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Bayesian non-parametric models, despite their theoretical elegance, face

a serious computational burden that prevents their use in serious “big data”

scenarios. Furthermore, we cannot expect the data in “big data” to exist

solely on one processor, so we must have parallel algorithms that are valid

Bayesian inference samplers. However, inherent dependencies in Bayesian

non-parametric models make this task very difficult. Instead, we must ei-

ther construct good approximations or develop clever reformulations of our

models so that we perform inference with provably accurate results. This the-

sis will discuss four methods developed to parallelize inference in the Bayesian

and Bayesian non-parametric setting.
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Chapter 1

Introduction

Bayesian non-parametric models are elegant ways to discover underly-

ing latent features within a data set. These types of models have proven useful

for learning functions [76], clustering data [4], topic modeling [90], or learning

low dimensional representations of data [37] without having to enforce strong

assumptions on the model (like the parametric form of the function, or the

number of clusters with which to model data). This flexibility becomes crit-

ical as the data we try to model becomes more complex. For applications of

machine learning to audio, images, videos, and other complicated objects we

need methods that can accommodate and adapt model complexity to the data

of interest.

But as the complexity of the data we are trying to model increases,

so too does the scale of the problem at hand, both in terms of the number

of observations (“big N”, examples of which include topic models of all en-

tries on Wikipedia or modeling user behavior on Facebook or Netflix) and the

dimension of the model fit to the data (“big P”, examples of which include

bioinformatic applications where there may be tens of thousands of biomarkers

for a particular observation or in cases where we may expect the number of
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parameters to grow with the size of the data, as is the case in the Bayesian

non-parametric setting). This “big data” problem therefore requires that our

models not only can handle difficult problems but also must handle massive

volumes of data as well.

However appealing Bayesian non-parametric models are to statistical

practitioners, inference for such models is difficult. Inference in the Bayesian

paradigm faces different challenges from the frequentist approach. Whereas

under the frequentist ideology we have to optimize a difficult objective func-

tion, in Bayesian statistics we have to integrate difficult functions for which

closed from expressions usually do not exist. This procedure becomes even

more complicated in the non-parametric setting with infinite dimension pri-

ors.

Parallelization, if possible, eases some of the computational burden be-

cause we can divide one large inference problem into several smaller ones. A

common form of parallelization is store the entire data set and model on a

single machine and distribute the computation to available processors (“com-

putational parallelization”) [82]. Under the “big data” scenario, we assume

the entire data set of interest cannot exist on one machine but instead divided

over several machines. Therefore, we need Bayesian inference techniques that

are not only fast, but can be parallelizable across multiple machines by phys-

ically dividing the data and the model across different machines and perform

inference on the divided components (“memory parallelization”).

Constructing good parallel inference algorithms is difficult because the

2



algorithm should have theoretical guarantees for correct inference while min-

imizing expensive inter-processor communication. Satisfying both of these

constraints is difficult. Naive distribution and combination of Bayesian in-

ference leads to posterior distributions with excessively high variance [102].

Exact inference often will require constant processor communication which re-

quires a huge amount of computational overhead [3]. In total, these problems

limit the popularity Bayesian non-parametric methods for the statistical and

machine learning practitioner.

The scope of this dissertation covers various scalable inference strategies

to address the challenges of Bayesian modeling–particularly Bayesian non-

parametric modeling–in the “big data” era. The structure of the dissertation

is as follows: Chapter 2 will introduce Bayesian modeling and inference and

then continue with a discussion of the Bayesian non-parametric paradigm.

Chapter 3 details an exact parallel inference strategy for feature allocation in

completely random measures (with demonstrations for the Dirichlet process

and Indian buffet process). Chapter 4 builds on the idea from the previous

chapter by discussing a problem in parallel inference not addressed by other

works through a parallelizable approach for Bayesian non-parametric latent

variable models and proposing new features in high-dimensions. Chapter 5

looks at the problem of parallelizing model selection in the Bayesian domain.

Chapter 6 proposes an entirely embarrassingly parallel approach to Gaussian

process inference. And finally, the dissertation concludes with Chapter 7 and

a discussion of future work.
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Chapter 2

Background

2.1 Bayesian Models

This thesis revolves around the philosophy of Bayesian statistics, in

which we assign subjective, probabilistic, a priori beliefs on the values of

the parameters θ, which represent our objects of interest. These beliefs are

captured using a prior distribution, P (θ). Given the likelihood P (X|θ), a

functional representation of the relationship between the parameters and the

data, X = {x1, . . . , xN}, we apply Bayes’s theorem to obtain the posterior,

P (θ|X):

P (θ|X) =
P (X|θ)P (θ)∫
P (X|θ)P (θ) dθ

(2.1)

The posterior is the central object of importance in Bayesian statistical infer-

ence as it encodes our beliefs about the unknown quantities of interest, having

observed information which depends on the parameters. With Bayes’s theo-

rem we have a clear way to update our prior beliefs on θ upon observing the

data. Furthermore, the posterior provides a way to perform predictions on

some new observations X∗ with the posterior predictive distribution:

P (X∗|X) =

∫
P (X∗|θ)P (θ|X) dθ. (2.2)

4



However, in many practical situations, it is impossible to obtain the posterior

distribution in closed form because of the intractable integral in the denomina-

tor, P (X) =
∫
P (X|θ)P (θ) dθ. As we will see in Section 2.3, Bayes’s theorem is

unavailable in the Bayesian non-parametric setting as θ is infinite dimensional

and thus does not admit a density.

2.2 Bayesian Inference

Because the posterior is generally not available in an exact, closed

form, we need to resort to other methods for posterior inference. Broadly,

Bayesian inference techniques fall under two categories: Sampling based Monte

Carlo approaches, which generate simulations designed to draw samples from

the posterior distribution, and variational approaches, which attempt to ap-

proximate the posterior with a simplet distribution chosen by minimizing the

Kullback-Leibler divergence between the variational distribution and the true

posterior. Because the scope of this dissertation will only focus on fast Markov

chain Monte Carlo (MCMC) inference, this section will only provide back-

ground information on the classic inferential tools in MCMC. For details about

variational approaches, read [11, 95, 10, 19, 92].

2.2.1 Monte Carlo Estimation and Importance Sampling

Monte Carlo methods are a class of numerical simulation algorithms

that are commonly used in situations where we may want to simulate from

a distribution or calculate an integral that is not easily obtainable, as is the

5



case in Bayesian inference. The basic idea is that we can approximate a dis-

tribution, P (Y ) by using N samples y(i) ∼ P (Y ) and forming an empirical

distribution. Given this distribution of empirical samples,
{
y(i), i = 1, . . . N

}
,

we can also calculate unbiased estimates of integrals, f̄ =
∫
f(Y )P (Y ) dY with

f̄ ≈ 1
N

∑N
i=1 f

(
y(i)
)

due to the law of large numbers. Unfortunately, we cannot

even take samples from a posterior distribution P (θ|X) due to its intractable

marginal likelihood term, so in general, we cannot use a straightforward Monte

Carlo scheme in Bayesian inference.

Instead of sampling from the distribution of interest directly, we may

instead sampling from some known distribution which is easy to draw samples

from and weight these samples depending on how well they represent the

true distribution. This is the basic idea behind importance sampling, one

of the most popular methods for Monte Carlo estimations. If we define an

importance distribution Q(Y ) that we can draw samples from, then we can

again form unbiased estimates of some quantity f̄ by noting

f̄ =

∫
f(Y )P (Y ) dY =

∫
f(Y )

P (Y )

Q(Y )
Q(Y ) dY

≈ 1

N

N∑
i=1

f
(
y(i)
) P (y(i)

)
Q (y(i))

,

(2.3)

where y(i) ∼ Q(Y ). The quality of an importance sampler therefore depends

on selecting a suitable importance distribution, Q(Y ) that closely resembles

our distribution of interest, P (Y ) and does not produce estimators with infinite

variance. Although the optimal importance distribution which minimizes the

6



estimator variance exists:

Q∗(Y ) =
|f(Y )|P (Y )∫
|f(Y )|P (Y ) dY

, (2.4)

this distribution is generally not one that is easy to sample from. Furthermore,

as the dimensionality of Y increases will become harder to generate good sam-

ples from Q(Y ) and empirically, importance samplers often face the problem

where only one importance sample has non-negligible weight–meaning in ac-

tuality we do not average over different samples but only select one out of N

importance samples [70].

2.2.2 Markov Chain Monte Carlo

If we want to obtain samples from some posterior distribution but can-

not do so directly, we can instead simulate from a stochastic process that is

guaranteed produce samples from the posterior distribution. In order to do

this, we need to construct a Markov chain with the posterior, P (θ|X), as its

stationary distribution. As long as a Markov chain is irreducible, meaning for

any state of the chain it has non-zero probability moving to any other state,

and aperiodic, meaning the chain is not a repeating cycle, then it is ergodic

and has the target distribution as its unique stationary distribution.

The “classic” MCMC method is the Metropolis-Hastings algorithm [62,

38]. Given a proposal distribution, Q(θ), which provides candidate values for

the next state of the Markov chain, the probability of transitioning to a state

7



θ′ ∼ Q(θ) from a state θ(t) at time t is

r = min

{
1,
P (θ′|X)Q(θ(t))

P (θ(t)|X)Q(θ′)

}
. (2.5)

Because this Markov chain stays at the previous state with probability 1 − r

it is aperiodic, and if the proposal distribution of Q is chosen to have pos-

itive probability on the space of θ then the Metropolis-Hastings sampler is

irreducible and therefore ergodic. Additionally, if a Markov chain exhibits

detailed balance–meaning that for a given distribution P (X) and a transi-

tion kernel K(X|X ′) then if P (X)K(X ′|X) = P (X ′)K(X|X ′) then P (X) is

the limiting distribution of the Markov chain. The transition kernel for the

Metropolis-Hastings algorithm is

K(θ|θ′) = r(θ, θ′)Q(θ′|θ) +

(
1−

∫
r(θ′)Q(θ′|θ) dθ′

)
δθ, (2.6)

given the acceptance probability r(·, ·) from Equation 2.5 and the proposal

distribution Q conditioned on θ. It is possible to show that the Metropolis-

Hastings algorithm exhibits detailed balance with the posterior as its limiting

distribution: P (θ|X)K(θ|θ′) = P (θ′|X)K(θ′|θ). Thus, by detailed balance,

the Metropolis-Hastings algorithm has a stationary distribution and by ergod-

icity this stationary distribution is unique. Moreover, the ratio P (θ′|X)/P (θ(t)|X)

means we can ignore the posterior denominator P (X) so that we may now

sample from the posterior distribution without the problem of intractable in-

tegrals.

A special case of the Metropolis-Hastings algorithm commonly used

in Bayesian inference is the Gibbs sampler. For a posterior of dimension P ,
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Algorithm 1: The Metropolis-Hastings Algorithm

for t = 1, . . . , T do
Draw θ′ ∼ Q(θ)
Calculate

r =
P (X|θ′)P (θ′)Q(θ(t))

P (X|θ(t))P (θ(t))Q(θ′)

Draw u ∼ Uniform(0, 1)
if u < r then

θ(t+1) := θ′

else
θ(t+1) := θ(t)

θ = {θ1, . . . , θP}, we can sample the joint distribution of P (θ|X) by iteratively

sampling from the conditional distribution P (θp|X, θ−p) for p = 1, . . . P . This

choice of proposal distribution for θp guarantees that the acceptance probabil-

ity in the Metropolis-Hastings algorithm is always 1. If our choice of prior for

P (θp) is conjugate, meaning that the posterior is in the same family of distribu-

tions as the prior, then the Gibbs sampler provides us with a computationally

convenient Bayesian inference algorithm.

Algorithm 2: The Gibbs Sampling Algorithm

for t = 1, . . . , T do

θ
(t+1)
1 := θ′1 ∼ P (θ

(t)
1 |X, θ

(t)
2 , . . . , θ

(t)
P )

θ
(t+1)
2 := θ′2 ∼ P (θ

(t)
2 |X, θ

(t+1)
1 , θ

(t)
3 , . . . , θ

(t)
P )

...
θ

(t+1)
p := θ′p ∼ P (θ

(t)
p |X, θ(t+1)

1 , . . . , θ
(t+1)
p−1 , θ

(t)
p+1, . . . , θ

(t)
P )

...
θ

(t+1)
P := θ′P ∼ P (θ

(t)
P |X, θ

(t+1)
1 , . . . , θ

(t+1)
P−1 )

9



2.3 Bayesian Non-parametric Models

In a typical Bayesian parametric model, we have a set of parameters

θ = {θ1, . . . , θP} on which we place prior distributions, P (θ), and using Bayes’s

theorem we obtain posterior distributions of the parameters given observed

data, P (θ|X). However, in many modeling situations we may have a variety

of competing models to fit to the data. In the Bayesian parametric setting,

we might do this by computing posterior model probabilities

P (Mk|X) =
P (Mk)

∫
P (X|θ,Mk)P (θ|Mk) dθ∑K

k=1 P (X|Mk)P (Mk)
, (2.7)

given prior model probability P (Mk) for k = 1, . . . , K models. A model in

this case could refer to the number of mixture components in a mixture model

or the number of factors in a latent factor model. Fitting all possible models

and selecting one is generally infeasible, especially because it is typically not

obvious how many mixtures or factors, for example, to include.

The non-parametric approach to this problem would instead allow us

to avoid specifying the number or size of the models to investigate and instead

let the model complexity adapt to the data. The parameter space is fixed in

the typical Bayesian setting, so the Bayesian non-parametric (BNP) solution

is to instead assume an infinite dimensional parameter space for the prior, but

choose a likelihood that uses a finite number of parameters per observation.

The rest of this section will proceed with brief introductions to three of the

most popular non-parametric priors–the Dirichlet process, the beta-Bernoulli

process and the Gaussian process, and their practical applications to statistical

10



modeling.

2.3.1 The Dirichlet Process

The Dirichlet process (DP) [22] is a distribution over the space of func-

tions, specifically over the space of probability distributions, with the property

that marginal distributions of the Dirichlet process are Dirichlet distributed.

D is Dirichlet process-distributed, given a base distribution H(·) and concen-

tration parameter α, if for any finite, disjoint partition of θ, {A1, . . . , AK}:

D(A1), . . . , D(AK) ∼ Dirichlet(αH(A1), . . . , αH(AK)). (2.8)

Given a sequence of observations θ1, . . . , θn drawn from a Dirichlet process, D,

the posterior of D is again Dirichlet process-distributed

D|θ1, . . . , θn ∼ DP

(
α + n,

α

α + n
H +

1

α + n

n∑
i=1

δθi

)
. (2.9)

If we have an observation θn+1 and integrate out D, then we obtain a predictive

distribution [9]

θn+1|θ1, . . . θn ∼
1

α + n

(
αH +

n∑
i=1

δθi

)
. (2.10)

This representation of the Dirichlet process, commonly known as the Pólya

urn representation [9], is related to the Chinese restaurant process for clus-

tering and mixture models. Suppose we observe a sequence θ1, . . . , θn from a

Dirichlet process where observation i of this sequence is located at a position

in {φ1, . . . , φK} for the K locations currently occupied by θ1, . . . , θn. We can
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obtain a posterior predictive distribution for θn+1 with

θn+1|θ1, . . . , θn ∼
1

α + n

(
αH +

K∑
k=1

nkφk

)
. (2.11)

This distribution produces clustering behavior where new sequences of θ de-

cide to join a cluster based on the cluster’s popularity, nk, or join a new cluster

depending on the value of α (also known as the “rich get richer” property).

This distribution is known as the Chinese restaurant process [2] due to an

analogy which anthropomorphically describes this process as a customer en-

tering a Chinese restaurant and the customer will either sit at a new table with

probability proportional to α or will sit at a table with other customers with

probability proportional to the number of customers sitting at that table. As

we will see later, this representation of the Dirichlet process becomes useful

for inference as we can avoid the difficulties of performing Bayesian inference

on an infinite dimensional object.

Another insightful representation of the Dirichlet process is available in

the stick breaking construction [81], which takes a “stick” of length one and

recursively breaks off Beta(1, α) length pieces from each previous segment. The

stick pieces represent point masses on distributions located at φk. Therefore,

if D ∼ DP (α,H) then we can define D as:

βk ∼ Beta(1, α), πk = βk

k−1∏
`=1

(1− β`), φk|H ∼ H, D =
∞∑
k=1

πkδφk . (2.12)

From the representation of D as D =
∑∞

k=1 πkδφk , it is now evident that the

Dirichlet process is a discrete distribution. Thus, draws from the Dirichlet

12



Figure 2.1: Draws from a stick breaking Dirichlet process.

process are guaranteed to have ties. This discrete property becomes mean-

ingful when using Dirichlet processes in the context of mixture modeling and

clustering, as illustrated with the Chinese restaurant process.

2.3.2 Example: The Infinite Mixture Model

The most common application of Dirichlet processes in Bayesian non-

parametric modeling is the example of infinite mixture models. A finite Dirich-

let mixture model with K components is generally represented as

φk ∼ H, π ∼ Dirichlet(α, . . . , α), X ∼
N∏
i=1

K∑
k=1

πkL(xi, φk), (2.13)

for data X = {x1, . . . , xN} and a likelihood function L(·, ·). To facilitate infer-

ence for this mixture model, we use a data augmentation scheme by introducing

a latent variable zi ∼ π which indicates the mixture or cluster membership of

observation i. With this data augmentation, the mixture model is now

φk ∼ H, π ∼ Dirichlet(α, . . . , α), zi ∼ π, xi ∼ L(xi, φzi). (2.14)

In the Bayesian non-parametric setting, we now replace the Dirichlet distribu-

tion with a Dirichlet process and we can represent a Dirichlet process mixture
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model [4, 74] as

D|α,H ∼ DP (α,H), θi ∼ D, xi|θi ∼ L(xi, θi). (2.15)

Alternatively, we can explicitly model the atom weights using the stick break-

ing construction to represent the infinite mixture model as

φk ∼ H, βk ∼ Beta(1, α), πk = βk

k−1∏
`=1

(1−β`), zi ∼ π, xi ∼ L(xi, φzi). (2.16)

Here, we have replaced the mixing parameter with the stick breaking construc-

tion of the mixing weights seen in Equation 2.12. In the Chinese restaurant

process representation, we marginalize π so that the mixture model is now

φk ∼ H, zi = k ∼
{ n−ik

N+α−1
, nk > 0

α
N+α−1

, nk = 0
, xi ∼ L(xi, φzi), (2.17)

where n−ik = |{zj : zj = k, j 6= i}| and nk is the number of observations allo-

cated to cluster k. Even though there is an a priori assumption that there are

infinite mixture or clusters, we are guaranteed to have data associated with

only finitely many of the clusters. In this framework, the number of clusters

occupied will depend on the data and the concentration parameter, α. As we

will see later, the quality and speed of our inference algorithms will depend

heavily on whether we choose to explicitly represent the infinite dimensional

mixing component with the stick-breaking representation or marginalize out

the mixing component with the Chinese restaurant process.

2.3.3 The Beta-Bernoulli Process

Section 2.3.1 introduced a distribution over distributions through the

Dirichlet process and described how various constructions of the DP can pro-
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duce clustering and mixture models with an assumed a priori infinite number

of components. Similarly, this section will introduce distribution over infinite

binary components through the beta-Bernoulli process and demonstrate its

utility in modeling data composed of infinite latent factors.

The beta process [41, 91], B ∼ BP (α,H), is defined by a concentration

parameter α on a base measure H that has total mass γ on the space Φ. The

beta process can then be described as B =
∑∞

k=1 πkδφk . This representation is

similar to the point mass representation in the Dirichlet process, except in the

Beta process the weights πk need not sum to one. An alternative representation

of the beta process [72] can be defined, given a finite process where

πk ∼ Beta
(αγ
K
, α
(

1− γ

K

))
, φk ∼ H/γ, BK =

K∑
k=1

πkδφk . (2.18)

Letting K →∞ means BK → B, a beta process.

Like the stick breaking representation for the Dirichlet process in Equa-

tion 2.12, the beta process also has many stick breaking representations [89,

72, 12]. Represented below is the stick breaking representation of [72]. If

B ∼ BP (α,H) then we can represent it as

Ck ∼ Poisson(γ), φkj ∼ H/γ, β
(`)
kj ∼ Beta(1, α),

B =
∞∑
k=1

Ck∑
j=1

β
(`)
kj

k−1∏
`=1

(
1− β(`)

kj

)
δφk

(2.19)

In other words, draws from a beta process are an infinite collection of binary

probabilities at located in the space of Φ. With infinite binary probabilities,

we can then produce infinite binary draws through the Bernoulli process.
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If Xi is a Bernoulli process and B is a discrete measure (assume it is a

beta process B ∼ BP (α,H) though it need not be) then Xi ∼ BeP(B) [91].

We can generate samples of Xi with the following generative process:

zik|πk ∼ Bernoulli(πk), Xi =
∞∑
k=1

zikδφk . (2.20)

Here we can see the infinite dimensional modeling capability of the beta-

Bernoulli process where an observation Xi contains the presence of features

φk with probability πk. If B is a continuous measure, then BeP(B) will be

a Poisson process with B as its intensity function and Xi =
∑M

k=1 δφk , where

M ∼ Poisson(B(Φ)). In this case, the Bernoulli process acts as the process

which selects new features to allocate to observations. If B is continuous

and discrete then the Bernoulli process is a sum of the continuous and dis-

crete Bernoulli processes. Moreover, the beta process is conjugate with the

Bernoulli process. After observing X1, . . . , Xn observations from

Xi|B ∼ BeP(B), B ∼ BP(α,H), (2.21)

the posterior distribution is

B|X1, . . . Xn ∼ BP

(
α + n,

α

α + n
H +

1

α + n

n∑
i=1

Xi

)
. (2.22)

After marginalizing out B, the predictive distribution is

Xn+1|X1, . . . Xn ∼ BeP

(
α

α + n
H +

1

α + n

n∑
i=1

Xi

)
(2.23)

[91] showed that this predictive posterior distribution is a two parameter Indian

buffet process with parameters (α, γ). We can see this when we separate
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Xn+1 into its discrete and continuous components. The discrete component

BeP
(

1
α+n

∑n
i=1 Xi

)
allocates new observations to features proportional to the

number of previous observations that select this feature while the continuous

component, BeP
(

α
α+n

H
)

generates Poisson
(
αγ
α+n

)
new features for observation

n+ 1 to occupy.

The original, one parameter Indian buffet process [36] is defined with

the finite probability model

πk ∼ Beta
( α
K
, 1
)
, zik ∼ Bernoulli(πk), (2.24)

and letting K →∞. This distribution Z ∼ IBP(α) is represented by

P (Z) =
αK∏2N−1

h=1 Kh!
exp {−αHN}

K∏
k=1

(
N −

∑N
i=1 zik

)
!
(∑N

i=1 zik − 1
)

!

N !
,

(2.25)

where HN is the N -th harmonic number. This representation is equivalent to

the posterior predictive distribution in Equation 2.22, where γ = 1. Similar to

the Chinese restaurant process, we can describe the behavior of this process

as the i-th customer (observation) who enters an Indian restaurant and selects

Poisson(α/i) new dishes (features) and chooses a previous dish k with proba-

bility proportional to the number of previous customers who also selected dish

k. With the Indian buffet process, we now have a distribution from which

to draw infinite dimension binary matrices that we could use for latent factor

modeling.
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Figure 2.2: Draws from a stick breaking beta process.
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2.3.4 Example: The Infinite Latent Factor Model

A latent factor model assumes that an N × D dataset X can be de-

composed as a combination of K < N features. One popular example of a

finite factor model is factor analysis [15]. In factor analysis, we can represent

the data in a lower dimensional format as X = LF + ε where F is a K × D

matrix representing the “factors” or latent features and L is a N ×K is the

“factor loading” matrix which represent the intensity an observation exhibits

a particular factor and ε represents the noise term centered at 0 with variance

σ2.

We can extend the factor analysis model into a sparse infinite dimen-

sional case where the factor loading matrix is represented by a N ×∞ binary

matrix Z indicating the presence or absence of a certain feature Ak, a row

in the ∞× D matrix A for observation Xi. Again, the infinite latent factor

model is represented with the Indian buffet process as

Z ∼ IBP(α), Ak ∼ N(0, σ2
A), εi ∼ N(0, σ2

XI), X = ZA+ ε, (2.26)

or with the beta-Bernoulli process by assuming Z|B ∼ BeP(B), B ∼ (α,H).

Examples of latent factor models can be found in applications of image mod-

eling [44], where images can be decomposed into basic components that are

assumed to be superimposed on each other. Or in choice modeling [32], where

N users use D or some subset of D objects (movies, products, etc.) and we

can decompose their consumption into latent factors which can then be used

to identify similar consumers.
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Figure 2.3: Draws from a Chinese restaurant process and Indian buffet process.
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2.3.5 Gaussian Processes

In Sections 2.3.1 and 2.3.3, we examined examples of Bayesian non-

parametric models where the latent processes were assumed to have a discrete

distribution (i.e. the cluster membership of data or the features allocated

to data). In the example of Gaussian process models, however, we now as-

sume that the latent process we wish to model is instead continuous or more

specifically–a real-valued function.

We may be interested in using Gaussian processes to model functions

in situation where we do not or cannot place a parametric form on a latent

function we wish to model. Function learning is a common problem in machine

learning and statistics, but if we are in a situation where we do not want to

place strong assumptions of the nature of the latent function (e.g. a linear

function) then the function learning problem becomes very difficult. However,

the space of functions that we would like to consider which maps some inputs

X to an output Y should be smooth so we should somehow only consider

functions , f : X → Y , that “behave nicely”.

The Bayesian non-parametric solution to function learning is to place

a prior distribution on the space of functions (assumed to be infinite dimen-

sional) and learn the latent function from the posterior distribution. The

Gaussian process (GP) [76] is a popular choice of prior over the space of

smooth functions, as we will see, due to its convenience and tractability in

inference.
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Figure 2.4: Draws from a Gaussian process with an RBF kernel.

A Gaussian process is a distribution over real valued functions, f :

RD → R, defined by a mean function m(·) and a covariance kernel function

Σ(·, ·) with the property that, evaluated at any finite set of points X, a Gaus-

sian process distributed function is multivariate normal centered at m(X) with

covariance Σ(X,X ′)

f ∼ GP(m,Σ)→ f |X ∼ N(m(X),Σ(X,X ′)). (2.27)

Because of this multivariate normal property and the fact that functions drawn

from this prior are smooth, the Gaussian process is often an attractive choice

of function prior as this can lead to tractable posterior inference.

2.3.6 Example: Bayesian Non-linear Regression

A basic example of a Gaussian process model can be seen in a non-

linear regression problem. Suppose we observe inputs X and outputs Y and
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assume the relation between X and Y is some function f . Then using the

Gaussian process we typically represent this model as

f ∼ GP(0,Σ), ε ∼ N(0, σ2I), Y = f(X) + ε. (2.28)

Because of the multivariate normal property of the Gaussian process, we have

a normally distributed likelihood that is conjugate to a normally distributed.

Thus, we have posterior, marginal likelihood and predictive posterior distri-

butions available in closed form. Given predictive inputs X∗, the posterior

predictive distribution of the latent function f ∗ is

P (f ∗|−) ∼ N(µf ,Σf )

µf = Σ(X∗, X)
[
Σ(X,X) + σ2I

]−1
Y

Σf = Σ(X∗, X∗)− Σ(X∗, X)
[
Σ(X,X) + σ2I

]−1
Σ(X,X∗)

(2.29)

Because the posterior and posterior predictive distributions are available in

closed form, the only procedure remaining in Gaussian process regression in-

ference is learning the hyperparameters θ associated with the covariance func-

tion Σ(·, ·). Perhaps the most common approach in the regression setting

is to optimize the hyperparameters with respect to the marginal likelihood∫
P (Y |f,X)P (f |X) df :

P (Y |X) = (2π)−
N
2

∣∣Σ(X,X ′) + σ2I
∣∣− 1

2 exp

{
−1

2
Y T
[
Σ(X,X ′) + σ2I

]−1
Y

}
.

(2.30)

Section 2.4.2 will further discuss different methods of inference for Gaussian

process inference.

23



2.4 Bayesian Non-parametric Inference

2.4.1 Discrete Models

An immediate, non-trivial question for Bayesian non-parametrics is how

to perform inference for models with infinite dimensional priors. For discrete

non-parametric models, like the Dirichlet process or the beta-Bernoulli pro-

cess, the question for inference is how to represent the infinite random mea-

sure π. For Bayesian non-parametric inference, we can represent π with a

finite approximation [48, 71, 103]. Instead of relying on a fixed approximation

of a Bayesian non-parametric model, instead we can use a slice sampler for

inference under the stick breaking representation of the Dirichlet process or

the beta-Bernoulli process which only instantiates a finite number of compo-

nents through random truncations that the auxiliary slice variable produces

[96, 50, 89].

For example, in the stick breaking representation of the Dirichlet pro-

cess mixture model from Equation 2.16, the likelihood for observation i is

P (xi|π, φ) =
∑∞

k=1 πkL(xi, φk). With the slice variable, this likelihood be-

comes P (xi, ui|π, φ) =
∑∞

k=1 I(ui < πk)L(xi, φk), where I(·) is the indicator

function. Because the stick-breaking weights are decreasing as k increases,

only a finite number of atoms will be instantiated at a given slice truncation

level ui and thus we only need to consider the atoms {k : πk ≥ ui} when sam-

pling P (zi = k|−). Because we recover the original model when we integrate

out ui, this slice sampling approach [96] is a valid sampler for the Dirichlet

process mixture model.
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Slice sampling in the stick-breaking Indian buffet representation of the

beta-Bernoulli process [89] operates similarly to its Dirichlet process equiv-

alent. Again, we draw a slice variable u ∼ Uniform(0, β∗) where β∗ is the

smallest stick weight of features that are turned on (i.e. allocated to an obser-

vation) which represents the truncation level for instantiating feature weights.

Thus, the infinite dimensional matrix Z is now represented by a truncated,

finite matrix.

P (Z|u, β) =
1

β∗
I(0 ≤ u ≤ β∗)P (Z|β), β∗ = min

{
1, min

k:∃i,zik=1
βk

}
. (2.31)

Otherwise, we can marginalize π which allows us to completely avoid

issues with representing an infinite dimensional object (which will be referred

to as “collapsed” samplers). For Dirichlet process mixture models, we can

integrate out the random mixing measure to obtain the Chinese restaurant

process as seen in Equation 2.17 from which we can sample the cluster alloca-

tion directly. Radford Neal’s “Algorithm 8” is perhaps the most well known

collapsed MCMC sampler for Dirichlet process mixtures [66]. The essential

idea of Algorithm 8 is that it introduces m auxiliary components that rep-

resent unoccupied clusters. If K+ is the set of K occupied clusters and K−

represent the m unoccupied, auxiliary variables then the probability of ob-

servation i joining a cluster in K+ is proportional to its popularity without

observation i, n−ik, times its likelihood, whereas joining a cluster in K− is

proportional to α/m times the likelihood. We then update the posterior for

feature φk, k ∈ K+ and draw new features from H for φk, k ∈ K−.
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For the beta-Bernoulli process, integrating out π gives us the Indian

buffet process representation. Similar to the Chinese restaurant process, we

can now sample feature allocations directly with probabilities dependent on

the number of observations allocated to feature k. [37] provides a simple Gibbs

sampling routine for inference in Indian buffet process models with application

in the latent Gaussian factor model as seen in Equation 2.26.

2.4.2 Continuous Models

Instead of optimizing the hyperparameters with respect to the (ap-

proximate) marginal likelihood we may approach the problem of learning the

hyperparameters in the Bayesian framework and place a prior on the hyper-

parameters, P (θ). In the Bayesian setting we could perform hyperparameter

inference by computing a Laplace approximation of θ or if we are interested in

the exact posterior distribution of the hyperparameters we may sample them

via Hamiltonian Monte Carlo.

However, this is still a serious, inherent problem in Gaussian process

models–inference requires inverting an N × N matrix which generally scales

O(N3). Numerous approaches for fast Gaussian process have been developed,

most of which attempt to reduce the complexity of inverting a large matrix.

Scalable Gaussian process methods largely fall under two categories: (1) Sparse

methods, which learn the function posterior through representative “inducing

points” and will be discussed below, and (2) local methods, which partition

the data and assume a block diagonal structure in the covariance matrix, and
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will be discussed in Section 2.5.

One of the most popular sparse methods, FITC [84], learns the loca-

tions of these inducing points, Xu, by maximum likelihood estimation jointly

with the model hyperparameters. We assume there are M pseudo-inputs, Xu

(or inducing points) with associated pseudo-targets fu|Xu ∼ N(0,Σ(Xu, X
′
u),

which is chosen to match the prior on the latent function f . Using results

from conditional Gaussians, we can see that

P (Y |X,Xu, fu) ∼ N(µu,Σu), µu = Σ(X,Xu)Σ
−1(Xu, X

′
u)fu,

Σu = Σ(X,X ′)− Σ(X,Xu)Σ
−1(Xu, X

′
u)Σ(Xu, X) + σ2I.

(2.32)

By assuming Λ = diag {Σ(X,X ′)− Σ(X,Xu)Σ
−1(Xu, X

′
u)Σ(Xu, X)}, we can

form a likelihood that factorizes over the N observations given the pseudo-

input and targets:

P (Y |X,Xu, fu) =
N∏
i=1

P (Yi|Xi, Xu, fu) ∼ N
(
µu,Λ + σ2I

)
(2.33)

Given the prior P (fu|Xu) and the likelihood P (Y |X,Xu, fu) we can obtain the

posterior distribution:

Qu = Σ(Xu, X
′
u) + Σ(Xu, X)

(
Λ + σ2I

)−1
Σ(X,Xu)

µf = Σ(Xu, X
′
u)Q

−1
u Σ(Xu, X)

(
Λ + σ2I

)−1
Y

Σf = Σ(Xu, X
′
u)Q

−1
u Σ(Xu, X

′
u), P (fu|X, Y Xu) ∼ N(µf ,Σf )

(2.34)

and the posterior predictive distribution:

P (Y ∗|X∗, X, Y,Xu) ∼ N(µ∗,Σ∗),

µ∗ = Σ(X∗, Xu)Q
−1
u Σ(Xu, X)

(
Λ + σ2I

)−1
Y

Σ∗ = Σ(X∗, X∗′)− Σ(X∗, Xu)(Σ(Xu, X
′
u)
−1 −Q−1

u )Σ(Xu, X
∗) + σ2I.

(2.35)
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Lastly we can integrate out fu to obtain the marginal likelihood:

P (Y |X,Xu) ∼ N(0,Σ(X,Xu)Σ
−1(Xu, X

′
u)Σ(Xu, X) + Λ + σ2I) (2.36)

Inference in FITC learns the hyperparameters and the inducing locations

jointly by optimizing with respect to P (Y |X,Xu).

2.5 Distributed Inference

The central content of this dissertation will focus on scalable and, in

particular, distributable MCMC methods for Bayesian non-parametric infer-

ence. The majority of the parallel methods introduced in this dissertation

are data parallel algorithms, in which the data is distributed across multi-

ple machines but are assumed to have the same model. Broadly speaking,

data parallel MCMC algorithms fall under two categories: (1) embarrassingly

parallel MCMC algorithms and (2) exact, parallel MCMC algorithms.

2.5.1 Embarrassingly Parallel MCMC

Each embarrassingly parallel MCMC algorithm generally consists of

two stages. The first stage is where exact posterior sampling is performed

on a processor p containing only a subset of the data. After local proces-

sor MCMC inference, each processor generates a subposterior. For many of

these approaches, the likelihood of the data is either upweighted, P (X(p)|θ) =∏Np
i=1 P (X

(p)
i |θ)P to form an estimate of the full likelihood using only a subset

of the data or the prior is downweighted, P (θ(p)) = P (θ)
1
P so that the com-
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bined subposterior, P (θ(p)|X(p)) ∝
∏P

p=1 P (θ)
1
P

∏Np
i=1 P (X

(p)
i |θ), is equal to the

full posterior.

The second stage, after subposterior inference, is combining subpos-

teriors to form a final posterior. Existing embarrassingly parallel methods

differ in how to combine these subposterior to generate an estimate for the

full posterior. This type of approach is called embarrassingly parallel because

we can trivially distribute computation in this scheme across as many proces-

sors available and only require interprocessor communication when combining

estimates to form a final posterior.

The consensus Monte Carlo algorithm [79] places parametric assump-

tions on the subposterior distribution–namely that it assumes the combined

posterior is Gaussian. Supposing each processor p produces T subposterior

samples, {θp1, . . . , θpT}. The combined posterior draw is

θ̂t =

(
P∑
p=1

Wp

)−1 P∑
p=1

Wpθpt, (2.37)

given a weighting matrix Wp typically chosen to be the subposterior variance

of θ on processor p. If each subposterior is Gaussian distributed then θt ∼

N

(∑P
p=1Wpθpt,

(∑P
p=1Wp

)−1
)

and we may draw posterior samples from this

combined posterior distribution.

Instead of assuming a Gaussian distribution on the consensus posterior,

[67] fits a non-parametric kernel density estimator with Gaussian kernels on
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the subposterior samples. This produces a mixture model on the subposteriors,

P̂ (θ|X(p)) =
1

T

T∑
t=1

N(θpt, h
2I) (2.38)

for a bandwidth parameter h. Combining all P of these kernel density esti-

mates produces a product estimate of the full posterior,

P̂ (θ|X) =
1

T P

P∏
p=1

T∑
t=1

N(θpt, h
2I). (2.39)

Equivalently, the estimate of the full posterior is a mixture of T P Gaussians.

To sample from the combined posterior, first we must sample a mixture com-

ponent and then sample from that mixture component’s distribution. This

MCMC algorithm is proven to be an asymptotically exact sampler as the

number of subposterior draws T approaches infinity.

Alternately, we can obtain a combined posterior by taking the geometric

median of the P subposteriors. The geometric median is a generalization of

the univariate median to multiple dimensions which, for a finite collection of

points {θ1, . . . , θP} ∈ Θ , is

θ∗ = argmin
θ∈Θ

P∑
p=1

||θ − θp||, (2.40)

given a normed space Θ equipped with norm || · ||. [64] has shown that using

the geometric median to combine subposteriors in the embarrassingly parallel

MCMC framework has good frequentist posterior concentration qualities and is

provably robust to outliers in the data. Furthermore, the theoretical properties

of geometric median combination, unlike consensus Monte Carlo, do not rely on
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distribution assumptions of the posterior and, through the Weiszfeld algorithm

[99], is faster than sampling the posterior from TM Gaussian mixtures.

For Bayesian non-parametric models, embarrassingly parallel methods

are particularly suited for a class Gaussian process inference techniques known

as “product of experts” [68], which assumes the marginal likelihood of the

Gaussian process regression models factorizes across partitions,

P (Y |X, θ) ≈
P∏
p=1

P (Y (p)|X(p), θ). (2.41)

In this formulation, the dense covariance matrix becomes a low-rank block

diagonal matrix and therefore training this model scales O
(
N3
p

)
per partition.

Each variation of the product of expert models differs only in how to combine

predictions formed on each “expert” (partition). The product of experts model

generates predictions by taking weighted products of each expert:

P (f ∗|X∗, X, Y, θ) =
P∏
p=1

P (f ∗|X(p), Y (p), X∗, θ)βp . (2.42)

Since the marginal likelihood is assumed to factorize along P , then computa-

tion, specifically the matrix inversion, is now distributable with each machine

only having to invert a smaller Np sized matrix.

2.5.2 Exact Parallel MCMC

While the embarrassingly parallel framework is attractive for its con-

ceptual simplicity and computational convenience, it is not obvious how a given

combined subposterior differs from the true posterior when the true posterior
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is not Gaussian. Furthermore, these methods are unsuitable for problems like

mixture models or latent factor models because those types of models with

exhibit a serious label switching problem when trivially distributed in such a

framework.

Another approach for distributable inference is to exploit conditional

independence in model structure. Conditional independence in the Bayesian

framework means that if a set of parameters Z = {θ1, . . . , θP} parameters are

independent given the data and some other parameters Zc and then we can

update the parameters in Z in parallel while still maintaining the exactness

of the MCMC sampler. The most simple example of a parallelizable condi-

tional structure is one where the likelihood completely factorizes across N

observations given the parameters:

P (θ|X) ∝ P (θ)
N∏
i=1

L(xi, θ). (2.43)

In this setting we can distribute the data across P processors and we may

calculate the full likelihood function
∏N

i=1 L(xi, θ). in parallel and send that

value (or if in the case of Gibbs sampling, the summary statistics) to a mas-

ter processor to sample a new value of θ from P (θ|X). Unfortunately in this

simple setting, we need to have constant communication between the worker

processors and the master to sample new values of θ which we need to avoid

considering processor communication carries a substantial computational over-

head, unlike in the case of the embarrassingly parallel samplers.

A more reasonable example of when this type of parallel approach can
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be useful would be in the case of a mixture model. Suppose we model our data

using a Dirichlet mixture of K Gaussians:

µk ∼ N(µ0,Σ0), π ∼ Dirichlet(α, . . . , α), zi ∼ π, xi ∼ N(µzi ,ΣX) (2.44)

Given the mixing weights π, the mixture components µk and observation xi,

the posterior distribution of Z = (z1, . . . , zN) is conditionally independent,

and hence we can distribute X and the latent indicators Z across processors

and update Z in parallel. After some L sub-iterations on each processor we

can send the summary statistics given Z to the master processor to sample µk

and π from its full conditional distributions and send the new values of (µk, π)

to the worker processors.

Algorithm 3: Parallel Bayesian Gaussian Mixture Model In-
ference

for p = 1, . . . , P in parallel do
Receive new values of π and µk from master processor
for ` = 1, . . . L do

for i = 1, . . . Np do
Sample zip ∼ P (zi = k|−) ∝ πkN(xi;µk,ΣX)

Send summary statistics, nkp := | {zi = k : i = 1, . . . , Np} | and
x̄kp :=

∑
i:zip=k xi for k = 1, . . . , K to master processor

if master processor then
Combine summary statistics from worker processors,
nk :=

∑P
p=1 nkp and x̄k :=

∑P
p=1 x̄kp

Sample π ∼ Dirichlet(α + n1, . . . , α + nK)
Sample

µk ∼ N
((

Σ−1
0 + nkΣ

−1
X

)−1
(µ0 + x̄k) ,

(
Σ−1

0 + nkΣ
−1
X

)−1
)

Send new values of π and µk to worker processors

We can see an obvious extension of this parallel inference framework
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illustrated in Algorithm 3 for Bayesian models like the infinite mixture model

or the infinite latent factor model where we sample the “local” variables Z in

parallel and update the latent features given Z on the master processor. This

type of parallelism is most amenable when Bayesian non-parametric models

are represented in their stick-breaking formats. In the stick breaking setting,

we explicitly represent the mixing measure π which means the posterior of zi

is conditionally independent given π and the latent feature φk.

If we integrate out mixing measure, then P (zi = k|−) will depend on

the number of observations allocated to feature k and therefore not paralleliz-

able unless we allow for excessive processor communication. If we can integrate

φk from the likelihood then the likelihood will depend on all observations and

produce the same processor communication problem. But, instantiating these

parameters will lead to a MCMC sampler that mixes slower even though paral-

lel inference is possible. Chapters 3 and 4 will demonstrate methods developed

to overcome this exact trade-off between the speed of an uncollapsed sampler

(meaning the mixing weights and features are instantiated) and a collapsed

sampler (meaning the mixing weights and features are marginalized) with a

parallel MCMC inference algorithm that contains the quality of both types of

samplers.

2.6 Further Reading

The interested reader who intends to devote serious time to the study

of Bayesian modeling, Bayesian non-parametrics and inference should read
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the following books, articles and theses each of which were influential to the

creation of this dissertation. As a introduction to Bayesian statistics and

modeling, Gelman et al.’s Bayesian Data Analysis [26] is an excellent first

read to understanding the intuition and power of modeling data under the

Bayesian philosophy. The obvious next direction is to learn about Bayesian

inference and computation. For Monte Carlo and Markov chain Monte Carlo

techniques, Robert and Cassella’s Monte Carlo Statistical Methods [77] and

Brooks et al.’s Handbook of Markov Chain Monte Carlo [13]. Angelino et al.

[3] extends the disucssion of Bayesian inference for scalable and distributable

methods.

As a gentle introduction to Bayesian non-parametrics in practical mod-

eling scenarios, Gershman and Blei’s introduction to Bayesian non-parametrics

[29] is an easy and enjoyable tutorial for those interested understanding the

motivation to approach modeling from an infinite dimensional perspective.

Rasmussen and Williams wrote a comprehensive book introducing Gaussian

processes [76]. To understand Bayesian non-parametrics with more techni-

cal depth, Emily Fox’s PhD thesis [23] and Peter Orbanz’s lecture notes

on Bayesian non-parametrics [69] offer a readable yet theoretically detailed

overview of introductory ideas in BNP.
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Chapter 3

Distributed Inference in Bayesian

Nonparametric Models

In this chapter, we focus on two popularly used nonparametric Bayesian

methods, the Dirichlet process and the Indian buffet process. We choose these

because they are the most commonly used nonparametric priors for mixture

models and latent feature models, respectively. However, they are both mem-

bers of a larger class of models based on a Completely Random Measure frame-

work, and the techniques in this chapter can easily be extended to apply to

several other members of this class.

3.1 Completely Random Measures

Many commonly used nonparametric priors, including the Dirichlet

process and the Indian buffet process, can be expressed in terms of a class

of distributions known as completely random measures (CRM) [54]. A com-

pletely random measure is a random measure µ on some space Ω where the

masses µ(Ai), µ(Aj) assigned to disjoint subsets Ai, Aj ⊂ Ω are independent.

A commonly used example of a completely random measure is the

gamma process. If H is some probability measure on Ω, and α > 0, then
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the gamma process assigns a Gamma(αH(A)) mass to any subset A ⊂ Ω.

The Dirichlet process is a distribution over random probability measure D ∼

DP(α,H) on Ω that corresponds to the normalization of a gamma process

with parameters α and H. Since the gamma process assigns independent

gamma-distributed masses to disjoint subsets of Ω, the masses assigned by

a Dirichlet process to a finite partition of Ω are necessarily Dirichlet dis-

tributed, i.e. if A1, . . . , AK is a partition of Ω, then (D(A1), . . . , D(Ak)) ∼

Dirichlet(αH(A1), . . . , αH(AK)).

We can use a Dirichlet process-distributed random measure

D :=
∞∑
k=1

πkδθk (3.1)

to assign parameters to observations:

D ∼DP(α,H)

φn ∼D
(3.2)

The discrete nature of D means that a single atom πkδθk can be associated

with multiple observations, so we will get repeated values of φn, so that we

are partitioning observations into an unbounded number of clusters. If we let

zn be the cluster indicator for the nth data point, we can directly obtain the

predictive distribution over zn+1|z1:n:

P (zn+1 = k|z1:n, α) =

{
mk
n+α

for k ≤ K
α

n+α
for k = K + 1

(3.3)

where K is the number of clusters present in the first n observations, and mk

is the number of observations in the kth cluster. To recover a full mixture
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model from Equation 3.3, we can sample a cluster parameter θk ∼ H for each

cluster and set φn := θzn .

Another commonly used CRM is the beta process [41, 91]. The (ho-

mogenous) beta process is a completely random measure where the distribution

over atom sizes is given by the limit, as K → ∞, of a Beta
(
c α
K
, c
(
1− α

K

))
distribution, and whose atom locations are i.i.d. according to some probability

measure H. The beta process can be used as a prior for latent feature models.

If B :=
∑∞

k=1 µkδθk ∼ BP(α, c,H), then we can interpret the µk as the prob-

ability of an observation containing the kth latent feature θk. We can select

a finite subset of these latent features for the nth data point by sampling a

sequence Zn of binary indicator variables zn,k ∼ Bernoulli(µk).

As with the Dirichlet process, it is possible to integrate out the latent

measure and work directly with the predictive distribution over the binary

sequences. If K is the number of features seen in the first n − 1 data points,

then we can sample the next sequence Zn = (zn,k)
∞
k=1 as

zn,k ∼ Bernoulli
(mk

n

)
, k = 1, . . . , K

J ∼ Poisson
(α
n

)
zn,j = 1, j = K + 1, . . . , K + J

zn,j = 0, j > K + J

K ←K + J

(3.4)

If we stack the sequences Zn into a matrix Z, Equation 3.4 describes a distri-

bution over binary matrices known as the Indian buffet process [36].
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3.2 Inference Approaches

In Section 3.1, we saw two complementary representations for the clus-

ter/latent variable allocations obtained using a Dirichlet process and an In-

dian buffet process. We can either explicitly instantiate the latent measure

and sample each data point’s allocations independently given this measure, or

we can integrate out the latent measure and work directly with the predictive

distribution.

When designing an MCMC algorithm, these two options lead directly

to two different inference approaches, which we will refer to as collapsed and

uncollapsed samplers. In an uncollapsed sampler, we alternate between sam-

pling the random measure given the cluster/latent feature allocations, and

sampling the allocations given the random measure. To avoid having to in-

stantiate the infinitely many atoms of the random measure, we can either

replace the random measure with a finite-dimensional approximation (see [48]

for the Dirichlet process or [71, 103] for the Indian buffet process), or we can

construct a slice sampler that employs a random truncation that maintains

the correct posterior distribution (see [96, 25] for the Dirichlet process or [89]

for the Indian buffet process).

A collapsed sampler (see [46, 66] for the Dirichlet process and [36] for

the Indian buffet process) integrates out the random measure, and works only

with the cluster allocations (Dirichlet process) or latent feature allocations

(Indian buffet process). Since we only observe a finite number of clusters

or latent features, we do not need to introduce approximations or slice vari-
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ables. We make use of the fact that the sequences obtained by integrating

out the random variables are exchangeable, meaning we can adapt the predic-

tive distributions in Equations 3.3 and 3.4 to give a conditional distribution

P (Zn|Z−n). This can be combined with a likelihood term P (Xn|Zn,Θ) to give

the full conditional distribution, which can in term be used to construct a

Gibbs sampler.

3.3 Distributed Inference Methods

A number of parallel inference algorithms have been proposed for the

Dirichlet process and its variants. [83] proposed an approximate distributed

scheme for the hierarchical Dirichlet process, which is easily adaptable to the

Dirichlet process mixture model. On each local step, each node assumes that

the sufficient statistics from the other nodes are unchanged from the previous

global step. On global steps, the sufficient statistics are updated and new

clusters are (approximately) aligned. As [102] showed, this approach works

well where the clusters are large, but when working with small clusters suffers

from alignment issues, due to both problems matching up new clusters, and

the possibility of small clusters drifting in location over the course of a local

iteration.

[102] proposed a distributed method based on partitioning the Dirichlet

process into a mixture of conditionally independent Dirichlet processes. These

conditionally independent Dirichlet processes are updated independently on

separate processors during local steps. Global moves are used to move data
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between the conditionally independent Dirichlet processes to ensure correct

mixing. While this approach works well for relatively small numbers of pro-

cessors, its scalability is limited by the fact that each cluster in the overall

DPMM must reside on a single processor (as discussed by [102] and [24]).

Further, the approach assumes a shared-memory architecture where there is

minimal cost to moving data between processors; in a distributed-memory

context this would cause significant communication bottlenecks.

A more recent approach, that is explicitly designed for the distributed-

memory, low-communication setting, was proposed by [25]. Unlike the previ-

ously described approaches, this paper uses an uncollapsed approach, explicitly

instantiating the cluster probabilities and parameters. A slice sampler is used

to ensure only a finite number of atoms need to be represented. When new

atoms are introduced by the slice sampler, a shared seed is used in the pseudo-

random number generators on each node, to ensure that the same atoms are

proposed without the need for direct communication.

The downside of this approach is that, by necessity, the new atoms

are sampled from the prior, rather than from their conditional distribution

given observations. In high dimensions, this means that the proposed atoms

are likely to be very far from data, and will therefore tend not to be used,

resulting in slow mixing.

Compared with the Dirichlet process, there has been relatively little

work on distributed inference for the Indian buffet process. The main con-

tribution in this area is by [20], who deploy an approach similar to that of
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[83]. Each processor approximates the current feature counts from the other

processors with the counts from the previous time step; there is no explicit

merging of new features. As we will see in Section 3.5, this approach will lead

to over-estimation of the number of new features, and poor mixing.

3.4 Hybrid Algorithms for Distributed Inference

A key goal of a distributed algorithm is to minimize communication

between agents. This can be achieved by breaking the algorithm into indepen-

dent sub-algorithms, which can be run independently on different agents. In

practice, we usually cannot split an MCMC sampler on a Bayesian hierarchi-

cal model into entirely independent sub-algorithms, since there are typically

some global dependencies implied by the hierarchy. We can either replace

these global dependencies with appropriate approximations, or we can make

use of conditional independencies to temporarily partition our algorithm. In

this paper, we describe methods that take the latter approach.

In Section 3.2, we considered two inference paradigms: collapsed and

uncollapsed samplers. Both these approaches lead to difficulties when attempt-

ing to parallelize inference. In the collapsed setting, we face the problem that,

since the cluster probabilities and parameters are marginalized out, the proba-

bility of the nth data point belonging to the kth cluster depends on the cluster

allocations of all other data points. In particular, we need up-to-date knowl-

edge of the total number of data points in the kth cluster, and the sufficient

statistics associated with that cluster’s distribution. If the kth cluster is in-
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stantiated on multiple machines, maintaining these statistics requires frequent

global communication. Algorithms have been proposed that ensure all data

points in a given cluster are associated with the same processor [102]; however

this can lead to bottlenecks and limited scalability due to large clusters. Fur-

ther, we replace near-constant communication about sufficient statistics with

less frequent, yet bandwidth-heavy, reallocation of datapoints to different pro-

cessors. Another approach is to approximate the true counts with “stale”

values, in effect assuming counts on other agents have not changed [20]; how-

ever this introduces errors and suffers from alignment issues, particularly in

the nonparametric section where the number of clusters changes from iteration

to iteration [102].

On the surface, uncollapsed samplers are much more suited to the dis-

tributed setting. We can make use of the fact that, conditioned on the latent

measure, the cluster/latent feature allocations are conditionally independent.

This means that if we split our data between the available agents and send a

copy of our latent measure to all these agents, then the agents can indepen-

dently sample the allocations for their subset of the data. Global communica-

tion is then required to sample from the conditional distribution of the random

measure given the allocations. Parallelization in an uncollapsed representation

for the Dirichlet process has been proposed by [25].

When working with an uncollapsed representation, we need a way of

introducing new features. One option is to use a random slice variable, and

sample a set of a atoms that are above that slice [96, 25, 50]. Another option
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is to combine the probabilities for all the uninstantiated clusters into one,

and sample a set of auxiliary variables from the prior that act as proposal

locations for new clusters [66]. The performance of such algorithms will depend

on how close the proposed new atoms or auxiliary variables are to the true

cluster parameters. For a low-dimensional parameter space, we are likely to

have reasonably good proposals; however as the dimensionality increases our

proposals are unlikely to be near the data.

In this section, we propose a hybrid approach that offers the advantages

of both a collapsed and an uncollapsed representation. We are able to do this

because of the complete randomness of the underlying random measure (beta

process in the case of the Indian buffet process; gamma process in the case

of the Dirichlet process). This allows us to split the prior into two indepen-

dent (in the case of the IBP) or conditionally independent (in the case of the

DP) random measures. We choose to split the prior into a finite-dimensional

measure corresponding to the currently observed clusters/features, and an

infinite-dimensional “tail”. We use uncollapsed inference on the finite measure,

allowing straightforward parallelization but avoiding ever needing to expand

our representation. For the infinite tail, we use a collapsed representation that

allows us to efficiently introduce new features even in a high-dimensional set-

ting. We present a hybrid sampler for the Dirichlet process in Section 3.4.1,

and for the Indian buffet process in Section 3.4.2.
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3.4.1 Distributed Hybrid Inference in the Dirichlet Process

Assume we wish to perform inference in a Dirichlet process mixture

model with some arbitrary mixture kernel f(θ) parametrized by θ ∈ Ω. We

can write this model as

D :=
∑
k

πkδθk ∼ DP(α,H), φn ∼ D, xn ∼ f(φn). (3.5)

Let A be some subset of Ω (where A may have measure zero) and let Ac be

its complement in Ω. We can represent this Dirichlet process as the weighted

superposition of two independent Dirichlet processes, one on A and one on Ac.

Concretely, if H|A is the restriction of H to A, i.e.

H|A(dθ) =

{
H(dθ) θ ∈ A
0 θ 6∈ A

(3.6)

then we can represent the DP(α,H) mixture model described in Equa-

tion 3.5 as

B ∼Beta(αH(A), αH(Ac))

G1 ∼DP(αH|A)

G2 ∼DP(αH|Ac)

φn ∼BG1 + (1−B)G2

xn ∼f(φn)
(3.7)

Conditioned on the current cluster counts mk, the posterior distribution

over D is given by

D|m1, . . . ,mK ∼ DP

(
α +N,

αH +
∑

kmkδθk
α +N

)
(3.8)
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Following from Equation 3.7, we can re-write this as

B ∼Beta(N,α)

G1 =
K∑
k=1

πkδθk ∼DP

(
N,

∑
kmkδθk
N

)
G2 =

∞∑
k=K+1

πkδθk ∼DP(α,H)

φn ∼BG1 + (1−B)G2

xn ∼f(φn)
(3.9)

We note that G1 =
∑K

k=1 πkδθk , where K is the number of currently

occupied clusters, and (π1, . . . , πK) ∼ Dirichlet(m1, . . . ,mK). We have parti-

tioned our Dirichlet process into a weighted combination of a finite-dimensional

Dirichlet distribution, with elements corresponding to the currently occupied

clusters, and an infinite-dimensional Dirichlet process, with atoms correspond-

ing to the currently unoccupied clusters.

We can now instantiate the finite measure G1 on all processors, and

integrate out the infinite dimensional tail. We randomly select one out of P

processors, by sampling P ∗ ∼ Uniform(1, . . . , P ). For every other processor,

i.e. for each processor j 6= P ∗, we perform restricted Gibbs sampling [66], only

allowing observations to choose between the K clusters in G1.

On processor P ∗, we allow observations to pick a cluster from G1 with

probability B, or a cluster from G2 with probability 1 − B. Concretely, the

probability a data point xn on cluster P ∗ being assigned to cluster k, condi-

tioned on B, G1 and the other data points on processor P ∗, is given by
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P (φn = θk|−) ∝


Bπkf(xn; θk) k ≤ K
(1−B)mk

N
f(xn; {xi : φi = θk, i 6= n}) K < k ≤ K + J

(1−B)α
N

k = K + J + 1

(3.10)

where J is the number of atoms in G2 which are associated with data.

Note that the only data points that can be associated with atoms in G2 are

those on processor P ∗, so we can evaluate mk
N
f(xn; {xi : φi = θk, i 6= n})

without any knowledge about the other processors. At each global step, we

gather the sufficient statistics from all instantiated clusters – from both G1 and

G2 – and sample parameters for those clusters. We then create a new partition,

redefining the support of G1 as the set of instantiated cluster parameters, and

resample B ∼ Beta(N,α).

While asymptotically correct, an unfortunate consequence of this sam-

pler is that it is slow to instantiate new clusters. With only 1/P of the data

points eligible to start a new cluster, the rate at which new clusters are added

will decrease with the number of processors. While this is of less concern

once we have converged to an appropriate number of clusters, it can lead to

slow convergence if we start with too few clusters. To avoid this problem, we

initialize our algorithm by allowing all processors to instantiate new clusters.

At each global step, we decrease the number of randomly selected processors

eligible to instantiate new clusters, until we end up with a single processor.

This warm start allows us to expand our initial state space with data-driven

cluster proposals.
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We note that a sampler with multiple processors instantiating new clus-

ters will not converge to the true posterior; instead it will tend to over-estimate

the number of clusters. However, the procedure acts in a manner similar to

simulated annealing, by encouraging large moves early in the algorithm but

gradually decreasing the excess stochasticity until we are sampling from the

correct algorithm.

3.4.2 Distributed Hybrid Inference in the Indian Buffet Process

If B ∼ BP(α, c,H) and Zn ∼ BeP(B), then the posterior distribution

over B is given by

B|Z1, . . . , Zn ∼ BP

(
cα +

∑
kmk

c+ n
, c+ n,

cαH +
∑

kmkδθk
cα +

∑
kmk

)
(3.11)

Since the beta process is a completely random measure, we can partition

this into the superposition of two independent completely random measures,

so that

B1 :=
K∑
k=1

µkδθk ∼BP

(∑
kmk

c+ n
, c+ n,

∑
kmkδθk∑
kmk

)
B2 :=

∞∑
k=K+1

µkδθk ∼BP

(
cα

c+ n
, c+ n,H

)
B =B1 +B2

(3.12)

We note that the distribution over the atom sizes µ1, . . . , µk of B1 is

simply a sequence of K Beta(N −mk,mk + c) random variables. This allows

48



us to split the IBP into two independent feature selection mechanisms: one

(controlled by B1) with a finite number of currently instantiated features, and

one (controlled by B1) with an unbounded number of currently uninstantiated

features.

This observation allows us to construct a distributed MCMC sampler

where, at any given time, only data on a single processor is allowed to sample

from the full conditional distribution over features. On all the other processors,

data points can only use features fromB1. Ergodicity is ensured by periodically

re-defining B1 to include all instantiated features, and randomly resampling

the single processor that is able to instantiate new features.

Concretely, at each global iteration, we randomly select one processor

with indicator P ∗ ∼ Uniform(1, . . . , P ). For every other processor, i.e. for each

processor j 6= P ∗, we perform restricted Gibbs sampling [66], only allowing

data points to select subsets of the K features in B1. The probability that

znk = 1 for such a data point is given by:

P (znk = z|−) ∝

{
µkf(xn|znk = 1, zn,−k, θ1, . . . , θk) z = 1

(1− µk)f(xn|znk = 0, zn,−k, θ1, . . . , θk) z = 0.
(3.13)

On processor P ∗, data points can select features from B1 or B2. Let

K be the number of atoms in B1, and let J be the number of instantiated

features in B2. The first K features are selected according to Equation 3.13.

If we are able to marginalize over the feature locations θk, the next J features

are selected according to

P (znk = z|Z−nk, xn) ∝

{
mkf(xn|znk = 1, Z−nk) z = 1

(N −mk)f(xn|znk = 0, Z−nk) z = 0.
(3.14)
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If we are unable to marginalize over the θk, we can instantiate them as

described in [20] and include them in the appropriate likelihood term. Finally,

we propose adding Poisson(α/N) new features, using a Metropolis-Hastings

step.

At each global step, we gather the sufficient statistics from each instan-

tiated feature, and sample a feature value θk for each one conditioned on the

data points exhibiting that feature. We redefine B1 and B2 so that B1 contains

all (and only) instantiated features, and sample µk ∼ Beta(mk, N −mk + c)

for each feature in B1. We then sample a new processor indicator P ∗ ∼

Uniform(1, . . . , P ) and repeat.

As with the Dirichlet process sampler described in Section 3.2, the

distributed sampler will be slow to add features, since to ensure correctness

of the transition distribution, only one processor can add features at a time.

We can dramatically improve the time to convergence by using a warm-start

procedure as described in Section 3.4.1, where we initially allow all processors

to instantiate new features, and gradually reduce the number of processors

adding new features until we have the correct sampling distribution.

3.5 Experimental Evaluation

We begin by showing that, while parallelizable, an entirely uncollapsed

sampler is a poor choice when dimensionality increases. We go on to compare

our distributed hybrid samplers with a range of other parallel methods for the

DP and the IBP.
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3.5.1 Limitations of an Entirely Uncollapsed Approach

In an entirely uncollapsed sampler, we must ensure that a global set

of atom sizes and locations is shared across all processors. This means that

we must sample new parameters from the prior. One method of doing so is

obtained by modifying Algorithm 8 of [66]. Algorithm 8 describes a scheme for

Gibbs sampling a Dirichlet process mixture with a non-conjugate likelihood,

where we can integrate out the atom sizes but must sample the atom locations.

We can modify this to give a fully uncollapsed algorithm, where both atom

sizes and atom locations are instantiated.

At each global step, let K be the total number of occupied clusters,

and let m = m1, . . . ,mK be the cluster counts. We can proceed as follows:

• Discard any atoms that are not associated with any data points, leaving

only K instantiated atoms.

• Sample new atom locations θ1, . . . , θK for the K atoms, using the condi-

tional distribution given the associated data points.

• Sample J new atom locations θK+1, . . . , θJ from the base measure, where

J ≥ 1.

• Sample atom weights for all K + J atoms

π := (π1, . . . , πK , . . . , πK+J) ∼ Dirichlet(m1, . . . ,mk, α/J, . . . , α/J)
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• For each data point xn, sample a cluster indicator cn according to

P (cn = k|π,θ) ∝ πkf(xn; θk)

where θ = (θ1, . . . , θK , . . . , θK+J).

The final, time-consuming step, where we sample the cluster indicators, can

be parallelized.

Unfortunately, we can run into problems when it comes to proposing

new parameter values θK+1, . . . , θK+J . In high dimensions, it is unlikely that

a proposed parameter will be near our data, so the associated likelihood of

any given data point will be low. This is in contrast to the collapsed setting,

where we integrate over all possible locations.

Figure 3.1 shows convergence plots for three algorithms: The uncol-

lapsed algorithm described above; a standard collapsed Gibbs sampler; and

the single-processor version of our hybrid algorithm. The data set is a D

dimensional synthetic data set consisting of 100 observations of Gaussian mix-

tures with 2 true mixture components centered at 5 × {1}D and −5 × {1}D

with an identity covariance matrix. We can clearly see that the collapsed sam-

pler performs better than the uncollapsed sampler for 10 dimensional data.

Since the hybrid sampler only uses collapsed sampling for newly introduced

features, the performance of the hybrid sampler in this situation is expected

to be similar to the uncollapsed sampler although the hybrid sampler reaches

its maximum F1 score faster than the uncollapsed sampler.
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Figure 3.1: Comparison of F1 scores over iteration for the collapsed, uncol-
lapsed and hybrid samplers

3.5.2 Experimental Evaluation: Dirichlet Process

In this section, we show how our inference algorithm can speed up in-

ference in a Dirichlet process mixture of normals. To evaluate our algorithm,

we generated parameter weights given the α parameter from the stick break-

ing Dirichlet process prior. Then, we sample locations for the clusters from a

Normal-Inverse Wishart prior and for n observations we sample a cluster in-

dicator from the cluster weights and then sample from the cluster parameter.

Our experiment shows the F1 score of test set data as the number of proces-

sors increases. As we can see in Figure 3.2, our hybrid method is capable of

achieving a higher F1 score faster than the lower processor runs.

Next, we evaluate the performance of our DPMM sampler by adjusting
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Figure 3.2: F1 score for test set synthetic data.
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the separability of the true cluster locations. Intuitively, we observe that our

algorithm performs poorly when there is little separation between the clusters

(Figure 3.3) and performs well when there is large separation between clusters

(Figure 3.4).

Figure 3.3: F1 score over iterations for synthetic data set with small separation

3.5.3 Experimental Evaluation: Indian Buffet Process

Next, we show how our inference algorithm can speed up inference

in an Indian buffet process latent feature model. We use a linear Gaussian

likelihood, modeling the data as
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Figure 3.4: F1 score over iterations for synthetic data set with large separation

Z ∼IBP(α, 1)

Ak ∼Normal(0, σ2
AI)

Xn ∼Normal

(∑
k

znkAk, σ
2
XI

) (3.15)

We evaluated the model on a synthetic data set consisting of 10,000

observations. This dataset was an extension of the “Cambridge” dataset, used

in the original IBP paper [37], where each data point contains a randomly

selected subset of 4 binary features, plus Gaussian noise (σX = 0.5). In the

IBP experiments, we ran the hybrid sampler for 1000 total observations with

a synchronization step every 5 iterations and we run the hybrid sampler for 4,

8, 16, 32, 64 and 128 processors.
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Figure 3.5: Top: The true features present in the synthetic data set. Bottom:
Examples of observations in the synthetic data set.

We run the Hybrid IBP sampler under a “cold start”, where only one

processor is allowed to introduce new features for the entire duration of the

sampler. We can see that the cold start results in the test set log likelihood of

the higher processors failing to converge properly (Fig. 3.6). Since the number

of features in each experiment is fixed at 2, we observe that the sampler, over

8 processors, accepts few features than in subsequent examples (Fig. 3.7).

Next, we evaluated the effect of warm-start initialization, where initally

all processors could propose new features; we reduced the number of processors

able to add new features by 0.99 at each global step. Figure 3.8 shows the

predictive log likelihood over time (shown on a log scale), for 4, 8, 16, 32,

64, and 128 processors. Clearly, the convergence rate for high processor trials

is better than in the cold-start trials and the number of features is generally

close to the true number of features, 4. Additionally, we can see that the 128

processor run converges the fastest and all the other processor runs converge

in descending order of number of processors.
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Figure 3.6: Test set log likelihood on synthetic data without warm-start ini-
tialization.

Finally, we allowed all the processors to propose new features for the

entire duration of the sampler (“always-hot”). Using the same experimental

synthetic data scenario described earlier, we can see that all the processor

runs roughly converge to the same test log likelihood. However, the number

of features introduced is much greater than the warm start experiment, and

the number of features introduces as the number of processors increase too.

Moreover, the difference in convergence rates between processors is not as

dramatic as in the warm-start trials. The results of the always-hot trials

approximately replicate the behavior of the parallel IBP sampler in [20].
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Figure 3.7: Number of features over iterations for synthetic data without
warm-start initialization.

3.6 Discussion

As seen in the previous experiments, we now have a general strategy of

parallelizing inference for a potentially wide class of Bayesian nonparametric

models. Due to the conditional independence between the infinite dimensional

latent components in the BNP models considered in this paper, we can parti-

tion the latent components into the finite-sized instantiated partition and the

infinite-sized uninstantiated partition. We can take advantage of the inherent

parallelizability of the uncollapsed sampler on the finite partition, which per-

forms adequately for popular features. But collapsed sampling will perform

better for proposing new components and allocating observations to newly

added components. Thus, we restrict collapsed sampling only to the infinite
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Figure 3.8: Test set log likelihood on synthetic data with warm-start initial-
ization.

Figure 3.9: Number of features over iterations for synthetic data with warm-
start initialization.
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Figure 3.10: Test set log likelihood on synthetic data with all processors in-
troducing features.

Figure 3.11: Number of features over iterations for synthetic data with all
processors introducing features.
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dimensional partition of the latent components. After partitioning the data

across P processors, each processor will independently sample the allocation

of the latent components to observations of the data and on a global step, a

master processor will gather summary statistics from each machine and send

new features and posterior values for parameters to all other machines.

In a distributed setting, we must restrict collapsed sampling to only

one processor to have a valid MCMC algorithm. But we have seen that con-

vergence will generally be poor under a large number of processors because the

sampler can only propose new features on 1/P -th of the data. To overcome

this issue, we suggest using a “warm-start” procedure where all processors

may introduce new features and we gradually reduce the number of processors

introducing features each global step until only one processor may perform

collapsed sampling.

One of the major issues regarding MCMC inference methods is that

they are generally slow, especially as the size of the data increases. Big data

is an increasingly important concern for machine learning tasks because the

nature of the data available now has grown to such a massive size that the

scalability of an algorithm needs to be a primary concern in developing machine

learning tools. Inference in the Bayesian nonparametrics, especially for the

IBP, has generally been difficult but we have developed an inference algorithm

that has made BNP models amenable for huge data sets.
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Chapter 4

Accelerated Inference for Latent Variable

Models

Bayesian nonparametrics (BNP) models appear to be perfectly suited

for the era of big data [49], in which ever-expanding databases of high-dimensional

data cannot be dealt with simplistically. Generative processes priors like the

Dirichlet process [22] or the Indian buffet process [37] allow for modeling la-

tent variables like clusters or otherwise unobservable features in our data and

adapting the complexity of the model in accordance to the complexity of the

data. Even if we had some understanding of the latent structure in the data,

we would not necessarily know their exact forms and implications in the model

a priori. The BNP solution, which divides the data into discrete features and

clusters, fosters interpretable models that would naturally lead to new hy-

potheses about the information in such databases [52]. For example, in a

general medical records dataset containing billions of observations, a cluster

(or feature) composed of 0.001% of the population still includes tens of thou-

sands of people. But in looking at a small fraction of the data, these clusters

may be seen as outliers at best and it would be difficult to characterize their

meaning. Exploring large, complicated databases with the intention of finding

interpretable new features by adapting the model complexity to the complexity
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of the data is BNP’s most prominent and promising feature. Unfortunately,

BNP fails to deliver on this promise for at least three intrinsic limitations:

1.) Base measure definition: The base measure divides the available

probability mass over the whole input space for a predefined likelihood model.

It controls which models are feasible and which are not. For high-dimensional

data, we would need to spread the probability mass thin even if we had the

“right” base measure, which might prevent finding the correct representation

of our data. When we do not, the base measure can be better understood

as a regularizer to avoid the curse of dimensionality than a distribution that

encodes all our prior knowledge about the problem at hand [27].

2.) Shallow likelihood models: Likelihood models are typically hand-

engineered features that simplistically pass information about the parameters

from the prior to the observable data. These simple likelihoods limit the type

of information that can be represented and cannot capture high level complex

features in images or audio, for example. We need different likelihood models,

which should be learned from the data, to be able to better characterize the

relation between the observed data and an interpretable model.

3.) Computational complexity: Inference in BNP models cannot be

readily parallelized because traditional collapsed sampling methods and vari-

ational approximations requires processing the data sequentially. Uncollapsed

sampling can be parallelized because the sufficient statistics are explicitly de-

fined, but finding good features by sampling from a high-dimensional base

measure is improbable.
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This chapter will propose a method for addressing the first and last

limitation. The second limitation is also relevant and there are many papers

working toward that goal: Variational autoencoders [53], adversarial varia-

tional Bayes [61] or deep hierarchical implicit models [93], among many oth-

ers. But, incorporating them is not straightforward in our current inference

strategy.

The main idea in this paper is an algorithm that relies on an adaptation

of Neal’s Algorithm 8 [66] together with a parallelizable procedure in which

every few iterations the different nodes share summary statistics and newly

introduced features. To improve convergence, instead of sampling from the

base measure, we propose a simple mechanism that samples from the data

points that are not well characterized by their current clusters. With this

method, we are able to find new cluster without needing to sample from the

base measure. We illustrate the algorithms with high dimensional, high signal

to noise ratio in which standard MCMC inference procedures for BNP models

will fail to find any meaningful information and our algorithm is able to find

relevant clusters.

4.1 Related Work

One of the most common examples of a latent variable model is the

mixture model. In this chapter we will apply our technique to the Dirichlet

process mixture model (DPMM) [4]
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4.1.1 Dirichlet Process Inference

The Dirichlet process in particular is attractive because its marginal

Dirichlet property allows for tractable inference. [66] provides an overview of

different MCMC sampling techniques for the DPMM. Sampling methods for

the Dirichlet process broadly fall into two categories: methods that integrate

out the mixing parameter, π [66, 46], and methods that leave π instantiated

[48, 96, 25]. Inference methods that allow π to be instantiated are inherently

parallelizable since the cluster allocation probability is conditionally indepen-

dent given the mixing proportion, but proposing new features under this set-

ting is difficult due to the infinite dimension of the mixing proportion. On

the other hand, integrating out π allows us to deal only with the cluster allo-

cation and not the mixing proportion. This, in conjunction with a likelihood

P (Xi|θzi), provides a full conditional distribution to be used in a Gibbs sam-

pler. However,
∫
P (Z|π, α)P (π|α) dπ means that the marginal distribution of

zi becomes dependent on all other cluster allocations z−i which is unparalleliz-

able without excessive and costly communication between processors.

Numerous distributed inference procedures have been developed for fast

inference of DP models. [83] propose an asynchronous method for the hier-

archical Dirichlet process [90] which distributes the data across P processors

and performs Gibbs sampling based on approximate marginalized distribution

of zi|z−i. [102] propose an exact sampler for the DPMM, but requires that

each observation associated with a particular cluster k must exist on the same

processor. Chapter 3 described an exact sampler for completely random mea-
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sures (CRM) which exploits the conditional independencies of the features by

partitioning the random measure into a finite instantiated partition and an

infinite uninstantiated partition. The instantiated portion runs the inherently

parallel sampler with the mixing parameter, π, instantiated and at random

one processor is selected to sample and propose new features based on the

predictive distribution of the cluster assignments.

Algorithm 4: Slice Sampling for the Dirichlet Process Mixture
Model

for i = 1, . . . , N do
ui ∼ Uniform(0, πzi)

u∗ := mini ui
K∗ := K
while u∗ ≥ π∗ do

K∗ := K∗ + 1
βK∗ ∼ Beta(1, α)
πK∗ := π∗βK∗

φK∗ ∼ H
π∗ := π∗(1− βK∗)

for i = 1, . . . , N do

zi ∼ P (zi|−) ∝
{
L(xi, φk) πk ≥ ui

0 o.w.

for k ∈ {k : nk > 0} do
φk ∼ P (φk|−)

βk ∼ Beta
(

1 + nk, α +
∑K

`=k+1 n`

)
πk := βk

∏k−1
`=1 (1− β`)

4.1.2 Inferential Problems

However, none of these techniques deal with the problem of sampling

good feature locations in high dimensional space. The distributed samplers
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Algorithm 5: Neal’s Algorithm 8

for i = 1, . . . , N do

Sample zi ∼ P (zi = k|−) ∝
{

n−ikL(xi, φzi), k ∈ K+

(α/m)L (xi, φzi) , k ∈ K−

Update K+ := {k : nk > 0}
for k ∈ K+ do

Sample φk ∼ P (φk|−)

for k ∈ K− do
Sample φk ∼ H

described above only seek to accomplish (approximately for [83]) correct in-

ference. The method in Chapter 3 proposed to allow all processors to propose

new features to encourage better mixing of the MCMC sampler before pro-

ceeding with exact inference and only allowing one processor to propose new

features. But, the proposal of new features themselves poses a serious prob-

lem in the DPMM. In proposing new features, we can either propose features

from an uncollapsed representation–meaning, drawing features from the prior,

P (θ), and assign observations to clusters with likelihood P (X|θ). Or, we can

marginalize out the clusters and sample cluster assignments from a collapsed

likelihood,
∫
P (X|θ)P (θ) dθ.

In high dimensional settings, the uncollapsed sampler is likely to fail

to find good locations for features. The collapsed sampler is more likely to

sample better feature locations because it draws from the expectation of the

likelihood with respect to the prior distribution on features but this requires

us to obtain the collapsed distribution in closed form which, in general, is

not available. Even if the collapsed distribution were available in closed form,
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situations where the features occupy a sparse region of its domain will also

lead the collapsed sampler to fail to find good features (we will demonstrate

an example of this failure in the Section 4.3).

4.2 Method

Our novel sampling method allows for both distributed parallel sam-

pling for the Dirichlet process and a better sampling and proposing method

of new features. Essentially, we propose new features centered at observations

that are poorly fit to its assigned cluster in parallel and after the accelerated

portion of sampling we proceed with an inherently parallel uncollapsed sampler

with instantiated mixing parameter π.

The sampling method first begins in an “accelerated” stage, where we

draw proposals for features from the observations as opposed to the prior.

In order to deal with the problem of proper mixing, we propose a method

that samples locations for features from observations where its current la-

tent feature assignment has low likelihood. As opposed to other DP samplers

that sample feature locations from P (θ) or assign cluster allocations based on∫
P (X|θ)P (θ) dθ, our accelerated sampler proposes features centered at ob-

servations with the lowest likelihood given its current feature allocation. In

the Gaussian distributed examples in Section 4.3.1, we set the covariance of

each proposal to be the covariance of its current allocated feature divided
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by some constant greater than one1. Additionally, we write that the fea-

ture should be proportional to the data because the feature locations in the

multinomial-Dirichlet examples in Section 4.3.2 have features proposed from

the observations normalized so that the proposed feature sums to 1.

We further approximate inference for a DPMM during accelerated sam-

pling with a modified version of Algorithm 8 [66] which introduces S auxiliary

features θk for k = 1, . . . , S that represent finite realizations of the clusters. If

Nk represents the number of observations assigned to cluster k then let K+ rep-

resent {k : k ∈ (1, . . . , S), Nk > 0} andK− represent {k : k ∈ (1, . . . , S), Nk = 0}.

Algorithm 8 assigns cluster assignments according to the following probability:

P (zi = k|−) ∝
{

N−ik · P (Xi|θk), k ∈ K+

(α/S) · P (Xi|θk), k ∈ K− (4.1)

where N−ik represents the number of observations besides observation i allo-

cated to cluster k. Then, draw new realizations for θk, k ∈ K− from H and

update posterior values for θk, k ∈ K+.

In a single processor setting, we will always have the exact value of

N−ik. However, in the parallel setting we no longer have the precise feature

counts, which forces inter-processor communication for every state transition

of zi. Therefore, we approximate N−ik with M−ikp which is the local count of

cluster k on processor p excluding observation i when running the algorithm

in parallel. [5] applies the same approximation for latent Dirichlet allocation

1For all examples seen in Section 4.3.1 we divide by 10
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and the hierarchical Dirichlet process for their inference technique. This ap-

proximation works well for large clusters, as seen in [102] but we note that we

only apply this approximation in the accelerated stage and not for the entire

duration of the sampler in order to maintain the exactness of our method.

We assume that new features accepted on different processors are differ-

ent from each other, thus we do not consider the problem of feature alignment.

Furthermore, by dividing across multiple processors we can propose P times

more features to explore possible new clusters that will persist after accelera-

tion. After L subiterations of our sampler, we trigger a global synchronization

step where each processor sends updated features, feature counts and feature

summary statistics to instantiate new features on all processors and to update

posterior values for global parameters.

This proposed accelerated stage of our sampler is obviously not a cor-

rect MCMC sampler for a DPMM, but because the correctness of an MCMC

sampler is theoretically invariant to its starting position we first proceed with

the accelerated sampler before switching to a correct sampler. We allow the

sampler to initially run in this accelerated sampling mode for some partial

duration after which we can either elect to sample from an easily paralleliz-

able, finite Dirichlet mixture model with an instantiated mixing parameter:

P (zi = k|−) ∝ πkP (Xi|θk). Or, if we wish to continue with an asymptoti-

cally exact Dirichlet process sampler, the methods proposed either in [102] or

Chapter 3. The major additional benefit of our accelerated sampler is that we

have an efficient sampler to encourage fast mixing of the MCMC sampler with-
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out the need to integrate the latent features out of the likelihood. Thus, we

can now use a variety of priors for features without encountering the problem

of proposing features from the prior in high dimensional space. Our method

in the DPMM case is suitably general for a wide class of data modeling sce-

narios. Although the most common type of mixture is the Gaussian mixture

model (GMM), we do not place any assumption on the form of likelihood for

P (X|θ), and we will see an example of our method applied to count data to

demonstrate the flexibility of this method.

4.3 Experimental Results

4.3.1 Location Clustering Example

To first demonstrate the basic utility of our sampler, we apply our

method to an empirical 2 dimensional data set that tracked the cell phone

coordinates of a psychiatric patient. Using a DPMM with a Gaussian-Inverse

Wishart prior on the mean and covariance parameters and compare against

the collapsed, uncollapsed and variational inference samplers:

θk = (µk,Σk), P (Xi|θzi , zi) ∼ Normal(µzi ,Σk),

H ∼ Normal-Inv. Wishart(µ0,Ψ, λ, ν)
(4.2)

We can see that the collapsed, accelerated, and variational inference2 DP sam-

plers are able to find many meaningful clusters whereas the uncollapsed sam-

pler is only able to find 2 clusters. Because we are examining a 2 dimensional

2We do not have timing data for variational inference, so we only report the final log
likelihood and number of clusters
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data set, the collapsed sampler is able to sample mostly good locations and we

can see that the variational method performs very well. Additionally, we also

initialize the collapsed and uncollapsed samplers with random and K-means

initializations to 100 clusters. Though the log likelihood predictive perfor-

mance is good for these methods, the clusters that they produce besides the

collapsed sampler initialized with K-means are qualitatively less meaningful

than ones found in the accelerated, collapsed and variational inference sam-

pler. We will see, in Section 4.3.2, empirical datasets where even the collapsed

sampler is not able to find good feature locations in high dimensional space

and where accelerated sampling performs comparably variational inference.

Figure 4.1: Test set predictive log likelihood vs. log time (seconds) and number
of features vs. log time.

4.3.2 Image Data Sets

Next we will apply our accelerated inference technique on two large

dimensional image data sets, the 28 × 28 dimensional MNIST handwritten

digit dataset [57], consisting of a training set of 60,000 images and test set

of 10,000 images and the 168× 192 dimensional Cropped Extended Yale Face
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Figure 4.2: Clustering results for each sampling method. Different colors
represent different clusters.

Dataset B [58], divided into 1,818 training images and 606 test set images. For

both of these datasets, we model the data with a multinomial likelihood and

a Dirichlet prior:

P (Xi|θzi , zi) ∼ Multinomial(θzi),

H ∼ Dirichlet(γ)
(4.3)

In each experiment we initialized all observations to the same cluster and dis-

tributed the data randomly across 10 processors. We ran the sampler for 100

iterations with a global synchronization step every 10 iterations and stopped

the accelerated sampling after 50 iterations. For the random and K-means ini-

tialization tests (labeled “Rand. Init.” and “KM Init.” on the figures, respec-

tively), we distributed data to 100 initial clusters either by random sampling

or K-means allocation.

For each dataset, we can see that both the collapsed and uncollapsed

samplers have difficulty proposing good features in high dimensional space.

74



For the uncollapsed sampler, the results demonstrate that it is difficult for the

sampler to propose good locations from the prior in high dimensional space

and as a result, very few new features are instantiated relative to the size of

the data. While the collapsed sampler can still propose accepted features,

Figures 4.4 and 4.6 show that most of the data is assigned to one or two

clusters and the rest are generally singleton features. The reason for this is

that in datasets with a high signal-to-noise ratio, like the image datasets used

in the paper, the base measure is flat over the entire space of features and thus

accepting good features tends to rarely happen. The features that are accepted

under collapsed sampling tend to either be large clusters that contain most of

the data or singletons with tight concentration around its assigned observation.

As evidenced by the features in Figure 4.9, the most popular features tend to

be very blurry and uninformative.

On the other hand, the features proposed under the accelerated sampler

tend to be more popular so that the data are distributed more evenly among

the clusters than in the collapsed and uncollapsed samplers (examples of the

accelerated features can be seen in Figure 4.7). Additionally, the features

accepted under accelerated sampling tend to be more “pure” in the sense that

the data assigned to the clusters provide a clear interpretation of the cluster.

This is most obviously seen in the MNIST dataset where each learned feature

generally represents a digit that fits multiple observations well (as evidenced

in Figure 4.4).

Out of the other sampling methods, the variational inference method
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works well for discovering good features and obtaining a good predictive likelihood–

however, deriving the evidence lower bound to optimize in variational inference

is a non-trivial task and often reduces the choice of likelihoods and priors with

a lower bound available in closed form. Again, our method could be used for

any general class of likelihoods and priors, though we choose to model the

data with conjugate priors to the likelihood in order to obtain a closed form

expression of the predictive likelihood so that we may compare easily between

different sampling methods.

Furthermore, random and K-means initialization for the uncollapsed

and collapsed samplers demonstrate that we need a smarter way of learning

new features beyond just having good initial states. Although Figures 4.11,

4.12, 4.13, and 4.14 show that, under these initializations, we can learn some

features of the data. But we can also see, by the poor quality of many of the

other features learned by these methods, that our base measure has difficulty

accurately representing out high-dimensional data set. This difficulty is one

which we raised in the first point of our introduction. Thus, we need our

accelerated method to learn features because our method better represents

complicated datasets.

4.4 Discussion

We have introduced a novel method to overcome a problem inherent

in Bayesian nonparametric latent variable models of learning unobservable

features in a high-dimensional regime while also providing a data-parallel in-
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Figure 4.3: Test set predictive log likelihood vs. log time (seconds) and number
of features vs. log time.

Figure 4.4: Popularity of each instantiated feature.

ference method suitable for “big data” scenarios. In order to accelerate the

mixing of the MCMC sampler, we propose feature locations from observations

that are poorly fit to its currently allocated feature during the accelerated

stage of our sampler in order to find better locations for features.

After running accelerated sampling, our method then reverts to a com-

pletely uncollapsed model, which is easily and inherently parallelizable without
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Figure 4.5: Test set predictive log likelihood vs. log time (seconds) and number
of features vs. log time.

Figure 4.6: Popularity of each instantiated feature. Uncollapsed sampler put
all observations into one cluster.

excessive processor communication, in order to maintain the theoretical cor-

rectness of our inference algorithm converging to the correct limiting posterior

distribution. The additional benefit of our sampler is that our technique works

for a general choice of likelihood and prior, whereas using a collapsed sampler

limits the model choice to a narrow range of options for data modeling.

At first, it may seem that the number of features discovered for the
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Figure 4.7: Yale faces features (left) and MNIST features (right) obtained via
accelerated sampling, sorted in descending order of popularity.

Figure 4.8: Yale faces features (left) and MNIST features (right) obtained via
uncollapsed sampling, sorted in descending order of popularity.

accelerated method is excessive but we are using a very simple likelihood to

model the digits instead of a more complicated model that is invariant to

rotations or scalings of the data. This is apparent in the features discovered

for accelerated sampling and variational inference, where a large proportion

of the popular clusters learned are various forms of “ones”. Furthermore, we
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Figure 4.9: First 10 Yale faces features (top) and MNIST features (bottom)
obtained via collapsed sampling, sorted in descending order of popularity.

Figure 4.10: Yale faces features (left) and MNIST features (right) obtained
via variational inference, sorted in descending order of popularity.

could propose merge steps for features in order to prune the number of features

if we are concerned about the number of features learned. Additionally, our

method is suitable for other latent feature models as well–for example, sparse
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Figure 4.11: First 10 MNIST features obtained via collapsed sampling ini-
tialized randomly over 100 partitions (top) or initialized with 100 clusters in
K-means (bottom), sorted in descending order of popularity.

Figure 4.12: First 10 MNIST features obtained via uncollapsed sampling ini-
tialized randomly over 100 partitions (top) or initialized with 100 clusters in
K-means (bottom), sorted in descending order of popularity.

Figure 4.13: First 10 Yale faces features obtained via collapsed sampling ini-
tialized randomly over 100 partitions (top) or initialized with 100 clusters in
K-means (bottom), sorted in descending order of popularity.

latent factor models like the Indian Buffet Process [36] but for demonstration

purposes we only examined our method on the DPMM in this paper.
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Figure 4.14: First 10 Yale faces features obtained via uncollapsed sampling
initialized randomly over 100 partitions (top) or initialized with 100 clusters
in K-means (bottom), sorted in descending order of popularity.

Given our Bayesian formulation of the problem, we now have a natural

generative model from which we can simulate GAN-type behavior. In contrast,

the DPMM and BNP models in general do not need to train a discriminator

to generate data but instead we fit a latent variable model through MCMC

inference which then provides a method to generate data from the specified

hierarchical model placed on the data. Because our method allows us to learn

features in complex, high-dimensional settings where previously it was difficult

to do so, we now have an opportunity to realize the promises and theoretical

benefits of Bayesian nonparametric modeling in complicated datasets.

In future work, we hope to demonstrate the continued success of Bayesian

non-parametrics in modeling complex data while demonstrating the additional

benefit that Bayesian and Bayesian nonparametric methods have in providing

a natural representation of uncertainty quantification of our results and predic-

tions while having a theoretically motivated methodology of adapting model

complexity to the data.
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Chapter 5

Robust and Parallel Bayesian Model Selection

In many data modeling scenarios, many plausible models are available

to fit to the data, each of which may result in drastically different predictions

and conclusions. Being able to select the right model for inference is a crucial

task. As our main example, we consider model selection for a normal linear

model:

Y = Xβ + ε, ε ∼ N(0, σ2I), (5.1)

where Y is anN dimensional response vector, X is anN×D dimensional design

matrix and β is a D dimensional vector of regression parameters. Here the

candidate models to be selected could refer to the sets of significant variables.

In a Bayesian setting, we have a natural probabilistic evaluation of models

through posterior model probabilities. Depending on the objectives of the

data analysis, we may be interested in assessing the belief on which is the

“best” model or obtaining predictions with minimum error.

Existing procedures to accomplish the aforementioned goals, however,

will perform poorly under the presence of outliers and contaminations. In

addition, Markov chain Monte Carlo algorithms for these methods do not scale

to big data situations. This chapter will investigate a “divide-and-conquer”
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method that integrates with existing Bayesian model selection techniques, in

a way that is robust to outliers and, moreover, allows us to perform Bayesian

model selection in parallel.

Our “divide-and-conquer” strategy is based on the ideas for robust in-

ference using the notion of the geometric median [63], especially the median

posterior in the Bayesian context [98, 65]. Previous work in this area has fo-

cused on the performance in parametric inference. Our contribution in this

paper is to demonstrate the effectiveness of these ideas in selecting the correct

class of models on top of the parameters. In particular, we show that the

model aggregated across different subsets (the “divide”) has improved con-

centration to the true model class compared to the one using the full data

set. This concentration is in terms of the posterior model probabilities to the

point mass assigned to the true model. The result also holds jointly with the

concentration of the parameter estimates, and under the presence of outliers

and hence demonstrates robustness. We carry out extensive numerical studies

on simulation data and a real data example to demonstrate the performance

of our proposed approach.

5.1 Bayesian Model Selection

In Bayesian model selection, we define the prior model probability

Pr(Mk) for each of the model Mk (k = 1, . . . , K) under consideration. For

model Mk, we additionally have parameters (βk, σ
2
k) with prior Pr(βk, σ

2
k|Mk),

which leads to a likelihood Pr(Y |βk, σ2
k,Mk). Thus, the posterior model prob-
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ability for model Mk, Pr(Mk|−), is proportional to

Pr(Mk)

∫
Pr(Y |βk, σ2

k,Mk)Pr(βk, σ
2
k|Mk) dβkdσ

2
k.

However, as noted in [7], choosing the model with the highest posterior model

probability is not always the best option nor should one neglect the risk of

model uncertainty. Instead of resorting to a single model for predicted values

Ỹ (or some quantity of interest in general), [42] proposes to average over the

model uncertainty with Bayesian model averaging (BMA) to obtain a posterior

mean and variance of Ỹ at a covariate level X̃:

E[Ỹ |X̃, Y ] =
K∑
k=1

E[Ỹ |X̃, Y,Mk]Pr(Mk|X̃, Y ),

V ar(Ỹ |X̃, Y ) =
K∑
k=1

Pr(Mk|X, Y )
(
V ar(Ỹ |X̃, Y,Mk)+

E[Ỹ |X̃, Y,Mk]
2
)
− E[Ỹ |X, Y ]2.

We will focus on BMA in our theoretical developments in this paper. Our nu-

merical experiments, however, will show that our divide-and-conquer strategy

is also effective in applying on other model selection methods.

The first alternative to BMA is the median probability model, which

can be shown to be optimal if we must choose one model for prediction [7]. In

this approach, we define the posterior inclusion probability of each predictor

xd (d = 1, . . . , D) as the sum of posterior model probabilities of the models

that include predictor xd, namely pd =
∑

k:xd∈Mk
Pr(Mk|X, Y ). The median

probability model is the model that includes the predictors xd if pd ≥ 1/2.
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Second, using the maximum value of the likelihood for each model

Pr(Y |β̂k, σ̂2
k,Mk), where (β̂k, σ̂

2
k) is the maximum likelihood estimate of (βk, σ

2
k),

we can perform penalized model selection through the Akaike information cri-

terion (AIC) [1] or the Bayesian information criterion (BIC) [78] by selecting

the model with the lowest information criterion:

AIC = −2 logPr(Y |β̂k, σ̂2
k,Mk) + 2(D + 1),

BIC = −2 logPr(Y |β̂k, σ̂2
k,Mk) + (D + 1) logN.

The final model selection technique we will consider is stochastic vari-

able selection through the spike and slab model [28], which allows for variable

shrinkage under high-dimensional models. For the purposes of this paper, we

will use the rescaled spike and slab model [47]. To perform posterior inference

in this model, we first define Y ′ =
√

N
σ̂2Y where σ̂2 is the unbiased estimate of

σ2 under the full model and let ν0 > 0 be some small number. The model is

defined to be the following mixture model:

Y ′ ∼ N(Xβ,Nσ2I), βSSd ∼ N(0, Jdτ
2
d ),

σ−2
ss ∼ Gamma(a, b), Jd ∼ (1− w)δJd(ν0) + wδJd(1),

τ−2
d ∼ Gamma(aτ , bτ ), w ∼ Uniform(0, 1).

5.2 Divide-and-Conquer and Robust Bayesian Model
Selection

In our robust model selection strategy, we divide N observations into

R subsets of roughly equal sample size. Then inference, model selection and
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prediction is performed for the linear model Y(j) = X(j)β + ε(j) independently

across j = 1, . . . , R subsets using the existing Bayesian model selection proce-

dures, which are then combined to form a final model or a combined prediction

value.

Given linear model (5.1), we first define the following priors on a normal

likelihood with response variable Y and D-dimensional predictor X. The N

observations are divided into R subsets with s observations within each subset.

One has,

Pr
(
σ−2

(j)

)
= Gamma(a, b),

P r(β(j)|σ2
(j)) = N(β0, σ

2
(j)Σ0).

To compensate for the data division, we raise the likelihood of the divided data

Pr(Y(j)|X(j), β, σ
2) to the R-th power and adjust the normalizing constant

accordingly so that the likelihood for Yj is:(
R

2πσ2
(j)

)N/2

exp

{
−R
2σ2

(
Y(j) −X(j)β(j)

)T (
Y(j) −X(j)β(j)

)}
.

The intuition and motivation for raising the subset likelihood to R-th power

is to adjust the potentially inflated variance of the subset posterior distribu-

tion. Exploiting conjugacy, we obtain the full conditionals for data subset

87



j = 1, . . . , R:

Pr(β(j)|−) = N
(
µβ, σ

2Σβ

)
,

µβ = Σβ

(
β0Σ−1

0 +RXT
(j)Y(j)

)
,

Σβ =
(
Σ−1

0 +RXT
(j)X(j)

)−1
,

P r
(
σ−2

(j) |−
)

= Gamma (a′, b′) ,

a′ = a+
N +D

2
,

b′ = b+
R

2
εT ε+

1

2

(
β(j) − β0

)T
Σ−1

0

(
β(j) − β0

)
,

ε =
(
Y(j) −X(j)β(j)

)
.

Let ΣX = I + RX(j)Σ0X
T
(j), then integrating out the parameters gives us the

following marginal distribution Pr(Y(j)|X(j)):(
R
2π

)N
2 baΓ(a+ N

2
) |ΣX |−

1
2 /Γ(a)(

b+ R
2

(
Y(j) −X(j)β0

)T
Σ−1
X

(
Y(j) −X(j)β0

))a+N
2

.

For distributed AIC and BIC model evaluation, we raise the likelihood

term of the AIC and BIC formula to the power of R:

AICR = −2R logPr(Y(j)|β̂k, σ̂2
k,Mk) + 2(D + 1),

BICR = −2R logPr(Y(j)|β̂k, σ̂2
k,Mk) + (D + 1) logN.

In applying our procedure with the spike and slab prior, we derived the

full Gibbs sampler for our procedure. For posterior inference in the spike and

slab model, let ∆ = diag {J1τ
2
1 , . . . , JDτ

2
D}, we can perform Gibbs sampling
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by drawing from the following posteriors:

Pr(βSS(j)|−) = N(µβSS ,ΣβSS),

ΣβSS =

(
∆−1 +

R

Nσ−2
SS(j)

XT
(j)X(j)

)−1

,

µβSS = ΣβSS

(
R

Nσ−2
SS(j)

XT
(j)Y(j)

)
,

P r
(
σ−2
SS(j)|−

)
= Gamma (a′SS, b

′
SS) ,

a′SS = a+
N

2
,

b′SS = b+
R

2N

(
Y(j) −X(j)βSS(j)

)T (
Y(j) −X(j)βSS(j)

)
,

P r (Jd|−) ∝ wd1δJd(ν0) + wd2δJd(1),

wd1 = (1− w)ν
−1/2
0 exp

{
−
β2
SS(j)d

2ν0τ 2
d

}
,

wd2 = w exp

{
−
β2
SS(j)d

2τ 2
d

}
,

P r
(
τ−2
d |−

)
= Gamma

(
aτ +

1

2
, bτ +

β2
SS(j)d

2Jd

)
,

P r(w|−) = Beta (1 + |{d : Jd = 1}| , 1 + |{d : Jd = ν0}|) .

Once inference is built on each subset, the key step is to aggregate the

subset models (or estimates) together into a final model (or estimate). To

aggregate our results, we collect the R number of subset models or estimates

and find the geometric median between these R elements. The geometric

median for a set of elements {x1, . . . , xR} valued on a Hilbert space H, is
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defined as

x∗ = medg(x1, . . . , xR) = argminy∈H

R∑
j=1

‖y − xj‖, (5.2)

where ‖·‖ is the norm associated with the inner product in H [65]. The solution

can generally be effectively approximated using the Weiszfeld algorithm [99].

For instance, in the case of aggregating the posterior model probabili-

ties across R subsets of data, the geometric median operates on the space of

posterior distributions and the geometric median posterior model probability,

Pr∗(Mk|X, Y ), is defined as:

argmin
P∈ΠK

R∑
j=1

∣∣∣∣P − Pr(Mk|X(j), Y(j))
∣∣∣∣ , (5.3)

where Pr(Mk|X(j), Y(j)) is the posterior model probabilities for subset j, and

ΠK denotes the space of distributions on K support points. The metric ‖ · ‖

here can be taken as the Euclidean metric, or an integral probability metric

(IPM) defined as ||P − Q|| = supf∈F
∣∣∫ f(x) d(P −Q)(x)

∣∣ for some class of

functions F [87, 86].

For the model selection techniques discussed earlier (AIC, BIC, and the

median model selection), we can choose a final model in two ways: One, we

can select the best model locally on each subset, use it for prediction, and then

aggregate the results (estimate combination). Or two, we can take the median

of the model selection criteria and choose that particular model on each subset

and then aggregate the results to get a final model (model combination).
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However, in Bayesian model averaging and spike and slab modeling

we do not choose a final model. We can still perform model or estimate

combination by aggregating the posterior model probabilities. We consider

both model and estimate combinations in our experiments and show that they

yield similar results in our experimental settings.

Algorithm 6: Algorithm for robust model selection in the case
of BMA.

for j ∈ {1, . . . , R} do
Raise likelihood to R-th power
Compute inference for P (θ|Mk, X(j), Y(j)) for k = 1, . . . , K
Draw predictive values from predictive posterior
P (Ỹ |Mk, X(j), Y(j)) for k = 1, . . . , K

Calculate posterior model probabilities
{P (Mk|X(j), Y(j))}k=1,...,K

Calculate geometric median of posterior model probabilities over
the subsets using (5.3).

Approximate geometric medians of posterior parameter
probabilities or predictive values given individual models over the
subsets using (5.2).

Obtain BMA estimate:
E[Ỹ |Y,X] =

∑K
k=1 E∗[Ỹ |X, Y,Mk]Pr∗(Mk|X, Y )

5.3 Improved Concentration and Robustness

In this section we provide theoretical justification on the robustness in

the divide-and-conquer strategy. In particular, we focus on BMA. Addition-

ally, we show that the aggregated model class from our strategy concentrates

faster, in terms of posterior model probabilities, to the correct class compared

to using the whole data set at once. This concentration result can be joint
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with parameter estimation, and also applies in a way that exhibits robust-

ness against outliers. Note that we do not raise the subset likelihood to R-th

power in our current theoretical analysis, but the results can be generalized

by imposing slightly stronger entropy conditions on the model.

Let S be the domain of θ = (Mk, β, σ
2), our set of model indices and

parameters. Let θ0 be the true data generating parameter, and let (X1, Y1) be

a generic data point. Let p0(y|x) := p(y|x, θ0) be the true conditional density

of Y1 given X1, and p0(x) be the true density of the covariates X1. We denote

pθ(y|x) := p(y|x, θ). Let Pθ be the distribution defined by p0(x) × pθ(y|x)

and P0 is the true distribution p0(x) × p0(y|x). For convenience, we denote

P0f = P0f(X1, Y1) = Ep0 [f(X1, Y1)] where Ep0 [·] is the expectation under

p0(y|x)× p0(x). We denote PN
0 as the true probability measure taken on the

data (X, Y ) of size N and PN
0 f = EPN0 [f(X, Y )]. Lastly, we denote D(ε,P, d)

as the ε-packing number of a set of probability measures P under the metric

d, which is the maximal number of points in P such that the distance between

any pair is at least ε. We implicitly assume here that P is separable. The

following Theorem 1 follows from a modification of Theorem 2.1 in [30]:

Theorem 1. Assume that there is a sequence εN such that εN → 0 and

Nε2
N →∞ as N →∞, a constant C, and a set SN ∈ S so that

1. logD(εN/2,PSN , dH) ≤ Nε2
N .

2. Pr(S \ SN) ≤ e−Nε
2
N (C+4).
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3. Pr
(
θ : −P0 log pθ(Y1|X1)

p0(Y1|X1)
≤ ε2

N ,

P0

(
pθ(Y1|X1)
p0(Y1|X1)

)2

≤ ε2
N

)
≥ e−Nε

2
NC .

where PSN = {p0(x) × pθ(y|x) : θ ∈ SN} and dH is the Hellinger distance.

Then we have

PN
0

(
Pr(θ : dH(Pθ, P0) > Tε2

N |X, Y ) > δ
)
≤

1

C2Nε2
Nδ

+
2e−LNε

2
N

δ
+

2e−2Nε2N

δ
,

(5.4)

for any 0 < δ < 1 and sufficiently large T > 0 such that LT 2 ≥ C + 4 and

LT 2 − 1 > L, where L is a universal constant.

Proof of Theorem 1.

The proof is a modification of that for Theorem 2.1 in [30]. Take any

ε > 2εN , we have, by Assumption 1,

logD
( ε

2
,PSN , d

)
≤ logD (εN ,PSN , d) ≤ Nε2

N .

Then, by Theorem 7.1 in [30], there exists tests φN and a large enough constant

T (chosen later) such that

PN
0 φN ≤ eNε

2
N e−LNT

2ε2N
1

1− e−LNT 2ε2N
, (5.5)

and

sup
θ∈SN :d(Pθ,P0)>TεN

PN
θ (1− φN) ≤ e−LNT

2ε2N , (5.6)

for a universal constant L > 0, any N > 0, and PN
θ denotes the probability

measure on (X, Y ) under (X1, Y1) ∼ p0(x)× pθ(y|x).
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By (5.5), we have

PN
0 Pr(θ : θ : d(Pθ, P0) > Lε2

N |X, Y )φN ≤ PN
0 φN ≤ 2e−LNε

2
N , (5.7)

as N →∞, if we choose LT 2 − 1 > L. Now, since

P0
pθ(Y1|X1)

p0(Y |X)
=

∫
pθ(y|x)

p0(y|x)
p0(dy|x)p0(dx) =

∫
pθ(dy|x)p0(dx) = 1,

by Fubini’s theorem, we have

PN
0

∫
S\SN

N∏
i=1

pθ(Yi|Xi)

p0(Yi|Xi)
Pr(dθ) ≤ Pr(S \ SN).

Hence, by Fubini’s theorem again,

PN
0

∫
θ∈S:d(Pθ,P0)>TεN

N∏
i=1

pθ(Yi|Xi)

p0(Yi|Xi)
Pr(dθ)(1− φN)

≤ Π(S \ SN) +

∫
θ∈SN :d(Pθ,P0)>TεN

PN
θ (1− φN)Pr(dθ)

≤ Π(S \ SN) + e−LNT
2ε2N by (5.6)

≤ 2e−Nε
2
N (C+4), (5.8)

if KM2 ≥ C + 4, by Assumption 2.

By Lemma 1 (stated below) and Assumption 3, with probability at

least 1− 1/(C2Nε2
N), we have∫ N∏

i=1

pθ(Yi|Xi)

p0(Yi|Xi)
Pr(dθ) ≥ e−2Nε2NPr(Bn) ≥ e−Nε

2
N (2+C), (5.9)

where

Bn =

{
θ : −P0 log

pθ(Y1|X1)

p0(Y1|X1)
≤ ε2

N , P0

(
pθ(Y1|X1)

p0(Y1|X1)

)2

≤ ε2
N

}
.
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Let AN be the event that (5.9) holds. We have

PN
0 Pr(θ : d(Pθ, P0) > TεN |X, Y )(1− φN)1AN

= PN
0

∫
θ:d(Pθ,P0)>TεN

∏N
i=1

pθ(Yi|Xi)
p0(Yi|Xi)Pr(dθ)∫ ∏N

i=1
pθ(Yi|Xi)
p0(Yi|Xi)Pr(dθ)

(1− φN)1AN

≤ eNε
2
N (2+C)2e−Nε

2
N (C+4) by (5.8) and (5.9)

= 2e−2Nε2N .

Therefore,

PN
0 Pr(θ : d(Pθ, P0) > TεN |X, Y )

= PN
0 Pr(θ : d(Pθ, P0) > TεN |X, Y )φN + PN

0 Pr(θ : d(Pθ, P0)

> TεN |X, Y )(1− φN)1AN + PN
0 Pr(θ : d(Pθ, P0)

> TεN |X, Y )(1− φN)(1− 1AN )

≤ PN
0 Pr(θ : d(Pθ, P0) > TεN |X, Y )φN + PN

0 Pr(θ : d(Pθ, P0)

> TεN |X, Y )(1− φN)1AN + PN
0 (AcN) for sufficiently large T

≤ 2e−LNε
2
N + 2e−2Nε2N +

1

C2Nε2
N

,

by (5.7), (5.10) and the property of AN . By Chebyshev’s inequality, we have

PN
0

(
Pr(θ : d(Pθ, P0) > Tε2

N |X, Y ) > δ
)
≤ 1

C2Nε2
Nδ

+
2e−LNε

2
N

δ
+

2e−2Nε2N

δ
,

which concludes the theorem.

Lemma 1. For any ε > 0 and probability distribution Π defined on the set{
θ : −P0 log

pθ(Y |X)

p0(Y1|X1)
≤ ε2, P0

(
pθ(Y |X)

p0(Y1|X1)

)2

≤ ε2

}
, (5.10)
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we have, for every C > 0,

PN
0

(∫ N∏
i=1

pθ(Yi|Xi)

p0(Yi|Xi)
Π(dθ) ≤ e−(1+C)Nε2

)
≤ 1

C2Nε2
. (5.11)

Theorem 2 (Adopted from [63]). Consider a Hilbert space (H, 〈·, ·〉) and

ξ0 ∈ H. Let ξ̂1, . . . , ξ̂R ∈ H be a collection of independent random H-valued

elements. Let α, q, ν be constants such that 0 < q < α < 1/2 and 0 ≤ ν <

(α − q)/(1 − q). Suppose that there exists ε > 0 such that for all j, where

1 ≤ j ≤ b(1− ν)Rc+ 1,

P (‖ξ̂j − ξ0‖ > ε) ≤ q.

Let ξ̂∗ = medg(ξ̂1, . . . , ξ̂R) be the geometric median of {ξ̂1, . . . , ξ̂R}. Then

P (‖ξ̂∗ − ξ0‖ > Cαε) ≤
(
e(1−ν)ψ(α−ν

1−ν ,q)
)−R

,

where Cα = (1− α)
√

1/(1− 2α), and

ψ(α, q) = (1− α) log
1− α
1− q

+ α log
α

q
.

As noted by [30], the important assumptions are Assumptions 1 and

3. Essentially, Assumption 1 constrains the size of the parameter domain S to

be not too big, whereas Assumption 3 ensures sufficient mass of the prior on

a neighborhood of the true parameter. The concentration result (5.4) states

that the posterior distribution of θ is close to the true θ0 with high probability,
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where the closeness is measured in terms of the Hellinger distance between

the likelihoods. Note that the RHS of (5.4) consists of three terms. The

dominant term is the power-law decay in Nε2
N . The other two exponential

decay terms result from technical arguments in the existence of tests that

sufficiently distinguish between distributions [8, 56].

Next we describe the concentration behavior of BMA. We focus on the

situations where all the candidate models are non-nested, i.e. only one model

contains distributions that are arbitrarily close to the truth. Without loss of

generality, we let M1 be the true model.

Theorem 3 (BMA of Non-Nested Models). Suppose the assumptions in The-

orem 1 hold. Also assume that, for sufficiently small ε > 0, d(Pθ, P0) > ε for

any θ ∈ S−1 := {(Mk, β, σ
2) : k 6= 1}. Let L be the same universal constant

arising in Theorem 1. We have

1. For any given 0 < δ < 1,

PN
0 (Pr(M1|X, Y ) < 1− δ) ≤

1

C2Nε2
Nδ

+
2e−LNε

2
N

δ
+

2e−2Nε2N

δ
,

(5.12)

for sufficiently large N .

2. For any given 0 < δ < 1,

PN
0 (dE(Pr(Mk|X, Y ), e1) > δ) ≤

√
2

C2Nε2
Nδ

+
2
√

2e−LNε
2
N

δ
+

2
√

2e−2Nε2N

δ
,

(5.13)

for sufficiently large N , where dE is the Euclidean distance, and e1 is the

point mass on M1.
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3. For any 0 < δ <
√

(
√

2− 1)2 + 1/2,

PN
0 (dH(Pr(Mk|X, Y ), e1) > δ) ≤

(
√

2− 1)2 + 1√
2C2Nε2

Nδ
2

+
((
√

2− 1)2 + 1)e−LNε
2
N

δ2
+

((
√

2− 1)2 + 1)e−2Nε2N

δ2
,

(5.14)

for sufficiently large N .

Proof of Theorem 3.

Proof of 1. Consider large enough N and fix a sufficiently large T > 0.

We have

Pr(θ : d(Pθ, P0) ≤ Tε2
N |X, Y )

= EPr
[
Pr(θ : d(Pθ, P0) ≤ Tε2

N |Mk, X, Y )|X, Y
]
, (5.15)

where EPr[·|X, Y ] denotes the posterior expectation

and Pr(·|Mk, X, Y ) denotes the posterior distribution given model Mk

= Pr(M1|X, Y )Pr(θ : d(Pθ, P0) ≤ Tε2
N |M1, X, Y ), (5.16)

by the condition that d(Pθ, P0) > Tε2
N for any θ ∈ S−1 and any T > 0

eventually. Hence

Pr(θ : d(Pθ, P0) ≤ Tε2
N |X, Y ) ≥ 1− δ, (5.17)

implies

Pr(M1|X, Y ) ≥ 1− δ. (5.18)
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The result then follows from Theorem 1, which implies that (5.17) occurs with

probability at least

1−

(
1

C2Nε2
Nδ

+
2e−LNε

2
N

δ
+

2e−2Nε2N

δ

)
,

Proof of 2. Note that (5.18) implies

dE(Pr(Mk|X, Y ), e1) =

√
(1− Pr(M1|X, Y ))2 +

∑
k 6=1

Pr(Mk|X, Y )2 ≤
√

2δ,

(5.19)

since (1 − Pr(M1|X, Y ))2 ≤ δ2 and (δ, 0, . . . , 0) is an optimizer of the opti-

mization

max
K∑
i=2

x2
i subject to

K∑
i=2

xi ≤ δ.

Hence (5.12) and (5.19) together imply

PN
0

(
dE(Pr(Mk|X, Y ), e1) ≥

√
2δ
)
≤ 1

C2Nε2
Nδ

+
2e−LNε

2
N

δ
+

2e−2Nε2N

δ
.

By redefining δ̃ =
√

2δ, we get (5.13).

Proof of 3. Note that (5.18) implies

dH(Pr(Mk|X, Y ), e1) =

√√√√1

2

(
(
√

1− Pr(M1|X, Y ))2 +
∑
k 6=1

Pr(Mk|X, Y )

)

≤
√

1

2

(
(1−

√
1− δ)2 + δ

)
, (5.20)

since xi = δ/(k − 1) for all i 6= 0 gives the optimizer of the optimization

max
∑
i 6=0

√
xi subject to

∑
i 6=0

xi ≤ δ.
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Hence (5.12) and (5.20) together imply

PN
0

(
dH(Pr(Mk|X, Y ), e1) >

√
1

2

(
(1−

√
1− δ)2 + δ

))
≤

1

C2Nε2
Nδ

+
2e−LNε

2
N

δ
+

2e−2Nε2N

δ
.

(5.21)

Note that (1−
√

1− δ)2 is a convex function in δ for 0 < δ < 1 and is equal to

0 at δ = 0. Thus (1−
√

1− δ)2 ≤ (
√

2−1)2δ for 0 < δ < 1/2, where (
√

2−1)2

is the slope of the line between (0, 0) and (1/2, (1 −
√

1− 1/2)2. Hence, for

0 < δ < 1/2, we have√
1

2

(
(1−

√
1− δ)2 + δ

)
≤
√

((
√

2− 1)2 + 1)
δ

2
.

Combining with (5.21), we have

PN
0

(
dH(Pr(Mk|X, Y ), e1) >

√
((
√

2− 1)2 + 1)
δ

2

)
≤

1

C2Nε2
Nδ

+
2e−LNε

2
N

δ
+

2e−2Nε2N

δ
.

(5.22)

By redefining δ̃ =
√

((
√

2− 1)2 + 1)δ/2, we get (5.14).

Note that the assumption d(Pθ, P0) > ε for any θ ∈ S−1 and sufficiently

small ε is a manifestation of the non-nested model situation, asserting that

only one model is “correct”. Result 1 is a concentration on the posterior

probability of picking the correct model to be close to 1.

Result 2 translates this in terms of the Euclidean distance between the

model posterior probability and the point mass on the correct model. Result

3 is an alternative using the Hellinger distance. Note that the concentration
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bound for Hellinger distance (5.14) is inferior to that for Euclidean distance

(5.13) for small δ since δ2 instead of δ shows up in the RHS of (5.14). This is

because in our proof, the function
√

(1−
√

1− δ)2 + δ that appears in (5.21)

has derivative 1/(2
√

(1− δ)((1−
√

1− δ)2 + δ)) which is ∞ at δ = 0, and

thus no linearization is available when δ is close to 0.

Theorem 3 can be modified to handle the case where multiple models

contain the truth. In particular, the expression inside the probability in (5.12)

becomes ∑
r∈M

Pr(Mr|X, Y ) < 1− δ,

where M is the collection of all r such that Mr contains the true model. In

(5.13) and (5.14), the use of e1 is replaced by an existence of some probability

vector (dependent on N) supported on the indices in Mr. In other words, one

now allows comparing with an arbitrary allocation of probability masses to all

true models in the concentration bound. These modifications can be seen by

following the arguments in the proof of Theorem 3. Specifically, (5.16) would

be modified as

∑
r∈M

Pr(Mr|X, Y )Pr(θ : d(Pθ, P0) ≤ Tε2
N |Mr, X, Y ).

Then (5.17) would imply a modified version of (5.18), namely

∑
r∈M

Pr(Mr|X, Y ) ≥ 1− δ,

giving the claimed modification for (5.12). Then, following (5.19), we could

find a probability vector to make all (1− Pr(Mr|X, Y ))2 terms vanish except
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one, which is in turn bounded by δ2. This gives the claimed modifications for

(5.13) and (5.14).

The following result states how a divide-and-conquer strategy can im-

prove the concentration rate of the posterior model probabilities towards the

correct model:

Theorem 4 (Concentration Improvement). Suppose the assumptions in The-

orem 3 hold. Let s = N/R, and q =
√

2
C2sε2sδ

+ 2
√

2e−Lsε
2
s

δ
+ 2

√
2e−2sε2s

δ
. For

sufficiently large s, letting α, ν be constants such that 0 < q < α < 1/2 and

0 ≤ ν < (α− q)/(1− q), we have:

1. Pr∗(Mk|X, Y ), the geometric median under dE of {Pr(Mk|(X(j), Y(j)))}j=1,...,R,

satisfies

PN
0 (dE(Pr∗(Mk|X, Y ), e1) > Cαδ) ≤(

e(1−ν)ψ(α−ν
1−ν ,q)

)−R
,

(5.23)

where Cα = (1−α)
√

1/(1− 2α), and ψ(α, q) = (1−α) log 1−α
1−q +α log α

q
.

2. Let K be the number of model classes, then:

PN
0

(
Pr∗(M1|X, Y ) < 1− Cαδ

√
K − 1

K

)
≤(

e(1−ν)ψ(α−ν
1−ν ,q)

)−R
.

(5.24)

3. Suppose in addition that, for any Pθ1 , Pθ2 such that θi = (M1, β
i, (σ2)i) for

i = 1, 2, we have

dH(Pθ1 , Pθ2) ≥ C̃ρk(θ
1, θ2)γ, (5.25)
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where ρk(θ
1, θ2) = ‖k(·, θ1)−k(·, θ2)‖H, with k being a characteristic kernel

defined on the space {θ = (M1, ·, ·)} and H is the corresponding reproducing

kernel Hilbert space (RKHS), and C̃ > 0 and γ > 0 are constants. More-

over, assume that there is a universal constant K̃ such that e−K̃sε
2
s/2 ≤ εs

for all s, and we choose εs such that q̃ = 1
Csε2s

+ 4e−K̃sε
2
s/2 < 1/2. Then

PN
0

(
Pr∗(M1|X, Y ) > 1− Cαδ

√
K − 1

K
,

‖Pr∗(θ|M1, X, Y )− δ0‖Fk ≤ CαT̃ ε
1/γ
s

)
≥ 1−

(
e(1−ν)ψ(α−ν1−ν ,q)

)−R
−
(
eψ(α,q)

)−R
,

where ‖ · ‖Fk is defined as ‖P − Q‖Fk = ‖
∫
k(x, ·)d(P − Q)(x)‖H, T̃ > 0

is a sufficiently large constant, Pr∗(θ|M1, X, Y ) is the geometric median of

{Pr(θ|M1, (X(j), Y(j)))}j=1,...,R under the ‖ · ‖Fk-norm, and δ0 is the delta

measure at the true parameter.

The significance of Theorem 4 is the improvement of the concentration

from power-law decay in Theorem 3 to exponential decay, as the number of

subsets grows. Such type of results is known in the case of parameter esti-

mation (e.g., [98, 65]). Theorem 4 generalizes to the case of model selection.

Results 1 and 2 describe the exponential concentration for the model pos-

teriors to the correct model, while Result 3 states the joint concentration in

both the model posterior and the parameter posterior given the correct model,

when one adopts a second layer of divide-and-conquer on the parameter pos-

terior conditional on each individual candidate model. Result 3 in particular

combines with the parameter concentration result in [65].
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Note that we have taken a hybrid viewpoint here that we assume a

“correct” model and parameters in a frequentist sense. Under this view, a

posterior probability more concentrated towards the truth is more desirable.

This constitutes our main claim that the divide-and-conquer strategy is at-

tractive. This view has been used in existing work like [98, 65].

Finally, the following theorem highlights that the concentration im-

provement still holds even if the data are contaminated to a certain extent:

Theorem 5 (Robustness to Outliers). Using the notation in Theorem 4, but

assume instead that, for j where 1 ≤ j ≤ b(1− ν)Rc+ 1,

P s
0

(
dE(Pr(Mk|X(j), Y(j)), e1) > δ

)
≤

√
2

C2sε2
sδ

+
2
√

2e−Lsε
2
s

δ
+

2
√

2e−2sε2s

δ
,

the conclusion of Theorem 4 still holds.

Theorem 5 stipulates that when a small number of subsets are contam-

inated by arbitrary nature, the geometric median approach still retains the

same exponential concentration.

Proofs of Theorems 4 and 5.

The proofs of both theorems rely on a key theorem on geometric median

in [63], restated in the Appendix. We focus on Theorem 4, as the proof for

Theorem 5 is a straightforward modification in light of Theorem 2.

Proof of 1. Immediate by noting that

P s
0

(
dE(Pr(Mk|X(j), Y(j)), e1) > δ

)
≤ q,
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for all j = 1, . . . , R, and applying Theorem 2.

Proof of 2. Note that

dE(Pr∗(Mk|X, Y ), e1) ≥ (1− Pr∗(M1|X, Y ))

√
K

K − 1
. (5.26)

To see this, let a = Pr∗(M1|X, Y ). We have

dE(Pr∗(Mk|X, Y ), e1) =

√√√√(1− a)2 +
K∑
i=2

x2
i ,

where xi’s satisfy
∑K

i=2 xi = 1 − a. Since (1 − a)/(K − 1) is the optimizer of

the optimization

min
K∑
i=2

x2
i subject to

K∑
i=2

xi = 1− a,

we get
√

(1− a)2 +
∑K

i=2 x
2
i ≥ (1− a)

√
K/(K − 1).

Hence (5.23) and (5.26) together give

PN
0

(
Pr∗(M1|X, Y ) < 1− Cαδ

√
K − 1

K

)
≤
(
e(1−ν)ψ(α−ν

1−ν ,q)
)−R

.

Proof of 3. Under the additional assumptions, we can invoke Corollary

3.5 in [65] to obtain that

PN
0

(
‖Pr∗(θ|M1, X, Y )− δ0‖Fk > CαT̃ ε

1/γ
s

)
≤
(
eψ(α,q)

)−R
.

The result follows from applying a union bound and together with (5.24).
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5.4 Simulations and Data Analysis

For the BMA, AIC, BIC and median probability model tests, we gen-

erate data from a model Y = Xβ + ε, where X is a 5000× 10 matrix and β is

a 10 dimensional vector with 3 true predictors. We assess the aforementioned

model selection techniques with four tests, over 10 trials for the contamina-

tion and magnitude tests and over 20 trials for the coverage test on 1 and

10 subsets for the magnitude and coverage tests and 1 and 50 subsets for the

contamination tests with 1,000 iterations on each MCMC chain and a burn-in

period of the initial 500 iterations.

The first test is the contamination test which examines the root mean

square error (RMSE) of held-out test data Ỹ of size 50 against the num-

ber of outliers present (as many as 5 in our experiments) in the training

data, Y . We generate outliers by taking the maximum of the absolute value

of the data and add a given magnitude value. Each outlier has a relative

magnitude of 10,000 meaning that we find the largest output, Yi∗ such that

i∗ = argmaxi {|Yi| : i = 1, . . . , N}, so that the value of the outlier is Yi∗ +

(sgn(Yi∗)× 10000). For the contamination test, we expect to see superior per-

formance with regards to RMSE of the 50 subset median posterior as long as

the number of outliers per subset does not exceed 1. Figure 5.1 demonstrates

the robustness of our technique to the number of outliers when we divide the

data into subsets. We can see that the empirical 95% distribution of the RMSE

over 10 trials for 50 subsets (green dashed line) falls dramatically below that

of the RMSE distribution of 1 subset for each model selection technique when
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outliers are present except in the case when 50 outliers are present for Bayesian

model averaging which approaches the point where the theoretical guarantees

of our method are violated.

Figure 5.1: Contamination test.

The second test assesses the RMSE of the held-out test data of size 50

against the increasing relative magnitude of one outlier present in the training

data. We expect to see nearly constant RMSE on the 10 subset run as the
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relative magnitude of a single outlier increases, thus the procedure is robust.

We can see in Figure 5.2 that the RMSE of distributed variants of the model

selection techniques are lower than the single processor variants as the number

of outliers increases. In the magnitude test, we can categorically observe that

10 subset RMSE is invariant to the relative magnitude of one outlier present

in the data whereas the RMSE grows rapidly on one subset.

Figure 5.2: Magnitude of outlier test.
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The next test assesses the 95% frequentist posterior coverage of the true

held-out predictive value of size 1, Ỹ , against the increasing relative magnitude

of one outlier in the training data. To calculate coverage we generate 50

independent MCMC chains at each level of outlier magnitude and calculate

the proportions of chains which include the true predictive value within the

2.5% and 97.5% percentiles of the posterior predictive draws. For the coverage

test we see that the empirical coverage of a single predictive value for the

distributed subsets is, on average, 95% regardless of the magnitude of the

outlier as opposed to the empirical coverage for the single subset. In the 1

subset case, we can see that the empirical coverage degrades almost to zero as

the magnitude of the outlier grows. (see Figure 5.3).

Our last evaluation is the coverage of the regression coefficients and the

ability for our model selection techniques to choose the correct model under

the distributed setting with a single outlier of magnitude 10,000. We compare

the posterior credible interval of the regression coefficients for 1 and 10 sub-

sets. Note that we do not include nested models in our evaluations or models

larger than the true model (i.e models with more than 3 covariates included).

Furthermore, we perform this evaluation under two settings: One, where we

combine the optimal local model seleceted on each subset (“Model Combi-

nation”) or if we combine the subposterior estimates and select the optimal

model globally (“Estimate Combination”) As seen in Figure 5.4, the parallel

technique is able to select the correct model 1 subset test, the outlier leads

to the incorrect model being selected. Additionally, Figure 5.5 demonstrates
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Figure 5.3: Testing empirical coverage of predictive value.

that model and estimate combination yield similar results with the regression

coefficient coverage test.

Also, we would like to see if the results still hold between model and

estimate combination for the other simulation studies performed. Figs. 5.6,

5.7, 5.8, 5.9, 5.10, 5.11, and 5.12 show that there is little difference in how we

combine the information for model selection in each of the tests evaluated.

Furthermore, we wish to evaluate our method a large synthetic dataset

with the same synthetic generating process as above, but with one million

observations divided over 50 processors. Here, we examine the behavior of
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our method when we increase the magnitude of one outlier in the dataset and

when we increase the number of outliers with fixed magnitude. In Figure 5.13,

we can see that our performance is robust when the number of outliers per

subset fulfills Theorem 4. When the number of outliers reaches 40 and 50,

we see start to see a noticeable degradation of our method’s predictive ability.

However, this degradation is still small relative to what we might observe in

the case where we do not divide the data into subsets.

Additionally, we would like to see the computational gain of dividing the

data for this situation in terms of CPU time for running the model selection

and inference procedure. For one subset the average computation time is

91,829.15 seconds with a standard error of 190.80 seconds. For ten subsets,

the average computation time is 10,301.60 seconds with a standard error of

81.28 seconds. And for fifty subsets, the average computation time is 29,49.74

seconds with a standard error of 16.61 seconds which signifies that we obtain

critical computational performance when dividing our method across multiple

processors.

Lastly, we evaluate our parallel model selection method on the diabetes

data set used in [21]. The diabetes data consists of a 442×10 dimension design

matrix scaled with unit norm and zero mean and a single response vector. We

held out 45 observations for test evaluation and plotted the posterior 95%

credible intervals for the predictive values centered at zero after subtracting

the true predictive value. We can see in Fig. 5.14 that, after dividing the data

across 5 subsets, we can attain a tighter credible interval over the true value
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for each model selection technique.

5.5 Discussion

While a substantial body of work exists for fast and scalable Bayesian

inference methods, few research methods are available on robust and scalable

model selection. We have studied in this paper a divide-and-conquer strategy

that contributes to filling this gap. This strategy operates by taking the geo-

metric median of posterior model probabilities or other selection criteria that

extends previous results focusing on parametric inference. We show theoret-

ically how the strategy, particularly in the setting of BMA, can be robust to

outliers and, moreover, exhibits faster concentration to the true model in terms

of posterior model probabilities. The concentration result also applies to the

joint setting of model selection and parameter estimation. We illustrate with

both simulation data and a real data example how a variety of our strategy

leads to more robust inference compared to standard approach that does not

divide data into subsets. The strategy we present is simple to execute and is

foreseen to have good practical value.
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Figure 5.4: Posterior regression parameter coverage test results, estimate com-
bination.
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Figure 5.5: Posterior regression parameter coverage test results, model com-
bination.
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Figure 5.6: Contamination test, BMA and median model selection
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Figure 5.7: Contamination test, AIC and BIC

Figure 5.8: Contamination test, spike and slab
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Figure 5.9: Coverage test.
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Figure 5.10: Magnitude test, AIC and BIC.
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Figure 5.11: Magnitude test, BMA and median model selection.

Figure 5.12: Magnitude test, spike and slab.
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Figure 5.13: Synthetic big data results.
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Figure 5.14: Diabetes test data results.
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Chapter 6

Embarrassingly Parallel Inference for

Gaussian Processes

Many problems in statistics and machine learning can be framed in

terms of learning a latent function f(x). For example, in regression problems,

we represent our dependent variables as a (noisy) function of our independent

variables. In classification, we learn a function that maps an input to a class

(or a probability distribution over classes). In parameter optimization, we have

some function that maps parameters to their likelihoods and want to find the

optima of this function. However, if we assume the relationship between x and

f(x) is nonlinear then learning the latent function is a non-trivial task.

Gaussian processes (GPs) provide a flexible family of distributions over

functions, that have been widely adopted for problems including regression,

classification and optimization due to their ease of use in modeling latent

functions. Unfortunately, inference in GP models with N observations involves

repeated inversion of an N × N matrix, which typically scales as O (N3).

This computational bottleneck has thus far prevented Gaussian processes from

being used in so-called “big data” situations.

Two main approaches have been proposed to ameliorate the computa-

122



tional complexity for inference: sparse methods, that aim to reduce the size of

the matrix to be inverted, and local methods, that aim to simplify its struc-

ture. Unfortunately, both methods exhibit key failure modes as we reduce

the computational cost: local methods can miss long-range correlations, and

sparse methods tend to miss short-range fluctuations. Further, methods of

these types are not typically parallelizable to run efficiently on a distributed

architecture.

Moreover, the typical Gaussian process regression model fit with a sta-

tionary covariance kernel is not flexible enough to model latent functions that

exhibit idiosyncratic behavior at different locations in the input space. While

non-stationary covariance kernels are certainly available, in practice they are

slow to use. Using mixtures of Gaussian processes or combining partitioned

Gaussian processes with stationary covariance kernels is another flexible way

of modeling non-stationary latent functions but typical inference procedures

for these models are slow. To this end we wish to construct an inference

procedure for such mixtures with the explicit goal of scalable computation.

This chapter proposes a novel inference algorithm for fitting mixtures of

partitioned Gaussian processes that is scalable, flexible and easily distributed.

The “Importance Gaussian Process Sampler” (IGPS) approximates the co-

variance matrix with an importance averaging over block diagonal matrices.

We learn, in parallel, multiple partitioned Gaussian processes sampled from

the posterior partitioning distribution over the inputs, allowing us to take ad-

vantage of the lower inversion cost of a block-diagonal matrix. We then use
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importance sampling to combine these estimates in a principled manner – the

only step in our algorithm requiring global communication. To obtain even

greater speedups while maintaining competitive performance, we use stochas-

tic approximations obtained using minibatches. The resulting posterior pre-

dictive distribution has a more expressive expected covariance matrix than

a block diagonal matrix, avoiding edge effects common with local methods

and allowing for an expressive covariance structure that can model both long-

and short-range covariance as well as non-stationary behavior in the latent

function.

6.1 Related Work

A Gaussian process, as introduced in Section 2.3.5, is a distribution over

functions f : RD → R, parametrized by some mean function m(x), typically

taken as zero, and a covariance function Σ(x, x′). For a given m and Σ, a

GP is a unique distribution over functions f such that for any finite set of

points, x1, . . . , xN ∈ RD, the function evaluated at those points is multivariate

normally distributed with mean and covariance given by m and Σ evaluated

at these inputs.

The behavior of functions sampled from a Gaussian process is largely

determined by the covariance function. A covariance function where Σ(x, x′)

only depends on |x−x′| will produce stationary, isotropic functions. The most

commonly used covariance function of this type is the squared exponential (or

RBF) kernel, Σ(x, x′) = v exp{−γ(x− x′)2}. Here, the (inverse) lengthscale γ
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determines how quickly f(x) varies with x. If we believe that our function is

non-stationary, a covariance function that depends on location is appropriate.

While a number of such functions exist [31], they are generally harder to work

with than stationary kernels with more parameters to tune.

Gaussian processes have been used to provide prior distributions over

functions in a variety of applications [see for example 76, 85, 97]. In this

exposition we focus primarily on regression but we note that the extension to

other settings is straightforward. In the regression setting we want to learn

a function f ∼ GP(0,Σ) that maps our inputs X = (xi)
N
i=1 to our outputs

Y = (yi)
N
i=1 such that yi ∼ N(f(xi), σ

2). In this setting, conjugacy means that

inferring f given the data and covariance function is straightforward. The

challenge comes in inferring the hyperparameters, Θ, that control the form

of the covariance function. Optimizing or sampling these hyperparameters

involves inverting the covariance matrix Σ obtained by evaluating Σ(·, ·) at

the inputs x1, . . . , xN . In general, the computational cost of inverting this

matrix is O(N3).

6.1.1 Reducing the Cost of Matrix Inversion With Covariance Ap-
proximations

One way to reduce the O(N3) cost is to use an easily-invertible class of

covariance matrices (either as an approximation to some desirable but com-

putationally demanding covariance matrix, or as a design choice in specifying

the GP). Two broad classes of methods have been proposed: “sparse” meth-
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ods which parametrize the covariance based on M << N inducing inputs,

and “local” methods that replace the dense N ×N covariance matrix with a

block-diagonal matrix.

Sparse GP approximations parameterize the covariance matrix of the

GP model with M pseudo-inputs, where M << N . The pseudo-input loca-

tions are chosen so that the posterior function evaluated at these points is

a good approximation to the true posterior, for example by maximum likeli-

hood optimization [84] or variational inference [92]. The computational saving

comes from replacing an N × N covariance matrix with an M ×M matrix.

In the regression case, this reduces the training cost to O(NM2). Further

computational savings can be obtained by using stochastic variational infer-

ence (SVI) to update the inducing points by calculating necessary gradients

based only on size-B subsets of the N datapoints, reducing computational cost

to O (M2 min {M,B}) [39]. While sparse methods can yield impressive speed-

ups, they tend to have a decreased ability to model high-frequency fluctuations

in the function, since the number of inducing points limits the amount of vari-

ation we can capture. Additionally, as with the full-covariance GP it approx-

imates, the sparse GP cannot naturally model non-stationary data without

resorting to a non-stationary kernel.

Local Gaussian process methods make local approximations to the

dense covariance matrix so that a low-rank representation of the covariance

matrix is inverted instead of the full-rank matrix. [51] applies a ”tapering”

function to the covariance matrix so that observation pairs with low corre-
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lation are set to zero and provides theorems for estimator consistency when

the covariance function used is a Matérn kernel. [33] tries to learn the local

approximation by taking the n-nearest neighbors of a predictive value X∗ to

the data X and learns both the function hyperparameters and predictive dis-

tribution jointly by iteratively increasing the size of the nearest neighbors until

a stopping criteria is satisfied for all predictive inputs. [6] approximates a full

Gaussian process model using a smaller subset of the data to form a prediction

of the entire model.

Product of experts models [94, 14, 68, 18] multiply the predictions of

multiple local Gaussian processes. Conditioned on the partitioning, inference

in the local GP scales approximately as O(N3/K2), since we need to invert

K matrices of average size N
K
× N

K
. A naive implementation of this type of

local GP method leads to discontinuities at partition boundaries, motivating

various techniques for mitigating this effect. Park et al. [73] use a boundary

value function to ensure continuity between regions. Mixture of experts models

[34, 75, 60] average over multiple local GPs, for example using MCMC.

One advantage of local methods is that they allow us to use different

covariance hyperparameters in different blocks. Without resorting to complex

non-stationary kernels, this allows us to capture behavior which is locally ap-

proximately stationary, but where the lengthscale varies across the input space

[94, 75]. This is in contrast with sparse methods, which can only capture non-

stationarity if we use an explicitly non-stationary covariance function. The

disadvantage of the local methods, however, is that they risk ignoring impor-
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tant correlations since they assume zero correlation between different blocks in

the partition. If the data points are partitioned based on location, this means

that long-range correlations will be ignored; if they are partitioned randomly,

the model will tend to perform poorly if the number of observations in some

region of RD is low. This can be ameliorated by using MCMC to explore a

distribution over partitions of Gaussian processes, as in the mixture of experts

models. For example, Gramacy and Lee [34] show that jointly learning the

partition and the local GPs can improve performance over a fixed partition.

This improved performance comes at a cost however: performing MCMC-

based inference over partitions can be expensive and (due to the Markovian

relationship between samples) precludes direct parallelization.

6.1.2 Distributed Inference for Gaussian Processes

The sparse and local approximations described above aim to reduce

the overall computational burden by reducing the size of matrices to be in-

verted. When run on a single machine, this reduction in computational cost

leads directly to faster inference. However, we may also be interested in dis-

tributing computation cost across multiple threads or machines. Even if the

total computational cost is the same, we can reduce total time by distribut-

ing computation onto multiple parallel threads. Alternatively, if we increase

the computational budget then we may be able to improve our posterior esti-

mate by running multiple samplers in parallel and then combining the results

without increasing the time budget.
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Local GP methods that do not average over partitions are well suited

to this sort of parallelism. They split a single GP problem into K indepen-

dent problems whose parameters can be inferred in parallel. We only need

to communicate between the K subproblems at the end when we combine

their predictions. This type of algorithm, where global communication occurs

only once after all the local computation is complete, is known as “embar-

rassingly parallel”. Ng and Deisenroth [68] exploit these independences, in a

weighted product-of-experts model, to obtain an embarrassingly parallel algo-

rithm appropriate for large datasets. The embarrassingly parallel nature of

these algorithms relies on the fact that we are using a single partition over the

data and an importance sampler to average over the space of partitions. The

ability to parallelize is lost if we use an MCMC sampler to learn a distribution

over partitions, due to the dependence between samples.

6.1.3 Fast Bayesian Inference via Stochastic Approximations

When performing Bayesian inference on large datasets, much of the

computational cost is due to calculating functions – for example, gradients or

likelihoods. One way to reduce computational costs is to approximate these

functions using noisy estimates based on much smaller subsets of the data. For

example, sparse variational inference [43] uses minibatches of data to approx-

imate gradients in a variational context. Stochastic gradient MCMC methods

[59, 100] perform a similar approximation in a gradient-based MCMC setting.

Several embarrassingly parallel MCMC methods combine noisy posterior es-
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timates obtained using subsets of the data [88, 64]. The Bayesian coresets

approach aims to learn the posterior based on a reweighted posterior [45].

In a Gaussian process context, as mentioned in Section 6.1.1, SVI has been

used to speed up inference in sparse Gaussian processes from O(NM2) to

O (M2 min {M,B}), where B is the minibatch size.

6.2 Embarrassingly Parallel Inference with the “Impor-
tance Gaussian Process Sampler”

As described in Section 6.1, local GP methods reduce the computa-

tional burden of inverting the N × N covariance matrix by replacing or ap-

proximating it with a block-diagonal matrix with K blocks. Local methods

using a fixed partition are easily parallelized to use K threads, each costing

O(N2/K2), but doing so ignores some of the correlations between data points.

In particular, if the partitioning is based on input location (as is common),

we ignore long-range correlations. However, averaging over partitions using

MCMC is expensive and difficult to parallelize.

Our approach uses a distribution over partitions—allowing long-range

correlations and a dense expected covariance matrix—but uses an importance-

sampling-based inference scheme that is trivially parallelizable to approximate

the marginalization over the space of partitions. In this sense, our method is

a mixture of partitioned Gaussian processes and not an approximation of the

standard Gaussian process regression model. By this method, we can both

approximate the covariance matrix in a stationary model or provide a cheap
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and fast way to model non-stationary functions if we allow each partition to

have its own set of hyperparameters.

Other mixtures of Gaussian processes have been developed for the pur-

pose of forming more flexible models that could model, for example, non-

stationarity in the latent function without resorting to a non-stationary co-

variance kernel [75]. Partitioning approaches like the Bayesian treed Gaussian

process [34], like our method, partition the input space and average over the

partitions for generate predictions. Unlike previous approaches, our intended

objective is to develop a fast, distributable Gaussian process model that, as

a consequence of importance averaging over partitions, is also a more flexible

approach than the typical Gaussian process regression model.

We wish to explore the posterior distribution over Σ (given the prior

implied by the distribution over partitions) while ensuring our algorithm can

be distributed. To this end, we independently sample J partitions from the

distribution Z(j) ∼ p(Z|X) and assign them weights wj ∝ p(Z|X, Y )/p(Z|X),

such that
∑

j wj = 1. We then use the weighted samples to obtain asymptot-

ically unbiased1 estimates of functions of the posterior, such as predictions at

new inputs X∗.

Calculating the wj involves integrating over the covariance parameters

1Since we are working with self-normalized weights, the estimate has a bias of O(1/J)
[55], but will often have a lower variance than the unbiased estimate obtained with wj =
p(Z|X,Y )/p(Z|X).
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Θk:

p(Z|X, Y )

p(Z|X)
∝ p(X, Y |Z)p(Z)

p(X|Z)p(Z)
= p(Y |X,Z) =

∫
p(Y |X,Z,Θ)p(Θ)dΘ. (6.1)

We must approximate this intractable integral. Depending on our accuracy/speed

trade-off, we can obtain an unbiased estimate of the wj using a sample-based

approximation. Alternatively, we can perform a Laplace approximation about

the MAP Θ̂ or we can directly use the MAP approximation p(Y |X,Z) ≈

p(Y |X,Z, Θ̂). In our experiments, we choose a MAP approximation; while

this is not as accurate as sampling hyperparameters it is significantly faster,

and mirrors the choices made by our comparison methods.

To perform prediction under our method we must first calculate the

prediction on importance proposal j, by averaging the predictions produced

on each of the K partitions weighted by the posterior cluster assignment prob-

abilities of the predictive inputs2:

P (f ∗j |−) =
K∑
k=1

P (f ∗j |Xk,j, Yk,j, Zj, X
∗, Z∗j )P (Z∗j |Xk,j, Zj). (6.2)

Next, we must obtain the weights to calculate the importance averaging of

the predictions f ∗j . Our choice for the proposal distribution in the impor-

tance sampler results in an importance weight proportional to the marginal

likelihood of the model, given the partition assignments:

wj ∝ P (Y |X,Zj) =
K∏
k=1

P (Yk,j|Xk,j, Zj). (6.3)

2In the interest of computational speed, we approximate this distribution with the MAP
estimate: P (f∗

j |−) ≈ maxk P (f∗
j |Xk,j , Yk,j , Zj , X

∗, Z∗
j ).
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We already calculate this marginal likelihood in fitting the model produced on

each of the J proposals so we, in effect, obtain the importance weights (up to

proportionality) for “free”. Next we must normalize the weights and average

the prediction from each proposal to calculate the final prediction,

P (f̄ ∗|−) =
J∑
j=1

wjP (f ∗j |Zj,−). (6.4)

The overall computational cost of the IGPS, using J importance-weighted

samples and K blocks, is therefore O(JN3/K2). In Table 6.1, we compare

this with the overall computational cost of the full GP, sparse approxima-

tions (FITC, DTC and SVI), the Bayesian treed GP (BTGP), and the robust

Bayesian committee machine (RBCM). While the O(JN3/K2) cost is O(J)

higher than sparse methods3 and local methods based on a fixed partition

such as RBCM, we note that the J samples can be performed and weighted

in parallel—meaning the time taken is comparable if we are willing to sac-

rifice computational resources. In this procedure, the only communication

between processors occurs at the end of the prediction step when we normal-

ize the weights, wj, and obtain the importance averaged predictions, f̄ ∗. This

is vital in any distributed computation algorithm due to the high overhead

cost of inter-processor communication. We can also make use of the indepen-

dence of the K partitions to parallelize further, using JK threads each taking

O(N3/K3). As shown in Table 6.1, this leads to an equivalent wall-time cost

3In general, a sparse model with M inducing points obtains comparable accuracy to a
local method with N/K local GPs, and has equivalent computational complexity.
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comparable with the distributed RBCM. As we will see in Section 6.3, the

extra computational cost required to ensure a full posterior predictive distri-

bution yields improved performance over methods that are based on a fixed

partition.

6.2.1 Minibatched Importance Samples

Although we can obtain significant computational and memory saving

advantages using IGPS’s low-rank approximation, we still may encounter ma-

jor bottlenecks from attempting to approximate the covariance matrix of the

full training set. To overcome this issue, we propose a “minibatching” solu-

tion, where each importance sample is obtained and weighted based only on a

subset of size B << N .

Given a random subsetB of observations, we can approximate p(Θ|X, Y, Z)

with the subset posterior p(Θ|Xmb, Y mb, Z) evaluated on a size-B minibatch

(Xmb, Y mb). Such a posterior estimate is strongly consistent, but will tend

to underestimate the posterior variance [88]. To achieve more realistic credi-

ble intervals, we can assume we have seen each pair (xi, yi) in our minibatch

N/B times; mathematically, this corresponds to raising the contribution of the

likelihood to the subset posterior to the (N/B)-th power. This approach, in-

troduced by Minsker et al. [64], is known as the stochastic approximation (SA)

trick; Srivastava et al. [88] show that the SA sub-posteriors are also strongly

consistent.

We use this stochastic approximation trick to estimate the posterior
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Table 6.1: Comparison of inference complexity. N is the number of data
points, K is the number of experts or local GPs, and M = N/K is the number
of inducing points. For the Monte Carlo based methods, J is the number of
MCMC iterations or importance samples.

Full GP Sparse SVI

Complexity N3 NM2 M2 min(M,B)

RBCM BTGP IGPS SA-IGPS

Complexity N3/K2 JN3/K2 JN3/K2 JB3/K2

Comp/thread N3/K3 × N3/K3 B3/K3

distribution over parameters for each importance sample, allowing us to reduce

our overall complexity from O(JN3/K2) to O(JB3/K2). Empirical results in

Section 6.3 will show that this stochastic approximation performs favorably on

large datasets in comparison with both the non-SA IGPS method and other

scalable GP inference methods.

6.3 Experimental Evaluation

To showcase the performance of our method, we compare it with a

number of competing methods on both synthetic and real data sets.

6.3.1 Evaluation on Synthetic Data

6.3.1.1 Comparison with Competing Methods

We begin by evaluating our method on synthetically generated data,

in order to allow us to explore and visualize a range of regimes, and to allow

comparison with methods that do not scale to our real-world dataset. In our
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Figure 6.1: Posterior mean and 95% predictive intervals on Synthetic 1 (sta-
tionary, long length scale).

Figure 6.2: Posterior mean and 95% predictive intervals on Synthetic 2 (sta-
tionary, short length scale).
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Table 6.2: Test set performance on synthetic datasets

(a) Log likelihood

Data IGPS GP FITC DTC

Long Lengthscale -152.41 -143.52 -143.39 -143.81
Short Lengthscale -157.16 -172.32 -172.26 -172.26
Non-stationary -158.21 -181.40 -181.30 -181.30

Data SVI RBCM BTGP

Long Lengthscale -156.51 -5207.89 -231.84
Short Lengthscale -173.38 -251.50 -212.61
Non-stationary -198.00 -910.54 -256.73

(b) MSE

Data IGPS GP FITC DTC SVI RBCM BTGP

Long Lengthscale 1.20 1.03 1.02 1.02 1.30 1.03 2.07
Short Lengthscale 1.35 1.83 1.83 1.83 1.87 1.06 2.46
Non-stationary 1.39 2.18 2.17 2.17 2.12 1.00 2.64
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Figure 6.3: Posterior mean and 95% predictive intervals on Synthetic 3 (non-
stationary).

studies, we will compare the Importance Gaussian Process Sampler against a

full GP with squared exponential covariance (GP); three sparse approxima-

tions to this model, FITC [84], DTC [80], and SVI [39]; the Bayesian treed GP

[34, BTGP]; and the robust Bayesian committee machine [18, RBCM]. Our

IGPS code uses the Gaussian process modules in GPy in Python with paral-

lelization executed through MPI4py [17]. For these experiments we did not use

minibatching. We ran the full GP, FITC, DTC and SVI implementations also

through GPy, BTGP in tgp, and RBCM in gptf.

We consider three data settings, generated on a linearly spaced grid of

values on [−1, 1].

1. Stationary, long-range correlations generated with inverse length

scale γ = 15.
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2. Stationary, short-range correlations generated with inverse length

scale γ = 5000.

3. Non-stationary generated piecewise with fast and slow moving periodic

functions.

In examples (1) and (2), we generated data from a GP with zero mean

squared exponential covariance kernel with amplitude ν = 1. For all examples

we added Gaussian noise σ2 = 1 to the observed outputs. We generated a

training data set with 1,000 observations and a test set with 100 observations.

For fitting the stationary data, we restrict the hyperparameters on our

IGPS method to be the same on all K blocks. For (3), we allowed each mixture

to have its own hyperparameters in order to model the non-stationarity of

the data. In all methods except BTGP we infer hyperparameters through

optimization, and for BTGP we infer the hyperparameters through MCMC

sampling. For the sparse methods, we used M = 100 inducing points, and for

the local methods (including the IGPS) we used K = 10 partitions to have

a comparable level of computational complexity. For the BTGP we ran the

MCMC sampler for 10 iterations; for the IGPS we used J = 10 independent

importance-weighted samples. Figures 6.1, 6.2, and 6.3 shows the posterior

predictive results and predictive intervals obtained using the five methods, and

Tables 6.2a and 6.2b show the corresponding test set log likelihoods and mean

squared errors.

We first consider the one-dimensional stationary examples. Recall that,
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in general, sparse methods perform well when the covariance structure is dom-

inated by longer-range correlations, and local methods perform well when we

have significant local variation in our function. Looking at the results on the

dataset with long-range correlations (Figure 6.1), we see that the IGPS per-

forms better than the other local methods, and performs nearly as well as the

full GP and the sparse approximations.

If we look at the dataset with short-range correlation (Figure 6.2), we

see the sparse methods struggle to learn the function: with a small number

of inducing points, it is impossible to capture the high-frequency variation.

Looking at the quantitative results in Tables 6.2a and 6.2b, we see that the

IGPS out-performs the RBCM. We posit that this is because the IGPS makes

use of the distribution of the covariates to learning a distribution over par-

titions, while the RBCM relies on a single fixed partition. While the BTGP

also averages over partitions, its poor predictive performance is likely because

of lack of convergence of the MCMC chain: the underlying model is fairly

complex and likely to mix slowly.

Finally, consider the non-stationary example, which combines known

failure modes of local and sparse GPs. We have a combination of slowly

varying behavior (which is poorly captured by local methods) and fast-varying

behavior (which is poorly captured by sparse methods). The full GP, RBCM

and sparse methods, fitted with stationary kernels, obviously cannot account

for the non-stationary components in the data, and by assuming a stationary

covariance they give poorer test-set performance. The BTGP does a reasonable
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job at capturing the function; again its performance is likely to be hampered

by slow mixing and lack of convergence. Figure 6.3 shows that the IGPS is

able to capture the function, and Tables 6.2a and 6.2b show that it can provide

confident predictions at all regions of the function.

6.3.1.2 The Importance of Importance Sampling

The IGPS falls under the “local” framework, much like the RBCM and

the BTGP; however it out-performs both methods. This can be attributed to

importance sampling a distribution over partitions. To demonstrate this, we

consider performance on a synthetic dataset of 10,000 training observations

from a 12000 × 100 dimensional input which is generated from a 50 mixture

GMM with outputs drawn from a GP model with zero mean and an long

lengthscale RBF kernel.

The RBCM uses a single, fixed partition. Conversely, the IGPS uses

a distribution over partitions, combined using importance sampling weights.

Figures 6.4 and 6.5 show how varying the number of importance samples, for a

range of values of K and B (remember, K = 1, B = N = 10, 000 corresponds

to the full Gaussian process, and as K increases or B decreases, we expect

a drop in quality). In most cases, we see a similar pattern: there is a clear

improvement in performance between J = 1 to around J = 50, but beyond

that the improvements level off. This confirms that averaging over partitions

improves performance, but suggests that in this setting, we need relatively few

samples to approximate the posterior. In Figure 6.6 we can visualize why this is
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Figure 6.4: Evaluation on synthetic data of the effect of the number of samples
J on the test set log likelihood of IGPS (with 95% confidence intervals), for
various values of B and K.
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Figure 6.5: Evaluation on synthetic data of the effect of the number of samples
J on the test set MSE of IGPS (with 95% confidence intervals), for various
values of B and K.
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the case if we compare the resulting covariance matrices in a product of expert

type approach like the RBCM with a mixture of expert approach like ours. We

note that BTGP also averages over partitions and, as our previous experiments

show, can achieve high quality predictions as a result; however the slow mixing

of the MCMC algorithm and the inability to distribute inference means we get

worse performance for the same computational effort, and precludes the use

of BTGP on large datasets.

The IGPS uses importance sampled weights to average over partitions;

in the minibatch setting these weights, and the samples themselves, are ob-

tained using a stochastic approximation. It is reasonable to question whether

either the calculation of importance weights, or the up-weighting of the like-

lihood to obtain a stochastic approximation, affect the performance – would

we do as well using uniform weights or avoiding the stochastic approximation?

As we see in Table 6.3 (which uses the same synthetic dataset as above, with

J = 10, K = 10 and B = 1000), using importance samples with reweighted

likelihood minibatches results in better predictive performance than either not

upweighting the minibatched likelihood or using uniform weights to combine

predictions.

A final difference from the RBCM is the choice of the distribution over

partitions that the IGPS is able to explore. The IGPS uses a distribution

based on covariate location, while the RBCM generates its single partition

uniformly. To evaluate the importance of this, we use the same synthetic

dataset to train two variants of the IGPS: one that uses a Gaussian mixture

144



Figure 6.6: Comparison of different covariance matrices for a latent function
with a long lengthscale (left) and a short lengthscale (right). “True Function”
is the latent function being modeled. “Dense” is the dense covariance matrix
Σ(X,X ′). “Averaged” is an importance averaging of several block diagonal
partitioned covariance matrices. “Partitioned” is one instance of a block diag-
onal covariance matrix.
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Table 6.3: Test set log likelihood and MSE for various weighting schemes.
Standard errors are in parentheses

Setting LL MSE

IS with SA -354.96 (28.59) 0.096 (0.003)
IS without SA -423.93 (41.24) 0.097 (0.002)
Unif. with SA -726.67 (14.19) 0.19 (0.019)
Unif. without SA -842.88 (9.82) 0.25 (0.337)

Table 6.4: Test set log likelihood and MSE for two different covariate parti-
tioning schemes. Standard errors are in parentheses.

Setting LL MSE

GMM -429.19 (41.57) 0.14 (0.01)
Random Clusters -789.37 (37.43) 0.53 (0.02)

model to partition data, and one which uses random partitions. As before, we

used J = 10, K = 10 and B = 1000. We can see in Table 6.4 that we indeed

perform better when we place structure in the input clustering as opposed to

purely random partitioning.

Next we wish to understand how our method behaves under different

parameter settings. Again, using the same synthetic data set, we examine the

behavior of our method when increasing J under different settings of K and

B. Figure 6.4 shows that the optimal settings for the best predictive perfor-

mance are when J and B are high while K is low, though we can still obtain

good results when these settings are relaxed to something less computationally

burdensome to run.
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6.3.2 Evaluation on Real Data

As seen in our experiments on synthetic data, the IGPS is applica-

ble to many different data regimes where other approximations may fail. Its

inherently parallelizable nature also makes it an appealing choice for larger,

real-world datasets where use of a full GP is computationally infeasible. To

evaluate performance in this “big data” regime, we used an empirical dataset

consisting of 209,631 mid-tropospheric CO2 measurements over space and time

from the Atmospheric Infrared Sounder (AIRS)4.

6.3.2.1 Sensitivity to Model Settings

Clearly, both the performance and the cost of inference of our model

will depend on the number of blocks K in our approximation, the number of

importance samples J , and the minibatch size B. On the one hand, inference

scales as O(JB3/K2), so we can speed up inference by decreasing J or B or by

increasing K. On the other hand, a smaller number of blocks will allow us to

better approximate a dense covariance matrix; a larger number of importance

samples helps us explore the full posterior; larger minibatches reduce the noise

in our estimators.

In order to pick values for K, J and B, we must understand how they

affect our overall estimates. We trained the IGPS using a range of values for

B, K and J , over 20 cross-validation splits. As expected, we find that as we

4Available in the R package FRK as AIRS 05 2003
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Figure 6.7: Evaluation on the AIRS dataset of the effect of B, K, and J on
the test set log likelihood of IGPS (with 95% confidence intervals).

increase K or decrease J and B our performance deteriorates. Figure 6.7 shows

that as the B and J increases, the average predictive log likelihood increases

and the variance of the log likelihood decreases, and that as K increases the

quality of our inference method degrades. However, looking at Figures 6.7 and

6.8, we see the deterioration in predictive likelihood and MSE is fairly gradual

for most values: we only see a dramatic degradation when we have both a

small minibatch size and a large number of partitions. This suggests that the
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Figure 6.8: Evaluation on the AIRS dataset of the effect of B, K, and J on
the test set MSE of IGPS (with 95% confidence intervals).
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practitioner can modify B, J and K within a wide range to achieve acceptable

computational costs without a dramatic drop in quality.

6.3.2.2 Comparison with Competing Methods

Figure 6.9: Comparison of IGPS and SVI on AIRS dataset for various K,
with J = 100 and B = 1000. SVI parameters chosen to have equivalent
computational cost.

Using the same CO2 dataset and squared exponential kernel as before,

we compare the IGPS with SVI – the only other method that would scale to

this dataset.5 For IGPS, we set J = 100 and B = 1000 and explored a range

of values of K; for SVI we chose values that gave a comparable level of compu-

tational complexity. We evaluated performance over 20 cross-validation splits.

Our importance sampling method provides for a richer predictive model due to

the averaging over importance proposals, and we see the benefit of this in our

results. As Figure 6.9 shows, the IGPS typically performs comparably to SVI

at equal levels of computational complexity in predictive performances using

5While RBCM is designed to scale to large data, we were unable to run the available
Python package gptf due to memory issues.
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Table 6.5: Test set log likelihood and AUC on three classification datasets.

Log Likelihood AUC
Data Full GP IGPS FITC Full GP IGPS FITC
Pima -128.79 -135.09 -128.61 0.83 0.81 0.83
Parkinsons -17.00 -22.76 -28.42 0.86 0.93 0.88
WDBC -15.50 -12.62 -18.01 0.83 0.91 0.81

both metrics until approximately 90 clusters, in which our method performs

notably worse due to the long range correlation present in this dataset.

6.3.2.3 Applications Beyond Regression

Finally, to highlight that our method is not limited to a specific GP

model, we apply our method on a binary classification task, using a Laplace

approximation with a squared exponential kernel. We compare with the full

GP [101] and the sparse GP [40] on three classification datasets from the UCI

repository: the Pima Indians diabetes dataset; the Parkinsons dataset; and

the Wisconsin diagnostic breast cancer (WDBC) dataset.6 As Table 6.5 shows,

the IGPS can approximate the full GP results very well, with comparable area

under the curve (AUC) scores and log likelihood to a full GP and a sparse

approximation.

6All empirical classification datasets are available in the UCI repository at
http://archive.ics.uci.edu/ml/.
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Figure 6.10: Binary classification task: label probabilities obtained using the
full GP and the IGPS.

6.4 Discussion

While Gaussian processes provide a flexible framework for a wide vari-

ety of modeling scenarios, their use has been limited in the “big data” regime,

since most implementations scale cubically with the number of data points. As

we saw in Section 4.1, while a number of approximations have been proposed

to reduce this cost, these approximations come with notable failure modes.

The IGPS avoids these pitfalls, using parallelizable importance sampling to

explore a mixture of block-diagonal, easily invertible matrices.

A potential avenue for future research is to explore whether we can

achieve further speed-ups by using GPU-based computation [16, 35, 33]. In

this paper, we have focused on regression models using a Gaussian mixture

model on the covariates, but the scope of the IGPS is much broader. For

example, we could use alternative distributions over partitions, or embed the
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IGPS within a more complex model–particularly in deep Gaussian process

models. We leave such explorations for future work.
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Chapter 7

Conclusion

Bayesian non-parametrics, while attractive on an intuitive level, still

faces difficult challenges especially under the regime of “big data” due to in-

ferential problems especially for MCMC methods. In contrast, something like

deep learning models are difficult to interpret; but because fitting deep learning

models is possible for complicated and large datasets, we have seen immense

interest in the continued research and use for such models. Hopefully, with

the advent of better inference, the Bayesian non-parametric community can

also enjoy the popularity and interest that the deep learning community has

earned itself. This dissertation has introduced four ideas that can help pro-

mote the use of Bayesian non-parametric modeling in the “big data” scenario.

As a future direction of research, Bayesian non-parametric models need to be

able to handle data with more complex likelihoods than the simple parametric

forms typically used in basic Bayesian models.

We have seen in Chapter 4 that, as a result of our novel method, we can

learn the features of simple black and white image datasets like the MNIST

or Yale face dataset where typical MCMC sampling will fail. Additionally,

through the method introduced in Chapter 6 means that we can learn non-
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stationary functions that, previously, we would have needed complicated ker-

nels to learn. Now, we can instead use a composite of simpler covariance

functions which may facilitate function learning when the latent function in

question does not behave as nicely as a typical RBF kernel does. Over the

long term, there will hopefully be sustained interest in developing such meth-

ods for learning deep Gaussian processes and fitting latent variable models to

data that can only be modeled with more complicated likelihoods, like color

images or video. Optimistically, the work presented in this dissertation can be

extended to accomplish this goal so that people in statistics and machine learn-

ing can use the theoretically appealing properties of Bayesian non-parametrics

in actual practice for more complicated problems than the settings for which

current inference methods have already been developed.
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