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The thesis develops a new and generic Markov chain Monte Carlo

sampling methodology, naming latent slice sampling, that originates from slice

sampling and is capable of efficient sampling. More specifically, three angles

are studied to cover different types of random variables: (i). We develop a

latent slice sampler for discrete variables by designing a transition probability

function that can perform direct sampling without knowing the exact form

of target distributions. (ii). We manage to derive a latent slice sampler for

continuous variables which has the potential to be a more efficient alternative to

the Metropolis-Hasting algorithm, obviates the need for a proposal distribution,

and has no accept/reject component. (iii). We further propose a novel algorithm

based on latent slice sampling methodology which copes well with multi-modal

problem, which can approach well-studied problems from a different angle

and provide new perspectives. All the methods bring clear gains, which

demonstrate the benefits of applying latent slice sampling to improve Markov

chain simulation.
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Chapter 1

Introduction

Markov chain Monte Carlo (MCMC) algorithms have been around for

nearly 70 years and have become an important method for analyzing complex

Bayesian models. Important impacts has been made in the early 1990s [51].

The strength of MCMC algorithms is that they guarantee convergence to the

quantity (or quantities) of interest with minimal requirements on the target

distribution. MCMC algorithms are robust or universal compared to Monte

Carlo methods (see e.g., [139, 133]) which require proximity to the target

distribution. The disadvantage to the robustness is that slow convergence to

the target could be observed behavior, in that the exploration of the relevant

part of the space supporting the distribution may take a long time. This

can occur as the simulation usually proceeds by local jumps in the vicinity

of the current position. In other words, MCMC like Gibbs sampling and

Metropolis-Hastings algorithms, is very often myopic in that it provides a good

illumination of a local region, while being unaware of the global support of the

distribution. As with most other simulation methods, there always exist ways

of creating highly convergent algorithms by taking further advantage of the

structure of the target distribution.
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Since Metropolis–Hastings based algorithms and Gibbs sampling have

different origins, we will distinguish between the background of them, though

their mathematical justification via Markov chain theory is the same. The

Gibbs sampling is actually a special case of the Metropolis-Hastings algorithm.

Starting in the mid-to-late 1990s, the so-called “second-generation

MCMC revolution” includes the development of particle filters, reversible

jump and perfect sampling, and concludes with more current work on popu-

lation or sequential Monte Carlo. The realization that Markov chains could

be used in a vast range of situations only came to mainstream statistics with

Gelfand and Smith [51], despite earlier publications in Hastings [78], Geman

and Geman [59] and Tanner and Wong [146]. Through a series of applications,

the method was demonstrated to be easy to understand, easy to implement

and practical [53, 54, 141, 150]. The emergence of the Bayesian inference

Using Gibbs Sampling (BUGS) software was another compelling argument for

adopting MCMC algorithms.

1.1 Markov Chain Monte Carlo - A History

Monte Carlo methods originated during World War II, leading to the

introduction of the Metropolis algorithm in the early 1950s, while MCMC was

closely brought to statistical practice following the work of Hastings in the

1970s [78]. The Metropolis algorithm, published by Metropolis et al. [112], can

be reasonably seen as the first MCMC algorithm. As early as 1949, Metropolis

and Ulam [111] published the very first paper about the Monte Carlo method.
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1.1.1 Metropolis et al. (1953)

The primary focus of Metropolis et al. [112] is the computation of

integrals of the form

F̄ =

∫
F (θ) exp{−E(θ)/kT}dθ∫

exp{−E(θ)/kT}dθ

where F is the value of system property of interest and θ denotes a set of N

particles on R2, with the energy E being defined as

E(θ) =
1

2

N∑
i=1

N∑
j=1
j ̸=i

V (dij(θ))

where V is a potential function and dij the Euclidean distance between particles

i and j in θ. The Boltzmann distribution exp{−E(θ)/kT} is parameterized by

the temperature T , with k being the Boltzmann constant, with a normalization

factor

Z(T ) =

∫
exp{−E(θ)/kT}dθ.

Since θ is a 2N -dimensional vector, numerical integration is impossible. For

large-dimensional problem, even standard Monte Carlo methods fail to correctly

approximate F̄ , since exp{−E(θ)/kT} is very small for most realizations of

the random configurations of the particle system. To improve the efficiency

of the Monte Carlo method, Metropolis et al. [112] propose a random walk

modification of the N particles. That is, for each particle i (1 ≤ i ≤ N), values

xi and yi are moved in succession according to

x′i = xi + σξ1i and y′i = yi + σξ2i

3



where σ is the maximum allowed displacement, and both ξ1i and ξ2i are

random numbers between -1 and 1. The energy difference ∆E between the new

configuration and the previous one is then computed and the new configuration

is accepted with probability

min{1, exp(−∆E/kT )} (1.1)

and otherwise the previous configuration is replicated, in the sense that its

counter is increased by one in the final average of the F (θt)’s over the τ moves

of the random walk, 1 ≤ t ≤ τ . Metropolis et al. [112] demonstrated the

validity of the algorithm by establishing irreducibility and proving ergodicity,

that is, convergence to the stationary distribution.

Simulated Annealing algorithm developed by Kirkpatrick, Gelatt and

Vecchi [92] is an interesting variation, which connected optimization with

annealing, the cooling of a metal. It is one of the most preferred heuristic

methods for solving the optimization problems. Annealing procedure defines

the optimal molecular arrangements of metal particles where the potential

energy of the mass is minimized and refers cooling the metals gradually after

subjected to high heat. Generally, Simulated Annealing allows the temperature

T to change as the algorithm runs, according to a “cooling schedule”, and the

algorithm is shown to be able to find the global maximum with probability 1,

although it is no longer a time-homogeneous Markov chain with varying T .

4



1.1.2 Hastings (1970)

The Metropolis algorithm was later generalized by Hastings [78] and

Peskun [124, 125] as a statistical simulation tool that could overcome the curse

of dimensionality. In Hastings’ [78] Biometrica paper, the generic probability

of acceptance for a move from state i to state j is

αij =
sij

1 + (πi/πj)(qij/qji)

where sij is a symmetric function of i and j chosen so that 0 ≤ αij ≤ 1 for all

i and j, sij = sji, and πi denotes the target and qij the proposal. The above

probability encompasses the forms of both Metropolis et al. [112] and Barker

[9]. At this stage, Hastings warns against high rejection rates as indicative of a

poor choice of transition matrix, but does not mention the opposite pitfall of

low rejection rates, which is associated with a slow exploration of the target

distribution.

In the paper, Hastings introduces a Gibbs sampling strategy, updating

one component at a time and defining the composed transition matrix as

satisfying the stationary condition because each component leaves the target

invariant, that is

πi pij = πj pji (1.2)

where P = {pij} is the transition matrix of the Markov chain. The property

of (1.2) ensures that
∑
πipij = πj, for all j, and hence that π is a stationary

distribution of P .

5



Hastings [78] actually refers to [42] as a preliminary instance of this

sampler, which precisely is Metropolis-within-Gibbs sampler. This is the first

introduction of the Gibbs sampler with a completely general proof of conver-

gence based on a composition argument as in Tierney [149]. The remainder

of Hastings’ paper deals with (i) an importance sampling version of Markov

chain Monte Carlo, (ii) general remarks about assessment of the error, and (c)

an application to random orthogonal matrices, with another example of Gibbs

sampling. Peskun [124] published a comparison of Metropolis’ and Barker’s

forms of acceptance probabilities three years later, which shows the optimal

choice the asymptotic variance of any empirical average in a discrete setup.

Peskun [124] also establishes that this asymptotic variance can improve upon

the independent and identically distributed (i.i.d.) case if and only if the eigen-

values of P −A are all negative, when P is the transition matrix corresponding

to the Metropolis algorithm and A the transition matrix corresponding to i.i.d.

simulation.

1.1.3 The EM Algorithm

Besides Hastings [78] and Geman and Geman [59], other papers that

contained the seeds of Gibbs sampling are Besag and Clifford [13, 11, 12],

Tanner and Wong [146], Qian and Titterington [128]. In the early 1970’s,

Hammersley, Clifford and Besag were working on the specification of joint

distributions from conditional distributions and on necessary and sufficient

conditions for the conditional distributions to be compatible with a joint

6



distribution. The Hammersley-Clifford theorem states that a joint distribution

for a vector associated with a dependence graph (edge meaning dependence and

absence of edge conditional independence) must be represented as a product

of functions depending only on the components indexed by the labels in the

clique.

Hammersley [74] explains the reason why the Hammersley-Clifford

theorem was published only through Besag[11] is that Clifford and Hammersley

were dissatisfied with the positivity constraint: the joint density could be

recovered from the full conditionals only when the support of the joint was

made of the product of the supports of the full conditionals. Hammersley and

Handscomb [72] also expressed a more optimistic sentiment earlier in their

textbook on Monte Carlo method, where they cover such topics as “Crude

Monte Carlo”, importance sampling, control variates and “Conditional Monte

Carlo”, which looks like a missing-data completion approach.

Because of its use for missing data problems, the EM (Expectation-

Maximization) algorithm [36] has early connections with Gibbs sampling. For

instance, Celeux and Diebolt [26] had tried to overcome the dependence of

EM methods on the starting value by replacing the E step with a simulation

step, the missing data z being generated conditionally on the observation x

and on the current value of the parameter θm. The maximization in the M

step is then done on the simulated complete-data log-likelihood, a predecessor

to the Gibbs step of Diebolt and Robert [37] for mixture estimation. Celeux

and Diebolt [27] have also solved the convergence problem by devising a hybrid

7



version called Simulated Annealing EM, where the amount of randomness in

the simulations decreases with the iterations, ending up with an EM algorithm.

1.1.4 Gibbs Sampling

The landmark paper which brought Gibbs sampling into the mainstream

arena of statistical application is by Geman and Geman [59], which is also

responsible for the name Gibbs sampling, with the original implementation on

a discrete image processing problem. Described by brothers Stuart Geman and

Donald Geman [59], Gibbs sampling is a special case of the Metropolis–Hastings

algorithm. However, in its extended versions, it can be considered a general

framework for sampling from a large set of variables by sampling each variable

in turn, and can incorporate the Metropolis–Hastings algorithm (or methods

such as slice sampling [119]) to implement one or more of the sampling steps.

Gibbs sampling is applicable when the joint distribution is not known

explicitly or is difficult to sample from directly, but the conditional distribution

of each variable is known and is easy (or at least, easier) to sample from.

Suppose p(x, y) is a probability density function or probability mass function

that is difficult to sample from directly, but the conditional distributions p(x | y)

and p(y | x) is easily to sample from, then the Gibbs sampler proceeds as

follows:

i. Set (x, y) to some initial starting values (x0, y0)

ii. Sample x1 ∼ p(x | y0), then sample y1 ∼ p(y | x1), and then sample

8



x2 ∼ p(x | y1), and so on.

The Gibbs sampling algorithm generates an instance from the dis-

tribution of each variable in turn, conditional on the current values of the

other variables. It can be shown that the sequence of samples constitutes a

Markov chain, and the stationary distribution of that Markov chain is just the

sought-after joint distribution [58]. As illustrated in [131], Gibbs sampling and

Metropolis algorithms were extensively in use within the image analysis and

point process communities. Besag, York and Mollié [15] is another example of

the activity in the spatial statistics community at the end of the 1980s.

1.2 The MCMC Revolution

After Peskun [124, 125], MCMC in the statistical world was dormant for

about 10 years, and then several papers appeared that highlighted its usefulness

in pattern recognition, image analysis or spatial statistics. In particular, the

genuine starting point for an intensive use of MCMC methods by the mainstream

statistical community is from the paper written by Gelfand and Smith [52]. It

sparked new interest in Bayesian methods, statistical computing, algorithms

and stochastic processes through the use of computing algorithms such as the

Metropolis–Hastings algorithm and the Gibbs sampler [25].

In the paper of Tanner and Wong [146], the idea that simulating from

the conditional distributions is sufficient to asymptotically simulate from the

joint is essentially the same as Gelfand and Smith [52]. Compared with Gelfand

9



and Smith [52], this paper’s impact was somehow limited, due to the reasons

that the method seemed to only apply to missing data problems, this impression

being reinforced by data augmentation, and the authors were more focused on

approximating the posterior distribution. The basic algorithm is motivated by

a simple representation of the desired posterior density:

p(θ | x) =
∫
p(θ | z, x)p(z | x)dz

where p(θ | x) denotes the posterior density of the parameter θ given the data

x, p(z | x) denotes the predictive density of the latent data z given x, and

p(θ | x) denotes the conditional density of θ given the augmented data (z, x).

Tanner and Wong [146] suggested a Markov chain Monte Carlo approximation

to the target p(θ | x) at each iteration of the sampler, based on

i. Generate a sample (z(1), . . . , z(m)) from the current approximation to the

predicative density p(z | x)

ii. Update the current approximation to p(θ | x) to be the mixture of

conditional density of θ given the augmented data generated in (i), i.e.,

θ ∼ 1

m

m∑
j=1

p(θ | x, z(j))

that is, by replicating m times the simulations from the current approximation

to p(z | x) of the marginal posterior distribution of the missing data. This

focus on estimation of the posterior distribution connected the original Data

Augmentation algorithm to EM.
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In 1991, many talks were to become influential papers, including Albert

and Chib [1], Gelman and Rubin [55], Geyer [63], Gilks and Wild [66], Liu,

Wong and Kong [87, 88] and Tierney [149], in an important Markov chain

Monte Carlo conference at Ohio State University. Approximately one year

later, four papers were presented followed by a discussion in a meeting of the

Royal Statistical Society on “The Gibbs sampler and other Markov chain Monte

Carlo methods”.

Perhaps the most influential MCMC theory paper of the 1990s is Tierney

[149], who carefully laid out all of the assumptions needed to analyze the

Markov chains and then developed their properties, in particular, convergence

of ergodic averages and central limit theorems. Liu, Wong and Kong [87, 88]

carefully analyzed the covariance structure of Gibbs sampling and formally

established the validity of Rao–Blackwellization in Gibbs sampling. Rosenthal

[138] obtained one of the earliest results on exact rates of convergence, which

is another significant entry. Mengersen and Tweedie [110] set the tone for

the study of the speed of convergence of MCMC algorithms to the target

distribution. Subsequent works in this area are numerous, with the paper by

Roberts, Gelman and Gilks [49] being important for setting explicit targets

on the acceptance rate of the random walk Metropolis–Hastings algorithm,

as well as Roberts and Rosenthal [135] for getting an upper bound on the

number of iterations needed to approximate the target up to 1% by a slice

sampler. One pitfall arising from the widespread use of Gibbs sampling was

the tendency to specify models only through their conditional distributions,

11



almost always without referring to the positivity conditions. Unfortunately,

it is possible to specify a perfectly legitimate-looking set of conditionals that

do not correspond to any joint distribution, and the resulting Gibbs chain

cannot converge. Hobert and Casella [80] were able to document the conditions

needed for a convergent Gibbs chain, and alerted the Gibbs community to this

problem, which only arises when improper priors are used.

Much other work followed, and continues to grow. Followed by Neal’s

[118] introduction of tempering, Geyer and Thompson [65] describe how to

put a “ladder” of chains together to have both “hot” and “cold” exploration;

Athreya, Doss and Sethuraman [7] gave more easily verifiable conditions for

convergence; Meng and van Dyk [109] and Liu and Wu [104] developed the

theory of parameter expansion in the Data Augmentation algorithm, leading

to construction of chains with faster convergence, and to the work of Hobert

and Marchev [81], who give precise constructions and theorems to show how

parameter expansion can uniformly improve over the original chain. The reason

of the explosion of MCMC methods lies in the fact that an numerous number

of problems that were deemed to be computationally intractable could now be

solved.

During the early 1990s, researchers found that Gibbs sampling or

Metropolis–Hastings algorithms would be able to give solutions to almost

any problem that they looked at, and there was a veritable flood of papers

applying MCMC to previously intractable models, and getting good answers.

For example, Gibbs sampling was quickly realized as an easy route to getting
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estimates in the linear mixed models [153, 154], and even generalized linear

mixed models [156]. Building on the experience gained with the EM algo-

rithm, similar arguments made it possible to analyze probit models using a

latent variable approach in a linear mixed model [1], and in mixture models

with Gibbs sampling [37]. It progressively dawned on the community that

latent variables could be artificially introduced to run the Gibbs sampler in

about every situation; see [35] and [119]. An incomplete list of some other

applications include changepoint analysis [18, 143], genomics [31, 98, 142],

capture–recapture [41, 61], variable selection in regression [60], spatial statistics

[129], and longitudinal studies [96].

1.3 Recent MCMC Practice

Problems are now being solved in perhaps deeper and more sophisti-

cated ways. Methodology continues to expand the set of problems for which

statisticians can provide meaningful solutions, and thus continues to further

the impact of Statistics.

The realization of the possibilities of iterating importance sampling

is about as old as Monte Carlo methods themselves, which can be found in

Hammersley and Morton [73], Rosenbluth and Rosenbluth [137]. Hammersley

and colleagues proposed such a method to simulate a self-avoiding random walk

(see [107]) on a grid, due to huge inefficiencies in regular importance sampling

and rejection techniques. This early implementation occurred in particle physics

and the term “particle” was coined as “particle filter” Carpenter, Clifford and
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Fernhead [23]. In signal processing, early occurrences of a particle filter can

be traced back to Handschin and Mayne [76]. The paper [69] introduced the

bootstrap filter which involves past simulations and possible Markov chain

Monte Carlo steps [67]. As described by Doucet, de Freitas and Gordon [40],

particle filters are simulation methods adapted to sequential settings where

data are collected progressively in time. The methods produce Monte Carlo

approximations to the posterior distributions by propagating simulated samples

whose weights are actualized against the incoming observations. Modern

connections with Markov chain Monte Carlo in the construction of the proposal

kernel are to be found, for instance, in [39, 115]. At the same time, sequential

imputation was developed in Kong, Liu and Wong [93], while Liu and Chen

[103] first formally pointed out the importance of resampling in sequential

Monte Carlo, a term coined by them. The recent literature on the topic more

closely bridges the gap between sequential Monte Carlo and MCMC methods

by making adaptive MCMC a possibility (see, e.g., [4, 136]).

Perfect sampling was introduced by Propp and Wilson [127], of which

the ability is to use MCMC methods to produce an exact simulation from

the target. The discovery of perfect sampling led to an outburst of papers,

including the book by Møller and Waagepetersen [86], and many reviews and

introductory materials, such as [24, 38, 47, 48]. However, the construction of

perfect samplers is most often close to impossible or impractical.

In the area of point processes and stochastic geometry, Kendall and

Møller [91] developed an alternative to the Coupling From The Past (CFPT)
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algorithm of Propp and Wilson [127], called horizontal CFTP for the point

processes, based on continuous time birth-and-death processes. See also [46] for

another horizontal CFTP algorithm. Berthelsen and Møller [10] exhibited a use

of these algorithms for nonparametric Bayesian inference on point processes.

1.3.1 Reversible Jump and Variable Dimension

From many viewpoints, the emergence of reversible jump algorithm in

[70] can be seen as the start of the second MCMC revolution: the formalization

of a Markov chain that moves across models and parameter spaces allowed

for the Bayesian processing of a wide variety of new models and contributed

to the success of Bayesian model choice and subsequently to its adoption

in other fields. There exist earlier alternative Monte Carlo solutions like

Gelfand and Dey [50] and Carlin and Chib [22], the later being very close

to reversible jump MCMC (as shown in [19]), but the definition of a proper

balance condition on cross model Markov kernels in [70] gives a generic setup

for exploring variable dimension spaces, even when the number of models under

comparison is infinite. This new idea leads to a large majority of the talks

aimed at direct implementations of RJMCMC to various inference problems

at the First European Conference on Highly Structured Stochastic Systems,

which took place in the next year. The application of RJMCMC to mixture

order estimation in the discussion paper of Richardson and Green [130] ensured

further dissemination of the technique. Continuing to develop RJMCMC,

Stephens [144] proposed a continuous time version of RJMCMC, based on
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earlier ideas of Geyer and Møller [64], but with similar properties [21], while

Brooks, Giudici and Roberts [19] made proposals for increasing the efficiency

of the moves. In retrospect, while reversible jump is somehow unavoidable

in the processing of very large numbers of models under comparison, as, for

instance, in variable selection [108], the implementation of a complex algorithm

like RJMCMC for the comparison of a few models is somewhat of an overkill

since there may exist alternative solutions based on model specific MCMC

chains, for example, [6].

Godsill [68] defined a composite model space for standard model selection

problems in which no parameters are considered as “shared” between any two

models. It is later modified to introduce more flexibility in shared parameters

problems such as nested models and model selection. The reversible jump

sampler for the composite model was derived by considering the proposal

which forms a joint distribution over all elements of the model index j and

model parameters θ. It is split into three component parts: the model index

component q1(j′ | j), which proposes a move to a new model index, j′; a

proposal for the parameters used by model j′, q2(θ′j′ | θj); and a proposal for

the remaining unused parameters which is chosen to equal to the pseudo-prior

p(θ′−j′ | θ′j′ , j′). The applications include mixtures with an unknown number of

components [130], variable selection, and so on.
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1.3.2 Slice Sampling

Slice sampling [119] is an alternative to Gibbs sampling that avoids the

need to sample from nonstandard distributions. The main idea of slice sampling

is formalized by introducing an auxiliary real variable w, and defining a joint

distribution over x and w that is uniform over the region U = {(x,w) : 0 <

w < f(x)}. For single-variable slice sampling, the variation of slice sampling

proposed by Neal operates analogously to Gibbs sampling in the sense that

to obtain the next point x1, w is generated from the conditional distribution

[w | x0] given the current point x0 and then x1 is drawn from [x | w]. Both

[w | x0] and [x | w] are uniform distributions. Since the closed form of the

support of [x | w] is not available, sampling directly from [x | w] is not possible.

A clever development is Neal’s sophisticated (but relatively expensive) sampling

procedure to generate x1 from the “slice” S = {x : w < f(x)}.

The ith realization of x is constructed according to Algorithm 1 in

Appendix C. A sample or “height” under the distribution, wi, is drawn uniformly

from the interval (0, f(wi−1)). This height, wi , defines a horizontal slice across

the target density, S = {x : f(x) > wi}, which is then sampled from uniformly

to generate xi . In the univariate case, the set S = {x : f(x) > wi} is simply

an interval or, perhaps more generally, the union of several intervals (such as

in the presence of multiple modes). In contrast, in the multivariate case, the

set {x : f(x) > wi} may have a much more complicated form.

Quite often, one lacks an analytic solution for the bounds of the slice S

and so, in practice, an approximation to the slice A is constructed. For the
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single dimension case [119] suggested two methods, stepping out and doubling,

to approximate the set S, though we only consider the step-out approach here.

This is done by randomly orienting an interval around the starting location

xi−1. The lower bound Li and upper bound U i are examined, and if either

f(Li) or f(U i) is above the sampled height wi , then the interval is extended.

Once the interval is constructed, a new location xi is selected from (Li, U i)

provided xi ∈ {x : f(x) > wi}. The sample wi is then discarded, a new sample

wi+1 is drawn, and the process repeats. The resulting Markov Chain has

the desired stationary distribution. While the preceding description applies

to both the step-out and doubling approaches, we now explain the step-out

method in detail. In the step-out method, the lower bound is examined first

and extended in steps equal to the initial interval width (d) if f(Li) is above

the sampled height wi. The upper bound is then examined and extended if

needed. Once the interval is constructed, a proposed parameter value, x̃, is

drawn uniformly from (Li, U i). If it falls outside the target slice, (f(x̃) < wi),

a shrinkage procedure is recommended to maximize sampling efficiency. If the

failed proposal x̃ is less than xi−1, then set Li = x̃. Likewise, if x̃ is greater

than xi−1, set U i = x̃. In this way, the interval collapses on failed proposals

and given that the current location must be within the slice, the probability of

drawing a point from the slice then increases after each rejected proposal.

In contrast to the univariate slice sampler, which samples from the

distribution of a random variable x ∈ R1, the multivariate slice sampler, which

samples from the distribution of x ∈ Rn , constructs an approximate slice S as
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a n-dimensional hypercube which bounds the target slice. As before, we update

the variable x by drawing a sample wi uniformly from the interval (0, f(xi−1))

where the current location, xi−1, is now a n-dimensional vector. Next, an

interval is randomly oriented around the starting location xi−1
j for each vector

component. Then the value of the target density is examined at the vertices

of the hypercube, which we will refer to as the lower bound vector Li and the

upper bound vector U i . If the value of the density at any vertex falls below

the sampled height wi, then the hypercube is expanded. Once the hypercube

is constructed, a new location xi is sampled uniformly from S subject to the

constraint that xi ∈ {x : f(x) > wi}. The sample wi is then discarded, a new

sample wi+1 is drawn, and the process repeats.

Multivariate slice sampling is challenging due in large part to the number

of likelihood evaluations required at each iteration. First, the number of vertices,

2n, for the n-dimensional hypercube used to approximate the target slice S grows

exponentially as the dimension of the multivariate slice sampler increases. From

a computational standpoint, the work doubles for each additional dimension

considered. Second, as the dimensionality of the target distribution increases,

the n-dimensional hypercube is more likely to waste space, and consequently,

the performance of rejection sampling for the proposal step will deteriorate.

One final issue relates to the tuning and selection of initial interval widths for

the hypercube approximation. In shrinking the hypercube in the obvious way

(when proposals fall outside the slice), shrinking all dimensions simultaneously

performs poorly when the density does not vary rapidly in some dimensions.
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Tuning and selection of interval widths may also be challenging. To address

this issue, we performed a grid search to find optimal interval widths which

maximized Effective Sample Size per second.

When implementing the univariate and multivariate slice samplers, the

step-out method is chosen for constructing the approximate slice. Mira and

Roberts [113] note that the step-out method is unable to move between two

disjoint modes that are separated by a region of zero probability where these

regions are larger than the step size. This implies that the sampler may not be

irreducible for some multi-modal distributions when the initial step size is too

small.

To address all those issues, different sampling methods were proposed

base upon the slice sampling. Parallel multivariate slice sampling [147] is

constructed that naturally lends itself to a parallel implementation, which has

good mixing properties and is efficient in terms of computing time. The elliptical

slice sampling [116] is able to perform inference in models with multivariate

Gaussian priors, which works well for a variety of Gaussian process based

models. Kalli, Griffin, and Walker [89] proposed a slice-efficient sampler for

Dirichlet process mixture models described by Walker [151]. Automated factor

slice sampler [148] generalized the the univariate slice sampler by treating treat

the selection of a coordinate basis (factors) as an additional tuning parameter

automatically selecting tuning parameters to construct an efficient factor slice

sampler.
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1.3.3 Adaptive Monte Carlo on Multivariate Binary Spaces

In this section, we review some of the Markov transition kernels typically

used for MCMC on binary spaces. Many popular Metropolis-Hastings kernels

on binary spaces perform a random walk by proposing moves to neighboring

states. The random scan Gibbs sampler draws an index i and samples the ith

component from the full conditional distribution, while the Metropolized Gibbs

sampler uses deterministic flips, which is a Metropolis-Hasting type proposal.

On average, a Markov chain with deterministic flips moves faster than the

classical random scan Gibbs chain since the Metropolis-Hastings step performs

uniform block updating to alter a block of entries.

Swendsen and Wang [145] propose a sampling procedure that introduces

a vector of auxiliary variables u such that π(u | x) is a distribution of mutually

independent uniforms and (x | u) a distribution with components which are

either fixed by constraints or conditionally independent. Higdon [79] suggests

to parameterize and control the size of the conditionally independent blocks to

further improve the mixing properties. Nott and Green [122] attempt to adapt

the rationale behind the algorithm to sampling from a broader class of binary

distributions. However, the efficiency gain of the Swendsen-Wang algorithm

does not easily carry over to general binary sampling due to the fact that it is

based on the exponential multi-linear structure of the distribution of interest.

The Metropolis-Hastings algorithm allows to incorporate any proposal,

but obviously not all choices yield good MCMC estimators. In most practical

cases, the problem that the parameter θ needs to be calibrated against the
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target distribution π still exists, even though a suitable family of auxiliary

kernels is identified. The obvious idea is to adapt the algorithm to improve the

choice of θ. There has been a major interest in adaptive Markov chain Monte

Carlo (AMCMC) and convergence results have been established which hold on

finite spaces under very mild conditions [136]. For further details on AMCMC

we refer to [3] and citations therein. We will review some AMCMC algorithms

for sampling on binary spaces in the following.

An adaptive extension of the Gibbs sampler has been proposed by Nott

and Kohn [121]. A direct proof of convergence for their AMCMC algorithms

is also provided, which needs less preparation than the technical proofs for

the general state spaces [136]. The full conditional distribution is the optimal

choice in terms of acceptance rates, but oftentimes the chain does not move

because the current state has been sampled again. Lamnisos et al. [95]

propose to calibrate the distribution of the number of bits to be fipped on

average, where they take ω = Binomial(p;n) to be a binomial distribution

with success probability p. Their work is motivated by the adaptive random

walk algorithm developed by Atchadé and Rosenthal [2] for continuous state

spaces where the variance of the multivariate normal random walk proposal is

adjusted to meet the (asymptotically) optimal acceptance probability. However,

in the context of binary spaces the major problem faced is multi-modality.

Atchadé and Rosenthal [2] proposed a method for high-dimensional unimodal

sampling problems, but the rationale behind the design of the algorithm does

not necessarily carry over to multi-modal discrete problems.
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Adaptive MCMC algorithms provide an astonishing speed-up over their

non-adaptive versions for unimodal distributions and for high-dimensional

sampling problems on continuous spaces. Still, it is notoriously difficult to

adapt an MCMC sampler to a multi-modal sampling problem. More advanced

MCMC algorithms which use parallel tempering ideas combined with more

elaborate local moves [17] or self-avoiding dynamics [75] are proposed to

overcome the multi-modality problem. However, it seems difficult for these

algorithms to tune automatically.

As an alternative to MCMC sampling, Clyde et al. [33] develop the

Bayesian adaptive sampling procedure which draws binary vectors without

replacement. The idea is to update the conditional probabilities to ensure

that each binary vector is only sampled once. The algorithm starts sampling

with some initial mean which is then updated using current estimate of the

mean of interest. The updating step of the conditional probabilities scannot be

performed after every single sampling step. From a computational perspective

this seems reasonable. Schäfer and Chopin [30] introduced a fully adaptive

resample-move algorithm for sampling from binary distribution using sequential

Monte Carlo [115] methodology. This general class of algorithms alternates

importance sampling steps, resampling steps and Markov chain transitions, to

recursively approximate a sequence of distributions, using a set of weighted

“particles” which represent the current distribution.
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1.3.4 Latent Slice Sampling

The latent slice sampling algorithm we developed, as described from

Chapter 2 to Chapter 4 is a generic sampling algorithm which has the ability to

address the issues raised in reversible jump sampler, slice sampling, Metropolis-

Hastings, and adaptive Monte Carlo sampling algorithm. It is able to sample

efficiently from very high dimensional distributions and implicit distributions.

The key is the latent model combined with the shrinkage procedure based on

uniform distributions and an automatic reversible condition, as detailed in

Chapter 3.

We modified the algorithm to be applied in many cases, including

applications such as MDP model, mixture finite mixtures, model selection, and

multiple change-point problem in the field of discrete variables, as shown in

Chapter 2. The proposed transition kernel for discrete variables is exempt

from the necessity of proposal distribution and the normalizing constant of

the target distribution. The parameter, which determines the number of steps

transitioned from current state to a new state, is the only parameter that is

required to be tune to account for both the computational efficiency and the

auto-correlations between successive samples.

Chapter 3 extended the latent slice sampler of Chapter 2 to be applied

for the continuous variables. The stochastic search introduced together with

the shrinkage procedure of the sampling process leads the implementation to

a vast range of applications and to be a universal replacement of Metropolis

algorithm. The illustrations of Chapter 3 cover state space model, spike and
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slab regression analysis, and uniform sampling of high dimensional data with

respect to continuous variables. Chapter 4 exploited a slice sampling algorithm

in continuous space in order to sample a joint distribution on binary values.

Such distributions arise in classic contexts and are known to be problematic to

sample when the dimension is large and/or the distribution is multi-modal, like

Ising model, variable selection, and Bayesian CART model. The newly modified

sampling algorithm works by being able to propose a move to any location

from any current location with almost uniform probability. With numerous

number of illustrations, we show that the latent slice sampling method can be

a substitute of commonly used MCMC sampling methods in many applications

with highly improved computational efficiency and no accept/reject component.
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Chapter 2

Latent Slice Sampler of Discrete Variables

Several Markov chain methods are available for sampling from a posterior

distribution. Two important examples are the Gibbs sampler and the Metropolis

algorithm [78, 112]. In addition, many strategies are available for constructing

hybrid algorithms. The Metropolis algorithm has been placed among the

algorithms that have greatest influence on the development and practice of

science and engineering. It is extremely versatile and gives rise to Gibbs

sampling as a special case; as pointed out by Gelman [55].

Gibbs sampling is applicable when the joint distribution is not known

explicitly or is difficult to sample from directly, but the conditional distribution

of each variable is known and is easy (or at least, easier) to sample from. The

Gibbs sampling algorithm generates an instance from the distribution of each

variable in turn, conditional on the current values of the other variables. It

can be shown that the sequence of samples constitutes a Markov chain, and

the stationary distribution of that Markov chain is just the sought-after joint

distribution [57]. Gibbs sampling is particularly well-adapted to sampling

the posterior distribution of a Bayesian network, since Bayesian networks are

typically specified as a collection of conditional distributions.
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However, there are several limitations to it. First, even if we have the

full posterior joint density function, it may not be possible or practical to

derive the conditional distributions for each of the random variables in the

model. Second, even if we have the posterior conditionals for each variable,

it might be that they are not of a known form, and therefore there is not a

straightforward way to draw samples from them. Finally, there are cases in

which Gibbs sampling will be very inefficient. That is, the “mixing” of the

Gibbs sampling chain might be very slow, meaning that the algorithm may

spend a long time exploring a local region with high density, and thus take

very long to explore all regions with significant probability mass [106]. For

example, when the cross-correlation of the posterior conditional distributions

between variables is high, successive samples become very highly correlated

and sample values change very slowly from one iteration to the next, resulting

in chains that basically do not mix.

The Metropolis-Hastings algorithm simulates samples from a probability

distribution by making use of the full joint density function and (independent)

proposal distributions for each of the variables of interest. It involves sampling

a candidate value given the current value according to the proposal. The

Markov chain then moves toward candidate with certain acceptance probability,

otherwise it remains at the current state. The Metropolis-Hastings algorithm

is very simple, but it requires careful design of the proposal distribution. Many

MCMC algorithms arise by considering specific choices of this distribution.

As the extension to the scope of Metropolis-Hastings methods, the
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reversible Markov chain samplers [70] that jump between parameter subspaces

of differing dimensionality has then been proposed, which can be applied to

Bayesian model determination problems. Previous work on Markov chain Monte

Carlo computation with application to aspects of Bayesian model determination

includes [126], based on the jump-diffusion samplers [71, 22]. However, there

is a conflict between minimizing the distortion caused by using a positive

time increment, and improving Monte Carlo efficiency. The reversible jump

MCMC requires relative normalizing constants between different subspaces and

proceeds with a Metropolis step when sampling varying dimensional problems.

The Metropolis-Hastings algorithm has become the most popular MCMC

method. However, the success or failure of the algorithm often hinges on the

choice of the proposal distribution. Different choices of the proposal lead to

very different results. If the proposal is too narrow, only one mode of the target

distribution might be visited. On the other hand, if it is too wide, the rejection

rate can be very high, resulting in high correlations. If all the modes are visited

while the acceptance probability is high, the chain is said to “mix” well.

The aim of this chapter is to introduce a new MCMC sampling method

for discrete variables, such as latent variables in mixture models, and model

indicator in the context of model determination. Section 2.1 introduces an

latent slice sampler for discrete variables and its numerical properties. Section

2.2 describes an application on the mixture of Dirichlet process and comparisons

with the “independent” slice-efficient sampler [89]). In Section 2.3, the reversible

jump MCMC method on Bayesian model determination is discussed and
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compared with both the Metropolis step and the latent slice sampler. Section

2.4 is the experimental study on the applications in Section 2.2 and Section 2.3,

as well as a multiple change-point problem discussed by Green [70]. Section

2.5 contains conclusions and a discussion.

2.1 Latent Slice Sampler for Discrete Variables

A transition density is proposed such that it satisfies the detailed balance

equation and allows direct sampling with the conditional distributions. The

transition kernel requires no auxiliary variables and proposal distribution (i.e.,

the candidate-generating density) for the sampling procedure of the infinite

dimensional and varying-dimension problems. The proposed transition kernel

is given by

pk(x
′ | x) = π(x′)

k

min(x′+k−1,x+k−1)∑
j=max(x′,x)

1∑j
z=max(1,j−k+1) π(z)

(2.1)

where x ∈ {1, 2, . . . } and the normalizing constant of π(x) is unknown, k > 1

and |x′ − x| ≤ k − 1. It is easy to show that pk(x′ | x) satisfies reversibility

condition. See Appendix A for the complete proof of the validity of the

transition kernel as a probability mass function.

The choice of k determines the convergence rate and the correlations of

the successive samples. Fig. 2.1 shows the plots of the autocorrelation functions

(ACF), which illustrates how correlated points are with each other, based on

how many time steps they are separated by. The samples are simulated from a

Poisson distribution with mean equal to 3, i.e., π(x) = 3xe−3

x!
. Typically, ACF
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will fall towards 0 as points become more separated. As k increases, the ACF

approaches towards 0 with less time periods, i.e., the lags. The number of

lags is decreasing from 4 to 2 when k > 12. This is very important when it

comes to good mixing of the sampling chain. However, the computational

workload grows substantially as k increases, see Fig.2.2. The elapsed time

which represents the total duration of the task is increasing exponentially as k

increases. Therefore, it is necessary to strike a balance between good mixing

and efficient computation. Without loss of generality, we choose k = 6 for

comparison purpose and fast convergence.

Figure 2.1: Plots of ACF with k = 2, 6, 10, 14, 18, 22.
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Figure 2.2: Plot of elapsed time in seconds with k varying between 2 and 22.

2.2 Mixture of Dirichlet Process

The well-known and widely used mixture of Dirichlet process (MDP)

model [105] is a good example where the indicator variable is discrete and

trivial to sample. The MDP model with Gaussian kernel is given by

f(x) =

∫
N(x;µ, σ2)dP (θ)

where θ = (µ, σ2) with µ to represent the mean and σ2 the variance of the

normal component. Let DP(α, P0) denote a Dirichlet process prior [45] with

scale parameter α > 0 and a prior probability P0 on the component parameters.

The model has been one of the most popular in Bayesian nonparametrics since

it is possible to integrate P from the posterior defined by this model. Many

so-called “conditional” methods have left the infinite dimensional distribution

in the model and found ways of sampling a sufficient but finite number of
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variables at each iteration of a Markov chain with correct stationary distribution.

Ishwaran and James [83] proposed an approximate method and Walker [151]

used slice sampling ideas. The following will use the latent slice sampler for

MDP model, which avoids dealing with the infinite dimensional problem, and

compare with the “independent” slice-efficient sampler.

The MDP model can be written as

f(xi | w, θ) =
∞∑
j=1

wjf(xi | θj) =
∞∑
j=1

wjN(xi | θj) (2.2)

One can then introduce latent variables di’s, which identify the compo-

nent of the mixture from which xi is to be taken, the model then becomes

f(xi, di | w, θ) = wdiN(xi | θdi) (2.3)

Let x = (x1, x2, . . . , xn) and d = (d1, d2, . . . , dn), the complete data

likelihood based on a sample of size n is easily seen to be

l(x, d | w, θ) =
n∏

i=1

wdiN(xi | θdi) (2.4)

For Bayesian nonparametric inference, an elegant constructive charac-

terization of the Dirichlet process is given by the stick-breaking representation

[140], which is used as a prior process for generating the mixing proportions

of the infinite mixture distribution in (2.2). The stick-breaking representa-

tion metaphorically views {w1, w2, w3, . . . } as pieces of a unit-length stick

that is sequentially broken in an infinite process, with stick-breaking propor-

tions V = {v1, v2, v3, . . . }, according to independent realizations of a Beta
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distribution. The stick-breaking process is summarized as follows

vj ∼ Beta(1, α)

wj = vj

j−1∏
l=1

(1− vl), w1 = v1

P =
∞∑
j=1

wjδθj ∼ DP(α, P0)

where δθ is the Dirac delta centered at θ, such that draws are composed of a

sum of infinitely many point masses.

The prior for the parameters µj’s will be independent N(0, 1/s) and

the prior for λj’s will be independent Gamma(τ, τ). Generally, a set of full

conditional density functions are required to implement a Gibbs sampler.

However, the latent slice sampling algorithm is presented here to sample

di’s, compared with the “independent” slice-efficient sampler. The inferential

procedure and algorithms are presented in Section 2.2.1 and Section 2.2.2 for

both the latent slice sampler and slice-efficient sampler.

2.2.1 Latent Slice Samplers for the MDP

In fact, we only need to sample a finite set of variables θ and v instead

of the entire set at each stage in order to progress to the next iteration. Only

the parameters of the “active” clusters for which {j : j ≤ J = max(d) + k} are

sampled at each iteration. The Gibbs steps and latent slice sampling step for

indicator variables are listed below:
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i. Starting with θj = (µj, λj), which are easily derived as

p(µj | . . . ) = N

(
λj
∑

i:di=j xi

λjnj + s
,

1

λjnj + s

)
p(λj | . . . ) = Gamma

(
τ +

nj

2
, τ +

∑
i:di=j(xi − µj)

2

2

)

where λj = 1/σ2
j , and nj =

∑n
i=1 1(di = j) denotes the number of

observations within a given cluster s.t. n =
∑J

j=1 nj. If there are no

di equal to j, then p(µj | . . . ) = P0(µj) = N(0, 1/s) and p(λj | . . . ) =

P0(λj) = Gamma(τ, τ).

ii. About the sampling of the vj’s, we have

p(vj | . . . ) = Beta

(
1 + nj, α+

∑
i:di=j

1(di > j)

)

iii. Lastly, we will use the pre-defined transition density instead of posterior

to sample the indicator variables

pk(di = j | dc, . . . ) =
π(j)

k

min(j+k−1,dc+k−1)∑
a=max(j,dc)

1∑a
b=max(1,a−k+1) π(b)

with π(j) = wjN(xi | µj, σ
2
j ). Here, dc is the currect value of di.

The infinite dimensional problem automatically converts to a finite one

with the latent slice sampling. Also, the conditional distribution of p(di = j |

. . . ) = π(j) is directly plugged into the transition kernel without introducing

auxiliary variables. For the purpose of comparison, Section 2.2.2 describes the

basic idea of slice sampling for the MDP.
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2.2.2 Slice-efficient Sampler for the MDP

A slice sampler [151] is employed to make finite the number of objects

to be sampled within each iteration of a Gibbs sampler, in order to handle

countably infinite numbers of values in a Dirichlet process mixture model. An

auxiliary variable ui > 0 is introduced, for each observation i, which preserves

the marginal distribution of the data xi and facilitates writing the conditional

density of xi | ui as a finite mixture model. ui has the effect of truncating

the number of components required to be sampled adaptively. Denoting by

ξ = {ξ1, ξ2, ξ3, . . . } a decreasing sequence of infinite quantities which sum to 1,

the joint distribution of (xi, ui) is given by

f(xi, ui | θ, ξ) =
∞∑
j=1

wjUnif(ui | 0, ξj)f(xi | θj) (2.5)

with f(xi | θ) =
∑∞

j=1wjf(xi | θj) and f(ui | ξ) =
∑∞

j=1wj1(ui < ξj)/ξj.

Clearly, integrating out ui in (2.5) with respect to the Lebesgue measure

returns the desired density f(xi | θ). With probability ξj, xi and ui are

independent, and are, respectively normal and uniform distributed. Since only

a finite number of ξj are greater than ui, by denoting Aξ(ui) = {j : ui < ξj},

the conditional density of xi | ui can be written as a finite mixture model

f(xi | ui, θ) =
f(xi, ui | θ, ξ)
f(ui | ξ)

=
∑

j∈Aξ(ui)

wj

ξjf(ui | ξ)
f(xi | θj) (2.6)

Typical implementations of the slice sampler arise when ξj = wj [151] but

“independent” slice-efficient sampling [89] allows for a deterministic decreasing

sequence. The mixing depends on the rate at which the ratio rj = E(wj)/ξj
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increases with j. Faster rates of increase are associated with better mixing but

longer running times since the average size of Aξ(ui) increases.

The Bayesian inference here proceeds via a sampler with geometric decay

given by ξj = (1− ρ)ρj−1, where ρ ∈ (0, 1] is a fixed value determining chain

mixing and running time. In general, the higher the value, the better the mixing

but with longer running times, as the cardinality of Aξ(ui) increases. Setting

ρ = 0.75 appears to strike an appropriate balance in the MDP applications

here. With the stick-breaking prior and independent slice-efficient sampler,

mixture components and their corresponding parameters are recorded at each

iteration such that the mixing proportions from a decreasing sequence, as the

stick-breaking prior is not invariant to the order of cluster lables [77]).

After introducing the indicator latent variable di and denoting u =

(u1, u2, . . . , un), the complete data likelihood is

l(x, u, d | w, µ, σ2) =
n∏

i=1

wdi

ξdi
1(ui < ξdi)N(xi | µdi , σ

2
di
), (2.7)

If ξ and v are conditionally independent, the slice Gibbs sampler is then

i. θj = (µj, λj) and vj have identical posteriors form as in latent slice

sampling algorithm.

ii. The sampling of the indicator variables is given by

P (di = k | . . . ) ∝ 1(k : ξk > ui)wk/ξkN(xi;µk, σ
2
k)

iii. ui’s are easy to find and are uniformly distributed

f(ui | . . . ) = Uniform(ui | 0, ξdi)
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This naturally defines a blocking scheme for u and v which are con-

ditionally independent. We simply need to sample up to the integer M for

which we have found all the appropriate k in order to do the sampling of d’s

exactly. In fact it is easy to find the set of (k) required since it will be of the

kind {1, . . . ,M} where M = maxi{Mi} and Mi is the largest integer of l for

which ξl > ui. This can often be found analytically for suitable choice of ξl:

ξl = (1− ρ)ρl−1 > ui =⇒ l ≤ 1 + ⌊ log ui/(1− ρ)
log ρ

⌋ =Mi

If we take ξj = wj, as in [123], it is sufficient to find an Mi such that∑Mi

k=1wk > 1− ui, then it is not possible for any wk, for k > Mi, to be greater

than ui. This search is more cumbersome since it can be only checked by

simulation. The slice sampling approach uses a slice variable to make the

choice of di finite at each iteration of a Gibbs, whereas the latent slice sampler

not only automatically involves finite set variables but also requires no auxiliary

variables.

Besides the application on the infinite dimensional problems like mixture

of Dirichlet process, the latent slice sampler can also be flexibly applied in

model determination problems with the reversible jump MCMC sampler. The

traditional reversible Markov chain sampler is constructed with a Metropolis

step that can jump between parameter subspaces of differing dimensionality,

while the new framework of reversible jump MCMC is constructed with the

latent slice sampler.
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2.3 Reversible Jump MCMC

Statistical problems where “the number of things you don’t know is one

of the things you don’t know” are ubiquitous in statistical modelling. They arise

both in traditional modelling situations such as variable selection in regression,

and in more novel methodologies such as object recognition, signal processing,

and Bayesian nonparametrics. All such “trans-dimensional” problems can be

formulated generically, sometimes with a little ingenuity, as a matter of joint

inference about a model indicator j and a parameter vector θj , where the model

indicator determines the dimension nj of the parameter, but this dimension

varies from model to model.

Inference about these two kinds of unknown is based on different logical

principles, but the Bayes paradigm offers the opportunity of a single logical

framework – it is the joint posterior π(j, θj | x) of model indicator and parameter

given data x that is the basis for inference. Reversible jump Markov chain

Monte Carlo [70] is a method for computing this posterior distribution by

simulating from a Markov chain whose state is a vector with unfixed dimension.

The joint inference problem can be set naturally in the form of a simple

Bayesian hierarchical model. We suppose that a prior p(j) is specified over

models j in a countable set J, and for each j we are given a prior distribution

p(θj | j), along with a likelihood L(x | j, θj) for the observed data x. We have

a countable collection of candidate models M = {M1,M2, . . . } indexed by a

parameter j ∈ J.
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In some settings, p(j) and p(θj | j) are not separately available, even

up to multiplicative constants; this applies for example in many point process

models. However it will be clear that what follows requires specification only

of the product p(j, θj) = p(j)× p(θj | j) of these factors, up to a multiplicative

constant. In many models there are discrete unknowns as well as continuously

distributed ones. Such unknowns, whether fixed or variable in number, cause

no additional difficulties; only discrete-state Markov chain notions are needed

to handle them, and formally speaking, the variable j can be augmented to

include these variables; such problems then fit into the above framework.

The joint posterior distribution of (j, θj) given observed data x is ob-

tained as usual via complete likelihood, L(x | j, θj), and the joint prior,

p(j, θj) = p(θj | j)p(j), constructed from the prior distribution of θj under

model Mj, and the prior for the model indicator j (i.e. the prior for model

Mj). Hence, the joint posterior is

p(j, θj | x) =
L(x | j, θj)p(θj | j)p(j)∑

j′∈J
∫
R
nj′ L(x | j′, θj′)p(θj′ | j′)p(j′)dθj′

(2.8)

can always be factorized as

π(j, θj | x) = π(j | x)π(θj | j, x)

that is as the product of posterior model probabilities and model-specific

parameter posteriors. This identity is very often the basis for reporting the

inference, and in some of the methods mentioned below is also the basis for

computation.
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The reversible jump algorithm uses the joint posterior distribution in

Equation (2.8) as the target of a Markov chain Monte Carlo sampler over the

state space Θ =
⋃

j∈J({j} × Rnj), where the states of the Markov chain are of

the form (j, θj), the dimension of which can vary over the state space.

The basic formulation embraces not only genuine model-choice situ-

ations, where the variable j indexes the collection of discrete models under

consideration, but also settings where there is really a single model, but one

with a variable dimension parameter, for example a functional representation

such as a series whose number of terms is not fixed. In the latter case, j

is unlikely to be of direct inferential interest, arising sometimes in Bayesian

nonparametrics.

2.3.1 From Metropolis-Hastings to Reversible Jump

The standard formulation of the Metropolis-Hastings algorithm [29]

relies on the construction of a time-reversible Markov chain via the detailed

balance condition. This condition means that moves from state θ to θ′ are

made with the same probability as moves from θ′ to θ with respect to the target

density. This is a simple way to ensure that the equilibrium distribution of the

chain is the desired target distribution. The extension of the Metropolis-Hasting

algorithm to the setting where the dimension of the parameter vector varies

is more challenging; however, the resulting algorithm is surprisingly simple to

follow.

For the construction of a Markov chain on a general state space Θ with
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invariant or stationary distribution π, the detailed balance condition can be

written as

∫
(θ,θ′)∈A×B

π(dθ)P (θ, dθ′) =

∫
(θ,θ′)∈A×B

π(dθ′)P (θ′, dθ) (2.9)

for all Borel sets A×B ⊂ Θ, where P is a general Markov transition kernel.

More simply, when writing with density functions,

π(θ) p(θ′ | θ) = π(θ′) p(θ | θ′).

As with the standard Metropolis-Hastings algorithm, Markov chain

transitions from a current state θ = (j, θj) ∈ A in model Mj are realized by

first proposing a new state θ′ = (j′, θj′) ∈ B in model Mj′ from a proposal

distribution q(θ, θ′). The detailed balance condition (2.9) is enforced through

the acceptance probability, where the move to the candidate state θ′ is accepted

with probability α(θ, θ′). If rejected, the chain remains at the current state θ

in model Mj. Under this mechanism, Equation (2.9) becomes

∫
(θ,θ′)∈A×B

π(θ | x)q(θ, θ′)α(θ, θ′)dθdθ′ =
∫
(θ,θ′)∈A×B

π(θ′ | x)q(θ′, θ)α(θ′, θ)dθdθ′

(2.10)

where the distribution π(θ | x) and π(θ′ | x) are posterior distributions with

respect to model Mj and Mj′ , respectively. One way to enforce Equation (2.10)

is by setting the acceptance probability as

α(θ, θ′) = min

{
1,
π(θ | x)q(θ, θ′)
π(θ′ | x)q(θ′, θ)

}
, (2.11)
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where α(θ, θ′) is similarly defined in [29]. It is straightforward to observe that

this formulation includes the standard Metropolis-Hastings algorithm as a

special case.

Accordingly, a reversible jump sampler with N iterations is commonly

constructed as:

i. Initialize j and θj at iteration t = 1.

ii. For iteration t ≥ 1 perform

– Within-model move: with a fixed model j, update the parameters

θj according to any MCMC updating scheme.

– Between-models move: simultaneously update model indicator j

and the parameters θj according to the general reversible pro-

posal/acceptance mechanism in Equation (2.11).

iii. Increment iteration t = t+ 1. If t < N , go to Step ii.

In practice, the construction of proposal moves between different models

is achieved via the concept of “dimension matching”, as shown by Green [70].

The final form of the acceptance probability combine with the joint posterior

expression of Equation (2.8) is

α[(j, θj), (j
′, θ′j′)] = min

{
1,
π(j′, θ′j′ | x)q(j′ → j)qdj′→j

(u′)

π(j, θj | x)q(j → j′)qdj→j′
(u)

∣∣∣∣∂gj→j′(θj, u)

∂(θj, u)

∣∣∣∣
}

(2.12)
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where u is a random vector of length dj→j′ = nj′ − nj generate from a known

density qj→j′(u). The current state θj and the random vector u are then

mapped to the new state θ′j′ = gj→j′(θj, u) through a one-to-one mapping

function gj→j′ : Rnj × Rdj → Rj′ .

2.3.2 The Composite Representation

A composite model space [68] is defined for standard model selection

problems in which no parameters are considered as “shared” between any two

models. It is later modified to introduce more flexibility in shared parameters

problems such as nested models and model selection. The composite model is

a straightforward modification of that used by Carlin and Chib [22]. The full

posterior distribution for the composite model space is

p(j, θ | x) = p(x | j, θj)p(θj | j)p(θ−j | θj, j)p(j)
p(x)

where θ−j denotes the parameters not used by the model j. All of the terms

in the above expression are defined explicitly by the chosen likelihood and

prior structures except for p(θ−j | θj, j), the “prior” for the parameters in the

composite model which are not used by model j. It is easily seen that any proper

distribution can be assigned arbitrarily to these parameters without affecting

the required marginals for the remaining parameters. In many cases it will be

convenient to assume that the unused parameters are a priori independent of

one another and also of θj. In this case, we have that p(θ−j | θj, j) = p(θ−j |
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j) =
∏

κ̸=j p(θκ | j) and the composite model posterior can be rewritten as

p(j, θ | x) =
p(x | j, θj)p(θj | j)

(∏
κ̸=j p(θκ | j)

)
p(j)

p(x)
(2.13)

This is the form of composite space used by Carlin and Chib [22]. The priors on

the unused parameters θ−j are referred as “pseudo-priors” or linking densities

in the Carlin and Chib model, appropriate choice of which is crucial to the

effective operation of their algorithm.

The key feature of the composite model space is that the dimension

remain fixed even when the model number j changes. This means that standard

MCMC procedures, under the usual convergence conditions, can be applied

to the problem of model uncertainty. For example, a straightforward Gibbs

sampler applied to the composite model leads to Carlin and Chib’s method,

while a more sophisticated Metropolis-Hastings approach leads to reversible

jump.

The sampling algorithm of Carlin and Chib [22] is easily obtained from

the composite model by applying a Gibbs sampler to the individual parameters

θj and to the model index j. The sampling steps, which may be performed a

random or deterministic scan, are as follows:

θκ ∼ p(θκ | θ−κ, j, x) ∝


p(x | j, θj)p(θj) κ = j

p(θκ | θ−κ, j) κ ̸= j

(2.14)

j ∼ p(j | θ, x) ∝ p(x | j, θj)p(θj | j)p(θ−j | θj, j)p(j)

44



The reversible jump sampler achieved model space moves by Metropolis-

Hastings proposals with an acceptance probability that is designed to preserve

detailed balance within each move type. Suppose that we propose a move to

model j′ with parameters θj′ from model j with parameters θj using a proposal

distribution q(j′, θj′ | j, θj). The acceptance probability in order to preserve

detailed balance is given by

α = min

{
1,
p(j′, θj′ | x)q(j, θj | j′, θj′)
p(j, θj | x)q(j′, θj′ | j, θj)

}
(2.15)

In implementation it will often be convenient to take advantage of any

nested structure in the models or interrelationships between the parameters of

different models in constructing effective proposal distributions, rather than

proposing the entire new parameter vector as in Equation (2.15). Generally,

relationships between parameters of different models can be used to good

effect by drawing “dimension matching” variables u and u′ from proposal

distributions q2(u) and q2(u
′), and then forming θ′j and θj as deterministic

functions of the form θj = g(θj′ , u) and θj′ = g(θj, u
′). In this way it is

straightforward to incorporate useful information from the current parameter

vector θj into the proposal for the new parameter vector θj′ . Provided that

dim(θj′ , u) = dim(θj, u
′) (dimension matching), the acceptance probability is

given by Green [70]:

α = min

{
1,
p(j′, θj′ | x)q1(j | j′)q2(u)
p(j, θj | x)q1(j′ | j)q2(u′)

∣∣∣∣∂(θj′ , u)∂(θj, u′)

∣∣∣∣} (2.16)

which now includes a Jacobian term to account for the change of measure

between (θj, u
′) and (θj′ , u). Note the basic form of reversible jump given above
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in Equation (2.15) is obtained from this formula when we set θj = g(θj′ , u) = u

and θj′ = g(θj, u
′) = u′, so that the Jacobian term is unity.

We now show that Green’s reversible jump sampler can be obtained

by applying a special form of Metropolis–Hastings proposal to the composite

model space. Consider a proposal from the current state of the composite

model (j, θ) to a new state (j′, θj′) that takes the form

q(j′, θ′ | j, θ) = q1(j
′ | j)q2(θ′j′ | θj)p(θ′−j′ | θ′j′ , j′)

This proposal, which forms a joint distribution over all elements of j and θ, is

split into three component parts: the model index component q1(j′ | j), which

proposes a move to a new model index, j′; a proposal for the parameters used

by model j′, q2(θ′j′ | θj); and a proposal for the remaining unused parameters

which is chosen to equal to the pseudo-prior p(θ′−j′ | θ′j′ , j′). We thus have a

joint proposal across the whole state space of parameters and model index

that satisfies the Markov requirement of the Metropolis-Hastings method as it

depends only upon the current state (j, θ) to make the joint proposal (j′, θ′).

There are now no concerns about a parameter space with variable dimension

since the composite model retains constant dimensionality whatever the value

of j and any issues of convergence can be addressed by reference to standard

Metropolis–Hastings results in the composite space.

The acceptance probability for this special form of proposal is given,
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using the standard Metropolis-Hastings procedure, by

α = min

{
1,
q(j, θ | j′, θ′)p(j′, θ′ | x)
q(j′, θ′ | j, θ)p(j, θ | x)

}
= min

{
1,
q1(j | j′)q2(θj | θ′j′)p(θ−j | θj, j)p(j′, θ′j′ | x)p(θ′−j′ | θ′j′ , j)
q1(j′ | j)q2(θ′j′ | θj)p(θ′−j′ | θ′j′ , j′)p(j, θj | x)p(θ−j | θj, j)

}

= min

{
1,
q1(j | j′)q2(θj | θ′j′)p(j′, θ′j′ | x)
q1(j′ | j)q2(θ′j′ | θj)p(j, θj | x)

}

This last line is exactly the acceptance probability for the basic reversible jump

sampler with the proposal distribution factored into two components q1(·) and

q2(·). We see that the acceptance probability is independent of the value of any

parameters which are unused by both models j and j′ ; nor are their values

required for generating a proposal at the next iteration. Hence the sampling of

these is a “conceptual” step only which need not be performed in practice.This

feature is a strong point of the reversible jump method compared with the

Gibbs sampling version of the Carlin and Chib method, which requires samples

for all parameters at each iteration. Conversely, it is a very challenging problem

to construct effective proposal distributions for reversible jump methods in

complex modeling scenarios, especially in cases where there is no obvious nested

structure to the models or other interrelationships between the parameters of

the different models; in these cases the Carlin and Chib method, which allows

blocking of the parameters within a single model in a way that is not possible

for reversible jump, may have the advantage. It is interesting, however, to

see that both schemes can be derived as special cases of the composite space

sampler.
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Convergence properties of the reversible jump scheme derived in the spe-

cial way given here can now be inherited directly from the Metropolis–Hastings

algorithm operating on the fixed dimension composite space. Specifically, ir-

reducibility and aperiodicity of the composite space sampler will ensure the

convergence of the chain to the target distribution and the validity of ergodic

averages [134].

Statistical problems in which the number of models is itself unknown

are extensive, and as such the reversible jump sampler has been implemented in

analyses throughout a wide range of scientific disciplines over the last number of

years. Within the statistical literature, these predominantly concern Bayesian

model determination problems, including change-point models, mixtures with

an unknown number of components [130], variable selection, Bayesian nonpara-

metrics, time series model, and so on.

Below describes the example of finite mixture of mixture of exponential

densities, as well as the inference procedure by using the reversible jump MCMC

sampler and latent slice sampler.

2.3.3 Mixture of Exponentials and Reversible Jump MCMC

The mixture of exponential only has one parameter, which is the weight

of each component. Define the mixture of exponential density as

f(xi | wM ,M) =
M∑
j=1

wjMje
−jxi
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with M unknowns (taking integers from 1 to ∞)and wM = (w1M , . . . , wMM),

then the joint distribution of (x, d, wM ,M) is

f(x, d, wM ,M) = f(wM |M)f(M)
n∏

i=1

wdidie
−dixi ,

and the priors for wM and M are

f(M) =
λM−1e−λ

(M − 1)!
, M = 1, 2, . . .

wM |M ∼ Dirichlet(α, α, . . . , α)

Given current M ′ and the initialized indicator variable d′ is a sample

from 1 to M ′ with replacement. The sampling procedure is

i. Initialized w: sample w | x, d′,M ′ ∼ Dirichlet(n1+1, n2+1, . . . , nM ′ +1).

ii. Sample di = j | x,w,M ′ ∼ Categorical(p1, p2, . . . , pM ′), where

pj =
wjje

−jxi∑M ′

j=1wjje−jxi

, w is from Step i.

iii Sample w | x, d,M ′ ∼ Dirichlet(n1 + 1, n2 + 1, . . . , nM ′ + 1) again with

the new simulated di’s.

iv. Sample M | M ′, where M ∈ {m1,m1 + 1, . . . ,m2 − 1,m2} with m1 =

max(1,M ′ − k + 1) and m2 =M ′ + k − 1 by using latent slice sampling

method.

pk(M |M ′) =
π(M)

k

min(M+k−1,M ′+k−1)∑
l=max(M,M ′)

1∑l
h=max(1,l−k+1) π(h)

(2.17)
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π(M) = f(M)f(wM |M)
n∏

i=1

M∑
j=1

wjje
−jxi · p(wm1 | wm1+1)

. . . p(wM−1 | wM) · p(wM+1 | wM) . . . p(wm2 | wm2−1) (2.18)

The product of all the p(· | ·) in (2.18) is equal to a constant (m1−1)!
(m2−1)!

, as

derived in Appendix A, irrespective of the value M . Therefore, the updated

π(M) is

π(M) = f(M)f(wM |M)
n∏

i=1

M∑
j=1

wjje
−jxi · (m1 − 1)!

(m2 − 1)!
(2.19)

where the constant (m1−1)!
(m2−1)!

will be canceled out when plug in pk(M |M ′).

Or, we can use the Metropolis step by using random walk as the proposal,

with the first three steps identical to latent slice sampling method:

i. When M > 1, q(M−1 |M) = 0.5 and q(M+1 |M) = 0.5; when M = 1,

q(M + 1 |M) = q(2 | 1) = 1

ii. With M ′ taking values of M +1 and M − 1, the acceptance probability is

α(M,M ′) = min

{
1,
f(M ′)f(x1, . . . , xn | wM ′ ,M ′)p(wM | wM ′)q(M |M ′)

f(M)f(x1, . . . , xn | wM ,M)p(wM ′ | wM)q(M ′ |M)

}
Note that p(· | ·) can be anything, but we try to give a good proposal as we

did in the latent slice method: (a). if M ′ =M + 1, p(wM+1 | wM ) = 1/M ; (b).

if M ′ = M − 1, p(wM−1 | wM) = 1/(M − 1), as described in Section A.2 of

Appendix A.
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2.4 Experiments

For density estimation we would like to sample from the predictive

distribution of

f(xn+1 | x1, . . . , xn)

At each iteration, we have (wj, µj, σ
2
j ) and we sample a θj = (µj, σ

2
j )

using the weights. The idea is to sample a uniform random variable r from

the unit interval and to take that θj for which wj−1 < r < wj, with w0 = 0.

If more weights are required than currently exist then it is straightforward

to sample more as we know the additional vj’s are independent and identi-

cally distributed from Beta(1, α) and the additional θj’s are independent and

identically distributed from P0. Having taken θj , we draw xn+1 from N(· | θj).

2.4.1 Experiments on the MDP

Here we present a normal example with non-informative specifications.

400 random variables was sampled independently from f(x) = 1
3
N(x | −4, 1) +

1
3
N(x | 0, 1) + 1

3
N(x | 8, 1). We took τ = 0.5, s = 1, α = 2, ρ = 0.75 and the

Gibbs sampler was run for 20,000 iterations and at each iteration from 15,000

onwards a predictive sample yn+1 was taken.

Fig. 2.3 shows the histogram of the 400 data points with the density

estimators (blue: latent slice, red: slice sampling) based on the 5000 samples of

yn+1 vs. the true density (black). The density estimators was obtained using

the R density routine. It is obvious that the estimators and the true density
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are close to each other. Both predictive densities are almost overlapped.

Figure 2.3: Histogram of data and the estimated densities of latent slice sampler
(blue) and slice sampler (red) vs. the true density (black).

The advantage of using latent slice step is remarkable with respect to

good mixing and predictive density. It also requires no auxiliary variables to

make the problem a finite one, which is easy to implement.

2.4.2 Experiments on the MFM

Fig. 2.4 shows the histogram of the sampled M for both the Metropolis

method and the latent slice sampling method with setting λ = 3, α = 1, and

varying k = 2, 5, 8. The number of components for the exponential mixtures is

concentrated around 4 while for latent slice it is concentrated around 5 with

all different of k’s. There is no huge difference between different k’s, and we

choose k = 5 to strike a balance and compare the estimated densities with the
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Metropolis approach. In Fig. 2.5, the estimated densities of both methods

are close to the true density. To determine which estimator is better, certain

measure like Kullback-Leibler divergence need to be inlvolved.

Figure 2.4: Sampled M from Metropolis step and latent slice step.

Figure 2.5: Histogram of the data and density estimations from both Metropolis
step and latent slice sampler compared with the true density.

53



2.4.3 Experiments on Change-point Problem

Here we present Bayesian models for multiple change-point analysis in

Green’s paper [70], and develop a reversible jump Markov chain Monte Carlo

sampler latent slice sampling to compute the posterior distribution.

Definition. A point process N is called a Poisson Process with intensity

function λ, if

i. N(t) has independent increments;

ii. N(b)−N(a) is Poisson(
∫ b

a
λ(t)dt) -distributed.

The data set is the point process of dates of coal mining disasters, which

is given in “coal” command in one R package called “boot”. The “coal” data

frame gives the dates of 191 explosions in coal mines from March 15, 1851 until

March 22, 1962. The integer part of the date gives the year, while the day is

represented as the fraction of the year that has elapsed on that day. Fig. 2.6

displays the dates of the 191 disasters in these 112 years as a dot plot, together

with the cumulative counting process, shown as a dashed line.

We assume that the rate function to be a step function λ : R → R+

on [s1, sk+1], where s1, s2, . . . , sk+1 is ordered by year. We fixed s1 to the

beginning of 1851 and sk+1 to the end of 1962. Moreover, hj, the jth piece of

the step function λ(·), is a constant function on [sj, sj+1). In our model, λ is
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Figure 2.6: Coal mining disaster data: dates of disasters, cumulative counting
process (dashed).

the intensity function of a Poisson process {yi, i = 1, 2, . . . , n}. The probability

of m disasters occurring in any interval [a, b] ⊆ [s1, sk+1] is

P (the number of yi ∈ [a, b] = m) = e−Λa,b
Λm

a,b

m!
, where Λa,b =

∫ b

a

λ(s)ds

Conditioned on m points being present in the interval [a, b], the individ-

ual points are independently distributed with density λ/Λa,b. Therefore, we

can compute the likelihood of the data given λ, as

p(yi ∈ [a, b] | λ) = m! · e−Λa,b
Λm

a,b

m!
·

m∏
i=1

λ(yi)

Λa,b

where the factor m! is the number of arrangements when m points are ordered.
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In the interval [s1, sk+1], there are n disasters in total. Thus we have

p(y1, y2, . . . , yn | λ) = n! · e−ΛΛ
n

n!
·

n∏
i=1

λ(yi)

Λ
, where Λ =

∫ sk+1

s1

λ(s)ds

= e−Λ

n∏
i=1

λ(yi)

= exp

(
−Λ +

n∑
i=1

log(λ(yi))

)

= exp

(
−Λ +

k∑
j=1

(number of yi ∈ [sj, sj+1)) · log(λ(yi))

)

In our model, λ(yi) = hj when yi ∈ [sj, sj+1), thus Λ =
∫ sk+1

s1
λ(s)ds =∑k

j=1 hj(sj+1−sj). We denote mj as the number of disasters occurring between

[sj, sj+1), then the explicit form of the likelihood is

p(y1, y2, . . . , yn | λ) = exp

(
−

k∑
j=1

hj(sj+1 − sj) +
k∑

j=1

mj log hj

)
(2.20)

There are three kinds of random variables in the above model (2.20):

i. The number of steps k:

The corresponding number of change points is k − 1 given the number of

steps K. k is assumed to be drawn from Poisson distribution.

ii. The heights {hj : j = 1, 2, . . . , k}:

The heights h1, h2, . . . , hk are independently distributed as Γ(α, β), where

α ̸= 0 and β ̸= 0.
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iii. Step positions {s1, s2, . . . , sk+1} with s1 and sk+1 fixed points:

The step positions s2, s3, . . . , sk are distributed as the even-numbered

order statistics from 2k − 1 points {ti, i = 1, 2, . . . , 2k − 1} uniformly

distributed on [s1, sk+1]. That is, s2 = t2, s3 = t4, . . . , sj = t2j−2, . . . , sk =

t2k−2.

A reversible jump Monte Carlo sampler is a good way to approach this

change-point problem. The four types of transitions from the prior distribution

to the posterior distribution are detailed in [70], including a change to the

height, a change to the position, “birth” of a new step, and “death” of a randomly

chosen step. In section A.3 of Appendix A, each type of move is introduced

and individual acceptance probability of the Metropolis updates is calculated,

respectively.

We will mainly focus on the latent slice sampler for the coal mining

change-point problem. Since there is no reject/accept procedure for the latent

slice sampling, we only need to sample k and update corresponding heights

(h1, . . . , hk) and positions (s1, s2, . . . , sk, sk+1), where s1 and sk+1 are always

fixed no matter what value k takes. From the reversible jump sampler, the

57



posterior distribution for k is

π(k) ∝ p(y1, y2, . . . , yn | k, θ(k))p(k, θ(k))

= p(y1, y2, . . . , yn | k, θ(k)) · p(k | λ) ·
k∏

j=1

p(hj | k, a, b) · p(s2, . . . , sj, . . . , sk | k)

∝ exp

(
k∑

j=1

[mj log hj − hjsdj]

)
· λk−1

(k − 1)!
·

k∏
j=1

hα−1
j e−βhj

· (2k − 1)!

(sk+1 − s1)2k−1

k∏
j=1

sdj ·
k−1∏
j=1

p(θ(j) | θ(j+1)) ·
kmax∏
j=k+1

p(θ(j) | θ(j−1))

with the difference sdj = sj+1 − sj. For the “death” steps, we randomly

remove one position except for the first one and last one. The probability is

p(θ(j) | θ(j+1)) = 1
j
. For the “birth” steps, we randomly choose a position i and

split the range [si, si+1] into [si, s
′] and [s′, si+1] with s′ = u·(si+1−si)+si, where

u ∼ Uniform(0, 1). The probability is then derived as p(θ(j) | θ(j−1)) = 1
j−1

.

The heights of both cases are derived in terms of the new positions and adding

appropriate perturbation. Therefore,
k−1∏
j=1

p(θ(j) | θ(j+1)) ·
kmax∏
j=k+1

p(θ(j) | θ(j−1)) =
1

(kmax − 1)!

which is a constant. The finalized form of the posterior of k is then given by

π(k) ∝ e
∑k

j=1(mj log hj−hjsdj) · λk−1

(k − 1)!
·

k∏
j=1

hα−1
j e−βhj · (2k − 1)!

(sk+1 − s1)2k−1

k∏
j=1

sdj

(2.21)

By using the following discrete latent slice sampler, we can sample from (2.21),

pτ (k
′ | k) = π(k′)

τ

min(k′+τ−1,k+τ−1)∑
j=max(k′,k)

1∑j
z=max(1,j−τ+1) π(z)
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where k ∈ {1, 2, . . . } and the normalizing constant of π(k) is unknown. τ is the

parameter of the transition matrix pτ (k′ | k), with τ > 1 and |k′ − k| ≤ τ − 1.

Taking the computation cost and autocorrelations into account, we choose to

set τ = 6.

Now we can determine a model with flexible number of steps k. The

parameter λ of the prior distribution of k is set to be 3 and the prior distribution

of heights h is assumed to be Gamma(1, 0.5476).

Figure 2.7: Coal mining disaster data: posterior distributions of the number of
steps k for 1000, 10000, and 100000 simulations of Markov chain.

The Monte Carlo simulation is run for 1000, 10000, and 100000 updates

respectively and Fig. 2.7 shows the corresponding histograms of k. It can

be seen that as the estimating steps get larger, the range of k values tends

to be wider with maximum equal to 10. When the simulation time is not

large enough, like the left histogram of Fig. 2.7, k = 2 appears to keep high

proportion. However, as the estimating time gets longer, the basic distribution

of k almost does not change. k = 3 and k = 4 always keep their dominance.

k = 5 also has a proportion greater than 15%.
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Figure 2.8: Coal mining disaster data: posterior density estimates of heights
conditional on number of change-point k = 2 (dashed curves), k = 3 (dotted
curves) and k = 4 (solid curves).

Figure 2.9: Coal mining disaster data: posterior density estimates of positions
of change-point, conditional on number of change-point k = 2 (dashed curve),
k = 3 (dotted curves) and k = 4 (solid curves).
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Figure 2.8 shows the posterior density estimates of the step heights,

conditional on values k = 2, 3, 4 and 5. The density estimates are obtained

using a Gaussian kernel with bandwidth 0.15. Similarly, Figure 2.9 shows the

corresponding conditional posterior density estimates of the step positions,

using kernel standard deviation 2 years.

Reversible jump has been successfully applied in many contexts, but it

is perceived to be difficult to use, and applying it to new situations requires

one to design good reversible jump moves, which can be nontrivial, particularly

in high-dimensional parameter spaces. With this, discrete latent slice sampler

is a better choice for tremendously simplifying the Metropolis steps of the

reversible jump sampler and can be used for direct sampling.

2.5 Discussion

In this chapter, we present a latent slice sampler for discrete random

variables by designing a reversible transition matrix. The discrete latent slice

sampler can be used for direct sampling of implicit form of target distributions

of discrete variables. Applications range from Mixture of Dirichlet process,

mixture of infinite mixture models, clustering problems, and multiple change-

point problems. The advantage of using the discrete latent slice sampler is

demonstrated by comparing with the slice-efficient sampler and the nontrivial

reversible jump sampler. The latent slice sampler is capable of state-of-the-art

performances on a number of problems on discrete random variables.
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Chapter 3

Latent Slice Sampler for Continous Variables

The original motivation is to be found in a discrete sampler presented

in Walker [152]. Since this provides motivation for the latent part of our slice

sampler we briefly describe it here. One of the key ideas behind the Metropolis-

Hastings algorithm [112, 78], is the transition density p(y | x), defined for all

x, y ∈ Ω, satisfying

p(y | x) π(x) = p(x | y)π(y) (3.1)

where π is the target density. The Metropolis-Hastings algorithm has transition

density p(y | x) = α(x, y) q(y | x) + (1 − r(x))1(y = x), where q(y | x) is a

proposal density, to be chosen,

α(x, y) = min

{
1,
π(y) q(x | y)
π(x) q(y | x)

}
,

and r(x) =
∫
α(x, y) q(y | x) dy. It is easily seen that this p(· | ·) satisfies (3.1).

The content in this chapter is under review, Yanxin Li and Stephen G. Walker, “A Latent
Slice Sampling Algorithm”, in Computational Statistics and Data Analysis 2021. Dr. Walker
proposed the problem and helped brainstorm the evaluation settings. I implemented the
main algorithms and wrote the draft paper. Dr. Walker helped with the draft rewriting and
revising.
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An alternative when the sample space is discrete, say Ω = {0, 1, 2, . . .},

with p(· | ·) satisfying equation (3.1), is given by

p(y | x) = π(y)

k

min(y+k−1, x+k−1)∑
l=max(y, x)

1∑l
z= l−k+1 π(z)

, (3.2)

where |y − x| < k, and k is to be chosen. The choice of k is easy to set; as

large as possible while computations required to sample p(y | x) remain time

feasible. So note that with this transition density there is no possibility for the

sampler to get stuck and neither is there an accept/reject component. Note

also that π only needs to be known up to a normalizing constant, a strong

requirement in any sampler, as often, in many applications, the target density

is only specified up to an unknown normalizing constant. Finally, note that

(3.2) is easy to sample. A multivariate version of (3.2) is easy to establish and

has been applied to a certain class of optimization problem in Ekin et al. [43].

The aim in the present paper was to find a continuous counterpart to

(3.2). In fact a suitable transition density is not difficult to write down as a

direct analog of (3.2);

p(y | x) = π(y)

k

∫ min(y+k, x+k)

l=max(y, x)

dl∫ l

z=l−k
π(z)dz

, (3.3)

where here we have Ω = (−∞,∞) and |y−x| ≤ k. Just as (3.2) can be seen as

a Gibbs sampler, so can (3.3). To see this, consider the joint density function

p(y, l) = π(y)
1(y < l < y + k)

k
, (3.4)

so clearly π(y) is the required marginal density. Then (3.3) is given by p(y |

x) =
∫
p(y | l) p(l | x) dl, where p(l | x) is uniform on the interval (x, x + k).
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Further, (3.3) also satisfies the detailed balance equation (3.1). The only

outstanding question is how to sample (3.3), which is the main focus of the

paper. For this we use the slice sampler, but the existence of the framework

already established means we can avoid the doubling or stepping out procedures.

This is important as it is these which make the slice sampler prohibitively slow

in high dimensional problems.

In chapter 3.2 the aim is to show how to sample from p(y | x) given

by (3.3) but with necessary extensions involving making k random. This also

requires some further latent variable; specifically a “slice” variable, similar

in spirit to Besag and Green [14], Damien et al. [35] and Neal [119]. Slice

sampling, as it has become known, is a popular approach to sampling complex

densities usually within a Gibbs sampling framework. In fact slice samplers

have good convergence properties; Roberts and Rosenthal [135] show that slice

samplers are nearly always geometrically ergodic while Mira and Tierney [114]

provide sufficient conditions for a slice sampler to be uniformly ergodic. On

the other hand, [97] show that hybrid samplers, which both our latent slice

sampler and Neal’s slice sampling algorithm are, do not share the properties

of a slice sampler for which the level sets can be sampled directly. However,

in most cases it is nigh impossible to find and sample the level sets without

resorting to some hybrid idea.

Recent uses of Neal’s approach include the elliptical slice sampler, see

Murray et al. [116], and the generalized elliptical slice sampler, see Nishihara

et al. [120], and factor slice sampling, see Tibbits et al. [148]. Once the slice
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variable has been incorporated within (3.3), it is then possible to compare the

new sampler with Neal’s slice sampler. Indeed, as it stands with k fixed, it

is precisely a version of Neal’s algorithm. Both us and Neal extend from this

fixed k, but in different directions. Neal adopts the reversible framework while

we adopt a random k approach and use the framework established by the joint

density (3.3). This allows us to maintain a Gibbs sampling framework while

avoiding a slow (i.e. doubling/stepping out) detailed balance constraint. We

make a direct comparison with Neal’s slice sampler in chapter 3.3. Numerous

illustrations are presented in chapter 3.4 and chapter 3.5 concludes with a brief

description and a full layout of the algorithm for an arbitrary multivariate

distribution.

We first describe the algorithm in one dimension and later detail the

extension to multi-dimensions. The change in notation is that we now write

k as s; so the fixed discrete k is now written as a random continuous s. To

develop the joint density (3.4), we make it more flexible by allowing k to be a

random variable, which we will now refer to as s, and assign s to have density

p(s), to be chosen, and allow for l to be in the interval (y−s/2, y+s/2). Hence,

the joint density of interest becomes

p(y, s, l) = π(y) p(s)
1
(
y − s/2 < l < y + s/2

)
s

. (3.5)

The p(s) will be tuned, but just as with the discrete k the general idea is to

ensure large s can be sampled from it. The large s allow for the possibility of

big jumps; whereas if p(s) only generates small s, the chain is still theoretically

correct but the chain will only make small moves.
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A key aspect of the innovation in the sampler is on display in equation

(3.5); we have introduced a y term outside of the π(y) term without altering the

correct marginal. So the marginal density of y remains π(y) and the marginal

density of s is p(s). A Gibbs sampler based directly on (3.5) would be difficult

to implement as it is not possible to sample from π(y); or rather it is assumed

not to be able to do so. In such cases, a slice sampler can be utilized. By

introducing a slice variable w, the joint density then becomes

p(y, w, s, l) = 1
(
π(y) > w

)
p(s)

1
(
y − s/2 < l < y + s/2

)
s

. (3.6)

While this is more than used by Neal [119], the extra component, i.e. 1
(
y−s/2 <

l < y + s/2
)
p(s)/s is effectively providing the stochastic search engine for the

set of y for which π(y) > w. Such a procedure was also required by Neal [119]

who used a search strategy while needing also to maintain a detailed balance

criterion. On the other hand, we are free from some such constraints. For

us, this is greatly simplified, yet just as effective, by incorporating the search

component into the joint density. This means we do not have to implement a

stepping out or a doubling procedure which is a part of Neal’s algorithm. This

is an important point. This is the part of Neal’s algorithm which makes it slow

in high dimensional problems. This will be demonstrated numerically later in

the paper.

We implement a Gibbs sampler based on (3.6). So p(w, l | y, s) is easy

to sample; being two conditionally independent uniform random variables.

Further

p(s | y, w, l) ∝ p(s)

s
1
(
s > 2|l − y|

)
. (3.7)
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This conditional density is also straightforward to sample; and throughout we

take p(s) ∝ s e−λs for some λ, typically in order to provide a large variance.

Finally,

p(y | w, s, l) ∝ 1
(
π(y) > w

)
1(l − s/2 < y < l + s/2).

We sample this using an adaptive rejection sampler; it is also a shrinkage

procedure as described in Neal [119]. Before describing the adaptive rejection

sampler we present a simple illustration of the key aspects of the one step

algorithm, starting with the current value y0.

Figure 3.1: Illustration of latent slice sampler

An illustration is provided in Fig. 3.1. The current values of y0, w and

l are indicated. The illustration for this case gives a value of s for which the

relevant values of l − s/2 and l + s/2 are indicated. The proposed value of

y1 is sampled uniformly from (l − s/2, l + s/2) and is accepted if π(y1) > w,

as shown in the graph. Rejected y gives information about the location of

the interval π(y) > w and this can be used to improve the proposal with the

shrinkage procedure. To generalize the setting we consider adaptive rejection
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sampling of

p(y) ∝ 1(y ∈ C)1(a < y < b),

where C ∩ (a, b) ̸= ∅ and y0 ∈ C ∩ (a, b). Let a1 = a and b1 = b; at iteration m,

starting at m = 1,

1. Sample y∗ uniformly from (am, bm).

2. While y∗ /∈ C: if y∗ < y0 then am+1 ← max{am, y∗} else bm+1 ←

min{bm, y∗} and m→ m+ 1.

3. Repeat steps 1. and 2. until y∗ ∈ C; then y = y∗.

This works for reasons outlined in Neal [119], and see also the discussion by

Walker in Neal’s paper. The basic idea is that the sampling strategy resulting

in y = y∗ conditional on y0, and write this density as p(y | y0), satisfies detailed

balance with respect to p(y); i.e.

p(y | y0) p(y0) = p(y0 | y) p(y).

The obvious points here are that as p(y) is uniform, one only need establish

that p(y | y0) = p(y0 | y) which is straightforward to understand. The key

being that y and y0 are both in C∩ (am, bm) for all m and all generated random

sets are done so uniformly.
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Example 1. To see how efficient this sampling strategy is, we take the target

for y as a mixture of two normal densities with variances 1 and means -10 and

+10, and with equal weights. That is,

π(y) =
1

2
N(y | −10, 1) + 1

2
N(y | 10, 1).

Figure 3.2: Samples from latent slice algorithm from mixture of two normals

We take p(s) to be a gamma distribution with parameters shape equal to 2

and scale equal to 100, i.e., p(s) ∝ s exp(−0.01s), and generate 2,000 samples

from the algorithm. The subsequent plot of the sampled y is given in Fig. 3.2.

As can be seen, the mixing and accuracy of the samples is excellent. It should

be noted that there are very few, if any, alternative algorithms using Markov

chains, which could achieve this.

3.0.1 Multivariate Case

From the univariate case there is an easy way to set up a multivariate

latent slice sampler when y is a d-dimensional variable. We have the relevant
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joint density now as

p(y, w, s, l) = 1
(
π(y) > w

)
p(s)

d∏
j=1

1(lj − sj/2 < yj < lj + sj/2)

sj
.

So w remains a one dimensional variable, but the other two; i.e. s and l, are

both d-dimensional.

The sampling strategy using a Gibbs sampler is an obvious extension

to the one dimensional case. The conditional for y is given by

p(y | w, s, l) ∝ 1
(
π(y) > w

) d∏
j=1

1(lj − sj/2 < yj < lj + sj/2).

This can also be sampled using the shrinkage procedure; writing aj = lj − sj/2,

bj = lj + sj/2, y0 = (y01, . . . , y0d) as the current y, and {y : π(y) > w} = C,

we sample proposal y∗ = (y∗1, . . . , y
∗
d) from

∏d
j=1 1(aj < yj < bj) and accept

y = y∗ if y∗ ∈ C. Otherwise, do for all j = 1, . . . , d:

if y∗j < y0j then aj ← max{aj, y∗j} else bj ← min{bj, y∗j}.

Example 2. As an illustration we take π(y) to be a bivariate normal density

with a very high correlation; i.e. we take a mean of (0, 0) and a covariance matrix

with unit variances and correlation ρ = 0.95. It is known that slice sampling

algorithms can perform poorly when the variables are highly correlated; indeed,

as stated in Tibbits et al. [148], “It is particularly difficult to create an efficient

sampler when there is strong dependence among the variables”. We take p(s)

to be independent gamma distributions with shape equal to 2 and scale equal

to 10. The bivariate plot and contour of the (y1, y2) from the output of the
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Figure 3.3: Samples from latent slice algorithm from bivariate normal

sampling algorithm is presented in Fig. 3.3. As can be seen this has worked

extremely well.

Example 3. Here we do a d = 50 dimensional example with the target density

π(y) ∝ exp

(
−1

2

d∑
j=1

y2j

)
.

The code was written in R and 5000 samples of y were collected. The time for

execution was two seconds. We take the same p(s) as that of Example 2. The

samples of y1 are presented as a histogram in Fig. 3.4 along with the standard

normal density function for comparison.

3.1 Comparison with Slice Sampling

The algorithm of Neal [119] is concerned with the sampling of p(y |

w) ∝ 1(π(y) > w) which is uniform, and let S = {y : π(y) > w}. The aim is

to find an interval I = (L,R) which contains the whole, or a part, of S, and to
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Figure 3.4: Samples of y1 from latent slice algorithm with 50 dimensional
multivariate normal target density

sample a proposal y∗ uniformly from I and accept it as y if y∗ ∈ S. Now the

interval I will be constructed stochastically from x = yc and hence, as we are

dealing with uniform densities; it is required that

p(y | x,w) = p(x | y, w).

Effectively, this boils down to the probability of getting I from x being the

same as the probability of getting I from y. Neal [119] has two key ideas for

constructing I and we will focus on the “stepping out” procedure.

The idea here is to select a positive value k and an integer m ≥ 1 and

start with

L = x− k (1− U) and R = x+ k U,

where U is a uniform random variable from (0, 1). It is already interesting to

note that with m = 1 this approach would coincide exactly with our own by
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choosing s−1 p(s) to be a point mass of 1 at s = k. This can be seen by noting

that our algorithm selects l uniformly from the interval (x− k/2, x+ k/2); i.e.

l = x− k/2 + k U and then takes y∗ uniformly from (l − k/2, l + k/2) which

can be written as (x− k (1− U), x+ k U).

To move on from this rather inflexible strategy, whereas with our

algorithm we take k = s as a random variable, Neal accounts for the rigidity

of k by allowing the interval to broaden out by extending L → L − k and

R→ R+ k until π(L) < w and π(R) < w, respectively, or J = 0 and K = 0,

respectively, where J is a random number in [0, . . . ,m− 1] and K = m− 1− J

and J and K go down by 1 every time an extension is made, respectively. The

exact details are presented in Fig. 3 of Neal’s paper where a proof is provided

that this stochastic construction of I does indeed satisfy detailed balance.

An alternative idea described in Neal [119] is the “doubling” procedure

and is described in Fig. 4 of his paper. The starting point is as with the

stepping out procedure but now the intervals double in size when the interval is

allowed to grow. In short, the additional latent variables l and s we introduce

at the outset obviate the need for a doubling or stepping out procedure. So

while we are able to treat k = s as random within our framework, and hence

deal with any issue arising as a consequence of it being fixed, it has recently

been pointed out that some problems are sensitive to the choice of k within

Neal’s slice sampler; see Karamanis and Beutler [90].

73



3.1.1 Numerical Comparison

We compared the latent slice sampler with the slice sampling algorithm

by using the illustrations in section 8 of Neal’s paper. It is a ten-dimensional

funnel-like distribution of ten real-valued variables v and x1 to x9. The marginal

distribution of v is Gaussian with mean zero and standard deviation 3. Condi-

tional on a given value of v, the variables x1 to x9 are independent, with the

conditional distribution for each being Gaussian with mean zero and variance

ev, which can be formulated as v ∼ N(v | 0, 32) with [xi | v] ∼ N(xi | 0, ev) for

i = 1, . . . , 9. The joint distribution is obviously given by

p(v, x1, . . . , x9) = N(v | 0, 32)
9∏

i=1

N(xi | 0, ev). (3.8)

Such a distribution is typical of priors for components of Bayesian hierarchical

models; x1 to x9 might, for example, be random effects for nine subjects, with

v being the log of the variance of these random effects. If the data is largely

informative, the problem of sampling from the posterior will be similar to that

of sampling from the prior. From the above framework, we know the correct

marginal distribution for v, which is the focus of the illustration, and we can

sample for each of x1 to x9 given the value for v.

In Neal’s paper, the single variable slice sampling method is used to

sample from a multivariate distribution by sampling repeated for each variable

in turn. Each update uses the step-out and shrinkage procedure. Fig. 3.5

compared the result of trying to sample from the funnel distribution using

latent slice sampling and single-variable slice sampling. The upper plot shows
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2,000 iterations of a run, which is the subsampling of 4,000,000 samples with

a spacing of m = 200 to reduces the autocorrelation of successive samples. If

every 200th iteration is used and the rest thrown away, this produces another

reversible Markov chain with asymptotic variance. The selection of spacing

m = 200 can yield better estimates of the true posterior and yet smooth out

autocorrelation. We use a gamma distribution with shape 2 and scale 5 to

randomize the “slice”, i.e p(s) ∝ se−s/5 so that the sampler is able to explore

the distribution efficiently. The lower plot of Fig. 3.5 shows the results of trying

to sample from the funnel distribution using single-variable slice sampling. To

avoid the high autocorrelation, the same spacing of m = 200 is also used to

“thin” the simulations.

Figure 3.5: Sampling the funnel distribution using latent slice sampling (dark
dots) and single-variable slice sampling (blue dots)
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The resulting 2,000 updates are shown in the scatterplot. Both the

latent slice sampler and the single-variable slice sampling perform fairly well

with small and large values of v sampled quite good, compared with single-

variable Metropolis updates and multivariate Metropolis updates, as discussed

in Neal’s paper. However, slice sampling method takes much greater cost in

wasted computation. The average time for 10,000 iterations are at least 14

times of that for latent slice sampling algorithm. The simplicity of the latent

slice sampling makes it favorable for sampling distribution without selecting

proposal distribution. By using stochastic search we accelerate the convergence

to the stationary distribution.

3.1.2 Effective Sample Size Comparison

To compare the performance of the latent slice sampling with Neal’s

slice sampling we use Effective Sample Size (ESS); see [93]. The ESS is defined

as the equivalent number of independent simulation draws from the target

distribution which yields the same efficiency in the estimation obtained via the

sampling algorithm. It measures the amount by which the autocorrelation in

the samples increases the sample standard deviation relative to an independent

sample.

For a parameter of interest ν (we are interested in v of the ten-dimensional

funnel-like distribution in Chapter 3.1), the ESS, see [56], is given by

ESS =
mn

1 + 2
∑∞

t=1 ρt
, (3.9)
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where m is the number of chains run and n is the length of each chain, and

we write N = nm as the sample size, and ρt is the autocorrelation function

(ACF) at lag t of the chain. The ρt is estimated by computing the variogram

Vt and using the estimated marginal posterior variance τ 2 of the parameter; i.e.

ρ̂t = 1− Vt/(2τ̂ 2), where

Vt =
1

m(n− t)

m∑
j=1

n∑
i=t+1

(νi,j − νi−t,j)
2

and

τ̂ 2 =
1

mn

m∑
j=1

n∑
i=1

(νij − ν̄·j)2 +
1

m− 1

m∑
j=1

(ν̄·j − ν̄··)2

with νij (i = 1, . . . , n; j = 1, . . . ,m) being the output from chain j at iteration

i, ν̄·j = 1
n

∑n
i=1 νij being the within-sequence means, and ν̄·· = 1

m

∑m
j=1 ν̄·j being

the between-sequence mean. Given the above definition of effective sample size,

we take computational efficiency into account and define the measure MCMC

Efficiency, representing the number of effective independent samples generated

per second; i.e. to combine both chain mixing and computational speed, given

by

MCMC Efficiency =
ESS

Computation Time (in seconds)
.

Table 3.1 and Table 3.2 show the comparisons of computation time (ob-

tained by using proc.time() in R), effective sample size and MCMC efficiency

between the latent slice sampler and slice sampling under different scenarios.

All the numbers are averaged over 5 runs under different initializations. As can

be seen from Table 3.1, latent slice sampling is much more computationally
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`````````````̀Sample size
Sampler Latent slice sampling Slice sampling

N = 10, 000 1.4s 19.0s

N = 50, 000 6.0s 88.0s

N = 250, 000 29.9s 470.4s

Table 3.1: The comparison of average system computation time (in seconds)
over 5 runs with different initializations under different sample size.

hhhhhhhhhhhhhhhhhSample/Thinning size
Sampler

Latent slice sampling Slice sampling

N = 10, 000 M = 1 737 (526.4) 600 (31.6)

N = 10, 000 M = 10 552 (394.3) 464 (24.4)

N = 50, 000 M = 1 3508 (584.7) 2727 (31.0)

N = 50, 000 M = 10 2649 (441.5) 2152 (24.5)

N = 250, 000 M = 25 8528 (285.2) 7561 (16.1)

Table 3.2: The comparison of effective sample size and MCMC efficiency (red
colored) under different combination of sample size N and thinning size M
(thinning is used to reduce autocorrelation of chains).
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efficient than slice sampling. This is because Neal’s slice sampling algorithm

uses the stepping out procedures for each direction at each step and a posterior

probability calculation is required to check the suitability of the new sample,

which means the process is time consuming. On the other hand, the latent slice

sampling is able to obtain for each direction a valid sample in parallel which

does not need to be checked. This is because the latent variables, all trivial to

sample and in parallel, result in a Gibbs sampling structure and so the samples

can be accepted wherever they fall. The effective sample size shown in Table

3.2 of slice sampling in each scenario is slightly higher than slice sampling, but

the MCMC efficiency of latent slice sampling is much higher than Neal’s slice

sampling due to faster computation. These differences are more significant in

very high-dimensional problems.

3.2 Illustrations

In this chapter we present a number of illustrations. We consider a state

space model and a variable selection model where the vectors of unknowns

are typically sampled component-wise using a Gibbs sampler. In these latter

two examples we use the multivariate latent slice sampler to sample the entire

vector as a single block.
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3.2.1 State Space Model

3.2.1.1 Simulation Example

In this subsection we sample a 500 dimensional space which is the

unknown states of a state space, also known as a hidden Markov model. We

consider

[yi | xi] ∼ Poisson
(
θ exp(xi)

)
and xi = ρ xi−1 + σ zi

for i = 1, . . . , n with n = 500 and x0 = 0 and the (zi) independent standard

normal. To generate the data set we take ρ = 0.8, σ = 1 and θ = 1.

The joint density of the x = (x1:n) given θ is

π(x | θ) ∝ exp

{
n∑

i=1

[
xi yi − θ exi − 1

2
(xi − ρ xi−1)

2

]}
,

for simplicity we assume ρ and σ to be known, without any loss to the illustration

about to be presented. Typically, the π(x | θ) is sampled component by

component, i.e. by sampling p(xi | x−i, θ) for i = 1, . . . , n within a Gibbs

sampling framework. In some special cases, conditionally normal dynamic

linear models, it can be sampled as a block by backward sampling. The most

common approaches nowadays are based on particle filters; see Andrieu et al.

[5].

Using the multivariate latent slice sampling algorithm we sample the

entire vector of state spaces in one block. We only assume θ is unknown and the

conditional density of θ with a gamma prior with shape and rate parameters
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Figure 3.6: Posterior density of θ for state space model

both equal to 0.5 is given by a gamma distribution with shape parameter

0.5 +
∑

i=1:n yi and rate parameter 0.5 +
∑

i=1:n e
xi .

The chain was run for 2000 iterations and the time taken was 20 secs.

A plot of the posterior θ samples is presented in Fig. 3.6. The mean value is

0.97.

3.2.1.2 Real Data Example

The following illustration is on a real dataset from the NYSE and

available from the R package fBasics. We take (yi) to be the log return of the

stock price (pi) with i = 1, . . . , n; i.e., yi = log(pi/pi−1), and n = 9310. We

adopt a stochastic volatility model Hull and White [82],

[yi | xi] ∼ N(0, exi/2) and xi = ρxi−1 + σzi with 0 < ρ < 1 and x0 = 0.
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Here the (zi) are independent standard normal and an initial set of (xi) are

obtained by setting xi = 2 log(yi + ϵ) for some small ϵ > 0. The joint density

of (x1:n | ρ, σ) is given by

π(x1, . . . , xn | ρ, σ) ∝ exp

{
−

n∑
i=1

(
xi
4
+

y2i
2exi/2

+
(xi − ρxi−1)

2

2σ2

)}
.

The prior for λ = 1/σ2 is taken to be gamma with both shape a and rate b

parameters set to 0.5, while the prior for ρ is uniform on (0, 1). The conditional

posterior of λ and ρ are given by

[λ | x1, . . . , xn] ∼ Gamma
(
a+

n

2
, b+

∑n
i=1(xi − ρxi−1)

2

2

)
[ρ | x1, . . . , xn] ∼ N

(∑n
i=1 xixi−1∑n
i=1 x

2
i−1

,
1

λ
∑n

i=1 x
2
i−1

)
.

We remove 12 outliers that have log returns greater than 5. The final

dataset has 9298 observations. On implementation of the latent slice sampler,

sampling all the (xi) together, we constructed posterior distributions from

the samples from the output and also show how well the data fits the model.

So Fig. 3.7 shows the posterior density of both ρ and λ. Fig. 3.8 shows that

estimated mean of the (exi/2) excellently recovers the original data (y2i ).

3.2.2 Spike and Slab Model

In this subsection we consider a popular approach to variable selection

within the Bayesian framework; namely the spike and slab prior [60]. The

model is given by

Y = Xβ + ϵ, ϵ ∼ N(0, σ2In)
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Figure 3.7: Posterior density of ρ and λ

Figure 3.8: The traceplot of estimated mean of ex/2 vs. y2
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where Y ∈ Rn is a vector of responses, X = [X1, . . . , Xp] ∈ Rn×p is a regression

matrix of p predictors, β = (β1, . . . , βp)
T ∈ Rp is a vector of unknown regression

coefficients, and ϵ ∈ Rn is the noise vector of independent normal random

variables with σ2 as their unknown common variance. The spike and slab prior

for β is given by

π(β) ∝
p∏

j=1

[
σ−1
1 exp(−1

2
β2
j /σ

2
1) + σ−1

2 exp(−1

2
β2
j /σ

2
2)

]
,

where σ1 ≈ 0 yields the spike and σ2 ≈ ∞ yields the slab. Markov chain Monte

Carlo methods for this model require the Gibbs sampling of βj conditional on

the β−j, i.e. the vector of β without the βj. See, for example, Narisetty and

He [117]. Here we use the latent slice sampler to sample β as one block.

3.2.2.1 Simulated Data

We assume σ = 1 is known and generate data for n = 100 with p = 90.

We take β1 = 1, β2:5 = 5 and β6:90 = 0. All the elements in the design matrix

X are generated as independent standard normal random variables. We take

σ1 = 0.1 and σ2 = 10; writing down the posterior for β is quite straightforward

and is in particular easy to compute for any given value of β. We ran the latent

slice sampler for 10,000 iterations; taking a few seconds to complete the task.

For illustration we present the posterior samples for β1 and β2 and β6;

the true values being 1, 5 and 0, respectively. As is visible from Fig. 3.9 the

samples are accumulating at the correct locations and the mixing of the chain

is good.
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Figure 3.9: Posterior samples of β1, β2 and β6 from spike and slab model

3.2.2.2 General Spike and Slab Model

The spike and slab model with n and K denoting number of observations

and number of coefficients is specified in Ishwaran and Rao [84]:

[Y | β, σ] ∼ N(X β, σ2 I)

β ∼ N(0,Γ), where Γ = diag(dkτ 2k )

[dk | v0, w] ∼ (1− w) δv0(·) + w δ1(·)

λk = τ−2
k ∼ Gamma(a1, a2)

w ∼ Uniform(0, 1)

s = σ−2 ∼ Gamma(b1, b2),

where v0 is a small near-zero value, δv(·) is used to denote a discrete measure

concentrated at the value v, and a1, a2, b1, b2 are known hyperparameters. A

variable selection procedure uses a Gibbs sampler and latent slice sampler to
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simulate posterior values

[β,D, τ, w, σ2 | Y ]

where D = (d1, . . . , dK)
T and τ = (τ1, . . . , τK)

T . Also, γk = dkτ
2
k , so simulating

D and τ provides a value for γ = (γ1, . . . , γK)
T . Denote Γ = diag(γ1, . . . , γK)

as the K ×K diagonal matrix, then the sampling procedure works as follows:

note the only difference between our algorithm and the standard Gibbs sampler

is given in item 1. below,

i. For the latent slice sampler, simulate β with the posterior distribution

given by

p(β | γ, σ2, X, Y ) ∝ exp

(
− 1

2σ2
||Y −X β||2 − 1

2
βTΓ−1β

)
For the Gibbs sampler, sample [β | γ, σ2, Y ] ∼ N(µ, σ2Σ), where

µ = ΣXTY and Σ =
(
XTX + σ2 Γ−1

)−1

ii. Simulate dk from its conditional distribution

[dk | β, τ, w] ∼
w1,k

w1,k + w2,k

δv0(·) +
w2,k

w1,k + w2,k

δ1(·)

where

w1,k = (1− w)v−1/2
0 exp

(
− β2

k

2v0τ 2k

)
and w2,k = w exp

(
− β2

k

2τ 2k

)
iii. Simulate λk = τ−2

k from its conditional distribution

[τ−2
k | β,D] ∼ Gamma

(
a1 +

1

2
, a2 +

β2
k

2dk

)
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iv. Simulate w, the complexity parameter, from its conditional distribution

[w | D] ∼ Beta
(
1 + #{k : dk = 1}, 1 + #{k : dk = v0}

)
v. Simulate s = σ−2 from its conditional distribution

[σ−2 | β, Y ] ∼ Gamma
(
b1 +

n

2
, b2 +

1

2
||Y −X β||2

)

vi. Update γ by setting γk = dkτ
2
k = dk/λk, for k = 1, . . . , K, and this

completes one iteration.

One of the applications of the spike and slab regression is on “big−p,

small−n” (denoted as p≫ n) problems. Gene expression arrays are examples

of high dimensions with large magnitude of variables. They typically have 50

to 100 samples and 5,000 to 20,000 variables (genes). There have been many

attempts to adapt statistical models for regression and classification to these

data, and in many cases these attempts have challenged the computational

resources. Standard statistical models, such as linear regression model, logistic

regression, and the Cox model cannot be used “out of box", since the standard

fitting algorithms all require p < n. Many existing methods used a standard

fitting method with quadratic regularization to overcome the dilemma. Ishwaran

et al. [85] introduced a generalization of the elastic net (gnet) to obtain much

sparser variable selection.

To demonstrate the efficiency of latent slice sampling on the spike and

slab regression model of the “big−p, small−n” problem, we take n = 100
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observations with β1 = 1, β2:5 = 5 and β6:p = 0, where p = 2000. All the

elements in the design matrix X are generated as independent standard normal

random variables. Fig. 3.10 shows the traceplots of three randomly selected

coefficients (β1, β5, and β1800) simulated by latent slice sampling. In this case,

Gibbs sampler fails completely with dimension 100× 2000 due to the inefficient

calculation of the inverse matrix XTX + σ2 Γ−1 in the covariance, while latent

slice sampling is able to work on high-dimensional data and maintain decent

convergence with appropriate size of simulations. As the number of variables

decreases to less than 500, both methods are capable of gaining good mixing.

The latent slice sampling tends to be more computationally efficient than Gibbs

sampling with large amount of variables, while Gibbs sampling performs better

in terms of stationarity and efficient computation with lower dimensional data.

Figure 3.10: Traceplots of randomly selected coefficients estimated by latent
slice sampling
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3.2.2.3 Real Data Analysis

We apply the latent slice sampling method to the Engel Curve data [16],

which consists of a random sample taken from the British Family Expenditure

Survey for 1995 and can be loaded from the R package np with the dataset la-

belled as Engel95. There are 1655 household-level observations and 10 variables,

including expenditure share of food, catering, alcohol, fuel, motor, fares, leisure,

logarithm of total earnings, number of children, and the dependent variable

– logarithm of total expenditure. In addition to the 9 baseline explanatory

variables, we added 20 dummy variables, each sampled independently from a

binomial distribution with probability generated uniformly between 0 and 1,

which gives us a dataset with dimension 1655× 29.

Figure 3.11: Proportions of the spikes to slabs for all the β

Fig. 3.11 shows traceplots of the proportions of spikes to slabs samples

on all coefficients. As can be seen, the proportions converge to fixed values

after adequate amount of sampling. The proportion of spikes converge to 1 for
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variables food, alcohol, fuel, leisure, logarithm of total earnings and one of the

simulated dummy variables.

3.2.3 Uniform Sampling in High Dimension

A common problem in many contexts is the ability to sample uniformly

from a region S ⊂ Rd for some large d. A recent paper, Chen et al. [28] considers

various existing and new Markov chain Monte Carlo sampling algorithms for

uniform sampling from a polytope; a set of the form S = {y ∈ Rd : Ay ≤ b}.

However, the largest d considered in this paper appears to be d = 50. On the

other hand, while sampling as a single block and with more general forms for

S, we achieve good mixing and output with spaces of size d = 5000.

We can achieve this using our latent slice sampling algorithm as follows.

So consider the joint density for (y, s, l) where each component is a d dimensional

vector,

p(y, s, l) ∝ 1(y ∈ S) p(s)
d∏

j=1

1(yj − sj/2 < lj < yj + sj/2)

sj
.

By implementing a Gibbs sampler, the conditionals for s and l are easy to

sample. As usual we can take p(s) ∝ s exp(−λs) for some λ > 0. Then the

conditional for y as a single vector is

π(y | s, l) ∝ 1(y ∈ S)
d∏

j=1

1(aj < yj < bj)

and aj = lj − sj/2 and bj = lj + sj/2.

This is sampled using the shrinkage procedure; as this progresses, sample
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y∗ uniformly from (aj, bj) and while y∗ /∈ S, update aj to max{aj, y∗j} if y∗j < yj

else update bj to min{bj, y∗j}. Here y = (yj) is the current vector of the chain.

We apply this scheme to the set

S =

{
y :

d∑
j=1

yj ≤ 1, yj ≥ 0, D(y, 1) ≤ c1 & D(y, 1) > c2

}
,

where D(y, 1) denotes the Kullback-Leibler divergence between y and the

uniform vector 1 = (1/(1 + d)); i.e.

D(y, 1) =
d∑

j=1

yj log yj + (1− w) log(1− w) + log(1 + d),

where w =
∑

j=1:d yj. This is a disconnected region; indeed for d = 2 and

c1 = 0.3 and c2 = 0.7 there are 4 separated regions within y1 + y2 ≤ 1.

We take d as a super large value; d = 5000, and take c1 = 0.3 and

c2 = 0.5 and sample y as a single block. We take λ = 1 and generate n = 10, 000

samples. In Fig. 3.12 the trace output of the y1 samples are plotted. As can

be seen the chain is mixing well and is able to move with both small and large

steps. The time taken for the output was approximately one minute.

3.3 Discussion

In this chapter we have presented a generic sampling algorithm which

has the ability to sample efficiently very high dimensional distribution functions

at great speed. The key is the latent model combined with the shrinkage

procedure based on uniform distributions and an automatic reversible condition.
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Figure 3.12: Traceplot of y1 samples from uniform sampling in high dimension

Given the simplicity of the algorithm we present it here, in the general d-

dimensional case, with target density π(y) and y = (y1, . . . , yd). Let λ = 0.1,

for example; we describe a single loop with current values y0 = (y01, . . . , y0d)

and s0 = (s01, . . . , s0d).

i. Sample w ∼ U(0, π(y0)) and, for j = 1, . . . , d, sample

lj ∼ U(y0j − s0j/2, y0j + s0j/2)

and sample sj from the density proportional to

exp(−λ sj)1(sj > 2 |lj − y0j|).

ii. Set aj = lj − sj/2 and bj = lj + sj/2.

iii. For j = 1, . . . , d, sample

y∗j ∼ U(aj, bj);
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if π(y∗) > w, accept y = y∗; else, for j = 1, . . . , d,

if y∗j < y0j then aj ← max{aj, y∗j} else bj ← min{bj, y∗j}.

iv. Repeat step 3. until π(y∗) > w and set y = y∗.

As we have demonstrated, such an algorithm can work with a nonlinear state

space model with dimension 500 and return output in short time. Future

work will consider sampling of constrained spaces, such as uniform sampling

on polytopes and truncated distributions, such as the multivariate normal

[132, 34].
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Chapter 4

A Latent Slice Sampler on Multivariate Binary
Spaces

In this chapter, we review standard Monte Carlo methods for sampling

high-dimensional binary vectors and motivate the work on an alternative

sampling scheme based on latent slice sampling methodology. Most of this

discussion was published in Li and Walker [102]. Standard approaches are

typically based on random walk type Markov chain Monte Carlo, where the

equilibrium distribution of the chain is the distribution of interest and its

ergodic mean converges to the expected value of interest. While MCMC

methods are asymptotically valid, convergence of Markov chains may be very

slow if the distribution of interest is highly multi-modal.

This chapter proposes a novel algorithm based on latent slice sam-

pling methodology which copes well with multi-modal problems. This work

approaches a well-studied problem from a different angle and provides new

perspectives. Firstly, there is numerical evidence that particle methods, which

The content in this chapter has been revised for the Journal of Computational and
Graphical Statistics.
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track a population of particles, initially well spread over the sampling space,

are often more robust than local methods based on MCMC, since the latter

are prone to get trapped in the neighborhood of local modes. Secondly, latent

slice sampling type algorithms are easily parallelizable, and parallel computing

for Monte Carlo algorithms has gained a tremendous interest in the very recent

years [100, 120], due to the increasing availability of multi-core processing units

in standard computers. Thirdly, we argue that the latent slice sampler is fully

adaptive and requires practically no tuning to perform well. A Monte Carlo

algorithm is said to be adaptive if it adjusts, sequentially and automatically, its

sampling distribution to the problem at hand. Important classes of adaptive

Monte Carlo are sequential Monte Carlo [115], adaptive importance sampling

[20] and adaptive Markov chain Monte Carlo [3], among others. The choice of

the parametric family which defines the range of possible sampling distributions

is critical for good performance.

Slice sampling is a powerful technique for generating random variables

from complicated density functions; see Besag and Green [14], Damien et al.

[35], and Neal [119]. The motivation is simple enough; for a target density

π(x), x ∈ RM , the idea is to introduce the latent variable w and consider the

joint density f(x,w) = 1(w < π(x)). A Gibbs sampler can be implemented in

which the sampling of w is straightforward and the sampling of x, conditional

on w, involves sampling uniformly from the interval Aw = {x : π(x) > w}. It

is the sampling of this latter uniform distribution which poses the problem for

slice samplers. Indeed, uniform sampling from high dimensional spaces is a
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problem in its own right; see, for example, Chen et al. [28]. However, the aim

would be to achieve this without recourse to complicated MCMC algorithms

since this would defeat the object of the slice sampler, and one could well be

better off performing a direct MCMC on π(x).

Neal [119] introduced a clever procedure for sampling the uniform

distribution on Aw using a transition density f(x′ | x) satisfying f(x′ | x,w) =

f(x | x′, w), and hence is stationary with respect to the target uniform density.

A strategy for proposing a x′ given x satisfying the reversible condition is given

in Neal [119]. This involves a stepping out or doubling procedure combined

with a shrinkage procedure. The former procedures require choosing a width

parameter which becomes fixed over the run of the chain and is, particularly in

high dimensions when one is required for each dimension, potentially a tricky

tuning parameter to set. Further, the stepping out and doubling procedures

need to be performed sequentially with a computation of π(x) after each step.

This makes it difficult to implement in high dimensions.

On the other hand, Li and Walker [102] introduce further latent variables

which facilitates the uniform sampling via a Gibbs framework. The algorithm

avoids the stepping out or doubling procedures and hence avoids the need for

the tuning width parameters and a potentially slow sequential search for a

valid substitute for Aw when the dimensions are large. They start with, writing

in the one dimensional case, the joint density

f(x,w, s, l) = 1(w < π(x)) s−1p(s)1(x− s/2 < l < x+ s/2) (4.1)
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for some density function p(s) on (0,∞). As before, all variables are easy to

sample and now the required density for x we need to sample is

f(x | w, s, l) ∝ 1(w < π(x))1(l − s/2 < x < l + s/2).

This structure allows for an easy search for a valid substitute for Aw, just from

the sampling of s. It is then also easy to set up a sequence of proposals x′

satisfying f(x′ | x,w, s, l) = f(x | x′, w, s, l). The algorithm is detailed in Li

and Walker [102]; briefly here, take an initial proposal x∗ uniformly from the

interval (L−, L+) = (l − s/2, l + s/2) and keep repeating this until w < π(x∗).

After each rejection, the uniform interval, currently (L−, L+), can be narrowed

to

(x∗, L+) if x∗ < x, or (L−, x
∗) if x∗ > x,

where x is the current value. As the rejections mount, the interval will start

to concentrate on x. This is effectively equivalent to the shrinkage procedure

described in Neal [119]. Hence, at the very least, the algorithm can become a

local sampler, but with the possibility of having large jumps.

The accepted sample x′ and the current value are reversible according

to this procedure; i.e. f(x′ | x, . . .) = f(x | x′, . . .). This is one of the ideas

behind Neal [119], though we avoid the stepping out and doubling parts of

his algorithm. Extending the dimensions is straightforward and numerous

illustrations are presented in Li and Walker [102].

Walker [152] and Ekin et al. (2021) cover the case when x ∈ NM .
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However, a class of problematic density functions is given by

π(z1, . . . , zM) (4.2)

where each zj ∈ {0, 1}, or an equivalent binary set. The two aforementioned

papers do not cover this case; they would both collapse to a Gibbs sampler,

which is not in general suitable for the distributions we are going to look at.

When M is large these densities can be difficult to sample, particularly

if they are multimodal. Typically, Metropolis algorithms or Gibbs samplers are

applied where one of the variables is updated at a time. Such algorithms may

not produce sufficiently well-mixing chains, or even a chain that moves at all.

We demonstrate through a number of illustrations the mixing abilities of the

latent slice sampler for multivariate binary distributions. We compare with

other generic algorithms, such as the single flip proposal Metropolis algorithm.

Our algorithm is closely related, but an extension of the random walk kernel

sampler, described in Schäfer and Chopin [30]. The random walk sampler

proposes moves z′ from z for which ||z′− z|| ≤ k; i.e. the number of switches is

bounded by a fixed number k. On the other hand, our algorithm can be seen

as a version of this in which the right latent variables are introduced so that

we can make k random and maintain a valid chain. There are models, such

as the Ising model, where due to the nature of the distributions, specialized

algorithms work, such as the Swendsen-Wang [145] and Wolff [155] algorithms.

In this chapter, we apply the latent slice sampling algorithm to the joint

density (4.2). The trick is to introduce a latent variable, say yj for each zj , and
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set zj = 1(yj > 0). This gives us a joint density in (yj) which can be sampled

as in Li and Walker [102]. If it is possible to allow the sampler on the (yj) to

move sufficiently around some bounded space in M -dimensions, we should be

able to construct a sampler which also jumps around in the {0, 1}M space.

The layout of this chapter is as follows: in Chapter 4.1 we describe the

details of the algorithm. We also provide some theory about the algorithm

and prove the reversibility of the sampling of f(x′ | w, s, l). In Chapter 4.2 we

first present a couple of introductory examples with some further substantial

illustrations presented subsequently; in Chapter 4.3 and Chapter 4.4, the Ising

model and a Bayesian variable selection model are illustrated. Chapter 4.5

presents a comparison of the latent slice sampler and Metropolis algorithms

by looking at eigenvalues of transition probability matrices and also consider

effective sample sizes. Chapter 4.6 presents a brief discussion.

4.1 Latent Slice Sampling Algorithm

Sampling from π(z) is equivalent to sampling from the joint density

f(y, w, s, l) ∝ 1

(
w < π(z)

) M∏
j=1

p(sj)

sj
1

(
yj −

sj
2
< lj < yj +

sj
2
, |yj| < a

)
,

where zj = 1(yj > 0), for some a > 0. The introduction of the finite a here is

to ensure the joint density is proper. As with the continuous case, the variables

are all easy to sample, and the y = (y1, . . . , yM) can be sampled jointly, as in

the continuous case, and with the shrinking procedure, until the proposal y∗

satisfies w < π(z∗ = 1(y∗ > 0)). Write y∗ = y∗0 as the initial proposal and, if
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all are rejected, let (y∗r) be the sequence of proposals.

At each iteration, the initial proposal z∗ is being sampled approximately

uniformly on {0, 1}M . This is equivalent to restarting the chain. However,

rather than the chain move aimlessly along points with low probability looking

for a point with high probability, it drifts back to the current value, with each

interim point being tested for a possible move. If nothing is accepted along the

way, the chain stays at its current value and the next iteration proceeds with

another uniform sample being generated. Viewed in this way, the algorithm

provides a jump mechanism with multiple proposals and if these are all rejected

it behaves as a local sampler.

Here we write the algorithm (detailed as a single loop) for the sampler

for a given π and with a = 2 (the choice of a is without loss of generality), and

p(s) ∝ exp(−sλ):

i. Initializing step: given s = s1:M and z = z1:M and for each i = 1, . . . , n,

set yi > −a negative if zi = 0 and yi < a positive if zi = 1

ii. Set ai = bi = 0 for i = 1, . . . , n. Sample w = u1π(z) and for i = 1, . . . , n,

take li = yi− si/2 + ui2si, where u1 is a uniform r.v. and the ui2 are i.i.d.

uniform r.v.s.

iii. Sample si as an exponential r.v. with mean 1/λ and constrained to be

greater than 2|li − yi|. Set ai = max{−a, li − si/2} and bi = min{a, li +

si/2}
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iv. Propose the new y′i as ai + vi(bi − ai), where the vi’s are i.i.d. uniform

r.v.s, and z′i = 1(y′i > 0)

(1). Compute w′ = π(z′)

(2). If w′ > w then z = z′ and GoTo step (ii)

(3). Else, set q = 1(y′i < yi) then reset ai = qmax{ai, y′i} + (1 − q)ai

and bi = (1− q)min{bi, y′i}+ qbi. GoTo step (iv) and repeat until

w′ > w.

To demonstrate the properties of the sampler, we now show that it can

propose any point from any current location with high probability. Due to the

independence nature of the proposals, we only need to consider one dimension.

Let y0 and s0 be the current values and assume without loss of generality

that y0 > 0. We take p(s) to be proportional to se−s/λ so the conditional for

s constrained to be larger than η can be sampled as ψ + η, where ψ is an

exponential random variable with mean λ.

Lemma 4.1.1. The probability that the initial proposal for y, i.e. y∗, has

probability of being negative, given the current value y0 is positive, is given by

1

2
max

{
0, 1− y0 + s0(2v − 1)

ψ + s0|2v − 1|

}
,

where v is an independent standard uniform random variable.

The proof is straightforward. Noting that 0 < y0 < a we see that provided λ is

sufficiently large, the probability of y∗ being negative when y0 is positive (and

vice versa) can be close to 1
2
.
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Before proceeding we focus on the sampling of the f(y | w, s, l) via a

reversible Markov sequence. To do this we set up a more generic setting for

the problem. So let

f(y) ∝ 1(y ∈ C)1(y ∈ B)

where C is an unknown interval, but a specific value of y can be tested to see

whether it lies in C or not, and B is a known single connected interval. Define

the initial B = B0 = (a0, b0) and let y0 be the current point which lies in C ∩B.

The sequence of proposals (yr)r≥1 is given by

yr = ar−1 + ur(br−1 − ar−1), (4.3)

where the (ur) are an independent sequence of standard uniform random

variables, and if yr /∈ C, the Br−1 is updated to Br via

ar = ar−1 1(yr > y0)+yr 1(yr < y0) and br = br−1 1(yr < y0)+yr 1(yr > y0).

(4.4)

This sequence continues until yr ∈ C for some r.

Lemma 4.1.2. If Ir is the current length of the interval from which yr is taken

uniformly, then the size of the next interval is random and Ir+1 = u Ir, where

u is a uniform random variable from (0, 1) and independent of Ir.

Proof. If the interval Br = (ar, br), then yr+1 = ar + u(br − ar), and

ar+1 = ar 1(yr+1 > y0) + (ar + u(br − ar))1(yr+1 < y0)
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and

br+1 = br 1(yr+1 < y0) + (ar + u(br − ar))1(yr+1 > y0).

Hence,

Ir+1 = br+1 − ar+1 = (br − ar)
(
(1− u)1(yr+1 > y0) + u1(yr+1 < y0)

)
.

This completes the proof.

Corollary 4.1.2.1. If m = minr{Ir/I0 < ϵ}, then m is a 1 + Pois(− log ϵ)

random variable.

These two lemmas indicate how the sampler acts as both a jump, almost

uniform, and local sampler. And recall that at each iteration as the sampler

moves from its initial proposal y∗ back to y0, a new proposal is being made. In

short, a sequence of proposals is being generated ranging from a jump proposal

to a local proposal, the latter applying if all the jump proposals are rejected.

The next two results establish that our shrinking procedure leaves the

posterior distribution invariant. First, we note that Corollary 4.1.2.1 implies

that the shrinking procedure will terminate almost-surely for almost-all starting

values y. In particular, it will terminate when y is a continuity point of π(y),

and the set of discontinuity points of π(y) has Lebesgue measure 0.

Lemma 4.1.3. Let J denote the number of rejected points in the shrinking

procedure and suppose that y is a continuity point of f(y). Then J is finite

almost-surely.
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Proof. With probability 1 we will have w < f(y), and by continuity we will

have w < f(y ± ϵ) for sufficiently small ϵ. Hence, if the shrinking procedure is

eventually contained in an ϵ-neighborhood of y the procedure will terminate.

Corollary 4.1.2.1 implies that the time for this to occur is Poisson distributed,

and hence finite almost surely.

Theorem 4.1.4. The shrinking procedure defined by (4.3) and (4.4) defines

a Markov transition function Q(y | y′, w, s, l) which is reversible in the sense

that f(y | w, s, l)Q(y′ | y, w, s, l) = f(y′ | w, s, l)Q(y | y′, w, s, l).

Complete proof of Theorem 4 by Dr. Antonio Linero can be found in Appendix

B.

4.2 Introductory Illustrations

In the following, we present a number of illustrations, starting with two

simple expository examples. We then move to more substantive cases involving

high dimensional models, including the Ising model in Chapter 4.3 and variable

selection models in Chapter 4.4.

4.2.1 Example 1

To demonstrate the accuracy of the algorithm we present a simple

example where M is small enough so we know exactly the 2M probabilities.

We take M = 3 and

π(z1, z2, z3) =
ez

′Az∑
z∈C e

z′Az
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where C is the set of 8 possible values of z. The matrix A is randomly generated

with independent standard normal random variables. The matrix A is

A =

 −0.322 −0.314 −1.5410.332 1.109 −0.909
−0.391 0.213 0.118


and the correct probabilities are

p0,0,0 = 0.099, p0,0,1 = 0.111, p0,1,1 = 0.168, p1,1,1 = 0.018

p1,0,1 = 0.012, p0,1,0 = 0.300, p1,0,0 = 0.072, p1,1,0 = 0.221.

The algorithm was run for 100,000 iterations and the estimated probabilities

are

p̂0,0,0 = 0.097, p̂0,0,1 = 0.113, p̂0,1,1 = 0.171, p̂1,1,1 = 0.018

p̂1,0,1 = 0.012, p̂0,1,0 = 0.295, p̂1,0,0 = 0.072, p̂1,1,0 = 0.221.

The mixing is excellent, as an illustration we present a plot of the first 100

samples of the (z1) variable in Fig. 4.1.

The choices for the algorithm include p(s) and a. The idea is to enable

the intervals (l−s/2 < y < l+s/2∩|y| < a) to be large; therefore a is not such

an important choice, and we fix it at 2, while to ensure the largest intervals

we take p(s) ∝ se−λs with λ = 0.05. Note then that the sampling of the s

within an iteration is an exponential random variable with parameter λ added

to 2|y − l|.
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Figure 4.1: Plot of first 100 samples of z1
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Figure 4.2: Plot of sum of components of z vector
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4.2.2 Example 2

Another example, but a demanding one, is taking M = 8 and log π(zj ≡

1) = log π(zj ≡ 0) ∝ 100 with all the other vectors for z have log π(z) ∝ 1, so

the probabilities differ by 100 on log scale. This distribution is bimodal with

no route via local sampling from one to the other. Indeed, any local sampler

would fail to move from one of the modes once there.

This illustration is as difficult for local samplers as it possibly can be

for distributions on {0, 1}M . There are two separated modes with single points

and with all other probabilities effectively 0. The only way to be able to jump

between modes in this case is to have uniform proposals. Our algorithm has

this as a key component. Needless to say, a Metropolis sampler or Gibbs

sampler would not be able to switch mode once one has been reached.

The algorithm mixes over the two modes well; see Fig. 4.2. The vertical

axis represents the sum of the components of the z vector which has modes at

0 and m. A pure local sampler would of course not leave a mode once reached.

To test this illustration to an extreme, we set M = 20. On a number of runs of

size 106 we get at least one switch between the two modes. Note that 220 is

just over 1,000,000. Hence, the nature of the sampler is as if we restart the

chain randomly at a location for each iteration. However, instead of the chain

then moving locally about this location, it moves, with proposals at each step,

which can be accepted, towards the previous location and hence can then at

least mimic a local sampler.
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4.3 Ising Model

In 1920s, the physicists Ernst Ising and Wilhelm Lenz proposed a very

simple model, called Ising model, to study magnetism. Since that time, the

ising model has been intensively investigated for the betterment of statistical

physics.

The Ising model [32] is considered as a lattice of sites containing N

spins, a structure that gives the model computational advantages over other

statistical systems. A spin of the Ising model has two states: an up state and a

down state. If we denote a spin at a site i by the symbol zi, then the up state

takes the value of zi = 1 and the down state zi = −1.

Let i and j refer to two nearest neighbor sites on the lattice and let zi

and zj be the spins on these sites, which are also considered as dipole moments.

Having the spins of the Ising model as dipole moments, we consider this model

as a real magnetic material, in which constant dipole interactions are taking

place. With that in mind, the energy associated with a pair of nearest neighbor

spins is then given by −Jzizj, meaning that, if the two spins are aligned

(up or down), then the energy associated with them is −J ; otherwise, this

energy is +J . Physically, the value of J measures the strength of a spin-spin

interaction such that J > 0 corresponds to a ferromagnetic material; J < 0,

the anti-ferromagnetic material.

Now we take C2
M = {(α, β) : α, β ∈ [1,M ]} and define a neighborhood
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Figure 4.3: Graph showing the neighborhood system of the Ising model on C2
3.

system via

Nc =

{
(α, β) : |α− c1|+ |β − c2| = 1

}
for all (c1, c2) ∈ C2

M .

The graph of the neighborhood system is a square lattice and is shown in

Fig. 4.3 for M = 3.

The nodes {zi}i∈C2
M

each take values in {−1,+1} and the energy function

of the Ising model is given by

E(z) = −J
∑

(i,j)∈E

zizj −H
∑
i∈C2

M

zi,

where H ∈ R corresponds to the presence of an “external magnetic field”, J ∈ R

controls the strength of interaction between neighbors, and E is the edges in

the graph induced by the neighborhood system. The first sum is over all pairs

of nearest neighbors in the lattice and the second sum is over all lattice sites.

In general, we consider simple cases where H = 0 and J = 1 (or,

sometimes J = −1), and denote T as the temperature; then we have a

109



distribution of the form

πT (z) =
1

ZT

exp

 1

T

∑
(i,j)∈E

zizj

 ,

where ZT is the normalizing constant. If zi = zj = 1 or zi = zj = −1, then

zizj = 1. Otherwise, zizj = −1, which indicates that the configuration with

the lower energy (or high probability) are those where adjacent variables have

the same value.

The energy function will take its lowest values at the global minimum

(there could be more than one) of E. Thus, the global minimums are the

most likely configurations if we draw from πT (z) (so long as T <∞). A large

value of T (high temperature) tends to “flatten out” the distribution, making

all configurations more or less equally likely, while a small value of T (low

temperature) tends to accentuate the probabilities of the lowest energy states

[32]. This suggests that if we could sample from the distribution πT (z) with

a sufficiently small value of T , then we would obtain a global minimum of E

with high probability.

The Ising model exhibits certain interesting properties. For instance,

when the temperature T is lower than the critical temperature Tc, most of the

spins are aligned, giving a large total magnetization. On the other hand, as

the temperature rises from Tc, spins become more randomly oriented to give a

zero total magnetization for small external magnetic field H.

During a Monte Carlo simulation of the Ising model, the magnetization

stands as good order parameter to study the phase transitions in the ferromag-
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netic case. As previously mentioned, this order parameter is zero in a high

temperature regime and non-zero in a low temperature regime. As stated before,

Ising analytically solved this model in one dimension and showed that there is

no phase transition. In one dimension, the magnetization decreases slowly and

continuously as the temperature increases. L. Onsager (1944) exactly solved

the two dimensional Ising model and revealed that the model exhibits a phase

transition at a temperature Tc = 2J
log(1+

√
2)

The Metropolis-Hastings algorithm and Gibbs sampling are two common

methods to sample from the Ising model. However, as the temperature decreases,

the Markov chains generated by either of the these two sampling methods would

locally be trapped. On the other hand, the discrete latent slice sampler can

simulate all the configurations of the nodes in parallel, rather than having to

randomly pick a node and making a proposal, as is in the Metropolis-Hastings

algorithm. Fig. 4.4 shows how the temperature parameter changes the output

of the Ising model with simulations from the discrete latent slice sampler. Since

all the nodes configurations of the square lattice are sampled, we can see the

energy function is still exploring its global minimum even at T = 0.5. This is

not possible for the Metropolis algorithm.

To demonstrate how the latent slice sampler jumps between modes, we

compare with Gibbs sampling and the standard Metropolis-Hastings algorithm.

For the latent slice sampler, we only need to know the exact form of the

numerator of π(z), while for the Gibbs sampler we need to derive the full set
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Figure 4.4: The Ising model on the 50× 50 square lattice simulated from latent slice
sampler. Left to right: T1 = 0.5, T2 = 5, T3 = 20.

of posterior conditional distributions for the (zi); i.e.

π(zi = +1|z−i) =
exp

{
1
T

∑
{j:i∼j} zj

}
exp

{
− 1

T

∑
{j:i∼j} zj

}
+ exp

{
1
T
{j : i ∼ j}zj

}
=

1

2
+

1

2
tanh

 1

T

∑
{j:i∼j}

zj

 .

One possible Metropolis algorithm is to flip one randomly chosen vertex

of the current configuration of z (i.e. replace 1 with -1 or replace -1 with 1),

and use a distribution that is uniform over all such configurations at each step.

This gives a proposal z′ and the acceptance probability for it is given by

α(z, z′) =
exp (−E(z′)/T )
exp (−E(z)/T )

= exp

{
E(z)− E(z′)

T

}
.

To illustrate, we take an Ising model on a 25× 25 square lattice and a

sequence of decreasing temperatures, that is, a cooling sequence. For the latent

slice sampler, we take p(s) ∝ se−0.02s, which ensures almost uniform jumps.

The proportion of a randomly selected z(6,21) = 1 out of all 10,000 samples
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Figure 4.5: The proportion of z(6,21) = 1 out of all samples from latent slice sampling
(black circle), Gibbs sampling (blue cross), and Metropolis-Hastings algorithm (red
diamond) under different temperatures.

from the above three sampling methods under different temperatures is shown

in Figure 4.5. The samples are able to jump between +1 and −1 when the

temperature is higher than 1.5 . The samples from the latent slice sampler still

move under the lower temperatures 1, 0.2, and 0.05; while samples from Gibbs

sampling do not move when the temperature is lower than 1.75.

In general, Markov Chain will mix faster if they explore the state space

quickly. However, most of the algorithms we considered so far, including the

latent slice sampler, only make local changes at each step (that is, the samples

do not change too much from step to step). For example, the algorithm for the

Ising model only change the value at one site in each step. It would clearly be

better if we could make global changes at each step (that is, totally change the

value of the Markov chain from one step to the next). The problem, however, is

that global changes are very difficult to make. We certainly cannot just change

everything at random and try to accept it using Metropolis-Hastings (this
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would be almost as bad as the acceptance rejection method, which is very bad).

Much more sophisticated techniques must be used, like Parallel Tempering

[62, 44] and the cluster-update-based Wolff Algorithm [155, 8], together with

our either latent slice sampling or Metropolis-Hastings algorithm. More details

about the parallel tempering and Wolff algorithm can be found in Appendix B.

4.4 Bayesian Variable Selection

In this subsection we obtain a joint distribution for the variable selection

indicators of a linear model. The model is given by

yi =

p∑
j=1

xijzjβj + σϵi, (4.5)

where the z = (zj) are the indicators, taking the values 0 or 1, and the (ϵi) are

assumed to be independent standard normal. This model was first proposed in

Kuo and Mallick [94] as an alternative framework to the hierarchical model of

George and McCulloch [60]. We adopt a slightly different prior set up compared

to that of Kuo and Mallick [94]. We write the likelihood, using λ = 1/σ2, as

λn/2 exp

{
−λ
2
(y −Xβ)′(y −Xβ)

}
where X = X0 Z with X0 the design matrix based on the (xij) and Z = diag(zj).

We take a g-prior [157] for β; so for some g > 0, β ∼ N (0, gσ2(X ′X)−1) . If

Z ≡ 0 then β = 0 which is compatible with the idea that no predictors are

active. The prior for λ is taken to be gamma with parameters (a, a).

The aim now is to find the marginal posterior distribution for z given
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the data. This involves some straightforward integration. First

p(y | λ, x, z) ∝ λn/2+a−1e−λ(a+ 1
2
y′y)

(
g

1 + g

)|z|/2

e−
λ

2(1+g)
y′ HX y

where HX is the hat matrix corresponding to the X0 and Z; effectively removing

the columns for which the z = 0, and |z| is the number of {z = 1}. Hence,

assuming a uniform prior for z, we get

p(z | y, x) ∝
(

g

1 + g

)|z|/2{
a+

1

2
y′y +

1

2
y′HX y/(1 + g)

}−a−n/2

On the other hand, Kuo and Mallick [94] employed a MCMC algorithm which

worked as a Gibbs sampler and sampled the conditional distributions of β, z

and λ.

When the distribution p(z | y, x) is unimodal both the latent slice

sampler and Metropolis algorithms work well. The latter, using single move

proposals, mixing slightly better, though all the marginal probabilities of the

(zj) are estimated exactly the same. To illustrate this we take a sample of

size n = 100 and p = 3, the σ = 1 and the design matrix elements are taken

as independent standard normal. The true value of β = (0.3,−0.3, 0). We

ran the slice sampling algorithm for 10000 iterations and the means of the

sampled indicator variables were z̄1 = 0.359, z̄2 = 0.988, z̄3 = 0.090. With

the same dataset we ran a Metropolis algorithm also over 10000 iterations. One

iteration involves proposing a flip of each indicator variable and the Metropolis

accept/reject criterion is used to determine whether the flip occurs or not. The

corresponding sampled means are z̄1 = 0.359, z̄2 = 0.984, z̄3 = 0.097, which

are essentially the same as those from the slice sampler.
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Figure 4.6: Comparison of mixing of slice algorithm and Metropolis algorithm

In Fig. 4.6 we illustrate the sampled indicator variable z1 for both the

slice sampling algorithm (top) and the Metropolis algorithm (bottom) over

a period of 100 iterations. It can be seen the Metropolis algorithm mixes

better than the slice sampling algorithm. However, in this simple case the

local sampler is effective as the distribution of z is well behaved and nicely

unimodal. The slice sampling algorithm acts as both a local and global sampler,

explaining the differences.

However, when p(z | x, y) is bi-modal, the mixing of the slice sampler

is superior due to its ability to make large jumps in the z-space. A bimodal

distribution can be arranged and can also occur naturally when there is high

co-linearity between predictor variables. To describe the experiment, we take
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n = 100 and p = 10, and only one predictor is active, say x1 = (x11, . . . , x1p),

where the (x1j) are taken as independent standard normal. The true β1 = 5

and we generate the data with σ = 1. To create co-linearity we take x2j =

0.99x1j + 0.01 ξj, with the (ξj) as independent standard normal. Hence, the

p(z | y, x) is bi-modal at z = (1, 0, 0, . . .) and (0, 1, 0, . . .) with approximately

equal weight for each. Indeed, for both the slice sampling algorithm and the

Metropolis algorithm, the mean values of the z1 and z2 are 0.59 and 0.47.

However, for the single move Metropolis algorithm, the only way from

one mode to the other is to go via (1, 1, . . .). The probability of this combination

is 0.05 and it is this probability which determines the mixing ability of the

Metropolis algorithm. For example, over 100 iterations, we would expect 5

switches. This is demonstrated in Fig. 4.7. The bold lines are the z1 values

and the lines in red are the z2 values. As is seen the number of switches for

the Metropolis algorithm is 6, while for the slice sampler it is 13, since for

this algorithm the number of switches does not depend on the probability of

p(1, 1, . . .).

If the probability of p(1, 1, . . .) becomes too small then the ability of

the Metropolis algorithm to move between the two modes becomes increasingly

improbable. To make this point we take p = 2 and the value of g as 10−6 with

all other settings remaining the same. This makes the p(1, 1) probability very

small. The slice sampler chain mixes well and the mean values for z1 and z2

are 0.504 and 0.406, respectively. On the other hand, the corresponding values

for the Metropolis sampler are 1 and 0, respectively, indicating the chain is
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fixed at one of the modes. See also the Example 2 in Chapter 4.2.2. The slice

sampler can generate effectively uniform proposals in z space which if rejected

set up a sequence of proposals contracting back to the current point, which can

then accept small local moves. So if the Metropolis chain of only local moves

based on flips of a single z are switched to a uniform proposal to solve the

bottleneck problem, the inferiority to the slice sampler becomes very apparent

in that now the probability of a small move is becoming negligible.

0 20 40 60 80 100

0.0
0.4

0.8

slice sampler

0 20 40 60 80 100

0.0
0.4

0.8

Metropolis

Figure 4.7: Comparison of switching between modes for slice sampler (top) and
Metropolis (bottom)

In Chapter 4.5 we discuss the mixing of the two types of chain via

transition matrices in z space. By only considering 4 states we can easily
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compute the second largest eigenvalues of each transition matrix. Generally

speaking, the second largest eigenvalue quantifies the mixing of the chain, with

smaller eigenvalues corresponding to faster mixing chains. The Metropolis chain

has the bottleneck which creates a large second largest eigenvalue, whereas

the jumping potential of our latent slice sampler allows the second largest

eigenvalue to be small. Though the setting is zooming in on a few states, the

problem is going to be the same whatever the overall dimension of the z space

is.

Another version of the model incorporates a different prior; specifically

the Ising prior, see Li and Zhang [101]. Here the application is relevant to a

genomic variable selection model where covariates form a structured sequence.

In particular, the Ising prior imposes a Markov dependence between indicator

variables. The likelihood component of the model is the usual y = Xβ + σϵ,

though we take, with a slight modification to Li and Zhang [101], the prior to

be

β = N
(
0, σ2 (X ′X)−1D

)
and D = diag((1− γj)v20 + γj v

2
1)

with v0 small and v1 large. The prior for γ = (γ1, . . . , γd) is

P (γ) ∝ exp{a′γ + γ′Bγ}

for some vector a and matrix B. The model is essentially a “g”-prior set up with

a d-dimensional g and a “spike and slab” framework. The β can be integrated

out leaving

P (γ | y, σ2) ∝

(
d∏

j=1

1

1 + gj

)
exp

{
1

2
σ−2y′XD̃(X ′X)−1X ′y

}
P (γ),
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where gj = (1− γj)v20 + γjv
2
1 and D̃ = diag(gj/(1 + gj)).

Following Li and Zhang [101] we conduct a simulation for which n = 100

and d = 1000. For our setup we take γj = 1 for j ∈ [4, 6], with all the rest being

0. The relevant nonzero (βj) are taken to be all 1 and σ = 1. The matrix X is

comprises independent standard normal random variables while v0 = 0.01 and

v1 = 10. Finally, we take a to be the constant vector log(0.03/1/122) and B to

be the matrix with entry log(5× 1.12) in position (j, k) for which |j − k| = 1.

These are values used from Li and Zhang (2010).

We ran the chain for 10000 iterations; assuming the σ is known. The

chain took 1 minute to complete all iterations. Our primary aim is to show

that the algorithm runs quickly and provides good answers. We monitored the

output of the (γj) for j ∈ [3, 7] over the run of the algorithm; taking 10,000

iterations which took 2 minutes to complete (running on R code on a MacBook

Pro with 2.2 GHz processor and 16 GB Memory).

We obtained γ̂j=3:7 = (0.002, 1.00, 0.99, 0.99, 0.384). This type of re-

sult was the norm over multiple runs of the same problem; e.g. γ̂j=3:7 =

(0.106, 0.895, 0.999, 0.999, 0.036). In short, the support is present for the nonzero

βj for j = 4 : 6 while lack of support for the case when the βj are 0.

The message from this section is that the latent slice sampler demon-

strates a robust algorithm. It is adequate for cases where the target distribution

is well-behaved, while also having the ability to jump between modes when

the target distribution is not well-behaved. Whereas the Metropolis algorithm
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works well in the simple cases, it fails when modes are separated by regions of

very low probability.

4.5 Mixing Properties of Algorithms

In this section we explain why the slice sampling algorithm improves

on the Metropolis algorithm, the latter using the flip proposal as described in

illustrations in Chapter 4.2, when there is a bottleneck; i.e. regions of very

small probability between modes of high probability. To make the comparison

we only need to demonstrate with a small number of states.

4.5.1 Eigenvalues

Consider the joint probability mass function π(z1, z2) with z1, z2 ∈ {0, 1}

and

π(0, 0) = π(1, 1) =
1

2
− ϵ and π(0, 1) = π(1, 0) = ϵ,

for some small ϵ.

The Metropolis transition matrix obtained from proposing a flip of a zj ,

j = 1, 2, with probability 1
2

each is given by

PM =


1− 2ϵ

1−2ϵ
ϵ

1−2ϵ
ϵ

1−2ϵ
0

1
2

0 0 1
2

1
2

0 0 1
2

0 ϵ
1−2ϵ

ϵ
1−2ϵ

1− 2ϵ
1−2ϵ

 .

Here row 1 corresponds to (0, 0), row 2 to (0, 1), row 3 to (1, 0) and row 4 to

(1, 1) with the same ordering for the columns. It is straightforward to confirm
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π PM = π.

As can be seen, to arrive at (1, 1) from (0, 0), for example, the chain

must pass through either (0, 1) or (1, 0), yet the probability of such a move

is small. Hence there is a bottleneck separating (1, 1) from (0, 0). This will

hinder convergence of the chain and a measure of this is to use the eigenvalues

of P . Indeed, the largest eigenvalue is 1, and the second largest eigenvalue

contributes to the convergence rate: the closer it is to 1, the slower the rate.

The distance between π and πk, where πk is the probability mass function of z

at iteration k, depends on λk2, where λ2 is the second largest eigenvalue of the

transition matrix. See for example Diaconis and Strook (1991). The second

largest eigenvalue is given by 0.89 when e.g. ϵ = 0.05 and is 0.98 when ϵ = 0.01.

When we consider the transition matrix for the slice sampler, we assume

that the proposal is uniform, i.e. for any z the proposal for the new z is uniform

over the 4 states. This is based on the idea that the y∗j , for j = 1, 2, is with

probability 1
2

each either negative or positive. For simplicity, we only consider

a transition matrix with strictly inferior mixing compared to our slice sampler;

specifically, we ignore the multiple proposals possible during the proposed

states return to the current state. Such neglect of multiple proposals only

occurs for moves from either (0, 0) or (1, 1) to either (0, 1) or (1, 0).

For a proposal from e.g. (0, 0) to (0, 1), the acceptance is based on

ϵ > v (
1

2
− ϵ)

where v is a standard uniform random variable. Hence the probability of
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acceptance is 2ϵ/(1− 2ϵ); whereas from e.g. (0, 1) to (0, 0) it is 1, given ϵ < 1
4
.

Hence, the inferior mixing transition matrix for the slice sampler in this case is

given by

PS =


1
4
+ 1

2
(1− 2ϵ

1−2ϵ
) 1

4
2ϵ

1−2ϵ
1
4

2ϵ
1−2ϵ

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

2ϵ
1−2ϵ

1
4

2ϵ
1−2ϵ

1
4
+ 1

2
(1− 2ϵ

1−2ϵ
)

 .

The second largest eigenvalues are given by 0.44 when ϵ = 0.05 and by 0.49

when ϵ = 0.01, so approximately half the values from the Metropolis sampler.

To illustrate the theory, we simulate the slice sampler algorithm with

ϵ = 0.05. We take a = 2 and p(s)/s to be an exponential density with mean

20. Over a run of 10000 iterations, the estimated transition probability from

(0, 0) to (0, 1) is given by 0.283, whereas the value within PS is evaluated at

0.0278, which is smaller than the estimated value, yet extremely close to it.

Further, to investigate the assumption of uniform proposals, we recorded

the number of first proposals to be 0 for z1. Out of the 10000 from the run of

the chain, 5003 were 0. See also Lemma 1 for theoretical support for uniform

proposals.

4.5.2 Effective Sample Size

Another measure of the adequacy of a Markov chain is the number

of effective samples generated per evaluation of the likelihood. We consider

the two simulation settings of Chapter 4.4: recall that the first (which we
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Easy Hard

Method z1 z2 z3 z1 z2 z3

Slice 0.166 0.178 0.192 0.002 0.002 0.015
Metropolis 0.866 0.776 0.417 0.000 0.000 0.095

Table 4.1: Effective sample size per evaluation of the likelihood function for
the two variable selection settings described in Chapter 4.4 for the variables
z1, z2, z3. “Easy” refers to the setting with p = 3 and independent covariates
while “Hard” refers to the setting with p = 10 and colinear covariates.

label “Easy”) set β = (0.3,−0.3, 0), n = 100, and σ = 1 with iid normal

covariates, while the second (which we label “Hard”) set β = (5, 0, . . . , 0) with

p = 10, σ = 1, n = 100, and x2j chosen to be highly correlated with x1j. The

“Hard” setting is more difficult than the “Easy” setting for a Gibbs sampler

because the posterior is bimodal and the Gibbs sampler must navigate over a

region of very low probability to move from one mode to another.

Results for these simulation settings are given in Table 4.1. We see

that, for the “Easy” setting, the Metropolis algorithm (which sweeps over the

variables, proposing a transition from 0 to 1 and vice-versa for each variable)

performs remarkably well, while our discrete latent slice sampler is less efficient.

However we again see the ability of the slice sampler to navigate across modes

in a discrete space, as it performs much better than the Metropolis algorithm

at sampling the highly-correlated variables z1 and z2.
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4.6 Discussion

In this chapter we have exploited a slice sampling algorithm in continuous

space in order to sample a joint distribution on binary values. Such distributions

arise in classic contexts and are known to be problematic to sample when the

dimension is large and/or the distribution is multimodal. Our new sampling

algorithm works by being able to propose a move to any location from any

current location with almost uniform probability. If a large move is not accepted,

the sampler reverts to at least a local sampler in any given iteration.

When the distribution is in fact simple, in the sense it is unimodal,

the single flip proposal Metropolis chain works well and mixes faster than the

latent slice algorithm. However, this hides a couple of important issues. One

is that in practice it would not necessarily be known that the distribution is

unimodal and so other modes would be left undetected. A further point is

that algorithms which have the ability to jump between modes are needed and

currently such suitable algorithms are lacking. These new algorithms would

also be required to exhibit certain flexibility, which is that local moves can

occur if the large jumps get rejected, as a lot of them will be. This is precisely

a feature of the latent slice sampler; as the shrinkage proceeds from the initial

large move proposal, and if these get rejected, so the proposals become more

local to the current point.

A succinct way to describe the performance of the latent slice sampler

is that it is robust. It performs well if the distribution is simple, such as being

unimodal, yet has the ability to find different modes if they exist.
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In Chapter 4.2.1 we demonstrated the accuracy of the latent slice

sampler. The example in Chapter 4.2.2 is extreme but makes a point very

clearly about the ability of the latent slice sampler to jump between modes

and maintain a correct stationary distribution. This is certainly a challenging

problem and it is not clear there are even any alternative algorithm capable of

achieving this outcome. Chapter 4.3 considered the classic Ising model and

again highlights the problem of standard algorithms such as the Metropolis

sampler moving satisfactorily for low temperatures. The converse is true for

the latent slice sampler and it can still move and maintain adequate mixing

for much lower temperatures. In Chapter 4.4 we look at a variable selection

problem. In this case, when the problem is regular, also referred to as “easy”,

the Metropolis sampler has an advantage over the latent slice sampler. Though

as we have previously mentioned, this can be deceptive. For it might not be

known that other modes exist. On the other hand, when high co-linearity

exists the latent slice sampler outperforms the Metropolis, and with sufficiently

high co-linearity the Metropolis could be forced to come to a stop.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, I have summarized my work on a generic Markov chain

Monte sampling method – latent slice sampling for discrete variable, continuous

variable, and multi-binary variables respectively, and demonstrate the great

potential to be a replacement of widely-used Markov chain Monte Carlo sample

algorithms. Moreover, the latent slice sampling takes the computational

performance and convergence rate of Markov chains into account, which can

be used efficiently in high-dimensional data dominated in a vast range of

applications.

5.2 Future Work

Future work can go in a number of directions. One is to look at problems

involving multivariate distributions with mixed types of variable; e.g. the most

simple being a joint distribution on {0, 1} × R. Obviously more complicated

cases can be considered including mixture models where in a Bayesian setting

there will be a joint distribution on the component indicator variables as well

as the component parameters.
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Another direction would be to consider an adaptive algorithm and this

would be naturally arising via a general version of (4.1) letting the “free” density

for s to depend on x; i.e.

f(x,w, s, l) = 1(w < π(x)) s−1p(s | x)1(x− s/2 < l < x+ s/2).

The marginal density for x remains as π(x). The aim would be to adapt p(s | x)

as the chain proceeds so to better propose regions of higher probability, such

as separated modes.

our work shows promising results on Bayesian CART model and im-

balanced data clustering problems, which are potential direction of areas of

machine learning [4] and deep learning [99]. Whenever the Metropolis-Hastings

or slice sampling algorithms exist, we can substitute with latent slice sampling.

128



Appendices
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Appendix A

Appendix for Latent Slice Sampler of Discrete
Variables

A.1 Validity of The Transition Matrix

Suppose we will use latent slice sampling algorithm to sample x′ given

x. The goal is to prove the following transition density is a valid probability

mass function. {Xn} is a Markov chain with π being stationary,

pk(x
′|x) = π(x′)

k

min(x′+k−1,x+k−1)∑
l=max(x′,x)

1∑l
j=max(1,l−k+1) π(j)

(A.1)

where k > 1 and |x′ − x| ≤ k − 1. Clearly, it satisfies the detailed balance

equation:

pk(x
′|x)π(x) = pk(x|x′)π(x′)

To prove the summation of the above density pk(x
′|x) is equal to 1,

we first notice that the denominator summation depends on the relationship

between k and x, x′. Hence, without loss of generality, we assume x ≥ k such

that the ultimate goal is to prove

x+k−1∑
x′=x−k+1

pk(x
′|x) = 1
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which is equivalent to prove

S =
x+k−1∑

x′=x−k+1

π(x′)

min(x′+k−1,x+k−1)∑
l=max(x′,x)

1∑l
j=max(1,l−k+1) π(j)

= k

Proof.

S =
x+k−1∑

x′=x−k+1

π(x′)

min(x′+k−1,x+k−1)∑
l=max(x′,x)

1∑l
j=max(1,l−k+1) π(j)

=
x∑

x′=x−k+1

x′+k−1∑
l=x

π(x′)∑l
j=l−k+1 π(j)

+
x+k−1∑
x′=x+1

x+k−1∑
l=x′

π(x′)∑l
j=l−k+1 π(j)

=
x∑

x′=x−k+1

x′∑
l=x−k+1

π(x′)∑l+k−1
j=l π(j)

+
x+k−1∑
x′=x+1

x+k−1∑
l=x′

π(x′)∑l
j=l−k+1 π(j)

=
π(x− k + 1)∑x
j=x−k+1 π(j)︸ ︷︷ ︸
A1:1 term

+ · · ·+ π(x)∑x
j=x−k+1 π(j)

+ · · ·+ π(x)∑x+k−1
j=x π(j)︸ ︷︷ ︸

Ak:k terms

+
π(x+ 1)∑x+1
j=x−k+2 π(j)

+ · · ·+ π(x+ 1)∑x+k−1
j=x π(j)︸ ︷︷ ︸

B1:k-1 terms

+ · · ·+ π(x+ k − 1)∑x+k−1
j=x π(j)︸ ︷︷ ︸

Bk−1:1 term

(A.2)

From here, we need to perform summations of (A.2) as follows: summing over

all the first terms from A1 to Ak gives 1, and summing over all the second

terms from A2 to Ak and the first term of B1 also gives 1; the calculation

continues. Summing over all the (k − 1)th terms from Ak−1 to Ak and all

(k− 1−m)th terms from Bm’s gives 1 (where m = 1, . . . , k− 2), and summing

over the kth terms of Ak and all (k −m)th terms from Bm’s gives 1 (where

m = 1, . . . , k − 1). It is obvious that the total number of 1’s is k, which means

S = k.
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A.2 Derivation of p(· | ·) in Equation 2.18

The proposal of p(wM ′ | wM) is given as follows: a) wM → wM+1,

randomly choose wi and split it into wwi and (1−w)wi with w ∼ Beta(1, 1) and

place them on the original place, then p(wM+1 | wM ) = Beta(w | 1, 1)/M = 1
M

;

b) wM → wM−1, randomly choose wi from wM except for the last one and merge

it with wi+1, then p(wM−1 | wM) = Beta
(

wi

wi+wi+1
| 1, 1

)
/(M − 1) = 1

M−1
.

If M = m1, we need to first get p(wm1+1 | wm1) =
1
m1

, then we have

p(wm1+2 | wm1+1) =
1

m1+1
, . . . , up to p(wm2|wm2−1) =

1
m2−1

. The product of

all the p(· | ·) is

1

m1(m1 + 1) . . . (m2 − 2)(m2 − 1)
=

(m1 − 1)!

(m2 − 1)!
,

If m1 < M < m2, we need to get p(wM−1 | wM) = 1
M−1

, p(wM−2 |

wM−1) =
1

M−2
, . . . , up to p(wm1 | wm1+1) =

1
m1

, and then we have p(wM+1 |

wM) = 1
M

, p(wM+2 | wM+1) =
1

M+1
, . . . , up to p(wm2 | wm2−1) =

1
m2−1

. The

product of all the p(· | ·) is

1

(M − 1)(M − 2) . . .m1 ·M(M + 1) . . . (m2 − 2)(m2 − 1)
=

(m1 − 1)!

(m2 − 1)!
,

If M = m2, we need to first get p(wm2−1 | wm2) =
1

m2−1
, then p(wm2−2 |

wm2−1) =
1

m2−2
, . . . , up to p(wm1 | wm1+1) =

1
m1

. The product of all the p(· | ·)

is
1

(m2 − 1)(m2 − 2) . . . (m1 + 1)m1

=
(m1 − 1)!

(m2 − 1)!
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By summarizing all three possible cases, we therefore derive that the

product of p(· | ·) is equal to a constant (m1 − 1)!/(m2 − 1)!, where m1 =

max(1,M0 − k + 1) and m2 =M0 + k − 1.

A.3 Metropolis-Hastings Algorithm for Change-point Prob-
lem

In the following, we introduce each type of move in detail and calculate

individual acceptance probability of the Metropolis updates, respectively, of

the change-point problem.

i. The first kind of moves is the height hj:

A change to a height is attempted by first choosing one of h1, h2, . . . , hk

randomly, obtaining hj say, then proposing a change to h′j such that

log(h′j/hj) is uniformly distributed on the interval [−1
2
, 1
2
]. Note that

h′j = euhj with u ∼ Uniform(−1
2
, 1
2
). The derived transition density

q(h′j|hj) of this proposing is

q(h′j|hj) =
1

h′j
, where h′j ∈ [hj/

√
e,
√
ehj]

The target density is the posterior distribution which has the form

π(hj) ∝ p(y1, y2, . . . , yn|hj)p(hj|α, β)

Through calculation, the acceptance probability of the Metropolis-Hastings
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updates is

α(hj, h
′
j) = min

{
1,
p(y1, y2, . . . , yn|h′j) · p(h′j|α, β) · hj
p(y1, y2, . . . , yn|hj) · p(hj|α, β) · h′j

}
= min

{
1, e(hj−h′

j)(sj+1−sj+β)+(mj+α)(log h′
j−log hj)

}
(A.3)

ii. The second kind of moves is the position sj:

For ∀si ∈ [s1, sk+1], i = 2, 3, . . . , k, si are random variable and each si is

uniformly distributed with density p(si) = 1
sk+1−s1

. Note that they are

not independent. The joint distribution of s2, s3, . . . , sk is given by

p(s2, . . . , sj, . . . , sk) =
(2k − 1)!

(sk+1 − s1)2k−1
1{s1<s2<···<sk<sk+1}

k∏
j=1

(sj+1 − sj)

If s1, . . . , sj−1, sj+1, . . . , sk+1 are determined and only sj is the variable,

we can obtain

p(sj|s−j) =
1

sj+1 − sj−1

1{sj−1<sj<sj+1}(sj − sj−1)(sj+1 − sj)

where s−j = (s2, . . . , sj−1, sj+1, . . . , sk). The target density is given by

π(sj|s−j) ∝ p(y1, y2, . . . , yn|sj)p(sj|s−j)

with the transition density q(s′j|sj) = 1
sj+1−sj−1

.

The acceptance probability of the Metropolis-Hastings updates is then
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derived with the form

α(sj, s
′
j) = min

{
1,
p(y1, y2, . . . , yn|s′j) · p(s′j|s−j)

p(y1, y2, . . . , yn|sj) · p(sj|s−j)

}
= min{1, exp((hj − hj−1)(s

′
j − sj) + (m′

j−1 −mj−1) log hj−1

+ (m′
j −mj) log hj + log(s′j − sj−1) + log(sj+1 − s′j)

− log(sj − sj−1)− log(sj+1 − sj))} (A.4)

iii. The third kind of moves is “birth” steps of k:

Assumed the parameter subspaces Mk = {k} × R2k+1, where k ∈ N+

and 1 ≤ k ≤ kmax. k is drawn from Poisson distribution conditioned on

k ≤ kmax. The prior probability is

p(k) = e−λ λk−1

(k − 1)!

Denote θ(k) = (h1, . . . , hj, . . . , hk, s2, . . . , sj, sj+1, . . . , sk), then the likeli-

hood is

p(y1, y2, . . . , yn|k, θ(k)) = exp

(
−

k∑
j=1

hj(sj+1 − sj) +
k∑

j=1

mj log hj

)

For the “birth” steps, k′ = k + 1. Green first chose a position s∗ for

the proposed new step, uniformly distributed on [0, L]. It is assumed

to lie within an existing interval (sj, sj+1) with probability 1. If ac-

cepted, s′j+1 will be set to s∗, and sj+1, sj+2, . . . , sk will be relabelled as

s′j+2, s
′
j+3, . . . , s

′
k+1, with corresponding changes to the labelling of step

heights. The new heights h′j, h′j+1 are proposed for the step function
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on the subintervals [sj, s
∗) and [s∗, s′j+2) and should be perturbed in a

way such that hj is a compromise between them. To preserve positivity

and maintain simplicity in the acceptance ratio calculations, we use s

weighted geometric mean for this compromise, so that

(s∗ − sj) log h′j + (sj+1 − s∗) log h′j+1 = (sj+1 − sj) log hj

and define the perturbation such that

h′j+1

h′j
=

1− u
u

, where u ∼ Uniform(0, 1)

Then we can derive the form of h′j and h′j+1:

h′j = hj

(
u

1− u

) sj+1−s∗

sj+1−sj

, h′j+1 = hj

(
1− u
u

) s∗−sj
sj+1−sj

The target density here is

π(k) ∝ p(y1, y2, . . . , yn|k, θ(k))p(k, θ(k))

with the transition density q(k′, θ(k′)) = q(u(k)) = q(u) = 1.

Suppose the probability of choosing move (k, θ(k)) is j(k, θ(k)), then the

expression of the acceptance probability of the birth proposal is

α = min{1, likelihood ratio× prior ratio× proposal ratio× Jacobian}

Below we listed the computation results of the four terms in the above

acceptance probability.
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(a). Likelihood ratio:

p(y1, y2, . . . , yn|k′, θ(k
′))

p(y1, y2, . . . , yn|k, θ(k))
= exp{−h′j(s∗ − sj)− h′j+1(sj+1 − s∗)

+ hj(sj+1 − sj) +m′
j log h

′
j

+m′
j+1 log h

′
j+1 −mj log hj}

(b). Prior ratio:

p(k′, θ(k
′))

p(k, θ(k))
=

2λ(2k + 1)

(sk+1 − s1)2
(s∗ − sj)(sj+1 − s∗)

sj+1 − sj

× βα

Γ(α)

(
h′jh

′
j+1

hj

)α−1

exp{−β(h′j + h′j+1 − hj)}

(c). Proposal ratio:

j(k′, θ(k
′))

j(k, θ(k))q(u(k))
=

dk · p(sj+1)

bk−1 · p(s∗) · q(u)
=
dk(sk+1 − s1)

kbk−1

bk−1 means the probability of choosing the move from Mk to Mk+1.

dk means the probability of choosing the move from Mk+1 to Mk.

The subscript of the probability means the number of change-points

in the subspace.

(d). Jacobian: ∣∣∣∣ d(θ(k
′))

d(θ(k), u(k))

∣∣∣∣ = (h′j + h′j+1)
2

hj

Combining these formulas together, we can get an explicit form of the

acceptance probability.

iv. The fourth kind of moves is “death” steps of k:
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For the “death” steps, k′ = k − 1. If the random draw sj+1 from

s2, s3, . . . , sk is proposed for removal , the new height over the inter-

val [s′j, s′j+1) is h′j with the weighted geometric mean satisfying

(sj+1 − sj) log hj + (sj+2 − sj+1) log hj+1 = (s′j+1 − s′j) log h′j

With the same perturbation u = hj/(hj +hj+1), we derive the new height

h′j as

h′j = h

sj+1−sj
sj+2−sj

j · h
sj+2−sj+1
sj+2−sj

j+1

The acceptance probability for the corresponding death step has the same

form with appropriate change of labelling of the variables, and the ratio

terms inverted. Below we listed the four terms as the “birth” steps of the

acceptance probability.

(a). Likelihood ratio:

p(y1, y2, . . . , yn|k′, θ(k
′))

p(y1, y2, . . . , yn|k, θ(k))
= exp{−h′j(sj+2 − sj) + hj(sj+1 − sj)

+ hj+1(sj+2 − sj+1) +m′
j log h

′
j

−mj log hj −mj+1 log hj+1}

(b). Prior ratio:

p(k′, θ(k
′))

p(k, θ(k))
=

(sk+1 − s1)2

2λ(2k + 1)

(sj+2 − sj)
(sj+1 − sj)(sj+2 − sj+1)

× Γ(α)

βα

(
h′j

hjhj+1

)α−1

exp{β(hj + hj+1 − h′j)}
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(c). Proposal ratio:

j(k′, θ(k
′))q(u(k

′))

j(k, θ(k))
=
bk−2 · p(s∗) · q(u)
dk−1 · p(sj+1)

=
kbk−2

dk(sk+1 − s1)

dk−1 means the probability of choosing the move from Mk to Mk−1.

bk−2 means the probability of choosing the move from Mk−1 to Mk.

(d). Jacobian: ∣∣∣∣d(θ(k′), u(k′))d(θ(k))

∣∣∣∣ = h′j
(hj + hj+1)2
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Appendix B

Appendix for Multivariate Binary Sampling

B.1 Slice Sampling Algorithm

Algorithm 1: Univariate slice sampling algorithm for variable x
1. Sample w ∼ Uniform(0, f(x0))
2. Sample x1 ∼ Uniform on S = {x : f(x) > w}

B.2 Proof of Theorem 4

Theorem 4. The shrinking procedure defined by (4.3) and (4.4) defines a

Markov transition function Q(y | y′, w, s, l) which is reversible in the sense that

f(y | w, s, l)Q(y′ | y, w, s, l) = f(y′ | w, s, l)Q(y | y′, w, s, l).

Proof. For simplicity, we will consider only the case of univariate y; the proof

for multivariate y is essentially the same. Also, we suppress dependence of Q

on w, s, l to lighten notation. First, we note that f(y | w, s, l) is uniform on the

set {y : w ≤ π(y), l ∈ [y − s/2, y + s/2], |y| ≤ a}. If either y or y′ are outside

of this set, we will have f(y | w, s, l)Q(y′ | y) = f(y′ | w, s, l)Q(y | y′) = 0

trivially, so assume without loss-of-generality that this is not the case.

Following Neal (2003), we let r = (r1, . . . , rJ) denote the sequence of

rejected points in the shrinking procedure; by Lemma 4.1.3, r is a random
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vector of finite length. Let Q(y′, r | y) denote the transition density of moving

from y to y′ via the intermediate rejected points r; formally, Q(y′, r | y) is a

density with respect to dy ×
∑∞

j=0 λj(dr) I(J = j) where λj denotes Lebesgue

measure on RJ . To show reversibility, it suffices to establish the stronger result

that Q(y′, r | y) = Q(y, r | y′) for all r. To show Q(y′, r | y) = Q(y, r | y′), we

first consider the case that some rj lies in between y and y′. In this case, the

shrinking procedure starting from y will eliminate y′ as a potential value, and

vice-versa. Hence Q(y′, r | y) = Q(y, r | y′) = 0 in this case. Otherwise, by the

uniformity of the sampling, we have Q(y, r | y′) = Q(y′, r | y) =
∏J

j=0(bj−aj)−1

where (a0, b0) is the starting interval, (a1, b1) is the interval after rejecting the

joint r1, and so forth. Hence Q(y, r | y′) = Q(y′, r | y).

The logic behind extending this proof to the multivariate setting is

essentially the same: we again introduce the set of intermediate moves r,

where it will only be possible to transition from y to y′ if none of the rejected

proposed points y⋆j for coordinate j lies in between yj and y′j, and in this case

the probability of transitioning from y to y′ via r is the same as transitioning

from y to y′ via r by uniformity.

B.3 Parallel Tempering and Wolff Algorithm
B.3.1 Parallel tempering

In the Ising model, the most likely configurations are all 1’s and all −1’s.

Configurations that are mixture of 1’s and −1’s have much lower probabilities.

Generally, it is hard to make samplers that can escape from high probability
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region, travel quickly through low energy regions, and find other high energy

regions. The idea of parallel tempering is to use multiple Markov chains to

accomplish this.

In parallel tempering, we suppose we want to sample from the Boltzmann

distribution of the form

πT (z) =
1

ZT

exp

{
1

T
E(z)

}
, (B.1)

With a little bit of work, almost any distribution can be written in this

form. The basic idea is then to run multiple Markov chains, each at a different

temperature, with the Markov chain with the lowest temperature having sta-

tionary distribution πT . The Markov chains running at high temperatures will

quickly explore the state space, while the Markov chains at lower temperatures

will mainly move in small regions of high probability. Periodically, we will

switch the values of two of the Markov chains using a Metropolis move (so that

the stationary distributions of the Markov chains are preserved). In this way,

the Markov chains with lower temperatures can ‘teleport’ from one region of

high probability to another. More formally, the setup is as follows. We consider

a sequence of K temperatures

T = T1 < T2 < · · · < TK

and define associated Boltzmann distributions πT1, . . . , πTK
. We then define a

Markov chain, {(Z(1)
n , . . . , Z

(K)
n )}n∈N with stationary distribution π(z1, . . . , zK) =

πT1(z1) . . . πTK
(zK). Note that the projection of the first coordinate of this
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Markov chain is a Markov chain, {Z(1)
n }n∈N, with stationary distribution πT .

We can simulate the Markov chain {(Z(1)
n , . . . , Z

(K)
n )}n∈N by running separate

MCMC samplers for each of its components.

B.3.2 Wolff Algorithm

We now have a few options for simulating the Ising model, however they

are by no means perfect. The issue still remains of falling into local optima

instead of a global optima. From our previous mathematical study we know

that energy minima for the Ising model are “far away” from each other, that is

they have very little overlapping spins. By flipping individual spins 1 by 1, it is

very hard to make the chains explore the energy landscape fully. The natural

way to solve this is to flip multiple spins simultaneously at each step. From the

general definition of the Metropolis-Hastings method there is nothing stopping

us in following this line of reasoning.

Unfortunately this makes things much harder, the complications arise in

finding a valid scheme for flipping multiple spins at once. We have glossed over

the mathematical foundations of MCMC here but the proposal/acceptance

probabilities need to be selected in “smart way” in order for the resulting

Markov chain to have certain properties. When looking at more than 1 spin

at a time in the Ising model this proved fairly difficult. This is evidenced by

the original Metropolis-Hastings scheme being proposed in 1953 yet the first

multi-spin method not being proposed and justified until the late 1980s.

The main idea of the algorithm is to look for “clusters” of spin sites with
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the same spin. We then decide to flip the spin of all the sites within this cluster

at once. We then pick a new cluster and repeat this process as necessary. The

pseudocode for this algorithm as it applies to the Ising model is:

i. A site i with spin zi is selected at random and added to an empty cluster.

ii. For each neighbour j of i such that zi = zj , we add j to the cluster stack

with probability pij = 1− exp(−2βJ), else move onto next neighbor.

iii. After all neighbours are exhausted, select next site in the cluster stack

and repeat the previous step until the cluster stack is exhausted.

iv. Once the cluster is fully specified, flip the spins of all sites in the cluster

and begin again.

We can see that like the Gibbs sampling algorithm, here the Wolff

algorithm is “rejection free”, that is, all proposed sites are flipped. We also

note that there is nothing in this method that is incompatible with simulated

annealing/tempering - these techniques are often used together.

The Wolff algorithm does not “converge” to a low energy state, instead

it samples from the entire space in a “smart way” - even if it finds itself in the

global energy minima there is still a relatively high probability of escaping.

If we were interested in finding a ground state we could keep track of the

configuration corresponding to the lowest observed energy state.
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