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A SIMPLE PROOF OF A KNOWN RESULT IN 
RANDOM WALK THEORY1 

BY AUSTIN J. LEMOINE 
The University of Texas at Austin 

Let {X", n _ 11 be a stationary independent sequence of real random 
variables, S, = X1 + * * * + X", and aA the hitting time of the set A by the 
process {S,, n > 1}, where A is one of the half-lines (0, oo), [0, co), (-oo, 01 
or (- 0, 0). This note provides a simple proof of a known result in random 
walk theory on necessary and sufficient conditions for E{aAJ to be finite. 
The method requires neither generating functions nor moment conditions 
on Xi. 

Let {Xn, n > 1} be a stationary independent process of real random variables 
defined on some probability space (Q,, P), So _ 0, and S", = X1 + * * * + XI 
for n > 1. Seta A= n if n = inf {k: k > 1 and Sk e Al and aA =+ oo if no such 
n exists, where A is one of (0, oo), [0, oo), (-coo, 0], or (-coo, 0); that is, aA is 
the hitting time of the set A by the process {S,, n > 1). This note provides a 
simple proof of a known result in random walk theory on the finiteness of E{aAl. 

Assume that P{X1 = 01 < 1. It follows, without recourse to moment con- 
ditions on the distribution of X1 (see Theorem 8.2.5 in Chung (1968)), that there 

are three mutually exclusive possibilities for the random walk {So n > 1}, each 
occurring with probability one: 

(i) lim?&co S = - 00, 

(ii) limbo SI = + 00, or 
(iii) lim inf, DO S = -0o and lim sup,_,,O S. = + ?. 

With these conditions there is the following known result from random walk 
theory; see Section 8.4 of [1] or the second section of Chapter 12 in Feller 
(1971). 

THEOREM. If A is (-oo, 0] or (-oo, 0) then E{aA} < + oo if and only if (i) 
holds. If A is [0, oo) or (0, oo) then E{aAl < + 0o if and only if (ii) holds. If (iii) 
holds then E{aAl = + 00 for each A. 

Here is our proof of this standard result. 
The second statement of the theorem follows from the first (consider the ran- 

dom walk generated by { -X. n > 1}), and the third from the first and the second. 
It suffices, therefore, to prove the first statement. 
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Suppose condition (i) holds. For j > 0 let M, = max (S,, * , S), sm, = 
P{Mj = 0}, M = SUpj0 Mj, m = P{M = 0}, fj = P{a(_.,o] > j}, WO 0, Wj+ = 
max (W, + Xj~, 0) and L(j) = max {i: i ? j and Wi = 0}. The random vari- 
ables M, and W, are identically distributed for each j, whence 

P{M.+, > 0} = Z7"=O P{W.+, > 0, L(n) = j} 
(*) = L>7= 0P{Wj = O, Xj+1 > O ...* Xj+1 + .+ X.+ > ?} 

= L=0 mjfn+1-j 

for each n > 0. Now m = P{a(0, ) = +-oo} and since (i) holds it follows that 
m > 0; see Theorem 8.2.4 in [1]. The above equation gives 1 > mOf'+1 + . . . + 
mn fi, which in turn yields fi + .* + f"+, < m-1 because mr > m for all j. We 
conclude that E{a(_CO ]} is finite, and it then follows from (*) that a (-,O] has 
mean m-1. For a(_-,O) let 8 =0, 1k = inf in > k-1: Sn < Spk_} and Yk = 

Spk -S 
Pk- 

when k > 1. We have j = a(_,0], and by virtue of (i) each of 

{Pk - P, k > 1} and {Yk > 11 is a stationary independent sequence. More- 
over, P{ Y1 < 01 > P{X1 < 01 > 0. Denoting by t the first index k for which 
Yk < 0, we observe that a(--,O) = pt and that t is geometrically distributed with 
parameter PF Y1<0}. Wald's Lemma then gives E{a(_,O)}=E{a(-,O]} E{t}< + 00. 

To show the condition is necessary suppose that (i) does not hold. Then (ii) 
or (iii) holds, and either dictates that mr,+1 -> 0, whence (*) yields mof+ + ?** * + 
mnfi -> 1. Under these circumstances rjlfj must diverge, that is, E{a(.,0O]} = 
+ oo. Moreover, a(_OO ] < a(--,0). This completes the proof. 
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