
 

 

 

 

 

 

 

 

 

Copyright 

by 

Tan Wang 

2014 

 

 



The Thesis Committee for Tan Wang 

Certifies that this is the approved version of the following thesis: 

 

 

Solving Dynamic Repositioning Problem for Bicycle Sharing Systems: 

Model, Heuristics, and Decomposition 

 

 

 

 

 

 

 

 

APPROVED BY 

SUPERVISING COMMITTEE: 

 

 

 

Chandra R. Bhat 

 

 

 

Stephen D. Boyles 

 

  

Supervisor: 



Solving Dynamic Repositioning Problem for Bicycle Sharing Systems: 

Model, Heuristics, and Decomposition 

 

by 

Tan Wang, B.E. 

 

 

Thesis 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Master of Science in Engineering 

 

 

The University of Texas at Austin 

December 2014 



 Dedication 

 

To my parents. 

 

 



 v 

Acknowledgements 

 

I would like to thank all the people who made this thesis possible. First of all, I 

would like to express my great appreciation to my supervisor, Dr. Chandra Bhat. His 

insightful guidance, strict training and substantial support inspired, ignited and excited me 

to move forward through my graduate study. Also, his expertise in and passion for the 

transportation field encouraged me to make a decision of going further on the way of 

research. Then I am especially grateful for Dr. Stephen Boyles, the second reader of my 

thesis, for his immediate feedback and useful suggestions on this thesis. He is always 

approachable to answer my questions. I learned quite a bit about how to make a better 

structure of papers from his valuable comments. 

I would like to thank Capital Bikeshare for sharing their system data online. 

I also would like to express my thanks to my dear friends for their help and 

encouragement, which is supportive enough when I was mired in the research process. 

Last but not least, I would like to offer my sincere thanks to my parents, who offered 

endless love and support to me. I so appreciate everything they have done for me.  

 

 

 

 



 vi 

Abstract 

 

Solving Dynamic Repositioning Problem for Bicycle Sharing Systems: 

Model, Heuristics, and Decomposition 

Tan Wang, M.S.E. 

The University of Texas at Austin, 2014 

 

Supervisor:  Chandra R. Bhat 

 

Bicycle sharing systems (BSS) have emerged as a powerful stimulus to non-

motorized travel, especially for short-distance trips. However, the imbalances in the 

distribution of bicycles in BSS are widely observed. It is thus necessary to reposition 

bicycles to reduce the unmet demand due to such imbalances as much as possible. This 

paper formulates a new mixed-integer linear programming model considering the dynamic 

nature of the demand to solve the repositioning problem, which is later validated by an 

illustrative example. Due to the NP-Hard nature of this problem, we seek for two heuristics 

(greedy algorithm and rolling horizon approach) and one exact solution method (Benders’ 

decomposition) to get an acceptable solution for problems with large instances within a 

reasonable computation time. We create four datasets based on real world data with 12, 24, 

36, and 48 stations respectively. Computational results show that our model and solution 

methods performed well. Finally, this paper gives some suggestions on extensions or 

modifications that might be added to our work in the future.  

    



 vii 

Table of Contents 

List of Tables ......................................................................................................... ix 

List of Figures ..........................................................................................................x 

CHAPTER 1 INTRODUCTION .............................................................................1 

1.1 Literature Review......................................................................................1 

1.2 Motivation .................................................................................................5 

1.3 Thesis Outline ...........................................................................................8 

CHAPTER 2 PROBLEM DEFINITION .................................................................9 

CHAPTER 3 MIXED-INTEGER LINEAR PROGRAMMING MODEL ...........11 

3.1 Notation...................................................................................................11 

3.2 Formulation .............................................................................................12 

CHAPTER 4 ILLUSTRATIVE EXAMPLE .........................................................15 

4.1 Input Data................................................................................................15 

4.2 Output Results .........................................................................................16 

CHAPTER 5 SOLUTION METHODS .................................................................20 

5.1 Greedy Algorithm ...................................................................................20 

5.2 Rolling Horizon Approach ......................................................................21 

5.3 Benders’ Decomposition .........................................................................22 

CHAPTER 6 NUMERICAL EXPERIMENTS .....................................................26 

6.1 Data Pre-treatment ..................................................................................26 

6.2 Computational Results ............................................................................27 

6.2.1 Using Greedy Algorithm.............................................................27 

6.2.2 Using Rolling Horizon Approach ...............................................29 

6.2.3 Using Benders’ Decomposition ..................................................32 

CHAPTER 7 CONCLUSIONS AND FUTURE RESEARCH .............................35 

7.1 Conclusions .............................................................................................35 

7.2 Future Research ......................................................................................36 



 viii 

REFERENCES ......................................................................................................39 



 ix 

List of Tables 

Table 1. Travel Time Matrix (in Seconds).............................................................15 

Table 2. Discretized Travel Time Matrix (Interval = 300s) ..................................15 

Table 3. Initial Inventory and Capacity of Stations ...............................................16 

Table 4. Demand Pattern at Each Time Period ......................................................16 

Table 5. Optimal Route and Number of Bikes Carried on Vehicle .......................17 

Table 6. Total Unmet Demand after Repositioning ...............................................18 

Table 7. Optimal Solution Using GA with T = 5 ...............................................27 

Table 8. Optimal Solution Using GA with T = 10 .............................................28 

Table 9. Optimal Solution Using RHA with 𝛿= 1 ................................................30 

Table 10. Optimal Solution Using RHA with 𝛿= 2 ..............................................30 

Table 11. Optimal Solution Using RHA with 𝛿= 3 ..............................................30 

Table 12. Optimal Solution Using RHA with 𝛿= 4 ..............................................31 

Table 13. Optimal Solution Using RHA with 𝛿= 5 ..............................................31 

Table 14. Optimal Solution Using Benders’ Decomposition ................................33 



 x 

List of Figures 

Figure 1. Trips to/from Columbus Circle/Union Station .........................................6 

Figure 2. Number of Full/Empty Instances in Capital Bikeshare System ...............7 

Figure 3. Inventory Level at Each Time Period (  = 900) ..................................19 

Figure 4. Inventory Level at Each Time Period (  = 100) ..................................19 

Figure 5. Rolling Horizon Approach .....................................................................21 

Figure 6. Comparison of Different 𝛿 ....................................................................32 

Figure 7. Comparison of Obj. Value ......................................................................34 

Figure 8. Comparison of Computation Time .........................................................34 
  

 



 1 

 

CHAPTER 1 INTRODUCTION 

 

1.1 LITERATURE REVIEW  

Climate change and the energy crisis have triggered a great amount of research on 

sustainable development in recent decades. The most widely used definition of sustainable 

development is from the World Commission on Environment and Development (WCED): 

Sustainable development is development that meets the needs of the present without 

compromising the ability of future generations to meet their own needs (see WCED, 1987). 

As an essential component of socio-economic activities, transportation systems also need 

to incorporate the concept of sustainability to best serve current and future users. 

Although there is no standard definition of transportation sustainability, Black et 

al. (2002) summarized the objectives and attributes of a sustainable transportation system 

based on literature reviewed. Most previous works focused on satisfying the requirements 

for a sustainable environment, such as minimizing fossil fuel depletion, greenhouse gas 

emissions, and noise pollution. However, the objectives of a sustainable transportation 

system involve more than environmental sustainability. Economic developments and 

socio-cultural issues should be also considered. Jeon and Amekudzi (2005) characterized 

the indicators and metrics of transportation sustainability, classifying them into four 

categories: transportation (including safety), economic, environmental, and socio-

cultural/equity. Litman (2007) also studied the indicators for transportation sustainability 

but placed more emphasis on the role of indicators in sustainable transportation planning, 

which is a feasible approach to realizing transportation sustainability. Black (2010) 

provided another set of indicators to consider in achieving a sustainable transportation 



 2 

system: pricing, policy, education, and technology. Pricing and taxation could be treated 

as a special policy to manage travel demand in a sustainable way. This approach has already 

resulted in great achievements in major cities like London and Singapore.  

The emerging field of Intelligent Transportation Systems (ITS) is growing in 

response to developments in telecommunications technology. While ITS concepts were 

first broached in the 1930s, ITS is only now in its product development period (see 

Figueiredo et al., 2001). The principal motivation for building ITS networks is to enhance 

traffic and safety management by creating communication pathways between vehicles and 

transportation infrastructures (see Dimitrakopoulos and Demestichas, 2010). 

Non-motorized travel modes, such as walking and cycling, contribute to a 

sustainable transportation system. Transportation researchers in recent years have 

encouraged these modes for their environmentally friendly nature. These modes can 

provide many benefits to users and the community at large by improving public fitness and 

health, providing a cost savings for consumers, and reducing traffic congestion, road and 

parking facility costs, total accident risk, energy consumption, and pollution emissions (see 

Litman, 2010). Recently, bicycle sharing systems (BSS) have emerged as a powerful 

stimulus to non-motorized travel, especially for short-distance trips. A survey shows that 

bicycle sharing has positive influence on reducing automobile and taxi usage, and 

increasing bicycling and walking (see Shaheen et at., 2013). 

BSS has passed through three generations and now is going into its fourth 

generation (see Shaheen et al., 2011). The first BSS was launched in Amsterdam in 1965 

with all fifty bicycles permanently unlocked, resulting in theft of and damage to the fleet. 

To improve this situation, the second generation of BSS, based on a coin-deposit system, 

first appeared in Copenhagen in 1995. However, there were still problems with theft and 

damage under the coin-deposit system because the users were anonymous. Incorporating 



 3 

advanced information technologies, the third generation BSS, known as the Vélo a la Carte 

System, appeared in Rennes, France in 1998 (see Midgley, 2011). The electronically 

locking and identification mechanism effectively avoid the problem that the second 

generation BSS had. This approach to a BSS met with great success and rapidly spread. 

This BSS is now established in over 165 cities around the world, such as the Vélib’ system 

in Paris, Capital Bikeshare in Washington D.C., and Hangzhou Public Bicycle. The three 

main components are bicycles, stations, and operating centers. Bicycles are made 

accessible to the public in specific docking stations, where users can pick up and return 

bicycles with a membership card. To encourage people to use the system, some BSS (such 

as Capital Bikeshare) use a pricing scheme that provides the first 30 minutes free. Realizing 

that a BSS is not only an independent system but a part of sustainable transportation 

system, researchers have begun to consider the connectivity of BSS to other travel modes, 

especially to existing public transit systems, which leads the way to the fourth generation 

of BSS. 

Lin and Yang (2011) addressed the design of the BSS and formulated the strategic 

planning problem as a non-linear mixed integer programming problem. Their approach 

becomes intractable when solving the real-world problem because of the nonlinearity and 

complexity of the formulation. Shu et al. (2010) also developed a deterministic linear 

programming model to support decision-making in the design and management of BSS. 

Vogel and Mattfeld (2011) used data mining to explore the activity patterns in BSS, 

noting the imbalances in the distribution of bicycles. For instance, users tend to pick up 

bicycles from stations located higher on a hill and return them in stations located downhill. 

As a result, no bicycles are available in hilltop stations and no vacant docks are available 

in stations downhill if the operators do not take action. Due to the imbalance of demand 

and supply at each station, the BSS operators need to redistribute the bicycles in order to 



 4 

optimize the system performance. In other words, redistribution (i.e., repositioning) is 

critical for the BSS to meet the demand for bicycles at the origin stations and vacant docks 

in the destination stations. Usually a fleet of trucks is used to transfer bicycles among 

stations during a specific time period. The problem of finding an optimal repositioning 

route and determining the number of bicycles to transfer while the demand for bicycles is 

negligible, e.g., in the evening, is referred to as a static repositioning problem (SRP); 

similarly, optimizing the redistribution route while the demand is high, e.g., during the day, 

is referred to as a dynamic repositioning problem (DRP). 

Many researchers have made great contributions to modeling and solving this 

particular SRP in recent years. One intuitive approach is to model it based on the well-

known Traveling Salesman Problem (TSP) (see Miller et al., 1960) with pickup and 

delivery (see Hernández-Pérez et al., 2004). Benchimol et al. (2011) adapted a 9.5-

approximation algorithm for C-delivery TSP (see Chalasani and Motwani, 1999) to solve 

their SRP model, whose objective is to achieve a given target bicycle inventory level for 

each station at the end of the repositioning action, allowing no deviations. However, the 

method used to determine the target was not clearly stated. Erdogan et al. (2012) relaxed 

the objective by allowing the target inventory level for each station to fall within a range. 

However, the criterion for determining the lower bounds and upper bounds was not 

specified. Raviv et al. (2013) extended the one-commodity pickup and delivery TSP for 

the SRP. One of the ingenious extensions is that they introduced a convex penalty function 

as a part of the objective function. The penalty function was suggested to represent the 

expected amount of shortages at a station. In order to calculate the expectation value, they 

modeled the dynamics of the bicycles inventory level as a continuous-time Markov chain—

more specifically, a non-homogenous Poisson process. Rainer-Harbach et al. (2013) 

presented a Variable Neighborhood Search metaheuristic with an embedded Variable 



 5 

Neighborhood Descent, for solving the BSS inventory distribution problem. However, they 

did not mention how the target number of available bikes after repositioning is determined. 

In response to the advancement made on the SRP, some researchers turned to the 

DRP. Contardo et al. (2012) used Dantzig-Wolfe decomposition (see Dantzig and Wolfe, 

1960) and Benders’ decomposition (see Benders, 1962) to solve the DRP, but the demand 

pattern they used was set by a formula that might not be realistic enough. Benarbia et al. 

(2013) introduced a new approach based on Petri nets with variable arc weights to model 

the DRP. However, this model was only tested by simulations, and its application to a real-

world BSS was not specified. Caggiani and Ottomanelli (2013) also provided a simulation 

model for DRP. Schuijbroek et al. (2013) proposed a new cluster-first route-second 

heuristic to solve DRP. One special feature in their model is the service level requirements 

at each station, which use the proportion of expected value of total satisfied demand and 

expected value of total demand. Nair et al. (2013) used a stochastic characterization of 

demand and a model developed in their prior work, in which they employed fleet-

management strategies to deal with DRP.  

1.2 MOTIVATION 

This paper is primarily concerned with dynamic repositioning since it directly 

balances the number of bicycles and vacant lockers in a BSS, especially during the peak 

hours. Note that the peak hours for a BSS might differ from that of motorized vehicles. 

Working with the trip history data of Capital Bikeshare System in Washington 

D.C., we observed a very high rate usage at some stations in certain months. For example, 

Figure 1 shows the number of trips to and from the Columbus Circle/Union station during 

the last 12 months. Nearly 7000 departures and 6700 arrivals occurred at this station during 

September 2013. 



 6 

 

 

 

 

(Source: http://cabidashboard.ddot.dc.gov/CaBiDashboard/) 

 

Figure 2 clearly reveals the serious imbalances in Capital Bikeshare’s inventory 

flow. Completely full or completely empty stations discourage users. A strategic static 

repositioning action at night may alleviate the imbalance only at the beginning of the next 

day, but will not address imbalances that arise during the peak daytime hours. Thus, for a 

high-usage BSS, a dynamic repositioning action in the daytime is also needed.  

Figure 1. Trips to/from Columbus Circle/Union Station  

http://cabidashboard.ddot.dc.gov/CaBiDashboard/


 7 

 

 

 

(Source: http://cabidashboard.ddot.dc.gov/CaBiDashboard/) 

 

Inspired by Raviv et al., we realized that a solvable and well-structured model for 

the DRP could be derived by adding time indices for variables and parameters in the SRP 

models. We will define the problem and explain the formulation in the next section in 

detail. We do not use the penalty function that Raviv et al. suggested as a continuous 

convex function in their time-index formulation. Instead, we chose to use the exact number 

Figure 2. Number of Full/Empty Instances in Capital Bikeshare System  

http://cabidashboard.ddot.dc.gov/CaBiDashboard/


 8 

of shortages based on the historic data during a given time period. Thus, we assume that 

the forecasting demand is the same as the real-world demand. 

By employing discretization of the time, we can formulate the DRP as an Integer 

Programming (IP) problem, which has been well studied and can be solved by many 

developed solvers, such as the CPLEX optimization software package. 

1.3 THESIS OUTLINE 

The rest of this thesis is structured as follows.  

Chapter 2 provides a formal definition of the essential problem in this thesis. 

Chapter 3 explains each component of our model, from notations to the 

interpretations of objective function and constraints. 

Chapter 4 validates the rationality of our model by solving an illustrative example. 

Chapter 5 presents three different solution methods for solving large instances 

problem efficiently. Two of them are heuristics-based, and the third is based on Benders’ 

decomposition. 

Chapter 6 describes the real-world data used in this thesis and shows computational 

results of using each solution method described in Chapter 5.  

Chapter 7 summarizes this thesis and discusses several future works that might be 

extended from this thesis. 

  



 9 

CHAPTER 2 PROBLEM DEFINITION 

 

Suppose we are given a complete digraph ( , ) , where the set of nodes 

{0,1, , }n   includes a depot indexed with 0 and all stations in the BSS. A 

repositioning vehicle travels from the depot to visit all stations and transport desired 

number of bicycles at each station. Each station is given a capacity (number of docks) and 

an inventory level (number of bicycles and thus number of vacant docks). Each arc 

( , )i j   is associated with a travel cost. We are also given the expected (forecasting) 

demand for bicycles and vacant docks at each station. We have two objectives for this 

problem. One is to decrease the total unmet demand for both vacant docks and bicycles as 

much as possible. The other is to minimize the total travel cost for the repositioning vehicle. 

We measure the unmet demand as the non-negative difference between the 

expected demand and the current inventory level for all stations. In this paper we do not 

assume the dynamics of demand as a specific stochastic process as some researchers 

did,since it would introduce a more complicated problem on estimating the parameters of 

such stochastic process. Notice that the quality of the demand forecast would affect the 

effectiveness of the repositioning decision. However, in our model (presented in Chapter 

3) the demand forecast is just a given input, so the quality of the demand forecast would 

not affect the performance of our model in terms of computational time. In other words, 

we are considering a repositioning problem in which the demand forecast is given. 

Computational time matters in our problem because the repositioning action might be 

needed for several times within a short timeframe in some busy BSS. In order to conduct 

the numerical experiments (described in Chapter 6), we assume that the demand forecast 

is the same as that in reality, which means the demand forecast is 100% accurate. To apply 



 10 

our model in real-world projects, an associated demand forecast model should be 

developed as well, which is not in the scope of this thesis. 

It is obvious that the repositioning problem involves with the well-studied vehicle 

routing problem. We need to determine the number of bicycles to load or unload at each 

station while finding an optimal repositioning route.  

Unlike the classic TSP we are allowing the repositioning vehicle to visit a station 

more than once. More visits on a station can decrease the unmet demand but increase the 

travel cost. This trade-off process might result in a better solution than imposing the 

constraint of number of visits at a station. 

Since we discretize time and all the variables in this problem are integers, we will 

present a new Integer Linear Programming (ILP) formulation under assumptions 

mentioned above. 

The input data for this problem is as follows.  

1) Initial inventory (number of bicycles) and capacity (total number of docks) of 

each station.  

2) Travel times between stations.  

3) Demand for both bicycles and vacant docks at each station in each time period. 

The output for this problem is a route for the repositioning vehicle during the whole 

action and number of bicycles to be loaded and unloaded at each station. 

 

  

  



 11 

CHAPTER 3 MIXED-INTEGER LINEAR PROGRAMMING MODEL 

3.1 NOTATION 

Sets 

 Set of stations with a depot indexed by 0. 

 Set of time periods. Let /M T      . 

Parameters 

0

is  Initial inventory level of station i. 

ic  Capacity of station i. 

  Time period length (interval). 

ijt   Travel time from station i to station j. 

ijm  Number of time periods from station i to station j. /ijij tm     . 

T Total repositioning time. 

,

P

i td   Demand for bicycles at station i during tth period. 

,

R

i td   Demand for vacant docks at station i during tth period. 

C Capacity of the repositioning vehicle. 

Decision Variables 

,ij tx   Binary, equal to 1 if the vehicle travels from station i to station j during tth period.  

,ij tn  Number of bicycles carried on the vehicle when traveling from station i to station 

j during tth period. 

,i ty   Number of bicycles loaded onto the vehicle at station i during tth period.  

,i tl   Number of unsatisfied docks at station i during tth period. 

,i tb  Number of unsatisfied bicycles at station i during tth period. 

,i ts   Number of bicycles at station i during tth period. 



 12 

 

3.2 FORMULATION 

The objective function is to minimize total travel cost and total unmet demand 

during the whole repositioning process. In this paper we just use travel time as a measure 

of travel cost. Since this problem includes multiple objectives, we need to introduce a 

weight   that indicates the importance of each objective. This weight also has a specific 

meaning, namely one additional unmet demand is equivalent to  seconds of additional 

travel time in this case.  

, , ,minimize ( )ij ij t i t i t

i j t i t

t x l b
    

    

First we consider the constraints which represent the balance of inventory level at 

each station during each period.  

, , 1 , , , , , ,,R P

i t i t i t i t i t i t i ts s y d d l b i t          

Note that we do not define time period 0, so it will cause an error when t = 1 for 

these constrains since we have a subscript of t-1. To avoid such problems, we can simply 

add another constraints 
0

,0 ,i is s i    or use if-then-else type conditional 

constraints when programming.  

Next we write constraints for unsatisfied demand for bicycles and docks 

respectively. By the definition of unsatisfied demand, it is quite straightforward to write as 

the form of , , , 1[ ]R

i t i t i i tl d c s 

   , , , , 1[ ]P

i t i t i tb d s 

  , where the notation max[ ] { ,: 0}x x 

. However, these equality constraints are nonlinear constraints, which would make our 

problem more intractable. Fortunately, this issue is easy to fix in the following way. 

, , , , 1, ,R P

i t i t i t i i tl d d c s i t         

, , , , 1, ,P R

i t i t i t i tb d d s i t        

, integers0, , ,i tl i t      



 13 

, integers0, , ,i tb i t     

 Since we are considering a minimizing problem, the above constraints can actually 

guarantee the number of unsatisfied lockers ,i tl  and unsatisfied bicycles ,i tb  take the 

right value in an optimal solution. 

 Like classic vehicle routing problem, we need constraints describing the movement 

of the repositioning vehicle.  The first rule is that it starts from the depot and returns at 

the end of reposition action. 

0 ,1 1j

j

x


  ,    
00, 1

jj M m

j

x 



  

 Then we have flow conservation condition, i.e. the repositioning vehicle can only 

leave from a node which it just entered. 

, , , , \{1, }
jiji t m ik t

j k

x x i t M

 

      

 Note that for some t, the subscript jit m  might be non-positive. To solve this 

problem, one way is to set those x’s equal to zero, but this requires more memory space to 

create a larger time index set . Another way is to add a condition for that subscript: 

 

, , , , \{1, } s.t. 0
jiji t m ik t ji

j k

x x i t M t m

 

        

 We suggest this modification because it not only avoids the problem when 

implementing in program but also reduces the number of constraints.  

 The repositioning vehicle can only appear on one particular link in a given time 

period.  

, 1,ij t

i j

x t
 

     

 Note that we assume , 0ij tx   if period t is not the first period when the 

repositioning vehicle moving from station i to j, otherwise the first part of our objective 



 14 

function cannot represent the total travel time. That’s why we use less than and equal to 

sign in these constraints.  

 We also should have a balance constraint on bicycles to insure there is no missing 

bicycle during the loading and unloading process.  

 

, , , , , \{1, } s.t. 0
jiji t m ik t i t ji

j k

n n y i t M t m

 

          

 The number of bicycles the repositioning vehicle can carry, ,ij tn  , cannot excess 

the vehicle capacity, and it should be zero when the repositioning vehicle is not traveling 

from station i to j at time period t. 

, , , , ,ij t ij tn C x i j t       

We need to avoid the situation that bicycles in some node are loaded or unloaded 

in a period even the node is not visited by the vehicle. 

, , , ,i t i ij t

j

y c x i t


      

, , , ,i t i ij t

j

y c x i t


       

At last, we need non-negativity and integrality constraints. 

, integers , ,i ty i t     

, integers0, , , ,ij tn i j t      

, integers0 , , ,i t is c i t       

, {0,1}, , ,ij tx i j t      

 

  



 15 

CHAPTER 4 ILLUSTRATIVE EXAMPLE 

 

In this chapter we use a simple example to illustrate our model, focusing only on 

the inputs and outputs of the model. For a large instance problem, it is intractable to solve 

directly even using a highly efficient solver. We will present several solution methods in 

the next chapter. 

4.1 INPUT DATA 

Table 1. Travel Time Matrix (in Seconds) 

Station 0 1 2 3 4 

0 0 600 900 600 900 

1 600 0 600 900 600 

2 600 900 0 300 600 

3 900 300 300 0 600 

4 600 900 600 600 0 

Table 1 gives travel times between 5 stations. Note that the depot is indexed by 0. 

Table 2. Discretized Travel Time Matrix (Interval = 300s) 

Station 0 1 2 3 4 

0 1 2 3 2 3 

1 2 1 2 3 2 

2 2 3 1 1 2 

3 3 1 1 1 2 

4 2 3 2 2 1 



 16 

Table 2 provides number of time periods between 5 stations. We set 1iim   to 

allow the repositioning vehicle to stay more than one time period on some stations if 

necessary. 

Table 3. Initial Inventory and Capacity of Stations 

Station Initial Inventory Capacity 

1 12 15 

2 12 18 

3 10 20 

4 9 15 

Table 3 gives the initial inventory and capacity of stations. We do not set constraints 

on the inventory level and capacity of the depot. 

Table 4. Demand Pattern at Each Time Period 

Station 1 2 3 4 

Demand (Bikes, Lockers) (6, 7) (5, 6) (9, 7) (5, 5) 

 

In this example, we assume that the demand pattern is time-homogenous, namely 

the demand for bicycles and vacant lockers keeps the same at each time period. See Table 

4. 

 We set the capacity of repositioning vehicle as 20. The total repositioning time is 

fixed to 2.5 hours (9000s). 

4.2 OUTPUT RESULTS 

We solved this problem using IBM-ILOG CPLEX 12.6 on an Intel Core i5 2.6 GHz 

with 8GB of RAM.  

 



 17 

Table 5. Optimal Route and Number of Bikes Carried on Vehicle 

Time Period   = 900  = 100 

Route Bikes Carried Route Bikes Carried 

1 (0, 3) 10 (0, 3) 11 

2     

3 (3, 1) 0 (3, 1) 0 

4 (1, 2) 11 (1, 1) 1 

5   (1, 2) 16 

6 (2, 2) 20   

7 (2, 2) 13 (2, 2) 17 

8 (2, 3) 20 (2, 2) 18 

9 (3, 3) 2 (2, 3) 20 

10 (3, 1) 0 (3, 2) 1 

11 (1, 4) 11 (2, 2) 19 

12   (2, 3) 20 

13 (4, 2) 5 (3, 3) 14 

14   (3, 3) 12 

15 (2, 3) 20 (3, 3) 20 

16 (3, 3) 8 (3, 3) 8 

17 (3, 3) 6 (3, 3) 20 

18 (3, 3) 4 (3, 3) 20 

19 (3, 3) 2 (3, 3) 2 

20 (3, 1) 0 (3, 1) 0 

21 (1, 0) 4 (1, 1) 1 

22   (1, 1) 2 

23 (0, 0) 4 (1, 1) 3 

24 (0, 0) 4 (1, 1) 4 

25 (0, 0) 4 (1, 1) 19 

26 (0, 0) 4 (1, 1) 20 

27 (0, 0) 4 (1, 0) 9 

28 (0, 0) 4   

29 (0, 0) 4 (0, 0) 9 

30 (0, 0) 4 (0, 0) 9 

 

 



 18 

Table 6. Total Unmet Demand after Repositioning 

Unmet Demand   = 900   = 100 

Bikes 0 0 

Lockers 1 3 

 

As we mentioned in the previous section,   measures the relative importance 

between unmet demand and travel time. A smaller  will force the repositioning vehicle 

to consider more on saving travel time. We can see from Table 5 that when   = 100 the 

repositioning vehicle chose to stay at station 3 from period 13-19 and stay at station 1 from 

period 21-26. As a result, the total unmet demand with a smaller   is greater because 

saving travel time is more important than minimizing the unmet demand. This could be 

seen in Table 6. 

Note that the demand for bicycles and lockers in station 4 is intentionally set to be 

self-balanced. It is natural for the repositioning vehicle to not consider visiting station 4; 

however, since it has a limited capacity, the repositioning vehicle has a nonzero probability 

of visiting station 4 to unload some bikes in order to increase the capability of carrying 

bicycles between station 1, 2, and 3. 

We also provide dynamic inventory level of each stations during the repositioning 

process. Please see Figure 3 (  = 900) and Figure 4 (  = 100). 



 19 

 

Figure 3. Inventory Level at Each Time Period (  = 900) 

 

 

Figure 4. Inventory Level at Each Time Period (  = 100) 

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0

N
U

M
N

ER
 O

F 
B

IK
ES

 IN
 S

TA
TI

O
N

TIME PERIOD

Station 1 Station 2 Station 3 Station 4

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0

N
U

M
B

ER
 O

F 
B

IK
ES

 IN
 S

TA
TI

O
N

TIME PERIOD

Station 1 Station 2 Station 3 Station 4



 20 

CHAPTER 5 SOLUTION METHODS 

 

Because of the NP-Hard (non-deterministic polynomial-time hard) nature of this 

problem, we need to seek more efficient methods to solve for larger instances problem. 

First we will provide two heuristics which are computational efficient and might provide a 

near-optimal solution: Greedy Algorithm and Rolling Horizon Approach. Then we will 

apply Benders’ Decomposition technique to solving this problem in an exact algorithmic 

framework. 

5.1 GREEDY ALGORITHM  

Greedy algorithm is one of the most commonly used heuristic in order to reduce 

the problem size. Usually the original problem is divided by time index into several stages 

or sub-problems. Greedy algorithm is just to find the locally optimal solution at each stage 

with the hope of finding globally optimal solution at the last stage. For example, in our 

problem applying greedy algorithm is to tell the repositioning vehicle to stay at the station 

where it currently is unless there will be a large unmet demand at some other station at next 

planning stage. We denote the length of planning stage as T  .  

We describe the process of greedy algorithm as follows. 

 

ALGORITHM 

Initialize t = 1. 

DO WHILE t M   

    Solve problem within time window [ ,  ]t t T   

    Fix all variables within time window [ ,  ]t t T  

    Let t = t+ T +1 



 21 

END DO 

 Although greedy algorithm greatly speeds up computations by solving multiple 

sub-problems with much smaller problem sizes, it can produce the optimal solution at last 

only if the original problem has optimal substructure. In many cases, problems do not have 

such structure and thus more sophisticated dynamic programming techniques are need to 

find the global optimal solution. Unfortunately, our problem belongs to the one which does 

not have optimal substructure. However, we still can apply greedy algorithm to get a 

heuristic solution, which could be an upper bound of our (minimizing) problem. 

5.2 ROLLING HORIZON APPROACH 

It is natural to apply rolling horizon approach for time index based problems. Like 

greedy algorithm, rolling horizon approach also divides the problem into several sub-

problems instead of solving the whole problem at once. Each time we only solve the sub-

problem within a planning horizon [ ,  ]t t T . The most significant difference between 

rolling horizon approach and greedy algorithm is that we only fix variables in a smaller 

time interval [ ,  ] [ ,  ]t t t t T    at each iteration. The next iteration should start at 

time period 1t   with a planning horizon length of T . We illustrate rolling horizon 

approach using the following figure. 

 

  

Figure 5. Rolling Horizon Approach  



 22 

We also describe the process of greedy algorithm as follows. 

 

ALGORITHM 

Initialize t = 1. 

DO WHILE t M   

    Solve problem within time window [ ,  ]t t T   

    Fix all variables within time window [ ,  ]t t   

    Let t = t+ +1 

END DO 

 Rolling horizon approach is also a heuristic for finding globally optimal solution 

with hope of achieving it through finding optimal solution of sub-problems successively. 

However, unlike greedy algorithm which fixes all variables decided in one sub-problem, 

rolling horizon approach relaxes some of decision variables in the current planning horizon, 

allowing them entering next planning horizon in order to get better objective value.  

5.3 BENDERS’ DECOMPOSITION 

Benders’ decomposition is a solution method for solving problems with a special 

block ladder structure. The following is an example of such block ladder structure. 

(OP)     minimize   T Tc x g y  

      

s.t.            

, 0

Ax b

Dx Fy d

x y



 



 

We often denote the second constraint as “complicating” constraint, because it 

involves with most (in this case, all) variables of the problem. For the rest constraint, it is 

natural to solve them separately for the associated part of objective function. For example, 

if we do not consider the complicating constraint, the only thing we need to do is to 

minimize objective function Tc x  over constraint ,  0Ax b x   because there’s no y 



 23 

variable in the constraint. Considering the fact that the complicating constraint cannot be 

ignored, Benders’ decomposition works as follows: it decomposes the original problem 

into a simple so-called master problem and a sub-problem similar to the original one but 

without complicating constraints, then it solves these two problems iteratively instead of 

solving the original problem with complicating constraints. 

We use the above example to illustrate how to construct master and sub-problem in 

Benders’ decomposition. 

First we assume we already know a feasible solution of variable x, denoted as x0. 

The feasibility indicates that 0 { | ,  0}x x Ax b x   . Then the original problem (OP) 

becomes (P1): 

0minimize     T Tc x g y    (P1) minimize     gT y  

      

0

0

0

s . t .             

, 0

Ax b

Dx Fy d

x y



 



             
0s . t .      

0

F y d D x

y

 


 

 We write the dual problem of (P1) as follows: 

      (DP)  0maximize     ( )Tu d Dx   

 
s.t.     

0

TF u g

u




 

 Note that we can think the optimal objective function value DPz  as a function of 

x, denoted as ( )DPz z x . Thus we can write OP as: 

(OP1)     minimize   ( )Tc x z x  

s.t.    

0

Ax b

x




 

 We call DP as the sub-problem in Benders’ decomposition. In most cases, the sub-

problem has much smaller problem size so that we can solve it directly within reasonable 

time. There are two possibilities that would arise when solving the sub-problem: 1) DP is 

unbounded above; 2) DP has an optimal solution.  



 24 

 In the first case, solving DP will return one of the extreme rays, denoted as *r , 

with the property that  

*

0( ) ( ) 0Tr d Dx   

 This results in  

( )z x   . 

 To avoid this situation in the master problem, we need to add a constraint in the 

master problem to cut off that specific x0 : 

*( ) ( ) 0Tr d Dx   

 In the second case, solving DP will return one of the extreme points, denoted as *u

, which satisfies 

*

0 0( ) ( ) ( )Tz x u d Dx   

 If we find that x0 is not optimal for the original problem (OP), we can cut off it by 

adding a constraint to the master problem: 

*( ) ( )Tz u d Dx   

  Now we can write our master problem as 

(MP)     minimize   Tc x z  

    
*

*

s . t .     

0

( ) ( ) 0

( ) ( )

T

T

A x b

x

r d D x

u d D x z





 

 

 

 The optimal solution of the master problem (MP) provides a lower bound of the 

original problem (OP), while a feasible solution x0 and y0 provide an upper bound of the 

OP, 0 0

T Tc x g y . If the difference between upper bound and lower bound is greater than a 

threshold, we update the feasible solution x0 with the optimal solution of MP, *x . Then 

add new constraints to the master problem based on this updated x0 by solving new 



 25 

associated sub-problem. We terminate this algorithm if the difference between upper bound 

and lower bound is small enough. 

 We describe Benders’ decomposition as follows. 

 

ALGORITHM 

Initialize UB = +∞, LB = ∞, 0 { | ,  0}x x Ax b x   . 

DO WHILE UB – LB > ε 

Solve sub-problem 

0maximize      ( )T

u
u d Dx  

s.t.     

0

TF u g

u




 

IF Unbounded THEN 

    Get extreme ray *r   

    Add constraint *( ) ( ) 0Tr d Dx   to master problem 

ELSE 

    Get extreme point *u   

    Add constraint *( ) ( )Tz u d Dx   to master problem 

    UB ← min {UB, *

0 0( ) ( )T Tc x u d Dx  } 

END IF 

Solve master problem 

,
minimize    T

x z
c x z  

*

*

s.t.    

0

( ) ( ) 0

( ) ( )

T

T

Ax b

x

r d Dx

u d Dx z





 

 

 

LB ← * *Tc x z , *

0x x  

END DO 

 

  



 26 

CHAPTER 6 NUMERICAL EXPERIMENTS 

 

6.1 DATA PRE-TREATMENT 

For this study, we used system data recorded on September 26, 2013, by Capital 

Bikeshare in Washington D.C., because of the highly active system behavior on that day 

(as was indicated in Figure 1). We fixed the total repositioning time to 2.5 hours (9000s), 

the same as in the illustrative example. Thus, we used only the data from 14:00 to 16:30 

on September 26th, 2013.  

 As of 2013, there were more than 150 stations in Capital Bikeshare system. To 

include all of these stations in our computation would not be wise, since not all of them 

necessarily need repositioning. First, some of them might be self-balanced like station 4 in 

illustrative example. Second, some of them might be located in a relatively rural area so 

that not too many people actually use them. Hence, we chose only stations that satisfy 

either of the following conditions:  

1) Total demand for bikes and lockers is greater than a threshold (10 in this paper) 

during repositioning time;  

2) Difference of demand for bikes and lockers is greater than a threshold (5 in this 

paper) during repositioning time.  

After filtering, we finally got 48 highly active stations. To better understanding how 

our solution methods work, we create four groups of data which includes 12, 24, 36, and 

48 stations respectively. 

 Based on the locations of those 48 stations, we calculate the Manhattan distance 

matrix. We then assume the average speed of the repositioning vehicle is 1 m/s so that we 

can get the travel time matrix.  

 The initial inventory levels are set to the real levels recorded in our dataset. 



 27 

 The capacity of the repositioning vehicle is set to 20 bicycles. 

 The location of the depot is not clarified through the website of Capital Bikeshare, 

so we just select an imaginary place as our depot. We do not set any constraint on the 

capacity and initial inventory level of the depot. 

 We no longer make change of the weight   in the objective function in order to 

focus on the efficiency of our computation. In this chapter, we set  =900. 

We apply greedy algorithm and rolling horizon approach using IBM-ILOG CPLEX 

12.6 on an Intel Core i5 2.6 GHz with 8GB of RAM. We upload our Benders’ 

decomposition program to a famous online server, NEOS, to solve our problem. 

6.2 COMPUTATIONAL RESULTS 

6.2.1 Using Greedy Algorithm 

 The only parameter we need to specify for applying greedy algorithm (GA) is the 

planning length T . In this paper, we set T = 5 and 10 respectively.  

 We present the computational results in the following tables. All of these problems 

achieve optimal solution in a short time. 

Table 7. Optimal Solution Using GA with T = 5 

Stations Obj. Value CPU Time (s) Travel Time (s) Unmet Demand 

12 13920 1.345 1320 14 

24 15828 4.043 1428 16 

36 29056 15.774 2956 29 

48 71189 33.194 2789 76 

 

 



 28 

Table 8. Optimal Solution Using GA with T = 10 

Stations Obj. Value CPU Time (s) Travel Time (s) Unmet Demand 

12 11029 10.269 2029 10 

24 18359 85.889 3059 17 

36 23097 331.417 3297 22 

48 55652 1407.38 4352 57 

 

 From Table 7 and Table 8 we can see that with the number of stations increasing, 

the optimal objective function value increases simply because larger network expects more 

travel time for the repositioning vehicle to reduce the unmet demand as much as possible.  

 Intuitively we would expect a longer planning length to return us a better solution 

in greedy algorithm, since a longer planning length considers more factors in the future; 

and thus it would be more likely to give a solution near to the global optimum. We can see 

that for the number of stations equal to 12, 36, and 48, the objective function values in 

Table 8 are smaller than those in Table 7. Recall that our objective function consists of two 

parts, total travel time for the repositioning vehicle and total number of unmet demand 

(bicycles and vacant lockers). We can see that in a longer planning algorithm, the 

repositioning vehicle takes more time to visit different stations transferring bicycles in 

order to meet the demand since the unmet demand has a high weight in the objective 

function. However, as we mentioned before, greedy algorithm after all is a heuristic which 

cannot guarantee anything. A short planning length no only means “shortsighted” but also 

means “flexible” since it fixes much less variables in each iteration. We can see that for 

the number of stations equal to 24, the objective function value in Table 7 is smaller than 

that in Table 8. It means fixing fewer variables in this case would yield better solution. 



 29 

 Computation time is extremely critical especially for those problems which need 

immediate responses or decisions. Our repositioning problem in this paper should be 

categorized into such problems, because we cannot take a very long computation time, say 

several hours, to make a decision for a 2.5-hour action. In practice, we would set a time 

limit (3600s or 7200s) to see the best solution that specific algorithm could find out. But in 

this problem, we are lucky to find the optimal solution within that time limit. Note that this 

“optimal” is under greedy algorithm, probably not the real global optimal solution. 

6.2.2 Using Rolling Horizon Approach 

 Except for the planning horizon length T , we also need to specify the fixing 

interval length 𝛿 . The planning horizon length T  determines the runtime for each 

iteration (roll), and the fixing interval length 𝛿  actually determines the number of 

iterations (rolls) until we find out the optimal solution. Based on the experiments on greedy 

algorithm, we could estimate the runtime before we actually use rolling horizon approach 

to solve our problems. For example, if we choose T = 10 and 𝛿 = 1, we would expect 

an approximately 10 times higher CPU time than that in Table 8, since the runtime for each 

iteration is the same, but this rolling horizon approach requires 30 iterations while greedy 

algorithm only needs 3 iterations. We notice that the CPU time for the problem whose 

number of stations is equal to 48 is 1407.38s; we could not bear a 10 times higher runtime 

so we decide to fix the planning horizon length T = 5 and change the fixing interval 

length from 1 to 5 to see which one would give us a better solution. 

 We present the results in the following tables. 

 

 

 



 30 

Table 9. Optimal Solution Using RHA with 𝛿= 1 

Stations Obj. Value CPU Time (s) Travel Time (s) Unmet Demand 

12 10859 4.802 1859 10 

24 13450 20.557 4450 10 

36 19239 58.814 4839 16 

48 56857 167.112 5557 57 

 

Table 10. Optimal Solution Using RHA with 𝛿= 2 

Stations Obj. Value CPU Time (s) Travel Time (s) Unmet Demand 

12 10320 2.429 1320 10 

24 16936 13.265 3436 15 

36 22036 30.151 4036 20 

48 59289 117.504 4389 61 

 

Table 11. Optimal Solution Using RHA with 𝛿= 3 

Stations Obj. Value CPU Time (s) Travel Time (s) Unmet Demand 

12 10320 2.11 1320 10 

24 17543 8.933 2243 17 

36 24795 22.989 4095 23 

48 58665 102.589 4665 60 

 

 



 31 

Table 12. Optimal Solution Using RHA with 𝛿= 4 

Stations Obj. Value CPU Time (s) Travel Time (s) Unmet Demand 

12 11220 1.508 1320 11 

24 19868 8.035 2768 19 

36 24360 27.646 3660 23 

48 61565 72.689 3965 64 

 

Table 13. Optimal Solution Using RHA with 𝛿= 5 

Stations Obj. Value CPU Time (s) Travel Time (s) Unmet Demand 

12 13920 1.297 1320 14 

24 15828 4.015 1428 16 

36 29056 16.854 2956 29 

48 71189 32.403 2789 76 

 

 Note that Table 13 should be the same as Table 7 except for the CPU time. We do 

not see an obvious relationship between the length of fixing interval given a fixed planning 

horizon length and the quality of solution. We present the results in the following figure to 

see the relationship more clearly. 



 32 

 

Figure 6. Comparison of Different 𝛿   

 From Figure 6 we can see that the best fixing interval length varies for different 

number of stations. For number of stations equal to 12, 𝛿=2 or 3 gives best solution; for 

number of stations equal to 24, 𝛿=1 gives best solution; for number of stations equal to 

36, 𝛿=1 gives best solution; for number of stations equal to 48, 𝛿=1 gives best solution. 

Note that the trends of the objective function value are also different. It is an interesting 

topic to look into solutions given by heuristics. 

6.2.3 Using Benders’ Decomposition 

 The sub-problem in Benders’ decomposition is usually easy to solve, in terms of 

computation time. The purpose of solving sub-problem is to find a feasible solution which 

is not optimal so that we could cut it off in the master problem. It means that we actually 

keep adding constraints into the master problem until we find the optimal solution. This 

shows that we could solve the master problem very quickly at first, but when the number 

of constraints increases, solving master problem becomes slow.  

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5

O
B

JE
C

TI
V

E 
V

A
LU

E

FIXING INTERVAL LENGTH

N=12

N=24

N=36

N=48



 33 

 Taking the property of Benders’ decomposition mentioned above into 

consideration, we decide to use a famous online server, NEOS, to run our computer 

program. We use AMPL input and Gurobi MILP solver provided on NEOS website. We 

set the time limit to 7200s in our program to see the best integer solution can be found 

within that time limit. 

 We present the results in the following table. 

 Table 14. Optimal Solution Using Benders’ Decomposition 

Stations Obj. Value CPU Time (s) Travel Time (s) Unmet Demand Cuts 

12 3412 198.956 2512 1 26 

24 9074 7200* 4574 5 170 

36 15473 7200* 4673 12 133 

48 75388 7200* 3388 80 107 

 Note that the problem with number of stations equal to 12 reaches optimality in 

198.956s. We can see that the optimal objective function value obtained by Benders’ 

decomposition is much lower than the above two heuristics, greedy algorithm and rolling 

horizon approach. But it should be noticed that the computation time required by Benders’ 

decomposition is also much longer than those two heuristics. Problems with number of 

stations equal to 24, 36, and 48 do not converge to optimality within the 7200s time limit. 

However, it still returns us a better solution compared with greedy algorithm and rolling 

horizon approach for problems with number of stations equal to 24 and 36. We think 

whether to use our heuristics or Benders’ decomposition depends on whether the decision-

maker needs to react in a very short time. For example, if a BSS needs to take repositioning 

action for several times in a single day, one might need to solve the repositioning problem 

for several times expecting getting a good solution very quickly. In this case, we would 



 34 

suggest use the heuristics. Otherwise, Benders’ decomposition would be much helpful to 

reduce the operating cost and economic loss due to the imbalances occurred in BSS. 

 We compare our three solution methods in terms of solution quality and 

computation time in the following figures. 

 

 

Figure 7. Comparison of Obj. Value  

 

Figure 8. Comparison of Computation Time  

1
1

0
2

9

1
5

8
2

8

2
3

0
9

7

5
5

6
5

2

1
0

3
2

0

1
3

4
5

0

1
9

2
3

9

5
6

8
5

7

3
4

1
2

9
0

7
4

1
5

4
7

3

7
5

3
8

8

1 2 2 4 3 6 4 8

O
B

JE
C

TI
V

E
V

A
LU

E

NUMBER OF STATIONS

GA RHA BD

1
.3

4
5

4
.0

4
3

1
5

.7
7

4

3
3

.1
9

4

1
.5

0
8

8
.0

3
5

2
7

.6
4

6 7
2

.6
8

9

1
9

8
.9

5
6

1 2 2 4 3 6 4 8

C
P

U
 T

IM
E 

(S
)

NUMBER OF STATIONS

GA RHA BD



 35 

CHAPTER 7 CONCLUSIONS AND FUTURE RESEARCH 

 

7.1 CONCLUSIONS 

This thesis provides a new mixed-integer linear programming model for the 

dynamic repositioning problem, which is motivated by the need to balance the inventory 

in response to demand and supply at the more popular stations in a bicycle sharing system 

(BSS). Unlike with static repositioning problems, addressing BSS demand presents a 

dynamic problem. Solving this dynamic repositioning problem requires us to use time-

indexed variables, which greatly increases the problem size and hence increases the 

difficulty of solving. The ideal solution would minimize the total travel time for the 

repositioning vehicle and the total unmet demand with a pre-specified weight that indicates 

the relative importance of reducing the number of unused bicycles and vacant lockers. Due 

to the NP-Hard nature of this problem, we cannot expect to solve the formulated problem 

directly even if we use high-performance solvers. We thus provide three different solution 

methods—greedy algorithm, rolling horizon approach, and Benders’ decomposition—to 

handle this problem. The first two methods are especially useful heuristics for reducing the 

size of problems that contain many time-indexed variables. However, these heuristics 

cannot guarantee a global optimal solution due to the formulation structure. The third 

method, although requiring more computation time, can converge to optimality or yield 

better solutions as compared with the first two heuristic methods. In summary, the major 

contribution of this thesis is we formulate a dynamic repositioning model and provide 

corresponding solution approaches to make a decision of which route the repositioning 

vehicle should choose and how many bicycles should be transported between stations, 

given any forecasting demand.  



 36 

The selection of either an exact algorithm or heuristics to solve this problem is 

somewhat problematic. In practice, we cannot always devote the resources to finding the 

optimal solution. If a heuristic can yield a good near-optimal solution within a very short 

time, it is not necessary to seek an exact algorithm to find the “best” solution, particularly 

when that algorithm requires costly computation time. However, when the optimal solution 

is required, applying an exact algorithm is clearly the right choice. For instance, when a 

minor decrease in the objective function would prevent a great loss in a system, we should 

seek an exact algorithm. 

The dataset used in this study comes from the website of Capital Bikeshare in 

Washington D.C. After analyzing the complete data set, we ultimately identified 48 stations 

that would suffer potentially serious inventory imbalances. We then chose a subset of these 

48 stations to create three smaller problems of 12, 24, and 36 stations. In earlier chapters 

we detailed the decision variables for our illustrative example used to validate our model. 

7.2 FUTURE RESEARCH 

 There is still a long way to go to solve this problem perfectly.  

First, some extensions could be added to our model. In our model, we assume a 

BSS has only one repositioning vehicle. A large BSS might have several repositioning 

vehicles. To formulate this modification, we just need to add to our variables a subscript 

that indicates a specific repositioning vehicle. Additional logical constraints might be 

added as well, such as the maximal times visited by each vehicle for each station. 

Since the forecasting demand is an important parameter (input) in our formulation, 

its accuracy has a critical impact on the successful implementation of the dynamic 

repositioning action. In this thesis we do not use any model to do the actual forecasting 

work. Instead, we just chose the recorded historic data as our “forecasting” demand. There 



 37 

are several ways to modify this. Schuijbroek et al. (2013) modeled the stochastic demand 

by viewing the inventory at each station as an M/M/1/K queuing system with finite capacity 

and derive closed-form service level requirements on the transient distribution of the 

availability of bicycles and lockers. Nair et al. (2013) modeled the dynamic demand as a 

stochastic variable with some pre-assumed distribution, which is probabilistically 

characterized based on historical information. Vogel and Mattfeld (2011) used data mining 

techniques, such as time series analysis and cluster analysis, to forecast the demand in a 

BSS.  

We have already discussed the slow convergence property of Bender’s 

decomposition; hence, it is a good idea to seek improvement of that aspect, i.e. accelerating 

Benders’ decomposition. Magnanti and Wong (1981) studied how to add the optimality 

cuts in a Benders’ decomposition algorithm and proved that using stronger cuts can greatly 

reduce the number of iterations and hence has an important impact on the speed of 

convergence. Their idea is to make use of multiple optimal solutions obtained from the 

sub-problem in the previous iterations to get better cuts, an approach based on the solution 

of another problem similar to the sub-problem. Papadakos (2008) enhanced this method by 

introducing an alternative problem that is independent of the sub-problem. However, this 

method involves a sometimes intractable master problem core point. Rei et al. (2009) used 

local branching to simultaneously improve the upper and lower bounds obtained 

throughout the solution process. The main idea is to explore the neighborhood of the 

solution obtained from the master problem in order to find different feasible solutions. 

Costa et al. (2012) presented a general scheme for generating extra cuts that are based on 

the master problem solutions obtained by a heuristic during the process of Benders’ 

decomposition.  



 38 

To the author’s knowledge, our model is one of the most basic optimization-based 

models for solving dynamic repositioning problems, and the solution of our formulation 

might be useful as a benchmark. 

  



 39 

REFERENCES 

 

Benarbia, T., Labadi, K., Omari, A., & Barbot, J. P. (2013, May). Balancing dynamic bike-

sharing systems: A Petri nets with variable arc weights based approach. In Control, 

Decision and Information Technologies (CoDIT), 2013 International Conference 

on (pp. 112-117). IEEE. 

Benchimol, M., Benchimol, P., Chappert, B., De La Taille, A., Laroche, F., Meunier, F., 

& Robinet, L. (2011). Balancing the stations of a self service “bike hire” 

system. RAIRO-Operations Research, 45(01), 37-61. 

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming 

problems. Numerische mathematik, 4(1), 238-252.  

Black, J. A., Paez, A., & Suthanaya, P. A. (2002). Sustainable urban transportation: 

performance indicators and some analytical approaches. Journal of urban planning 

and development, 128(4), 184-209. 

Black, W. R. (2010). Sustainable Transportation: Problems and Solutions: Guilford Press. 

Burton, I. (1987). Report on Reports: Our Common Future: The World Commission on 

Environment and Development. Environment: Science and Policy for Sustainable 

Development, 29(5), 25-29. 

Caggiani, L., & Ottomanelli, M. (2013). A Dynamic Simulation based Model for Optimal 

Fleet Repositioning in Bike-sharing Systems. Procedia-Social and Behavioral 

Sciences, 87, 203-210. 

Chalasani, P., & Motwani, R. (1999). Approximating capacitated routing and delivery 

problems. SIAM Journal on Computing, 28(6), 2133-2149.  



 40 

Contardo, C., Morency, C., & Rousseau, L. M. (2012). Balancing a dynamic public bike-

sharing system (Vol. 4). CIRRELT. 

Costa, A. M., Cordeau, J. F., Gendron, B., & Laporte, G. (2012). Accelerating benders 

decomposition with heuristicmaster problem solutions. Pesquisa Operacional, 32(1), 

03-20. 

Czyzyk, J., Mesnier, M. P., & Moré, J. J. (1998). The NEOS server. Computing in Science 

and Engin 

Dantzig, G. B., & Wolfe, P. (1960). Decomposition principle for linear programs. 

Operations research, 8(1), 101-111. 

Dimitrakopoulos, G., & Demestichas, P. (2010). Intelligent transportation 

systems. Vehicular Technology Magazine, IEEE, 5(1), 77-84. 

Dolan, E. D. (2001). NEOS Server 4.0 administrative guide. arXiv preprint cs/0107034. 

Erdoğan, G., Laporte, G., & Calvo, R. W. (2012). The One-Commodity Pickup and 

Delivery Traveling Salesman Problem with Demand Intervals. Working paper. 

Figueiredo, L., Jesus, I., Machado, J. T., Ferreira, J., & de Carvalho, J. M. (2001, August). 

Towards the development of intelligent transportation systems. In Intelligent 

Transportation Systems (Vol. 88, pp. 1206-1211). 

Gropp, W., & Moré, J. (1997). Optimization environments and the NEOS 

server. Approximation theory and optimization, 167-182. 

Hernández-Pérez, H., & Salazar-González, J. J. (2004). A branch-and-cut algorithm for a 

traveling salesman problem with pickup and delivery. Discrete Applied 

Mathematics, 145(1), 126-139. 

Mihyeon Jeon, C., & Amekudzi, A. (2005). Addressing sustainability in transportation 

systems: definitions, indicators, and metrics. Journal of Infrastructure Systems, 11(1), 

31-50. 



 41 

Lin, J. R., & Yang, T. H. (2011). Strategic design of public bicycle sharing systems with 

service level constraints. Transportation research part E: logistics and transportation 

review, 47(2), 284-294. 

Litman, T. (2004). Quantifying the benefits of nonmotorized transportation for achieving 

mobility management objectives. Victoria, BC: Victoria Transport Policy Institute. 

Litman, T. (2007). Developing indicators for comprehensive and sustainable transport 

planning. Transportation Research Record: Journal of the Transportation Research 

Board, 2017(1), 10-15. 

Magnanti, T. L., & Wong, R. T. (1981). Accelerating Benders decomposition: Algorithmic 

enhancement and model selection criteria. Operations Research,29(3), 464-484. 

Midgley, P. (2011). Bicycle-sharing schemes: Enhancing sustainable mobility in urban 

areas. United Nations, Department of Economic and Social Affairs. 

Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of 

traveling salesman problems. Journal of the ACM (JACM), 7(4), 326-329. 

Nair, R., Miller-Hooks, E., Hampshire, R. C., & Bušić, A. (2013). Large-Scale Vehicle 

Sharing Systems: Analysis of Vélib'. International Journal of Sustainable 

Transportation, 7(1), 85-106. 

Papadakos, N. (2008). Practical enhancements to the Magnanti–Wong method. Operations 

Research Letters, 36(4), 444-449. 

Rainer-Harbach, M., Papazek, P., Hu, B., & Raidl, G. R. (2013). Balancing bicycle sharing 

systems: A variable neighborhood search approach (pp. 121-132). Springer Berlin 

Heidelberg. 

Raviv, T., Tzur, M., & Forma, I. A. (2013). Static repositioning in a bike-sharing system: 

models and solution approaches. EURO Journal on Transportation and 

Logistics, 2(3), 187-229. 



 42 

Rei, W., Cordeau, J. F., Gendreau, M., & Soriano, P. (2009). Accelerating Benders 

decomposition by local branching. INFORMS Journal on Computing, 21(2), 333-345. 

Schuijbroek, J., Hampshire, R., & van Hoeve, W. J. (2013). Inventory rebalancing and 

vehicle routing in bike sharing systems. 

Shaheen, S., & Guzman, S. (2011). Worldwide bikesharing. ACCESS Magazine, 1(39). 

Shaheen, S. A., Martin, E. W., & Cohen, A. P. (2013). Public Bikesharing and Modal Shift 

Behavior: A Comparative Study of Early Bikesharing Systems in North America. 

Shu, J., Chou, M., Liu, Q., Teo, C. P., & Wang, I. L. (2010). Bicycle-sharing system: 

deployment, utilization and the value of re-distribution. National University of 

Singapore-NUS Business School, Singapore. 

Vogel, P., Greiser, T., & Mattfeld, D. C. (2011). Understanding bike-sharing systems using 

data mining: exploring activity patterns. Procedia-Social and Behavioral Sciences, 20, 

514-523. 

 

 

 

 

 


