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Internal gravity waves are traveling disturbances that propagate within

a fluid whose density varies with depth, and two prominent examples where

these occur are the atmosphere and the ocean. In the latter case, which is

the focus of this work, the tidal forcing by the moon creates internal gravity

waves (oftentimes referred to simply as “internal waves”) that originate from

the ocean bottom topography. The energy generated in the internal waves

by this mechanism contributes significantly to the energy budget of the ocean.

Hence it is important to determine the energy flux in the internal waves. How-

ever, it is not possible to obtain the energy flux J = pv directly because the

pressure and velocity perturbation fields, p and v, cannot be simultaneously

measured at the present time. The two primary methods for measuring inter-

nal waves in the laboratory are particle image velocimetry (PIV), which gives

velocity perturbation fields v(x, z, t), and synthetic schlieren, which gives den-

sity perturbation fields ρ(x, z, t). We present one method for obtaining the
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time-averaged energy flux 〈J〉 from PIV data by calculating the stream func-

tion ψ(x, z, t), whose results agree to within 0.5% when compared with direct

numerical simulations of the Navier-Stokes equations. The method was also

applied to laboratory data, and again using direct numerical simulations, the

agreement was found to be very good. A MATLAB code was developed with

a graphical user interface that can be used to compute the energy flux and

power from any two-dimensional velocity field data. Another method, using

a Green’s function approach, was developed to obtain the instantaneous en-

ergy flux J(x, z, t) from density perturbation data ρ(x, z, t) such as that from

synthetic schlieren. This was done for a uniform, tanh, and linear buoyancy

frequency N(z). Additionally, a finite-difference method was developed for the

case of arbitrary N(z). The results for J(x, z, t) are found to agree with results

from direct numerical simulations, typically to within 6%. These methods can

be applied to any density perturbation data using the MATLAB graphical

user interface EnergyFlux.
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Chapter 1

Introduction to internal gravity waves

In this first chapter of the dissertation, some basic important topics

regarding internal gravity waves will be briefly explained. In section 1.1, the

nature of internal gravity waves will be explored using elementary physics

concepts. In section 1.2 the basic linear internal gravity wave equations will

be derived starting with the Euler equations of fluid mechanics. Section 1.3 will

outline some properties of internal gravity waves by first deriving the dispersion

relation, assuming traveling wave solutions, and from this the phase and group

velocities will be calculated. In section 1.4 the energy flux of internal gravity

waves will be derived from the equations of motion and energy conservation.

Lastly, in section 1.5 a brief history regarding the determination of the energy

flux from internal gravity waves produced in the laboratory will be outlined,

with subsection 1.5.1 specifically focusing on the velocity-based approaches,

and subsection 1.5.2 focusing on the density-based approaches.

1.1 Local fluid element description

Internal gravity waves, oftentimes referred to simply as “internal waves”,

are buoyancy-driven traveling disturbances that occur in fluids where the den-
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sity varies with height under the influence of gravity. On Earth they primarily

occur in the atmosphere and the ocean, the latter of which will be the focus of

this work. The primary driving force behind the creation of internal waves in

the ocean is the tidal motion due to the moon. This sloshing back and forth

of the ocean water interacts with the topography at the ocean bottom and

creates internal waves that propagate away from the peaks. These internal

waves, with a size-scale of roughly on the order of a km, are known to act as

an intermediary between the large-scale tidal motion (roughly 103 km) and

smaller-scale overturning and mixing (less than 10 m).

We can gain some understanding of their nature by examining a fluid

element in a stratified fluid (a fluid whose density ρ0(z) varies with height).

We take the initial vertical position of said fluid element to be z0 and at this

position its density is given by ρ0(z0). Its volume will be taken to be δV ,

which will not change because we assume the fluid to be incompressible. Then

if we displace this fluid element upwards by an amount given by δz, it will be

surrounded by fluid whose density is slightly less, and will feel a buoyant force

in addition to the force of gravity. The net force then is given by

Fnet =δV ρ0(z0 + δz)g − δV ρ0(z0)g. (1.1)

Here, g is the acceleration due to gravity. The first term in (1.1) is the up-

ward buoyant force resulting from the displacement of the lower density fluid

with density ρ0(z0 + δz), and the second term is the force exerted by grav-

ity. Assuming the upward displacement is small, we can linearize by Taylor

2



Figure 1.1: The density of the fluid ρ0 decreases with height z, which is a
stable configuration under gravity. A fluid element is then displaced from its
equilibrium position z0 by δz, which results in a Buoyant force from the fluid
that has been displaced at the new location. The force of gravity is simply
given from the fluid element’s density, which is assumed to be unchanged from
its original value at z0.

expanding the lower density up to first order. This gives

Fnet =δV g

(
ρ0(zo) +

∂ρ

∂z
(z0)δz

)
− δV ρo(zo)g. (1.2)

The first and third terms in (1.2) cancel, and we write the net force using

Newton’s second law on the left-hand side to get

δV ρ0δz̈ =δV g
∂ρ

∂z
(z0)δz (1.3)

δz̈ =
g

ρ0

∂ρ

∂z
δz (1.4)

δz̈ ≡−N2δz. (1.5)

Thus to first order the fluid element behaves exactly like a harmonic oscillator

with natural frequency N , which is called the “Brunt-Väisälä” or buoyancy

frequency, and this quantity will typically depend on the height z.

3



1.2 The equations of motion

The derivation for the equations of motion for internal waves starts

with the Euler equations, which are given by

ρ
D

Dt
v = ρ

(
∂v

∂t
+ v · ∇v

)
=−∇p+ ρa (1.6)

∂ρ

∂t
+∇ · (ρv) =0. (1.7)

Here, ρ is the density of the fluid, D/Dt is the material derivative, and v is

the velocity which is typically written as v = ux̂+vŷ+wẑ, where u, v, and w

are the x, y, and z components of the velocity, respectively. Also, the quantity

p is the pressure, and a is the acceleration due to external forces. We take our

system to be 2D and the only external force to be that due to gravity, and

assume small amplitudes which allows us to drop the nonlinear term v ·∇v in

(1.6). This turns (1.6) into the following when each component is written out

separately,

ρ
∂u

∂t
= −∂p

∂x
, ρ

∂w

∂t
= −∂p

∂z
− ρg. (1.8)

We will look for the equilibrium state of our system. The momentum equation

in the x-direction (1.8) gives us

0 = −∂p0
∂x

→ p0 = p0(z). (1.9)

This tells us that the equilibrium state is only a function of the height, or

z-coordinate. The z-component of the momentum equation (1.8) gives

0 = −∂p0
∂z
− ρ0g → ∂p0

∂z
(z) = −ρ0(z)g. (1.10)

4



This gives us a functional relationship between the pressure and density at

hydrostatic equilibrium. We will then examine what happens when we perturb

about this equilibrium state, which means we take

u = δu(x, z, t), w = δw(x, z, t) (1.11)

ρ = ρ0(z) + δρ(x, z, t), p = p0(z) + δp(x, z, t), (1.12)

where the δqi’s are the perturbation quantities for their respective variables

q = (u,w, p, ρ). We insert (1.11) and (1.12) into the x-component of the

momentum equation (1.8), which gives(
1 +

δρ

ρ0

)
∂

∂t
δu = − 1

ρ0

∂

∂x
(p0 + δp). (1.13)

Since the perturbations are small we then take δρ/ρ0 ≈ 0, which is the same

as saying that the inertial density changes very little. Also, the first term on

the right-hand side of (1.13) is zero because the equilibrium pressure p0 only

depends on z. Then we’re left with

∂

∂t
δu = − 1

ρ0

∂

∂x
δp. (1.14)

Next we plug (1.11) and (1.12) into the z-component of the momentum equa-

tion (1.8) to get(
1 +

δρ

ρ0

)
∂

∂t
δw = − 1

ρ0

∂

∂z
(p0 + δp)−

(
1 +

δρ

ρ0

)
g. (1.15)

Once again we drop the density perturbation in the inertial term on the left-

hand side of (1.15), but this time we must keep the same term on the right-

hand side of the equation which multiplies g, because otherwise we would

5



eliminate the lowest order contribution to the dynamics by gravity. The ap-

proximation in this context is referred to as the “Boussinesq approximation”.

This time, the first and third terms on the right-hand side of (1.15) cancel

each other due to the hydrostatic equilibrium condition given by (1.10). Then

we are left with

∂

∂t
δw = − 1

ρ0

∂

∂z
δp− g

ρ0
δρ. (1.16)

We will now turn our attention to the continuity equation,

∂ρ

∂t
+∇ · (ρv) = 0. (1.17)

We use a common vector identity to expand the second term on the left-hand

side to get

∂ρ

∂t
+ ρ∇ · v + v · ∇ρ = 0. (1.18)

We will take the flow to be incompressible, that is ∇ · v = 0, which means

(1.18) becomes

∂ρ

∂t
+ v · ∇ρ = 0. (1.19)

We then, as was done previously with the momentum equations, plug the

perturbations (1.11) and (1.12) into the continuity equation (1.19) to get

∂

∂t
(ρ0 + δρ) + δu

∂

∂x
(ρ0 + δρ) + δw

∂

∂z
(ρ0 + δρ) = 0. (1.20)

The first and third terms are zero because the equilibrium density ρ0 doesn’t

depend on time or x, and we drop the fourth and sixth terms because they’re

6



second order in the perturbations. Then we are left with

∂

∂t
δρ = −∂ρ0

∂z
δw. (1.21)

We rewrite the right-hand side of (1.21) in terms of N , and collect the mo-

mentum equations for the perturbations (1.14) and (1.16), and also the in-

compressibility condition. Also, we drop the δ in front of the perturbation

quantities, which are now our dynamical variables of interest. Then we have

the following collection of equations of motion for linear internal waves:

∂u

∂t
= − 1

ρ0

∂p

∂x
,

∂w

∂t
= − 1

ρ0

∂p

∂z
− ρ

ρ0
g (1.22)

∂ρ

∂t
=
N2ρ0
g

w,
∂u

∂x
+
∂w

∂z
= 0. (1.23)

1.3 The dispersion relation

It will not be explicitly shown here, but using (1.22) and (1.23) we can

isolate the vertical velocity w to get a wave equation given by

∂2

∂t2

(
∂2

∂x2
+

∂2

∂z2

)
w +N2 ∂

2

∂x2
w = 0. (1.24)

We then take traveling wave solutions for our dynamical variables. Here we

specifically use

w = w̄ ei(k·x−ωt), (1.25)

where w̄ is the constant complex amplitude for w, k is the wave vector and

x is the coordinates x = (x, z). Plugging (1.25) for the vertical velocity w in

7



(1.24) gives

ω2(k2x + k2z)w −N2k2xw = 0 (1.26)

ω2 =
k2x

k2x + k2z
N2 (1.27)

ω = N cos θ. (1.28)

Thus the dispersion relation ω(k) from (1.28) for internal waves tells us that

the frequency ω of a wave does not depend on the magnitude of the wave vector

k at all, but rather its direction θ. In practical usage this is expressed as the

angle of the wave vector being determined by the frequency of the waves ω

and the buoyancy frequency profile N , since the latter two are typically given.

Additionally, for a given frequency of the wave ω, at the locations where the

buoyancy frequency N is less than the frequency ω, the wave vector k becomes

complex, which is more apparent in (1.27). In particular, the z-component of

the wave vector kz becomes imaginary, which from our traveling wave solutions

(1.25), we can see that this means the waves become evanescent, and the

location at which this occurs is typically referred to as the “turning depth”.

Using the dispersion relation (1.28) we can then calculate the phase velocity,

which is given by

cp =
ω

k
k̂ =

N

k
cos θ(cos θx̂ + sin θẑ). (1.29)

8



The group velocity is given by

cg =
∂ω

∂k
=

∂ω

∂kx
x̂ +

∂ω

∂kz
ẑ (1.30)

=

(
1√

k2x + k2z
− k2x

(k2x + k2z)
3/2

)
N x̂ +

(
− kxkz

(k2x + k2z)
3/2

)
N ẑ (1.31)

=
N

k

kz
k

(
kz
k
x̂− kx

k
ẑ

)
(1.32)

cg =
N

k
sin θ(sin θx̂− cos θẑ). (1.33)

However, if we look at the phase and group velocities (1.29) and (1.33), we

notice that

cp · cg = 0. (1.34)

Thus the phase and group velocities for linear internal waves are perpendicular

to each other, which physically means that while a column of the fluid itself

oscillates in one direction (in the direction of the group velocity), the different

phases at any given point in time are represented by different columns of the

fluid adjacent to any given column. This means the phase travels across the

columns, perpendicular to the fluid motion. Figures 1.2 and 1.3 illustrate this.

1.4 The energy flux

The energy density of linear internal waves is given by

E =
ρ0
2

(u2 + w2)− g

2 dρ0/dz
ρ2. (1.35)

9



Figure 1.2: A snapshot of the velocity field of an internal wave from experi-
mental data. The size of the arrows represents the magnitude of the velocity
at each grid point. The internal wave is created by an oscillating knife-edge
topography beyond the window above and to the left, and the beam itself
is traveling downward to the right. The group velocity, represented by the
velocity of the fluid itself, is along the beam, while the phase propagation is
perpendicular to it, across the beam.
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Figure 1.3: A snapshot of the same beam as in the previous figure, but roughly
half of a period later. It is apparent that the phase has propagated across the
beam, in this case upwards and to the right. The data was taken using particle
image velocimetry (PIV), which is discussed in more detail in chapter 2.
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The first term of (1.35) is pretty clearly the kinetic energy density, while the

second term is the potential energy density, which may not be as obvious.

It can be derived by using the harmonic oscillator description of the fluid

elements as described in section 1.1, using N as the natural frequency from

which the “stiffness constant” can be obtained, and z as the displacement

from equilibrium which can be linked to the density perturbation, assuming

small perturbations. Energy conservation gives us the relationship between

the energy E and energy flux J

∂E

∂t
= −∇ · J . (1.36)

We plug (1.35) into (1.36) to get

∂E

∂t
= ρ

(
u
∂u

∂t
+ w

∂w

∂t

)
− g

dρ0/dz
ρ
∂ρ

∂t
= −∇ · J (1.37)

We then plug in our equations of motion (1.22) and (1.23) into (1.37) to get

−u∂p
∂x
− w∂p

∂z
= −∇ · J . (1.38)

Using incompressibility ∇ · v = 0 this gives the energy flux

J = pv = up x̂ + wp ẑ. (1.39)

Internal waves transport momentum and energy in stably stratified

fluids as propagating disturbances that are restored by buoyancy forces. The

thermohaline circulation in the ocean stems at least in part from the conversion

of energy in large scale tidal and rotational motions into internal waves that

12



eventually break and deposit their energy into gravitational potential energy

through irreversible, small-scale mixing [49, 67]. To determine the role that

internal waves play in global ocean mixing, it is important to understand the

power present in the internal wave field.

1.5 Obtaining the energy flux in experiments

Theoretical [61, 5, 6, 9, 8, 45, 46, 34, 63, 14, 53, 57, 21, 26, 7, 15, 69]

and numerical [32, 39, 42, 43, 52, 50, 73, 35, 36, 59, 22, 23, 24, 60, 13] studies

have sought to determine the efficiency of the conversion of energy from tidal

and rotational motions over bottom topography into radiated internal waves,

but laboratory and field measurements of internal wave power remain scarce,

owing to the difficulty in simultaneously measuring the perturbed pressure

and velocity fields. Particle image velocimetry [1] has been used in laboratory

studies of internal waves to characterize the velocity fields [27, 70, 71, 16,

35, 36, 54, 55], and synthetic schlieren has been used in a few studies to

measure density perturbations averaged along the line of sight [2, 25, 10];

however, measurements of the accompanying pressure fields have not been

made owing to technical challenges in doing so. In tank-based experiments the

time-averaged energy flux has been calculated using data from the velocity or

density fields.

Previously, the energy flux has been computed from velocity data by

one approach (subsection 1.5.1), and from density perturbation data by two ad-

ditional approaches (subsection 1.5.2). The aforementioned velocity approach

13



uses modal decomposition, which our velocity method does not require. The

two density approaches provide leading order approximations for the time-

averaged energy flux from measurements, but differ from our density approach

(described in chapters 3 and 4) in that they cannot capture transient features

because they rely on periodicity in time.

1.5.1 Velocity-based energy flux approaches

The velocity-based approaches for calculating the energy flux use conti-

nuity, incompressibility, and the linear Euler’s equations, with the assumption

of time-periodic internal waves. These approaches obtain the energy flux in

terms of the stream function [8, 40], obviating the need for the pressure field.

The two velocity-based approaches differ in how they calculate the stream func-

tion from velocity data: the first approach uses modal decomposition, while

the second, our approach, obtains the stream function using path integrals.

The approach that makes a modal decomposition of the velocity field as-

sumes hydrostatic balance (requiring the forcing frequency to be much smaller

than the buoyancy frequency) [57]. An application of this approach to a tank-

based experiment by Echeverri et al. [16] dropped the hydrostatic balance

requirement and added a viscous correction. Most of the energy they observed

was contained in the first mode, and the energy flux in modes higher than

three was not measurable.

The modal-decomposition approach assumes time periodicity in obtain-

ing the time-averaged energy flux. A periodic signal is obtained using Fourier
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transforms, but the accuracy is limited because typical data records are only

a few periods long, and also nonlinearities can lead to energy transfer to other

frequencies. Further, a modal analysis requires determining the shapes of the

vertical modes, but density data spanning the entire fluid depth are often not

available. Also, in laboratory experiments the high viscous dissipation limits

the results to only the first few modes.

Our velocity-based approach avoids modal decomposition and calcu-

lates the stream function directly [40] and is described in chapter 2. Instanta-

neous velocity fields obtained by particle image velocimetry are used to obtain

the stream function. By calculating multiple path integrals between a base

point and each point in the domain, this approach averages out some of the

noise inherent to experimental measurements; however, accurate results de-

pend on the base point of the integration being either at the boundary of the

system, where the stream function is zero, or in a region of the domain where

the velocity vanishes. While this approach also relies on time-periodicity of

the field, a more complete representation of the stream function is possible

compared to the first approach.

1.5.2 Density-perturbation-based energy flux approaches

The first approach that uses the density perturbation field is that of

Nash et al. [51], who obtained the energy flux from observational oceanic data

for density in a water column. The density perturbation is assumed to be

the only contribution to the pressure perturbation, and thus integration of the
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density perturbations results in the hydrostatic pressure perturbations. This

assumption is valid when the buoyancy frequency of the ocean is much larger

than the tidal frequency. The velocity perturbation is calculated from velocity

profile measurements by removing the mean time-periodic background velocity

and a constant to satisfy the baroclinicity assumption. In regions of the ocean

where the most active internal wave fields exist, the time-averaged energy flux

has been measured with this approach and used to verify corresponding ocean

modeling [62, 3].

The approach of Nash et al. [51] can be applied not only to ocean

measurements but also to laboratory measurements if synthetic schlieren and

particle image velocimetry are performed simultaneously, as was done by Jia

et al. [33]. However, the approach requires both density and velocity data

for the entire water column. Additionally, the calculation of the pressure

perturbations assumes that there is no contribution from the dynamic pressure,

which is reasonable for oceanic data given the slow time scale over which

the velocity field changes, but this assumption is invalid for some laboratory

experiments and also in ocean settings where the water column is weakly

stratified.

A second approach that uses the density perturbation field relies on

Boussinesq polarization relations and eigenvector solutions of the linear and

inviscid internal wave equations. The polarization relations, which assume

periodic flows and plane wave solutions, provide a direct link between the

amplitude and phase of any of the velocity components, density perturba-
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tion, pressure perturbation, and vertical isopycnal displacement [64]. These

relationships are functions of the internal wave frequency. The strength of

this approach is that given a periodic or nearly periodic flow, a determination

of the velocity field through PIV or isopycnal displacement (using synthetic

schlieren) can be used to obtain the pressure and density fields [10]. When

the flow field is not strictly periodic but is dominated by a single frequency,

spectral methods can be used to decompose the system into its modal contribu-

tions, and the polarization relations can be applied to each modal component.

This approach provides a direct means for calculating the pressure and thus

the energy flux, but the approach relies on accurate spectral decomposition of

the fields.

The polarization approach was applied to synthetic schlieren measure-

ments of the isopycnal displacement field by Clark and Sutherland [10], who

investigated internal wave beams radiating away from a turbulent patch. To

determine the dominant wave frequency and wavenumber, multiple transects

normal to the generated beams over multiple periods were analyzed using FFT

methods. Then the maximum displacement amplitude based on the spatially

averaged envelope was calculated. Combining these two results with the polar-

ization relations yielded the energy flux generated at the dominant frequency

and wavenumber pair.

While the approach of Clark and Sutherland [10] provides a notable

first step for obtaining energy flux from synthetic schlieren data, it has some

limitations. First, it requires that the system be periodic or nearly periodic.
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In an aperiodic or transient flow field, the polarization relations require a large

number of frequency-wavenumber pairs to reproduce the flow field. The neces-

sity of accurate modal decomposition in both space and time of the synthetic

schlieren data makes the averaging process difficult [10]. Another limitation

is that the spatial averaging along the beam assumes no viscous dissipation,

while the dissipation can be significant for laboratory internal waves [40].

Our density approach, which is described in chapters 3 and 4, uses a

Green’s function method to calculate the pressure perturbation directly from

the density perturbation. The velocity perturbation is calculated directly from

the density perturbation using the vertical momentum equation and incom-

pressibility. This removes the limitations in the previous two density methods,

and gives an instantaneous energy flux field instead of a time average.
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Chapter 2

The energy flux from the velocity field

This chapter is heavily based on our Physics of Fluids publication, Lee

et al. [40] 1. The laboratory data and the Navier-Stokes simulation results were

obtained by Matthew Paoletti. Here, we present a method for determining

the energy flux and radiated power for propagating internal waves from only

velocity field measurements without any knowledge of the pressure field, and

we apply the method to results from direct numerical simulations and from

laboratory data for tidal flow past a knife edge, for the geometry shown in

figure 2.1. To circumvent the need for the perturbed pressure field in equation

(1.39), we assume that the velocity field is predominantly two-dimensional, as

has been the case in many internal wave studies. A two-dimensional velocity

field with zero divergence can be expressed in terms of a scalar field, the stream

function ψ, where

v = ux̂ + wẑ = −∂ψ
∂z

x̂ +
∂ψ

∂x
ẑ. (2.1)

It is straightforward to derive an expression for the energy flux for two-

dimensional internal waves in terms of the stream function (see, e.g., Balm-

1F. M. Lee, M. S. Paoletti, H. L. Swinney, and P. J. Morrison. Experimental determina-
tion of radiated internal wave power without pressure field data. Phys. Fluids, 26:046606,
2014.
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forth et al. [8] and Llewellyn Smith and Young [46]). We use such an ex-

pression to compute the radiated internal wave power from particle image

velocimetry measurements for tidal flow over a knife edge ridge. This wave

power is compared with that obtained from companion numerical simulations

of the Navier-Stokes equations, where the power can be directly computed

from (1.39).

This chapter is organized as follows. The theory behind our approach

is presented in section 2.1 and our methods are described in section 2.2. In

section 2.3 we show, using data from a numerical simulation of the Navier-

Stokes equations, that the internal wave power obtained using the stream

function method agrees with that obtained from pressure and velocity field

data, provided that appropriate attention is given to the choice of the starting

point for the stream function calculation. We then apply the stream function

method to calculate internal wave power for laboratory data. The chapter

ends with a discussion in section 2.4 and our conclusions in section 2.5.

2.1 Theory

We start with the set of linearized 2-dimensional equations for internal

waves found in section 1.2 and they will be shown here again for readability:

∂u

∂t
= − 1

ρ0

∂p

∂x
,

∂w

∂t
= − 1

ρ0

∂p

∂z
− ρ

ρ0
g , (2.2)

∂ρ

∂t
=
N2 ρ0
g

w ,
∂u

∂x
+
∂w

∂z
= 0 , (2.3)
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Figure 2.1: This snapshot of the vertical component of the velocity field (color),
computed in numerical simulations for the same conditions as our laboratory
experiments, reveals internal wave beams generated by knife edge topography
(located at the top) that oscillates about x = 0; weaker internal waves are
generated by the ends of the gray base plate. This numerical simulation mimics
the finite-size effects present in the experiments, where waves reflect from the
top and bottom boundaries but are damped for |x| > 45 cm. The dashed
box shows the location of the experimental measurements of the velocity field.
The internal wave beams bend because the buoyancy frequency N(z) varies
exponentially with z, as described in section 2.2.3. This snapshot is at time
t/T = 7.525 after initiation of the oscillations, where T = 2π/ω = 6.98 s is
the oscillation period for a tidal excursion with amplitude A = 1 mm. (Fig. 1
from [40])
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where x and z are the horizontal and vertical coordinates, respectively, u

and w are the corresponding components of the velocity, and p and ρ are

the pressure and density perturbations away from a hydrostatic background

described by ρ0 = ρ0(z), with g the acceleration due to gravity and N the

buoyancy frequency,

N =

√
−g
ρ0

∂ρ0
∂z

. (2.4)

When the density variations are weak enough so as to not significantly affect

inertial terms, it is common to replace ρ0(z) by a constant value denoted

ρ00, while N retains a z-dependence. This procedure is a consequence of the

Boussinesq approximation. The flux and power formulas we derive will be

valid both with and without this approximation.

For 2-dimensional incompressible flow, the perturbation velocity com-

ponents can be expressed in terms of a stream function ψ, as in (2.1). Then,

using (2.1) and neglecting viscous dissipation, the equations of motion (2.2)

and (2.3) imply energy conservation as follows:

∇ · J = −∂E
∂t

:=− ∂

∂t

[
ρ0
2

(u2 + w2)− ρ2g

2∂ρ0/∂z

]
=u

∂p

∂x
+ w

∂p

∂z
= −∂ψ

∂z

∂p

∂x
+
∂ψ

∂x

∂p

∂z
. (2.5)

where J is the energy flux. This time however, because we defined a stream

function in (2.1), equation (2.5) implies at least two solutions for J , e.g.,

Jp = −∂ψ
∂z

p x̂ +
∂ψ

∂x
p ẑ = p(u x̂ + w ẑ), (2.6)
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or

Jψ = ψ

(
∂p

∂z
x̂− ∂p

∂x
ẑ

)
, (2.7)

where Jp and Jψ differ by a gauge condition,

Jp = Jψ +∇× (ψp ŷ). (2.8)

The form of equation (2.6), Jp = pv, is the commonly used expression for the

energy flux. However, we will present a form obtained from (2.7) with further

manipulation. While the form of (2.6) requires both the velocity and pressure

fields over time, the form we use will depend ultimately only on the velocity

field.

We assume the stream function can be written as

ψ(x, z, t) = Re{e−iωtϕ(x, z)} , (2.9)

where ω is the angular frequency of the internal waves and ϕ is the spatially

dependent amplitude that is in general complex. Using (2.2), (2.3), (2.7), and

(2.9), the following expression for the time-averaged energy flux is obtained:

〈Jψ〉 :=
iρ0
4ω

[
(N2 − ω2)

(
ϕ
∂ϕ∗

∂x
− ϕ∗ ∂ϕ

∂x

)
x̂− ω2

(
ϕ
∂ϕ∗

∂z
− ϕ∗ ∂ϕ

∂z

)
ẑ

]
.

(2.10)

To obtain the result in the Boussinesq approximation one simply replaces ρ0

in this expression by the constant ρ00.

The functions ϕ and ϕ∗ can be found from the stream function ψ,

which in turn can be obtained from the velocity field. Thus, the energy flux
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expression 〈Jψ〉 does not require any knowledge of the pressure perturbations,

in contrast to the standard form of (2.6), which when averaged over a period

becomes

〈Jp〉 :=
1

T

∫ t0+T

t0

dt pv =
1

4

[
(̊up̊∗ + ů∗p̊) x̂ + (ẘp̊∗ + ẘ∗p̊) ẑ

]
, (2.11)

with T = 2π/ω, u(x, z, t) = Re{e−iωt ů(x, z)}, where the symbol ů(x, z) de-

notes the spatially dependent complex amplitude, and similar expressions for

w and p (and the complex conjugates u∗, w∗, and p∗) written in terms of their

amplitudes.

Our calculation of 〈Jψ〉 for the time-averaged energy flux is essentially

the same as that in Balmforth et al. [8] and Llewellyn Smith and Young

[46], although these authors show an explicit dependence on the tidal veloc-

ity amplitude. They also use the Boussinesq approximation and, in addition,

Llewellyn Smith and Young [46] make a hydrostatic approximation; more sig-

nificantly, those authors did not use expression (2.10) to interpret experimental

data in the manner we describe below. Note, since the two energy fluxes of

(2.6) and (2.7) differ by a curl (the gauge term), the total power given by

P =

∫
∂V

d2x 〈J〉 · n̂ =

∫
V

d3x∇ · 〈J〉 , (2.12)

where ∂V is the surface bounding a volume V , will be identical when either

Jψ or Jp is inserted.

Thus, only the perturbation velocity field is needed to compute the

power produced by topography in the form of internal waves. The caveat is
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that because the internal wave equations were used to derive the time-averaged

flux fields, the result would only be correct for a system that is dominated by

internal waves. Additionally, the equations of motion used were linearized and

inviscid, which means if there is a significant presence of higher-order har-

monics or appreciable amounts of damping, the results might not be reliable.

However, our simulations indicate the method is robust to the inclusion of

dissipation. Also, because of the temporal periodicity assumption of (2.9), the

system should ideally be in a steady state or close to it. Thus, even though

we do not require knowledge of either the perturbation pressure or pertur-

bation density field, use of 〈Jψ〉 narrows the scope of applicability to linear

internal waves near a steady state with small damping. However, because the

method does not require data from these two perturbation fields, obtaining

the time-averaged energy flux of internal waves in the ocean is possible. Also,

the details of the topography itself do not matter, as long as the velocity fields

are solutions of the internal wave equations.

2.2 Methods

This section describes our methods: the computational algorithm for

the flux in section 2.2.1, the numerical simulations of the Navier-Stokes equa-

tions in section 2.2.2, and the experimental geometry and techniques in sec-

tion 2.2.3, which also shows that the simulation and experimental results are

in good agreement.
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2.2.1 Computational algorithm for the flux

A snapshot of the results of the simulations for tidal flow past the knife

edge topography (discussed in the next subsection) is illustrated in figure 2.1.

In order to compute the energy flux from only the velocity field using (2.10),

we must first obtain the stream function ψ by inverting the relations of (2.1).

This can be done by using the incompressibility condition (2.3) and integrating

(2.1), resulting in

ψ(x, z, t) =

∫ x

x0

dx′w(x′, z0, t)−
∫ z

z0

dz′ u(x, z′, t) + ψ(x0, z0, t), (2.13)

where (x0, z0) is the starting point for the integration, and ψ(x0, z0, t) is an

arbitrary integration constant, which we set to zero for our calculations. We

discuss the importance of properly choosing the point (x0, z0) in section 2.3.2.

The integral from (x0, z0) to (x, z) is given in (2.13) by first integrating the

vertical velocity field along the x-direction and then integrating the horizontal

velocity field in the z-direction.

Since the stream function serves as a scalar potential for a conjugate

velocity field, its values are theoretically independent of the path of integration.

Therefore, we can also compute the stream function in the following manner:

ψ(x, z, t) = −
∫ z

z0

dz′ u(x0, z
′, t) +

∫ x

x0

dx′w(x′, z, t) + ψ(x0, z0, t). (2.14)

In this case, the stream function is obtained by first integrating the horizontal

velocities along a vertical path, and then integrating the vertical velocities

along a horizontal path. Indeed, we are not restricted to these two specific
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paths as any path between the points (x0, z0) and (x, z) can be used to compute

the stream function. Thus, we can use any collection of paths that first travel

along the grid horizontally, then vertically, and finally horizontally again, as

shown in figure 2.2(a). Such paths of integration are given by

ψ(x, z, t) =

∫ xi

x0

dx′w(x′, z0, t)−
∫ z

z0

dz′u(xi, z
′, t)

+

∫ x

xi

dx′w(x′, z, t) + ψ(x0, z0, t), (2.15)

where xi is any point between x0 and x. We can also take paths that first

travel vertically, then horizontally, and then vertically again, as shown in fig-

ure 2.2(b). These paths of integration are given by

ψ(x, z, t) =−
∫ zi

z0

dz′u(x0, z
′, t) +

∫ x

x0

dx′w(x′, zi, t)

−
∫ z

zi

dz′u(x, z′, t) + ψ(x0, z0, t), (2.16)

where zi is any point between z0 and z.

Statistical errors in the stream function can be minimized by comput-

ing the average value for all possible paths for the grid used in the simulation

or experiment of the types shown in figure 2.2 (as given by (2.15) and (2.16))

between the starting point (x0, z0) and the point of interest (x, z). Figure

2.3 shows a snapshot of our experimental velocity data and the corresponding

stream function. We find that stream function values computed from our ex-

perimental data using only the two paths defined by (2.13) and (2.14) differ

by less than 1% from more computationally intensive multi-path method indi-

cated in figure 2.2. However, the computationally more expensive multi-path
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Figure 2.2: The stream function at a point (x, z) is determined by averaging
the velocities integrated along paths that (a) first travel horizontally from the
starting point (x0, z0) towards the point (x, z), then vertically, and then hori-
zontally again, as well as (b) paths that first travel vertically, then horizontally,
and then vertically again. The velocity component perpendicular to the path
appears in each integrand, and all of the experimental or computational grid
points in the box with corners at (x0, z0) and (x, z) are used. The conditions
for these data are given in the caption for figure 2.1. (Fig. 2 from [40])

method would be preferable for noisy data. Optimization of the multi-path

method could be pursued, but we do not do this here.

In principle the choice of the starting point (x0, z0) should not affect the

computed internal wave power. However, in practice (x0, z0) must be chosen

carefully, because of the arbitrary integration constant ψ(x0, z0, t). Balmforth

et al. [8] effectively chose a starting point along the boundary, where they

could specify ψ(x0, z0, t) = constant owing to the no-penetration boundary

condition. We show in section 2.3.2 that choosing a starting point along or

near a boundary is the best choice. If the experimental velocity field does not

contain points near a boundary, then we find that a starting point away from
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Figure 2.3: (a) A snapshot of the 2-dimensional velocity field used to compute
(using (2.15) and (2.16)) (b) the corresponding stream function ψ(x, z, t) with
the top right corner as the starting point (x0, z0). The conditions for these data
are given in the caption for figure 2.1. (Fig. 3 from [40])

the internal wave beams also works well. For example, a point in the upper

right corner of figure 2.3 is satisfactory.

After determining the stream function for a tidal period T , the real

and imaginary parts of the field ϕ(x, z) must be determined by inverting (2.9).

Specifically, we have

ϕ(x, z) =
2

T

∫ t0+T

t0

dt ψ(x, z, t) eiωt . (2.17)

The derivatives of ϕ that appear in (2.10) are determined by moving them

into the integrand and using the relations (2.1):

∂ϕ

∂x
=

2

T

∫ t0+T

t0

dtw(x, z, t) eiωt , (2.18)

∂ϕ

∂z
=− 2

T

∫ t0+T

t0

dt u(x, z, t) eiωt . (2.19)
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The field ϕ and its derivatives can then be used in conjunction with a known

background density profile ρ0(z), buoyancy frequency profile N(z), and tidal

frequency ω to determine the tidally-averaged energy flux field by (2.10) and

the radiated power from (2.12).

2.2.2 Navier-Stokes numerical simulations

We numerically simulate the generation and propagation of internal

waves by tidal flow of a stratified fluid over a knife edge ridge by solving

the Navier-Stokes equations in the Boussinesq approximation using the code

CDP-2.4 [28]. This code is a parallel, unstructured, finite-volume-based solver

modeled after the algorithm of Mahesh et al. [47]; all subgrid scale modeling

is disabled. By using a fractional-step time-marching scheme and multiple

implicit schemes for the spatial operators [29], the code achieves second-order

accuracy in both space and time. The following equations are solved for the

total density ρT , total pressure pT , and velocity field v = (u(x, z), w(x, z)):

∂v

∂t
+ v ·∇v = − 1

ρ00
∇pT −

gρT
ρ00

ẑ + ν∇2v +
Ftide

ρ00
x̂ , (2.20)

∇ · v = 0 ,
∂ρT
∂t

+ v ·∇ρT = D∇2ρT , (2.21)

where ρ00 = 1 g/cm3 is a reference density, g is the gravitational acceleration,

and ν = 0.01 cm2/s is the kinematic viscosity of fresh water. The salt diffu-

sivity D = 2 × 10−5 cm2/s is equal to the value for sodium chloride, which

is used in the laboratory experiments described above, resulting in a Schmidt

number of ν/D = 500. Given the large Schmidt number, the density field does
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not mix over the course of our simulations or experiments, which is expected

given the lack of wave breaking and overturning for the parameters that we

have examined. The tidal flow utide = −x̂Aω cosωt is driven by the tidal

force Ftide = ρ00Aω
2 sinωt, where a tidal excursion A = 0.1 cm matches the

value used in the experiments. The time step is chosen to correspond to 2000

time steps per period for the experiments that have an exponential stratifi-

cation (described below), and 4000 time steps per period for the case with

uniform stratification (N = const) used to compare with analytical theory

[46]. The simulations are run long enough to yield a steady-state for at least

three periods, which typically requires at least 20 tidal periods.

Two different stratifications are used in the numerical simulations, an

exponential N(z) to compare experiments and simulations and a constant

N = 1.55 rad/s to compare simulations with analytical theory. For the latter

case, we choose a tidal frequency of ω = 0.255 rad/s, which yields an internal

wave beam slope of SIW =
√
ω2/(N2 − ω2) = 1/6.

The computational grids are generated with Pointwise Gridgen. Grid I,

tailored to match the experiment (cf. figure 2.1), spans −120 < x < 120 cm

and 0 < z < 55 cm and has approximately 1.7 × 106 control volumes. The

simulation topography is composed of a knife edge with height H = 5 cm and

width W/H = 0.032 that is attached to a plate that extends nearly across

the computational domain. The structured grid has smoothly varying spatial

resolution with grid spacings of ∆x = 0.058 cm and ∆z = 0.03 cm near the

topography, and ∆x = 2 cm and ∆z = 0.1 cm for locations far away from

31



the topography. To mimic the absorbing fiber mesh along the side boundaries

in the experiments, we apply a Rayleigh damping term (∝ v − utide) for

|x| > 50 cm.

The second domain, Grid II, is designed to minimize finite-size effects

to allow for comparisons with the analytical predictions of Llewellyn Smith

and Young [46]; for this case N is constant as in the analytical theory. Grid II

spans −400 < x < 400 cm and 0 < x < 80 cm and has approximately 1.1×106

control volumes. The knife edge in this case has the same dimensions as in

the experiment, but the base of the knife edge is centered at (x = 0, z = 0).

The grid spacing is ∆x = 0.02 cm and ∆z = 0.02 cm in the vicinity of the

knife edge, and smoothly increases to ∆x = 2 cm and ∆z = 0.15 cm along

the periphery. Rayleigh damping is applied for |x| > 300 cm and z > 50 cm

to prevent reflections.

In the simulations for both Grid I and for Grid II, no-slip boundary con-

ditions are applied along the topography, top boundary, and bottom boundary,

while periodic boundary conditions are used in the x-direction. Convergence

tests with the spatial and temporal resolution doubled (halved) changed the

computed velocities by less than 1% (4%).

A snapshot of the vertical velocity field computed using Grid I is shown

in figure 2.1. The knife edge (centered at x = 0) produces four internal wave

beams, two that initially propagate upward before reflecting from the base

plate, and two others that propagate downward. The edges of the base plate

at |x| = 39.4 cm also produce weaker internal wave beams. The area shown
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Figure 2.4: Snapshots of the horizontal (top) and vertical (bottom) compo-
nents of the velocity field (color) determined in simulation (left) and experi-
ment (right) agree well. The measurement region is shown as a dashed box in
figure 2.1, and that figure’s caption gives the conditions. (Fig. 4 from [40])
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corresponds to the laboratory tank; the domain Grid I for the simulations

is much wider. Rayleigh damping absorbs the wave beams outside of the

area shown. To validate the simulation results, we compare in figure 2.4 the

computed velocity field with that measured in the laboratory experiments.

The agreement is quite good, as found in our prior comparisons of results

from experiments with simulations using the CDP code [35, 36, 54]. The

quantitative agreement between simulation and experiment is illustrated by

the cross-sections of the velocity and vorticity fields shown in figure 2.5. Similar

agreement between simulation and experiment is found for other times and

spatial locations.

2.2.3 Experimental techniques

We examine the generation and propagation of internal waves in a glass

tank that spans −45 < x < 45 cm, 0 < y < 45 cm, and 0 < z < 60 cm. The

topography is inverted with its base at z = 45 cm (see figure 2.1). A knife edge

ridge with a height H = 5 cm and width (in the x-direction) W/H = 0.032

is centered at x = 0 and spans the tank in the y-direction. The ridge is

connected to a base that spans −39.4 < x < 39.4 cm, 1 < y < 44 cm, and

45 < z < 46.27 cm, to give a no-slip boundary condition. The edges of the

base plate at |x| = 39.4 cm are rounded to reduce the spurious generation of

internal tides from the ends.

A buoyancy frequency varying exponentially with depth is chosen to

model the deep ocean [37, 54]. A density profile corresponding to exponentially
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from [40])
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varying buoyancy frequency is produced using the generalized double bucket

method described by Hill [31]. The density as a function of depth is measured

using an Anton Paar density meter; in the bottom of the tank the fluid density

is 1098 kg/m3, and at the top surface (55 cm above the bottom) the density

is 1000 kg/m3. The resultant buoyancy frequency profile is

N(z) = Ae−Bz (2.22)

over the range 0 < z < 50 cm, where A = 1.87 rad/s and B = 0.0141 cm−1.

The buoyancy frequency at the base of the experimental topography is NB =

0.99 rad/s, and it exponentially increases towards its maximum value of 1.87

rad/s at z = 0 cm at the bottom of the tank.

Tidal flow is generated by oscillating the rigid topography and base

plate rather than by driving the fluid over stationary topography. Our velocity

measurements, then, are in the reference frame of the tidal flow. The position

of the topography is given by

x(t) = A[1− e(−2ωt/3π)] sin (ωt), (2.23)

where the tidal excursion is A = 0.1 cm and the tidal frequency is ω =

0.90 rad/s. The exponential term is added to allow for a gradual increase

in the oscillation amplitude, which reaches 99% of its peak value after ap-

proximately 3.5 tidal periods [16]. The Reynolds number based upon the

topographic height and tidal flow is Re = AωH/ν = 48, while the Froude

number is Fr = Aω/NBH = 0.02. To minimize finite-size effects, we reduce
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reflections of the internal waves at the side boundaries by placing fiber mesh

at |x| = 45 cm.

We obtain two-dimensional velocity fields v = (u,w) by particle image

velocimetry [1] in a vertical plane along the center of the tank at y = 22.5 cm.

Hollow glass spheres with diameters 8 < d < 12 µm and densities in the range

1.05 < ρ < 1.15 g/cm3 serve as seed particles, and are illuminated by a 5 mm

thick laser sheet with a wavelength of 532 nm and a power of 2 W. We capture

the motion of the tracer particles 40 times per period with a 12-bit CCD

camera with 1296× 966 pixel resolution spanning 15.25 cm in the x-direction

and 11.36 cm in the z-direction, as shown schematically by the dashed box

in figure 2.1. We use the CIV algorithm developed by Fincham and Delerce

[19] to determine the instantaneous velocity fields, which are interpolated to a

regular 100×100 grid with spatial resolution ∆x = 0.15 cm and ∆z = 0.11 cm.

2.3 Results

In section 2.3.1 we show, using velocity and pressure field data from

a direct numerical simulation, that our method for computing internal wave

power from velocity data alone yields results in good accord with the wave

power computed in the usual way from velocity and pressure data. In the

same section we compare the radiated power given by the analytical predic-

tions of Llewellyn Smith and Young with the power computed in the direct

numerical simulations. In section 2.3.2 we examine how the radiated power

computed from the velocity field depends on the starting point for the calcula-
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tion of the stream function from the velocity data. In section 2.3.3 laboratory

measurements of a velocity field are used to compute energy flux, which is

found to agree with results obtained from direct numerical simulations that

give both velocity and pressure fields.

2.3.1 Internal wave power from fluxes 〈Jp〉 and 〈Jψ〉

In this subsection we compare the power computed by the stream func-

tion method with the power computed from the velocity and pressure fields.

We assume constant stratification (N = constant) in order to validate the

stream function method by comparison with analytic theory. We take ρ00 to

be the average value of the background density over the domain. The simplest

way to compute the power is to take a box centered about the topography

and integrate the energy flux normal to the surface along the perimeter of

the box. However, because the system is symmetric about the topography,

we consider only the rightward-propagating beams. Additionally, we choose a

bounding box that is sufficiently tall such that the vertical energy flux through

the horizontal segment of the perimeter at z = 30 cm is negligible. The ver-

tical energy flux through the horizontal segment at z = 0 cm is negligible

because of the solid boundary. Thus we compute the power by integrating the

horizontal component of the energy flux over a vertical segment from z = 0 cm

to z = 30 cm. The geometry and a snapshot of the computed velocity field

are shown in figure 2.6.

The energy flux Jp computed from the pressure in (2.6) and the flux

38



0

20

z
(cm)

-60 -30 0 30 60

x (cm)

-0.01 0 0.01 (cm/s)

Figure 2.6: A snapshot of the velocity field (color) from a numerical simulation
of tidal flow over knife edge topography for a fluid with uniform stratification
(N = const). Four internal wave beams are generated at the tip of the knife
edge and propagate at constant angles. Measurements of the horizontal en-
ergy flux through a cross-section at x = 10 cm (dashed line) are shown in
Figs. 2.7(a) and 2.8(a). (Fig. 6 from [40])

Jψ from the stream function in (2.7) differ by ∇ × (ψpŷ), which represents

a gauge transformation. The striking difference between the time-averaged

horizontal x̂ components of the two fluxes is illustrated in figure 2.7(a). While

〈Jp〉 and 〈Jψ〉 are quite different near the topography, we find that far from the

topography they become similar but not identical, as there is no requirement

that the time average of the gauge term ∇× (ψpŷ) vanish farther away from

the topography.

Even though the energy flux fields computed using the pressure and

the stream function methods differ, as mentioned before, the radiated power

should be the same because it is given by the volume integral of the diver-

gence of the energy flux (cf. (2.12)). Since the divergence of the gauge term

∇× (ψpŷ) is zero, it does not contribute to the power. Indeed, the radiated

power computed from our simulation data by the stream function and pressure
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methods are in excellent agreement, as figure 2.7(b) illustrates; the root-mean-

square difference between the two methods is less than 0.5%. This is our main

result: the radiated internal wave power can be determined using velocity field

data alone.

We now compare the computed radiated power with that predicted

by Llewellyn Smith and Young [46] for tidal flow of an inviscid, uniformly

stratified fluid over knife edge topography in an infinitely deep ocean (in the

absence of rotation),

PLSY =
π

4
ρ00H

2A2ω2
√
N2 − ω2Ly, (2.24)

where Ly is the length of the topography in the direction orthogonal to both the

tidal flow and gravitational acceleration. We have replaced N with
√
N2 − ω2

in Llewellyn Smith and Young [46] to account for nonhydrostatic effects. The

radiated internal wave power computed from the stream function and pressure

methods is compared to the inviscid theory prediction by using PLSY as nor-

malization in figure 2.7(c). Immediately outside the laminar boundary layer

at x = 1 cm, our computed values are 99.8% of the value predicted by the

inviscid theory. Further away from the topography (increasing x), the power

monotonically decreases owing to viscous dissipation, which is not present in

theoretical studies [8, 45, 46, 63, 34, 57, 53, 14, 26, 21, 7, 15, 69]. The power

rapidly decreases near x ≈ 0 from dissipation within the laminar boundary

layer. Near x = 25 cm the internal wave beams reflect from the bottom,

producing a boundary layer with enhanced dissipation relative to the freely
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method ( (2.10), red curve; x0 = 60 cm, z0 = 0) differs from the energy flux
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numerical simulation with x = 10 cm. (b) The total power Pψ by integrating
〈Jψ〉 · x̂ (solid (red) curve) is in excellent agreement with the total power Pp
from the pressure and velocity, 〈Jp〉 · x̂; the power is shown for vertical cross-
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for both approaches are compared with the prediction of Llewellyn Smith and
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but decrease with increasing x due to viscous dissipation. (Fig. 7 from [40])
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propagating internal waves in the bulk of the fluid (cf. figure 2.6). Although

viscosity was neglected in our derivation of the energy flux, the method seems

to account for viscous dissipation quite well.

2.3.2 Dependence on stream function starting point

In order to compute the energy flux and radiated power using only ve-

locity data, the stream function must first be computed by using (2.15) and

(2.16), which requires the choice of both a starting point (x0, z0) and a value

for the arbitrary integration constant ψ(x0, z0, t). Balmforth et al. [8] effec-

tively chose a point on the boundary and set ψ(x0, z0, t) = constant, which

is justified by the no-penetration boundary condition. However, experimental

observations often do not include points on a solid boundary, and that is the

case in our experiment (see the dashed box in figure 2.1). Therefore, as a sub-

stitute for solid boundary points we choose effective boundary points starting

as far away from the internal wave beams as possible, assuming that the stream

function values at those points closely match those of the solid boundary and

are thus constant in time. Further, since the value of the constant itself does

not change the flux, we choose ψ(x0, z0, t) = 0.

To explore the effects of the choice of starting point on the calculation

of the stream function, we consider internal waves generated by tidal flow of

a uniformly stratified fluid (N = constant) over a knife edge for the domain 2

(Grid II) described in section 2.2.2. This domain, larger than the experimental

domain (domain 1), removes the laboratory domain’s finite-size effects and
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spurious generation of additional internal waves from the base plate. The

snapshot of the vertical velocity field in figure 2.6 shows the four internal

wave beams that are generated by the knife edge with its base at (x = 0, z =

0). Two of the internal wave beams radiate upward, and two other beams

initially propagate downward, reflect near x = ±25 cm, and then propagate

upward. The waves are absorbed by Rayleigh damping before reflecting from

the boundaries.

The horizontal energy flux and the total radiated internal wave power

are shown in figure 2.8 for three starting points for the computation of the

stream function (with ψ(x0, z0, t) = 0). The horizontal energy fluxes computed

from the three representative starting points differ significantly; the starting

point with z0 = 4 cm is between the bottom boundary and the reflected wave

that propagates to the right; the starting point with z0 = 12 cm is between

the two rightward-propagating internal waves; and the starting point with

z0 = 20 cm is above both internal waves but far from any solid boundary. The

energy flux is strongest for z0 = 4 cm. The energy flux has a similar structure

for z0 = 20 cm, but the flux is much lower for z0 = 12 cm.

The total radiated power Pψ integrated for vertical cross-sections at

different x is shown in figure 2.8(b) for the three different starting points of

the stream function calculation. Pψ is normalized by the power computed

by the pressure method, Pp. For x > 30 cm, the power Pψ computed for

starting points outside of the internal wave beams (z0 = 4 and z = 20 cm) is

in excellent agreement with Pp; the rms difference is 0.5% for z0 = 4 cm and
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1% for z0 = 20 cm. For x < 30 cm (i.e., farther away from the x0 = 60 cm

starting point), Pψ computed with z0 = 4 cm is larger than Pp by as much

as 15%, and for z0 = 20 cm, Pψ is smaller than Pp by as much as 30%. For

the starting point located between the internal wave beams (z0 = 12 cm) (cf.

figure 2.6), Pψ is smaller than Pp by at least 20% and as much as 70%. This

example illustrates that the starting point for a stream function calculation of

the flux should be outside of the internal wave beams, and the total internal

wave power should be obtained for cross-sections far enough away from the

topography to avoid near-field effects and close enough to the starting point

for the stream function to reduce the cumulative error from quadrature over

long paths.

2.3.3 Comparison of experiment and numerical simulation

Figure 2.9 compares the energy flux field from the numerical simulations

〈J sim
ψ 〉 with that from a laboratory experiment 〈J expt

ψ 〉 for the same conditions.

In this figure it is seen that the energy flux computed by the stream function

method for the simulation and laboratory agree well.

The radiated internal wave power computed for the simulation data by

integrating the energy flux across the beam is 3.09 nW (per cm of topography)

and 3.01 nW, respectively for the integrals of 〈J sim
p 〉 and 〈J sim

ψ 〉 across the

beam; the internal wave power obtained by integrating the energy flux obtained

from the laboratory data is 2.83 nW. The difference between the experimental

and simulation results for the radiated power arises from differences between
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the laboratory system and the simulation rather than from errors in the stream

function methodology, which has been validated by using pressure and velocity

data from the numerical simulation. The differences between the experiment

and simulation include the viscosity, which is constant in the simulation but

varies in the experiment by 20% from the tank bottom to the fluid surface;

the sidewall boundary condition, which in the laboratory tank is absorbing

because the walls are lined with a fiber mesh to reduce reflections; and the

shape of the ends of the base plate on which the topography was mounted.

Despite these differences the agreement is within 10%.

2.4 Discussion

The method presented for determining energy flux and radiated power

for internal waves using only velocity field data could provide opportunities for

laboratory experiments and field measurements that go beyond the capabilities

of existing theory. While theoretical [38] and experimental [54] studies have

examined the viscous decay of the velocity field for propagating internal waves

in arbitrary stratifications, theoretical studies of internal wave generation for

flow over topography have been for inviscid fluids [9, 8, 46, 34, 57, 53, 7, 15].

Figure 2.7(c) shows that the stream function method yields the decay of the

wave power as well as the generated power. Therefore, velocity measurements

can be used to characterize both the conversion of tidal motions to internal

waves and the viscous decay as the waves propagate away from the topography.

Theoretical studies of the conversion of tidal motions to internal wave
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power have focused on laminar flow over the topography, but the boundary

currents can become intense and unstable, particularly for critical topography

where the slope of the topography is equal to the local slope of the internal wave

beams [71, 22, 23, 24, 13]. Indeed, recent numerical simulations have found

that turbulence generated near critical topography can reduce the radiated

internal wave power [60]. While the turbulence is 3-dimensional, the far field

internal beams can be predominantly 2-dimensional [2] and hence could be

determined by the stream function method.

2.5 Conclusions

We have shown that the energy flux and the integrated wave power

for 2-dimensional internal waves can be determined using knowledge of only

the velocity field, which can be written in terms of a single scalar field, the

stream function. The energy flux field and radiated power can be computed

from (2.10) and (2.12), in analogy with the methods used in prior theoretical

work [8, 46, 34, 57, 53, 7, 15]. We have tested the stream function method for

determining internal wave flux and power using results obtained for tidal flow

over a knife edge, computed with a numerical simulation code that has been

validated in previous studies [35, 36, 54, 13]. The results for the radiated inter-

nal wave power obtained from the stream function and pressure methods are

found to agree within one percent, if the starting point for the stream function

calculation is chosen near a boundary or far from the internal wave beams.

We also made laboratory measurements of the velocity field for tidal flow past
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a knife edge and used those data to determine the internal wave power, which

agreed with the numerical simulation results within ten percent. Given the

excellent agreement between the results from the pressure and stream function

approaches for the simulation data, we believe the agreement between the ex-

periment and simulation could be improved by designing an experiment that

better satisfied the assumptions of the simulations.

Appendix A provides links for a Matlab code with a graphical user in-

terface for the stream function method of determining energy flux and internal

wave power from 2-dimensional velocity field data. A step-by-step description

of the algorithm and its implementation are also included.
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Chapter 3

The energy flux from the density perturbation

field for uniform N

This chapter is heavily based on our Physical Review Fluids publica-

tion, Allshouse et al. [4] 1. The laboratory data and the Navier-Stokes simula-

tion results were obtained by Michael Allshouse. Here, using a Green’s function

approach, we present a more generally applicable method for calculating the

instantaneous pressure, velocity, and energy flux from the density perturba-

tion field; thus the method can be applied to both periodic and aperiodic data.

The method was developed for use on laboratory density perturbation data

but should also be applicable to field observations. This chapter is organized

as follows. Section 3.1 presents the derivation of our method for calculating

the instantaneous energy flux field J . In subsection 3.1.1 we start with the

linear Euler’s equations and derive expressions for the pressure perturbation

and the two velocity components in terms of the density perturbation. These

allow for a general expression for J in terms of the density perturbation field.

In subsection 3.1.2 a Green’s function method is used to solve for the pres-

sure perturbation field from a density perturbation field, which will be given

1M. R. Allshouse, F. M. Lee, P. J. Morrison, and H. L. Swinney. Internal wave pressure,
velocity, and energy flux from density perturbations. Phys. Rev. Fluids, 1:014301, 2016.
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by synthetic schlieren data. Section 3.2 describes our numerical simulations

and experiments and compares their results. In subsection 3.3.1, our method

is verified by comparing results for J calculated from a simulated density

perturbation field with results obtained directly from numerical simulations.

Subsection 3.3.2 presents the results of applying the method to laboratory data

taken in a portion of the domain. Finally, section 3.4 presents our conclusions

and discusses broader applications of our method. To aid in applying this

method, we have developed a Matlab GUI, EnergyFlux, which is discussed in

the appendix and provided in the supplementary materials.

3.1 Theory

Our approach uses the density perturbation field to calculate the in-

stantaneous pressure, velocity, and energy flux fields. Starting with the linear

Euler’s, continuity, and incompressibility equations, we derive expressions for

the pressure and velocity perturbation fields in terms of the density pertur-

bation field. Section 3.1.1 presents these relationships without assuming any

particular form for the buoyancy frequency N . For the specific case of uni-

form N , a solution for the pressure perturbation field is found in terms of the

density perturbation field in section 3.1.2.

3.1.1 Energy flux from a density perturbation field

To calculate the energy flux from the density perturbation field, the

pressure and velocity must first be obtained in terms of the density pertur-
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bations. Assuming inviscid flow, we start with the two-dimensional Euler’s

equations, which give the linear wave equations that are the foundation of our

approach. We obtain a partial differential equation that gives the pressure

perturbations instantaneously from the density perturbation field, which acts

as a source term, and then the incompressibility and the continuity equations

together yield both velocity components as functions of the density perturba-

tions.

As before, for readability we show here again the linearized two-dimensional

Euler’s equations for the density ρ0(z)+ρ(x, z, t) and pressure p0(z)+p(x, z, t),

where ρ0(z) and p0(z) are in hydrostatic balance, and the velocity v(x, z, t):

∂u

∂t
= − 1

ρ0

∂p

∂x
,

∂w

∂t
= − 1

ρ0

∂p

∂z
− ρ

ρ0
g , (3.1)

∂ρ

∂t
=
N2 ρ0
g

w ,
∂u

∂x
+
∂w

∂z
= 0 , (3.2)

where g denotes the gravitational acceleration, x and z are the horizontal and

vertical coordinates, respectively, u and w are the corresponding components

of the velocity v, and the buoyancy frequency N is given by

N2 = − g

ρ0

dρ0
dz

. (3.3)

The energy density is given by

E =
ρ0
2

(u2 + w2)− ρ2g

2 dρ0/dz
, (3.4)
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which together with the energy flux J satisfies conservation of energy,

∂E

∂t
+∇ · J =0. (3.5)

Using the equations of motion (3.1) and (3.2), we have the energy flux from

(3.5),

J = upx̂ + wpẑ , (3.6)

which is the main object of our consideration.

Next, using (3.1) to obtain the time derivative of ∇ · v yields

∂

∂x

∂u

∂t
+

∂

∂z

∂w

∂t
=

∂

∂x

(
− 1

ρ0

∂p

∂x

)
+

∂

∂z

(
− 1

ρ0

∂p

∂z
− ρ

ρ0
g

)
= 0 (3.7)

which after applying the chain rule taking care to account for the z-dependence

of ρ0 and substitutions involving (3.3) gives the following partial differential

equation:

∂2p

∂x2
+
∂2p

∂z2
+
N2

g

∂p

∂z
=−N2ρ− g∂ρ

∂z
. (3.8)

Equation (3.8), together with boundary conditions discussed in section 3.1.2,

yields the pressure perturbation field from a source that is determined by the

density perturbation field at any given instant in time. We denote the solution

of (3.8) by the functional p[ρ].

To obtain a more intuitive and easier-to-solve Helmoltz-like equation,

we transform (3.8) to a standard form in terms of a new variable q:

p(x, z) = q(x, z) exp

[
− 1

2g

∫ z

dz′N2(z′)

]
. (3.9)
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The relationship between q and ρ is then

∂2q

∂x2
+
∂2q

∂z2
−
(
N

g

∂N

∂z
+
N4

4g2

)
q = −

(
N2ρ+ g

∂ρ

∂z

)
exp

[
1

2g

∫ z

dz′N2(z′)

]
,

(3.10)

which when solved gives p[ρ] via (3.9).

The vertical component of the velocity w is given by rearranging (3.2),

w =
g

N2ρ0

∂ρ

∂t
. (3.11)

Using w, we find the horizontal component of the velocity u from the incom-

pressibility condition by integrating in x,

u = −
∫ x

dx
∂w

∂z
= −

∫ x

dx
∂

∂z

(
g

N2ρ0

∂ρ

∂t

)
. (3.12)

The integration constant is zero if we take the initial point of integration to

be at a location where the horizontal velocity is known to be zero.

Finally, using (3.11) and (3.12), we obtain the desired result, the in-

stantaneous energy flux (3.6) entirely in terms of the density perturbation field

ρ, provided we know p[ρ], the solution of (3.8) for the pressure perturbation

field,

J(x, z, t) = −p[ρ] g

∫ x

dx
∂

∂z

(
1

N2ρ0

∂ρ

∂t

)
x̂ +

p[ρ] g

N2ρ0

∂ρ

∂t
ẑ. (3.13)

3.1.2 Green’s function approach for uniform N

Before solving (3.10) for the pressure perturbations, the boundary con-

ditions must be specified. A detailed discussion of the experimental setup will
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be given in section 3.2.2, but for now we note that our boundary conditions are

for a domain that will represent laboratory data taken from a tank where the

top and bottom boundaries are visible, while the left and right boundaries are

not, because they are taken to be far away. As an approximation of our labo-

ratory domain, periodic boundary conditions are assumed for the left (x = 0)

and right (x = l) boundaries, and no-flux boundary conditions are assumed

for the top (z = 0) and bottom (z = h) of the domain. The periodic boundary

conditions for the horizontal direction are reasonable since disturbances do not

sense the actual boundary in that direction, while the no-flux conditions in the

vertical direction are appropriate since the top and bottom boundaries of the

measurement window are the solid boundary of the tank and the free surface.

The boundary conditions required for solving (3.8) follow from force

balance. For the horizontal periodic boundary conditions, the first equation

of (3.1) implies

∂p

∂x

∣∣∣∣
x=0

=
∂p

∂x

∣∣∣∣
x=l

. (3.14)

Similarly, applying the no-flux boundary condition on the top and bottom

boundaries requires the vertical velocity there to be zero for all time, and this

implies zero vertical force there as well. Then the second equation of (3.1)

gives (
∂p

∂z
+ ρg

) ∣∣∣∣
z=0

=

(
∂p

∂z
+ ρg

) ∣∣∣∣
z=h

= 0. (3.15)

However, the first equation of (3.2) tells us that the density perturbation does

not change with time at the top and bottom boundaries since the vertical
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velocity is zero there. Since initially the density perturbation on those bound-

aries is zero, it remains zero for all time. Thus (3.15) gives the following

boundary condition for the top and bottom boundaries:

∂p

∂z

∣∣∣∣
z=0

=
∂p

∂z

∣∣∣∣
z=h

= 0. (3.16)

Because of the transformation (3.9), the boundary conditions on p, (3.14) and

(3.16), imply the following boundary conditions on the variable q:

∂q

∂x

∣∣∣∣
x=0

=
∂q

∂x

∣∣∣∣
x=l

∂q

∂z
− N2

2g
q

∣∣∣∣
z=0

=
∂q

∂z
− N2

2g
q

∣∣∣∣
z=h

= 0.

(3.17)

In this section we consider the case where the buoyancy frequency pro-

file is taken to be uniform, N = N0. For such a profile, the equation for the

pressure perturbation field (3.8) simplifes to give

∂2q

∂x2
+
∂2q

∂z2
− N4

0

4g2
q = −f(x, z), (3.18)

where

f(x, z) =

(
N2

0ρ+ g
∂ρ

∂z

)
exp

(
N2

0

2g
z

)
, (3.19)

and the boundary conditions remain identical to (3.17) with the N0 substituted

in for N .

Next, the variables q and f are Fourier expanded in the horizontal
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direction,

q(x, z) = Re

{∑
k

Qk(z)e−ikx/l
}

f(x, z) = Re

{∑
k

Fk(z)e−ikx/l
}
,

(3.20)

where k = 2πn/l with n being a positive integer. These series expansions

can be done because the horizontal extent of the domain is finite, and they

automatically satisfy the boundary conditions for the x-direction. This allows

the dimensionality of the problem to be reduced to one. Then (3.18) and the

remaining boundary conditions for the vertical direction become

∂2Qk

∂z2
− κ2Qk =− Fk, (3.21)

∂Qk

∂z
− N2

0

2g
Qk

∣∣∣∣
z=0

=
∂Qk

∂z
− N2

0

2g
Qk

∣∣∣∣
z=h

= 0, (3.22)

where κ2 = k2 + N4
0/4g

2. Solving for Qk for each mode k and summing over

all the modes gives us q which will then give p, the pressure perturbation field.

Equation (3.21) can be solved by taking a Green’s function approach.

This is as far as we can take the solution analytically, since the source term

Fk in (3.21) is given from laboratory data. The Green’s function Gk for this

case satisfies

∂2Gk

∂z2
− κ2Gk =δ(z − z′), (3.23)

∂Gk

∂z
− N2

0

2g
Gk

∣∣∣∣
z=0

=
∂Gk

∂z
− N2

0

2g
Gk

∣∣∣∣
z=h

= 0. (3.24)
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Considering (3.23) on each side of the jump at z = z′,

∂2Gk

∂z2
− κ2Gk =0 , (3.25)

gives a solution of the form

Gk(z, z
′) =

{
Gz>z′

k = Aeκz +Be−κz, z > z′

Gz<z′

k = Ceκz +De−κz, z < z′,
(3.26)

where the constants A,B,C, and D are determined by the following matching

conditions:

Gz>z′

k (z, z′)

∣∣∣∣
z=z′

= Gz<z′

k (z, z′)

∣∣∣∣
z=z′

, (3.27)

∂

∂z
Gz>z′

k (z, z′)

∣∣∣∣
z=z′

= 1 +
∂

∂z
Gz<z′

k (z, z′)

∣∣∣∣
z=z′

. (3.28)

After applying the matching conditions (3.27), (3.28), and the boundary con-

ditions (3.24), the following Green’s function (3.26) for mode k is obtained:

Gk(z, z
′) =

1

γ

[
κ2+ e

κz+ + 2k2 cosh (κz−) + κ2− e
−κz+

]
, (3.29)

where z+ = z + z′ − h, z− = |z − z′| − h, γ = −4κk2 sinhκh, and κ± =

κ±N2
0/(2g).

The solution is obtained by convolving Gk with Fk (which is given in

terms of the perturbation density ρ from (3.19)) to find the Qk in (3.21), which

are the Fourier coefficients for q in (3.18), which then can be transformed to

find the pressure perturbation field p,

p(x, z) = Re

{
− 2

l
e−N

2
0 z/2g

∑
k

e−ikx
∫ h

0

dz′Gk(z, z
′)

∫ l

0

dx′ f(x′, z′) eikx
′
}
,

(3.30)

where f , recall, is determined by ρ according to (3.19).
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3.2 Numerical simulations and laboratory experiments

To test our approach and to explore its robustness, we apply it to

density perturbation data for both numerically simulated and experimentally

measured internal wave beams. The numerical simulations are described in

section 3.2.1, while the laboratory tank system and synthetic schlieren mea-

surements are described in section 3.2.2. Comparison of the density pertur-

bation fields from the simulations and the synthetic schlieren measurements

is made in section 3.2.3 in order to validate the application of our method to

laboratory data.

3.2.1 Navier-Stokes numerical simulations

Our direct numerical simulations of the Navier-Stokes equations yield

density, velocity, and pressure perturbation fields for a system with a driven

internal wave beam. The energy flux computed from these fields will be com-

pared to the values obtained by the approach that uses only density pertur-

bation data, as described in section 3.1.2. The simulations use the CDP-2.4

code, which solves the Navier-Stokes equations in the Boussinesq approxi-

mation [28]. This finite-volume based solver implements a fractional-step

time-marching scheme, with subgrid modeling deactivated. The code has

been validated in previous laboratory and computational studies of internal

waves [35, 40, 13, 72, 56].

The simulations are conducted in a two-dimensional domain with x ∈

[−3.0, 3.0] m and z ∈ [0, 0.63] m. Domain dimensions and parameters for
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Figure 3.1: (a) The analytic density profile used for the simulations; the buoy-
ancy frequency is constant, N = 0.8533 rad/s, except N = 0 in a layer about
0.04 m thick at the bottom. (b) Simulation results for the density perturbation
field from the internal wave generated in the upper left corner. The simula-
tion domain is a rectangular box that extends from -3 m to +3 m, while the
laboratory schlieren measurements are made in a region that corresponds to
the box bordered by dashed lines. In this snapshot, made at an instant after
11.75 periods of forcing, the internal wave beam has reached a steady state in
the region of the schlieren measurements, but the flow is still evolving in the
region to the right of the dashed box. (Fig. 1 from [4])
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the simulation are selected for comparison with the experiment discussed in

section 3.2.2. The simulation solves the following for the total density ρT ,

pressure pT , and velocity vT :

∂vT
∂t

+ vT · ∇vT = − 1

ρ00
∇pT + ν∇2vT −

gρT
ρ00

ẑ, (3.31)

∂ρT
∂t

+ vT · ∇ρT = κ∇2ρT ,∇ · vT = 0, (3.32)

where ρ00 = 1000 kg/m3 (density of water), ν = 10−6 m2/s (kinematic vis-

cosity of water at 20oC), and κ = 2 × 10−9 m2/s (the diffusivity of NaCl

in water). Initially the system is stationary with a linear density stratifica-

tion with buoyancy frequency N = 0.8533 rad/s, except in the bottom 0.04

m where the density is constant (figure 1(a)). The boundary conditions are

free-slip at the top and no-slip at the bottom. The left and right boundaries

are periodic with Rayleigh damping, proportional to the velocity, implemented

within 0.5 m of the left and right ends of the domain, preventing any advection

through the boundary.

An internal wave beam is produced using a momentum source in x ∈

[−0.01, 0.01] m and z ∈ [0.43, 0.5825] m that imposes the velocity

vT = ωA(z) sin(ωt− kzz)x̂, (3.33)

with an amplitude profile given by

A(z) = exp(−(z − 0.50625)2/0.22), (3.34)

where the lengths are in meters, and kz = 82.45 m−1. A time step δt =

0.0025 s (5200 steps per period) is sufficient for temporal convergence. Spatial
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convergence is obtained using a structured mesh with resolution δx ≈ 10−7

m near the boundaries, δx ≈ 10−4 m within the internal wave beam, and

δx ≈ 10−2 m away from the active region. Changes in the velocity field are

less than 1% when spatial and temporal resolutions are doubled.

A snapshot of the density perturbation field from the simulation is

presented in figure 3.1(b). Only the right half of the domain is shown because

the system is symmetric about x = 0 m. The internal wave beam is produced

at x = 0 m at a height of about z = 0.5 m, and the reflection of the beam

occurs at (x, z) = (0.7, 0.04) m. The constant density layer in the bottom 0.04

m does not propagate waves because the forcing frequency is higher than the

local buoyancy frequency. This snapshot is taken after 11.75 periods of forcing,

which is sufficiently long for the beam to reach the bottom of the domain but

not yet reach a steady state.

3.2.2 Experimental techniques

The intended application of the approach is for observed data either in

the ocean or in a tank experiment. A tank-based experiment analogous to the

simulation is performed where synthetic schlieren measurements are made to

obtain the instantaneous density perturbation field.

The laboratory system for determining the density perturbation field

by the synthetic schlieren method is diagrammed in figure 3.2(a): a density-

stratified fluid is contained in a lucite tank that has interior dimensions of

4 m × 0.7 m × 0.15 m, and the apparatus for generating internal waves

62



Figure 3.2: (a) A sketch of the experimental system. The camera observes,
through the stratified fluid, a white screen located 0.6 m beyond the tank. The
screen is covered by a mask (shown in (b)), and is back-lit by a panel of LEDs.
Density perturbations caused by the internal wave beam change the fluid index
of refraction, causing the mask to appear to move, and digital movies record
this motion. (b) The internal wave generator has 12 plates that are driven
by a camshaft, and each cam is an eccentric disk on a hexagonal rod that is
rotated by a stepper motor. The disk eccentricity, A(z), is a Gaussian profile.
The mask covering the LED panel is a rectangular array of black squares, each
0.0018 m × 0.0018 m with 0.0009 m gaps in between. (Fig. 2 from [4])
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(figure 3.2(b)) is 3 m from the end of the tank. The tank is filled slowly from

the bottom, using the generalized double-bucket procedure of Hill [31], which

uses two fluid reservoirs, one with pure water and the other with saturated salt

water, to produce the desired fluid density profile. In our tank, the density

increases linearly from 1000 kg/m3 (pure water) at the top to a density of 1045

kg/m3 (salt solution) at a height just 0.04 m above the bottom; below 0.04 m

the density is approximately constant (see figure 3.1(a)). The constant density

layer is added to lift the fluid away from optical distortions at the bottom of

the tank. To measure the stratification, fluid samples are withdrawn from the

tank at various heights and their densities are measured with an Anton-Parr

density meter.

An internal wave beam is generated with a camshaft-driven wavemaker

based on the design of Mercier et al. [48] (see figure 3.2(b)). A rotating

camshaft drives a stack of 12 delrin plastic plates (cams) to produce a ve-

locity profile approximating the one used in the simulations. The cams are

0.0762 m diameter circular disks that are offset from their centers by distances

prescribed by equation (3.34). The hexagon drive shaft gives a phase differ-

ence of π/3 between consecutive disks. The wavemaker is driven at (2π)/13

rad/sec, which yields a beam with an angle of θ = 34.5o with respect to the

horizontal, based on the dispersion relation sin θ = ω/N .

The density perturbation field resulting from the two-dimensional in-

ternal wave beam is observed using the synthetic schlieren method, which uses

the linear relationship between the local density gradient and the index of
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refraction of the density-stratified fluid [65, 12]. The distorted images of the

mask’s square grid pattern (cf. figure 3.2) are recorded with a camera on the

opposite side, as in Sutherland et al. [66]. Calculation of the corresponding

density perturbation field through integration, however, has proven to be chal-

lenging because the time-dependent image must have a large signal-to-noise

ratio in order to obtain accurate density perturbation fields to implement the

method described in section 3.1. As a result of this challenge, only a few in-

vestigations have actually calculated density perturbation fields from schlieren

measurements [18, 68, 30, 33].

To allow us to accurately integrate the density-perturbation field, we

achieve a large signal-to-noise ratio using a Nikon D810 camera with 7360 ×

4912 pixels to image the pattern of black squares of the mask (see figure 3.2(b)).

The camera is placed 3 m in front of the tank. The D810 camera has focus

and mirror locks that reduce camera and focus jitter during closure of the

mechanical shutter. The camera images a 0.86 m × 0.51 m region that starts

0.1 m to the right of the wavemaker and extends upward from the bottom of

the tank. Images are taken at a frequency of 1 Hz, which corresponds to 13

images per wave period. There are 10 pixels across each black square in the

image; in the quiescent system the image of a black square moves less than 0.1

pixel due to thermal variations and camera shake. In the most intense part of

the internal wave beam the black squares are displaced typically by 6 pixels.

The positions of the individual black squares in the images are deter-

mined with subpixel accuracy using a particle tracking code that identifies

65



 

 

−0.35 0.35kg/m30.1

0.4

z

(m)

0.2 0.6
x (m)

(a) ρsim

0.2 0.6
x (m)

(b) ρexp

0.2 0.6
x (m)

(c)

Figure 3.3: The instantaneous density perturbation field from (a) simulation
and (b) experiment. (c) The synthetic schlieren density perturbation mea-
surements (red dashed) agree well with the numerical simulation results (blue
solid) at different heights in the tank. The horizontal black lines correspond
to zero perturbation. The maximum amplitude of the perturbation is 0.36
kg/m3. (Fig. 3 from [4])

centers of squares by a least-squares method [20]. To create the displacement

values, reference positions of the squares are determined from a sequence of

images obtained before the wavemaker is turned on. Then the displacement

field of the squares is computed from the images in the digital movie, and the

displacements are used to calculate perturbations of ∇ρ. Through application

of a partial-differential-equation solver that eliminates the rotational noise in

the measurements, the density-gradient perturbations are used to calculate a

density perturbation field [30]. While we performed the calculation indepen-

dently, the density perturbation field can be computed from schlieren data

using the software package DigiFlow [11].
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3.2.3 Comparison between simulation and experiment

Care was taken to match the conditions of the experiment and simu-

lation, but there are differences, particularly in the layers of nearly constant

density at the top and bottom of the laboratory tank. The laboratory wave-

maker forcing profile modeled by equation (3.34) was fit to the eccentricity

profile used in the experiments, but the match was imperfect. However, the

frequencies were accurately matched. Another minor difference between the

simulation and experiment is that the free surface in the experiment falls and

rises about 10−7 m, while the simulation compensates for the small periodic

volume flux with a background flow that is at least five orders of magnitude

smaller than the velocities in the beam. Finally, our comparisons between the

simulation and experiment are made at an early enough time that the internal

wave beam has not reflected off the far end of the tank.

The simulated density perturbation field matches well with the labora-

tory schlieren data obtained in the region corresponding to the black dashed

box of figure 3.1, as can be seen by comparing figures 3.3(a) and (b). The

amplitude of the experimentally measured density perturbation is 2% smaller

than in the simulation. The experimental internal wave beam has a narrower

band of large density perturbation, which is perhaps due to weaker realized

forcing by the top and bottom plates of the wavemaker. Finally, the density

perturbation below the reflection region differs from the experimental internal

wave beam, which penetrates further into the bottom near-constant density

layer.
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The simulated and experimental density perturbation profiles at six

heights are compared in figure 3.3(c). The rms difference (relative to the

beam amplitude) between the simulated and measured density perturbation

fields within the beam is about 9%, except near the bottom of the tank where

the difference rises to as much as 30%. The large error in the constant density

layer at the bottom boundary arises because, as aforementioned, the simulation

uses an analytic density profile that closely but not exactly models the density

profile near the bottom of the laboratory tank.

3.3 Results

Given the density perturbation fields from section 3.2.1, we obtain the

instantaneous velocity, pressure, and energy flux using our method, and com-

pare them to the simulated results in section 3.3.1. This verification of the

method presented in section 3.1 uses the entire simulation domain, which sat-

isfies the boundary conditions in equations (3.14) and (3.16). Then section

3.3.2 applies the method to laboratory schlieren measurements of the density

perturbation field. These calculations are made in a subdomain of the simula-

tions, but we show that with appropriate buffering of the laboratory data the

results for the energy flux determined by the method agree well with direct

Navier-Stokes simulations.
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Figure 3.4: The percent difference (relative to the peak amplitude) of the
instantaneous fields calculated solely from the simulation density perturbation
field compared with the direct Navier-Stokes simulation values for w (a), u (b),
p (c), Jz (d), Jx (e), and the energy flux component parallel to the beam, J‖ (f).
The insets show profiles in the beam towards the top-left (solid) and bottom-
right (dashed) corners of the domain. Excluding the reflection region where
the buoyancy frequency deviates, the difference is within 3% for all quantities.
(Fig. 4 from [4])
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3.3.1 Verification of the method by comparison with direct numer-
ical simulations

The Green’s function method for determining the instantaneous veloc-

ity perturbations, pressure perturbations, and energy flux from density per-

turbation data for internal waves is verified by comparison with results from

the numerical simulations. As figure 3.4 shows, the fields w, u, and p calcu-

lated solely from simulation density perturbation data agree with the direct

simulation values typically to within a few percent, and the results for the

energy flux J agree with the simulations to within 1% throughout most of the

domain, except in the thin constant density layer near the bottom. There the

buoyancy frequency profile deviates from the uniform value of the rest of the

domain. Note that all percent differences are relative to the peak amplitude.

The analysis is performed on the internal wave field in the entire domain in

figure 3.1 to satisfy the boundary conditions (3.14) and (3.16).

The vertical velocity component w in figure 3.4(a) is straightforwardly

obtained from the time derivative of the density perturbation field (3.11).

Throughout the domain the results closely match, and across the beam the rms

percent difference (normalized by the peak amplitude) between the density-

calculated and simulated values is 0.8%. The largest errors occur where the

wave beam is generated and in the region where the beam reflects from the

thin constant density layer at the bottom (cf. figure 3.1(b)). In the latter

region the percent difference is as high as 11%.

The horizontal velocity component u is calculated by integrating the
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incompressibility condition with the previously calculated w of (3.12). Taking

initial integration points where the velocity is known to be zero or small, the

normalized rms difference between u from the density-calculated method and

from direct simulations is 2.2% across the internal wave beam. The amplitude-

normalized percent difference is less than 2% throughout the beam but reaches

errors as large as 26% at the constant density layer interface. However, because

we assume the starting point has zero velocity, any error in our assumption

that the starting point has zero velocity will propagate across the horizontal

slice, as is evident to the right of the beam.

The first step in determining the pressure perturbation field from the

density perturbation field is the calculation of the Fourier coefficients of f(x, z)

(3.20) for each horizontal slice of the domain. We find that 300 modes are

sufficient for convergence for the high resolution simulation data with a small

beam width relative to the domain width. The Fourier coefficients are then

used in the Green’s function calculation to obtain the pressure perturbation

field p (cf. (3.30)). The normalized rms difference between this calculated p

and the value of p direct from the simulations is 3% in the beam (figure 3.4(c)).

Again the largest errors (11%) are in the regions of wave beam generation and

reflection.

Finally, the energy flux is obtained by multiplying the calculated ve-

locity and pressure perturbation fields. Figures 3.4(d) and (e) compare Jz

and Jx obtained from the density perturbation field with the direct numerical

simulations, respectively. The normalized rms difference in the vertical energy
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Figure 3.5: Experimental (red dashed) and simulation (blue solid) results at
different heights are compared for w (a) and u (b). (c) The pressure perturba-
tion field from the simulation. (d) p from the Green’s function method applied
to laboratory data. (e) A comparison of the results in (c) and (d) at different
heights. (Fig. 5 from [4])
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flux in the internal wave beam is 0.8%, which matches the precision of the

vertical velocity calculation. The maximum difference in the flux magnitude

occurs in the reflection region and is 4.5% (cf. figure 3.4(f )), which is lower

than the individual components because the overestimate of the calculated

vertical velocity is partially compensated by an underestimate of the pressure.

Throughout most of the beam the normalized percent difference between our

method and the direct Navier-Stokes simulation result for the energy flux is

less than 1.0%. Because the calculation of the velocity and pressure tend to

underestimate the actual values, the energy flux is also underestimated.

3.3.2 Application of the method to laboratory data

Having verified the method in the previous subsection, we now apply

it to the experimental data presented in section 3.2.3. The data is obtained

in the portion of the domain within the black dashed box in figure 3.1, but

this subdomain does not satisfy the boundary conditions taken for the method.

However, in appendix B.1 we present a procedure that accommodates data sets

for subdomains that do not strictly satisfy the boundary conditions. For better

comparisons between the simulated and experimental results, the simulation

data in this subsection uses a lower data resolution, which is identical to that

of the experiment. As mentioned in section 3.2.3, the measured and simulated

density perturbation fields are not identical, but closely represent the same

instant allowing the use of the simulated results for comparison of the velocity

perturbation, pressure perturbation, and energy flux fields.
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Figure 3.6: (a) The energy flux in the direction of the internal wave beam,
obtained using the Green’s function method on the experimental density per-
turbation data. (b)-(e) The energy flux in cross sections of the beam, computed
from the Navier-Stokes simulations (black solid) and from the Green’s func-
tion method on the laboratory measurements (red dashed). The agreement is
very good in (c) and (d), but less so in regions where the simulations have less
accurate representations of the laboratory system, that is, near the internal
wave source (b) and near the unstratified the thin bottom layer (e). (Fig. 6
from [4])

The velocity components from the simulations and laboratory measure-

ments are compared in figures 3.5(a) and (b). The camera was limited to 13

frames per period, but despite this large time step the results calculated from

the lower-resolution simulation data for the time derivative of the density per-

turbation differ from the high-resolution results presented in section 3.3.1 by

less than 1%. The vertical velocity profiles from the simulation and exper-

iment in figure 3.5(a) have an average normalized rms difference of 8.1% in

the beam. The horizontal velocity profiles in figure 3.5(b) have similar average

normalized rms differences, 8.4%. The largest error, as much as 30%, occurs in

the reflection region where the simulation and laboratory density stratification

profiles differ.
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Outside the beam the velocity field calculated from the experimental

density perturbation field agrees well with the values direct from the simu-

lations. However, outside the beam the pressure perturbation field p found

by applying the Green’s function method to the experimental data does not

agree as well with the corresponding values from the numerical simulation, as

figures 3.5(c) and (d) show. The differences between p from the simulation

and the experiment result primarily from the differences in the lower mode

Fourier components, because of error at larger length scales in the experimen-

tal density perturbation data (not shown). The resultant difference is evident

in the plots of p at different heights in figure 3.5(e). The average normalized

rms difference in p in the beam and for the full domain are comparable, 15.1%

and 14.0%, respectively.

Despite the differences in p direct from the simulation and the Green’s

function calculation of the laboratory data, the energy flux obtained by the

Green’s function method differs from the simulation typically by only 6% (rms

difference normalized by the flux amplitude), as figure 3.6 shows. The Green’s

function result for the flux outside of the beam does not have the artifacts

present in the pressure field, because in those regions the velocity is close

to zero. The agreement is not as good at the upper left (cf. figure 3.6(b)),

where the laboratory internal wave generator is represented by an approximate

model form in the Navier-Stokes simulations, and at the lower right where the

beam reflects from a thin unstratified bottom layer, which is also only modeled

approximately in the Navier-Stokes simulations (cf. figure 3.6(e)).
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3.4 Conclusions

We have presented a Green’s function method for calculating the in-

stantaneous energy flux field J = pv solely from the density perturbation field

for linear internal waves in a density-stratified fluid with a uniform buoyancy

frequency N . J is obtained from the density perturbation field through sep-

arate computations of p, u, and w: p using the Green’s function expression

of (3.30), w from the continuity equation (3.11), and u from incompressibility

and knowledge of w from the previous calculation. The method was veri-

fied using numerical Navier-Stokes simulations of our laboratory experiment

on internal waves generated in a tank with a linearly stratified density fluid.

In most of the domain, w, u, p, and J calculated using the Green’s func-

tion method solely from the density perturbation field from a Navier-Stokes

simulation agree within a few percent with results obtained directly from the

simulation. However, in regions near the wave generator and the unstratified

bottom fluid layer, the results obtained directly from the simulations and from

the Green’s function method differ by as much as 5%.

The Green’s function method was then applied to laboratory schlieren

data. In order to match the boundary conditions in the derivation, (3.14) and

(3.16), we used data buffers described in appendix B.1 because the observa-

tional window for the schlieren measurements did not span the entire tank.

The density perturbation field determined from the schlieren data differs from

the numerical simulation by about 11%, but a counterbalance of errors in the

velocity and pressure fields led to energy flux values from the experiment that
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agree with the numerical simulations to within 6%.

The Green’s function method developed here was applied to internal

waves in a linearly stratified fluid (uniform buoyancy frequency) and an ana-

lytic solution was found. However, the theory in section 3.1.1 applies to any

stratification. Systems with nonlinear stratifications can be analyzed numer-

ically with (3.13), and for some buoyancy frequency profiles N(z) analytic

solutions are possible, as is discussed in chapter 4.

While the method was applied here to a single internal wave beam,

it also was found to work for a wave field where a parametric subharmonic

instability produced wave energy at two new wavenumbers and frequencies;

this would be difficult to treat by time-averaged methods. A modification of

the present method could be made for systems with a known time-varying

spatially uniform background flow, such as tidal flow. Another interesting

extension would be to weakly three-dimensional density perturbation fields,

such as those that occur near ocean ridges and in coastal waters.

To aid in the application of this method, a Matlab GUI has been de-

veloped, as described in appendix B.2. Implementation of the GUI requires

the density perturbation field, the coordinates of the data, the time step size,

and the buoyancy frequency (which is assumed to be constant). If a data set

does not satisfy the boundary conditions assumed in our analysis, the GUI

can implement the buffering technique used on our data and discussed in ap-

pendix B.1. The GUI includes an operations manual and also a tutorial which

recalculates the numerical results from section 3.3.2.
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Chapter 4

The energy flux from the density perturbation

field for non-uniform N

This chapter, at the time of this writing, is heavily based on a manuscript

[41] which has been submitted to The Journal of Fluid Mechanics. The Navier-

Stokes simulation results and the finite difference method were obtained by

Michael Allshouse. In chapter 3 a Green’s function method was used to cal-

culate the instantaneous energy flux field from a density perturbation field [4]

for a fluid with constant buoyancy frequency,

N(z) =

√
−g
ρ0

∂ρ

∂z
, (4.1)

but in the oceans N varies significantly with depth, as figure 4.1 illustrates

with data from two locations in the North Atlantic.

Recognizing the strength of the Green’s function method, we extend

that method to accommodate linearN and tanhN2 profiles. These two profiles

are selected due to their mathematical properties and their presence in ocean

stratifications. The tanh N2 profile is often a good approximation in the

ocean when two nearly constant buoyancy-frequency zones are separated by a

pycnocline, as figure 4.1(a) illustrates. The linear N profile can occur in the

ocean when there is no strong pycnocline, and the buoyancy frequency near
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Figure 4.1: Two buoyancy frequency profiles from a World Ocean Circulation
Experiment data set: (a) A measured buoyancy frequency squared profile
(black dots) fit to a tanh profile (red). (b) A measured buoyancy frequency
profile (black dots) fit to a linear profile (red). The insets show regions 1000 km
× 1000 km that contain the locations (red dots) where the measurements were
made. The mean buoyancy frequency (squared for (a)) of bins of stratification
measurements is plotted as a function of depth (black dots) with error bars
representing two standard deviations from the mean.
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the surface decays to a nearly constant value in the depth, as illustrated in

figure 4.1(b).

However, because many buoyancy frequency profiles cannot be ade-

quately approximated by either a linear N or a tanh N2 profile as in figure

4.1, the general N(z) case must be treated separately. To account for this,

we present a numerical method for computing the instantaneous energy flux

field solely from a density perturbation field that can have an arbitrary N(z)

profile.

The present work provides a tool for laboratory experiments and field

measurements: the calculation of the instantaneous energy flux field from den-

sity perturbation data. The tool can be applied to ocean density perturbation

space-time data when such data becomes available. The tool, comprised of

methods presented here and in Allshouse et al. [4], provides the instantaneous

rather than time-averaged energy flux field. Thus the resultant energy flux

and integrated far-field power include all spectral components, while previous

methods provided only the global conversion rates or monochromatic results.

This chapter is organized as follows. An outline of our method for

obtaining the energy flux from the density perturbation field in a tanh N2

and linear N stratification is presented in section 4.1. This method is then

verified with numerical simulations in section 4.2. A finite difference method

for calculating the energy flux for an arbitrary buoyancy frequency profile is

presented in section 4.3, and is applied to an ocean-inspired stratification.

Lastly, conclusions and potential applications of this work are presented in
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section 4.4.

4.1 Theoretical development

As this work builds off the theoretical foundation presented in chapter 3

and Allshouse et al. [4], we present the general equations in section 4.1.1. These

equations provide the velocity perturbation field as a function of the density

perturbation, and a functional relationship between the density and pressure

perturbation fields is established. For an analytic tanh N2 and linear N , we

calculate the Green’s function in section 4.1.2 and section 4.1.3, respectively.

4.1.1 Generalities

Our goal of obtaining the energy flux (1.39) from the density perturba-

tion field alone requires calculating the pressure perturbation and components

of the velocity perturbation from the density perturbation field. The details of

these calculations were given in Allshouse et al. [4] for a uniform N profile, but

here we present a condensed version of the pressure perturbation calculation,

as needed for the calculations for the tanh N2 and linear N profiles.

As before, we begin with the linearized Euler equations for perturbation

about a hydrostatic background, and they are shown here again for readability:

∂u

∂t
= − 1

ρ0

∂p

∂x
,

∂w

∂t
= − 1

ρ0

∂p

∂z
− ρ

ρ0
g , (4.2)

∂ρ

∂t
=
N2 ρ0
g

w ,
∂u

∂x
+
∂w

∂z
= 0 , (4.3)

where u and v are the horizontal and vertical components of the velocity
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perturbation, respectively, p is the pressure perturbation, ρ is the density

perturbation, ρ0 is the hydrostatic background density profile, and N is the

buoyancy frequency. By manipulating (4.2) and (4.3) we obtain an equation

for the pressure perturbation in terms of the density perturbation,

∂2p

∂x2
+
∂2p

∂z2
+
N2

g

∂p

∂z
=−N2ρ− g∂ρ

∂z
. (4.4)

First, we solve this equation for p assuming we have the measured ρ.

Equation (4.4) is brought into a convenient form by first applying the

following transformation:

p(x, z) = q(x, z)T (z) (4.5)

where

T (z) = exp

[
− 1

2g

∫ z

dz′N2(z′)

]
(4.6)

and then Fourier expanding in x, yielding

d2Q

dz2
−
(
k2 +

N

g

dN

dz
+
N4

4 g2

)
Q = −F. (4.7)

Here F (z; k) and Q(z; k) denote the Fourier components of

f(x, z) =
1

T (z)

(
N2ρ+ g

∂ρ

∂z

)
(4.8)

and q(x, z), respectively.

We solve (4.7) for Q given F by obtaining the Green’s function for the

Fourier components, which satisfies

d2

dz2
G(z, z′; k)−

(
k2 +

N

g

dN

dz
+
N4

4g2

)
G(z, z′; k) = 0, z 6= z′ , (4.9)

82



with a no-flux condition in the z direction at the top and bottom of the domain,(
dG

dz
− N2

2g
G

) ∣∣∣∣
z=0, h

= 0 , (4.10)

and the Green’s function matching conditions,

G+(z′) =G−(z′) (4.11)

dG+

dz
(z′) =

dG−

dz
(z′) + 1 . (4.12)

Thus, given profiles for the buoyancy frequency N and source term f , the

pressure perturbation is given by the following expression:

p(x, z) = Re

{
− 2

l
T (z)

∑
k

e−ikx
∫ h

0

dz′G(z, z′; k)

∫ l

0

dx′ f(x′, z′) eikx
′
}
,

(4.13)

where k = 2πn/l, l is the width of the system, and n is a positive integer.

Next, we obtain the components of the velocity perturbation. The

vertical component follows by inverting the first equation of (4.3) yielding,

w =
g

N2 ρ0

∂ρ

∂t
, (4.14)

and the horizontal component is obtained by using the vertical velocity per-

turbation (4.14) and the incompressibility condition, the second equation of

(4.3), which gives the differential equation

∂u

∂x
= − ∂

∂z

(
g

N2ρ0

∂ρ

∂t

)
. (4.15)

None of these calculations depend on the particular form of the buoy-

ancy frequency profile, so it is possible to perform all the necessary expres-

sions for calculating the energy flux from ρ alone in a general stratification.

83



To calculate analytically the Green’s function for (4.9), it is necessary that

the functional form of the buoyancy frequency profile be specified. Chapter 3

[4] investigates the particular case where the buoyancy frequency is constant

resulting in a Green’s function that is exponential. In section 4.1.2 we present

the calculations for obtaining the pressure perturbation for the tanh N2 pro-

file, and in section 4.1.3 we present the analogous calculation for the linear N

profile.

4.1.2 The tanh profile

The buoyancy frequency profile we assume in this section is given by

N2(z) =
N2

1 +N2
2

2
+
N2

2 −N2
1

2
tanh

(
α(z − zt)

)
(4.16)

≡η+ + η− tanh
(
α(z − zt)

)
, (4.17)

because this gives a convenient form for N dN/dz. Here α controls the tran-

sition width between the two buoyancy frequency values N1 and N2, and zt is

the midpoint of the transition. Note, for large α (4.17) approximates a two-

layer N2 profile, which we will investigate in section 4.2.2. We assume that

N4/4g2 in (4.9) is negligible. For low mode numbers, outside of the transition

region, k2 (∼ 100 − 101 m−2) is much larger than N4/4g2 (∼ 10−2 m−2), and

near the transition region k2 is roughly the same order as (N/g)(dN/dz). For

larger mode numbers k2 is the dominant term. Thus for simplicity we keep

k2 and (N/g)(dN/dz) and drop N4/4g2 for all modes. Upon substituting the
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stratification of (4.17), the Green’s function equation, (4.9) becomes

∂2

∂z2
G(z, z′; k)−

(
k2 +

α η−
2 g

sech2(α(z − zt))
)
G(z, z′; k) = 0, z 6= z′ .

(4.18)

Equation (4.18) is of the form of a well-studied time-independent Schrödinger

equation (e.g. [17, 58, 44]).

With the dimensionless coordinate transformation

z = zt +
1

α
tanh−1 y, (4.19)

equation (4.18) becomes

(1− y2)d
2Ḡ

dy2
− 2 y

dḠ

dy
+

(
ν(ν + 1)− µ2

1− y2
)
Ḡ = 0, y 6= y′ , (4.20)

where the dimensionless Green’s function Ḡ is given by

G(z(y)) =
1

α
Ḡ(y) (4.21)

and the parameters ν and µ are given by

ν± = −1

2
± 1

2

√
1− 2 η−

α g
, µ =

k

α
. (4.22)

Thus the transformation takes (4.18) into the associated Legendre equation

(4.20), which has the two linearly independent solutions P µ
ν (y) and Qµ

ν (y),

the associated Legendre functions of the first and second kind, respectively.

Then, solving (4.20) with the boundary conditions (4.10) and the matching

conditions (4.11) and (4.12) gives the Green’s function,

Ḡ(y, y′) =
1

DW


(

Φ2P
µ
ν (y′) + Π2Q

µ
ν (y′)

)(
Φ1P

µ
ν (y) + Π1Q

µ
ν (y)

)
, y < y′(

Φ1P
µ
ν (y′) + Π1Q

µ
ν (y′)

)(
Φ2P

µ
ν (y) + Π2Q

µ
ν (y)

)
, y > y′ .

(4.23)
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Here

D = −
∣∣∣∣Π1 Π2

Φ1 Φ2

∣∣∣∣ , W = 22µ Γ(ν+µ+2
2

)Γ(ν+µ+1
2

)

Γ(ν−µ+2
2

)Γ(ν−µ+1
2

)
, (4.24)

Π1,2 =
dP µ

ν (y0,h)

dy
− N2

1,2

2 g (1− y20,h)
P µ
ν (y0,h) , (4.25)

Φ1,2 = −dQ
µ
ν (y0,h)

dy
+

N2
1,2

2 g (1− y20,h)
Qµ
ν (y0,h) . (4.26)

Note, the transformation factor T (z) for this case is given by

T (z) =

{
cosh[α(z0 − zt)]
cosh[α(z − zt)]

}η−/(2αg)
exp

[
η+(z0 − z)

2 g

]
. (4.27)

For further information on the numerical calculation of the Green’s function

see appendix D.

4.1.3 The linear profile

The calculations for the linear N profile are similar to those of section

4.1.2, so we only highlight the important differences. The linear profile for the

buoyancy frequency is given by

N(z) =
dN

dz
· (z − zt) ≡ N ′ · (z − zt) , (4.28)

where zt is now the location where the buoyancy frequency becomes zero. We

again neglect N4/4g2 (∼ 10−2 m−2) in comparison to k2 and (N/g)(dN/dz)

(∼ n2 and ∼ 1 m−2, respectively) as we insert (4.28) into (4.9). For the linear

N profile, instead of (4.18) we obtain

∂2

∂z2
G(z, z′; k)−

(
k2 + (N ′)2

(z − zt)
g

)
G(z, z′; k) = 0, z 6= z′ . (4.29)
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With the coordinate transformation

z = zt − g k2(N ′)−2 + g1/3(N ′)−2/3 y , (4.30)

where once again y is a dimensionless coordinate variable, equation (4.29)

becomes

d2

dy2
Ḡ(y)− y Ḡ(y) = 0, y 6= y′ , (4.31)

which is the Airy equation with the two independent solutions Ai(y) and

Bi(y), the Airy functions of the first and second kind, respectively. Then, the

dimensionless Green’s function is given by

Ḡ(y, y′) =
π

D


(
β2Ai(y

′) + α2Bi(y
′)

)(
β1Ai(y) + α1Bi(y)

)
, y < y′(

β1Ai(y
′) + α1Bi(y

′)

)(
β2Ai(y) + α2Bi(y)

)
, y > y′ ,

(4.32)

which when given dimensions becomes

G(z(y)) = g1/3(N ′)−2/3Ḡ(y). (4.33)

Here

D = −
∣∣∣∣α1 α2

β1 β2

∣∣∣∣ , (4.34)

α1,2 =
dAi(y0,h)

dy
− 1

2
g−2/3(N ′)4/3(z0,h − zt)2Ai(y0,h) , (4.35)

β1,2 = −dBi(y0,h)
dy

+
1

2
g−2/3(N ′)4/3(z0,h − zt)2Bi(y0,h) , (4.36)
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where z0 and zh are the coordinates of the bottom and top of the domain,

respectively, and y0 and yh are the corresponding transformed coordinates.

The transformation factor T (z) in this case is given by

T (z) = exp

{
(N ′)3

6 g

[
(z0 − zt)3 − (z − zt)3

]}
. (4.37)

4.2 Analysis verification

To verify the Green’s function analysis in section 4.1, we compare those

predictions with results for the energy flux obtained from direct numerical

simulations of the Navier-Stokes equations. The simulations are described in

section 4.2.1. The simulated velocity perturbation, pressure perturbation, and

energy flux fields of internal waves in a stratified fluid are compared with the

predictions from the analyses for a tanh N2 profile in section 4.2.2 and for a

linear N profile in section 4.2.3.

4.2.1 Simulation of the density perturbation field

To verify the Green’s function method, we perform direct numerical

simulations of the Navier-Stokes equations in the Boussinesq approximation.

These simulations provide the density perturbation field needed to calculate

the velocity perturbation, pressure perturbation, and energy flux fields. The

simulations use the CDP-2.4 algorithm, which is a finite volume solver that

implements a fractional-step time-marching scheme [28, 47]. This code has

previously been used to simulate internal waves and has been validated with

experiments [35, 40, 13, 72, 56, 4].
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Figure 4.2: (a) The N profile of a broad transition tanh N2 (dotted red curve)
and a narrow transition tanh N2 profile (solid blue curve). The dashed black
line is a linear N profile. (b) The simulation domain and density perturbation
field for the narrow transition tanh N2 internal wave field. Rayleigh damping
is applied in the gray region of the field. The sub domain used for analysis is
bound with a black dashed line.
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Our two-dimensional simulations span the domain x ∈ [−1.5, 3] m and

z ∈ [0, 1.5] m. The simulation solves for the total density ρT , pressure pT ,

and velocity vT :

∂vT
∂t

+ vT · ∇vT = − 1

ρ00
∇pT + νw∇2vT −

gρT
ρ00

ẑ, (4.38)

∂ρT
∂t

+ vT · ∇ρT = κs∇2ρT ,∇ · vT = 0, (4.39)

where ρ00 = 1000 kg/m3 (density of water), νw = 10−6 m2/s (kinematic viscos-

ity of water at 20oC), and κs = 2×10−9 m2/s (the diffusivity of NaCl in water).

The system is initially at rest and the prescribed density field is unperturbed.

The initial density field is analytically derived from the buoyancy frequency

profiles presented in figure 4.2(a). The boundary conditions at the bottom

and top are no slip and free slip, respectively. The left and right boundaries

are set to be periodic; however, Rayleigh damping is used along the perimeter

of the domain (gray region in figure 4.2(b)), thus forcing the velocity to be

negligible at the left and right boundary.

The internal wave beam is produced by using a momentum source that

forms a rectangle with height 0.15 m and width 0.04 m, centered at (−0.02, 0.8)

m and rotated to match the internal wave beam angle corresponding to the

buoyancy frequency at z = 0.8 m. The wave beam velocity imposed is

vT = ωA(z′) sin(ωt− kzz′)x̂′, (4.40)

with an amplitude profile given by

A(z′) = exp(−(z′)2/0.0022), (4.41)
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where the lengths are in meters, the rotated coordinates x′ and z′ correspond

to the beam tangent and normal coordinates centered at x = (−0.02, 0.8)

m, respectively, ω = 2π/13 rad/sec and kz = 8245 m−1. A time step size

δt = 0.0025 s (5200 steps per period) is sufficient for temporal convergence.

Spatial convergence is obtained using an unstructured mesh with resolution

δx ≈ 0.0014 m inside the region x ∈ [−0.8, 1.80] m, y ∈ [0.5, 1.1] m. This high

resolution region contains the beam generation, the density gradient transi-

tion for the tanh N2 profiles, and generation of any additional beams. The

resolution outside of this region grows to δx ≈ 0.0025 m near the boundaries.

Changes in the velocity field are less than 1% when spatial and temporal res-

olutions are doubled.

The density perturbation field for the case where we have a rapid change

in buoyancy frequency (blue line in figure 4.2(a)) is presented in figure 4.2(b).

The internal wave beam is generated at (−0.02, 0.8) m and produces a beam

propagating to the right that is the focus of our studies and a beam propa-

gating to the left which is damped out by the Rayleigh damping. The beam

propagating down to the right reaches the interface at z = 0.6 m at which

point three beams are produced: a reflected beam to the top right at the same

angle to the horizontal as the incoming beam, a transmitted beam to the bot-

tom right that has a different angle, and a reflected second harmonic beam at

approximately twice the incoming angle. This particular snapshot is shown

after 23.06 periods of forcing, which is sufficient for the beam in the region of

interest to reach steady state.
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Figure 4.3: The beam-normalized percent difference between the density-
perturbation-based method and the simulation for (a) w and (b) u. The insets
show the percent difference across the beam for three transects: the incom-
ing beam (solid black), the transmitted beam (dashed green), and the second
harmonic beam (dotted orange).

4.2.2 Tanh N2 profile analysis verification

The vertical (4.14) and horizontal (4.15) components of the velocity and

the pressure perturbation calculated from the density perturbation using the

Green’s function (4.23) for the tanh N2 profile are verified by comparison with

the direct numerical simulations described in section 4.2.1. For large α the

tanh N2 profile can be approximated as a two-layer N system, as illustrated

in figure 4.2(a), where α = 4, corresponding to a transition thickness of 0.01

m for a 95% change in N2; this is at least an order of magnitude smaller than

the the beam width and domain height. Henceforth the large α case is called

the “narrow transition” tanh N2 profile.

The difference between the density-perturbation-based velocity pertur-

bation and the simulated velocity perturbation for the narrow transition tanh
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Figure 4.4: The pressure perturbation field from (a) the direct numerical simu-
lation and (b) the Green’s function calculation from the density perturbation.
(c) The beam-normalized percent difference between the two pressure fields
from the two methods.

N2 profile are presented in figure 4.3; in most of the domain, the difference

is less than 3% (with respect to the beam amplitude), except in the transi-

tion region at z = 0.6 m where there is a significant amount of nonlinearity.

Because the horizontal velocity perturbation is found by solving an ODE on

constant z levels (4.15), the patch of large vertical velocity perturbation error

is propagated horizontally from the reflection site; thus the region of error is

larger for u. Despite this nonlinearity, the error is small in most of the domain.

Next we investigate how well the Green’s function method calculates the

pressure perturbation field from the density perturbation field. Figure 4.4(a)

shows the simulated pressure perturbation field, and figure 4.4(b) shows the

pressure perturbation calculated using the Green’s function method. Despite

the nonlinearities in the narrow transition layer, the Green’s function method,

which is based on the linear equations, yields accurate estimates of the pres-

sure perturbation for the reflected, transmitted, and second harmonic beams,

as figure 4.4(b) illustrates. The beam-normalized percent difference between
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the calculated and simulated pressure perturbation fields is presented in fig-

ure 4.4(c). The calculation is accurate to within 5% over most of the do-

main, and to better than 10% everywhere except within 0.02 m of where the

beam enters the domain. Near the top of the domain, the Green’s function

method overestimates the pressure perturbation by 4−6%, which causes some

distortion in the second harmonic, as can be seen around (1.25, 0.8) m in

figures 4.4(a) and 4.4(b). The Green’s function method underestimates the

pressure perturbation in the center of the domain, but the error is less than

5%.

Finally, we use the calculated velocity and pressure perturbation fields

to compare the energy flux J directly from the numerical simulations with the

flux computed from the Green’s function analysis. The magnitude of the en-

ergy flux from the simulations is presented for the narrow transition tanh N2

profile in figures 4.5(a). For the narrow transition region case the energy flux

for the reflected beam is higher than for the transmitted beam and an or-

der of magnitude greater than in the second harmonic. The beam-normalized

percent difference of the horizontal and vertical energy flux are presented in

figures 4.5(b) and (c), respectively. Outside of the immediate vicinity of the

interface region at z = 0.6 m the percent difference is less than 3%. The

accumulated error from multiplying the calculated velocity and pressure per-

turbation to obtain the flux components is large at the narrow transition in-

terface as a consequence of error in the horizontal velocity perturbation, which

is compensated to some extent by a more accurate pressure perturbation cal-
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Figure 4.5: The energy flux magnitude computed in direct numerical simu-
lations for (a) narrow (α = 4) and (d) broad transition (α = 0.1) tanh N2

profile. The beam-normalized percent difference between the x-component of
the energy flux from the simulations and from the Green’s function method is
shown in (b) and (e), respectively, for the narrow and broad transition regions,
and corresponding results for the z-component of the energy flux are in (c) and
(f). For each case an inset shows the difference between the simulations and
Green’s function methods is less than 5% for most of the domain; the insets
in each panel show the difference along two or three beam transects.
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culation at the interface; the error is smaller for Jz than for Jx. In the lower

half of the domain the magnitude of the energy flux is underestimated due to

underestimation of the pressure perturbation. The insets show that the error

along three beam transects is mostly smaller than 3% for the narrow transition

simulation.

We also simulate a tanh N2 profile with a broader transition thick-

ness layer of 0.31 m (α = 0.1). We omit the comparison of the velocity and

pressure perturbations for brevity and instead examine the energy fluxes, as

shown in figure 4.5. The energy flux field for the broader tanh N2 profile is

presented in figure 4.5(d). The internal wave beam passes through the broad

transition without reflection because there are no rapid changes in buoyancy

frequency. This smooth transition reduces the nonlinearities so there are sig-

nificantly smaller errors in the velocity perturbation field and thus the energy

flux field as compared to the narrow transition tanh N2. The magnitude of

the energy flux decreases as the beam widens in the bottom of the domain and

then increases again as the beam narrows after reflection. Beam-normalized

percent differences are presented for the horizontal and vertical energy flux in

figures 4.5(e) and (f), respectively. There is a change of overestimating the

energy flux in the top of the domain to underestimating the energy flux in

the bottom of the domain. This is most clearly seen at (0.7,0.7) m where the

bands of constant phase change from red to blue and vice versa. This change

is due to errors in the pressure perturbation. The two insets show that within

the beam the percent difference is consistently less than 5%.
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Figures 4.5(a)-(c) demonstrate that our method can handle rapid changes

N2, while the broad N2 transition thickness in figures 4.5(d)-(f) is more rep-

resentative of ocean stratifications. Figure 4.5(d) shows the energy flux am-

plitudes and reveals that the broadening of the transition layer eliminates the

reflected and second harmonic beams. Further, the error in the broad transi-

tion region in figures 4.5(e)-(f) is much smaller than in the narrow transition

region figures 4.5(b)-(c). The errors of the energy flux calculation for the

two tanh N2 profiles are less than 5% except in the narrow transition region

(cf. insets of figure 4.5).

4.2.3 Linear profile analysis verification

To verify that the theory for the linear N profile of section 4.1.3 is valid,

we perform simulations analogous to those in section 4.2.2. The energy flux

field in figure 4.6(a) demonstrates that the internal wave beam bends more

gradually for the linear N profile (figure 4.6(a)) as compared to the tanh N2

profiles discussed in section 4.2.2 (figure 4.5(a) and (d)). This slower change

is due to the smaller gradient of the buoyancy frequency for the linear N

profile. Again, because there are no rapid changes in N there are no reflection

depths other than the bottom of the system, so nonlinearities are limited to

the reflection point at (1.6, 0) m.

We present only the errors in the energy flux calculation; the errors

in the velocity and pressure perturbation calculations are qualitatively the

same as the results in figures 4.3 and 4.4. Figures 4.6(b) and (c) show the
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Figure 4.6: (a) The energy flux magnitude from the numerical simulation
for the linear N profile. The beam-normalized percent difference between
simulation and the Green’s function method for the (b) x and (c) z components
of the energy flux; the difference is less than 5% for most of the beam, as
illustrated by insets showing the difference for two beam transects.

percent difference of the horizontal and vertical components of the energy

flux, respectively. As with the tanh N2 profile comparisons, the errors in the

energy flux field are confined to the internal wave beam. Throughout the

beam the difference between the simulation and Green’s function method is

less than 5%, as illustrated by the beam transects in the insets of figures 4.6(b)

and (c); the largest errors occur where the beam enters and leaves the domain

and where it reflects off the bottom boundary. The transition from pressure

perturbation overestimation to underestimation is highlighted by the change

from red to blue and vice versa near (0.5, 0.75) m.

4.3 Arbitrary stratification analysis

Implementation of the Green’s function method is convenient for sys-

tems with stratifications where an analytic representation of the Green’s func-

tion exists. While some stratifications in the ocean and laboratory may ap-
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proximately fit to these particular stratification profiles as we show in fig-

ure 4.1, making this density-perturbation-based calculation more general is

necessary for most applications. To accomplish this generalization, we use

a finite difference method to determine the pressure perturbation field. We

present the method in detail along with a comparison between the Green’s

function method and the finite difference method in section 4.3.1. Then, we

apply the finite difference method to an ocean-inspired stratification in section

4.3.2.

4.3.1 Finite difference method

Since the velocity perturbation calculation does not depend on having

an analytic stratification, only the calculation of the pressure perturbation

field requires modification for application to general stratifications. This is

accomplished by implementing a numerical solver of the second order differ-

ential equation (4.7). The boundary conditions for this differential equation

are analogous to (4.10): (
dQ

dz
− N2

2g
Q

) ∣∣∣∣
z=0, h

= 0 . (4.42)

We solve equation (4.7) using a second-order finite difference method. The

Robin boundary conditions are calculated to second order by adding ghost

points to the top and bottom of the domain. This numerical method is applied

to both the real and imaginary components for every Fourier mode. After the

calculation of Q(z; k) using the finite difference method, the dependence in

the x-direction is accounted for by multiplying by the particular Fourier mode
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just as it is done for the Green’s function method. Finally, the transformation

(4.6) is performed to determine the contribution to the pressure perturbation

field by that particular mode.

Applying this strategy to the previous analytic stratifications provides

a baseline for comparison to the Green’s function method. The percent differ-

ence of the pressure perturbation fields relative to the Green’s function results

are presented in figure 4.7. This figure shows that the pressure perturba-

tion fields calculated using the finite difference method are everywhere less

than 5% different for the tanh profile and less than 1% different for the linear

buoyancy frequency profile when compared to the Green’s function pressure

perturbation. The only major discrepancy between the two methods is near

the narrow transition in the tanh N2 profile shown in figure 4.7(a). In this re-

gion, the Green’s function method is consistently more accurate than the finite

difference method. This is highlighted in figure 4.7(c) by comparing pressure

perturbation profiles just above the transition layer. The discrepancy is likely

due to the Green’s function’s accurately accounting for the rapid change in the

buoyancy frequency when it modifies the coefficients in the calculation of the

Legendre functions. The length scale of the transformed coordinate variable

y of (4.19) is set by the steepness coefficient α. This increases the spacial

resolution at rapid transitions. The finite difference method can only account

for variations on the scale of the original data set step size, which, in the case

of the narrow transition, is too coarse.
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Figure 4.7: The percent difference between the Green’s function and finite
difference pressure perturbation fields for (a) the narrow transition tanh N2

profile and (b) the linear profile. (c) Pressure perturbation profiles from the
narrow tanh N2 simulation (black), Green’s function method (red), and finite
difference method (blue) at z = 0.605 m.

4.3.2 Verification of the finite difference method

To further validate the finite difference method, we apply the method

to a stratification that does not fit a simple analytic function as was the case

in sections 4.1 and 4.2. The stratification we simulate is based on a density

profile measured in the ocean during the World Ocean Circulation Experiment

(WOCE). The particular profile presented in figure 4.8(a) was measured at

165◦ W, 51.5◦ N on September 20th, 1994. This profile features two layers of

large density gradient similar to the transitions of the tanh N2 profiles. The

first, more abrupt layer is centered at 30 m below the surface and the second

layer is centered at 100 m. The full profile extends to a depth of 1000 m, but

there is little variation in the buoyancy frequency below 200 m.

In order to simulate the beams in a similar domain and time scale as

the analytic stratifications, we rescale the vertical coordinate and the density.

We note that this is done to mimic the actual ocean profile and use it as an
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inspiration, rather than to model it accurately. Because the length scale of

the transition layers in the simulation are small compared to the length scale

of the beams the rescaled simulation done here stress-tests the method.

The first adjustment we make is to provide additional vertical space

above the stratification features so that the internal wave beam is fully devel-

oped and the resulting reflection off the top of the first transition is visible.

The vertical coordinate is scaled from 200 m to 0.8 m in the simulation. The

density is also modified to increase the buoyancy frequency, so that the val-

ues of the buoyancy frequency are comparable to those used in the Green’s

function verification. The minimum buoyancy frequency of the scaled density

profile is N = 0.55 rad/s and the maximum value is N = 2.40 rad/s. Fi-

nally, we shift the location of forcing to be at (0.2, 1.2) m to have the internal

wave beam enter from the top to demonstrate the flexibility of the domain

of measurement. The time scale and forcing periodicity match the previous

simulations.

The magnitude of the energy flux field is presented in figure 4.8(b).

There are a number of reflections and transmissions due to the more compli-

cated density profile. For the first transition layer, the internal wave beam

produces reflections off the top and bottom of the pycnocline layer, which can

be seen at (0.5, 0.8) m and (1.0, 0.8) m, respectively. In addition to the re-

flected energy, some of the internal wave energy is trapped in the pycnocline

layer and is transported to the right (e.g. (1.25, 0.7) m). A large fraction

of the energy however is transmitted through the layer. Very little energy is
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Figure 4.8: (a) Density profile from the ocean (red) and the scaled version used
for simulation (blue). (b) The simulated absolute energy flux field. (c) The
beam-normalized percent difference between the simulated and finite difference
energy flux fields.

reflected off the second layer, allowing the rest of the energy to reflect off the

bottom of the domain.

The finite difference method is applied to the modified ocean density

profile, and the beam-normalized percent difference of the energy flux magni-

tude is presented in figure 4.8(c). The largest errors occur near the more abrupt

transition layer. The maximum percent difference in this region 28.1%. There

is no consistent trend with regards to under or over estimating the energy

flux. Outside of the immediate region of the sharper transition, the percent

difference is generally within 5%. It is also important to note that the method

is able to capture and accurately determine the energy flux in the reflected,

transmitted, and trapped internal waves outside of the highly nonlinear first

reflection region.
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4.4 Conclusions

We have presented two methods for calculating the instantaneous in-

ternal wave energy flux field using only density perturbation field data. Both

methods are applicable to nonlinear stratifications: the first method, a Green’s

function method, uses convenient analytic density stratification profiles, while

the second, a finite difference method, applies to arbitrary stratification pro-

files.

Using our Green’s function method we obtained the instantaneous en-

ergy flux from density perturbations for two buoyancy frequency profiles: one

linear in z and the other where N(z)2 ∝ tanh(z). The difference between

the Green’s function method and our direct numerical simulations is less than

5% outside of regions containing significant nonlinearity. Despite the Green’s

function method being based on linear theory, it accurately predicts the energy

flux in the transmitted, reflected, and second harmonic beams, which involve

significant nonlinearities.

With our finite difference method we showed how to capture the energy

flux in an internal wave field containing nonlinear interactions, wave beam

reflections, and second harmonic beams for any buoyancy frequency profile

N(z). This method was compared with the Green’s function method and

direct numerical simulations, and again the errors are less than 5% for most

of the domain.

The two methods presented here and in chapter 3 [4] allow detailed
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studies of the entire instantaneous energy flux field for internal wave field

data, as contrasted with methods that yield a single global conversion rate or

a time-averaged result. Our methods can be used to determine the instanta-

neous velocity perturbation, pressure perturbation, and energy flux fields from

density perturbation data obtained in experiments using synthetic schlieren or

light attenuation measurements. We emphasize that the methods require only

the density perturbation field over time and the background buoyancy fre-

quency profile. Application to ocean observations will be possible provided

a time-varying density perturbation field can be measured. The methods as-

sume the flow is two dimensional, but future work could extend the method

to weakly three-dimensional flows as in ocean applications.

The Matlab GUI “EnergyF lux” developed in chapter 3 [4] is extended

to include the methods discussed in this paper. The GUI requires density

perturbation data, domain coordinates, time step size, and the N(z) profile.

A manual and tutorial that reproduces the results in this work is available to

make possible straightforward applications of the methods presented here.
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Chapter 5

Summary

Internal waves, which are traveling waves supported by buoyancy forces

in a stratified fluid, are an intermediary between the large-scale tidal motion

and smaller scale mixing and are crucial in understanding the energy budget

of the ocean. It is therefore useful to conduct studies regarding the energy

flux of internal waves in the laboratory, which is made possible by control-

ling the salinity of water using the two-bucket method [31]. The waves are

measured in the laboratory by two primary methods: PIV, which gives the

velocity perturbation field, and synthetic schlieren, which gives the density

perturbation field. However the energy flux requires the knowledge of both

the velocity and pressure perturbation fields, the simultaneous measurement

of which is at the present time extremely difficult. The work presented in

this dissertation allows the determination of the energy flux for both types of

measurements. For the PIV case, an experimentalist can take any measured

velocity field dominated by internal waves and obtain the time-averaged energy

flux field, given that the data spans more than one period of oscillation and

that the buoyancy frequency profile N is known. For the synthetic schlieren

case, an experimentalist can take the measured density perturbation field for

internal waves and obtain the instantaneous energy flux field, given that the
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buoyancy frequency is known. Specifically for uniform N , linear N , and tanh

N2, the method presented provides an analytic Green’s function with which

to convolve the density perturbation as the source. For arbitrary empirical N

profiles the energy flux is found numerically with a finite-difference method.

All the methods presented were verified against direct numerical simulations

where all the relevant quantities were known, and the methods were found to

be accurate to within a few percent excluding regions where significant non-

linearities were present. Matlab programs with user-friendly graphical user

interfaces are provided for the implementation of the methods. Overall, the

work in this dissertation simplifies the process of determining the energy flux

of internal waves produced in the lab, without having to specify any of the

topographic details that create the waves, and also without the need to restrict

to just vertical modes or impose hydrostatic boundary conditions.
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Appendix A

Guide to the Matlab GUI using velocity data

The Matlab code and GUI for the stream function method for deter-

mining the energy flux and power by Lee et al. [40] are available at ftp://ftp.

aip.org/epaps/phys_fluids/E-PHFLE6-26-052404. The latest version is

available at the following URLs: http://www.mathworks.com/matlabcentral/

fileexchange/44833 and http://chaos.utexas.edu/wp-uploads/2013/12/

internalwaves_streamfunction_fluxfield.zip. This guide contains infor-

mation that is needed to use the GUI. All of the following equation references

are from the above-mentioned Physics of Fluids paper.

A.1 Input data format

The user must first supply the .mat file which contains the velocity

components, the grid, and a fluid parameters array containing the background

density and buoyancy frequency information. The names of the various arrays

can be user-specified, but the defaults are as follows. Horizontal velocity: u,

vertical velocity: w, horizontal coordinate: x, vertical coordinate: z, fluid

parameters: h rho0 N .

Velocity components: The velocity components must be two separate
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arrays of identical shape. The first dimension is the z direction, the second

dimension is the x direction, and the third is time. The units for the inputs

for the program are cgs.

Coordinate arrays: The coordinate arrays must be in the same shape as

the velocity components minus the time dimension and must also be separate

arrays for the x and z coordinates. The arrays are in the form of outputs

for the Matlab function “meshgrid.” Refer to the Matlab help documents for

further details.

Fluid parameters: The fluid parameter array should contain as its first

column the heights at which the background density (second column) and

buoyancy frequencies (third column) are evaluated. The heights need not

match with the z-component coordinate array specified previously; the values

for the background density and buoyancy frequency will be interpolated (cubic)

to fit it. If the Boussinesq approximation with uniform reference density and

N is being used, the two values can be input as scalars.

A.2 Other parameters

The user then specifies the relevant parameters. The frequency of the

internal wave field must be supplied in rad/s. Additionally, the number of

timesteps in a period of oscillation, the timestep at which to start evaluating

the power, and how many periods to average over must be specified. The

energy flux expression is time-averaged over an integer number of periods.
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Figure A.1: The user can specify the starting point of the stream function
calculation by clicking on a plot of the RMS speed field of the input data.

Additionally, the starting coordinates (in cm) must be specified for the stream

function calculation, which can be chosen by clicking on a displayed plot of

the RMS speed field, as shown in Fig. A.1. The stream function is taken to

be zero at those coordinates at all times. The user can also choose between

the two-path and multi-path methods. The multi-path method is roughly an

order of magnitude slower than the two-path method, and should be used to

reduce the error if the data supplied has a lot of noise.

A.3 Calculation of the stream function

Once all the data and parameters are supplied, the algorithm uses

trapezoidal quadrature of the x-velocity values along the z-coordinates, and
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the z-velocity values along the x-coordinates to find the stream function at

each grid point. For the two-path method, it will average over two simple

L-shaped paths from the starting point to the evaluation point given by equa-

tions (2.13) and (2.14). For the multi-path method it will average over every

Z-shaped path within the box that forms between the starting point and the

evaluation point which is given by equations (2.15) and (2.16). Note that if

the starting point and evaluation point have the same x or z coordinate, then

the only possible path is a straight line. The two-path method calculates only

two path integrals for each grid point (excluding the points in line with the

starting point), which means it will integrate over 2MN−M−N paths, where

M is the grid size in x, and N is the grid size in z. The multi-path method

calculates M + N + 2 paths for each point, where M and N are the number

of grid points between the evaluation point and the initial point in the x and

z directions. Then the total number of paths integrated for the whole grid is

1
2
[M2N + MN2 − (M + N)2 + 3(M + N)− 4]. The stream function is found

for every timestep in the specified range. Derivatives of the calculated stream

function are taken and checked against the input velocity components at the

initial timestep at the middle of the domain.

A.4 Calculation of the energy flux

Once the stream function ψ(x, z, t) has been calculated, ϕ(x, z) and

its derivatives are calculated (equations (2.17) – (2.19)). The real part of ϕ is

found by trapezoidal quadrature in the time direction at each grid point where
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Figure A.2: After the various input parameters are inserted into the GUI,
the Matlab program calculates and displays the flux fields, the powers, and
velocity checks.

the integrand is the product of the stream function and cosωt. The imaginary

part is found using sinωt in place of cosωt. The derivatives are done the same

way except the velocity components are used instead of the stream function.

Then the energy flux (equation (2.10)) is calculated using these quantities.

The flux fields and the powers are displayed (Fig. A.2) and output into both

.txt and .mat files to the specified folder.
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Appendix B

Guide to the Matlab GUI using density

perturbation data

B.1 Cropped domains and buffering

Density perturbation data from synthetic schlieren measurements are

often from regions that do not contain the boundaries of the fluid system, and

the boundary conditions (3.14) and (3.16) used to find the pressure perturba-

tions are in general not satisfied on the boundaries of a ‘cropped’ measurement

window. Cropping affects the calculation of pressure but not the calculation of

the vertical velocity field (3.11), and as long as there is a point in the domain

where the horizontal velocity is zero, the calculation for the horizontal velocity

field (3.12) is unaffected as well. In this section, we use simulation data that

have been cropped to test the effects on computations of the pressure and

energy flux, and we present a procedure to minimize its impact.

The Fourier series expansion in (3.21) reduces the dimensionality of

the problem while respecting the boundary condition (3.14). Cropping the

left and right sides of the domain in a way that results in the beam passing

through the side boundaries will in general violate the periodic boundary con-

dition and introduce a step discontinuity. Because the pressure perturbation
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is calculated as a Fourier series in the horizontal direction (3.30), this crop-

ping introduces Gibbs-phenomenon-like edge artifacts in the solution on the

left and right boundaries. For reference, we show in figure B.1(a) the simu-

lated pressure perturbation field in the domain used in the main body of the

paper, and the impact of cropping the sides is shown in figure B.1(b). The

edge artifacts resulting from the cropping can be present at the opposite end

of the domain from where the beam penetrates, but the cropping does not

significantly change the pressure field in the middle of the domain.

The boundary conditions at the top and bottom (3.16) are physically

more important than those at the sides (3.14) because a no-flux condition is

applied at the top and bottom for the Green’s function (3.24). If the beam

passes through the top and/or bottom boundary, then the no-flux condition is

violated and error is introduced in the Green’s function. Figure B.1(c) shows

that the resulting errors can be significant near the top and bottom boundaries,

but again in the middle region the solution is quite good. When the data are

cropped in both directions, the errors from both the side and top-bottom

cropping are present as one might expect, as shown in figure B.1(d).

To minimize errors caused by cropping we introduce a method of buffer-

ing the data. This buffering is applied only to the pressure calculation as the

velocity calculations do not depend on the boundary conditions. Figure B.2(a)

shows an example of buffering the density perturbation field used to calculate

the pressure perturbation in the cropped domain of figure B.1(d). The orig-

inal domain inside the black dashed box is extended by 5% in all directions.
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Figure B.1: Calculated pressure perturbation fields for the whole fluid domain
(a) and for domains that have been cropped on the sides (b), the top and
bottom (c), and both (d). The artifacts near the edges of the cropped domains
(b), (c), and (d) arise from the violation of the boundary conditions (3.14) and
(3.16). (Fig. 7 from [4])
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Figure B.2: (a) The density perturbation field calculated from the original
data inside the black dashed box plus a 5% buffer area. (b) Pressure pertur-
bation field (in Pascals, Pa) obtained from the buffered density perturbation
data. This is much better than the un-buffered calculation from figure B.1(d).
Comparison of the simulated pressure perturbation (black solid) at heights
z = 0.25 m (c) and z = 0.15 m (d) with the pressure perturbation calculated
by the Green’s function method both with a buffer (red dashed narrow) and
without (blue dashed wide). (Fig. 8 from [4])

The jump in density perturbation is removed by applying a smoothing filter

on the new density perturbation field. In this smoothing process the density

perturbation at the boundaries of the new domain is held at zero, and the val-

ues in the old domain are diffused into the expanded domain. This diffusion

process results in modifications to the density perturbation field in the region

of interest. The original density perturbation field is then substituted back

into the region of interest. The final result is a density perturbation field that

smoothly transitions from the original density perturbation to zeros along the

edges, as shown in figure B.2(a).

The pressure perturbation calculation can then be applied to the ex-

tended domain and the results with a 5% buffer region are shown for the

density perturbation field in figure B.2(a), and for the pressure perturbation
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field in figure B.2(b). For this small buffer size there are still some erroneous

signatures in the top right and bottom left of the domain that are similar to

the results from cropping the sides of the domain, but these errors are much

smaller and are mostly contained in the buffer region. The addition of the

buffer significantly reduces the error in the pressure perturbation calculation

throughout the original domain. Figure B.2(c) shows that the results in the

middle of the domain are essentially the same with and without a buffer, but

near the boundaries the benefit of the buffer is significant, as figure B.2(d)

shows. The normalized rms difference relative to the direct simulation results

for the pressure perturbation calculation without the use of a buffer over the

entire domain is 17%, while the addition of a 5% buffer around the whole

domain reduces the normalized rms error to 5%. Going further with a 20%

buffer reduces the error to 3%, which is comparable to the precision found in

the verification (section 3.3.1).

Buffering the data domain seems to bring subtly different beneficial ef-

fects for the horizontal and vertical directions. The main benefit of buffering

the left and right sides of the domain seems to be the removal of the step dis-

continuities at those boundaries. Since the original density perturbation source

is Fourier expanded in the horizontal direction, the solution for the pressure

perturbation is a Fourier series of Green’s functions Gk and their correspond-

ing Fourier coefficient fields Fk. By removing the step discontinuities in the

density perturbation field, the Gibbs-phenomenon-like edge effects in the series

solution for the pressure perturbation is significantly reduced. However, this
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means that excessive buffering in the horizontal direction (approaching the

horizontal length-scale of the beam) can artificially introduce lower k modes

and produce errors.

The main benefits of buffering the top and bottom of the domain seem

to be to push the no-flux boundary away from the original boundary, and to

produce an extension of the beam that somewhat mimics the original density

perturbation. Pushing the no-flux boundary away makes the Green’s function

behavior more appropriate for a beam that does not reflect at the boundary.

The extension of the beam in the buffer region provides an approximate source

that, combined with the aforementioned improved Green’s function, produces

a better result for the pressure perturbation near the boundary in the original

domain. The effective range (for one e-folding) of the Green’s function’s re-

sponse for mode k is roughly 1/k, and for the data used in this paper this value

is roughly 10 cm for the first mode. Thus for a given point in the domain,

density perturbation sources up to 10 cm away contribute significantly to the

solution for the pressure perturbation at that point. This is a big reason why

cropping the domain produces errors near the edges but not in the middle; the

points near the edges are missing density perturbation sources from the crop-

ping, while the points in the middle are mostly unaffected because they “see”

all of their appropriate sources within the effective range. The extension that

mimics the beam in the diffused buffer region provides approximate density

perturbation sources for the points near the boundaries to reduce the error.

Buffering the top and bottom of the domain does not have the same limitation
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Figure B.3: Demonstration of the GUI interface EnergyFlux featuring the
settings used for the results in section 3.3.2. (Fig. 9 from [4])

as buffering the sides, and can be taken as large as one wants. However, for

the data set presented here, not much was gained beyond 15% buffering and

the results do not seem to converge to the real answer near the edges for larger

buffering, since the beam extension in the buffered region never quite looks

like the original beam that has been cropped away.

B.2 Implementation of Matlab GUI EnergyFlux

To aid in the implementation of this method, a graphical user inter-

face EnergyFlux was developed for Matlab. This software is available in the

supplemental materials along with a tutorial for use. The GUI, manual, and

data set can be accessed at https://www.mathworks.com/matlabcentral/
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fileexchange/55514-energyflux. The GUI requires only the density per-

turbation field over a number of time steps, the corresponding coordinates,

buoyancy frequency, and time step size. The GUI allows for the implemen-

tation of the data buffering procedure presented in appendix B.1 and the

selection of what range of horizontal modes to consider in the calculation.
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Appendix C

Tutorial for the Matlab GUI EnergyFlux

The Matlab code and GUI for the Green’s function based approach for

determining the velocity, pressure, and energy flux by Allshouse, Lee, Mor-

rison, and Swinney are available at https://journals.aps.org/prfluids/

supplemental/10.1103/PhysRevFluids.1.014301. The latest version is avail-

able at the following URLs, https://www.mathworks.com/matlabcentral/

fileexchange/55514-energyflux and http://chaos.utexas.edu/wordpress/

wp-content/uploads/2016/06/supplmental-information.zip. This guide

contains information that is needed to use the GUI and a tutorial to analyze

the attached data set. All of the necessary equations and derivations are from

chapter 3. To demonstrate the implementation of the code, a data set from

our simulated results is included.

C.1 Input data format

The user must first supply the .mat file which contains the density

perturbation field and the coordinate grid. There is also the option to include

the buoyancy frequency, N , and the time step; however, these parameters can

be input manually in the GUI. The names of the various arrays can be user-
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specified, but the defaults are as follows: Density perturbation - rho, horizontal

coordinate: x, vertical coordinate, z, buoyancy frequency - N , and time step

- dt.

Density perturbation: The density perturbation is a single array

that contains density perturbation data for multiple time steps. The first

dimension is the z direction, the second dimension is the x direction, and the

third is time. In order to calculate the time derivatives, there must be density

perturbation for at least two time instances.

Coordinate arrays: The x and z coordinate arrays must be in the

same shape as the density perturbation array minus the time dimension. These

arrays are in the form of outputs for the Matlab function “meshgrid.”

File 
Selection

Array
Assignment

Mode
Range

Buffer 
Selection

Plot
Scroll

Figure C.1: EnergyFlux GUI with labels.
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Optional parameters: The buoyancy frequency and the time step

are optional parameters that can be included in the data file. Both values

must be scalars.

C.2 Pre-execution steps

The following steps must be performed before the calculation.

• Data set selection - By clicking the “Browse” button for the “Matlab File

with Data” you will have the ability to select the .mat file containing the

necessary data.

• Output folder selection - By default the output data will be saved into

the same folder that contains the input data. If you want to change this

select the “Browse” button for the “Data Output Path.”

• Set Array Names - Set the variable names for the density perturbation

and coordinates. If you have save the buoyancy frequency and time step

in the array file set these variable names as well. If you want to input

this manually, simply replace the variable name with the value.

• Units convention - Select the SI or CGS units radio button based on the

unit convention of your data set.
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C.3 Optional features

The user is given two optional features that can be used. The first

sets the mode number range for the analysis. The second adds a data buffer

around the original data set.

C.3.1 Mode number selection

The calculation performs a Fourier analysis on each horizontal slice of

the data set and then for each mode within the calculation range performs

the Green’s function integration. There are potential situations where not all

modes contribute significantly to the output result, and reducing the number

of modes considered will reduce the run time accordingly. If you know what

the mode range should be, you can replace the “#” with the number. If you

are unsure what modes to consider, the code will automatically set them for

you. The range automatically selected starts with the first mode and ends at

the first mode where the spectral contribution is less than 1% of the maximum.

C.3.2 Data buffering

As explained in appendix B, buffering the data can reduce erroneous

signatures in the pressure field. To include buffering, check the box next to

“Use Buffer.” If a buffer is used, you will need to set its extent as a percentage

of the domain in that direction. For example, a 10% vertical buffer will extend

the domain up by 10% and down by 10% of the original height of the domain.

There are two types of buffering. The “Diffusive” option creates a buffer with
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Figure C.2: (left) No buffer used. (Center) “Diffusive” and (right) “Zero”
buffering options.

a gradual decay of the density perturbation from the edge of the original data

set to zero at the new boundary. The “Zeros” option extends the domain with

a density perturbation of zero. When buffering is used, the density perturba-

tion plot will show the extended domain. The result of different “Buffering

Selection” and the corresponding density plots are presented in figure C.2.

C.4 Execution and results

To execute the calculation after the inputs, modes, and buffering have

been set, click the “Start button.” There will be a number of progress bars

that pop up as the calculation is performed. As each calculation is completed

the results will be plotted to the right. The output data will be saved into the

designated folder as “greens function outputs.mat”.
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Note: You must be in the directory containing the GUI and the neces-

sary functions or have added that directory to your path in order to run the

GUI.

C.5 Tutorial

Along with the gui and functions, a data set has been provided to the

user to give an example of the data format and to execute this tutorial.

C.5.1 Download and startup

Download the zip folder and extract the files. This should contain five

.m files (buffer data, EnergyFlux, press calculation, redblue, and vel calculation),

EnergyFlux.fig, example data.mat, and EnergyFlux.pdf. All the files must re-

main in the folder, and this must be the current directory of Matlab to run

the GUI,

To start the GUI, you can run the command EnergyFlux in the Com-

mand Window. Double clicking EnergyFlux.fig will open the GUI but it will

NOT allow you to use it.

C.5.2 Simple analysis

1. With the GUI open, click the top “Browse” button in the “File Selec-

tion” section. This will open a browser for you to select the file exam-

ple data.mat.

2. Select example data.mat and click “Open”.
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3. To perform the most basic analysis click the “Start” button.

4. After the plots are produced, toggle between different time instances by

selecting the right and left arrows in the “Plot Scroll” section.

C.5.3 Manually set buoyancy frequency and time step

1. Perform the first two steps of the “Simple analysis” if the GUI has been

closed.

2. Set the buoyancy frequency by changing the “N” to 0.8533, which is the

value from the paper.

3. Set the time step by changing the “dt” to 1.

4. To perform the analysis click the “Start” button.

C.5.4 Selecting the mode range

1. Perform the first two steps of the “Simple analysis” if the GUI has been

closed.

2. Change the “Start Mode” to 2.

3. Change the “Last Mode” to 30.

4. To perform the analysis click the “Start” button.
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C.5.5 Using buffering

1. Perform the first two steps of the “Simple analysis” if the GUI has been

closed.

2. Check the box next to “Use Buffer.”

3. Set the vertical and horizontal percentages to “10” representing an ex-

tension of the domain by 10% in all four directions.

4. Select the “Diffusive” option.

5. To perform the analysis click the “Start” button.
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Appendix D

Evaluation of the tanh profile Green’s function

D.1 Cancellation of Legendre functions

The Green’s function is given by

G̃(y, y′) =
−1

DW


(

Φ2P
µ
ν (y′) + Π2Q

µ
ν (y′)

)(
Φ1P

µ
ν (y) + Π1Q

µ
ν (y)

)
, y < y′(

Φ1P
µ
ν (y′) + Π1Q

µ
ν (y′)

)(
Φ2P

µ
ν (y) + Π2Q

µ
ν (y)

)
, y > y′,

(D.1)

where

Π1,2 =
dP µ

ν (y0,h)

dy
− N2

1,2

2 g (1− y20,h)
P µ
ν (y0,h) (D.2)

Φ1,2 = −dQ
µ
ν (y0,h)

dy
+

N2
1,2

2 g (1− y20,h)
Qµ
ν (y0,h). (D.3)

However, the Green’s function in this form is unsuitable for direct nu-

merical evaluation because of the factors 1− y20,h in (D.2) and (D.3). Because

y0 and yh are extremely close to −1 and 1, respectively, 1 − y20 and 1 − y2h

are extremely close to 0. Thus we must somehow remove these factors from

the expression. We note that we can use the following recurrence relation

(Abramowitz & Stegun 8.5.4),

dP µ
ν (y)

dy
=

(ν + µ)P µ
ν−1(y)− ν y P µ

ν (y)

(1− y2) , (D.4)
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which works for both P and Q, to remove the derivative and combine the

terms in (D.2) and (D.3) to give

Π1,2 =
(ν + µ)P µ

ν−1(y0,h)− (ν y0,h +N2
1,2/2g)P µ

ν (y0,h)

(1− y20,h)
, (D.5)

Φ1,2 =
−(ν + µ)Qµ

ν−1(y0,h) + (ν y0,h +N2
1,2/2g)Qµ

ν (y0,h)

(1− y20,h)
. (D.6)

We can then define the following to rescale our parameters,

Π1,2 =
1

(1− y20,h)
π1,2 Φ1,2 =

1

(1− y20,h)
ϕ1,2, (D.7)

which means that then the denominator rescales like the following,

D =

∣∣∣∣Π1 Π2

Φ1 Φ2

∣∣∣∣ =
1

(1− y20)(1− y2h)

∣∣∣∣π1 π2
ϕ1 ϕ2

∣∣∣∣ =
d

(1− y20)(1− y2h)
. (D.8)

Then the near-zero factors (1 − y20)(1 − y2h) can be cancelled from the

numerator and denominator of the Green’s function (D.1) to give:

G̃(z, z′) =
−1

dW


(
ϕ2P

µ
ν (y′) + π2Q

µ
ν (y′)

)(
ϕ1P

µ
ν (y) + π1Q

µ
ν (y)

)
, y < y′(

ϕ1P
µ
ν (y′) + π1Q

µ
ν (y′)

)(
ϕ2P

µ
ν (y) + π2Q

µ
ν (y)

)
, y > y′.

(D.9)

However, the expression is still not suited for numerical computation

because P and Q are being evaluated at coordinates where the terms become

really large. To this end, we will express Q in terms of P and cancel some

terms in

ϕ1P
µ
ν (y) + π1Q

µ
ν (y). (D.10)
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Using Gradshteyn and Ryzhik 8.705,

Qµ
ν (y) =

π

2 sin(µπ)

[
P µ
ν (y) cos(µπ)− Γ(ν + µ+ 1)

Γ(ν − µ+ 1)
P−µν (y)

]
, (D.11)

we can express (D.10) in terms of just P :

P µ
ν (y)ϕ1 +Qµ

ν (y)π1

=P µ
ν (y)

[
−(ν + µ)Qµ

ν−1(y0) +

(
ν y0 +

N2
1

2g

)
Qµ
ν (y0)

]
+Qµ

ν (y)

[
(ν + µ)P µ

ν−1(y0)−
(
ν y0 +

N2
1

2g

)
P µ
ν (y0)

]
(D.12)

=− P µ
ν (y)

(ν + µ)π

2 sin(µπ)

[
P µ
ν−1(y0) cos(µπ)− Γ(ν + µ)

Γ(ν − µ)
P−µν−1(y0)

]

+ P µ
ν (y)

(
ν y0 +

N2
1

2g

)
π

2 sin(µπ)

[
P µ
ν (y0) cos(µπ)− Γ(ν + µ+ 1)

Γ(ν − µ+ 1)
P−µν (y0)

]
+

(ν + µ)π

2 sin(µπ)

[
P µ
ν (y) cos(µπ)− Γ(ν + µ+ 1)

Γ(ν − µ+ 1)
P−µν (y)

]
P µ
ν−1(y0)

−

(
ν y0 +

N2
1

2g

)
π

2 sin(µπ)

[
P µ
ν (y) cos(µπ)− Γ(ν + µ+ 1)

Γ(ν − µ+ 1)
P−µν (y)

]
P µ
ν (y0).

(D.13)

In (D.13), the first and fifth, and the third and seventh terms cancel.

Then it becomes

P µ
ν (y)ϕ1 +Qµ

ν (y)π1

=
(ν + µ)π

2 sin(µπ)

[
Γ(ν + µ)

Γ(ν − µ)
P µ
ν (y)P−µν−1(y0)−

Γ(ν + µ+ 1)

Γ(ν − µ+ 1)
P µ
ν−1(y0)P

−µ
ν (y)

]

+

(
ν y0 +

N2
1

2g

)
π

2 sin(µπ)

Γ(ν + µ+ 1)

Γ(ν − µ+ 1)

[
P µ
ν (y0)P

−µ
ν (y)− P µ

ν (y)P−µν (y0)
]
.

(D.14)
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The same cancellations occur for P µ
ν (y)ϕ2 + Qµ

ν (y)π2. However, there

are still very large terms present in the expression.

D.2 Exponential expansion

We can see the exponential behavior if we do the appropriate transfor-

mations. We express the P ’s in terms of the Gauss hypergeometric function

2F1 and get the explicit exponential behavior by undoing our coordinate trans-

form,

y(z) = tanh(α(z − zt)) =
1− e−2α(z−zt)
1 + e−2α(z−zt)

=
e2α(z−zt) − 1

e2α(z−zt) + 1
. (D.15)

If z ∼ h, then we have

P µ
ν (y) =

1

Γ(1− µ)

(
1 + y

1− y

)µ/2
F

(
−ν, ν + 1; 1− µ;

1− y
2

)
, (D.16)

P µ
ν (y) =

eµα(z−zt)

Γ(1− µ)
F
(
−ν, ν + 1; 1− µ; f+(z)

)
, (D.17)

where

f+(z) =
1

1 + e2α(z−zt)
≈ 0. (D.18)

The hypergeometric function evaluated at this point converges to 1. However,

if z ∼ 0, the hypergeometric function tends to diverge and we need to use

a linear transformation formula (Abramowitz & Stegun 15.3.6) to shift the

argument and bring the divergent behavior out into an exponential factor.
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This gives

P µ
ν (y) =

(
1+y
1−y

)µ/2
Γ(1− µ)

F

(
−ν, ν + 1; 1− µ;

1− y
2

)
(D.19)

=

(
1+y
1−y

)µ/2
Γ(1− µ)

[
Γ(1− µ)Γ(−µ)

Γ(1− µ+ ν)Γ(−µ− ν)
F

(
−ν, ν + 1; 1 + µ;

1 + y

2

)
+

(
1 + y

2

)−µ
Γ(1− µ)Γ(µ)

Γ(−ν)Γ(ν + 1)
F

(
1− µ+ ν,−µ− ν; 1− µ;

1 + y

2

)]
(D.20)

P µ
ν (y) =

Γ(−µ)eµα(z−zt)

Γ(1− µ+ ν)Γ(−µ− ν)
F (−ν, ν + 1; 1 + µ; f−(z))

+
Γ(µ)(eα(z−zt) + e−α(z−zt))µ

Γ(−ν)Γ(ν + 1)
F (1− µ+ ν,−µ− ν; 1− µ; f−(z)),

(D.21)

where

f−(z) =
1

1 + e−2α(z−zt)
≈ 0. (D.22)

Then, using all this, we can get the exact exponential behavior of our

terms that look like P µ
ν (y)ϕ1,2 +Qµ

ν (y)π1,2. For z ≈ h we have

P µ
ν (y)ϕ1 +Qµ

ν (y)π1 =a1e
αµz + a2(e

−αz + e−α(z−2zt))−µ

+ a3e
−αµz + a4(e

−αz + e−α(z−2zt))µ, (D.23)

P µ
ν (y)ϕ2 +Qµ

ν (y)π2 =b1e
−αµ(z−h) + b2e

αµ(z−h). (D.24)

Here, the first terms are the largest, and the various factors like a1 are

comprised of gamma functions and hypergeometric functions. For z ≈ 0 we
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have

P µ
ν (y)ϕ1 +Qµ

ν (y)π1 =c1 (eαz + e−α(z−2zt))µ + c2 (e−αz + e−α(z−2zt))µ

+c3

(
e−αzt + eαzt

eα(z−zt) + e−α(z−zt)

)µ
+ c4

(
eα(z−zt) + e−α(z−zt)

e−αzt + eαzt

)µ
+c5 e

αµz + c6 e
−αµz

+c7 (e−αz + e−α(z−2zt))−µ + c8 (eαz + e−α(z−2zt))−µ,
(D.25)

P µ
ν (y)ϕ2 +Qµ

ν (y)π2 =d1 e
−αµ(z−h) + d2 (eα(z−h) + e−α(z+h−2zt))−µ

+d3 e
αµ(z−h) + d4 (eα(z−h) + e−α(z+h−2zt))µ. (D.26)

For (D.25), the first two terms are extremely large, have opposite sign,

and have almost the same magnitude, giving a result that is extremely small

that produces errors because of the limit of machine precision. Thus for nu-

merical evaluation we take c1 and c2 to be zero. The determinant looks like

the following:

D =m1 e
αµh +m2 (e−αh + e−α(h−2zt))−µ

+m3 e
−αµh +m4 (e−α(h) + e−α(h−2zt))µ. (D.27)

This means we can divide out eαµh from both the numerator and de-

nominator of the Green’s function to reduce term sizes. Also, different com-

binations of (D.23) - (D.26) should be used depending on what values z and

z′ take. For instance, if z ≈ 0 and z′ = z + ε, then we will multiply (D.26)

evaluated at z′ with (D.25) evaulated at z. However, if z ≈ h and z′ ≈ 0, then

we will multiply (D.24) evaluated at z with (D.25) evaluated at z′. The fol-

lowing values for ai, bi, ci, di, and mi have been simplified using the following
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expressions from Abramowitz & Stegun 6.1.15 and 6.1.17,

Γ(x+ 1) = xΓ(x), (D.28)

Γ(x) Γ(1− x) =
π

sin πx
. (D.29)

Also, to save space we simplify the notation:

γ1,2 = νy0,h +
N2

1,2

2 g
, (D.30)

F (a, b; c; f±(z)) = F a,b
c,±(z), (D.31)

δ± = ν ± µ. (D.32)

a1 = Γ2(µ)
sin δ−π

2π

[
δ+F

1−ν,ν
1−µ,−(0) + γ1F

−ν,1+ν
1−µ,− (0)

]
F−ν,1+ν1−µ,+ (z) (D.33)

a2 =
Γ(δ+)

Γ(δ−)

sin νπ

2 sinµπ
δ+

[−1

µ
F
δ+,1−δ−
1+µ,− (0) +

γ1
δ−
F

1+δ+,−δ−
1+µ,− (0)

]
F−ν,1+ν1−µ,+ (z) (D.34)

a3 =
Γ2(δ+)

Γ2(δ−)Γ2(µ)

π sin δ+π

2 sin2 µπ

δ2+
µ2δ−

[
F 1−ν,ν
1+µ,−(0) +

γ1
δ−
F−ν,1+ν1+µ,− (0)

]
F−ν,1+ν1+µ,+ (z)

(D.35)

a4 =
Γ(δ+)

Γ(δ−)

sin νπ

2 sinµπ

δ+
µδ−

[
−δ+F δ−,1−δ+

1−µ,− (0)− γ1F 1+δ−,−δ+
1−µ,− (0)

]
F−ν,1+ν1+µ,+ (z)

(D.36)

b1 =
Γ(δ+)

Γ(δ−)

δ+
2µδ−

[
−δ+F 1−ν,ν

1−µ,+(h) + γ2F
−ν,1+ν
1−µ,+ (h)

]
F−ν,1+ν1+µ,+ (z) (D.37)
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b2 =
Γ(δ+)

Γ(δ−)

δ+
2µ

[
F 1−ν,ν
1+µ,+(h)− γ2

δ−
F−ν,1+ν1+µ,+ (h)

]
F−ν,1+ν1−µ,+ (z) (D.38)

c1 = Γ2(µ)
sin δ−π sin νπ

2π sinµπ

[
−δ+F 1−ν,ν

1−µ,−(0)− γ1F−ν,1+ν1−µ,− (0)
]
F

1+δ−,−δ+
1−µ,− (z) (D.39)

c2 = Γ2(µ)
sin δ−π sin νπ

2π sinµπ

[
δ+F

δ−,1−δ+
1−µ,− (0) + γ1F

1+δ−,−δ+
1−µ,− (0)

]
F−ν,1+ν1−µ,− (z)

(D.40)

c3 =
Γ(δ+)

Γ(δ−)

sin2 νπ

2 sin2 µπ

δ+
µδ−

[
−δ+F δ−,1−δ+

1−µ,− (0)− γ1F 1+δ−,−δ+
1−µ,− (0)

]
F

1+δ+,−δ−
1+µ,− (z)

(D.41)

c4 =
Γ(δ+)

Γ(δ−)

sin2 νπ

2 sin2 µπ

δ+
µ

[
F
δ+,1−δ−
1+µ,− (0) +

γ1
δ−
F

1+δ+,−δ−
1+µ,− (0)

]
F

1+δ−,−δ+
1−µ,− (z) (D.42)

c5 =
Γ(δ+)

Γ(δ−)

sin δ−π sin δ+π

2 sin2 µπ

δ+
µδ−

[
δ+F

1−ν,ν
1−µ,−(0) + γ1F

−ν,1+ν
1−µ,− (0)

]
F−ν,1+ν1+µ,− (z)

(D.43)

c6 =
Γ(δ+)

Γ(δ−)

sin δ−π sin δ+π

2 sin2 µπ

δ+
µ

[
−F 1−ν,ν

1+µ,−(0)− γ1
δ−
F−ν,1+ν1+µ,− (0)

]
F−ν,1+ν1−µ,− (z)

(D.44)

c7 =
Γ2(δ+)

Γ2(δ−)Γ2(µ)

π sin δ+π sin νπ

2 sin3 µπ

δ2+
µ2δ−

×
[
−F δ+,1−δ−

1+µ,− (0)− γ1
δ−
F

1+δ+,−δ−
1+µ,− (0)

]
F−ν,1+ν1+µ,− (z)

(D.45)

c8 =
Γ2(δ+)

Γ2(δ−)Γ2(µ)

π sin δ+π sin νπ

2 sin3 µπ

δ2+
µ2δ−

×
[
F 1−ν,ν
1+µ,−(0) +

γ1
δ−
F−ν,1+ν1+µ,− (0)

]
F

1+δ+,−δ−
1+µ,− (z) (D.46)
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d1 = Γ2(µ)
sin δ−π

2π

[
δ+F

1−ν,ν
1−µ,+(h)− γ2F−ν,1+ν1−µ,+ (h)

]
F−ν,1+ν1−µ,− (z) (D.47)

d2 =
Γ(δ+)

Γ(δ−)

sin νπ

2 sinµπ

δ+
µδ−

[
−δ+F 1−ν,ν

1−µ,+(h) + γ2F
−ν,1+ν
1−µ,+ (h)

]
F

1+δ+,−δ−
1+µ,− (z) (D.48)

d3 =
Γ2(δ+)

Γ2(δ−)Γ2(µ)

π sin δ+π

2 sin2 µπ

δ2+
µ2δ−

[
F 1−ν,ν
1+µ,+(h)− γ2

δ−
F−ν,1+ν1−µ,+ (h)

]
F−ν,1+ν1+µ,− (z)

(D.49)

d4 =
Γ(δ+)

Γ(δ−)

sin νπ

2 sinµπ

δ+
µ

[
−F 1−ν,ν

1+µ,+(h) +
γ2
δ−
F−ν,1+ν1−µ,+ (h)

]
F

1+δ−,−δ+
1−µ,− (z) (D.50)

m1 = Γ2(µ)
sin δ−π

2π
δ+

[
Γ(δ+)

Γ(δ−)
δ+F

1−ν,ν
1−µ,−(0)F 1−ν,ν

1−µ,+(h)− γ2F 1−ν,ν
1−µ,−(0)F−ν,1+ν1−µ,+ (h)

+γ1F
−ν,1+ν
1−µ,− (0)F 1−ν,ν

1−µ,+(h) +
Γ(δ+)

Γ(δ−)

µγ1γ2
δ−

F−ν,1+ν1−µ,− (0)F−ν,1+ν1−µ,+ (h)

]
(D.51)

m2 =
Γ(δ+)

Γ(δ−)

sin νπ

2 sinµπ

δ+
µ

[
− δ+F δ+,1−δ−

1+µ,− (0)F 1−ν,ν
1−µ,+(h) + γ2F

δ+,1−δ−
1+µ,− (0)F−ν,1+ν1−µ,+ (h)

−δ+γ1
δ−

F
1+δ+,−δ−
1+µ,− (0)F 1−ν,ν

1−µ,+(h) +
γ1γ2
δ−

F
1+δ+,−δ−
1+µ,− (0)F−ν,1+ν1−µ,+ (h)

]
(D.52)

m3 =
Γ2(δ+)

Γ2(δ−)Γ2(µ)

π sin δ+π

2 sin2 µπ

δ2+
µ2

[
F 1−ν,ν
1+µ,−(0)F 1−ν,ν

1+µ,+(h) +
γ1
δ−
F−ν,1+ν1+µ,− (0)F 1−ν,ν

1+µ,+(h)

− γ2
δ−
F 1−ν,ν
1+µ,−(0)F−ν,1+ν1+µ,+ (h)− γ1γ2

δ2−
F−ν,1+ν1+µ,− (0)F−ν,1+ν1+µ,+ (h)

]
(D.53)

m4 =
Γ(δ+)

Γ(δ−)

sin νπ

2 sinµπ

δ+
µ

[
− δ+F δ−,1−δ+

1−µ,− (0)F 1−ν,ν
1+µ,+(h)− γ1F 1+δ+,−δ+

1−µ,− (0)F 1−ν,ν
1+µ,+(h)

+
δ+γ2
δ−

F
δ−,1−δ+
1−µ,− (0)F−ν,1+ν1+µ,+ (h) +

γ1γ2
δ−

F
1+δ−,−δ+
1−µ,− (0)F−ν,1+ν1+µ,+ (h)

]
(D.54)
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