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The benefits of education and of 
useful knowledge, generally difTused 
through a community, are essential 
to the preservation of a free gov
ernment. 

Sam Houston. 

Cultivated mind is the guardian 
.genius of democracy. . . . It is the 
only dictator that freemen acknowl
edge and the only security that free
.men desire. 

Mirabeau B. Lamar. 



AN INVITATION 

It is the desire of the editors of this Bulletin that it shall 
render to the teachers of mathematics in Texas the greatest 
possible amount of service. To this end they invite their 
readers to suggesct any topics in connection with secondary 
mathematics that they desire to have discussed, to mention 
any particular difficulties they wish to have removed. The 
editors do not agree to discuss any topic proposed or to remove 
any difficulty mentioned-they scarcely wish to place so large 
an order,-but they do agree to do the best they can to secure 
the desired discussion or to suggest a remedy for the difficulty. 

Any reader having any good ideas of his own or special 
methods that he has found helpful is invited to send a paper 
dealing with them, and if its character seems to warrant the 
publication of the whole, any part, or a synopsis, the editors 
will be glad to give it space. 
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THE ORIGINAL EXERCISE IN GEOMETRY 
J. G. Dunlap, Principal Cleburne High School 

The ''original exercise'' in this paper means that group of 
geometric principles whose truth must be established and prob
lems to be solved as distinguished from the theorems demon
strated in the text. The use of the original exercise in impress· 
ing and emphasizing geometric truths is of comparatively 
recent date. The experienced teacher will find it an extremely 
fertile field for developing accurate thinking. The earliest 
manuscripts in geometry were, of course, very primary, and the 
necessity of some means of fastening in mind the fundamental 
principles was not so great. As the science was gradually 
developed from the old Euclidean scroll, the field being ex
tended, the application of the principles then known called for 
and brought into use the exercise. 

The demonstration of a theorem must in form be essentially 
deductive or inductive-synthetic or analytic. Each has its 
peculiar use, and, to some extent at least, involves the other; 
analysis to discover -and synthesis to demonstrate the truth or 
falsity of the exercise. In the solution of practical exercises 
and problems the ability to investigate and reason for one's 
self is the necessary prerequisite to success. This ability is not 
inherent in the pupil, but must be acquired by long and earnest 
hours of application to study. Happy that teacher who e-an 
inspire enthusiasm in his pupils and make them fond of the 
task of solving the tedious original. And at this point I believe 
the pupil gets his most lasting benefit-a doggedness of pur
pose, a determination to win. It has been my observation that 
most of the failures in geometry are due to a lack of tenacity. 

Nothing in the field of secondary mathematics is quite as good 
in developing tenacity of purpose as the mastery of the original 
-nothing quite so good in developing the ability to concentrate 
the mental faculties. I am convinced that, if there is a superi
ority of the German over the American child in mathematical 
development, it is due largely to the preponderance of the 
exercise in the German text. Too many pupils memorize the 
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proof, if given in full in the te·xt, thus relying entirely on the 
memory and neglecting the reason. Nothing could be more 
harmful than this process, and yet I realize that it is one of the 
very things we have to fight, and one that is especially preva
lent among beginners. Nothing helps like the knowledge that 
one must depend entirely upon himself. The original furnishes 
this field of activity as, in my opinion, no other does. Smith 
says: "The great value of teaching originals is in developing 
the power to think along correct lines of logical thought; if 
properly handled they make the pupil think more intensely and 
interestedly than any other subject fitted to pupils of the same 
age.'' 

The subject matter of the original appears in so many 
forms that its mastery involves a many-sided view of the sub
ject. The pupil must be resourceful, and if blocked in one 
avenue of attack, try another. This brings confidence in him
self and the ability to do something for himself, rather than 
a dependence on the text. When once the pupil feels the joy 
of having accomplished something for himself, he has, indeed, 
a stimulus of no mean account. Too many pupils feel over· 
whelmed with the apparently impossible task and surrender. 
Sisson says: ''Without enthusiasm no mathematics. Geometry 
is a human book-not divine-therefore a very imperfect book. 
Geometry is the product of the human mind and not of the 
hand; therefore the subject concerns the intellect and i~ not 
mechanical.'' With this viewpoint, which is undoubtedly cor
rect, the aims, which a.re several, may be reduced to one all 
important one-the training of the mind to habits of correct 
thinking and to reasoning logically and accurately to a correct 
conclusion. Nothing in all the high school course is so well 
adapted to developing the power to express one's thoughts 
concisely and elegantly as the original of geometry. I daresay 
the student of English has found few agencies in the correct 
and direct expression of his thoughts more helpful. Three· 
fourths of its value is disciplinary. The mind should direct the 
hand. Mathematical reasoning is that process which step by 
step arrives at a definite conclusion. The original, as its name 
indicates, has within itself the suggestions of the line of reason
ing that lead to a solution. At this point are brought to play 
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those powers of observation which must suggest to the beginner 
the tools needed and the method of attack. To the beginner 
this is the most difficult point-'' getting started'' ; ''finding 
out what you want to do." These and kindred statements 
express the pupil's conception of the task before him. In this 
step-by-step process each is made up of two distinct parts-the 
statement of a fact that leads the mind in the proper direction 
toward a conclusion, and the authority for such step. When 
the beginner has recognized this truth, he has made at least 
one step in solving the exercise. One pupil who can and does 
master with fair accuracy the originals as the class proceeds 
soon becomes the leader. And in this the value of the original 
is recognized by the class. If this leadership is properly direct
ed by a skillful teacher, growth and development of a friendly 
rivalry will assert itself and the effect on class work will be 
beneficial. 

The grouping of originals immediately after the basic 
theorem is a step in the right directon and is productive of 
splendid results. It enables the student to center-fire, as it 
were, and holds him on the principle until it is mastered. Many 
pupils fail utterly because they are unable to translate English 
into geometric terms, thereby losing the meaning of the exer
cise. Again, many lose sight of the all-important motive for 
studying geometry-the training of the reasoning faculties. 
They take for granted certain relations because it looks that 
way and are unable to pick up the train of thought when the 
statement is challenged. This weakness can be corrected by 
persis.tent efforts on the part of the teacher in having the pupil 
attack the problem from another point. Our work in geometry 
is impaired and our success often disappointing because we 
omit the originals. The original furnishes the material for 
practice in the clinic and many originals with a few well
digested theorems will bring better results of a permanent 
nature than many theorems and few applications of them. 

While it is true, as Loomis says, that problems do not consti
tute a necessary part of the science of geometry, forming no 
part of the chain of connected truths embodied therein, yet 
because of their importance as applications of geometric prin
ciples, they are of the utmost educational value and should be 
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studied in connection with the theorems upon which they 
depend. After all, may it not be truthfully said that a pupil's 
knowledge of geometry is measured by his ability to solve the 
original? 

It is doubtful whether it is best to demand that the proof 
shall be submitted in a set form without variation. One of the 
chief ends to be attained is clearness of expression. However, 
it cannot be attained at once. Would it not be better to be 
master of facts than a slave to the form? As the pupil ad
vances, the polished form of proof should appear. If the de
mand for correctness of form is urged too far, the pupil loses 
the unfolding of the exercise in his effort to be correct in form. 
Young says: "Not all elegance and verbal accuracy that are 
to be attained later need be inflexibly required at first." Much 
of our trouble in teaching this part of geometry is caused by 
rushing the pupil over a mass of truths without time for diges
tion on his part. "Better plod at first and rush later," should 
be our motto. Many times we have heard the expression, ''I 
just know it is so,'' and kindred expressions, given as reasons 
for certain steps taken in demonstration. To accept such state
ments is not wholly bad, for it shows on its face that the pupil 
has within him the capacity for reasoning. The reason will 
come later, if he is properly directed. Much of our labor has 
been lost because we have not directed the mind of the pupil 
in the prQper way. Nothing, in my opinion, in the high school 
course calls for more patience on the part of the teacher than 
the direction of a slow student in attacking the original exer
cise. Again, no fixed rule of attack can be laid down, though 
some suggestions may be helpful. The first thing, of course, 
is to get a clear conception of the exercise. Skillful question
ing on the part of the teacher will give the student a start, as 
he calls it, and will help him discover the relation between the 
hypothesis and some theorem already learned. At this point 
the imagination is brought into use. Unless the pupil catches 
the spirit of geometric analysis, he will not succeed in finding 
the proof. Analysis is the soul of interpretation and interpre
tation is the key to the solution of the original exercise. 

Slaught says: "Many a high-school pupil who can play the 
game of hypothesis and conclusion-and likes it-has never 
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recognized geometry as a basic fact in the tiles on the floor, in 
the decorations on the walls, in the arches and windows of 
great buildings, in fact in all the mechanical and architectural 
developments of this and of every age. When once he compre
hends this, when he takes his 'originals' from actual conditions 
about him, then the 'game' assumes a new significance to him 
and geometry becomes a. fact instead of a theory, a part of life 
inatead of a mere school creation.'' Whether or not the stu
dent is able to reach the end just mentioned depends largely 
on the teacher-whether or not we recognize several distinct 
periods in the mental development of the child and the a.da.p
tation of subject matter and methods of teaching. This means 
in geometry a readjustment of subject matter, a more accurate 
classification of basic truths and a. multiplication of originals 
for the application of these truths. In fact, the humanizing of 
the subject will do much to improve the success in teaching it 
-make the originals as practical as possible, thus appealing to 
his observation and experience for material. 

Plato's school of geometry was for mature men. Plato and 
Euclid, if living, would be astonished at our methods of teach
ing geometry and at the personnel of the average class. Yet 
with all the advancement of the subject, it can be made more 
practical without losing prestige as a subject which develops 
and trains the mind in accurate thinking and logical reasoning. 
At this point in the pupil's development the teacher must do 
more than ask questi-0ns. He must bear in mind that the pupil 
in the beginning of a subject does not receive and understand 
as quickly as the teacher. He must remember that the pupil 
does not generalize, but must learn to do so; that the subject 
is not developed, but is in the process of being developed. We 
as teachers are much given to "overshooting," as it were, the 
pupil-forgetting that he is not a man and therefore does not 
reason a.s one. After all, "the pupil must learn to do by 
doing," and will succeed if properly directed. 

(Read before the Mathematics Section ot the Texas State Teachers' Association, 
December 1, 1916.) 
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THE MATHEMATICS OF INVESTMENT FROM AN 
ARITHMETIC VIEWPOINT 

EDWARD L. DODD 

INTRODUOTION 

To solve some of the problems in investment, algebra and 
calculus of an advanced type are necessary. But many prob
lems are susceptible of an arithmetic treatment. 

Algebra is commonly viewed as a higher branch of mathemat
ics than arithmetic. And in a certain sense it is. But a clear 
arithmtic grasp of a fundamental principle may represent higher 
intellectual activity than the corresponding algebraic reasoning 
which leads to a formula. And, in addition, it will probably be 
immensely more useful. 

Much the same relation exists between plane geometry and 
analytic geometry. The latter is rated as the higher branch of 
mathematics. But when the same subject is treated both in 
plane geometry and analytic geometry, the plane geometry 
usually calls forth the higher intellectual activity. 

In this presentation of some principles in the Mathematics of 
Investment from the arithmetic standpoint, letters will be used 
from time to time to stand for numbers. 'rhis can hardly be 
called algebra, although a beginner in algebra may think of 
algebra as the mathematics of letters and of arithmetic as the 
mathematics of numbers-a very infelicitous conception. The 
use of letters for numbers is mere short-hand. Algebra really 
begins when we substitute for real thinking some rule such as 
transposing with change of sign. 

In many texts on Investment and Life Insurance there are 
''verbal explanati-0ns. '' These are usually attempts to give 
arithmetic color to what has been proven algebraically. 

This paper is an attempt to make clear by an informal and 
largely arithmetic treatment a few fundamental principles in 
the Mathematics of Investment. 
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THE MATHEMATICS OF INVESTMENT 

The interest being 4%, a deposit of $100 is treated as follows: 

Original deposit, principal, or capital. ............... $100.00 
For 4%, the multiplier is . ........................... .04 

Interest for first year. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.00 
This is added to the principal. . . . . . . . . . . . . . . . . . . . . . . . 100.00 

Amount at end of first year. . . . . . . . . . . . . . . . . . . . . . . . . . 104.00 
Multiply again by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .04 

Interest for second year. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.16 
This is added to the amount. . . . . . . . . . . . . . . . . . . . . . . . . . 104.00 

Amount at end of second year. . . . . . . . . . . . . . . . . . . . . . . . 108.16 

The computation might have been arranged thus: 

Principal ............................ . ............ $100.00 
As multiplier, use 1 + interest rate. . . . . . . . . . . . . . . . . . 1.04 

Amount at end of one year. . . . . . . . . . . . . . . . . . . . . . . . . . 104.00 
As multiplier use again. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.04 

416 
104 

108.16 
It is easy to see that the two methods above must give the 

same result, for multiplying any number by .04 and then ad<ling 
the number is obviously equivalent to multiplying the number 
by 1.04. 

It is convenient to write, as abbreviations, 
l.04Xl.04=(1.04)" 
l.04Xl.04Xl.04=(1.04)" 

etc. Furthermore the multiplication sign is often omitted. 
$100(1.04) means $100Xl.04. 
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From the above, it is then evident that 
The amount of $100 at end of first year is ......... $100(1.04) 
The amount of $100 at end of second year is ....... 100(1.04) 1 

The amount of $100 at end of third year is ........ 100(1.04)' 
The amount of $100 at end of fourth year is ....... 100(1.04)' 
etc., the multiplier 1.04 being used once for each year that the 
money is left on deposit. 

If by n is meant any number of years, 
The amount of $100 at 4% at end of n years is $100(1.04)n 

Likewise; 
The amount of $100 at 5% at end of n years is $100(1.05) 0 

The standard abbreviation for the interest rate, used by texts 
on the Mathematics of Investment, is i. It should be noticed that 
the symbol 4%, read 4 per cent or 4 per centum, means 4 per 
hundred or 4/100 or .04. Thus if the interest rate is 4%, 
i=.04. The multiplier 1.04 used above is l+i. Or, if the rate 
is 5%, i now would mean .05, and l+i would mean 1.05. What
ever be the interest rate i, the multiplier (l+i) is used once for 
each year that the money remains on deposit. To get th(, amount 
after n years, the multiplier (l+i) is used n times, and this is 
abbreviated (l+i).0 Instead of $100, we may take any prin
cipal and call it P dollars. Hence, if S denotes the amount of 
P dollars left for n years at the interest rate, i, 

(l') 
s P(1-j-i) 0 

This i~ the most important formula in the Theory of Com
pound Interest. 

Many banks pay 2% every 6 months. Thus, $100 would 
become $102 at the end of 6 months. The $102 would now be 
regarded as principal, and 2% of $102 is $2.04; and thus at 
the end of a year the amount would be $104.04. It should be 
noted carefully that 2% for kalf a year is not the same as 
4% for a year. The 2% for 6 months gives an annual increase 
of $4.04 on $100. The 2% for 6 months is then equivalent to 
4.04% for a year. 

Instead of saying 2% for 6 months, it is more cu~tomary to 
say 4% payable semi-annually or 4% convertible semi-annually. 
Text-books call this a nominal 4% payable semi-annually. By 
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saying a nominal 4%, we emphasize the fact that this nominal 
4% is really not the same as 4%. It has just been shown 
that this nominal 4% is in effect a 4.04%. This 4.04% is called 
the effective rate corresponding to the nominal rate of 4% 
payable semi-annually. 

It will be noticed that the effective rate just mentioned is, 
indeed, descriptive of the earning power of money for one year. 
It is an annual rate, and thus we use i for the effective rate, 
in conformity with the definition for i given above. 

It was shown that the amount of $100 at the end of one year 
at a nominal 4% payable semi-annually is $104.04. 'l'his can 
be written in the form $100Xl.02Xl.02 or more briefly $100X 
(1.02) 2

• For each period of compounding we multiply by 1.02. 
The amount of $100 

At the end of 1/2 year is ............ $100(1.02) 
At the end of 1 year is .. .. . ......... 100(1.02) 2 

At the end of 1% years is ............ 100(1.02)' 
At the end of 2 years is . . ............ 100(1.02)' 

And so forth. 
The letter j is used for the nominal rate. Here j-.04. The 

letter m is used for the number of times a year that the interest 
is compounded. Here m=2. The interest rate actually used
that is the rate for 6 months-is .02 or j/ m. The multiplier 
above is 1.02 or 1+j/ m, and this is used once for each period 
of 6 months. 

During 1 year, interest is compounded m times, and thus 
1+j/ m is used as a multiplier m times. In n years, interest 
is compounded mXn times, or as it is usually written mn times; 
and thus 1+j/ m is used as a multiplier mn times. Hence if S 
is the amount of P dollars at the end of n years, at the nominal 
rate j payable m times a year. 

(2) 
8=P(1+j/m)mn 

Now, by definition, the amount of 1 dollar at the end of one 
year at the effective rate i is 1 +i. Hence from (2), by making 
the principal, P-1, and also the number of years, n=1, we get 

1+i=(1+j/m)m (3) 
This formula (3) has thus Deen derived as a special case of 
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(2). But a little reflection will show that it follows directly 
from the definitions of i and j. The principal 1 becomes at the 
end of the first period of compounding 1+j/m. 'l'he amount of 
the end of the first period is thllil found by using 1+j/m as a 
multiplier once. There being m periods of compounding in 
the year, the multiplier 1+j/m is used m times, giving 
(1+j/m)m as the amount of 1 dollar at the end of 1 year; and 
by definition of i, this amount must also be equal to 1+i. Hav
ing thus obtained (3) directly, we may obtain (2) by replacing 
1+i in (1) by its value given in (3). 

Equations ( 1), ( 2) , and ( 3) all involve the same principle 
(not principal); and this may be expressed as a rule. 

RULE FOR COMPUTING THE AMOUNT UNDER COMPOUND INTEREST. 

To 1 aitd the interest rate for the period of c.ompounding. 
With the prinDipal as multiplicand, use the number just found 
once as a multiplier for each period that interest is compounded. 

In the Mathematics of Investment, reciprocals are used ex
tensively. Thus, if 1 dollar will yield an annual interest of .04, 
it will take lj.04 or 25 dollars to yield an annual interest of 1 
dollar. Problems like the following are given: If a farm yields 
a net income of $200 per year after all expenses are paid, what 
is the value of the farm if money is worth 5%? In an actual 
case, the possibilities of increase or decrease of the income must 
be considered together with other factors. But assuming the 
continuance of the specified income, we may say that inasmuch 
as it will take lj.05 or 20 dollars to give an income of one dollar 
at 5%, it will take 200X20 dollars or $4,000 to yield $200 an
nually. And thus the value of the farm would be placed at 
$4,000. In practice we would naturally divide the $200 by .05 
and get $4,000 directly. 

This is in accord with the following well known rule. 

RULE TO FIND THE CAPITAL REQUIRED TO PRODUOE .A SPECIFIED 

ANNUAL INCOME. 

Divide the· gpecified annual income in dollars by the interest 
rate, or uJhat is the same thing, by the fraction representing the 
interest on one dollar for one year. 
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This is so simple that it would hardly be worth mentioning 
here, were it not for the fact that it is a natural introduction to 
a more complex problem. 

If one dollar is deposited at 4%, and the interest is drawn out 
at the end of each year, this interest will be 4 cents. Now in 
practice it does not often happen that a man depositl:l just one 
dollar and continues to draw out year after year his £our cents. 
But one of the beauties of the Mathematics of Investment is 
that we may compute everything on the basis of one dollar and 
then find the result on the basis of P dollars by simply multi
plying by P. In getting at the fundamentals of the subject, a 
constant reference to P dollars or 100 dollars or 1,000 dollars 
becomes a nuisance; and we simply deal with one dollar. 

But suppose now that one dollar is left on deposit for 20 years, 
no interest being withdrawn in the meantime. The amount of 
this one dollar at 4% will then be (1.04) 20,-as may be seen from 
the Rule given or from Formula (1). The principal being 1, 
the increase will be (1.04) 20-1; and this may properly be called 
the interest on one dollar for twenty years at 4% compounded 
annually. If, indeed, from the amount (1.04) 20

, the interest, 
[ (1.04) 20-1] is withdrawn, the principal of 1 dollar is left. The 
same proc.ess being repeated, this 1 dollar will produce interest 
to the extent of (1.04) 20-l payable 20 years later, and 1 dollar 
will be left at that time to serve the purpose of principal. So 
just as 1 dollar will produce an annual income of .04 forever,
the 1 dollar as principal never being altered,-so also will 1 dol
lar produce an income of (1.04) 20-1 payable at the end of each 
period of 20 years forever, and at each time that interest is paid 
the principal will remain exactly 1 dollar. 

If, then, 1 dollar will produce an income of (1.04) 20-l dollars 
payable at the end of each period of 20 years, it will take 

1 

(1.04) 20-l 
dollars to produce an income of 1 dollar payable at the end of 
every period of 20 years. Likewise it will take 

10,000 

(1.04) 20-l 
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dollars to produce an income of 10,000 dollars payable at the 
end of each period of 20 years. 

PROBLEM. 

We have thus solved the following problem: 
A building mu'St be reconstructed every twenty years at a 

cost of $10,000. What sum of money laid aside now at 4% will 
provide for the required reconstruction of the building for all 
time? 

It has been shown that (1+iJn is the am-0unt of one dollar 
at the rate i after n years, this n being a whole number of years. 
If n is not a whole number the amount can not be ded·uced from 
any considerati-0ns thus far advanced. Some definition is neces
sary. It is perhaps obvious that the most convenient definition 
for the amount would retain the same expression (1+i)n, and 
allow n to be a fraction, proper or improper,--or indeed any 
real number. 

DEFINITIONS. 

For all real values of n, integral, fractional or otherwise, the 
amount of one dollar at the rate i after the lapse of n years is 
(1+i}ll. 

The compound interest on one dollar for n years at the rate i is 
(1+i)n-1. 

This definition will now be utilized to express as a rule the 
gist of the illustration just given. 

RULE to find the oapital that must b~ invested to yield a 
specified income payable at tht end of each period of a sp·ecified 
number of years, forever. 

Divide the specified income in dollars by the number repre
senting the compound inforest on one dollar for the specified 
number of years. 

Example. Find the capital that must be invested at 4% com
pound interest t-0 yield an income of $100 payable at the end of 
the 2nd, 4th, 6th, 8th year, etc., forever. 

At 4% compound interest, the amount of one dollar at the 
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end of one year is 1.04, and the amount at the end of tw,> years is 
l.04Xl.04=1.0816. 

The compound interest on one dollar for 2 years is 
.0816 

dollars or 8.16 cents. 
In passing, it may be noticed that the simple interest is only 

8 centi on the dollar; whereas the compound interest, as just 
shown, is 8.16 cents on the dollar. 

Now divide $100 by .0816. This gives $1225.50 as the capital 
that must be invested at 4% compound interest to yie]d an in
come of $100 payable every two years forever. 

If simple interest at 4% were used, this would be .08 dollars
on one dollar in two years. We would have divided $100 by .08 
and obtained $1250 as the capital that should be invested. At 
compound interest, however, as has just been shown, the capital 
needed is only $1225.50. 

This result may be checked as follows: 

Capital or prineipal ........................ $1225.50 
Add interest at 4%. . . . . . . . . . . . . . . . . . . . . . . . 49.02 

Amount at end of first year ...... . .......... 1274.52 
Again add interest at 4%................... 50.98 

Amount at end of second year. . . . . . . . . . . . . . . 1325.50 
Deduct the specified income. . . . . . . . . . . . . . . . . 100.00 

Capital as at beginning. . . . . . . . . . . . . . . . . . . . 1225.50 

It is thus evident that a principal of $1225.50 win at 4% 
compound interest yield an income of $100 payable at the end 
of each period of nvo years, the prncipal remaining "unim
paired'' or undiminished. The algebraic verification or check 
of the general Rule is also interesting, but will be left to the 
reader. 

DKFINITION 

The capitalized cost of a structure or an article is the first 
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cost plus the capital which would provide for an indefinite nwm
ber of renewals. 

It has just been shown how this capital can be computed. By 
addin" to this the original cost, the capitalized cost can be found. 

In an enterprise in which machinery or perishable equipment 
is involved, the percentage of profit must be based upon the 
capitalized cost and not upon the original CO$t. 

If a man buys an automobile for $800, runs it as a jitney for 
four years clearing $100 each year over running expenses, and 
if the automobile then breaks down, being worth as junk only 
$50, the man has not made 100/ 800 or 12%% on his investment 
each year; for his original capital of $800 has been almost com
pletely absorbed or destroyed. 

It did not take long to compute l.04Xl.04 or (1.04)' as used 
in a foregoing illustration. But to compute by actual multi
plication (1.04)" would take considerable time. For 1.04 would 
be the multiplicand and there would be forty-nine multiples, 
each being 1.04. 1.04X l.04 X l.04Xl.04 X ... etc., involving 
forty-nine multiplications. Certain monetary tables have been 
constructed giving the amount of one dollar for any number of 
years up to 100 years at the usual rates of interest. For unusual 
rates of interest interpolation can often be used. But unless the 
consecutive rates given differ from each other by only a small 
fraction of a per cent, the interpolation must use second or third 
differences; the interpolation method used in logarithms will 
not be adequate. Logarithms may be used directly. The logar
ithms should be given to at least six decimals. Seven or eight 
place logarithms are frequently necessary. 

The computation side of investment problems is Yery im
portant. But it is not the purpose of this paper to dwell upon 
this matter. 

In this paper just a few rules have been given, applying to 
simple cases. The reader is invited to ask himself these ques
tions: How would the last "R1tle" giv1m be altered if a nom
inal rate of interest was giv·en, payable semi-annually or quar
terly? How would the Rule be altered if the income was payable 
monthly? Before attempting to answer these questions the 
reader should note (1) that 2% for a half-year is not ~quivalent 
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to 4% for a year; (2) That an income of $100 at the end of each 
month is not equivalent to an income of $1200 at the end of the 
year. In practice income very frequently takes the form of a 
rent payable monthly, and nominal rates are commonly used. 

SUM MARX 

The amount S of P dollars at the rate i for n years is 
S P(1+i)n 

If n is a whole number, this can be proven. If n is any other 
real number, it is true by definition. 

The relation between the npminal rate j payable m times a 
year and the eff octive rate i is 

1+i==(1+j/m)m (3) 
By means of (1) and (3), Scan be expressed in terms of P, 

j, n and m. 
The compound interest on one dollar for a specified period of 

time is defoned to be the amount of one dollar for that time 
diminished by one dollar. 

To find the capital needed to produce a specified income pay
able at the end of ea.eh period of a specified number of years, 
forever, divide the specified income in dollars by the number 
representing the compound interest on one dollar for ihe speci
fied number of years. 

This can be used to obtain the capitalized cost of a structure 
or article, viz. the original cost plus the present value of an 
indefinite number of renewals. 

In the case of perishable equipment the rate of profit must be 
computed on the basis of the capitalized cost, not the original 
cost. 

(To BE CONTINUED.) 
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LITERAL ARITHMETIC 

In this and the following bulletins we will briefly indicate 
some simple applications that may be made by the use of the 
literal notation in grammar grade work before the high school. 
To the teacher in the high school these applications will seem 
very elementary and in many cases trivial, but if he would help 
the grammar grade teacher introduce these applications in the 
study of arithmetic he would find his classes in the beginning 
of algebra having fewer difficulties in the first few weeks. 

In this bulletin we will briefly take up the use of letters in 
the study of problems in interest. 

In all interest problems there are four quantities to be con-
sidered: 

(1) The principle p. 
(2) The rate per oont per annum r. 
( 3) The time t given in years. 
( 4) The interest i. 
The product of pXr is the interest for one year, and the 

product pXrXt is the interest for t years. Hence we have 
the formula 

(1) pr t==i. 
Dividing both sides of (1) respectively by pr, p t, r t, we have 

i 
(2) t=-

pr 
i 

(3) r= 
pt 
i 

(4) p=-
rt 

Formula (1), as we have seen, is an expression of the defini
tion of interest by the use of the four letters i p r and t. It is 
therefore easily remembered and can be written down, at any 
time, when needed. From (1) the pupil can soon learn to find 
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formulas (2), (3), ( 4). These four formulas show that when 
any three of the four numbers i, p, r, t, are given the fourth 
can be determined. Thus 

By (1) the interest i may be found when p, r, t are given. 
By (2) the time t may be found when i, p, r are given. 
By (3) the rate r may be found when i, p, t are given. 
By ( 4) the principal p may be found when i, r, t are given. 
It would be well for the teacher to give (1) frequently to the 

class and have formulas (2) (3) ( 4) derived from it and state 
the reason for the process. A few examples will be added. 
Example. Given p=$1200, r=5l/2% and t=2 yrs., 5 mo., 10 da. 

to find i. 
By definition we know the time t must be expressed in years. 
Hence 

t-2 yrs., 5 mo., 10 da.=2 4/ 9 yrs. 
By formula (1) we have 

i pr t~'!;l200X.05l/2X 2 4/ 9 
=$161.33% 

Example. What principal in 2 years time will produce $30 
interest, the rate being 5%? 

By formula ( 4) we have 
i $30 

p=-=--
r t 2X.05 

= $300 

It is sometimes convenient to use a fifth formula derived as 
follows: 

a=p+i 
P+P rt 

a=p(l+r t) 
or a 
(5) p=-

1+vt 
The a which is defined to be equal to the sum of the interest 

and principal is called the amoimt. 
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E xample. What principle will amount to $356 in two years 
and eight months, the rate being 7%? 

Here we have 
a 

p=--

1 +rt 
356 

1+273x .01 
=$300 

It is thus seen that by remembering the definition of interest 
that all rules may be written down at once for any case that 
may arise. The wa~te of energy in classifying interest problems 
into so many cases as found in most arithmetics is saved here 
and the student has to learn the definition of interest only and 
not spend his time learning a rule to fit each case. It will be 
well for the teacher to propose at random problem~ for the 
different members of the class to indicate and then find the 
solution. Do not let the class expect that any two successive 
problems will fall under the same formula. Thus propose a 
series something as follows: 

(1) Given p=$900, r=.06, t=3%; find i 
(2) Given r=.06, p-$500, i=$15; find t 
(3) Given a=$912, t=4, r=.031/2 ; find p 

( 4) Given p=$1089, i-$200.376, t=4 yrs., 7 mo , 6 da.; 
find r. 

In this way the pupil will learn to know interest in a way 
that would be impossible in studying separate cases by the old 
methods. 
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ON POSTULATIONAL SYSTEMS 

1. Introduction. In most of the modern fields of investiga
tion in mathematics, the philosopher can hope to finu little to 
arouse his interest or challenge his criticism. Undoubtedly there 
has never been a time in which the current problems of this 
science have been so unintelligible to the metaphysician and to 
the man of affairs. But in the marvelous growth and specializa
tion in mathematics during recent years, the relations of mathe
matics to logic and to the wider branches of philosophy have not 
been wholly neglected. The ancient eraving for a propositional 
system that shall be at once simple, consistent and universal, 
and which, nurtured through generations of the finest of Greek 
thought, found at last an adequate expression in Euclid's superb 
masterpiece, this same scientific and esthetic longing has re
cently, also, been making insistent demands for critical investi
gation and appreciation of what has been called the Foundations 
of Mathemati~. 

The processes of counting the construction of weights and mea
sures, of interest tables and calendars, the staking of fields, 
and the mapping of the starry heavens, the building of houses 
and ships, the erection of monuments and fortifi.cations, in 
fact mo.st of the occupations of the artisan and the trader in
volve at some stage, specialized notions of number and of space 
relations. Arithmetic, geometry and even trigonometry, arose 
as inevitable practfoal sciences. There was probably a fair 
amount of collected material forming a rudimentary mathe
matical theory even as early as 2000 B. C., among the most 
advanced peoples of that era. Looking back to such a time, one 
can well believe that it was the substance and not the form of 
their computational science that interested the learned men of 
that day. Many times since then mathematical rigor has been 
forgotten in the excitement of suggestive discovery, and the 
foundation completely obscured by the splendor of the growing 
superstructure, and even today this situation obtains for many 
if not most investigators in mathematics. 
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The ''foundations of mathematics'' as a theory instead of 
being historically essential to the growth of mathematical science, 
has been an esthetic luxury necessary indeed for an adequate 
appreciation and rigorous treatment of large fields of mathe
matics but slighted during many periods of rapid, if insecure, 
extension. Not so much as a partial understanding of the role 
and the significance of anxiom'.'l is essential to the grasp of 
geometric facts, nor even to the discovery and formulation of 
many intricate proofs. Thus one is not surprised to learn that 
the very comprehension of the problems rela.ting to the axiomatic 
bases wa'.'l a rare achievement of Greek thought, and since the 
Alexandrian era largely lost to the world until recent times. 

2. The Nature of a Mathematical System. As early ack
nowledged by the Greeks, a formal mathematical proof must be 
pure deduction, purged of all accidental and extraneous features 
such as intuitive or inductive argument'.'l. The very existence 
of a proof implies not only definitions, but certain propositions 
regarded as established and certain logical processes admitted 
as valid. In similar manner no definition can be permitted 
which does not relate objects regarded as already known. It is 
clear that if any deductive science is to be developed certain 
logically basal operations, primitive objects, and elementary 
propositions must be accepted as initial and not requiring just
fication by the science about to be dealt with. Thus the mathe
matician presupposes acceptance of logical laws and of certain 
terms and propositions. For rea'.'lons of convenience principles 
of logic a.re only rarely explicitly investigated in connection 
with a mathematical system but the same remark does not hold 
for the terms and propositions employed. While for each indi
vidual treatment there must exist undefined objects and un
proved theorems it is in no respect essential fhat a preassigned 
element or proposition be undefined for all possible discussions. 
One geometer may regard "'point," "line" al!ld "order" as un
defined, and another perhaps, define all of these in terms of 
''transformation,'' and ''planar element.'' Even the term '' un
defined," may be misleading since every axiom or unproved 
proposition is a partial implicit definition of these objects, which 
were indeed initially undefined. 
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These commonplaces of a deductive science were understood 
even in the Middle Ages as is shown by the following quaint 
quotation from Thomas Aquinas. (Summa Theologia 1, 1. 
questio 1, art. 1-8.) 

"But there are two kinds of sciences. There are those which 
proceed from the principles known by the natural light of the 
mind, as arithmetic and geometry. There are others which pro
ceed from principles made known by the light of a superior 
science; as perspective proceeds from principles made known 
through geometry, and music from principles made known 
through arithmetic. One science may be .said to be 
worthier than another by reason of its certitude or the dignity 
of its matter. . . It should be said that . . other 
sciences do not prove their first principles but argue from them 
in order to prove other matters. One should bear in 
mind that in the philosophic sciences the lower science neither 
prov~ its own first principles nor disputes with )tim who de
nies them, but leaves that to a higher science. But the science 
which is highest among them, that is, metaphysics, does dispute 
with him who denies its principles, if the adversary will concede 
anything; if he concede nothing, it cannot thus argue with him 
but can only overthrow. his arguments.'' 

3. Euclid's Pwrallel-Postulate. The modern revival of in
terest in the logical substructure of analysis has been an out
come almost exclusively of the discussions and discoveries cen
tering in the so-called "parallel-postulate" of Euclid. Except 
for the phenomenal excitement awakened by the non-Euclidean 
geometries born in the last century, it is at least improbable that 
the modern mathematical philosopher could rival the logical in
dependence which recent scholarship discovers in the remains 
of the Greeks. Euclid who lived about 300 B. C. was associated 
with the foundation of what may properly be called the first 
university, and which was situated in Alexandria. 

Today we appreciate Euclid's problem of reducing the science 
of geometry as then known to a postulational basis, and we un
derstand also his objectors. Not until after the twenty-eighth 
proposition has been proved does Euclid require the famous 
proposition which has been rendered into English as follows: 
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'' l£ two lines are cut by a third and the sum of the interior 
angles on the same side of the cutting line is less than two right 
angles, the lines will meet on that side when sufficiently pro
duced." This proposition has given rise to much discussion. 
Its very order among the axioms has been changed by various 
commentators. Its length and apparent complexity is in strik
ing distinction to the form of most of Euclid's axioms, nor 
does its independence appear so obvious. It may be regarded as 
a converse of a previous proposition and yields the converse of 
yet another. Then, too, it has appeared as being more prob
ably capable of proof by means of the remaining postulates than 
any of the others. 

4. Origin of Non-Euclidean Geometry. Saccheri, an Italian 
monk developed in 1733 a body of geometric theorems in which 
the above axiom is denied. It must be admitted that he finally 
concludes the entire system to be contrary to common sense 
and therefore worthless, but in view of the apparent attitude 
of the authorities of the time and the anecdotes concerning 
Galileo, the sincerity of his ruthless criticism might be sus
pected. In 1766 Lambert maintained that the parallel-postulate 
requires proof, and suggested some characteristics of the geom
etry resulting from its denial. Legendre (1752-1833) tried to 
prove the above proposition. He continued, of course, to regard 
a line as infinite in length, and proved independently of the 
parallel-postulate, that the sum of the angles of a triangle is 
at most equal to two right angles, and that if a single triangle 
existlil in which the sum of the angles is exactly equal to two 
right angles, then this is the sum for every triangle. The 
exis~ence of the one triangle that would complete the proof of 
the theorem that the sum of the angles of a triangle is equal 
to two right angles and hence the proof of the equivalent 
theorem, viz. the "parallel-postulate," he could not establish. 

Such was the status of the problem until after 1830, when 
Euclid was justified in a spectacular manner. Approximately 
simultaneously, Lobachevsky, a Russian, J. Bolyai, an Hun
garian, and Gauss, a German, showed the necessity of the post
ulate for ordinary geometry, by exhibiting a geometric science, 
different from that of Euclid, but obtained by denying this 
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single postulate. For the first time in scientific thought, the 
necessity of a given postulate for an assigned geometry was 
proved, and a new independent type of special theory wa! 
developed. 

Other types of non-Euclidean geometry followed. Riemann 
discovered a new form very analogous to that above mentioned. 
Other postulates have also seen varied including some uncon
sciously assumed by Euclid and first explicitly formulated in 
recent times. New methods of developing the entire subject of 
geometry have been .suggested such as the metrical postulates 
of Riemann, Helmholz, and Killing. Special disciplines such 
as Sundara Row's Paper-folding and Mascheroni 's Geometry of 
the Compasses, have been conceived, until today the forms of 
geometry are as diversified as the races of man. 

5. The Revival of Interest in Postulates. Ever since the 
time of Newton and Leibniz, the power and fertility of the in
finitesimal calculus have fascinated the minds of mathematicians. 
The unbroken series of astounding discoveries and the wealth 
of physical problems that have yielded to rationalization have so 
glorified the calculus as an instrument, that for generations few 
cared to claim for mathematics, a purely deductive role. The 
great rigorists of the last century, however, turned the tide, 
and with their in.sistance upon the arithmQtization or all an
alysis, brought the postulational character of the number con
cept once more to the fore. Intuition and coincidence,s have 
been again subordinated to proof, and such notions as irrational 
number, complex variable, limit, differentiation, integrability, 
continuity, and the like have been followed back to explicitly 
postulated properties of numbers. 

Everywhere this same tendency has been .ihown, not merely 
in geometries of the general Euclidean type and in classical 
analysis, but in special fields such as Analysis Situs, in the 
definition of certain functions, as determinants, the Gamma fun
tion and the like, and in non-metrical mathematics such as the 
Algebra of Logic. This leads us to ask the question, ' 'What is a 
system of postulates?'' 

6. The Criteria of a Postulational System. A mathematical 
theory must always pre-suppose some concepts and laws unless 
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it starts with a logical void and investigates the fundamental 
processes of thought. Many examples exist of nominally mathe
matical investigations which discuss the philosophical rontent of 
the notion of number at great length but contain no significant 
mathematical theorem. A safer and more expeditious because 
more formalistic procedure is to posit without further evalua
tion the legitimacy of drawing conclusions of certain definite 
forms from premises expressed in assigned conventional types. 
Of such is the formal logic of Aristotle and its more sophisticated 
recent successors which step naturally from set forms to special 
symbols, yielding an unequivocal compactness that discourages 
if not precludes verbose quibbling. A consistent use of logical 
symbols to the exclusion of words characterizes mu~h of the 
published work of the mathematical philosophers of today. 

Once the logical laws are established, and the "undefined 
terms," that are to be employed are stated, the substance of the 
postulational system lies in axioms or postulates as they may 
be called indescriminately. Upon the conditions to which we 
subject the set of axioms there are esthetic as well :-t.s logical 
restrictions. The most commonly mentioned requisites are 
independence and consistency, but many others might be sug
gested. For example, the axioms are usually expressed in as 
simple a manner as possible. Forms which with the usual in
terpretation of the elements are intuitionally obvious are pre
ferred to startling or paradoxical statements. The set of axioms 
is frequently expected to prove categorical. A generic and 
psychological order is usually desired as against an apparently 
artificial or accidental sequence. Complete independence is 
more highly valued than mere simple independence. The 
equivalence of any new system to each of the previously known 
systems determining the same science must be demonstrated. 
The possibility of a postulate being true only vacuously should 
not accidentally arise except when a denial of the hypothesis 
deprives ipso facto, the conclusion of a meaning. In the widest 
sense of the terms it is desirable that a system of axioms be 
adequate in substance, elementary in form, economical in con
text, and symmetrical in arrangement. 

Any criterion of an esthetic or logical type that does not it-
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self admit of formal and unambiguous definition, can only be 
tested by individual judgment and relative appreciation and 
differs wholly in spirit from the axiomatic system that is being 
examined. Controver.sy and prejudice can be avoided only with 
the application of formal conditions for which deductive proofs 
may be given in each case to be examined. We shall confine 
our attention therefore to those formal conditions which appear 
most nearly universal and rigorous. We shall examiuc in par
ticular the notions of simplicity, consistency, simple indepen
dence, complete independence and categoricity. 

7. Simplicity. A statement of the form, "If A then B, and 
if C then D," might obviously be analyzed into two simpler 
statements (1) "If A then B," (2) "If C then D." To com
bine into one statement two unrelated concepts can only result 
in needless complexity. It is not infrequent that a set of postu
lates may be shown to be formally independent by use of the 
obvious device of combining two refractory axioms into one 
and thus permitting the resulting combination to be <lenied if 
either part independently be not satisfied. One may adopt as 
a .standard the principle that every axiom shall express a single 
idea. Difficulties, however, arise immediately. The statement 
"All A is both B and C," might be analyzed into ( l) "All A 
is B," (2) "All A is C." If, however, we denote by D the 
features common to B and C and by E those contained in 
B but not in C, and by F, those in C but not in B, we have 
the following: In place of ''All A is B, '' read, ''All A is D, 
or all A is E, or some A is D and some A is E.'' And in 
place of "All A is C," read, "All A is D, or all A is F, or 
some A is D. and some A is F," while in place of "All A is 
both B and C," read, "All A is D." In the new notation the 
analysis of "All A is both B and C," into ( 1) "All A. is B," 
(2) "All A is C," becomes the analysis of, "All A is D," into 
(1) "All A is D, or all A is E, or some A is D and some A 
is E," (2) "All A is D, or all A is F, or some A is D and 
some A is F." In a similar manner every statement may be 
analyzed into two statements, and "simplicity" in this sense 
must be viewed either as an accident of wording or else as a self
contradictory notion. 
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8. Consiste11,cy. A set of postulates is naturally said to be 
consistent if it does not involve a contradiction. It hi concept
ually poS'Sible that a very trivial set of postulates might be such 
that every derived proposition could be cast into an assigned 
form, and where it could be proved that a given combination 
of terms can arise in at most only one way. In such a system 
no contradiction could arise, because, as we see, if an assertion 
be made in connection with a given set of terms, 11. negation 
can never arise for the same set, and a contradiction is a priori, 
inconceivable. Whether any important branch of mathematics 
could be put in such a form is at least highly dubious, and if 
consistency is to be proved, we expect a different procedure. 
The usual proof consists in exhibiting a known instance which 
satisfies all of the postulates. It would be at least difficult to 
prove that the power of recognizing that a set of postulates is 
satisfied by a given instance is purely logical. Any such act of 
immediate perception savors strongly of the intuitive,-but we 
shall waive this point. There remains the question as to 
whether the instance cited is itself existent. How can we know 
that the postulates for geometry are consistent by merely point
ing to the space in which we live or rather to our conception 
of this space? It is undoubted that most of us are conscious 
of having given credence to numberless mutually contradictory 
beliefs, and logicians regularly point out such supposed contra
dictions in each others' assertions. A proof of consistency differs 
very little in its essence from the rough and illogical argu
ment ad hom.inem.. 

9. Independence. A set of postulates has simple inde
pendence if no one postulate can be derived from the others. 
The situation is analogous te that with regard to consistency. 
Indeed, an implicit definition of simple independence may 
be stated as follows: ''A set of postulates has simple in
dependence if the set obtained by asserting all of the post
ulates except one, and negating that one is consistent for 
every choice of this one postulate from among the set.'' Every 
objection th&t can be cited for the tests of consistency holds 
immediately for tests of independence and in increased measure. 
For while the examples cited for consistency are usually fa-
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miliar and can hardly contain a secreted contradiction, if we 
are to value the critical experience of the race, the examples 
for independence, on the other hand, are frequently peculiar 
if not indeed wierd. Their mere unfamiliarity might be re
garded by some as invalidating their claim to obvious consistency. 
But the tests for independence involve new objectionable fea
tures not found in questions of consistency, for here it is no 
longer the set of postulates as a whole that is being tested 
but the set with reference to its articulation in individual postu
lates. Two systems which are logically equivalent might be 
such that one has and the other has not simple independence. 

Complete independence is obtained when the set of postulates 
is such that every set derived by asserting some and negating 
the remaining postulates is consistent. This refinement of the 
notion of independence is still open to the objections already 
raised. 

10. Categoricity. A set of propositions is categorical if any 
instances of systems of objects and relations which satisfy the 
postulates are in one to one reciprocal correspondence. For a 
categorical set no theorem stated wholly in the terms introduced 
by the postulates can be proved true in one in.stance and false 
in another . In a categorical set no new postulate can be ad
joined unless it introduces a new term or is itself redundant. 
With respect to internal relations therefore, a categorical set 
of postulates completely define its terms. This does not mean 
that the terms are completely characterized with respect to out
side objects. For example, the term "point" in a e:itegorical 
geometry is regularly such that it is impossible to tell whether 
a ' 'point'' is regarded as a visual particle of imperceptible size, 
such as a ''point of light,'' or is viewed as a set of th~ee num
bers. One can say that the set of three numbers represents the 
visual particle in position, or that the particle by its position 
represents the three numbers, and either concept has valid 
claims to the title of ''point.'' The notion of ' ' line'' may be 
treated in a similar manner. And yet if the geometry be cate
gorically determined, every theorem about points and lines must 
have precisely the same degree of validity in the two interpre
tations. We shall not insist upon the difficulties attendant upon 
a proof of categoricity for a given set of postulates. 



The Te.r:as Matherriatfrs Teachers' Bulletin 31 

11. Conclusion. We have seen that the demands of mathe
matical science have resulted in the growth 0£ a system 0£ 
formal logical and esthetic criteria. These criteria while not 
without content are difficult i£ not impossible to apply in a 
purely abstract manner. The objection suggests itself imme
diately that the systemmatization 0£ postulates proposes an ideal 
which is inherently impossible 0£ attainment, and that the claims 
0£ any gi'ven postulational system are based in presumptious 
ignorance or superficiality. Indeed, the utter £utility 0£ in
vestigations into the foundations 0£ mathematics is assumed as 
obvious by many people. The real importance and suggestive
ness 0£ such inquiries we shall attempt to show in a subsequent 
article. 
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WHAT GREAT MEN SAY ABOUT MATHEMATICS 

Nor do I know any study which can compete with mathe
matics in general in furnishing matter for severe and continued 
thought. Metaphysical problems may be even more diffieult, 
but then they are far less definite, and, as they rarely lead to 
any precise conclusion, we miss the power of checking our own 
operations, and of discovering whether we are thinking and rear 
soning or merely fan~ying and dreaming. 

TODHUNTER, ISAAC. 

Would you have a man reason well, you must use him to it 
betimes; exercise his mind in observing the connection between 
ideas, and following them in train. Nothing does this better 
than mathematics, which, therefore, I think should be taught 
to all who have the time and opportunity not so much to make 
them mathematicians as to make them reasonable creatures; for 
though we all call ourselves so, because we are born to it if 
we please, and we are carried no farther than industry and 
application have carried us. 

LOCKE, JOHN. 

Mathematics in its foreform, as arithmetic, algebra, geometry, 
and the applications of the analytic method, as well as mathe
matics applied to matter and force or statics and dynamics, 
furnishes the peculiar study that gives to us, whether as children 
or as men, the command of nature in this its quantitative aspect; 
mathematics furnishes the instrument, the tool of thoug-ht, which 
we wield in this realm. 

HARR1s, w. 'r. 
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THE STRAIGHT EDGE 

Don't expect your students to enjoy studying mathematics 
if y-0u do not enjoy teaching it. 

• • • • • • 
Don't complain when your students have not prepared the 

lesson if you have done no better than they. 

• • • • • • 
Don't try to fool the class into thinking you are "giving 

them a chance to think" when you are "stumped" and trying to 
keep them from finding it <mt. They know. 

• • • • • 
Don't imagine that all your teaching should be done on the 

class. "Thou that teachest another, teachest thou not thyself?" 

• • • • • • 
Don't try to make your students think they are better and 

brighter than they are. Some of them will go to college and 
may change their minds about themselves and-you . 

• • • • • • 
Don't try to teach the geometry of stained glass windows in 

a village where the architecture is of the cracker-box style. Th~ 

Great Teacher drew his illustrations from objects with which his 
auditors were familiar. 
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