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Future high-end wearable electronic devices including virtual reality goggles

and augmented reality glasses require rates of the order of gigabits-per-second and

potentially very low latency. Supporting high data rate wireless connectivity for ap-

plications such as uncompressed video streaming among wearable devices in a densely

crowded environment is challenging. This is primarily due to bandwidth scarcity when

many users operate multiple devices simultaneously. The millimeter wave (mmWave)

band has the potential to address this bottleneck, thanks to more spectrum and less in-

terference because of signal blockage at these frequencies. This dissertation addresses

key questions that need to be answered before realizing mmWave-based wearables in

practice: (i) what are the expected achievable rates in a crowded user environment,

with mmWave devices using a given hardware configuration? (ii) how is the wireless

connectivity affected in an indoor operation, which is prone to surface reflections?

(iii) can multi-stream data transmission, involving large bandwidth communication

vii



under hardware constraints be realized? To answer these, tools from stochastic ge-

ometry and compressive sensing, and architectures involving hybrid analog/digital

multiple-input multiple-output (MIMO) are leveraged. The main contributions of

this dissertation are 1) analytical modeling to compute average achievable rates in

mmWave wearable networks consisting of finite number of user devices and human

blockages, 2) characterizing the impact of reflections and non-isotropic performance of

mmWave wearable networks in crowded indoor environments, 3) channel estimation

to support MIMO for wideband mmWave wearable devices using hybrid architecture,

and 4) designing optimal, but easy-to-implement, precoding/combining strategies in

frequency-selective mmWave systems. Both analysis and numerical simulations show

how the proposed evaluation methodology and solutions serve to enable mmWave

based communication among next generation wearable electronic devices.

viii



Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1

1.1 Wearables and Body Area Networks . . . . . . . . . . . . . . . . . . . 1

1.2 Finite MmWave Wearable Networks . . . . . . . . . . . . . . . . . . . 3

1.3 Surface Reflections during Indoor Operations . . . . . . . . . . . . . . 5

1.4 MIMO Channel Estimation at MmWave Frequencies . . . . . . . . . . 5

1.5 Wideband MmWave MIMO Precoder Design . . . . . . . . . . . . . . 6

1.6 Overview of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 Notation and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . 9

1.8 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2. Millimeter Wave Device-to-Device Communication in Fi-
nite Networks: Interference Modeling and Coverage 11

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Network Topology and Signal Model . . . . . . . . . . . . . . . . . . . 16

2.4 Interference Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Coverage Probability . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.2 Ergodic Spectral Efficiency . . . . . . . . . . . . . . . . . . . . 26

2.5 Numerical Results for Fixed Geometry . . . . . . . . . . . . . . . . . 27

2.6 Spatial Averaging for Random Geometries . . . . . . . . . . . . . . . 33

2.6.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ix



2.6.2 Analysis of Blocking Probability . . . . . . . . . . . . . . . . . 36

2.6.3 Analysis of Coverage Probability . . . . . . . . . . . . . . . . . 39

2.7 Results for Random Geometry . . . . . . . . . . . . . . . . . . . . . . 42

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Chapter 3. Practical Aspects of Indoor MmWave Coverage: Self-
blockage and Surface Reflections 54

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Indoor Wearable Networks . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Modeling mmWave Wearable Networks with Stochastic Geometry . . 58

3.3.1 Background on Stochastic Geometry . . . . . . . . . . . . . . . 58

3.3.2 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.3 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.4 Modeling Interference and Blockages . . . . . . . . . . . . . . . 66

3.3.4.1 Blockage of Ti’s signal by user j 6= i . . . . . . . . . . . 66

3.3.4.2 Self body-blockage . . . . . . . . . . . . . . . . . . . . 72

3.4 SINR Coverage Probability . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 System Validation and Plots . . . . . . . . . . . . . . . . . . . . . . . 79

3.5.1 Validation of the Analytic Model via Simulation . . . . . . . . 80

3.5.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Chapter 4. Channel Estimation for Hybrid Architecture Based Wide-
band Millimeter Wave Systems 91

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 System and Channel Models . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.2 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4 Time-domain Channel Estimation via Compressed Sensing . . . . . . 102

4.4.1 Sparse Formulation in the Time Domain . . . . . . . . . . . . . 102

4.4.2 AoA/AoD and Channel Gain Estimation in the Time Domain . 108

4.5 Frequency-domain Channel Estimation via Compressed Sensing . . . 110

x



4.5.1 Sparse Formulation in the Frequency Domain . . . . . . . . . . 111

4.5.2 AoA/AoD and Channel Gain Estimation per Subcarrier . . . . 114

4.6 Combined Time-Frequency Compressive Channel Estimation . . . . . 115

4.7 Computational Complexity of Estimation Techniques . . . . . . . . . 117

4.8 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Chapter 5. Optimal Frequency-flat Precoding via Compressive Sub-
space Estimation 134

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4 Optimality of Frequency-flat Precoding . . . . . . . . . . . . . . . . . 138

5.5 Achievable Rate with Frequency-flat Precoders . . . . . . . . . . . . . 139

5.6 Compressive Subspace Estimation . . . . . . . . . . . . . . . . . . . . 141

5.6.1 Using the “Best” Subcarrier . . . . . . . . . . . . . . . . . . . . 144

5.6.2 With Extrinsic Mean of the Subspaces . . . . . . . . . . . . . . 145

5.6.3 Via MIMO Channel Stacking . . . . . . . . . . . . . . . . . . . 147

5.6.4 Empirical Covariance Estimation at the Transceivers . . . . . . 148

5.7 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Chapter 6. Concluding Remarks 157

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Appendices 164

Appendix A. Proof of Lemmas and Theorems 165

A.1 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A.2 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A.3 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

A.4 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

xi



Bibliography 172

Vita 191

xii



List of Tables

2.1 Antenna parameters of a uniform planar square array . . . . . . . . . 19

2.2 Antenna Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Parameters used to obtain numerical results for fixed geometry . . . 28

2.4 Ergodic spectral efficiency for various antenna configurations . . . . . 31

2.5 Spatially averaged ergodic spectral efficiency for various antenna con-
figurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Default values of parameters used for simulation . . . . . . . . . . . . 79

4.1 Computational complexity in the kth iteration of the proposed sparse
recovery approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xiii



List of Figures

1.1 Figure showing several mobile wearable devices attached around a
user’s body. These devices form a wireless network around the user
and is termed a wearable network. . . . . . . . . . . . . . . . . . . . . 2

1.2 Illustration of a typical crowded indoor scenario such as a train car
with several users operating their respective wearable devices. . . . . 4

1.3 Illustration of the sparse mmWave channel between wearable devices. 6

2.1 Many users with wearable networks like those shown in (a) will be lo-
cated in close proximity as in (b), creating mutual interference. People
block some of the interfering signals. . . . . . . . . . . . . . . . . . . 13

2.2 Sectorized 3D antenna pattern. . . . . . . . . . . . . . . . . . . . . . 20

2.3 The fixed geometry considered in Section 2.5 and the blocking cones
associated with the users. The reference receiver and the projection of
the transmitter onto A are shown in blue and green, respectively. . . 30

2.4 SINR coverage probability when the users are placed in the fixed posi-
tions indicated in Fig. 2.3a for different transmission probabilities pt,
with Nt = Nr = 1. Larger pt results in smaller coverage probability. . 31

2.5 CCDF of spectral efficiency for different antenna configurations when
pt = 1 and the fixed network geometry in Fig. 2.3a. Spectral efficiency
is improved significantly with more antennas. . . . . . . . . . . . . . . 32

2.6 An illustration of the orbital model with the locations of blockage Bi

and the interferer Xi. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Figure showing the blocking region for interferer Xi with |Xi| = r for
two different cases. The blocking cone of a blockage Bi of diameter W
that lies within the blocking region of Xi is also shown for illustration 37

2.8 Evaluation of area of blocking region for rin ≤ r ≤ rout − W
2

. . . . . . 38

2.9 The distance-dependent blockage probability as K and W are varied.
Here we assume rin = 1 and rout = 7. . . . . . . . . . . . . . . . . . . 40

2.10 Spatially averaged SINR coverage probability obtained via simulation
for three different antenna configurations - 4 × 4, 16 × 1, 1 × 16 and
assumption 1 with pt = 0.5. Larger Nt is advantageous and the per-
formance is not symmetric with respect to Nt and Nr. . . . . . . . . . 44

xiv



2.11 CCDF of spatially averaged ergodic spectral efficiency obtained via
simulation for various transmitter and receiver antenna configurations
Nt ×Nr with pt = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.12 Spatially averaged ergodic spectral efficiency from simulation when
pt = 1 for various receiver antenna configurations and Nt = 16 with
and without Assumptions 2 – 4 in Section 2.6.1. . . . . . . . . . . . . 47

2.13 Plot showing the CCDF of spatially averaged SINR obtained from
simulation and analytic closed-form expressions for different antenna
configuration with pt = 0.7. . . . . . . . . . . . . . . . . . . . . . . . 48

2.14 Spatially averaged throughput vs. W for different values of random-
access probability pt using the analytic expressions. Larger blockage
diameter results in better throughput as the interferers are effectively
blocked. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.15 Spatially averaged SINR coverage probability vs. λ for different values
of SINR threshold β using the analytic expressions. Here, we let Nt =
4, Nr = 16 and pt = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.16 Spatially averaged ergodic spectral efficiency vs σ2 for two different
values of pt using the analytic expressions when Nt = Nr = 4. . . . . . 51

3.1 Figure illustrating a typical crowded indoor scenario such as a train
car with several users operating their respective wearable networks. . 56

3.2 Network model showing the human users, reference receiver R0, refer-
ence and interfering transmitters. All the wearable devices are at a
distance d around the diameter-W user body. . . . . . . . . . . . . . 61

3.3 Illustration showing the reference signal link’s geometry. . . . . . . . 64

3.4 Illustration of a blocking cone showing the direct and wall-reflected
paths of Ti getting blocked by Bj. . . . . . . . . . . . . . . . . . . . . 67

3.5 Illustration showing the threshold distance rB(RP
0 ) based classification

of interferers into strong and weak interferers. Interferes whose hori-
zontal separation from the reference receiver is smaller than rB(RP

0 ) are
strong. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Figures showing the blocking zone A(RP
0 ,Ti) when the devices are away

from the reflecting walls, and otherwise. A potential blockage Bj within
A(RP

0 ,Ti) and its blocking cone (cf [1] for definition of blocking cone)
are also shown for illustration. . . . . . . . . . . . . . . . . . . . . . . 69

3.7 Figures showing the effective blocking zone A′(RP
0 ,Ti) when Ti and RP

0
are near from the walls. . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.8 Plot showing the region B
(
RP

0 , rB(RP
0 )
)
, when the reference user is near

a reflecting wall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xv



3.9 SINR distribution obtained through simulation and analytic expres-
sion when the receiver is at a corner 0.5 + j0.5 for different antenna
configurations. Our proposed analytic model match well with simula-
tion results which account for random geometry for interfering users,
reflections due to the finite enclosure and small scale fading. With
directional antennas, significant improvement in performance is seen. 82

3.10 Plot showing the variation in the mean number of strong interferers
seen be the reference user at various locations within the enclosure.
The mean number of strong interferers is smaller when the reference
user is near the walls of the enclosed region. . . . . . . . . . . . . . . 83

3.11 Plot showing the variation in the average achievable rate as a function
of the body orientation of the reference user when located at the cen-
ter and near a corner assuming omni-directional antennas are used at
the devices. When the reference user is at the corner location, body
orientation plays a significant role in improving achievable rate. . . . 84

3.12 Plot showing SINR coverage probability heat map as a function of
the reference location position when the reference user is facing to the
right, i.e. ψ0 = 0o and with omni-directional transceivers. The body
orientation of the reference user is also shown in the figure. System per-
formance of mmWave wearable networks in dense indoor environments
heavily depends on the location. . . . . . . . . . . . . . . . . . . . . . 85

3.13 Plot showing the variation in system performance as a function of the
relative separation between the user body and the wearable device.
RP

0 is assumed to be located at 0.5 + j4.5 (see inset picture) and the
transceivers are assumed to be omni-directional. Holding the wearable
devices closer to the human body improves the SINR coverage probability. 86

3.14 Contour plot showing the variation in average achievable rates in Gbps
as a function of the horizontal and vertical separation distance between
the reference receiver and reference transmitter. Vertically positioning
the reference transmitter (below) and receiver (above) gives the best
ergodic rate performance. . . . . . . . . . . . . . . . . . . . . . . . . 87

3.15 Plot showing the variation of SINR coverage probability as the self-
blockage attenuation BL is varied. Larger BL is more helpful when the
reference user is at the center. . . . . . . . . . . . . . . . . . . . . . . 89

4.1 Figure illustrating the transmitter and receiver structure assumed for
the hybrid precoding and combining in this chapter. The RF precoder
and the combiner are assumed to be implemented using a network of
fully connected phase shifters. . . . . . . . . . . . . . . . . . . . . . . 98

xvi



4.2 Figure illustrating the transceiver chains and the frame structure as-
sumed for the time-domain channel estimation of the frequency selec-
tive mmWave system with Nc channel taps. Zero padding (ZP) of
length at least Nc − 1 is prefixed to the training symbols of length N
for RF chain reconfiguration across frames. . . . . . . . . . . . . . . . 104

4.3 Figure illustrating the transceiver chains and the frame structure as-
sumed for the frequency-domain channel estimation of the frequency
selective mmWave system with Nc channel taps. Zero padding (ZP) of
length Nc − 1 is prefixed to the training symbols of length N for RF
chain reconfiguration across frames. . . . . . . . . . . . . . . . . . . 113

4.4 Average NMSE as a function of SNR for different training length M
when Ns = 1 and NRF = 1 using the proposed time-domain channel
estimation technique. We assume N = 16 symbols per frame for a
frequency selective channel of 4 taps. Using the proposed approach,
training length of 80 − 100 is sufficient to ensure very low estimation
error, processing completely in the time-domain. . . . . . . . . . . . . 121

4.5 Average NMSE for the proposed time-domain channel estimation ap-
proach as a function of SNR for different numbers of RF chains used at
the transceivers. By employing multiple RF chains at the transceivers,
the NMSE performance is improved. . . . . . . . . . . . . . . . . . . . 122

4.6 Achievable spectral efficiency using the proposed time-domain channel
estimation approach as a function of the number of training frames
usedM for different numbers of RF combinersNRF used at the receiver.
Employing multiple RF chains at the transceivers significantly reduces
the number of training steps. . . . . . . . . . . . . . . . . . . . . . . . 124

4.7 Average NMSE versus SNR (assuming Nr = Nt = 16) using the proposed
frequency-domain channel estimation approach. The number of angles
in the quantized grid used for generating the dictionary is denoted as
Gr (for AoA) and Gt (for AoD). The figure shows how increasing Gt

and Gr reduces the grid quantization error for a given antenna size. . 126

4.8 Average NMSE versus the number of paths Np, for different hybrid
configurations at the transceivers using the proposed combined time-
frequency domain channel estimation approach. Increasing Np in-
creases the number of unknown parameters of the channel, and hence
higher number of compressive measurements are required to get the
required target estimation error performance. . . . . . . . . . . . . . 127

4.9 Plot showing the error performance of the three compressed sensing
based channel estimation approaches proposed in this chapter as a
function of SNR. At low SNR the combine time-frequency approach
has the least average NMSE, while at higher SNRs, all the three proposed
approaches give similar performance. . . . . . . . . . . . . . . . . . . 128

xvii



4.10 Plot showing the error performance of the three proposed approaches,
as a function of the number of paths Np in the channel. Increasing
Np degrades the average NMSE performance. While the proposed time
domain approach gives the minimum average NMSE when the number
of paths is small, the frequency domain approach gives the best error
performance for larger Np. . . . . . . . . . . . . . . . . . . . . . . . . 130

4.11 Plot showing the error performance of the three proposed approaches,
as a function of the number of training steps M . More number of
compressive measurements lead to better estimation error performance
at the expense of higher signaling overhead. The combined time-
frequency approach gives the best trade-off between low training over-
head and minimum average NMSE performance. . . . . . . . . . . . . . 132

5.1 Optimality metric Υ, as a function of the number of paths R. The
frequency-flat precoder, combiner is optimal when the number of paths
R is small in comparison to min (Nr, Nt). . . . . . . . . . . . . . . . . 152

5.2 Plot showing the achievable spectral efficiency with the proposed frequency-
flat precoder and combiner versus the number of paths R. The achiev-
able rates with frequency-selective precoder-combiner are also plot-
ted in the figure to show that the proposed frequency-flat precoding-
combining strategy gives optimum achievable spectral efficiency when
R ≤ min (Nr, Nt). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.3 Plot showing the achievable spectral efficiency for SNR = 10dB with
the compressive subspace estimation algorithm as a function of the
number of paths R for various training lengths M . . . . . . . . . . . . 154

A.1 Illustration of self-blockage of R0 − Ti link due to Bi. . . . . . . . . . 165

A.2 Illustration showing the (shaded) region where weak interferers are
self-blocked by B0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A.3 Illustration showing the region in P that falls within the receiver main-
lobe due to the elevation beam-width of the antenna. . . . . . . . . . 167

xviii



Chapter 1

Introduction

1.1 Wearables and Body Area Networks

Mobile wearable computing devices are rapidly making inroads due to ad-

vancements in miniature electronics fabrication technology, mobile wireless commu-

nication, efficient batteries, and increasingly capable data analytics. The major driver

of the mobile electronics market has been fitness and health-care gadgets [2,3]. These

low-end devices typically require long battery life and only require lower data rate

connections to other devices. Recently, a new class of high-end wearable devices is

emerging with relaxed power constraints and high data rate requirements.

There are several examples of high-end wearables, such as smartwatches, aug-

mented reality glasses, accurate navigation assists, and virtual reality helmets/goggles.

The applications involved may make use of high data rates, and the devices may be

charged daily. While these devices could have their own cellular connection, it seems

likely that they will instead form a network with a coordinating hub, such as the

user’s smartphone, creating a wearable network. An illustration of a wearable net-

work is shown in Fig. 1.1. A coordinating on-body hub can ensure that interference

from wireless devices attached on a given user’s body is minimized. Further, the hub

can have larger computing power than the other devices in the wearable network and

1



Wireless headset

Smart watch

Smart phoneFitness tracker

Augmented reality glasses

Figure 1.1: Figure showing several mobile wearable devices attached around a user’s
body. These devices form a wireless network around the user and is termed a wearable
network.

be usually connected to wireless hotspots and/or cellular network. Hence, the coor-

dinating hub can act as aggregating nodes to process various sensor data inputs as

well as host multimedia contents for infotainment applications in wearable displays.

While the above description of a wearable network may sound similar to Body

Area Network (BAN), most work on BANs has focused on low-end devices, especially

in man-to-machine communication and health-care [4, 5]. These short-range wire-

less networks consist of body-surface-mounted electronic devices or in-body implants

that transmit data to an on-body or off-body gateway device [6]. The IEEE 802.15.6

standard for the wireless BAN aims to provide low power and highly reliable wireless

communication for BANs supporting data rates up to 10 Mbps [7]. These technologies

are not feasible for high-end applications like uncompressed video streaming or aug-

mented reality in wearable networks because of the rate requirements of the order of

Gbps and the potential for very low latency. Note that the range of operation is not a

major concern for these high-end devices in a wearable network, with device-to-device
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wireless link lengths usually less than a meter.

Using millimeter wave (mmWave) communication is one approach to provide

high data rates in wearable networks [8,9]. The mmWave frequency bands have large

bandwidth, good isolation, and better co-existence due to directional antennas. Wire-

lessHD [10] released in 2008 offers multi-gigabit wireless connectivity specifications

for the 60 GHz unlicensed mmWave band to support high-definition video and au-

dio digital transmission to replace wired interconnects. Following WirelessHD, IEEE

802.11ad [11] was released and offered several use cases for short range communication

systems also at 60 GHz. These standards and other mmWave-based standards like the

ECMA-387 and the IEEE 802.15.3c do not explicitly incorporate wearable networks

as a use case. The Task Group ay for IEEE 802.11 is now considering mmWave-based

high-end wearables in public places as a possible use case. As a consequence, industry

is recognizing the importance of millimeter wave for high-end wearables. An illustra-

tion of a typical operation among finite-sizes, indoor, mmWave wearable network is

shown in Fig. 1.2.

1.2 Finite MmWave Wearable Networks

A key consideration before promoting mmWave for communication in wear-

able networks is to model and predict the achievable data rates that can be realized in

these devices, subject to hardware constraints. MmWave-based networks have been

modeled previously using stochastic geometry to study interference and to charac-

terize rate and coverage performance. Models to capture the effect of blockages and

directionality of antennas are available in literature, mainly for cellular systems. Most
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Figure 1.2: Illustration of a typical crowded indoor scenario such as a train car with
several users operating their respective wearable devices.

prior work [12–14] assumed infinite number of devices spread over an infinite area for

analytic tractability; these assumptions are also justifiable for outdoor deployments

and cellular systems. MmWave wearable networks, however, are likely to have a finite

number of users and devices, and located in a finite geographical area.

Analytic models for ad-hoc network with a finite number of devices and spatial

extent were considered previously [15,16], but did not include the unique channel and

antenna characteristics at mmWave frequencies. Since mmWave wearable networks

would involve human users, human bodies are the main source of blockages for the

signals and need to be modeled. This also means that the very same users that wear

the interfering transmitters act to block other mmWave signals. More work, therefore,

is needed to understand the interplay between body blockages and interference, while

noting that both the number of users and interfering devices would be finite in number.
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1.3 Surface Reflections during Indoor Operations

For crowded indoor operations of wearable networks using mmWave frequen-

cies, modeling reflections from objects, walls and ceiling is critical. This is because

mmWave signals suffer less scattering than specular reflections [17]. The reflections

not only could help the desired signal (we could leverage the inherent diversity) but

also could boost the net interference power. Stochastic models to characterize sig-

nal reflections need to be developed to ascertain the feasibility of mmWave wearable

networks in indoor operations.

Moreover, the performance seen by a user could be impacted by the non-

isotropy in the environment and the presence of restricting boundaries of the enclosed

space. Intuitively, the interference pattern seen by the user located at the center of a

crowded room is different from that when the user is near a corner. The direction in

which the user is facing to could also play a role in dictating the expected data rates

given that the user’s own body can block/attenuate mmWave signals. Hence, new

models need to be developed to better parameterize and understand these features.

1.4 MIMO Channel Estimation at MmWave Frequencies

A key factor to achieving high data rates in mmWave wearable systems is that

huge bandwidth is available at these frequencies. Another contributing factor is that

larger antenna arrays can be realized that occupy much less device space. To commu-

nicate efficiently, channel state information is critical. Given the large size of antenna

arrays that are employed, however, channel estimation overhead would be higher,

thus reducing the net throughput. Further, hardware restrictions necessitate hybrid
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Figure 1.3: Illustration of the sparse mmWave channel between wearable devices.

architectures at the transceivers which restrict the effective number of measurements

we can have per channel estimation phase.

Most prior work on mmWave hybrid MIMO channel estimation considered nar-

rowband, frequency-flat channel models. An extension to the wideband, frequency-

selective case is not straightforward due practical hardware limitations related to

the circuit components. These limitations include the bandlimiting filters and phase

shifters used to point the transmissions and receptions. Therefore, methods to enable

MIMO channel estimation in hardware-constrained wideband mmWave systems need

to be developed to support multi-stream communication and achieve high data rates

among wearable devices.

1.5 Wideband MmWave MIMO Precoder Design

Once the channel information is known, developing hybrid MIMO precoders

and combiners is the next natural step. Since the mmWave devices will be operating

at large system bandwidths, the hybrid precoders and combiners have to operate in

these wideband and frequency-selective channels. Prior work in frequency-selective
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mmWave hybrid precoding proposed solutions involving different precoders for differ-

ent narrowband, frequency-flat subcarriers within the wideband system bandwidth.

This complicates the hardware design and implementation. For hardware-constrained

wearable devices, however, the precoder design must minimize complexity. This mo-

tivates the development of low-complexity, easy-to-implement wideband precoding

solutions for frequency-selective MIMO mmWave wearable systems.

MmWave channel is sparse in nature with a few multi-paths. An illustration

of the sparse structure of the mmWave MIMO channel is shown in Fig. 1.3. This

property could be leveraged to transmit and receive signals in the dominant subspace

of the channel. This could also potentially simplify the channel state information

acquisition used for precoder design. Identifying the key properties of the frequency-

selective mmWave channel further is thus necessary to develop new techniques to

design optimal precoders and combiners for mmWave wearable devices.

1.6 Overview of Contributions

Enabling mmWave wearable networks required answering the key concerns dis-

cussed in Section 1.2 – 1.5. The research presented in this dissertation aims to address

these challenges. The primary contributions of this dissertation can be summarized

as follows:

1. We propose an analytical framework to model finite sized wearable communica-

tion network operating at mmWave frequencies. This framework incorporates

human body blockages, antenna parameters and key propagation features of
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mmWave communication. Using this model, we derive the exact expression to

coverage probability conditioned on the location of the human users and in-

terfering devices. We also analyze spatially averaged rate results in close-form

expressions using justifiable assumptions. These results appeared in [1, 18, 19].

2. We develop a tractable model to predict location-dependent performance of

mmWave wearable networks in dense indoor operation. This model is used to

study the impact of human body orientation and the spatial non-isotropy in the

performance. We capture the impact of mmWave signal reflections from walls

and ceiling into the analysis to classify interfering devices as strong and weak.

The proposed method can be used to design MAC protocols to reduce overhead

and improve throughput. These results were published in [20,21].

3. We propose and analyze efficient channel estimation algorithms for frequency-

selective wideband mmWave systems with hybrid architectures. We develop

a sparse formulation of the mmWave channel leveraging the channel structure

in both the delay and angular domain. Based on this formulation we propose

channel estimation algorithms in both and frequency domains. The proposed

formulation takes into account various hardware constraints in the system, and

appeared in [22,23].

4. We propose optimal precoders and combiners for frequency-selective mmWave

wideband systems. These optimal beamformers are shown to be frequency-flat

and easy to implement in practice. We develop the optimal designs leveraging

new techniques in subspace estimation, noting that mmWave MIMO channel
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matrices corresponding to various subcarriers all belong to the same subspace.

These results appeared in [24].

1.7 Notation and Abbreviations

We use the following notation in the rest of the paper: bold uppercase A is

used to denote matrices, bold lower case a denotes a column vector, and non-bold

lower case a is used to denote scalar values. We use A to denote a set or a region.

Further, ||A||F is the Frobenius norm, and A∗, Ā and AT are the conjugate transpose,

conjugate, and transpose of the matrix A. The (i, j)th entry of matrix A is denoted

using [A]i,j. The identity matrix is denoted as I. Further, if A and B are two matrices,

A ◦B is the Khatri-Rao product of A and B, and A⊗B is their Kronecker product.

We use N(m,R) to denote a circularly symmetric complex Gaussian random vector

with mean m and covariance R. The determinant of a square matrix A is denoted as

|A|. We use E to denote expectation. Discrete-time signals are represented as x[n],

with the bold lower case denoting vectors, as before. The frequency domain signals

in the kth subcarrier are represented using x̆[k].

1.8 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we pro-

pose an analytic model to study finite sized mmWave wearable networks. We then

consider the impact of reflections and indoor operation of mmWave wearable net-

work in Chapter 3, and propose a classification of devices in the system as strong

and weak interferers. In Chapter 4, we develop explicit MIMO channel estimation
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algorithms for wideband mmWave systems using hybrid architecture. This is carried

forward further in Chapter 5 wherein optimal frequency-flat precoders and combiners

are proposed using the channel knowledge. In this context, we develop subspace es-

timation techniques to design the optimal beamformers. Finally, concluding remarks

and future work directions are presented in Chapter 6.
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Chapter 2

Millimeter Wave Device-to-Device Communication

in Finite Networks: Interference Modeling and

Coverage

2.1 Overview

Emerging applications involving device-to-device communication among wear-

able electronics require Gbps throughput, which can be achieved by utilizing millime-

ter wave (mmWave) frequency bands. When many such communicating devices are

indoors in close proximity, interference can be a serious impairment. In this chap-

ter1, we use stochastic geometry to analyze the performance of mmWave networks

with a finite number of interferers in a finite network region. Prior work considered

either lower carrier frequencies with different antenna and channel assumptions, or

a network with an infinite spatial extent. In the mmWave wearable setting, human

users not only carry potentially interfering devices, but also act to block interfering

signals. Using a sequence of simplifying assumptions, we develop accurate expres-

sions for coverage and rate that capture the effects of key antenna characteristics like

1This chapter is based on the work published in the journal paper: K. Venugopal, M. C. Valenti,
and R. W. Heath, Jr., “Device-to-Device Millimeter Wave Communications: Interference, Coverage,
Rate, and Finite Topologies,” IEEE Transactions on Wireless Communications, vol. 15, no. 9, pp.
6175-6188, Sept. 2016. This work was supervised by Prof. Robert Heath. Prof. Matthew C. Valenti
gave important ideas for modeling finite networks, Salvatore Talarico gave programming assistance
and discussion with Geordie George about antenna gain pattern modeling was insightful.
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directivity and gain, and are a function of the finite area and number of users. We val-

idate the assumptions through a combination of analysis and simulation. The main

conclusions are that mmWave frequencies can provide Gbps throughput even with

omni-directional transceiver antennas, and larger, more directive antenna arrays give

better system performance. Importantly, this chapter provides an analytic framework

to model device-to-device communication between mmWave wearable devices in a fi-

nite space having finite number of interfering wearable sources and human user body

blockages.

2.2 Introduction

From a wireless communications perspective, wearable communication net-

works are the next frontier for device-to-device (D2D) communication [25]. Wearable

networks connect different devices in and around the human body including low-

rate devices like pedometers and high-rate devices like augmented- or mixed-reality

glasses. With the availability of newer commercial products, it seems feasible that

many people will soon have multiple wearable devices [26], as illustrated in Fig. 2.1a.

Such a wearable network around an individual may need to operate effectively in

the presence of interference from other users’ wearable networks. This is problematic

for applications that require Gbps throughput like virtual reality or augmented dis-

plays. A typical use case consisting of independent wearable networks collocated in

a finite space is illustrated in Fig. 2.1b. Understanding the interference environment

is critical to understanding the achievable rate and quality-of-experience that can be

supported by wearable communication networks as well as the feasible density of such
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(a) Example wearable com-
munication network. The
user’s smartphone can act
as a coordinating hub for
the wearable network.

Reference user’s

receiver (origin)

j

Bi

Ci X

Interfering transmitter

ANetwork region

Blockage

(b) A finite network located, for in-
stance, in a train car. Small circles
represent wireless devices and large
circles represent blockages. Also
shown the concept of a blocking cone
Ci, and a blocked interferer Xj ∈ Ci.

Figure 2.1: Many users with wearable networks like those shown in (a) will be located
in close proximity as in (b), creating mutual interference. People block some of the
interfering signals.

networks.

The millimeter wave (mmWave) band contains a wide range of carrier fre-

quencies capable of supporting short range high-rate wireless connectivity [9]. The

mmWave band has several desirable features which include large bandwidth, compat-

ibility with directional transmissions, reasonable isolation, and dense deployability.

Standards like Wireless HD [10] and IEEE 802.11ad [11] have already made mmWave-

based commercial products a reality. Wearable networks might use these standards

or might use device-to-device operating modes proposed for mmWave-based next-

generation (5G) cellular systems [27, 28]. Short-range mmWave communication sys-

tems usually focus on high-speed wireless connectivity to replace cable connections.

However, these emerging protocols have yet to prove their effectiveness in a highly
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dense interference scenario.

The tool of stochastic geometry has been extensively used to study interference

in large wireless networks [29–32]. Prior work on mmWave-based networks has also

used the results from stochastic geometry to analyze coverage and rate [12–14] while

modeling the directionality of antennas and the effect of blockages. For analytical

tractability, most work assumes an infinite number of mobile devices spread over an

infinite area. These assumptions allow the analytical expressions related to the spatial

average of the system performance to be simplified through application of Campbell’s

theorem [33]. Analysis of the outage probability conditioned on the network geometry

in ad hoc networks with a finite spatial extent and number of interferers was performed

in [15], which was extended to the analysis of frequency-hopping networks in [16].

The unique channel characteristics and antenna features [34] for mmWave networks,

however, were not considered in [15, 16]. The mmWave channel has been studied

for the outdoor environment [35] and the significant effect of blockages on signal

propagation is well known [36]. In crowded environments, human bodies are a main

and significant source of blockage of mmWave frequencies [37, 38]. This implies that

the very same users that wear the interfering transmitters act to block interference

from other wearable networks.

In this chapter, we characterize the performance of mmWave wearable commu-

nication networks. We focus on networks operating at mmWave carrier frequencies

that are confined to a limited region and containing a finite number of interferers

while not explicitly modeling the impact of reflections within the finite region or at

its boundaries. We develop an approach for calculating coverage and rate in such a
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network. As mmWave systems are likely to use compact antenna arrays, we assess

the impact of antenna parameters, in particular the beamwidth and antenna gain,

on the coverage and spectral efficiency of the system. Compared with [12–16,32], we

use the same computational approach as in [15, 16], with assumptions on mmWave

propagation, antennas, and blockage similar to those in [12, 14], though we model

people – not buildings – as blockages. This chapter also considers interferers that

are randomly located. We begin by presenting an analysis that leads to closed-form

expressions for the coverage probability conditioned on the location of the interferers

and blockages. Then, through a sequence of assumptions, we find the spatially aver-

aged coverage and rate when the interference and blockages are drawn from a random

point process. The validity of the assumptions and accuracy of the analysis are ver-

ified through a set of simulations, which involve the repeated random placement of

the users according to the modeled point process.

The organization of the chapter is as follows: We introduce the network topol-

ogy and signal model in Section 2.3. We describe the interference model and derive

expressions for the signal to interference plus noise ratio (SINR) distribution and

rate coverage probability in Section 2.4. In Section 2.5, we provide numerical results

when the users are located at fixed locations. We assert the simplifying assumptions

for analyzing wearable networks when the users are located at random locations in

Section 2.6 and, in Section 2.7, verify through simulations that the assumptions have

a negligible effect on the accuracy of the analysis. Finally, we conclude this chapter

drawing insights from the analysis and simulations in Section 2.8.
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2.3 Network Topology and Signal Model

Consider a finite network region A with a reference receiver and K potentially

interfering transmitters. The reference transmitter is assumed to be located at an

arbitrary but fixed distance R0 from the reference receiver at an azimuth angle φ0

and elevation ψ0. The area of the network in the horizontal plane is denoted by

|A|, so that the interferer density λ = K/|A|. The interfering transmitters and their

locations are denoted by Xi, i = 1, 2, ..., K. We assume the reference receiver to

be located at the origin and represent Xi as a complex number Xi = Rie
jφi , where

Ri = |Xi| is the distance between the ith transmitter and the receiver, and φi = ∠Xi

is the azimuth angle to Xi from the reference receiver. For simplicity, we assume

that all the interferers are on the same horizontal plane that contains the reference

receiver, though our model could also be easily generalized to handle the 3-D locations

of the transmitters. Further, this assumption results in the 2-D blockage model that

is elaborated next.

To model human body blockages, we associate each user’s body with a circle

of diameter W , as illustrated in Fig. 2.1b. These circles as well as the location of

their centers are denoted by Bi. Like Xi, Bi is represented as a complex number so

that Bi = |Bi|ej∠Bi , where |Bi| is the distance between the center of the ith human

body blockage and the receiver, and ∠Bi is the azimuth angle to Bi from the reference

receiver. In this blockage model, a transmitter Xi is blocked if the direct path from

Xi to the reference receiver goes through the circle associated with any Bj or if Xi

falls within the diameter-W circle associated with any blockage Bj. The ith user

is associated with both a transmitter Xi and a blockage Bi, and it is possible that
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transmitter Xi is blocked by its corresponding blockage Bi. This is called self-blocking,

a phenomenon that was studied in [38], in the context of 5G mmWave cellular system.

If there are no blockages in the path from Xi to the reference receiver, then we say

that the path is line of sight (LOS); otherwise, we say that it is non-LOS (NLOS).

We associate different channel parameters with LOS and NLOS paths, accounting

for different path-loss and fading models inspired by measurements [39, 40]. In this

chapter, we assume that an interferer i is potentially blocked from the reference

receiver by Bj, j 6= i. Under this assumption that no signal is self-blocked, the

following algorithm is used to determine which signals are blocked.

1. Determine L, the set of all transmitters Xi that have no blockages Bj, j 6= i

within a distance of W/2; i.e.,

L =

{
Xi : |Xi −Bj| >

W

2
∀j 6= i

}
, (2.1)

where |Xi −Bj| is the distance along the horizontal plane between Xi and Bj.

2. Sort the blockages from closest to most distant, so that |B1| ≤ |B2| ≤ ... ≤ |BK |.

3. For each i ∈ {1, 2, ..., K}, compute the blocking cones (wedge in 2D)2 Ci as

Ci =

{
x ∈ A :

|∠x− ∠Bi| ≤ arcsin
(

W
2|Bi|

)
,

|x| > |Bi|

}
.

2Strictly speaking, a blocking cone is an instance of a truncated cone because it does not extend
to the origin.
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4. For each ` ∈ L, determine if X` is blocked by checking to see if it lies within

any blocking cone; i.e., if

φ` ∈
⋃

{i:|Bi|<R`}
Ci, (2.2)

then X` is blocked.

An illustration of the blocking cone discussed here is shown in Fig. 2.1.

While the antenna gain pattern G(φ, ψ) is a complicated function of the az-

imuth angle φ ∈ [−π, π] and the elevation angle ψ ∈
[
−π

2
, π

2

]
, to facilitate analysis, we

use the three-dimensional sectorized antenna model as shown in Fig. 2.2. We char-

acterize the antenna array pattern with four parameters - the half-power beamwidth

θ(a) in the azimuth, the half-power beamwidth θ(e) in the elevation, antenna gain G

within the half-power beamwidths (main-lobe) and gain g outside it (side-lobe). We

use the subscript t to denote an antenna parameter for a transmitter and subscript

r for the receiver. For example, the main-lobe gain of the transmitter is Gt and that

of the receiver is Gr. Similarly, the side-lobe gains are denoted by gt and gr. Because

the system model and the analysis presented in this chapter are general, substituting

the appropriate values for the four parameters G, g, θ(e) and θ(e) into the expres-

sions corresponding to the transmitters and the reference receiver enables the rapid

evaluation of the SINR distribution. To compare performance in terms of directivity

and gain based on practical antennas, we assume that a uniform planar square array

(UPA) with half-wavelength antenna element spacing is used at the transmitters and

the receiver. The number of antenna elements at the transmitter and receiver are

denoted by Nt and Nr, respectively. The antenna gain G(φ, ψ) of a UPA is modeled
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Table 2.1: Antenna parameters of a uniform planar square array

Number of antenna elements N

Half-power beamwidth,
θ(a) = θ(e)

√
3√
N

Main-lobe gain G N

Side-lobe gain g

√
N−

√
3

2π
N sin

( √
3

2
√
N

)
√
N−

√
3

2π
sin
( √

3

2
√
N

)

as a sectorized pattern as follows. The half-power beamwidths in the azimuth and the

elevation are inversely proportional to
√
N [41]. The main-lobe gain is taken to be

N , which is the maximum power gain that can be obtained using N -element antenna

array. Note that this is an approximation, though it is possible to design antennas to

give near-flat response within the beamwidth with G ∝ N . The side-lobe gain is then

evaluated so that the following antenna equation for constant total radiated power is

satisfied [41]

∫ π

−π

∫ π
2

−π
2

G(φ, ψ) cos(ψ)dψdφ = 4π. (2.3)

By using (2.3), we ensure the antenna arrays are passive components. The values

for the half-power beamwidths (which are equal in both the azimuth and elevation

for UPA), main-lobe and side-lobe gains for an N element (i.e.
√
N ×

√
N) UPA

are given in Table 2.1. When the number of antenna elements is one, we say that

the UPA is omni-directional and, hence, the main-lobe and side-lobe gains are unity.

This serves as a reference to compare the impact of antenna gain and directivity. As

in [12, 13], we assume that each interferer is transmitting with its main-lobe pointed

in a random direction.

19



G

g

a

e

θ

θ

Figure 2.2: Sectorized 3D antenna pattern.

We assume Nakagami fading for the wireless channels so that the power gain

hi due to fading from Xi to the reference receiver is Gamma distributed. We use mi

to denote the Nakagami factor for the link from Xi to the reference receiver, which

assumes a value of mL for LOS and mN for NLOS [12]. The path-loss exponent for Xi

is denoted as αi, where αi = αL ifXi is LOS and = αN if it is NLOS. There are different

ways to define the signal-to-noise ratio (SNR) in a system with antenna arrays: with

and without the antenna gains. We use σ2 to denote the noise power divided by the

reference transmitter power as measured at a reference distance excluding the antenna

gains. While σ2 is inversely proportional the SNR, we intentionally do not include

the antenna gains into its computation, so that our results will naturally capture the

SNR enhancement that accompanies the use of larger antenna arrays. The transmit

power of Xi is denoted as Pi. Each interferer transmits with probability pt, which is

determined by the random-access protocol and user activity and is assumed to be the

same for all interferers.

We assume that the reference communication link is always LOS. The reference

link undergoes Nakagami fading with parameter m0 = mL and has path-loss exponent

α0 = αL. Of course, it is possible that the reference user’s body itself will create
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blockages on the reference link in a wearable network. When this occurs, it can be

handled in our model by setting m0 = mN and α0 = αN. Capturing self-blockage

of the reference link in a more refined model and incorporating the results into the

analysis is an interesting topic for future work.

It is important to note that the boundaries of the finite area are assumed to

be impenetrable, so there is no leakage of external interference into the finite area.

Further, reflections due to the boundary and objects within the network are not

explicitly incorporated in the model. They are accounted for only in a coarse way in

the different LOS and NLOS model parameters, which ideally would be determined

based on ray tracing or measurement results. The assumption of omitting reflections

holds true in many scenarios where the boundaries of the finite area are made of

poorly reflecting materials such as concrete or bricks.

2.4 Interference Model

Conditioned on the network (meaning the locations of the transmitters and

blockages), we can find the complementary cumulative distribution function (CCDF)

of the SINR (also called SINR coverage probability [12]) by adapting the analysis

in [15,16]. The analysis that follows in Section 2.4.1 is very general since it can admit

the individual interferers to have separate and independent values for the channel

parameters - αi and mi, and does not require the LOS channel to have values (αL,mL)

and the NLOS channel to have values (αN,mN). The assumption of fixing the channel

parameters of the LOS and NLOS interferers yields tractable analytical expression

for spatially averaged SINR coverage probability in Section 2.6.
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We define a discrete random variable Ii for i = {1, ..., K} that represents

the relative power radiated by Xi in the direction of the reference receiver. With

probability (1 − pt), Xi does not transmit at all, and hence Ii = 0. Otherwise, the

relative power will depend on whether or not the random orientation of Xi’s antenna

is such that the reference receiver is within the main-lobe. We assume a uniform

orientation of Xi’s antenna, so that the azimuth angle φ is uniform in [0, 2π) and

the elevation angle ψ has a probability density function (pdf) 1
2

cos(ψ) in
[
−π

2
, π

2

]
.

The pdfs can be derived by noting that the surface area element of a unit sphere

is cos (ψ) dφdψ, a function of the elevation angle ψ. Thus the probability that the

reference receiver is within the interferer’s main-lobe is θ
(a)
t

2π
sin
(
θ
(e)
t

2

)
= pM. It follows

that

Ii =





0 with probability (1− pt)
Gt with probability ptpM

gt with probability pt (1− pM)

. (2.4)

Note that a similar approach was used in [16] for modeling adjacent-channel interfer-

ence in frequency hopping: when the interferer transmitted, one of two power com-

pensations was applied depending on whether the interferer hopped into the same or

an adjacent channel. In the wearable network context, we can justify randomizing

the orientation angles of the interferers because: (1) the user itself may be randomly

moving the orientation of its devices while using them, and (2) the user may have a

wearable network with several devices with different orientations and random activity,

though we assume the medium access protocol (MAC) of a user’s wearable network

allows only one of her devices to transmit at a time. It may be noted here that this

kind of wearable network is still under development, so the exact MAC protocol has
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not yet been decided. We make a reasonable assumption that the network of a given

user is coordinated such that only one device transmits at a time, while the devices

of different users are not so coordinated and can therefore collide.

Now, let us define the normalized power gain from Xi to be

Ωi =

{
Pi
P0
GrR

−αi
i if − θ

(a)
r

2
≤ φi − φ0 ≤ θ

(a)
r

2
Pi
P0
grR

−αi
i otherwise

, (2.5)

where αi = αN if Xi is NLOS and αi = αL if Xi is LOS. This is the worst-case

situation when |ψ0| ≤ θ
(e)
r

2
. If |ψ0| > θ

(e)
r

2
, we have Ωi = Pi

P0
grR

−αi
i , ∀ i which is a

simpler trivial case. For the rest of the chapter, we assume the non-trivial worst case

and all the analysis presented hereafter extends easily for the trivial case. The SINR

is

γ =
Gth0Ω0

σ2 +
K∑

i=1

IihiΩi

, (2.6)

where Ω0 = GrR
−α0
0 is the normalized power gain from the reference transmitter, as

we assume the reference transmitter is always within the main beam of the reference

receiver. The effect of misalignment of beam in the reference link was considered at

lower frequencies (e.g. UHF) in prior work [42, 43]. In the wearable communication

network context, however, since the distance of the reference link is short relative to

the beamwidth of the antenna, pointing errors will not seriously degrade performance.

(For instance, with our sectorized antenna model, the beam could be off by half the

beamwidth without changing performance.)
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2.4.1 Coverage Probability

Denoting Ω = [Ω0, ...,ΩK ], the coverage probability Pc(β,Ω) for a given Ω is

defined as the CCDF of the SINR evaluated at a threshold β and is given by

Pc(β,Ω) = P [γ > β|Ω] . (2.7)

Substituting (2.6) into (2.7) and rearranging leads to

Pc(β,Ω) = P

[
S > σ2 +

K∑

i=1

Yi

∣∣∣∣∣ Ω

]
, (2.8)

where S = β−1Gth0Ω0, and Yi = IihiΩi. Conditioned on Ω, let fY(y) denote the joint

pdf of (Y1, ...,YK) and fS(s) denote the pdf of S. Then, (2.8) can be written as

Pc(β,Ω) =

∫
...

∫

RK

(∫ ∞

σ2+
∑K
i=1 yi

fS(s)ds

)
fY(y)dy. (2.9)

Defining β0 = βm0/GtΩ0 and assuming that m0 is a positive integer, the random

variable S is gamma distributed with pdf given by

fS(s) =
(β0)m0

(m0 − 1)!
sm0−1e−β0s, s ≥ 0. (2.10)

Using (2.10), the right hand side of (2.9) evaluates to

m0−1∑

`=0

∫
...

∫

RK

e−β0(σ2+
∑K
i=1 yi)

`!(β0σ2)−`

(
1 +

1

σ2

K∑

i=1

yi

)`

fY(y)dy. (2.11)

Using the binomial theorem followed by multinomial expansion,

(
1 +

1

σ2

K∑

i=1

yi

)`

=
∑̀

t=0

(
`

t

)
t!

σ2t

∑

St

(
K∏

i=1

ytii
ti!

)
, (2.12)
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where the last summation is over the set St containing all length-K non-negative

integer sequences {t1, . . . , tK} that sum to t. This can be pre-computed and saved as

a matrix as explained in [15]. Given Ω, the {Yi}Ki=1 are independent. So, fY(y) may

be written as
∏K

i=1 fYi(yi), where

fYi(yi) = (1− pt) δ(yi) + pt

(
mi

Ωi

)mi ymi−1
i

Γ(mi)

[
pM
e
−miyi
GtΩi

Gmi
t

+ (1− pM)
e
−miyi
gtΩi

gmit

]
u(yi),

(2.13)

δ(yi) is the Dirac delta function, and u(yi) is the unit step function. Substituting

(2.12) into (2.11) and utilizing the independence of the {Yi}, (2.9) may be written as

Pc(β,Ω) =

m0−1∑

`=0

(β0σ
2)`

`!eβ0σ2

∑̀

t=0

(
`

t

)
t!

σ2t

∑

St

(
K∏

i=1

Gti(Ωi)

)
, (2.14)

where

Gti(Ωi) = (1− pt) δ[ti] + pt

(
Ωi

mi

)ti Γ(mi + ti)

ti!Γ(mi)
[pMQti(Gt) + (1− pM)Qti(gt)] .

(2.15)

In (2.15), δ[ti] is the function defined as

δ[ti] =

{
1 if ti = 0

0 if ti 6= 0
(2.16)

and Qti(x) = xti
(

1 +
β0xΩi

mi

)−(mi+ti)

. (2.17)

The assumption of an integer value for m0 is key to the derivation of the exact

expression for the SINR coverage probability in (2.14). When m0 is not an integer,

such an exact evaluation is not possible to the best of our knowledge. Only an upper-

bound using the results from [44] can be obtained for a general real-valued m0.
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2.4.2 Ergodic Spectral Efficiency

When the SINR is β, the spectral efficiency in bits per channel use is

η = log2(1 + β). (2.18)

The CCDF of the spectral efficiency is found by defining the equivalent events

{γ > β | Ω} ⇔ {log2(1 + γ) > η | Ω}︸ ︷︷ ︸
{γ>2η−1 | Ω}

. (2.19)

The event on the left corresponds to the coverage probability Pc(β,Ω), while the

event on the right corresponds to the CCDF of the spectral efficiency, Pη(η,Ω), also

called the rate coverage probability for a given Ω. Since equivalent, the two events

have the same probability, and it follows that

Pη(η,Ω) = Pc (2η − 1,Ω) . (2.20)

See also Lemma 5 of [12].

Using the fact that, for a non-negative X, E[X] =
∫∞

0
(1−F (x))dx (see (5-33)

in [45]), the ergodic spectral efficiency conditioned on Ω can be found from

E[η] =
1

log(2)

∫ ∞

0

Pc (β,Ω)

1 + β
dβ, (2.21)

where the last step uses the change of variables β = 2η − 1→ dη = 1
log(2)

dβ/(1 + β).

In practice, there is a maximum and minimum rate, and hence, a maximum

and minimum SINR thresholds βmax and βmin, respectively. This maximum may be

imposed by the modulation order of the constellation used and distortion limits in
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Table 2.2: Antenna Parameters

Number of antenna elements 1 4 16

Half-power beamwidth (in degrees) 360 49.6 24.8
Main-lobe gain (in dB) 0 6 12
Side-lobe gain (in dB) 0 -0.8839 -1.1092

the RF front end while minimum due to the receiver sensitivity. In this case, the

limits of the integral are βmin and βmax, and

E[η] =

∫ βmax

βmin

Pc (β,Ω)

log(2)(1 + β)
dβ. (2.22)

The quickest way to compute (2.22) is to simply compute Pc (β,Ω) for a finely spaced

β and then use the trapezoidal rule to numerically solve the integral.

2.5 Numerical Results for Fixed Geometry

In this section, we provide numerical results for coverage probability and er-

godic spectral efficiency. The users are located at fixed locations, but to enable a

comparison against random topologies (see Section 2.7), their placement is confined

to an annulus A having inner radius rin and outer radius rout. Conditioned on the

fixed locations of the interferers and the blockages, the exact expression for the SINR

coverage probability can be derived using (2.14). We assume there are K interfering

transmitters, neglect self-blocking, and assume that the blockage and transmitter as-

sociated with each user are co-located; i.e., Bi = Xi for each i. It is assumed that the

Pi are all the same; i.e., all transmitters transmit at the same power.

The values of the antenna half-power beamwidths, main-lobe and side-lobe

gains are summarized in Table 2.2. Note that it is possible to get desired side-lobe
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Table 2.3: Parameters used to obtain numerical results for fixed geometry

Parameter Value Description

R0 0.3 m Reference link length
φ0, ψ0 0o Reference receiver antenna main-lobe orientation
mL 4 Nakagami parameter for LOS link
mN 2 Nakagami parameter for NLOS link
αL 2 Path-loss exponent for LOS link
αN 4 Path-loss exponent for NLOS link
W 0.3 m Width of the human-body blockages
σ2 -20 dB Normalized noise power
K 36 Number of potential interferers

isolation by carefully designing the array response via windowing similar to filter de-

sign [41]. This would also add complexity to the array design and configuration. Since

power and heating issues are critical for wearable devices, it is yet to be determined if

such techniques would indeed be considered in future gadgets. To quantify the effect

of antenna directivity and as an example, we chose a uniform planar array described

in Table 2.1. The network and signal parameters used to obtain the results in this

section are summarized in Table 2.3. The Nakagami parameters and the path-loss

exponents assumed are the ones used in [12]. For simplicity and to ensure the in-

terferers are uniformly spread out in the network region, we let the user locations to

be on a n × n square lattice restricted to the annulus A. The network region under

this assumption is shown in Fig. 2.3a where the 7 × 7 grid locations and the user

locations in the network region A are shown. We let the minimum distance of two

nodes in the grid be 2R0. For example, when the lattice points are separated by 0.6

m (R0 = 0.3 m as in Table 2.3) and n = 7, we get K = 36 with rin = 0.3 m and

rout = 2.1 m, which corresponds to an interferer density λ = 2.25 (passengers/m2),
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a typical density scenariothat approximates the peak-hour passenger load in urban

train cars [46].

Fig. 2.3 shows users placed according to Fig. 2.3a along with the blocking

cones (Fig. 2.3b) assuming that each user is associated with a blockage of width

W = 0.3 m. The blocked users are indicated by filled circles. We next provide nu-

merical results for this fixed geometry. The dependence of coverage probability on the

transmission probability pt of the interferers for a fixed transmitter and receiver an-

tenna array configuration is shown in Fig. 2.4 for the case when the transmitters and

the receiver use omni-directional antenna. It is seen that, as expected, a higher value

of pt leads to lower coverage probability for a given SINR threshold. We observe sim-

ilar results for other antenna configurations as well. The CCDF of spectral efficiency

for different antenna configurations is shown in Fig. 2.5 for a given random-access

probability. Here we let pt = 1. Clearly, using more antennas at the transmitters

and the receiver results in significant improvement in the rate. This is because larger

antenna arrays provide more directed transmission and reception, thus improving the

SINR due to the increased antenna gains of the reference link as well as the reduced

beamwidth of the interfering receivers, which reduces the likelihood that the reference

receiver falls within a randomly oriented receiver’s main-lobe. The ergodic spectral

efficiency for various antenna configurations when pt = 1 is summarized in Table 2.4.

It can be seen that having larger Nt is more advantageous than having a larger Nr for

the fixed geometry considered in this section. We attribute the asymmetric behavior

with respect to Nt and Nr in Table 2.4 to the fact that the interferers have smaller

probability of pointing their main-lobes to the reference receiver when Nt is large.
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(a) The locations of the users in a uniform grid of size 7 × 7 restricted to an annulus. The
twelve users located outside the circle are deleted from the network.
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(b) The blocking cones associated with the blockages and the blocked users (filled circles).

Figure 2.3: The fixed geometry considered in Section 2.5 and the blocking cones
associated with the users. The reference receiver and the projection of the transmitter
onto A are shown in blue and green, respectively.
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Figure 2.4: SINR coverage probability when the users are placed in the fixed positions
indicated in Fig. 2.3a for different transmission probabilities pt, with Nt = Nr = 1.
Larger pt results in smaller coverage probability.

Table 2.4: Ergodic spectral efficiency for various antenna configurations

HHH
HHHNt

Nr 1 4 16

1 0.1762 0.8710 1.5481
4 1.0880 2.3282 3.2820
16 2.6734 4.2190 5.2850
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Spectral efficiency in bits/s/Hz
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Figure 2.5: CCDF of spectral efficiency for different antenna configurations when
pt = 1 and the fixed network geometry in Fig. 2.3a. Spectral efficiency is improved
significantly with more antennas.
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2.6 Spatial Averaging for Random Geometries

Infinite-sized networks are usually analyzed by assuming the interferers are

drawn from a point process, then determining the coverage and rate of a typical

user by averaging over the network geometry. Intuitively, this can be thought of

as the performance seen by a user that wanders throughout the network, and thus

sees many different network topologies. In this section, we outline the approach

we take to analyze the interference in a finite sized mmWave-based device-to-device

network when the users are located at random locations. While in reality, users are

generally spaced far enough apart that their bodies don’t overlap, for mathematical

tractability we assume that the users are independently placed (which include cases

with overlaps).

The spatially averaged CCDF of the SINR can be derived by taking the ex-

pectation of Pc(β,Ω) ((2.14) in Section 2.4) with respect to Ω

Pc(β) = P [γ > β] = EΩ[Pc(β,Ω)]. (2.23)

This can be performed in two ways: (1) through the use of simulation, and (2)

analytically. In the former method, we can determine the coverage and rate as follows.

We randomly place the K potentially interfering users drawn from a binomial point

process (BPP) and compute the corresponding coverage and rate for each network

realization. This is repeated a large number of times to obtain the spatial average.

While in the limit of an infinite number of trials, this approach provides the exact

spatially averaged performance, the downside is that it is computationally expensive

to obtain. The second method is similar to the approach in [47], which however only
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considered Rayleigh fading for the links. The spatially averaged outage probability

is found in this approach by unconditioning the results we obtained in Section 2.4

that were conditioned on the location of the interferers and the blockages. Using this

approach, we develop closed-form expression for the spatially averaged CCDF of the

SINR, which is then validated against the results obtained via simulation.

2.6.1 Assumptions

Taking the expectation is complicated by a number of factors that arise pri-

marily due to the coupling of interferers and blockages, since each user is not only a

potential source of interference, but is also a potential source of blockage. To make

the problem more tractable, we adopt a sequence of assumptions, with each assump-

tion building upon the previous one. Simulation results show the validity of the

assumptions.

Assumption 1: The locations of the blockages and interferers are re-

lated by an orbital model. Even if a user Bi (which also denotes blockage) is in a

fixed location, its transmitter Xi could be randomly positioned around it. Hence, we

specify the location of Xi in the 2-D plane relative to Bi by placing it randomly on

a circle of radius d > W/2 and center Bi. Self-blocking is now inherent in the model,

i.e., if Xi is behind Bi, then it is blocked. We refer to this model as the orbital model.

This is illustrated in Fig. 2.6.

Assumption 2: The locations of the blockages and interferers are

drawn from independent point processes. Though this assumption is not by

itself that useful, it is a stepping stone towards a tractable analysis. With this as-
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Yi

diameter-W circle

radius-d circle

Figure 2.6: An illustration of the orbital model with the locations of blockage Bi and
the interferer Xi.

sumption we can still obtain the corresponding coverage and rate using the aforemen-

tioned simulation, only now the simulation can lay out K interferers and K blockers

independently.

Assumption 3: The blockage states of the interferers are independent.

This assumes that there is no correlation in the blockage process, even though in

reality a transmitter that is close to a blocked transmitter is likely to also be blocked.

With this assumption we first determine the blockage probability pb(r), which gives

the probability of blockage arising from other users as a function of distance r to

the reference receiver. We can determine pb(r) either empirically (through running

simulations of the blockage process) or by using results from random shape theory [36].

Then, having established pb(r), we run a new simulation whereby we first place the

interferers according to a BPP, then we independently mark each interferer as being

blocked with probability pb(r). Note that now, we need not place the blockages in

the simulation.

Assumption 4: All interferers beyond some distance rB are NLOS and

those closer than rB are LOS. Here, we replace the irregular and random LOS

boundary with an equivalent ball. The value of rB can be found by matching the
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first moments (Criterion 1 of [12]), or alternatively, it could be found by matching

the average rate.

2.6.2 Analysis of Blocking Probability

Lemma 1 When the network region A is an annulus with inner radius rin and outer

radius rout and blockages have diameter W , the probability that an interferer at dis-

tance r from the reference receiver is blocked by any of the K blockages that are

independently and uniformly distributed over A is

pb(r) =





1−
(

1− rW+πW2

8
−µ

|A|

)K
if rin ≤ r ≤ rout − W

2

1−
(

1− rW−µ+ν
|A|

)K
if rout − W

2
≤ r ≤ rout

where

µ = W
2

√
rin2 −

(
W
2

)2
+ rin

2 arcsin
(
W
2rin

)
and

ν =





(
W
2

)2
arcsin

(
rout2−(W2 )

2−r2

rW

)
+

rout
2 arccos

(
rout2−(W2 )

2
+r2

2rrout

)
−

2
√
s(s− r)(s− W

2
)(s− rout

2
)

with s = rout+r+W/2
2

.

Proof: The blockages are drawn from a BPP. Consider a transmitter Xi

located at distance |Xi| = r from the reference receiver. Its signal will be blocked

if there is a blockage inside a certain subregion of A, which we will call the blocking

region of Xi (i.e., Xi is blocked if there is an object in its blocking region). Since A

is a circular disk with inner radius rin and outer radius rout, the blocking region looks

like Fig. 2.7a if rin ≤ r ≤ rout − W
2

and like Fig. 2.7b if rout − W
2
< r ≤ rout.
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Figure 2.7: Figure showing the blocking region for interferer Xi with |Xi| = r for two
different cases. The blocking cone of a blockage Bi of diameter W that lies within
the blocking region of Xi is also shown for illustration

Let pb(i, j) be the probability that blockage Bj blocks transmitter Xi with

|Xi| = r. Since the blockages are placed uniformly at random, the probability that

the blockage is inside the blocking region is equal to the ratio of the area of the

corresponding blocking region and the overall network. For rin ≤ r ≤ rout − W
2

, the

area of the blocking region can be evaluated as follows. The area can be split into

regions as shown in Fig. 2.8, where region A1 is a sector of the circle with radius

rin and subtended angle ψ = 2 arcsin W
2rin

. Region A2 corresponds to two identical

right triangles with base length W/2 and height
√
r2
in −

(
W
2

)2
and region A3 is a

semicircular disk of radius W/2. Hence, the area of the shaded region in Fig. 2.7a is

rW + πW 2

8
− |A1| − 2|A2|, where |A2| = W

4

√
rin2 −

(
W
2

)2
and |A1| = rin

2 arcsin
(
W
2rin

)
.

For the two cases shown in Fig. 2.7, we would then have
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Figure 2.8: Evaluation of area of blocking region for rin ≤ r ≤ rout − W
2

pb(i, j) =





rW−|A1|−2|A2|+πW2

8

|A| if rin ≤ r ≤ rout − W
2

rW−|A1|−2|A2|+ν
|A| if rout − W

2
≤ r ≤ rout

where ν, as defined in Lemma 1, is the area of region B1 indicated in Fig. 2.7b.

Since the blockages are independent, the transmitter will be blocked if there are any

blockages — or, equivalently, will not be blocked only if there are no blockages in its

blocking region, Thus, the probability that Xi located at |Xi| = r is blocked is

pb(r) = 1−
K∏

j=1

(1− pb(i, j)) , (2.24)

resulting in the form given in Lemma 1. 2

The distance-dependent blockage probability pb(r) is shown for an annulus of

inner radius rin = 1 and outer radius rout = 7 in Fig. 2.9 along with that obtained

via simulation. The simulation results closely match the analytical approximations

derived using Assumptions 1-3. Also, as expected, the probability that an interferer
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is blocked increases as the distance r between the interferer and the reference receiver

is increased. The dependence of pb(r) on K, the number of interferers is shown when

W = 1 in Fig. 2.9a and the dependence on the width of the blockages W is shown

when K = 36 in Fig. 2.9b. It is seen that with larger values for K and W the

blockage probability is more for any given distance r from the reference receiver.

To evaluate rB under Assumption 4, we compute the mean number of inter-

ferers that are not blocked as

ρ = 2π
K

|A|

∫ rout

rin

(1− pb(r)) rdr. (2.25)

Equating this average number of non-blocked interferers to the number of interferers

in an equivalent LOS ball of radius rB leads to the expression

rB =

(
2

∫ rout

rin

(1− pb(r)) rdr + rin
2

)0.5

. (2.26)

Now pb(r) is approximated by p̃b(r), which is a step function with a step up at distance

rB,

p̃b(r) =

{
0 if rin ≤ r ≤ rB

1 if rB < r ≤ rout
. (2.27)

2.6.3 Analysis of Coverage Probability

Under assumptions 1 – 4, we can derive the probability distribution of fΩi(w)

of Ωi which are now independent random variables that depend on the location of Xi

for {1, 2, ..., K} as follows

Ωi = g1(φi)R
−g2(Ri)
i , (2.28)
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Figure 2.9: The distance-dependent blockage probability as K and W are varied.
Here we assume rin = 1 and rout = 7.
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where

g1(φi) =

{
ai if |φi − φ0| ≤ θ

(a)
r

2

bi otherwise
, (2.29)

and

g2(Ri) =

{
αL if Ri ≤ rB

αN if Ri > rB
, (2.30)

ai = Pi
P0
Gr and bi = Pi

P0
gr. Additionally, we have

mi =

{
mL if Ri ≤ rB

mN if Ri > rB
. (2.31)

For Xi drawn from a BPP, φi is uniform random variable in the interval [0, 2π) and

Ri has pdf

fRi(r) = 2πr
|A| rin ≤ r ≤ rout. (2.32)

Next, note that for |φi − φ0| ≤ θ
(a)
r

2
and rin ≤ Ri ≤ rB, Ωi = aiR

−αL
i has conditional

pdf

fΩi(ω) =
2πω

− 2+αL
αL

αL|A|
(
π(r2

B−r2
in)

|A|

)a2/αL

i ,
ai
rαL
B

≤ w ≤ ai
rαL
in

. (2.33)

When |φi−φ0| > θ
(a)
r

2
, ai in (2.33) is replaced with bi, while the αL in (2.33) is replaced

with αN when rB < Ri ≤ rout. These four cases can be captured by defining a function

D (ω; [ω1, ω2]; c;α) =
2πω−

2+α
α

α|A|c−2/α
, ω1 ≤ ω ≤ ω2. (2.34)

It follows therefore that the pdf of Ωi has the form fΩi(w) =

(
1− θ

(a)
r

2π

)



D
(
ω;
[
bi
r
αL
B

, bi
r
αL
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Using the definition in (2.7) and the expression in (2.14), we can write the spatially

averaged CCDF of the SINR by taking an expectation with respect to {Ωi} as

Pc(β) = EΩ[Pc(β,Ω)] =

m0−1∑

`=0

(β0σ
2)`

`!eβ0σ2

∑̀

t=0

(
`

t

)
t!

σ2t

∑

St

(
K∏

i=1

EΩi [Gti(Ωi)]

)
. (2.36)

To evaluate EΩi [Gti(Ωi)], we note that the integral

∫ ∞

0
D (ω; [ω1, ω2]; c;α)Gti(Ωi)dω =

∫ ω2

ω1

2πω−
2+α
α
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simplifies to the form
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where

Kti(α, c) =
2πm

mi
i Γ(mi+ti)β

−(mi+ti)
0 c2/α

Γ(mi)|A|(ti!)α ,

Mti(x;α) =
2F1

(
mi+ti,mi+

2
α

;mi+
2
α

+1;− mi
xβ0

)
xmi(mi+ 2

α)
,

mi is as given by (2.31) and 2F1 (a, b; c; z) is the Gauss hypergeometric function. Using

the formulation in (2.37) for every term in (2.35), EΩi [Gti(Ωi)] can be evaluated so

that a closed-form expression for the spatially averaged CCDF of the SINR can be

computed from (2.36). Solving (2.22) through numerical integration, but with (2.36)

in the integrand, we can get the spatially averaged ergodic spectral efficiency.

2.7 Results for Random Geometry

This section gives simulation and numerical results for coverage probability

and spectral efficiency, which confirm the validity of assumptions made for spatial
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averaging. Results generated using assumptions 1 to 3 are all done using a Monte

Carlo simulation (which operates by randomly placing the interferers and blockages

according to the spatial model, but then computing the conditional outage using

(2.14)). Results generated under assumption 4 can be generated using either a simu-

lation or the analytical expression, and the methodology used will be clarified when

the result is presented. The antenna parameters are assumed to be the same as that

used earlier, as summarized in Table 2.2. The network region A considered here is

an annulus with inner radius rin = 0.3 m and outer radius rout = 2.1 m. The users

are assumed to be randomly distributed in A according to a BPP. The simulation

parameters used are summarized in Table 2.3. These are the values used if not oth-

erwise stated. The quantities K, W and σ2 are parameters we vary for comparison

later on. Varying K is equivalent to changing the interferer density λ since |A| is

assumed to be fixed. Similarly, varying W amounts to changing the parameters for

blockages. Finally, increasing σ2 captures the effect of more noise in the receiver or a

lower transmit power.

To understand the significance of scaling of the size of the antenna arrays, we

plot coverage probability against SINR for 3 cases that have the same product of

Nt × Nr. This is shown in Fig. 2.10 where we let pt = 0.5 under only Assumption

1. As observed for the fixed geometry case in Section 2.5, we see that using more

transmit antennas is better than having more receive antennas. This is also seen in

Table 2.5 which summarizes the ergodic spectral efficiency for various antenna array

configurations. The reason for the asymmetrical behavior with respect to Nt and Nr

is that while larger Nt results in reduced probability pM ∝ 1
Nt

that interferers radiate
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Figure 2.10: Spatially averaged SINR coverage probability obtained via simulation
for three different antenna configurations - 4 × 4, 16 × 1, 1 × 16 and assumption 1
with pt = 0.5. Larger Nt is advantageous and the performance is not symmetric with
respect to Nt and Nr.

with larger power Gt, increasing Nr results in a decreased fraction of interferers falling

within the receiver main-lobe which is proportional to θ
(a)
r ∝ 1√

Nr
.

We validate Assumptions 2 – 4 in Fig. 2.11. The plots for the CCDF of

spectral efficiency with and without the assumptions are shown for Nt = Nr = 4 and

Nt = Nr = 16 with pt = 1. We observe that, though the location of the blockages and

the users are dependent in reality (as described by the orbital model), the assumptions
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Table 2.5: Spatially averaged ergodic spectral efficiency for various antenna configu-
rations

HH
HHHHNt

Nr 1 4 16

1 0.6465 1.7459 3.2844
4 2.0526 3.5963 5.3523
16 3.8697 5.5886 7.4071

of treating the blockages and users as two independent BPPs (Assumption 2), asso-

ciating a distance dependent blockage probability pb(r) (Assumption 3) and defining

the LOS ball (Assumption 4) are all reasonable. The plots of spectral efficiency for

each of assumptions 1-4 when pt = 1 are shown in Fig. 2.12.

The plots in Fig. 2.13 show the CCDF of the SINR obtained using the analytic

expressions derived in Section 2.6.3 and compares it with the actual simulation results

under Assumptions 1 and 4. It is seen that the analytic expressions match exactly

with the setting under Assumption 4 wherein we consider all the interferers within

the LOS ball as unblocked and those outside as blocked from the reference receiver.

Next we look at the dependence of the system performance on W , the diameter

of the blockages. We define the throughput as the product of pt and the ergodic

spectral efficiency. The plot of throughput versus W in Fig. 2.14 shows that as W is

increased, the throughput improves. This is because, with larger W and for a fixed

interferer density, the interfering signals get more blocked thus improving the SINR.

The plots in Fig. 2.14 are for Nt = Nr = 4 and using the analytic expressions derived

in Section 2.6.3.

In Fig. 2.15, the variation of SINR coverage probability is plotted as a function
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Figure 2.11: CCDF of spatially averaged ergodic spectral efficiency obtained via
simulation for various transmitter and receiver antenna configurations Nt ×Nr with
pt = 1.

46



Number of receive antennas N
r

0 2 4 6 8 10 12 14 16 18

E
rg

od
ic

 s
pe

ct
ra

l e
ffi

ci
en

cy
 (

bi
ts

/s
/H

z)

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Orbital model
Assumption 2
Assumption 3
Assumption 4

Nr = 4, Nt = 16

Nr = 1, Nt = 16

Nr = 16, Nt = 16

Figure 2.12: Spatially averaged ergodic spectral efficiency from simulation when
pt = 1 for various receiver antenna configurations and Nt = 16 with and without
Assumptions 2 – 4 in Section 2.6.1.

47



SINR (dB)
-30 -20 -10 0 10 20 30 40 50

C
C

D
F

 o
f S

IN
R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Assumption 1 (simulation)
Assumption 4 (simulation)
Assumption 4 (analytical)

Nt = 16, Nr = 4

Nt = 1, Nr = 1

Figure 2.13: Plot showing the CCDF of spatially averaged SINR obtained from sim-
ulation and analytic closed-form expressions for different antenna configuration with
pt = 0.7.

48



0.18 0.24 0.3 0.36 0.42 0.48 0.54 0.6

W (in meters)

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

T
hr

ou
gh

pu
t (

bi
ts

/s
/H

z)

p
t
 = 0.3

p
t
 = 0.7

p
t
 = 1

Figure 2.14: Spatially averaged throughput vs. W for different values of random-
access probability pt using the analytic expressions. Larger blockage diameter results
in better throughput as the interferers are effectively blocked.
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Figure 2.15: Spatially averaged SINR coverage probability vs. λ for different values
of SINR threshold β using the analytic expressions. Here, we let Nt = 4, Nr = 16
and pt = 1.

of λ, the interferer density. We fix Nt = 4, Nr = 16 and pt = 1 for comparison and

use the previously derived analytic expressions for the plots. It is seen that as λ

is increased the SINR coverage decreases rapidly initially. However, with very high

density, blocking probability also increases, hence showing lower rate of decrease with

increasing λ in the plots later on. This also corroborates our assumption that (the

users wearing) the interferers are also the source of blockages in the indoor wearables

environment.
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Figure 2.16: Spatially averaged ergodic spectral efficiency vs σ2 for two different
values of pt using the analytic expressions when Nt = Nr = 4.

Fig. 2.16 shows the variation of ergodic spectral efficiency as we vary σ2. Here

we let Nt = Nr = 4 and use the analytic results in Section 2.6.3. It is seen that for

smaller values of σ2, the system is indeed interference limited as changing pt results

in significant change in the system performance. However as σ2 is increased, the

system becomes noise limited and different values for random-access probabilities of

the interferers result in little change in the SINR distribution and hence the ergodic

spectral efficiency.
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2.8 Conclusion

In this chapter, we analyzed the performance of a mmWave wearable commu-

nication network operating in a finite region like that inside a train car. To model

the sensitivity of mmWave signal propagation to the presence of human bodies in

the network, we incorporated different path-loss and small-scale fading parameters

depending on whether a link is blocked or not. It was seen that both interference

and the probability of blockage of the interference signals are large when the crowd

density is high, so that the SINR coverage probability decreases at a much lower

rate with higher crowd density. We considered fixed as well as random positions for

the interfering transmitters and assessed the impact of antenna parameters such as

array gain and beamwidth on coverage and ergodic spectral efficiency of the system.

It was seen that antenna main-lobe directivity and array gain play a crucial role in

achieving giga-bits per second performance for wearable networks in a crowd. We

proposed several assumptions and a model to analyze the system performance when

the interferers are located at random locations. These gave closed-form expressions

for spatially averaged coverage probability for mmWave wearable communication net-

work when the user is located at the center of a dense crowd and the number of users

is finite. The validity of the closed-form analytic results and the assumptions were

confirmed against simulations. The analytic modeling presented in this chapter serves

as a first step towards characterizing SINR performance of mmWave based ad-hoc

networks in a finite but crowded environment, and enables one to avoid simulations

to predict performance. The rate performance plots showed that coordination across

users is not necessarily required for mmWave network operation in crowded scenarios,
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thanks to the inherent isolation properties of mmWave signals.

The work in this chapter can easily be extended to the case that the reference

link can be blocked by the user’s own body. The procedure would involve finding

two conditional outage probabilities, one conditioned on the link not being blocked

by the user (using the procedure outlined in this chapter) and the other conditioned

on the link being blocked by the user (adapting the procedures so that the reference

link’s path loss is αN and Nakagami factor is mN). The two probabilities can then

be weighted by the probability of self-blockage, which can be determined based on

the assumed spatial models. Using a more refined model to capture this self-blockage

and incorporating it in the analysis is an interesting topic for future work.
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Chapter 3

Practical Aspects of Indoor MmWave Coverage:

Self-blockage and Surface Reflections

3.1 Overview

Supporting high data rate wireless connectivity among mmWave wearable de-

vices in a dense indoor environment is challenging in indoor environments. This is

primarily due to bandwidth scarcity when many users operate multiple devices simul-

taneously, and the added impact of reflections from walls. In this chapter1, to provide

a means for concrete analysis, we present a system model that admits easy analysis of

dense, indoor mmWave wearable networks. We evaluate the performance of the sys-

tem while considering the unique propagation features at mmWave frequencies, such

as human body blockages and reflections from walls. One conclusion is that the non-

isotropy of the surroundings relative to a reference user causes variations in system

performance depending on the user location, body orientation, and the density of the

network. The impact of using antenna arrays is quantified through analytic closed-

form expressions that incorporate antenna gain and directivity. It is shown that using

1This chapter is based on the work published in the journal paper: K. Venugopal, and R. W.
Heath, Jr., “Millimeter wave networked wearables in dense indoor environments,” IEEE Access, vol.
4, pp. 1205-1221, 2016. This work was supervised by Prof. Robert Heath. Alexander Pyattaev and
Dr. Kerstin Johnsson gave valuable suggestions and inputs from ray-tracing data to model human
user self-blockage and reflections in indoor mmWave wearable networks.
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directional antennas, positioning the transceiver devices appropriately, and orienting

the human user body in certain directions depending on the user location result in

gigabits-per-second achievable ergodic rates for mmWave wearable networks.

3.2 Indoor Wearable Networks

A typical example of a dense indoor environment is shown in Fig. 3.1, where

the user density could be as high as three users per square meter [48]. In conventional

wireless BANs, this is not a major issue as the data-rate requirements are much

lower. For high-end devices in a wearable network, coordination across users could

reduce interference. But this would increase the overhead data and may add to the

complexity and cost of the devices [26]. An abrupt change in the high crowd density

may also be detrimental to the existing connections. A desirable feature of a wearable

network, thus, is to support intra-network communication between devices in a way

that is independent of other users’ wearable networks. Since the mmWave signals

are blocked by human body and objects, the mmWave band is an ideal candidate to

deliver high data rates in wireless personal area networks [9]. This is promising for

dense deployments of wearable networks involving simultaneous operation of many

devices [26, 49].

There is limited prior analytic work related to mmWave wearable networking

in indoor environment. A comparison between body area networks at 2.5 GHz and 60

GHz in terms of inter-network interference in indoor environment using CAD model

and simulation was reported in [49]. Their study concluded that significant amount

of interference mitigation can be achieved by using the mmWave band, allowing a
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Figure 3.1: Figure illustrating a typical crowded indoor scenario such as a train car
with several users operating their respective wearable networks.

greater number of collocated wearable networks. Prior work in [26] used ray tracing

tool to show that the use of mmWave is critical to support massive deployment of

wearable networks with high-end devices in indoor commuter train scenario. It was

also noted that the existing mmWave technologies have to be enhanced to efficiently

handle the scenarios where several neighboring users’ networks overlap. In [17], the

effect of first order reflections for mmWave signal propagation in indoor operations of

wearable networks was characterized and system performances when a user is located

at the center and a corner of an indoor enclosure were evaluated using simulations.

In this chapter, we present a system model to study the feasibility of mmWave

wearable networks in the absence of coordination across the users. Unlike the contri-

butions in Chapter 2, in this chapter, we also explicitly model signal reflections due

to the enclosed space (network boundaries) and the impact of self-body blockage on

mmWave signals. The model can be used to evaluate the worst case performance of a

mmWave-based indoor single-hop communication system when crowd density is high

and in the absence of an advanced medium access (MAC) protocol. Our model can
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be used to identify predominant interferers using an approach similar to [19]. This

classification can be used in future work for MAC and physical layer system design

to reduce interference via coordination and further improve performance. Unlike [19],

the proposed model is more general as our approach does not restrict the typical user

to the center of the crowd. We incorporate the effect of user density and orienta-

tion of the user body relative to the wearable devices in the model to understand

the best conditions for achieving maximum system performance. Using directional

antennas in the wearable devices, and assuming the users are randomly located in the

indoor environment, we analyze performance of a typical user’s on-body mmWave

communication link. Using the analytic results, we show how system performance is

non-isotropic in an indoor environment and varies as a function of both location as

well as body orientation of the reference user.

The rest of the chapter is organized as follows: In Section 3.3, we first review

key prior work related to modeling wireless networks and then proceed to explain

the proposed system model. This is followed by the derivation of spatially averaged

signal-to-noise-plus-interference-ratio (SINR) distribution in Section 3.4 which leads

to closed-form expressions for system performance. In Section 3.5, we provide simu-

lation results to validate the analysis done in Section 3.4. We summarize the main

results of the chapter in Section 3.6.
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3.3 Modeling mmWave Wearable Networks with Stochastic
Geometry

Developing tractable models to characterize performance of mmWave-based

wearable networks is key to understanding the impact of crowd density and the ne-

cessity of coordination across users via advanced protocols if the performance with-

out inter-user coordination is poor. In this section, we elaborate on the analytic

approach used in the chapter to model wearable networks. The network geometry,

blockage model and the propagation features assumed are explained and the intuitive

reasoning for the assumptions made are provided at relevant places. The performance

analysis and modeling leverage tools from stochastic geometry which is reviewed next.

3.3.1 Background on Stochastic Geometry

Stochastic geometry provides a mathematical approach for modeling wireless

networks, which has been used to study outdoor systems. The transceiver nodes in the

network are modeled as randomly located in the 2-D plane to form a point process of

known intensity, and the distribution of the interference field as seen by a typical user

is analyzed. Stochastic geometry allows derivation of analytic expressions for average

performance metrics like the SINR, spectral efficiency, and the sum throughput for

infinite networks [30,32,33].

In the context of mmWave-based cellular systems, [14, 38] used results from

stochastic geometry to characterize network coverage and capacity. The important

propagation features of the mmWave signal, especially signal blockage due to buildings

and human user body were modeled in [12,38]. In [12], a distance-dependent blockage
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model was first derived using results from random shape theory, and was then used

to derive analytic expressions for SINR coverage. An important assumption for these

derivations was that the sources of signal blockages (buildings) and the communication

devices are drawn from independent Poisson Point Processes (PPP).

For dense indoor operations using mmWave, human bodies of the users are

the main source of blockages and can result in 30-60 dB of attenuation for mmWave

signals [37, 50, 51]. The users that carry potentially interfering devices, hence, also

potentially block the interference from other users. This is a key difference compared

to outdoor cellular based mmWave systems where independent spatial distribution

assumption for blockages and interferers is easier to justify. Another point of difference

between outdoor cellular systems and indoor mmWave systems is the spatial extent

and number of transceiver devices considered in the analysis. While an infinite region

of operation and infinite number of users could be justified in a cellular setting, system

models for indoor operation have to consider finite geometry and number of users.

The exact effects of first order reflections from all the six faces of a cuboidal

enclosure were considered for the simulation results in [17]. This provided valuable

insight into the nature of surface reflections in the indoor mmWave setup. While it

was assumed that the reflections from the ceilings were never blocked and the self-

body human blockage was characterized, [17] does not consider directional antennas

at the devices and also does not report closed-form analytic expressions for spa-

tially averaged system performance. The system model that we explain next leads to

closed-form expressions for spatially averaged performance of a typical user’s wearable

network communication link.
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3.3.2 Network Model

To model a train car, we consider an enclosed space T of dimensions L×B×H

as shown in Fig. 3.2a which has highly reflective walls and ceiling, and a non-reflective

floor. Such a model is similar to that used in [17], with the exception that we assume

the floor to be non-reflecting as the material used for flooring is generally rougher,

and different from the smooth surfaces of the walls and ceiling [46]. Note that seating

arrangements and other finer details of the interior of a typical train car are neglected

in this model. The users are assumed distributed randomly within T and are modeled

as cylinders U of a fixed diameter W , ideally characterizing the width of the human

body torso including the legs. Each user is assumed to be equipped with one high-end

wearable receiver and one controlling hub (smartphone) which acts as the device-to-

device communication transmitter.

All the mmWave wearable transmitter devices are assumed to be positioned

at a depth dh from the ceiling of T along the plane denoted as P (Fig. 3.2a) and

positioned randomly on a circle of radius d ≥ W/2 concentric with their associated

user. Typical values for d can vary from 2-30 centimeters depending on whether

the device is placed on the body surface or held on stretched hand. The interfering

transmitters and their locations are denoted as Ti = xi + jyi. In this representation,

the point O as shown in Fig. 3.2, is assumed to be the origin. We denote the

reference receiver and its location by R0 which is also assumed to be at a distance d

from the reference user’s body. Further, the separation between R0 and the reference

transmitter T0 is assumed to be r0 in the azimuth and z0 in the elevation plane.

The geometry of the reference transmitter-receiver is illustrated in Fig. 3.3. The
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Figure 3.2: Network model showing the human users, reference receiver R0, reference
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diameter-W user body.
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projection of the reference receiver onto P, the plane containing the transmitters is

denoted by the complex number RP
0 = x0 + jy0, so that |RP

0 − T0| = r0. We use the

following notations (see Fig. 3.3) for the azimuth and elevation angles of the reference

transmitter relative to the reference receiver.

φa
0 = ](T0 − RP

0 ) and (3.1)

φe
0 = − arctan

(
z0

r0

)
. (3.2)

User bodies U intersect with P to form diameter-W disks. We use the notation

Bi to denote both this disk as well as its center for the ith user. We assume {Bi} are

drawn from a non-homogeneous PPP that has intensity λ in the region of interest,

and zero outside it. This assumption eases analysis for mmWave wearable networks in

crowded environment [19] and also captures the uniform but random crowd distribu-

tion inside a public transportation system during rush hours. Since the transceivers

are located relative to the users carrying them, we say user i is facing towards a

direction ψi = ] (Ti − Bi). The reference receiver R0 is assumed to be facing towards

the direction ψ0 = ]
(
RP

0 − B0

)
. This is illustrated in Fig. 3.2b.

3.3.3 Signal Model

The Nakagami distribution has been used to model small scale fading for

indoor mmWave propagation in prior work [52,53] . The received power gain due to

fading is then a Gamma distributed random variable. We assume the power gains {hi}

due to fading for the wireless links from {Ti} to the reference receiver are independent

and identically distributed normalized Gamma random variable with parameter m.
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The reference signal link of (fixed) length d0 =
√
r2

0 + z2
0 is assumed to be unblocked

by the reference user’s body. Given the reference user’s on-body signal link length is

small (typically less than one meter) this assumption is reasonable. We would like to

point out here that, in practice, the signal link can still be occluded by the reference

user’s physical activity like hand movements, gait, posture etc. In the absence of a

more elaborate but tractable stochastic model to incorporate these aspects based on

measurement data, we assume the on-body reference signal link is unblocked. With

the assumed human body model in Fig. 3.3 and given d, ψ0, r0 and W , in order for

the reference signal to be unblocked, the following condition must hold:

r0 ≤ 2

√
d2 −

(
W

2

)2

. (3.3)

Additionally, letting r0 =
√
d2 −

(
W
2

)2
, we have

φa
0 = ψ0 −

π

2
− arcsin

( r0

2d

)
. (3.4)

The condition in (3.3) and the derivation of (3.4) can be understood using the illus-

tration of reference signal link’s geometry in Fig. 3.3

The path-loss exponent of the signal link is denoted αL, where the subscript L

denotes line-of-sight (LOS). This is in line with our assumption that the on-body ref-

erence signal link is unblocked. The non-LOS (NLOS) path-loss exponent is denoted

as αN, the relevance of which is explained momentarily. Such a differentiation in the

path-loss exponents has been supported by indoor measurement campaigns [54]. The

power gain h0 due to fading in the reference link is also assumed to be a normal-

ized Gamma distributed random variable with parameter m. The path-loss function
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(a) Reference signal link in 3D. The reference receiver is at a height z0 above the reference
transmitter and forms an elevation angle φe0 with the plane containing the transmitters P.
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(b) Projection of the reference receiver onto P showing the azimuth angle φa0 between the
reference user’s devices and the horizontal separation r0. The reference link is unblocked
whenever (3.3) holds.

Figure 3.3: Illustration showing the reference signal link’s geometry.
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for the link from Ti to the reference receiver depends on the relative position of Ti

with respect to R0 and is denoted as `(R0,Ti). All transmitters are assumed to be

transmitting at a constant transmit power. For example, this could be the maximum

transmit power of devices as set out by regulations, in which case this would be a

worst case scenario. The noise power normalized by the signal power observed at a

reference distance is denoted as σ2.

The receiver-transmitter pair associated with user i are assumed to be aligned.

From the reference receiver’s perspective, this assumption leads to a random transmit

gain for the interference from Ti as seen at R0. Defining pM, as in before (2.4), the

transmit antenna gain from the ith interferer can be represented using a discrete

random variable Gt,i as follows

Gt,i =

{
Gt w.p. pM

gt w.p. 1− pM
. (3.5)

The reference receiver’s antenna main-lobe is pointed towards (fixed) azimuth angle

φ
(a)
0 and elevation angle φ

(e)
0 , the location where the reference transmitter is positioned.

Since the beam-width of the receiver antenna is θ
(a)
r and θ

(e)
r in the azimuth and

elevation, respectively, the signals from all the interferers that are within an elevation

angle φ
(e)
0 ± θ

(e)
r

2
and azimuth angle φ

(a)
0 ± θ

(a)
r

2
relative to the reference receiver R0 are

amplified by Gr, the main-lobe gain of R0. Specifically, interference from the ith user’s

transmitter Ti is amplified by a factor Gr,i at the reference receiver, where

Gr,i =

{
Gr if |]

(
Ti − RP

0

)
− φ(a)

0 | ≤ θ
(a)
r

2
and | arctan

(
z0

|Ti−RP
0 |

)
− φ(e)

0 | ≤ θ
(e)
r

2

gr else
.

(3.6)
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3.3.4 Modeling Interference and Blockages

The signal from an interferer Ti to R0 can be potentially blocked by user i,

the reference user, and/or user j, j 6= i. The blockage by user i and the reference

(termed self-blockage in [38]) can occur irrespective of the locations of Ti and R0.

Specifically, self-blockage depends on whether user i and the reference user are facing

each other or not. The blockage by user j 6= i, depends on the relative separation

between Ti and RP
0 , and their individual positions with respect to the reflecting walls

of the enclosure. For this reason, self-blockage and blockage by user j 6= i are treated

separately.

3.3.4.1 Blockage of Ti’s signal by user j 6= i

To see if user j, j 6= i blocks Ti, we use the approach in [1] and define a region

C(Bj) ∈ P for each user relative to RP
0 in P. This region falls behind user j’s body Bj

as seen from the reference receiver. Mathematically,

C(Bj) =

{
z ∈ P : |z − RP

0 |2 ≥ |Bj − RP
0 |2 −

(
W

2

)2

,

|](z− RP
0 )− ](Bj − RP

0 )| ≤ arcsin

(
W

2|Bj − RP
0 |

)}
, (3.7)

and we refer this region as the blocking cone of Bj. The concept of blocking cone

is illustrated in Fig. 3.4. Note that, using (3.7), we can also define the blocking

cone of the reference user which is denoted as C(B0). We denote Ti as strong if

its direct and wall reflected paths do not fall in the blocking cone C(Bj), j 6= i.

Otherwise, Ti is denoted as a weak interferer. Since Bj is uniformly distributed in

P, the interfering transmitters located farther away from RP
0 have a higher chance
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Figure 3.4: Illustration of a blocking cone showing the direct and wall-reflected paths
of Ti getting blocked by Bj.
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Figure 3.5: Illustration showing the threshold distance rB(RP
0 ) based classification of

interferers into strong and weak interferers. Interferes whose horizontal separation
from the reference receiver is smaller than rB(RP

0 ) are strong.

of being a weak interferer. For analytic tractability, we define a threshold distance

rB(RP
0 ) around RP

0 in P such that if |RP
0−Ti| ≤ rB(RP

0 ), Ti is a strong interferer. Having

|RP
0 − Ti| > rB(RP

0 ) implies that there always exists some user j 6= i that blocks the

direct and wall-reflected propagation paths from Ti to R0. An illustration describing

this modeling assumption is shown in Fig. 3.5. This threshold-distance-based model

captures the blockage effects due to a third user j for the interference signal from user

i as experienced at the reference receiver.

By definition, Ti is a strong interferer whenever |RP
0 − Ti| ≤ rB(RP

0 ), and
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there exists no Bj, j 6= i in the path from Ti to RP
0 . To evaluate rB(RP

0 ), we use the

illustration in Fig. 3.6a, which shows Ti getting blocked by a user j 6= i whenever

user j (center of Bj) is located anywhere in the region A(RP
0 ,Ti) [18]. Since the users

are assumed to be drawn from Φ, the probability that there is no user in the region

A(RP
0 ,Ti) is exp(−λ|A(RP

0 ,Ti)|), where |A(RP
0 ,Ti)| is the area of A(RP

0 ,Ti). The shape

of A(RP
0 ,Ti) varies with RP

0 (and Ti). In particular, the variation in the shape and

hence the area |A(RP
0 ,Ti)| is more pronounced when one or both of RP

0 and Ti are near

the walls as shown in Fig. 3.6b. Hence, the quantity |A(RP
0 ,Ti)| required to evaluate

the probability that the interferer Ti is blocked from the reference receiver is not

fully defined by the distance between RP
0 and Ti. This implies the distance-dependent

blockage model used in prior work to characterize mmWave outdoor network may

not directly apply to indoor communication using mmWave. For indoor mmWave

communication, however, the effect of wall-reflections - which results in a near LOS

signal propagation - is higher when the receiver and/or the interfering transmitter are

closer to the wall (Fig. 3.7a). In a densely crowded environment, since the reflected

interference signals need to propagate through a longer path, the probability that the

onward and reflected paths for the interference bouncing off a wall are not blocked is

higher. This results in a larger area A′(RP
0 ,Ti) as illustrated in Fig. 3.7b.

Assumption 1: The actual area of A′(RP
0 ,Ti) can be approximated by the

area seen by receiver-transmitter pair positioned away from the reflecting walls so

that

|A′(RP
0 ,Ti)| ≈ |RP

0 − Ti|W +
πW 2

4
. (3.8)
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(a) Case when Ti and RP
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(b) Case when Ti and RP
0 are near the reflecting walls. The area of the region A(RP

0 ,Ti) is
not fully defined by the horizontal separation between RP

0 and Ti now.

Figure 3.6: Figures showing the blocking zone A(RP
0 ,Ti) when the devices are away

from the reflecting walls, and otherwise. A potential blockage Bj within A(RP
0 ,Ti) and

its blocking cone (cf [1] for definition of blocking cone) are also shown for illustration.
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0 are near the reflecting walls.

Figure 3.7: Figures showing the effective blocking zone A′(RP
0 ,Ti) when Ti and RP

0

are near from the walls.
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With this assumption, the blockage probability pb
(
RP

0 ,Ti
)

of a user i due to user

j 6= i is a function of only the separation between RP
0 and Ti. This is evaluated as

pb
(
RP

0 ,Ti
)

= 1− exp

(
−λ
(
|RP

0 − Ti|W +
πW 2

4

))
. (3.9)

We next evaluate the threshold distance rB(RP
0 ). This is computed in such a way that

the average number of interferers whose direct and reflected paths are not blocked

are preserved. The average number of strong interferers ρ(R0) as seen from R0 is

ρ(R0) = λ

∫

z∈P

(
1− pb(RP

0 , z)
)

dz (3.10)

= λ

L∫

x=0

B∫

y=0

exp

(
−λ
(
|RP

0 − (x+ jy)|W +
πW 2

4

))
dydx.

The mean number of interferers in a disk of radius rB(RP
0 ) around RP

0 is λπr2
B(RP

0 ), so

that equating the mean number of strong interferers leads to

rB(RP
0 ) =

[
ρ(R0)

πλ

] 1
2

. (3.11)

We denote this disk around RP
0 as B

(
RP

0 , rB(RP
0 )
)
. When RP

0 is near the boundary of

P, parts of B
(
RP

0 , rB(RP
0 )
)

lie outside P. In such a scenario, given that the impact

of reflections from the walls is significant, we continue to assume that B
(
RP

0 , rB(RP
0 )
)

is a complete disk and allow Ti to lie outside P. This is tantamount to modeling

the wall reflections as signals emanating from shadow transmitters located at the

reflection image locations corresponding to the actual strong interferers in P. Note

that when RP
0 is close to a corner, there can be first and second order reflection sources

within B
(
RP

0 , rB(RP
0 )
)
. For ease of analysis, we further assume that (reflection images

and actual) strong interferers are independently and uniformly distributed within

B
(
RP

0 , rB(RP
0 )
)
. This is illustrated in Fig 3.8.
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Figure 3.8: Plot showing the region B
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)
, when the reference user is near a

reflecting wall.

3.3.4.2 Self body-blockage

Self-blockage of the Ti − R0 link occurs if Ti ∈ C(Bi) and/or Ti ∈ C(B0). This

results in a constant attenuation of BL (linear scale), for each number of self-blockages.

Such a model has been used in [38] in the context of mmWave cellular systems. In [38],

self-blockage accounts for roughly 40 dB loss in SINR. Unlike the cellular case where

the number of self-blockages in a link can be 0 or 1, in the mmWave wearables context,

the number of self-blockages in a link can be either 0, 1 or 2. Self-blockage is the

only source of blockage for strong interferers in our model. For a weak interferer,

self-blockage further degrades the signal strength in addition to blockages due to

other users. Hence, we assume the propagation is NLOS with a path-loss exponent

αN > αL. If a weak interferer is not self-blocked, we assume the propagation path via

ceiling reflection prevents the channel from being NLOS.

We summarize our blockage-based path-loss model for a general Ti ∈ P next.

The path length of the ceiling reflected signal from Ti to R0 is denoted by

‖R0 − Ti‖c =
√
|RP

0 − Ti|2 + (2dh − z0)2, (3.12)
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and the Euclidean distance between Ti and R0 is denoted by

‖R0 − Ti‖ =
√
|RP

0 − Ti|2 + z2
0 . (3.13)

Denoting the number of self-blockages in the Ti−R0 link by s and using 1A to denote

the indicator function of event A, the path-loss function `(R0,Ti) can be classified

into any one of the following:

Case A: When Ti is a strong interferer,

`(R0,Ti) = ‖R0 − Ti‖−αLB−sL . (3.14)

Case B: When Ti is a weak interferer

`(R0,Ti) = ‖R0 − Ti‖−αL
c 1{s=0} + ‖R0 − Ti‖−αN1{s 6=0}. (3.15)

Note that we do not consider the reflection from ceiling in Case A. This is in line with

our assumption that when Ti is a strong interferer located within close proximity to

RP
0 in P, the signal bouncing off the ceiling is less significant compared to the direct

and wall-reflected signals. The effect of reflections from the ceiling is assumed to be

substantial only when the users are facing each other and when |RP
0 − Ti| > rB(RP

0 ).

The NLOS propagation in Case B-2 coarsely also accounts for all possible scattering

and diffraction that dominates when an interferer is weak and self-blocked. This is

the intuition behind the different cases for the path-loss function.

To conclude the discussion on interference and blockage modeling, we note

that now we have a region B
(
RP

0 , rB(RP
0 )
)

around RP
0 such that the interference signal
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(direct or wall-reflected) from Ti located within B
(
RP

0 , rB(RP
0 )
)

is never blocked by

Bj, j 6= i. Further, the direct and wall-reflected paths for the interference from Ti

outside B
(
RP

0 , rB(RP
0 )
)

is always blocked by some user j 6= i.

3.4 SINR Coverage Probability

In this section, the reliability of the mmWave link of the reference user is

characterized by evaluating the SINR distribution of the reference link as a function

of the reference user’s location within the enclosure. The SINR coverage probability

for an SINR threshold γ is defined as the probability that the receiver SINR is greater

than γ. Denoting the marked PPP as Φ, with the marks corresponding to fading

power gains, distance-dependent pathloss and antenna gains, the SINR seen at the

reference receiver R0 when its body is facing in the direction ψ0 is

Γ(R0, ψ0) =
h0GtGrd

−αL
0

σ2 +
∑

i∈ΦGt,iGr,ihi`(R0,Ti)
. (3.16)

Note that in (3.16), the term `(R0,Ti) captures the effect of the reference user’s body

orientation ψ0 as defined in (3.14)-(3.15). Denoting γ̃ =
d
αL
0

GtGr
, the complementary

cumulative distribution function (CCDF) of SINR, which is also referred to as the

SINR coverage probability [12], is

P (Γ(R0, ψ0) > γ) = P

(
h0 > γ̃

(
σ2 +

∑

i∈Φ

Gt,iGr,ihi`(R0 − Ti)

))

≤ 1− EΦ

[(
1− e−mm̃γ̃(σ2+

∑
i∈ΦGt,iGr,ihi`(R0,Ti))

)m]
. (3.17)
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In (3.17), we have used a tight lower bound for the CDF of the normalized gamma

random variable [44], with m̃ = (m!)
−1
m . Denoting

ISIΦ =
∑

i∈B(RP
0 ,rB(RP

0 ))

Gt,iGr,ihi`(R0,Ti) and (3.18)

IWI
Φ =

∑

i∈Φ\B(RP
0 ,rB(RP

0 ))

Gt,iGr,ihi`(R0,Ti), (3.19)

and using the binomial expansion followed by splitting the strong and weak interfer-

ence terms, we can write (3.17) as

P (Γ(R0, ψ0) > γ) =
m∑

k=1

(
m

k

)
(−1)k+1e−kmm̃γ̃σ

2EΦ

[
e−kmm̃γ̃I

SI
Φ

]
EΦ

[
e−kmm̃γ̃I

WI
Φ

]
.

(3.20)

The expectation terms in (3.20) are as given in Theorem 4 and Theorem 5, which

make use of the following lemmas.

Lemma 2 The probability ps that Ti ∈ B
(
RP

0 , rB(RP
0 )
)

experiences s human body self

blockages is given by

ps =





(1− pself
b )2 s = 0

2pself
b (1− pself

b ) s = 1(
pself
b

)2
s = 2

, (3.21)

where pself
b = 1

π
arcsin

(
W
2d

)
, and the probability q(R0, ψ0) that both Ti and R0 are facing

each other when Ti ∈ P \B
(
RP

0 , rB(RP
0 )
)

is given by

q(R0, ψ0) =
(
1− pself

b

)
(1− q1(R0, ψ0)) , (3.22)

where

q1(R0, ψ0) =
|C(B0) \B

(
RP

0 , rB(RP
0 )
)
|

LB − |P ∩B
(
RP

0 , rB(RP
0 )
)
| , (3.23)

with L and B denoting the dimensions of the enclosed region.
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Proof: See Appendix A.1. 2

The term q1(R0, ψ0) in (3.23) denotes the probability that a weak interferer is in the

blocking cone of B0 given that it lies outside B
(
RP

0 , rB(RP
0 )
)

in P. This probability

is obtained as the ratio of the two areas given in the numerator and denominator in

(3.23). Note that, for a given B
(
RP

0 , rB(RP
0 )
)

(computed using (3.11)), these areas

(3.23) need to be evaluated via numerical integration.

We use the following notation ((3.24) - (3.27)) in Lemma 3:

rmax = z0 cot

(
φ

(e)
0 −

θ
(e)
r

2

)
, (3.24)

rmin = z0 cot

(
φ

(e)
0 +

θ
(e)
r

2

)
. (3.25)

Quantities in (3.24) and (3.25) together define a region in P which falls within the

elevation beam-width of reference receiver’s antenna.

P̂ = P \B
(
RP

0 , rB(RP
0 )
)

and (3.26)

Υ(φ
(a)
0 ) =

{
z ∈ P̂ : ]z ∈

[
φ

(a)
0 −

θ
(a)
r

2
, φ

(a)
0 +

θ
(a)
r

2

]}
. (3.27)

The set in (3.27) denotes a region outside B
(
RP

0 , rB(RP
0 )
)

in P that falls in the main-

lobe of the reference receiver in the azimuth.

Lemma 3 The probability pSIrx that a strong interferer is within the main-lobe of the

reference receiver is

pSIrx =
θ

(a)
r

2π

(
min

(
rB(RP

0 ), rmax

)2 − r2
min

r2
B(RP

0 )

)
. (3.28)
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The probability pWI
rx that a weak interferer is within the main-lobe of the reference

receiver is

pWI
rx =

|Υ(φ
(a)
0 )|
|P̂|

(
1− |P \B

(
RP

0 ,max(rB(RP
0 ), rmax)

)
|

|P \B
(
RP

0 , rB(RP
0 )
)
|

)
. (3.29)

Proof: See Appendix A.2. 2

In (3.29), areas of regions have to be evaluated numerically. We define the following

vectors for ease of notation in Theorem 4 and Theorem 5:

µ =




pMp
SI
rx

(1− pM) pSIrx

pM
(
1− pSIrx

)

(1− pM)
(
1− pSIrx

)


 , ν =




pMp
WI
rx

(1− pM) pWI
rx

pM
(
1− pWI

rx

)

(1− pM)
(
1− pWI

rx

)


 , (3.30)

G =
[
GtGr gtGr Gtgr gtgr

]
. (3.31)

We use subscript j to denote a vector’s jth entry.

Theorem 4 Denoting R̃ = rB(RP
0 ) for simplicity, and

Aj,s =
R̃2

2
−

R̃∫

0

(
1 +

km̃γ̃Gj

(r2 + z2
0)

αL
2 BsL

)−m
rdr, (3.32)

the expectation term corresponding to the strong interferers in (3.20) can be expressed

as follows

EΦ

[
e−kmm̃γ̃I

SI
Φ

]
= exp

[
−2πλ

(
p0

4∑

j=1

µjAj,0 +
p1

2

4∑

j=1

µjAj,1

+
p1

2 (1− pSIrx)

4∑

j=3

µjAj,1 +
p2

(1− pSIrx)

4∑

j=3

µjAj,2

)]
. (3.33)

Proof: See Appendix A.3. 2
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Theorem 5 Defining

C1 = |P̂| −
4∑

j=1

νj

∫

z∈P̂

(
1 +

km̃γ̃Gj
‖R0 − z‖αL

c

)−m
dz, (3.34)

& C2 = |P̂| −
4∑

j=3

νj
(1− pWI

rx )

∫

z∈P̂

(
1 +

km̃γ̃Gj
‖R0 − z‖αN

)−m
dz, (3.35)

the expectation term corresponding to the weak interferers in (3.20) simplifies to

EΦ

[
e−kmm̃γ̃I

WI
Φ

]
= exp [−λ (q(R0, ψ0)C1 + (1− q(R0, ψ0))C2)] . (3.36)

Proof: See Appendix A.4. 2

To evaluate the analytic plots of the SINR distribution for a given network

dimension and user density, the threshold distance rB(RP
0 ) is first computed for a

given R0. Next, based on the given body orientation ψ0 of the reference user, the

self blocking probability and the probability that an interferer falls in the main-

lobe of the reference receiver are computed analytically for the strong interferers

(using (3.21) and (3.28), respectively). The corresponding quantities for the weak

interferers are computed using geometry and numerical integration based on (3.23)

and (3.29). Using these computations and plugging the results from Theorem 1 and

Theorem 2 ((3.33) and (3.36)) into (3.20), we compute the spatially averaged SINR

coverage probability for a given receiver location R0 and orientation angle ψ0. Note

that the results implicitly incorporate the direction in 3D where the receiver antenna

is pointed, i.e., (φ
(a)
0 , φ

(e)
0 ), though we do not explicitly denote that in (3.20). The

spectral efficiency η(R0, ψ0) for a given SINR can be computed as log2 (1 + Γ(R0, ψ0)).

With the knowledge of the CCDF of SINR, the ergodic spectral efficiency E [η(R0, ψ0)]
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Table 3.1: Default values of parameters used for simulation

Parameter Value Description
L 15 m Length of the enclosure
B 5 m Breadth of the enclosure
H 2.5 m Height of the enclosure
dh 1.5 m Transmitters’ vertical distance from ceiling
W 0.45 m Width of user body
d 0.325 m Distance between body center and wearable
z0 0.5 m Height at which receiver is positioned
r0 0.2345 m Horizontal separation between R0 and T0

λ 2 m−2 Crowd density
αL 2 LOS path-loss exponent
αN 4 NLOS path-loss exponent
m 7 Nakagami parameter of small scale fading
BL 40 dB Self-body blockage loss

of the reference user’s communication link can be evaluated as a function of the

reference receiver location and orientation of its body.

3.5 System Validation and Plots

In this section, simulation and numerical results that shed insights into the

proposed model are discussed. Simulation results to validate the analytic expressions

for spatial averages are also provided in this section. The parameters used for the

results are summarized in Table 3.1. The default value used for r0 =
√
d2 −

(
W
2

)2
, so

that the reference signal link is unblocked by the reference user’s body. This is also

shown in Table 3.1. The values of the reference antenna pointing angles φa
0 and φe

0

are computed according to (3.2) and (3.4).
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3.5.1 Validation of the Analytic Model via Simulation

The expression derived in Section 3.4, is validated against simulation and

is shown in Fig. 3.9. As discussed earlier, the impact of reflections due to the

walls of the enclosure is non-trivial for the indoor mmWave wearable network setting.

Therefore, to obtain the simulation plots, phantom transmitters and user bodies were

assumed to be located at the mirror image locations of the actual interferers and

their corresponding human body locations, respectively using using ray optics. This

effectively modeled the impact of reflection due to the walls and the ceiling of the

enclosure T similar to [17]. To see if an interferer (actual or phantom transmitter) is

blocked from the reference user’s receiver, the approach elaborated in [1] was used.

Note that we do not account for the actual reflection coefficient associated with the

walls which is a function of the angle of incidence of the signal. Analysis in [17],

however, shows that for highly reflective surfaces, the reflection coefficient is close to

unity and more or less independent of the angle of incidence. Hence, merely placing

phantom transmitters at the mirror image locations and assuming the same transmit

power as that of the actual interferers are justified. The CCDF of the SINR is then

obtained by averaging the random geometry of the user locations, small scale fading

and random body orientation of the interfering users. It is seen that the analytic

expression for the upper bound of SINR coverage probability is very tight and matches

the simulation results very well.

Fig. 3.9 also shows the SINR distribution for different antenna configurations.

It is seen that having larger antenna gains and highly directed transmissions and

reception improve the performance significantly. This is because directional antennas
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reduce the probability that interferers point their main-lobes in the direction of the

reference receiver’s antenna main-lobe, thus reducing the effective interference, while

boosting the antenna gains in the reference signal link.

3.5.2 Numerical Results

A plot of the mean number of strong interferers as a function of the location

of the reference receiver is shown in Fig. 3.10. When the reference receiver is near

the walls of the enclosure, the mean number of strong interferers is lower compared

to that when at the center. This implies that reflections due to the walls are less

significant than the direct interference caused by other users when the user density

is high.

The dependence of system performance on the reference user body orientation

is studied by plotting the average achievable rate for the cases when the reference

user is at the center and near a corner (we assume RP
0 = 0.5 + j0.5 in this case). For

this, the analytic expressions derived in Section 3.4 are used to compute the ergodic

spectral efficiency of the reference link. The average achievable rate is then computed

by multiplying the ergodic spectral efficiency with the system bandwidth which is

taken to be 2.16 GHz assuming an IEEE 802.11ad like setup. The plots are shown

in Fig. 3.11 for omni-directional antennas at the transmitters and the receivers, from

which we see that the sensitivity to body orientation is more pronounced when the

reference user is at corner. This means that when at a corner, turning the body to

face away from the interfering crowd (ψ0 = 225o for RP
0 = 0.5 + j0.5) gives the best

performance thanks to the body blockage due to the reference user’s body for the
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Figure 3.9: SINR distribution obtained through simulation and analytic expression
when the receiver is at a corner 0.5 + j0.5 for different antenna configurations. Our
proposed analytic model match well with simulation results which account for random
geometry for interfering users, reflections due to the finite enclosure and small scale
fading. With directional antennas, significant improvement in performance is seen.
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Figure 3.10: Plot showing the variation in the mean number of strong interferers seen
be the reference user at various locations within the enclosure. The mean number of
strong interferers is smaller when the reference user is near the walls of the enclosed
region.

mmWave interference signals.

The performance of the reference link as the reference user is positioned at

various locations of the enclosure is investigated next. The location dependent SINR

coverage probability is shown in Fig. 3.12 in the form of a heat map which is a

graphical representation of data where the individual values contained in a matrix

are represented as colors. In Fig. 3.12, an SINR threshold of −5 dB and ψ0 = 0o

are assumed for representing the SINR coverage probability as a color at reference

receiver location in P (projection) specified by the x and y coordinates. It is seen

that the best performance is obtained when the reference receiver is near the corner

and facing away from the interfering crowd. This is the case when all the interferers

are shielded by the reference user’s body. From Fig. 3.12 we can also see how the
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Figure 3.11: Plot showing the variation in the average achievable rate as a function
of the body orientation of the reference user when located at the center and near
a corner assuming omni-directional antennas are used at the devices. When the
reference user is at the corner location, body orientation plays a significant role in
improving achievable rate.
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Figure 3.12: Plot showing SINR coverage probability heat map as a function of the
reference location position when the reference user is facing to the right, i.e. ψ0 = 0o

and with omni-directional transceivers. The body orientation of the reference user
is also shown in the figure. System performance of mmWave wearable networks in
dense indoor environments heavily depends on the location.

interplay of reference user’s body blockage and the reflections from the enclosure

result in significant variation in the performance seen at the reference receiver as the

user moves around the crowd.

The dependence of system performance with respect to d, the relative sep-

aration between the user body and the wearable device is shown in Fig. 3.13 for

omni-directional antennas used at the devices. We let RP
0 = 0.5 + j4.5 which is a

corner location and take ψ0 = 135o so that the user is facing away from the inter-

fering crowd. The plots in Fig. 3.13 show that for getting improved performance

in a crowded environment, the device must be positioned closer to the user. This is

because the self-body blockage better helps in attenuating the interference from other

wearable networks when wearable devices are held close to the user body.

To understand the interplay between the horizontal and vertical separation
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distance of the reference link, we show a contour plot of the average achievable rate

in Fig. 3.14 as a function of the horizontal separation r0 and the vertical separation

z0 of the reference signal link when the reference user is at the center of the enclosure.

It is seen that the combination z0 > 0 and r0 = 0 gives the best performance.

This scenario corresponds to having the reference receiver vertically placed above the

reference receiver. It can also be seen from Fig. 3.14 that when r0 > 0, having z0

slightly above 0 is more advantageous than having z0 = 0, i.e., having both the receiver

and transmitter in the same plane (P) is not recommended for rate performance as

this scenario does not utilize the receiver antenna directivity in the elevation plane.

The results in Fig. 3.14 assume Gr = Gt = 10, gr = gt = 0.5 and beam-width = 20o

in the azimuth and elevation. We also assume the reference receiver is located at the

center and facing towards right (i.e., ψ0 = 0).

The variation of SINR coverage probability for an SINR threshold of γ = 32 dB

as the self-body blockage loss BL is varied is shown in Fig. 3.15 when ψ0 = 0. We

let Gr = Gt = 15, gr = gt = 0.1 and beam-width = 15o in the azimuth and elevation.

Two locations - one near a corner (12.5 + j0.5) and at the center are considered in

Fig. 3.15. It is observed that while increasing BL improves the coverage probability

of the reference signal link, the improvement is higher when the reference receiver is

at the center. This is because, since the amount of interference is more pronounced

at the center, the self-blody blockage shields the reference signal better thus resulting

in better SINR performance improvement compared to a corner location.
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3.6 Conclusions

In this chapter, we developed a tractable system model to analyze the perfor-

mance of mmWave-based wearable network in a densely crowded indoor environment

when there is no coordination between users to control interference. We modeled

the effects of human-body blockages due to other users and also the reference user.

The proposed system model also captured the predominant effects of wall and ceiling

reflections when the user density is high. The proposed analytic model is validated

against simulations. Using the proposed path-loss model, we derived closed-form ex-

pressions for spatially averaged system performance in terms of SINR coverage and

rate that can be computed as a function of location and body orientation of the

reference user. We observed that the effect of body orientation is significant when

the reference user is located at a corner. The peak average rate for the system was

obtained when the reference user is near the corner and facing away from the inter-

ferers. Further, since the net interference is enhanced due to reflections from walls

and ceiling during indoor mmWave wearable operation, it is seen that channel knowl-

edge and correctly pointing the beams are critical while still assuming there is no

coordination across users as concluded from Chapter 2. We showed that when the

reference receiver is placed vertically above the reference transmitter, maximum gain

in performance is obtained using narrow beam directional antennas at the transmitter

and receiver.
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Chapter 4

Channel Estimation for Hybrid Architecture

Based Wideband Millimeter Wave Systems

4.1 Overview

Hybrid analog and digital precoding allows millimeter wave (mmWave) sys-

tems to achieve both array and multiplexing gain. The design of the hybrid precoders

and combiners, though, is usually based on knowledge of the channel. Prior work

on mmWave channel estimation with hybrid architectures focused on narrowband

channels. Since mmWave systems will be wideband with frequency selectivity, it is

vital to develop channel estimation solutions for hybrid architectures based wideband

mmWave systems. In this chapter1, we develop a sparse formulation and compressed

sensing based solutions for the wideband mmWave channel estimation problem for

hybrid architectures. First, we leverage the sparse structure of the frequency selec-

tive mmWave channels’ representation and formulate the channel estimation problem

as a sparse recovery in both time and frequency domains. Then, we propose explicit

channel estimation techniques for purely time or frequency domains and for combined

1This chapter is based on the work accepted for publication in the journal paper: K. Venugopal, A.
Alkhateeb, N. González-Prelcic and R. W. Heath, Jr., “Channel Estimation for Hybrid Architecture
Based Wideband Millimeter Wave Systems,” IEEE Journal of Selected Areas in Communications,
special issue on “Millimeter wave communications for future mobile networks”, March 2017. This
work was supervised by Prof. Robert Heath. Dr. Ahmed Alkhateeb and Prof. Nuria González-
Prelcic gave important feedback related to the development and presentation of the ideas.
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time/frequency domains. Simulation results show that the proposed solutions achieve

good channel estimation quality, while requiring small training overhead. Leveraging

the hybrid architecture at the transceivers gives further improvement in estimation

error performance and achievable rates.

4.2 Introduction

Channel estimation in millimeter wave MIMO systems allows flexible design of

hybrid analog/digital precoders and combiners under different optimization criteria.

Unfortunately, the hybrid constraint makes it challenging to directly estimate the

channels, due to the presence of the analog beamforming / combining stage to avoid

the power consumption of the typical all-digital solution used at lower frequencies

[55–57]. Further, operating at mmWave frequencies complicates the estimation of

the channel because the signal-to-noise-ratio (SNR) before beamforming is low and

the dimensions of the channel matrices associated with mmWave arrays [55, 58] are

large. While mmWave channel estimation has extensively been studied in the last

few years, most prior work assumed a narrowband channel model. Since mmWave

systems are attractive due to their wide bandwidth, developing efficient mmWave

channel estimation for frequency-selective channels is of great importance.

To avoid the explicit estimation of the channel, analog beam training solutions

were proposed [59–61]. In beam training, the transmitter and receiver iteratively

search for the beam pair that maximizes the link SNR [59, 61, 62]. This approach

is used in IEEE standards like 802.11ad [11] and 802.15.3c [63]. The directional

antenna patterns can be realized using a network of phase shifters. While analog beam
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training works for both narrowband and wideband systems, the downside is that the

solution supports mainly a single communication stream; extensions to multi-stream

and multi-user communication are possible but generally incur much higher overhead.

Exploiting sparsity has been critical in formulating practical channel estima-

tors in the hybrid MIMO architecture [57,64]. The reason is that the analog precoding

and combing stages act to perform spatial compression, reducing the dimensions of

the channel observed in the digital domain compared to the channel at the antennas.

When sparsity is employed, a succession of different precoders and combiners are

used to make the compressive measurements. Then, decomposing the uncompressed

channel to expose the dictionary in which the channel parameters are sparse, an op-

timization problem is solved to determine the locations of the sparse coefficients and

their values. This approach is different from beam training [59,61,62], which attempts

to find the beams that point in the most promising directions and not estimating the

channel. In compressive methods, the analog beamformers and combiners are selected

to make measurements in several directions.

There are several solutions for compressive channel estimation in frequency-

flat mmWave channels [64–72]. In the frequency-flat, narrowband case, the sparsity

in the angular domain is exploited by making use of the extended virtual channel

model [55]. Essentially, the MIMO channel is written in terms of dictionary matrices

built from the transmit and receive steering vectors evaluated on a uniform grid of pos-

sible angles of arrival and departure (AoA/AoD). These dictionary matrices operate

as a sparsifying basis for the channel matrix. Using that formulation, several channel

estimation algorithms that use compressed sensing (CS) tools have been developed for
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hybrid architectures [64–68], where the training / measurement matrices are designed

using hybrid precoders and combiners. These techniques differ in the way these mea-

surement matrices search for the dominant angles of arrival and departure. Solutions

that make use of adaptive compressed sensing [64, 69, 70], random compressed sens-

ing [65–67, 71, 72], joint random and adaptive compressed sensing [67] were studied.

Other non-compressed sensing techniques were also developed for mmWave chan-

nel estimation using subspace estimation [73], overlapped beams [74], and auxiliary

beams [75]. A main limitation of [64–67,73–75] is that mmWave channel bandwidths

will be large (in fact the main motivation for using millimeter wave) and the under-

lying channels are better modeled as frequency-selective.

In this chapter, we propose and evaluate a new approach for estimating wide-

band mmWave channels based on sparse recovery. Unlike prior work for narrowband

and frequency-flat channels [64–67,73–75], we redefine the sparsifying dictionaries to

account for the sparse nature of wideband frequency-selective mmWave channels in

both the angular and the delay domains. Our formulation explicitly accounts for

bandlimiting filtering, which spreads the contributions of multi-paths in the channel

among several discrete-time channel taps. Once the channel is written in terms of the

sparsifying dictionary matrices, the hardware constraints associated with the analog

precoding stage are also introduced into the formulation of the channel estimation

problem. This allows application of various algorithms on sparse reconstruction from

the CS literature.

In formulating our algorithm, we incorporate key system constraints associated

with the analog precoders and combiners. As with prior work in the narrowband
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case [66], we assume that the precoders and combiners are frequency flat and are

generated using a fully connected architecture with digitally controlled quantized

phase shifters. Unlike other work, though, we also account for the finite switching

time required to reconfigure the phase shifters from one value to another [76]. As

a result, our proposed system performs training using a series of zero-padded Single

Carrier - Frequency Domain Equalization (SC-FDE) frames or Orthogonal Frequency-

Division Multiplexing (OFDM) symbols. Each SC-FDE frame or OFDM symbol is

transmitted using a single analog precoder and received with a single analog combiner;

the analog portions are reconfigured during the guard interval. By using zero padding

instead of a cyclic prefix, the distortion incurred during switching can be neglected.

This changes the effective received signal model and means that prior work assuming

the usual cyclic prefix during training like [77–79] does not apply. To the best of our

knowledge there are no prior work on wideband millimeter channel estimation that

identify the hardware limitations and the subsequent signal processing necessary to

circumvent them. The main contributions of this chapter are summarized next.

We define an appropriate sparsifying dictionary for frequency-selective mmWave

channels. This dictionary depends on the transmit and receive array steering vectors

evaluated on a uniform grid of possible AoAs/AoDs, and also on a band-limiting

filter evaluated on a uniform grid of possible delays. This key step leads to a sparse

representation of the MIMO channel matrix in both the angular and delay domains.

Unlike the prior work in [77,79], we do not limit the channel model to a virtual chan-

nel model, wherein the sparsifying dictionary is square. Note that with the virtual

channel model, the additional step of shaping may be used to avoid the error due to

95



quantization, as elaborated in [79]. Our representation is more general and gives bet-

ter flexibility to define the sparsifying dictionary to get the required level of accuracy

for the channel estimates.

We present an algorithm for estimating the wideband mmWave channel in the

time-domain. Important practical features critical for mmWave system modeling are

incorporated in our sparse formulation. The proposed formulation simultaneously

leverages the structure of the frequency-selective large antenna mmWave channel in

both the delay and angular domains. This avoids the multiple measurement prob-

lem in the frequency-domain. Unlike prior work which either relies on fully-digital

and/or OFDM systems for wideband channel estimation [77–79], our proposed ap-

proach works both for SC-FDE and OFDM based frequency-selective hybrid mmWave

systems. To our knowledge there is no previous work in mmWave channel estimation

that also uses a grid in the delay domain along with the angle domain.

We present an algorithm for estimating the wideband mmWave channel in the

frequency-domain, for an OFDM system. A critical step in this formulation is the

use of zero padding, instead of cyclic prefixing. Zero padding helps analog circuitry

reconfiguration from one OFDM symbol to the next, without corrupting the training

data at the symbol edges. Most prior work, including [77, 78], did not exploit the

fact that baseband channel is band-limited and assumed perfect frequency domain

equalization, or OFDM where the cyclic prefixing is not corrupted – thanks to per-

fect analog circuitry reconfiguration. Note also that not considering the band-limiting

filter response in the effective baseband channel model artificially enhances the spar-

sity level in the channel as we explain later in the manuscript. In practice, these
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constraints necessitate additional change in the receiver chain, making the proposed

frequency-domain formulation of the channel estimation problem novel.

We propose explicit algorithms to solve the sparse recovery problems in (1)

purely time-domain, (2) purely frequency-domain, and (3) combined time-frequency

domains. The different approaches proposed in this chapter can be suitably used

for different scenarios based on system level constraints and implementation. Our

proposed time-domain algorithms leverage the dictionary formulation that accounts

for the sparsity in the delay domain, while the frequency-domain techniques work

independent of the delay domain sparsity constraints. These proposed algorithms

could serve as a baseline for future work that model a practical hardware-constrained

wideband mmWave hybrid system.

It is explained through simulation results that the proposed algorithms require

significantly less training than when beam training (eg. IEEE 802.11ad) is used for

estimating the dominant angles of arrival and departure of the channel. A strict

comparison with existing beam training algorithms in terms of rate performance is

not reasonable since they focus, not on estimating the explicit frequency selective

mmWave MIMO channel, but on estimating beam pairs that give good link SNR.

Ensuring low estimation error rates in our proposed algorithms, however, implies

that efficient hybrid precoders and combiners can be designed to support rates similar

to all-digital solutions [80]. We therefore rely mainly on the average error rates to

compare the efficiency of our approaches. We show that utilizing multiple RF chains

at the transceivers further reduces the estimation error and the training overhead.

Simulation results compare the three proposed techniques. The performance of the
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Figure 4.1: Figure illustrating the transmitter and receiver structure assumed for the
hybrid precoding and combining in this chapter. The RF precoder and the combiner
are assumed to be implemented using a network of fully connected phase shifters.

proposed techniques as system and channel parameters are varied are presented to

identify which approach suits better for a given scenario.

4.3 System and Channel Models

In this section, we present the SC-FDE hybrid architecture based system

model, followed by a description of the adopted wideband mmWave channel model.

The time domain channel estimation algorithm proposed in Section 4.4 operates on

this kind of SCE-FDE hybrid system, while the frequency domain approach described

in Section 4.5 can be applied to OFDM-based hybrid MIMO systems as that in [80].
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4.3.1 System Model

Consider a single-user mmWave MIMO system with a transmitter having Nt

antennas and a receiver with Nr antennas. Both the transmitter and the receiver

are assumed to have NRF RF chains as shown in Fig. 4.1. The hybrid precoder and

combiner used in the frequency selective mmWave system is generally of the form

Ffd[k] = FRFFfd
BB[k] ∈ CNt×Ns and Wfd[k] = WRFWfd

BB[k] ∈ CNr×Ns , respectively for

the kth subcarrier [80]. In this chapter, we focus on the channel estimation having

the training precoders/combiners done in the time domain, so we will use F and W

(without k) to denote the time domain training precoders/combiners. Accordingly,

the transmitter uses a hybrid precoder F = FRFFBB ∈ CNt×Ns , Ns being the number

of data streams that can be transmitted. Denoting the symbol vector at instance n

as s[n] ∈ CNs×1, satisfying E[s[n]s[n]∗] = 1
Ns

I, the signal transmitted at discrete-time

n is s̃[n] = Fs[n].

The Nr × Nt channel matrix between the transmitter and the receiver is as-

sumed to be frequency selective, having a delay tap length Nc and is denoted as

Hd, d = 0, 1, ..., Nc − 1. With v[n] ∼ N (0, σ2I) denoting the additive noise vector,

the received signal can be written as

r[n] =
√
ρ
Nc−1∑

d=0

HdFs[n− d] + v[n]. (4.1)

The noise sample variance σ2 = NoB, where B is the wideband system bandwidth,

so that the received signal SNR = ρ/σ2. The receiver applies a hybrid combiner

W = WRFWBB ∈ CNr×Ns , so that the post combining signal at the receiver is

y[n] =
√
ρ

Nc−1∑

d=0

W∗HdFs[n− d] + W∗v[n]. (4.2)
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There are several RF precoder and combiner architectures that can be imple-

mented [65]. In this chapter, we assume a fully connected phase shifting network [65].

We also consider the constraint so that only quantized angles in

A =

{
0,

2π

2NQ
, · · · ,

(
2NQ − 1

)
2π

2NQ

}
(4.3)

can be realized in the phase shifters. Here NQ is the number of angle quantization

bits. This implies [F]i,j = 1√
Nt
ejϕi,j and [W]i,j = 1√

Nr
ejωi,j , with ϕi,j, ωi,j ∈ A.

4.3.2 Channel Model

Consider a geometric channel model [64,79] for the frequency selective mmWave

channel consisting of Np paths2. The dth delay tap of the channel can be expressed

as

Hd =

Np∑

`=1

α`p(dTs − τ`)aR(φ`)a
∗
T(θ`), d = 0, 1, ..., Nc − 1, (4.4)

where p(τ) denotes the band-limited pulse shaping filter response evaluated at τ ,

α` ∈ C is the complex gain of the `th channel path, τ` ∈ R is the delay of the `th

path, φ` ∈ [0, 2π) and θ` ∈ [0, 2π) are the angles of arrival and departure, respectively

of the `th path, and aR(φ`) ∈ CNr×1 and aT(θ`) ∈ CNt×1 denote the antenna array

response vectors of the receiver and transmitter, respectively. As an example, we

use uniform linear antenna arrays, whose array response vectors are given in explicit

2Typical mmWave channels assume a clustered channel model made up of a few clusters
Nclusters with Nrays,i rays in the ith cluster. In this case, Np paths physically corresponds to∑

i = 1NclustersNrays,i. In the sparse formulation for the channel estimation problem, however, we
say that Np corresponds to the number of resolvable components of the frequency selective channel
in terms of a suitably defined sparsifying dictionary.
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form in Section 4.8. Note that, the effective baseband channel is seen through the

RF front end (analog processing) and hence would include the filter response used for

band limiting the signal in the receiver chain, as modeled in (4.4).

The transmitter and the receiver are assumed to know the array response

vectors. The proposed estimation algorithm applies to any arbitrary antenna array

configuration. The channel model in (4.4) can be written compactly as

Hd = AR∆dA
∗
T, (4.5)

where ∆d ∈ CNp×Np is diagonal with non-zero entries α`p(dTs−τ`), and AR ∈ CNr×Np

and AT ∈ CNt×Np contain the columns aR(φ`) and aT(θ`), respectively. Under this

notation, vectorizing the channel matrix in (4.5) gives

vec(Hd) =
(
ĀT ◦AR

)




α1p(dTs − τ1)
α2p(dTs − τ2)

...
αNpp(dTs − τNp)


 . (4.6)

Note that the `th column of ĀT ◦AR is of the form āT(θ`) ⊗ aR(φ`). We define the

vectorized channel

hc =




vec(H0)
vec(H1)

...
vec(HNc−1)


 , (4.7)

which is the unknown signal that is estimated using the channel estimation algorithms

proposed in the chapter. We assume that the average channel power E [‖hc‖2
2] = NrNt

to facilitate comparison of the various channel estimation approaches proposed next.
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4.4 Time-domain Channel Estimation via Compressed Sens-
ing

In this section, we present our proposed time-domain explicit channel esti-

mation algorithm that leverages the sparse representation of the wideband mmWave

channel. The hardware constraints on the training frame structure and the precoding-

combining beam patterns are also explained. We consider the channel estimation at

a single receiver, with the transmitter sending training sequence during each channel

coherence time. The same extends directly to training multiple receivers. Further,

channel reciprocity may be assumed to estimate the reverse channels.

In the mmWave wearables’ setting, typical values of coherence time, which is

a function of the Doppler spread due to human users’ mobility, is a few milliseconds

[81–83]. Even in a highly mobile environment, a minimum coherence time of 32 ms

was observed [83]. Given that any proposed channel training would have to get the

channel estimates with reasonable error performance within a small time window in

a channel coherence period, we set a rather tight limit of 1 ms to perform the channel

training. This ensures that reasonably low-error channel estimates are obtained with

low training overhead.

4.4.1 Sparse Formulation in the Time Domain

For the sparse formulation of the proposed time domain approach, consider

block transmission of training frames, with a zero prefix (ZP) appended to each

frame [76, 84]. The frame length is assumed to be N and the ZP length is set to

Nc − 1, with N > Nc, the number of discrete time MIMO channel taps. A hybrid

102



architecture is assumed at the transmitter and the receiver as shown in Fig. 4.2.

The use of block transmission with Nc − 1 zero padding is important here, since it

allows reconfiguring the RF circuits from one frame to the other and avoids loss of

training data during this reconfiguration. This also avoids inter frame interference.

Also note that for symboling rate of 1760 MHZ (the chip rate used in IEEE 802.11ad

preamble), it is impractical to use different precoders and combiners for different

symbols. It is more feasible, however, to reconfigure the RF circuitry for different

frames with N ∼ 16 − 512 symbols. Further note that at this chip rate, sending

100 training preambles of length 512, for example, results in a total training period

of roughly 0.03 ms. This corresponds to around 3 per cent overhead per channel

coherence time for the channel training, assuming a pessimistic lower bound of 1 ms

for the coherence time [83].

To formulate the sparse recovery problem, we assume that NRF is the number

of RF chains used at the transceivers. For the mth training frame, the transmitter

uses an RF precoder Fm ∈ CNt×NRF , that can be realized using quantized angles at

the analog phase shifters. Then, the nth symbol of the mth received frame is

rm[n] =
Nc−1∑

d=0

HdFmsm[n− d] + vm[n], (4.8)

where sm[n] ∈ CNRF×1 is the nth training data symbol of the mth training frame

sm = [ 0 · · · 0︸ ︷︷ ︸
Nc−1

sm[1] · · · sm[N ] ] . (4.9)

The training data sequence could be designed, for example, to facilitate synchroniza-

tion as well similar to the complementary Golay sequences used in IEEE 802.11ad [11].
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Note from (4.8) that due to multi-path fading the unknown parameters of the channel

(contained within Hd, d = 0, 1, ..., Nc − 1) are all entangled, and potentially also

suppressed, due to adding up non-coherently. The proposed training frame structure

and the sparsifying dictionary that we propose in the sequel, still expose the channel

to enable sparse recovery.

At the receiver, an RF combiner Wm ∈ CNr×NRF realized using quantized

angles at the analog phase shifters is used during the mth training phase. The post

combining signal is



yT
m[1]

yT
m[2]
...

yT
m[N ]




T

= W∗
m

[
H0 · · · HNc−1

]
(INc ⊗ Fm) ST

m + eT
m ∈ C1×NNRF , (4.10)

where

Sm =




sT
m[1] 0 · · · 0

sT
m[2] sT

m[1] · · · .
...

...
. . .

...
sT
m[N ] · · · · · · sT

m[N −Nc + 1]


 , (4.11)
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is of dimension N ×NcNRF, and

E [eme∗m] = σ2IN ⊗W∗
mWm. (4.12)

Using the matrix equality vec (ABC) =
(
CT ⊗A

)
vec (B) and the notation for the

vectorized channel in (4.7), vectorizing (4.10) gives

ym =




ym[1]
ym[2]

...
ym[N ]


 = Sm

(
INc ⊗ FT

m

)
⊗W∗

m︸ ︷︷ ︸
Φ

(m)
td

hc + em. (4.13)

Using the form in (4.6) and denoting γ`,d = α`p(dTs − τ`), (4.13) can be expressed as

ym = Φ
(m)
td

(
INc ⊗ ĀT ◦AR

)




γ1,0
...

γNp,0
...

γ1,(Nc−1)
...

γNp,(Nc−1)




+ em. (4.14)

In (4.14), the matrices AT and AR and the complex gains {αi} and delays {τi} con-

tained within γ`,d are all unknowns that need to be estimated to get the explicit multi

tap MIMO channel. Accordingly, we first recover the AoAs / AoDs by estimating the

columns of ĀT ◦AR via sparse recovery.

To formulate the compressed sensing problem in the time domain, we first

exploit the sparse nature of the channel in the angular domain. Accordingly, we

define the matrices Atx and Arx used for sparse recovery, that can be computed

apriori at the receiver. The Nt × Gt matrix Atx consists of columns aT(θ̃x), with θ̃x

drawn from a quantized angle grid of size Gt, and the Nr × Gr matrix Arx consists
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of columns aR(φ̃x), with φ̃x drawn from a quantized angle grid of size Gr. Neglecting

the grid quantization error, we can then express (4.13) as

ym = Φ
(m)
td

(
INc⊗Ātx⊗Arx

)
x̂td + em. (4.15)

Note that the actual frequency selective mmWave channel as seen at the baseband

has angles of arrival and departure drawn from [0, 2π). The quantization used for

constructing the dictionary, when fine enough, can ensure that the dominant AoAs

and AoDs are captured as columns of Ātx⊗Arx. The error incurred due to the angle

grid quantization is investigated in Section 4.8, where we assume off grid values for the

AoA/AoD in the simulations. With this, the signal x̂td consisting of the time domain

channel gains and pulse shaping filter response is more sparse than the unknown

vector in (4.14), and is of size NcGrGt × 1.

Next, the band-limited nature of the sampled pulse shaping filter is used to

operate with an unknown channel vector with a lower sparsity level. For that, we

look at the sampled version of the pulse-shaping filter pd having entries pd(n) =

prc

(
(d− nNc

Gc
)Ts

)
, for d = 1, 2, · · · , Nc and n = 1, 2, · · · , Gc. Then, neglecting

the quantization error due to sampling in the delay domain, we can write (4.15) as

ym = Φ
(m)
td

(
INc ⊗ Ātx ⊗Arx

)
Γxtd + em, (4.16)

where Γ =




IGrGt ⊗ pT
1

IGrGt ⊗ pT
2

...
IGrGt ⊗ pT

Nc


 , (4.17)

and xtd ∈ CGcGrGt×1 is the Np-sparse vector containing the time domain complex
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channel gains3.

Stacking M such measurements obtained from sending M training frames and

using a different RF precoder and combiner for each frame, we have

ytd = ΦtdΨtdxtd + e, (4.18)

where ytd =




y1

y2
...

yM


 ∈ CNMNRF×1 (4.19)

is the measured time domain signal,

E [ee∗] = σ2diag (IN ⊗W∗
1W1, · · · , IN ⊗W∗

MWM) , (4.20)

Φtd =




S1

(
INc ⊗ FT

1

)
⊗W∗

1

S2

(
INc ⊗ FT

2

)
⊗W∗

2
...

SM
(
INc ⊗ FT

m

)
⊗W∗

m


 ∈ CNMNRF×NcNrNt (4.21)

is the time domain measurement matrix, and

Ψtd =
(
INc ⊗ Ātx ⊗Arx

)
Γ

=




(
Ātx ⊗Arx

)
⊗ pT

1(
Ātx ⊗Arx

)
⊗ pT

2
...(

Ātx ⊗Arx

)
⊗ pT

Nc


 ∈ CNcNrNt×GcGrGt (4.22)

is the dictionary in the time domain. The beamforming and combining vectors

Fm, Wm, m = 1, 2, · · · , M used for training have the phase angles chosen uniformly

at random from the set A in (4.3).

3In this context, Np denotes the number of resolvable components of the frequency selective
channel in terms of the time-domain dictionary.
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4.4.2 AoA/AoD and Channel Gain Estimation in the Time Domain

With the sparse formulation of the mmWave channel estimation problem in

(4.18), compressed sensing tools can be first used to estimate the AoA and AoD.

The support of xtd corresponds to a particular AoA, AoD and path delay, and hence

estimating the support of xtd amounts to estimating a channel path, and the corre-

sponding non-zero value corresponds to the path gain. Note that we can increase or

decrease the angle quantization grid sizes Gr and Gt, and the delay domain quantiza-

tion grid size Gc, used for constructing the time domain dictionary to minimize the

quantization error. As the sensing matrix is known at the receiver, sparse recovery

algorithms can be used to estimate the AoA and AoD.

To estimate the support of the sparse vector xtd, we solve the optimization

problem

min
xtd

‖xtd‖1 such that ‖ytd −ΦtdΨtdxtd‖2 ≤ ε. (4.23)

We consider Orthogonal Matching Pursuit (OMP) for solving (4.23), as used previ-

ously in [66,85]. There are several stopping criteria for OMP that can be used to solve

(4.23). When the sparsity level Np is known apriori, reaching that level could be used

to stop the algorithm. When such information cannot be guessed before hand (which

itself is an estimation problem), the residual error falling below a certain threshold is

often used to terminate the recursive OMP algorithm. Accordingly, in the presence

of noise, a suitable choice for the threshold ε is the noise variance. Hence, we assume

the noise power as the stopping threshold, i.e., ε = E[e∗e].

It is important to note that the performance of OMP algorithm depends on
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the properties of sensing matrix, such as mutual coherence and restricted isometry

property. In this context, IID Guassian random sensing matrices is beneficial [77]. In

a hybrid mmWave system, however, generating IID random sensing matrices is infea-

sible due to the hardware limitations of the RF precoders and combiners. Considering

various hybrid architectures, [86] analyzed the mutual coherence of the sensing matrix

for a narrow band sparse formulation. Due to the complicated structure of the sens-

ing matrix, however, only a few special cases are considered in [86]. The wideband

sparse formulation does not simplify things any further. Therefore, to understand the

performance of the OMP algorithm, we resort to simulations later on.

Instead of OMP, orthogonal least squares (OLS) could also be used for the

sparse recovery especially since the sensing matrix does not have orthogonal columns.

The performance of OLS is better than OMP when the sparsity level is known [87,88].

We, however, use OMP since it is less computationally complex compared to OLS [88]

and since the sparsity level is not assumed to be known apriori. It is shown later using

simulations that the low recovery error performance provided by OMP is sufficient to

achieve the maximum spectral efficiency using the precoders and combiners designed

from the channel estimates.

Following the support estimation via sparse recovery, the channel gains can

be estimated. While there are many ways to estimate the gains, even directly from

OMP, we only give the details for one approach next – using least squares. The

various methods are based on plugging in the columns of the dictionary matrices

corresponding to the estimated AoA and AoD. That is, let Std
A and Std

D , respectively

be the estimated AoA and AoD using sparse recovery in the proposed time domain
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formulation. Then, using (4.15) and stacking the M measurements, we have

ytd = Φtd

(
INc ⊗

[
Ātx

]
:,Std

D
⊗ [Arx]:,Std

A

)

︸ ︷︷ ︸
Ωtd

x̂td + e, (4.24)

so that the channel coefficients via least squares is

x̂LS
td = (Ω∗tdΩtd)−1 Ω∗tdytd. (4.25)

4.5 Frequency-domain Channel Estimation via Compressed
Sensing

In this section, we explain how the compressed sensing problem can be formu-

lated in the frequency domain. The additional modifications needed in the system

model, and the corresponding advantages and disadvantages are also explained in this

section.

Using the geometric channel model in (4.4), the complex channel matrix in

the frequency domain can be written as

H [k] =
Nc−1∑

d=0

Hde
−j 2πkd

K

=

Np∑

`=1

α`aR(φ`)a
∗
T(θ`)

Nc−1∑

d=0

p(dTs − τ`)e−j 2πkd
K . (4.26)

Defining βk,` =
∑Nc−1

d=0 p(dTs − τ`)e−j 2πkd
K a compact expression can be derived

H [k] =

Np∑

`=1

α`βk,`aR(φ`)a
∗
T(θ`). (4.27)
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Vectorizing (4.27) gives the unknown signal that is estimated using the frequency

domain estimation algorithm,

vec (H [k]) =
(
ĀT ◦AR

)




α1βk,1
α2βk,2

...
αNpβk,Np


 . (4.28)

Note that the vector channel representation of the kth subcarrier in (4.28), is similar

to the time domain vector representation in (4.6). The key difference, however, is

that, unlike the time domain approach, each of the unknown vectors corresponding

to the K subcarriers can be estimated separately, in parallel as explained next.

4.5.1 Sparse Formulation in the Frequency Domain

For the sparse formulation in the proposed frequency domain approach, ap-

propriate signal processing is performed to convert the linear convolution occurring

during the frame transmission in the system to a circular convolution in the time

domain. We would like to remind the readers that we propose ZP instead of CP

for the training frames to facilitate reconfiguration of the RF precoders and combin-

ers from frame to frame. With ZP assumed in the frame structure of the training

preamble, the overlapping and sum [89] method is used, followed by the K-point FFT

to formulate the frequency-domain sparse channel estimation problem per subcarrier

k = 1, 2, · · · , K. The overlap and add method essentially involves adding the last

Nc − 1 samples to first Nc − 1 samples as shown in Fig. 4.3. Fig. 4.3 also illustrates

the proposed system model in the time-domain with the hybrid architecture and sig-

nal processing components required for the frequency domain channel estimation in
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an SC-FDE system with ZP. Alternatively, for an OFDM based system, the digital

processing may be implemented in the frequency domain after the FFT operation.

The advantage of the proposed frequency domain approach is that different baseband

precoders and combiners can be used for different subcarriers [80] in the frequency

domain, while the RF processing is frequency flat. The proposed frequency domain

approach, therefore, works for both SC-FDE and OFDM systems, where the received

signal is processed per-subcarrier. We next look into the received signal in the kth

subcarrier.

With Fm denoting the RF precoder used at the transmitter for the trans-

mission of the mth training frame/OFDM symbol, and Wm, the corresponding RF

combiner, the post combining signal in the kth subcarrier can be written as

y̆m[k] = W∗
mH [k]Fms̆m[k] + ĕm[k], (4.29)

where s̆m[k] =
N∑

n=1

sm[n]e−j 2πkn
K (4.30)

is the kth coefficient of theK-point FFT ofmthe time domain transmit frame. The co-

variance of the frequency domain noise vector in (4.29) is E [ĕm[k]ĕ∗m[k]] = σ2W∗
mWm,

and σ2 = NoB. The frequency flat RF combiners and precoders are assumed to be

realized with a network of phase shifters with phase angles drawn from a finite set,

as before. Vectorizing (4.29), and substituting (4.28) gives

vec (y̆m[k]) =
(
s̆T
m[k]FT

m ⊗W∗
m

)
︸ ︷︷ ︸

Φ
(m)
fd [k]

vec (H [k]) + ĕm[k]. (4.31)

Assuming the AoAs and AoDs are drawn from a grid of size Gr and Gt, respectively,

and neglecting the quantization error, we can write (4.31) in terms of the dictionary
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Figure 4.3: Figure illustrating the transceiver chains and the frame structure assumed
for the frequency-domain channel estimation of the frequency selective mmWave sys-
tem with Nc channel taps. Zero padding (ZP) of length Nc − 1 is prefixed to the
training symbols of length N for RF chain reconfiguration across frames.

matrices defined in Section 4.4 as follows:

vec (y̆m[k]) = Φ
(m)
fd [k]

(
Ātx ⊗Arx

)
x̆[k] + ĕm[k], (4.32)

with the signal x̆[k] ∈ CGrGt×1 being Np-sparse. Stacking M such measurements

obtained over the course of M training frame transmission, each with a different pair

of RF precoder and combiner, we have the following sparse formulation for the kth

subcarrier

y̆[k] = Φfd[k]Ψfdx̆[k] + ĕ[k], (4.33)

in terms of the frequency domain dictionary Ψfd =
(
Ātx ⊗Arx

)
∈ CNrNt×GrGt and

the measurement matrix in the frequency domain

Φfd[k] =




s̆T
1 [k]FT

1 ⊗W∗
1

s̆T
2 [k]FT

2 ⊗W∗
2

...
s̆T
M [k]FT

M ⊗W∗
M


 ∈ CMNRF×NrNt . (4.34)

The covariance of the noise in (4.33) is

E [ĕ[k]ĕ∗[k]] = σ2diag (W∗
1W1,W

∗
2W2, · · · ,W∗

MWM) . (4.35)
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4.5.2 AoA/AoD and Channel Gain Estimation per Subcarrier

As discussed previously in Section 4.4.2, we first estimate the support of x̆[k],

that corresponds to a particular AoA and AoD, and then proceed to estimate the

MIMO channel coefficients of the kth subcarrier, which correspond to the non-zero

values of x̆[k]. As with the time domain approach, we solve the following optimization

problem

min
x̆[k]
‖x̆[k]‖1 such that ‖y̆[k]−Φfd[k]Ψfdx̆[k]‖2 ≤ ε. (4.36)

via OMP with the stopping threshold ε = E[ĕ[k]∗ĕ[k]], to estimate the support of the

sparse vector y̆[k], and hence the dominant angles of arrival and departure. The set

of estimated AoAs is denoted as Sfd
A , and the set of AoDs is denoted as Sfd

D . These

sets correspond to specific columns of the frequency domain dictionary Ψfd. Using Sfd
A

and Sfd
D , the channel coefficients, that correspond to the non-zero values of the sparse

vector x̆[k], can be derived as follows. From (4.33), after the sparse angle recovery

y̆[k] = Φfd[k]
([

Ātx

]
:,Sfd

D
⊗ [Arx]:,Sfd

A

)

︸ ︷︷ ︸
Ωfd

x̆[k] + ĕ[k], (4.37)

so that, using least square estimation,

x̆LS[k] = (Ω∗fdΩfd)−1 Ω∗fdy̆[k]. (4.38)

Note that using the sparse formulation in (4.33), the AoAs/AoDs and the

channel coefficients of the the kth subcarrier can be estimated. Repeating the same

for all the K subcarriers fully characterizes the frequency selective mmWave channel.

While the dimensions of the matrices involved in the frequency-domain compressed
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sensing problem is smaller in comparison to the time-domain formulation in Section

4.4, the channel estimation should be invoked K times to fully recover the channel

coefficients. Further, additional pre-processing and FFT operation are required.

4.6 Combined Time-Frequency Compressive Channel Esti-
mation

In this section, we formulate a technique via compressed sensing for explicit

channel estimation, jointly in time and frequency. The key idea is to estimate the

angles of arrival and departure via compressed sensing in the frequency domain, and

then use the estimates to evaluate the channel gains and path delays in the time

domain to obtain the entire channel.

The transmitter chain for the proposed combined time-frequency compressive

channel estimation approach is the same as in Fig. 4.2 and Fig. 4.3. The system

model for the receiver chain in Fig. 4.3, can be employed to perform sparse support

recovery of the angles in the frequency domain for the proposed estimation approach

in this section. Following the compressive support estimation, the pre-computed

dictionary matrices in the time domain, and the measurement matrices can be used to

estimate the channel coefficients of the frequency selective mmWave MIMO channel,

as explained momentarily.

From (4.31) and (4.28), we can express the frequency domain received signal

in the kth subcarrier, in terms of the actual AoAs and AoDs in the vector form as

115



follows

vec (y̆m[k]) = Φ
(m)
fd [k]

(
ĀT ◦AR

)




α1βk,1
α2βk,2

...
αNpβk,Np


+ ĕm[k], (4.39)

with the noise covariance E [ĕm[k]ĕ∗m[k]] = σ2W∗
mWm.

AoA/AoD Estimation in Frequency Domain and Channel Gain Estimation in

Time Domain: Note from (4.39), the AoA and AoD information in each subcarrier k

is the same, and contained in ĀT◦AR, whose `th column is of the form āT(θ`)⊗aR(φ`).

Therefore, using sparse recovery in 1 ≤ P ≤ K number of subcarriers parallely, and

concatenating the estimated angles, we can get a support set of the AoAs, denoted as

SA and a set of AoD estimates denoted as SD. One option to estimate the support is

to use OMP as explained in Section 4.5.2, for P subcarriers in parallel. Since several

angles might be estimated incorrectly due to sparse recovery under the influence of

noise, using P parallel OMPs may not necessarily enhance performance. This is

because we retain all the (potentially faulty) angle estimates on the P subcarrier,

via concatenation. Prior work in [77, 90, 91] have studied methods to estimate a

common support set from multiple parallel measurements. Such techniques may also

be employed to recover the support set containing the AoA/AoD information in the

frequency domain, both here as well as in the proposed approach in Section 4.5.

Following the support recovery in the frequency domain, to recover the entire

channel, we switch to the time domain formulation in (4.15), (4.19), (4.21) and (4.22),

but restrict to the set S = {SA, SD}. Accordingly, we can write the effective time-
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domain equation, conditioned on the estimated support set S as

ytd = Φtd [Ψtd]:,S︸ ︷︷ ︸
Ω

xtd + e, (4.40)

where Φtd is that in (4.21), the noise covariance of e is that in (4.20), and

[Ψtd]:,S =




[
Ātx

]
:,SD
⊗ [Arx]:,SA ⊗ p̃T1[

Ātx

]
:,SD
⊗ [Arx]:,SA ⊗ p̃T2

...[
Ātx

]
:,SD
⊗ [Arx]:,SA ⊗ p̃TNc


 ∈ CNcNrNt×Gc|S| (4.41)

is the dictionary matrix conditioned on the knowledge of the support set. The un-

known xtd in (4.40), contains channel coefficients in the time domain, which can now

be obtained via least squares or MMSE to recover the entire MIMO channel matrices

corresponding to all the delay taps. That is, from (4.40)

xLS
td = (Ω∗Ω)−1 Ω∗ytd. (4.42)

The advantage of using the combined time-frequency approach for the wide-

band channel estimation is twofold. First, since the sparse recovery is done in

the frequency domain, the sizes of the measurement matrix and the dictionary are

MNRF ×NrNt and NrNt ×GrGt, respectively, that are much smaller than the corre-

sponding time domain matrices Φtd and Ψtd. Secondly, unlike the frequency domain

approach, the channel estimates need not be separately evaluated per subcarrier, but

only once in the time domain, thus further reducing the computation complexity.

4.7 Computational Complexity of Estimation Techniques

In this section, we compare the complexities of the OMP based complete chan-

nel recovery approaches proposed in Section 4.4 and Section 4.5. Since the sparse re-
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covery is either done in the time domain (for the combiner time-frequency approach

and the time-domain approach) or in the frequency domain, we consider these two

distinct cases. The subsequent least squares based channel gain estimation step de-

pends on the number of non-zero support set estimated from the sparse recovery,

which is a random whole number given the assumed stopping criterion.

The computational complexity of OMP sparse recovery depends on the size

of the sensing matrix and is a function of the iteration step, with the complexity

increasing with each step. The number of iteration steps depends on the stopping

criteria, or the sparsity level if it is known apriori. Since, we use the noise variance

as the stopping threshold, and do not assume the knowledge of the sparsity level, we

provide below the computational complexity of the kth iteration and with a total of

M training step. The sizes of the sensing matrices for each sparse formulation are

also provided for the ease of comparison.

The mathematical operations involved in each iteration of OMP can be sum-

marized as follows. First, the inner product of each column of the sensing matrix

is computed with the residual of the previous iteration. Then, the column giving

the maximum projection value is identified. The Gram matrix comprising of the col-

umn(s) identified till the current step is then computed, following which an inversion

of this Gram matrix is performed to compute the weights used for calculating the

residual. Finally the residual is updated by subtracting the identified weighted dic-

tionary element. In Table 4.1, we summarize the complex computations required per

step of the iteration.
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Table 4.1: Computational complexity in the kth iteration of the proposed sparse
recovery approaches

Time-domain Frequency-domain
sparse recovery sparse recovery

Size of the sensing matrix NMNRF ×GcGrGt MNRF ×GrGt

Compute inner product NMNRFGcGrGt MNRFGrGt

Find maximum GcGrGt GrGt

Compute Gram matrix kNMNRF kMNRF

Compute weights k2 k2

Update residual kNMNRF kMNRF

Overall cost per iteration NMNRFGcGrGt MNRFGrGt

4.8 Simulation Results

In this section, the performance of the three proposed channel estimation

algorithm are provided. For the compressed sensing estimation of the angles of arrival

and departure, orthogonal matching pursuit is used. The channel gains are then

estimated using least squares.

We assume uniform linear array (ULA) with half wavelength antenna element

separation for the simulations. For such a ULA,

aR(φ`) =
1√
Nr

[
1 ejπ cos(φ`) · · · ej(Nr−1)π cos(φ`)

]T
,

and

aT(θ`) =
1√
Nt

[
1 ejπ cos(θ`) · · · ej(Nt−1)π cos(θ`)

]T
.

The AoA and AoD quantization used for constructing the transmitter and receiver

dictionary matrices are taken from an angle grid of size Gr and Gt, respectively. This

implies that the `th column of Atx is aT(θ̃`), where θ̃` = (`−1)π
Gt

and the kth column
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of Arx is aR(φ̃k), where φ̃k = (k−1)π
Gr

. The angle quantization used in the phase

shifters is assumed to have NQ quantization bits, so that the entries of Fm, Wm,

m = 1, 2, · · · , M are drawn from A, as defined in (4.3), with equal probability.

The Np paths of the wideband mmWave channel are assumed to be independently and

identically distributed, with delay τ` chosen uniformly at random from [0, (Nc−1)Ts],

where Ts is the sampling interval and Nc is the number of delay taps of the channel.

The angles of arrival and departure for each of the channel paths are assumed to be

distributed independently and uniformly in [0, π]. The raised cosine pulse shaping

signal is assumed to have a roll-off factor of 0.8.

Let ĥc ∈ CNcNrNt×1 denote the estimated channel vector. We use the following

metrics to compare the performance of our proposed channel estimation algorithms:

1) the normalized mean squared error (NMSE) of the channel estimates defined as

NMSE =
‖hc − ĥc‖2

2

‖hc‖2
2

=

∑Nc−1
d=0 ||Hd − Ĥd||2F∑Nc−1

d=0 ||Hd||2F
. (4.43)

2) the ergodic spectral efficiency as defined in [79].

Fig. 4.4 shows the NMSE as a function of the post combining received signal

SNR using the proposed time-domain channel estimation approach. Here we assume

Nr = 16, Nt = 32, Nc = 4, N = 16 and Np = 2. The time domain dictionary is

constructed with the parameters Gr = 32, Gt = 64, and Gc = 8. From Fig. 4.4, it

can be seen that with training length of even 80−100 frames, sufficiently low channel

estimation error can be ensured. For comparing the recovery performance of the

sensing matrix using OMP, we plot the NMSE for the case where the sparse recovery is
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Figure 4.4: Average NMSE as a function of SNR for different training length M when
Ns = 1 and NRF = 1 using the proposed time-domain channel estimation technique.
We assume N = 16 symbols per frame for a frequency selective channel of 4 taps.
Using the proposed approach, training length of 80− 100 is sufficient to ensure very
low estimation error, processing completely in the time-domain.
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Figure 4.5: Average NMSE for the proposed time-domain channel estimation approach
as a function of SNR for different numbers of RF chains used at the transceivers. By
employing multiple RF chains at the transceivers, the NMSE performance is improved.
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perfect (i.e., the exact angles and delays are provided by a genie). In Fig. 4.4, we also

provide the NMSE when the AoA and AoD of the mmWave channel are drawn from

quantized grids with Gt = 64 and Gr = 32 that are used to construct the dictionaries.

The gap between the genie-aided perfect sparse recovery curve and that obtained

when the parameters fall exactly on the grid elements captures the performance of

the recovery algorithm used. Future work could try to narrow this gap using better

recovery algorithms.

Fig. 4.5 shows how employing multiple RF chains at the transmitter and re-

ceiver can give good improvement in the estimation performance while requiring fewer

number of training frame transmissions. We assume the same set of parameters as

those used for generating Fig. 4.4, and the proposed time-domain channel estima-

tion approach, while altering the number of RF chains used at the transceivers. In

Fig. 4.5, we assume M = 60 frames are transmitted for training. The improvement

in NMSE performance occurs thanks to a larger number of effective combining beam

patterns that scale with the number of RF combiners NRF at the receiver. Similarly,

employing multiple RF chains NRF at the transmitter contributes to a larger set of

random precoders, resulting in smaller estimation error via compressed sensing. So,

larger NRF is preferred to decrease the estimation error and to fully leverage the

hybrid architecture in wideband mmWave systems.

In both Fig. 4.4 and Fig. 4.5, we considered averaged NMSE to highlight the

effectiveness of the proposed time-domain channel estimation algorithm and the per-

formance gain when multiple RF chains are employed at the transmitter and receiver.

In Fig. 4.6, the achievable spectral efficiency is plotted as a function of number of
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Figure 4.6: Achievable spectral efficiency using the proposed time-domain channel
estimation approach as a function of the number of training frames used M for dif-
ferent numbers of RF combiners NRF used at the receiver. Employing multiple RF
chains at the transceivers significantly reduces the number of training steps.
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training steps M . We assume the same set of parameters as that in Fig. 4.4, and the

ergodic spectral efficiency computation used in [79] for SNR = 5 dB. It is observed

that having more RF combiners results in fewer number of training frame transmis-

sions to achieve the same spectral efficiency. This is because, with multiple RF chains

at the receiver, more effective measurements can be obtained per training frame that

is transmitted.

In Fig. 4.4, we see that an error gap exists between the cases where the

AoA/AoD fall within the quantized grid and when the AoA/AoD are arbitrary. This

gap is especially enhanced at higher SNR levels. Intuitively, thanks to our flexible

and generic sparsifying dictionary construction, choosing larger values for Gr (Gt) in

comparison with Nr (Nt) can further narrow the error gap between the two cases, so

does increasing Gc in comparison to Nc as the dictionary will become more and more

robust. This capability of our dictionary design is shown in Fig. 4.7 where we plot the

NMSE for different values of the grid sizes along with the NMSE obtained when there is

no error due to angle quantization. For plotting this baseline curve, we assume the

exact angles are provided by a genie, similar to how we plot the reference curve in

Fig. 4.4.

In Fig. 4.8, we plot the NMSE as a function of the number of paths in the

channel for various RF combiner setups at the receiver. The proposed combined

time-frequency domain channel estimation approach is used with Nr = Nt = 32,

Gr = Gt = 64, N = 32, Nc = 8 and M = 60 compressive training steps. In

Fig. 4.8, we use sparse recovery in P = 1 subcarrier in the frequency domain to

estimate the AoAs and AoDs, before switching to the time domain to estimate all the
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Figure 4.7: Average NMSE versus SNR (assuming Nr = Nt = 16) using the proposed
frequency-domain channel estimation approach. The number of angles in the quan-
tized grid used for generating the dictionary is denoted as Gr (for AoA) and Gt (for
AoD). The figure shows how increasing Gt and Gr reduces the grid quantization error
for a given antenna size.
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Figure 4.8: Average NMSE versus the number of paths Np, for different hybrid con-
figurations at the transceivers using the proposed combined time-frequency domain
channel estimation approach. Increasing Np increases the number of unknown pa-
rameters of the channel, and hence higher number of compressive measurements are
required to get the required target estimation error performance.
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Figure 4.9: Plot showing the error performance of the three compressed sensing based
channel estimation approaches proposed in this chapter as a function of SNR. At low
SNR the combine time-frequency approach has the least average NMSE, while at higher
SNRs, all the three proposed approaches give similar performance.

gain coefficients of the channel paths. As Np is increased, the number of unknown

parameters in the channel increases, thus increasing the estimation error for a given

number of training steps and hardware configuration. Increasing the RF combiners,

however, helps reduce the NMSE to meet a target estimation error performance.

In Fig. 4.9, we look the error performance of the three proposed channel estima-

tion approaches by plotting the NMSE as a function of SNR. We assume Nr = Nt = 32,
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Gr = Gt = 64, M = 60, Nc = 4 and Np = 2. The number of RF chains at the

transceivers NRF is assumed to be 4. The combined time-frequency approach is as-

sumed to use OMP on P = 1 subcarrier in the frequency domain to recover the

angles of arrival and departure. For constructing the time domain dictionary, we

assume Gc = 2Nc delay quantization parameter. It can be seen that the time domain

and combined time-frequency approaches give the best error performance whereas

the proposed frequency domain approach results is large estimation error, especially

at lower SNRs. This is mainly due to the accumulation of error incurred due to K

parallel OMPs in the frequency, which is avoided in the combined time-frequency

approach and the proposed time domain approach, which invoke the sparse recovery

algorithm only once (when P = 1). At higher SNRs, however, the three proposed

approaches give similar estimation error performance.

In Fig. 4.10, we compare the three proposed approaches’ error performance

as the number of channel paths is increased. We set Gr = Gt = 2Nr = 2Nt = 64,

and assume 4 RF chains at the transceivers. The training frame length of N = 16

is assumed for the wideband channel of Nc = 4 delay taps. For each case, M = 60

training steps are assumed. As the number of channel paths is increased, all the

approaches perform worse. In particular, for a given delay quantization parameter

Gc = 2Nc, assumed for the time domain approach’s plot in Fig. 4.10, the degradation

in NMSE is significant as the delay estimation results in more error. For smaller number

of channel paths, however, the time domain approach gives lower channel estimation

error. The plot also shows that when the number of delay taps is smaller compared

to the number of paths in the channel, frequency domain techniques perform better.
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Figure 4.10: Plot showing the error performance of the three proposed approaches,
as a function of the number of paths Np in the channel. Increasing Np degrades
the average NMSE performance. While the proposed time domain approach gives the
minimum average NMSE when the number of paths is small, the frequency domain
approach gives the best error performance for larger Np.
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A comparison of the performance of the three proposed approaches as a func-

tion of the number of training steps is shown in Fig. 4.11. We set the SNR to 5 dB

here and assume Gr = Gt = 2Nr = 2Nt = 64. Each training frame is assumed to

be of length 16 symbols, for a frequency selective mmWave channel of tap length 4,

and channel paths 2. The NMSE plots in Fig. 4.11 is assumed 4 RF chains at the

transceivers with 2 bit quantization at the phase shifters during channel estimation.

It can be seen that while, with a few training steps the combined time frequency

approach and the proposed frequency domain approach outperform the time domain

approach, with larger number of training steps, the time domain approach gives the

least NMSE.

To compare the overhead in channel training in the proposed compressive sens-

ing based approaches, consider the short preamble structure used in IEEE 802.11ad

[11], which is of duration 1.891µs. At a chip rate of 1760 MHz, this short preamble

consisting of the short training frame (STF) and the channel estimation frame (CEF)

amounts to more than 3200 symbols. After the end of this short preamble trans-

mission, IEEE 802.11ad beamforming protocol then switches to a different beam pair

combination, and the process is repeated recursively to estimate the best set of beam-

forming directions. For the setting in Fig. 4.11, however, MN = 1600 symbols are

only required for the proposed approaches to achieve low average NMSE and explicit

estimation of the frequency selective MIMO channel.
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Figure 4.11: Plot showing the error performance of the three proposed approaches, as
a function of the number of training steps M . More number of compressive measure-
ments lead to better estimation error performance at the expense of higher signaling
overhead. The combined time-frequency approach gives the best trade-off between
low training overhead and minimum average NMSE performance.
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4.9 Conclusion

In this chapter, we proposed wideband channel estimation algorithms for fre-

quency selective mmWave systems using a hybrid architecture at the transmitter and

receiver. The system model adopts zero padding that allows enough time for switching

the analog beams and, hence, well matches the hybrid architectures. The proposed

channel estimation algorithms are based on sparse recovery and can support MIMO

operation in mmWave systems since the entire channel is estimated after the beam

training phase. Three different approaches - in purely time, in purely frequency and a

combined time frequency approach were proposed, that can be used in both SC-FDE

and OFDM based wideband mmWave systems. Leveraging the frame structure and

the hybrid architecture at the transceivers, it was shown that compressed sensing

tools can be used for mmWave channel estimation. Simulation results showed that

the proposed algorithms required very few training frames to ensure low estimation

error. It was shown that further reduction in the training overhead and estimation

error can be obtained by employing multiple RF chains at the transceivers.
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Chapter 5

Optimal Frequency-flat Precoding via Compressive

Subspace Estimation

5.1 Overview

Millimeter wave (mmWave) MIMO communication is a key feature of next

generation wireless systems. The selection of precoders and combiners for wideband

mmWave channels has involved frequency-selective designs based on channel state

information. In this chapter1, we show that under some assumptions, the dominant

subspaces of the frequency domain channel matrices are equivalent. This means that

semi-unitary frequency-flat precoding and combining are sufficient when there is not

too much scattering in the channel. It also motivates the use of techniques such as

compressive subspace estimation as an alternative to estimating the full channel. Im-

portantly, this chapter proposes methods to design optimal precoders and combiners

that are cost effective and easy to implement. This is critical for hardware-constrained

mmWave wearable devices.

1Part of the content in this chapter has been published as a letter: K. Venugopal, N. González-
Prelcic and R. W. Heath, Jr., “Optimality of Frequency Flat Precoding in Frequency Selective
Millimeter Wave Channels,” IEEE Wireless Communications Letters, March 2017. This work was
supervised by Prof. Nuria González-Prelcic and Prof. Robert Heath.
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5.2 Introduction

The use of large antenna arrays, and directional transmission and reception are

key enabling technologies for wireless systems operating at mmWave frequencies [92].

Both analog-only and hybrid beamforming architectures have been proposed to reduce

the cost and power consumption in mixed signal components of a fully-digital MIMO

system operating at mmWave [34, 55]. While hybrid architectures are desirable for

supporting multi-stream communication at mmWave, the analog processing stage

is frequency-flat, so it can not perfectly reproduce the optimum frequency-selective

precoders.

Some prior work on frequency-selective mmWave systems [80, 93, 94] involved

precoding with a frequency-flat analog precoder followed optionally by a frequency-

selective baseband precoder. This was found to be optimum in terms of the achievable

spectral efficiency for a given analog codebook and a flexible baseband precoder.

The potential optimality of optimal frequency-flat precoders and combiners was not

considered.

In this paper, we show that frequency-flat precoding and combining, assum-

ing semi-unitary precoding, is optimum in frequency-selective MIMO channels with

few paths, as found in mmWave systems. This means that frequency-selective pre-

coding is not necessarily required in MIMO systems operating at mmWave frequen-

cies. Further, this result motivates the design of the precoder based on compressive

covariance or subspace estimation instead of explicit channel estimation exploiting

sparsity [64, 68]. We propose various subspace estimation strategies in this context

and compare how such approaches give advantage over the complete MIMO channel
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estimation algorithms depending on the channel parameters.

5.3 System Model

Consider a wideband mmWave system with Nt transmit antennas and Nr

receive antennas. A geometric channel model [64,79] consisting of R paths is assumed

for representing the frequency-selective channel 2. The `th path has a complex gain

α` ∈ C, delay τ` ∈ R, and angles of arrival and departure (AoA/AoD) φ` ∈ [0, 2π)

and θ` ∈ [0, 2π). Assuming a pulse shaping filter denoted as p(τ), the discrete-time,

frequency-selective channel with Nc delay taps can be represented in terms of the

antenna array response vectors of the receiver aR(φ`) ∈ CNr×1 and the transmitter

aT(θ`) ∈ CNt×1 [79]. Sampling with period Ts, the discrete-time MIMO channel is

Hd =
R∑

`=1

α`p(dTs − τ`)aR(φ`)a
∗
T(θ`), (5.1)

for d = 0, 1, . . . , Nc − 1. To obtain a more compact representation of Hd, we define

the matrices AR ∈ CNr×R, AT ∈ CNt×R, and a diagonal matrix Pd ∈ CR×R. The

columns of AR and AT are given by {aR(θ`)}R`=1 and {aT(θ`)}R`=1 respectively, and

the `th diagonal entry of Pd is α`p(dTs − τ`). Using these definitions

Hd = ARPdA
∗
T, (5.2)

which provides a matrix representation of the dth delay tap of the channel.

Multicarrier (MC) transmission or a single carrier with frequency division mul-

tiplexing (SC-FDM) is assumed, with K > Nc denoting the number of subcarriers in

2For the purpose of this chapter, and in the context of subspace estimation, we say that R
corresponds to the dimension of the dominant subspace of the channel.
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the frequency domain. The complex channel matrix in the frequency domain can be

written as

H[k] =
Nc−1∑

d=0

Hde
−j 2πkd

K (5.3)

for k = 0, 1, . . . , K − 1. To express (5.3) in matrix form, let P[k] =
∑Nc−1

d=0 Pde
−j 2πkd

K .

Substituting (5.2) into (5.3), using the fact that the matrices AR and AT are inde-

pendent of d then

H[k] =
Nc−1∑

d=0

ARPdA
∗
Te
−j 2πkd

K (5.4)

= ARP [k] A∗T. (5.5)

The number of paths R is assumed to be smaller than the number of delay taps Nc in

the frequency-selective mmWave channel, which is reasonable due to the memory in

the pulse shaping function. When R is thought of as the dimension of the dominant

subspace of the MIMO channel, also then, it can be seen that R is much smaller than

the dimensions of the frequency-selective mmWave MIMO channel [95].

Appropriate signal processing (for MC/SC-FDM) can be used at the transmit-

ter and the receiver [84] to obtain K parallel narrowband channels in the frequency

domain. For Ns stream transmission, let x[k] ∈ CNs×1 denote the complex symbol

transmitted in the kth subcarrier of the data frame. Assuming frequency-selective

precoding with a matrix F[k] ∈ CNt×Ns and combining with W[k] ∈ CNr×Ns during

the transmission-reception of the data frame, the post combining received symbol in

the kth subcarrier can be written as

y [k] = W∗[k]H[k]F[k]x [k] + W[k]∗n [k] , (5.6)
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where n[k] ∼ N (0, σ2I) is the circularly symmetric complex Gaussian distributed

additive noise vector of size Nr. Next we argue that in some cases the precoder F[k]

and W[k] do not have to vary with frequency k.

5.4 Optimality of Frequency-flat Precoding

Under some assumptions, we now show that the K MIMO channel matrices

defined in (5.3) have the same row spaces and column spaces. Let C (A) denote the

column space of A and R (A) the row space of A. Using this notation, we define the

subspaces Hc = C (AR) and Hr = R (A∗T).

Proposition 6 Assuming that AR and AT have full column rank and P[k] is full

rank, the frequency domain MIMO channel matrices H[k], k = 0, 1, · · · , K − 1, have

the same column space Hc and the same row space Hr.

Proof: From (5.5), R(H[k]) ⊆ Hr with equality when ARP[k] has full column

rank, which is true when AR has full column rank and P[k] is full rank. Similarly,

C(H[k]) ⊆ Hc with equality when P[k]A∗T has full row rank, which is true when AT

has full column rank and P[k] is full rank. 2

Assuming that P[k] is full rank is reasonable since the diagonal elements are

the Fourier transform of shifted sampled Nyquist pulse shapes and the path gains are

non-zero. The assumption that AR and AT have full column rank holds for typical

array geometries, like the uniform linear array or uniform patch array, with small

enough element spacing and distinct angles of arrival and departure.
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Corollary 7 Frequency-flat precoding (and combining) is optimum in frequency-selective

mmWave channels under the assumptions of semi-unitary precoding (and combining)

and a small number of paths (R < Nt and R < Nr), if AR and AT have full column

rank.

Proof: The conventional semi-unitary frequency-selective precoder design is

based on the singular value decomposition (SVD) of H[k] = U[k]Λ[k]V∗[k], where

F[k] = [V[k]]:,1:Ns
with Ns ≤ min(Nt, Nr). If the number of paths is small, and AT

has full column rank then rank(AT) = R and it suffices to take Ns = R. In this case,

the columns of F[k] are a basis for Hr. Based on Proposition 6, though, Hr is the

same for all k thus a common basis for Hr given by Fff can be used for all subcarriers.

A similar argument applies to using a single Wff for combining across all subcarriers.

This means that the precoding and combining is independent of the subcarrier index.

2

5.5 Achievable Rate with Frequency-flat Precoders

We choose the number of streams Ns to be equal to the rank of the MIMO

channel matrices for each subcarrier k, given by min (R,Nr, Nt). Based on the SVD

of H[k] in the proof of Corollary 7, the conventional frequency-selective precoder

F[k] = [V[k]]:,1:Ns
and combiner W[k] = [U[k]]:,1:Ns

results in achievable spectral

efficiency

Rfs =
1

K

K∑

k=1

log2

∣∣∣∣I +
SNR

Ns

Λ̂2[k]

∣∣∣∣ , (5.7)
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where SNR = P
Kσ2 , P is the average transmitted power, and Λ̂[k] = [Λ[k]]1:Ns,1:Ns

.

The maximal achievable rate can be derived by performing an additional spatial

water-filling step [96]. In the sequel, for comparison, we show the maximum achiev-

able spectral efficiency, allocating power along the spatial streams via water-filling

assuming a uniform, constant power constraint for the MIMO channel per subcarrier

(= P
K

).

Let the frequency-flat precoder Fff be a semi-unitary matrix whose columns

span Hr. Similarly, let Wff be a semi-unitary matrix whose columns span Hc. Since

all the column spaces of the matrices are the same, we can write Wff = W[k]QW[k],

where QW[k] ∈ CNs×Ns is a unitary rotation matrix that accounts for the unitary

invariance in the representation of a point on the Grassmann manifold. Similarly, we

can write Fff = F[k]QF[k], where QF[k] ∈ CNs×Ns is another unitary rotation matrix.

Further, since the frequency-flat combiner is semi-unitary, the noise covariance of

the post combining received signal in (5.6) is σ2I. Therefore, the achievable spectral

efficiency using the proposed frequency-flat precoder is

Rff =
1

K

K∑

k=1

log2

∣∣∣∣I +
SNR

Ns

W∗
ffH[k]FffF∗ffH

∗[k]Wff

∣∣∣∣ . (5.8)

Note that the effective channel matrix with the optimal frequency-flat precoder and

combiner is Heff [k] = W∗
ffH[k]Fff , which can be written as

Heff [k] = Q∗W[k]W∗[k]U[k]Λ[k]V∗[k]F[k]QF[k] (5.9)

= Q∗W[k]Λ̂[k]QF[k]. (5.10)
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Then (5.8) simplifies to

Rff =
1

K

K∑

k=1

log2

∣∣∣∣I +
SNR

Ns

Q∗W[k]Λ̂2[k]QW[k]

∣∣∣∣ (5.11)

(a)
=

1

K

K∑

k=1

log2

∣∣∣∣I +
SNR

Ns

Λ̂2[k]

∣∣∣∣ = Rfs. (5.12)

In (5.12),
(a)
= follows from the matrix identity |I + ABC| = |I + BCA| and since

QW[k] is unitary.

It is important to note that the proposed precoder-combiner does not neces-

sarily diagonalize the MIMO channel per-subcarrier Heff [k], like the usual SVD-based

frequency-selective precoding and combining. Therefore, the transmitted symbol may

be detected using optimal digital receiver strategies with the knowledge of the Ns×Ns

matrix Heff [k]. This low dimensional effective channel may be estimated using con-

vention digital MIMO channel estimation techniques and feedback of this channel

is not required, since there is no additional per-subcarrier digital precoding layer.

As shown in the simulations, small gains with frequency-selective precoding can be

achieved using water-filling across space and/or frequency. We also show in the sim-

ulations that the optimality of the frequency-flat beamformers does not depend on

the number of subcarriers K or the number of delay taps Nc.

5.6 Compressive Subspace Estimation

Given that all the channel matrices have the same row and column spaces,

Hc and Hr, the knowledge of these subspaces is sufficient for designing the optimal

precoders and combiners. The purpose of this section is to illustrate how this insight
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from Section 5.4 can be used to replace the channel estimation stage, central for a

conventional precoder design, by a compressive subspace estimation. Accordingly,

the system design problem boils down to estimating the orthogonal bases of the row

and column spaces of the Nr ×Nt channel matrices.

While iterative approaches to estimate the right and left singular subspaces of

mmWave MIMO channels have been considered previously [73], we use a variation of

the nuclear norm minimization approach in [97] to perform the compressive subspace

estimation. Compressive sensing based approaches are interesting because they only

require a small number of random, linear measurements [97,98] when estimating the

low rank subspace of large dimensional matrices.

Let F(m) ∈ CNt×Ns denote the precoder used for the mth training frame, and

W(m) ∈ CNr×Ns denote the corresponding combiner. Then, with Ns ≤ min (Nr, Nt)

and denoted the mth training data as x(m), the compressive measurement at the

receiver for the kth subcarrier is

y(m) [k] = W∗
(m)H[k]F(m)x(m) [k] + W∗

(m)n [k] . (5.13)

Since H[k] is a low rank channel for each k (the condition under which the pro-

posed frequency-flat precoding and combining are optimal), nuclear norm relaxation

may be used for low rank matrix estimation. Following this, the row and column

principal subspaces can be evaluated. That is, the channel estimate Ĥ[k] is obtained

by solving the following optimization problem:

min ‖H‖∗
H∈CNr×Nt

s.t. ‖W∗
(m)

HF(m)x(m)[k]−y(m)[k]‖≤ε for m=1,2,··· ,M.

. (5.14)
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Note that M is the number of compressed measurements in (5.14), and ‖H‖∗ denotes

the nuclear norm of matrix H.

An alternating minimization technique inspired from [97], but with complex

input corresponding to the compressive measurements and the measurement matri-

ces may be used to directly estimate the row and column principal subspaces. We

provide this modified alternating minimization technique for subspace estimation in

Algorithm 1.

Algorithm 1 : Modified Alternating Minimization for Low Rank Subspace Estima-
tion

1: Input: Measurements y(1:M), training data x(1:M), frequency-flat training pre-
coders F(1:M) and combiners W(1:M), number of iterations M ′

2: Divide
(
y(1:M),x(1:M),F(1:M),W(1:M)

)
into 2M ′ + 1 sets (of size µ each) with the

mth set being
3: ym = y((m−1)µ+1:mµ) =

{
ym1 , y

m
2 , · · · , ymµ

}

4: xm = x((m−1)µ+1:mµ) =
{
xm1 , x

m
2 , · · · , xmµ

}

5: Fm = F((m−1)µ+1:mµ) =
{
Fm1 ,F

m
2 , · · · ,Fmµ

}

6: Wm = W((m−1)µ+1:mµ) =
{
Wm

1 ,W
m
2 , · · · ,Wm

µ

}

7: Initialize:

U0 = top-R left singular vectors of 1
µNs

∑µ
i=1

∑Ns

j=1 [y0
i ]j
[
W0

i

]
:,j

(
F0
i x

0
i

)∗

8: for m = 0 to M ′ − 1 do
9: y← y2m+1, x← x2m+1, F← F2m+1, W←W2m+1

10: V̂m+1 ← arg min
V∈CNt×R

∑µ
i=1 ‖yi −W∗

iUmV∗Fixi‖2
2

11: Vm+1 = QR
(
V̂m+1

)
% orthonormalize V̂m+1

12: y← y2m+2, x← x2m+2, F← F2m+2, W←W2m+2

13: Ûm+1 ← arg min
U∈CNr×R

∑µ
i=1 ‖yi −W∗

iUV∗m+1Fixi‖2
2

14: Um+1 = QR
(
Ûm+1

)
% orthonormalize Ûm+1

15: end for
16: Output: Semi-unitary matrices UM ′ and VM ′
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The estimated left and right orthogonal vectors constitute the columns of the

optimal frequency-flat combiner and precoder. This is unlike most of the prior work on

mmWave frequency-selective systems where at least the baseband precoder-combiner

are subcarrier specific, while the analog processing is frequency-flat [80].

Note that in the discussion till now, we described a few compressive subspace

estimation techniques that have used in literature. Various algorithms that are op-

timized for computational complexity and efficiency with guaranteed performance

criteria have been reported previously. None of these, however, elaborate algorithms

that estimate subspaces that are common to multiple channels, directly with multiple

compressive measurements. Hence, we propose and elaborate next, a few compres-

sive subspace estimation techniques, that leverage the fact that the MIMO channels

corresponding to all the subcarriers have the same row and column spaces.

5.6.1 Using the “Best” Subcarrier

In this proposed approach, we first identify that subcarrier which has the

maximum received SNR and then estimate the subspaces using nuclear norm min-

imization or the modified alternating minimization technique in Algorithm 1. The

advantage of this approach is that the optimal frequency-flat precoder and combiner

can be evaluated with minimum computational complexity. The disadvantage is that

the compressive measurements of the other subcarriers are not utilized here.

To formalize, let

k̂ = arg min
k

M∑

m=1

‖y(m) [k] ‖2
2. (5.15)
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Then, for this proposed compressive subspace estimation approach, the constraints

for the optimization problem in (5.14) are ‖W∗
(m)HF(m)x(m)[k̂] − y(m)[k̂]‖ ≤ ε, for

m = 1, 2, · · ·M for estimating Ĥ[k̂]. Alternatively, Algorithm 1 with input y(1:M)[k̂],

x(1:M)[k̂], F(1:M) and W(1:M) may also be used to estimate the semi-unitary matrices

UM ′ [k̂] and VM ′ [k̂], in this proposed approach.

Since MIMO channels corresponding to all the subcarriers have the same

row and column spaces, the subspaces estimated from the best subcarrier can then

used to derive the frequency-flat precoder and combiner. Accordingly, the SVD of

the estimated MIMO channel Ĥ[k̂] = U[k̂]Λ[k̂]V∗[k̂] from solving (5.14) gives us

the frequency-flat precoder Fff = V[k̂]:,1:R, and the frequency-flat combiner Wff =

U[k̂]:,1:R. Using Algorithm 1, alternatively, gives us Fff = VM ′ [k̂] and Wff = UM ′ [k̂],

directly.

5.6.2 With Extrinsic Mean of the Subspaces

In this proposed approach, we evaluate the right and left orthogonal vectors

of each of the MIMO channel matrices corresponding to the different subcarriers

separately and then compute the extrinsic mean of the estimated subspaces, which

is then orthogonalized to derive the optimal frequency-flat precoder and combiner.

The advantage of this approach is that all the measurements are utilized and the

averaging operation results in noise reductions, thus results in better estimation error

performance.

Formally, let UM ′ [k] be the left semi-unitary matrix from Algorithm 1, and

let VM ′ [k] be the corresponding right semi-unitary matrix, for each subcarrier k. In
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other words, UM ′ [k] and VM ′ [k] are the outputs from Algorithm 1 for the inputs

y(1:M)[k], x(1:M)[k], F(1:M) and W(1:M). Let the extrinsic mean of the column space

[99, 100] of {UM ′ [k]}k=1,···K be denoted as U, and denote the extrinsic mean of the

column space of {VM ′ [k]}k=1,···K as V. Then the R-dimensional orthonormal bases

of U are the columns of the frequency-flat combiner Wff , and the R-dimensional

orthonormal bases of V are the columns of the frequency-flat precoder Fff . Note

that the extrinsic subspace mean U can be easily found out as the R-dimensional

eigenspace of 1
K

∑K
k=1 UM ′ [k]U∗M ′ [k] [100]. Similarly, the extrinsic subspace mean V

can be evaluated as the R-dimensional eigenspace of 1
K

∑K
k=1 VM ′ [k]V∗M ′ [k].

Alternatively, we can solve (5.14) for each k and compute the left and right

orthonormal matrices Û[k] and V̂[k] corresponding to the estimated channel matrix

Ĥ[k]. Then the orthonormal bases of the R-dimensional eigenspace of

1

K

K∑

k=1

([
Û[k]

]
:,1:R

)([
Û[k]

]
:,1:R

)∗

are the columns of Wff , and the orthonormal bases of the R-dimensional eigenspace

of

1

K

K∑

k=1

([
V̂[k]

]
:,1:R

)([
V̂[k]

]
:,1:R

)∗

are the columns of Fff .

Note that though we assume extrinsic subspace mean for this proposed ap-

proach, other subspace means [99] may also be used to derive the orthonormal columns

of the frequency-flat precoder and combiner. Our choice of using extrinsic mean is due

to the ease of computing it analytically, rather than through an iterative algorithm

needed for computing other subspace means.
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5.6.3 Via MIMO Channel Stacking

Given that all the MIMO channel matrices corresponding to different subcar-

riers have the same column space, in this proposed approach, we stack all the mea-

surements column-wise and resulting unknown matrix is still low rank (row rank).

Applying Algorithm 1 to this effective unknown matrix directly gives the orthogonal

vectors that span the column space of all the channel matrices. In other words, the

resulting vectors constitute the ideal frequency-flat combiner.

To elaborate, define Hfat = [H[1] | H[2] | · · · | H[K]], obtained by stacking

the channel matrices column-wise. With 0m denoting an all-zero vector of length m,

we can rewrite (5.13) in terms of Hfat as follows:

y(m) [k] = W∗
(m)Hfat




0(k−1)Nt

F(m)x(m)[k]
0(K−k)Nt


+ W∗

(m)n [k] . (5.16)

Let Ffat
(m)(x) ∈ CKNt×K denote a block diagonal matrix with the kth block diago-

nal entry equal to F(m)x(m)[k]. Denote the effective combiner matrix obtaining by

repeating the frequency-flat combiner column-wise K times, as Wfat
(m) ∈ CNr×KNr .

Then, stacking (5.16) for each k leads to

yeff
(m) =




y(m) [1]
y(m) [2]

...
y(m) [K]


 = Wfat

(m)

∗
Hfatvec

(
Ffat

(m)(x)
)

+




W∗
(m)n [1]

W∗
(m)n [2]

...
W∗

(m)n [K]


 . (5.17)

Note that the column space of Hfat is the same as the column-space of H[k], ∀ k.

Therefore, applying Algorithm 1 with inputs yeff
(1:M), x(1:M) ≡ 1, vec

(
Ffat

(1:M)(x)
)

and

Wfat
(1:M) gives the left semi-unitary matrix UM ′ whose first Ns columns constitute the

columns of the frequency-flat combiner Wff .
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For estimating the right semi-unitary matrix of the MIMO channel matrices,

we assume x(m)[k] = x(m) and stack the measurements row-wise as follows. First, let

Htall =




H[1]
H[2]

...
H[K]


 ∈ CKNr×Nt (5.18)

denote the effective channel matrix obtained by stacking the MIMO channel matrices

row-wise. With Om×n denoting the all-zero matrix of dimension m × n, (5.13) in

terms of Htall is

y(m) [k] =
[
ONs×(k−1)Nr W∗

(m) ONs×(K−k)Nr

]
HtallF(m)x(m) + W∗

(m)n [k] . (5.19)

Then with In denoting the identity matrix of size n, we define Wtall
(m) = IK ⊗W(m),

so that stacking (5.19) for each k gives us

yeff
(m) = Wtall

(m)

∗
HtallF(m)x(m) +




W∗
(m)n [1]

W∗
(m)n [2]

...
W∗

(m)n [K]


 . (5.20)

Since the row-space of Htall is the same as the row-space of H[k], ∀ k, applying Al-

gorithm 1 with inputs yeff
(1:M), x(1:M), F(1:M) and Wtall

(1:M) gives the right semi-unitary

matrix VM ′ whose first Ns columns constitute the columns of the frequency-flat com-

biner Fff .

5.6.4 Empirical Covariance Estimation at the Transceivers

In this proposed approach, the receive subspace is estimated at the receiver

during downlink training. Similarly, assuming channel reciprocity, estimating the
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receive subspace during uplink training gives us the original transmit subspace of the

intended downlink channel. This is unlike the previous proposed approaches in the

paper, where both the subspaces are estimated at the (downlink) receiver after the

end of the training.

In this section, we elaborate how the receive subspace can be estimated using

the proposed approach during downlink training. The details about the transmit sub-

space estimation follows the same principle during uplink training and with channel

reciprocity. During the mth training phase, the received signal before combining in

the kth subcarrier is

r(m) [k] = H[k]F(m)x(m)[k] + n[k], (5.21)

which using the expansion for H[k] in (5.5), and denoting the inner product of two

vectors a and b as 〈a,b〉 = a∗b, can be represented as

r(m) [k] = AR




[P [k]]1,1
〈
a∗T(θ1),F(m)x(m)[k]

〉

[P [k]]2,2
〈
a∗T(θ2),F(m)x(m)[k]

〉
...

[P [k]]R,R
〈
a∗T(θR),F(m)x(m)[k]

〉


+ n[k]. (5.22)

Since the path gains {α`} are independently distributed and because

[P [k]]`,` =
Nc−1∑

d=0

[Pd]`,` e
−j 2πkd

K (5.23)

=
Nc−1∑

d=0

α`p(dTs − τ`)e−j 2πkd
K , (5.24)

we have that
{

[P [k]]`,`

}
are independently distributed. Therefore, the covariance

Cr,r[k] of r(m) [k] is

Cr,r[k] = ARΣ [k] AR
∗ + σ2I, (5.25)
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where Σ [k] ∈ RR×R
+ is a diagonal matrix with the `th entry

[Σ [k]]`,` =
∣∣∣[P [k]]`,`

∣∣∣
2 ∣∣〈a∗T(θ`),F(m)x(m)[k]

〉∣∣2 . (5.26)

The received signal post combining is y(m) [k] = W∗
(m)r(m) [k]. The covariance of the

post combined signal y(m) [k], therefore, is Cy,y(m)[k] = W∗
(m)Cr,r[k]W(m). From

this, the averaged empirical covariance C̃y,y(m) of the post combiner received signal

C̃y,y(m) =
1

K

K∑

k=1

y(m) [k] y∗(m) [k] (5.27)

can be used to estimate the receive subspace Hc, noting that fact that the column

space of Cy,y(m)[k] is a subspace of Hc, neglecting noise and when Proposition 6

holds. Hence the receive subspace estimation problem can be solved by the following

optimization problem, with Cr,r denoting the variable of optimization:

min ‖Cr,r‖∗
Cr,r∈CNr×Nr

s.t. ‖W∗
(m)

Cr,rW(m)−C̃y,y(m)‖F≤ε for m=1,2,··· ,M.

. (5.28)

The left singular vectors of the optimum Ĉr,r, that solves (5.28), then span Hc, and

hence, are the columns of the optimum frequency-flat combiner Wff .

Repeating the proposed empirical covariance approached in the uplink, and

assuming channel reciprocity, we could also get the optimum frequency-flat precoder

Fff .

5.7 Simulation Results

In this section, we present simulation results to illustrate the optimality of the

proposed frequency precoder and combiner proposed in Section 5.4. We assume a uni-
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form linear array with half wavelength antenna element separation at the transceivers,

a frequency-selective mmWave MIMO channel with Nc = 16 channel taps, and an

OFDM system with K = 64 subcarriers for the simulations.

The metric used to evaluate the optimality of the proposed procoders and

combiners is the normalized energy Υ forced into the dominant subspaces when using

the optimal frequency-flat precoder and combiner. This energy can be computed as

Υ = 1
K

∑K
k=1 γk, with

γk =
‖W∗

ffH[k]Fff‖2
F

‖H[k]‖2
F

. (5.29)

Fig. 5.1 shows the optimality metric against the number of paths R in the

frequency-selective MIMO channel, for various values of Nr and Nt. The rank of the

channel matrices is upper bounded by min (R,Nr, Nt). When the number of paths R

is small compared to the number of transmit and receive antennas, from (5.5), the

rank of each of the MIMO channel matrices is at most R. In this case, the proposed

frequency-flat precoder and combiner are optimal. When R > min (Nr, Nt), the semi-

unitary precoding-combining solution is sub-optimum, as seen from Fig. 5.1. Note,

however, that when the MIMO channel is full rank and Nr = Nt, unitary precoding

and combining give optimum rate [80].

In Fig. 5.2, we plot the achievable rate using the proposed frequency-flat pre-

coder and combiner as a function of the number of paths R for SNR = 0dB, Nt = 64

and Nr = 16. Fig. 5.2 also shows achievable rates with the conventional frequency-

selective precoder and combiner, with and without water-filling. The plots in Fig. 5.2

show that when the MIMO channel rank equals the number of pathsR ≤ min (Nr, Nt),
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Figure 5.1: Optimality metric Υ, as a function of the number of paths R. The
frequency-flat precoder, combiner is optimal when the number of paths R is small in
comparison to min (Nr, Nt).
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Figure 5.2: Plot showing the achievable spectral efficiency with the proposed
frequency-flat precoder and combiner versus the number of paths R. The achiev-
able rates with frequency-selective precoder-combiner are also plotted in the figure to
show that the proposed frequency-flat precoding-combining strategy gives optimum
achievable spectral efficiency when R ≤ min (Nr, Nt).
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Figure 5.3: Plot showing the achievable spectral efficiency for SNR = 10dB with the
compressive subspace estimation algorithm as a function of the number of paths R
for various training lengths M .

then the frequency-flat precoder-combiner achieves the same rate as the SVD-based

frequency-selective precoder-combiner. This implies that the system design and im-

plementation is simplified in low-rank, large dimensional frequency-selective MIMO

channels that are common in wideband mmWave systems.

In Fig. 5.3, we compare the achievable spectral efficiency provided by the

frequency-flat precoders and combiners designed from compressive subspace estima-

tion outlined in Section 5.6, as a function of the number of paths R, for various
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training length M . We assume Nr = Nt = 32 here. When the number of paths is

small, subspace recovery tools requiring small number of compressive measurements

can be used to design the frequency-flat precoders and combiners. In this case, the

loss in performance relative to the optimal frequency-flat precoders and combiners

(assuming perfect channel knowledge) is also small. When the rank of the channel

(which depends on the number of paths) is higher, a larger number of measurements

is needed to obtain a good estimation of the subspaces and design the proposed

frequency-flat precoders and combiners.

The hardware limitations in mmWave systems make the use of fully digital

precoders and combiners impractical [55]. These place constraints on the frequency-

selective hybrid precoder-combiner design as well. Nevertheless, efficient designs of

frequency-selective hybrid precoder-combiner guarantee achievable rates similar to all-

digital systems [80]. The proposed frequency-flat optimal precoder-combiner in this

paper, can however, be implemented in the RF part of the transceiver architecture

with additional constraints incorporating the limited resolution of phase shifters [86].

This not only makes the system design easier, but also makes the hardware imple-

mentation cost effective.

5.8 Conclusion

In this chapter, we established the optimality of the frequency-flat precoder-

combiner for frequency-selective wideband mmWave channel with small number of

paths. We proved that all the MIMO channel matrices corresponding to the time-

domain delay taps, and all the subcarriers in the frequency-domain, have the same
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row space and the column space. The combiners and precoders derived from these

subspaces were shown to form optimal frequency-selective combiners and precoders

when the MIMO channel dimensions are large in comparison with the rank of the

channel, that is a function of the number of paths.
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Chapter 6

Concluding Remarks

6.1 Summary

This dissertation presents the results of the study on the potential of mmWave

frequencies for supporting high data rates among wearable devices. The key advan-

tages and challenges of using mmWave-based device-to-device communication were

identified. First, we developed an analytic model to evaluate expected coverage and

rate performances given by finite mmWave wearable networks. Then, we proposed to

model the impact of reflections and self-blocking which result in non-isotropic perfor-

mance in indoor wearable operation. While the analytic framework assumed that the

channel is already known and the transmitter is pointed correctly to the intended on-

body receiver, explicit algorithms to enable MIMO channel estimation in wideband

and frequency-selective mmWave channels were addressed in the later part of this

dissertation. Finally, low-complexity, easy to implement precoding and combining

solutions were proposed to support multi-stream communication between mmWave

wearable devices.

While modeling finite mmWave-based communication networks, we incorpo-

rated the impact of human body blockages that are the major source of blockages in

wearable applications. This framework is general and works for arbitrary distance-

157



dependent parameters and any Gamma-distributed small scale fading for a given

network geometry. Techniques to ascertain whether an interfering device is blocked

or not were also developed. We also proposed a tractable model for parameterizing

3-D antenna gain pattern of a uniform planar array of size N . The performance eval-

uation using the developed analytic framework showed the impact of N relative to

the density of interfering devices. It was also proved via simulations that the derived

closed-form expressions for coverage and ergodic rate closely predicts the actual sys-

tem performance in a device-to-device link between a user’s wearable devices in the

presence of a finite number of nearby interfering users.

For understanding the impact of reflecting objects during an indoor operation

of wearable networks, we developed a tractable model that quantified the connection

between user location and orientation. Here we included a 3-D model with reflections

from ceiling and the walls accounted for. Leveraging the elevation beamwidth of com-

pact antennas used in mmWave wearables, we studied how the relative positioning of

the transmitted and the receiver impacted the expected achievable rate performance.

By modeling reflected signals as those emanating from phantom interferers located at

the mirror image locations of the actual interferers, we proposed a method to quantify

users as strong and weak sources of interference. In this part, we also developed a

stochastic model to study self-blockage during mmWave wearables operation. Re-

sults showed the non-isotropy in performance when mmWave wearable networks are

operated in indoor environment and the necessity of pointing the transceiver beams

in the the correct direction to maximize SINR.

We developed channel estimation techniques to enable accurate pointing of
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mmWave beams for wideband and frequency-selective mmWave systems. Here the

hardware constraints in the system were modeled and the channel estimation problem

was formulated as a sparse recovery problem in both time and frequency domain. We

showed how various parameters in the system affected the channel estimation per-

formance. Compared to conventional beam training approaches, we showed that the

proposed compressive sensing based channel estimation techniques had fewer over-

heads. Furthermore, the knowledge of the completer MIMO channel enables design

of efficient precoders and combiners that achieve multi-stream communication and

rates similar to all-digital systems.

For low-rank frequency-selective hybrid MIMO mmWave systems, we proved

that frequency-flat precoders and combiners are optimal. This means that low-

complexity and easy to implement precoders and combiners can be designed for

mmWave systems. This is especially promising for hardware-constrained mmWave

wearable communication networks. We showed that in such a scenario subspace es-

timation techniques can be used for designing the precoders and combiners. We

proposed several algorithms to perform subspace estimation that leveraged the fact

that the MIMO channel matrices of all the subcarriers have the same rowspace and

column space. For frequency-selective channels, we proposed OFDM-based hybrid

precoding and codebook designs. We also examined the conditions under which the

proposed frequency-flat beamformers are optimal.
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6.2 Future Work

This dissertation only addressed some of the critical and initial aspects to

enable mmWave-based high data rate requiring mmWave wearable networks. The

following are a few research directions that need to be explored in the future. These

also include some of the practical and general challenges that need to be considered

before mmWave wearable devices become a reality.

Health Concerns Before mmWave devices are introduced in the consumer

market of wearables, their compliance to radiation exposure guidelines as set out by

the governing agencies has to be ensured. The sensitivity of human eye tissues and

skin to mmWave frequencies needs to be analyzed more carefully before large scale

deployment of mmWave devices, because high-intensity direct exposure of mmWave

frequencies could cause ocular injury.

The preferred metric to determine compliance for devices operating at higher

carrier frequencies is power density rather than specific absorption rate [101]. Given

that the wearable devices would be held close to the body, reliable power density

measurements are hard to obtain since the resulting electromagnetic fields are near-

field. For distances less than 5 cm between devices and the human body, analytic

tools may be used to compute power density numerically. Temperature elevation

measurements are yet another way to evaluate compliance on mmWave devices [102,

103]. It was noted in [102] that longer, low-intensity exposure to mmWave signals,

for example, 10 mW/cm2 for upto 8 hours, appears to be safe. Further studies are

needed with actual mmWave-based wearable devices to understand both long time

and short term impacts.
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Circuits The higher carrier frequencies and higher bandwidths pose several

challenges for the design of RF circuits, mixed signal components, and the digital

baseband. The high dielectric constant of most of the semi-conductors used today

can result in a dielectric waveguiding effect depending on the size of the substrate.

This could lead to energy loss for chip components or energy radiation in unde-

sired directions [104] at mmWave frequencies. The leaked energy could even result

in parasitic coupling between on-chip components. This poses problems for model-

ing transistors and passive devices, and requires careful treatment of small parasitic

components within the model.

Another design challenge is to develop linear RF power amplifier which is a key

ingredient to meet link budget of mmWave systems. These power amplifiers would

need to operate at low-voltage supplies of the current semi-conductor technology while

providing large dynamic ranges required for certain modulations [105].

The analog-to-digital converters (ADCs) can be a significant source of power

consumption due to the wide bandwidth of the signals that need to be sampled. The

issue is compounded with the use of many antennas. Potential solutions including

analog, hybrid analog/digital, and low resolution ADCs are described in the next

section. Commercial products based on mmWave systems such as the IEEE 802.11ad

and WirelessHD are already available in the market today in high volume consumer

applications. Hence, significant progress is being made on addressing these challenges.

Propagation Modeling MmWave propagation in the 60 GHz band is well

understood, due to past work for IEEE 802.15.3c [40] and IEEE 802.11ad [11]. Most

work though was done with different use cases in mind, especially in cable replace-
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ment.

Blockage is a significant issue for mmWave in general, and specifically for

wearable networks. The inadvertent movement the user’s hands, for example, could

occlude the on-body transmitter - receiver direct signal link in a wearable network.

The blockage of signal due to the placement of fingers over the antenna arrays is yet

another modeling challenge. The accurate variation in the propagation environment

is difficult to model without detailed measurement data for such cases. Both ray-

tracing and measurement-based studies have been used previously to study mmWave

propagation in indoor environments [54, 106–108]. These, however, do not include

several number of human users in the measurement chamber. These would also

shed valuable insights regarding antenna placement and space optimization to ensure

connectivity and minimize hand/body blockages for mmWave wearables.

Extension to lower-resolution A/D and D/A converters In Chapter

4, we proposed wideband mmWave channel estimation assuming hybrid architecture

at the transceivers. The mixed signal components, A/D and D/A converters are

still a major source of power consumption. Therefore, extension of the proposed

techniques to the low-resolution mixed signal components are important for power-

constrained wearable applications. This is non-trivial, though, since we are dealing

with a wideband system with other hardware constrains that restrict our baseband

measurements. Therefore, it would be interesting to examine this problem carefully

inspired from prior work on narrowband systems.

Synchronization and offset correction In this dissertation, we assumed

that the communication system is fully synchronized. In practice, however, synchro-
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nization phase has to be performed before data transmission. It would be interest-

ing to study synchronization techniques using hybrid architecture and low-resolution

mixed-signal components for wideband mmWave systems. These could include both

frequency and timing offset estimation and correction. It would be interesting to

explore further the robustness of these algorithms in a highly interference limited

regime, such as those in a crowded mmWave wearable network operation.
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Appendix A

Proof of Lemmas and Theorems

A.1 Proof of Lemma 2

The probability that user i blocks R0 − Ti link is the same as the probability

that RP
0 − Ti link is blocked by Bi in P. Since Ti is assumed to be located uniformly

at random in a radius-d circle around Bi (same as Bi being located randomly around

Ti in a radius-d circle), the probability that Bi blocks Ti link is

pself
b =

1

π
arcsin

(
W

2d

)
. (A.1)

An illustration explaining the derivation of pself
b is shown in Fig. A.1.

The probability that Ti falls in the blocking cone of B0 is also pself
b as B

(
RP

0 , rB(RP
0 )
)

is circular with R0 located at its center. So, the probability that both B0 and Bi blocks

d

W

Reference user

All possible locations of 

Locations of       that potentially block

Length      chord T
i

P
R0

T
i

B0

iB

iB

iB

Figure A.1: Illustration of self-blockage of R0 − Ti link due to Bi.
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d
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B , B( )
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P

R0
r

P
R0

B0

Figure A.2: Illustration showing the (shaded) region where weak interferers are self-
blocked by B0

Ti’s interference is p2 =
(
pself
b

)2
, and the probability that neither user bodies block the

interference is p0 = (1− pself
b )2. Finally, p1 can be computed to satisfy

∑2
s=0 ps = 1.

To evaluate q(R0, ψ0) in the second part of the Lemma, we use the illustration

shown in Fig. A.2 which depicts the region in P \B
(
RP

0 , rB(RP
0 )
)

that is blocked due

to B0. The probability that Ti is in this region (denoted as BC(B0) \B
(
RP

0 , rB(RP
0 )
)
)

is q1(R0, ψ0) given in Lemma 2. The probability that Bi blocks Ti is still pself
b since it

only depends on ψi = ] (ψi − Bi) that is uniformly random in [0, 2π] (cf Fig. A.1).

So the probability that both the weak interferer Ti and z0 are facing each other is

q(R0, ψ0) =
(
1− pself

b

)
(1− q1(R0, ψ0)) . (A.2)

A.2 Proof of Lemma 3

The interferers Ti such that ]Ti ∈
[
φ

(a)
0 − θ

(a)
r

2
, φ

(a)
0 + θ

(a)
r

2

]
fall within the re-

ceiver main-lobe in the azimuth. Since the strong interferers are assumed to be uni-

formly and isotropically distributed in B
(
RP

0 , rB(RP
0 )
)
, the probability that a strong
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Figure A.3: Illustration showing the region in P that falls within the receiver main-
lobe due to the elevation beam-width of the antenna.

interferer falls within azimuth beam-width of the reference receiver is θ
(a)
r

2π
. Due to

the non-isotropy of P̂ = P \B
(
RP

0 , rB(RP
0 )
)

with respect to the reference receiver, the

probability that a weak interferer lies in the receiver main-lobe in the azimuth needs

to be computed numerically (using the definition in (3.27)) and evaluates to
|Υ(φ

(a)
0 )|
|P̂| .

The region in P falling within the elevation beam-width of R0 depends not

only on the receiver antenna beam-width θer but also on z0. This is illustrated in Fig.

A.3.

The region in B
(
RP

0 , rB(RP
0 )
)

that falls within the elevation beam-width of R0

is an annulus with inner radius rmin and outer radius min
(
rB(RP

0 ), rmax

)
. The ratio of

area of this annulus to the area of B
(
RP

0 , rB(RP
0 )
)

gives the probability that a strong

interferer lies within the receiver antenna elevation beam-width. This evaluates to
(

min
(
rB(RP

0 ), rmax

)2 − r2
min

r2
B(RP

0 )

)
. (A.3)

Similarly, the probability of being within the elevation beam-width of R0 for weak

interferers is computed as
(

1− |P \B
(
RP

0 ,max(rB(RP
0 ), rmax)

)
|

|P \B
(
RP

0 , rB(RP
0 )
)
|

)
. (A.4)
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Finally, an interferer lies within the main-lobe of the reference receiver if its position

in P falls within both the azimuth and the elevation beam-widths of RP
0 . This leads

to the expressions for pSIrx and pWI
rx given in Lemma 3.

A.3 Proof of Theorem 4

Suppose there are J number of strong interferers. Clearly, J is Poisson dis-

tributed with mean λ|B
(
RP

0 , rB(RP
0 )
)
| = λπr2

B(RP
0 ). With ` = {`(R0,Ti)}Ji=1, h =

{hi}Ji=1, G̃t = {Gt,i}Ji=1 and G̃r = {Gr,i}Ji=1,

EΦ

[
e−kmm̃γ̃I

SI
Φ

]
= EJ

[
E`,h,G̃t,G̃r

[
J∏

i=1

e−kmm̃γ̃hi`(R0,Ti)Gt,iGr,i

]]
. (A.5)

Since h are independent normalized gamma random variables, their moment gener-

ating functions can be used to evaluate the expectation with respect to h which leads

to

EJ

[
E`,G̃t,G̃r

[
J∏

i=1

(1 + km̃γ̃`(R0,Ti)Gt,iGr,i)
−m
]]

. (A.6)

For strong interferers, `(R0,Ti) = ‖R0−Ti‖−αL
BsL

, and {Ti}Ji=1 are uniformly and inde-

pendently distributed in B
(
RP

0 , rB(RP
0 )
)
. The expectation with respect to ` can be

evaluated in two steps - taking an expectation over the number of self body blockages

s followed by averaging over ri = |RP
0 − Ti| that has distribution

fri(r) =
2r

r2
B(RP

0 )
0 ≤ r ≤ rB(RP

0 ). (A.7)
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Using this observation and the distribution in (A.7), the expectation (A.6) with re-

spect to ` evaluates to

EJ


EG̃t,G̃r




J∏

i=1

2∑

s=0

ps

rB(RP
0 )∫

0

(
1 +

km̃γ̃Gr,iGt,i

(r2 + z2
0)

αL
2 BsL

)−m
2r

r2
B(RP

0 )
dr





 . (A.8)

The reference receiver’s antenna is pointed towards the reference transmitter, which

by our assumption is not blocked by the reference user’s body. This implies that the

interference from all the strong interferers that fall in BC(B0) signals see a receiver

gain of gr at R0. The receiver gain at R0 for the strong interferers outside BC(B0) is

either Gr with probability pSIrx or gr with probability 1 − pSIrx. Using this observation

and the notation,

F(a, s) =

rB(RP
0 )∫

0

(
1 +

km̃γ̃aGt,i

(r2 + z2
0)

αL
2 BsL

)−m
2r

r2
B(RP

0 )
dr,

the expectation with respect to G̃r in (A.8) evaluates to

EJ
[
EG̃t

[
p0

(
pSIrxF(Gr, 0) + (1− pSIrx)F(gr, 0)

)
+
p1

2

(
pSIrxF(Gr, 1) + (1− pSIrx)F(gr, 1)

)

+
p1

2
F(gr, 1) + p2F(gr, 2)

]J]
.(A.9)

Averaging over the random distribution of G̃t, (A.9) results in (A.10) which uses the

notation in (3.32).

EJ

[
p0

4∑

j=1

µj

(
1− 2

r2
B(RP

0 )
Aj,0

)
+
p1

2

4∑

j=1

µj

(
1− 2

r2
B(RP

0 )
Aj,1

)

+
p1

2 (1− pSIrx)

4∑

j=3

µj

(
1− 2

r2
B(RP

0 )
Aj,1

)
+

p2

(1− pSIrx)

4∑

j=3

µj

(
1− 2

r2
B(RP

0 )
Aj,2

)]J
.(A.10)

Finally, taking the expectation in (A.10) with respect to Poisson distributed J results

in the expression in (3.33).
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A.4 Proof of Theorem 5

We use the notations ` = {`(R0,Ti)}Ki=1, h = {hi}Ki=1, G̃t = {Gt,i}Ki=1 and

G̃r = {Gr,i}Ki=1. For simplicity, we use q to denote q(R0, ψ0) here. Noting that the

number of weak interferers K is a Poisson distributed random variable with mean

λ|P̂|, we have EΦ

[
e−kmm̃γ̃I

WI
Φ

]

= EK

[
E`,h,G̃t,G̃r

[
K∏

i=1

e−kmm̃γ̃hi`(R0,Ti)Gt,iGr,i

]]
(A.11)

= EK

[
EG̃r,`

[
K∏

i=1

(
pM (1 + km̃γ̃`(R0,Ti)GtGr,i)

−m

+ (1− pM) (1 + km̃γ̃`(R0,Ti)gtGr,i)
−m
)]]

, (A.12)

where we used the IID property of h and G̃t. Given K, {Ti}Ki=1 are uniformly dis-

tributed in P̂ and the probability of self-blockage is as per Lemma 2. Using the

notations

D(a, b) =
1

|P̂|

∫

z∈P̂

(
1 +

km̃γ̃aGr,i

b

)−m
dz, (A.13)

b1 = ‖R0 − z‖αL
c and (A.14)

b2 = ‖R0 − z‖αN , (A.15)

the expectation of (A.12) with respect to ` evaluates to

EKEG̃r

[
K∏

i=1

(q [pMD(Gt, b1) + (1− pM)D(gt, b1)]

+(1− q) [pMD(Gt, b2) + (1− pM)D(gt, b2)])

]
. (A.16)
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This follows directly using the path-loss model as defined in (3.15). The orientation

of the reference receiver’s antenna is such that the interferers falling in BC(B0) always

see the side-lobe gain. Using this fact, with pWI
rx defined in Lemma 3 and with the

notations in (3.30), (3.31), we can evaluate the expectation with respect to G̃r to

simplify (A.16) as

EK

[
q

|P̂|

(
|P̂| − C1

)
+

1− q
|P̂|

(
|P̂| − C2

)]K
. (A.17)

Taking the expectation of (A.17) with respect to Poisson distributed K leads to the

expressions in Theorem 5.
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[55] R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, “An

overview of signal processing techniques for millimeter wave MIMO systems,”

IEEE J. Sel. Topics Signal Process., vol. 10, pp. 436–453, April 2016.

[56] J. Singh, S. Ponnuru, and U. Madhow, “Multi-gigabit communication: the

ADC bottleneck,” in Proc. of IEEE Int. Conf. Ultra-Wideband (ICUWB),

(Vancouver, BC), pp. 22–27, Sept. 2009.

[57] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. Heath, “Spatially

sparse precoding in millimeter wave MIMO systems,” IEEE Trans. Wireless

179



Commun., vol. 13, pp. 1499–1513, March 2014.
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Heath, Jr., “Channel Estimation for Hybrid Architecture Based Wideband Mil-

limeter Wave Systems,” to appear in IEEE Journal of Selected Areas in Com-

munications. Available at arXiv: 1611.03046 [cs.IT], 13 Nov. 2016.
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