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Abstract

Knot theory, as traditionally studied, asks whether or not a loop of string
is knotted. That is, can we deform the loop in question into a circle without
cutting or breaking it. In this thesis, I take a less traditional approach, studying
networks of points connected together by string (i.e. a graph) instead of loops.
By tracing different paths through this network we can identify many loops (i.e.
cycles) in the network, each of which may or may not be knotted. Perhaps sur-
prisingly, there will always be some knotted loop in a sufficiently complicated
network. Such “sufficiently complicated” networks are called intrinsically knot-
ted graphs. Very complicated graphs are always intrinsically knotted, and very
simple graphs are always not, but graphs in between may be harder to iden-
tify. In this thesis, I present a method to reduce the question “Is the graph G
intrinsically knotted?” to a linear algebra problem mod 2. Using this method
I present a computer program that systematizes intrinsic knotting proofs and
subsumes previous proof techniques. This program may lead to a conjecture for
the intrinsic knotting obstruction set.



Contents

Preface iv

Acknowledgments vi

1 Introduction 1
1.1 Abstract Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Planar Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Links and Knots . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Linked and Knotted Graphs . . . . . . . . . . . . . . . . . . 5
1.5 Progress on this and related problems . . . . . . . . . . . . 7
1.6 Endnote 1 on a graph A “containing” a graph B . . . . . . 8
1.7 Endnote 2 on checking whether a diagram is linked . . . . 8

2 Background 10
2.1 Knot Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Knotted Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Linear Algebra (mod 2) and the Edge Space . . . . . . . . . 42

3 When is a Graph Intrinsically Knotted? 54
3.1 The Linking Number (mod 2) is Bilinear . . . . . . . . . . . 57
3.2 Crossing Moves are Symmetric Bilinear Forms . . . . . . . 59
3.3 Reduction to Linear Algebra . . . . . . . . . . . . . . . . . . 66
3.4 A Program for Intrinsically Linked Graphs . . . . . . . . . 68

A Open Questions 69

iii



Preface

About a year ago, I went up to professor Cameron Gordon after class
with an objection: “K9 − C9 might actually be intrinsically knotted.” It
was the end of the semester and we had just begun studying intrinsically
knotted graphs in Dr. Gordon’s undergraduate knot theory class. As
a class we were trying to show that there were no new minor-minimal
intrinsically knotted graphs on 9 vertices, following (so and so and so)
who had cleaned out the 8 vertex case. Dr. Gordon would start listing
graphs on the board and we would go through and make arguments
for why they had to be intrinsically knotted, or not. When I tried to
reproduce the hasty argument that K9 −C9 was not intrinsically knotted,
I hit a snag. It’s actually intrinsically knotted. Dr. Gordon, George Todd
and myself proved this fact by exploding the problem into 81 different
cases. The proof was rather nasty, and very tedious to produce and check.
It had 81 different involved cases. What do you expect?

But it gets worse. We found out K9 − C9 isn’t even minor minimal.
Using the same proof techniques, we were looking at even more cases
(more than 81) to prove that any proper minor was intrinsically knotted.
This was not going to work. I became convinced that we had to system-
atize the proof process, discover some essential properties, algebraicize
the problem (if that’s even a word).

The principal aim of this thesis is to demonstrate how to reduce the
problem of proving “G is intrinsically knotted” to a tractable linear al-
gebra computation over Z2. As such, actually proving that any specific
graph G is intrinsically knotted “lies beyond the scope of this thesis.”
Ok, so the real scoop is that my computer program is too slow right now.
It’s the end of the semester and I had to write something for my thesis.
I should have some specific intrinsic knotting results once I get past a
few algorithmic and coding issues. However, the mathematical tools
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PREFACE v

constructed in this thesis should (hopefully) be of more interest going
forward. For instance, a good number of the proposed open questions
at the end of the thesis aim to sidestep the computer program entirely.
Alright, I’m done making excuses now.

Audience and Structure of the Document

The introduction of this thesis should be accessible to most people with a
college level education. The rest of the thesis should be sufficiently self-
contained for a mathematics undergraduate to follow in its entirety. That
said, if you’re really shaky on linear algebra, or first order predicate logic,
you might find the main chapter a bit turbulent.

Mathematicians (professional, graduate, and cocky sonovabitch) may
be tempted to skip the background entirely. Ehhh. . . maybe a bad idea.
You might want to skim it slower than a page a second. Everything’s
pretty basic, but there’s a very high probability that you haven’t seen a
good fraction of it before. Some highlights include:

• computing/defining the linking number mod 2 via overcrossing
number

• edge disjoint vs. vertex disjoint cycles

• Foisy’s proof that K3,3,1,1 is intrinsically knotted

• representing a vector space mod 2 using a powerset algebra

All of the material in the background was previously known, and
has been cited there as seems appropriate. All of the results in the main
chapter are new.
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Chapter 1

Introduction

The following introduction is written for an educated layperson1 who
may not have taken any proof-based mathematics in college, but is will-
ing to learn and not math-phobic. If you already know what’s up... well,
then you know what’s up. Skip ahead.

My aim is to explain all of the terms and significance of the following
diagram:

Ultimately, I will introduce the questions “When is a graph G planar?
linked? knotted?”

I will begin by introducing abstract graphs, and then examine the rel-
atively simple question “when is a graph planar?” From there we will
discuss mathematical knots and links. Finally, I will show how the study
of linked and knotted graphs mimics the study of planar graphs.

1.1 Abstract Graphs
Combinatorics studies the way we put together and construct things, ab-
stractly. A graph is one sort of combinatorial object, composed out of
points (aka. nodes or vertices) connected together by edges. Here is a
picture of a graph:

Picture here: A graph

However, a graph doesn’t have to have a picture. Suppose we wanted
to make a graph representing “friends” on Facebook.

1whoever that is

1



CHAPTER 1. INTRODUCTION 2

The Facebook Friend Graph:
Let every user on Facebook be a node. Then “draw” an edge
between every pair of friends.

Here are some other examples of graphs:

• Internet Servers and connections between them

• Airports and flights

• Cities and roads

Biologists, particularly epidemiologists have begun using graphs under
the name of (contact) network theory.

Two very important “families” of graphs that we will refer back to are
the complete and complete, bipartite graphs.

Picture here: Complete Graph family

The complete graph on n vertices, denoted Kn, is a graph with n ver-
tices and all possible edges connecting those n vertices.

Picture here: Complete Bipartite Graph family

The complete bipartite graph on n and m vertices, denoted Kn,m is
a graph with n + m vertices, in two groups (n “boxes” and m “circles”)
and all edges connecting two members of different groups. (Note that
Kn,m = Km,n since circles/boxes are arbitrary)

Although graphs have been studied since (at least) Euler’s famous
Königsburg bridge problem, they have only found widespread applica-
tions in the last 50–60 years, largely thanks to prosthelytization by com-
puter scientists.

1.2 Planar Graphs
Now, we’ll look at graphs topologically.

Topology studies the way things are connected. It is often contrasted
with geometry, earning the monicker “rubber sheet geometry.” In geom-
etry we can rotate and translate our objects without changing them. In
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topology we can go further, bending, stretching, and squishing our ob-
jects. However, we are never allowed to cut, break or smash them. Thus
a square, triangle, and a circle are all the “same” topological object, even
though they are geometrically distinct.

One simple, topological question we can ask about graphs is

Can we draw a graph G, in the plane, such that no two edges
ever cross?

If we can, we call the graph G planar, and if not, we call it non-planar.
Clearly, the graph K3 (picture) is planar. Perhaps less obviously, K4 and
K2,3 are both planar too.

Picture here:

Notice that K4 is planar because there is some planar drawing. It is a
much harder matter to prove that a graph is non-planar.

Theorem 1.2.1. The graphs K5 and K3,3 are non-planar.

Although we will not prove this theorem, you can convince yourself
that it is plausible by trying to draw planar diagrams of K5 and K3,3. For
instance,

Picture here: non-planar K5 and K3,3

In 1930, the Polish mathematician Kazimierz Kuratowski showed,
rather surprisingly, that these two graphs (K5 and K3,3) completely char-
acterize the planarity/non-planarity property in the following way:

Theorem 1.2.2 (Kuratowski’s Theorem). A graph G is non-planar if and
only if it “contains” K5 or K3,3

In order to precisely understand the statement that a graph B contains
a graph A, one must meditate on the topic for a while(ENDNOTE). For
present purposes it suffices to get the flavor of the concept. We write
A ≤ B to mean A is “contained” in B, and draw the following conceptual
diagrams:

Picture here: lattice-y picture
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Thus, Kuratowski’s theorem is visualized as

Picture here: Kuratowski’s as minima

What’s so significant about Kuratowski’s theorem? We are deriving
an “intrinsic” property of abstract graphs based on how we can “realize”
them topologically. For example, the facebook graph is (almost certainly)
non-planar, independently of our choice to try and draw it.

1.3 Links and Knots
Colloquially, we think of a knot as a tied piece of string. For example,

Picture here: untied knot

However, mathematically, we require that the string forms a closed
loop. This way we can’t untie the knot without breaking the string.

Picture here: trefoil

Because knots are topological objects we can bend and twist them as
we please. By pulling the bottom strand of the trefoil up and over, we get
a very different diagram.

Picture here: trefoil to the other trefoil pic

This new diagram is also the trefoil. Here are two other knots:

Picture here: other knots

Sometimes we can have very complicated pictures of very simple
knots. Here is a nasty picture of the unknot:

Picture here: nasty unknot

Therefore, the most natural question in knot theory is ”when are two
knot diagrams actually diagrams of the same knot?” or even more sim-
ply, ”when is a knot actually knotted?” (i.e. not the unknot) This simpler
question is called the unknotting problem. For the time being, we will
skip over both these questions.

Once you know what a knot is, links are fairly straightforward. Some-
times a diagram will use more than one piece of string.
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Picture here: link

In such a case, we call the depicted object a link. When k loops are
used, we call the object a k-component link. For instance, here is the
unlink (aka. the “trivial” link) on k components. Given a 2-component
link, we say that the two components, that is the two loops, the two cycles
are linked if we cannot disentangle them into two disjoint knots. For
instance,

Picture here: unlinked vs. non-trivial link (two trefoils)

the two cycles of the Hopf link are linked, whereas the two trefoils are
not2,3. It is relatively simple to check whether two components of a dia-
gram are linked(ENDNOTE), although we will avoid that digression.

Instead, we will look at a different perspective on what a knot or link
is. We have been thinking of a knot as an object in 3-dimensional space.
However, all of these different objects, these different knots, are the same
in another sense. They are all circles/loops/cycles.

Taking this perspective, we can think of every knot as some embed-
ding of “the” (canonical) circle/loop/cycle into space.

Picture here: knots as embeddings

Similarly, we can think of every 2-component link as some embed-
ding of two canonical circles/loops/cycles into space.

Picture here: links as embeddings

1.4 Linked and Knotted Graphs
Besides embedding circles (knots) or pairs of circles (links) into space, we
can also embed graphs! For instance, we couldn’t “embed” K5 into the
plane, but there’s plenty of space in 3D.

2I was tempted to write knot, but once you’ve been in the knot theory business long
enough you realize that knot puns are really knot that funny.

3Note that the two trefoils are not equivalent to the 2-component unlink. That is,
not all unlinked links are trivial.
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Picture here: embedded graph

In fact, it’s easy to see that any graph, no matter how big and com-
plicated, can be embedded into 3 dimensions. (Unlike the plane, which
only admits embeddings of planar graphs.) It’s far less clear whether ev-
ery graph can be embedded into space in an “unknotted” or “unlinked”
way. It’s not even immediately clear that such a phrasing is well defined.
Consider the following diagram of K6:

Picture here: embedding of K6

Contained inside it, there’s a Hopf link!

Picture here: repeat with Hopf link highlighted

This embedding of K6 contains a link, but maybe we can find some
other linkless embedding. Actually, for K6 we can’t.

Theorem 1.4.1 (Sachs 198x). Every embedding of K6 contains at least one pair
of linked cycles.

We therefore say that K6 is intrinsically linked (IL), and similarly for
other graphs. That is, a graph G is intrinsically linked if it contains some
non-trivial link. If on the other hand, we can find some embedding of a
graph G where every pair of cycles is trivial (unlinked and unknotted),
then we say G is not intrinsically linked (NIL). For example, consider
the previous picture of K5. It contains no links, a fact easily certified by
observing that each non-trivial link must contain at least two crossings.

We may define the notion of a “knotted” graph similarly. If every
embedding of a graph G contains at least one knotted cycle, then we call
the graph intrinsically knotted (IK). Conversely, if we can find some
embedding of the graph G where every cycle is unknotted, then we say
that G is not intrinsically knotted (NIK). As an example, consider K6. In
this embedding

Picture here: K6 without knots

there are no knotted cycles (even though there is a pair of linked cycles).
Therefore, we knot that K6 is NIK (not intrinsically knotted). By way of
contrast,
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Theorem 1.4.2. K7 is IK (intrinsically knotted).

In all of these cases, we have said “intrinsic” to emphasize that IK/NIK
and IL/NIL are properties of the abstract graph G in question. As we did
with planarity, we are again using topological realizations of graphs to
derive intrinsic properties of the abstract graphs. In fact, the properties
of non-planarity, intrinsic linking, and intrinsic knotting are all very sim-
ilar. In the same way that non-planarity is characterized by two minimal
graphs (K5 and K3,3), intrinsic linking is characterized by a set of minimal
IL graphs.

Picture here: minimal IL graphs?

Furthermore every intrinsically knotted graph is necessarily intrinsi-
cally linked. This justifies our final conceptual picture depicting three
strata of classification. Setting the final stone we call the set of minimal
graphs for a property (like IL or IK) an obstruction set.

Our Problem
What is the obstruction set for the intrinsic knotting property?

1.5 Progress on this and related problems
The complete obstruction set is known for the IL/NIL property.

Theorem 1.5.1 (Conjecture by Sachs 1981; proof by Roberson, Seymour
and Thomas 1995). A graph G is intrinsically linked if and only if it “con-
tains” some graph in the Petersen family of graphs

Picture here: Petersen Family

the graph labeled G10 here is often called the Petersen graph.
The obstruction set for IK, by contrast, is only partially known.

Theorem 1.5.2 (Gordon and Conway 1984?, Foisy 200x,200x). A graph G
is intrinsically knotted if it “contains K7, K3,3,1,1, or H. Furthermore, any graph
“contained” in one of these three (but not one of these three) is not intrinsically
knotted.

NEED picture of 3 IK graphs and mention of results.
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1.6 Endnote 1 on a graph A “containing” a
graph B

Recall that Kuratowski’s theorem said that a graph is non-planar if and
only if it “contains” K5 or K3,3. The nicest fully rigorous statement is

Theorem 1.6.1 (Kuratowski’s theorem as stated by Wagner). A graph G is
non-planar if and only if K5 or K3,3 is a minor of G.

Definition 1.6.2. A graph M is a minor of a graph G, written M ≤ G, if
we can reduce G to M by

1. deleting edges

2. contracting edges

3. removing isolated vertices

Example 1.6.3. Picture here: K5 as minor, but not subgraph
This graph is non-planar because we can contract the two black ver-

tices into the two bottom vertices to yield K5: K5 ≤ G

1.7 Endnote 2 on checking whether a diagram
is linked

In order to determine whether two components in a diagram are linked,
we will count how many times they are linked. For instance,

Picture here

the Hopf link is linked once, whereas the Whitehead link is linked
twice. In order to compute this linking number we will first compute
something called the writhe.

Given a diagram with two components, construct an oriented dia-
gram by drawing little arrows on each component, thus “orienting” it.

Picture here

Once we have an oriented diagram, we can distinguish between “pos-
itive” and “negative” crossings in the following way:
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Picture here

Picture here

Here are annotated diagrams of our two links:
We define the writhe of an oriented diagram as the sum of these num-

bers across all crossings between the two different components4.

w(A, B) = ∑ε

Therefore, we compute that the writhe of the Hopf link diagram above
is −2 and −4 for the Whitehead link diagram. In fact, this number will
always be even, and the sign will vary depending on our choice of orien-
tation, so we take the absolute value over two.

Definition 1.7.1. The linking number between two components, A and
B of a diagram is

lk(A, B) =
|w(A, B)|

2

4note that there are no crossings between, say, the two trefoils because the two dif-
ferent components never cross with each other, although they do cross with themselves.



Chapter 2

Background

2.1 Knot Theory

Definitions

In mathematics, the following object is not (topologically) a knot,

because it can be untied. To prevent such travesties, we will only
consider loops (of string). For knots like the former, we can just join the
ends.

10
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Furthermore, we want to consider two knots to be equivalent if we
can deform one into the other. For instance,

Such a change is called a planar isotopy. In addition to planar iso-
topies, we’d also like to capture equivalences which involve deforming
the knot in the full 3-dimensional space, such as:

In this manipulation we’ve used certain natural, local modifications
called Reidemeister Moves (labeled R1 and R3).

Although this description captures knot theory as it is practiced, we
ought to at least sketch a formal foundation for completeness sake. Such
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an undertaking is usually begun with something like the following in-
cantation:

Definition 2.1.1. A knot is a tame embedding of the circle into space R3

(i.e. a tame loop in space). Two knots are considered equivalent if there
is an ambient isotopy carrying one into the other.

Perhaps surprisingly, this definition is not complete gibberish. By em-
bedding, we mean a continuous 1-1 map, and by tame we mean that the
embedding of the circle may be safely extended to an embedding of the
solid torus. This outlaws so called wild knots.

So now, we can assume all of our knots are “nice.” The definition is
completed by using ambient isotopy as our notion of equivalence. An
ambient isotopy1 is a continuous family of continuous 1-1 deformations
of R3. We may visualize two-dimensional ambient isotopies more easily
than three-dimensional ones. Just picture the deformation of a grid over
“time.”

1Formally, let f , g : S1 → R3 be knots. Then f and g are related by ambient isotopy
if there exists a continuous family of homeomorphisms Φt : R3 → R3 (that is Φ :
[0, 1]×R3 → R3 is continuous) such that Φ0 = id and Φ1 ◦ f = g.
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Using ambient isotopies, we may deform any one embedding of a
knot into any other by deforming the ambient space. This technicality effec-
tively prevents us not only from breaking the knot, but also from passing
it through itself, as this would break the ambient space.

In practice, we may avoid this technicality entirely by dealing with
knots through their diagrams.

Definition 2.1.2. A knot diagram is a planar projection of a knot with a
finite number of doubly covered points, all of which are transverse cross-
ings. These crossings are drawn with gaps to indicate which “strand” of
the diagram lies on top.

Under ambient isotopy we are free to deform this diagram as we
please short of creating, destroying or rearranging the crossings. As men-
tioned earlier, such changes are called planar isotopies since they are
accomplished by deforming the plane.

In addition to planar isotopies a number of local crossing modifica-
tions appear intuitively admissible:

Definition 2.1.3. The Reidemeister moves

R1:
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R2:

R3:

These moves are named in honor of Kurt Reidemeister, who proved
the following theorem about them in 1926.

Theorem 2.1.4. Given two diagrams D1, D2 of knots K1, K2, K1 and K2 are
equivalent if and only if D1 and D2 are related by some sequence of planar iso-
topies, R1, R2 and R3 moves.

In effect, this theorem allows us to approach the study of knots purely
through their diagrams. However, given arbitrary “knot-like” diagrams
composed of oriented transverse crossings and strands running between
them, we will soon run into diagrams such as the following,

The Hopf Link The Whitehead Link
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which contain more than one loop. A diagram with k loops is a di-
agram of a k-component link. The formal definition of link is directly
analogous to and generalizes knots (which are just 1-component links).

Definition 2.1.5. A k-component link is a tame embedding of k circles
into space. Two links are considered equivalent if there is an ambient
isotopy between them.

Definition 2.1.6. A link diagram is a projection of a link with a finite
number of transverse crossings.

Theorem 2.1.7. Two link diagrams are of equivalent links if and only if they are
related by planar isotopies and Reidemeister moves.

Big, Hairy, Knotty Questions

1. Given a diagram D, is it a diagrams of the unknot? (unknotting
problem)

2. Given two diagrams, do they represent equivalent knots?

We will not address these questions in this thesis, but they’re useful
for getting a flavor of what knot theory is (sometimes) about.

Invariants

Reidemeister moves are very effective in the event that two diagrams
happen to be of equivalent knots. We can prove as much by exhibiting a
sequence of Reidemeister moves. However, it’s a much trickier matter to
prove that two diagrams are actually different! To do so, we will develop
some (albeit very lightweight) knot invariants.

An invariant is a function f which “eats” a diagram and “secretes”
a number (or sometimes a group, ring, etc.) st. for two equivalent dia-
grams D1 ∼ D2, f (D1) = f (D2). An invariant is said to be complete if
the converse holds: f (D1) = f (D2) =⇒ D1 ∼ D2.

We will begin our discussion with a quantity called the writhe which
is a NOT invariant2.

Definition 2.1.8. An oriented diagram is a link diagram where arrows
have been consistently attached to each component. Every crossing in an
oriented diagram is now positive or negative. Define ε(c) = +1 if c is
positive and ε(c) = −1 if c is negative.

2This pun is decidedly knot funny.
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The writhe of an oriented diagram is the sum of these values.

w(D) = ∑
c:crossing

ε(c)

Certainly the writhe is unaffected by planar isotopy. Furthermore, R2
and R3 moves have no effect.

Theorem 2.1.9. Given two oriented diagrams D1, D2 related by planar isotopy,
R2 and R3, w(D1) = w(D2).

Proof. invariance under R2:

w(D′) = w(D) + 1− 1 = w(D)

invariance under R3:

Notice that the R3 move (in all variations) just rearranges the existing
crossings. Therefore the writhe is left unchanged as well. �
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w(D′) = w(D)− 1

The R1 move, however, does change the writhe. (Dang!)
For this reason the writhe is not an invariant of a knot diagram. But

not all hope is lost! We can use the writhe to define a link invariant called
the linking number.

Definition 2.1.10. Consider an unoriented 2-component link diagram
consisting of components L1, L2. Choosing orientations for L1, L2 we get
an oriented diagram. Let w(L1, L2) denote the writhe only between the
two components L1, L2:

w(L1, L2) = ∑
c crossing
between

L1&L2

ε(c)

Theorem 2.1.11. w(L1, L2) is always even and is invariant up to choice of sign.

Proof. If we consider 2-component link diagrams without considering
the over-under arrangement of each crossing then any two diagrams are
related by a sequence of unoriented Reidemeister moves:

The first of these does not apply to crossings between two distinct
components. The second changes the number of crossings by 2. The
third leaves the number of crossings invariant. Therefore there are al-
ways an even number of crossings between 2 distinct link components.
Furthermore, given an even length sequence of increments/decrements,
the total increment/decrement must be even.
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Now note that any change of orientation must change the orientation
of all crossings between L1 and L2. Therefore such a change may change
w(L1, L2) by at most its sign. Finally, by the preceding theorem on the
writhe, w(L1, L2) is invariant under R2 and R3. Since R1 does not apply
to/affect crossings between L1 and L2, w(L1, L2) is invariant under R1 as
well, making it a true invariant. �

Definition 2.1.12. We therefore define the linking number between two
components L1, L2 as

lk(L1, L2) =
|w(L1, L2)|

2

We may easily compute that the Hopf link has linking number 1.

w(L1, L2) = 1 + 1 = 2

lk(L1, L2) = |w(L1, L2)|/2
= |2|/2 = 1

In this thesis, we will only ever make use of the linking form reduced
mod 2. In this form the linking number is always either 0 or 1. We may
develop this mod 2 invariant a second and ultimately more convenient
way.

Definition 2.1.13. Let ω(L1, L2) denote the over-crossing number mod
2. ω(L1, L2) counts the number of times L1 passes over L2 mod 2.

Theorem 2.1.14. ω(L1, L2) ≡ lk(L1, L2)(mod 2)

Proof. Let ω′(L1, L2) denote the number of times L1 passes over L2, not
mod 2. If ω′(L1, L2) = 0, then L1 lies entirely beneath L2 so L1 and
L2 are unlinked; lk(L1, L2) = 0. If ω′(L1, L2) > 0, then we can get to
this diagram starting from the diagram with L1 entirely beneath L2 by
makingω′(L1, L2) crossing changes. Each such crossing change changes
ε by ±2, w(L1, L2) by ±2 and therefore lk(L1, L2) by ±1. Ifω′(L1, L2) is
odd (ω(L1, L2) = 1) then lk(L1, L2) is some odd number of increments
and decrements away from 0; lk(L1, L2) ≡ 1(mod 2). If ω′(L1, L2) is
even (ω(L1, L2) = 0) then lk(L1, L2) ≡ 0(mod 2). �
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Although it is not at all obvious from the definition, this proves that
ω is symmetric.

Corollary 2.1.15. ω(L1, L2) = ω(L2, L1)

Although there are many fascinating knot/link invariants, we will
only need one more (relatively simple) one, called the Arf invariant (af-
ter Cahit Arf). Like our doctored linking number it assumes values mod
2. Unfortunately, all known developments of the Arf invariant require
detours into either knot polynomials (CITATION) or Seifert surfaces (CI-
TATION). We will therefore forgo a proof that the invariant is well de-
fined, and instead settle for stating the relevant properties.

Definition 2.1.16. The Arf invariant of a knot K is written α(K). It as-
sumes the value 0 on the unknot and obeys the following skein relation
(mod 2):

From this definition we may compute

demonstrating that the invariant is non-trivial.
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2.2 Graph Theory
A graph is the most basic mathematical object capturing the notion of
objects in a pairwise relationship. They are particularly popular because
they may also be drawn:

In this drawing there are points (also called nodes or vertices) con-
nected by paths (which are nearly always called edges). However, the
particular drawing of a graph given is irrelevant. Edges may bend and
cross arbitrarily, so long as the “connectivity” of the graph remains con-
stant. For instance, here is a different picture of the same graph just
shown:

Definition 2.2.1. A graph G consists of a finite set of vertices V = V(G)
and a finite set of edges E = E(G) where each edge is an unordered pair
of distinct vertices e = (a, b) = (b, a) with b , a.

This definition implies that we will restrict our attention to undi-
rected and finite graphs, outlawing cases such as the following:
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loop

double edge

Furthermore, we will generally exclude graphs with loops and/or
double edges from consideration, although we will occasionally break
this rule when they crop up. Which restrictions hold should be clear
from context.

Although the concepts of paths, or connected graphs are straightfor-
ward when pictured, they too need a more formal definition to work
with.

a path a connected a disconnected
graph graph

Definition 2.2.2. A path in a graph is a sequence of distinct vertices
v1, v2, . . . , vn, such that every successive pair of vertices is joined by an
edge: (vi, vi+1) ∈ E. A graph is said to be connected if there exists a path
between any two vertices of the graph.
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The formal definition of a path may be extended to treat the concept
of a cycle.

a cycle an acyclic
graph

Definition 2.2.3. A cycle is a path v1, v2, . . . , vn with an extra repeated
vertex v0 = vn. Thus (v0 = vn, v1) must also be an edge in the graph. A
graph that doesn’t have any cycles is called acyclic.

If a graph is both connected and acyclic, then we call it a tree.

Figure 2.1: Both of these graphs are trees (the same in fact)

Theorem 2.2.4. A tree with n vertices has n− 1 edges.

In order to see this result, we show that every tree may be arranged
into a nice, somewhat standard diagram. First, pick any node and call it
the root. Because the tree is connected, there exists a path from the root to
every node. Because a tree is acyclic, every such path is unique (or else
we would have created a cycle). This is another nice property of trees
by the way. This argument allows for drawing any tree in the following
way:
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Every node v in the tree now has a depth d(v), the length of the
unique path from the root to that node. Furthermore, every node can
have at most one parent, a node of depth d(v)− 1 connected to v, for if
not, then we could find two different paths from the root to v. Finally,
because the tree is finite, there must be a maximum depth node, with no
children (nodes of which v is a parent). Such a maximum depth node
must have degree 1, where degree refers to the number of edges emanat-
ing from a node. We call a degree 1 node in a tree a leaf.

Proof. Since any tree has at least one leaf, we may remove this leaf, along
with its lone connecting edge, without leaving the remaining tree discon-
nected. By induction, we may remove vertices and edges in pairs until
we are left with a tree on one vertex which contains no edges. �

It’s worth noting that any two of the following properties imply the
third:

• acyclic

• connected

• has exactly one more vertex than edges

Cool, huh?
When talking Topology, we will often call trees simply connected

graphs. And while we’re talking Topology, how about those cycles?
Aren’t those just loops? And aren’t loops the stuff knots are made of?
Curious. . .

We will discuss cycles quite a bit in this thesis, so it’s best that we
get our language straight from the get-go. One powerful perspective on
cycles treats them as subgraphs.
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Definition 2.2.5. A subgraph G′ ⊆ G is a graph on some subset of G’s
vertices (V(G′) ⊆ V(G)) using some subset of G’s edges (E(G′) ⊆ E(G)).
A vertex-induced subgraph is specified by a subset of vertices, while
retaining all edges in E between those vertices. An edge-induced sub-
graph is specified by a subset of edges, retaining all vertices those edges
touch.

We will be working primarily with edge-induced subgraphs in this
thesis, since cycles can be easily specified as sets of edges. For instance,

cycles
{1, 2, 3}
{3, 4, 5}
{5, 6, 7}
{1, 2, 4, 5}
{3, 4, 6, 7}
{1, 2, 4, 6, 7}

Every cycle in a graph may be realized in this way as a subgraph.
Viewed in this light, a number of useful properties become apparent.

Theorem 2.2.6. Let C ⊆ G be an edge-induced subgraph. If C is a cycle, then
every vertex of C has exactly degree 2.

Proof. A cyclic path may pass through a vertex v at most once, in which
case it “enters” via one edge and “leaves” via another. That is, v has
degree 2. Otherwise v is not passed through and therefore not in C. �

According to our current definition of cycle the converse does not
hold. Rather than puzzle this curious fact, we barge ahead and redefine
our notion of cycle until it stops misbehaving. (Note: this is generally a
good policy.)

Definition 2.2.7. A generalized cycle (or just cycle) is an edge-induced
subgraph C ⊆ G such that every vertex of C has even degree.

Definition 2.2.8. Two subgraphs (V1, E1), (V2, E2) are said to be edge
disjoint if E1 ∩ E2 = ∅. They are said to be vertex disjoint if V1 ∩V2 = ∅.
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Figure 2.2: a “cycle” in the generalized sense

Theorem 2.2.9. Every generalized cycle may be decomposed into a union of
edge disjoint cycles as previously defined via cyclic paths.

Proof. First, decompose the given generalized cycle into a union of vertex
disjoint connected components. Consider one such component. Starting
at any vertex of this component, trace out a path until some vertex is
revisited, forming a cycle out of some subset of the traced path.

Can this always be done? Suppose that tracing a path does not even-
tually form a cycle. Then the path must terminate at some vertex. How-
ever, every vertex has at least degree 2, so the path could have continued,
or must be visiting this vertex for the second time. Contradiction. There-
fore, tracing a path will always identify some cycle.

Now subtract the identified cycle path from the generalized cycle to
get an edge induced subgraph. Since the cycle path touches every vertex
0 or 2 times, this subtraction will decrement the degree of every vertex
by 0 or 2, yielding a new, smaller generalized cycle. By repeated iteration
we will be left with an edge disjoint union of cycles as defined via cyclic
paths. �

Note that this decomposition is not unique in general.
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Corollary 2.2.10. If a generalized cycle has maximum vertex degree 2, then it
may be decomposed into a vertex disjoint union of cycles as defined via cyclic
paths.

“Cycle as defined via cyclic paths” is quite a mouthful, so we will
instead use the term simple cycle3.

The previous development has given us a rather simple way to iden-
tify simple cycles. A simple cycle is just a connected subgraph in which
every vertex has degree 2.

Although subgraphs are very effective for studying structures within
a given graph, the structure of all graphs may yield more readily to a
different notion, that of a graph minor. This notion is meant to resolve
the following conundrum. In some sense (a topological sense) we would
like to think of the triangular graph as a “subgraph” of any graph with
cycles. Unfortunately, it’s not a subgraph of all cyclic graphs.

We begin by re-examining our definition of subgraph, so that we may
generalize. Suppose we are given two graphs A, B st. A ⊆ B. Then we
may produce A from B by

• removing edges

• removing disconnected vertices

3Why do mathematicians call so many different things simple? Because they like to
make everything complicated. Ba Dum Chh!
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If we further allow one to contract edges, then we get the notion of
graph minor.

Definition 2.2.11. Given graphs A, B we say A is a minor of B (written
A ≤ B) if we may obtain A from B via edge deletions, vertex deletions,
and edge contractions.

This notion of edge contraction gives us yet another perspective on
simply connected graphs (aka. trees). A graph is simply connected if
and only if it may be contracted into a point!

At this point it’s probably a good idea to note that edge contractions
may lead to double edges or loops. In a few cases we will need to pay
attention to them.

The minor relationship defines a partial order on all graphs. This par-
tial order plays “nice” with a number of properties. For instance,

Definition 2.2.12. A graph is planar if it may be drawn in the plane with-
out crossing edges.

Theorem 2.2.13. If a graph A is planar, written P(A), then any minor B ≤ A
is also planar P(B).

Proof. Given that A is planar, construct a planar diagram. Since B ≤
A, we may arrive at a diagram for B by contracting and deleting edges.
Since such operations will always result in another planar diagram, we
get a planar diagram for B; B is planar. �

In general any such property is said to be minor-preserved.
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Definition 2.2.14. A minor preserved property P of a graph is some
predicate such that (A ≤ B and P(B)) =⇒ P(A). Alternatively, we
sometimes say that “not P” is minor preserved for convenience.

There is a famous theorem of Kuratowski capturing the concept of
planarity with two graphs.

Theorem 2.2.15 (Kuratowski). A graph A is non-planar if and only if K5 ≤ A
or K3,3 ≤ A.

Using one set of terminology, K5 and K3,3 are called forbidden minors
because any planar graph is forbidden from having either of them as mi-
nors. Alternatively, one says that the set of K5 and K3,3 is the obstruction
set for planarity/non-planarity.

Definition 2.2.16. An obstruction set for a minor preserved property P
is a minimally sized set of graphs O such that not P(A) if and only if
∃G ∈ O : G ≤ A.

Robertson and Seymour proved a ridiculously powerful conjecture
of Wagner on this topic, a conjecture which helps motivate the pursuit of
this thesis.

Theorem 2.2.17 (Robertson-Seymour). For any minor-preserved property P,
there is a unique finite obstruction set O.

Crazy!

2.3 Knotted Graphs
When we introduced knot theory, we defined a knot as an embedding
of the circle into space. What about other 1-dimensional objects, like. . . a
graph?

Definition 2.3.1. A graph knot or knotted graph is a tame embedding
of some graph G into space. Such embeddings are considered equivalent
up to ambient isotopy.

As with knots we may consider diagrams of knotted graphs, such as
the following diagram of K6.
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And, just as with knots, we have a Reidemeister-like theorem for ma-
nipulating knotted graphs.

Theorem 2.3.2. Two graph embeddings are equivalent if and only if their di-
agrams are related by a sequence of planar isotopies, R1, R2, R3, R4, and R5
moves.

An R4 move allows one to pull a strand over a vertex.

An R5 move allows one to “twist” strands emanating from a vertex.

Within the theory of knotted graphs, we recover traditional knot the-
ory by considering embeddings of the triangle K3. For this reason it
would appear that we have made our lives harder. However, in the
process of this “complexification” we have made some previously trivial
questions non-trivial. For instance, given a graph G, can we embed G
into space such that all simple cycles in G are unknotted?
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Definition 2.3.3. A graph G is said to be intrinsically knotted if for all
embeddings of G, there exists some knotted (simple) cycle of G in the
given embedding. We say G is IK for short or NIK (not intrinsically
knotted) in the opposite case.

K3 is clearly NIK, confirming our suspicion that intrinsic knotting is
not an interesting question in traditional (non-graph) knot theory. Fur-
thermore, some graphs are almost certainly IK, such as K1000. The far
more interesting graphs to ponder are the simplest ones that are still
knotted. For instance, it turns out that K7 is intrinsically knotted, while
all of its proper minors are not.

Figure 2.3: embedding of K7 with exactly one knotted cycle (indicated)

By way of contrast the following picture of K6 contains no knots.

Therefore, we may conclude that K6 is NIK. This demonstrates our
first key observation about intrinsic knotting: It is far easier to prove
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that a graph is NIK than IK, just as it’s easier to prove that a particular
diagram is unknotted (just show a sequence of Reidemeister moves) than
it is to prove that it’s knotted.

Even though K6 is not intrinsically knotted, it is intrinsically linked.

Figure 2.4: embedding of K6 with exactly one pair of linked cycles (indi-
cated)

Definition 2.3.4. A graph G is intrinsically linked (IL) if for all embed-
dings of G there exists some non-trivial link in the given embedding (on
a vertex disjoint union of simple cycles). We say a graph is not intrinsi-
cally linked (NIL) otherwise.

In 198x, Sachs (full name?) proved that K6 is intrinsically linked4.
Later, (so and so?) showed that a certain kind of graph modification,
called a triangle-star or ∆-Y move would produce yet more intrinsically
linked graphs. Applying this move repeatedly to K6 yields a family of 7
graphs called the Petersen family after the “largest” graph in the family,
the Petersen graph.

It’s a still more curious fact that none of the Petersen family graphs
are minors of each other and that no proper minor of the Petersen family
is intrinsically linked. What makes this an even more magnificent coinci-
dence is that the Petersen family forms the obstruction set for the IL/NIL
property.

4although, he used the term discatenable
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Figure 2.5: The Petersen Family Portrait

Theorem 2.3.5. IL/NIL and IK/NIK are minor-preserved properties.

Proof. Given a graph G that is NIL or NIK, we may find an embedding
without links or knots respectively. Since edge deletions and contractions
performed on the embedded graph will not introduce any new linked or
knotted cycles, any minor of G must also be NIL or NIK, respectively. �

Theorem 2.3.6 (Robertson & Seymour 199x). The obstruction set for the
IL/NIL property is precisely the Petersen family of graphs.

Although we do not want to recapitulate that entire proof, we will
have cause to make use of some of the techniques for proving intrinsic
linking results. Therefore, we’ll review the proof that K6 is intrinsically
linked.

Theorem 2.3.7. K6 is IL.

Proof. Given an embedding of K6, E and two vertex disjoint cycles A, B ⊆
K6, let lkE(A, B) denote the mod 2 linking number of A and B in the
embedding E. Then define the mod 2 linking number of the embedding
as lk(E) = ∑(A,B) lkE(A, B). This proof will now proceed in two steps.
First, we note that there is some embedding E0 of K6 such that lk(E0) = 1.
Specifically, E0 is the previously exhibited diagram with a single pair of
linked triangles. Second, we will demonstrate that the summed linking
number is the same for all embeddings.
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Using crossing change moves (CX) and R1-R5 moves we can move
to any diagram of any embedding of K6. We already know that lk is
invariant under R1-R5 moves because it is a link invariant. Therefore, if
we can just show that lk is invariant under crossing changes, we will be
done.

Crossing moves between an edge and itself or between two adjacent
edges can’t affect crossings between two vertex disjoint cycles. There-
fore we need not consider them. Furthermore, without loss of generality
all other crossing changes may be considered as occurring between the
same two edges v1v2, v3v4 up to symmetry of the graph K6. Which cycle
pairs contain v1v2 and v3v4 in separate cycles? Only (v1v2v5)(v3v4v6)
and (v1v2v6)(v3v4v5).

Therefore making a crossing move will change the over crossing num-
ber ω(A, B) for each cycle pair by 1. Since lkE(A, B) = ωE(A, B), the
crossing change will change the linking number mod 2 of each of these
cycles by 1. Thus we may conclude that the linking number of E and the
linking number of E′, the embedding resulting from a crossing move, are
the same.

lk(E′) = lk(E) + 2 = lk(E) mod 2

�

In 198x, John Conway and Cameron Gordon showed that K7 is intrin-
sically knotted by a similar argument. However instead of summing the
linking number over all pairs of cycles, they summed the Arf invariant
over all Hamiltonian cycles of K7. In xxxx, xxxx et al. applied this same
form of argument to the graph K3,3,1,1 erroneously, as xxxx pointed out.

For over (nearly?) a decade the question “Is K3,3,1,1 intrinsically knot-
ted?” remained open. Finally, in 200x, Joel Foisy gave a valid proof. In
so doing Foisy found the second known member of the IK/NIK obstruc-
tion set. Since then, X more members of the obstructions set have been
found. However, no conjecture for the complete obstruction set has been
advanced.
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Because this work builds on Foisy’s methods, it’s worthwhile to re-
view them. Towards that end, we will show how Foisy proved that
K3,3,1,1 is intrinsically knotted. He used two critical lemmas which we
will start by reviewing.

The first is very convoluted and stated in the language of Homology
theory. We preserve Foisy’s original language here for posterity.

Lemma 2.3.8 (Foisy’s Homological Lemma). Let γ1,γ2 and γ3 be simple
closed curves in R3 such that γ2 ∩ γ3 is an arc, and both γ2 ∩ γ1 and γ1 ∩ γ3
are empty. Suppose that [γ2] is non-trivial in H1(R3 −γ1;Z2). Then precisely
one of [γ3] and [γ2 +γ3] is non-trivial in H1(R3 −γ1;Z2).

Oy Vey! Let’s have some pictures.

γ2 ∩γ3 is an arc. Furthermore, they are both disjoint from γ1.

[γ2] is non-trivial in H1(R3−γ1;Z2) means that lk(γ1,γ2) = 1 mod 2.
Likewise, [γ3] and [γ2 + γ3] being non-trivial in H1(R3 − γ1;Z2) means
they are linked with γ1 mod 2. But what is γ2 +γ3?
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γ2 +γ3 = (γ2 ∪γ3)− (γ2 ∩γ3) taken as sets5.
The lemma syas that the curves γ1,γ2,γ3 must “essentially” lie in one

of two possible arrangements (from the mod 2 linking number point of
view).

lk(γ1,γ2) = 1 lk(γ1,γ2) = 1
lk(γ1,γ3) = 0 lk(γ1,γ3) = 1

lk(γ1,γ2 +γ3) = 1 lk(γ1,γ2 +γ3) = 0

The second lemma uses the following idiosyncratic graph which we’ll
call Foisy’s graph.

5Of course we need to take the topological closure to pop back in the cusp points
but let’s not convolute this even further.
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Figure 2.6: Foisy’s graph

Let the cycle formed by e1 and e2 be called C1, the one formed by e3
and e4 C2, e5 and e6 C3, e7 and e8 C4. Furthermore, letα denote the sum of
the Arf invariants of all simple cycles passing through all vertices. Such
cycles are composed of four edges and always of the form

C = {e1 or e2, e3 or e4, e5 or e6, e7 or e8}

Thus there are 24 = 16 of them.

α = ∑
C
α(C) mod 2

Lemma 2.3.9 (Foisy’s Lemma). Given an embedding of the graph F,α = 1 if
and only if lk(C1, C3) = 1 and lk(C2, C4) = 1.

Proof. see reference. �

Foisy’s lemma lets us prove that there are knotted cycles in a graph
using pairs of linked cycles. Thus, we may bootstrap intrinsic knotting
proofs using intrinsic linking results.

Foisy’s strategy for proving that K3,3,1,1 is IK proceeds as follows.
First, identify two sets of cycle pairs such that at least one cycle pair
in each set is linked an odd number of times, regardless of embedding.
Then, by using the homology lemma and these linked pairs, show that
K3,3,1,1 must always contain a Foisy graph minor where lk(C1, C3) = 1
and lk(C2, C4) = 1. Thus every embedding of K3,3,1,1 has some cycle
with Arf invariant 1, a knotted cycle!

We will now flesh out the details of this approach.
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Proof. To begin, fix an embedding of K3,3,1,1 for the rest of the proof. We
will show that regardless of which embedding was chosen, there is a
knotted cycle.

(Step 1) We exhibit two different ways to contract this embedded
K3,3,1,1 into two different intrinsically linked graphs: K−4,4 and K3,3,1.

First, we take K3,3,1,1, delete edges carefully and contract the edge
between the two degree 7 vertices.

By the intrinsic linking results there must be a pair of cycles in K3,3,1
with linking number 1 mod 2. Without loss of generality, this pair of cy-
cles must be composed of a triangle (using the top vertex) and a “square”
on the remaining vertices.
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Re-expanding K3,3,1 into K3,3,1,1 we get two “squares.”6

We also label the vertices of this diagram for future reference. After
having done so, we delete edges to arrive at an embedding of K−4,4

Again, by intrinsic linking results there must be a pair of linked (mod
2) cycles in this embedding of K−4,4. Furthermore, because v1, v2, v3, v4
have no connections between them and because w1, w2, w3, w4 likewise
have no connection between them, there are no cycles on 3 vertices; the
two linked cycles must be squares, each with two vs and two ws. Closer
inspection reveals 9 possible pairs of cycles. If we draw each pair to-
gether with our original pair of cycles (v1w1v2w2), (v3w3v4w4), then we
get the following diagrams:

6the previous edge deletions ensure that the triangle must expand into a square
rather than remain a triangle.



CHAPTER 2. BACKGROUND 39

(v1w2v2w3) (v1w2v3w3) (v1w2v4w3)
(w1v3w4v4) (w1v2w4v4) (w1v2w4v3)

(v1w2v2w4) (v1w2v3w4) (v1w2v4w4)
(w1v3w3v4) (w1v2w3v4) (w1v2w3v3)

(v1w3v2w4) (v1w3v3w4) (v1w3v4w4)
(w1v3w4v4) (w1v2w4v4) (w1v2w4v3)

What do these diagrams represent? By the preceding argument (iden-
tifying IL minors of K3,3,1,1) one of these 9 cases must lie as a subgraph
of K3,3,1,1 with both pairs of cycles linked (mod 2)7. To reiterate, regard-

7That is, lk((v1w1v2w2), (v3w3v4w4)) = 1 and lk(a, b) = 1 where (a, b) is the pair of
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less of the embedding of K3,3,1,1 into space, one of these 9 cases must be
“doubly linked.”

(Step 2) Now consider the case (v1w2v3w3)(w1v2w4v4). By contract-
ing edges v1w2, v3w3, v2w1, and v4w4 we arrive at Foisy’s graph. Not
only that, but the cycles are linked mod 2 as required by his lemma!
Therefore we may conclude that there is some cycle in the contracted
subgraph with Arf invariant 1; there is a knotted cycle. Re-expanding the
contracted subgraph we retain the knotted cycle, now lying in K3,3,1,1.

If we can make similar arguments for the remaining 8 cases, then we
will be done. This is relatively straight forward for all of the cases except
(v1w3v2w4), (w1v3w2v4). In order to tackle this case we will need to use
the homology lemma.

We know that lk(v1w3v2w4, w1v3w2v4) = 1. Furthermore (noting that
w1w2 is an edge in K3,3,1,1) we know that the cycle w1v3w2 is disjoint
from v1w3v2w4. Therefore we may apply the homology lemma to con-
clude that either lk(v1w3v2w4, w1v3w2) = 1 or lk(v1w3v2w4, w1v3w2v4 +
w1v3w2) = lk(v1w3v2w4, w1v4w3) = 1. Without loss of generality, con-
sider the case lk(v1w3v2w4, w1v3w2) = 1.

cycles labeling the diagram/case in question.
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Now we’ll apply the homology lemma again to “split” the top square.
We know that lk(v3w3v4w4, v1w1v2w2) = 1. Furthermore we know that
the cycle w1v1w2 is disjoint from v3w3v4w4. Therefore we may apply
the homology lemma to conclude that either lk(v3w3v4w4, w1v1w2) = 1
or that lk(v3w3v4w4, w1v1w2v2 + w1v1w2) = lk(v3w3v4w4, w1v2w2) = 1.
Without loss of generality, consider the case lk(v3w3v4w4, w1v1w2) = 1.

Since v1v2 is an edge in K3,3,1,1, we may repeat the exact same argu-
ment to split the cycle v1w3v2w4 along v1v2. Without loss of generality,
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we may assume that lk(v1v2w3, w1w2v3) = 1, yielding the final picture,

which is contractable down to Foisy’s graph F. Thus we may apply
his lemma and conclude our proof that K3,3,1,1 is IK! �

This is a long, involved proof. What lessons ought we take away?

• Use links to find knots. (Foisy’s lemma)

• Decompose subgraphs in a link preserving manner. (homology
lemma)

This thesis will attempt to show how fruitful the second lesson proves
when taken to its logical conclusion.

2.4 Linear Algebra (mod 2) and the Edge Space
Although many readers are aware that linear algebra may be conducted
over the field of integers mod 2, Z2, fewer may have actually done so.
These vector spaces have a natural isomorphism with Boolean algebras
and the subset algebra defined on P(S), the powerset of a set S. While
these multiple interpretations are often very useful and convenient, they
are also very confusing to navigate without a pinch of experience.
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Definition 2.4.1. Given a finite set S = {e1, e2, . . . , en}, the mod 2 vector
space on S is Z2S.

Z2S =

{
v =

n

∑
i=1

viei

∣∣∣∣∣vi ∈ Z2

}

The vector sum is defined as v + w = ∑
n
i=1(vi + wi)ei.

Unlike other vector spaces, linear scaling over Z2 is dreadfully bor-
ing. Either you get 1v = v or 0v = 0.

In order to understand our first connection—with Boolean algebra—
we will focus on Z2 by itself. Looking at all additions of elements, and
all multiplications, we get “truth tables” of a sort.

x y x + y
0 0 0
0 1 1
1 0 1
1 1 0

x y xy x AND y
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1

x y x OR y
0 0 0
0 1 1
1 0 1
1 1 1

Letting 1 represent true and 0 false, multiplication is the same as
AND, but addition does not correspond to OR. We can fix this shortcom-
ing in one of two ways. First, we could define x OR y = x + y + xy. Alter-
natively we could define a new logical expression, exclusive or, meaning
either x or y (but not both). We write this statement as x XOR y, which is
just x + y. In this way, we’ve given a logical interpretation to addition in
Z2.

What aboutZ2S? In search of a more perfect analogy we can define a
vector multiplication over Z2 as

vw =
n

∑
i=1

(viwi)ei.

Since this multiplication is defined component-wise, our vector algebra
Z2S will now behave like Z2. That is, it will behave like a Boolean alge-
bra. This observation primes us for a connection with the subset algebra
on P(S).
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Definition 2.4.2. The subset algebra on P(S) consists of the operators
union ∪, intersection ∩ and difference − defined as expected on subsets
a ⊆ S. That is,

a ∪ b = {ei|ei ∈ a OR ei ∈ b}
a ∩ b = {ei|ei ∈ a AND ei ∈ b}
a− b = {ei|ei ∈ a AND ei < b}

Although such a definition is the “natural” algebraic picture of P(S)
in some sense, we seem to have lost (and gained) some combinations. To
review, we see that a few translations remain undefined.

Z2S Boolean Algebra P(S)
a + b a XOR b ?

ab a AND b a ∩ b
a + ab + b a OR b a ∪ b

? ? a− b

The set algebra analogue of addition and XOR is called symmetric
difference. It’s written a4b.

a4b = {ei|ei ∈ a XOR ei ∈ B}.

Alternatively, we can write this operator using a combination of set dif-
ference and union, a4b = (a − b) ∪ (b − a), which is why we call it
symmetric difference. Since we won’t have any need for set difference
itself, we’ll forgo back porting it, although the curious reader will find
profound “implications.”

Our connection Z2S � P(S) (as Boolean algebras) gives us a conve-
nient means of encoding vectors in Z2S as subsets of S. Therefore as we
develop further machinery onZ2S, we will intone the mantra “and what
does this mean in P(S)?”

Given that Z2S is a vector space, there must be some dual vector
space (Z2S)∗ of linear functions (aka. forms) on Z2S.

Definition 2.4.3. Let (Z2S)∗ denote the set of linear formsϕ : Z2S → Z2
(Here linear is equivalent to saying ϕ(0) = 0 and ϕ(v + w) = ϕ(v) +
ϕ(w)). (Z2S)∗ forms a Z2 vector space called the dual space under the
addition (ϕ+ψ)(v) =ϕ(v) +ψ(v).
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Unlike our original vector space Z2S, which has the natural basis S,
we don’t have a basis for (Z2S)∗ readily available. This can lead to a
certain amount of disorientation as we have literally lost our bearings.
Don’t panic! We’re prepared—we can use this same standard basis S =
{e1, e2, . . . , en} of Z2S to construct a standard basis of linear forms.

Definition 2.4.4. Let e∗i be the linear form on Z2S, which sends v ∈ Z2S
to

e∗i (v) = e∗i

(
n

∑
j=1

v je j

)
=

n

∑
j=1

v je∗i (e j)

= vi

Alternatively stated,

e∗i (e j) =
{

1, i = j
0, i , j

This definition induces a linear bijection ∗ : Z2S → (Z2S)∗

Definition 2.4.5. The dual vector v∗ of a vector v is the linear form

v∗ =
n

∑
i=0

vie∗i

Be careful! This “duality” mod 2 is not your garden variety duality.
v∗(v) is not necessarily 1!8

“And what does this mean in P(S)?” Using our connection Z2S �
P(S), we can encode dual vectors v∗ ∈ (Z2S)∗ as subsets of P(S). Let
v∗ be represented by the set a = {ei|vi = 1}9. Since ∗ is a linear map, we

8It’s impossible to simultaneously ensure that v∗(v) = 1 and that ∗ is an invertible
linear map, as this example shows:

(e∗1 + e∗2)(e1 + e2) = (e∗1 + e∗2)(e1) + (e∗1 + e∗2)(e2)
= e∗1(e1) + e∗2(e1) + e∗1(e2) + e∗2(e2)
= 1 + 0 + 0 + 1
= 0

9thus v∗ is represented the same way as v.
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translate v∗ + w∗ = (v + w)∗ into a4b, where a and b represent v∗ and
w∗ as prescribed.

Furthermore, we may translate the application of a form v∗ to a vector
w into operations on their representing sets.

Theorem 2.4.6. Given v∗ ∈ (Z2S)∗ and w ∈ Z2S, v∗(w) = r(vw) where
r(x) = ∑

n
i=1 xi mod 2.

Proof.

v∗(w) =

(
n

∑
i=1

vie∗i

)(
n

∑
j=1

w je j

)

=
n

∑
i=1

vie∗i

(
n

∑
j=1

w je j

)

=
n

∑
i=1

vi

n

∑
j=1

w je∗i (e j)

=
n

∑
i=1

viwi

= r(vw)

�

Let v∗ be a dual vector represented by a and w a vector represented by
b. Then given this theorem, the application v∗(w) = r(vw) is represented
by |a ∩ b| (mod 2); that is, by the size of the intersection mod 2.

Our accumulated results give us a very convenient way to compute
with vectors and linear forms mod 2.

v, w ∈ Z2S is represented by a, b ∈ P(S)

v = ∑
n
i=1 viei a = {ei|vi = 1}

v + w a4b
v∗ a

v∗(w) |a ∩ b| (mod 2)
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The Edge Space

We’ve developed this machinery for handling linear algebra mod 2 in or-
der to treat a particular concept (shamelessly lifted) from matroid theory
called the edge space of a graph.

Definition 2.4.7. Let E = {e1, e2, . . . , en} be the set of edges of a graph G.
Then Z2E is called the edge space of G.

Note that any subgraph of G specified via some subset of the edges is
represented by some vector inZ2E. In particular, cycles both simple and
generalized manifest as vectors in Z2E.

One natural question to ask is the meaning of addition in the edge
space. If we think of vectors/subgraphs as subsets of edges then addition
translates to symmetric difference of the edge sets. For instance,

Although it’s entirely non-obvious, the set of all generalized cycles of
G forms a subspace of the edge space. To show this, we will make use of
some linear forms on the cycle space. Let dv(G) denote the degree10 of
the vertex v of G mod 2.

Lemma 2.4.8. di is a linear form on Z2E.

Proof. Given di’s definition, we need only consider edges with the vertex
v as an endpoint. Relabel these e1, e2, . . . , em. Then

dv =
m

∑
j=1

e∗j

�

10If we think of our graph G as a simplicial complex, then we can think of this map
as a differential(?) of 1-chains. The d is a happy coincidence of notation.
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We defined a generalized cycle C as an edge-induced subgraph of G
such that dv(C) = 0 for all vertices v. Therefore if we take two general-
ized cycles a and b, dv(a + b) = dv(a) + dv(b) = 0 + 0 = 0 for all vertices
v. That is, a + b is a generalized cycle too.

Definition 2.4.9. The cycle space of a graph G is a subspace of the edge
space of G comprised exactly of all generalized cycles. It’s well defined
by the preceding argument and lemma.

It would be nice to have an explicit basis for this cycle space. Surpris-
ingly, we can do so by picking a spanning tree of the graph (assuming
the graph’s connected).

Definition 2.4.10. A spanning tree of a connected graph G is a subgraph
of G that’s both a tree and touches every vertex of G.

For instance, here’s K6 and a
spanning tree of it. If we pick a
spanning tree T for some connected
graph G then T and all subgraphs of
T form a subspace of the edge space
with dimension |V| − 1, where |V|
is the number of vertices of G. This
means that the cycle space of G can
have dimension at most |E| − |V| + 1, since T contains no cyclic sub-
graphs (and is therefore linearly independent from the cycle space).

Theorem 2.4.11. Consider the set of edges not in T, E − T. For any edge
e ∈ E − T, there exists a unique cycle in the graph T ∪ {e}, which we denote
Ce.

Proof. T ∪ {e} has more than |V| − 1 edges, but is connected. Therefore,
T ∪ {e} must be cyclic, demonstrating existence.

Now, let C and D be any two non-trivial cycles in the graph T ∪ {e}.
Because T is acyclic, both C and D must include the edge e. Therefore, e
is not included in the cycle C + D. But C + D is a cycle not including e, a
cycle in T. T is acyclic so C + D must be 0; C = D. �

Corollary 2.4.12. The set of cycles Ce for e ∈ E− T forms a basis for the cycle
space of G.
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Proof. Since there are |E− T| = |E| − |V|+ 1 cycles in the proposed basis,
it’s of the maximum possible dimension. Therefore, it suffices to show
that the set of cycles Ce is linearly independent.

Each cycle Ce contains an edge (namely e) that isn’t included in any
other cycle Ce. Therefore the cycles Ce are linearly independent. �

In this way we’ve found a basis for the cycle space of G: {Ce}e∈E−T.
Although we won’t make too much use of this explicit basis in the rest of
the thesis, it’s nice to know we have it around if we want it.

To close this discussion of the cycle space, we note that given any
subset a ⊆ E− T, we can construct a unique cycle Ca as

Ca = ∑
e∈a

Ce

Nifty!

Bilinear Forms on Z2S and Tensor Products

Isn’t one linear good enough? Occasionally we will want to use functions
which compare or assess two vectors relative to each other, which we will
write as ϕ(v, w). Because these are two argument functions of vectors,
we’d like them to “play nice” with the linear structure of a vector space.
To accomplish this effect, we insist that these bilinear functions behave
linearly with respect to each argument. That is, if we fix the vector v and
vary w,ϕ(v, w) is a linear function of w, as isϕ(w, v).

Definition 2.4.13. A bilinear form ϕ on Z2S is a function ϕ : Z2S ×
Z2S → Z2 such that

ϕ(x, y) +ϕ(x, z) = ϕ(x, y + z)
ϕ(x, z) +ϕ(y, z) = ϕ(x + y, z)
ϕ(x, 0) =ϕ(0, y) = 0

We say that a bilinear form is symmetric ifϕ(x, y) =ϕ(y, x).

“And what does this mean in P(S)?” That’s actually quite a pickle.
For linear forms we took advantage of the duality mapping ∗ to repre-
sent vectors in (Z2S)∗ via representations of vectors in Z2S. In fact, we
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can use the same trick, since the space of bilinear forms is a dual space:
(Z2S⊗Z2S)∗.

Here ⊗ means the tensor product which—colloquially—is the most
general form of multiplication between vectors.

Definition 2.4.14. The tensor product is an operation on two 1-vectors
x, y ∈ Z2S producing a 2-vector x⊗ y ∈ Z2S⊗Z2S satisfying the rela-
tionships:

x⊗ y + x⊗ z = x⊗ (y + z)
x⊗ z + y⊗ z = (x + y)⊗ z
x⊗ 0 = 0⊗ y = 0

The tensor product spaceZ2S⊗Z2S is a set consisting of all tensor prod-
ucts of two 1-vectors (x ⊗ y) and summations thereof (∑ xi ⊗ yi). Ele-
ments of the tensor product space are called 2-vectors. 2-vectors which
may be directly written as a tensor product of two 1-vectors (x ⊗ y) are
said to be decomposable whereas those only expressible as sums of de-
composable 2-vectors are said to be indecomposable. Finally, the tensor
product space is closed under addition making it a vector space mod 2.

Yikes! Maybe we can be a bit more concrete.
Given two basis vectors ei, e j we get the 2-vector ei ⊗ e j. Often we will

write this 2-vector using the shorthand ei j or ei, j for brevity. Given these
tensor products of basis vectors we can construct a basis for Z2S⊗Z2S:
{ei, j}n

i=1, j=1. In this way we can give a more concrete picture of Z2S ⊗
Z2S.

Theorem 2.4.15. The set of 2-vectors {ei ⊗ e j}n
i=1, j=1 forms a basis for the

tensor product space Z2S⊗Z2S.

Proof. First, note that the set {ei j} is linearly independent since no two
ei j will interact under the given rules. Therefore it suffices to show that
{ei j} spansZ2S⊗Z2S. Every 2-vector v ∈ Z2S⊗Z2S may be written as
a sum of decomposable 2-vectors,

v =
m

∑
k=1

xk ⊗ yk
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so it suffices to show that every decomposable 2-vector x ⊗ y may be
written as a linear combination of vectors in {ei j}. Since every 1-vector
may be written as a linear combination of basis vectors from S = {ei},
we get

x⊗ y =

(
n

∑
i=1

xiei

)
⊗
(

n

∑
j=1

y je j

)

=
n

∑
i=1

xi

(
ei ⊗

(
n

∑
j=1

y je j

))

=
n

∑
i=1

xi

(
n

∑
j=1

y j(ei ⊗ e j)

)

=
n

∑
i=1, j=1

xi y j(ei ⊗ e j)

�

Corollary 2.4.16. Z2S⊗Z2S � Z2(S× S).

Proof. Consider the bijection between bases ei ⊗ e j 7→ (ei, e j) �

Let’s stop and regroup. We began by looking at bilinear forms, but
quickly switched to talking about the tensor product because of the claim
that bilinear forms could be represented as vectors in the dual space
(Z2S⊗Z2S)∗. Why does this make any sense?

In effect, we can think of the tensor product as a mechanism for pair-
ing vectors. That is, given a pair of vectors (x, y), we can take their tensor
product to form a single 2-vector x⊗ y. Let us now pause and reflect on
the symmetries in the definitions of bilinear forms and tensor products.
Ommmm. . .

Theorem 2.4.17. (Z2S⊗Z2S)∗ is the space of bilinear forms on Z2S.

Proof. We’ll begin by showing that dual 2-vectors act like bilinear forms
on decomposable 2-vectors. Let (ei ⊗ e j)∗ be a dual basis 2-vector and let
x, y be 1-vectors. I claim that the function f (x, y) = (ei ⊗ e j)∗(x ⊗ y) is
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bilinear. Writing x⊗ y as a linear combination of basis vectors, we get

f (x, y) = (ei ⊗ e j)∗
(

n

∑
k=1,l=1

xk yl(ek ⊗ el)

)

=
n

∑
k=1,l=1

xk yl(ei ⊗ e j)∗(ek ⊗ el)

= xi y j

Given this identity, f (x, y) = xi y j, bilinearity of f is immediate:

f (x, y) + f (x, z) = xi y j + xiz j

= xi(y j + z j)
= f (x, y + z)

f (x, z) + f (y, z) = xiz j + yiz j

= (xi + yi)z j

= f (x + y, z)
f (x, 0) = xi0 = 0
f (0, y) = 0y j = 0

Since any other dual 2-vector is just a sum of dual basis 2-vectors, and
since the sum of any two bilinear functions is itself bilinear, every dual
2-vector must be a bilinear form in disguise.

Furthermore, every bilinear form is a dual 2-vector in disguise. Letϕ
be an arbitrary bilinear form onZ2S. If we applyϕ to every pair of basis
vectors (ei, e j), we get the dual 2-vector

v = ∑
ϕ(ei ,e j)=1

(ei ⊗ e j)∗

which yieldsϕ as a bilinear form. �

But what does this mean in P(S) for crying out loud!

(Z2S⊗Z2S)∗ � Z2S⊗Z2(S) (duality)
� Z2(S× S) (corollary)

is represented by P(S× S)
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It appears that our connection between linear algebra mod 2 and the
algebra of subsets is translating the tensor product into a cartesian prod-
uct. To further flesh out this correspondence, recall the formula for ex-
pressing a decomposable 2-vector x⊗ y on the standard basis:

x⊗ y =
n

∑
i=1, j=1

xi yi(ei ⊗ e j)

Given that x, y ∈ Z2S are represented by subsets a, b ∈ P(S), x ⊗ y ∈
Z2S⊗Z2S is represented by a subset c ∈ P(S× S) where

c = {(ei, e j)|ei ∈ a and e j ∈ b}

That is, c = a× b. x⊗ y corresponds to a× b!
As before, we may again summarize our observations in a table. Col-

lectively, they give us a powerful way to compute with vectors and tensor
products mod 2.

x, y ∈ Z2S is represented by a, b ∈ P(S)

x = ∑
n
i=1 xiei a = {ei|xi = 1}

x + y a4b
x∗ a

x∗(y) |a ∩ b| (mod 2)

x⊗ y ∈ Z2S⊗Z2S a× b ∈ P(S× S)

x⊗ y + z⊗ w (a× b)4(c× d)

ϕ = ∑
n
i=1, j=1ϕi, j(ei ⊗ e j)∗ f = {(ei, e j)|ϕi, j = 1}

ϕ(x, y) =ϕ(x⊗ y) | f ∩ (a× b)| (mod 2)



Chapter 3

When is a Graph Intrinsically
Knotted?

The goal of this chapter is to develop a systematic method for proving
that graphs are intrinsically knotted. To understand how we would go
about such a systematization, let’s first focus on the simpler problem of
proving that a graph G is IL.

To begin, let’s write our desired statement and unpack it:

The graph G is IL.

This is equivalent to saying

⇐⇒ For every embedding E of G there is some pair (A, B)
of vertex disjoint simple cycles (VDSCs) such that (A, B) is a
non-trivial link in E.

Using logical quantifiers to abbreviate, we get

⇐⇒ ∀ embeddings E : ∃(A, B)VDSCs: (A, B) is non-trivial
in E

In the background section we made use of the linking number mod
2 to detect linked cycles. Logically speaking, we used the statement
“lkE(A, B) = 1 mod 2 =⇒ (A, B) is a non-trivial link in E.” Apply-
ing this implication here, it suffices to prove that

⇐= ∀ embeddings E : ∃(A, B)VDSCs: lkE(A, B) = 1 mod 2

54
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Now, observe that the innermost quantified statement “lkE(A, B) = 1
mod 2” only refers to the embedding E via lkE. This suggests one last
rewriting.

⇐⇒ ∀lkE : ∃(A, B)VDSCs: lkE(A, B) = 1 mod 2

Finally, let’s codify this argument into a lemma.

Lemma 3.0.1. Let G be a graph. If

∀lkE : ∃(A, B)VDSCs : lkE(A, B) = 1 mod 2

then G is intrinsically linked.

Although non-obvious, Robertson and Seymour’s results on intrinsic
linking imply that the converse is also true.

Unsurprisingly, we can execute a similar chain of logic for intrinsic
knotting.

The graph G is IK.

Unpacking the definition. . .

⇐⇒ For every embedding E of G there is some simple cycle
C such that C is knotted in E.

Switching to quantifiers. . .

⇐⇒ ∀ embeddings E : ∃ cycle C : C is knotted in E

Let’s focus on the inner statement here: ∃ cycle C : C is knotted in
E. In Foisy’s proof that K3,3,1,1 is IK we didn’t look for knotted cycles
just anywhere. Rather, we found some Foisy minor of G such that the
sum of Arf invariantsα = 1 mod 2 in E, implying the existence of some
knotted cycle.
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And we did that by instead showing that F is “doubly
linked” (lk(A, B) = 1 and lk(C, D) = 1), subsequently
appealing to Foisy’s lemma (F is “doubly linked” =⇒
knotted cycle in F).

Using this argument it suffices to prove that

⇐= ∀ embeddings E : ∃ Foisy minor F : F is “doubly linked”
in E

or if we expand the definitions of these concepts. . .

⇐⇒ ∀ embeddings E : ∃ Foisy pair of pairs ((A, B), (C, D)) :
lkE(A, B) = 1 mod 2 and
lkE(C, D) = 1 mod 2

Of course we can just replace our quantification over E with a quan-
tification over lkE as before. Combined with some other tidying, we get

⇐⇒ ∀lkE : ∃ Foisy pair of pairs ((A, B), (C, D)) :
lkE(A, B) · lkE(C, D) = 1 mod 2

Again, we can codify the argument into a lemma.

Lemma 3.0.2. Let G be a graph. If

∀lkE : ∃ Foisy pair of pairs ((A, B), (C, D)) :
lkE(A, B) · lkE(C, D) = 1 mod 2

then G is intrinsically knotted.

The rest of this chapter can be seen in analogy to these two arguments.
We will further refine our two current lemmas until their hypotheses be-
come tractably computable statements. At that point the hypotheses will
resemble linear algebra problems, and we’ll be able to write a computer
program that can ascertain their truth for arbitrary graphs G.
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Because Robertson and Seymour’s result implies that the converse of
our intrinsic linking lemma is true, the program we develop for intrin-
sic linking will always decide intrinsic linking for a graph G. That is the
program will always determine “yes, G is IL” or “no, G is not IL.” By
contrast, the program we develop for intrinsic knotting will only some-
times decide intrinsic knotting. That is, the program will sometimes an-
swer “yes, G is IK” but might just say “sorry, G may or may not be IK.”
However, if the converse of the intrinsic knotting lemma is true, then our
program always determines intrinsic knotting for intrinsically knotted
graphs. This gives us the first open question generated by this thesis.

Question 3.0.3. Does the converse of the intrinsic knotting lemma hold?

3.1 The Linking Number (mod 2) is Bilinear
What else can I say? It should be fairly obvious by now. . . kind of. We
know from the homology lemma that

lkE(A, B) = lkE(A, B + C) + lkE(A, C)

in very specific cases. Namely all of the pairs (A, B), (A, B + C) and
(A, C) must be pairs of vertex disjoint simple cycles. This restriction is
rather inconvenient. Perhaps we can define some other form on the entire
edge space of our graph such that the linking number form and homol-
ogy lemma are recovered as special cases.

We can. As suggested in the review of knot theory, we may use the
over-crossing formω (which counts the number of timesω(A, B) that A
crosses over B mod 2). By our earlier review,ω(A, B) = lk(A, B) for any
given diagram. Thus, given diagrams D, D′ of the same embedding E of
G,

ωD(A, B) = lkE(A, B) = ωD′(A, B)

for pairs (A, B) of vertex disjoint simple cycles. However, we should note
that given arbitrary vectors C, D ∈ Z2E, ωD(C, D) does not necessarily
agree with ωD′(C, D). Without getting too far ahead of ourselves, this
suggests that we should look at diagrams instead of embeddings and
formsωD instead of lkE.

Still, we’re getting ahead of ourselves. We haven’t certified that ω is
a bilinear form yet. In factω isn’t even defined on graph diagrams.
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Definition 3.1.1. Let G be a graph and D a diagram of some embedding
of G. The overcrossing number mod 2 of a diagram D, ωD(x, y) is the
number of times the subgraph x crosses over the subgraph y mod 2.

Theorem 3.1.2. ωD(x, y) is bilinear on the edge space Z2E of G.

Proof. How many times does x cross over y? Decomposing x into a sum
of ei st. xi = 1, we see that we can count the number of times each ei
crosses over y and then sum these counts up to getωD(x, y). Meanwhile
by decomposing y into a sum of e j st. y j = 1, we see that by counting
the number of times ei passes over e j for each e j and summing we get
ωD(ei, y). Of course, we can take everything mod 2, and summarize. . .

ωD(x, y) = ∑
xi=1,y j=1

ωD(ei, e j) =
n

∑
i=1, j=1

xi y jωD(ei, e j)

Therefore,ωD is bilinear. �

To see this computation in action, consider this diagram of K6.
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ω(ei, e j) j = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i = 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This construction completely subsumes the homology lemma. When-
ever (A, B), (B, C) and (A, B) are vertex disjoint simple cycles (VDSCs),

lkE(A, B) + lkE(A, C) = ωD(A, B) +ωD(A, C)
= ωD(A, B + C)
= ωD(A, B + C)

But the middle derivation holds for any pair of vectors from the edge
space, provided that a diagram D is fixed. This dependence on diagrams
prompts our next investigation.

3.2 Crossing Moves are Symmetric Bilinear
Forms

In the two lemmas from the beginning of this chapter we replaced a uni-
versal quantification over embeddings with a universal quantification
over linking numbers:

∀ embeddings E −→ ∀lkE
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However, now we want to work with overcrossing forms, making the
substitution

∀ diagrams D ∈ D −→ ∀ωD

In order to do so we need to find some set of diagrams D containing at
least one diagram of D of every embedding E. This is the question we
will now address.

To begin choose a diagram D0 of some embedding of G. For instance
we could choose a D0 of K6:

Now define the set of diagrams D as all those diagrams reachable
from D0 by some combination of planar isotopies, R1, R2, R3 and cross-
ing (CX) moves, but not R4 or R5 moves. I claim that with a suitable
choice of D0, D contains at least one diagram D of every embedding of
our graph G. We prove so by picking out a canonical-ish diagram for
every embedding.

Consider the local neighborhood of a vertex v in a di-
agram D of our graph G. We may record the radial order
of edges around v in D. In this example, the radial order-
ing is (e1e2e3e4e5).

In our initial diagram D0, we may record the radial
ordering around every vertex v. Call these radial order-
ings arising from D0 the canonical radial orderings (with
respect to D0).

Lemma 3.2.1. Fix an inital diagram D0 of G. For every embedding of G, there
exists a diagram D with the same radial orderings as D0 (i.e. with the canonical
radial ordering)

Proof. Consider an embedding. Let D be any diagram of this embedding.
Now look at vertex v of D. I claim that I can arbitrarily modify the ra-
dial ordering around v without changing the embedding or affecting the
radial orderings of other vertices.
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To do so, it suffices to show how to transpose any two adjacent edges
in the radial ordering. Just use an R5 move.

(· · · eiei+1 · · · ) 7→ (· · · ei+1ei · · · )

�

This lemma allows us to make statements like “Choose a diagram D
of the embedding E which has canonical radial ordering.”

The next step we take is to choose a canonical spanning tree T0 of G,
in conjunction with D0 so that D0 contains no crossings in a neighbor-
hood of T0. That is, the neighborhood of T0 in D0 looks like

Just like we found a diagram of every embedding with a canonical
radial ordering, we can now find a diagram of every embedding with a
canonical neighborhood of T0, namely a neighborhood with no crossings
and the canonical radial orderings.

Lemma 3.2.2. Fix an initial diagram D0 of G and a spanning tree T0 of G.
Then for every embedding of G there exists a diagram D with canonical radial
orderings and no crossings in a neighborhood of T0.

Proof. Consider an embedding. By the preceding lemma, there exists
some diagram D of the embedding with canonical radial ordering. I
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claim that I can modify this diagram until there are no crossings in a
neighborhood of T0, without changing radial ordering or embedding.

To see this, we will contract T0 in D towards some arbitrary root node
r of T0. Certainly r alone has a neighborhood with no crossing edges.
Given as much, can we add one of r’s children v to this no-crossing neigh-
borhood? We may “drag” v along the edge between r and v using a com-
bination of planar isotopy and R4 moves.

Eventually v will come close enough to r that the edge between them
won’t have any more crossings. Doing this for all nodes will remove all
crossings with edges in T0 from the diagram. Since we didn’t use any R5
moves the radial ordering is preserved. �

Corollary 3.2.3. There exists a diagram D0 with no crossings in the neighbor-
hood of a spanning tree T0.

Together, our two lemmas tell us that we can find a “canonical” pic-
ture of every embedding, and thus a set of diagrams which look identical
in a neighborhood of T0. Since a neighborhood of a tree can be confined to
a topological disk, the only salient variations in these diagrams are what
edges do outside this disk. In principal, this obviates us from thinking
about vertices and thus from considering R4/R5 moves.

However, we need one more tiny adjustment to get our formal result.
Instead of thinking about the canonical neighborhood of our tree as a
disk, we want to think of it as the complement of a disk.
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Lemma 3.2.4. Let D be a diagram of an embedding of the graph G with no
crossings in a neighborhood of T0, a spanning tree of G. Then there exists a
diagram D′ of the same embedding with

• the same radial orderings as D

• no crossings in a neighborhood of T0

• the complement of this neighborhood of T0 being a compact disk

Proof. We use two spherical projections. Pick any point p in the original
neighborhood of T0 in D not on an edge or vertex. Construct a sphere
(S2) tangent to the diagram plane at this point p. Let p′ be p’s antipode
on the sphere. Next, take the stereographic projection of the diagram D
to the sphere using p′ as the center of projection. Note that by perturbing
the diagram lying on the surface of the sphere as indicated at crossings,
we recover the embedding E in 3-space.
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Now, we construct a plane tangent to p′ in which to draw the diagram
D′. We project the spherical diagram onto this plane D′ using stereo-
graph projection through p. Because a neighborhood of p lies entirely in
the no-crossing neighborhood of T0, the complement of the no-crossing
neighborhood in D′ must be a compact disk. Furthermore if we look at
D′ from the side of the sphere (rotate the above picture upside down)
then the orientation is preserved from D to D′. �

Corollary 3.2.5. There exists a diagram D0 of any connected graph G with a
neighborhood of T0 (i) containing no crossings and (ii) whose complement is a
compact disk.

Furthermore, for all embeddings of G, there exists a diagram D with a similar
neighborhood of T0 and canonical radial ordering relative to D0.

Given a choice of D0 and T0, call diagrams of the above form canon-
ical diagrams. The corollary says there is a canonical diagram of every
embedding.

Theorem 3.2.6. Any two canonical diagrams (relative to D0, T0) of a graph G
are related by a series of planar isotopies, R1, R2, R3 and crossing (CX) moves.

Proof. Any two canonical diagrams are identical (up to planar isotopy)
everywhere but in a compact disk, forming a “tangle.” Using Reidemeis-
ter’s theorem and crossing moves we can get to any tangle with the same
endpoints. �

Corollary 3.2.7. Let D denote the set of all diagrams reachable from an ini-
tial canonical diagram D0 by planar isotopies, R1, R2, R3 and CX moves. D
contains at least one diagram of every embedding of G.

This last corollary was our original goal and so we’re through topol-
ogizing now. The next theorem folds this topological result into the alge-
braic picture we’ve been assembling.

Theorem 3.2.8. Let D be a diagram of a graph G and D′ a second diagram
reachable from D by planar isotopies, R1, R2, R3, and CX moves. ThenωD′ −
ωD is a symmetric bilinear form.

Proof. Planar isotopy does not changeω. How about the other moves?
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An R1 move just changes the
valueω(ei, ei) and so
corresponds to offset by the
form (ei ⊗ ei)∗ which is
symmetric.

An R2 move increments the
valueω(ei, e j) by 2, which is
just 0 mod 2.

An R3 move just rearranges
crossings, but doesn’t
change the number of them.

CX moves are more
interesting. Whileω(ei, e j)
decreases by 1,ω(e j, ei)
increases by 1. Taken mod 2,
the signs drop out, making
the total change offset by the
form (ei ⊗ e j + e j ⊗ ei)∗.

�
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3.3 Reduction to Linear Algebra
We began this chapter by reducing the statements “the graph G is IL”
and “G is IK” to the respective formal, logically quantified statements

∀lkE : ∃(A, B)VDSCs : lkE(A, B) = 1 mod 2

and

∀lkE : ∃ Foisy pair of pairs ((A, B), (C, D)) :
lkE(A, B) · lkE(C, D) = 1 mod 2

In this section we will show how to reduce these statements even fur-
ther, into linear algebra (mod 2). In the last two sections, we showed
that

• we can substitute the bilinear formωD for lkE, and

• we can quantify ∀D ∈ D instead of ∀ embeddings

Putting these two results together and turning the key, we get

∀D ∈ D : ∃(A, B)VDSCs : ωD(A, B) = 1 mod 2

and

∀D ∈ D : ∃ Foisy pair of pairs ((A, B), (C, D)) :
ωD(A, B) ·ωD(C, D) = 1 mod 2

which are logically equivalent to our opening lemmas by the results (need
specific references?) of the last two sections. This is great, but we can get
more mileage out of this substitution.

First, we should think of the quantification over diagrams D as a
quantification over bilinear forms ωD. Second, we should think of the
quantification over pairs of cycles (A, B) and pairs of pairs of cycles
((A, B), (C, D)) as a quantification over (2- and 4-) vectors A ⊗ B and
A⊗ B⊗ C ⊗ D. Finally, since we’re quantifying over sets of vectors we
should move to quantifying over vector spaces. Now, in slow motion (at
a theater near you!).
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Lemma 3.3.1. Letϕ be a linear form onZ2S and V ⊆ Z2S an arbitrary subset
of Z2S. Then

∃x ∈ V :ϕ(x) = 1 ⇐⇒ ∃x ∈ span(V) :ϕ(x) = 1

Proof. Certainly V spans span(V). Therefore, there must be some basis
B ⊆ V of span(V), a maximal linearly independent subset of V. Now
suppose ∃x ∈ span(V) :ϕ(x) = 1. Writing x on the basis B, we get

1 =ϕ(x) =ϕ

(
m

∑
i=1

xibi

)
=

m

∑
i=1

xiϕ(bi)

So someϕ(bi) = 1 or we have a contradiction. The opposite direction is
trivial. �

Looking at our existential quantifiers, we describe two sets, now writ-
ten as subsets of tensor product spaces.

VDSC =
{

a⊗ b
∣∣∣∣ a and b are vertex disjoint simple cycles in G,

written as vectors in Z2E

}

Foisy = Foisy minors = Foisy pair of pairs

=

x⊗ y⊗ z⊗ w

∣∣∣∣∣∣
(x⊗ y), (z⊗ w) ∈ VDSC and

x ∪ y ∪ z ∪w is contractible
to a Foisy graph


Applying the lemma we march our logical behemoths forward

∀D ∈ D : ∃x ∈ span(VDSC) : ωD(x) = 1

∀D ∈ D : ∃x ∈ span(Foisy) : (ωD ⊗ωD)(x) = 1

where (ω⊗ω)(x⊗ y) = ω(x) ·ω(y)1

Now, we’ll attack the universal quantifier. By the final result of the
last section, we know that the set of bilinear forms arising from diagrams
in D is

ω0 + S = {ω0 + s|s is a symmetric bilinear form on Z2E}
1This statement may be taken as a form of shorthand so as to avoid a digression on

tensor products of forms.
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an affine subspace of (Z2E⊗Z2E)∗ whereω0 = ωD0 and S denotes the
set of symmetric bilinear forms. Splicing in this perspective we arrive at
our final declaration.

Theorem 3.3.2. Let G be a (connected) graph. If

∀ω ∈ω0 + S : ∃x ∈ span(VDSC) : ω(x) = 1

then G is IL. If

∀ω ∈ω0 + S : ∃x ∈ span(Foisy) : (ω⊗ω)(x) = 1

then G is IK.

3.4 A Program for Intrinsically Linked Graphs
Determining the truth of the statements at the end of the previous sec-
tion amounts to a linear algebra problem over Z2. As a prototype for
the intrinsic knotting problem, we may construct a computer program to
decide the intrinsic linking predicate

∀ω ∈ω0 + S : ∃x ∈ span(VDSC) : ω(x) = 1

for an arbitrary graph G. This section describes one way to go about
doing that.

Or it doesn’t at the moment.



Appendix A

Open Questions

This thesis has left me with a few questions. I thought I’d indulge myself
a bit and share them here at the end.

Robertson and Seymour’s argument that the Petersen family is the
intrinsic linking obstruction set generated an ancillary result. If a graph
is IL, then not only does it contain some pair of linked cycles, but also
some pair of cycles linked mod 2. This means that our intrinsic linking
program computes a complete invariant. That is, it will always decide
whether a graph is IL or NIL correctly. Does a similar result hold for
intrinsic knotting?

Question A.0.1. If a graph G is IK, then is it true that G always contains a
doubly linked Foisy graph?

The idea of looking at the edge spaceZ2E comes from matroid theory.
In this thesis, we showed how to abstract most of the topological particu-
lars of embedded graphs to intrinsic graph structures, mainly using this
concept of the edge space. Can the idea be further abstracted to a general
matroid setting?

Question A.0.2. Is there a nice definition of an intrinsically linked matroid
and/or an intrinsically knotted matroid such that the matroid derived from a
graph G is IK or IL if and only if the graph is.

The following questions are motivated by a desire to obviate the com-
puter program part of IK/IL proofs proposed. Graph theoretically, they
could be very interesting because they provide a link (no pun intended)

69
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between the extremal graph minor problems of finding obstruction sets
for IL/IK and the matroid theoretic edge space. Many proofs related
to graph minors rely on case analysis or computer programs (e.g. Kura-
towski’s theorem and the four color theorem). Any strategy for replacing
case analysis/computers in IK and IL proofs with more linear algebraic
arguments might yield interesting insights into graph structure and/or
extremal problems.

Question A.0.3. Given a graph G is there a nice basis for the space spanned
by all vertex disjoint simple cycle pairs in G, span(VDSC)? Perhaps such
a basis could be found by decomposing Z2E ⊗Z2E = V ⊕W similar to the
decomposition of Z2E into a spanning tree and the cycle space.

Question A.0.4. Similarly, is there a nice basis for the space spanned by all
Foisy minors?

Finally, it’s somewhat unsatisfying to use Foisy’s lemma to bootstrap
intrinsic knotting proofs. It’s strange to hunt for doubly linked Foisy mi-
nors when you’re trying to prove intrinsic knotting of a graph. Perhaps
there’s a more direct way to look for knotted cycles.

Question A.0.5. We showed that the linking number of vertex disjoint simple
cycle pairs can be extended to a bilinear function on the edge space of a graph G.
Can the Arf invariant be extended to a well behaved algebraic function on the
entire cycle space of a graph G? Is it a quadratic form? Perhaps it’s even cubic
or quartic.


