the set A by the process $\{S_n, n \geq 1\}$. This note provides a simple proof of a known result in random walk theory on the finiteness of $E\{\alpha_A\}$.

Assume that $P\{X_1 = 0\} < 1$. It follows, without recourse to moment conditions on the distribution of X_1 (see Theorem 8.2.5 in Chung (1968)), that there are three mutually exclusive possibilities for the random walk $\{S_n, n \ge 1\}$, each occurring with probability one:

- (i) $\lim_{n\to\infty} S_n = -\infty$,
- (ii) $\lim_{n\to\infty} S_n = +\infty$, or
- (iii) $\lim \inf_{n\to\infty} S_n = -\infty$ and $\lim \sup_{n\to\infty} S_n = +\infty$.

With these conditions there is the following known result from random walk theory; see Section 8.4 of [1] or the second section of Chapter 12 in Feller (1971).

THEOREM. If A is $(-\infty, 0]$ or $(-\infty, 0)$ then $E\{\alpha_A\} < +\infty$ if and only if (i) holds. If A is $[0, \infty)$ or $(0, \infty)$ then $E\{\alpha_A\} < +\infty$ if and only if (ii) holds. If (iii) holds then $E\{\alpha_A\} = +\infty$ for each A.

Here is our proof of this standard result.

The second statement of the theorem follows from the first (consider the random walk generated by $\{-X_n, n \ge 1\}$), and the third from the first and the second. It suffices, therefore, to prove the first statement.

Received May 29, 1973; revised July 30, 1973.

¹ This research was partly supported by a grant from the Farah Foundation and by ONR Contracts N00014-67-A-0126-0008 and N00014-67-A-0126-0009 with the Center for Cybernetic Studies, The University of Texas at Austin, and by a grant from the University Research Institute of The University of Texas at Austin.

AMS 1970 subject classifications. Primary 60J15; Secondary 60K25.

Key words and phrases. Random walks, hitting times.

Suppose condition (i) holds. For $j \ge 0$ let $M_j = \max{(S_0, \cdots, S_j)}$, $M_j = P\{M_j = 0\}$, $M = \sup_{j \ge 0} M_j$, $M = P\{M = 0\}$, $M = P\{\alpha_{(-\infty,0]} > j\}$, $M_0 \equiv 0$, $M_{j+1} = \max{(W_j + X_{j+1}, 0)}$ and $M_j = 0$. The random variables M_j and M_j are identically distributed for each j, whence

$$P\{M_{n+1} > 0\} = \sum_{j=0}^{n} P\{W_{n+1} > 0, L(n) = j\}$$

$$= \sum_{j=0}^{n} P\{W_{j} = 0, X_{j+1} > 0, \dots, X_{j+1} + \dots + X_{n+1} > 0\}$$

$$= \sum_{j=0}^{n} m_{j} f_{n+1-j}$$

for each $n \ge 0$. Now $m = P\{\alpha_{(0,\infty)} = +\infty\}$ and since (i) holds it follows that m > 0; see Theorem 8.2.4 in [1]. The above equation gives $1 \ge m_0 f_{n+1} + \cdots + m_n f_1$, which in turn yields $f_1 + \cdots + f_{n+1} \le m^{-1}$ because $m_j \ge m$ for all j. We conclude that $E\{\alpha_{(-\infty,0]}\}$ is finite, and it then follows from (*) that $\alpha_{(-\infty,0]}$ has mean m^{-1} . For $\alpha_{(-\infty,0)}$, let $\beta_0 \equiv 0$, $\beta_k = \inf\{n > \beta_{k-1} \colon S_n \le S_{\beta_{k-1}}\}$ and $Y_k = S_{\beta_k} - S_{\beta_{k-1}}$ when $k \ge 1$. We have $\beta_1 = \alpha_{(-\infty,0]}$, and by virtue of (i) each of $\{\beta_k - \beta_{k-1}, k \ge 1\}$ and $\{Y_k \ge 1\}$ is a stationary independent sequence. Moreover, $P\{Y_1 < 0\} \ge P\{X_1 < 0\} > 0$. Denoting by t the first index t for which t is geometrically distributed with parameter t for wald's Lemma then gives t for t and t is geometrically distributed with parameter t for t and t for t for t and t for t

To show the condition is necessary suppose that (i) does not hold. Then (ii) or (iii) holds, and either dictates that $m_{n+1} \to 0$, whence (*) yields $m_0 f_{n+1} + \cdots + m_n f_1 \to 1$. Under these circumstances $\sum_{j \ge 1} f_j$ must diverge, that is, $E\{\alpha_{(-\infty,0]}\} = +\infty$. Moreover, $\alpha_{(-\infty,0]} \le \alpha_{(-\infty,0)}$. This completes the proof.

REFERENCES

- [1] Chung, K. L. (1968). A Course in Probability Theory. Harcourt, Brace and World, New York.
- [2] Feller, W. (1971). An Introduction to Probability Theory and Its Applications, 2, 2nd ed. Wiley, New York.

DEPARTMENT OF MATHEMATICAL SCIENCES CLEMSON UNIVERSITY CLEMSON, SOUTH CAROLINA 29631