I FINAL REPORT I NITRdGEN PROCESS STUDIES (NIPS): I THE EFFECT OF FRESHWATER INFLOW ON I BENTHOS COMMUNITIES AND DYNAMICS I I by Paul A. Montagna, Principal Investigator I from University of Texas at AustinI Marine Science Institute P.O. Box 1267 Port Aransas, Texas 78373 I I to Texas Water Development BoardI P.O. Box 13087 Capitol Station Austin, Texas 78711 I Interagency Cooperative Contract TWDB Contract Nos. 9-483-706, 9-483-705, 8-483-607 I I DECEMBER 1989I The University of Texas Marine Science Institute Technical Report No. TR/89-011 I I I I I I I I I I I I I I I I I I I I I I I Table of Contents I Acknowledgements i i I Preface . . i i i I The Effect of Freshwater Inflow on Meiofaunal Consumption of SedimentBacteria and Microphytobenthos in San Antonio Bay, Texas .. 1 I The Effect of Freshwater Inflow and Sediment Resuspension on BenthicMetabolism and Nutrient Regeneration in the Guadalupe and NuecesI Estuaries, Texas . . . . . . . . . . . . . . . . . . . . . . 29 I The Effect of Freshwater Inflow on Meiofaunal and Macrofaunal Populations in I San Antonio, Nueces and Corpus Christi Bays, Texas .... 97 A Synoptic Comparison of Benthic Communities and Processes in the GuadalupeI and Lavaca-Tres Palacios Estuaries, Texas . . . . . . . . . 149 I A Review: The Effect of Freshwater Inflow on the Benthos of Three Texas Estuaries . . . . . . . . . . . . . . . . . . . . . . 185 Data Appendix I 233 I I I I I I I I Acknowledgements I In response to House Bill 2 (1985} and Senate Bill 683 1987}, as enacted by I the Texas Legislature, the Texas Parks and Wildlife Department and the Texas Water Development Board must maintain a continuous data collection and I analytical study program on the effects of and needs for freshwater inflow to the State's bays and estuaries. As part of the mandated study program, this I research project was funded through the Board's Water Research and Planning Fund, authorized under Texas Water code Sections 15.402 and 16.058(e}, and administered by the Department under i nteragency cooperative contracts Nos. I 8-483-607, 9-483-705, 9-483-706. I I I I I I I I I I I i i I I I Preface This final report is composed of five chapters. The study was performed fromI September 1986 through December 1989. Each chapter represents a major projector time frame.I During the first year (1986-1987: NIPS-I) of this study we completed the meiofaunal grazing experiment (Chapter 1), the effect of sediment resuspensionon I benthic metabolism and nutrient regeneration (Chapter 2), and communityanalyses of San Antonio Bay (Chapter 3). John Turany (Captain of the R/V KATY),I Rick Kalke, John Kern, Joe Dirnberger, Won Bae Yoon, Lynn Tinnin, Judy Lee, and Skip Rhudy all helped out in various aspects of the experiments undertakenduring that period. I I am al so very grateful for the assistance of HughMacintyre for chlorophyll analyses, and Terry Whitledge for nutrient analyses.During the second year (1987-1988: NIPS-2) of this study we performed · the I spatial and temporal metabolism study (Chapter 2), and community analyses ofNueces and Corpus Christi Bays (Chapter 3). Noe Cantu, Hayden Abel, and MikeI Hall Captained the R/V ETTA ARMSTRONG during this work, R. J. and Kalke,Dirnberger, J. Kern, L. Tinnin, and Eileen Westerman helped gave technical assistance. I I am also very grateful for the assistance nf Dean Stockwell forchlorophyll analyses, and Terry Whitledge for nutrient analyses. I I Finally, during the third year of the program (1988-1989) we completed theestuarine comparison experiment (Chapter 4), and the review of the benth icliterature (Chapter 5). Rick Kalke played the largest role in both of these studies. We have learned an awful lot about benthi c processes and the role ofI freshwater inflow during these last three years. This information is criticalto environmental managers in Texas. Texas is a water limited state. There willa1ways I be competing interests for freshwater in our state. The bays andestuaries also depend on freshwater, just like we depend on blood pumping andcirculating throughout our bodies. I I Texas has about 7% of all the estuarinesurface area in the nation. It is therefore important that Texas take a leadingrole in determining the effect and influence of freshwater inflow on the baysI and estuaries. This is necessary so that we can continue to harvest the bountynature has to offer. I i i i I There are three size classes of benthic organisms. The smallest are the I microbes: one-celled bacteria, yeasts, fungi, microalage, and protozoans. They average from 1 to 100 µmin size. They are small, yet they have an enormous I impact on the processes and productivity in sediment communities. The smallest metazoan animals are the meiofauna, 63-500 µm in size. These are tiny animals I like nematodes, and harpacticoid copepods. They are also small, but have very rapid turnover times, so they can also be very important in benthic dynamics. Finally, there is the macrofauna, everything greater than 500 µm in size. This I study has concentrated on the infauna, e.g., po1ychaete worms, sma11 c1ams, snails, and crustaceans. Together, this community forms the base of the food I chain which supports all marine life in the estuaries. There are also important synergistic relationships between the three groups of benthic organisms. I Without one, the others do not function as well. There are several aspects which have come out of this study which indicate I the importance of the benthos, and of freshwater inflow. One is the relationship between freshwater inflow and marine exchange via passes into the Gulf. I San Antonio Bay is a small closed system (i.e., there is no exchange with the Gulf of Mexico). So, freshwater has an enormous impact on San Antonio Bay. I Since it is small and closed, salinities are generally lower than in the LavacaMatagorda Bay Estuary which has comparable inflow. San Antonio Bay generally I has the highest abundances and biomasses of bacteria, meiofauna, and macrofauna. It also has very high potential rates of trophic transfer. The community there I is dominated by freshwater species. In contrast, open bays, i.e., bays with Gulf exchange like Corpus Christi and Matagorda Bays, have more oceanic communities. Even though the communities in these bays are very different in I some respects, they function in similar manners. The Gulf seems to have the largest influence on community structure, but freshwater inflow has the largest I influence on community function. There are long-term and seasonal cycles. The seasonal pattern is I unmistakable. There is spring recruitment, and decreases in abundance in the summer and late fa11 . The extent of the spring recruitment may be more I sensitive to freshwater inflow than the die-backs of summer and fall. Therefore, the long-term cycles of floods and droughts can be very important in I iv I I I I regulating year-to-year. differences in benthi c. productivity. Abundances of animals seem to be much higher the year after an inflow event. The nutrients brought down the river and into the bay seem to stimulate the benthos for very long periods of time. But, after successive drought years, there appears to be a depletion of nutrients si nee abundances generally start to decrease. TheI timing of floods and storms is important. Although, the nutrients are necessary, large decreases in salinity can harm animals which depend on narrow I salinity ranges as cues for reproduction. The Texas coast is also very windy. This results in a great deal of sediment I resuspension and the turbid waters which are typical of our bays. Apparently, I I resuspension is very important to increase the regeneration and recycling of nutrients. The benthos can supply about one-third of the nitrogen needed by primary producers when the wind is blowing. But, this can drop to only a few percent when the wind is calm. Texas benthos seems to be uniquely adapted toI the windy conditions on our coast line. The wind is thus an energy source which fuels production in our estuaries. It also plays a key role in generating theI circulation patterns which can move nutrients around the bays and estuaries. But, freshwater inflow and new nutrient input to the marine ecosystems must make I I up the difference between the requirements of the regenerated supply by the benthos. If I have peaked your interest, please read on, ~ .~10.~d I v v I I I I I I v primary producers and the all the details are inside. Paul Montagna December 14, 1989 I I I I I I I I I I I I I I I I I I I I I The Effect of Freshwater Inflow on Meiofaunal Consumption of Sediment Bacteria and Microphytobenthos in San Antonio Bay, Texas I I Paul A. Montagna I Won Bae Yoon 1 University of Texas at Austin I Marine Science Institute Port Aransas, Texas 78373-1267 ABSTRACT I Edaphic bacteria and microphytobenthos are known to be food resources formeiobenthic organisms. River inflow is a source of nutrients in estuaries. IfI inflow results in concomitant primary and secondary production, then meiofauna I grazing rates should be higher in the freshwater influenced part of the estuary. Meiofauna grazing rates in San Antonio Bay were 3~ times greater in the freshwater influenced zone than in the marine influenced zone. However, thisI was due to a predominance of juvenile mollusks (temporary nieiofauna) in thefreshwater zone. Permanent meiofauna (i.e., harpacticoids and nematodes) allI had higher grazing rates in the marine influenced zone. Grazing rates werehigher on mi croal gae than on bacteria. Only one per cent of the bacterialpopulation was removed per hour, but, four per cent of the mi croal gae were I removed per hour. Grazing pressure on bacteria and microalgae was much greaterthan the standing stocks or productivity could withstand. Production of 'I bacteria and microalgae in the head of the estuary was advected, resulting in higher bi amass in the 1ower end of the estuary. Therefore, advect ion ofI microbial production from the river is very important in maintaining standingstocks of benthic meiofauna throughout the estuary. I I I 1Present address: Department of Biology (56-117), Massachusetts Institute of Technology, Cambridge, MA 02139. I 1 I I 2 Meiofaunal Consumption I I INTRODUCTION I Nutrient loading by rivers into bays and estuaries is thought to maintain or enhance productivity (Deegan et _g]_., 1986; Nixon et _g]_., 1986). Any enhanced I productivity by microbial producers such as microalgae (via autotrophy) or bacteria (via heterotrophy) would be readily available to first trophic-level I consumers such as mei ofauna. Mei ofauna are the sma11 est metazoa living in sediments with body lengths from 0. 063 to 0. 5 mm in length. Although some meiofauna are deposit feeders (Jensen, 1987), most are grazers which select or I utilize single cell microbes as food (Montagna, 1984b). There is a strong positive empirical relationship between bacterial abundance I and chlorophyll concentration (Bird and Kalff, 1984), and bacterial production and net primary production (Cole et _g]_., 1988). High nutrient concentrations I in the heads of bays and estuaries should result in higher primary production than in the more marine influenced part of the estuary (Nixon et _g]_., 1986). I Benthic respiration (Hargrave, 1973) and biomass (Grabmeier et _g]_., 1988) are positively correlated with primary production. High primary production should stimulate or correlate with higher secondary production by benth i c bacteria I (Graf et _g]_., 1982). Benthic invertebrates are often thought to be food limited (Genoni, 1985; Lopez and Levinton, 1987). Enhanced productivity by microbes I could then stimulate meiofaunal grazing rates on those microbes. If invertebrates are food limited then meiofauna should respond to higher I nutrient inputs and resulting microbial productivity with higher grazing rates. To test this hypothesis meiofaunal grazing rates were measured along a salinity I gradient in San Antonio Bay, Texas. This study was part of a multidisciplinary effort to investigate the effect of freshwater inflow on nitrogen processes in Texas estuaries (Whitledge et~., 1989). I I MATERIALS AND METHODS Study design. Four stations in San Antonio Bay, Texas were chosen for study I (Figure 1). Two stations (A and B) were at the head of the bay where I I I I Meiofaunal Consumption 3 I freshwater influence is greatest. Two other stations (C and D) were near theIntracoastal waterway where marine influences were greatest (Figure 1). By I using two stations in the freshwater influenced zone and two stations in themarine influenced zone we are replicating effects at the treatment level andavoiding pseudoreplication (Hurlbert, 1984). The four stations were sampledI three times, in January, April and July 1987. Temperatures were similar inJanuary and April but twice as warm in July (Table 1). Salinity throughout theI bay was increasing through the winter, but a huge spring rain converted theentire system to a very fresh condition which persisted through July (Table 1).I The sampling period was during an abnormally low salinity year due to higherthan average amounts of rain and river inflow.I Measurement of grazing rates. In situ meiofaunal grazing rates on bacteriaand microalgae were measured by incubating sediment slurries with two I radiolabeled substrates, tritiated thymidine (3HTdR) and 14C-bicarbonate (H14CO~)\ I (Montagna and Bauer, 1988). The top 2 cm (12 cm3) of 60 cm3 sediment cores wereplaced in 60 cm3 clear centrifuge tubes. Five µCi of 3HTdR and five µCi of H14CO~I were added to the s1 urri es and samp1 es were incubated for 2 h at in situtemperature. These slurries are different from the kind employed by Carman et _gj_. (1989). They stirred up whole stoppered cores. We selected the aerobic section of the sediment and diluted it in our sea water based treatments. I Live, non-feeding controls were used to correct for non-grazing label uptakeby meiofauna (Montagna, 1983). A saturated solution of nalidixic acid (200 µgml-1) plus 5'-deoxythymidine (2 µg ml-1) (hereafter referred to as ND) was used--· to inhibit prokaryotic uptake of thymidine (Findlay et al., 1984; Montagna andBauer, 1988). Live controls for this experiment consisted of 3 replicateI slurries with H14CO~, 3HTdR and ND added. These were incubated in the dark toinhibit photosynthetic fixation of C02•I After 2 h, incubations were terminated by adding 2% formalin, and a 1 ml subsample was withdrawn from the slurries. The subsample was filtered onto aI 0. 2 µm Mi 11 i pore f i 1 ter and was rinsed 3 times with fi 1tered seawater toestimate uptake of H14CO~ by microalgae and 3HTdR by bacteria. The subsample wasI dispersed and suspended in 5 ml distilled water and 15 ml Insta-Gel fordual-label liquid scintillation counting. Meiofauna were separated from I I 4 Meiofauna7 Consumption I sediments by diluting samples with 2% formalin, swirling to suspend the animals, I and decanting them and the supernate onto 63 µm Nitex screen filters. Meiofauna were then rinsed into jars and kept in refrigerated 2% formalin until sorting I (1 to 2 d). Three replicate cores were taken for each treatment. Sorting was performed under a dissecting microscope and meiofauna were sorted I by taxa into scintillation vials containing 1 ml distilled water. After sorting, meiofauna were dried at 60 °C and solubilized in 100 µl Soluene tissue I solubilizer for 24 h. Samples were counted by dual-label liquid scintillation spectrophotometry in 15 ml Insta-Gel. Meiofaunal grazing rates on bacteria and microalgae were estimated by the I model proposed by Daro (1978) and modified by Roman and Rublee (1981) and Montagna (1984b). The meiofaunal grazing rate (G) is the proportion of material I flowing from the donor (or food) compartment to the recipient (or predator) compartment per hour. G is expressed in units of h-1 and is ca1 cul ated as I follows (Montagna, 1984b): G = 2F/t, and F = M/B, where F is the fraction of label uptake in meiofauna (M) relative to bacteria or microalgae (B) at time t. The grazing rate was then log transformed for use in statistical analyses. I Detransformed rates are reported throughout this man~script. Detransformed 95% confidence intervals were calculated as follows: 10(X ± t(o.02s . (n-1)) x SE), where I SE is the standard error of the mean (s//n). Bacterial abundance and production. One-cm3 subsamples for enumeration of I bacteria were taken from larger cores. Bacterial samples were preserved in 4% buffered forma1 in that had been filtered through a 0. 2 µm fi 1ter and were I refrigerated until they were analyzed. A surfactant, Tween 80 (final concentration 0.001%), was used to facilitate dispersion of bacterial cells I during homogenization of sediments (Yoon, 1986). Bacteri.al cell counts were measured using the acrid i ne orange direct count (AODC) technique (Daley and Hobbie, 1975) . The sampling design emp1oyed by Montagna (1982) was used: 10 I fields were counted from two subsamples of three sediment cores (which yielded 60 counts for each station. I Benthic bacterial production was measured by the incorporation of 3HTdR into nucleic acids (Fuhrman and Azam, 1980, 1982; Bauer and Capone, 1985). One I concentration of thymidine was used (50 nM), and time course experiments (with I Meiofauna7 Consumption 5 I five points) were performed. Si nee dilution experiments were not performed, productivity measurements may be underestimates of true production. I I RESULTS The an ima 1 s that were found in the sediment cores were sorted into six I groups. Three groups included juvenile macrofauna (Amphipoda, Mollusca, and Polychaeta) which are part of the temporary meiofauna. The amphipods occurred I only in the January 1987 sampling period, but they did occur at all stations. The mollusks were composed of both bivalves and gastropods. Three groups wereI permanent meiofauna (Harpacticoida, Nematoda and other meiofauna). The category labeled "other" me i ofauna were usu a11 y represented by rare forms, or forms whichI occurred in very low densities. At stations A and B this was mostly ostracods with some kinorynchs. At stations C and D this was mostly turbellarians, with some ostracods and kinorynchs. In July 1987 there were also a few mites in the C and D samples. I The meiofauna densities at stations A and B stayed relatively low (0.25lxl06·m-) and did not change over time. Nor were 2the densities at A and B significantly different from each other (Tukey multiple comparison test). In I contrast, densities decreased over time at stations C and D and were on average about double that of the fresh stations (0.512xl06·m-2). Station C 2 I (1.36lxl06·m-) was always more dense than station D (0.887xl06·m-2) {Tukey multiple comparison test). Nematode composition of the meiofauna was similar I I to other marine environments at stations C and D at about 62%, but.-depauperate, only 35%, at stations A and B. The meiofauna densities covaried with salinity differences. Staying low at A and B when salinity was low, and decreasing at I C and D as salinity decreased. Meiofauna densities were originally four times greater in marine stations than freshwater stations when salinity was high, but densities at C and D went down to the level of A and B when salinities became similar and fresh. I The labels used in this feeding experiment were also taken up by meiofauna in control experiments {Table 2). Formalin uptake averaged 12% of live uptakeI for 14C, and 32% of live uptake for the ND treatment (Table 2). Formalin uptake averaged 32% of 1 i ve uptake for tritium, and 56% of 1 i ve uptake for the ND 6 Meiofauna7 Consumption I treatment {Table 2). About 70% of the tritiated label taken up was by I non-feeding processes for mollusks, polychaetes and harpacticoids. About 40% of the 14C label was taken up by non-feeding processes by mollusks, polychaetes I and nematodes. The extensive uptake of label by non-feeding processes indicates the importance of using live controls in feeding experiments. Overall, the I tritium is taken up at twice the rate of 14C in the control experiments. This indicates that dissolved organic matter (thymidine) may also be incorporated I (absorbed) by meiofauna. The other uptake process is adsorption (the formalin killed controls) . Occasionally, label uptake was small er in the feeding I experiment than in the control experiments. This only occurred with nematodes and mollusks. The grazing rate was set to zero in all these cases. Mollusks had the highest overall mean grazing rates on both bacteria and I microalgae {Table 3). There were significant differences in grazing rates among stations and dates for both bacteria and microalgae {Table 4). In general I grazing rates at the freshwater stations (A and B) were two orders of magnitude higher than in the marine influenced station (C and D) for both bacteria and I microalgae (Table 4). Grazing rates were highest in summer (July) and lowest in winter (January) for both bacteria and microalgae {Table 4). I Amphipods occurred only in January and there were no differences in grazing rates among stations for bacteria (P=0.3992) or for microalgae (P=0.1229). Polychaetes also did not have significant differences in grazing rates among I stations (P=0.5888 for bacteria and P=0.9032 for microalgae). Polychaetes had ...... no differences in grazing rates on microalgae between seasons (P=0.1305), but I grazing rates on bacteria were an order of magnitude higher in April than in January. I The situation for the permanent me i of auna ( harpact i coi ds, nematodes, and others) was much more complex. Each group had significant interactions between I stations and seasons for grazing on both bacteria and microalgae. In general nematodes had very low grazing rates (Table 3, Figures 2 and 3). The grazing rates on bacteria were often zero (Figure 2). The only time that nematodes had I a reasonably high grazing rate was in the marine stations (C and D) during the winter (January) sampling period (Figure 3). Harpacticoid grazing rates were I generally higher in the marine stations (C and D) for both bacteria (Figure 2) I I Meiofauna7 Consumption 7 I and microalgae (Figure 3). The only exception was a very low grazing rate on bacteria and microalgae at station C in July. Grazing rates by other meiofaunaI were highest at station B in January, and A in April and July for bacterial and microalgae, indicating I a general trend of higher rates in the fresher stations. Meiofaunal grazing rates were dominated by mollusks and other meiofauna f6r microalgae and just mollusks for bacteria (Table 5). All taxa had higher I grazing rates on microalgae than on bacteria indicating that microalgae were being selected for over bacteria (Table 5). The total meiofaunal grazing rate is the sum of the grazing rates of eachI taxa for each rep1i cate. Not a11 taxa were found in all rep1icates, so the total rate does not equal the sum of the average taxa rates found in Table 3.I The mean tota1 mei ofauna1 grazing rate on bacteria was 0. 0099 h-1 (with a I coefficient of variation of 21%). microalgae was about four times I variation of 24%). There were no on microalgae during the three The overall mean meiofaunal grazing rate on higher at 0.0411 h-1 (with a coefficient of significant differences for meiofauna grazing months (P=0.2477). However, there were differences between months for grazing on bacteria (Table 6). Higher rates were measured during July and April (which were the same) than in January (Table 6).I This could easily be due to temperature effects alone. Station differences in grazing rates on both bacteria and microalgae were very similar (Table 6). TheI specific hypothesis that freshwater influenced stations (A and B) had different grazing rates than marine stations (C and D) was tested using linear contrast I techniques and was significant. The average salinity at stations A and B was I 6 ppt and at C and D 18 ppt over the course of-this study (Table 1). There were not 1 arge differences between either bacteria1 abundance or p·roduction in either of the fresh or saltier stations (Table 7). Bacterial abundance tended to increase with sa1 in ity. The marine stations had higherI abundances than the fresh stations. Bacterial production did not correspond to station differences.I I DISCUSSION San Antonio Bay is part of the Guadalupe estuary. The estuary include the I I 8 Meiofaunal Consumption I I Guadalupe and San Antonio River Basins. During this study the average salinities were 0.4 ppt at Station A, 2.4 ppt at B, 5.6 ppt at C, and 6.1 ppt at D. This was an extremely fresh period. The long-term historic average I salinity at a Texas Water Commission monitoring site near station D is 18.9 ppt {TDWR, 1980). The stations were originally picked to represent two river I influenced and two marine influenced sites. This design was successful. The average salinity at A and B was 1.4 ppt, which was much lower than the average I at C and D which was 5.8 ppt {Table 1). Grazing rates of total meiofauna on bacteria are 3! times higher in I freshwater influenced stations (0.0202 h-1) than in marine influenced stations {0.0057 h-1) (Table 6). This difference was due almost entirely to the dominance of juvenile mollusks in the grazing rates {Tables 4 and 5). Meiofauna densities I in the marine stations were double that in the fresh stations, consequently the permanent meiofauna taxa had higher grazing rates in the marine influenced I stations {Figure 2). Since the grazing rates are 3! times higher in the freshwater influenced I stations than in the marine influenced stations, microbial productivity must be 3! times greater in freshwater influenced stations than in marine stations so I that food does not become limiting to benthic meiofauna. If this is not true than meiofauna could soon deplete the sediments in the freshwater zone of food, and there is no indication that is happening. Bacterial abundance or production I changed little with either season or station {Table 7). In fact the average bacterial production was s1i ght l y higher in the marine influenced stations I {2.32xl06 cells·~m-3·h-1 ) than in the freshwater influenced stations (2.0lxl06 ce11 s•cm-3 • h-1). Oxygen consumption by sediments was al so measured during the I July sampling period (Montagna, unpublished data). The average respiration was almost twice as high at station A (2.1 mmol ·m-2·h-1) as it was at station C 02 I {1.6 mmol 02 ·m-2·h-1). This would indicate that bacterial production may actua11 y be higher in the freshwater influenced zone, but not by enough to explain the difference in grazing rates. I The average grazing rate on bacteria for the whole bay, 0.00990 h-1, indicates that bacteria must turn over every 4. 2 days to replace the bi amass lost to I meiofauna grazing. Such a rate seems fast compared to turnover times in other I I Meiofauna7 Consumption 9 I areas. Kemp (1987) reported a range of turnover times between 0.2 and 183 days for sediments. However, the average bacteria1 turnover ti me (abundance /I production) we measured in San Antonio Bay is 766 h or about 32 days (Table 7). This is much slower than that required by meiofauna. We suspect that the I production rates we measured using thymidine uptake rates were low for several I reasons. It does not account for the grazing pressure. The average turnover time of 766 h for sediment bacteria is in the low end of the range of 11 studies I reviewed by Kemp (1987). Finally, oxygen flux measurements are more than two orders of magnitude higher than bacterial production measurements made by theI thymidine technique. Assuming a respiration quotient of 1, the oxygen uptake data indicates secondary production is in the range of 22 mg C·m-2·h-1 (Montagna,I unpublished data). Using average bacterial cell volumes from July 1988 (Montagna, unpublished data) and conversion factors (Lee and Furhman, 1987), the I average bacterial biomass is 10.2 µg·cm-3 , and the average production rate would be 0.13 mg c.m-2·h-1• The alternative explanation is that most of the bacteria grazed is passing through the guts of meiofauna undigested, and still viable. I However, this only needs to be true for juvenile macrofauna, since permanent meiofaunal grazing rates are low.I Protozoans are also bactivorous (Kemp, 1988), but were not examined during the current study. We can only assume that additional grazing pressure byI protozoans would further increase the demand for bacterial biomass. However, Kemp (1988) estimated that ciliated protozoans only grazed 4% of the bacteriaI abundance per day in salt marsh, saline pond, and mangrove sediments. Changes in bacterial population abundances did not correlate with changes in protozoan abundance in tropical mangrove sandflats (Alongi, 1988) or microcosms (Alongi I and Hanson, 1985). These studies indicate that protozoans may have a minor or no role in meiofaunal feeding experiments. In contrast, there is enhanced bacterial production and protozoan abundance on Capite77a capitata tube caps (Alongi, 1985). I The bay-wide average grazing rates on bacteria measured in this study are three times higher than those measured in sandy sediments from San Francisco I Bay, but on1y a third of those measured from salt marsh sediments in South Carolina (Table 8). The sediments in this study were fine subtidal muds. I 10 Meiofaunal Consumption I Grazing rates of meiofauna on microalgae are two and one half times higher I in freshwater influenced stations (0.0651 h-1) than in marine influenced stations (0.0263 h-1) (Table 6). This was due equally to juvenile mollusks and other I meiofauna taxa, also having a strong influence (Table 5). Both of these groups had higher grazing rates in the fresher stations. Harpacticoids had higher I rates at the more marine stations. Microalgae in the water column and benthos were studied during these cruises I by Macintyre and Cullen (1988). In January 1987 both chlorophyll and productivity were higher in the marine than in the freshwater zone. In April a transition occurred, and by July biomass and production were much higher in I the river influenced portion of the bay. A similar pattern of switching in feeding rates also occurred with harpacticoids and nematodes, but no the other I meiofauna taxa (Figure 3). The average chlorophyll~ content of the sediments (to a depth of 3 mm) during January, April and July was 4.5 mg·m-2 at A, 3.9 I mg·m-2 at B, 5.8 mg·m-2 at C, and 5.4 mg·m-2 at D. Thus, the sediments of the marine zone had 33% more ch1 orophyll than the fresh zone. Average benth i c I midday production was 0.41 mg C·m-2·h-1 at station A, 0.48 mg c.m-2·h-1 at station B, 0.19 mg C·m-2·h-1 at station C, and 0.07 mg C·m-2·h-1 at station D. Thus, benthic production was about 2~ times greater in the freshwater influenced zone I than in the marine influenced zone. Which is exactly the same ratio for the meiofauna grazing rates. Microalgal production in the sediment is only a small I percentage of that in the water column. However, benthic production increases from 0.7% of total production in the freshwater zone to 2.3% of total production I in the marine zone. Apparently, nutrient input from the river stimulates microalgal growth, and I this biomass is then advected down the bay with the currents. Meiofauna at the head of the bay respond by increasing their grazing rates, so that they receive I as much food as they can before it passes them by. Other studies have shown the importance of flowing water in determining food availability to suspension feeders (Frechette and Bourget, 1985). Since standing stocks are higher in the I marine end of the bay, grazing rates can be lower, because biomass is high and advection might be low. Benthic filter feeders are known to be important in I controlling phytoplankton biomass (Cloern, 1982). I I Meiofaunal Consumption 11 I The overall average grazing rate on microalgae was 0.0411 h·-1 (Table 8). This implies that microalgae would require turnover times of 24 h to be in I I equilibrium with the meiofaunal grazing rates. Assuming a carbon to chlorophyll ratio of 44.5 (de Jonge, 1980), the average microalgal biomass is 218 mg C·m-2 • Since the overall average productivity is 0.288 mg C·m-2·h-1, the turnover time is about 758 h. This is much too slow for benthic microalgae to replace themselves due to losses by meiofaunal grazing. However, 38.8% of the grazingI is by the filter feeding juveniles mollusks {Table 5) which probably are taking in water column microalgae as well. The grazing rate on microalgae by nonI filter feeders is 0.00159 h-1, which requires a turnover time of 63 h. Two factors explain the discordance between the high grazing rates, and low I production values. First, is the fact that advection of algae is not accounted I for, and this external supply of algae could easily make up the loss of algae due to grazing. Second, not all algae ingested are necessarily digested (Epp and Lewis, 1981). Zoop1 ankton grazing is known to enhance a1ga1 growth by breaking up protective gelatinous sheaths and providing nutrients (Porter,I 1976). The average grazing rates on microalgae measured in this study are six times I higher than those measured in South Carolina salt marsh sediments, and 51 times greater than those measured from San Francisco Bay sediments (Table 8).I Microalgae are apparently being selected in Texas, but bacterial grazing rates I are higher in South Caro1 i na and Ca1 i forn i a. In South Caro1 i na and Texas mei ofauna are having a 1arge impact on mi crophytobenthos production. In contrast, meiofauna consumed only 10% of the microphytobenthos production in the Eems-Dollard estuary (Admiraal et _g]_., 1983).I It appears as if meiofaunal grazing rates in San Antonio Bay are much greater than the microbial populations can support if all microbes ingested are alsoI digested. However, that would be a totally unrealistic assumption. Laboratory studies have shown that harpacticoids can respire 25-38% of the 14C label in 3I h during diatom feeding experiments (Decho, 1988). This indicates that assimilation efficiencies are near 62-75%. I Meiofauna also obtain their food from a variety of sources. Nematodes can be detritivores (Findlay, 1982), and harpacticoids can eat ciliates (Rieper, I 12 Meiofaunal Consumption I 1985). Harpacticoids (Decho and Fleeger, 1988) and nematodes (Lopez et _tl., I 1979) also can have shifts in feeding preference from the juvenile to adult stages. Food production is not only production of bacterial, microalgal, and I protozoan biomass. Detritus supply can also be important to meiofaunal organisms (Alongi and Hanson, 1985). Finally, dissolved organic matter can be I important in the nutrition of meiofauna (Lopez et _tl., 1979; Montagna, 1984a). This is certainly true for juvenile mollusks, since 76% of the label uptake was I due to non-adsorption, non-grazing processes (Table 1). The grazing rates are remarkably different in the three different American estuaries. In all three estuaries temporary meiofauna, i.e., juvenile I macrofauna dominate the grazing activity. Polychaetes were important in South Carolina, but relatively unimportant in Texas. Nematodes, harpacticoids and I polychaetes have overlapping food requirements, and may be competitors for food resources (Alongi and Tenore, 1985). The relationship between meiofauna I macrofauna and their microbial food is obviously very complex and very different in different environments. Nice, neat, simple and consistent explanations elude I the authors, but certain factors are now obvious. Freshwater inflow, and the concomitant nutrients, does have a dramatic effect on meiofaunal grazing rates. This allows meiofauna to have grazing rates much greater than the turnover times I or productivity rates of the food source would indicate, since advection replaces much of the grazed material. The juvenile macrofauna, i.e., temporary I meiofauna, have a significant role as competitors to permanent meiofauna in benthic systems. Deposit feeding polychaetes are dominant grazers in intertidal I depositional environments (like the South Carolina saltmarsh) and bivalves are the dominant grazers in subtidal environments dominated by flowing water (like I San Antonio Bay). I ACKNOWLEDGEMENTS We would like to thank John Turany, Captain of the R/V KATY for his help I during the field work. Rick Kalke, John Kern and Eileen Westerman provided technical assistance during laboratory processing of the samples. Eric Koepfler I and Don Webb provided constructive criticism of the manuscript. This work was I I I I Meiofauna7 Consumption 13 I funded through the Water Research and Planning Fund, and administered by The Texas Water Development Board under interagency cooperative contract Nos. 9-483 I 705, 9-483-706. I I I I I I I I I I I I ~ I I I I 14 Meiofauna7 Consumption I I LITERATURE CITED Alongi, D. M. (1985). Microbes, meiofauna, and bacterial productivity on tubes I constructed by the polychaete Capite77a capitata. Mar. Ecol. Prog. Ser. 23:207-208 I Alongi, D. M. (1988). Microbial-meiofauna interrelationships in some tropical intertidal sediments. J. Mar. Res. 46:349-365 I Alongi, D. M., Hanson, R. B. (1985). Effect of detritus supply on trophic relationships within experimental food webs. II. Microbial responses, fate I and composition of decomposing detritus. J. Exp. Mar. Biol. Ecol. 88:167-182 Alongi, D. M., Tenore, K. R. (1985). Effect of detritus supply on trophic relationships within experimental food webs. I. Meiofauna-polychaete I (Capite77a capitata (Type I) Fabricius) interactions. J. Exp. Mar. Biol. Ecol. 88:153-166 I Admiraal, W., Bouwman, L.A., Hoekstra, L., Romeyn, K. (1983). Qualitative and quantitative interactions between microphytobenthos and herbivorous meiofauna I on a brackish intertidal mudflat. Int. Revue ges. Hydrobiol. 68:175-191 Bauer, J.E. , Capon·e, D. G. (1985) . Degradation and mineralization of the I polycyclic aromatic hydrocarbons anthracene and naphthalene in intertidal sediments. Appl. Environ. Microbiol. 50:81-90 Bird, D. F., Kalff, J. (1984). Empirical relationships between bacterial I abundance and chlorophyll concentration in fresh and marine waters. Can. J. Fish. Aquat. Sci. 41:1015-1023 I Carman, K. R., Dobbs, F. C., Guckert, J. B. (1989). Comparison of three techniques for administering radiolabled substrates to sediments for trophic I studies: uptake of label by harpacticoid copepods. Mar. Biol. 102:119-125 Cloern, J. E. (1982). Does the benthos control phytoplankton biomass in South I San Francisco Bay? Mar. Ecol. Prog. Ser. 9:191-202. Cole, J. C., Findlay, S., Pace, M. L. (1988). Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43:1-10 I Daley, R. J., Hobbie, J.E. (1975). Direct counts of aquatic bacteria by a modified epifluorescence technique. Limnol. Oceanogr. 20:875-882 I I I Meiofaunal Consumption 15 I Daro, M. H. (1978). A simplified 14C method for grazing measurements on natural planktonic populations. Helgolander wiss. Meeresunters. 31:241-248 I I Decho, A. W. (1988). How do harpacticoid grazing rates differ over a tidal cycle? Field verification using chlorlphyll-pigment analyses. Mar. Ecol. Prog. Ser. 45:263-270 I Decho, A. W., Fleeger, J. W. (1988). Ontogenetic feeding shifts in the meiobenthic harpacticoid copepod Nitocra lacustris. Mar. Biol. 97:191-197 Deegan, L.A., Day, J.W. Jr., Gosselink, J.G., Yanez-Arancibia, A., Chavez, G.S., Sanchez-Gil, P. (1986). Relationships among physical characteristics,I vegetation distribution and fisheries yield in Gulf of Mexico estuaries. In: Wolfe, D.A. (ed.), Estuarine Variability, Academic Press, New York. p. 83-100I Epp, R. W., Lewis, W. M., Jr. (1981). Photosynthesis in copepods. Science 214:1349-1350. I de Jonge, V. N. (1980). Fluctuations in the organic carbon to chlorophyll a ratios for estuarine benthic diatom populations. Mar. Ecol. Prog. Ser. 2:345 I 353. Findlay, S. E. G. (1982). Effect of detrital nutritional quality on population dynamics of a marine nematode (Diplolaimella chitwoodi). Mar. Biol. I 68:223-227 Findlay, S., Meyer, J. L., Smith, P. J. (1984). Significance of bacterialI biomass in the nutrition of a freshwater isopod (Lirceus sp.). Oecologia 63:38-42 I I Frechette, M., Bourget, E. (1985). Energy flow between the pelagic and benthic zones: factors controlling particulate organic matter available to an intertidal mussel bed. Can. J. Fish. Aquat. Sci. 42:1158-1165. I Fuhrman, J. A., Azam, F. (1980). Bacterial secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl. Environ. Microbial. 39:1085-1095 Fuhrman, J. A. Azam, F. ( 1982). Thymi dine incorporation as a measure ofI heterotrophic bacterioplankton in marine surface waters: evaluation and field results. Mar. Biol. 66:109-120 I Genoni, G. P. (1985). Food limitation in salt marsh fiddler crabs Uca rapax (Smith) (Decapoda: Ocypodidae). J. Exp. Mar. Biol. Ecol. 87:97-110 16 Meiofaunal Consumption I I Graf, G., Bengtsson, W., Diesner, U., Schulz, R., Theede, H. (1982). Benthic response to sedimentation of a spring phytoplankton bloom: process and I budget. Mar. Biol., 67:201-208. Grebmeier, J. M., McRoy, C. P., Feder, H. M. (1988). Pelagic-benthic coupling I on the shelf of the northern Bering and Chuckchi Seas. I. Food supply source and benthic biomass. Mar. Ecol. Prog. Ser. 48:57-67. I Hargrave, B. T. (1973). Coupling flow through some pelagic and benthic communities. J. Fish. Res. Board Can. 30:1317-1326. Hurlbert, S. H. (1984). Pseudoreplication and the design of ecological field I experiments. Ecol. Monongr. 54:187-211. Jensen, P. (1987). Feeding ecology of free-living aquatic nematodes. Mar. Ecol. I Prog. Ser. 35:187-196 Kemp, P. F. (1987) . Potential imp act on bacteria of grazing by a macrofauna l I deposit-feeder, and the fate of bacterial production. Mar. Ecol. Prog. Ser. 36:151-161 I Kemp, P. F. (1988). Bacterivory by benthic ciliates: significance as a carbon source and impact on sediment bacteria~ -Mar. Ecol. Prog. Ser. 49:163-169 Lee, S., Fuhrman, J. A. (1987). Relationships between biovolume and biomass I of naturally derived marine bacterioplankton. Appl. Environ. Microbial. 53:1298-1303 I Lopez, G. R., Levinton, J. S. (1987). Ecology of deposit-feeding animals in marine sediments. Quart. Rev. Biol. 62:235-260 I Lopez, G., Riemann, F., Schrage, M. (1979). Feeding biology of the brackishwater Oncholaimid nematode Adoncholaimus thalassophygas . Mar. Biol. 54:311 I 318. Mcintyre, H. L., Cullen, J. J. (1988). Primary production in San Antonio Bay, Texas: contribution by phytoplankton and microphytobenthos. A report to the I Texas Water Development Board. The University of Texas Marine Science Institute, Port Aransas, Texas I Montagna, P.A. (1982). Sampling design and enumeration statistics for bacteria extracted from marine sediments. Appl. Environ. Microbial. 43:1366-1372. I Montagna, P. A. (1983) Live controls for radioisotope food chain experiments I Meiofaunal Consumption 17 I using meiofauna. Mar. Ecol. Prog. Ser. 12:43-46 Montagna, P. A. (1984a). Competition for dissolved glucose between meiobenthos I I and sediment microbes. J. Exp. Mar. Biol. Ecol. 76:177-190 Montagna, P. A. (l 984b) In situ measurement of mei obenth i c grazing rates on I sediment bacteria and edaphic diatoms. Mar. Ecol. Prog. Ser. 18:119-130 Montagna, P.A., Bauer, J.E. (1988). Partitioning radiolabeled thymidine uptake by bacteria and meiofauna using metabolic blocks and poisons in benthic feeding studies. Mar. Biol. 98:101-110 Nixon, S. A., Oviatt, C. A., Frithsen, J., Sullivan, B. (1986). Nutrients andI the productivity of estuarine and coastal marine ecosystems. J. Limnol. Soc. Sth. Afr. 12:43-71I Porter, K. G. (1976). Enhancement of algal growth and productivity by grazing zooplankton. Science 192:1332-1333. I I Rieper, M. (1985). Some lower food web organisms in the nutrition of marine harpacticoid copepods: an experimental study. Helgolander Meeresunters. 39:357-366 Roman, M. R., Rublee, P. A. (1981). A method to determine in situ zooplankton grazing rates on natural particle assemblages. Mar. Biol. 65:303-309I Texas Department of Water Resources. 1980. Guadalupe Estuary: A study of the I influence of freshwater inflows. No. LP-107. Texas Department of WaterI Resources, Austin, Texas. Whitledge, T.E., Amos, A., Benner, R., Buskey, E., Dunton, K., Holt, S., Kalke,I R., Montagna, P., Parker, P., Stockwell, D. Yoon, W.B. (1989). Nitrogen process studies (NIPS): Analysis and synthesis of data collected in the Nueces/ Corpus Christi, San Antonio, and Lavaca Bays, Texas. A report to the I Texas Water Development Board. The University of Texas Marine Science Institute, Port Aransas, Texas Yoon, W. B. (1986). Effects of sediment resuspension in a shallow estuary on microbial heterotrophic activity. Ph.D. dissertation, The University of Texas I at Austin. I I I 18 Meiofaunal Consumption I I I I Table 1. Salinity (ppt) and temperature (°C) conditions at the San Antonio Bay stations during the experimental periods in 1987. I Date Station Salinity January 28 A 0.3 B 0.4 January 30 c 6.5 D 4.1 April 8 A 0.5 B 6.3 April 10 c 9.2 D 13.2 July 15 A 0.4 B 0.4 July 17 c 1.1 D 0.9 I Temperature I 14.4 I 14.8 15.5 15.8 I 14.5 15.2 I 14.5 I 14.9 I 30.5 30.5 30.5 I 30.5 I I I I I I I I I I I I I I I I I I I I I Meiofaunal Consumption Table 2. Effect of treatment on average uptake of label (DPM·individual·2 h-1) for each taxonomic group. Uptake is the average for all replicates. The three treatments were live feeding samples (L), control non-feeding samples (C), Taxa Mollusks 1 Amphipods 1 Polychaetes1 Others Harpacticoids Nematodes and formalin-killed controls (F). 3HTdR H14co-3 L c F L c F 1580 1226 112 1037 386 117 202 74 56 360 40 35 90 65 25 50 21 11 17 9.1 13 25 2.6 1.6 14 9.5 3.5 14 3.8 1.2 12 3.6 3.3 3.4 1.3 0.5 1Juvenile macrofauna are part of the temporary meiofauna. 20 Meiofaunal Consumption I I I I Table 3. Meiofaunal grazing rates (h-1) on bacteria and microalgae. The rates I are the overall averages for all stations and periods. Since some organisms were not found in a11 rep 1 icates the frequency of occurrence (n) is not I a 1 ways 36. Upper and 1ower 95% confidence data is detransformed from logarithms. Bacteria Taxa n Mean Mollusks 1 30 0.003297 Others 36 0.000730 Harpacticoids 35 0.000546 Polychaetes1 33 0.000164 Amphipods 1 5 0.000059 Nematodes 36 0.000028 (L95%CI, U95%CI) (0.001018,0.010629) (0.000498,0.001067) (0.000331,0.000897) (0.000098,0.000269) (0.000014,0.000188) (0.000009,0.000068) i nterva 1 s are uneven s i nee the I I Microalgae Mean 0.005968 0.005013 0.002524 0.000426 0.000643 0.000816 I (L95%CI, U95%CI) I (0.001681,0.021118) (0.003230,0.007778) I (0.001547,0.004113) (0.000244,0.000737) I (0.000173,0.002318) (0.000476,0.001394) I 1Juvenile macrofauna are part of the temporary meiofauna. · I I I I I I Meiofaunal Consumption 21 I I I I Table 4. Tukey multiple comparison tests on juvenile mollusk grazing rates for main effects in the experimental design. Lines indicate that the means areI not significantly different at the 0.05 level. Mean grazing rates are in units of h-1• I I Grazing on bacteria 0.0201 0.0123 0.000668 0.000415 Station B A c D I I Grazing on microalgae 0.0624 0.0172 0.000998 0.000862 Station A B .. c D I Grazing on bacteria 0.0131 0.00510 0.000437 Month July April January I ~--~~~-======-~~~~~ Grazing on microalgae 0.0226 0.0156 0.00551I Month July April January -'-~~~~==:!:=====----~~:...=.:_:~~ I I I I 22 Meiofauna7 Consumption I I I I I Table 5. Proportion and selection of microbes ingested. Proportion is the average per cent contribution of mei ofaunal taxa to the total average I meiofaunal grazing rate. Selection is the ratio of the average microalgae grazing rate (GA) to the average bacterial grazing rate (G8) for all samples. I I Proportion ingested Selection I Taxa Algae Bacteria (GiGs) I Mollusks1 3B.B% 6B.3% I.BX Others 32.6% 15 .1% 6.9X Harpacticoids 16.4% 11.3% 4.6X I Nematodes 5.3% 0.6% 2B.4X Amphipods1 4.2% 1.2% 10.BX I Polychaetes1 2.B% 3.4% 2.6X I 1Juvenile macrofauna are part of the temporary meiofauna. I I I I I I Meiofaunal I I I I Consumption I I Table 6. Tukey multiple comparison tests on total meiofaunal grazing rates for main effects in the experimental design. Lines indicate that the means are not significantly different at the 0.05 level. Mean grazing rates ·are in units of h-1 • . I Grazing on bacteria 0.0292 0.0112 0.0073 0.0040 I Station B A C D ------======----___:-----=- I Grazing on microalgae 0.0681 0.0621 0.0296 0.0229 Station B A ~-------'"-"------=========~----=- I C D I Grazing on bacteria 0.0243 0.0105 Month _J_u_l~v____A_p_r_i_l I I I I I I 0.0038 January 24 Meiofaunal Consumption I I I Table 7. Bacterial abundance and productivity in San Antonio Bay sediments. I Average abundance and production for each month and station with the standard deviation in parentheses. I I Month Station Abundance1 Production2 I January A 1.31 (0.31) 2.06 (0.62) B 2.00 (0.26 2.32 ( 0. 87) I c 2.02 (0.24) 2.65 (0.56) D 2.03 (0.17) 3.80 (0.89) I Apri 1 A 1. 31 (0.21) 2.79 (0.65) B 0. 77 (0.14) 1.53 (0.61) I c 1.69 (0.21) 1.36 (0.82) D 2.03 (0.29) 2.35 (0.90) I July A 1.86 (0.22) 2.13 (0.72) I B 1. 79 (0.24) 1. 20 (0.78) c 2.15 ( 0. 27) 2.53 (0.47) I D 2.30 ( 0. 27) 1. 21 (0.85) 1Mean number: 109 cells·cm-3 (±standard deviation) I 2Mean rate: 106 cell s·cm-3·h-1 (R2) I I I I I Meiofauna7 Consumption 25 I Table 8. Average total meiofaunal grazing rates (h-1) for all stations and seasons in three estuaries. I I Microalgae Bacteria I Area Rate CV Rate CV I San Antonio Bay, TX 1 0.04110 24% 0.00990 21%North Inlet, SC 2 0.00648 32% 0.03372 89%I San Francisco Bay, CA3 0.00080 35% 0.00280 32% I 1This study. I 2Montagna, 1984b. 3Montagna and Bauer, 1988 . I I I I I I I I I I 26 Meiofaunal Consumption I I I I I ANTONIO BAY I I I ~.... :.:·:.:::::·; I II /~::::' ~ I I ~: ··.-; II IIII I \© I I I . . ......./ : .· •. .. ....... I\\\. \U .·I I I I Figure 1. San Antonio Bay, Texas. The locations of the four sampling stations(A, B, C, and D) are shown. The Intracoastal Waterway is shown by a dashed I line, and the 3 ft (1 m) contour is shown by a dotted line. I I I I I Meiofaunal Consumption I I I I Grazing on Bacteria r---. I 0.004 ~ Other I Harpacti-Nematoda ...c Meiofauna ....__,,, coida 0.003 I Q) 4-' 0 L 0.002 I CJl c N 0.001 0 L (__') 0.000 I Jan Apr ,Jul Jan Apr Jul Jan Apr Ac=J a~ c~ o~ I I I I I Figure 2. Mean meiofaunal grazing rates (h-1) on bacteria in 19.?.7.I interaction between stations and sampling periods was significant for groups. I I ] I i J Jul The all 28 Meiofaunal Consumption I I I I Grazing on Microolgoe ~0.035 ,----------r-----------.-----------~ I 0.030 Harpacticoida Nematoda Other _c '--./ 0.025 Meiofauna I Q) 4--J 0.020 0 I L 0.015 01 c 0.010 N 2 I 0.005 G Jan Apr Jul Jan Apr Jul Jan Apr Jul I ACJ B~ Cl!llllJ D~ I I I I I Figure 3. Mean meiofaunal grazing rates (h-1) on microalgae in 1987. The interaction between stations and sampling periods was significant for all I groups. I I I The Effect of Freshwater Inflow and Sediment Resuspension on Benthic Metabolism and Nutrient Regeneration in I the Guadalupe and Nueces Estuaries, Texas I I Paul A. Montagna Won Bae Yoon 2 and Terry E. WhitledgeI I University of Texas at Austin Marine Science Institute I Port Aransas, Texas 78373-1267 I ABSTRACT I I Current flow has the potential to increase photosynthesis by resuspending large quantities of chlorophyll, and limiting nutrients into the water column.I Resuspension can also enhance the decomposition of sediment organic matter by making buried organic matter available to aerobes and increasing rates ofI diffusion of metabolites, thus "stirring the pot". Increased flow rates do increase flux of sediment, chlorophyll, ammonia, nitrite, phosphate, and silicate to the water column, but decrease nitrate flux. The nitrate uptake and I chlorophyll resuspension indicate that photosynthesis is probably enhanced by resuspension. However, increased photosynthesis is mitigated by increased turbidity and because resuspended pigment has low chlorophyll to phaeophytin ratios. The net effect is that increased current flow does not always resultI in increased oxygen consumption, since photosynthesis may be stimulated, but this is counter balanced by chemical oxidation of reduced ions released from theI sediment. Spat i a 1 and tempora1 variability of both oxygen consumption and nutrient flux were not detectable within estuaries. Rates of benthic metabolism I 2Present address: Department of Biology (56-117), Massachusetts Institute I of Technology, Cambridge, MA 02139. I 29 I I 30 Benthic Metabolism and Resuspension I and nutrient recycling were much higher in the wet Guadalupe Estuary than in the I dry Nueces Estuary. Indicating that there are significant differences due to freshwater inflow. I INTRODUCTION I As rivers flow down to ~he sea they bring sediments and nutrients into our I bays and estuaries. This new nitrogen (N) and phosphorous (P) can stimulate primary production in estuaries (Nixon et _gl., 1986). Regeneration and recycling (old N and P) can supply 28 -35% of the N and P required for primary I production in estuaries (Nixon et _gl., 1976; Fisher et _gl., 1982). However, any productivity stimulation is mitigated by the turbidity caused by the sediment I load which decreases light penetration and results in lower rates of photosynthesis (Macintyre and Cullen, 1989). Resuspension of sediment also I increases turbidity resulting in further inhibition of photosynthetic potential. Much of the sediment load contains organic matter which was originally buried I in the upper reaches of the estuary. When this organic matter is metabolized nutrients are recycled into the water column and can further stimulate primary production Nixon et _gl., 1976). I Texas estuaries are very broad, shallow and windswept. This results in a great deal of resuspension and unconsolidated sediments. The turbidity in the I Texas estuaries is typically quite high. On one hand the nutrient loading should increase productivity, on the other hand the turbid waters should limit I productivity. River born particles should increase sedimentation rates, yet the wind churned waters maintain much of this sediment load in the water column and I it is advected downstream. Desorption of ammonia occurs during resuspension (Simon, 1989). Benthos not only supplies recycled nutrients, but can also I enhance the rate of pelagic recycling (Doering, 1989). Resuspension should increase diffusion and release of nutrients across the benthic boundary layer, and result in pumping nutrients out of the sediment. I If freshwater inflow increases productivity then the increased amounts of organic matter should result in increased amounts of benth i c metabolism and I nutrient regeneration. Over a 35-year period, between 1941 and 1976, the I Benthic Metabolism and Resuspension 31 I freshwater inflow balance (i.e., gains minus losses) in the Guadalupe estuary is on average five times greater than in the Nueces estuary {TDWR, 1980; 1981).I This indicates that the estuaries are very different with reg~rd to inflow. If there are differences due to inflow, then there should be differences in benthic I metabolism and nutrient regeneration among the estuaries, and along salinity I gradients within the estuary. Oxygen uptake is an good measure of total aerobic metabolism in sediments (Patching and Raine, 1983; Howes et ~., 1984). Resuspension should increase the flux of nutrients out of the sediments, thus ;.. increasing rates of chemi ca1 oxidation (Boynton et ~-, 1981). Benth i c I chambers, in which resuspension could be varied, were employed to monitor changes in sediments, chlorophyll, oxygen and nutrient concentrations over time.I These chambers were deployed along salinity gradients in the two estuaries with different inflow characteristics. I MATERIALS AND METHODS I Study design. The Guadalupe Estuary is composed of the Guadalupe and San Antonio Rivers which flow into San Antonio Bay (Figure 1). Over a 35-year 3 I I period the Guada1upe Estuary received an average of 2. 80xl09 m• y-1 of freshwater input, and the freshwater balance (input-output) was 2.54xl09 m3 • y-1 I {TDWR, 1980). Two stations were occupied: a freshwater influenced station at the head of the Bay (station A), and a marine influenced station at the foot ofI the bay and south of the Intracoastal Waterway (station C) (Figure 1). Four field experiments were performed (November 1986, and January, April, and July 1987). Extensive field testing and validation of the benthic chamber system was I performed during the July trip. Two other stations were a 1 so occupied. a second freshwater station (B) and a second marine influenced station (0). Only sediment samples were taken at these two station. Macrofauna and meiofauna samples were taken at all four stations and are reported on elsewhere (MontagnaI and Kalke, 1989). This first study concentrated on the role of current flow and resuspensionI on metabolism and nutrient flux. Current velocities of 0, 0.1, 4.7, 8.4, 13.9, and 19.5 cm·s-1 were used because they simulate the range of currents found in I 32 Benthic Metabolism and Resuspension I San Antonio Bay (Tony Amos, personal communication). Experiments were performed I twice each day, once in the morning and in the afternoon. Diel differences were never found, so the two deployments are treated as replicates in the statistical I analyses. Changes in the concentrations of nutrients, suspended sediments, and chlorophyll were measured during all trips. Oxygen concentration changes were I measured during a11 the 1987 trips. On 1 y c 1 ear chambers were dep1 oyed, so oxygen change should represent net primary production, and changes in nutrient I concentration are the result of heterotrophi c and photosynthetic processes carried out by bacteria and mi croa1 gae. However, in practice, changes are probably only due to bacterial metabolic processes, e.g., aerobic respiration. I This is because the turbidity is so high at the sediment surface that no photosynthesis is taking place. Macintyre and Cullen (1989) measured midday I sediment photosynthesis at the same time that the chamber work was in progress. They found negligible photosynthesis at station A in July (1.2 mg C. m-2 • h-1), I 2 and at station C in April (0.6 mg C • m-• h-1). Sediment photosynthesis was O at station A or C in January, or A in April and C in July. I The second study was performed in the Nueces Estuary. The Nueces Estuary is composed of the Nueces River which flows into Nueces Bay, which is connected to Corpus Christi Bay (Figure 1). Over a 35-year period the Nueces Estuary I received an average of 0.84xl09 m3 • y-1 of freshwater input, and the freshwater 3 1 balance (input-output) was 0.51 xl09 m• y-(TDWR, 1981). This system was I studied in October 1987 -July 1988. Four Stations were occupied along the axis of the system. Two stations were in Nueces Bay (A and B), and Two stations were I in Corpus Christi Bay (C and D) (Figure 1). Six bimonthly field experiments were performed. This study focused on temporal and spatial variability, and the I effect of light on metabolism and nutrient flux. Light and dark chambers were used to di st i ngui sh between oxygen production and consumption. Changes in I concentrations of oxygen, nutrients, chlorophyll, and suspended sediments were measured. Chambers with and without sediment resuspension (where the current flow was 19.5 cm • s-1) were an additional treatment in the design. Macrofauna I and mei ofauna samples were taken at a11 four stations and are reported on elsewhere (Montagna and Kalke, 1989). I I I Benthic Metabolism and Resuspension 33 I Chamber design. The goal in designing the benthic chamber was to produce an inexpensive chamber with reasonable flow characteristics. It had to be I I inexpensive because as many as eight synoptic replicate measurements were planned. Good flow characteristics include even erosion of sediment along the entire bottom of the chamber, replicable flow rates within the chamber, and a I 1ack of a vertical gradient within the chamber. The chamber al so had to be rec i rcul at i ng, and the water totally contained with no heads pace, so thatI changes in chemical constituents could be measured. The chamber was designed like an annular flume (Taghon et ,tl., 1984). An acrylic tube was cementedI inside of a Nalgene polycarbonate aquaria yielding a racetrack 17.7 cm wide and 19 cm high, containing 11.17 l water, and covering an area of 588.0 cm-2 ofI sediment (Figure 2). Water was recirculated with a small bilge pump (Rule 500) placed outside the chamber so that the water would not be heated by the motor. This design is similar to one used by Fisher et ,tl. (1982). Flow characteristics within the chambers are obviously very turbulent. Although these chambers could be called in situ annular flumes, it might be inappropriateI for these devices to be used in the measurement of shear .stress, critical erosion velocities, or sediment transport. The flow in the chambers very wasI turbulent, but from personal experience while diving, it is also very turbulent in the bays we studied. Current speeds were calibrated against voltage supplied I by the reostat (Figure 2) by timing the number of laps made by floating particles in a fixed period of time. A total of 330 trials were performed. The I relationship between voltage and current speed was fairly linear (R2=0.91, Figure I 3). Four chambers were mounted on an aluminum rack so that they could be placed on the bottom simultaneously. Chambers had five syringe ports (leur locks) mounted horizontally to subsample water within the chamber. The top had two I large holes, so that the chambers could be placed in the sediment (11 cm penetration) without creating excess water pressure. The chambers were left I unstoppered for 30 min after deployment to let resuspended sediments settle, and reduced ions that may have been released to oxidize. For reasons explained in I the results section, initial subsamples for nutrient analysis were taken 30 min after the chambers were stoppered. I I 34 Benthic Metabolism and Resuspension I I Experiments were conducted to analyze the performance of the chambers. Flow rates within chambers were measured by timing particle circulation. Evenness I of erosion was tested by measuring Tums dissolution at varying spots along the bottom of the chamber (Figure 4). The dissolution experiment was repeated three I ti mes, at two fl ow rates. The presence of vertical gradients within the chambers were tested by mounting the subsampling devices vertically within a I special calibration chamber (Figure 5). Sampling was performed at 4, 8, 12, and 16 cm above the sediment surface. I Chemi ca 7 measurements. Oxygen concentration changes were measured using Winkler titrations (Strickland and Parsons, 1972) during the January trip in San Antonio Bay, and with electrodes in all trips in both bays thereafter. Four I chambers were outfitted with pulsed oxygen electrodes (Endeco, Inc., Marion, MA). These electrodes are of a new design in which the measurement of oxygen I concentration is flow-insensitive (Langdon, 1984). The four electrodes are then connected to a Pulsed 0.0. Sensor (T.M.) which controls the timing of the I el ectri cal pulses sent to each probe. These pulses are the sampling ti mes. Data is interpreted by the Pulsed 0.0. Sensor and logged automatically on a I portable computer (Figure 2). In this way oxygen concentrations can be monitored continuously in four chambers. By measuring the changes in oxygen concentration over time, and adjusting for the area of sediment covered by the I chamber and the volume of water contained in the chamber, the rates of benthic respiration and photosynthesis were calculated. I From the water subsamples the concentrations of ammonia, nitrate, nitrite, phosphate and silicate in fresh samples using highly precise techniques I (Whitledge et al., 1986). Chlorophyll and turbidity were also measured. Flux of nutrients, sediment and chlorophyll were calculated. I The vertical distribution of the Carbon and Nitrogen content of sediments was measured in San Antonio Bay in January 1987. Ten cm cores were sectioned every I cm. The top 1 cm of sediment was measured in April and June to determine if there were changes over ti me. Sediments were prepared for analysis of total organic Carbon (TOC) and Nitrogen (TON) by drying at 50 °C for 24 h, after which I they were ground into a fine powder with a mortar and pestle. Inorganic carbon I I I Benthic Metabolism and Resuspension 35 I was removed from subsamples of the powdered sediments by allowing them to reactwith concentrated HCL vapor (Hedges and Stern, 1984). I A thin layer of powderform each sample was spread on the bottom of a glass dish and placed in adesiccator. A petri dish containing HCL was placed in the bottom of thedesiccator for 4 d. Any shell fragments present in the sediment samples reactedI completely with the acid during this treatment. Samples were placed in clean vials and diluted with distilled water. The supernatant was drawn off after 24I h, and the samples were again brought to dryness and stored. Although Froelich(1980) demonstrated losses of organic Carbon-of 5-45% by aqueous acid treatment, I the distilled water was deemed necessary to avoid damage to the CHN analyzer.A Perkin-Elmer 240B elemental analyzer was used for sample analysis. I Samplesizes of about 120 mg for sediments were necessary for adequate detection ofTOC. I Both HCL treated {TOC) and untreated {TOC+TOiC) portions of each sedimentwere analyzed, the difference between the fractions represents total inorganic carbon content. Chlorophyll a and phaeophytin a concentration was determined flurometricallyI from 90% acetone extracted samples using the acid addition technique. Suspendedsediments were measured as turbidity in JTU units using a Hach photometer.I Turbidity was converted to suspended sediment (SS) concentration by making astandard curve of turbidity vs dry weight of filtered sediments. There was aI linear relationship between JTU and SS (R2=0.99, SS (mg • i-1) = 3.125x(JTU)+0.09688). Statistical analyses. Flux rates were estimated by calculating the changeI in concentration of a variable over time, and adjusting it for the volume ofwater in the chamiJer, and the area of sediment that was covered. OxygenI concentration was samp 1ed every 5 minutes by the e1 ectrodes. I Nutrients weregenerally sampled four times. Chlorophyll and suspended sediments were usuallyI only measured at the end of an experiment, so are not always reported as flux.In San Antonio Bay a partially hierarchical analysis of covariance (ANCOVA)I was used to test for differences in flux of oxygen, nutrients, chlorophyll, andsuspended sediments between the two stations and four samp 1 i ng dates as afunction of water current speed. Each sampling date the experiment was runthree times; in the morning, midday, and in the late afternoon. However, these I I 36 Benthic Metabolism and Resuspension I three deployments are not a fully crossed effects, since you can never repeat I the same circumstances during a11 deployments. That is, each deployment is unique to each station and date combination. Therefore each deployment is more I like a replicate, which is a nested effect. The statistical model used was: yijkl = µ + aj + /Jk + a/Jjk + 'Yl(jk) + xm + fi(jklm)' I where: µ = overall sample mean, aj =main effect of sampling date, /Jk = main effect of stations, 'Yl(jk) = nested effect for replicate deployment, Xm = covariate for current fl ow, f;(jk lm) = random error for each observation. The I expected mean squares were calculated for each term, and the mean square of the interaction term (a/Jjk) is the proper denominator for the F-test for the date and I station terms. The covariance part of this analysis is a two step process. First, we test for parallel effects of the response vs. current flow over all I treatments, then we fit a common slope through all points. Least square means were used to determine the differences between treatments. I In the Nueces Estuary, a three-way analysis of variance (ANOVA) was used to determine in there was differences in flux of oxygen, nutrients, chlorophyll, and suspended sediments between the four stations and six sampling dates, and I the presence or absence of current flow within the chamber. Each sampling date the experiment.was run two times. I Pearson product correlation coefficients were used to determine if there were any linear relationships between salinity, water inflow, and temperature with I the responses of the flux of oxygen, nutrients, ch1 orophyll, and suspended sediments. Tu key multi p 1 e comparison tests were used to find a posteriori I differences between sample means of stations, dates, and flow combinations. Linear contrasts were used to find a priori differences between the freshwater I influenced and marine influenced stations. I Freshwater inflow differences between estuaries. In the Guadalupe Estuary I (and San Antonio Bay), 1987 was a wet year, with more rainfall and concomitant inflow than in the previous 35-year record. The freshwater balance for 1987 was RESULTS I 5.05xl09 m3 • y-1 , which is three times higher than the 35-year average. T~is was I I I Benthic Metabolism and Resuspension 37 I primarily due to a large rainfall and resulting flooding event in June 1987. Salinity levels in the lower part of San Antonio Bay as high 14 ppt in were as I the spring, but were uniformly near zero after the flood in July. The average salinity at stations A and B was 6 ppt and at C and D 18 ppt over the course of I this study. I In the Nueces Estuary (Nueces and Corpus Christi Bays), the sampling period between October 1987 and July 1988 was a very dry period. The inflow balance for that annual period was -0.66xl09 • m-3• In contrast, the 35-year average was 0.51 xl09 m3 • y-1 {TDWR, 1981). By the end of the study period salinities wereI higher than marine water that is typical of the Gulf of Mexico. The average salinities at station A was 31 ppt, B was 33 ppt, C was 33 ppt, and D was 34.I Chamber calibration. In the laboratory there was no difference in the change in weight of Tums placed in the inner, center or outer edges of the chambers I when water was flowing at 18 cm·s-1 (P=0.9061). There was also no difference in I Tums erosion along the axis of the bed being eroded (P=0.2662). The chambers apparently will not selectively erode sediment along either edges or within spot of the sampling area. -Whatever flow conditions exist in the chamber, they are even through out.I In the field (San Antonio Bay) turbidity increased rapidly with time, but there were no vertical differences in turbidity within chambers (Figure 6A, and I 7A). Sediments are not infinitely erodible. Initially there is a great rate of erosion, and turbidity increases very rapidly. Between 20 and 40 minI turbidity levels off or increases at a slow constant rate for up to two h. I Oxygen change was also not different vertically at station A in San Antonio Bay (Figure 68). At station C in San Antonio Bay oxygen decreased rapidly at the depth closest to the sediment surface, but after 20 min, the rate of change was the same in all vertical samples within a chamber (Figure 7B).I Chlorophyll a also increased rapidly within the chambers, following turbidity curves very closely (Figure 8A). This would indicate that resuspension events I have the potential to increase photosynthesis, s i nee biomass is increasing. However, the Chlorophyll:Phaeophytin ratio decreased by 100% with the I resuspension events (Figure 8B), indicating that most of the pigment being resuspended may have already passed through grazers guts, or that the pigment I 38 Benthic Metabolism and Resuspension I is very shade adapted. I Accuracy vs precision. As indicated in Figures 6B and 7B the pulsed 0.0. probes can very precise 1 y measure changes in oxygen concentration within a I chamber. The precision of the calculated oxygen fluxes is very high 95% on average (or on1 y 5% error) . One fie1 d experiment was performed (in Corpus I Christi Bay station C) where 16 deployments of the dark chambers were made over a three day period to assess accuracy of each measurement. The average oxygen I flux was 0.878 mmol·m-2·h-1, the standard deviation was 0.310, and the data was normally distributed (P=0.814). This indicates the coefficient of variation is 35%. Whereas, oxygen measurements can be made very precisely (within 5%), there I is considerable variation in spatial heterogeneity of these measurements within a given site at any one time (35%). I San Antonio Bay (flux vs. flow). During most experiments suspended sediments (measured as JTU turbidity units) and chlorophyll concentration was measured I only at the end of the experiments. Since these experiments were 3 h long, the concentrations of sediments and pigments represent maximum concentrations due I to re$uspension. There was a semi-log linear relationship· between current flow regimes and turbidity (Figure 9). There were interactions between the dates and stations (P=0.0001), and the slopes of those cells were not parallel (P=0.0002). I This was due largely to different initial conditions during different deployments. When wind was high there was not much sediment to erode, but when I the seas were calm, a great deal of sediment can be resuspended. Both measures of pigments increased in the same semi-log linear fashion (Figures 10 and 11). I Chlorophyll concentrations also did not have parallel responses among dates and stations (P=0.0266), but phaeophytin did (P=0.1455). Although both pigments I increased with current speed, the chlorophyll to phaeophytin ratio decreased (Figure 12). I Sediment flux was measured in July 1987 at both stations A and C (Figure 13). There were no differences in sediment flux as a function of flow between either station A or C (P=0.1607). Although, a straight line fits the data (R2=0.74), I there appears to be a step function. Resuspension did not occur below water currents of about 10 cm·s-1• Below those current speeds there was a mean I sedimentation rate of 3.2 g·m-2·h-1 at both stations (Figure 13). Above 10 I I I Benthic Metabolism and Resuspension 39 I cm·s-1, the mean sediment resuspension rate into the water column was 12.7g·m-2.h-1. I Oxygen flux did not appear to change with increasing flow at stations A andC (Figure 14, P=0.4894). Oxygen flux was not different between stations(P=0.5933) or dates (P=0.8315). The overall average rate of oxygen flux wasI -1.85 mmol • m-2 • h-1, with a coefficient of variation (CV) of 195%. There wasa positive linear relationship with oxygen flux and salinity (Figure 15). ThisI was primarily due to higher salinities and oxygen fluxes at station C in January1987 (Figure 15). I Ammonia (Figure 16) and nitrite (Figure 17) flux appear to increase at bothstations with increasing flow. In contrast, nitrate flux appeared to decreasel 1 with increasing flow (Figure 18). ANCOVA demonstrated these trends were allstatistically significant (P=0.0068, 0.0036, and 0.0266 respectively). However,the ammonia trend was not found in a simple correlation analysis (Table 1).There were no significant differences between dates and stations for any of.the 1 I• nitrogen nutrient fluxes. Phosphate appears to be releasing from sediments withincreasing flow (Figure 19), but this was not significant (ANCOVA, P=0.1091).In contrast, simple correlation analysis suggested it was significant (Table 1).I There were no significant differences between dates and stations. Silicateseemed to be sedimenting regardless of flow regimes (Table 1, Figure 20, ANVOVAI P=O .1866). There were no significant differences in s i 1icate flux betweenstations and dates. I Sediment TOC was higher at stations A and B averaging 1.21% than at stationsC and D which averaged 0.76% by dry weight (P=0.0001). There appeared to be adecreasing amount of TOC with increasing depth in sediment at stations B and DI (Figure 21), but the overall main effect for depth differences was notsignificant (P=0.2712). Total sediment nitrogen content was higher at stationI A (0.120%) than all the other stations which were the same (0.088%) (Tukeytest). There were also differences in N content with respect to sediment depthI (P=0.0070). The C/N ratio was highest at station B (14.0) and the same at stations C, A, and D, (9.9, 9.4, and 8.0 respectively) (Tukey test). There was I no seasonal change in C, N, or C/N ratios in the top cm of sediment betweenJanuary, April, and July 1987. I I 40 Benthic Metabolism and Resuspension I I Nueces and Corpus Christi Bays (flux vs. tempora 1, spatia 1, and 1 i ght variability). As a result of the San Antonio Bay experiment, it was determined that varying current flow was of little value. So, just two treatments, flow I (19.5 cm • s-1) and no flow was investigated, and therefore we were able to add light and dark treatments to the design. I There was a large difference in the sediment resuspension between chambers with and without current flow at 19.5 cm • s-1 (P=0.0001, 3-way ANOVA). The I overall average flux for chambers without resuspension was -0.503 g.m-2·h-1, and 2 1.23 g • m-• h-1 in chambers with resuspension. Suspended sediments settled and resuspended at different rates among stations (P=0.0332, Figure 23), but were I the same among stations and dates (P=0.2186, Figure 24). There were differences in sediment flux between dates (P=0.0440, Figure 24). There was more sediment I flux at stations C and D than in B and A. Chlorophyll flux behaved in a simpler way, that is, there were no I interactions among stations or dates with fl ow. But there were differences among stations (P=0.0064, Figure 25), and dates (P=0.0033, Figure 25). The I overall average flux for chambers without resuspension was -0.114 mg·m-2·h-1, and 2 I 0.243 mg • m-• h-1 in chambers with resuspension. There was more chlorophyll flux at stations D and C than in A and B. Oxygen consumption and production rates were very variable (Table 2). No statistically significant trends in gross photosynthesis or respiration were I evident in the data (Table 3). Neither were there any significant correlations with either salinity and temperature with gross photosynthesis or respiration I (Table 4). Although, the inverse correlation of gross photosynthesis under resuspension with salinity (P=0.0528) and temperature (P=0.0574) was barely I insignificant. The respiration rate under flow conditions was significantly corre1 ated with temperature (Tab1e 4). Res pi ration a 1 ways increased as a function of current flow in all stations (Figure 27), and at all dates except I May 1988 (Figure 28). Net photosynthesis decreased as a function of fl ow at stations B, C, and D, but not A (Figure 27), and in all months (Figure 28). The I over a 11 average gross photosynthesis rate without fl ow was O. 584 mmo1 • m-2• h-1, and the average respiration rate was -0.799 mmol·m-2·h-1• The overall average gross I photosynthesis rate with flow was 0.639 mmol·m-2·h-1, and the average respiration I I Benthic Metabolism and Resuspension 41 I I rate was -1.330 mmol·m-2·h-1• These results indicate that consumption was about twice as high as production overa11 , and resuspension increased consumptionI almost twice as much as it increased production. Nutrient fluxes were highly variable (Table 5). In fact, there was so much variability that no statistically significant differences were found for I nutrient flux in any of the main effects in the three-way ANOVAs. · However, some trends are suggested by the figures of the data. Ammonia flux almost always decreased in the chambers with fl ow (Figures 29 and 30) . This was al so statistically significant (P=0.0240, linear contrast). This is the opposite ofI what would be expected if sediment erosion was releasing reduced ions. Ammonia flux to the water column always increased in the light chamber relative to the I I dark chambers (Figures 29 and 30). This indicates some photosynthetic process is responsible for recycling sediment originated ammonia. The same trend was I apparent for nitrite (Figures 31 and 32), but not nitrate (Figure 33 and 34). Nitrate flux did decrease with flow, but generally also decreased with light. I This indicates that nitrate may not have been taken up by photoautotrophs. Phosphate flux did not exhibit any consistent patterns (Figures 35 and 36). Silicate flux was almost always positive (Figures 37 and 38). Silicate flux I generally increased with light, but did not respond in any consistent pattern with flow. No statistically significant trends of nutrient flux with salinityI or temperature were observed (Table 6). I DISCUSSION I The chambers seemed to work well. Erosion was even along the bottom of the chambers. In San Antonio Bay, the turbidity and oxygen changes vertically and with respect to time (Figures 6 and 7) indicate that there is an initialI equilibration period in the chambers lasting about 30 min. After this period the environment in the chamber is more stable. For this reason initialI subsamples for nutrient analyses taken 30 min the experiment was were after started. I Sediment concentration within chambers is apparently log-linear with respect to increasing water flow (Figure 9). Sediment flux in San Antonio Bay is linear I I 42 Benthic Metabolism and Resuspension I with respect to increasing water flow (Figure 13). A step model also fits the I data, but only increase R2 by 7%. A linear model implies that sediment will be deposited at speeds below 6.5 cm· s-1, and resuspended above that speed. A step I model predicts this net null flux speed to be closer to 10 cm. s-1• The sediments at both San Antonio Bay stations where this experiment was performed I were very similar (Montagna and Kalke, 1989). Both stations were dominated by silt (33% at A and 35% at C) and clay (29% at A and 41% at C). I Sediment resuspension indicates that the inventory of sediment diatoms could be resuspended into the water column and thus increase rates of photosynthesis. Resuspension should also facilitate production by increasing nutrient flux of I reduced ions from the sediment to the water. Chlorophyll and phaeophytin concentrations do appear to have a positive log-linear relationship with current I flow (Figures 10 and 11). But the chlorophyll to phaeophytin ratio decreases with current flow (Figure 12). This implies that the resuspended pigment is I coming from shade-adapted microphytobenthos, or that the diatoms have already been heavily grazed upon. We know meiofauna grazing rates are very high in San I Antonio Bay (Montagna and Yoon, 1989). The low chlorophyll to phaeophytin ratio also implies that photosynthesis increases may not be as high as predicted by the linear increase in chlorophyll resuspension. Primary production in bottom I waters in San Antonio Bay during the this study were on average only 1.5% that in the water column (Macintyre and Cullen, 1989). The low productivity is I obviously a result of the light attenuation by the high turbidity resulting from the resuspended sediment. I The net effect of increased chlorophyll but decreased light might result in no net gains in photosynthetic oxygen production with respect to current flow. I This appears to be true in SaQ Antonio Bay (Figure 14). This is also one reason why ammonia flux increases with i'ncreasing flow (Figure 16). Resuspension can I increase the flux of reduced ions out of the anaerobic sediments. When in the water column these ions are available to photoautotrophs as nutrients. But, the photoautotrophs must compete with chemi ca 1 oxidation for the reduced ions. I Nitrate flux also increased with flow (Figure 17), but nitrate flux decreased. Si nee only the most oxidized form of Nitrogen decreased with fl ow. We can I conclude that there was not photoautotrophic uptake, and most transformations I I Benthic Metabolism and Resuspension 43 I were due to chemical oxidation. In Nueces Estuary (Nueces and Corpus Christi Bays) we used only the highestI current speed and no fl ow at all . This all owed us to add 1 i ght and dark I chambers to the design of the experiment. Comparisons of chemical fluxes withSan Antonio Bay should only be made between light chambers (Table 7).Sediment and pigments in Nueces Estuary responded the same way they did inSan Antonio Bay (Figures 23 -26). Oxygen flux responded in the oppositefashion, decreasing with high flow (Figure 28 and 29). Oxygen flux increased in the 1 i ght chambers over the dark chambers with out fl ow, but the patterngenerally decreased with flow. Ammonia flux increased with flow in San Antonio Bay (Figure 16), butgenerally decreased with flow in the Nueces Estuary (except the light chambers at station B, in October) (Figures 29-30). Nitrite increased with flow in theGuadalupe (Figure 17) and the Nueces Estuaries (except in the dark chambers atstation C). (Figures 31 and 32). Nitrate flux decreased with flow in .theGuadalupe (Figure 18), but increased with respect to flow in the NuecesEstuaries (Figures 33 and 34). Corredor and Morell (1989) found ammonia release, and nitrite and nitrate uptake by sediments in a tropical lagoon.Asmus (1986) found ammonia release, and nitrite and nitrate uptake by sedimentsin a seagrass bed. Simon (1989) a1so found ammonia re1 ease from estuarineI sediments with resuspension, and called this process desorption. Raine andPatching (1980) found a positive correlation between oxygen flux and ammoniaI release in sediments from a semi-enclosed bay. Since the nitrate was taken up and the ammonia and nitrite were released,this implies that there was photosynthesis occurring in the light chambers. ButI when, the sediment was resuspended oxygen demand increases, and photosynthesisdoes not. The flux of reduced ions out of the sediments was met with chemicalI oxygen demand, and perhaps increased aerobic respiration by bacteria.Benthic metabolism and nutrient recycling does not have any obviousI correlation with salinity. The one exception was with oxygen flux in NuecesEstuary, but this could be an artifact induced by out1i ers in the data.I However, it may not be reasonable to assume that the only direct measure of theinfluence of freshwater inflow is a linear correlation with salinity. Sediment I I 44 Benthic Metabolism and Resuspension I particles and nutri ents are brought down the rivers. Transformations of the I chemical species are then advected to lower reaches of the estuary. Thus, stations at upper and lower reaches of the estuary can have similar parameters I (and no correlation with salinity), but the rates at the lower end is supported by advected nutrients from the upper end. That is, without the transformations I in the river influenced parts of the bays, the marine influenced parts of the bays could not maintain their productivity . I . The Guadalupe Estuary, with greater freshwater influence, had a much greater range in responses than the Nueces Estuary indicating greater metabolism and 2 nutrient recycling (Table 7). Oxygen flux ranged from -12 to 8 mmol • m-• h-1 I in the Guadalupe, but only from -3 to 3 in the Nueces. This indicates high potential production and consumption of carbon in the estuaries with greater I freshwater influence. This could explain why macrofauna densities were 50% greater in the more freshwater influenced estuary. The average density during I this study was 19,210 • m-2 in the Guadalupe, and 13,690 • m-2 in the Nu.eces (Montagna and Kalke, 1989). The average biomass was 4.67 g • m-2 in the Guadalupe, and 4. 36 g • m-2 in the Nueces (Montagna and Ka l ke, 1989). These I values are similar, indicating there are perhaps more smaller sized or juvenile organisms in the Guadalupe Estuary. In contrast, the meiofauna densities were I 99% higher in the Nueces than in the Guadalupe. The average density of meiofauna during this study was 0.69xl06 • m-2 in the Guadalupe, and 1.37 xl06 • I m-2 in the Nueces (Montagna and Kalke, 1989). The overa11 average net photosynthesis values indicate that metabolism in I the Guadalupe Estuary is Bx higher in than in the Nueces Estuary when there is no resuspension and 3x higher when there is resuspension due to current speeds I of 19.5 cm • s-1 (Table 7). Oxygen consumption increased slightly with resuspension. Ammonia was released with flow in the Guadalupe, and taken up in the Nueces Estuaries (Table 7). The effect of resuspension was generally I consistent in both estuaries. Nitrite and phosphate flux increased with flow, but nitrate decreased. I By comparing the daily primary production and nutrient recycling values we can determine the role of freshwater inflow in maintaining production. The I 2 overall average daily primary production in the water column was 1.23 g C • m I I Benthic Metabolism and Resuspension 45 • d-1 2 I in the Guadalupe Estuary (Macintyre and Cullen, 1989), and 1.20 g C • m • d-1 in the Nueces Estuary (Stockwell, 1989 personal communication). Using the I Redfield ratios for C:N:P of 106:16:1 we can calculate the daily N and P demand I for the phytoplankton. This would be 15.5and15.1 mmol N • m-2 • d-1, and 0.969 2 d-1 and 0.944 mmol P • m-• in the Guadalupe and Nueces Estuaries respectively. I Summing the total N input (Table 7), we find that during calm days (with no resuspension) there is 3.46 mmol N • m-2 • d-1 , and during windy days (withI resuspension) there is 3. 89 mmo l N • m-2 • d-1 regenerated in the Gu ad a 1 upe estuary, this accounts for 22% and 25% of the daily phytoplankton requirement.I On calm days the system may be P limited, but on windy days there almost 1500x the P required being regenerated. In the Nueces Estuary there is a veryI different story. During calm days there is 0.288 mmol N • m-2 • d-1, and during windy days there is -2.03 mmol N • m-2 • d-1 consumed. This accounts for 2% and none of the daily phytoplankton requirement. On calm days the system may be P limited, but on windy days there almost 144x the P required being regenerated. 2 Previous estimates of productivity in Corpus Christi Bay (0.48 g C • m-• d-1)I are much lower, but the ammonia regeneration rates are very similar (2.9 mmol N • m-2 • d-1) (Fl int and Kal ke, 1985; Fl int et _g]_., 1983). The resupply rate ofI old N in the Guadalupe is close to that found in other estuaries, but in the low end of the reported ranges. Regeneration and recycling (old N and P) can supplyI 13 -40% of the N and P required for primary production in estuaries (Nixon et _g]_., 1976; Fisher et _g]_., 1982; Boynton and Kemp, 1985; Nowicki and Nixon 1985). I Nitrogen appears to be limiting in both estuaries, but in the inflow-starved I Nueces it is at a critical level. The constant wind we experience in Texas is very important in maintaining the balance of productivity. There was a higher sedimentation and resuspension rate in the Guadalupe than in the Nueces Estuary {Table 7). Both estuaries had the same overall averageI clay content (35%) (Montagna and Kalke, 1989). But, the Guadalupe had a higher silt content (34%) compared to the Nueces (20%). This indicates that the higher I sediment fluxes were probably due to the higher silt content. Overall, it appears that the freshwater influences estuaries by depositingI greater amounts of fine material and nutrients. This material is more easily resuspended, and that can synergistically affect the role the enhanced nutrient I I 46 Benthic Metabolism and Resuspension I transport has. Thus, rivers influence estuaries by both sediment and nutrient I input, and these factors have a synergistic interaction. I ACKNOWLEDGEMENTS I We would like to acknowledge several individuals who contributed to this study. Rick Ka 1ke constructed the chambers, and with Joe Di rnberger, John I Turany, and Noe Cantu helped collect the samples. Denise Veidt analyzed the chamber water samples for nutrients. Chlorophyll analyses were performed by Hugh MacIntyre in San Antonio Bay and Dean Stockwe11 in Corpus Christi and I Nueces Bay. This work was funded through the Water Research and Planning Fund, and administered by The Texas Water Development Board under cooperative contract Nos. 9-483-705, 9-483-706. interagency I I I I I I I I I I I I I Benthic Metabolism and Resuspension 47 I LITERATURE CITED Asmus, R. 1986. I Nutrient flux in short-term enclosures of i ntertida1 sandcommunities. Ophelia 26:1-18. Boynton, W.R., I and Kemp, W.M. 1985. Nutrient regeneration and oxygenconsumption by sediments along an estuarine salinity gradient. Mar. Ecol.Prog. Ser. 23:45-55. Boynton, W.R., I Kemp, W.M., Osborne, C.G., Kaumeyer, K.P., Jenkins, M.C. 1981.Influence of water ci rcul ation rate on in situ measurements of benthi cI community respiration. Mar. Biol. 65: 185-190.Corredor, J.E. & Morell, J.M. 1989. Assessment of inorganic nitrogen fluxesI across the sediment-water interface in a tropical lagoon. Estuar. Coast. ShelfSci. 28:339-345. I Dale, T. 1978. Total, chemical and biological oxygen consumption of thesediments in Lindaspolle, Western Norway. Mar. Biol. 49: 333-341. Doering, P.H. 1989. On the contribution cf the benthos to pelagic production. I . Journal of Marine Rese-arch 47:371-383 .. Fisher, ·T.R., Carlson, P.R. &Barber, R.T. 1982. Sediment nutrient regenerationI in three North Carolina estuaries. Estuar. Coast. Shelf Sci. 14: 101-116.Flint, R.W. &Kalke, R.D. 1985. Benthos structure and function in a South TexasI estuary. Contributions in Marine Science 28:33-53. Flint, R.W., Kalke, R.D. &McCoid, M.J. 1983. The Corpus Christi Bay ecosystem I research applied to management needs. Port Aransas: The University of Texas, pp. 1-48. Froelich, P.N. 1980. I I Analysis of organic carbon in marine sediments. Limnol.Oceanogr. 25:564-572. Hedges, J. I. and Stern, J. H. 1984. Carbon and nitrogen determinations of carbonate-containing solids. Limnol. Oceanogr. 29:657-663. Langdon, C. 1984. Dissolved oxygen monitoring system using a pulsed electrode:I design, performance and evaluation. Deep-Sea Res. 31:1357-1367. I I I 48 Benthic Metabolism and Resuspension I Macintyre, H. L., Cullen, J. J. 1988. Primary production in San Antonio Bay, I Texas: contribution by phytoplankton and microphytobenthos. A report to the Texas Water Development Board. The University of Texas Marine Science I Institute, Port Aransas, Texas. Montagna, P.A., Bauer, J.E., Prieto, M.C. Hardin, D., Spies, R.B. 1986. I Benthic metabolism in a natural coastal petroleum seep. Mar. Ecol. Prog. Ser. 34: 31-40. I Montagna, P. A., Kalke, R. D. 1989. The effect of freshwater inflow on mei ofaunal and macrofauna l populations in San Antonio, Nueces and Corpus Christi Bays, Texas A report to the Texas Water Development Board. The I University of Texas Marine Science Institute, Port Aransas, Texas. Montagna, P. A., Yoon, W. B. 1989. The effect of freshwater inflow on I me i of auna l consumption of sediment bacteria and mi crophytobenthos in San Antonio Bay, Texas. A report to the Texas Water Development Board. The I University of Texas Marine Science Institute, Port Aransas, Texas. Nixon, S.W., Oviatt, C.A. & Hale, S.S. 1975. Nitrogen regeneration and the I metabolism ofw coastal marine bottom communities. In: Anderson, J.M. & Macfadyen, A. (eds.), The Role of Terrestrial and Aquatic Organisms in Decomposition Processes. London: Blackwell Scientific Publ., pp. 269-282. I Nixon, S. A., Oviatt, C. A., Frithsen, J., Sullivan, B. 1986. Nutrients and the productivity of estuarine and coastal marine ecosystems. J. Limnol. Soc. I Sth. Afr. 12:43-71. Nowicki, B.L. &Nixon, S.W. 1985. Benthic nutrient remineralization in a coastal I lagoon ecosystem. Estuaries 8(2B):l82-190. Raine, R.C.T. &Patching, J.W. 1980. Aspects of carbon and nitrogen cycling in I a shallow marine environment. J. Exp. Mar. Biol. Ecol. 47:127-139. SAS Institute Inc. 1985. SAS/STAT guide for personal computers, version 6 I edition. SAS Institute Inc., Cary, NC, 378 pp. Simon, N.S. 1989. Nitrogen cycling between sediment and the shallow-water column in the transition zone of the Potomac River and Estuary. II. The role of I wind-driven resuspension and adsorbed ammonium. Estuar. Coast. Shelf Sci. 28: 531-547. I I I Benthic Metabolism and Resuspension 49 I Strickland, J.D.H. & Parsons, T.R. 1972. A practical handbook of seawater analysis. J. Fish. Res. Board Can., Bull. 167 (Second ed.} :1-310. I I Taghon, G.L., Nowell, A.R.M., Jumars, P.A. 1984. Transport and breakdown of fecal pellets: biological and sedimentological consequence. Limnol. Oceanogr. 29:64-72. I Texas Department of Water Resources. 1980. Guad.alupe Estuary: A study of influence of freshwater inflows. Pub1i cation LP-107. Texas Department of Water Resources, Austin, Texas. Texas Department of Water Resources. 1981. Nueces and Mission-Aransas Estuary:I A study of influence of freshwater inflows. Publication LP-108. Texas Department of Water Resources, Austin, Texas. I Whitledge, T.E., Veidt, D.M., Malloy, S.C., Patton, C.J. Automated nutrient analysis in seawater. Brookhaven I Report 38990. Upton, New York, 231 pp. I I I I I I I I I I Wirich, C.D. 1986. National Laboratory 50 Benthic Metabolism and Resuspension I I Tab1 e 1. Pearson corre 1 at ion coeffi ci en ts (r) between nutrient fluxes and salinity and temperature in San Antonio Bay. Table also gives the probability (P) that the coefficient equals zero. There were 83 observations. I I Salinity Temperature I p p r r I P04 0.2187 0.0470 -0.0706 0.5258 SI04 0.3217 0.0030 0.0216 0.8461 I N03 -0.3078 0.0046 -0.1837 0.0964 N02 0.2380 0.0303 0.0241 0.8288 I NH4 0.1626 0.1419 0 .1559 0.1593 TEMP -0.4952 0.0001 I Key to abbreviations: I P04 = phosphate SI04= silicate I N03 = nitrate N02 = nitrite NH4 = ammonia I TEMP= temperature I I I I I I Benthic Metabolism and Resuspension 51 I Table 2. Oxygen flux rates, salinities, and temperatures for Nueces and Corpus Christi Bays stations. Chambers either had no flow or flow at 19.5 cm·s-1• I Photosynthesis and respiration are in units of mmol 02·m-2·h-1, where positive I values indicate oxygen production and negative values indicate oxygen consumption. Positive values indicate release and negative values indicate uptake from sediment I Flow No Flow I Date Sta Sal Temp Photo Resp Photo Resp I 200CT87 A 29 24.0 2.282 -2.126 0.5870 -1. 4520 I I 210CT87 8 34 21. 7 0.897 -1. 927 1.8580 -1.1880 190CT87 c 33 25.1 2.154 -1. 200 1.3070 -2.4710 220CT87 D 35 22.3 -1. 013 -3.090 -0.8780 -0.7790 08DEC87 A 29 20.6 1.105 -0.491 1. 2510 -1.1820 09DEC87 B 30 19.4 1.901 -1. 963 -1. 6349 5 .1169 07DEC87 c 32 18.8 -1. 435 -1. 537 7.8330 -1. 5650 10DEC87 D 32 18.9 4.088 -0.437 0.5400 0.8080I 16FEB88 A 27 15.7 1. 516 -1. 736 0.3170 -1. 0230 I 24FEB88 B 31 15.6 -0.040 -1. 354 -0.9120 -1. 2040 15FEB88 c 31 12.5 0.582 -1. 952 -0.0620 -0.9520 23FEB88 D 30 15.6 0.573 -0.824 1.2340 -0.6620 12APR88 A 30 17.0 1. 249 -2.533 -0.3630 -0.5660 I 14APR88 B 30 19.7 0.591 -1. 700 0.7930 -0.2790 I I l 1APR88 c 31 19.5 1.055 -1. 676 -0.4564 0.0014 13APR88 D 31 19.5 0.270 -1.150 0.6500 -0.2550I 10MAY88 A 34 26.3 0.263 -0. 613 0.5510 -1. 0990 11MAY88 B 34 27.5 -1. 792 0.496 I 0.3850 -1.6010 09MAY88 c 32 25.4 0.266 -1.418 0.0160 -0.6240 13MAY88 D 32 24.8 -1. 734 0.641 0.9340 -1. 4180 27JUL88 A 38 29.3 -0.0685 -1.2470 27JUL88 B 37 29.1 -0.6260 -1.3015 I 26JUL88 c 36 29.6 0.8075 -0.6350 26JUL88 D 45 30.6 1.1000 -1.8025 I I 52 Benthic Metabolism and Resuspension I Table 3. Analysis of variance table for Nueces and Corpus Christi Bay study. I There were 5 Dates (OCT87, DEC87, FEB88, APR88, MAY88), 4 stations (ABC D), and 2 treatments (flow and no flow). I I RESPIRATION: PHOTOSYNTHESIS: I Source OF F Pr > F Source OF F Pr > F I DATE 5 1.43 0.2683 DATE 5 1.22 0.3470 STA 3 0.52 0.6726 STA 3 0.44 0.7301 I DATE*STA 15 0.54 0.8783 DATE*STA 15 0.39 0.9617 FLOW 1 1.87 0.1917 FLOW 1 0.05 0.8294 I DATE* FLOW 5 1. 51 0.2440 DATE*FLOW 5 0.28 0.9144 STA*FLOW 3 0.50 0.6858 STA*FLOW 3 0.44 0.7255 I I I I I I I I I I Benthic Metabolism and Resuspension 53 I Table 4. Pearson correlation coefficients (r) between oxygen fluxes and salinity and temperature in Nueces Estuary. Table also gives the probability I (P) that the coefficient equals zero. There were 24 observations. I I Salinity Temperature r p r p I OF 0.2549 0.2293 0.4581 0.0244 I LF -0.2278 0.2844 -0.0909 0.6728 I L -0.2722 0.1981 -0.3065 0.1452 D -0.2879 0.1725 -0.2596 -0.2206 I PF -0.4000 0.0528 -0.3931 0.0574 p -0.0484 0.8225 -0.1060 0.6219 Key to abbreviations: I DF=Respiration, with flow LF=Net photosynthesis, with flow I L =Net photosynthesis, without flow I D =Respiration, without flow PF=Gross photosynthesis, with flow P =Gross photosynthesis, without flow I I I I I 54 Benthic Metabolism and Resuspension I Table 5. Sediment (SS), Chlorophyll (CHL), and nutrient flux data from Nueces I and Corpus Christi Bays. ID is the chamber identification: I=dark with flow, 2=light with flow, 3 light still, 4 dark still. A period indicates a missing I value. Positive values indicate release and negative values indicate uptake from sediment I I DATE STA ID SS CHL NH4 N02 N03 P04 SI04 I OCT87 A I -3.787 OCT87 A 2 -1. 550 OCT87 A 3 -0.09I -8.3 -2.4 1.0 13 .4 297.5 I OCT87 A 4 -0.036 -5.8 -24.2 -I0.2 -84.I 61. 7 OCT87 B I -0.689 -60.6 -53.5 -26.8 -50.9 I47.3 I OCT87 B 2 I.656 207.0 I82.2 -76.8 112. 2 273.5 OCT87 B 3 -0.304 4.2 -I7.2 37.3 30.6 5I5.5 I OCT87 B 4 -0.669 99.3 3.9 31.3 -0.9 I99.9 OCT87 C I 15.3 32.8 -41.1 9.8 254.7 OCT87 C 2 35.3 I9.4 -23.5 5.2 234.4 I OCT87 C 3 -4.I I0.5 -I0.4 5.8 183.9 OCT87 C 4 0.000 38.2 6.7 -6.7 1. 9 214.2 I OCT87 D I 3.647 -I4.4 -27.3 -31. 2 -1.3 I89.3 OCT87 D 2 0.9I2 -II. I 4.5 -I I. 0 I86.I 157.8 I OCT87 D 3 -0.304 ,.-50.3 -0.8 -1. 0 3.3 I68.2 OCT87 D 4 -0. I82 52.I -I0.5 4.0 -1. 3 I68.3 I DEC87 A I 0.304 0.378 -740.7 6.7 -74.0 -12.9 80I. 9 DEC87 A 2 0.426 0.351 -I68.5 6.3 -35.I 25.3 647.9 I DEC87 A 3 -0.2I3 0.06I 883.4 -20.9 I 1.3 -9.7 494.0 DEC87 A 4 -0.06I 0.096 289.8 -27.9 37.6 -9.6 709.5 DEC87 B I 0.578 0. I43 -I50.5 24.0 -459.I I7.3 -51. 7 I DEC87 B 2 2.5IO 0. I47 9.4 I7.6 -82.9 7.2 I6.3 DEC87 B 3 -0.213 0.046 -150.5 -2.7 -23.8 9.4 -106.2 I DEC87 B 4 -O.I22 0.049 I2.5 4.9 -23.7 -I7.5 2.8 I I I Benthic Metabolism and Resuspension 55 I Table 5 Continued. Fluxes from Nueces and Corpus Christi Bays. I DEC87 C 1 1.548 0.162 -108.4 -84.7 -350.5 -178.6 65.4 I DEC87 C 2 3.201 -0.004 -353.3 15.3 -15.4 11.3 327.0DEC87 C 3 -0.122 -0.083 91. 7 -0.4 -8.5 -2.1 87.2I DEC87 C 4 -0. 213 -0.089 74.4 -8.8 8.8 1. 2 -65.5DEC87 D 1 2.893 0.168 0.9 19.1 -11.3 -29.2 250.6I DEC87 D 2 0.304 0.339 8.5 11.1 -11.1 -39.2 68.1DEC87 D 3 -0.030 0.120 192.6 21.8 1.4 4.5 147.1I DEC87 D 4 -0. 213 0.028 103.8 3.8 3.9 14.6 -13.7 FEB88 A 1 2.257 0.179 127.0 34.3 -199.5 15.6 72.0I FEB88 A 2 -8.495 0.148 63.6 8.8 8.2 10.7 33.6FEB88 A 3 -0.365 -0 .113 -7.2 -4.2 -8.5 -0.2 18.2 I FEB88 A 4 -3.276 -0.028 48.5 41.4 -48.4 -4.1 -0.9 I FEB88 B 1 1.306 0.220 -35.4 14.4 -292.3 -11. 6 4.8FEB88 B 2 0.061 -0. 178 17.0 23.7 -55.9 0.5 -43.7I FEB88 B 3 -0.608 -0.317 -269.8 -20.2 -27.4 -47.7 -19.4FEB88 B 4 -0.608 -0.320 -114.8 -24.3 7.4 -26.0 -34.0 FEB88 C 1 2.516 1.048 -122.2 -20.7 -1243.8 -188.4 15.8FEB88 C 2 0.873 0.859 -185.0 -13.3 -442.6 -160.7 28.9I FEB88 C 3 -0.365 -0.081 -79.7 -15.5 -221. 7 -55.1 -23.6FEB88 C 4 -0.304 -0.028 -105.2 -8.2 -90.0 -18.3 -10.5 I FEB88 D 1 0.395 0.288 -80.9 -0.2 -895.5 -49.8 55.1FEB88 D 1 0.122 0.055 83.3 1.0 -191.2 -10.4 -2.0 FEB88 D 2 0.517 0.120 I -2.8 8.8 -26.4 2.0 27.9I FEB88 D 3 0.061 -0.007 9.9 -0.l 1. 7 0.0 27.9FEB88 D 4 0.152 -0.038 68.1 3.2 17.5 -6.3 57.9 I APR88 A 1 0.683 0 .155 -5.6 23.8 -605.3 101. 6 102.7APR88 A 2 -0.563 1. 237 -48.2 19.4 -256.7 -23.6 145.5APR88 A 3 -0.426 0.025 20.2 -8.2 -95.1 5.9 359.6 APR88 A 4 -0.669 I 0.009 -17.4 -21. 5 -43.6 -32.8 -1609.6 I I 56 Benthic Metabolism and Resuspension I Table 5 Continued. Fluxes from Nueces and Corpus Christi Bays. I APR88 B 1 3.573 0.357 25.7 30.9 -464.0 2.5 77 .0 I APR88 B 2 2.880 0.244 8.9 33.2 -251. 7 10.1 119. 9 APR88 B 3 -0.274 -0.049 4.0 -6.7 -153.3 5.0 34.3 I APR88 B 4 -0.274 -0.088 861.5 -2.2 -99.2 0.9 34.2 APR88 C 1 1.067 0.216 -99.3 85.5 50.0 42.7 177 .6 I APR88 C 2 2.552 0.412 9.5 -16.5 -43.6 4.5 72.6 APR88 C 3 -0.851 0.123 18.0 -1. 7 81. 7 11. 2 30.5 I APR88 C 4 -0.334 0.063 -1. 0 -22.9 -82.4 -15.8 20.0 APR88 D 1 1.094 0.848 157.4 -2.4 72.7 -13. 5 51.4 APR88 D 2 3.171 0.975 -56.4 18.6 12.6 0.9 -0.8 I APR88 D 3 -0 .152 0.642 1.0 -3.6 34.7 -23.5 198.6 APR88 D 4 -0.061 0.099 4.9 -0.2 31.4 8.4 94.1 I MAY88 A 1 6.888 -0.010 53.4 45.3 14.3 57.8 MAY88 A 2 7.910 -0.568 25.4 15.5 83.1 100.6 I MAY88 A 3 -0.395 0.331 19.8 -23.2 24.1 100.6 MAY88 A 4 -0.517 -0.141 4.9 -61.8 82.4 14.9 I MAY88 B 1 0.678 -0. 194 18.2 27.6 -96.2 -5.0 -336.6 MAY88 B 2 -4.137 -0.075 16.4 27.6 -69.4 -53.7 117 .0 MAY88 B 3 -2.918 -0.511 9.1 -42.8 -79.7 -18.2 -245.9 I MAY88 B 4 -1.186 -0.366 -23.8 -52.2 23.8 -17.2 -87.1 MAY88 C 1 3.136 0.067 -24.7 -297.2 11426. 6 10231.3 I MAY88 C 2 1.586 0.085 9.9 0.9 -254. 6-. 214.0 MAY88 C 3 -0.790 -0.255 -5.9 10.8 28.3 299.6 I MAY88 C 4 -0.426 -3.0 -20.1 -38.5 0.0 MAY88 D 1 1.003 0.743 -16.2 7.1 6.4 -11. 0 62.0 I MAY88 D 2 3.128 0.833 -16.2 -16.3 16.3 -0.6 107.4 MAY88 D 3 -0.122 -0.017 3.8 -0.8 0.8 -12.2 -28.6 MAY88 D 4 -0 .152 -0 .180 11.1 2.4 -2.5 57.5 -51.4 I I I I I Benthic Metabolism and Resuspension 57 I Table 6. Pearson correlation coefficients (r} between nutrient fluxes and salinity and temperature in Nueces Estuary. Table also gives the probabilityI (P) that the coefficient equals zero. There were 79 observations. Abbreviations are the same as used in Table 1. I I Salinity Temperature I p p r r I P04 0 .1074 0.3727 0.2603 0.0284 I SI04 0.0351 0.7588 0.1675 0.1400 N03 0.0669 0.5579 0.2036 0.0719 I N02 -0.0644 0. 5719 -0.1206 0.2898 NH4 -0.0286 0.8028 0.0954 0.4026 TEMP 0.7449 0.0001 I I I I I I I I 58 Benthic Metabolism and Resuspension I Table 7. Comparison of average flux rates between two estuaries. Comparisons I are made between flux in light chambers without resuspension (No flow conditions), and with resuspension (Yes, at a current speed of 19.5 cm· s-1). I For the Guadalupe estuary the least square means and 95% prediction intervals were computed, and for the Nueces estuary arithmetic means and 95% confidence I intervals were computed. Abbreviations are the same as used in Table 1, with the addition of 02 for oxygen, and SS for suspended sediments. The units for nutrient flux are µmol • m-2 • h-1, for oxygen mmol • m-2 • h-1, and for I 2 sediments g • m-• h-1• Positive values indicate release and negative values indicate uptake from sediment. I I I Guadalupe Estuary Nueces Estuary No Flow With Flow No Flow With Flow I Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI I P04 -0.535 (-170, 169) 65.l (-106, 236) -4.42 (-14.3, 5.44) 5. 77 (-28.0, 39.5) SI04 -413 (-2680, 1850) -315 ( -2590' 1960) 127 (36.3, 218) 139 (63. 6, 215) N03 214 (-574, 1000) -3.93 (-796, 788) -20.4 (-52.9, 12 .2) -80.9 (-142, -18.8) I N02 -8.48 (-73.5, 56.6) 30.0 (-35.4, 95.4) -6.40 (-13.0, 0.212) 19.3 (-0.869, 39.4) NH4 -62.0 (-434, 310) 136 (-237, 510) 39.l (-62.8, 141) -22.7 (-77.5, 32.2) 02 -1.72 (-8. 86' 5. 41 ) -2.00 ( -9 .18' 5 .17) -0.214 (-0.886, 0.458) -0.691 (-1. 28' -0.100) I SS -7.27 (-17.9, 3.41) 14.5 (3.77, 25.3) -0.050 (-0.207, 0.107) 1.23 (0.194, 2.26) I I I I I I I I I I I I I I I I I I I I II I I Benthic Metabolism and Resuspension 59 tN 0 5 10 I I Kiiometer• 0 5 10 I I I Nautical Mii•• · 28 0 Study Are• g70 Figure 1. Map of study area indicating station locations. Four stations were in each of two estuaries. San Antonio Bay is in the Guadalupe Estuary, and Nueces and Corpus Christi Bays are in the Nueces Estuary. 60 Benthic Metabolism and Resuspension I I I I c ·-@ I ~000 I I I I I I I I I I Figure 2. Benthic chambers. A. Pulsed dissolved oxygen controller with serial connection to computer. B. Varistat. C. AC to DC converter. D. Bilge pump. I I I Benthic Metabolism and Resuspension 61 I Calibration of Flow Rates in Chambers 1 I Water Flow (cm · s -) vs. Volts (DC) I Flow 30 I I 25 20 I I I 15 I I 10 I 5 I I 0 2 4 6 8 10 12 14 I Volts I Figure 3. Calibration curve between voltage applied by the Varistat and current I speed within the chamber. The formula from a linear regression is: speed (cm • s-1) = l.866x(DC volts) -1.794. I 62 Benthic Metabolism and Resuspension I I I I I 0 I I I I I I I 0 I I I Figure 4. Locations of Tums (circles) in the experiment to calibrate chamber erosion characteristics. I I I I I I I I I I I I I I I I I I I I Benthic Metabolism and Resuspension --------------... ................ ...... 10 CM Figure 5. Calibration chamber with four sampling ports arranged vert ica11 y within one chamber. Depth intervals were 4, 8, 12, and 16 cm from sediment surface. I 64 Benthic Metabolism and Resuspension I I Chamber Calibration, Station A I I 300 I :J 1-200 J I 100 A I O-t-~~.--~---.-~~-..-~~-.--~~-.-~~r--~---.-~~----1 I 0 20 40 60 80 I I 210 B •fj, I n. c 180 ~ Q) ·~ O'l I x ~ ~. ~0 150 ~ I I 120-+-~--,-~-----,r--~-.-~-.-~~-.--~-.-~~.------~~ 0 20 40 60 80 Time I o-o 16cm <>--<> 12cm ~· · -~ 8cm D-·-D4cm Figure 6. Chamber calibration data from San Antonio Bay, station A, July 13, I 1987. Vertical depth intervals were 4, 8, 12, 16 cm from sediment surface, current flow within the chamber was 19 cm· s-i. A: Suspended sediments (JTU) I vs incubation time. B: Oxygen concentration (µM) vs. incubation time. I Benthic Metabolism and Re$USpension 65 I Chamber Calibration, Station C I 270 I 230 190 I :::J I-150 110 I J I 70 I 30 0 20 40 60 80 100 120 I 250 240 230 I ~ 2 ::i.. ~ 220 c I Q) O'I 210 0 I x> 200 I 190 I 180 0 20 40 60 80 100 120 Time (min) I o-o 16cm o--o 12cm 6· · · 6 Bern D-·-D 4cm I I I Figure 7. Chamber calibration data from San Antonio Bay, station C, July 15,1987. Vertical depth intervals were 4, 8, 12, 16 cm from sediment surface,current flow within the chamber was 19 cm • s-1• A: Suspended sediments (JTU)vs incubation time. 8: Oxygen concentration (µM) vs. incubation time. I Benthjc Metaboljsm and Resuspensjon Chamber Calibration, Pigments 27 / / / ........-... 24 / / I ---~ (J"i 21 r-~ ::t ...__ 0 18 I >.. I _c 0.. I . L 0 15 0 _c I 0 A 12 I 9 60 80 100 1200 20 40 2.0 1.6 B 0 I Q) 0 _c Q_ 1.2 '-..... 0 I _c 0 0.8 --o-__ ---<> 0.4 0 20 40 60 80 100 120 Time (min) O-OA 0--08 I I I I I I I I I I I I I I I I Figure 8. Pigment resuspension in chambers from San Antonio Bay, stations A (see Figure 6) and C (see Figure 7), July 1987. A: Chlorophyll concentration vs. I time. B: Chlorophyll to phaeophytin ratio vs time. I I Benthic Metabolism and Resuspension 67 I I Sediment Resuspension (JTU) vs. Water Flow (cm . s -1) JTU I 3.0 I I 2.5 I 2.0 ~ EB I 0 I 1. 5 ij 0 0 I 1.0 * I x I 0.5 0 5 10 15 20 I Flow o o o APR/A x x x APR/C o o o JAN/A * * * JAN/C o o o JUL/A + + + JUL/C 6 6 6 NOV/A ++ ++ ++ NOV/C I I I Figure 9. Sediment resuspension as a function of current flow from San Antonio Bay stations A and C, in 1986-7. Turbidity (Log10 JTU) was measured at the I end of a 3 h incubation. The formula for the line fit through all 180 points is: Log 10 JTU = 1.271 + 0.0514x(current speed in cm • ~-1), and R2=0.59. 68 Benthic Metabolism and Resuspension I I Resuspension (µg . I -1) I vs. Water Flow (cm . s -1) I Chl 2.0 I 1. 5 I I I 1.0 0 ~ I 0 8 0.5 I 0 I 0.0 I 0 5 10 15 20 Flow I o o o APR/A x x x APR/C o o o JAN/A * * * JAN/Co o o JUL/A + + + JUL/C 6 6 6 NOV/A tl: tl: tl: NOV/C I I Figure 10. Chlorophyll resuspension as a function of current flow from San Antonio Bay stations A and C, in 1986-7. Chlorophyll concentration (Log 10 µg I • 1-1) was measured at the end of a 3 h incubation. The formula for the line fit through all 180 points is: Log 10 chlorophyll = 0.750 + 0.0282x(current I speed in cm • s-1), and R2=0.37. I I I Benthic Metabolism and Resuspension 69 I I Phaeophytin Resuspension (µ,g · 1-1) vs. Water Flow (cm · s -1) I Ph 2.4 I 2.0 I 1.6I 1. 2 I I I I I 0.8 0.4 0.0 -0.4 0 5 10 15 20I Flow I D D D APR/A x x x APR/C o o o JAN/Ao o o JUL/A * * * JAN/C + + + JUL/C 6 6 6 NOV/A tt tt tt NOV/C I Figure 11. Phaeophytin resuspension as a function of current flow from SanAntonio Bay stations A and C, in 1986-7. Phaeophytin concentration (Log 10 µg • 1-1) I was measured at the e~d of a 3 h incubation. The formula for the linefit through all 180 points is: Log 10 phaeophytin = 0.4077 + 0.0475x(currentI speed in cm • s-1), and R2=0.62. I 70 Benthic Metabolism and Resuspension I I Chlorophyll:Phaeophytin Ratio I vs. Water Flow (cm . s -1) C:P 4.5 I 4.0 * I * 3.5 * I 3.0 I 2.5 I 2.0 0 I 1. 5 0 I 1.0 0.5 I 0.0 I 0 5 10 15 20 Flow I o o o APR/A x x x APR/C o o o JAN/A * * * JAN/Co o o JUL/A + + + JUL/C 6 6 6 NOV/A tt ++ tt NOV/C I I Figure 12. Chlorophyll-phaeophytin ratios at the end of a 3 h incubation as a function of current flow from San Antonio Bay stations A and C, in 1986-7. I The formula for the line fit through all 180 points is: Log 10 ratio= 2.319 1 -0.0640x(current speed in cm • s-), and R2=0.27. I I I Benthic Metabolism and Resuspension 71 I I Sediment flux (g · m -2 · h-1) vs. Water Flow (cm . s-1) I 25 I 20 I 8 15 0 tt I F 10 0 u 5 I l x * I 0 I -5 I -10 I -15 I 0 5 10 15 20 Flow o o o A/AM o o o A/PMI * * * C/AM tt tt ++ C/PM I Figure 13. Sediment flux as a function of current flow rates from San Antonio I Bay, July 1987. The first group letter refers to station A or C, and thesecond group letter refers to the deployment morning (AM) or afternoon (PM).I The formula for the line fit through all 20 points is: Flux (g • m-2 • h-1) =l.1182x(current speed in cm • s-1) -7.269 , and R2=0.74. I 72 Benthic Metabolism and Resuspension I I 2 I Oxygen flux (mmol . m-. h-1) vs. Water Flow (cm · s -1) Flux I 8 * I * 4 I 0 * I 0 + + I 0 + 0 -4 0 0 0 I 0 0 .I -8 I + I -12 0 5 10 15 20 Flow I o o o APR/A o o o JAN/A * * * JAN/C o o o JUL/A + + + JUL/C I I Figure 14. Oxygen flux as a function of current flow rates from San Antonio Bay. The first group letter refers to the month in 1987, and the second group I letter refers to station A or C. The formula for the line fit through all 2 1 43 points is: Flux (mmol 02 • m-• h-1) = -0.0144x(current speed in cm • s-) I -1.723 , and R2=0.001. I I I Benthic Metabolism and Resuspension 73 I 2 Oxygen Flux (mmol · m -· h -1) I vs. Water Flow (cm . s-1) vs. Salinity (ppt) I I . LUX I 8 I 4 I 0 I -4 6.40I -8 -- --,,,,.-/- ---;.!:. _____ _ 4.37 ,,-,,,..._ -------SALINITY l -12 19.5 2.33 I FLOW I JAN/A=Balloon JAN/C=Star APR/A=Square JUL/A=Diamond JUL/C=Cross I Figure 15. Oxygen flux as a function of current flow rates and salinity from San Antonio Bay. The first group letter refers to the month in 1987, and theI second group letter refers to station A or C. I 74 Benthic Metabolism and Resuspension I 2 1 San Antonio Bay Nutrient Flux (µmol . m -. h -) I vs. Water Flow (cm . s-1) I 600 0 I 300 I 0 --------~ A + m 0 ¢. I m 0 n I i a I-300 0 I -600 I -900 I 0 5 10 15 20 I Flow o D D APR/A x x x APR/C o o o JAN/A * * * JAN/Co o o JUL/A + + + JUL/C 6 6 6 NOV/A tt: tt: tt: NOV/C I I I Figure 16. Ammonia flux as a function of current flow rates from San Antonio Bay. The first group letter refers to the month in 1986-7, and the second I group letter refers to station A or C. The formula for the line fit through 2 1 all 82 points is: Flux (µmol • m-• h-1) = 10.17x(current speed in cm· s-) I -61.98, P=0.0020 for H0 :slope=O, and R2=0.16). I I Benthjc Metabo]jsm and Resuspensjon 75 I San Antonio Bay Nutrient Flux (µmol · m -2 . h -1) vs. Water Flow (cm . s-1) I 120 I 90 + I 660 zh 0 N I i 8 I ~ t 30 r * I t ----------!----------------te 0 ----~~~~~"-'--~~~----~~~~~~~~~~~~______,.,_~ 8 * * )( -30 I 0 I -60 -90 0 I 0 I 0 5 10 15 20 Flow 0 0 o APR/A x x x APR/C 0 0 0I JAN/A * * * JAN/C 0 0 o JUL/A + + + JUL/C 6 6 6 NOV/A ++ ++ ++ NOV/C I I Figure 17. Nitrite flux as a function of current flow rates from San AntonioBay. I The first group letter refers to the month in 1986-7, and the second group letter refers to station A or C. The formula for the line fit through I all 82 points is: Flux (µmol • m-2 • h-1) = l.974x(current speed in cm • s-1)-8.481, P=0.0001 for H0 :slope=O, and R2=0.19). I I 76 Benthic Metabolism and Resuspension I San Antonio Bay Nutrient Flux (µmol . m -2 . h -1) I vs. Water Flow (cm . s-1) 1750 I 1400 I 0 I 1050 D Ni t I r 0 Ia 700 D te I 0 I 350 ______ ______ __J:f t+0 -----0---------------- 0 @ @ * ~ 6. I -350 0 I 0 5 10 15 20 Flow I D D o APR/A x x x APR/C 0 0 0 JAN/A * * * JAN/C0 0 o JUL/A + + + JUL/C 6. 6. 6. NOV/A t+ t+ :t:t NOV/C I I Figure 18. Nitrate flux as a function of current flow rates from San Antonio I Bay. The first group letter refers to the month in 1986-7, and the second I group letter refers to station A or C. The formula for the line fit through all 82 points is: Flux (µmol • m-2 • h-1) = ll.20x(current speed in cm • s-1) + 214.54 ,P=0.0454 for H0 :slope=O, and R2=0.05). I I I I Benthic Metabolism and Resuspension 77 I San Antonio Bay Nutrient Flux {µmol . m -2 . h -1) vs. Water Flow (cm . s -1) I 500 I 400 I 300 h 6 I p 0s 200 I p tt: h a tt: t 100 I e + --------------~----------- @ 0 I 0 + 6 0 0 I -100 I -200 0 5 10 15 20 I Flow o o o APR/A x x x APR/C o o o JAN/A I o o o JUL/A + + + JUL/C 6 NOV/A tt:* * *tt: JAN/C 6 6 tt: NOV/C I I Figure 19. Phosphate flux as a function of current flow rates from San AntonioBay. The first group letter refers to the month in 1986-7, and the secondI group letter refers to station A or C. The formula for the line fit throughall 82 points is: Flux (µmol • m-2 • h-1) = 3.363x(current speed in cm • s-1)I -0.534, P=0.0064 for H0 :slope=O, and R2=0.09). I 78 Benthic Metabolism and Resuspension I San Antonio Bay Nutrient Flux (µmol . m -2 . h -1) I vs. Water Flow (cm . s-1) I 2000 I 1000 0 -JM-~~~~~'¥--~~~---~~~~~~-G-~~~~~--lt~ I + ___________________:t;___________________ s i -1000 1 I i ~ -2000 I t -3000 e I 0 0 -4000 0 I -5000 I 0 -6000 I 0 5 10 15 20 Flow I o o o APR/A x x x APR/C o o o JAN/A * * * JAN/C o o o JUL/A + + + JUL/C t::. t::. t::. NOV/A ++ ++ ++ NOV/C I I I Figure 20. Silicate flux as a function of current flow rates from San Antonio Bay. The first group letter refers to the month in 1986-7, and the second I group letter refers to station A or C. The formula for the line fit through all 82 points is: Flux (µmol • m-2 • h-1 ) = 5.04x(current speed in cm • s-1 ) I -413.57, P=0.002 for H0 :slope=O, and R2=0.001). I I Benthic Metabolism and Resuspension 79 I I cm I I 3 cm 2 2 I 6 3 4 4 5 5 6 7 7 8 A 8 9 9 I 10 10 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 I cm cm 10 1 9 I ·B 2 I 6 37 4 6 5 5 I 3 4 c 8 7 D 2 9 1 I 10 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0%C %C I I I Figure 21. Vertical distribution of organic carbon content in sediments of SanI Antonio B.ay, January 1987. A: station A, B: station B, C: station C, and D:station D. I I I 80 Benthic Metabolism and Resuspension I I I cm cm I 8 I I I 0.00 0.05 0.15 0.10 0.20 0.00 0.05 0.15 0.10 0.20 cm cm I 1 r.LL..:'LLL.ZLL,,.CLLLLL..LJ.(.d 2 ~CLLLLLL::'CLLJ.~~(LLJ 2~~~~~ J~~~~~~ c J FL.£L'LLL,(LLLL£.u.'LLL.ULJ.~ULJ.~CLL£~ D I 4~~££Li~~~~ 4 r£il.ULL.Z/.h.~CLLL~~ 5~~Wd~~ 5 rt£L.(L.Lt.tt.a.UL£~(La(J 6 tc.LL.CL.il.'LLL.CLLt.'LLL.U.Lt.:LL.d 6 fLL,lCLLL.CLLL.'UL.i.~ 7~~'.WJL~~ 7~~~~~ I 8 i:cLL'LLL.UL.CLLLLLL::CLZ::l 8~~~~ 9~~~~~ 9~~~ I 10~~~~~ 10~~~~~ 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20%N %N I I I I Figure 22. Vertical distribution of nitrogen content in ~ediments of San AntonioBay, January 1987. A: station A, B: station B, C: station C, and D: station I D. I I I I Benthic Metabolism and Resuspension 81 I I Nueces Estuary Sediment Flux (g . m -2 . h-1) I Flux 4 ,-~~~~~~~~~~~~~~~~~~~~~~~~~~ I I 3 I I 2 I I 1 I I I I -1 N y N y y y N N Flow ~ D --1 Station I Figure 23. Sediment flux as a function of current fl ow (none or 19 cm • s-1)I from Nueces-Corpus Christi Bays, 1988. Average at stations A, B, C, and D. I I I 82 Benthic Metabolism and Resuspension I I Nueces Estuary Sediment Flux (g . m -2 . h-1) I Flux 3 --.--~~~~~~~~~~ ~~~~~~~~~~~~~~~~ I I I I I 2 1 I I I I I N y N y N y N y yN Fl O\v OCT87 DEC87 FEB88 APR88 I MAY88 Date I Figure 24. Sediment flux as a function of current flow (none or 19 cm • s-1)from Nueces-Corpus Christi Bays, 1988. Average on different dates. I I I I I Benthic Metabolism and Resuspension 83 I I Nueces Estuary Chlorophyll Flux (mg . m -2 . h -1) I Flux 0.4 I 0.3 I I 0.2 I 0.1 I 0.0 I -0 .1 I I -0.2 I -0.3 y N y N y N y Flow I N r-A -1 r-B -1 r-c -1 r-D -1 Station I Figure 25. Chlorophyll flux as a function of current flow (none or 19 cm • s-1)I from Nueces-Corpus Christi Bays, 1988. Average flux at stations A, B, C, and D. I I I Benthic Metabolism and Resuspension 84 I I Nueces Estuary Chlorophyll Flux (mg . m -2 . h -1) I Flux 0.4 I 0.3 I I 0.2 I 0 .1 I I I -0 .1 I -0.2 I -0.3 y Fl 0\-J I y N y N N y N y N DateOCT87 DEC87 FEB88 APR88 MAY88 I • s-1) I Figure 26. Chlorophyll flux as a function of current flow (none or 19 cm Average on different dates. from Nueces-Corpus Christi Bays, 1988. I I I I I Benthic Metabolism and Resuspension 85 I I Nueces Estuary Oxygen Flux (mmol . m-2 . h-1) I Flux 1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~ I I I I I I -1 I I I I D DF L LF D DF L LF D DF L LF D DF L LF Chamber r----D --i Station I Figure 27. Oxygen flux in four treatment chambers from Nueces-Corpus ChristiI Bay. Average flux at stations A, B, C, and D. D=dark no current flow,DF=dark with current flow of 19 cm • s-1, L=light no current flow, LF=lightI with current flow of 19 cm· s-1 • I 86 Benthic Metabolism and Resuspension I I 2 Nueces Estuary Oxygen Flux (mmol . m-. h-1) I Flux I 3 .---~~~~~~~~~~~~~~~~~~~~~~~~~~ I 2 I 1 I I I -1 I I -2 I I D D L L D D L L D D L L D D L L D D L L D D L L Chamber F F F F F F F F F F F F I OCT87 DEC87 FEB88 APR88 MAY88 JUL88 Date I Figure 28. Oxygen flux in four treatment chambers from Nueces-Corpus Christi Bay. Average flux on different dates in 1988. D=dark no current fl ow, I DF=dark with current flow of 19 cm • s-1, L=light no current flow, LF=light with current flow of 19 cm • s-1 • I I I Benthic Metabolism and Resuspension 87 I I Nueces Estuary Ammonia Flux (µmol . m -2 . h -1) I Flux 200 I I I 100 I I I I -100 I I -200 I 0 OF L LF 0 OF L LF 0 OF L LF 0 OF L LF Chamber r--A ----1 r--B ----1 r--c ----1 r--0 ----1 Station I Figure 29. I Ammonia flux in four treatment chambers from Nueces-Corpus Christi Bay. Average flux at stations A, B, C, and 0. O=dark no current flow, I OF=dark with current flow of 19 cm • s-1, L=light no current flow, LF=lightwith current flow of 19 cm· s-1• I I 88 Benthic Metabolism and Resuspension I I Nueces Estuary Ammonia Flux (µmol . m -2 . h -1) I Flux I 300 .-~~~~~~~~~~~~~~~~~~~~~~~~---, I 200 I 100 I I I -100 I I -200 I -300 I D D L L D D L L D D L L D D L L D D L L Chamber F F F F F F F F F F OCT87 DEC87 FEB88 APR88 MAY88 Date I I Figure 30. Ammonia flux in four treatment chambers from Nueces-Corpus ChristiBay. Average flux on different dates in 1988. D=dark no current flow, IDF=dark with current flow of 19 cm • s-1, L=light no current flow, LF=lightwith current flow of 19 cm· s-1• I I !I I Benthic Metabolism and Resuspension 89 I I Nueces Estuary Nitrite Flux (µmol . m -2 . h -1) I Flux 60 ~~~~~~~~~~~~~~~~~~~~~~~~~~-----, 'I 50 40 I 30 I 20 I 10 I -10 I -20 I -30 I I -40 -50 I 0 OF L LF 0 OF L LF D DF L LF D OF L LF Chamberr D --1 StationI Figure 31. Bay. Nitrite flux in four treatment chambers from Nueces-Corpus Christi I Average flux at stations A, B, C, and 0. D=dark no current flow, DF=dark with current flow of 19 cm • s-1, L=light no current flow, LF=lightI with current flow of 19 cm· s-1• I 90 Benthic Metabolism and Resuspension I I 2 I Nueces Estuary Nitrite Flux (µmol . m -. h -1) Flux 70 I 60 50 I 40 I 30 I 20 10 I 0 -10 I -20 I -30 I -40 -50 I -60 ID D L L D D L L D D L L D D L L D D L L Chamber F F F F F F F F F F I OCT87 DEC87 FEB88 APR88 MAY88 Date I Figure 32. Nitrite flux in four treatment chambers from Nueces-Corpus Christi Bay. Average flux on different dates in 1988. D=dark no current fl ow, I DF=dark with current flow of 19 cm • s-1, L=light no current flow, LF=light with current flow of 19 cm· s-1 • I I I Benthic Metabolism and Resuspension 91 I I Nueces Estuary Nitrate Flux (µ,mol . m -2 . h-1) Flux I 2000 I I I 1000 I I I I I I -1000 0 OF L LF 0 OF L LF 0 OF L LF 0 OF L LF Chamber I r re~ 0 ~ Station I Figure 33. Nitrate flux in four treatment chambers from Nueces-Corpus Christi I Bay. Average flux at stations A, B, C, and 0. O=dark no current flow,I OF=dark with current flow of 19 cm • s-1, L=light no current flow, LF=lightwith current flow of 19 cm • s-1• I I 92 Benthic Metabolism and Resuspension I I 2 h-1 Nueces Estuary Nitrate Flux (µmol . m-. ) I Flux 3000 I I 2000 I I I 1000 I I I I -1000 I D D L L D D L L D D L L D D L L D D L L Chamber F F F F F F F F F F I OCT87 DEC87 FEB88 APR88 MAY88 Date I Figure 34. Nitrate flux in four treatment chambers from Nueces-Corpus Christi Bay. Average flux on different dates in 1988. D=dark no current fl ow, 1 DF=dark with current flow of 19 cm • s-1, L=light no current flow, LF=light with current flow of 19 cm • s-1• I I I I Benthic Metabolism and Resuspension 93 I I Nueces Estuary Phosphate Flux (µmol . m -2 . h -1) Flux I 40 30 I 20 I 10 I 0 I -10 -20 I I -30 -40 I -50 I -60 -70 I -80 0 OF L LF 0 OF L LF 0 OF L LF 0 OF L LF ChamberI r--A --j r--D --1 Station I Figure 35. Phosphate flux in four treatment chambers from Nueces-Corpus ChristiBay. Average flux at stations A, 8, C, and D. D=dark no current flow,I DF=dark with current flow of 19 cm • s-1, I L=light no current flow, Lr=lightwith current flow of 19 cm • s-1• I 94 Benthic Metabolism and Resuspension I I 2 I Nueces Estuary Phosphate Flux {µmol . m-. h-1) Flux 110 I 100 90 I 80 70 I 60 50 I 40 30 I 20 10 I 0 I-10 -20 I-30 -40 -50 I -60 I D D L L D 0 L L D D L L D D L L 0 0 L L Chamber F F F F F F F F F F OCT87 OEC87 FEB88 APR88 MAY88 Date I I Figure 36. Phosphate flux in four treatment chambers from Nueces-Corpus Christi Bay. Average flux on different dates in 1988. D=dark no current flow, I DF=dark with current flow of 19 cm • s-1, L=light no current flow, LF=light with current flow of 19 cm • s-1• I I I Benthic Metabolism and Resuspension 95 I Nueces Estuary Silicate Flux (µmol . m -2 . h -1) I FluxI 3000 I I 2000 I I 1000 I I I I I -1000 0 OF L LF 0 OF L LF 0 OF L LF 0 OF L LF Chamber I r--A ---1 r--B ---1 r--c ---1 r--0 ---1 Station I I Figure 37. Silicate flux in four treatment chambers from Nueces-Corpus ChristiBay. Average flux at stations A, B, C, and D. D=dark no current fl ow, I DF=dark with current flow of 19 cm • s-1, L=light no current flow, LF=lightwith current flow of 19 cm • s-1• I 96 Benthic Metabolism and Resuspension I I 2 I Nueces Estuary Silicate Flux (µmol . m-. h-1) Flux 3000 I I 2000 I I 1000 I I I I I -1000 D D L L D D L L D D L L D D L L D D L L Chamber I F F F F F F F F F F I I OCT87 DEC87 FEB88 APR88 MAY88 Date Figure 38. Silicate flux in four treatment chambers from Nueces-Corpus Christi Bay. Average flux on different dates in 1988. D=dark no current fl ow, I DF=dark with current flow of 19 cm • s-1, L=light no current flow, LF=light with current flow of 19 cm • s-1• I I I I The Effect of Freshwater Inflow on Meiofaunal andI Macrofaunal Populations in San Antonio, I I Nueces and Corpus Christi Bays, Texas I I I Paul A. Montagna and Richard D. Kalke University of Texas at Austin Marine Science Institute Port Aransas, Texas 78373-1267 I I ABSTRACTI Two estuaries with very different inflow characteristics were compared totest the hypothesis that benthic productivity is enhanced by freshwater inflow.I The Guadalupe estuary had 79 times more freshwater inflow than the Nuecesestuary, and a third of the salt content. The Guadalupe had higher macrofaunaldensities and bi amass than the Nueces, and both parameters increase along adecreasing salinity gradient within the Guadalupe Estuary. Macrofauna densityincreased with increasing salinity in the Nueces Estuary. Meiofaunal densities I I were higher in the Nueces estuary, and decreased along increasing salinitygradients in both estuaries. These results indicate that macrofauna may be I responding to freshwater inflow with increased productivity. Increasedmacrofaunal densities appear to be associated with decreasing meiofaunaldensities. I I I 97 I I 98 . Meiofauna and Macrofauna Populations I I INTRODUCTION I Marine benthic infauna are very susceptible to fluctuations in their environment since they are often limited in their mobility. Large changes in I salinity regimes will have effects on the distribution and abundance of benthic infauna. Fresh·.,ater species, which can accommodate very low salinities are I typical of the upper reaches of estuaries. Estuarine species, which can accommodate large swings in salinity will be found in the center of estuaries. Marine species which can not accommodate such shifts in salinity will be limited I to the lower portions of the estuary. Abundance and biomass of infauna may increase if nutrient loading from river I input is transformed into food for benthic animals (Montagna and Yoon, 1989). This occurs when nutrients coming down the river stimulate primary production. I The primary production is then deposited, but it may also be advected, so that increases in benthic productivity might only occur at the marine end of the I estuary. However, this assumes that freshwater and low salinity does not have a negative impact on reproductive success. The net effect of freshwater inflow is then a product of freshwater inflow, physical processes (i.e., sedimentation, I resuspension, and advection), and biological processes (i.e., recruitment and salinity tolerance). I If freshwater inflow enhances benthic productivity then increased abundance and biomass should be found in estuaries with greater inflow. Benthic macrofauna I and meiofauna were studied in two estuaries (the Guadalupe and Nueces Estuaries) with historically different inflow patterns during a two year period. Over a I 35-year period, between 1941and1976, the freshwater inflow balance (i.e., gains minus losses) in the Guadalupe estuary was on average five times greater than in the Nueces estuary {TOWR, 1980; 1981). This indicates that the estuaries are I very different with regard to inflow. However, since the sampling programs in the two bays occurred in different years intra-bay comparisons are confounded I with annual variation in inflow. I I I I I Mejofauna and Macrofauna Populatjons 99 I MATERIALS AND METHODS I Study desjgn. In order to distinguish between freshwater influence and marineinfluence four stations were always chosen. Two stations which replicate eachof the two treatment effects (freshwater and marine) were sampled. GenerallyI these stations were along a salinity gradient in the estuarine system leadingfrom river mouth to the foot of the estuary near the barrier is1ands. ThisI design avoids pseudoreplication, where only one station has the characteristic of the main effect (Hurlbert, 1984). It is not possible to distinguish betweenI station differences and treatment differences in pseudoreplicated designs.Two estuaries were studied in detail. The Guadalupe and San Antonio Rivers I flow into San Antonio Bay. Over a 35-year period the Guadalupe Estuary receivedan average of 2.80xl09 m3 • y-1 of freshwater input, and the freshwater balance (input-output) was 2.54xl09 m3 • y-1 (TDWR, 1980). This system was studied from I Four stations were occupied: freshwater influenced January through July 1987. stations at the head of the bay (station A) and at mid-bay (station 8), and twomarine influenced stations near I the Intracoastal Waterway, one at thesouthwestern foot of the bay (station C) and one at the southeastern foot of theI bay (station D) (Figure 1). Stations were sampled five times in the first year. The Nueces River flows into Nueces Bay, which is connected to Corpus ChristiBay. I Over a 35-year period the Nueces Estuary received an average of 0.84xl09 I m3 • y-1 of freshwater input, and the freshwater balance (input-output) was 0.51xl09 m3 • y-1 (TDWR, 1981). This system was studied from October 1987 through July 1988. I Four stations were occupied along the axis of the system. Twostations were in the freshwater influenced Nueces Bay (A and B), and two stationsI were in the marine influenced Corpus Christi Bay (C and D) (Figure 1). CorpusChristi Bay has exchange of marine water from the Aransas Pass to the north, and the Laguna Madre to the south. Six field trips were performed.Sampling and analyses. Salinities were measured with a hand-heldI refractometer. Sediment was sampled with core tubes by divers. The macrofaunawas sampled with a tube 6.7 cm in diameter, and subsampled at depth intervalsof 0-3 cm and 3-10 cm. The meiofauna was sampled with a tube 1.8 cm in diameter,I and subsampled at depth intervals of 0-1 cm and 1-3 cm. Samples were preserved I I 100 Meiofauna and Macrofauna Populations I with 5% buffered formalin, sorted (on 63 µm sieves for meiofauna, and 0.5 mm I sieves for macrofauna}, identified, and counted. Biomass of macrofauna was al so measured. Individuals were combined into I higher tax a categories, i .e., Crustacea, Mo 11 usca, Pol ychaeta, and others. Samples were dried for 24 hat 55 °C, and weighed. Before drying, mollusks were I placed in 1 N HCl for 1 min to 8 h to dissolve the carbonate shells, and washed. Some of the dried tissues were also analyzed for total organic Carbon (TOC) and Nitrogen (TON). They were ground into a fine powder with a mortar and pestle. I A Perkin-Elmer 240B elemental analyzer was used for sample analysis. Sediment grain size analysis was also performed. Analysis followed standard I geologic procedures (Folk, 1964; E.W. Behrens, personal communication). Percent contribution by weight was measured for four components: rubble (e.g. she11 I 3 hash}, sand, silt, and clay. A 20 cmsediment sample was mixed with 50 ml of hydrogen peroxide and 75 ml of deionized water to digest organic material in the I sample. The sample was wet sieved through a 62 µm mesh stainless steel screen using a vacuum pump and a Millipore Hydrosol SST filter holder to separate rubble I and sand from silt and clay. After drying, the rubble and sand were separated on a 125 µm screen. The silt and clay fractions were measured using pipette analysis. I Statistical analyses. Generally three replicate samples were taken for each date and station cell. Since core~ were sectioned to obtain vertical I distributions, depth zonation is a nested-random effect, not a crossed-fixed effect. That is, the vert ica1 depth-interval samples from each core have a I relationship with one another that must be taken into account. Therefore, numbers of individuals and biomass from vertical profiles were analyzed using I a partially hierarchical model (Montagna et _g_J_., 1989). Total numbers and biomass per core (i.e., the sum of the two vertical sections) were analyzed using two-way analysis of variance (ANOVA) where the main effects were stations and I sampling dates. Multiple ANOVA (MANOVA) was used to test for treatment effects on multiple independent variables, e.g., grain size. Wilks' Lambda was the test I statistic used in MANOVA. Tukey multiple comparison procedures were used to find ~posteriori differences among sample means. All analyses were performed using I the SAS software system (SAS, 1985). I I I Meiofauna and Macrofauna Populations 101 I Water inflow data were obtained from the Texas Water Development Board andused to correlate inflow with salinity and biological parameters, e.g., biomassI and density. The cell means of the independent variables were correlated with the cumulative sum of the freshwater inflow for 1, 7, 14, 21, and 28 daysprevious to sampling. I Many figures have the mean of three replicate samplesplotted with the daily freshwater inflow balance. The inflow balance is the net I I gain of water to the estuary. It is composed of the sum of the freshwater inputs(e.g., river, drainage, return flows, and precipitation) minus the sum of theoutputs (e.g., diversions and evaporation). I RESULTS The Gu ada 7upe Estuary: San Antonio Bay. 1987 was a wet year with moreI rai nfa11 and concomitant inflow than in the previous 35-year record. Thefreshwater balance for 1987 was 5.05xl09 m3 • I y-1, which is three times higherthan the 35-year average. This was primarily due to a large rainfall andresulting flooding event ·in June 1987 (Figure 2). Salinity levels in the lower part of San Antonio Bay were as high as 14 ppt in the spring, but were uniformlyI near zero after the flood in July (Figure 2). The average salinity at stationsA and B was 1.4 ppt and at C and D 6.9 ppt over the course of this study.I Sediment grain size analysis was performed without replication twice, in Juneand July 1987 (Table 1). There was no difference in grain size composition fromI June to July (MANOVA, P=0.0884), or between the surface and bottom sections of the sediment cores (MANOVA, P=0.4386). However, there were differences betweenI stations (MANOVA, P=0.0015). This was primarily due to a higher rubble content at stations A (11.5%) and B (7.6%) than at stations C and D (both 2.7%). Station I B also had much less sand (4.0%) than the other stations (which averaged 30.7%). The vertical distribution of macrofauna biomass changed within stations over different sampling periods (ANOVA, P=0.0040; Figure 3). Generally, there wereI higher bi amasses in the deeper sections during June (with the exception ofstation A). Higher biomasses were also generally more prevalent in the deeperI sections at the marine influenced stations (C and D) (Figure 3). The verticaldistribution of density also changed within stations over the sampling period I I 102 Meiofauna and Macrofauna Populations I {ANOVA, P=0.0090). This was due to high densities in the surface sediments I during April and July in the freshwater zone {stations A and B) {Figure 4). Crustacea were generally absent from the deeper (3-10 cm) sections {Table 2). I The biomass and density of the surface section {0-3 cm) was dominated by Mollusca at stations A and B, but the deep section was dominated by Polychaeta {Table 2). I Mollusca dominated the biomass in both sections at stations C and D, but polychaetes dominated the density {Table 2). The overall mean biomass in the surface sections was 2.34 g • m-2, and the density was 15,800 individuals • m-2• I 2 The overall mean biomass in the subsurface section was 1.85 g • m-, and the mean 2 density was 3,450 individuals • m-• I The total macrofaunal biomass to a depth of 10 cm varied seasonally {P=0.0050), and between stations {P=0.0026) {Figure 5). Even though the biomass I at station A was very high in March and July, the interaction between dates and stations was not significant {P=0.1738). In both cases this was due to a very I large density of the mollusk Littoridina sphictostoma. Biomass increased 2 throughout the year, peaking in June at 7.01 g • m-• Biomass decreased in July, {after the large flood) but this was not significantly different from the June I 2 biomass {Tukey test). Average biomass at station A was 7.20 g • m-, at B 4.76 22 2 g • m-, at C 3.19 g • m-, and at D 3.53 g • m-• The average in the fresh zone I {5.98 g • m-2) was almost twice the biomass in the marine zone {3.36 g • m-2). The mean biomass over all dates and stations was 4.67 g • m-2 • There were no I significant differences in carbon or nitrogen content among the macrofaunal taxa tested. The average carbon content was 39.74%, and the nitrogen content was I 8.56% for all macrofauna (Table 3). So the average biomass in the Guadalupe estuary is 1.86 g C • m-• The nitrogen inventory in sediment organisms is 0.400 2I g N • m-2• Total macrofauna densities to · a depth of · 10 cm did not change over time {ANOVA, P=0.0871) {Figure 6). Densities at station A appeared to increase I through the spring and then fall after the large inflow event, but there was no significant interaction between dates and stations {P=0.0957). The average I density at A {41.3xl03 • m-2) was significantly higher than the densities at B {18.9xl03 • m-2), C {9.17xl03 • m-2), or D {7.53xl03 • m-2), which were all the I same {Tu key test). Densities were almost four times lower and relatively I I Meiofauna and Macrofauna Populations 103 I constant at the marine stations (8.35xl03 • m-2) than in the freshwater stations(30.lxl03 • m-2). The high densities at A were due to very large numbers of theI mollusks Littoridina sphictostoma, and Mulinia lateralis {Table 4). The higherdensities at both A and B relative to C and Dwere also due to the presence of I the polychaetes Streblospio benedicti and Mediomastus californiensis {Table 4).Salinity was inversely correlated with inflow {Table 5). The strongestcorrelation was with the cumulative inflow over the previous 28 d period {TableI 5). Total biomass was positively correlated with the inflow I on the day ofsampling, but not with any cumulative inflow event {Table 5). Density was not significantly correlated with inflow. Meiofauna from the top 1 cm of sediment was only sampled three times in 1987I (Figure 7). The densities at the replicate stations behaved the same way as each other, but with differing trends. At A and B densities stayed relatively lowI (0.250xl06 • m-2) and did not change over time. Nor were the densities at A and B significantly different from each other {Tukey multiple comparison test). · Incontrast, densities decreased over time at stations C and D and were on average I about four times greater than that of the fresh stations (l .124xl06 • m-2).Station C (1.36lxl06 • m-2) was always slightly more dense than station D(0.887xl06 • m-2) I {Tukey multiple comparison test). Taxa composition of themeiofauna was similar to other marine environments at stations C and D, butI depauperate in nematodes at stations A and B {Table 6).The Nueces Estuary: Nueces and Corpus Christi Bays. The sampling period I I I between October 1987 and July 1988 was a very dry period. The inflow balancefor that annual period was -0.66xl09 • m-3 • In contrast, the 35-year average was0.51 xl09 m3 • y-1 {TDWR, 1981). By the end of the study period salinities werehigher than marine water that is typical of the Gulf of Mexico (Figure 8). Theaverage salinity at station A was 31 ppt, B was 33 ppt, C was 33 ppt, and D was 34. Sediment grain size analysis was performed in October 1987, and April and July I 1988 {Table 1). Three replicate samples were taken at each sample period. Sediment composition changed among da~es (MANOVA, P=0.0004), stations (MANOVA, I P=0.0001), and vertical sections (MANOVA, P=0.0125). The Nueces Bay stations(A and B) were very similar in average rubble content (36.8% and 34.2% I I 104 Meiofauna and Macrofauna Populations I respectively), and so were the Corpus Christi Bay stations (C and D) (19.7% and I 12.4% respectively). However the sand and silt-clay contents always exhibited similar trends going from the head of the bay to the foot of the bay. The trend I from A to B was the same as the trend from C to D. Sand content increased, and silt and clay decreased (Table 1). This indicates that the head of the bays are I primarily depositional, and the foot of the bays are not. The source of the sand is probably sand dunes. The vertical distribution of macrofaunal biomass in Nueces estuary changed I within stations among sample periods (P=0.0105) (Figure 9). This was due to a large biomass of subsurface polychaetes at station D in February 1988, and I station B in April 1988. In general there was less biomass in the surface 3 cm 2 (l.58 g • m-2) than in the subsurface (3-10 cm) sediments (2.78 g • m-). Station I D generally had higher densities of deeper dwelling organisms (Figure 10). This was especially true in December 1987, when there were large numbers of the I polychaete Polydora cau77eryi found in the subsurface section. Total density 2 at that time (December), in that section (3-10 cm) reached 68.2xl03 • m-• This very unusual event caused the overall average density to be equal in the surface I 22 (6.92xl03 • m-) and subsurface (6.75xl03 • m-) sections. At stations A, B, and C, there were generally twice as many animals in the surface section (5.56xl03 I 2 • m-2) than in the subsurface sections (2.47xl03 • m-) (Table 7). At station A, mollusks dominated density and biomass in the surface, but polychaetes I dominated density in the subsurface sections (Table 7). At station B, mollusks dominated biomass in the surface, but polychaetes dominated density in both I sections (Table 7). At stations C and D, polychaetes dominated density and biomass in both sections (Table 7). I The total overall average biomass to a depth of 10 cm was 4.36 g • m-2 • There was a strong interaction between sampling periods and stations (P=0.0005) (Figure 11). Stations in Nueces Bay had similar biomass in the beginning and at the end I of the study, but not during April and May (Figure 11). Stations in Corpus Christi Bay (C and D) always responded in the opposite direction between sampling I periods, except between April and May (Figure 11). Station A had the 1owest average biomass (2.32 g.m-2) (Figure 11). Biomass at the other stations I increased along the gradient but were not significantly different (Tukey Test). I Meiofauna and Macrofauna Populations 105 2 I Average biomass at station B was 6.30 g-m-2, at C 3.26 g-m-, and at station D 5.55 g·m-2• I Total macrofaunal density to a depth of 10 cm increased along the salinity 22 2 I gradient from A (6.4lxl03 • m-) to B (8.52xl03 • m-) to C (9.15xl03 • m-) to D (30.6lxl03 • m-2) (Figure 12). There were no significantly different seasonal peaks (P=0.4169), but station D did have the high numbers of P. caullyeri in December (Table 8). The polychaetes, Mediomastus californiensis and StreblospioI bendicti, dominated the species composition at stations A, B, and C (Table 8). The polychaetes, Polydora caulleryi and Tharyx setigera, dominated at stationI D {Table 8). Meiofauna were more extensively studied in Nueces Estuary than in the I Guadalupe Estuary. Meiofauna were sampled during every occasion, and the I vertical distribution in the top 3 cm was determined (Figure 13). The vertical distribution of meiofaunal densities changed within stations over time (P=0.0001). This was due to differences between station D and all other stations (Figure 13). More animals were found in the surface sections (0-1 cm) in 2 I stations A, B, and C, (0.93lxl06 • m-) than in the subsurface sections (1-3 cm) (0.477xl06 • m-2). At station D, densities were lower in the surface section 2 2 I (2.68xl06 • m-) than in the subsurface section (3.055xl06 • m-). Tota1 mei ofauna densities to a depth of 3 cm were always much higher at I I station D than the others (Figure 14). There were no differences in densities among sampling periods (P=0.06, 2-way ANOVA). Densities increased along the gradient from A (l.08xl06 • m-2), to B (l.28xl06 • m-2) to C (l.86xl06 • m-2) to I D (5.74xl06 • m-2). The higher densities of animals at station Dwas due almost entirely to nematodes (Table 9). Community composition in Nueces estuary was dominated by nematodes in the saltiest station (0), but less so in the others (Table 9).I Salinity was inversely correlated with inflow (Table 10). The highest correlation was with the cumulative inflow balance for 28 d previous to sampling.I No biological variables were correlated with inflow (Table 10). I I I I 106 Meiofauna and Macrofauna Populations I DISCUSSION I The object of this study is to determine the effect of freshwater inflow on I benthic communities. There are several essential elements to the design of this study which must be kept in mind while interpreting the results. There are two I gradients, a salinity gradient, and a freshwater inflow gradient. The estuaries were divided into upper (freshwater influenced) bays and lower (marine influenced) bays. Sampling was performed over the course of one year to I integrate seasonal variability. The freshwater inflow gradient is predominantly between estuaries. The I Guadalupe estuary receives on average 3.3 times more combined surface freshwater inflow than the Nueces estuary. During the course of this study, the Guadalupe I 3 1 3 1 received 6.699 xl09 m• y-, and the Nueces received 0.085 xl09 m• y-, for a total of 79 times more water. This unusual disparity was due to sampling in I consecutive years, one that was very wet, and the next which was very dry. Sampling in different years does confound the differences between bays . However, in this case this is a minor factor since the change between the years had the I effect of enhancing the difference, in terms of inflow, between the estuaries. The salinity gradient due to the inflow goes from upper (Nueces Bay) to lower I (Corpus Christi Bay) bays within Nueces estuary. In the Guadalupe estuary, freshwater flows down the western side of the bay, and marine water comes in I mainly from the eastern side via Pass Cavallo (Figure 1). So, freshwater influence is along the north-south axis, but marine influence is along the east I west axis. Within each estuary treatment stations were replicated, i.e., there were two freshwater and two marine influenced stations. As indicated by the inflow, salinity differences between the bays was great (Table 11). There was I also a large difference between the fresh and marine stations in San Antonio Bay. There was actually very little difference in salinities between the fresh (Nueces I Bay) stations and the marine (Corpus Christi Bay) stations (Table 11). Meiofaunal densities show clear increases with salinity (Table 11). They I increase going from the inflow dominated Guadalupe Estuary to the Nueces Estuary. Meiofaunal densities also increase within an estuary from the fresh to marine I stations. The lower densities in the freshwater influenced zone is due I I Meiofauna and Hacrofauna Populations 107 I predominantly to decreased numbers Although of nematodes. nematodes arenumerically superior, they process less than 5% of the food consumed by the I meiofaunal community (Montagna and Yoon, 1989), indicating they do not dominatecommunity dynamics. In terms of diversity, meiofauna are apparently marineI organisms. Overall average densities in the Guadalupe Estuary were 1.6 times higher thanin the Nueces Estuary, indicating that greater inflow can lead to increases inI benthic productivity. Biomass was about the same among the estuaries, indicating that there are somewhat smaller animals in the Nueces Estuary. Within an estuaryI the trends were opposite one another. In the Guadalupe Estuary densities weregreater in the freshwater zone, but in the Nueces Estuary densities were greaterI in the marine zone (Table 11). Biomasses were almost twice as large in the freshzone as in the marine zone in the Guadalupe, but they were the same in the twozones of the Nueces. I I The average size of an individual was small and about thesame in upper San Antonio Bay (0.20 mg· individual) and Corpus Christi Bay (0.22mg • individual). Individuals were larger in lower San Antonio Bay (0.40 mg • individual}, and Nueces Bay (0.58 mg· individual). These opposing trends weredue to three species. There was a burst of recruitment of LittoridinaI sphictostoma and Mulinia lateralis in upper San Antonio Bay (station A) whichwas apparently in response to the inflow event. The high numbers of PolydoraI cau17eryi found at only one time in Corpus Christi Bay (station D) greatly skewedresults for that bay. In December, P. caulleryi caused densities to skyrocketto 80,000 • m-2 (Figure 12). I Half of total average density at station Dis dueto P. cau71eryi (Table 8), which did not occur in any other samples. I Flint and Kalke (1986) also found isolated, but high, densities of P. caulleryi. If P. cau71eryi is eliminated from the current data base the trends remain the same, I since average density in Corpus Christi Bay only decreases to 12,360 • m-2, from 19,880 • m-2 (Table 11). Macrofauna densities increase as salinity_jncreases along the gradient in theI Nueces Estuary (Table 8), but density decreases as salinity increases in the Guadalupe Estuary (Table 4). One possible explanation is that the estuaries haveI very different physiography and circulation patterns. The Nueces estuary is open to the Gulf of Mexico through the Aransas Pass, whereas the Guadalupe estuary I I 108 Meiofauna and Macrofauna Populations I is not. In one respect, densities in .both bays increased along the axis from I which water was flowing into the estuary. Because of the drought during the period between late 1987 and all of 1988, total inflow balance was negative in I the Nueces Estuary. Water was exchanging between the Laguna Madre and Corpus Christi Bay. During July 1988, the salinity at station D in Corpus Christi Bay I was 45 ppt, i ndi cat i ng that hypers al i ne water from the Laguna was moving northward into the bay. The Laguna is a very productive area due to its I extensive seagrass beds, and much organic matter could have been advected to Corpus Christi Bay. One indication that this might be true is that the average I bottom oxygen concentration was 116 µM at station D and 206 µM at station C (Montagna, unpublished data). The average bottom oxygen concentration was the same at both Nueces Bay stations (192 µM) (Montagna, unpublished data). I Harper (1973) sampled San Antonio Bay between March 1972 and February 1973. During this period average inflow increased from a dry to a wet year. Average I 3 1 3 1 inflow balance in 1972 was 2.758 xl09 m• y-, and 5.236 xl09 m• y-during 1973. He also found increases in average densities from the marine zone (3,300 I • m-2) to the freshwater zone ( 9, 800 • m-2). But, his average densities were much lower than we report on here. I Matthews et _g]_. (1974) sampled San Antonio Bay between April 1972 and July 1974. 1974 was a dry year also, with an average inflow balance of 2.910 xl09 32 m• y-1 • They reported a bay-wide average of only 1,500 • m-during that I period. Like Harper (1973) they reported decreasing densities with increasing salinity. I Parker and Blanton (1970) sampled the Nueces Estuary in the 1950's, and report average densities of 3,000 • m-2 in Nueces Bay and 500 • m-2 in Corpus Christi I Bay. These densities are much lower than those reported in this study. Flint et _g]_. (1983) sampled the Nueces Estuary between July 1981 and July I 1983. Stations were established along a salinity gradient from upper Nueces Bay to Corpus Christi Bay. Average densities were 13,800 • m-2 in Nueces Bay, and 21,070 • m-2 in lower and central Corpus Christi Bay. The average salinity in I 1981 ranged from 7 ppt in Nueces Bay to 25 ppt Corpus Christi Bay, and increased to a range of 26 to 30 ppt in 1982-3. The densities they reported are comparable I to those found in this study. I I I Meiofauna and Hacrofauna Populations 109 I I Species diversity is higher in marine influenced estuaries and in the marineends of estuaries (Figure 15). Based on diversity curves, it appears as if thereare three zones, a freshwater, estuarine and marine zone (Figure 15). I In summary, macrofauna1 and mei ofauna1 densities appear to have opposingtrends with relationship to freshwater inflow. Macrofauna density and biomass appear to increase with increasing inflow, and decreasing salinity. In contrast, I meiofauna numbers decrease. One explanation is that macrofauna respond positively to freshwater inflow, and meiofauna respond negatively. An alternative hypothesis is that macrofaunal-meiofaunal competition or macrofaunal I predation on meiofauna are responsible for the decreasing numbers of meiofaunawith salinity. I I I I I I I I I I I I I 110 Meiofauna and Macrofauna Populations I LITERATURE CITED I Folk, R. L. 1964. Petrology of sedimentary rocks. Hemphill's Press. Austin, I TX. 155 pp. Flint, R.W. and Kalke, R.D. 1986. Niche characterization of dominant estuarine I benthic species. Estuar. Coast. Shelf Sci. 22:657-674. Flint, R.W., Kalke, R.D., and McCoid, M.J. 1983. The Corpus Christi Bay ecosystem: research applied to management. A report to the Texas Department I of Water Resources. The University of Texas Marine Science Institute, Port Aransas, Texas, 50 pp. I Harper, D.E., Jr. 1973. The distribution of benthic and nektonic organisms in undredged control areas of San Antonio Bay. In: Environmental input I assessment of shell dredging in San Antonio Bay, Texas. College Station: Texas A&M University, 157 pp. I Hurlbert,. S. H. 1984. Pseudoreplication and the design of ecological field experiments. Ecol. Monongr. 54:187-211. Matthews, G.A., Marcin, C.A. and Clements, G.L. 1974. A plankton and benthos I survey of the San Antonio Bay system March 1972-July 1974. Austin, TX: Texas Parks and Wildlife Dept., p. 75. Montagna, P. A., distribution of natural coastal Montagna, P. A., Bauer, J. E., Hardin, D., microbial and meiofaunal hydrocarbon seep. J. Mar. Yoon, W. B. 1989. The I Spies, R. B. 1989. Vertical populations in sediments of a I Res. 47:657-680. effect of freshwater inflow on I mei ofaunal consumption of sediment bacteria and mi crophytobenthos in San Antonio Bay, Texas. A report to the Texas Water Development Board. The I University of Texas Marine Science Institute, Port Aransas, Texas. Parker, R.H. and Blanton, W.G. 1970. Environmental factors affecting bay and estuarine ecosystems of the Texas coast. Report prepared for the Texas I Rail road Commission, Coastal Ecosystems Management, Inc. , Fort Worth, TX, 182 pp. I SAS Institute Inc. 1985. SAS/STAT guide for personal computers, version 6 edition. SAS Institute Inc., Cary, NC, 378 pp. I I I Meiofauna and Macrofauna Populations 111 I Texas Department of Water Resources. 1980. Guadalupe Estuary: A study ofI influence of freshwater inflows. Publication LP-107. Texas Department of Water Resources, Austin, Texas. I Texas Department of Water Resources. 1981. A study of influence of freshwater I Department of Water Resources, Austin, I I I I I I I I I I I I I Nueces and Mission-Aransas Estuary: inflows. Publication LP-108. Texas Texas. I 112 Meiofauna and Macrofauna Populations I Table 1. Sediment grain size analysis {%) for San Antonio, Corpus Christi, and. Nueces Bays. For the Guadalupe Estuary (GE) n=l, and for the Nueces Estuary(NC) n=l. I Date Bay Sta Depth Rubble Sand Silt Clay I JUN87 GE A 3 9.7 30.2 32.7 27.4 ,JUN87 GE A 10 16.7 24.6 30.7 28.1 JUN87 GE B 3 13.6 6.7 30.4 49.3 I JUN87 GE B 10 4.8 2.3 30.5 62.4 JUN87 GE c 3 3.4 27.7 30.6 38.3 JUN87 GE c 10 2.3 19.0 30.0 48.8 JUN87 GE D 3 5.5 65.2 15.6 13. 7 I JUN87 GE D 10 4.4 78.0 8.6 9.0 JUL87 GE A 3 6.7 25.9 39.7 27.7 JUL87 GE A 10 13.1 26.6 27.9 32.6 I JUL87 GE B 3 6.5 3.0 33.6 56.9 JUL87 GE B 10 5.4 4.1 34.0 56.5 JUL87 GE c 3 1.9 14.7 40.2 43.2 JUL87 GE c 10 3.2 23.8 38.2 34.8 I JUL87 GE D 3 0.4 14.7 38.0 47.0 JUL87 GE D 10 0.4 18.4 33.0 48.3 OCT87 NC A 3 7.0 25.2 32 .8 34.9 I OCT87 NC A 10 9.9 19.0 35.3 35.7 ..(")>P ; .. .. ~· · OCT87 NC B 3 0.9 67.9 12.4 18.7 OCT87 NC B 10 1.0 66.1 13.2 19.8 I OCT87 NC c 3 1.3 9.9 35.3 53.4 OCT87 NC c 10 4.9 25.5 32.6 37.0 OCT87 NC D 3 0.6 64.6 8.2 26.6 OCT87 NC D 10 0.5 71. 7 6.0 21.8 I APR88 NC A 3 0.4 5.8 53.1 40.6 APR88 NC A 10 0.9 22.5 34.0 42.6 APR88 NC B 3 3.8 88.6 2.6 5.0 I APR88 NC B 10 2.7 78.5 7.5 11.3 APR88 NC c 3 0.8 0.4 22.7 76.2 APR88 NC c 10 3.0 2.8 28. l 66.1 I APR88 NC D 3 1.1 82.5 3.0 13.5 APR88 NC D 10 1.0 79.5 3.1 16.3 JUL88 NC A 3 0.5 7.3 37.2 55.0 JUL88 NC A 10 3.4 11.4 35.0 50.2 I JUL88 NC B 3 3.2 74.9 5.8 16.1 JUL88 NC B 10 8.9 66.1 7.0 17.9 JUL88 NC c 3 0.9 3.7 30.0 65.4 I JUL88 NC c 10 0.9 5.2 29.2 64.7 JUL88 NC D 3 2.2 76.6 3.2 18.0 JUL88 NC D 10 2.1 71.9 4.4 21. 7 I I I I Meiofauna and Macrofauna Populations 113 I Table 2. Average vertical distribution of macrofauna at stations A -D in SanAntonio Bay. Mean biomass (g·m-2) and density (n·m-2) I of taxa, with standarddeviation in parentheses. I Section I 0-3 cm 3-10 cm Sta Taxa Density Biomass Density Biomass I I A Crustacea 19( 73) 0.0057(0.0220) 0 0 Chironomids 340( 559) 0.0272(0.0421) 0 0 Mollusca 32028(26736) 6.2865(5.8054) 57( 117) 0.0906(0.2252) I Nemertea 19( 73) 0.0123(0.0476) 19( 73) 0.0055(0.0212) Others 76( 227) 0.0240(0.0648) 0 0 Polychaeta 5691( 5146) 0.3284(0.2479) 3025(2634) 0.4246(0.4222) B Crustacea 265( 541) 0. 0174(0. 0268) 0 0 I Chironomids 57( 117) 0.0144(0.0468) 0 0 Mollusca 7298( 5536) 2.1903(1.6713) 378( 366) 1.6358(2.1472) Nemertea 95( 138) 0.0221(0.0384) 57( 117) 0.1057(0.3648) I 0 0 I Others 0 0Polychaeta 6447( 4355) 0.3210(0.2006) 4311(3425) 0.4509(0.4693) c Crustacea 492( 611) 0.0306(0.0433) 0 0Chironomids 38( 146) 0.0057(0.0220) 0 0Mollusca I 1342( 1559) 0. 7498(1.1360) 227( 267) 1.5802(2.3705)Nemertea 38( 100) 0.0100(0.0344) 19( 73) 0.0059(0.0227)Others 0 0 454( 952) 0.0121(0.0283)I Polychaeta 4802( 2060) 0.2842(0.1301) 1758(1344) 0.5090(0.7662) I D Crustacea 189( 350) 0.0040(0.0065) 38( 100) 0.0040(0.0108) I Chironomids 19( 73) 0.0002(0.0007) 0 0Mollusca 1513( 1311) 0.7389(0.8183) 378( 350) 1.6640(2.5122) I Nemertea 19( 73) 0.0015(0.0059) 38( 100) O.Oll7{0.0327)Others 57( ll7) 0.0049(0.0125) 76( 227) 0.0700(0.2701)Polychaeta 2250( 854) 0.1840(0.1820) 2949(1896) 0.8474(0.6200) I I 114 Meiofauna and Macrofauna Populations I Table 3: San Antonio Bay 1987, Carbon and nitrogen content of macrofauna. Mean I per cent nitrogen, carbon and the N:C ratio. Standard deviations are given in parentheses. I I TAXA FREQ %N %C N/C I Crustacea 3 9.21 (I.04) 43.63 (I.89) 0.2109 (0.0189) Mollusca 10 8.45 (4.04) 39.79 (4.34) 0.2069 (0.0960) Nemertinea 2 9.54 (1.35) 43.54 (0.95) 0.2188 (0.0261) I Polychaeta 8 8.01 (I.08) 36.26 (5.01) 0.2211 (0.0101) Phoronida 1 10.26 47.76 0.2149 I Overall 24 8.56 (2.29) 39.74 (3.79) 0. 2135 (0.0479) I I I I I I I I I I I Meiofauna and Macrofauna Populations 115 I Table 4: San Antonio Bay macrofaunal species data. Dominance of taxa at stations (mean n· m-2 to a depth of 10 cm). Abbreviations: P.=phylum, SP.=subphylum,I C.=class, 0.=order, F.=family. I I Station TAXA A c B 0 1 • P. Platyhelminthes I C. Turbe11 aria 57 0 454 76 P. Rhynchocoela 38 151 57 57 I P. Annelida c. Polychaeta F. HessionidaeI Gypti s vittata 0 0 19 0 F. Nereidae I Neanthes succinea 0 0 38 19 F. Goniadidae I Glycinde solitaria 0 0 132 38 F. Onuphidae I Diopatra cuprea 0 0 19 0 F. Phyll odoc idae I Eteone heteropoda 0 0 0 19 F. Pil argi dae Parandalia ocularis 0 0 0 38I F. Spionidae Polydora caulleryi 0 19 0 19 0 19 189 0 I Polydora socialis Paraprionospio pinnata 0 0 76 132I Streblosp;o bened;ct; 2250 2118 832 1097 I 116 Meiofauna and Macrofauna Populations I Table 4 continued. San Antonio Bay macrofaunal species data. I F. Cossuridae I Cossura delta 0 0 246 113 F. Capitellidae 0 0 0 57 Mediomastus californiensis 3422 8224 4235 3536 I Capitella capitata 76 95 0 95 F. Maldanidae I Dlymenella mucosa 0 0 57 0 F. Ampharetidae I Hobsonia florida 2155 246 0 0 F. Pectinariidae Pectinaria gouldii 0 0 19 19 I c. Oligochaeta 624 38 0 0 I P. Moll uska c. Gastopoda F. Hydrobiidae I Littoridina sphinctostoma 27982 5029 624 76 F. Pyrami de11 i dae I Pyramidella sp 0 0 0 57 c. Bivalvia F. Mytil idae I Brachidontes exustus 0 132 0 0 I F. Mactridae Mulinia lateralis 3498 1645 548 832 Rangia cuneata 19 0 0 0 I F. Tellinidae Macoma mitchelli 605 870 321 851 I F. Solecurtidae Tagelus plebeius 0 0 76 76 I F. Bodotriidae Cyclaspis varians 0 0 38 76 I F. Leuconidae Leucon sp 0 0 19 0 I I Meiofauna and Macrofauna Populations 117 I Table 4 continued. San Antonio Bay macrofaunal species data. I SP.Crustacea c. Malacostraca I 0. Cumacea 0. Isopoda I F. Idoteidae Edotea montosa 0 38 19 0 I F. Anthuridae Xenanthura brevitelson 0 0 0 19 F. Sphaeromatidae I Cassidinidea lunifrons 0 19 0 0 0. Amphipoda I F. Gammaridae Gammarus mucronatus 0 0 57 0 I F. Ampeliscrdae Ampelisca abdita 0 0 38 0 F. Corophiidae Corophium louisianum 0 19 19 0 F. OedicerotidaeI Monoculodes nyei 19 189 284 113 0. Dec apodI F. Callianassidae Callianassa sp juvenile 0 0 19 19 I SP. Insecta I I F. Chironomidae Chironomid larvae 340 57 38 19 I P. Phoronida Phoronis architecta 0 0 0 57 41217 18888 9189 7544 I I 118 Meiofauna and Macrofauna Populations I Table 5. San Antonio Bay correlation analysis. Pearson correlation coefficients I of salinity and macrofauna correlated with cumulated inflow at 1, 7, 14, 21, 28 day intervals. N=20. I I I lnfl ow Salinity Biomass Density * I D 1 0.0882 0.4707 0 .1070 D 7 -0.1256 0.1008 -0.0635 D 14 -0.3324 0.0440 -0.1514 I D 21 -0.4403 -0.0904 -0.1999 * D 28 -0.4648 -0.0499 -0 .1865 I *Significent at 0.05 1eve1 . I I I I I I I I I I Meiofauna and Macrofauna Populations 119 I Table 6. Average percentage composition of meiofauna taxa. I I San Antonio Bay Nueces-Corpus Christi I Taxa A B c D A B c D I Nematoda 31. 9 38.4 67.9 56.2 52.6 56.3 44.96 83.9 Copepoda 15.2 30.4 22.7 19.6 16.9 28.2 37.0 7.9I Others 52.9 31. 2 9.4 24.2 30.5 15.5 18.0 8.1 I I I I I I I I I I 120 Meiofauna and Macrofauna Populations I Table 7. Average vertical distribution of macrofauna at stations A -D in Nueces I and Corpus Christi Bays. Mean biomass (g·m-2) and density (n·m-2) of taxa, with standard deviation in parentheses. I Section I 0-3 cm 3-10 cm I Sta Taxa Density Biomass Density Biomass I A Crustacea 47( 146) 0.0079(0.0314) 0 0 Mollusca 2379(1616) 0.9264(0.1764) 315( 363) 1. 0473 (1. 3204) Nemertea 16( 67) 0.0002(0.0007) 32( 92) 0.0072(0.0251) I Others 0 0 16( 67) 0.0035(0.0147) Ophiuroidea 0 0 0 0 Polychaeta 2159(1227) 0.0865(0.0482) 1450( 962) 0.2376(0.1226) I Sipunculida 0 0 0 0 B Crustacea 646(1010) 0.0156(0.0281) 32( 134) 0.0006(0.0027) Mollusca 2017 (2336) 2.3310(3.4705) 189( 364) 0.2606(0.8304) I Nemertea 16( 67) 0.0032(0.0134) 95( 138) 0.0301(0.0514) Others 32( 92) 0.0008(0.0023) 0 0 I Ophiuroidea 0 0 0 0 Polychaeta 3151(1804) 0. 9601 (1. 93 73) 2348( 2445) 2.6985(4.0056) Sipunculida 0 0 0 0 I c Crustacea 1323(1310) 0.1029(0.1864) 149( 331) 0.0146(0.0301) Mollusca 1459(2658) 0.2771(0.6250) 203( 325) 1.1330(1.8672) Nemertea 122( 169) 0 . 018'4 ( 0 . 0 3 9 9) 189( 243) 0.1353(0.2708) I Ot~ers 41( 102) 0.0028(0.0094) 27( 85) 0.0030(0.0108) Ophiuroidea 0 0 54( 114) 0.2516(0.6216) I Polychaeta 4443 (2827) 0.3804(0.4471) 2390( 1198) 2.2638(2.8915) Sipunculida 122( 212) 0.1687(0.3948) 0 0 D Crustacea 520(1084) 0.0405(0.1164) 47( 109) 0.0069(0.0225) I Mollusca 914(1178) 0.1298(0.2338) 662( 1272) 0.1725(0.4854) Nemertea 268( 283) 0.1267(0.2206) 142( 201) 0.3775(0.9630) Others 504( 862) 0.0367(0.0757) 142( 243) 0.0482(0.0829) I Ophiuroidea 0 0 16( 67) 0.0169(0.0175) Polychaeta 8697(6003) 0.9929(1.1829) 18592(45624) 3.4910(5.3305) I Sipuncu~idea 110( 221) 0.1056(0.2264) 0 0 I I Meiofauna and Macrofauna Populations 121 I Table 8. Nueces-Corpus Christi Bays macrofaunal species data. Dami nance of taxa 2 at stations (mean n·m-to a depth of 10 cm). Abbreviations: P.. =phylum,I SP.=subphylum, C.=class, 0.=order, F.=family. I I Station TAXA A B c D I P. Coelenterata I C. Hydrozoa 0 16 0 0 P. Platyhelminthes 0 16 32 63 I P. Rhynchocoela 47 110 299 410 P. Annelida c. PolychaetaI F. Palmyridae Palenotus heteroseta 0 0 110 189I F. Phyllodocidae Eteone heteropoda 0 0 0 32I Anaitides erythrophy77us 0 0 16 16 F. Pil argidae I Ancistrosy papi77osa 0 0 0 63 Sigambra tentaculata 0 0 63 0 I F. Hessionidae I Podarke obscura 0 0 0 126 GypU s vittata 0 79 205 284 Parahesione 7uteo7a 0 0 0 63 F. Syllidae 0 0 16 16 I F. Nereidae 0 0 16 158 F. Goniadidae I Glycinde solitaria 16 268 252 205 I I 122 Meiofauna and Macrofauna Populations I Table 8 continued. Nueces estuary macrofaunal species data. I F. Eunicidae Morphysa sanguinea 0 32 0 0 I F. Onuphidae Diopatra cuprea 0 47 158 47 I F. Lumbrineridae Lumbrineris parvapedata 0 0 32 0 I F. Arabellidae Drilonereis magna 0 0 126 32 I F. Dorvilleidae 0 16 0 0 F. Spionidae Polydora cau77eryi 0 0 0 15078 I Paraprionospio pinnata 0 95 441 488 Spiophanes bombyx 0 0 0 252 I Streblospio benedicti 1859 536 977 725 Minuspio cirrifera 0 0 0 16 I F. Mageionidae Magellona phy77isae 0 0 0 16 I F. Chaetopteridae Spiochaetopterus cost arum 0 0 0 32 I F. Cirratulidae Tharyx setigera 0 32 95 1591 I F. Cossuridae Cossura delta 0 819 252 441 F. Orbinidae I Haploscoloplos foliosus 32 173 16 79 F. Paraonidae I Paraonid group A 0 0 0 158 Paraonid group B 0 0 0 16 I I I I I Meiofauna and Macrofauna Populations 123 I Table 8 continued. Nueces estuary macrofaunal species data. F. Capitell idae I Mediomastus californiensis 1670 2994 3435 6428 Notomastus 7atericeus 0 0 0 95 I Notomastus cf 7atericeus 0 0 0 16 Capite77a capitata 16 0 0 0 I F. Maldanidae C7ymene77a mucosa 0 79 79 79 Maldane cf Sarsi 0 47 95 158 Asychis sp 0 32 0 0 C7ymene77a torquata calida 0 158 0 284I F. Ampharetiidae Melinna maculata 0 47 16 0 I I F. Terebell idae 0 0 0 16 F. Sabellidae I Megalomma bioculatum 0 95 0 0 c. Oligochaeta 0 0 63 79 P. MolluscaI c. Gastropoda 0 0 0 16 I F. Vitrinell idae 0 0 0 110 F. Caeidae Caecum glabrum 0 0 0 142I Caecum johnsoni 0 0 16 0 F. EpitoniidaeI Epitonium sp 0 0 0 16 I F. Calyptraeidae Crepidula plana 0 0 16 32 F. Nassariidae I Nassarius acutus 0 0 0 16 F. Acteocinidae Acteocina canaliculata 16 158 0 32 I I I I 124 Meiofauna and Macrofauna Populations I Table 8 continued. Nueces estuary macrofaunal species data. I F. Pyramidellidae I Pyramide71a crenulata 0 16 0 0 Pyramide11 a sp 16 0 0 79 Turboni 11 a sp 0 0 16 142 I c. Bi val via Pelecypods 0 0 32 63 I F. Nuculanidae Nuculana acuta 0 16 79 95 I Nuculana concentrica 0 0 79 0 F. Kelliidae I Aligena texasiana 0 16 0 473 F. Leptonidae Myse77a planulata 0 32 0 0 I F. Mactridae Mulinia 1atera7is 1576 1386 158 189 I F. Solenidae Ensis minor 0 32 0 0 I F. Lyonsiidae Lyonsia hyalina floridana 0 32 0 63 I F. Periplomatidae Periploma cf orbiculare 0 0 95 0 I F. Tell inidae Macoma mitche71i 1087 488 16 0 Macoma tenta 0 0 32 32 I Te11ina sp 0 0 0 47 SP. Crustacea I c. Ostracoda 0. Myodocopa I F. Sarsiell idae Sarsie11a texana 0 0 16 0 I I I Meiofauna and Macrofauna Populations 125 I Table 8 continued. Nueces estuary macrofaunal species data. c. CopepodaI 0. Cyclopoida F. CyclopidaeI Cyclopoid (commensal) 0 32 0 0 c. Malacostraca I 0. Mysidacea I Mysidopsis bahia 16 16 0 0 Mysidopsis sp juvenile 16 0 0 0 0. Cumacea F. BodotriidaeI Cyclaspis varians 0 126 63 16 F. Leuconidae I Leucon sp 0 0 788 16 Eudorella monodon 0 0 236 0 I F. Diastylidae Oxyurostylis smithi 0 0 79 0 Oxyurostyl is salinoi 0 32 0 0I 0. Isopoda F. AnthuridaeI Xenanthura brevitelson 0 16 0 0 0. Amphipoda I F. Ampeliscidae Ampelisca abdita 0 32 32 16I Ampelisca sp B 0 0 16 0 I F. Corophiidae Corophium acherusicum 0 0 0 32 Microprotopus spp 0 189 32 32 Erichtonias brasiliensis 0 0 142 110 I Lembos sp 0 0 0 63 F. Bateidae I Batea catharinensis 0 189 47 16 I 126 Meiofauna and Macrofauna Populations I Table 8 continued. Nueces estuary macrofaunal species data. I F. Liljeborgi idae I Listrie77a barnardi 0 0 16 16 Listrei77a c7ymene77ae 0 0 0 16 F. Amphilochidae I Amphilochus sp. 0 0 16 0 F. Stenothoidae I Paramtope 77 a sp 0 0 16 0 F. Oedicerotidae Monoculodes nyei 0 0 32 0 I F. Caprellidae 0 47 47 158 0. Decapoda I Megalops larvae unidentified 0 0 32 16 F. Pinnotheridae I Pinnixa sp 0 0 0 16 F. Callianassidae I Ca 77 i anassa sp juvenile 0 0 0 16 P. Sipuncula F. Golfingiidae I Phascolion strombi 0 0 126 110 I P. Phoronida Phoronis architect a 16 0 47 599 P. Echinodermata I C. Ophiuroidea 0 0 63 16 I 6397 8555 9170 30629 I I I I I Meiofauna and Macrofauna Populations 127 I Table 9. Nueces-Corpus Christi Bays meiofaunal species data. Dominance of taxa 2 at stations (mean 103·m-to a depth of 3 cm). I I Station I TAXA A B c D P. Platyhelminthes I C. Turbe11 aria 0 0 0 0.8 P. Rhynchocoela 0 0.2 0.2 0.8 I P. Nematoda 568.7 723.6 905.1 4814.9 P. Kinoryncha 1. 2 1.0 122.9 43.2 I P. Annelida c. Polychaeta Polychaete larvae/juveniles 0.2 1.0 1. 2 4.6I F. Syll idae 0 0 0.2 0 Sphaerosyl 7is erinaceus 0 0.2 0 0 I F. Nereidae 0 0 0 0.6 F. Goniadidae I Glycinde solitaria 0 0.4 0.2 0.6 F. Onuphidae I Di opatra cuprea 0 0 1.4 0 F. Arabellidae Drilonereis magna 0 0 0 0.2I F. Dorvilleidae 0 0 0 0.2 Schistomeringos sp A 0 0 0 0.6I F. Spionidae Polydora caulleryi 0 0 0 4.6I Polydora sp 0 0 0 0.2 Paraprionaspio pinnata 0 0 0.6 0.2 I Spiophanes bombyx 0 0 0 0.6 Streblospio benedicti 9.4 4.4 3.6 2.8 I I 128 Meiofauna and Hacrofauna Populations I Table 9 continued. Nueces estuary meiofaunal species data. I F. Chaetopteridae Spiochaetopterus costarum 0 0 0 0.2 I F. Cirratulidae Tharyx set igera 0 0 0.4 1.6 I F. Cossuridae Cossura delta 0 1.4 1.8 1.2 I F. Orbinidae Haploscoloplos foliosus 0 0.4 0 0.2 I F. Paraonidae Paraonidae group A 0 0 0 0.2 F. Capitel l idae I Mediomastus californiensis 14.2 15.6 24.2 41.8 Capitellides jonesi 0 0.2 0 0 I Notomastus latericeus 0 0 0 0.4 F. Maldanidae 0 0.2 0.4 0 I Clymenella mucosa 0 0 0.2 0 Asychis sp 0 0 0 0.2 I F. Terebell idae 0 0 0 0.4 F. Sabellidae 0 0 0.2 0 c. Oligochaeta 0 0 0.4 0 I P. Arthropoda I SP. Chelicerata C. Arachnida 0.2 0 0.2 1.6 I SP. Crustacea c. Ostracoda I 0. Podocopa 49.4 14.8 29.6 23.6 c. Copepoda I Nauplii 63.8 95.3 209.1 115. 9 I I I I Meiofauna and Macrofauna Populations 129 I Table 9 continued. Nueces estuary meiofaunal species data. 0. Harpacticoida 52.0 174.3 82.1 124.0 I F. Longipediidae Longipedia americana 0 4.0 4.2 4.2 I F. Canuellidae Scotto7ana canadensis 5.6 4.2 0.4 1.2 I F. Ectinosomatidae 16.8 8.8 5.4 43.6 Ectinosoma sp 8.4 1.0 3.2 1.6 F. TachidiidaeI Mi croarthridion sp 0.2 7.8 135. 7 0.4 F. HarpacticidaeI Harpacti cus sp 0 0 0 0.2 Zausodes arenico7us 0 3.6 0.6 3.6 I F. Diosaccidae Stenhelia sp 4.2 5.6 49.0 0 Dioasaccidae nauplii 6.2 12.2 79.4 0.6 F. Cletodidae Enhydrosoma spp 10.4 35.2 65.8 65.2I F. Laophontidae Laophonte spp 3.2 6.8 0.4 86.0I 0. Cyclopoida I 0 0 0.2 0.4 Cyclopoid copepod (commensal) 0.6 0.2 0 0 I F. Cyclopidae Ha 7icyc7 ops sp 11. 4 3.6 4.4 5.6 I F. Clausidiidae Saphire77a sp 0 0 0 0.4 I F. Diaptomidae Pseudodiaptomus coronatus 0 0.2 0.2 0.8 0. MysidaceaI Mysidopsis sp juvenile 0.2 0 0 0.4 I I I 130 Meiofauna and Macrofauna Populations I Table 9 continued. Nueces estuary meiofaunal species data. I 0. Cumacea F. Bodotriidae I Cyclaspis varians 0 0.2 0 0 F. Leuconidae I Leucon sp 0 0.2 1.8 0 F. Diastylidae I Oxyurosty7 is smithi 0 0.2 0 0 0. Amphipoda F. Corophiidae I Mi croprotopus spp 0 0.4 0 0 Photis sp 0 0 0 0.2 I F. Stenothoidae Parametope77a sp 0 0 0.2 0 I P. Sipuncula F. Golfingiidae I Phascolion strombi 0 0 0.4 0. P. Tardigrade 0 0 0 0.2 I P. Phoronida Phoronis architect a 0 0 0 0.6 P. Echinodermata I C. Ophiuroidea 0 0 0.4 0.2 P. Chordata I SP.Urochordata C. Ascidiaceae I Ascidian 1 arvae 0 0 0.2 0 P. Unidentified 230.5 140.3 94.1 317.2 I Total all species 1080.6 1284.3 1858.3 5735.5 I I I I Meiofauna and Macrofauna Populations 131 I Tab1 e 10. Nueces and Corpus Christi Bays corre1at ion analysis. Pearson correlation coefficients of salinity and macrofauna correlated with cumulatedI inflow at 1, 7, 14, 21, 28 day intervals previous to sampling. N=24. I I Macrofauna Meiofauna I Inflow Salinity Biomass Density Density I I D 1 0 .1880 -0.0748 0.2138 -0.0577 D 7 -0.5877** -0.0249 0.3750 0.0908I D 14 -0.5297** 0.0495 0.3478 0.0947 D 21 -0.5929** 0.0399 0.3612 0.1042 I *** D 28 -0.6807 0.0393 0.3642 0 .1196 I ** O.Ol--<>--<> D I Figure 5. Macrofaunal biomass (mean dry weight g-m-2 to a depth of 10 cm) andI freshwater inflow balance in San Antonio Bay. I Daily inflow balance is forthe entire Guadalupe Estuary system. I 138 Meiofauna and Macrofauna Populations I San Antonio Bay Macrofauna (103 · m-2) I Fresh Water Inflow Balance (10s ma · d-1) I Density Inflow 60 300 I I I 50 I \ I 250 40 I 200 \ I 30 150 I I I 07----I -o--------- 20 -----e------"' 100 • I ----B 10 -----------0---=-= :-::---=-=--:::--""-'=:..-----50 ---I 0 0 I Jan Feb Mar Apr May Jun Jul Aug --<>--<>-D I I Figure 6. Macrofaunal density (mean nx103 • m-2 to a depth of 10 cm) and freshwater inflow balance in San Antonio Bay. Daily inflow balance is for the entire Guadalupe Estuary system. I I I I I Meiofauna and Macrofauna Populations 139 I I San Antonio Bay Meiofauna (106 • m -2) Fresh Water Inflow Balance (106 m3 · d -1) Density In fl ow I 2.5 300 ~ 250 I 2.0 I ""' ""' ""' ""' ""' ""' ' ....;: -· 0 ' ' ""' ' ' ""' 200 1. 5 ' ' ""' "" ' I ''' ' "" ~ ' ' I ' "' 150 ' ' '' "'"' 1.0 '' "'"' ' I '' "'"' ' "' 100 ' I ' '' ~-"'"' I 0.5 50 I 0.0 0 Jan Feb Mar I Apr May Jun Jul Aug 1987 I Station o-0-0 B B--B-EJ c <>-<>-<> D • • • A I Figure 7. Meiofaunal density (mean xl06 • m-2 to a depth of 1 cm) and freshwater I inflow balance in San Antonio Bay. Daily inflow balance is for the entireGuadalupe Estuary system. I I 140 Meiofauna and Macrofauna Populations I Nueces -Corpus Christi Bays Salinity (ppt) I 3 1 Fresh Water Inflow Balance (106 m· d -) Salinity Inflow I 45 0 20 I I I I I I I I I 15 I 40 I I I I I 10 I I I I I I / I / 35 !,, ./ I ./ I ./ ,(' ~ 5 I ... I ./ ' ... I ' I / ./ I 0 30 I ·---~ ~ -~-/ -5 I 25 -10 I Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug I 1987-88 Station • • • A o-ErD B B--B-EJ C -<>-<> D Figure 11. Macrofaunal biomass (mean dry weight g • m-2 to a depth of 10 cm) and freshwater inflow balance in Nueces and Corpus Christi Bays. Daily inflow balance is for the entire Nueces Estuary system. I 144 Meiofauna and Macrofauna Populations I Nueces-Corpus Christi Bays Macrofauna (103 · m-2) I Fresh Water Inflow Balance (106 m3 · d-1) I Density Inflow 80 ---<>---<>-D I I Figure 12. Macrofaunal density (mean density nxl03 • m-2 to a depth of 10 cm)and freshwater inflow balance in Nueces and Corpus Christi Bays. Daily inflow Ibalance is for the entire Nueces Estuary system. I I I I Meiofauna and Macrofauna Populations 145 I I Nueces-Corpus Christi Bays Meiofauna (106 · m-2) I Density 4 I I 3 I I 2 I I I 1 I 0I A B C D A B C D A B C D A B C D A B C D A B C D I Station OCT87 DEC87 FEB88 APR88 MAY88 JUL88 Date Section (cm) 1-3 lS:S:S:Sl 0-1 I I Figure 13. Vertical distribution of meiofaunal density (mean xl06 • m-2) in I Nueces and Corpus Christi Bays for each station and samp1i ng period. Sediment cores were vertically sectioned at 0-1 cm and 1-3 cm intervals. I 146 Meiofauna and Macrofauna Populations I Nueces-Corpus Christi Bays Meiofauna (106 · m-) 2I 3 Fresh Water Inflow Balance (106 m• d-1) Density I Inflow 8 20 I / / ' ' / / 15 I / / ' \ \ 6 / / \ \ \ \ \ \ 10 I ' \ I 4 ' 0 5 I I 0 2 I -5 I 0 -10 I Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug 1987-88 I Station o-0--0 B B--B--EJ c o -o -o D • • • A I I Figure 14. Meiofaunal density (mean xl06 • m-2 to a depth of 3 cm) and freshwater inflow balance in Nueces and Corpus Christi Bays. Daily inflow I balance is for the entire Nueces Estuary system. I I I I Meiofauna and Macrofauna Populations 147 I I I I I o--oA •--•B ~--~c .A--A.0 I 100 I 90 I Q) 80 u 0c 70 c I E· 60 00 50 Guadalupe I Nueces estuary estuo ry I 40 30 I 20 0 10 20 30 10 20 30 40 50 60 70 I Species rank I I Figure 15. Species dominance curves for macrofaunal density in the GuadalupeI and Nueces estuaries. Per cent dominance vs. species rank for all samplescombined. I I 148 Meiofauna and Macrofauna Populations I I I I I I I I I I I I I I I I I I I A Synoptic Comparison of Benthic Communities and Processesin the Guadalupe and Lavaca-Tres Palacios I Estuaries, Texas I Paul A. Montagna I Richard D. Kalke I University of Texas at Austin Marine Science Institute Port Aransas, Texas 78373-1267 I ABSTRf\CTI Water use planning and management in Texas requires that we understand theeffect of freshwater inflow on ecological processes which control and maintainI productivity in our bays and estuaries. However, a large gap in our knowledge exists. We don't know if generalizations gathered in one estuary are applicableto another. I I I This is not only true in Texas but in the nation as a whole. Wein Texas are fortunate because, within short distances we have access to bayswhich are very different in the amount of freshwater input, and salinity. Thus,I we have at our disposal a unique "natural experiment". That is, we can compareparameters across different systems synoptically. Two estuaries, the GuadalupeI and the Lavaca-Tres Palacios, with similar historical inflow patterns werecompared. Since the Guadalupe is smaller in area salinities are generally lower.I Benthic processes lend themselves well to a comparative approach because: benthiccommunities are relatively sessile, reproductive events often have regulartiming, sediments are sinks for many nutrients, and sediments are active sitesof nutrient regeneration. Sediment oxygen uptake and nutrient regeneration area good general measures of benth ic community metabolism. The head of the I Guadalupe Estuary generally had higher macrofaunal and bacterial densities andbiomasses than the Lavaca Estuary. Macrofauna generally had a stimulatory effectI of benthic metabolism. An important distinction between these two particularestuaries is that the Lavaca has direct exchange with the Gulf of Mexico, andI the Guadalupe does not. I 149 I 150 Synoptic comparison of benthos I INTRODUCTION I The bays and estuaries of Texas are remarkably diverse. This is due in part to physiography, -but differences in freshwater inflow play the largest ro1 e. I A gradient of decreasing freshwater inflow, from north to south, is the most distinctive feature of our coastline. The inflow patterns appear to group into I three distinct types which vary by about an order of magnitude each. Each type also has a distinctly different timing of peak inflow events. The northern estuaries receive peak inflow during the spring, the central estuaries are I bimodal receiving peak inflows during the spring and fall, and the southern most estuaries receive peak inflows during the fall. These distinct patterns are very I important, since growth, reproduction, and migration of many species is keyed to seasonal events. Current dogma dictates that estuarine productivity is based I upon freshwater inundation and resulting nutrient enhancement. The timing and magnitude of inundation is believed to regulate finfish and shellfish production I (Texas Department Water Resources (TDWR), 1982). That Texas bays and estuaries differ in this key component of freshwater I inflow provides us with a unique opportunity to perform "natural experiments". One could not hope to manipulate such environmental parameters such as salinity, or nutrient concentrations on large scales. But, within the same geographic I location we have bays exposed to the same long-term climatic influences and geological history, yet different in precisely what makes an estuary an estuary: I freshwater inflow. When performing field experiments, the design must avoid confounding factors I and pseudoreplication (sensu Hurlbert, 1984). Questions, such as: "what effect would increased inflow have on recruitment or productivity?", cannot be answered I by short-term studies at a given site. Year-to-year variability is a confounding factor when comparing differences among bays sampled in different years. If only one "wet" year and one "dry" year are sampled then inflow is pseudoreplicated I because of year-to-year variability, regardless of large differences in the amount of rainfall in each year. We can only separate differences due to effects I freshwater inflow and salinity by comparing key processes synopt ically among estuaries over several years. I Historical data indicates that finfish and shellfish harvest are inversely I I Synoptic comparison of benthos 151 I I correlated; with harvest of more fi nfish in saltier estuaries, and more she11 fishin fresher estuaries (Table l; TDWR, 1982). However, our two-year study ofLavaca Bay benthos, indicated that increased biomass, particularly molluskbiomass, was correlated with increased salinity over time (Jones et _gl., 1986). The first year (1985) was "wet" with heavy freshwater inflow. The next year(1986) was "dry", inflow decreased by 300%, but biomass increased by 300%.Regardless of the difference in rainfall ~etween years, we cannot conclude thatthere is higher benthic production in dry years than in wet years, because wedon't know anything about year-to-year variability, and the bays were sampledduring different time frames. In this study, benthic biomass might haveincreased in the second year anyway. This is a good example ofpseudoreplication. The main effect, which is annual variation in precipitation,was only sampled once (i.e., one dry, and one wet year). So far, we can onlyhypothesize (based on the data) that: if there are high rates of freshwaterinflow during periods of recruitment (the spring), then that will result in lessbenthic productivity (lower benthic standing stocks in the summer). I I Another measure of secondary benthic production is metabolism. Oxygen uptakeat the sediment surface is a g~od-overall indicator of total benthic metabolismand carbon flow (Patching and Raine, 1983; Howes et _gl., 1984). Thus thehypothesis, that high rates of freshwater inflow during periods of recruitmentI (the spring) will result in less benthic productivity, can be tested using twoindicators of productivity (changes in biomass and oxygen consumption).Two estuarine systems were studied (Table 1). They receive similar amountsI of freshwater inflow, but because the surface area of the Guadalupe is smaller it has lower salinity regimes. Previous intensive surveys in San Antonio andI Lavaca Bays indicate that there are two zoogeographic zones in Lavaca and SanAntonio Bays (our own unpublished data; Gil more et g]_., 1976; Harper, 1973;I Mackin, -1971; Matthews et fil., 1983). One zone (in the upper reaches of thebays) is characterized by brackish water species such as the mollusks Mulinia I I 1atera1 is, and Littoridina sphinctosoma. The second zone (more seaward) ischaracterized by marine species, predominantly polychaetes. Therefore, only fourstations are required to characterize each bay. Two stations must be locatedin each of the two zones to avoid pseudoreplication of the effect of freshwater I I 152 Synoptic comparison of benthos I influence. Thus, there wi 11 be two stations at the head of the system to I represent high impact of freshwater inflow, and two at the seaward end of the system to represent little or no freshwater impact. I Previous intensive surveys in San Antonio and Lavaca Bays indicate peak benthic abundances in the spring, sharp decreases in late summer, and lows in I winter (our own unpublished data; Gilmore et _g]_., 1976; Harper, 1973; Mackin, 1971; Matthews et _g]_., 1983). These studies indicate that it is necessary to I have at least three sampling periods per year. We sampled peak abundance periods in April, declining abundance periods in July, and the low abundance periods in November. I MATERIALS AND METHODS I Study design. In order to distinguish between freshwater influence and marine I influence four stations were always chosen. Two stations which replicate each of the two treatment effects (freshwater and marine). Generally these stations I were along the major axis of the estuarine system leading from river mouth to the foot of the estuary near the barrier islands. This design avoids pseudoreplication, where only one station has the characteristic of the main I effect, and it is not possible to distinguish between station differences and treatment differences. I Two riverine systems were studied in detail (Figure 1). The Guadalupe and San Antonio Rivers empty into San Antonio Bay. Four stations were occupied: a I freshwater station at the head of the Bay (station A) and at mid-bay (station B), and two saltwater influenced stations near the Intracoastal Waterway, one I at the southwestern foot of the bay (statio~ C) and one at tne southeastern foot of the bay (station D). The Lavaca River empties into Lavaca Bay, which is connected to Matagorda Bay. I Matagorda Bay a1so has freshwater input from the Tres Pa1 aci os River. Four Stations were occupied along the axis of the system. Two stations were in Lavaca I Bay (A and B), and two stations were in Matagorda Bay (C and D) (Figure 1). Five field trips were performed. Station A in Lavaca Bay was the same station 85 I sampled in 1984-1986 (Jones et _g]_., 1986). I I Synoptic comparison of benthos 153 I I Sampling and analyses. Sediment was sampled with core tubes by divers. The macrofauna was sampled with a tube 6.7 cm in diameter, and subsampled at depth intervals of 0-3 cm and 3-10 cm deep. The meiofauna was sampled with a tube 1.8 cm in diameter, and subsampled at depth intervals of 0-1 cm and 1-3 cm. Samples were preserved with 5% buffered formalin, sorted (on 63 µm sieves for meiofauna,I and 0.5 mm sieves for macrofauna), identified, and counted. Biomass of macrofauna was also measured. Mollusk shells are removed and placed in 1 N HCl I for I min to 8 h to dissolve the carbonate shells by the acidic vaporization technique (Hedges and Stern, 1984). Samples are then washed, and dried at 55 I °C for 24 hours before being weighed. Dry weight biomass was converted to carbon I (C) biomass by using a conversion factor (40% dry weight is C) derived for San Antonio Bay macrofauna (Montagna and Kalke, 1989). I Measurement of bacterial biomass. One cm3 samples for bacterial enumeration were taken with soda straws. Samples were preserved in 4% buffered formalin thatI had been filtered through a 0.2 mm filter and refrigerated until processing. Bacterial cell counts were measured using the acridine orange direct count (AODC)I technique (Daley and Hobbie, 1975) as modified by Montagna (1982). Direct count techniques, which use light microscopy, can lead to systematic errors inI estimating bacterial abundance (Brock, 1984). However, they are also the easiest techniques to use that measure only bacterial-sized organisms and will yield relative results which will allow for station comparison (Montagna, 1982). I Photographs of bacteria were used to estimate cell biovolumes (Fuhrman, 1981). Biovolumes were converted to biomass assuming 3.8 X 10-13 g c.µm-3 cell volume (Lee and Fuhrman, 1987). Estimates and variances of bacterial biomass were calculated by formulas given in Montagna (1984). I Chemi ca 1 measurements. Oxygen concentration changes were measured using electrodes. Four cores were outfitted with pulsed oxygen electrodes (Endeco, I Inc., Marion, MA). These electrodes are of a new design in which the measurement of oxygen concentration is fl ow-insensitive (Langdon, 1984 )'. The four electrodes I are then connected to a Pulsed D.O. Sensor (T.M.) which controls the timing of the electrical pulses sent to each probe. These pulses are the sampling times. I Data is interpreted by the Pulsed D.O. Sensor and logged automatically on a portable computer. In this way oxygen concentrations can be monitored I 154 Synoptic comparison of benthos I continuously in four cores. Three sediment samples, and one bottom water control I are incubated in each sample run. The samples were incubated in the dark at in situ temperatures in a water bath. By measuring the changes in oxygen I concentration over time, and adjusting for the area of sediment covered by the core and the vo 1ume of water contained in the core, the rates of benth i c I respiration were calculated. The flux rate in the bottom water is subtracted from the flux in the sediment core, therefore the fluxes are for sediment only. I Carbon flux is estimated fro!TI th: oxygen uptake ~~ta assuming a respi ration quotient of 1.0 (Nixon et ,gl., 1980). Subsamples were taken from the overlying water in the sediment core tube at I the beginning and end of the incubation period. From the water subsamples, the in fresh concentrations of ammonia, nitrate, nitrite, phosphate and silicate I samples using highly precise techniques (Whitledge et al., 1986). Flux of nutrients were calculated in the same manner as for oxygen flux. I RESULTS I Physical factors. Freshwater inflow balance was very similar in both bays during the study (Figure 2). Unfortunately, data for the entire study period I is not yet available. Temperature in both estuaries was very similar (Figure 3). The average temperature in the Guadalupe (24.3 °C) was not statistically I different from that in the Lavaca (23.8 °C). The Guadalupe was slightly fresher during the study (Figure 4). The overall mean in the Guadalupe was 22.0 ppt, I and the overall mean was 28.8 ppt in the Lavaca estuary. These were different (P=0.0001). The freshest was stations A and Bin San Antonio Bays at the head I of the estuary. Stations C and D in San Antonio Bay were similar to all station in the Lavaca-Matagorda system. (Figure 4). Microbial and meiofaunal factors. Bacterial biomass for the bays sampled in I April 1988 is shown in Table 2. Bacterial samples were also taken in Nueces Bay (Montagna and Kalke, 1989). Bacterial density was significantly less in Lavaca I Bay than in Corpus-Nueces and San Antonio Bays which were the same. However, cell biovolumes were larger in Corpus-Nueces Bays compared to Lavaca and San I Antonio. The net result was that there was a gradient in bacterial biomass (a I Synoptic comparison of benthos 155 I function of cell abundance volume) where San Antonio Bay was much greater in Nueces-Corpus Bay, which was much greater than Lavaca Bay. Meiofauna was I only sampled three times in 1987 in the Guadalupe (Montagna and 2 I Yoon, 1989). At A and B densities stayed relatively low (0.25lxl06·m-) and did not change over time. Nor were the densities at A and B significantly different from each other (Tukey multiple comparison test). In contrast, densities decreased over time at stations C and D and were on average about double thatI of the fresh stations (0.512xl06·m-2). Station C (l .36lxl06·m-2) was always slightly more dense than station D (0.887xl06·m-2) (Tukey multiple comparisonI test). Taxa composition of the meiofauna was similar to other marine environments at the stations C and D, but depauperate in nematodes at stations I A and B (Table 3). The meiofauna densities covaried with salinity differences (Montagna and Yoon, 1989). Staying low at A and B when salinity was low, and I decreasing at C and Das salinity decreased. Meiofauna densities were originally I four times greater in marine stations than freshwater stations when salinity was high, but densities at C and Dwent down to the level of A and B when salinities became similar and fresh. In Lavaca the meiofaunal density was highest at station D (7.30xl06·m-2), butI the other three stations were not significantly different (Tukey test). Density at station A was 4. 53xl06·m-2, at station B 4.69xl06 ·m-2, and at station CI 3.63xl06·m-2• Community composition was dominated by nematodes at all stations (Table 3). I Macrofauna. Densities were significantly higher in the Guadalupe (47,200 • 2 I m-2) than in the Lavaca (22,600 • m-) (Figure 5). Densities peaked in the spring and dropped in summer and fall. In the Guadalupe, densities were three times higher at the freshwater stations (71.2xl03·m-2) than at the marine stations (23.9xl03·m-2). The average densitiesI at stations A was 61.0xl03·m-2, at B 81.5xl03·m-2, at C 28.lxl03·m-2, and at D 19. 7xl03·m-2• However, densities were uniformly greater in 1988 than in 1989 I at all stations in the Guadalupe, when salinities were lowerer. Biomass followed the same trends (Figure 6). Average biomass at station A was 11.13 g.m-2, at B 2 I 14.78 g·m-2, at C 2.62 g.m-, and at D3.01 g-m-2• The biomass in the freshwater stations was 4.6 times higher than in the marine stations (Figure 6). I 156 Synoptic comparison of benthos I I In the Lavaca-Tres Palacios Estuary the macrofaunal density was highest at station D, but was not significantly different from the other stations (Figure 2 5). The average density at station A was 16.2xl03·m-, at station B 12.4xl03·m-I 2, at station C 15.5xl03·m-2, and at station D 49.6xl03·m-2• Biomass showed the 2 2 same trend (Figure 6); the average at was 5.07 g-m-at station A, 2.67 g-m-at I station B, 6.60 g-m-2 at station C, and 13.67 g.m-2 at station D. Nueces and Corpus Christi Bays were sampled in conjunction with Lavaca Bay I only in April and July 1988. Four stations were sampled: A and B in Lavaca Bay an upper enclosed secondary bay in close proximity to freshwater inflow from the I Lavaca River and C and D in Matagorda Bay, an open primary bay. Freshwater inflow during this sampling period was low. The mean salinities at stations A, B, C and D were 26.7, 28.4, 30.2 and 30.4 ppt, respectively (Table 4). The I Guadalupe was thus sampled during a wet-dry cycle (Table 5). There was an increase in species number and diversity during the dryer part of the cycle I (Table 6). The general trend is for species numbers, abundance and biomass is to increase from upper Lavaca Bay to 1ower Matagorda Bay (Tab1e 7). This I gradient is not as pronounced as that found in Nueces-Corpus Christi Bay (Table 7). The species composition in Lavaca and Matagorda Bays is similar to the I Nueces-Corpus Christi Bay system but the mean numerical abundance is higher than those found in Nueces and Corpus Christi Bays. The polychaetes Mediomastus californiensis, Streblospio benedicti and Glycinde solitaria, the amphipod I Ampelisca abdita, and the mollusk Mulinia 7atera7is comprise 82% of the total abundance at station A and 18% of the total abundance at station D. Dominant I species in the lower primary bay were the polychaetes, Mediomastus californiensis, Polydora cau77eryi, Brania clavata, Gyptis vittata, Glycinde I solitaria, Tharyx setigera, Drilonereis magna and Minuspio cirrifera; the tanaidacean Apseudes sp A., the mollusks Corbula contracta and Periploma cf. I orbiculare, a hemichordate, Schizocardium sp., and rhyncocoels. The mollusk biomass was highest at stations A (57%) and B (40%) decreasing at stations C (1%) and D (17%). Polychaetes accounted for approximately 50% of the biomass at all I stations. At station B the hemichordate, Schizocardium sp. made up 42% of the biomass. This species was dominant in biomass in Corpus Christi Bay in 1981-I 1984 (Flint and Kalke, 1986a; 1986b). The ophuiroid, Amphiodia 7imbata occurred I I Synoptic comparison of benthos 157 I in Matagorda Bay accounted for 20 percent of the biomass at station D. Crustaceans contributed a notable percent of the biomass in the secondary and I I primary bay. Ampelisca abdita was most abundant at stations A and B, Pinnixa chacei was found at stations C and D and Apseudes sp A was dominant at station D (Montagna &Kalke, 1989). I Effect of macrofaunal biomass on oxygen and nutrient flux. There was a positive relationship between macrofaunal biomass and sediment oxygen consumption (Figure 7) (P=O. 0007). There was one outlier, but when it is removed the relationship is still significant (P=0.0139). The intercept of the curve implies I that when macrofauna are not present, bacteria and meiofauna are responsible for oxygen consumption at a rate of 8.73 mg C • m-• h-1• The slope of the curve represents a C turnover time of 0.00101 h-1, which is equivalent to 41 days. .I 2 I This number includes chemical as well as biological oxygen demand. Replicates had a tendency to cluster together (Figure 7). Summer generally had low I biomasses, but uptake in the freshwater zones of the Lavaca were high reflecting temperature effects. Ironically temperature had an inverse correlation with oxygen consumption, because biomass was inversely correlated with temperature (Table 9). I Ammonia flux was not related to macrofauna biomass (Figure 8). Ammonia was correlated to silicate (P=0.0102) and nitrate {P=0.0377) flux. There were I differences in ammonia flux between stations (P=0.0010), but not bays (P=0.6788). Replicates had a tendency to clump together. There was net uptake of ammonia I at stations A in Lavaca, and C in the Guadalupe. There was release at stations I A and D in the Guadalupe. The overall average was -1.06 mmol • m-2 • h-1 • Nitrite regeneration was strong correlated with biomass (Figure 9). There was generally release in the uptake in the marine stations, and release in the freshwater stations. The overall average nitrite flux was -0-114 mmol • m-2 •I h-1• In contrast, Nitrate was negatively correlated with biomass, but this was not significant (Figure 10). The overall average nitrate flux was 0.134 mmol 2 I • m-• h-1• Phosphate was not correlated with biomass either (Figure 11). The 2 overall average phosphate flux was -0.582 mmol • m-• h-1• Phosphate flux was I positively correlated with salinity (Table 9) and nitrate flux (P=0.0001). Silicate release had a weak correlation with increasing macrofaunal biomass I I 158 Synoptic comparison of benthos I 2 (Figure 12). The overall average silicate flux was -12.0 mmol • m-• h-1• I DISCUSSION I Prior to this study, in the spring of 1987, there was a very large inflow I event. Salinities in the Guadalupe were down to 1 ppt in most parts of the estuary by July 1987 (Montagna and Kalke, 1989). This had a depressing effect I on macrofauna densities. By the summer of 1988, and through 1989 there was a drought period, where rainfall was about 403 less than historical averages. The densities in the first dry year (1988) were almost double that of the wet (1987) I year. But after two years of drought and rising salinities, densities fell back to levels comparable to the wet year. This implies that the pulse of nutrients I brought into the bay has a stimulatory effect on benthic productivity during the first year of an inflow event. These nutrients are depleted if inflow decreases I dramatically, as it does during a drought, and might limit productivity. Another implication of this result is that the freshwater inflow has a larger effect on I smaller area bays, like San Antonio Bay, than on other bays. There is something about the stations at the head of San Antonio Bay (A and 8) which yields higher macrofauna l abundances. In Nueces -Corpus Christi Bays the trend is the I opposite. Higher densities were found in saline stations (Montagna and Kalke, 1989). However, when salinity increased during the summer, densities generally I decreased. Lavaca Bay exhibited the same trends. The higher productivity in San Antonio bay is evident since there is also I higher bacterial biomass in there than in the more saline Nueces, and Lavaca systems. This is not reflected in oxygen consumption. The overa11 average 2 I oxygen flux (in carbon equivalents) for the Guadalupe is 9.24 mg C • m-• h-1, 2 h-1 whereas it is 13.7 mg C • m-• in the Lavaca Estuary. This is in spite of I the lower density and biomass of bac~eria and macrofauna in the Lavaca Estuary. A confounding factor in the comparison of the Guadalupe and the Lavaca is influence from the Gulf of Mexico. The Lavaca is an open system with exchange I through Pass Cavallo and · a ship channel, whereas the Guadalupe is a closed system. The 1 argest effect of Gulf influence is on community structure, I especially in Matagorda Bay where oceanic species are found. These species can I Synoptic comparison of benthos 159 I be numerous, large sized, and apparently can stimulate productivity (i.e., oxygen uptake). I Macrofauna have a stimulatory effect on the uptake of oxygen, nitrite, and I silicate. The lack of a correlation with ammonia could be due to uptake by the sediment and release by macrofauna being counterbalanced. I I I I I I I I I I I I I 160 Synoptic comparison of benthos I I LITERATURE CITED Brock, T. D. 1984. How sensitive is the light microscope for observations on microorganisms in natural habitats? Microb. Ecol., 10, 297-300. I Daley, R. J. and J. E. 1975. Hobbie. Direct counts of aquatic bacteria by a modified epifluorescence technique. Limnol. Oceanogr., 20, 875-882. I Fuhrman, J. A. 1981. Influence of method on the apparent size distribution of bacterioplankton cells: epifluorescence micro~copy compared to scanning I electron microscopy. Mar. Ecol. Prog. Ser., 5, 103-106. Flint, R.W. & Kalke, R.D. 1986a. Niche characterization of dominant estuarine benthic species. Estuar. Coast. Shelf Sci. 22:657-674. I Flint, R.W. & Kalke, R.D. 1986b. Biological enhancement of estuarine benthic community structure. Mar. Ecol. Prog. Ser. 31:23-33. I Gilmore, G., Dailey, J., Garcia, M. and J. Means. 1976. A study of the effects of fresh water on the plankton, benthos, and nekton assemblages of the Lavaca I Bay system. Texas Parks and Wildlife Department, Rockport, TX. 113p. Harper, D.E., Jr. 1973. The distribution of benthic and nektonic organisms in undredged control areas of San Antonio Bay. Texas A&M Research Foundation, I College Station, Texas, 3:1-157. Hedges, J. I. and J. H. Stern. 1984. Carbon and nitrogen determinations of I carbonate-containing solids. Limnol. Oceanogr. 29:657-663. Hellier, T.R., Jr. 1962. Fish production and biomass studies in relation to I photosynthesis in the Laguna Madre of Texas. Publ. Inst. Marine Science, Texas 8:1-22. I Howes, B., Dacey, J.W.H and G.M. King. 1984. Carbon flow through oxygen and sulfate reduction pathways in saltmarsh sediments. Limnol. Oceanogr. 29:1037 I 1051. Jones, R.S., Cullen, J.J., Lane, R.G., Yoon, W., Rosson, R.A., Kalke, R.D., Holt, S.A. & Arnold, C.R. 1986. Studies of freshwater inflow effects on the Lavaca I River Delta and Lavaca Bay, TX. Report to the Texas Water Development Board. Port Aransas, TX. The Univ. of Texas Mar. Sci. Inst., 423 pp. I Langdon, C. 1984. Dissolved oxygen monitoring system using a pulsed electrode: design, performance and evaluation. Deep-Sea Res. 31:1357-1367. I I I Synoptic comparison of benthos 161 I Lee, S. and Fuhrman, J. A. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol., 53, I 1298-1303. Hurlbert, S. H. 1984. Pseudoreplication and the design of ecological field I experiments. Ecol. Monongr. 54:187-211. I Mackin, J.G. 1971. A study of the effects oil field brine effluents on biotic communities in Texas Estuaries. Texas A&M Research Foundation, College Station, Texas, Report 735. Matthews, G.A., Marcin, C.A., and G.L. Clements. 1975. A Plankton and benthosI survey of the San Antonio Bay System. Texas Parks and Wildlife Department. 72 pp.I Montagna, P. A. 1982. Sampling design and enumeration statistics for bacteria extracted from marine sediments. Appl. Environ. Microbiol., 43, 1366-1372. I Montagna, P. A. 1984. In situ measurement of meiobenthic grazing rates on I sediment bacteria and edaphic diatoms. Mar. Ecol. Prog. Ser. 18, 119-130. Montagna, P.A. &Kalke, R.D. 1989a. The Effect of Freshwater Inflow on Meiofaunal I and Macrofaunal Populations in San Antonio, Nueces and Corpus Christi Bays, TX. Report to the Texas Water Development Board. Port Aransas, TX.: The Univ. of Texas Mar. Sci. Inst. Montagna, P. A., Yoon, W. B. 1989. The effeet of freshwater inflow onI mei ofaunal consumption of sediment bacteria and mi crophytobenthos in San Antonio Bay, Texas. A report to the Texas Water Development Board. The I I University of Texas Marine Science Institute, Port Aransas, Texas. Odum, H.T. and R.F. Wilson. 1962. Further studies on reaeration and metabolism of Texas bays, 1958-1960. Publ. Inst. Marine Sci., Texas 8:23-55. I Nixon, S.W., Kelly, J.R., Furnas, B.N., Oviatt, C.A., and C.A. Hale. 1980. Phosphorous regeneration and metabolism of coastal bottom communities. In: Tenore, K.R. and B.C. Coull (eds.) Marine Benthic Dynamics, University of South Carolina Press, Columbia, South Carolina, p.219-242. I Patching, J.W. and R.C.T. Raine. 1983. Benthic metabolism and the supply of organic material to the sea-bed. In: MacDonald, A.G. and I.G. Priede (eds.) I Experimental Biology at Sea, Academic Press, London, p. 311-345. I 162 Synoptic comparison of benthos I Texas Department of Water Resources. 1982. The influence of freshwater inflows I upon the major bays and estuaries of the Texas Gulf coast. Vol. 8. Executive Summary (Second Ed.). Texas Department of Water Resources, Austin, Texas. I Texas Parks and Wildlife. 1988. Trends in Texas Commercial fishery landings, 1977-1987. Management Data Series, No. 149. Texas Parks and Wildlife I Department, Coastal Fisheries Branch. Austin, Texas. Whitledge, T.E., Veidt, D.M., Malloy, S.C., Patton, C.J. Wirich, C.D. 1986. I Automated nutrient ana1ys is in seawater. Brookhaven Nati ona1 Laboratory Report 38990. Upton, New York, 231 pp. I I I I I I I I I I I I I Synoptic comparison of benthos 163 I Table I. Average annual freshwater inflow (for the period 1941-1976; Texas I Department of Water Resources, 1982) and average annua1 harvest in Texas estuaries (for the period 1962-1987; Texas Parks and Wildlife Department, I 1988). Commercial netting for redfish and trout was banned in 1981. In 1988 all gill-netting was banned. I Harvest I Estuary Area1 Inflow2 Finfish3 Shellfish3 I I Lavaca-Tres Palacios 910 2,628 220 4,576 Guadalupe 579 2,063 177 3,406 1Mean tide (km2)I 2Net inflow includes gaged and ungaged inflows, diversions and return flow, and precipitation and evaporation (in thousands of acre-feet). I 3Average annual of pounds). I I I I I I I commercial harvest during 1962-1976 (in thousands I 164 Synoptic comparison of benthos I Table 2. Bacterial biomass parameters from three Texas bays (samples taken April I 1988). Cell numbers and volume are Log 10 transformed. Bacterial biomass is calculated by adding the log of numbers plus the log of volume then detransformed I and multiplied by the conversion factor given in Lee and Fuhrman (1987). I Bay Station Cells Volume Biomass Log(n) •Cm-3 Log (µm3) µg C·cm-3 I Corpus-Nueces A 8.04428 -1.40944 1. 63919 I Corpus-Nueces B 7.68682 -1.43272 0.68216 Corpus-Nueces c 8.21550 -1.58435 1.62530 I Corpus-Nueces D 7. 71671 -1. 84129 0.28524 Lavaca A 5.88186 -2.26226 0.00158 I Lavaca B 6.51046 -1.54446 0.03514 Lavaca c 7.23300 -1.74345 0.11731 I Lavaca D 7.63457 -2.48952 0.05307 San Antonio A 8.31421 -1.69123 1. 59503 San Antonio B 8.69570 -1. 71729 3.61574 I San Antonio c 8.60585 -1.88824 1.98330 San Antonio D 8.95520 -1.86361 4.69222 I I I I I I I I I Table 3. I I I Taxa Nematoda I Cope poda Others I I I I I I I I I I I Synoptic comparison of benthos Average percentage composition of meiofauna taxa. San Antonio Bay Lavaca-Matagorda A B c D A B c D 31. 9 38.4 67.9 56.2 82.2 77 .3 55.9 78 . 4 15.2 30.4 22.7 19.6 7.0 14.2 13.2 9.4 52.9 31.2 9.4 24.2 10.8 8.5 30.9 12.2 166 Synoptic comparison of benthos I I Table 4. Comparison of macrofaunal abundance and salinity in three estuaries. Mean total abundance (n • m-2), and mean salinities (ppt) at freshwater zone stations (A and B) and marine zone stations (C and D) over time in San I Antonio, Nueces, Corpus Christi, Lavaca, and Matagorda Bays. Nueces Estuary data from Montagna and Kalke (1989). I I Stations I Bay and Dates Parameters A B c D I San Antonio Bay Abundance 41,217 18,887 9, 189 7,544 Jan -Jul 1987 Salinity 0.5 2.4 5.5 8.1 I San Antonio Bay Abundance 69,695 80,637 30,676 20,514 I Apr 1988 -Apr 1989 Salinity 13.3 19.4 26.0 28.4 I Nueces-Corpus Christi Bays Abundance 6,397 8,555 10,714 30,629 Oct 1987 :~. Ju1 1988 · :Salinity 31.2 32.7 32.5 34.2 I Lavaca-Matagorda Bays Abundance 18,340 12,478 18,244 49,536 Apr 1988 -Apr 1989 Salinity 26.7 28.4 30.2 30.4 I I I I I I I I Synoptic comparison of benthos 167 I Table 5. Change in biomass and salinities between and wet and dry cycle in theGuadalupe Estuary, Texas. Average salinities (ppt) and average biomass (g I • m-2 to a depth of 10 cm for the entire community) at freshwater stations (Aand B) and marine stations (C and D) over time in San Antonio Bay. AlsoI presented is the percent of the total biomass represented by the two dominanttaxa (mollusks and polychaetes). I I Stations I Date Parameters A B c D I Jan -Jul 1987 Salinity 0.5 2.4 5.6 8.1 Biomass 7.2 4.8 3.2 3.5 I I Mollusks 89% 80% 73% 68% Polychaetes 11% 16% 25% 29% TOTAL 99% 96% 98% 97% I Apr 1988 -Apr 1989 Salinity 13 .3 19.4 26.0 28.4I Biomass 12.7 14.8 2.6 3.0 I I Moll us ks 61% 75% 31% 17% Polychaetes 35% 23% 62% 78% TOTAL 96% 98% 93% 95% I I I I 168 Synoptic comparison of benthos I Table 6. Species dominance and diversity in the Guadalupe Estuary in a wet and I dry cycle. Dominant species are listed with the average total abundance for the species list (percent composition of total). The overall species number, I and mean salinities (ppt) at freshwater stations (A and B) and marine stations (C and D) over time in San Antonio Bay (1987 data from Montagna and Kalke, 1989). Dates and Dominant Species Jan -Jul 1987 Littoridina sphinctostoma Mediomastus californiensis Mulinia lateralis Streblospio benedicti Macoma mitchelli Apr 1988 -Apr 1989 Streblospio benedicti Mediomastus californiensis Mulinia lateralis Littoridina sphinctostom Gastropod (Littoridina? juv) I I Stations I Parameters A B c D I Salinity 0.5 2.4 5.6 8.1 Abundance 97% 96% 72% 84% I Species 14 16 28 26 I I Salinity 13.3 19.4 26.0 28.4 I Abundance 94% 96% 89% 74% I Species 28 26 24 48 I I I I I I I Synoptic comparison of benthos 169 Table 7. I Species dominance and diversity in the Nueces and Lavaca-Tres PalaciosEstuaries. Dominant species are listed with the average total abundance forthe species list (percent composition of total). The overall species number, I and mean salinities (ppt) at freshwater stations (A and B) and marine stations (C and D) over time in Nueces, Corpus Christi, Lavaca, and Matagorda Bays.I (Nueces data from Montagna and Kalke, 1989). I Stations Bays, Dates andI Dominant Species Parameters A B c D I Nueces-Corpus Christi Oct 1987 -Jul 1988 Streblospio benedicti Salinity I 31. 2 32.7 32.5 34.2 Mediomastus ca 7iforniensis Abundance 97% 63% 38% 24% I Mulinia lateralis Species 14 40 64 68 Macoma mitchelli I I Lavaca-Matagorda Apr 1988 -Apr 1989 Mediomastus californiensis Salinity 26.7 28.4 30.2 30.4 I Ampelisca abdita Abundance 82% 77% 40% 18% Mulinia lateralis Species 41 34 52 69I Streblospio benedicti I Glycinde solitaria I I I I 170 Synoptic comparison of benthos I I Table 8. Difference in biomass and salinities between two open estuaries. Average salinities (ppt) and average biomass (g • m-2 to a depth of 10 cm for the entire community) at freshwater stations (A and B) and marine stations I (C and D) over time in Nueces, Corpus Christi, Lavaca, and Matagorda Bays. Also presented is the percent of the total biomass represented by the two I dominant taxa (mollusks and polychaetes). (Nueces data from Montagna and Ka1ke, 1989) . I I Stations I Bays and Dates Parameters A 8 c D I Nueces-Corpus Christi Salinity 31. 2 32.7 32.5 34.2 Oct 1987 -Jul 1988 Biomass 2.3 6.3 5.5 5.5 I Moll us ks 85% 41% 30% 6% I Polychaetes 14% 58% 56% 81% TOTAL 99% 99% 86% 87% I Lavaca-Matagorda Salinity 26.7 28.4 30.2 30.4 I Apr 1988 -Apr 1989 Biomass 5.4 2.7 8.0 13. 7 I Moll us ks 57% 40% 1% 17% Polychaetes 40% 52% 48% 45% I Crustacea 2% 7% 6% 13% Hemichordata 42% 1% Ophiuroids 1% 20% I TOTAL 99% 99% 98% 96% I I I I Synoptic comparison of benthos 171 I Table 9. Correlation coefficients for physical, chemical and biological factors in both estuaries. Pearson correlation coefficients, the probability that I r=O, and number of Observations. Abbreviations: SAL = salinity, TEMP = temperature, 02FLUX = oxygen consumption, GCM2 = macrofaunal biomass, P04 = I phosphate, SI04 = silicate, N03 =nitrate, N02 =nitrite, NH4 = ammonia, I SAL TEMP 02FLUX GCM2 I I TEMP 0.16231 1.00000 -0.30732 -0.38272 0.2704 0.0 0.0336 0.0073 I 48 48 48 48 02FLUX -0.22912 -0.30732 1.00000 0.47339 0.1172 0.0336 0.0 0.0007 48 48 48 48 GCM2 -0.15959 -0.38272 0.47339 1.00000I 0.2786 0.0073 0.0007 0.0 48 48 48 48 P04 0.70747 -0.07676 -0.21012 0.07034I 0.0001 0.7215 0.3244 0.7440 24 24 24 24 SI04 -0.07787 0 .11490 0.28493 0.43527I 0. 7176 0.5929 0.1772 0.0335 24 24 24 24I N03 0.43143 0.23788 -0.32456 -0.11923 I 0.0353 0.2630 0.1218 0.5790 24 24 24 24 I N02 -0.03213 -0.13574 0.20699 0. 69571 0.8815 0. 5271 0.3318 0.0002 24 24 24 24 NH4 -0.21683 0.21207 -0.02812 0.21672 0.3088 0.3198 0.8962 0.3091I 24 24 24 24 I I I I 172 Synoptic comparison of benthos I I I I . Guadalupe I : ~· :-.·.: R i v e r . . . . . . .. . : ..: .. . . ... . .. ·..... . . . . . ~ . : : ·.·.. ·=· . . ·.. .. . I I I I .·. ·. ·. . . River . ·.. :.· : .:· .·... I San Antonio I Bay I I I I Figure 1. Study area. Four stations were studied in two estuaries. San Antonio Bay is in the Guadalupe Estuary, and Lavaca and Matagorda Bays are in the 1 Lavaca-Tres Palacios Estuary. I I I I Synoptic comparison of benthos 173 I I Freshwater Inflow Balance (106 m3 · d-1 ) in Two Estuaries I In fl ow 30 I I 20 I I 10 I I 0 ,.. .J \. / I ' I I -10 APR88 MAY88 JUN88 JUL88 AUG88 SEP88 I Date I Estuary Guadalupe ----Lavaca-Tres I I Figure 2. Freshwater inflow balance (gain minus losses) in two estuaries duringthe study period. I I 174 Synoptic comparison of benthos I I Temperature (0C) in two estuaries I Temperature 32 I I 28 I 24 I I 20 I I 16 I 12 I APR88 JUL88 OCT88 JAN89 APR89 JUL89 Date I * -* -* GE-A ¥-¥-¥ GE-B +-+--+ GE-C ~-r GE-D O-El----0 LP-A fr-fr -A LP-B -0 o o LP-C o o o LP-D I I Figure 3. Temperature in the two estuaries during the study period. I I I I Synoptic comparison of benthos 175 I I Salinity (ppt) in two estuaries Salinity I 37 I I 30 I I 23 I 16 / I / / --x---- / // / // / / I / -------------X 9 I APR88 JUL88 OCT88 JAN89 APR89 JUL89 I Date I * -* -* GE-A ¥-¥-¥ GE-B +-+--+ GE-C ~---r GE-0D-8-0 LP-A -tr-----tr -A L P -B -0 o o LP-C o o o LP-0 I Figure 4. Salinity in the two estuaries during the study period. I I I 176 I Synoptic comparison of benthos Macrofauna Density (103 · m-) in Two Estuaries 2I Density 170 I160 150 I140 130 I120 110 I 100 I~ 90 I \ II I \ 80 \ \ I \ I I I 60 \ I I I 50 I \ \ \ \ I 20 10 I 0 APR88 JUL88 OCT88 JAN89 APR89 JUL89 I Date I *-*-* GE-A ¥-¥-¥ GE-B +-+-t--GE-C ~-r GE-0 O-EJ--£3 LP-A LP-B o LP-C -fr----&--& <> o o o o LP-0 I I Figure 5. Macrofauna density to a depth of 10 cm in the two estuaries during the study period. I I Synoptic comparison of benthos 177 I I Macrofauna Biomass (g · m -2) in Two Estuaries I Dry Wt. 30 I I ':( / \ / \ // \ 20 / / \ \ / \ I / \ -><,,_ / // \ \ ' / \ I '( \ // ' \ ::-~--/ ---y I I I I 0 APR88 JUL88 OCT88 JAN89 APR89 JUL89 I Date I *-*-* GE-A ¥-¥-¥ GE-8 +-+--+-GE-C ~---± GE-D O-EJ-O LP-A fr---fr -& LP-8 -0 o o LP-C o o o LP-D I Figure 6. Macrofauna biomass to a depth of 10 cm in the two estuaries duringI the study period. I 178 Synoptic comparison of benthos I 2 I Oxygen Flux (g C . m-. h-1) vs. Macrofaunal Biomass (g C . m -2) Flux I 0. 030 0 • I 0. 025 • * I 0.020 -+ 0 0 * I 0. 015 I 0.010 ... ~ I ... 0 8 i yD z0.005 -\) \)t*z I ~ 0.000 <.) + I I -0.005 I I I I I I I I I I I I I I I I I I I I I 0 5 10 15 20 25 I Biomass I x x x APR/GE-A y y Y APR/GE-B + + + APR/GE-C z z z APR/GE-D :)::!: :)::!: :)::!: * * * APR/LP-A APR/LP-B 0 0 0 APR/LP-C • • • APR/LP-D 0 0 0 JUL/GE-A 0 0 0 JUL/GE-C 6 6 6 JUL/LP-A \) \} \) JUL/LP-C I I Figure 7. The effect of macrofaunal biomass on oxygen flux during 1989. The dotted line is from a linear regression, where flux (g C • m-2 • h-1) =Biomass I (g C • m-2)x0.00101 + 0.00873, P for H0 the slope is zero=0.0007, and R2=0.22. I I I Synoptic comparison of benthos 179 I Nutrient Flux (µmol . m -2 · h -1) in Two Estuaries I vs. Macrofaunal Biomass (g C . m -2) I 20 z I 10 -<> x !Y x ------o--I 1::2 z A --I m 0 ~------ m 0 <> i D I a n y -10 + I +D I -20 -+ D I I -30 I I I I I I I I I I I I I I I I I I I I I I I I I I I 0 5 10 15 20 25 Biomass x x x GE-A y y y GE-8 + + + GE-C z z z GE-DI D D D LP-A 6 6 6 LP-B <> <> <> LP-C 0 0 0 LP-D I Figure 8. The effect of macrofaunal biomass on ammonia flux during April 1989.I The dotted line is a linear regression, where flux (mmol • m-2 • h-1) =Biomass(g C • m-2)x0.450 -2.819, P for H0 the slope is zero=0.3091, and R2=0.05. I I N i t r i t e I Synoptic comparison of benthos I I Nutrient Flux (µmol · m -2 · h -1) in Two Estuaries vs. Macrofaunal Biomass (g C . m-2) I 5 I 4 I 3 I 2 I 0 y D 0 1 -I.. I x -1 I -2 -0 + I + + -3 -I I I I I I I I T T I I I I • • • I I T I I 0 5 10 15 20 25 Biomass I x x x GE-A y y y GE-B + + + GE-C z z z GE-D D D D LP-A 6 6 6 LP-B 0 0 0 LP-C 0 0 0 LP-D I I Figure 9. The effect of macrofaunal biomass on nitrite flux during April 1989. 2 The dotted line is a linear regression, where flux (mmol • m-• h-1) =Biomass I (g C • m-2)x0.237 -1.038, P for H0 the slope is zero=0.0002, and R2=0.48. I I I I Synoptic comparison of benthos 181 I Nutrient Flux (µmol . m -2 . h -1) in Two Estuaries I vs. Macrofaunal Biomass (g C . m-2) I 30 -zz I 20 I z i 10 t I r N y t 0 y I a 0 e ---- I p -2 -y !::::. h a -3 t I -4 e -5 -I-6 x -7 -I-8 -x -9 -I -10 -x -11 I I I I I I I I I I I I I I I I I I I I I I I I I I I 0 5 10 15 20 25 Biomass I x x x y y y GE-A GE-B + + + GE-C z z z GE-D 0 0 0 LP-A !::::. !::::. !::::. LP-B <> <> <> LP-C 0 0 0 LP-D I I Figure 11. The effect of macrofaunal bi amass on phosphate flux during April 1989. The dotted line is a linear regression, where flux (mmol·m-2·h-1) = I Biomass (g C·m-2)x0.0566-0.8030, P for H0 the slope is zero=0.7440, R2=0.0l. I I I Synoptic comparison of benthos I I Nutrient Flux (µmol · m -2 · h -1) in Two Estuaries vs. Macrofaunal Biomass (g C . m -2) Silicate I 40 -· 0 , I 30 0 0 0 20 I -10 0 I x -10 I -20 -x -30 I + IP -40 I + 0 6. -50 I + -60 I -70 -'-.--~~~o~~~~~~~~~~~~~~~~~~~~~I I I I I I I I I I I I I I I I I I I I I I I I I 0 5 10 15 20 25 I Biomass I x x x GE-A Y Y Y GE-B + + + GE-C z z z GE-D o o o LP-A 6. 6. 6. LP-B o o o LP-C o o o LP-D I Figure 12. The effect of macrofaunal biomass on silicate flux during April 1989. 2 I The dotted line is a linear regression, where flux (mmol • m-• h-1) =Biomass (g C • m-2)x2.63 -22.31, P for H0 the slope is zero=0.0335, and R2=0.19. I I 184 Synoptic comparison of benthos I I I I I I I I I I I I I I I I I I I A Review: The Effect of Freshwater Inflow on theBenthos of Three Texas Estuaries I I Richard 0. Kalke I I and Paul A. Montagna The University of Texas at Austin Marine Science Institute Port Aransas, Texas 78373-1267 ABSTRACT I I The effect of freshwater inflow on benthic community structure in three Texas I estuaries is the subject of a literature review. The Lavaca-Tres PalaciosEstuary is fed by the Lavaca, Navidad and Tres Palacios Rivers, which empty intoI Lavaca and Matagorda Bays. The Guadalupe Estuary is fed by the San Antonio andGuadalupe Rivers which empty into San Antonio Bay. The Nueces Estuary isI composed of the Nueces River which empty into the Nueces and Corpus Christi Bays. I All three estuaries can be divided into marine, estuarine, and freshwaterzoogeographic zones. But the boundaries of the zones are regulated by three I factors. First, is the location of the estuary. There are four climatic zoneson the Gulf coast of Texas, with a concomitant gradient of decreasing rainfallI and freshwater inflow from north to south. Second, is whether the bay has andirect opening to the Gulf of Mexico. Third, is the interannual variability inI rainfall and freshwater inflow. In general, species diversity increases withincreasing salinity at the marine parts of the estuaries. The trends for biomassand abundance are not so clearly distinct. In an open system, like the LavacaTres Palacios and Nueces Estuaries, biomass and abundance typically increase near I I the opening to the Gulf, but in a closed system, like the Guadalupe Estuary,abundance and biomass usually decrease toward the marine influenced zone. Thisindicates that the estuaries must be treated independently when making managementI decisions, but that we can develop a generic model which describes the effectof freshwater inflow on estuarine benthic dynamics. I 185 I I 186 Review of freshwater effects on benthos I INTRODUCTION I The Texas coastal region is an important natural resource to the economy ofthis state and nation. This region is composed of seven major estuarine systems Iand extends for approximately 370 linear miles. The Texas coastline encompassesfour climatic types described by Thornwaite (1948): (1) Semi-arid regions from Ithe Rio Grande to 30°3'N just south of Corpus Christi, (2) Dry subhumid regionfrom Corpus Christi to the lower shores of Matagorda Bay (Port Lavaca), (3) Moistsubhumid zone from Port Lavaca to Galveston and (4) Humid climate from Galveston I to the Mississippi Delta. These climate zones are roughly correlated with rainfa 11 , with their boundaries corresponding with the 25, 30, 40, I and 50 inchaverage annual precipitation from the lower to the upper coast (Hedgepeth, 1953).There is also a concomitant gradient of decreasing freshwater inflow from north Ito south corresponding to these climatic boundaries. Fluctuations of theclimatic boundaries are common. For example, Price (1949) determined that the I expected dry-subhumid climate occurred less than 50 percent of the time for ahundred year period in the Corpus Christi zone. Although there is an obvious difference between the estuarine systems in I regards to climate and freshwater inflow they have one feature in common, bothseasonal and year-to-year variation in rainfall. This variation is I characteristic of estuaries, but it is extreme on the northwestern Gulf coast, and can have radical effects on the estuaries (Hedgepeth, 1953). Flooding can Ichange the salinity of a bay from 15 ppt (parts per thousand) to nearly zero ina few days, or periods of drought with high temperatures may raise salinities Ito hypersaline conditions. For example, drought conditions from 1948 to 1956resulted in low freshwater inflow, and caused salinities in Texas bays toincrease to record highs with little variation between years. This was followed I by a sudden change in the spring of 1957 in Mesquite and Aransas Bays where thesalinities dropped from 40 ppt to 2-4 ppt in less than 3 weeks (Parker, 1959; I TDWR, 1980b). From September 11 to 15, 1951 precipitation lowered salinity atthe head of Alazan Bay from 55.3 to 1.4 ppt changing the average salinity in IA1azan from 54. 7 to 11. 5 ppt (Breuer, 1957). Sudden changes in sa1 in ityfollowing long term stable conditions can cause mass mortality (Parker, 1959; IStone and Reish 1965; Wells, 1961; Thomas and White, 1969). I I I I Review of freshwater effects on benthos 187 Temperature is another important climatic factor. Temperature changesI associated with cold weather fronts are often severe enough to cause mortalityto fish and some invertebrates (Hedgepeth, 1953). Mass mortality fo11 owingI freezes along the Texas coast occur approximately every six to fourteen years,averaging one every ten years (Hedgepeth, 1953 cited in Gunter, 1947). InI January-February, 1951, 60 to 90 million pounds of fish were killed, mainly inthe Laguna Madre (Gunter and Hildebrand, 1951; Breuer, 1957). The most recentI cold related fish kills occurred in the winter~ of 1983 and 1989.Each estuarine system has its own hydrographic characteristics dependent oninteractions between river inflows, climatic factors and tides and each needs I I to be studied in detail (Hedgepeth, 1953). Multidisciplinary inter-bay studiesare important to understand each estuary and how they relate to each other.I This review attempts to establish the relationship between benthic communitystructure and variations among Texas estuaries due to inter-and intra-annualclimatic affects. I PHYSIOGRAPHY OF TEXAS ESTUARIES I I The bays in the Texas estuarine system can be classified by structure intotertiary, secondary and primary bays (Texas Department of Water Resources, 1982).The tertiary bays are the lakes associated with the head waters of the estuaryI and are typically low salinity areas due to their proximity to freshwater inflow.The secondary bays are semi-enclosed bays of low to moderate salinities connectedI to the lower primary bays, which are the central part of the estuary withmoderate to high salinities. Numerous oyster reefs are usually associated with the low to moderate salinity secondary bays. Texas estuaries are also classifiedbased on their location and in relation to the Gulf of Mexico. Open bays areI those with direct access to the Gulf, ie. Lavaca-Matagorda and Nueces-CorpusChristi bays and closed bays are those without direct access to the Gulf, ie.San Antonio Bay.I The physiography of the Texas estuarine systems results in a salinity gradient I from low salinity in the upper estuary near freshwater inflow to higher salinity I in the lower estuary near marine influence. This salinity gradient ultimatelyeffects the zoogeographical distribution of benthic organisms and enables us to I I 188 Review of freshwater effects on benthos I di vi de the estuarine system into three major zones i e. (1) a freshwater I influenced zone in the upper bay, (2) an estuarine zone mid-bay, and (3) a marine zone in the 1ower bay. Species composition of these zones are freshwater I species, brackish or estuarine species, and marine species as you go from fresh to marine water (TDWR, 1980a). Although most benthic studies reviewed describe faunal and salinity differences which relate to the zones we use, various I terminology is used to describe these zones (Table 1). I GENERAL SALINITY EFFECTS ON BENTHOS I Ecological studies over the years have demonstrated the importance of salinity as a factor in affecting the distribution of marine and estuarine organisms. I The number of species, but not necessarily the observed total biomass increases as one proceeds along a salinity gradient from the freshwater side of a large estuary to the open sea (Springer and Woodburn, 1960; Gunter, 1961). Sessile I and non-motile organisms have optimum salinities at which they grow best and variations from the optimum inhibit growth (Gunter, 1961). The life histories I of many motile species, i.e., commercially important penaeid shrimps and menhaden, are migratory. Spawning occurs offshore, followed by the migration I of larvae and juveniles to low salinity nursery areas at the heads of estuaries (Gunter, 1957; Baldauf et al., 1970). Individuals of marine species of fishes I that invade freshwater are predominantly the juveniles (Gunter, 1957). Some of these trends change when the estuary becomes hypers a 1 i ne. For example, in the Laguna Madre when the salinity increases (1) there are fewer I species, (2) the number of individuals of each species increases, (3) the average individual of each vertebrate species is larger (4) the average individual of I many invertebrate species, ie., blue crabs and barnacles decreases (Simmons, 1957). When salinity and temperature are variable and extreme in the Laguna I (1) only a few species of marine invertebrates and individuals of each species may survive, (2) but when hydrographic conditions are stable and salinities and I temperature are in the extreme range, a few tolerant species may become extremely abundant, (3) When physical conditions are stable and within the normal range for marine environments there will be many species but fewer individuals of each I species (Parker, 1959). I I I Review of freshwater effects on benthos 189 I Variations in salinity may be adverse for some organisms and beneficial for others. In general, when salinity changes within limits, the biomass remains fairly constant while the diversity or number of species changes (Hopkins et al.,I 1973). Salinity changes may add or eliminate species from an environment. This may be considered beneficial or detrimental, depending on ones interest and point I of view. I GUADALUPE ESTUARY I The Guadalupe Estuarine system, located between 28°10' and 28°28' North I latitudes and between 96°36' and 96°50' West longitudes, is a shallow coastal plain estuary adjoining Mission Lake, Guadalupe Bay and Hynes Bay and San AntonioI Bay. Approximately 4,856 ha (12,000 ac) of marshes and vegetated wetlands borders the bay system (Matthews et al., 1974). The total system covers 52,609I ha (130, 000 ac) and receives freshwater from the San Antonio and Gu ad a 1 upe Rivers, Coleto Creek, and several small streams. San Antonio. Bay is a shallowI estuary with a mean depth of 2. 5 ·feet ( 0. 76 m) . The Intracoasta1 Waterway traverses the lower bay from northeast to southwest and varies in depth from 12 to 15 feet (3.7 to 4.5 m) with a bottom width of about 125 feet (38.1 m) (TDWR, I 1980b). San Antonio Bay is separated by a chain of islands (reefs) from Mesquite Bay on the west and Espiritu Santo Bay on the east. The bay extends 14 miles (25 km) in meridional direction, and is from 5 to 14 miles (9-25 km) wide. The bottom is covered with a network of oyster reefs built on soft mud; of whichI Panther Reef is the longest, extending over 4 miles north from Panther Point on Matagorda Island {Galtsoff, 1931). Oyster reefs are most numerous in the centralI portion of the bay where they rise almost to or actually to the surface (Shepard and Rusnak, 1957). In the narrow northern section of the bay the reefs form I almost a continuous network of ridges, making navigation very difficult (Galtsoff 1931, and Captain John Turany, R/V KATY, personal communication). I Historical Salinity Regimes. Historically San Antonio Bay is a low salinity bay characterized by a well defined salinity gradient. On February 2-3, 1926I Galtsoff (1931) reported salinities of 4 ppt at the mouth of Guadalupe and Hynes Bay to 14 ppt at Panther Reef, and 17.7 ppt at First Chain of Islands at the I 190 Rev;ew of freshwater effects on benthos I entrance of Espiritu Santo Bay. The distribution of salinity indicates that I fresh water from the Guadalupe River under most conditions flows down the west side of the bay to Mesquite Bay while higher salinity Gulf water enters the bay I from the east through Pass Cavallo and Espiritu Santo Bay (Galtsoff, 1931; Shepard and Rusnak, 1957; Parker, 1959; Ladd, 1951). Faunal distributions can also be used as an indicator of salinity regimes in I the past and present. In San Antonio Bay most living freshwater species are found in the upper bay and along the west shoreline being conspicuously absent I ·from the eastern shore (Parker, 1959). The distribution of Rang;a cuneata in upper San Antonio Bay and along the west shoreline conforms with the dominant I freshwater flow pattern (Ladd, 1951). Sediment distribution is also indicative of the flow pattern of low salinity, sediment laden water. The sediments in the I San Antonio Bay delta extending down the bay center and west side are predominantly silt and clay while the sediment associated with Mesquite Bay to the southwest and Espiritu Santo Bay to the southeast where sediments are very I sandy (Shepard and Rusnak, 1957). Extreme flood conditions occurred on July 14, 1936 resulted in salinities I ranging between 3 ppt and 5 ppt throughout Aransas Bay, and San Antonio and Capano Bays were virtually fresh (Collier and Hedgepeth, 1950). Parker (1959) I cites similar conditions in May 1938, June 1941, October 1946 and June 1957. Drought conditions from 1948 to 1953 with corresponding low river runoff I caused salinities in the central bays of Texas to increase to record highs with little variation between maximum and minimum. Annual freshwater inflow data for I the Guadalupe estuary indicates that drought conditions occurred from 1948 to 1956 (TDWR, 1980b). Gradual increases in salinity were noted since 1950 in spite of heavy discharge from the Guadalupe River in June, September and October 1951 I (Parker, 1955). Salinities in lower San Antonio Bay in 1950 reported by Baker (1950) were 13.l ppt to 24.4 ppt and by Parker (1955) in lower San Antonio and I Mesquite Bays in 1951 were 23.9 ppt and 41.42 ppt. The API field party from Scripps Institution measured salinities from 23.9 ppt in the upper bay to 41.42 I ppt in the lower bay in July and August 1951 (Parker, 1955). In January February 1952 lower bay salinities were 27.39 ppt to 31.16 ppt in July -August I 1952 salinities were from 14 ppt in Mission Bay to 42 ppt wher~ San Antonio connects with Mesquite Bay (Parker, 1955; 1959; Williams and Whitehouse, 1952). I I Review of freshwater effects on benthos 191 I In late 1953 salinities were still above the "normal" salinity of 10 ppt to 17 ppt as suggested for San Antonio Bay by Ladd (1951). In November 1954 salinities ranged from 24 ppt at the river mouth to 36.8 ppt in Mesquite Bay with a 2 ppt I salinity difference from central San Antonio Bay to the Gulf of Mexico (Parker, 1955; Phleger and Lankford, 1957). In the spring of 1957 the salinities inI Aransas and Mesquite bays dropped from over 40 ppt to as low as 2-4 ppt in less than 3 weeks (Parker, 1959). Conditions described above would have resulted in I low salinity conditions throughout San Antonio Bay. The average salinity ranges I from the upper bay (Hynes Bay) to lower bay (Panther Point Reef and Intracoastal Waterway markers 21 &31) from 1959 through 1964 and 1966 were as follows: 3.814.7 ppt, 4.1-16.4 ppt, 3.9-7.8 ppt, 13.1-26.9 ppt, 24.6-31.21 ppt, 16.7-28.8 ppt and 5.1-15.6 ppt respectively (Childress, 1966; Martinez, 1966). SalinityI increases from 1962 to 1964 correspond to declines in freshwater inflow for 1962 through 1964 (Childress, 1966; TDWR, 1980a). An average salinity of 5.7 ppt in I the upper bay (station 243-4) and 17.3 ppt in the lower bay (291-1) occurred from April 1972 through February 1973 (Harper 1973). During this period I freshwater inflow was 49% greater than the average inflow for the 35 year period I of 1935-1970. In another study during this same period salinity averaged 4.1 ppt in the upper bay (station 243-4) and 13.2 ppt in the lower bay (station 291 1) (Matthews et al., 1974). From January through July 1987 high freshwater inflow resulted in an averageI upper bay salinity of 0.5 ppt and average lower bay salinities ranging from 5.6 to 8.1 ppt (Montagna and Kalke, 1989a). The period from April 1988 through April I 1989 had less inflow which increased the upper bay average salinity to 13.3 ppt and the lower bay average salinities to 26.0 and 28.4 ppt (Montagna and Kalke,I 1989b). I Faunal Assemblages. Authors of ecological surveys in the bay systems of Texas have tended to divide these systems into zoogeographic zones dependent upon faunal assemblages associated with the salinity gradients (Ladd, 1951; Parker, 1955; 1959; Harper, 1973; Matthews et al., 1974; Phleger and Lankford, 1957;I Parker et al., 1953; Phleger 1956). San Antonio Bay can be referred to as a closed bay, i.e., it is not open toI direct Gulf influence. Ladd (1951) divided it into three zoogeographic zones characterized by distinct sediment, fauna, and salinity distributions: the bay I 192 Review of freshwater effects on benthos I head, inter-reef, and reef zones. I The first zone occurs in the upper bays near the mouth of streams or rivers in 2 to 5 feet water depth and the bottom is usually soft mud. Salinities typically range from 0 ppt to 9 ppt. Ladd (1951) characterized the fauna by a I dominance of the mollusks Rangia, Littoridina sphinctostoma, Te77ina texana (corrected as Macoma mitchelli by Parker, 1955), an abundance of 3 genera of I foraminifera, and ostracods. Mulinia lateralis, Ensis minor, and barnacles also are found in this zone but they may be equally or more abundant in other areas. I Below the bay heads are the inter-reef and reef zones. The inter-reef areas are more like the bay-heads in regards to sediment with a bottom of gray or I bluish mud in bay centers with some sand near shore. The average depth is 5 to 10 feet. Ladd (1951) states that no particular fauna inhabits this area, but his reference was mainly in regard to mollusks. Rangia and Littoridina are I absent in most inter-reef areas. The reef areas are dominated by oysters, Crassostrea virginica, mussels, I bryozoans, crepidulas, barnacles, and serpul id worms. Also found are the gastropods, Odostomia sp. and Anachis, and the boring clam Martesia. Changes I in fauna from the heads of the bay to the Gulf are correalated with the changes in the salinity gradient, and they may be gradual or abrupt as demonstrated by I the distribution of Rangia and Littoridina (Ladd, 1951). A shift in salinity and in the distribution of fauna during the drought of 1948 to 1953 was described by Parker (1955). High salinities resulted in the I introduction of Gulf forms into Aransas Bay. New occurrences of twenty-three mollusc species were observed, and an increase in abundance of Callinectes danae. I A decline -of the white shrimp production occurred and in 1951 no living examples of Rangia or Littoridina sphinctostoma were found in San Antonio Bay. I Benthic foraminifera were studied at 32 stations in Aransas, Mesquite and San Antonio Bays for six seasons from August 1954 through June 1955. An upper I and lower bay faunal assemblage was described in San Antonio Bay based on species distributions and numbers of individuals per sample. Patterns were similar to I macrofauna di stri but ions, i.e., there were fewer species and higher standing crop in the upper bay (Phleger, 1956; Phleger and Lankford, 1957). Large scale climatic changes result in boundary changes of these salinity I zones and the associated fauna making it necessary to construct two zoogeographic I I Review of freshwater effects on benthos 193 maps to describe San Antonio Bay during prolonged low and high salinity regimesI (Parker, 1959). Parker (1959) characterized San Antonio Bay based on the occurrence of distinct species and salinity regimes. He reasoned that salinityI is one of the more important factors influencing fauna distribution, while noting that river related nutrient input and high turbidity may al so be important.I Parker's two zones include: (1) river influenced, low salinity zone and (2) an I enclosed bay zone of variable low to intermediate salinities characterized by soft bottom benthic communities and low salinity oyster reefs. This environment corresponds to Ladd's (1951) reef and inter reef zones. Drought periods may result in a shift to a high salinity oyster reef community. The extent of areal I coverage of these proposed zones is dependent on the stability or variability of annual climatic conditions. For example, during dry years the river I influenced areas are reduced in size and during periods of high inflow their areal coverage is expanded. I The typical fauna in San Antonio Bay associated with Parker's (1959) zones I are (1) River influenced -Littoridina sphinctostoma, Macoma mitchelli, and Rangia cuneata, (2) enclosed bay -Retusa canaliculata, Nuculana concentrica, Nuculana acuta, Mulinia lateralis, Tagelas plebius, Ensis minor, and Amphiodia limbata, and (3) low-salinity oyster reef -Crepidula plana, BrachidontesI recurvis, Crassostrea virginica, and Balanus eburneus. I A study to determine the effects of shell dredging on the environment of SanI Antonio Bay was conducted from March 1972 through February 1973 (Harper, 1973). A low salinity zone averaging 5 to 12 ppt and a higher salinity zone averagingI 15 to 18 ppt were defined for San Antonio Bay during this period. Species listed with the low salinity group were Littoridina sphinctostoma, Hypaniola gunneri I floridus, and Rangia flexiosa. Species of the higher salinity zone were Nereis succinea, Oxyurostylis salinoi, Ensis minor, Cumacea A, Glycinde solitaria, Cossura delta and Prionospio pinnata. Mediomastus californiensis, Streblospio benedicti, and Mulinia lateral is were found throughout the study area. The total annual populations of benthic organisms were computed for each salinity groupI indicating an almost logarithmic decrease in benthic populations with increasing salinity. Harper (1973) states that this trend is probably only indirectlyI related to salinity and that the lowest salinity zone is closest to the mouth of the Guadalupe River which supplies much of the nutrient material to the bay. I The Texas Water Development Board funded a study of plankton and benthos in I San Antonio Bay from March 1972 through July 1974 (Matthews et al., 1974). The bay was divided into 3 zones along a salinity gradient with zone I located in 194 Review of freshwater effects on benthos I the lower salinity upper bay, zone 2 located mid-bay and zone 3 located in higher salinity water south of the intracoastal waterway. Species numbers declined and standing crop increased with low salinity in zone 1. Species most common in zone I 1 and the line of stations directly adj1cent from zone 2 were Hypaniola gunneri floridus, Chironomid larvae, Rangia cuneata and Littoridina sphinctostoma. I Mediomastus californiensis occurred throughout mid and lower bay while Streblespio benedicti occurred only in zone 2. Mulinia lateralis was absent from I zone 1, with a patchy distribution in zone 2, increasing in abundance in zone 3. The complete absence of M. lateralis from zone 1 may have been the result I of misidentifying M. lateralis for Rangia cuneata. The University of Texas Bureau of Economic Geology sampled the benthic fauna in San Antonio, Hynes, and Guadalupe Bays and Mission Lake in 1975 (White et al., I 1985). Much of San Antonio Bay north of the Intracoastal Waterway contained a river influenced assemblage characterized by the mollusks Rangia cuneata, Rangia I flexuosa, Mulinia lateralis, and Texadina sphinctostoma (White et al., 1985). Hobsonia florida, a low salinity polychaete, and the amphipod Corophium I acherusicum were reported as abundant in Guadalupe Bay and Mission Lake. Extensive oyster reefs were reported throughout San Antonio Bay. A bay margin I assemblage included a group of bay species, including Mulinia lateralis, Streblospio benedicti, and Mediomastus califoriensis. I The Texas Water Development Board funded a multidisciplinary freshwater inflow study in San Antonio Bay through The University of Texas Marine Science Institute from November 1986 through July 1987. Four stations {A, B, C &D) were sampled I to distinguish between freshwater influence near the head of the bay and marine influence in the lower bay. During this study San Antonio Bay received the I largest annual freshwater inflow in 47 years resulting in salinities ranging from 0.2 to I at Station A near freshwater inflow and in salinities ranging from I I.I to 9.2 at station C and 0.9 to 13.2 at Station D in the lower bay. Additional sampling trips were made in April, July and November 1988, and April I 1989, a low freshwater inflow period, as part of an estu~rine comparison effort. Salinities during this period ranged from 9.6 to 18.5 ppt at station A and from I I Review of freshwater effects on benthos 195 I 26.7 to 32 ppt at station 0. During both study periods total species number increased from the lower salinity upper bay to the higher salinity lower bay. Mean abundance and biomass were highest at stations A and B in the wet yearI decreasing at stations C and Din the lower bay (Tables 1 and 2). As salinity increased during the dry period total species, abundance and biomass increasedI at all stations with the distribution trend remaining similar to the wet year ie., high abundance and biomass in the upper to mi~dle bay decreasing in the I I lower bay. The highest number of species at station Dwas indicative of marine input from Espiritu Santo Bay. The polychaetes Mediomastus californiensis and Streblospio benedicti, and the mollusks Mulinia lateralis and Littoridina sphinctostoma were the dominant species in the upper and lower bay (Table 3). The species associated mainly with low salinity were Littoridina sphinctostoma,I Rangia cuneata, Hobsonia Florida and chironomid larvae. The bivalve Rangia cuneata was common at stations A and B but was never collected in high abundance.I One 25 mm Rangia was picked up at station C while diving but no specimens were found in samples from the lower bay. Some species associated with the higherI salinity lower bay were Glycinde solitaria, Polydora caulleryi, Haploscoloplos foliosus, Gyptis vittata, Diopatra cuprea, Neanthes succinea, Megalomma I bioculatum, Clymene11a torquata calida, Paraprionospio pinnata, Me11ina maculata, Isolda pulchella, Ensis minor, Aligena texasigna and Nuculana acuta. I I Bio 1ogy of Dominant Species. The dominant benth i c macrofauna species collected from San Antonio Bay in quantitative studies were the gastropod,I Littoridina sphinctostoma, the bivalves, Rangia cuneata and Mulinia lateralis, and the polychaetes, Mediomastus californiensis, Streblospio benedicti andI Hypaniola gunneri floridus (Harper, 1973; Matthews et al., 1974). The distribution of these species is strongly linked to long term environmental conditions, although responses to flood conditions may result in rapid population I changes. Littoridina sphinctostoma, a gastropod, populations increase following peaks in freshwater inflow (Harper, 1973; Matthews et al., 1974). This is apparently a breeding response caused by a salinity decline (Harper, 1973). LittoridinaI carries its eggs on the shell and undergoes direct development with the young ready to assume adult existence upon emerging from the egg. Littoridina I 196 Review of freshwater effects on benthos I sphinctostoma is commonly reported as one of the most dominant gastropod I inhabitants of the river influenced upper bays of the Texas coast (Ladd, 1951; Ladd et al., 1957; Parker, 1955; 1959; Harper, 1973; Matthews et al., 1974; I Gilmore et al., 1976; White et al., 1983; 1989; Staff et al., 1985; Cummins et a 1 . 1986). Rangia cuneata, a brackish water clam in the family Mactridae, is an excellent I indicator of ecological effects of salinity changes in coastal waters ard has been comprehensively studied by Hopkins et al. (1973). It is commonly the I dominant species on the 0-15 ppt salinity zone and since 1955 its range has extended from along the Gulf of Mexico coastal estuaries to along the Atlantic I coast from Georgia to Maryland. The well being of the species is not dependent on the physiology of the adult, since the adults can tolerate salinities from I 0 to 38 ppt and temperatures from 10 to 35°C. Spawning is induced by a change in salinity either up from near 0 ppt or down from 15 ppt (Hopkins et al., 1973). The embryos and early larvae can survive only in salinities between 2 and 15 ppt. I Rangia is not only a species for which low salinity, in the range of 1 to 15 ppt is optimal, it is a species which evidently cannot maintain a population outside I this range (Hopkins &Andrews, 1970). It is most abundant far up tidal rivers where salinity may stay below 1 ppt continuously for months or even years. No I living Rangia were found in San Antonio Bay in the drought summer of 1951 and spring 1952 although extensive collections were made throughout the bay (Parker, I 1955). Individuals of Rangia get progressively larger in size from the center of San Antonio Bay to the Guadalupe River delta, into the mouth of the river and Mission Lake (Ladd, 1951). I Mulinia lateralis, another bivalve of the family Mactridae, is an extremely hardy species, ranging from Prince Edward Island, Canada to Yucatan, Mexico and I in salinities from 5 ppt to 80 ppt (Parker, 1975). It has been considered as an opportunist of adversity because it can colonize rapidly after a disturbance I event such as dredging or heavy rain (Flint and Younk, 1983; Flint et al., 1981). It is one of the more abundant mollusks in the low salinity bay heads of the Gulf I coast (Hopkins et al., 1973). In San Antonio Bay Matthews et al. (1974) reported Mulinia widely distributed from their brackish water Zone 2 to their higher I salinity Zone 3 and Harper (1973) reported it as one of his abundant species. Both indicated that the close resemblance of Rangia juveniles and Mulinia I I I Review of freshwater effects on benthos 197 I lateralis may have resulted in numerous misidentifications at the low salinity stations. In the Laguna Madre (Alazan Bay) Mulinia lateralis was the most abundant and widespread mollusc (Martin 1979, Cornelius 1984).I Mulinia lateralis is widely reported from other bays around the globe. Spawning was observed in the Tred Avon River, Maryland and Chesapeake Bay where I ·I it was observed to have a continuous period of setting from a single spawning cycle from May through November (Shaw, 1965; Holland et al., 1977). In Alazan Bay, Texas Cornelius (1984) observed juveniles in all months except December, I I and Poff (1973) observed year round spawning in Trinity Bay, Texas. Mulinia lateralis has a very short generation time and is capable of successfully spawning at 3 mm in length which is approximately 60 days old (Calabrese, 1969a). Embryo survival and development for Mulinia as it is with Rangia cuneata is I dependent on certain salinity and temperature ranges. Mulinia lateralis developed into normal larvae throughout the salinity range of 15 to 35 ppt and I the temperature range of 10 to 30 °C (Calabrese, l969b) . This cl am is an important food item to bottom feeding organisms., i.e., the black drum (Pearson, 1929; Breuer, 1957; -Simmons and Breuer, 1962; Martin, 1979) and to the greater I and lesser scaup ducks (Cronan, 1957). Large rafts of scaup ducks were observed in upper San Antonio Bay in November 1988 corresponding to high densities of Mulinia lateralis (personal observation). The polychaete, Mediomastus californiensis is a euryhaline species reaching I peak abundance in San Antonio Bay at 12.5 ppt and gradually declining at higher and lower salinities. Population densities were not affected by flood conditions .I (Harper, 1973). Matthews et al. (1974), collected M. californiensis in brackish to higher. salinity waters of 6 to 16 ppt. I Stfeblospio benedicti, a polychaete, preferred the salinity range of 10-12 I ppt according to Harper (1973). It was restricted by higher salinities and virtually disappeared from upper San Antonio Bay following the flood. It was described as a brackish water species by Matthews et al. (1974), being associated only with the mid-bay zone. I Populations of the polychaete, Hypaniola gunneri floridus, were highest in the upper bay from June through August 1972 when the salinity was lowest. This I species was not common above 10 ppt (Harper, 1973). Increased abundance of H. gunneri floridus was attributed to freshwater inflow by Matthews et al. (1974). I I I 198 Review of freshwater effects on benthos I I LAVACA -TRES PALACIOS ESTUARY I Lavaca Bay and Matagorda Bay are located at 1atitude 28°40' North and longitude 96°36' West. Adetailed description of the upper Lavaca and Matagorda Bays is given by Gilmore et al. (1976). Lavaca Bay is a shallow estuary with I a maximum natural depth of about 2.4 m and a surface area of about 16,576 ha. (40,959 acres). The perimeter of the upper bay shoreline is lined with patchy I Spartina, and the surrounding low salinity marshes are vegetated mainly with Juncus downriver and Phragmites upriver. The majority of freshwater inflow into I upper Lavaca Bay comes from the Lavaca and Navidad Rivers, while lesser contributions come from Venada, Garcitas and Placedo creeks. Circulation between I the upper and lower bay is modified by the presence of the state highway 35 causeway, the remains of the old causeway, and Chicken Reef which extends from the northeast and southwest side of the bay parallel with the causeway. Marine I influence enters through Pass Cavallo and the Matagorda ship channel. Two tertiary bays or lakes are associated with the Lavaca River. Redfish I Lake is approximately 4.8 km (3 miles) and Swan Lake is approximately 1.6 km (1 mile) north of Lavaca Bay. Redfish Lake is about 194 ha (479 acres) and Swan I Lake is about 259 ha (640 acres). The salinity of Redfish Lake is usually similar to the rivers while the salinity in Swan Lake is more estuarine due to I its proximity to and its connection to Lavaca Bay via Catfish Bayou. The forty-nine year daily flow average (1939-1987) for the Lavaca River is 9.35 m3·s-1 (334 cubic feet/second) and the forty-year daily flow average (1939-I 1980) for the Navidad River is 16.0 m3·s-1 (572 cubic feet/second) into Lavaca Bay (USGS, 1980; Buckner et al., 1987). I During a multi-disciplinary study of the effects of freshwater on the Lavaca Bay System, from January, 1973 to June, 1975, Gilmore et al. (1976), reported I about 59 percent above norma1 inflow conditions. Percentages were based on inflow from the Lavaca and Navidad Rivers, and Garcitas Creek gauging. Inflow I was greater than 112 m3·s-1 (4,000 cubic feet/second) during 10 percent of the study and daily inflow ranged from 3-2658 m3·s-1 (100 cubic feet/second). A two year study to monitor the effects of freshwater inflow on selected I sites in the upper portion of Lavaca Bay was conducted from November 1984 through I I Review of freshwater effects on benthos 199 August 1986 (Jones et al., 1986). Daily average inflow from the Lavaca RiverI prior to this study from January through November 1984 was 3.3 m3·s-1 (118 cubic feet/second) (65 percent below normal ) . Average daily in fl ow increased 70I percent to 10.9 m3·s-1 (389 cubic feet/second) (16 percent above normal) for November 1984 through August 1985 and decreased to 5. O m3 • s-1 ( 177 cubicI feet/second) (47 percent below normal) for September 1985 through August 1986. I Since the closing of the dam on the Navidad river in May 1980 the freshwater inflow pattern has been altered; however, it has not deviated much from the historic flow rate of 16 m3·s-1 (572 cubic feet/second). The Palmetto Bend reservoir project on the Navidad river was designed to supply water forI industrial and municipal use and was not intended for flood control. Major floods are allowed to pass through the flood gates and inundate the marsh systemI associated with the Lavaca-Navidad River delta. Initial filling of Lake Texana from May 1980 to December 1982 resulted in negligible inflow from the Navidad. I I Freshwater releases beginning in December 1982 through December 1983 on a monthly basis resulted in a daily mean flow of approximately 35 m3·s-1 (1,250 cubic feet/second) which is above average. January 1984 through December 1985 was a drier period averaging 9.5 m3·s-1 (340 cubic feet/day). The daily average flow rate from January 1985 through December 1985 increased to 18.5 m3·s-1 (662 cubicI feet/second). Daily fl ow rates decreased from January through December 1986 averaging 7.9 m3·s-1 (282 cubic feet/second).I Gilmore et al. (1976) correlated mean daily river discharge from the Lavaca and Navidad Rivers plus Garcitas Creek for 4,6,9,15 and 30 day periods ending I two days prior to a salinity determination with mean salinity data to test for salinity and freshwater inflows relationships. The nine day inflow had the I highest correlation with salinity data (r = -0.59, P ~ 0.01). I Similar correlations were calculated for Lavaca River stream flow for 14 and 28 days prior to and including the first sampling day of each trip and the mean salinity data for upper Lavaca Bay stations. The 14 day mean inflow was significantly correlated with salinity (r = -0.55, P ~ 0.05) while the 28 dayI mean inflow was not significant (Jones et al., 1986). I Historical Salinity Regimes. Galtsoff (1931) during a survey of oysters in Texas measured salinity from 4 ppt at the mouth of the Lavaca River to 20 ppt I 200 Review of freshwater effects on benthos I at Sand Point, to 24 ppt in lower Matagorda Bay on February 4-7, 1926. The I salinity gradient at the time of these observations was 1.3 ppt per mile. Salinity was measured at two stations in Lavaca Bay from July 26 through April, I 1927. The lowest salinity, 4.5 ppt, occurred in June and July and the highest salinity, 24.5 ppt, was recorded on September 9, 1926. Salinities for January 1966 to December 1966 in Lavaca Bay at channel marker #60 averaged 20.3 ppt and I in lower matagorda Bay at buoy #68 averaged 28.2 ppt (Martinez, 1966). Variation between surface and bottom salinity indicates that stratification often occurs, I espec i a 11 y in the deeper areas, e.g. , the river channe 1 and Matagorda Ship Channel. Salinity at the Lavaca River mouth varied from surface to bottom from I 2.7 to 10.7 ppt and 8.2 to 16.0 ppt on February 20 and May 8, 1968 respectively (Hahl and Ratzlaff, 1970). On ·June 12 and July 18, 1968 surface and bottom I salinities were 0.6 to 2.5 and 0.1 to 4 ppt at the river and 13.3 to 24.9 ppt and 12.0 to 26.3 ppt in the ship channel near Port O'Connor indicating mixing in the river and stratification in the ship channel. On April 9, 1969 surface I salinity at the river was 8.8 ppt and surface salinity in the lower Matagorda Ship Channel was 28.5 (Hahl and Ratzlaff, 1972). Salinity decreased to 0.6 ppt I at the river mouth on April 23, 1969 and increased only to 5.0 ppt by June 19, 1969. I Mackin (1971) studied the effects of oilfield brine effluents on biotic communities in Texas estuaries from September 1970 through June 1971. Although I his sampling stations were designed to study oilfield brine, they were established in areas from up river near freshwater influence along a gradient to higher salinity estuarine sites. Areas sampled included the Menefee Lakes I I and 2 associated with the upper river marsh system, the Lavaca River and Redfish Lake and the junction of Lavaca Bay and Matagorda Bay at the Magnolia I Beach area. Menefee Lake 1 was in close proximity to the Lavaca River while Menefee Lake 2 was upstream from the head of Menefee Lake 1. I The Menefee Lakes in September 1970 had a salinity range of 1 to 4 ppt. The average salinity in Menefee 1 increased to 12.5 to 13.3 ppt in February and I March, 1971 and decreased to 4 ppt in June 1971. Menefee 2 remained a fresh to brackish lake while Menefee 1 changed from a brackish pond to a moderately saline I mini-bay. In Redfish Lake salinities ranged from 1 to 7 ppt from September to December I I Review of freshwater effects on benthos 201 1970 increasing to a high of 17 ppt in May, 1971.I The up-river station ranged from 0 ppt in September, 1970 to 13 ppt in May 1971 and the lower river station ranged from O ppt to 22 ppt for the same period.I Low inflow periods obviously resulted in the movement of higher salinity bay waters up-river. I I Mackin (1971) stated that the stations at the junction of Lavaca and Matagorda Bays, excepting for the Baffin Bay area, were the highest salinity areas studied. In October 1970 the salinity range from Station 1 to Station 10 was 20 to 26 ppt and in June 1971 all of the stations were approximately 29 to 30 ppt. Salinities at the mouth of the Lavaca River from March 1970 to February 1971I ranged from 0.24 to 20.0 ppt and averaged 10.8 ppt (Blanton et al., 1971). In lower Lavaca Bay for the same period salinities ranged from 10.9 to 28.4, I averaging 20.4 for the year. Freshwater inflow from Garcitas, Venado Creek and Chocolate Bayou primarilyI influences the bay area near the creeks while inflow from the Lavaca and Navidad I Rivers influences the whole bay (Gilmore et al., 1976). There is evidence that freshwater inflow tends to flow to the west side of Lavaca Bay with salinities averaging about 2 ppt lower than salinities on the east side. Gilmore et al. (1976), reported salinities ranging from 0 ppt at upper bay sites to 33 ppt inI the lower bay with an overall average of 10 ppt for the period of January 1973 through June 1975.I A study of the freshwater inflow effects on the Lavaca River delta and Lavaca Bay was conducted from November 1984 to August 1986 (Jones et al., 1986). The I average salinity from up-river to the Lavaca River delta from November 1984 to August 1985 ranged from 1.4 to 8.0 ppt with an overall mean of 4.5 ppt. The I period from October 1985 to August 1986 had an average salinity range from 4.3 to 14.8 ppt with an overall average of 13.5 ppt for the same area. I Faunal Assemblages. The distribution and abundance of benthic fauna in the Lavaca Bay system are associated with salinity zones within a salinity gradientI from fresh to higher salinity waters. Studies on benthos in Lavaca Bay which related species distributions to salinity are Blanton et al. (1971), MackinI (1971), Gilmore et al. (1976), and Jones et al. (1986). Three distinct habitats were sampled by Mackin (1971) in the Lavaca Bay I 202 Review of freshwater effects on benthos I system. Menefee Lakes and Redfish Lake are connected to the Lavaca River by I bayous and are surrounded by marsh. The river stations were in the Lavaca River and the bay stations were located in lower Lavaca Bay. Menefee 2 remained as a freshwater zone throughout Mackin's study while Menefee 1, Redfish Lake and I the river stations changed from a low salinity zone to a moderate salinity zone as the study progressed. A higher salinity zone was associated with lower Lavaca I Bay. The most abundant species in Menefee 1 were the oligochaetes Limnodrilus sp. I and Pe7osco7ex gabrie71ae, insect larvae Tendipes, the polychaetes Polydora socialis and Streblospio benedicti and the mollusc Mulinia 7atera7is. The fauna I changed from a freshwater community to a marine community at about the same rate sa 1 in ity increased. Tota 1 abundance increased with increasing sa 1 in ity with peaks in April and May in both abundance and salinity. Mackin (1971) states that I according to most studies the fauna of the trans itiona1 zone between the freshwater habitat of lakes and the higher salinity of estuaries should be the I least productive of species and individuals. In Menefee Lakes variations in salinity result in sums of freshwater, brackish water and higher salinity species I which results in total production far in excess of a permanent brackish water habitat. Changes in salinity gradients results in the movement of brackish water I communities up and down the estuary. The salinity at Menefee Lake 2 was low throughout the study with 1ittle variation (1-6 ppt). The dominance of Tendipes sp. throughout the year I corresponds to the low salinity conditions. The fauna of Redfish Lake was almost identical to Menefee Lakes. The main I differences were th,e absence of the mollusks Probythine71a protera, Congeria leucophaeta and Rangia cuneata from the Menefee Lakes and the greater number of ..-I insect species and greater number of crustaceans in the Menefee Lakes. Streblospio benedicti, Polydora socialis, Mulinia 7atera7is, were species which I had a positive response to increased salinity at the lake stations. Tendipes was not collected in June 1971 following high salinities. Intermittent high freshwater inflow in Lavaca River and incursions of higher I salinity estuarine water caused salinity fluctuations from O ppt to 22 ppt at the river stations. The most dominant species in the river were Tendipes sp., I Mulinia 7atera7is, Mediomastus californiensis, Streblospio benedicti, and I I I Review of freshwater effects on benthos 203 I harpacticoid copepods (most likely Scottolana canadensis). Responses to higher salinities were increases in Mulinia 7atera7is, Streblospio benedicti,Mediomastus californiensis, and the absence of Tendipes in June 1971. I I Higher salinities with little variation between stations was characteristicof the stations in lower Lavaca Bay. The higher salinity zone was characterizedI by Prionospio pinnata, Mediomastus californiensis, Glycinde solitaria, Cumaceasp., Mulinia lateralis, Nuculana co'1centrica, Retusa canaliculata, Nuculanaacuta, and Pandora trilineata. Mackin (1971) described the Lavaca Bay area ascomparable to an oligotrophic lake, i.e., a high number of species with lowindividual productivity. This supports a statement by Parker (1959), i.e., whenphysical conditions I are stable and within the normal range for marineenvironments there will be many species but fewer individuals per species.I A total of 150 species was collected from the bottom samples during Mackin'sstudy. Slightly over half of the species were polychaetes, eight of which wereI numerically dominant. The mollusk, Mulinia lateralis, was the most dominant I species reaching peak abundance in February and March, maintaining high numbersthrough June 1971. Total abundance was low in the summer through fall and high in the winter and spring. The ecology of Lavaca Bay was studied by Blanton et al. (1971), from MarchI 1970 through February 1971. A total of 60 taxa was reported for the benthos ofwhich the dominant were polychaetes. No individual species abundance data wasgiven. I I Most of the species from their species list were those with a preferencefor moderate salinities. Chironomid larvae were the only low salinity speciesreported. Bl anton et a7. (1971) described upper Matagorda (Lower Lavaca Bay), Galveston, I and Copano Bays as low energy estuaries with an average benthic abundance of I approximately 3000 individuals/m2• When comparing density abundance among someTexas estuaries and Hadley Harbor near Woods Hole, Massachusetts densities rangedI from highs of 115,000·m2 in grass flats and 15,000·m2 in a silty clay bottom inHadley Harbor to a low of less than 1000·m2 in Corpus Christi Bay, Texas. TheI average density for Lavaca Bay for this comparison was 3,500·m2• Blanton et al.(1971), found considerable variation in abundance at stations in lower LavacaBay but most months were near or exceeding 3,000·m2 • Lower abundance in the shipchannel ranging from 0 to 2,075·m2 was attributed to dredging and ship traffic. I I 204 Review of freshwater effects on benthos I The maximum density, 60,000·m2, occurred near Mitchell Reef and averaged I ll,895·m2 for the year. Moseley and Copeland (1974) and Moseley et al. (1975), studied the ecology I of Cox Bay, and from November 1973 through November 1974, a tertiary bay adjacent to Lavaca Bay, for the period of August 1969 to June 1973. They studied Cox Bay before and during initial operation of Central Power and Light's power plant I operation. Atotal of 80 species were collected from Cox and Keller Bay and the Matagorda I Ship Channel from August 1969 to June 1973. The dominant species were Prionospio, Glycinde, Mulinia and Macoma. Species numbers and individuals were I low making analysis of patterns impossible (Moseley and Copeland, 1974). The use of a 1 mm sieve was probably their problem for obtaining low numbers. They I concluded that the benthos was randomly distributed and power plant operation did not change random distribution in any significant way. Thirty-six species were collected from November 1973 through November 1974 of which 95 percent were I mollusks and polychaetes. The most common species were the mollusc Mulinia lateralis and the polychaete Mediomastus californiensis. Other species were I Cossura delta, Glycera americana, Glycinde solitaria and Prinospio pinnata. Analysi~ of the seasonal distribution of the benthos was not performed due to I loss of data in computer analysis; however, species diversity was lowest during the warmer months of the year. I A study of the effects of freshwater on the benthic communities of Lavaca Bay was conducted for a 30 month study from January 1973 through June 1975 (Gilmore, 1974; Gilmore et al., 1975; Gilmore et al., 1976). Monthly samples I were collected from the river area including the lower Lavaca River and Swan and Redfish Lakes and from Lavaca Bay. Freshwater inflow for the first 8 months of I this study was 300 percent above normal. The dominant species from the river area were Rangia cuneata, Chironomid I larvae, Hypaniola gunneri, and Littoridina sphinctostoma. These species conform to those found in upper San Antonio Bay which is influenced by freshwater inflow I from the Guadalupe River (Harper, 1973; Matthews et al., 1974). The upper and lower parts of Lavaca Bay were characterized by different I species groups. The dominant species in the upper bay were Uttoridina sphinctostoma, Mulinia 1atera7is, Mediomastus californiensis, Streblospio I I Review of freshwater effects on benthos 205 benedicti, and Rangia ~uneata. Within this group, L. sphinctostoma and R.I cuneata are restricted to low salinities while the other dominant species are generally found in moderate salinities with the exception of M. lateralis whichI can thrive in low or high salinities (Parker, 1975). The higher salinity lower bay was characterized by a dominance of the polychaetes, Cossura delta, Nereis I succinea, Glycinde solitaria and a nemertean (Gilmore et al., 1976). I Species diversity declined from the high s1linity lower bay to the low salinity upper bay and river area (Gilmore et al., 1976). The highest species diversity occurred in the late winter and early spring when sustained freshwater inflow were generally low (Gilmore et al., 1976). I Lavaca Bay benthic populations increased as salinity decreased and organic carbon increased. Population increases were due to M. ca 1iforniensis, L.I sphinctostoma and R. cuneata at stations already occupied and their dispersion to lower bay stations occurred as salinity decreased (Gilmore, 1974). I Seasonal patterns varied over the 30 month study period. High summer and I low winter populations were reported from January through August 1973 (Gilmore, 1974). Densities were low in late summer, high in the winter and spring followed by a decline in early summer · during the period of ~eptember 1973 through July 1974 (Gilmore et al., 1975). Densities remained low until early fall when they I increased, decreased and remained low through the winter and spring and increased in the summer (Gilmore et al., 1976). I Mean standing crop values from benthic studies in Lavaca Bay by Mackin (1971) (1809·m-2) and Gilmore et al. (1976) (180l·m-2) are similar to values reported I I by Matthews et al. (1974) (1450·m-2) for San Antonio Bay. Higher mean densities were reported by Blanton et al. (1971) for March 1970 to February 1971 (3500·m-2) and by Kalke in Jones et al. (1986) for the periods of November 1984 to August 1985 (5320·m-2) and October 1985 to August 1986 (6790·m-2) in upper Lavaca Bay. These differences can be attributed to collecting techniques, station locations, I and inter-annual variability. Reduction of inflow resulting from the Palmetto Dam will result in increased I bay salinities and the range expansion of lower by species into the upper bay. Rangia cuneata and Littoridina having low salinity requirements would be I restricted to areas farther upstream (Gilmore et al., 1976). The Lavaca and Matagorda Bay benthos was sampled in 1975 by the University I 206 Review of freshwater effects on benthos I of Texas Bureau of Economic Geology (White et al., 1985). Lavaca Bay was I characterized by a river influenced, an open bay center and an oyster reef assemblage. The river influenced area was represented by the brackish water species Rangia cuneata, Texadina sphinctostoma, and Parandalia fauveli and the I ubiquitous bay species Mulinia lateralis, Mediomastus califoriensis, and Ampelisca abdita. This zone was described as being subjected to greater salinity I fluctuation than other environments (White et al., 1985). Species common to the Lavaca Bay open bay center were the polychaete Paraprionospio pinnata and Cossura I delta, the mollusks Acteocina canaliculata and the crustacean Ampelisca abdita. Mollusks dominated the oyster reef assemblage, i.e., Crepidula plana, I Diplothyra smithii, and Crassostrea virginica along with the polychaete Nereis succinea. I The open bay center assemblage in Matagorda Bay was dominated by the mollusk Nuculana concentrica and the polychaete Lumbrinereis veri11i and Paraprionospio pinnata which are also found on the inner shelf in the Gulf (White et al., 1985). I They found the highest number of species and individuals at an inlet influenced area near Pass Cavallo. Species from the pass were Natica pusi11a, Abra equalis, I Te77ina versicolor, Parviculina mu7ti7ineata, Armandia agi7is and Phy77odoce arenae. I A two year study of freshwater inflow effects on the benthos of the Lavaca River Delta and the upper Lavaca Bay was conducted from November 1~84 through I August 1986 (Jones et al., 1986). The first year followed a dry period of low inflow through most of 1984 and was characterized as a wet period with inflows 18 percent above normal. Inflow decreased in the second year to approximately I 54 percent less than the first year. The benthic macrofauna in the upper Lavaca Bay was limited to a few dominant I organisms consisting of the polychaetes, Mediomastus californiensis and Streblospio benedicti, Chironomid midge fly larvae, and the mollusks Macoma I mitchelli and Mulinia lateralis (Jones et al., 1986). The abundance of macrofauna was highest in the winter-spring period and lowest I in the summer. These seasonal trends in abundance were inversely correlated with river inflow, i . e. , the greatest abundance of macro fauna occurring when the river inflow was the lowest (Jones et al., 1986). I The distribution of infauna by depth in the sediment was observed by I I I Review of freshwater effects on benthos 207 sectioning sediment core samples at 0-3, 3-10 and 10-20 cm. The infaunal I abundance decreased with depth and biomass increased with depth (Jones et al., 1986). I There were only two species which had an obvious response to increasedfreshwater influence. Chi ronomi d insect 1arvae and the po1ychaete Hobsoni aI florida had a positive lag response to freshwater inflow (Jones et al., 1986).No Uttoridina sphinctostoma were reported and only a few individuals of I Rangia cuneata were collected. This is contrary to the distribution of L.sphinctostoma and R. cuneata from January 1973 through June 1975 (Gilmore, 1974; Gilmore et al., 1976). Low inflow during most of 1984 probably caused salinityI increases above the tolerance limits for these species, causing theirdistribution to be limited to areas other than our sample sites. Large numbersI of dead Rangia cuneata shells were found in Redfish and Swan Lakes but no livespecimens were collected from these areas. I It is possible that a few specimensI of L. sphinctostoma were misidentified as Odostomia sp. (personal observation).To compare estuarine benthic communities in relation to freshwater inflowbetween different bay systems The University of Texas Marine Science benthicgroup sampled the benthos in Lavaca and Matagorda Bays in April, July andNovember, 1988 and April 1989 in conjunction with sampling in San Antonio BayI and Laguna Madre (Montagna &Kalke, 1989b). Nueces and Corpus Christi Bays weresampled in conjunction with Lavaca Bay only in April and July 1988. Four I stations were sampled: A and B in Lavaca Bay an upper enclosed secondary bay inclose proximity to freshwater inflow from the Lavaca River and C and D inMatagorda Bay, I I an open primary bay. Freshwater inflow during this samplingperiod was low. The mean salinities at stations A, B, C and Dwere 26.7, 28.4,I 30.2 and 30.4 ppt, respectively. The species composition in Lavaca and MatagordaBays is similar to the Nueces-Corpus Christi Bay system but the mean numericalabundance is higher than those found in Nueces and Corpus Christi Bays. The general trend for species numbers, abundance and biomass is to increase from upper Lavaca Bay to lower Matagorda Bay. This gradient is not as pronounced asthat found in Nueces-Corpus Christi I Bay. The polychaetes Mediomastuscaliforniensis, Streblospio benedicti and Glycinde solitaria, the amphipodI Ampelisca abdita, and the mollusk Mulinia 7atera7is comprise 82% of the total abundance at station A and 18% of the total abundance at station D. Dominant I I 208 Review of freshwater effects on benthos I species in the lower primary bay were the polychaetes, Mediomastus I californiensis, Polydora caulleryi, Brania clavata, Gyptis vittata, Glycinde solitaria, Tharyx setigera, Drilonereis magna and Minuspio cirrifera; the I tanaidacean Apseudes sp A., the mollusks Corbula contracta and Periploma cf. orbiculare, a hemichordate, Schizocardium sp., and rhyncocoels. The mollusk biomass was highest at stations A (57%) and B (40%) decreasing at stations C (1%) I and D (17%). Polychaetes accounted for approximately 50% of the biomass at all stations. At station B the hemichordate, Schizocardium sp. made up 42% of the I biomass. This species was dominant in biomass in Corpus Christi Bay in 19811984 (Fl int and Kal ke, 1986). The ophuiroid, Amphiodia limbata occurred in I Matagorda Bay accounted for 20 percent of the biomass at station D. Crustaceans contributed a notable percent of the biomass in the secondary and primary bay. I Ampelisca abdita was most abundant at stations A and B, Pinnixa chacei was found at stations C and D and Apseudes sp A was dominant at station D (Montagna & Kal ke, 1989b). I NUECES ESTUARY I Freshwater inflow into the Nueces estuary is primarily from the Nueces River. I The combined gaged and ungaged freshwater inflow from the Nueces River averaged 682,000 acre feet per year for the period of 1941 through 1976 (TDWR, 1982). I The Nueces River delta is a marsh system covering an area of approximately 3,845 hectares (9,500 acres). Historically two annual flood events, approximately in May and September, result in the inundation of the deltaic marsh. Water depth I at mean low water in Nueces Bay is less than three feet to less than 13 feet in Corpus Christi Bay. I Corpus Christi Bay is composed of Nueces, Oso and Corpus Christi Bays with a surface area of approximately 54,230 hectares (134,000 acres). It is located I between 27°40' and 27°55' North latitudes and 97°10' and 97°30' West longitudes. Corpus Christi Bay borders between a semi-arid climatic zone to the south and I a dry sub-humid zone to the north (Hedgepeth, 1953). This area has very sharp gradients of climatological and meteorlogical factors (Hood, 1953). Historical Salinity Regimes. The intrusion of Laguna Madre waters into Corpus I Christi Bay is evident from salinity gradients as reported in June and August I I Review of freshwater effects on benthos 209 1952 (Hood, 1953). In August 1952, Hood measured bottom water salinities fromI 56 ppt near the entrance to upper Laguna Madre to 46 ppt near Shamrock Island. The overlying surface water during this period was 45 ppt. I Low salinities in Nueces Bay from June through December 1973 and in August and September 1974 were correlated with periods of high inflow from the NuecesI River in June, September and October 1973, and August through September 1974 (Kalke, 1981). Salinity decreases in Corpus Christi Bay in June, September and I October 1973 were corre1 ated with high inflow from from Oso Creek however, increased inflow in June and September 1974 were not correlated with 1ower salinities. Higher salinity water associated with Corpus Christi Bay readilyI mixes with freshwater from the Oso resulting in a short term residence time for this freshwater source while the larger volume freshwater input from the NuecesI River was more persistent. Salinity patterns from October 1972 through May 1975 exhibited a great dealI of variability. Freshwater inflow from the Nueces River and Oso Creek was considerable at times. Sources of high salinity waters were the Aransas Pass, I the Fish Pass (currently silted over) and periodically Oso Bay. Occasionally, lower salinity water (20-25 ppt) from along the Gulf shore enters lower Corpus Christi Bay pushing higher salinity (25-30 ppt) bay water up the estuary (HollandI et al.; 1975). The presence of low salinity coastal waters adjacent to Corpus Christi Bay occurred during the period from July 1981 to October 1983 wasI reported by Flint et al. 1986). Surface and bottom salinities, as with temperatures, were generally similar indicating wind mixing (Holland et al.,I 1975). The most obvious salinity gradients occurred in channel areas. I Faunal Assemblages. Corpus Christi, 1ower Matagorda, Aransas and west I Galveston Bays are characterized as large open bays with direct access to the Gulf of Mexico (Blanton et al., 1971). The bay centers of these bay systems typically have soft surface sediments composed of fine clay and silt with high organic content. Sediment type is important in determining the type of faunaI which inhabit different areas for example the soft bottom bay center usually have a low species diversity of mainly deposit feeders (Parker, 1959). Blanton etI al. (1971) compared the benthic standing crop of Corpus Christi Bay (500·m-2) with similar bays and determined that it was lower than other bays sampled. I I I Benthic collected in the early 1950's in Corpus Christi Bay had few or no I organisms (Parker &Blanton, 1970; Blanton et al., 1971). The bay margins of large open bays are characterized by sandy sediments, 210 Review of freshwater effects on benthos I ranging from sand-silt-clay to almost pure sand (Parker, 1959). Larger clams, i.e., Mercenaria and Cyrtopleura are characteristic of this assemblage. The fine silty clays of the bay centers will not support the weight of these large clams. I In contrast the fine well sorted sands next to the shorelines are too dense for these animals to penetrate (Parker, 1959). I The benthos of Corpus Christi, Copano and Aransas Bays was studied from October 1972 through May 1975 (Holland et al., 1975). A total of three hundred I and ninety five taxa were found during this period. The polychaetes were the most dominant of organisms numerically, spatially, and temporaly. Only two I Rangia flexuosa and one chironomid larvae were collected from Nueces Bay during this study (Holland et al., 1975). This indicates that the freshwater influenced area in upper Nueces Bay is minimal compared to other Texas bays i.e., upper San I Antonio and Lavaca Bays. The polychaete Mediomastus californiensis was the most numerically abundant species along with Streblospio benedicti, Prionospio I pinnata, Cossura delta, Glycinde solitaria, and Gyptis vittata. These are typical estuarine species associated with moderate to high salinities. I Mollusks were the second most common group of which the most abundant species were Mulinia lateralis, Lyonsia hyalina florida and Macoma mitche77i. Less I abundant species collected were Aligena texasiana, Mysella planulata, Tellina iris and Tellina alternata. I The overall average standing crop for Nueces Bay 830 • 0.5 ft3 , S.O. = 744, was higher than standing crops in Corpus Christi Bay, 432 • 0.5 ft3 ,S.D. = 432 (Holland et al., 1975). Fluctuations in standing crop were variable in Nueces I Bay between months and stations. Increases in populations of Streblospio benedicti, Mediomastus californiensis, Corophium louisianum, and Mulinia I lateral is at various times caused major changes in standing crops in Nueces Bay. In general the mean standing crop values for Corpus Christi Bay were very stable I during the entire study. Variations in densities between stations were attributed to sediment type, salinity and station location in relation to Aransas I Pass. A 4. 5 year study of the benthi c communities in Corpus Christi Bay was I I I Review of freshwater effects on benthos 211 I conducted between September 1974 and February 1976 (Flint and Younk, 1983). The sampling site was located near Sun Oil Docks, Port Ingleside, with three stations in the channel and three stations in the shoal waters parallel with the channelI sites. Salinity was different between the bottom water, the channel, and shoal water stations. The salinity at the shoal water sites was usually lower thanI the channel waters due to the effect of offshore water following the bottom of the channel. I I A total of 313 taxa were collected during this study, of which the most abundant were the polychaetes Mediomastus californiensis, Paraprionospio pinnata, Streblospio benedicti and Aricidea jeffreysii. The most abundant molluscs were I Mulinia lateralis, Lyonsia hyalina floridana, and Abra aequalis. The number of species were much greater at the shoal stations (mean = 55.5) than at the channel sites (mean = 21.6). Peaks in abundance occurred in the winters of 1975, 1977 and 1979. These winter peaks were associated withI increased densities of the mollusks M. lateralis and A. aequalis. Densities at the shoal stations averaged between 2,000 and 18,890 animals • 2 I I m-with a mean species diversity of 3.76 compared to a comparable area in the Corpus Christi Bay study by Holland et al. (1975), where the densities ranged between 1,770 and 8,600 animals • m-2 with an annual mean species diversity of I 3.61 (Flint and Younk, 1983). Channel station mean densities between 390 and 6,440 animals • m-2 with a mean diversity of 2.96 compared favorably to a similar station sampled during the Holland et al. (1975) study where densities were between 870 and 8,580 animalsI • m-2 with an annual mean species diversity of 1.84. Dredging of the channe1 during their study resulted in a decrease in I population densities. The highest densities of M. lateral is for the study period occurred during the later stages of dredging probably as a result of minimal I competition from other species disrupted during dredging. Mulinia densitites I declined after the recolonization by Paraprionospio pinnata and Mediomastus californiensis. Species and tota1 density increased at the shoa1 sites during the winter periods of 1974-75 and 1976-77 which corresponded to the two lowest salinityI periods during the entire study (Flint and Younk, 1983). On September 18, 1979 during a 24 hour period a low pressure system impacted I I 212 Review of freshwater effects on benthos I the Texas coast resulting in precipitation measuring as much as 33 cm in the I Corpus Christi Bay area (Flint et al., 1981; Flint and Rabalais, 1981). The benthic study reported by Flint and Younk (1983) was continued from October 1979 t~July 1981 to document changes in the benthic habitat resulting from excessive I riverine input and local runoff. This freshwater inflow event resulted in a relative long term period of low I salinities measured in the Corpus Bay system. The salinity decreased from approximately 32 ppt to 18 ppt from September 20 to September 27, 1979. I Salinities remained below historic seasonal levels through the middle of October 1979 (Flint and Rabalais, 1981). This freshwater inflow event was unique to the I area since such inflow had not occurred since Hurricane Beulah in 1967. A list of the ten most abundant species for seven years of sampling from this area comprised 85% of the total fauna co11 ected from the ship channel . The I channel species in order of dominance were Abra aequalis, Mediomastus californiensis, Oligochaetes, Balanoglossus sp. (Schizocardiumn sp), Streblospio I benedicti, Paraprionospio pinnata, Rhyncocoels, Mulinia lateralis, Sigambra tentaculata and Cossura delta. The ten most dominant shoal species for the same I period made up 70% of the total fauna collected. The shoal species in order of dominance were Mediomastus, californiensis, Paraonidae spp A, Lyonsia hyalina I f7o_ridana, Mulina latera_lis, Abra aequalis, Balanoglossus sp (Schizocardium n sp), Streblospio benedicti, Oligochaete, Rhynt~coels, and Paraonidae spp. B. During the winter-spring of 1980 (January-May) following the September 1979 I storm, the total mean infaunal density was greater than had ever been recorded in the bay before as indicated by the data from Flint et al. (1981) as well as I data from (Holland et al., 1975). The fauna responsible for the majority of the post-storm increase in biomass I were Abra aequalis, Lyonsia hyalina floridana, Lucina multilineata, and Mulinia 1atera1 is, and Rhyncocoe1s. After the 1980 increase in benth i c production I infaunal biomass in 1981 returned to levels calculated for previous years (Flint et al., 1983). The 1979 storm inflow event had a positive impact on the benthic I productivity of the Corpus Christi Bay ecosystem (Flint et al., 1981). The Nueces estuary's benthic community structure, biomass, benthic metabolism and benthic nutrient regeneration were studied by scientists from the University I of Texas Marine Science Institute from July 1981 through July 1983 (Flint et al. I I Review of freshwater effects on benthos 213 I 1983) . Sampling sites were established along a salinity gradient from upper Nueces Bay to the middle of Corpus Christi Bay. Salinities ranged from 5 to 34 ppt in Nueces Bay to 22 to 32 ppt in Corpus Christi Bay. The macroinfauna inI Nueces Bay was dominated by Mulinia lateralis, Streblospio benedictii and Mediomasti s ca 1iforniens es and was di sti net from the rest of the study area.I Species representative of the middle portion of Corpus Christi Bay were Mediomastus californiensis, Polydora caulleryii, Paraprionospio pinnata, GyptisI vittata and Schizocardium sp. A station along the ship channel, near Sun Oil I Docks, had the highest species diversity and had similar community structure to coastal Gulf of Mexico stations indicating a strong Gulf influence in the Channel area (Flint et al. 1983). The total number of species increased from upper to lower bay but abundanceI and biomass were lowest near the ship channel and Gulf waters. The highest abundance and biomass were found in the center of Corpus Christi Bay and wasI attributed to the stability of the environment (Flint et al. 1983). lnfaunal biomass appeared to peak between January and July reaching a low usually in fall I I and early winter. In April 1982 colonization of the mid-Corpus Christi Bay area by the acorn worm Schizocardium sp resulted in an increase in biomass and abundance which remained high throughout the study. Sediment composition in Nueces Bay was 50% sand with shell, 70% clay in middle Corpus Christi Bay, and 90% sand near the Aransas Pass Ship Channel. There wasI very little difference observed in overall sediment metabolism from upper Nueces Bay to Corpus Christi Bay, however; there was a general decrease in benthicI nutrient regeneration from the upper Nueces Bay toward the Gulf influence at the channe1 site. I The University of Texas Bureau of Economic Geology in 1975 sampled the submerged 1ands of Texas to characterize these 1ands in terms of sediment I distribution, selected trace and major element concentrations and benthic I macroinvertebrate populations (White et al., 1983). The purpose of their study was to identify and enumerate the macrofauna, identify and characterize faunal assemblages and to correlate sediment faunal relationships. Temporal data was not taken during their study. Eight faunal assemblages were determined toI characterize the bays and lagoons around the Corpus Christi area which includes the following: open bay center, open bay center depauperate, oyster reef, inter-I I 214 Review of freshwater effects on benthos reef, grass flat, bay margin, inlet influenced, and river influenced assemblages. I Nueces Bay is characterized by a river influenced assemblage where salinity is probably the most important environmental variable influencing species (White I et a7. 1983). The most common species collected in Nueces Bay were Mu7inia 7atera7is, Mediomastus ca7iforniensis, and Paraprionospio pinnata. Texadina I (Littoridina) sphinctostoma, characteristic of low salinity river influenced areas was not collected from Nueces Bay. The 1argest area of Corpus Christi Bay was characterized by the open bay I center depauperate assemblage and covers approximately half of the bay. The rest of the bay was comprised of inlet influenced, bay margin and open bay center I assemblages. Species composition of the open bay center assemblage was dominated by Mu7inia 7atera7is, Paraprionospio pinnata, and other deposit feeding I polychaetes while the depauperate assemblages were populated mainly by M. 7atera7is and P. pinnata. The highest species counts in Corpus Christi Bay were I associated with the area around the Corpus Christi Ship Channel. The inlet influenced assemblage was composed primarily of molluscs with some species representatives being restricted to the inlet while some were also found I on the inner shelf. The sediment at the inlet sites was sandy and the species diversity was high. I Oyster reefs in Corpus Christi Bay are not as extensive as in Copano Bay and the characteristic associated fauna are different (White et a7. 1983). I The shallow bay margin assemblages were composed of the polychaete Paraprionospio pinnata, ubiquitous bivalves, and one dominant crustacean. I The University of Texas Marine Science Institute was contracted by the Texas Water Deve1oprr.ent Board to continue freshwater inflow work in Nueces/Corpus Christi Bay from October 1987 through July 1988. Four stations were sampled: I A and B in Nueces Bay, an upper enclosed secondary bay and C and D in Corpus Christi Bay, an open primary bay influenced by Gulf of Mexico waters through I Aransas Pass. Freshwater inflow was low during this study period resulting in high salinities, ranging from a mean of 31.2 ppt at station A to a mean of 34.2 I ppt at station D. There was an absence of low salinity species, ie. Littoridina sphinctostoma and Hobsonia florida associated with lower salinity stations in I San Antonio Bay. The species collected in Nueces/Corpus Christi Bay were similar to those found in Lavaca/Matagorda Bay, however, their total density was usually I I Review of freshwater effects on benthos 215 I 1ower in the Nueces/Corpus Christi estuary. Species numbers, abundance and I biomass increased from upper Nueces Bay to lower Corpus Christi Bay. Streblospio benedicti, Mediomastus californiensis, Mulinia lateralis and Macoma mitche11iI accounted for 97% of the total abundance at station A and for only 24% of the total abundance at station D, due to a low abundance of Mulinia lateralis andI Macoma mitche11i in the lower bay. Species common to lower Corpus Christi Bay were the polychaetes Polydora cau77eryi, Mediomastus californiensis, Tharyx setigera, Streblospio benedicti, Paraprionospio pinnata, Cossura delta, I C1ymene11a torquata calida, and Gyptis vittata; a phoronid Phoronis architecta, the mollusk Aligena texasiana and rhyncocoels. The mollusks dominated the biomass at stations A (85%) and B (41%) in Nueces Bay decreasing at stations C (30%) and D (6%) in Corpus Christi Bay. Polychaetes comprised only 14% of theI biomass at station A increasing at stations B (58%), C (56%) and D (81%). The mollusk Periploma cf. orbiculare and the brittle star Amphiodia limbata, were I I common, although never abundant in Corpus Christi Bay. These species seem to prefer the soft sediment, high salinity environment found in open bay systems, i.e., Corpus Christi and Matagorda Bays. I SUMMARY Benthic community studies over the years have produced variable results ie., I differences in densitities, biomass and temporal distributions of benthic fauna. Physical factors that control benthic community structure in Texas estuaries are I salinity, temperature, sediment type, waves and currents, radiant energy from the sun, and sediment chemistry. Sa1in ity is most often used by authors to I relate to the spatial distribution of species, abundance and biomass. I Most authors have organized Texas estuaries into zoogeographic zones which we have outlined in Table 1 (Ladd, 1951; Parker, 1959; Mackin, 1971; Blanton et al., 1971; Harper, 1973; Matthews et al., 1974; Gilmore et al., 1976; White et al., 1983; Jones et al., 1986; White et al., 1985; Montagna and Kal ke 1989a;I 1989b). Typically, these zones ranged from the freshwater influenced, upper or secondary bays, along a gradient to marine influence in the lower or primaryI bays. The authors have either defined their own, or used different terms which describe the zones and their associated fauna from the upper to lower bay. We I 216 Review of freshwater effects on benthos I recognize three generic zones in Texas estuaries in regard to a salinity gradient I and the benthic communities along this gradient {Tables 2-4). These are a freshwater zone, an estuarine zone and a marine zone. The estuarine zone is I where fresh and salt water are mixed, and salinities are intermediate. The boundaries of the estuarine zone are the most susceptible to intra-and interannual climatic variations. Since our studies have dealt with only the open bay, I soft bottom communities we are not referring to zones or sub-zones, i.e. oyster reefs, bay margins and inlets in this summary which have been introduced in other I studies. Community differences were found between the open bays, e.g. Lavaca-Tres I Palacios {Table 3) and Nueces Estuaries {Table 4), and the closed bay, i.e. the Guadalupe Estuary {Table 2). Although separated geographically the Lavaca-Tres I Palacios Estuary and the Nueces Estuary are more similar to each other than each is to the Guadalupe Estuary. Both the Lavaca and Nueces estuaries have an upper secondary bay and a large open primary bay directly connected to the Gulf of I Mexico via passes. The Guadalupe Estuary is very different. San Antonio Bay is divided into upper and lower San Antonio Bay and does not have direct access I to the Gulf. Species occurrence and abundance data from the studies reviewed have made it possible to construct tables which summarize the species and average I infauna1 densities in relation to the three proposed zoogeograph i cal zones {Tables 5-7). I The total number of species in both open and closed systems increases along a salinity gradient from the freshwater influenced upper bay to the marine I influenced lower bay {Tables 5-7). In the open estuarine system {Tables 6 and 7) species common to the upper secondary bay are usually replaced by more marine tolerant species in the lower bay. Total abundance and biomass also normally I increase from upper to the lower bay. Dominant species in the upper bay of the closed estuarine system (San Antonio I Bay) are typically part of the dominant fauna in the lower bay during flood years but can be rep1aced by marine fauna in the 1ower bay during drought years. I Infaunal density and biomass are usually higher in the upper San Antonio Bay and decrease in lower San Antonio Bay. This response is most likely due to nutrient I input and sediment loading during periodic flooding. I I Review of freshwater effects on benthos 217 I CONCLUSION When a benthic sample is collected in conjunction with hydrographic data, a I record of the benthic community structure with known environmental factors can be compiled. Estuarine benthic organisms are mainly sessile, can tolerate someI environmental fluctuations, and are relatively long-lived, therefore the benthic I communities represent a good, long-term indicator of environmental conditions. However, seasonal patterns of reproduction and growth do exist, and there are limits to tolerance. So, environmental changes over time can have an effect on community structure. It is important to keep this in mind when sampling theI benthos. It is important to look at the environmental data collected at the time of sampling, but also the historic data, i.e., freshwater inflow patterns prior I to sampling, must be considered when analyzing benthic community structure. The environment associated with the Texas estuaries is subject to hurricanes, I I inland flooding, droughts, and temperature extremes, which result in an esturine environment which is variable. However, the extremes are cyclical in a chaotic fashion, i.e., storms occurr at predictable int~rvals over the long term. The I most important effect of these events is on the variability of freshwater inflow. Which in turn effects the salinity, nutrients, and sediment-load input to the estuary. This controls the ultimate effect on the benthic communities. The variability in freshwater inflow cycle results in predictable changes in theI estuary, which are diagrammed in this temporal model: I ~ 1) Flood (freshwater) ! I I 4) Nutrient Poor 2) Nutrient Rich I t I ~ 3) Drought I (marine) I Flood conditions introduce nutrient rich waters into the e3tuary which result I 218 Review of freshwater effects on benthos I in lower salinity. This usually happens very rapidly. During these periods the _.,,. I spatial extent of the freshwater fauna is increased. The estuarine fauna may even replace the marine fauna. The high level of nutrients can stimulate a burst I of benthic productivity of predominantely freshwater and estuarine communities. This is followed by a transition to low inflow resulting in higher salinities, lower nutrient, marine fauna, and drought conditions. At first, the marine fauna I may respond with a burst of productivity as the remaining nutrients are utilized, but eventually nutrients are depleted. The cycle is repeated with flooding and I high freshwater inflow. This model is supported by the data in the Guadalupe Estuary (Table 5). I During successive wet years, densities decrease (stages 1, and 4 to 1). When a dry year follows a wet year the densities increase (stages 1 to 2). The same I pattern also occurs in the Lavaca-Tres Palacios Estuary (Table 6) and the Nueces Estuary (Table 7). Other aspects of the model are supported by the Nueces Estuary data (Table 7). Although, there was intervening wet years, densities I decreased during successive dry years (stages 3 to 4). The results of benthic sampling depend on what state this cycle is in during I the study. For example, benthic studies in Texas estuaries have often reported a response following a flood period which results in higher abundance and biomass I of particular estuarine species (Mackin, 1971; Harper, 1973; Matthews et al., 1974; Gilmore et al., 1976; Kal ke in Jones et al., 1986; Fl int et al., 1981; I Flint and Rabalais, 1981; Montagna and Kalke, 1989a, 1989b). The boundaries that authors draw on the various zones will also be a function on the state of the cycle that the estuary is in. The length of time that the estuaries are I maintained in any given state will floods, and droughts. be a function of the periodicity of storms, I I I I I I I Review of freshwater effects on benthos 219 I REFERENCES Baker, B.B. 1950. Texas Game, Fish and Oyster Commission, oyster investigationI for the fiscal year, 1949-1950. Mimeo Report. Austin, Tx. Texas Game, Fishand Oyster Commission. 333-355 pp. I Baldauf, R.J. 1970. A study of selected chemical and biological conditions ofthe lower Trinity River and the upper Trinity Bay. Technical Report, to WaterResources Institute. College Station, TX: Texas A&M University, 168 pp.I Blanton, W.G., Culpepper, T.J., Bischoff, H.W., Smith, A.L. &Blanton, C.J. 1971.A study of the total ecology of a secondary bay {Lavaca Bay). Final ReportI to Aluminun Co. of America. Point Comfort, TX: Aluminum Co. of America, 306pp.I Breuer, J.P. 1957. An ecological survey of Baffin and Alazan Bay, Tx. Publ.Inst. Marine Sci. 4:134-155. I I Buckner, H.D., Carrillo, E.R. & Davidson, H.J. 1987. Water resources data, Tx,water year 1987, Colorado River Basin, Lavaca River Basin, Guadalupe riverBasin, Nueces River Basin, Rio Grande River Basin, and intervening coastalbasins. Data Report to U.S. Geological Survey Water Resourses Division,TX-87-3. Austin, TX: USGS, 424 pp. I I Calabrese, A. 1969a. Individual and combined effects of salinity and temperatureon embryos and larvae of the coot clam, Mulinia lateralis. Biol. Bull. I 137:417-428. Calabrese, A. 1969b. Reproductive cycle of the coot clam, Mulinia lateralis, inLong Island Sound. Veliger 12:265-269. Childress, U.R. 1966. Hydrographic and meteorological study of the San AntonioI Bay system. Report for Coastal Fisheries Project, 1964. Austin, TX: TexasParks and Wildlife Dept., pp. 447-475. Collier, A. &Hedgpeth, J.W. 1950. An introduction to the hydrography of tidalI waters of Texas. Publ. Inst. Mar. Sci. Univ. Texas 1:125-194.Cornelius, S.E. 1984. An ecological survey of Alazan Bay, Texas. Kingsville, TX:I Caesar Kleberg Wildlife Research Found., 87 pp. I Cronan, J.M., Jr. 1957. Food and Feeding habits of the scaups in Connecticutwaters. Auk 74:459-468. I I 220 Review of freshwater effects on benthos I Cummins, H., Powell, E.N., Newton, H.J. & Stanton, R.J.,Jr. 1986. Assessing I transportation by the covariance of species with comments on contagious and random distributions. Lethaia 19:22. Flint, R.W. &Kalke, R.D. 1986a. Niche characterization of dominant estuarine I benthic species. Estuar. Coast. Shelf Sci. 22:657-674. Flint, R.W. & Kalke, R.D. 1986b. Biological enhancement of estuarine benthic I community structure. Mar. Ecol. Prog. Ser. 31:23-33. Flint, R.W., Kalke, R.D. &McCoid, M.J. 1983. The Corpus Christi Bay Ecosystem: I Research App1 i ed to Management Needs. Report to the Texas Department of Water Resources, Port Aransas, TX., Univ. Texas Mar. Sci. Inst., 47 pp. & I Appendices. Flint, R.W., Kalke, R.D. & Rabalais, S.C. 1981. Quantification of extensive freshwater input to estuarine benthos. Report to the Texas Water Development I Board. Port Aransas, TX: Univ. Texas Mar. Sci. Inst., 55 pp. &Appendices. Flint, R.W., Powel, G.L., &Kalke, R.D. 1986. Ecological effects from the balance I between new and recycled nitrogen in Texas coastal waters. Estuaries. 9:284 294. I Flint, R.W. & Rabalais, S.C. 1981. Estuarine benthic community dynamics related to freshwater inflow to Corpus Christi Bay Estuary. In: Cross, R. D. & I Williams, D.L. {eds.), Proceedings of the International Symposium of Freshwater Inflow to Estuaries. Washington, DC: US Dept. Int. Fish &Wildlife, pp. 489-508. I Flint, R.W. &Younk, J.A. 1983. Estuarine benthos: Long-term variations, Corpus Christi, Texas. Estuaries 6:126-141. I Galtsoff, P.S. 1931. A survey of oyster bottoms in Texas. Report to Bureau of Fisheries Investigational, Number 6. Washington DC: US Government Printing I Company, 30 pp. Gilmore, G. 1974. An ecological study of benthic macro-invertebrates on Lavaca I Bay, TX. Technical Report to the Texas Water Development Board. Austin. Texas Parks &Wildlife Dept., 26 pp. I Gilmore, G., Dailey, J., Garcia, M., Hannebaum, N. &Means, J. 1976. IV Benthos. Technical Report to the Texas Water Development Board. A study of the effects the plankton benthos, I of fresh water on and nekton assemblages of the Lavaca Bay system, Texas: Austin, TX. Texas Parks &Wildlife Dept., 113 pp. I I I Review of freshwater effects on benthos 221 Gilmore, G., Matthews, G. & Clements, G. 1975. An ecological study of theI plankton and benthos in Lavaca Bay, TX. Technical Report to the Texas WaterDevelopement Board Austin, TX: Texas Parks and Wildlife Department, 58 pp. I I Gunter, G. 1947. Catastrophism in the sea and its palepntological significance,with special reference to the Gulf of Mexico. Amer. J. Sci. 245:669-676.I Gunter, G. 1957. Predominance of the young among marine fishes found in freshwater. Copeia 1:13-16.Gunter, G. 1961. Some relations of estuarine organisms to salinity. Limnol. Oceanogr. 6:182-190. Gunter, G. &Hildebrand, H. 1951. Destruction of fishes and other organisms on I the South Texas coast by the co1 d wave of January 28-February 3, 1951.Ecology 32:731-736. I Hahl, D.C. &Ratzlaff, K.W. 1970. Chemical and physical characteristics of waterin estuaries of Texas, September 1967-September 1968. In: Report L7-117 toI the Texas Water Development Board Austin, TX.: U.S. Geological Survey, 91 pp. 1-Hahl, D.C. &Ratzlaff, K.W. 1972. Chemical and physical characteristics of water in estuaries of Texas, October 1968-September 1969. Report -144 to the TexasWater Development Board Austin, TX: U.S. Geological Survey p. 161. 1 Harper, D.E., Jr. 1973. The distribution of benthic and nektonic organisms inundredged control areas of San Antonio Bay. Environmental impact assessmentI of shell dredging in San Antonio Bay, TX. Report to U.S. Army EngineerDistrict. College Station, TX.: Texas A&M Res. Found. 157 pp. I I Hedgpeth, J.W. 1953. An introduction to the zoogeography of the northwestern Gulfof Mexico with reference to the invertebrate fauna. Publ. Inst. Marine Sci.3:107-224. I Holland, F.A., Mountford, N.K. &Mihursky, J.A. 1977. Temporal variation in upperbay mesohal ine benthic communities the 9-m mud habitat. Chesapeake ·Sci. 18:370-378. Holland, J.S., Maciolek, N.J., Kalke, R.D., Mullins, L. &Oppenheimer, C.H. 1975.Benthos. I A benthos and p1ankton study of the Corpus Christi , Capano andAransas Bay systems. III. Report on data coll. 7/74-5/75. Summary. ReportI to the Texas Water Development Board. Port Aransas, TX.: Univ. Texas Mar.Sci.Inst., pp. 52-80. I I\ 222 Review of freshwater effects on benthos I Hood, D.W. 1953. A hydrographic and chemical survey of Corpus Christi Bay and I connecting water bodies. Project 40 Annual Report for year ending November 1, 1952. Report to the Reynolds Metals Company. College Station, Tx.: Texas A&M Univ. 42 pp. I Hopkins, S.H., Anderson, J.W. & Horvath, K. 1973. The brackish water clam Rangia cuneata as indicator of ecological effects of salinity changes in coastal I waters. To U.S. Army Engineer Waterways Experiment Station, College Station, TX: Texas A&M Research Foundation, p. 257. I Hopkins, S.H. &Andrews, J.D. 1970. Rangia cuneata on the East Coast: Thousand mile range extension, or resurgence. Science 167:868-869. I Jones, R.S., Cullen, J.J., Lane, R.G., Yoon, W., Rosson, R.A., Kalke, R.O., Holt, S.A. &Arnold, C.R. 1986. Studies of freshwater inflow effects on the Lavaca River Delta and Lavaca Bay, TX. Report to the Texas Water Development Board. I Port Aransas, TX. The Univ. of Texas Mar. Sci. Inst., 423 pp. Kalke, R.D. 1981. The effects of freshwater inflow on salinity and zooplankton I populations at four stations in the Nueces-Corpus_~_hri st i and Capano-Aransas Bay systems, TX from October 1977-May 1975. In: Cross, R.D. & Williams, D.L. I (eds.), Proceeding of the International Symposium on Freshwater Inflow to Estuaries. Washington, DC.: U.S. Dept. Int. Fish & Wildlife, pp. 454-471. I Ladd, H.S., Hedgepeth, J.W., Post, R. 1957. Environments and facies of existing bays on the centra 1 Texas coast. In: Tret i se on Marine -Eco1ogy and Paleoecology. Geol. Soc. Amer., Memoir 67: 599-640. I Ladd, H.S. 1951. Brackish water and marine assemblages of the Texas coast, with special referecne to mollusks. Publ. Inst. Mar. Sci. 2: 125-164. I Mackin, J.G. 1971. A study of the effect of oilfield brine effluents of biotic communities in Texas estuaries. Report to Humble Oil & Refining Co. &Amoco I Production Co. Texaco Inc., College Station, TX.: Texas A&M Research Foundation, 73 pp. I Martin, J.H. 1979. A study of the feeding habits of the black drum (Pogonius cromi s Linnaeus) in A 1 azan Bay and the Laguna Sa1 ada, TX. MS Thesis. Kingsville, TX: Texas A & M Univ. 103 pp. I Martinez, R. 1966. Coastal hydrographic and meteorological study Project Number MH-R-2 (Job Number 8). Report for Coastal Fisheries Project, 1966. Austin, I TX: Texas Parks and Wildlife Dept. pp. 105-147. I I Review of freshwater effects on benthos 223 I Matthews, G.A., Marcin, C:A. &Clements, G.L. 1974. A plankton and benthos survey of the San Antonio Bay system March 1972-July 1974. Technical Report to the Texas Water Development Board, Austin, TX.: Texas Parks and Wildlife Dept., I 75 pp. Montagna, P.A. &Kalke, R.D. 1989a. The Effect of Freshwater Inflow on Meiofaunal I I and Macrofaunal Populations in San Antonio, Nueces and Corpus Christi Bays, TX. Report to the Texas Water Development Board. Port Aransas, TX.: The Univ. of Texas Mar. Sci. Inst. I Montagna, P.A. &Kalke, R.D. 1989b. A comparison of benthos communities and process in the Guadalupe and Lavaca-Tres Palacios Estuaries. Report to the Texas Water Development Board. Port Aransas, TX.: The Univ. of Texas Mar. Sci. Inst. I Moseley, F.N., Copeland, B.S., Murray, L.S., Jinnette, L.S. &Price, P.T. 1975. Further studies on the effects of power plant operations on Cox Bay, Report I to Texas Water Quality Board, TX. Corpus Christi, TX: Central Power and Light Company, pp. 79-93. I Mosley, F.N. & Copeland, B.J. 1974. Final Report-Ecology of Cox Bay, TX., 1969-1973. Report to Texas Water Quality Board, Corpus Christi, TX.: Corpus I Christi, TX.: Central Power and Light Company, pp. 164. Parker, F. L., FB, Ph 1eger & Peirson, J. F. 1953. Eco1ogy of forami ni fera from San Antonio Bay and environs, southwest Texas. Cushman Found. Foram. Res.I Spec. Publ. 2 :1-75. Parker, R.H. 1955. Changes in the invertebrate fauna, apparently attributable to salinity changes, in I I the bays of central Texas. Journal of Paleontology 29:193-211. I Parker, R.H. 1959. Macro-invertebrate assemblages of central Texas coastal bays and Lagune Madre. Bull. Am. Assoc. Petrol. Geol. 43: 2100-2166. Parker, R.H. 1975. The study of benthic communities: a model and a review. Elsevier Oceanogrphy Series. New York, NY: Elsevier Sci. Publ. Co., p. 279. Parker, R.H. & Blanton, W.G. 1970. Environmental factors affecting bay and I estuarine ecosystems of the Texas coast. Report prepared for the Texas Railroad Commission, Fort Worth, TX.: Coastal Ecosystems Management, Inc. I 182 pp. I 224 Review of freshwater effects on benthos I Pearson, J.C. 1929. Natural hi story and conservation of redfi sh and other I commercial sciaenids of the Texas coast. Bull. Bur. Fish 44: 129-144. Phleger, F.B. 1956. Significance of living foraminiferal populations along the I central Texas coast. Contri b. Cushman Foundation Forami nifera l Research 7:106-152. Phleger, F.B. & Lankford, R.R. 1957. Seasonal occurrences of living benthonic I Forami ni fera in some Texas bays. Contributions Cushman Foundation Foraminiferal Research 8:93-105. I Poff, M.J. 1973. Species composition, distribution and abundance of macrobenthic organisms in the intake and discharge areas after construction and operation I of the Cedar Bayou Electric Power Station. M.S. Thesis, Texas A &M Univ., College Station, TX., 348 pp. I Price, W.A. 1949. Climate, topography, soils and native vegetation (of the Corpus Christi area). In: Corpus Christi Garden Book, Chamber of Commerce and Council of Garden Clubs, Corpus Christi, Tx. 80-84 pp. I Shaw, W.N. 1965. Seasonal setting patterns of five species of bivalves in the Tred Avon River, Maryland. Chesapeake Science 6:33-37. I Shepard, F.P. &Rusnak, G.A. 1957. Texas Bay Sediments. Publ. Inst. Mar. Sci. 4:5-13. I Simmons, E.G. 1957. An ecological survey of the upper Laguna Madre of Texas. Publ. Inst. Mar. Sci. 4:156-200. I Simmons, E.G. &Breuer, J.P. 1962. A study of redfish Sciaenops ocellata Linnaeus and black drum Pogonias cromis Linnaeus. Publ. Inst. Marine Sci. 8:184-211. Springer, V.G. &Woodburn, K.D. 1960. An ecological study of the fishes of the I Tampa Bay area. Prof. Papers No.I, Florida State Board Conservation Marine Lab. 1:104. I Staff, G., Powell, E.N., Stanton, R.J., Jr. &Cummins, H. 1985. Biomass: Is it a useful tool in paleocommunity reconstruction? Lethaia 18:209-232. I Stone, A.N. &Reish, D.J. 1965. The effect of freshwater runoff on a population of estuarine polychaetous a~nelids. Bull. S. Calif. Acad. Sci. 64:111-119. I Texas Department of Water Resources. l 980a. Lavaca-Tres Palacios Estuary: A study of the influence of freshwater inflows. Austin, TX: Texas Dept. of Water Resources, LP-106. I I I Review of freshwater effects on benthos 225 Texas Department of Water Resources. 1980b. Guadalupe Estuary: A study of theI influence of freshwater inflows. Austin, TX: Texas Dept. of Water Resources, LP-107. I I Texas Department of Water Resources. 1982. The influence of freshwater inflows upon the major bays and estuaries of the Texas Gulf Coast: Executive Summary.I Austin, TX: Texas Dept. of Water Resources, LP-115. Thomas, M.L.H. &White, G.N. 1969. Mass mortality of estuarine fauna at Bideford, P.E.I., associated with abnormally low salinities. J. Fish Res. Bd. Canada 26:701-704. Thornwaite, C.W. 1948. An approach toward a rational classification of climate.I Geogr. Rev. 38:55-94. U.S. Geol. Survey 1980. Water resources data for Texas Colorado River Basin, I Lavaca River Basin, Guadalupe River Basin, Nueces River Basin, Rio Grande Basin, and intervening coastal basins. U.S. Geol. Survey Water Data Report TX-80-3. Austin, TX: USGS, 298 pp. I Wells, H.W. 1961. The fauna oyster beds with special reference to the salinity factor. Ecol. Monogr. 31:239-266. White, W.A., Calman, T.R., Morton, R.A., Kimble, R.S., Littleton, T. G., McGowen, I J.H. & Nance, H.S. 1985. Submerged lands of Texas, Port Lavaca Area: Sediments, Geochemistry, Benthic Macroinvertebrates and associated wetlands. Report: Bureau of Economic Geology. Austin, TX: Univ. of Texas Bureau ofI Economic Geology. 309 pp. White, W.A., Calnan, T.R., Morton, R.A., Kimble, R.S., Littleton, T. G., McGowen, I J.H., Nance, H.S. & Schmedes, K.E. 1983. Submerged lands of Texas Corpus Christi, TX.: Bureau of Economic Geology. Austin, TX: Univ. of Texas at AustinI Bureau of Econ. Geol., 101 pp. I Williams, W.T. &Whitehouse, U.G. 1952. Analysis and interpretation of physical oceanographic data from the Rockport area. Report to the American Petrol. I Inst. Project 51, 4th Quarter Report, La Jolla, Ca. Scripps Inst. Ocean., pp. 28-38. I I I 226 Review of freshwater effects on benthos I Table 1. Estuarine zoogeographical zones defined by the occurrence and abundance Iof estuarine benthic infauna. The terminology used in this study is compared with the terminology used by other authors to define similar zones. I Low Salinity Moderate Salinity High Salinity Montagna & Freshwater Estuarine Marine I Kalke, 1989a Guadalupe Estuary (closed bay) I Ladd, 1951 Bay-head facies Reef and Inter-reef facies Parker, 1959 River influenced Enclosed Bay-low and high salinity I oyster reefs Harper, 1973 Low salinity group High salinity group I Matthews et a1. , Zone 1 Zone 2 Zone 3 1974 (freshwater) (brackish water) (high salinity) I White et a1., 1985 River influenced Enclosed bay centers and oyster reefs Lavaca Tres-Palacios Estuary (open bay) I Mackin, 1971 Freshwater Zone Moderate salinity High salinity (lakes &rivers) (Redfish Lake & river)(lower Lavaca Bay) I Blanton et al. 1971 Upper secondary Large open bay(enclosed bay) I Gilmore et al. 1976 River Area Low salinity High salinity upper bay lower bay I Jones et al., 1986 River &lake area Low to moderate salinity upper bay I White et al., 1985 River influenced Open bay and Open bay center assemblage oyster reef assemblage assemblage I Nueces Estuary (open bay) Blanton et al., 1971 Upper secondary Large open bay I enclosed bay White et al., 1983 River influenced Open bay center Open bay center, and Iassemblage assemblage d e p a u p e r a t e assemblage I I I Review of freshwater effects on benthos 227 I Table 2. Community characteristics of San Antonio Bay, Texas. Data is compiled I from: Ladd, 1951; Parker, 1959; Harper, 1973; Matthews et al., 1974; Montagnaand Kalke, 1989a; 1989b. I Zone Species Salinity I Freshwater Hobsonia florida 0-10 ppt Rangia cuneataI Rangi a flexuosa Chironomid larvae I Littoridina sphinctostoma I Streblospio benedicti Mediomastus californiensis Mulinia lateralis I Estuarine Streblospio benedicti 10-12 ppt Mediomastus californiensisI Mulinia lateralis Littoridina sphinctostoma I I I Marine Glycinde solitaria 12-32 ppt Haploscoloplosa foliosus I Cossura delta Paraprionospio pinnata Diopatra cuprea I I I I I 228 Review of freshwater effects on benthos I Table 3. Community characteristics of the Lavaca -Tres Palacios Estuary (Lavaca I and Matagorda Bays), Texas. Data compiled from: Mackin, 1971; Blanton et al., 1971; Gilmore et 1989b. Zone Freshwater Estuarine Marine al., 1976; Jones et al., 1986; Montagna and Kalke, 1989a; Species Hobsonia florida Rangia cuneata Littoridina sphinctostoma Mulinia lateralis Streblospio bendicti Mediomastus californiensis Macoma mitche77 i Streblospio benedicti Mediomastus californ1ensis Mulinia lateralis Paraprionospio pinnata Mediomastus californiensis Glycinde solitaria Cossura delta Nerei s succinea Mulinia lateralis Nuculana concentrica Nuculana acuta Periploma cf. orbiculare Schizocardium sp Ophiuroid (Amphiodia limbata) Apseudes sp A I Salinity I 0-13 ppt I I I 10-30 ppt I I 30-33 ppt I I I I I I I I Review of freshwater effects on benthos 229 Table 4. Community characteristics of the Nueces Estuary (Nueces and Corpus I I Christi Bays), Texas. Data compiled from: Blanton et al., 1971; Holland et al., 1975; Flint and Younk, 1983; Flint et al., 1981; Flint and Rabalais, 1981; White et al., 1983; Montagna and Kalke, 1989a; 1989b. I Zone Species Salinity freshwater Chironomid larvae 0-34 ppt I I Rangia flexura Mulinia lateralis Macoma mitchelli Streblospio benedicti Mediomastus californiensisI Paraprionospio pinnata Estuarine Mediomastus californiensis 25-30 ppt I I Streblospio benedicti Cossura delta Glycinde solitaria Mulinia laterales Macoma mitchelli I Marine Mediomastus californiensis 30-45 ppt Streblospio benedicti I Mulinia maculata Paraprionospio pinnata Gyptis vittata I Tharyx setigera Glycinde solitariaI Polydora caulleryi Clymenella torquata calida I Phoronis architecta Nuculana acuta Aligena texasiana Leucon sp. I Periploma cf. oriculare RhynchocoelsI Schizocardium I 230 Review of freshwater effects on benthos I Table 5. Interannual variability of average benthic macrofauna abundance (individuals • m-2 ) in the Guadalupe Estuary for the freshwater, estuarine and I marine zones. The relative environmental conditions during each study have been classified according to the amount of inflow. Sampling gear and sieve I size are given with each reference. I Mean Abundance (individuals • m -2) I Date Inflow Freshwater Estuarine 1Apr. 72-Feb.73 Wet 9,520 3, llO 2Mar. 72-July 74 Wet 450 to 6,550 270 to 7,350 3Jan.-July 87 Wet 41,217 18,887 4Apr. 88-Arp. 89 Dry 69,695 80,637 1Harper (1973) 2 in. ID core on pole, 0.5 mm sieve. 2Matthews et a7. reported). 3Montagna and Kalke 4Montagna and Kalke (1974) O. 09 m2 Peterson grab, 0. 5 mm sieve (1989a; 1989b) 6.4 cm ID core using SCUBA, 0.5 (1989a; 1989b) 6.7 cm ID core using SCUBA, 0.5 Marine I 3,060 I 120 to 2,030 I 8;367 I 25,595 I (only ranges I mm sieve. mm sieve. I I I I I I I I Review of freshwater effects on benthos 231 Tab1e 6. I nterannua 1 variability of average benth ic macrofauna abundance(individuals • m-2) in the Lavaca-Tres Palacios Estuary for the freshwater, I estuarine and marine zones. The re1ati ve envi ronmenta1 conditions during each I study have been classified according to the amount of inflow. Sampling gearand sieve size are given with each reference. I Mean Abundance (individuals • m-2) Date In fl ow I Freshwater Estuarine Marine(River (Upper-Lower (Matagorda Bay)I &Lakes) Lavaca Bay) I 1Estimated or predicted 500 3,000 15,000 2Mar. 70-Feb. 71 Wet 3,500 I 3Sept.70-June 71 Wet 1,827 1,809 1,809 I 4Jan. 73-June 75 Wet 770 1,700 to 3,070I 5Nov. 84-Aug.85 Wet 4,520 7,530 I 60ct. 85-Aug .86 Dry 5,190 6.620 7Apr. 88-Apr. 89 Dry 15,400 33,890I 1Parker and Blanton (1970) 0.04.m2 Van Veen, 0.25 mm sieve. 2Blanton et ~al., (1971) 0.04.m2 Van Veen; 0.25 mm sieve.I 3Mackin (1971) 225 cm2 Eckman; 0.2 mm sieve.4Gilmore et al. (1976) 0.09.m2 Peterson, 0.5 mm sieve.5Jones et al. (1986) 7.5 cm ID core using SCUBA, 0.5 mm sieve.I 6Jones et al. (1986) 7.5 cm ID core using SCUBA, 0.5 mm sieve.7Montagna and Kalke (1989a; 1989b) 6.7 cm ID core using SCUBA, 0.5 mm sieve. I I I I I 232 Review of freshwater effects on benthos I Table 7. Interannual variability of average benthic macrofauna abundance 2 (individuals· m-) in the Nueces Estuary Estuary for the freshwa.ter, I estuarine and marine zones. The relative environmental conditions during each study have been classified according to the amount of inflow. Sampling gear I and sieve size are given with each reference. I Mean Abundance (individuals • m-2 ) I Date In fl ow Freshwater Estuarine Marine I (upper (Lower Nueces(Corpus Christi Bay) Nueces Bay) Bay) I 1No Date 500 20ct. 72-May 75 Wet &Dry 8,300 8,300 4,320 I 3Sept. 74-Feb. 76 Dry *5,529 I ** 1,387 40ct. 79-July 81 Wet *12,304 I **s, 716 5July 81-July 83 Dry 13,800 21,070 I 60ct. 87-July 88 Dry 8,555 20,672 I *study site located at Aransas ship channel near Sun Oil dock, Ingleside, TX, in shoal areas at the edge of channel. I **Study site located at Aransas ship channel near Sun Oil dock, Ingleside, TX, in the ship channel. I 1Blanton et al. (1971) O.O.m2 Van Veen, 0.25 mm sieve. 2Holland et al. (1975) 0.09.m2 Peterson, 0.5 mm sieve. I 3Flint and Younk (1983) 0.09.m2 Peterson, 0.5 mm sieve. 4Flint et al. (1981) 0.09.m2 Peterson, 0.5 mm sieve. 5Flint et al. (1983) 7.5 cm ID core using SCUBA, 0.5 mm sieve. I 6Montagna and Kalke (1989a; 1989b) 6.7 cm ID core using SCUBA, 0.5 sieve. I I I I SALTEMP.DAT I MEIOGRAZ.DAT I N20XFLUX.DAT I N2NUFLUX.DAT I NINUFLUX.DAT NIOXFLUX.DAT I NICHLJTU.DAT I NISSFLUX.DAT I NISEDCHN.DAT I NIMACCHN.DAT I SEDGRAIN.DAT data. I GEMACMG.DAT I NCMACMG.DAT I LPMACMG.DAT (mg/mA2) I I Data Appendix Table of Contents Salinity and temperature data for all benthic sampling ... 235 Meiofauna grazing data set .. 237 NIPS-2 Oxygen flux data from chamber experiments. 240 NIPS-2 nutrient flux data from Nueces -Corpus Christi Bay. . 24I NIPS-I Nutrient flux data from San Antonio Bay. . . . . . . 244 NIPS-I Oxygen flux data vs. current flow. 25I NIPS-I Chlorophyll and turbidity data from chambers. 252 NIPS-I Sediment resuspension in chambers. 256 NIPS-I San Antonio Bay Sediment CHN data .. 257 NIPS-I San Antonio Bay Macrofauna CHN data. 258 NIPS-I, NIPS-2, estuarine comparison sediment grain size . . . . . . . . . . . . . . . . . . . . . 259 Guadalupe Estuary Macrofauna biomass data (mg/mA2) Nueces Estuary Macrofauna biomass data (mg/mA2) Lavaca-Tres Palacios Estuary Macrofauna biomass . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 262 270 data 276 234 I GEMACSP.DAT Guadalupe Estuary Macrofauna species data. 282 I NCMACSP.DAT Nueces-Corpus Estuary Macrofauna species data. 299 I LPMACSP.DAT Lavaca-Tres Palacios Estuary Macrofauna species data. 314 I GEMEIOSP.DAT Guadalupe Estuary Meiofauna species data. 328 I NCMEIOSP.DAT Nueces Estuary Meiofauna species data. 346 I COMPFLUX. DAT Estuarine comparison experiment: macrofauna vs oxygen and nutrient flux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 I I I I I I I I I I I I I SALTEMP.DAT 235 I SALTEMP.DAT Salinity and temperature data for all benthic sampling . I Bay codes: GE =Guadalupe Estuary NC = Nueces Estuary LP = Lavaca-Tres Palacios Estuary I BAY TRIP STATION SALINITY (ppt) TEMPERATURE (C) I NC OCT87 A 29 24.0 NC OCT87 B 34 21.7 NC OCT87 C 33 25.1 NC OCT87 D 35 22.3 NC DEC87 A 29 20.6 NC OEC87 B 30 19.4 I I NC DEC87 C 32 18.8 NC DEC87 D 32 18.9 NC FEB88 A 27 15.7 NC FEB88 B 31 15.6 NC FEB88 C 31 12.5 NC FEB88 D 30 15.6 NC APR88 A 30 17.0 NC APR88 B 30 19.7 NC APR88 C 31 19.5 I I NC APR88 0 31 19.5 NC MAY88 A 34 26.3 NC MAY88 B 34 27.5 NC MAY88 C 32 25.4 NC MAY88 0 32 24.8 NC JUL88 A 38 29.3 NC JUL88 B 37 29.1 NC JUL88 C 36 29.6 NC JUL88 D 45 30.6 I I LP APR88 A 23.7 24.1 LP APR88 B 27.3 23.2 LP APR88 C 31.0 21.6 LP APR88 D 31.2 21.5 LP JUL88 A 27.3 29.9 LP JUL88 B 28 .6 30.5 LP JUL88 C 31.5 29.6 LP JUL88 D 32 .3 29.8 LP NOV88 A 32.9 13.9 I LP NOV88 B 34.6 14.6 LP NOV88 C 35.3 15.4 LP NOV88 D 35.1 16.7 LP APR89 A 23 21.8 I LP APR89 B 23 20.3LP APR89 C 23 21.4 LP APR89 0 23 21LP JUL89 A 22 .2 29.5LP JUL89 B 25.8 29 I LP JUL89 C 28.2 31 LP JUL89 D 36.1 31 GE JAN87 A .3 14.4 GE JAN87 B .4 14.8 GE JAN87 C 6.5 15.5 GE JAN87 D 4.1 15.8 I GE MAR87 A .2 15 GE MAR87 B .4 16 GE MAR87 C 6.9 16 I GE MAR87 D 12.5 17.5 GE APR87 A .5 14.5 GE APR87 B 6.3 15.2 GE APR87 C 9. 2 14.5 I GE APR87 D 13.2 14.9GE JUN87 A 1 26.2GE JUN87 B 4.6 26.7 I 236 SALTEMP.DAT I I GE JUN87 c 4.3 26.2 GE JUN87 D 9.9 26.4 GE JUL87 A .4 30.5 GE JUL87 B .4 30 GE JUL87 c 1.1 30.5 I GE JUL87 D .9 30.5 GE APR88 A 9.6 21.9 GE APR88 B 13.7 22.0 GE APR88 c 23.6 22.1 I GE APR88 D 26.7 22.1 GE JUL88 A 10 28.4 GE JUL88 B 21 29.3 GE JUL88 c 26 28.9 GE JUL88 D 32 28.9 I GE NOV88 A 18.5 15.5 GE NOV88 B 24.9 15.4 GE NOV88 c 30.2 16.0 GE NOV88 D 30.7 15.9 I GE APR89 A 15 24 GE APR89 B 18 23.7 GE APR89 c 24 22 GE APR89 D 24 23.9 GE JUL89 A 15.9 31.5 I GE JUL89 B 19 .4 31.5 GE JUL89 c 28.4 31.3 GE JUL89 D 29 31. 5 I I I I I I I I I I I I HEIOGRAZ.DAT 237 I MEIOGRAZ .DAT Meiofauna grazing data set. Experiment performed in 1987, in San Antonio bay. I TAXA CODES: AMP=amphipod, COP=copepod, MOL=mollusk, NEM=nematodes, OTH=other miscellaneous taxa, POL=polychaetes. I GBACT=Grazing rate on bacteria (hA-1). GALGA=Grazing rate on microalgae (hA-1). I I MONTH STATION REPL TAXA GBACT GAL GA JAN A 1 AMP 0.000021 0.00040 JAN B 1 AMP 0. 000228 0.00326 JAN c 1 AMP 0.000042 0.00052 JAN c 2 AMP 0. 000102 0.00078 JAN D 2 AMP 0.000028 0.00020 APR A 1 COP 0.000685 0.00082 APR A 2 COP 0.000798 0.00084 APR A 3 COP 0.000495 0.00067 I APR B 1 COP 0.000579 0.00084 APR B 2 COP 0.000188 0. 00114 APR B 3 COP 0.000278 0.00075 APR c 1 COP 0.003108 0.03894 I APR c 2 COP 0.002422 0.01291APR c 3 COP 0. 009428 0.01316APR D 1 COP 0.002203 0.03422APR D 2 COP 0. 001755 0.02649APR D 3 COP 0.000570 0.00442 I JAN A 1 COP 0.000109 0.00290 JAN A 2 COP 0.000141 0.00169 JAN A 3 COP 0.000450 0.00541 JAN B 1 COP 0.000000 0. 00097 I JAN B 2 COP 0.000310 0.00182JAN B 3 COP 0.000559 0. 00122JAN c 1 COP 0.001414 0. 00919JAN c 2 COP 0. 002573 0.04035JAN c 3 COP 0.001721 0.01541 I JAN D 1 COP 0.002171 0.00451 JAN D 2 COP 0. 000342 0.00207 JAN D 3 COP 0.000942 0. 00412 JUL A 2 COP 0.000167 0.00059 I JUL A 3 COP 0.000106 0.00021JUL B 1 COP 0.000446 0. 00227JUL B 2 COP 0. 001977 0.00233JUL B 3 COP 0.000291 0. 00341JUL c 1 COP 0.000009 0. 00042 I JUL c 2 COP 0.000166 0.00038JUL c 3 COP 0.000247 0.00066JUL D 1 COP 0.001088 0.00083JUL D 2 COP 0.002947 0.00499 JUL D 3 COP 0.000751 0.00099APR A 1 MOL 0.000632 0. 04112 I I APR A 2 MOL 0.032524 0.04961APR A 3 MOL 0.022482 0.10249APR B 1 MOL 0.004336 0.01653APR B 2 MOL 0. 034941 0.11111APR B 3 MOL 0.083078 0.11384APR c 1 MOL 0.000000 0.00000APR D 3 MOL 0. 007776 0.00796 JAN A 2 MOL 0.000046 0.00634JAN B 1 MOL 0.015681 0.00736 I JAN B 2 MOL 0.000423 0.00837 JAN B 3 MOL 0.041942 0.00000 JAN c 1 MOL 0.005874 0. 02509 JAN c 2 MOL 0.00015 0. 00007 JAN c 3 MOL 0.00000 0.00000 I I MEIOGRAZ.DAT I 238 JAN D 1 MOL 0.00000 0.00000 I JAN D 2 MOL 0. 00046 0.00249 JAN D 3 MOL 0. 00041 0. 00165 JUL A 1 MOL 0. 01900 0. 05371 JUL A 2 MOL 0.37380 0.44091 JUL A 3 MOL 0. 22660 0. 11734 I JUL B 1 MOL 0. 03797 0. 11085 JUL B 2 MOL 0. 08150 0. 09286 JUL B 3 MOL 0.04898 0. 09869 JUL c 1 MOL 0.00824 0.01980 I JUL c 2 MOL 0. 00254 0.00276 JUL c 3 MOL 0. 03091 0. 10055 JUL D 1 MOL 0. 00000 0.00000 JUL D 2 MOL 0.00153 0. 00375 JUL D 3 MOL 0.01054 0. 03081 I APR A 1 NEM 0. 00078 0.00010 APR A 2 NEM 0.00234 0. 00013 APR A 3 NEM 0.00006 0. 00015 APR B 1 NEM 0.00833 0.00045 I APR B 2 NEM 0.00000 0. 00047 APR B 3 NEM 0.00000 0.00062 APR c 1 NEM 0.00000 0.00592 APR c 2 NEM 0.00000 0. 00101 APR c 3 NEM 0. 00000 0. 00206 I APR D 1 NEM 0. 00000 0.00083 APR D 2 NEM 0.00000 0.00083 APR D 3 NEM 0.00000 0.00033 JAN A 1 NEM 0.00000 0.00063 I JAN A 2 NEM 0. 00000 0.00093 JAN A 3 NEM 0.00003 0.00196 JAN B 1 NEM 0.00000 0.00053 JAN B 2 NEM 0.00000 0. 00085 I JAN B 3 NEM 0.00000 0.00023 JAN c 1 NEM 0.00000 0. 00519 JAN c 2 NEM 0. 00463 0.06167 JAN c 3 NEM 0.00046 0.00625 JAN D 1 NEM 0.00047 0. 01825 I JAN D 2 NEM 0.00040 0.00614 JAN D 3 NEM 0.00000 0.00397 JUL A 1 NEM 0. 00022 0.00037 JUL A 2 NEM 0.00000 0.00074 I JUL A 3 NEM 0. 00000 0.00023 JUL B 1 NEM 0. 00026 0.00032 JUL B 2 NEM 0. 00033 0.00039 JUL B 3 NEM 0.00002 0.00062 JUL c 1 NEM 0.00000 0.00047 I JUL c 2 NEM 0.00000 0. 00000 JUL c 3 NEM 0.00000 0.00065 JUL D 1 NEM 0.00000 0.00053 JUL D 2 NEM 0.00000 0. 00118 I JUL D 3 NEM 0. 00000 0. 00079 APR A 1 OTH 0.000567 0.006985 APR A 2 OTH 0. 000825 0.008838 APR A 3 OTH 0. 000513 0. 007987 APR B 1 OTH 0.000158 0. 000710 I APR B 2 OTH 0.000118 0.000652 APR B 3 OTH 0. 000235 0. 001425 APR c 1 OTH 0.000991 0.004986 APR c 2 OTH 0.000597 0. 000890 I APR c 3 OTH 0. 001754 0. 003194 APR D 1 OTH 0. 000235 0. 001027 APR D 2 OTH 0. 000473 0. 004739 APR D 3 OTH 0. 000269 0.001716 JAN A 1 OTH 0.000405 0.012374 I JAN A 2 OTH 0. 000536 0.010842 JAN A 3 OTH 0. 000930 0.018483 JAN B 1 OTH 0.002285 0.052066 I I I MEIOGRAZ.DAT I JAN B 2 OTH 0.001434 0.031336JAN B 3 OTH 0.003568 0.020931 I JAN c 1 OTH 0. 000346 0.001090JAN c 2 OTH 0.000989 0.001346JAN c 3 OTH 0.000980 0.004776JAN D 1 OTH 0.001246 0.013244 I JAN D 2 OTH 0.001422 0.007662JAN D 3 OTH 0. 001983 0.007556JUL A 1 OTH 0.001341 0.001252JUL A 2 OTH 0.013292 0.088546JUL A 3 OTH 0.003690 0.022551 I JUL B 1 OTH 0. 001179 0.007756JUL B 2 OTH 0. 001063 0.003340JUL B 3 OTH 0.004930 0.02ti750JUL c 1 OTH 0.000147 0.001081 I JUL c 2 OTH 0.000312 0.000867JUL c 3 OTH 0.000067 0.002520JUL D 1 OTH 0.000947 0. 011016JUL D 2 OTH 0.000411 0.004259JUL D 3 OTH 0.000192 0.004611 I APR A 1 POL 0. 000178 0.001635APR A 2 POL 0.001594 0.004976APR A 3 POL 0.000377 0.002070APR B 1 POL 0.001179 0.003072 I APR B 2 POL 0.000327 0.000823APR B 3 POL 0.000180 0.000525APR c 1 POL 0.000161 0.000755APR c 2 POL 0.003165 0.002026APR c 3 POL 0.000932 0.000239 I APR D 1 POL 0.000210 0.001152APR D 2 POL 0.000050 0.000072JAN A 1 POL 0. 000038 0.000827JAN A 2 POL 0.000028 0. 000352 I JAN A 3 POL 0.000000 0.000000JAN B 1 POL 0.000000 0.000620JAN B 2 POL 0.000058 0.000295JAN B 3 POL 0.000615 0.002762JAN c 1 POL .00001957 .0000313 I JAN c 2 POL .00027245 .0002374JAN c 3 POL .00013862 .0001532JAN D 1 POL .00014820 .0004254JAN D 2 POL .00007804 .0003920 I I JUL A 2 POL .00008946 .0001951JUL A 3 POL .00009041 .0001414JUL B 1 POL . 00083773 .0011536JUL B 2 POL .00032063 .0000000JUL B 3 POL .00007387 .0002037JUL c 1 POL .00007292 .0003069JUL c 2 POL .00017363 .0000980JUL c 3 POL .00012034 .0014681JUL D 1 POL .00008899 .0001732 JUL D 2 POL .00088402 .0028482 JUL D 3 POL .00025705 .0015816 I I I I I I N20XYFLUX.OAT 240 I N20XFLUX.DAT NIPS-2 Oxygen flux data from chamber experiments. I Nueces and Corpus Christi Bays. Design: DF=dark chamber with flow of 19.5 cm/sec. 0 =dark chamber without flow. I LF=light chamber with flow of 19.5 cm/sec. L =light chamber without flow. Dark=respiration, light=net photosynthesis, and L-D=gross photosynthesis. I All flux values are in mmol 02/m~2/h. negative values indicate sediment uptake, and positive values indicate release from sediment. DATE STATION SALINTY TEMP OF LF L D I OCT87 A 29 24.0 -2.126 0.156 -0.865 -1. 4520 OCT87 B 34 21. 7 -1.927 -1. 030 0.670 -1.1880 OCT87 c 33 25.1 -1. 200 0.954 -1.164 -2.4710 OCT87 0 35 22.3 -3.090 -4.103 -1. 657 -0. 7790 DEC87 A 29 20.6 -0.491 0.614 0.069 -1.1820 I DEC87 B 30 19.4 -1.963 -0.062 3.482 5.1169 DEC87 c 32 18.8 -1. 537 -2.972 6.268 -1. 5650 DEC87 0 32 18.9 -0.437 3.651 1.348 0.8080 FEB88 A 27 15.7 -1. 736 -0.220 -0.706 -1. 0230 I FEB88 B 31 15.6 -1.354 -1.394 -2 .116 -1. 2040 FEB88 c 31 12.5 -1. 952 -1.370 -1. 014 -0.9520 FEB88 0 30 15.6 -0.824 -0.251 0.572 -0.6620 APR88 A 30 17.0 -2.533 -1. 284 -0.929 -0.5660 APR88 B 30 19.7 -1. 700 -1.109 0.514 -0.2790 I APR88 c 31 19.5 -1. 676 -0.621 -0 .455 0.0014 APR88 0 31 19.5 -1.150 -0.880 0.395 -0.2550 MAY88 A 34 26.3 -0.613 -0.350 -0.548 -1. 0990 MAY88 B 34 27.5 0.496 -1. 296 -1.216 -1.6010 I MAY88 c 32 25.4 -1. 418 -1.152 -0.608 -0.6240 MAY88 0 32 24.8 0.641 -1. 093 -0.484 -1. 4180 JUL88 A 38 29.3 -1. 061 -1. 6180 JUL88 A 38 29.3 -1. 570 -0.8760 JUL88 B 37 29.l -1.174 -1. 7630 I JUL88 B 37 29.l -2.681 -0.8400 JUL88 c 36 29.6 0.583 -0.7530 JUL88 c 36 29.6 -0.238 -0.5170 JUL88 D 45 30.6 -0.761 -1. 3070 I JUL88 0 45 30.6 -0.644 -2.2980 I I I I I I I I N2NUFLUX.DAT 241 I N2NUFLUX.DAT NIPS-2 nutrient flux data from Nueces-Corpus Christi Bay. All nutrient fluxes are in umol/m-2/h. D F F s I A S T L 0 p I N N N c T T R 0 R 0 0 0 0 H H s E A T WM 4 4 3 2 4 L s I DATE S T R R P04 SI04 N03 N02 NH4 CHL SS OCT87 A D Y N -3.7865 OCT87 A L Y N -1. 5504 I OCT87 A L N N 13.395 297.54 0.95 -2.375 -8.27 -0.0912 OCT87 A D N N -84.075 61. 75 -10.17 -24.225 -5.79 -0.0365 OCT87 A D ' Y 128.535 437.29 96.80 285.760 105.07 -1.3376 OCT87 A L Y Y 17.195 500.65 24.13 58.330 11.88 -2.2192 I OCT87 A L N Y -15.675 166.72 -10.45 -25.745 -34. 77 -0.0608OCT87 A D N Y 4.465 521.45 -3.99 -2.090 3.61 -0.0304OCT87 C D Y N 9.785 254.69 -41.14 32.775 15.30OCT87 C L Y N 5.225 234.36 -23.46 19.380 35.34OCT87 C L N.N 5.795 183.92 -10.45 10.450 -4.08 I OCT87 C D N N 1.900 214.22 -6.65 6.745 38.19 0.0000 OCT87 C D Y Y 3.230 214.23 -1.62 14 .155 75.33 8.1272 OCT87 C L Y Y 3.895 305.14 -7.60 20.045 4.09 36.7253 OCT87 C L N Y -2.660 274.84 30.69 -22.420 -7.03 -0.0608 I OCT87 C D N Y 0.000 133.38 19.76 5.225 -847.12 -0.1824OCT87 B D Y N -50.920 147.25 -26.79 -53.485 -60.61 -0.6887OCT87 B L Y N 112 .195 273.50 -76.76 182.210 207.00 1.6559OCT87 B L N N 30.590 515.47 37.34 -17.195 4.18 -0.3040OCT87 B D N N -0.950 199.88 31.26 3.895 99.28 -0.6688 I OCT87 B D Y Y -29.165 115.71 46.36 -26.315 32.02 -1. 8694 OCT87 B L Y Y 83.885 115.71 -24.89 135.375 189.43 -1. 5059 OCT87 B L N Y 11. 590 -63.08 44.56 -4.370 74 .10 -0.5168 OCT87 B D N Y -4.940 -126.26 2.66 2.375 6.75 OCT87 D D Y N -1.330 189.34 -31.16 -27.265 -14.44 3.6469OCT87 D L Y N 186.105 157.80 -11. 02 4.465 -11.12 0.9120 I OCT87 D L N N 3.325 168.25 -0.95 -0.760 50.35 -0.3040 OCT87 D D N N -1. 330 168.34 3.99 -10.545 52.06 -0 .1824 OCT87 D D Y Y 1.900 63.08 14.06 0.000 19.19 -0.1216 I OCT87 D L Y Y 1.235 84.17 9.02 0.950 7.41 -0.3040 OCT87 D L N Y -2.660 84.17 9.02 -7.600 -0.19 -0.2432 OCT87 D D N Y -14.440 105.16 -36.10 -15.865 -20.42 -0.1824 DEC87 C D Y N -178.600 65.36 -350.45 -84.740 -108.39 0.16217 1.5480 I DEC87 C L Y N 11.305 326.99 -15.39 15.295 -353.31 -0.00389 3.2013DEC87 C L N N -2.090 87.21 -8.45 -0.380 91. 67 -0. 08293 -0.1216DEC87 C D N N 1.235 -65.46 8.83 -8.835 74.38 -0.08892 -0.2128DEC87 C D Y Y 31. 540 130.82 0.76 25.840 36.48 -0.08693 0.3154 I DEC87 C L Y Y 1.235 108.97 43.99 0.475 -412.96 -0.01976 0.3635 DEC87 C L N Y -2.090 43.51 -11.12 2.185 134.14 -0.07705 -0.1520 DEC87 C D N Y -3.705 108.96 44.27 -8.835 89.39 0.13452 -0.6080 DEC87 A D Y N -12.920 801.90 -74.01 6.745 -740.72 0.37753 0.3040 DEC87 A L Y N 25.270 647.90 -35.06 6.270 -168.53 0.35131 0.4256 I DEC87 A L N N -9.690 494.00 11.30 -20.900 883.40 0.06137 -0.2128DEC87 A D N N -9.595 709.46 37.62 -27.930 289.75 0.09557 -0.0608DEC87 A D Y Y 23.560 771.12 -15.01 -13.870 -300.86 -0.12635 -0.2128DEC87 A L Y Y 13.585 709.46 45.60 -36.005 -150.10 0.27407 0.0485 I DEC87 A L N Y 13.585 494.00 35.72 -6.840 2095.51 -0.27436 -0.2736DEC87 A D N Y 25.175 709.46 -61.46 3.705 1387.85 0.05785 -0 .1824DEC87 B D Y N 17.290 -51.68 -459.13 24.035 -150.48 0.14279 0.5776DEC87 B L Y N 7.220 16.34 -82.93 17. 575 9.41 0.14687 2.5099DEC87 B L N N 9.405 -106.21 -23.75 -2.660 -150.48 0.04626 -0.2128 I DEC87 B D N N -17.480 2.76 -23.66 4.940 12.54 0.04892 -0.1216 DEC87 B D Y Y 18.335 70.87 -11.12 11.875 -224.30 0.29393 -0.1216 DEC87 B L Y Y 47.500 98.04 -12.25 32.490 -184.30 0.29991 -0.1824 DEC87 B L N Y -15.200 -38.10 -0.29 5.035 -67.45 0.05928 -0.1216 I DEC87 B D N Y 13.870 -10.93 10.17 6.270 -162.83 -0.0912DEC87 D D Y N -29 .165 250.61 -11.30 19.095 0.95 0.16806 2.8928DEC87 D L Y N -39.235 68.11 -11.12 11.115 8.46 0.33905 0.3040 I N2NUFLUX.DAT I 242 DEC87 D L N N 4.465 147.06 1.42 21. 850 192.57 0 .12027 -0.0304 I DEC87 D D N N 14.630 -13.68 3.89 3.800 103.83 0.02840 -0.2128 DEC87 DD Y Y -154.755 19.10 303.34 -65.930 -963. 40 0.28329 0.0608 DEC87 D L Y Y 31. 350 106.21 10.07 -10.165 -304.28 0.22183 -0.2128 DEC87 D L N Y -121.600 -187.91 -14.16 -40 .185 -376.30 0.06080 -0.0304 DEC87 D D N Y -7.790 -174.33 -14.92 -31.730 -514.81 -0.01302 -0.1520 I FEB88 C D Y N -188.385 15. 77 -1243.84 -20. 710 -122.17 1. 04757 2.5157 FEB88 C L Y N -160.740 28.88 -442.60 -13.300 -184.96 0.85871 0.8731 FEB88 C L N N -55.100 -23.56 -221. 73 -15.485 -79.70 -0.08065 -0.3648 FEB88 C D N N -18.335 -10.45 -89.96 -8.170 -105.16 -0.02774 -0.3040 I FEB88 C D Y Y -9.120 41.99 -17.48 -14.440 -225.72 0.54853 0.3570 FEB88 C L Y Y -4.560 219.26 18.52 -23.750 -234.17 0.19504 0.2736 FEB88 C L N Y -18.335 28.88 26.12 -24.890 77.99 -0.80864 -0.7296 FEB88 C D N Y -4.560 2.66 24.41 -16.435 -71.25 -0.83534 -0.5472 I FEB88 A D Y N 15.580 72.01 -199.50 34.295 127.02 0.17946 2.2570 FEB88 A L Y N 10.735 33.63 8.17 8.835 63.55 0 .14763 -8.4946 FEB88 A L N N -0.190 18.24 -8.55 -4 .180 -7.22 -0.11257 -0.3648 FEB88 A D N N -4.085 -0.95 -48.35 41. 420 48.55 -0.02764 -3.2764 FEB88 A D Y Y 6.270 33.63 -2.85 11. 495 5.13 0.09833 -0.0955 I FEB88 A L Y Y 4.180 31.63 4.09 3.420 -9.03 0.06394 0.1874 FEB88 A L N Y 1.615 -3.80 4.18 0.950 -21.56 -0.56468 -1. 4592 FEB88 A D N Y 0.095 -22.99 0.29 3.325 -4.18 -0.61902 -3.6451 FEB88 D D Y N -49.780 55.10 -895.47 -0.190 -80.94 0.28813 0.3952 I FEB88 D L Y N FEB88 D L N N FEB88 D D N N FEB88 D D Y Y 16.340 135 .18 -50.82 15.865 91.58 0.29744 -0.0608 FEB88 D L Y Y 44.460 81.41 11.02 -11.020 29.83 0.32347 0 .1520 I FEB88 D L N Y 1.235 108.40 -1. 71 -9.880 -53.20 0.04769 -0.1216 FEB88 D D N Y -20.235 -18.24 -12.44 0.760 -34.10 0.04503 -0.0304 FEB88 D D Y N -10.355 -1.99 -191.23 1.045 83.32 0.05500 0 .1216 FEB88 D L Y N 1.995 27.93 -26.41 8.835 -2.75 0.12027 0.5168 I FEB88 D L N N 0.000 27.93 1. 71 -0.095 9.88 -0.00722 0.0608 FEB88 D D N N -6.270 57.85 17.48 3.230 68. 11 -0. 03838 0 .1520 FEB88 D D Y Y -14.535 -1.99 -8.26 9.880 -35.72 0.17338 -0.0608 FEB88 D L Y Y -10.355 -1.99 -15.29 -2.280 -134.52 0.20539 0.0000 FEB88 D L N Y -6.175 -21. 94 -6.94 2.090 25. 08 -0. 03116 0.0000 I FEB88 D D N Y -2.090 17.96 -5.79 1.045 -106.69 0.05197 -0.0304 FEB88 B D Y N -11. 590 4.85 -292.31 14.440 -35.44 0.22049 1.3058 FEB88 B L Y N 0.475 -43.70 -55.86 23.655 17.01 -0.17755 0.0608 FEB88 B L N N -47.690 -19.38 -27.36 -20.235 -269.80 -0.31682 -0.6080 I FEB88 B D N N -26.030 -34.01 7.41 -24.320 -114. 76 -0. 31968 -0.6080 FEB88 B D Y Y -28.405 0.00 15.01 -39.615 -146.49 -0.25868 -0.0486 FEB88 B L Y Y 26.980 4.85 -41.13 31.825 152.57 -0.08398 0.1216 FEB88 B L N Y -28.405 -9.78 3.89 -13.110 -142.79 -0.22715 -0.3952 FEB88 B D N Y -50.160 -58.23 31.44 -40.660 -161.12 -0.28823 -0.6080 I APR88 C D Y N 42.655 177.55 49.97 85.500 -99.28 0.21556 1.0671 APR88 C L Y N 4.465 72.58 -43.60 -16.530 9.50 0.41249 2.5525 APR88 C L N N 11. 210 30.50 81.70 -1.710 17.96 0.12293 -0.8512 APR88 C D N N -15.770 19.95 -82.36 -22.895 -0.95 0.06280 -0.3344 I APR88 C D Y Y 2.185 146 .11 -1.62 -13.395 -56.72 0.15561 0.0000 APR88 C L Y Y 31. 445 272.18 -20.62 20.615 -1.90 0.04493 0.4560 APR88 C L N Y 2 .185 -11. 49 14.44 -14.440 -0.95 -0.14953 -0.3648 APR88 C D N Y 4.560 30.50 79.04 -3.800 0.10 -0.02204 -0.3040 APR88 A D Y N 101.555 102.70 -605.34 23.845 -5.61 0 .15476 0.6831 I APR88 A L Y N -23.560 145.54 -256.69 19.380 -48 .17 1.23662 -0.5629 APR88 A L N N 5.890 359.57 -95.09 -8.170 20.24 0.02470 -0.4256 APR88 A D N N -32. 775 -1609.59 -43.60 -21. 470 -17.39 0.00874 -0.6688 APR88 A D Y Y 13.395 1344.16 -74.48 9.500 -131.19 -0.45790 -0.8816 -1 APR88 A L Y Y -78.090 -453.82 -2.75 -62.225 -25.37 0.33307 0.4102 APR88 A L N Y 37.810 -154.19 -58.71 12.730 5.32 -0.04684 -1. 5200 APR88 A D N Y -32.775 1172.96 -51.68 24.985 -3.61 -0.04712 -1.1552 APR88 B D Y N 2.470 77 .04 -463.98 30.875 25.75 0.35672 3.5731 APR88 B L Y N 10.070 119 .89 -251.66 33.155 8.93 0. 24377 2.8796 I APR88 8 L N N 5.035 34.30 -153.33 -6.650 3.99 -0.04893 -0.2736 APR88 B D N N 0.855 34.20 -99.18 -2.185 861. 46 -0. 08826 -0.2736 APR88 B D Y Y 15.105 162.74 -33.73 29.830 38.57 0.47092 1.9536 I I I N2NUFLUX.DAT 243 I APR88 B L Y Y 4.180 291.08 20.42 -24.225 43.51 0.58102 2.1087 APR88 B L N Y -5.890 -94 .14 -48.07 -14.345 -6.94 -0.05671 -0.2736 APR88 B D N Y -1.710 77 . 14 -12.35 -11.020 -7.98 -0.09338 -0.2736 APR88 D D Y N -13.490 51.39 72.68 -2.375 157.41 0.84769 1.0944 I APR88 D L Y N 0.855 -0.76 12.64 18.620 -56.43 0.97461 3.1711 APR88 D l N N -23.465 198.55 34.67 -3.610 0.95 0.64163 -0.1520 APR88 D D N N 8.360 94 . 14 31.44 -0.190 4.94 0.09937 -0.0608 I APR88 D D Y Y -18.430 -205.49 72.58 -2.470 0.95 -0.03240 0.0000 APR88 D l Y Y 50.350 179 .74 66.03 4.180 0.95 0.44023 0.0912 APR88 D l N Y 53. 770 -77.14 72.68 -2.470 0.00 -0.15542 -0.1216 APR88 D D N Y -6.745 -34.20 34.77 -3.610 -33. 63 -0 .11989 -0.1216 I I MAY88 C D Y N 10231.31 11426 . 60 -297.160 -24.70 0.06679 3.1360MAY88 C l Y N 214.03 -254.60 0.855 9.88 0.08493 1.5863MAY88 C l N N 299.63 28.31 10.830 -5.89 -0.25536 -0.7904MAY88 C D N N 0.00 -38.47 -20.140 -3.04 -0.4256MAY88 C D Y Y -42.84 26.79 -26.790 -3.99 0.28927 -3.1475MAY88 C L Y Y 256.79 229.43 -14.535 -6.93 0.42959 2.4092MAY88 C L N Y 0.00 6.08 -25.650 4.94 -0.23569 -0.7296MAY88 C D N Y 42.75 153.80 -36.670 -16.82 -0.23465 -0.8816MAY88 A D Y N 57.76 14.34 45.315 53.39 -0.00959 6.8885 I I MAY88 A l Y N 100.60 83.12 15.485 25.36 -0.56791 7.9099 MAY88 A l N N 100.60 24.13 -23.180 19.76 0.33117 -0.3952 MAY88 A D N N 14.91 82.37 -61.845 4.94 -0.14127 -0.5168 MAY88 A D Y Y 100 . 60 1. 71 18.715 7.89 0.23855 0.6748 MAY88 A l Y Y -627.19 284.81 87.210 18.81 0.20615 0.0485 MAY88 A l N Y 15.01 91. 58 -32.015 -59.47 -0.35216 -0.4864 MAY88 A D N Y 186.20 54.72 -34.295 -20.80 -0.29535 -0.7296 MAY88 B D Y N -5.035 -336 . 58 -96.24 27 . 645 18.24 -0.19380 0. 6776 MAY88 B L Y N -53.675 117. 04 -69.35 27.550 16.44 -0.07543 -4.1370 I I MAY88 B L N N -18.240 -245.86 -79.71 -42.750 9.12 -0.51139 -2.9184MAY88 B D N N -17.195 -87 .12 23.85 -52.155 -23.75 -0.36613 -1.1856MAY88 B D Y Y 6.650 185.06 77 .33 -11. 495 -5.51 0.27484 0.3396MAY88 B l Y Y 96.710 162.36 10.16 55.765 31. 07 0.26581 10.2143MAY88 B L N Y -12.160 -268.56 -9.31 -45.885 -20.05 -0.39397 -2.4016MAY88 B D N Y -33.155 -78.56 -52.06 -56.810 -29.26 -0.45381 -2.3408MAY88 D D Y N -11.020 62.03 6.36 7.125 -16.24 0.74262 1.0032MAY88 D l Y N -0.570 107.45 16.34 -16.340 -16.25 0.83277 3.1283 MAY88 D l N N -12.160 -28.60 0.76 -0.760 3.80 -0.01720 -0.1216 I MAY88 D D N N 57.475 -51. 40 -2.47 2.375 11.12 -0.18031 -0.1520 MAY88 D D Y Y 2.280 39 .43 41.99 11. 780 5.70 0.27104 0.0000 MAY88 D l Y Y 0.000 39.43 46.08 21. 090 0.19 0.31302 0.1824 MAY88 D l N Y 40.375 -28.69 49.88 3.990 -10.74 -0.14649 -0.2128 MAY88 D D N Y 29.830 43.70 33.25 7.125 1.99 -0.22192 -0.2128 I I I I I I I 244 NlNUFLUX.DAT I NlNUFLUX.DAT NIPS-1 Nutrient flux data from San Antonio Bay. I Benthic chambers were all clear, but stirred at different speeds to resuspend sediments. DEPLOY= Order of deployment during the day, generally l=AM, 2=noon, and I 3=PM. FLOW= Current speed in chamber in cm/sec. CHAMBER= Replicate chamber number. NUT=nutrient FLUX=nutrient flux in umol/m-2/h, negative numbers indicate sediment I uptake and positive numbers indicate sediment release. DATE STA DEPLOY FLOW CHAMBER NUT FLUX I NOV86 A 1 8.4 1 NH4 34.42 NOV86 A 1 8.4 2 NH4 101.10 NOV86 A 1 19.5 3 NH4 -29.29 NOV86 A 1 19.5 4 NH4 129.59 I NOV86 A 2 8.4 1 NH4 227.92 NOV86 A 2 8.4 2 NH4 431.15 NOV86 A 2 19.5 3 NH4 396.80 NOV86 A 2 19.5 4 NH4 573.32 NOV86 A 3 8.4 1 NH4 186.49 I NOV86 A 3 8.4 2 NH4 -38.94 NOV86 A 3 19.5 3 NH4 96.96 NOV86 A 3 19.5 4 NH4 83.32 NOV86 c 1 8.4 1 NH4 -4.94 I NOV86 c 1 8.4 2 NH4 8.93 NOV86 c 1 19.5 3 NH4 67.74 NOV86 c 1 19.5 4 NH4 86.36 NOV86 c 2 8.4 1 NH4 25.76 NOV86 c 2 8.4 2 NH4 -1.60 I NOV86 c 2 19.5 3 NH4 61.13 NOV86 c 2 19.5 4 NH4 47 .19 NOV86 c 3 8.4 1 NH4 27.09 NOV86 c 3 8.4 2 NH4 -8.28 I NOV86 c 3 19 .5 3 NH4 -33.17 NOV86 c 3 19.5 4 NH4 -27.17 JAN87 A 1 0.0 5 NH4 -201.80 JAN87 A 1 0.0 6 NH4 4.18 JAN87 A 1 0.1 1 NH4 1.20 I JAN87 A 1 8.4 2 NH4 9.90 JAN87 A 1 19.5 3 NH4 159.59 JAN87 A 2 0.0 5 NH4 0.49 JAN87 A 2 0.0 6 NH4 -4.10 I JAN87 A 2 0.1 1 NH4 -29.03 JAN87 A 2 8.4 2 NH4 34.55 JAN87 A 2 19.5 3 NH4 71.50 JAN87 c 1 0.0 5 NH4 25.51 JAN87 c 1 0.0 6 NH4 5.45 I JAN87 c 1 0.1 1 NH4 10.33 JAN87 c 1 8.4 2 NH4 -11. 08 JAN87 c 1 19.5 3 NH4 -25.70 JAN87 c 2 0.0 5 NH4 0.78 I JAN87 c 2 0.0 6 NH4 -4. 77 JAN87 c 2 0.1 1 NH4 13.68 JAN87 c 2 8.4 2 NH4 19.68 JAN87 c 2 19.5 3 NH4 26.16 APR87 A 1 0.0 1 NH4 -854.45 I APR87 A 1 0.0 2 NH4 -878.76 APR87 A 1 0.1 6 NH4 -2569.46 APR87 A J 8.4 7 NH4 -516.84 APR87 A 1 19.5 5 NH4 486.12 I APR87 c 1 0.0 1 NH4 37 .18 APR87 c 1 0.0 2 NH4 -20.17 APR87 c 1 0.1 6 NH4 -43.56 I NlNUFLUX.DAT 245 I APR87 c 1 8.4 7 NH4 -21.41 APR87 c 1 19.5 5 NH4 8.11 I APR87 c 2 0.0 1 NH4 -225.72 APR87 c 2 0.0 2 NH4 4.64 APR87 c 2 0.1 6 NH4 -13.01 APR87 c 2 8.4 7 NH4 17.29 I APR87 c 2 19.5 5 NH4 86.62 JUL87 A 1 0.0 5 NH4 78.21 JUL87 A 1 0.0 6 NH4 -43.67 JUL87 A 1 4.7 1 NH4 270.70 JUL87 A 1 8.4 2 NH4 96.56 I JUL87 A 1 13.9 3 NH4 173.86 JUL87 A 1 19.5 4 NH4 181.97 JUL87 A 2 0.0 5 NH4 8.85 JUL87 A 2 0.0 6 NH4 -17.36 I JUL87 A 2 4.7 1 NH4 21.37 JUL87 A 2 8.4 2 NH4 64.36 JUL87 A 2 13.9 3 NH4 37.82 JUL87 A 2 19.5 4 NH4 144.37 JUL87 c 1 0.0 5 NH4 -67.23 I JUL87 c 1 0.0 6 NH4 -83 .11 JUL87 c 1 4.7 1 NH4 25.55 JUL87 c 1 8.4 2 NH4 154.31 JUL87 c 1 13.9 3 NH4 188.05 I JUL87 c 1 19.5 4 NH4 -5.68 JUL87 c 2 0.0 5 NH4 65.92 JUL87 c 2 0.0 6 NH4 -114.26 I JUL87 c 2 4.7 1 NH4 83.30 JUL87 c 2 8.4 2 NH4 127.47 JUL87 c 2 13.9 3 NH4 13.87 JUL87 c 2 19.5 4 NH4 185.60 NOV86 A 1 8.4 1 N02 11.44 NOV86 A 1 8.4 2 N02 52.09 I NOV86 A 1 19.5 3 N02 86.17 NOV86 A 1 19.5 4 N02 114. 78 NOV86 A 2 8.4 1 N02 41.60 I NOV86 A 2 8.4 2 N02 75.07 NOV86 A 2 19.5 3 N02 31. 72 NOV86 A 2 19.5 4 N02 269.37 NOV86 A 3 8.4 1 N02 45.13 NOV86 A 3 8.4 2 N02 -41. 41 NOV86 A 3 19.5 3 N02 60.03 I I NOV86 A 3 19.5 4 N02 69.38 NOV86 c 1 8.4 1 N02 -46.16 NOV86 c 1 8.4 2 N02 13.75 NOV86 c 1 19.5 3 N02 16.03 NOV86 c 1 19.5 4 N02 17.21 NOV86 c 2 8.4 1 N02 4.79 NOV86 c 2 8.4 2 N02 10.90 NOV86 c 2 19.5 3 N02 44.45 NOV86 c 2 19.5 4 N02 27.17 I NOV86 c 3 8.4 1 N02 -2.05 NOV86 c 3 8.4 2 N02 45.59 NOV86 c 3 19.5 3 N02 -4. 71 NOV86 c 3 19.5 4 N02 7.64 I JAN87 A 1 0.0 5 N02 -0.09 JAN87 A 1 0.0 6 N02 -4.07 JAN87 A 1 0.1 1 N02 -4.26 JAN87 A 1 8.4 2 N02 -3.34 JAN87 A 1 19.5 3 N02 2.03 I JAN87 A 2 0.0 5 N02 15.71 JAN87 A 2 0.0 6 N02 -9.31 JAN87 A 2 0.1 1 N02 -34.80 JAN87 A 2 8.4 2 N02 -5.11 JAN87 A 2 19.5 3 N02 40.28 JAN87 c 1 0.0 5 N02 -21. 30 JAN87 c 1 0.0 6 N02 -26.58 I 246 NlNUFLUX.DAT I JAN87 c 1 0.1 1 N02 24.37 JAN87 c 1 8.4 2 N02 -13. 77 I JAN87 c 1 19.5 3 N02 -13. 34 JAN87 c 2 0.0 5 N02 -1.92 JAN87 c 2 0.0 6 N02 -8.93 JAN87 c 2 0.1 1 N02 10.49 JAN87 c 2 8.4 2 N02 -7.83 I JAN87 c 2 19.5 3 N02 13.37 APR87 A 1 0.0 1 N02 -13. 51 APR87 A 1 0.0 2 N02 18.86 APR87 A 1 0.1 6 N02 -78.49 I APR87 A 1 8.4 7 N02 -42.32 APR87 A 1 19.5 5 N02 -85.86 APR87 c 1 0.0 1 N02 3.70 APR87 c 1 0.0 2 N02 1.58 APR87 c 1 0.1 6 N02 -9.19 I APR87 c 1 8.4 7 N02 0.72 APR87 c 1 19.5 5 N02 -4.84 APR87 c 2 0.0 1 N02 -31. 93 APR87 c 2 0.0 2 N02 -15.29 I APR87 c 2 0.1 6 N02 -1.23 APR87 c 2 8.4 7 N02 14.82 APR87 c 2 19.5 5 N02 31. 72 JUL87 A 1 0.0 5 N02 6.12 JUL87 A 1 0.0 6 N02 -44.83 I JUL87 A 1 4.7 1 N02 -13.98 JUL87 A 1 8.4 2 N02 -0.11 JUL87 A 1 13.9 3 N02 4.08 JUL87 A 1 19.5 4 N02 51.25 I JUL87 A 2 0.0 5 N02 -15.75 JUL87 A 2 0. 0 6 N02 -15.92 JUL87 A 2 4.7 1 N02 -9.99 JUL87 A 2 8.4 2 N02 -21. 96 JUL87 A 2 13.9 3 N02 12.75 I JUL87 A 2 19.5 4 N02 43.90 JUL87 c 1 0.0 5 N02 -29.50 JUL87 c 1 0.0 6 N02 -36.02 JUL87 c 1 4.7 1 N02 13.28 I JUL87 c 1 8.4 2 N02 50.40 JUL87 c 1 13.9 3 N02 81.72 JUL87 c 1 19.5 4 N02 7.98 JUL87 c 2 0.0 5 N02 67.44 JUL87 c 2 0.0 6 N02 -25.65 I JUL87 c 2 4.7 1 N02 9 . 12 JUL87 c 2 8.4 2 N02 57.27 JUL87 c '2 13.9 3 N02 8. 17 JUL87 c 2 19 .5 4 N02 60.22 I NOV86 A 1 8.4 1 N03 31.19 NOV86 A 1 8.4 2 N03 -25.61 NOV86 A 1 19.5 3 N03 -31.19 NOV86 A 1 19.5 4 N03 -33.28 I NOV86 A 2 8.4 1 N03 367.43 NOV86 A 2 8.4 2 N03 -33.24 NOV86 A 2 19.5 3 N03 -70.36 NOV86 A 2 19.5 4 N03 -174.39 NOV86 A 3 8.4 1 N03 -223 .94 I NOV86 A 3 8.4 2 N03 -192.44 NOV86 A 3 19.5 3 N03 -235.41 NOV86 A 3 19.5 .4 N03 -81. 50 NOV86 c 1 8.4 1 N03 141. 52 I NOV86 c 1 8.4 2 N03 -137.99 NOV86 c 1 19.5 3 N03 176.55 NOV86 c 1 19.5 4 N03 -46.92 NOV86 c 2 8.4 1 N03 -20.29 NOV86 c 2 8.4 2 N03 -60. 45 I NOV86 c 2 19.5 3 N03 -49.28 NOV86 c 2 19.5 4 N03 16.38 I I NlNUFLUX.DAT 247 I NOV86 c 3 8.4 1 N03 54.56 NOV86 c 3 8.4 2 N03 55.74 I NOV86 c 3 19.5 3 N03 69.41 NOV86 c 3 19.5 4 N03 60.18 JAN87 A 1 0.0 5 N03 1409.22 JAN87 A 1 0.0 6 N03 1447.26 I JAN87 A 1 0.1 1 N03 1248.78 JAN87 A 1 8.4 2 N03 1248.80 JAN87 A 1 19.5 3 N03 231. 68 JAN87 A 2 0.0 5 N03 83.24 JAN87 A 2 0.0 6 N03 20.67 I JAN87 A 2 0.1 1 N03 -339.70 JAN87 A 2 8.4 2 N03 -146.81 JAN87 A 2 19.5 3 N03 -159.06 JAN87 c 1 0.0 5 N03 7.56 I JAN87 c 1 0.0 6 N03 5.66 JAN87 c 1 0.1 1 N03 -248.04 JAN87 c 1 8.4 2 N03 7.69 JAN87 c 1 19.5 3 N03 13.43 JAN87 c 2 0.0 5 N03 -20.78 I JAN87 c 2 0.0 6 N03 -18.29 JAN87 c 2 0.1 1 N03 -96.08 JAN87 c 2 8.4 2 N03 -7.29 JAN87 c 2 19.5 3 N03 -30.03 I APR87 A 1 0.0 1 N03 1630.21 APR87 A 1 0.0 2 N03 1122. 51 APR87 A 1 0.1 6 N03 781.84 APR87 A 1 8.4 7 N03 692.27 APR87 A 1 19.5 5 N03 1061.81 I APR87 c 1 0.0 1 N03 -50.68 APR87 c 1 0.0 2 N03 -48.86 APR87 c 1 0.1 6 N03 -74.69 APR87 c 1 8.4 7 N03 -106.15 I I APR87 c 1 19.5 5 N03 -75.23 APR87 c 2 0.0 1 N03 -31.76 APR87 c 2 0.0 2 N03 55.32 APR87 c 2 0.1 6 N03 -1.33 APR87 c 2 8.4 7 N03 -11. 97 APR87 c 2 19.5 5 N03 -8.17 JUL87 A 1 0.0 5 N03 -12.20 JUL87 A 1 0.0 6 N03 -19 .17 JUL87 A 1 4.7 1 N03 11.44 I I JUL87 A 1 8.4 2 N03 -13.09 JUL87 A 1 13.9 3 N03 9.76 JUL87 A 1 19.5 4 N03 -64 .19 JUL87 A 2 0.0 5 N03 196.52 JUL87 A 2 0.0 6 N03 188.64 JUL87 A 2 4.7 1 N03 96. 71 JUL87 A 2 8.4 2 N03 79.08 JUL87 A 2 13.9 3 N03 59.14 JUL87 A 2 19.5 4 N03 26.65 I I JUL87 c 1 0.0 5 N03 26.18 JUL87 c 1 0.0 6 N03 20.38 JUL87 c 1 4.7 1 N03 26.23 JUL87 c 1 8.4 2 N03 53.36 JUL87 c 1 13.9 3 N03 -25.23 JUL87 c 1 19.5 4 N03 -6.88 JUL87 c 2 0.0 5 N03 -29.63 JUL87 c 2 0.0 6 N03 -11.49 JUL87 c 2 4.7 1 N03 6.17 I JUL87 c 2 8.4 2 N03 -16.24 JUL87 c 2 13.9 3 N03 -1.80 JUL87 c 2 19.5 4 N03 25.74 NOV86 A 1 8.4 1 P04 18.69 NOV86 A 1 8.4 2 P04 36.17 NOV86 A 1 19.5 3 P04 138.90 NOV86 A 1 19.5 4 P04 192.51 I NlNUFLUX.DAT 248 I NOV86 A 2 8.4 1 P04 248.40 NOV86 A 2 8.4 2 P04 391 .63 I NOV86 A 2 19 .5 3 P04 484.22 NOV86 A 2 19.5 4 P04 1662 . 20 NOV86 A 3 8.4 1 P04 -192 .44 NOV86 A 3 8.4 2 P04 -59.84 I NOV86 A 3 19 .5 3 P04 73.63 NOV86 A 3 19.5 4 P04 67.74 NOV86 c 1 8.4 1 P04 5.32 NOV86 c 1 8.4 2 P04 1.29 NOV86 c 1 19.5 3 P04 -10.30 I NOV86 c 1 19.5 4 P04 73.86 NOV86 c 2 8. 4 1 P04 -23.21 NOV86 c 2 8.4 2 P04 30.36 NOV86 c 2 19.5 3 P04 69.49 I NOV86 c 2 19.5 4 P04 3.57 NOV86 c 3 8. 4 1 P04 185.29 NOV86 c 3 8.4 2 P04 133 .11 NOV86 c 3 19.5 3 P04 80.24 NOV86 c 3 19.5 4 P04 58.85 I JAN87 A 1 0. 0 5 P04 -21.49 JAN87 A 1 0.0 6 P04 -15.35 JAN87 A 1 0. 1 1 P04 -24. 77 JAN87 A 1 8.4 2 P04 -23.21 I JAN87 A 1 19 .5 3 P04 -58.43 JAN87 A 2 0.0 5 P04 -3.44 JAN87 A 2 0.0 6 P04 -10.20 JAN87 A 2 0.1 1 P04 -24.64 JAN87 A 2 8.4 2 P04 -2.66 I JAN87 A 2 19.5 3 P04 39.02 JAN87 c 1 0. 0 5 P04 4.73 JAN87 c 1 0.0 6 P04 3. 27 JAN87 c 1 0.1 1 P04 22.85 I JAN87 c 1 8.4 2 P04 6.46 JAN87 c 1 19.5 3 P04 26. 77 JAN87 c 2 0.0 5 P04 1. 73 JAN87 c 2 0.0 6 P04 -0.80 JAN87 c 2 0.1 1 P04 16.09 I JAN87 c 2 8.4 2 P04 7. 29 JAN87 c 2 19.5 3 P04 17.12 APR87 A 1 0.0 1 P04 -14 .00 APR87 A 1 0.0 2 P04 1. 27 I APR87 A 1 0.1 6 P04 -53.27 APR87 A 1 8. 4 7 P04 -39.08 APR87 A 1 19.5 5 P04 -73. 71 APR87 ·c 1 0.0 1 P04 8.72 APR87 c 1 0.0 2 P04 10.49 I APR87 c 1 0.1 6 P04 17.53 APR87 c 1 8.4 7 P04 19.30 APR87 c 1 19.5 5 P04 15.73 APR87 c 2 0. 0 1 P04 10.98 I APR87 c 2 0.0 2 P04 10.35 APR87 c 2 0. 1 6 P04 -1.90 APR87 c 2 8.4 7 P04 -1.90 APR87 c 2 19 .5 5 P04 -1.90 JUL87 A 1 0. 0 5 P04 13.70 I JUL87 A 1 0. 0 6 P04 -41.11 JUL87 A 1 4.7 1 P04 8.19 JUL87 A 1 8. 4 2 P04 8.21 JUL87 A 1 13.9 3 P04 1.60 I JUL87 A 1 19.5 4 P04 65.79 JUL87 A 2 0.0 5 P04 -0.68 JUL87 A 2 0.0 6 P04 1.58 JUL87 A 2 4.7 1 P04 16.83 JUL87 A 2 8.4 2 P04 9.33 I JUL87 A 2 13.9 3 P04 36.59 JUL87 A 2 19.5 4 P04 46.14 I I NlNUFLUX.DAT 249 I JUL87 c 1 0.0 5 P04 14.30 I JUL87 c 1 0.0 6 P04 -20.52 JUL87 c 1 4.7 1 P04 19.00 JUL87 c 1 8.4 2 P04 65. 77 I JUL87 c 1 13.9 3 P04 93.20 JUL87 c 1 19.5 4 P04 11.17 JUL87 c 2 0.0 5 P04 49.39 JUL87 c 2 0.0 6 P04 -40.75 JUL87 c 2 4.7 1 P04 -32.29 JUL87 c 2 8.4 2 P04 33.24 I JUL87 c 2 13.9 3 P04 0.38 JUL87 c 2 19.5 4 P04 65.92 NOV86 A 1 8.4 1 $104 370.74 I NOV86 A 1 8.4 2 Sl04 -255.28 NOV86 A 1 19.5 3 $104 -187.95 NOV86 A 1 19.5 4 $104 -10.18 NOV86 A 2 8.4 1 $104 -510.10 NOV86 A 2 8.4 2 $104 -487.53 NOV86 A 2 19.5 3 SI04 -1026.35 I I NOV86 A 2 19.5 4 SI04 -2194 .11 NOV86 A 3 8.4 1 Sl04 1119.96 NOV86 A 3 8.4 2 $104 1640.36 NOV86 A 3 19.5 3 $104 664.46 NOV86 A 3 19.5 4 SI04 1242.23 NOV86 c 1 8.4 1 $104 155.20 NOV86 c 1 8.4 2 Sl04 -259.68 NOV86 c 1 19.5 3 $104 511.92 NOV86 c 1 19.5 4 $104 -214.09 I I NOV86 c 2 8.4 1 SI04 95.63 NOV86 c 2 8.4 2 $104 -11. 28 NOV86 c 2 19.5 3 SI04 -65.99 NOV86 c 2 19.5 4 Sl04 -79.52 NOV86 c 3 8.4 1 SI04 -90.08 NOV86 c 3 8.4 2 SI04 169.78 NOV86 c 3 19.5 3 SI04 71.16 NOV86 c 3 19.5 4 SI04 -63 .18 JAN87 A 1 0.0 5 SI04 -128.27 I I JAN87 A 1 0.0 6 SI04 -118.46 JAN87 A 1 0.1 1 SI04 -167.42 JAN87 A 1 8.4 2 SI04 -157.61 JAN87 A 1 19.5 3 SI04 -147.81 JAN87 A 2 0.0 5 SI04 -5.85 JAN87 A 2 0.0 6 SI04 -5.85 JAN87 A 2 0.1 1 SI04 -5.76 JAN87 A 2 8.4 2 SI04 -5.22 JAN87 A 2 19.5 3 SI04 23.95 I JAN87 c 1 0.0 5 SI04 -352.27 JAN87 c 1 0.0 6 SI04 -350.89 JAN87 c 1 0.1 1 SI04 -408. 77 JAN87 c 1 8.4 2 SI04 -227.07 I JAN87 c 1 19.5 3 SI04 -302.60 JAN87 c 2 0.0 5 SI04 -397.77 JAN87 c 2 0.0 6 SI04 -343.48 JAN87 c 2 0.1 1 SI04 -308.47 JAN87 c 2 8.4 2 SI04 -346.97 I JAN87 c 2 19.5 3 SI04 -298.85 APR87 A 1 0.0 1 SI04 -11546.87 APR87 A 1 0.0 2 SI04 -10873.01 APR87 A 1 0.1 6 SI04 -12903.73 I APR87 A 1 8.4 7 SI04 -12101.40 APR87 A 1 19.5 5 SI04 -12652.31 APR87 c 1 0.0 1 SI04 327.48 APR87 c 1 0.0 2 SI04 194. 77 APR87 c 1 0.1 6 SI04 147.01 APR87 c 1 8.4 7 SI04 -300.58 APR87 c 1 19.5 5 SI04 251. 88 I APR87 c 2 0.0 1 SI04 -49.90 250 NlNUFLUX.DAT I APR87 c 2 0.0 2 SI04 -19.91 I APR87 c 2 0.1 6 SI04 -41. 70 APR87 c 2 8.4 7 SI04 177. 24 APR87 c 2 19.5 5 SI04 153.87 JUL87 A 1 0.0 5 SI04 -3661.78 I JUL87 A 1 0.0 6 SI04 -3323.08 JUL87 A 1 4.7 1 SI04 -3568.51 JUL87 A 1 8.4 2 SI04 -5310.69 JUL87 A 1 13.9 3 SI04 -3611.25 JUL87 A 1 19.5 4 SI04 -3528.81 I JUL87 A 2 0.0 5 SI04 -34.76 JUL87 A 2 0.0 6 SI04 -104.48 JUL87 A 2 4.7 1 SI04 4•_.98 JUL87 A 2 8.4 2 SI04 -348.97 I JUL87 A 2 13.9 3 SI04 10.83 JUL87 A 2 19.5 4 SI04 -206.87 JUL87 c 1 0.0 5 SI04 -143.61 JUL87 c 1 0.0 6 SI04 -354.97 JUL87 c 1 4.7 1 SI04 -204.44 I JUL87 c 1 8.4 2 SI04 -224.44 JUL87 c 1 13.9 3 SI04 -175.79 JUL87 c 1 19.5 4 SI04 -257.19 JUL87 c 2 0.0 5 SI04 -293.21 I JUL87 c 2 0.0 6 SI04 -296.63 JUL87 c 2 4.7 1 SI04 27.74 JUL87 c 2 8.4 2 SI04 -11. 97 JUL87 c 2 13.9 3 SI04 -286 .18 JUL87 c 2 19.5 4 SI04 -289.70 I I I I I I I I I I I NlCHLJTU.DAT252 I NlCHLJTU.DAT NIPS-1 Chlorophyll and turbidity data from chambers. I Chlorophyll (CHLO) and Phaeophytin (PHAE) and turbidity (JTU).From San Antonio bay chamber experiments. These are final concentrations in chambers after the incubation period in HR. Pigment concentrations in ug/ 1. On each date and station the chambers were deploy up to three times in one day (DEPLOY=l,2, OR 3). Current speed was set in chamber (FLOW in cm/sec) Sometimes more than one sample was withdrawn from a chamber (REP). I DATE STA DEPLOY CHAMBER FLOW HR REP CHLO PHAE JTU I NOV86 A 1 1 8.4 1.5 1 9.86 3.24 29 NOV86 A 1 2 8.4 1.5 1 8.21 5.76 63 I NOV86 A 1 3 19.5 1.5 1 11. 56 18.47 320 NOV86 A 1 4 19.5 1.5 1 13.47 21. 73 270 NOV86 A 2 1 8.4 1.5 1 17.08 10.57 78 NOV86 A 2 2 8.4 1.5 1 16.82 14.49 91 NOV86 A 2 3 19.5 1.5 1 27.44 31.00 390 I NOV86 A 2 4 19.5 1.5 1 21.83 35.35 340 NOV86 A 3 1 8.4 1.5 1 5.52 5.43 54 NOV86 A 3 2 8.4 1.5 1 6.50 7.07 67 NOV86 A 3 3 19.5 1.5 1 10.58 25.66 470 I NOV86 A 3 4 19.5 1.5 1 8.34 20.18 240 NOV86 c 1 1 8.4 1.5 1 10.51 8.22 52 NOV86 c 1 1 8.4 1. 5 2 10. 77 7.79 52 NOV86 c 1 2 8.4 1.5 1 10.77 9.54 57 NOV86 c 1 2 8.4 1. 5 2 10.25 9.75 57 I NOV86 c 1 3 19.5 1. 5 1 28.91 20.50 135 NOV86 c 1 3 19.5 1. 5 2 26.41 19.98 135 NOV86 c 1 4 19.5 1. 5 1 25.49 22 .17 175 NOV86 c 1 4 19.5 1. 5 2 25.89 22 .10 175 I I NOV86 c 2 1 8. 4 1. 5 1 15.24 5.07 22 NOV86 c 2 1 8.4 1.5 2 16.16 4.79 22 NOV86 c 2 2 8.4 1.5 1 20.76 13.87 77 NOV86 c 2 2 8.4 1. 5 2 21.81 14.25 77 NOV86 c 2 3 19.5 1.5 1 53.23 32.96 188 NOV86 c 2 3 19.5 1. 5 2 56.55 32.15 188 NOV86 c 2 4 19.5 1.5 1 44.08 20.48 125 NOV86 c 2 4 19.5 1.5 2 42.83 21. 72 125 NOV86 c 3 1 8.4 1.5 1 15.39 39.61 561 I I NOV86 c 3 1 8.4 1.5 2 24.53 40.52 561 NOV86 c 3 2 8.4 1.5 1 18. 71 57.92 611 NOV86 c 3 2 8.4 1.5 2 21.21 66.49 611 NOV86 c 3 3 19.5 1.5 1 35.34 51.85 488 NOV86 c 3 3 19.5 1.5 2 42.41 57.36 488 NOV86 c 3 4 19.5 1.5 1 91.90 132.15 949 NOV86· c 3 4 19.5 1.5 2 69.44 90.71 949 JAN87 A 1 1 0.1 3.0 1 2.00 1. 70 41 JAN87 A 1 1 0 .1 3.0 2 1.97 1.75 41 I I JAN87 A 1 2 8.4 3.0 1 1.45 1. 27 34 JAN87 A 1 2 8.4 3.0 2 1.43 1.36 34 JAN87 A 1 3 19.5 3.0 1 4.91 14.21 370 JAN87 A 1 3 19.5 3.0 2 4.45 13.92 370 JAN87 A 1 4 8.4 3.0 1 2.89 1.94 41 JAN87 A 1 4 8.4 3.0 2 2.83 1.97 41 JAN87 A 1 5 0.0 3.0 1 1.55 1.63 30 JAN87 A 1 5 0.0 3.0 2 1.52 1.38 30 JAN87 A 1 6 0.0 3.0 1 1.55 1.26 31 I JAN87 A 1 6 0.0 3.0 2 1.64 1.19 31 JAN87 A 1 7 0.0 3.0 1 1.67 0.79 21 JAN87 A 1 7 0.0 3.0 2 1.55 0.99 21 JAN87 A 1 8 0.0 3.0 1 1.66 1.00 25 JAN87 A 1 8 0.0 3.0 2 1.43 1.38 25 JAN87 A 2 1 0.1 3.0 1 3.66 3.03 67 JAN87 A 2 1 0.1 3.0 2 3.49 3.30 67 I NlOXFLUX.DAT 251 I NlOXFLUX.DAT NIPS-1 Oxygen flux data vs. current flow. (nmolm/m~2/h). Chambers were set at different I current speeds (FLOW). DATE STATION DEPLOY CHAMBER FLOW FLUX I DATE S D C FLOW FLUX JAN87 A 1 1 0.1 -0.57 JAN87 A 1 2 8.4 -4.33 JAN87 A 1 3 19.5 -5.37 I JAN87 A 1 5 0 -0.90 JAN87 A 1 6 0 -1.34 JAN87 A 2 1 0.1 -9.86 JAN87 A 2 2 8.4 2.09 I JAN87 A 2 3 19.5 -4.48 JAN87 A 2 5 0 0.60 JAN87 A 2 6 0 -3.79 JAN87 C 1 1 0.1 -2.90 JAN87 C 1 2 8.4 -2.03 I JAN87 C 1 3 19.5 1.67 JAN87 C 1 5 0 -1.76 JAN87 C 1 6 0 5.32 JAN87 C 2 1 0.1 -9.47 I JAN87 C 2 2 8.4 6.21 JAN87 C 2 3 19.5 5.08 JAN87 C 2 5 O -3.76 JAN87 C 2 6 0 2.12 APR87 A 1 5 19.5 -1.97 I APR87 A 1 6 0.1 -2.16 APR87 A 2 5 19.5 -2.01 APR87 A 2 6 0.1 -1.14 APR87 A 2 7 8.4 -1.26 I JUL87 A 1 1 4.7 -3.69 JUL87 A 1 2 8.4 -1.20 JUL87 A 1 3 13.9 -1.71 JUL87 A 1 4 19.5 -1.44 JUL87 A 2 1 4.7 -2.22 I JUL87 A 2 2 8.4 -3.45 JUL87 A 2 3 13.9 -1.76 JUL87 A 2 4 19.5 -1.26 JUL87 A 2 9 19.5 -2.59 I JUL87 C 1 1 4.7 0.13 JUL87 C 1 2 8.4 -0.86 JUL87 C 1 3 13.9 -2.52 JUL87 C 1 4 19.5 -1.65 I JUL87 C 2 1 4.7 -1.49 JUL87 C 2 2 8.4 -1.95 JUL87 C 2 3 13.9 -2.06 JUL87 C 2 4 19.5 -2.11 JUL87 C 2 9 19.5 -11.79 I I I I I I NlCHLJTU.DAT 253 I JAN87 A 2 2 8.4 3.0 1 4.20 1.23 31 JAN87 A 2 2 8.4 3.0 2 4.24 2.30 31 I JAN87 A 2 3 19.5 3.0 1 9.33 24.34 620 JAN87 A 2 3 19.5 3.0 2 7.75 24.97 620 JAN87 A 2 4 8.4 3. 0 1 4.91 2.49 46 JAN87 A 2 4 8.4 3.0 2 4.87 2.43 46 I JAN87 A 2 5 0.0 3.0 1 2.12 1.35 27 JAN87 A 2 5 0.0 3.0 2 2.04 1.43 27 JAN87 A 2 6 0.0 3.0 1 2.08 1.29 25 JAN87 A 2 6 0.0 3.0 2 2.04 2.04 25 JAN87 A 2 7 0.0 3.0 1 3.70 1.33 25 I JAN87 A 2 7 0.0 3.0 2 3.08 2.11 25 JAN87 A 2 8 0.0 3.0 1 3.53 1.09 22 JAN87 A 2 8 0.0 3.0 2 3.66 1.17 22 JAN87 c 1 1 0.1 3.0 1 14.32 6.47 64 I JAN87 c 1 1 0.1 3.0 2 13.14 5.75 64 JAN87 c 1 2 8.4 3.0 1 10.64 2.68 26 JAN87 c 1 2 8.4 3.0 2 14.59 4.62 26 JAN87 c 1 3 19.5 3.0 1 28.91 19.39 150 JAN87 c 1 3 19.5 3.0 2 24.70 15.33 150 I JAN87 c 1 4 8.4 3.0 1 19.05 5.24 27 JAN87 c 1 4 8.4 3.0 2 19.18 4.63 27 JAN87 c 1 5 0.0 3.0 1 5. 78 3.25 12 JAN87 c 1 5 0.0 3.0 2 6.83 3.47 12 I JAN87 c 1 6 0.0 3.0 1 6.18 2.69 10 JAN87 c 1 6 0.0 3.0 2 6.83 2.83 10 JAN87 c 1 7 0.0 3.0 1 11.56 4.14 12 JAN87 c 1 7 0.0 3.0 2 13.14 3.68 12 JAN87 c 1 8 0.0 3.0 1 11.30 3.77 14 I JAN87 c 1 8 0.0 3.0 2 9.46 3.86 14 JAN87 c 2 1 0.1 3.0 1 7.75 4. 77 36 JAN87 c 2 1 0.1 3.0 2 8.41 3.80 36 JAN87 c 2 2 8.4 3.0 1 10.25 4.50 49 I JAN87 c 2 2 8.4 3.0 2 10. 77 4.45 49 JAN87 c 2 3 19.5 3.0 1 18.53 15.78 200 JAN87 c 2 3 19.5 3.0 2 18.26 15.09 200 JAN87 c 2 4 8.4 3.0 1 12.22 6.35 34 JAN87 . c 2 4 8.4 3.0 2 13.14 5.59 34 JAN87 c 2 5 0.0 3.0 1 4.16 1.98 15 I JAN87 c 2 5 0.0 3.0 2 4 .12 2.12 15 JAN87 c 2 6 0.0 3.0 1 3.83 2.11 12 JAN87 c 2 6 0.0 3.0 2 4.28 2.56 12 JAN87 c 2 7 0.0 3.0 1 9.23 2.89 19 JAN87 c 2 7 0.0 3.0 2 8.32 4.06 19 I I JAN87 c 2 8 0.0 3.0 1 7.86 3.51 19 JAN87 c 2 8 0.0 3.0 2 8.19 4.19 19 APR87 A 1 1 0.0 3.0 1 8.73 5.51 62 APR87 A 1 1 0.0 3.0 2 9.72 4.37 62 APR87 A 1 2 0.0 3.0 1 7.07 3.12 26 APR87 A 1 2 0.0 3.0 2 6.31 1.41 26 APR87 A 1 3 0.0 3.0 1 4.37 2.30 13 APR87 A 1 3 0.0 3.0 2 4.00 1.60 13 I APR87 A 1 4 0.0 3.0 1 3.79 2.31 22 APR87 A 1 4 0.0 3.0 2 3.64 1.58 22 APR87 A 1 5 19.5 3.0 1 13.88 13.48 50 APR87 A 1 5 19.5 3.0 2 14.24 12.99 50 APR87 A 1 6 0.1 3.0 1 5.09 2.64 49 APR87 A 1 6 0.1 3.0 2 5.56 1.80 49 I APR87 A 1 7 8.4 3.0 1 6.19 2.37 23 APR87 A 1 7 8.4 3.0 2 6.08 2.09 23 APR87 A 1 8 0.0 3.0 1 8.47 4.17 42 APR87 A 1 8 0.0 3.0 2 10.60 4.74 42 I APR87 A 2 1 0.0 3.0 1 6.97 2.53 28 APR87 A 2 1 0.0 3.0 2 6.91 1.89 28 APR87 A 2 2 0.0 3.0 1 8.06 2.45 24 APR87 A 2 2 0.0 3.0 2 7.80 1.95 24 APR87 A 2 3 0.0 3.0 1 2.96 2.45 22 I 254 NlCHLJTU.DAT I APR87 A 2 3 0.0 3. 0 2 3. 69 1.34 22 APR87 A 2 4 0.0 3.0 1 2.96 1.88 25 I APR87 A 2 4 0.0 3.0 2 2. 91 1.43 25 APR87 A 2 5 19.5 3.0 1 11.18 8.89 60 APR87 A 2 5 19.5 3.0 2 10.50 8.62 60 APR87 A 2 6 0.1 3.0 1 8.73 3. 78 43 I APR87 A 2 6 0.1 3.0 2 10.81 3. 59 43 APR87 A 2 7 8.4 3. 0 1 10.34 4.31 52 APR87 A 2 7 8.4 3.0 2 10.19 4.21 52 APR87 A 2 8 0.0 3.0 1 7.28 3.73 35 APR87 A 2 8 0.0 3.0 2 7.33 3.11 35 I APR87 c 1 1 0.0 3.0 1 7.95 2.61 8 APR87 c 1 1 0.0 3.0 2 8.32 2 .15 8 APR87 c 1 2 0.0 3.0 1 7.73 2.23 8 APR87 c 1 2 0.0 3.0 2 8.57 2. 00 8 I APR87 c 1 3 0.0 3.0 1 7. 48 2.23 8 APR87 c 1 3 0.0 3. 0 2 7.69 2.32 8 APR87 c 1 4 0.0 3. 0 1 5. 28 2.27 10 APR87 c 1 4 0.0 3.0 2 5.32 2.33 10 APR87 c 1 5 19.5 3.0 1 14.85 15.33 100 I APR87 c 1 5 19.5 3.0 2 14.45 15.40 100 APR87 c 1 6 0.1 3.0 1 5.95 1.50 5 APR87 c 1 6 0.1 3.0 2 4.37 1. 27 5 APR87 c 1 7 8.4 3.0 1 12.64 4. 47 12 I APR87 c 1 7 8.4 3.0 2 11.35 4. 50 12 APR87 c 1 8 0.0 3.0 1 9.36 3.88 17 APR87 c 1 8 0.0 3.0 2 9.31 3.67 17 APR87 c 2 1 0.0 3.0 1 9.90 5.20 30 APR87 c 2 1 0.0 3.0 2 9.15 4.89 30 I APR87 c 2 2 0.0 3. 0 1 7.24 3.03 7 APR87 c 2 2 0.0 3.0 2 8.07 2.80 7 APR87 c 2 3 0.0 3.0 1 3.62 3.43 46 APR87 c 2 3 0.0 3.0 2 3.78 3.36 46 I APR87 c 2 4 0.0 3.0 1 12.14 4.21 9 APR87 c 2 4 0.0 3.0 2 11.93 3.97 9 APR87 c 2 5 19.5 2.0 1 13.67 19.69 140 APR87 c 2 5 19.5 2.0 2 14.19 19.64 140 APR87 c 2 6 0.1 2.0 1 5.07 2.22 7 I APR87 c 2 6 0.1 2.0 2 5.61 2.03 7 APR87 c 2 7 8.4 2.0 1 9.02 3.56 13 APR87 c 2 7 8.4 2.0 2 9.44 4.10 13 APR87 c 2 8 0.0 2.0 1 9. 02 3.40 9 I APR87 c 2 8 0.0 2.0 2 9. 40 3.63 9 JUL87 A 1 1 4.7 3.0 1 10.06 5.53 15 JUL87 A 1 1 4.7 3.0 2 9. 72 6.44 15 JUL87 A 1 2 8.4 3.0 1 18.23 10.37 34 I JUL87 A 1 2 8.4 3.0 2 18. 71 11.06 34 JUL87 A 1 3 13.9 3.0 1 17.46 16.41 65 JUL87 A 1 3 13.9 3.0 2 17 .26 17.04 65 JUL87 A 1 4 19.5 3.0 1 22.56 25.34 100 JUL87 A 1 4 19 .5 3.0 2 24.09 27.78 100 I JUL87 A 1 5 0. 0 3.0 1 10.51 4.79 14 JUL87 A 1 5 0.0 3.0 2 10.29 5. 54 14 JUL87 A 1 6 0.0 3.0 1 12.70 4.98 14 JUL87 A 1 6 0.0 3.0 2 12.48 6.26 14 ·I JUL87 A 1 7 . 0.0 3.0 1 11.61 5.55 13 JUL87 A 1 7 0.0 3.0 2 11.39 6.03 13 JUL87 A 1 8 0.0 3.0 1 10.51 5.32 12 JUL87 A 1 8 0.0 3.0 2 10.51 6.64 12 JUL87 A 2 1 4.7 3.0 1 18 I JUL87 A 2 2 8.4 3.0 1 39 JUL87 A 2 3 13.9 3.0 1 78 JUL87 A 2 4 19.5 3.0 1 87 JUL87 A 2 5 0.0 3.0 1 12 I JUL87 A 2 6 0.0 3.0 1 11 JUL87 A 2 7 0.0 2.0 1 13 JUL87 A 2 8 0.0 2.0 1 12 I NlCHLJTU.DAT I 255 I JUL87 c 1 1 4.7 3.0 1 24 JUL87 c 1 2 8.4 3.0 1 37 I I JUL87 c 1 3 13.9 3.0 1 70 JUL87 c 1 4 19.5 3.0 1 60 JUL87 c 1 5 0.0 3.0 1 20 JUL87 c 1 6 0.0 3.0 1 15 JUL87 c 2 1 4.7 2.0 1 36 JUL87 c 2 2 8.4 2.0 1 53 JUL87 c 2 3 13.9 2.0 1 102 JUL87 c 2 4 19.5 2.0 1 136 JUL87 c 2 5 0.0 2.0 1 18 JUL87 c 2 6 0.0 2.0 1 JUL87 c 2 7 0.0 2.0 1 14 JUL87 c 2 8 0.0 2.0 1 16 I I I I I I I I I I I I I 256 NlSSFLUX.OAT I NlSSFLUX.OAT NIPS-1 Sediment resuspension in chambers. I (FLUX in g/m~2/h) from San Antonio Bay chamber experiments. This was performed in July 1987 at stations A and C only. On each date and station the chambers were deployed two times in one day (D=A for AM, or D=P for PM). Current speed was I set in chamber (FLOW in cm/sec). I STA 0 FLOW FLUX A A 0.0 -2.0188 A A 4.7 -1.4250 I A A 8.4 -2.0188 A A 13.9 9.3812 A A 19.5 16.8625 A 0.0 -2.6719 p I A p 4.7 -2.1375 A p 8.4 -1. 9594 A 13.9 14.9625 p I p A 19.5 17.6344 c A 0.0 -3.5625 c A 4.7 -1. 9594 c A 8.4 -2.3156 c A 13.9 6.5313 c A 19.5 3.5031 I c p 0.0 -12.0234 c 4.7 -4.8984 p c p 8.4 -1.7812 c p 13.9 10.6875 c p 19.5 21.8203 I I I I I I I I I I NlSEOCHN.DAT 257 I NlSEDCHN.DAT NIPS-1 San Antonio Bay Sediment CHN data. I Cores (REP) were sectioned every cm (Z), so Z=3 is the 2-3 cm section. %N and %C. Cores were acid washed to take away carbonate, so C is Organ ic Carbon . DATE STA REP Z N c I JAN87 A 1 1 0.14 1. 25 I JAN87 A 1 2 0.114 1.084 JAN87 A 1 3 0.121 1.119 JAN87 A 1 4 0.112 1.083 JAN87 A 1 5 0.123 1.140 JAN87 A 1 6 0.127 1.161 I JAN87 A 1 7 0.112 1.094 JAN87 A 1 8 0. 123 1.137 JAN87 A 1 9 0.111 1.105 JAN87 A 1 10 0.115 1.091 I JAN87 8 1 1 0.11 1.067 JAN87 8 1 2 0.110 1.590 JAN87 8 1 3 0.101 1.345 JAN87 8 1 4 0.083 1.266 JAN87 B 1 5 0.097 1. 710 I JAN87 B 1 6 0.079 1.988 JAN87 B 1 7 0.091 1.177 JAN87 B 1 7 0. 081 0.899 JAN87 8 1 8 0.078 0.717 I JAN87 B 1 9 0.096 1. 762 JAN87 B 1 9 0.086 0.970 JAN87 B 1 10 0.097 0.982 JAN87 c 1 1 0.069 0.672 JAN87 c 1 2 0.087 0. 753 I JAN87 c 1 3 0.095 0.803 JAN87 c 1 4 0.092 0.844 JAN87 c 1 5 0.071 0.745 JAN87 c 1 6 0.088 0.889 I JAN87 c 1 7 0.072 0.850 JAN87 c 1 8 0.075 0.843 JAN87 c 1 9 0.076 0.691 JAN87 c 1 10 0.071 0.732 JAN87 0 1 1 0.150 1. 212 I JAN87 0 1 1 0.14 1.11 JAN87 D 1 2 0.080 0.704 JAN87 D 1 3 0.14 0.88 JAN87 D 1 3 0.13 0.88 I I JAN87 D 1 4 0.09 0.80 JAN87 D 1 5 0.082 0.748 JAN87 0 1 5 0. 09 0.85 JAN87 D 1 6 0.062 0.574 JAN87 D 1 7 0.078 0.700 JAN87 D 1 8 0.06 0.39 JAN87 D 1 9 0.047 0. 414 JAN87 0 1 10 0.064 0.299 MAR87 c 1 1 0.057 0.539 I APR87 B 1 1 0.13 1.10 APR87 c 1 1 0.07 0.61 APR87 D 1 1 0.087 0.796 JUN87 A 1 1 0. 16 1.18 JUN87 B 1 1 0.084 0. 771 JUN87 c 1 1 0.073 0.647 JUN87 0 1 1 0.05 0. 31 I I 258 NlHACCHN.DAT I NlMACCHN.DAT NIPS-1 San Antonio Bay Macrofauna CHN data. I Animals were extracted and grouped together. Jan 1987. %N and %C of dry weight. Cores were acid washed to take away carbonate, so C is Organic Carbon. POLY=polychaete, NEMERT=nemertinea, MOLL=mollusk, CRUS=crustacea, I OPHl=ophiuroid pieces I id taxa mon sta n% c% 1 POLY JAN A 9.411 41. 742 42 NEMERT JAN B 10.491 44. 211 I 28 MOLL JAN B 8.928 39.274 27 CRUS JAN B 9.017 41. 778 53 POLY JAN B 6.781 28.831 94 MOLL JAN D 9.587 41. 086 81 POLY JAN D 8.777 41. 245 I 75 OPHI JAN C 3.495 20.820 67 MOLL JAN C 1.872 36.688 76 POLY JAN C 8.255 38.109 162 MOLL APR C 10.317 42.683 I 154 CRUS APR C 10.336 45.557 166 POLY APR C 7.488 32.696 189 PHORONID APR D 10.263 47.756 194 MOLL APR D 9.980 41.056 193 POLY APR D 6.292 30.832 I 142 MOLL APR B 11.134 48.093 144 POLY APR B 8.879 40.692 126 CRUS APR B 8.282 43.563 118 NEMERT APR B 8.587 42.865 I 112 OTHER APR A 9.036 47.681 102 MOLL APR A 1.297 31. 237 105 MOLL APR A 8.919 40.905 98 MOLL APR A 7.941 37.656 121 POLY APR A 8.170 35. 909 I 111 MOLL APR A 14.554 39.243 I I I I I I I -.. --------- ~ I I SEDGRAIN.OAT 259 I SEDGRAIN.DAT NIPS-1, NIPS-2, estuarine comparison sediment grain size data . I Percent sand, rubble, clay and silt. Ea~h replicate core wassectioned into a 0-3 cm and 3-10 cm section (SEC) .BAY codes: GE=Guadalupe, LP=Lavaca-Tres Palacios, NC=Nueces I DATE BAY STA REP SEC SAND RUBBLE CLAY SILT I JUN1987 GE A 1 3 0.30197 0.09657 0. 27417 0.32730 JUN1987 GE A 1 10 0.24570 0.16680 0.28070 0.30680 JUN1987 GE B 1 3 0.06710 0 . 13603 0.49307 0.30377 JUN1987 GE B 1 10 0.02310 0. 04770 0.62390 0.30520 JUN1987 GE c 1 3 0.27697 0.03377 0.38337 0.30590 I I JUN1987 GE c 1 10 0 .19000 0.02280 0.48770 0.29960 JUN1987 GE D 1 3 0.65227 0.05537 0.13683 0.15553 JUN1987 GE D 1 10 0.77960 0. 04420 0.08980 0.08640 JUL1987 GE A 1 3 0.25883 0.06657 0.27713 0.39747 JUL1987 GE A 1 10 0. 26550 0.13050 0.32550 0.27850 JUL1987 GE B 1 3 0.03037 0.06543 0. 56857 0.33570 JUL1987 GE B 1 10 0.04060 0.05380 0. 56530 0.34030 JUL1987 GE c 1 3 0.14713 0.01863 0.43187 0.40240 JUL1987 GE c 1 10 0.23800 0.03210 0.34840 0.38160 I I JUL1987 GE D 1 3 0.14687 0.00353 0.46967 0.37990 JUL1987 GE D 1 10 0.18390 0. 00410 0.48260 0.32950 APR1988 GE A 1 3 0.31360 0.05210 0.24510 0.38930 APR1988 GE A 1 10 0. 25460 0.18470 0. 27390 0. 28670 APR1988 GE A 2 3 0.12050 0.03020 0.38740 0.46190 APR1988 GE A 2 10 0.39650 0.05940 0. 28190 0.26220 APR1988 GE A 3 3 0.18740 0.06140 0.34600 0.40520 APR1988 GE A 3 10 0.26070 0.07060 0.33720 0.33150 APR1988 GE B 1 3 0.04160 0. 04210 0. 54110 0.37520 I I APR1988 GE B 1 10 0.02260 0.03620 0.53470 0.40660 APR1988 GE B 2 3 0.05560 0. 04830 0.53270 0.36340 APR1988 GE B 2 10 0.02550 0.02040 0.58640 0.36770 APR1988 GE B 3 3 0.04540 0.06040 0.54280 0.35140 APR1988 GE B 3 10 0.01440 0.03050 0. 60000 0.35510 APR1988 GE c 1 3 0.44650 0.07160 0.22930 0.25260 APR1988 GE c 1 10 0.15480 0.03260 0.48290 0.32980 APR1988 GE c 2 3 0.34350 0.03920 0.29130 0.32610 APR1988 GE c 2 10 0.16650 0. 03220 0.49820 0.30310 I APR1988 GE c 3 3 0.38510 0.06040 0.26610 0.28840 APR1988 GE c 3 10 0.16100 0.02930 0.47140 0.33830 APR1988 GE D 1 3 0. 54070 0.01560 0.21320 0. 23040 APR1988 GE D 1 10 0.36150 0.00840 0.37420 0. 25590 I APR1988 GE D 2 3 0.50120 0.00700 0.22510 0. 26680APR1988 GE D 2 10 0.39010 0.00620 0.36730 0.23650APR1988 GE D 3 3 0.36080 0.00870 0.34080 0.28970 APR1988 GE D 3 10 0.40150 0.00850 0.37840 0.21170 JUL1988 GE A 1 3 0.15200 0. 11990 0.29680 0.43130 I JUL1988 GE A 1 10 0.08520 0.01480 0.41750 0.48240 JUL1988 GE A 2 3 0.09410 0.06690 0.24090 0.59800 JUL1988 GE A 2 10 0.08920 0.03220 0.45800 0.42050 JUL1988 GE A 3 3 0. 01690 0.00950 0.31400 0.65960 I JUL1988 GE A 3 10 0.12460 0.13110 0.42160 0.32260JUL1988 GE B 1 3 0.04660 0.13030 0. 26720 0.55590JUL1988 GE B 1 10 0.04020 0.13830 0. 19200 0.62960JUL1988 GE B 2 3 0.06400 0.22030 0.31780 0.39780JUL1988 GE B 2 10 0.04040 0.13940 0.36720 0. 45310 I JUL1988 GE B 3 3 0.06930 0.37410 0.28630 0.27040 JUL1988 GE B 3 10 0.04580 0.09860 0. 26140 0.59420 JUL1988 GE c 1 3 0.39040 0.08510 0.20890 0.31560 JUL1988 GE c 1 10 0.34440 0.05460 0 . 19540 0.40550 I JUL1988 GE c 2 3 0.43870 0.02920 0.17140 0.36070JUL1988 GE c 2 10 0.25160 0.31030 0.16110 0. 27690JUL1988 GE c 3 3 0.40610 0.10230 0.25190 0.23970 I 260 SEDGRAIN.DAT I JUL1988 GE c 3 10 0.30860 0 .12330 0.16570 0.40240 JUL1988 GE D 1 3 0.52580 0.03790 0. 09770 0.33860 I JUL1988 GE D 1 10 0 . 14750 0. 01330 0.38550 0. 45380 JUL1988 GE D 2 3 0. 54800 0. 10010 0.18300 0.16880 JUL1988 GE D 2 10 0 .12990 0. 13070 0.50870 0.23070 JUL1988 GE D 3 3 0. 50840 0.15060 0.13810 0. 20290 JUL1988 GE D 3 10 0.07620 0.15790 0.45540 0.31050 I APR1988 LP A 1 3 0. 77710 0. 01170 0.10410 0. 10700 APR1988 LP A 1 10 0. 29230 0.00670 0.40580 0.29530 APR1988 LP A 2 3 0. 73540 0.04550 0. 12070 0.09830 APR1988 LP A 2 10 0.38260 0.01030 0.35220 0. 25500 I APR1988 LP A 3 3 0.80900 0. 01730 0.08320 0.09040 APR1988 LP A 3 10 0. 49800 0.01070 0.27210 0.21910 APR1988 LP B 1 3 0. 10830 0.00640 0.53140 0.35390 APR1988 LP B 1 10 0. 04930 0.00540 0.63870 0.30670 APR1988 LP B 2 3 0.04750 0.00460 0.61020 0.33770 I APR1988 LP B 2 10 0. 03970 0.00250 0.64430 0.31350 APR1988 LP B 3 3 0. 08280 0.00540 0.58070 0.33120 APR1988 LP B 3 10 0. 06850 0.00640 0.58730 0.33780 APR1988 LP c 1 3 0. 27750 0.03080 0.41720 0.27450 I APR1988 LP c 1 10 0.28910 0. 01350 0. 45950 0.23790 APR1988 LP c 2 3 0.29770 0.08360 0.37010 0.24850 APR1988 LP c 2 10 0.24990 0.01340 0.46760 0.26900 APR1988 LP c 3 3 0. 20670 0.04510 0. 39770 0.35050 APR1988 LP c 3 10 0.27780 0.02790 0.42690 0. 26750 I APR1988 LP D 1 3 0.12290 0.00950 0.60450 0. 26300 APR1988 LP D 1 10 0.14840 0.01000 0.60930 0.23230 APR1988 LP D 2 3 0.10480 0.00720 0.63390 0.25410 APR1988 LP D 2 10 0 .13680 0.01110 0.59610 0.25600 I APR1988 LP D 3 3 0 .13660 0. 01160 0.66990 0. 18190 APR1988 LP D 3 10 0 .15100 0.01070 0. 60530 0. 23300 JUL1988 LP A 1 3 0.57920 0.01670 0.22180 0.18240 JUL1988 LP A 1 10 0.26210 0.00600 0.44970 0.28220 JUL1988 LP A 2 3 0.56020 0. 10720 0.21500 0.11770 I JUL1988 LP A 2 10 0.38280 0.00530 0.38960 0. 22230 JUL1988 LP A 3 3 0.50720 0.01710 0.32790 0.14780 JUL1988 LP A 3 10 0.53380 0. 01150 0.29690 0.15780 JUL1988 LP B 1 3 0.30290 0.01310 0.44460 0.23940 I JUL1988 LP B 1 10 0.07560 0.00910 0.56620 0.34910 JUL1988 LP B 2 3 0.35440 0.00590 0.41910 0.22060 JUL1988 LP B 2 10 0. 11190 0.00830 0.64790 0.23190 JUL1988 LP B 3 3 0.36750 0.01050 0.44080 0.18120 JUL1988 LP B 3 10 0. 11390 0.01980 0.60900 0.25730 I JUL1988 LP c 1 3 0.33620 0.05320 0.43160 0.17910 JUL1988 LP c 1 10 0. 29930 0.01600 0. 50000 0.18460 JUL1988 LP c 2 3 0.31690 0.02410 0.44180 0. 21720 JUL1988 LP c 2 10 0.27240 0. 00870 0.49660 0.22230 I JUL1988 LP c 3 3 0.34540 0.04140 0. 42190 0.19130 JUL1988 LP c 3 10 0. 24570 0.01010 0.50700 0.23720 JUL1988 LP D 1 3 0 . 13440 0.00270 0.60860 0.25430 JUL1988 LP D 1 10 0. 13070 0.01110 0.61140 0. 24680 I JUL1988 LP D 2 3 0.14840 0.00520 0.61770 0.22870 JUL1988 LP D 2 10 0.17250 0.00870 0.60430 0.21450 JUL1988 LP D 3 3 0. 14210 0.01110 0.60960 0.23710 JUL1988 LP D 3 10 0 .14090 0.03220 0.59330 0.23360 APR1988 NC c 1 3 0. 02930 0. 29570 0.48050 0 . 19450 I APR1988 NC c 1 10 0. 04010 0.35130 0.42590 0.18270 APR1988 NC c 2 3 0.03480 0.35030 0.42810 0.18670 APR1988 NC c 2 10 0.02080 0.32480 0. 46210 0.19230 APR1988 NC c 3 3 0.04130 0.37500 0.41240 0. 17130 I APR1988 NC c 3 10 0. 03080 0.28280 0.48240 0.20400 APR1988 NC A 1 3 0.02370 0.00100 0.07360 0.90170 APR1988 NC A 1 10 0 .16920 0.00690 0.43370 0.39020 APR1988 NC A 2 3 0. 06830 0.00630 0.56060 0.36470 APR1988 NC A 2 10 0.27480 0.00980 0.42500 0.29040 I APR1988 NC A 3 3 0. 08260 0.00460 0.58510 0.32770 APR1988 NC A 3 10 0.22950 0. 01050 0.41980 0.34020 I I I SEOGRAIN.OAT I I APR1988 NC B 1 3 0.85970 0.03800 0.06890 0.03340APR1988 NC B 1 10 0.82150 0.03260 0.11160 0.03430APR1988 NC B 2 3 0.90310 0.04050 0.03340 0.02290APR1988 NC B 2 10 0. 76710 0.02070 0.06960 0.14260APR1988 NC B 3 3 0.89440 0.03540 0.04870 0.02150APR1988 NC B 3 10 0.76680 0.02770 0.15720 0.04830APR1988 NC D 1 3 0.81920 0.01200 0.13870 0.03000 I APR1988 NC D 1 10 0.79360 0.00820 0.16600 0.03230APR1988 NC D 2 3 0.82590 0.00800 0.13580 0.03030APR1988 NC D 2 10 0.78630 0.00940 0.17010 0.03420APR1988 NC 0 3 3 0.82940 0.01160 0.12930 0.02970 I APR1988 NC D 3 10 0.80590 0.01370 0.15280 0.02760APR1988 NC c 1 3 0.00380 0. 00440 0.77390 0.21790APR1988 NC c 1 10 0.01440 0.04150 0.668f) 0.27550APR1988 NC c 2 3 0.00400 0. 00480 0.77200 0.21930APR1988 NC c 2 10 0.03700 0. 02430 0.66810 0.27060 I I APR1988 NC c 3 3 0.00380 0.01340 0.73890 0.24390APR1988 NC c 3 10 0.03250 0.02500 0.64650 0.29590JUL1988 NC c 1 3 0.05280 0.00650 0.65080 0.28980JUL1988 NC c 1 10 0.05240 0. 01120 0.63080 0.30560JUL1988 NC c 2 3 0.03090 0.01400 0.66470 0.29030JUL1988 NC c 2 10 0.06590 0.01420 0.64430 0.27560JUL1988 NC c 3 3 0.02790 0.00600 0.64610 0.32000JUL1988 NC c 3 10 0. 03720 0.00250 0.66600 0.29430JUL1988 NC D 1 3 0. 77580 0.01720 0.17820 0.02880 I I JUL1988 NC D 1 10 0.69990 0.00830 0.24270 0.04920JUL1988 NC D 2 3 0. 77530 0.02810 0.16410 0.03250JUL1988 NC D 2 10 0. 73640 0.04240 0.18580 0.03550JUL1988 NC D 3 3 0.74660 0.02030 0.19780 0.03530JUL1988 NC D 3 10 0.71930 0. 01190 0.22220 0.04660JUL1988 NC A 1 3 0 .10360 0.00420 0.52860 0.36370JUL1988 NC A 1 10 0.11960 0.00220 0.52530 0.35280JUL1988 NC A 2 3 0.04570 0.00470 0.54310 0.40650JUL1988 NC A 2 10 0. 05610 0.09130 0.50530 0.34720 I I JUL1988 NC A 3 3 0.07090 0.00500 0.57940 0.34470JUL1988 NC A 3 10 0.16570 0.00730 0.47620 0.35080JUL1988 NC B 1 3 0.78000 0.04950 0. 12800 0.04260JUL1988 NC B 1 10 0.69370 0.07630 0.13470 0.09530JUL1988 NC B 2 3 0. 67840 0.01780 0.22290 0.08090JUL1988 NC B 2 10 0.72070 0.06000 0.16750 0.05170JUL1988 NC B 3 3 0.78920 0.02790 0.13180 0.05110JUL1988 NC B 3 10 0.57000 0.13160 0.23410 0.06430OCT1988 NC c 1 3 0.07810 0.02330 0. 52120 0.37730 I OCT1988 NC c 1 10 0.21830 0.04540 0.35220 0.38400OCT1988 NC c 2 3 0. 08270 0. 00920 0. 57200 0.33610OCT1988 NC c 2 10 0.30690 0.03830 0.36970 0.28500OCT1988 NC c 3 3 0 .13750 0.00630 0.51020 0.34600 I I OCT1988 NC c 3 10 0.23840 0.06490 0.38850 0.30820OCT1988 NC A 1 3 0.16650 0.04900 0.42310 0.36140OCT1988 NC A 1 10 0. 22170 0 .11090 0.34520 0.32220 OCT1988 NC A 2 3 0. 24930 0.04030 0.35640 0.35400OCT1988 NC A 2 10 0. 15190 0.06430 0.38590 0.39790OCT1988 NC A 3 3 0.34100 0. 12140 0.26770 0.26990OCT1988 NC A 3 10 0. 19710 0.12270 0.34130 0.33900OCT1988 NC B 1 3 0.65010 0.00810 0.20340 0.13840OCT1988 NC B 1 10 0.65610 0.00710 0.19760 0.13920 I OCT1988 NC B 2 3 0.72650 0.01390 0.15440 0.10510OCT1988 NC B 2 10 0.70370 0.01370 0.16830 0.11440OCT1988 NC B 3 3 0.66010 0.00660 0.20330 0.12990 OCT1988 NC B 3 10 0.62280 0.00820 0.22690 0.14210OCT1988 NC D 1 3 0. 66110 0.00510 0.25630 0. 07750 I OCT1988 NC 0 1 10 0.72930 0.00260 0.20670 0.06140OCT1988 NC D 2 3 0.63230 0.00570 0.27300 0.08900OCT1988 NC D 2 10 0.70690 0.00580 0.22490 0.06250OCT1988 NC D 3 3 0.64570 0.00670 0.26730 0.08030 OCT1988 NC D 3 10 0. 71520 0.00610 0.22270 0.05600 I I 262 GEMACMG.DAT I GEMACMG.DAT Guadalupe Estuary Macrofauna biomass data (mg/mA2) I 3 replicates (REP) were taken each time, N=n/section, MG=dry weight in mg/core, GM2=g/mA2, nm2=n/mA2. I DATE STA REP SEC TAXA N MG GM2 NM2 28JAN87 A 1 0-3 Mollusca 5 1.20 0.3403 1418.0 28JAN87 A 1 0-3 Polychaeta 10 0.80 0.2269 2836.0 28JAN87 A 1 3-10 Polychaeta 31 4.40 1.2478 8791.6 I 28JAN87 A 2 0-3 Mollusca 12 2.50 0.7090 3403.2 28JAN87 A 2 0-3 Polychaeta 31 3.10 0.8792 8791.6 28JAN87 A 2 3-10 Polychaeta 27 4.30 1. 2195 7657.2 28JAN87 A 3 0-3 Crustacea 1 0.30 0.0851 283.6 I 28JAN87 A 3 0-3 Mollusca 5 0.71 0.2014 1418.0 28JAN87 A 3 0-3 Polychaeta 6 1.20 0.3403 1701.6 28JAN87 A 3 3-10 Mollusca 1 0.30 0.0851 283.6 28JAN87 A 3 3-10 Polychaeta 18 2.60 0.7374 5104.8 28JAN87 B 1 0-3 Crustacea 2 0.10 0.0284 567.2 I 28JAN87 B 1 0-3 Mollusca 11 · 2.40 0.6806 4821.2 28JAN87 B 1 0-3 Nemertea 1 0.40 0.1134 283.6 28JAN87 B 1 0-3 Polychaeta 27 0.70 0.1985 7657.2 28JAN87 B 1 3-10 Mollusca 2 1.30 0.3687 567.2 I 28JAN87 B 1 3-10 Nemertea 1 0.10 0.0284 283.6 28JAN87 B 1 3-10 Polychaeta 50 4.40 1.2478 14180.0 28JAN87 B 2 0-3 Crustacea 7 0.20 0.0567 1985.2 28JAN87 B 2 0-3 Mollusca 7 4.30 1. 2195 1985.2 28JAN87 B 2 0-3 Nemertea 1 0.10 0.0284 283.6 I 28JAN87 B 2 0-3 Polychaeta 37 1.80 0.5105 10493.2 28JAN87 B 2 3-10 Polychaeta 10 0.30 0.0851 2836.0 28JAN87 B 3 0-3 Mollusca 7 3.00 0.8508 1985.2 28JAN87 B 3 0-3 Nemertea 1 0.10 0.0284 283.6 I 28JAN87 B 3 0-3 Polychaeta 43 1.90 0.5388 12194.8 28JAN87 B 3 3-10 Mollusca 1 4.00 1.1344 283.6 28JAN87 B 3 3-10 Nemertea 1 5.00 1. 4180 283.6 28JAN87 B 3 3-10 Polychaeta 19 2.00 0.5672 5388.4 30JAN87 c 1 0-3 Crustacea 3 0.16 0. 0454 850.8 I 30JAN87 c 1 0-3 Mollusca 2 0.09 0.0255 567.2 30JAN87 c 1 0-3 Polychaeta 17 0.70 0.1985 4821. 2 30JAN87 c 1 3-10 Nemertea 1 0.31 0.0879 283.6 30JAN87 c 1 3-10 Polychaeta 6 0.16 0.0454 1701. 6 I 30JAN87 c 2 0-3 Crustacea 1 0.04 0. 0113 283.6 30JAN87 c 2 0-3 Mollusca 2 13.37 3.7917 567.2 30JAN87 c 2 0-3 Polychaeta 25 0.61 0.1730 7090.0 30JAN87 c 2 3-10 Polychaeta 3 0.10 0.0284 850.8 30JAN87 c 3 0-3 Crustacea 1 0.05 0.0142 283.6 I 30JAN87 c 3 0-3 Mollusca 2 0.07 0.0199 567.2 30JAN87 c 3 0-3 Polychaeta 25 0.60 0 .1702 7090.0 30JAN87 c 3 3-10 Polychaeta 3 3.05 0.8650 850.8 30JAN87 0 1 0-3 Mollusca 5 0.22 0.0624 1418.0 I 30JAN87 0 1 0-3 Polychaeta 4 0.30 0.0851 1134.4 30JAN87 0 1 3-10 Polychaeta 12 6.46 1. 8321 3403.2 30JAN87 0 2 0-3 Mollusca 10 0.41 0.1163 2836.0 30JAN87 0 2 0-3 Polychaeta 6 0.13 0.0369 1701.6 30JAN87 0 2 3-10 Mollusca 1 0.03 0.0085 283.6 I 30JAN87 D 2 3-10 Polychaeta 8 0.78 0.2212 2268.8 30JAN87 D 3 0-3 Crustacea 4 0.05 0.0142 1134.4 30JAN87 0 3 0-3 Mollusca 4 0.37 0.1049 1134 .4 30JAN87 0 3 0-3 Polychaeta 6 0.30 0.0851 1701. 6 I 30JAN87 0 3 3-10 Crustacea 1 0.08 0.0227 283.6 30JAN87 0 3 3-10 Polychaeta 7 5.53 1.5683 1985.2 03MAR87 A 1 0-3 Mollusca 80 11. 77 3.3380 22688.0 03MAR87 A 1 0-3 Nemertea 1 0.65 0.1843 283.6 03MAR87 A 1 0-3 Others 1 0.76 0.2155 283.6 I 03MAR87 A 1 0-3 Polychaeta 26 2.48 0.7033 7373.6 03MAR87 A 1 3-10 Polychaeta 8 2 .12 0.6012 2268.8 I I I I I I I I I I I I I I I I I I I I GEHACMG.DAT 03MAR87 A 2 0-3 Mollusca 105 9.03 2.5609 29778.003MAR87 A 2 0-3 Polychaeta 20 1.97 0.5587 5672.003MAR87 A 2 3-10 Mollusca 1 2.55 0.7232 283.603MAR87 A 2 3-10 Polychaeta 17 2.98 0.8451 4821. 203MAR87 A 3 0-3 Mo 1 lusca 128 70.42 19.9711 36300.803MAR87 A 3 0-3 Polychaeta 20 1.12 0.3176 5672 .003MAR87 A 3 3-10 Polychaeta 7 1.55 0.4396 1985.203MAR87 B 1 0-3 Mollusca 5 0.98 0.2779 1418.003MAR87 B 1 0-3 Polychaeta 24 1.88 0.5332 6806.403MAR87 B 1 3-10 Mollusca 4 12.27 3.4798 1134.403MAR87 B 1 3-10 Polychaeta 17 2.16 0.6126 4821.203MAR87 B 2 0-3 Crustacea 1 0.18 0.0510 283.603MAR87 B 2 0-3 Mollusca 28 2 85 0.8083 7940.803MAR87 B 2 0-3 Polychaeta 35 1.63 0.4623 9926.003MAR87 B 2 3-10 Mollusca 1 1.05 0.2978 283.603MAR87 B 2 3-10 Nemertea 1 0.49 0.1390 283.603MAR87 B 2 3-10 Polychaeta 27 5.53 1.5683 7657.203MAR87 B 3 0-3 Mo 1lusca 15 1.55 0.4396 4254.003MAR87 B 3 0-3 Nemertea 1 0.34 0.0964 283.603MAR87 B 3 0-3 Polychaeta 23 1.39 0.3942 6522.803MAR87 B 3 3-10 Mo 1 lusca 3 16.31 4.6255 850.803MAR87 B 3 3-10 Polychaeta 16 2.22 0.6296 4537.603MAR87 c 1 0-3 Crustacea 4 0.12 0.0340 1134.403MAR87 c 1 0-3 Mollusca 10 2.93 0.8309 2836.003MAR87 c 1 0-3 Polychaeta 20 1.13 0.3205 5672.003MAR87 c 1 3-10 Mollusca 1 2.54 0.7203 283.603MAR87 c 1 3-10 Polychaeta 4 1.00 0.2836 1134.403MAR87 c 2 0-3 Crustacea 6 0.57 0.1617 1701.603MAR87 c 2 0-3 Polychaeta 23 2.04 0.5785 6522.803MAR87 c 2 3-10 Polychaeta 6 10.40 2.9494 1701. 603MAR87 c 3 0-3 Crustacea 1 0.09 0.0255 283.603MAR87 c 3 0-3 Mollusca 11 5.88 1. 6676 3119. 603MAR87 c 3 0-3 Polychaeta 18 1.94 0.5502 5104.803MAR87 c 3 3-10 Mollusca 1 0.02 0.0057 283.603MAR87 c 3 3-10 Polychaeta 9 1.32 0.3744 2552.403MAR87 D 1 0-3 Mollusca 16 4.92 1.3953 4537.603MAR87 D 1 0-3 Polychaeta 14 0.72 0.2042 3970.403MAR87 D 1 3-10 Mollusca 3 7.92 2.2461 850.803MAR87 D 1 3-10 Polychaeta 8 1.28 0.3630 2268.803MAR87 D 2 0-3 Mollusca 11 3.65 1.0351 3119. 603MAR87 D 2 0-3 Polychaeta 7 0.12 0.0340 1985.203MAR87 D 2 3-10 Mollusca 1 7.97 2.2603 283.603MAR87 D 2 3-10 Polychaeta 9 2.44 0.6920 2552.403MAR87 0 3 0-3 Mollusca 11 2.68 0.7600 3119.603MAR87 0 3 0-3 Polychaeta 11 0.38 0.1078 3119. 603MAR87 0 3 3-10 Mollusca 3 2.45 0.6948 850.803MAR87 D 3 3-10 Polychaeta 17 4.45 1.2620 4821. 208APR87 A 1 0-3 Mollusca 318 19 .14 5.4281 90184.808APR87 A 1 0-3 Others 3 0.51 0.1446 850.808APR87 A 1 0-3 Polychaeta 46 2.13 0.6041 13045.608APR87 A 1 3-10 Nemertea 1 0.29 0.0822 283.608APR87 A 1 3-10 Polychaeta 12 1.40 0.3970 3403.208APR87 A 2 0-3 Mollusca 24 3.39 0.9614 6806.408APR87 A 2 0-3 Polychaeta 53 0.87 0.2467 15030.808APR87 A 2 3-10 Mollusca 1 1.94 0.5502 283.608APR87 A 2 3-10 Polychaeta 8 0.36 0.1021 2268.808APR87 A 3 0-3 Mollusca 88 8.59 2.4361 24956.808APR87 A 3 0-3 Polychaeta 54 0.98 0. 2779 15314.408APR87 A 3 3-10 Polychaeta 15 1.17 0.3318 4254.008APR87 B 1 0-3 Crustacea 3 0.19 0.0539 850.808APR87 B 1 0-3 Mollusca 37 7.02 1.9909 10493.208APR87 B 1 0-3 Nemertea 1 0.23 0.0652 283.608APR87 B 1 0-3 Polychaeta 21 1.69 0.4793 5955.608APR87 B 1 3-10 Mollusca 1 0.11 0.0312 283.608APR87 B 1 3-10 Polychaeta 10 0.28 0.0794 2836.008APR87 B 2 0-3 Crustacea 1 0.25 0.0709 283.608APR87 B 2 0-3 Mollusca 16 20.60 5.8422 4537.6 264 GEMACMG.DAT I 08APR87 B 2 0-3 Polychaeta 52 2.30 0.6523 14747 .2 08APR87 B 2 3-10 Polychaeta 3 0.10 0.0284 850.8 08APR87 B 3 0-3 Mollusca 28 15.07 4.2739 7940.8 I 08APR87 B 3 0-3 Polychaeta 35 1.26 0.3573 9926.0 08APR87 B 3 3-10 Polychaeta 7 0.26 0. 0737 1985.2 10APR87 c 1 0-3 Crustacea 6 0.25 0. 0709 1701.6 10APR87 c 1 0-3 Mollusca 1 0.17 0.0482 283.6 10APR87 c 1 0-3 Polychaeta 31 1.30 0.3687 8791. 6 I 10APR87 c 1 3-10 Mollusca 3 26.46 7.5041 850.8 10APR87 c 1 3-10 Others 5 0.19 0.0539 1418 . 0 10APR87 c 1 3-10 Polychaeta 3 0.48 0 . 1361 850.8 10APR87 c 2 0-3 Crustacea 3 0. 13 0.0369 850.8 I 10APR87 c 2 0-3 Mollusca 4 9.28 2.6318 1134 .4 10APR87 c 2 0-3 Polychaeta 17 0.80 0.2269 4821. 2 10APR87 c 2 3-10 Mollusca 1 5.41 1.5343 283.6 10APR87 c 2 3-10 Polychaeta 8 1.22 0.3460 2268.8 10APR87 c 3 0-3 Polychaeta 20 0.75 0.2127 5672. 0 I 10APR87 c 3 3-10 Mollusca 2 5.79 1. 6420 567.2 10APR87 c 3 3-10 Others 11 0.35 0.0993 3119 . 6 10APR87 c 3 3-10 Polychaeta 5 0.53 0.1503 1418.0 10APR87 D 1 0-3 Crustacea 1 0.05 0.0142 283.6 I 10APR87 D 1 0-3 Mollusca 6 10.10 2.8644 1701.6 10APR87 D 1 0-3 Others 1 0.11 0.0312 283.6 10APR87 D 1 0-3 Polychaeta 8 0. 36 0.1021 2268.8 10APR87 D 1 3-10 Mollusca 3 5.43 1.5399 850.8 10APR87 D 1 3-10 Others 3 3.69 1. 0465 850.8 I 10APR87 D 1 3-10 Polychaeta 3 1. 20 0.3403 850.8 10APR87 D 2 0-3 Crustacea 3 0.04 0. 0113 850.8 10APR87 D 2 0-3 Mollusca 2 4.42 1.2535 567.2 10APR87 D 2 0-3 Others 1 0. 14 0.0397 283.6 I 10APR87 D 2 0-3 Polychaeta 11 0.89 0.2524 3119 . 6 10APR87 D 2 3-10 Mollusca 1 2.16 0.6126 283.6 10APR87 D 2 3-10 Others 1 0.01 0.0028 283.6 10APR87 D 2 3-10 Polychaeta 28 4.71 1.3358 7940.8 10APR87 D 3 0-3 Mollusca 3 5.87 1. 6647 850.8 I 10APR87 D 3 0-3 Others 1 0.01 0.0028 283.6 10APR87 D 3 0-3 Polychaeta 9 0.47 0.1333 2552 .4 10APR87 D 3 3-10 Mollusca 1 2 .15 0.6097 283.6 10APR87 D 3 3-10 Polychaeta 12 2.51 0. 7118 3403.2 I 03JUN87 A 1 0-3 Chironomid larvae 1 0.09 0. 0255 283.6 03JUN87 A 1 0-3 Mollusca 283 40.16 11. 3894 80258.8 03JUN87 A 1 0-3 Polychaeta 4 0. 13 0.0369 1134 .4 03JUN87 A 1 3-10 Polychaeta 4 0.27 0.0766 1134 .4 03JUN87 A 2 0-3 Chironomid larvae 3 0. 14 0. 0397 850.8 I 03JUN87 A 2 0-3 Mollusca 205 41.65 11.8119 58138.0 03JUN87 A 2 0-3 Polychaeta 10 0.52 0.1475 2836.0 03JUN87 A 2 3-10 Polychaeta 5 0.21 0. 0596 1418.0 03JUN87 A 3 ' 0-3 Chironomid larvae 1 0.43 0 . 1219 283.6 I 03JUN87 A 3 0-3 Mollusca 87 14.81 4. 2001 24673.2 03JUN87 A 3 0-3 Polychaeta 6 0. 27 0.0766 1701.6 03JUN87 A 3 3-10 Polychaeta 4 0.10 0. 0284 1134. 4 03JUN87 B 1 0-3 Mollusca 71 12.38 3. 5110 20135.6 I 03JUN87 B 1 0-3 Polychaeta 6 0.36 0 .1021 1701. 6 03JUN87 B 1 3-10 Mollusca 2 14.32 4. 0612 567.2 03JUN87 B 1 3-10 Polychaeta 21 2. 62 0.7430 5955 . 6 03JUN87 B 2 0-3 Mollusca 52 9. 48 2.6885 14747.2 03JUN87 B 2 0-3 Polychaeta 15 0. 26 0.0737 4254 . 0 I 03JUN87 B 2 3-10 Mollusca 2 16.78 4.7588 567.2 03JUN87 B 2 3-10 Polychaeta 17 1.96 0.5559 4821 . 2 03JUN87 B 3 0-3 Mollusca 13 2. 79 0.7912 3686.8 03JUN87 B 3 0-3 Polychaeta 8 0.37 0.1049 2268.8 I 03JUN87 B 3 3-10 Mollusca 3 19.46 5.5189 850.8 03JUN87 B 3 3-10 Polychaeta 18 1.25 0.3545 5104.8 03JUN87 c 1 0-3 Polychaeta 13 1.17 0.3318 3686.8 03JUN87 c 1 3-10 Mollusca 2 19.68 5.5812 567.2 03JUN87 c 1 3-10 Polychaeta 20 4.85 1.3755 5672 .0 I 03JUN87 c 2 0-3 Nemertea 1 0.06 0.0170 283.6 I I I GEMACMG.DAT 265 I 03JUN87 c 2 0-3 Polychaeta 10 1.07 0.3035 2836.0 I 03JUN87 c 2 3-10 Polychaeta 10 1.68 0.4764 2836.0 03JUN87 c 3 0-3 Polychaeta 7 0.81 0.2297 1985.2 03JUN87 c 3 3-10 Mollusca 1 13.68 3.8796 283.6 03JUN87 c 3 3-10 Polychaeta 4 1.26 0.3573 1134.4 03JUN87 D 1 0-3 Crustacea 1 0.01 0.0028 283.6 I I 03JUN87 D 1 0-3 Mollusca 1 0.06 0.0170 283.6 03JUN87 D 1 0-3 Polychaeta 9 2.00 0.5672 2552.4 03JUN87 D 1 3-10 Nemertea 1 0.41 0.1163 283.6 03JUN87 D 1 3-10 Polychaeta 17 3.70 1.0493 4821.2 03JUN87 D 2 .0-3 Crustacea 1 0.06 0.0170 283.6 03JUN87 D 2 0-3 Mollusca 4 1.58 0.4481 1134.4 03JUN87 D 2 0-3 Nemertea 1 0.08 0.0227 283.6 03JUN87 D 2 0-3 Polychaeta 8 1.85 0.5247 2268.8 03JUN87 D 2 3-10 Mollusca 2 18.96 5.3771 567.2 I 03JUN87 D 2 3-10 Polychaeta 10 2.41 0.6835 2836.0 03JUN87 D 3 0-3 Polychaeta 10 1.58 0.4481 2836.0 03JUN87 D 3 3-10 Crustacea 1 0.13 0.0369 283.6 03JUN87 D 3 3-10 Mollusca 3 31.57 8.9533 850.8 I 03JUN87 D 3 3-10 Nemer tea 1 0.21 0.0596 283.6 03JUN87 D 3 3-10 Polychaeta 13 6.96 1.9739 3686.8 15JUL87 A 1 0-3 Chironomid larvae 2 0.12 0.0340 567.2 15JUL87 A 1 0-3 Mollusca 111 33.03 9.3673 31479.6 15JUL87 A 1 0-3 Polychaeta 3 0.30 0.0851 850.8 I 15JUL87 A 1 3-10 Polychaeta 2 0.20 0.0567 567.2 15JUL87 A 2 0-3 Chironomid larvae 5 0.30 0.0851 1418.0 15JUL87 A 2 0-3 Mollusca 102 33.33 9.4524 28927.2 15JUL87 A 2 0-3 Polychaeta 7 0.70 0.1985 1985.2 I 15JUL87 A 3 0-3 Chironomid larvae 6 0.36 0.1021 1701. 6 15JUL87 A 3 0-3 Mollusca 141 42. 77 12.1296 39987.6 15JUL87 A 3 0-3 Polychaeta 5 0.80 0.2269 1418.0 15JUL87 A 3 3-10 Polychaeta 2 0.80 0.2269 567.2 15JUL87 B 1 0-3 Chironomid larvae 1 0.02 0.0057 283.6 I 15JUL87 B 1 0-3 Mollusca 34 9.02 2.5581 9642.4 15JUL87 B 1 0-3 Polychaeta 6 0.47 0.1333 1701.6 15JUL87 B 1 3-10 Mollusca 1 0.92 0.2609 283.6 15JUL87 B 1 3-10 Polychaeta 4 0.25 0.0709 1134 .4 I 15JUL87 B 2 0-3 Chironomid larvae 1 0. 10 0.0284 283.6 15JUL87 B 2 0-3 Mollusca 8 10.58 3.0005 2268.8 15JUL87 B 2 0-3 Polychaeta 3 0.46 0 .1305 850.8 15JUL87 B 2 3-10 Polychaeta 3 0.22 0.0624 850.8 15JUL87 B 3 0-3 Chironomid larvae 1 0.64 0 .1815 283.6 I 15JUL87 B 3 0-3 Mollusca 48 13.83 3.9222 13612.8 15JUL87 B 3 0-3 Polychaeta 6 0.51 0 .1446 1701. 6 15JUL87 B 3 3-10 Polychaeta 6 0.30 0.0851 1701. 6 15JUL87 c 1 0-3 Mollusca 12 2.27 0.6438 3403.2 I I 15JUL87 c 1 0-3 Nemertea 1 0.47 0 .1333 283.6 15JUL87 c 1 0-3 Polychaeta 6 0.61 0 .1730 1701. 6 15JUL87 c 1 3-10 Mo 1 lusca 1 10.00 2.8360 283.6 15JUL87 c 1 3-10 Polychaeta 0 0.09 0. 0255 ' 0.0 15JUL87 c 2 0-3 Chironomid larvae 2 0.30 0.0851 567.2 15JUL87 c 2 0-3 Mo 1 lusca 13 2.26 0.6409 3686.8 15JUL87 c 2 0-3 Polychaeta 10 0.64 0.1815 2836.0 15JUL87 c 2 3-10 Others 7 0.09 0.0255 1985.2 15JUL87 c 2 3-10 Polychaeta 9 0.43 0.1219 2552.4 I I 15.JUL87 c 3 0-3 Crustacea 1 0.21 0.0596 283.6 15JUL87 c 3 0-3 Mollusca 14 3.34 0.9472 3970.4 15JUL87 c 3 0-3 Polychaeta 12 0.86 0.2439 3403.2 15JUL87 c 3 3-10 Others 1 0.01 0.0028 283.6 15JUL87 c 3 3-10 Polychaeta 3 0.35 0.0993 850.8 15JUL87 D 1 0-3 Mollusca 4 3. 77 1.0692 1134.4 15JUL87 D 1 0-3 Polychaeta 4 0.27 0.0766 1134.4 15JUL87 D 1 3-10 Polychaeta 7 1.47 0.4169 1985.2 15JUL87 D 2 0-3 Mollusca 2 0.33 0.0936 567.2 I 15JUL87 D 2 0-3 Polychaeta 9 0.15 0.0425 2552.4 15JUL87 D 2 3-10 Mo 1 lusca 2 9.37 2.6573 567.2 15JUL87 D 2 3-10 Polychaeta 3 0.65 0.1843 850.8 266 GEMACMG.DAT I 15JUL87 D 3 0-3 Chironomid larvae 1 0.01 0.0028 283.6 15JUL87 D 3 0-3 Mollusca 1 0.70 0.1985 283.6 I 15JUL87 D 3 0-3 Polychaeta 3 0.21 0.0596 850.8 15JUL87 D 3 3-10 Polychaeta 2 0.27 0.0766 567.2 18APR88 A 1 0-3 Crustacea 3 0.14 0.0397 850.8 18APR88 A 1 0-3 Chironomid larvae 1 0.40 0.1134 283.6 18APR88 A 1 0-3 Mollusca 52 16.68 4.7304 14747.2 I 18APR88 A 1 0-3 Polychaeta 189 13.87 3.9335 53600.4 18APR88 A 1 3-10 Nemertea 1 0.77 0.2184 283.6 18APR88 A 1 3-10 Polychaeta 6 3.22 0.9132 1701.6 18APR88 A 2 .0-3 Crustacea 4 0.03 0.0085 1134.4 I 18APR88 A 2 0-3 Mollusca 112 36.78 10.4308 31763.2 18APR88 A 2 0-3 Polychaeta 227 10 .17 2.8842 64377. 2 18APR88 A 2 3-10 Nemertea 1 0.66 0.1872 283.6 18APR88 A 2 3-10 Polychaeta 9 1.44 0.4084 2552.4 18APR88 A 3 0-3 Crustacea 3 0.34 0.0964 850.8 I 18APR88 A 3 0-3 Chironomid larvae 4 2.27 0.6438 1134.4 18APR88 A 3 0-3 Mollusca 99 36.88 10.4592 28076.4 18APR88 A 3 0-3 Polychaeta 176 10.40 2.9494 49913.6 18APR88 A 3 3-10 Polychaeta 5 3.29 0.9330 1418.0 I 18APR88 B 1 0-3 Crustacea 12 0.35 0.0993 3403.2 18APR88 B 1 0-3 Mollusca 150 25.82 7.3226 42540.0 18APR88 B 1 0-3 Polychaeta 395 9.79 2. 7764 112022. 0 18APR88 B 1 3-10 Crustacea 1 0.38 0.1078 283.6 18APR88 B 1 3-10 Nemertea 1 0.28 0.0794 283.6 I 18APR88 B 1 3-10 Polychaeta 53 14.85 4.2115 15030.8 18APR88 B 2 0-3 Crustacea 5 0.53 0.1503 1418.0 18APR88 B 2 0-3 Mollusca 141 15.89 4.5064 39987.6 18APR88 B 2 0-3 Nemertea 3 0.12 0.0340 850.8 I 18APR88 B 2 0-3 Polychaeta 305 9.47 2.6857 86498.0 18APR88 B 2 3-10 Chironomid larvae 1 0.60 0.1702 283.6 18APR88 B 2 3-10 Nemertea 2 0.38 0.1078 567.2 18APR88 B 2 3-10 Polychaeta 58 13.75 3.8995 16448.8 18APR88 B 3 0-3 Crustacea 8 0.76 0.2155 2268.8 I 18APR88 B 3 0-3 Mollusca 196 29.81 8.4541 55585.6 18APR88 B 3 0-3 Nemertea 2 0.04 0. 0113 567.2 18APR88 B 3 0-3 Polychaeta 380 11.15 3.1621 107768.0 18APR88 B 3 3-10 Chironomid larvae 2 1.82 0.5162 567.2 .I 18APR88 B 3 3-10 Mollusca 1 7.05 1.9994 283.6 18APR88 B 3 3-10 Nemertea 1 2.06 0.5842 283.6 18APR88 B 3 3-10 Polychaeta 67 17.60 4.9914 19001.2 18APR88 c 1 0-3 Crustacea 6 0.44 0.1248 1701. 6 18APR88 c 1 0-3 Mollusca 86 7.79 2.2092 24389.6 I 18APR88 c 1 0-3 Polychaeta 96 5.94 1.6846 27225. 6 18APR88 c 1 3-10 Nemertea 1 0.72 0.2042 283.6 18APR88 c 1 3-10 Polychaeta 42 4.83 1.3698 11911.2 18APR88 c 2 0-3 Crustacea 4 0.29 0.0822 1134 .4 I 18APR88 c 2 0-3 Mollusca 156 9.40 2.6658 44241.6 18APR88 c 2 0-3 Nemertea 2 0.13 0.0369 567.2 18APR88 c 2 0-3 Others 1 0.37 0.1049 283.6 18APR88 c 2 0-3 Polychaeta 88 5.01 1.4208 24956.8 I 18APR88 c 2 3-10 Nemertea 1 0.19 0.0539 283.6 18APR88 c 2 3-10 Polychaeta 65 8.47 2.4021 18434.0 18APR88 c 3 0-3 Crustacea 4 0.21 0.0596 1134.4 18APR88 c 3 0-3 Mollusca 114 5.64 1.5995 32330.4 18APR88 c 3 0-3 Nemertea 1 0.18 0. 0510 283.6 I 18APR88 c 3 0-3 Polychaeta 101 5.65 1.6023 28643.6 18APR88 c 3 3-10 Others 2 0.46 0.1305 567.2 18APR88 c 3 3-10 Polychaeta 26 8.61 2.4418 7373.6 18APR88 D 1 0-3 Crustacea 1 0.27 0.0766 283.6 I 18APR88 D 1 0-3 Mollusca 24 1. 77 0.5020 6806.4 18APR88 D 1 0-3 Polychaeta 71 2.98 0.8451 20135.6 18APR88 D 1 3-10 Nemertea 1 0.49 0 .1390 283.6 18APR88 D 1 3-10 Others 1 0.12 0.0340 283.6 18APR88 D 1 3-10 Polychaeta 20 2 .10 0.5956 5672. 0 I 18APR88 D 2 0-3 Crustacea 2 0.09 0.0255 567.2 18APR88 D 2 0-3 Mollusca 40 1. 78 0.5048 11344. 0 I I GEHACHG.OAT 267 I I 18APR88 D 2 0-3 Polychaeta 84 2.90 0.8224 23822.4 18APR88 D 2 3-10 Polychaeta 18 2.36 0.6693 5104.8 18APR88 D 3 0-3 Crustacea 1 0.10 0.0284 283.6 18APR88 D 3 0-3 Mollusca 31 1.69 0.4793 8791. 6 18APR88 D 3 0-3 Polychaeta 71 2.94 0.8338 20135.6 18APR88 D 3 3-10 Polychaeta 19 0.86 0.2439 5388.4 I 07JUL88 A 1 0-3 Crustacea 2 0.10 0.0284 567.2 07JUL88 A 1 0-3 Mollusca 70 43.53 12.3451 19852.0 07JUL88 A 1 0-3 Polychaeta 103 3.78 1.0720 29210.8I 07JUL88 A 1 3-10 Nemertea 1 1.16 0.3290 283.6 07JUL88 A 1 .3-10 Polychaeta 68 14.14 4.0101 19284.8 07JUL88 A 2 0-3 Crustacea 3 0.12 0.0340 850.8 07JUL88 A 2 0-3 Mollusca 101 41.85 11. 8687 28643.6 07JUL88 A 2 0-3 Polychaeta 77 3.56 1.0096 21837.2 07JUL88 A 2 3-10 Mollusca 2 0.46 0.1305 567.2 I I 07JUL88 A 2 3-10 Nemertea 2 2.57 0. 7289 567.2 07JUL88 A 2 3-10 Polychaeta 83 18.80 5.3317 23538.8 07JUL88 A 3 0-3 Crustacea 5 0.04 0. 0113 1418.0 07JUL88 A 3 0-3 Mollusca 87 42.49 12.0502 24673.2 07JUL88 A 3 0-3 Polychaeta 63 2.85 0.8083 17866.8 07JUL88 A 3 3-10 Nemertea 1 0.05 0.0142 283.6 07JUL88 A 3 3-10 Polychaeta 64 12.25 3.4741 18150.4 07JUL88 B 1 0-3 Crustacea 1 1.00 0.2836 283.6 07JUL88 B 1 0-3 Mollusca 108 36.61 10.3826 30628.8 I 07JUL88 B 1 0-3 Polychaeta 50 1.17 0.3318 14180.0 07JUL88 B 1 3-10 Polychaeta 33 10.00 2.8360 9358.8 07JUL88 B 2 0-3 Mollusca 114 39 .12 11. 0944 32330.4 07JUL88 B 2 0-3 Polychaeta 86 1.63 0.4623 24389.6 I 07JUL88 B 2 3-10 Mollusca 1 13.20 3.7435 283.6 07JUL88 B 2 3-10 Polychaeta 34 4.90 1.3896 9642.4 07JUL88 B 3 0-3 Crustacea 1 0.01 0.0028 283.6 07JUL88 B 3 0-3 Mollusca 98 34.82 9.8750 27792 .8 07JUL88 B 3 0-3 Polychaeta 31 0.99 0.2808 8791. 6 I 07JUL88 B 3 3-10 Polychaeta 30 5.05 1.4322 8508.0 08JUL88 c 1 0-3 Mollusca 7 0.23 0.0652 1985.2 08JUL88 c 1 0-3 Polychaeta 37 1. 03 0.2921 10493.2 08JUL88 c 1 3-10 Polychaeta 29 2.09 0.5927 8224.4 I 08JUL88 c 2 0-3 Crustacea 1 0.01 0.0028 283.6 08JUL88 c 2 0-3 Mollusca 3 3.86 1.0947 850.8 08JUL88 c 2 0-3 Nemertea 1 0.05 0.0142 283.6 08JUL88 c 2 0-3 Polychaeta 27 0.72 0.2042 7657.2 08JUL88 c 2 3-10 Polychaeta 21 2.24 0.6353 5955.6 I 08JUL88 c 3 0-3 Mollusca 4 0.70 0.1985 1134 .4 08JUL88 c 3 0-3 Nemertea 1 1.40 0.3970 283.6 08JUL88 c 3 0-3 Polychaeta 41 1. 20 0.3403 11627. 6 08JUL88 c 3 3-10 Polychaeta 19 1.13 0.3205 5388.4 I 08JUL88 0 1 0-3 Mollusca 2 0.11 0.0312 567.2 08JUL88 D 1 0-3 Polychaeta 35 2.66 0.7544 9926.0 08JUL88 D 1 3-10 Polychaeta 5 0.33 0.0936 1418.0 08JUL88 D 2 0-3 Polychaeta 26 0.97 0.2751 7373.6 08JUL88 D 2 3-10 Nemertea 1 0.10 0.0284 283.6 I 08JUL88 D 2 3-10 Polychaeta 3 0.18 0.0510 850.8 08JUL88 D 3 0-3 Crustacea 3 0.10 0.0284 850.8 08JUL88 0 3 0-3 Mollusca 3 0.05 0.0142 850.8 08JUL88 D 3 0-3 Polychaeta 34 0.96 0.2723 9642.4 I 08JUL88 D 3 3-10 Polychaeta 8 2.48 0.7033 2268.8 22NOV88 A 1 0-3 Crustacea 3 3.24 0.9189 850.8 22NOV88 A 1 0-3 Mollusca 21 30.77 8.7264 5955.6 22NOV88 A 1 0-3 Others 1 0.38 0.1078 283.6 22NOV88 A 1 0-3 Polychaeta 29 1. 51 0.4282 8224.4 I 22NOV88 A 1 3-10 Nemertea 1 0.54 0.1531 283.6 22NOV88 A 1 3-10 Polychaeta 43 7.23 2.0504 12194.8 22NOV88 A 2 0-3 Crustacea 3 0.39 0.1106 850.8 22NOV88 A 2 0-3 Mollusca 25 35.16 9.9714 7090.0 22NOV88 A 2 0-3 Polychaeta 27 4.97 1.4095 7657.2 22NOV88 A 2 3-10 Nemertea 1 0.34 0.0964 283.6 22NOV88 A 2 3-10 Polychaeta 28 4.46 1.2649 7940.8 I 268 GEMACMG.DAT 22NOV88 A 3 0-3 Crustacea 4 6.35 1.8009 1134 .422NOV88 A 3 0-3 Mollusca 11 15.58 4.4185 3119. 622NOV88 A 3 0-3 Polychaeta 19 0.76 0.2155 5388.422NOV88 A 3 3-10 Crustacea 1 3.12 0.8848 283.622NOV88 A 3 3-10 Polychaeta 31 4.11 1.1656 8791. 622NOV88 B 1 0-3 Crustacea 2 1.94 0. 5502 567.222NOV88 B 1 0-3 Mollusca 83 71.65 20.3199 23538.822NOV88 B 1 0-3 Polychaeta 40 1.05 0.2978 11344.022NOV88 B 1 3-10 Mollusca 3 2.72 0.7714 850.822NOV88 B 1 3-10 Polychaeta 19 1.24 0.3517 5388.422NOV88 B 2 0-3 Crustacea 1 3.88 1.1004 283.622NOV88 B 2 0-3 Mollusca 63 81.64 23.1531 17866.822NOV88 B 2 0-3 Polychaeta 29 1.46 0.4141 8224 .422NOV88 B 2 3-10 Polychaeta 20 2.19 0. 6211 5672.022NOV88 B 3 0-3 Mollusca 55 77 .18 21. 8882 15598.022NOV88 B 3 0-3 Polychaeta 17 0.81 0.2297 4821 .222NOV88 B 3 3-10 Mollusca 1 0.33 0.0936 283.622NOV88 B 3 3-10 Polychaeta 30 2.31 0.6551 8508.022NOV88 c 1 0-3 Nemertea 1 0.03 0.0085 283.622NOV88 c 1 0-3 Polychaeta 12 0.40 0.1134 3403.222NOV88 c 1 3-10 Nemertea 1 0. 11 0.0312 283.622NOV88 c 1 3-10 Polychaeta 22 2. 14 0.6069 6239.222NOV88 c 2 0-3 Nemertea 1 0. 03 0. 0085 283.622NOV88 c 2 0-3 Polychaeta 16 0.64 0.1815 4537.622NOV88 c 2 3-10 Polychaeta 17 1.14 0.3233 4821.222NOV88 c 3 0-3 Mollusca 2 0.16 0.0454 567.222NOV88 c 3 0-3 Nemertea 1 0. 17 0.0482 283.622NOV88 c 3 0-3 Polychaeta 24 0.89 0.2524 6806.422NOV88 c 3 3-10 Polychaeta 18 1. 57 0.4453 5104 .822NOV88 D 1 0-3 Mollusca 1 0.49 0. 1390 283 .622NOV88 D 1 0-3 Polychaeta 23 1. 07 0.3035 6522.822NOV88 D 1 3-10 Nemertea 1 0.24 0.0681 283.622NOV88 D 1 3-10 Polychaeta 6 2. 26 0. 6409 1701. 622NOV88 D 2 0-3 Crustacea 1 0. 19 0.0539 283.622NOV88 D 2 0-3 Mollusca 1 0. 22 0.0624 283.622NOV88 D 2 0-3 Polychaeta 22 1. 22 0.3460 6239 .222NOV88 D 2 3-10 Polychaeta 4 1. 61 0.4566 1134 .422NOV88 D 3 0-3 Crustacea 1 0. 17 0.0482 283.622NOV88 D 3 0-3 Nemertea 2 0.71 0. 2014 567.222NOV88 D 3 0-3 Polychaeta 18 1.63 0.4623 5104 .822NOV88 D 3 3-10 Nemertea 1 0.34 0. 0964 283.622NOV88 D 3 3-10 Polychaeta 7 1.36 0.3857 1985.204APR89 A 1 0-3 Crustacea 4 0. 21 0.0596 1134. 404APR89 A 1 0-3 Mollusca 72 6.99 1.9824 20419.204APR89 A 1 0-3 Nemertea 5 0.25 0.0709 1418.004APR89 A 1 0-3 Polychaeta 188 11.18 3.1706 53316.804APR89 A 1 3-10 Mollusca 4 4.03 1.1429 1134.404APR89 A 1 3-10 Polychaeta 67 8.58 2.4333 19001. 204APR89 A 2 0-3 Crustacea 7 0.35 0.0993 1985.204APR89 A 2 0-3 Mollusca 57 8.43 2.3907 16165.204APR89 A 2 0-3 Nemertea 2 0.25 0.0709 567.204APR89 A 2 0-3 Polychaeta 232 14.75 4.1831 65795.204APR89 A 2 3-10 Polychaeta 89 11.10 3.1480 25240.404APR89 A 3 0-3 Crustacea 2 0.24 0.0681 567.204APR89 A 3 0-3 Mollusca 93 7.36 2.0873 26374.804APR89 A 3 0-3 Nemertea 2 0. 05 0.0142 567.204APR89 A 3 0-3 Polychaeta 209 13 .56 3.8456 59272.404APR89 A 3 3-10 Mollusca 1 0.22 0.0624 283.604APR89 A 3 3-10 Polychaeta 43 6.37 1.8065 12194.804APR89 B 1 0-3 Crustacea 2 0.25 0.0709 567.204APR89 B 1 0-3 Mollusca 33 5.91 1.6761 9358.804APR89 B 1 0-3 Polychaeta 193 4.18 1.1854 54734.804APR89 B 1 3-10 Mollusca 3 5.58 1. 5825 850.804APR89 B 1 3-10 Polychaeta 21 2.61 0.7402 5955.604APR89 B 2 0-3 Mollusca 28 6.53 1.8519 7940.804APR89 B 2 0-3 Polychaeta 146 5.80 1.6449 41405.604APR89 B 2 3-10 Polychaeta 42 6.62 1.8774 11911.2 I I I I I Il I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I .• GEMACMG.DAT 04APR89 B 3 0-3 Mollusca 31 7.37 2.0901 8791. 604APR89 B 3 0-3 Nemertea 1 0.04 0.0113 283.604APR89 B 3 0-3 Polychaeta 179 9.56 2. 7112 50764.404APR89 B 3 3-10 Mollusca 5 8.53 2.4191 1418.004APR89 B 3 3-10 Polychaeta 30 3.04 0.8621 8508.004APR89 c 1 0-3 Crustacea 28 1.12 0.3176 7940.804APR89 c 1 0-3 Polychaeta 39 1. 21 0.3432 11060.404APR89 c 1 3-10 Polychaeta 8 0.26 0.0737 2268.804APR89 c 2 0-3 Crustacea 13 0.67 0.1900 3686.804APR89 c 2 0-3 Mollusca 3 0.42 0.1191 850.804APR89 c 2 0-3 Polychaeta 23 1.17 0.3318 6522.804APR89 c 2 3-10 Mollusca 1 5.32 1.5088 283.604APR89 c 2 3-10 Nemertea 1 0.36 0.1021 283.604APR89 c 2 3-10 Polychaeta 13 0.92 0.2609 3686.804APR89 c 3 0-3 Crustacea 12 0.22 0.0624 3403.204APR89 c 3 0-3 Mollusca 3 1.09 0.3091 850.804APR89 c 3 0-3 Polychaeta 44 1.64 0.4651 12478.404APR89 c 3 3-10 Polychaeta 9 9.50 2.6942 2552.404APR89 D 1 0-3 Crustacea 27 0.76 0.2155 7657.204APR89 D 1 0-3 Mollusca 12 4.37 1.2393 3403.204APR89 D 1 0-3 Polychaeta 39 30.76 8.7235 11060.404APR89 D 1 3-10 Mollusca 1 7.51 2.1298 283.604APR89 D 1 3-10 Polychaeta 12 3.53 1. 0011 3403.204APR89 D 2 0-3 Crustacea 1 0.03 0.0085 283.604APR89 D 2 0-3 Mollusca 1 3.54 1.0039 283.604APR89 D 2 0-3 Polychaeta 23 2.33 0.6608 6522.804APR89 D 2 3-10 Nemertea 2 1.55 0.4396 567.204APR89 D 2 3-10 Polychaeta 5 15.92 4.5149 1418.004APR89 D 3 0-3 Crustacea 21 0.24 0.0681 5955.604APR89 D 3 0-3 Mollusca 3 0.48 0.1361 850.804APR89 D 3 0-3 Polychaeta 64 8.05 2.2830 18150.404APR89 D 3 3-10 Crustacea 1 0.05 0.0142 283.604APR89 D 3 3-10 Polychaeta 30 8.23 2.3340 8508.023JUL89 A 1 0-3 Crustacea 1 0.36 0.1021 283.623JUL89 A 1 0-3 Mollusca 19 3.81 1.0805 5388.423JUL89 A 1 0-3 Nemertea 1 0.16 0.0454 283.623JUL89 A 1 0-3 Polychaeta 19 3.81 1.0805 5388.423JUL89 A 1 3-10 Polychaeta 31 4.45 1.2620 8791. 623JUL89 A 2 0-3 Crustacea 9 0.08 0.0227 2552.423JUL89 A 2 0-3 Mollusca 33 12.75 3.6159 9358.823JUL89 A 2 0-3 Polychaeta 20 1.14 0.3233 5672.023JUL89 A 2 3-10 Polychaeta 41 6.67 1.8916 11627. 623JUL89 A 3 0-3 Crustacea 5 0.91 0.2581 1418.023JUL89 A 3 0-3 Mollusca 25 8. 28 2.3482 7090.023JUL89 A 3 0-3 Nemertea 2 0.13 0.0369 567.223JUL89 A 3 0-3 Polychaeta 34 2.23 0.6324 9642.423JUL89 A 3 3-10 Polychaeta 37 5.79 1.6420 10493.223JUL89 c 1 0-3 Crustacea 10 0.41 0.1163 2836.023JUL89 c 1 0-3 Mollusca 3 0.20 0.0567 850.823JUL89 c 1 0-3 Nemertea 1 0.04 0. 0113 283.623JUL89 c 1 0-3 Polychaeta 40 5.66 1.6052 11344. 023JUL89 c 1 3-10 Crustacea 2 0.07 0.0199 567.223JUL89 c 1 3-10 Polychaeta 8 1. 57 0.4453 2268.823JUL89 c 2 0-3 Crustacea 7 0.13 0.0369 1985.223JUL89 c 2 0-3 Mollusca 5 2.50 0. 7090 1418.023JUL89 c 2 0-3 Nemertea 2 0.05 0.0142 567.223JUL89 c 2 0-3 Polychaeta 31 1.55 0.4396 8791. 623JUL89 c 2 3-10 Crustacea 1 0.01 0.0028 283.623JUL89 c 2 3-10 Mollusca 1 0.01 0.0028 283.623JUL89 c 2 3-10 Polychaeta 4 5.56 1.5768 1134 .423JUL89 c 3 0-3 Crustacea 1 0.02 0.0057 283.623JUL89 c 3 0-3 Mollusca 2 0.39 0.1106 567.223JUL89 c 3 0-3 Nemertea 1 0.01 0.0028 283.623JUL89 c 3 0-3 Polychaeta 40 2. 72 0. 7714 11344. 023JUL89 c 3 3-10 Polychaeta 27 7.70 2.1837 7657.2 • 270 NCMACMG.DAT - NCMACMG.DAT Nueces Estuary Macrofauna biomass data (mg/mA2) I I 3 replicates (REP) were taken each time, N=n/section, MG=dry weight in mg/core, GM2=g/mA2, nm2=n/mA2. I DATE STA REP SEC TAXA N MG GM2 NM2 200CT87 A 1 0-3 Polychaeta 17 0.32 0.0908 4821.2 I 200CT87 A 2 0-3 Polychaeta 13 0.46 0.1305 3686.8200CT87 A 2 0-3 Mollusca 1 0.09 0.0255 283.6200CT87 A 3 0-3 Polychaeta 9 0.29 0.0822 2552.4200CT87 A 1 3-10 Polychaeta 3 0.60 0.1702 850.8200CT87 A 2 3-10 Polychaeta 6 0.63 0.1787 1701. 6 I 200CT87 A 3 3-10 Polychaeta 2 0.53 0.1503 567.2 200CT87 A 3 3-10 Nemertea 1 0.37 0.1049 283.6 210CT87 B 1 0-3 Polychaeta 2 0.01 0.0028 567.2 210CT87 B 2 0-3 Polychaeta 6 0.30 0.0851 1701.6 I 210CT87 B 3 0-3 Polychaeta 6 1.05 0.2978 1701. 6 210CT87 B 1 3-10 Polychaeta 6 1.68 0.4764 1701.6 210CT87 B 1 3-10 Nemertea 1 0.25 0.0709 283.6 210CT87 B 2 3-10 Polychaeta 4 0.25 0.0709 1134.4 210CT87 B 3 3-10 Polychaeta 6 0. 74 0.2099 1701.6 I 190CT87 c 1 0-3 Polychaeta 14 0.11 0.0312 3970.4 190CT87 c 2 0-3 Polychaeta 37 1.15 0.3261 10493.2 190CT87 c 2 0-3 Crustacea 1 0.03 0.0085 283.6 190CT87 c 3 0-3 Polychaeta 27 0.72 0.2042 7657.2 I 190CT87 c 3 0-3 Crustacea 4 0.25 0.0709 1134.4 190CT87 c 3 0-3 Mollusca 1 0.01 0.0028 283.6 190CT87 c 1 3-10 Polychaeta 19 2.11 0.5984 5388.4 190CT87 c 1 3-10 Nemertea 1 0.24 0.0681 283.6 190CT87 c 1 3-10 Mollusca 1 13.38 3.7946 283.6 I 190CT87 c 2 3-10 Polychaeta 8 9.64 2.7339 2268.8 190CT87 c 2 3-10 Nemertea 1 3.29 0.9330 283.6 190CT87 c 2 3-10 Others 1 0.05 0.0142 283.6 190CT87 c 2 3-10 Crustacea 1 0.09 0.0255 283.6 I 190CT87 c 3 3-10 Polychaeta 16 2.83 0.8026 4537.6 190CT87 c 3 3-10 Nemertea 1 0.26 0.0737 283.6 190CT87 c 3 3-10 Mollusca 2 22.84 6.4774 567.2 220CT87 D 1 0-3 Polychaeta 24 2.11 0.5984 6806.4 220CT87 D 1 0-3 Nemertea 2 0.25 0.0709 567.2 I 220CT87 D 2 0-3 Polychaeta 35 1.43 0.4055 9926.0 220CT87 D 2 0-3 Nemertea 1 0.08 0.0227 283.6 220CT87 D 3 0-3 Polychaeta 33 1.43 0.4055 9358.8 220CT87 D 1 3-10 Polychaeta 7 1.56 0.4424 1985.2 I 220CT87 D 1 3-10 Nemertea 1 0.37 0.1049 283.6 220CT87 D 2 3-10 Polychaeta 4 1.84 0.5218 1134 .4 220CT87 D 3 3-10 Polychaeta 5 1. 78 0.5048 1418.0 08DEC87 A 1 0-3 Polychaeta 6 0.20 0.0567 1701.6 08DEC87 A 1 0-3 Mollusca 14 0.31 0.0879 3970.4 I 08DEC87 A 2 0-3 Polychaeta 9 0.44 0.1248 2552.4 08DEC87 A 2 0-3 Mollusca 10 0.14 0.0397 2836.0 08DEC87 A 2 0-3 Nemertea 1 0.01 0.0028 283.6 08DEC87 A 3 0-3 Polychaeta 3 0.16 0.0454 850.8 I 08DEC87 A 3 0-3 Mollusca 10 1.19 0.3375 2836.0 08DEC87 A 3 0-3 Crustacea 1 0.03 0.0085 283.6 08DEC87 A 1 3-10 Polychaeta 3 0.59 0.1673 850.8 08DEC87 A 2 3-10 Polychaeta 1 1.59 0.4509 283.6 08DEC87 A 3 3-10 Polychaeta 4 1. 53 0.4339 1134.4 I 09DEC87 B 1 0-3 Polychaeta 8 0.21 0.0596 2268.8 09DEC87 B 1 0-3 Mollusca 4 0.43 0.1219 1134 .4 09DEC87 B 1 0-3 Others 1 0.03 0.0085 283.6 09DEC87 B 2 0-3 Polychaeta 21 0. 77 0.2184 5955.6 I 09DEC87 B 2 0-3 Mollusca 4 0.06 0.0170 1134 .4 09DEC87 B 3 0-3 Polychaeta 14 0.48 0.1361 3970.4 I ,I I NCMACMG.DAT 271 I 09DEC87 B 3 0-3 Mollusca 4 0.06 0.0170 1134 .4 090EC87 B 1 3-10 Polychaeta 3 1.15 0.3261 850.8 I 09DEC87 B 1 3-10 Nemertea 1 0.39 0.1106 283.6 09DEC87 B 2 3-10 Polychaeta 7 0.43 0.1219 1985.2 090EC87 B 3 3-10 Polychaeta 6 6.35 1.8009 1701.6 07DEC87 c 1 0-3 Polychaeta 5 0.06 0.0170 1418.0 I 07DEC87 c 1 0-3 Mollusca 1 0.03 0.0085 283.6 07DEC87 c 1 0-3 Crustacea 3 0.09 0.0255 850.8 07DEC87 c 2 0-3 Polychaeta 25 1.00 0.2836 7090.0 070EC87 c 2 0-3 Crustacea 3 0.13 0.0369 850.8 070EC87 c 3 0-3 Polychaeta 6 0.15 0.0425 1701. 6 I 070EC87 c 3 0-3 Mollusca 1 0.01 0.0028 283.6 07DEC87 c . 3 0-3 Crustacea 4 0.38 0.1078 1134 .4 07DEC87 c 1 3-10 Polychaeta 8 12.38 3. 5110 2268.8 07DEC87 c 1 3-10 Crustacea 1 0.24 0.0681 283.6 I 07DEC87 c 1 3-10 Mollusca 1 7.08 2.0079 283.6 07DEC87 c 2 3-10 Polychaeta 8 2.40 0.6806 2268.8 070EC87 c 2 3-10 Mollusca 1 10.92 3. 0969 283.6 07DEC87 c 3 3-10 Polychaeta 5 0.63 0.1787 1418.0 lODEC87 D 1 0-3 Polychaeta 19 1.45 0.4112 5388.4 I 10DEC87 D 1 0-3 Crustacea 6 0.16 0.0454 1701.6 10DEC87 D 2 0-3 Polychaeta 32 3.30 0.9359 9075.2 10DEC87 D 2 0-3 Crustacea 1 0.08 0.0227 283.6 10DEC87 D 2 0-3 Nemertea 1 0.20 0.0567 283.6 I 10DEC87 D 3 0-3 Polychaeta 63 8.30 2.3539 17866.8 10DEC87 0 3 0-3 Nemertea 1 0.10 0.0284 283.6 100EC87 D 3 0-3 Mollusca 1 0.02 0.0057 283.6 10DEC87 D 1 3-10 Polychaeta 19 2.45 0.6948 5388.4 10DEC87 0 1 3-10 Nemertea 1 0.42 0.1191 283.6 I 10DEC87 D 1 3-10 Crustacea 1 0.02 0.0057 283.6 100EC87 D 1 3-10 Ophiuroidea 1 1. 07 0.3035 283.6 10DEC87 0 2 3-10 Polychaeta 14 4.43 1. 2563 3970.4 10DEC87 0 3 3-10 Polychaeta 685 52.11 14. 7784 194266.0 I I 16FEB88 A 1 0-3 Polychaeta 1 0.06 0.0170 283.6 16FEB88 A 1 0-3 Mollusca 21 2.08 0.5899 5955.6 16FEB88 A 2 0-3 Polychaeta 5 0.07 0.0199 1418.0 16FEB88 A 2 0-3 Mollusca 18 1. 78 0.5048 5104.8 16FEB88 A 3 0-3 Polychaeta 6 0.39 0.1106 1701.6 16FEB88 A 3 0-3 Mollusca 11 0.58 0.1645 3119. 6 16FEB88 A 1 3-10 Polychaeta 6 1.34 0.3800 1701.6 16FEB88 A 1 3-10 Mollusca 3 1. 70 0.4821 850.8 16FEB88 A 2 3-10 Polychaeta 4 0.80 0.2269 1134. 4 I 16FEB88 A 2 3-10 Nemertea 1 0.09 0.0255 283.6 16FEB88 A 3 3-10 Polychaeta 6 1.16 0.3290 1701.6 16FEB88 A 3 3-10 Mollusca 2 4 .14 1.1741 567.2 I 17FEB88 B 1 0-3 Polychaeta 24 2.37 0.6721 6806.4 17FEB88 B 1 0-3 Crustacea 3 0.03 0.0085 850.8 17FEB88 B 1 0-3 Mollusca 26 5.31 1.5059 7373.6 17FEB88 B 2 0-3 Polychaeta 10 0.83 0.2354 2836.0 17FEB88 B 2 0-3 Mollusca 23 6.25 1. 7725 6522.8 17FEB88 B 3 0-3 Polychaeta 17 0.55 0 .1560 4821. 2 I 17FEB88 B 3 0-3 Mollusca 23 2 .16 0.6126 6522.8 17FEB88 B 3 0-3 Others 1 0.02 0.0057 283.6 17FEB88 B 1 3-10 Polychaeta 17 2.04 0.5785 4821. 2 I 17FEB88 B 1 3-10 Mollusca 3 0.91 0.2581 850.8 17FEB88 B 2 3-10 Polychaeta 25 1.62 0.4594 7090.0 17FEB88 B 2 3-10 Mo 1 lusca 3 1.90 0.5388 850.8 17FEB88 B 2 3-10 Nemertea 1 0.58 0.1645 283.6 17FEB88 B 3 3-10 Polychaeta 34 4.01 1.1372 9642.4 17FEB88 B 3 3-10 Nemertea 1 0.35 0.0993 283 .6 I 15FEB88 c 1 0-3 Polychaeta 16 0.70 0.1985 4537.6 15FEB88 c 1 0-3 Crustacea 1 0.17 0.0482 283.6 15FEB88 c 1 0-3 Sipunculida 2 1. 77 0.5020 567.2 15FEB88 c 2 0-3 Polychaeta 10 2.02 0.5729 2836.0 15FEB88 c 2 0-3 Crustacea 2 0.23 0.0652 567.2 15FEB88 c 2 0-3 Mollusca 4 1.41 0.3999 1134 .4 15FEB88 c 2 0-3 Others 1 0.03 0.0085 283.6 I NCMACMG.DAT 272 I 15FEB88 c 3 0-3 Polychaeta 5 0.50 0 .1418 1418.0 15FEB88 c 3 0-3 Mollusca 4 0.20 0.0567 1134.4 I 15FEB88 c 3 0-3 Nemertea 1 0.08 0.0227 283.6 15FEB88 c 1 3-10 Polychaeta 4 2.04 0.5785 1134.4 15FEB88 c 1 3-10 Nemertea 1 0.21 0.0596 283.6 15FEB88 c 2 3-10 Polychaeta 5 1. 56 0.4424 1418.0 15FEB88 c 2 3-10 Nemertea 1 0. 27 0.0766 283.6 I 15FEB88 c 3 3-10 Polychaeta 4 1.95 0.5530 1134. 4 18FEB88 D 1 0-3 Polychaeta 29 2.71 0. 7686 8224.4 18FEB88 D 1 0-3 Crustacea 2 0.05 0.0142 567.2 18FEB88 D 1 0-3 Nemertea 3 0.81 0. 2297 850.8 I 18FEB88 D 1 0-3 Mollusca 5 0.84 0.2382 1418.0 18FEB88 D 1 0-3 Others 1 0.02 0.0057 283.6 18FEB88 D 2 0-3 Polychaeta 86 17.53 4.9715 24389 .6 18FEB88 D 2 0-3 Crustacea 16 1. 77 0.5020 4537.6 18FEB88 D 2 0-3 Nemertea 1 1.48 0.4197 283.6 I 18FEB88 D 2 0-3 Mollusca 3 0.24 0.0681 850.8 18FEB88 D 2 0-3 Si puncu l ida 1 2.23 0.6324 283.6 18FEB88 D 2 0-3 Others 3 0.06 0. 0170 850.8 18FEB88 D 3 0-3 Polychaeta 39 3.87 1.0975 11060.4 I 18FEB88 D 3 0-3 Crustacea 2 0.04 0.0113 567 . 2 18FEB88 D 3 0-3 Nemertea 1 0.02 0.0057 283.6 18FEB88 D 3 0-3 Mollusca 14 3.09 0.8763 3970.4 18FEB88 D 3 0-3 Sipunculida 1 1.45 0.4112 283.6 I 18FEB88 D 3 0-3 Others 2 0.04 0. 0113 567.2 18FEB88 D 1 3-10 Polychaeta 59 23.46 6.6533 16732.4 18FEB88 D 1 3-10 Nemertea 1 0. 11 0.0312 283.6 18FEB88 D 1 3-10 Mollusca 17 7.30 2.0703 4821. 2 'I 18FEB88 D 2 3-10 Polychaeta 192 69.53 19.7187 54451.2 18FEB88 D 2 3-10 Mollusca 9 0.60 0.1702 2552.4 18FEB88 D 2 3-10 Crustacea 1 0.09 0.0255 283.6 18FEB88 D 3 3-10 Polychaeta 10 13.00 3.6868 2836.0 18FEB88 D 3 3-10 Mollusca 6 0.53 0.1503 1701.6 I 12APR88 A 1 0-3 Polychaeta 3 0. 62 0.1758 850.8 12APR88 A 1 0-3 Mollusca 7 5.92 1.6789 1985.2 12APR88 A 2 0-3 Polychaeta 5 0.12 0.0340 1418.0 12APR88 A 2 0-3 Mollusca 11 1. 51 0.4282 3119 .6 12APR88 A 3 0-3 Polychaeta 5 0.15 0.0425 1418.0 I 12APR88 A 3 0-3 Mollusca 12 6.44 1. 8264 3403.2 12APR88 A 1 3-10 Polychaeta 7 1. 09 0.3091 1985.2 12APR88 A 1 3-10 Mollusca 4 5.51 1.5626 1134 .4 12APR88 · A 2 3-10 Polychaeta 1 0.38 0.1078 283.6 I 12APR88 A 2 3-10 Mollusca 3 9.02 2.5581 850.8 12APR88 A 3 3-10 Polychaeta 8 0.20 0.0567 2268.8 12APR88 A 3 3-10 Mollusca 2 5.80 1.6449 567 . 2 13APR88 B 1 0-3 Polychaeta 16 1. 25 0.3545 4537 .6 13APR88 B 1 0-3 Crustacea 10 0 . 15 0.0425 2836.0 I 13APR88 B 1 0-3 Mollusca 3 11.53 3.2699 850.8 13APR88 B 1 0-3 Nemertea 1 0.20 0.0567 283.6 13APR88 B 2 0-3 Polychaeta 11 7.54 2.1383 3119. 6 13APR88 B 2 0-3 Crustacea 3 0.07 0.0199 850.8 I 13APR88 B 2 0-3 Mollusca 3 0.92 0.2609 850.8 13APR88 B 3 0-3 Polychaeta 8 29.30 8.3095 2268.8 13APR88 B 3 0-3 Crustacea 1 0.01 0.0028 283.6 13APR88 B 3 0-3 Mollusca 4 6.07 1. 7215 1134.4 I 13APR88 B 1 3-10 Polychaeta 7 14.05 3.9846 1985.2 13APR88 B 1 3-10 Mollusca 4 1.23 0.3488 1134.4 13APR88 B 2 3-10 Polychaeta 2 34.90 9.8976 567 . 2 13APR88 B 3 3-10 Polychaeta 7 53 .10 15.0592 1985.2 11APR88 c 1 0-3 Polychaeta 31 6.16 1. 7470 8791. 6 I 11APR88 c 1 0-3 Crustacea 1 2.65 0.7515 283.6 11APR88 c 1 0-3 Mollusca 26 3.75 1.0635 7373.6 11APR88 c 1 0-3 Nemertea 1 0.21 0.0596 283.6 11APR88 c 2 0-3 Polychaeta 21 4.38 1.2422 5955.6 I 11APR88 c 2 0-3 Crustacea 2 0.01 0.0028 567.2 11APR88 c 2 0-3 Mollusca 26 6.54 1. 8547 7373.6 11APR88 c 2 0-3 Nemertea 2 0.57 0.1617 567.2 I I I NCHACMG.DAT 273 I 11APR88 c 2 0-3 Sipunculida 1 0.12 0.0340 283.6 11APR88 c 3 0-3 Polychaeta 17 3 .19 0.9047 4821.2 I 11APR88 c 3 0-3 Crustacea 3 0.19 0.0539 850.8 11APR88 c 3 0-3 Mollusca 29 7.61 2.1582 8224.4 11APR88 c 3 0-3 Nemertea 1 0.05 0.0142 283.6 11APR88 c 1 3-10 Polychaeta 5 17.93 5.0849 1418.0 I 11APR88 c 1 3-10 Crustacea 2 0.11 0.0312 567.2 11APR88 c 1 3-10 Mollusca 4 15.31 4.3419 1134.4 11APR88 c 2 3-10 Polychaeta 13 31.00 8.7916 3686.8 11APR88 c 2 3-10 Mollusca 3 0.65 0.1843 850.8 11APR88 c 3 3-10 Polychaeta 9 38.92 11. 0377 2552.4 I 11APR88 c 3 3-10 Mollusca 1 5.60 1.5882 283.6 13APR88 c 1 0-3 Polychaeta 20 1. 72 0.4878 5672.0 13APR88 c 1 0-3 Crustacea 4 0.02 0.0057 1134.4 13APR88 c 1 0-3 Others 1 0.03 0.0085 283.6 I I 13APR88 c 1 0-3 S ipuncu l ida 2 5.47 1.5513 567.2 13APR88 c 2 0-3 Polychaeta 15 2.45 0.6948 4254.0 13APR88 c 2 0-3 Crustacea 4 0.18 0.0510 1134 .4 13APR88 c 2 0-3 Mollusca 5 0.29 0.0822 1418.0 13APR88 c 2 0-3 Nemertea 1 0.31 0.0879 283.6 13APR88 c 2 0-3 Sipunculida 2 2.99 0.8480 567.2 13APR88 c 3 0-3 Polychaeta 10 0.67 0.1900 2836.0 13APR88 c 3 0-3 Crustacea 5 0.18 0.0510 1418.0 13APR88 c 3 0-3 Mollusca 7 0.56 0.1588 1985.2 I I 13APR88 c ·3 0-3 S ipuncu l ida 1 2.04 0.5785 283.6 13APR88 c 1 3-10 Polychaeta 6 5.65 1.6023 1701.6 13APR88 c 2 3-10 Polychaeta 6 4.75 1. 3471 1701.6 13APR88 c 2 3-10 Nemertea 2 0.69 0.1957 567.2 13APR88 c 2 3-10 Ophiuroidea 1 7.83 2.2206 283.6 13APR88 c 3 3-10 Polychaeta 6 1.84 0.5218 1701. 6 13APR88 c 3 3-10 Crustacea 1 0.36 0.1021 283.6 14APR88 D 1 0-3 Polychaeta 41 4.13 1.1713 11627. 6 14APR88 D 1 0-3 Crustacea 1 0.13 0.0369 283.6 I 14APR88 D 1 0-3 Mollusca 10 1.84 0.5218 2836.0 14APR88 D 1 0-3 Nemer tea 1 0.32 0.0908 283.6 14APR88 D 1 0-3 Others 8 1. 01 0.2864 2268.8 14APR88 D 2 0-3 Polychaeta 51 7.80 2.2121 14463.6 I 14APR88 D 2 0-3 Crustacea 1 0.09 0.0255 283.6 14APR88 D 2 0-3 Mollusca 10 1.20 0.3403 2836.0 14APR88 D 2 0-3 Others 11 0.62 0.1758 3119. 6 14APR88 D 3 0-3 Polychaeta 39 3.16 0.8962 11060.4 14APR88 D 3 0-3 Mollusca 3 0.19 0.0539 850.8 I 14APR88 D 3 0-3 Nemertea 2 2.43 0.6891 567.2 14APR88 D 3 0-3 Others 3 0.08 0.0227 850.8 14APR88 D 1 3-10 Polychaeta 25 7.24 2.0533 7090.0 14APR88 D 1 3-10 Nemertea 2 3.27 0.9274 567.2 I 14APR88 D 2 3-10 Polychaeta 15 11.76 3.3351 4254.0 14APR88 D 2 3-10 Mollusca 2 0.17 0.0482 567.2 14APR88 D 2 3-10 Nemertea 1 6.30 1.7867 283.6 14APR88 D 2 3-10 Others 3 0.75 0.2127 850.8 14APR88 D 3 3-10 Polychaeta 8 3.20 0.9075 2268.8 14APR88 D 3 3-10 Mollusca 1 1.45 0.4112 283.6 14APR88 D 3 3-10 Nemertea 1 0.18 0.0510 283.6 I 14APR88 D 3 3-10 Others 2 0.85 0. 2411 567.2 10MAY88 A 1 0-3 Polychaeta 13 0.64 0.1815 3686.8 I 10MAY88 A 1 0-3 Mollusca 6 4.78 1. 3556 1701.6 10MAY88 A 2 0-3 Polychaeta 4 0.28 0.0794 1134 .4 10MAY88 A 2 0-3 Mollusca 6 3.24 0.9189 1701. 6 10MAY88 A 3 0-3 Polychaeta 11 0.36 0.1021 3119. 6 10MAY88 A 3 0-3 Mollusca 6 2.95 0.8366 1701. 6 I 10MAY88 A 1 3-10 Polychaeta 10 1.09 0.3091 2836.0 10MAY88 A 1 3-10 Mollusca 1 3.49 0.9898 283.6 10MAY88 A 2 3-10 Polychaeta 11 1.00 0.2836 3119. 6 10MAY88 A 2 3-10 Mollusca 2 7.55 2.1412 567.2 lOMAY88 A 3 3-10 Polychaeta 12 1.20 0.3403 3403.2 10MAY88 A 3 3-10 Mollusca 1 2.28 0.6466 283.6 11MAY88 B 1 0-3 Polychaeta 19 1.25 0.3545 5388.4 I NCMACMG.DAT 274 11MAY88 B 1 0-3 Crustacea 12 0.36 0. 1021 3403.2 11MAY88 B 1 0-3 Mollusca 4 26.80 7.6005 1134.4 11MAY88 B 2 0-3 Polychaeta 2 0.28 0.0794 567.2 11MAY88 B 2 0-3 Mollusca 3 7.97 2.2603 850.8 11MAY88 B 3 0-3 Polychaeta 9 2.71 0.7686 2552.4 11MAY88 B 3 0-3 Crustacea 4 0.03 0.0085 1134 .4 11MAY88 B 3 0-3 Mollusca 7 47.48 13.4653 1985.2 11MAY88 B 1 3-10 Polychaeta 5 14.75 4 .1831 1418.0 11MAY88 B 1 3-10 Crustacea 2 0.04 0. 0113 567.2 11MAY88 B 2 3-10 Polychaeta 4 3.24 0.9189 1134.4 11MAY88 B 2· 3-10 Mollusca 1 12.45 3.5308 283.6 11MAY88 B 3 3-10 Polychaeta 9 18.50 5.2466 2552 .4 11MAY88 B 3 3-10 Mollusca 1 0. 05 0.0142 283.6 11MAY88 B 3 3-10 Nemertea 1 0.29 0.0822 283.6 09MAY88 c 1 0-3 Polychaeta 24 0.79 0.2240 6806.4 09MAY88 c 1 0-3 Crustacea 12 0.45 0.1276 3403.2 09MAY88 c 1 0-3 Nemertea 1 0. 09 0.0255 283.6 09MAY88 c 2 0-3 Polychaeta 20 1. 08 0.3063 5672.0 09MAY88 c 2 0-3 Crustacea 6 0.36 0.1021 1701.6 09MAY88 c 2 0-3 Mollusca 1 0.02 0.0057 283.6 09MAY88 c 2 0-3 Nemer tea 1 0.04 0. 0113 283.6 09MAY88 c 3 0-3 Polychaeta 19 1.13 0.3205 5388.4 09MAY88 c 3 0-3 Crustacea 20 1.89 0.5360 5672.0 09MAY88 c 3 0-3 Mollusca 3 0.09 0.0255 850.8 09MAY88 c 3 0-3 Others 1 0.15 0.0425 283 .6 09MAY88 c 1 3-10 Polychaeta 5 1. 79 0.5076 1418.0 09MAY88 c 1 3-10 Nemertea 1 0.19 0.0539 283.6 09MAY88 c 2 3-10 Polychaeta 14 3.15 0.8933 3970.4 09MAY88 c 3 3-10 Polychaeta 11 5.60 1.5882 3119. 6 09MAY88 c 3 3-10 Crustacea 5 0. 27 0.0766 1418.0 09MAY88 c 3 3-10 Nemertea 1 2.68 0.7600 283.6 09MAY88 c 3 3-10 Ophiuroidea 1 3.52 0.9983 283.6 09MAY88 c 3 3-10 Others 1 0.17 0.0482 283.6 12MAY88 D 1 0-3 Polychaeta 6 2 .19 0. 6211 1701.6 12MAY88 D 1 0-3 Mollusca 5 0.19 0.0539 1418.0 12MAY88 D 1 0-3 Nemertea 1 2.21 0.6268 283 .6 12MAY88 D 2 0-3 Polychaeta 18 0.65 0.1843 5104.8 12MAY88 D 2 0-3 Crustacea 1 0.04 0. 0113 283.6 12MAY88 D 2 0-3 Mollusca 2 0.27 0.0766 567.2 12MAY88 D 2 0-3 Nemertea 3 0. 14 0.0397 850.8 12MAY88 D 2 0-3 Others 1 0.09 0.0255 283.6 12MAY88 D 3 0-3 Polychaeta 10 1. 52 0.4311 2836.0 12MAY88 D 3 0-3 Crustacea 2 0.03 0.0085 567.2 1 0.11 0.0312 283.6 12MAY88 D 3 0-3 Mo 1lusca12MAY88 D 3 0-3 Others 2 0.25 0.0709 567.2 12MAY88 D 1 3-10 Polychaeta 28 12.56 3.5620 7940.8 12MAY88 D 1 3-10 Crustacea 1 0.33 0.0936 283.6 12MAY88 D 1 3-10 Mollusca 5 0.46 0.1305 1418.0 12MAY88 D 2 3-10 Polychaeta 6 3.38 0.9586 1701.6 12MAY88 D 2 3-10 Others 1 0.03 0.0085 283 .6 12MAY88 D 3 3-10 Polychaeta 20 6.65 1.8859 5672.0 12MAY88 D 3 3-10 Mollusca 2 0.44 0.1248 567.2 3-10 Others 1 0.44 0.1248 283.6 12MAY88 D 3 27JUL88 A 1 0-3 Polychaeta 5 0.20 0.0567 1418.0 27JUL88 A 1 0-3 Mollusca 5 4.46 1.2649 1418.0 27JUL88 A 2 0-3 Polychaeta 10 0.40 0.1134 2836.0 27JUL88 A 2 0-3 Crustacea 2 0.47 0.1333 567.2 27JUL88 A 2 0-3 Mollusca 5 14.38 4.0782 1418.0 27JUL88 A 3 0-3 Polychaeta 12 0.33 0.0936 3403.2 27JUL88 A 3 0-3 Mollusca 8 8.95 2.5382 2268.8 27JUL88 A 1 3-10 Polychaeta 2 0.15 0.0425 567.2 27JUL88 A 2 3-10 Polychaeta 2 0.47 0.1333 567.2 27JUL88 A 2 3-10 Mollusca 1 15.75 4.4667 283.6 27JUL88 A 3 3-10 Polychaeta 4 0.73 0.2070 1134 .4 27JUL88 A 3 3-10 Mo 1 lusca 1 11.23 3 .1848 283.6 283.6 27JUL88 A 3 3-10 Others 1 0.22 0.0624 27JUL88 B 1 0-3 Polychaeta 6 1. 64 0.4651 1701. 6 I I I I I I I I I I I I I I I I I I I l ~ I NCHACHG.DAT 275 I 27JUL88 B 1 0-3 Crustacea 1 0.10 0.0284 283.6 27JUL88 B 1 0-3 Mollusca 11 14.84 4.2086 3119 .6 I I 27JUL88 B 2 0-3 Polychaeta 14 7.23 2.0504 3970.4 27JUL88 B 2 0-3 Crustacea 5 0.23 0.0652 1418.0 27JUL88 B 2 0-3 Mollusca 2 1.98 0.5615 567.2 27JUL88 B 3 0-3 Polychaeta 7 3.17 0.8990 1985.2 27JUL88 B 3 0-3 Crustacea 2 0. 01 0.0028 567.2 27JUL88 B 3 0-3 Mollusca 7 16.09 4.5631 1985.2 27JUL88 B 1 3-10 Polychaeta 4 12.00 3.4032 1134 .4 27JUL88 B 1 3-10 Nemertea 1 0.05 0.0142 283.6 27JUL88 B 2 3-10 Polychaeta 2 1. 72 0.4878 567.2 I I 27JUL88 B 3 3-10 Polychaeta 1 0. 74 0.2099 283.6 26JUL88 c 1 0-3 Polychaeta 1 0.06 0.0170 283.6 26JUL88 c 1 0-3 Crustacea 8 0.21 0.0596 2268.8 26JUL88 c 2 0-3 Polychaeta 5 0.12 0.0340 1418.0 26JUL88 c 2 0-3 Crustacea 8 0.12 0.0340 2268.8 26JUL88 c 3 0-3 Polychaeta 1 0.01 0.0028 283.6 26JUL88 c 3 0-3 Crustacea 7 0.08 0.0227 1985.2 26JUL88 c 3 0-3 Sipunculida 1 0.10 0.0284 283.6 26JUL88 c 3 0-3 Nemertea 1 0.01 0.0028 283.6 I 26JUL88 c 1 3-10 Polychaeta 12 14.22 4.0328 3403.2 26JUL88 c 1 3-10 Mollusca 2 8.12 2.3028 567.2 26JUL88 c 1 3-10 Nemertea 3 2.06 0.5842 850.8 26JUL88 c 1 3-10 Ophiuroidea 1 1.15 0.3261 283.6 I 26JUL88 c 2 3-10 Polychaeta 5 6.25 1. 7725 1418.0 26JUL88 c 2 3-10 Crustacea 1 0.01 0.0028 283.6 26JUL88 c 3 3-10 Polychaeta 8 0.99 0.2808 2268.8 26JUL88 c 3 3-10 Nemertea 2 0.13 0.0369 567.2 26JUL88 c 3 3-10 Ophiuroidea 1 6.13 1.7385 283.6 I 26JUL88 D 1 0-3 Polychaeta 7 0.23 0.0652 1985.2 26JUL88 D 1 0-3 Mollusca 3 0.15 0.0425 850.8 26JUL88 D 1 0-3 Sipunculida 3 2.47 0.7005 850.8 26JUL88 D 2 0-3 Polychaeta 6 0.35 0.0993 1701.6 I 26JUL88 D 2 0-3 Others 1 0.16 0.0454 283.6 26JUL88 D 2 0-3 Sipunculida 1 0.32 0.0908 283.6 26JUL88 D 3 0-3 Polychaeta 14 0.86 0. 2439 3970.4 26JUL88 D 3 0-3 Crustacea 1 0.18 0.0510 283.6 26JUL88 D 3 0-3 Mollusca 1 0.10 0.0284 283.6 I 26JUL88 D 3 0-3 Sipunculida 1 0.23 0.0652 283.6 26JUL88 D 1 3-10 Polychaeta 5 2.33 0.6608 1418.0 26JUL88 D 1 3-10 Others 1 0. 53 0.1503 283.6 26JUL88 D 2 3-10 Polychaeta 69 2.60 0.7374 19568.4 26JUL88 D 2 3-10 Others 1 0. 46 0 .1305 283.6 26JUL88 D 3 3-10 Polychaeta 9 1.69 0.4793 2552.4 26JUL88 D 3 3-10 Nemertea 2 13.31 3.7747 567.2 I I I I I I I I 276 LPHACHG.DAT I LPMACMG.DAT Lavaca-Tres Palacios Estuary Macrofauna biomass data (mg/mA2) I 3 replicates (REP) were taken each time, N=n/section, MG=dry weight in mg/core, GM2=g/mA2, nm2=n/mA2 . I I DATE STA REP SEC TAXA N MG GM2 NM2 18APR88 A 1 0-3 Crustacea 7 0.15 0.0425 1985.2 18APR88 A 1 0-3 Mollusca 5 0.20 0.0567 1418.0 18APR88 A 1 0-3 Polychaeta 85 3. 69 1.0465 24106.0 I 18APR88 A 1 3-10 Crustacea 1 0.01 0.0028 283.6 18APR88 A 1 3-10 Mollusca 5 21. 79 6.1796 1418.0 18APR88 A 1 3-10 Polychaeta 3 0.44 0.1248 850.8 18APR88 A 2 0-3 Crustacea 7 0.31 0.0879 1985.2 I 18APR88 A 2 0-3 Mollusca 20 0.49 0.1390 5672 .0 18APR88 A 2 0-3 Polychaeta 75 4.80 1.3613 21270.0 18APR88 A 2 3-10 Mollusca 2 9.52 2.6999 567 . 2 18APR88 A 2 3-10 Polychaeta 5 0. 64 0.1815 1418.0 18APR88 A 3 0-3 Crustacea 5 0.33 0.0936 1418.0 I 18APR88 A 3 0-3 Mollusca 12 0.37 0.1049 3403.2 18APR88 A 3 0-3 Nemertea 1 1.18 0.3346 283.6 18APR88 A 3 0-3 Polychaeta 67 3.23 0.9160 19001. 2 18APR88 A 3 3-10 Mollusca 5 29.75 8.4371 1418.0 I 18APR88 A 3 3-10 Polychaeta 5 1.17 0.3318 1418.0 18APR88 B 1 0-3 Crustacea 3 0.02 0.0057 850.8 18APR88 B 1 0-3 Mollusca 7 2.01 0.5700 1985.2 18APR88 B 1 0-3 Polychaeta 33 1.20 0.3403 9358.8 18APR88 B 1 3-10 Polychaeta 22 3.95 1.1202 6239.2 I 18APR88 B 2 0-3 Crustacea 3 0.19 0.0539 850.8 18APR88 B 2 0-3 Mollusca 6 3.31 0.9387 1701.6 18APR88 B 2 0-3 Polychaeta 33 2.38 0.6750 9358.8 18APR88 B 2 3-10 Nemertea 1 0.49 0.1390 283.6 I 18APR88 B 2 3-10 Polychaeta 31 3.65 1. 0351 8791. 6 18APR88 B 3 0-3 Crustacea 2 0.29 0.0822 567.2 18APR88 B 3 0-3 Mollusca 8 4.49 1.2734 2268.8 18APR88 B 3 0-3 Polychaeta 23 1.05 0.2978 6522.8 18APR88 B 3 3-10 Polychaeta 24 4. 52 1. 2819 6806.4 I 18APR88 c 1 0-3 Crustacea 3 0.21 0.0596 850.8 18APR88 c 1 0-3 Mollusca 1 0.20 0.0567 283 .6 18APR88 c 1 0-3 Nemertea 1 0.28 0.0794 283.6 18APR88 c 1 0-3 Others 1 0.23 0.0652 283.6 I 18APR88 c 1 0-3 Polychaeta 26 1.42 0.4027 7373.6 18APR88 c 1 3-10 Hemicordata 1 23.35 6.6221 283 . 6 18APR88 c 1 3-10 Nemertea 2 0.04 0.0113 567.2 18APR88 c 1 3-10 Polychaeta 37 11 . 29 3.2018 10493.2 I 18APR88 c 2 0-3 Crustacea 2 0.23 0.0652 567.2 18APR88 c 2 0-3 Mollusca 1 0.12 0. 0340 283.6 18APR88 c 2 0-3 Nemertea 1 0.07 0.0199 283.6 18APR88 c 2 0-3 Polychaeta 57 1. 79 0.5076 16165.2 18APR88 c 2 3-10 Hemicordata 5 81. 06 22.9886 1418.0 I 18APR88 c 2 3-10 Mollusca 2 0.25 0.0709 567.2 18APR88 c 2 3-10 Nemertea 5 4.68 1.3272 1418.0 18APR88 c 2 3-10 Polychaeta 89 6.01 1.7044 25240.4 18APR88 c 3 0-3 Mollusca 2 2.18 0. 6182 567.2 I 18APR88 c 3 0-3 Nemertea 3 0.22 0.0624 850.8 18APR88 c 3 0-3 Polychaeta 40 1.67 0.4736 11344. 0 18APR88 c 3 3-10 Hemicordata 1 0.89 0. 2524 283.6 18APR88 c 3 3-10 Mollusca 1 0.13 0.0369 283.6 18APR88 c 3 3-10 Nemertea 2 0.15 0.0425 567.2 I 18APR88 c 3 3-10 Others 1 0.47 0.1333 283.6 18APR88 c 3 3-10 Polychaeta 58 5.38 1. 5258 16448.8 I I LPMACMG.DAT 277 I 18APR88 D 1 0-3 Crustacea 48 0.76 0.2155 13612.8 18APR88 D 1 0-3 Mollusca 4 0.81 0.2297 1134 .4 I 18APR88 D 1 0-3 Others 3 0.28 0.0794 850.8 18APR88 D 1 0-3 Ophiuroidea 1 0.15 0.0425 283 .6 18APR88 D 1 0-3 Polychaeta 48 1.92 0.5445 13612.8 18APR88 D 1 3-10 Crustacea 14 6.50 1.8434 3970.4 I 18APR88 D 1 3-10 Mollusca 22 7.01 1.9880 6239.2 18APR88 D 1 3-10 Nemertea 1 0.92 0.2609 283.6 18APR88 D 1 3-10 Ophiuroidea 2 10.49 2.9750 567.2 18APR88 D 1 3-10 Polychaeta 40 3.51 0.9954 11344. 0 18APR88 D 2 0-3 Crustacea 222 3.09 0.8763 62959.2 I I 18APR88 D 2 0-3 Mollusca 4 1.40 0.3970 1134 .4 18APR88 D 2 0-3 Polychaeta 27 1.59 0.4509 7657.2 18APR88 D 2 3-10 Crustacea 57 4.64 1.3159 16165.2 18APR88 D 2 3-10 Mollusca 13 3.06 0.8678 3686.8 18APR88 D 2 3-10 Nemertea 3 2.07 0.5871 850.8 18APR88 D 2 3-10 Ophiuroidea 3 30.06 8.5250 850.8 18APR88 D 2 3-10 Polychaeta 40 13.75 3.8995 11344. 0 18APR88 D 3 0-3 Crustacea 329 5.41 1.5343 93304.4 18APR88 D 3 0-3 Mollusca 2 0 .17 0.0482 567.2 I 18APR88 D 3 0-3 Nemertea 2 0.03 0.0085 567.2 18APR88 D 3 0-3 Others 1 0.12 0.0340 283.6 18APR88 D 3 0-3 Polychaeta 65 4.40 1.2478 18434.0 18APR88 D 3 3-10 Crustacea 43 7.92 2.2461 12194.8 I 18APR88 D 3 3-10 Mollusca 11 2.94 0.8338 3119. 6 18APR88 D 3 3-10 Nemertea 1 0.59 0.1673 283.6 18APR88 D 3 3-10 Ophiuroidea 1 8.89 2.5212 283.6 18APR88 D 3 3-10 Polychaeta 65 7.08 2.0079 18434.0 19JUL88 A 1 0-3 Crustacea 1 0.07 0.0199 283.6 I 19JUL88 A 1 0-3 Mollusca 4 0.32 0.0908 1134 .4 19JUL88 A 1 0-3 Polychaeta 20 0.81 0.2297 5672. 0 19JUL88 A 1 3-10 Polychaeta 10 4.27 1.2110 2836.0 19JUL88 A 2 0-3 Crustacea 2 0.55 0 .1560 567.2 I 19JUL88 A 2 0-3 Polychaeta 19 0.87 0.2467 5388.4 19JUL88 A 2 3-10 Polychaeta 3 0.41 0.1163 850.8 19JUL88 A 3 0-3 Crustacea 2 0.20 0.0567 567.2 19JUL88 A 3 0-3 Mollusca 1 0.18 0.0510 283.6 19JUL88 A 3 0-3 Polychaeta 22 1.03 0.2921 6239.2 I 19JUL88 B 1 0-3 Crustacea 2 0.16 0.0454 567.2 19JUL88 B 1 0-3 Mollusca 4 0.05 0.0142 1134.4 19JUL88 B 1 0-3 Polychaeta 17 0.68 0.1928 4821. 2 19JUL88 B 1 3-10 Mollusca 2 0.02 0.0057 567.2 I 19JUL88 B 1 3-10 Polychaeta 2 3. 72 1.0550 567.2 19JUL88 B 2 0-3 Crustacea 3 0.05 0.0142 850.8 19JUL88 B 2 0-3 Mollusca 1 0.04 0.0113 283.6 19JUL88 B 2 0-3 Polychaeta 32 0.88 0.2496 9075.2 19JUL88 B 2 3-10 Mollusca 1 0.02 0.0057 283.6 I 19JUL88 B 2 3-10 Polychaeta 8 1.39 0.3942 2268.8 19JUL88 B 3 0-3 Crustacea 1 0.01 0.0028 283.6 19JUL88 B 3 0-3 Mollusca 2 0.03 0.0085 567.2 19JUL88 B 3 0-3 Polychaeta 30 1.03 0.2921 8508.0 I I 19JUL88 B 3 3-10 Mollusca 1 11.13 3 .1565 283.6 19JUL88 B 3 3-10 Nemertea 2 0.21 0.0596 567.2 19JUL88 B 3 3-10 Polychaeta 11 0. 53 0.1503 3119. 6 19JUL88 c 1 0-3 Crustacea 1 0.01 0.0028 283.6 19JUL88 c 1 0-3 Hemicordata 1 1.28 0.3630 283.6 19JUL88 c 1 0-3 Mollusca 1 0.01 0.0028 283.6 19JUL88 c 1 0-3 Nemertea 2 0.04 0. 0113 567.2 19JUL88 c 1 0-3 Polychaeta 7 0.10 0.0284 1985.2 19JUL88 c 1 3-10 Hemicordata 1 2.61 0.7402 283.6 19JUL88 c 1 3-10 Nemer tea 2 0.16 0.0454 567.2 19JUL88 c 1 3-10 Polychaeta 79 9.75 2.7651 22404.4 19JUL88 c 2 0-3 Hemicordata 1 4.66 1.3216 283.6 I 19JUL88 c 2 0-3 Mollusca 1 0.02 0.0057 283.6 19JUL88 c 2 0-3 Others 1 0.04 0. 0113 283 . 6 19JUL88 c 2 0-3 Polychaeta 16 1.85 0.5247 4537.6 19JUL88 c 2 3-10 Hemicordata 3 19.68 5.5812 850.8 I LPMACMG.DAT 278 I 19JUL88 c 2 3-10 Ophiuroidea 1 2.85 0.8083 283.6 19JUL88 c 2 3-10 Polychaeta 27 5.86 1.6619 7657.2 I 19JUL88 c 3 0-3 Nemertea 1 0.13 0.0369 283.6 19JUL88 c 3 0-3 Polychaeta 15 0.45 0.1276 4254.0 19JUL88 c 3 3-10 Hemicordata 2 5.62 1.5938 567 .2 19JUL88 c 3 3-10 Mollusca 1 0.12 0.0340 283.6 19JUL88 c 3 3-10 Nemertea 1 0.02 0.0057 283.6 I 19JUL88 c 3 3-10 Polychaeta 26 8.08 2.2915 7373.6 19JUL88 D 1 0-3 Crustacea 5 1.10 0.3120 1418.0 19JUL88 D 1 0-3 Mollusca 1 0.12 0.0340 283.6 19JUL88 D 1. 0-3 Nemertea 5 0.35 0.0993 1418.0 I 19JUL88 D 1 0-3 Polychaeta 10 0.92 0.2609 2836.0 19JUL88 D 1 0-3 Sipunculida 1 0.01 0.0028 283.6 19JUL88 D 1 3-10 ·Crustacea 36 13.84 3.9250 10209.6 19JUL88 D 1 3-10 Hemicordata 1 4. 77 1. 3528 283.6 19JUL88 D 1 3-10 Mollusca 3 0.03 0.0085 850.8 I 19JUL88 D 1 3-10 Nemertea 3 1.05 0.2978 850.8 19JUL88 D 1 3-10 Ophiuroidea 1 1.12 0.3176 283.6 19JUL88 D 1 3-10 Polychaeta 32 1.08 0.3063 9075.2 19JUL88 D 2 0-3 Crustacea 1 0.42 0.1191 283.6 I 19JUL88 D 2 0-3 Mollusca 2 0.01 0.0028 567.2 19JUL88 D 2 0-3 Nemertea 2 0.78 0.2212 567.2 19JUL88 D 2 0-3 Polychaeta 13 0.27 0.0766 3686.8 19JUL88 D 2 3-10 Crustacea 17 6.22 1.7640 4821. 2 I 19JUL88 D 2 3-10 Mollusca 3 7.84 2.2234 850.8 19JUL88 D 2 3-10 Nemertea 3 0.73 0.2070 850.8 19JUL88 D 2 3-10 Others 1 1.81 0.5133 283.6 19JUL88 D 2 3-10 Ophiuroidea 3 1. 77 0.5020 850.8 19JUL88 D 2 3-10 Polychaeta 33 6. 77 1.9200 9358.8 I 19JUL88 D 3 0-3 Crustacea 1 0.67 0 .1900 283.6 19JUL88 D 3 0-3 Mollusca 4 0.11 0. 0312 1134. 4 19JUL88 D 3 0-3 Nemertea 3 0.15 0.0425 850.8 19JUL88 D 3 0-3 Others 1 0.01 0.0028 283.6 19JUL88 D 3 0-3 Polychaeta 9 0.14 0.0397 2552.4 I 19JUL88 D 3 3-10 Crustacea 42 13.52 3.8343 11911.2 19JUL88 D 3 3-10 Mollusca 3 37.44 10.6180 850.8 19JUL88 D 3 3-10 Nemertea 3 0.03 0. 0085 850.8 19JUL88 D 3 3-10 Ophiuroidea 1 5.73 1. 6250 283.6 I 19JUL88 D 3 3-10 Polychaeta 30 3.08 0.8735 8508.0 11NOV88 A 1 0-3 Crustacea 2 0.09 0.0255 567 . 2 11NOV88 A 1 0-3 Polychaeta 14 0.93 0.2637 3970.4 11NOV88 A 1 3-10 Crustacea 1 0.27 0.0766 283.6 I 11NOV88 A 1 3-10 Nemertea 1 0.07 0.0199 283.6 11NOV88 A 1 3-10 Polychaeta 13 14.23 4.0356 3686.8 11NOV88 A 2 0-3 Polychaeta 14 7 .16 2.0306 3970.4 11NOV88 A 2 3-10 Polychaeta 15 0.94 0.2666 4254.0 11NOV88 A 3 0-3 Crustacea 1 0.02 0.0057 283.6 I 11NOV88 A 3 0-3 Mollusca 2 0.13 0.0369 567.2 11NOV88 A 3 0-3 Nemertea 1 0.17 0.0482 283.6 11NOV88 A 3 0-3 Polychaeta 26 0.84 0.2382 7373.6 11NOV88 A 3 3-10 Polychaeta 7 3.57 1. 0125 1985.2 I 11NOV88 B 1 0-3 Crustacea 1 0.07 0.0199 283.6 11NOV88 B 1 0-3 Mollusca 1 0.08 0.0227 283.6 11NOV88 B 1 0-3 Polychaeta 23 0.51 0.1446 6522.8 11NOV88 B 1 3-10 Polychaeta 4 1.06 0.3006 1134.4 11NOV88 8 2 0-3 Crustacea 1 0.17 0.0482 283.6 I 11NOV88 B 2 0-3 Polychaeta 26 1.14 0.3233 7373.6 11NOV88 B 2 3-10 Polychaeta 10 2.85 0.8083 2836.0 11NOV88 B 3 0-3 Crustacea 1 0.06 0.0170 283.6 11NOV88 B 3 0-3 Nemertea 1 0.08 0.0227 283.6 ,1 11NOV88 B 3 0-3 Polychaeta 19 0.72 0.2042 5388.4 11NOV88 B 3 3-10 Polychaeta 3 0.32 0.0908 850.8 11NOV88 c 1 0-3 Crustacea 1 0.13 0.0369 283.6 11NOV88 c 1 0-3 Mollusca 1 0.07 0.0199 283.6 11NOV88 c 1 0-3 Nemertea 1 0.05 0.0142 283.6 I 11NOV88 c 1 0-3 Polychaeta 13 3.55 1.0068 3686.8 11NOV88 c 1 3-10 Polychaeta 40 14.51 4.1150 11344. 0 ·I I LPMACMG.DAT 279 I I 11NOV88 c 2 0-3 Hemicordata 1 0.21 0.0596 283.6 11NOV88 c 2 0-3 Mollusca 1 0.08 0.0227 283.6 11NOV88 c 2 0-3 Polychaeta 18 2.39 0.6778 5104.8 11NOV88 c 2 3-10 Hemicordata 1 1.32 0.3744 283.6 11NOV88 c 2 3-10 Mollusca 1 0.13 0.0369 283.6 11NOV88 c 2 3-10 Polychaeta 32 14.69 4 .1661 9075.2 I I 11NOV88 c 3 0-3 Crustacea 3 0.07 0.0199 850.8 11NOV88 c 3 0-3 Polychaeta 18 2.18 0.6182 5104.8 11NOV88 c 3 3-10 Hemicordata 1 1.11 0.3148 283.6 11NOV88 c 3 3-10 Polychaeta 20 6.35 1.8009 5672.0 11NOV88 D 1-0-3 Crustacea 33 1.37 0.3885 9358.8 11NOV88 D 1 0-3 Mollusca 6 0.46 0 .1305 1701.6 11NOV88 D 1 0-3 Ophiuroidea 4 0.06 0.0170 1134. 4 11NOV88 D 1 0-3 · Po lychaeta 22 2 . 19 0. 6211 6239.2 11NOV88 D 1 3-10 Crustacea 51 4.82 1.3670 14463.6 I I 11NOV88 D 1 3-10 Mollusca 4 0.51 0.1446 1134.4 11NOV88 D 1 3-10 Ophiuroidea 1 0.21 0.0596 283.6 11NOV88 D 1 3-10 Polychaeta 20 6.57 1.8633 5672.0 11NOV88 D 2 0-3 Crustacea 15 0.36 0 .1021 4254.0 11NOV88 D 2 0-3 Mollusca 6 0.14 0.0397 1701. 6 11NOV88 D 2 0-3 Others 2 0.19 0.0539 567.2 11NOV88 D 2 0-3 Ophiuroidea 3 0.14 0.0397 850.8 11NOV88 D 2 0-3 Polychaeta 21 2 .10 0.5956 5955.6 11NOV88 D 2 3-10 Crustacea 29 1.11 0.3148 8224.4 I I 11NOV88 D 2 3-10 Mollusca 12 0.20 0.0567 3403.2 11NOV88 D 2 3-10 Nemertea 6 7.71 2.1866 1701.6 11NOV88 D 2 3-10 Ophiuroidea 1 0.22 0.0624 283.6 11NOV88 D 2 3-10 Polychaeta 24 3.07 0.8707 6806.4 11NOV88 D 3 0-3 Crustacea 23 0.75 0.2127 6522.8 11NOV88 D 3 0-3 Mollusca 8 0.16 0.0454 2268.8 11NOV88 D 3 0-3 Ophiuroidea 1 0.09 0.0255 283.6 11NOV88 D 3 0-3 Polychaeta 20 0. 26 0.0737 5672. 0 11NOV88 D 3 3-10 Crustacea 64 1.55 0.4396 18150.4 I I 11NOV88 D 3 3-10 Mollusca 18 0.68 0 .1928 5104.8 11NOV88 D 3 3-10 Ophiuroidea 1 3.34 0.9472 283.6 11NOV88 D 3 3-10 Polychaeta 39 2.11 0.5984 11060. 4 05APR89 A 1 0-3 Crustacea 68 1.32 0.3744 19284.8 05APR89 A 1 0-3 Mollusca 23 20.78 5.8932 6522.8 05APR89 A 1 0-3 Others 1 0.06 0.0170 283.6 05APR89 A 1 0-3 Polychaeta 13 0.36 0. 1021 3686.8 05APR89 A 1 3-10 Mollusca 1 5.23 1.4832 283.6 05APR89 A 1 3-10 Polychaeta 8 1.41 0.3999 2268 .8 I 05APR89 A 2 0-3 Crustacea 51 1.15 0.3261 14463.6 05APR89 A 2 0-3 Mollusca 22 21.84 6.1938 6239.2 05APR89 A 2 0-3 Polychaeta 14 36.96 10.4819 3970.4 05APR89 A 2 3-10 Crustacea 1 0.19 0.0539 283.6 I 05APR89 A 2 3-10 Mollusca 1 3.20 0.9075 283.6 05APR89 A 2 3-10 Polychaeta 10 2.54 0.7203 2836.0 05APR89 A 3 0-3 Crustacea 34 0.68 0 .1928 9642.4 OSAPR89 A 3 0-3 Mollusca 15 10.97 3.1111 4254.0 05APR89 A 3 0-3 Polychaeta 10 0.41 0.1163 2836.0 I 05APR89 A 3 3-10 Mollusca 2 4.32 1. 2252 567.2 05APR89 A 3 3-10 Polychaeta 9 1. 52 0.4311 2552.4 05APR89 B 1 0-3 Crustacea 1 5.93 1.6817 283.6 05APR89 B 1 0-3 Mollusca 2 0.38 0 .1078 567.2 05APR89 B 1 0-3 Polychaeta 12 0.74 0.2099 3403.2 05APR89 B 1 3-10 Crustacea 1 0.52 0.1475 283.6 05APR89 B 1 3-10 Mollusca 6 12.54 3.5563 1701. 6 I 05APR89 B 1 3-10 Polychaeta 25 7.88 2.2348 7090.0 05APR89 B 2 0-3 Mollusca 2 0.88 0.2496 567.2 I 05APR89 B 2 0-3 Polychaeta 3 0.69 0.1957 850.8 OSAPR89 B 2 3-10 Mollusca 3 6.69 1.8973 850.8 05APR89 B 2 3-10 Polychaeta 21 5.83 1.6534 5955.6 05APR89 B 3 0-3 Crustacea 1 0.51 0.1446 283.6 05APR89 B 3 0-3 Mollusca 3 0.05 0.0142 850.8 05APR89 B 3 0-3 Polychaeta 6 1.16 0.3290 1701. 6 05APR89 B 3 3-10 Crustacea 1 0.15 0.0425 283.6 I LPHACMG.DAT 280 05APR89 B 3 3-10 Mollusca 6 3.68 1. 0436 1701. 6 05APR89 B 3 3-10 Others 1 0.09 0.0255 283.6 05APR89 B 3 3-10 Polychaeta 28 10.83 3.0714 7940.8 05APR89 c 1 0-3 Crustacea 1 0.05 0.0142 283.6 05APR89 c 1 0-3 Mollusca 2 0.17 0.0482 567.2 05APR89 c 1 0-3 Polychaeta 8 1.25 0.3545 2268.8 05APR89 c 1 3-10 Mollusca 1 0.05 0. 0142 283.6 05APR89 c 1 3-10 Nemertea 1 0.19 0.0539 283.6 05APR89 c 1 3-10 Polychaeta 21 5.44 1.5428 5955.6 05APR89 c 2 0-3 Crustacea 1 8.29 2.3510 283.6 05APR89 c 2 . 0-3 Mollusca 1 0.23 0.0652 283.6 05APR89 c 2 0-3 Polychaeta 3 0.76 0.2155 850.8 05APR89 c 2 3-10 Nemertea 2 2.32 0.6580 567.2 05APR89 c 2 3-10 Polychaeta 34 55.13 15.6349 9642.4 05APR89 c 3 0-3 Nemertea 1 0.47 0.1333 283 .6 05APR89 c 3 0-3 Polychaeta 3 0.66 0.1872 850.8 05APR89 c 3 3-10 Crustacea 1 9.69 2.7481 283.6 05APR89 c 3 3-10 Polychaeta 7 0.50 0.1418 1985.2 05APR89 D 1 0-3 Crustacea 4 0.38 0.1078 1134.4 05APR89 D 1 0-3 Mollusca 10 6.52 1.8491 2836.0 05APR89 D 1 0-3 Nemertea 1 0. 26 0.0737 283.6 05APR89 D 1 0-3 Ophiuroidea 1 0.39 0.1106 283.6 05APR89 D 1 0-3 Polychaeta 36 3.22 0.9132 10209.6 05APR89 D 1 3-10 Crustacea 6 4.67 1.3244 1701. 6 05APR89 D 1 3-10 Mollusca 6 5.07 1.4379 1701. 6 05APR89 D 1 3-10 Nemertea 3 2.85 0.8083 850.8 3-10 Others 1 1.16 0.3290 283.6 05APR89 D 1 05APR89 D 1 3-10 Ophiuroidea 1 0.81 0.2297 283.6 05APR89 D 1 3-10 Polychaeta 30 1. 57 0.4453 8508.0 05APR89 D 2 0-3 Crustacea 4 0.85 0.2411 1134.4 05APR89 D 2 0-3 Mollusca 21 177. 00 50 .1972 5955.6 05APR89 D 2 0-3 Nemertea 2 0.14 0.0397 567.2 05APR89 D 2 0-3 Polychaeta 29 0.91 0.2581 8224.4 05APR89 D 2 0-3 Sipunculida 1 1.20 0.3403 283 .6 05APR89 D 2 3-10 Crustacea 9 4.97 1. 4095 2552.4 05APR89 D 2 3-10 Mollusca 16 2.50 0.7090 4537.6 05APR89 D 2 3-10 Nemertea 2 1.06 0.3006 567.2 05APR89 D 2 3-10 Ophiuroidea 1 5.20 1.4747 283.6 05APR89 D 2 3-10 Polychaeta 17 3.75 1.0635 4821.2 05APR89 D 3 0-3 Crustacea 10 4.53 1.2847 2836.0 05APR89 D 3 0-3 Mollusca 15 4.44 1. 2592 4254.0 05APR89 D 3 0-3 Nemertea 3 0.18 0.0510 850.8 05APR89 D 3 0-3 Ophiuroidea 1 2.26 0.6409 283.6 05APR89 D 3 0-3 Polychaeta 38 1.43 0.4055 10776.8 05APR89 D 3 0-3 Sipunculida 1 4.47 1. 2677 283.6 05APR89 D 3 3-10 Crustacea 17 8.27 2.3454 4821. 2 05APR89 D 3 3-10 Mollusca 7 0.56 0.1588 1985.2 05APR89 0 3 3-10 Nemertea 1 0.47 0.1333 283.6 05APR89 D 3 3-10 Ophiuroidea 3 41. 75 11. 8403 850.8 05APR89 D 3 3-10 Polychaeta 22 3.74 1.0607 6239.2 22JUL89 A 1 0-3 Crustacea 1 0.02 0.0057 283.6 22JUL89 A 1 0-3 Mollusca 1 0.05 0.0142 283.6 22JUL89 A 1 0-3 Polychaeta 9 0.39 0.1106 2552 .4 22JUL89 A 1 3-10 Mollusca 1 12 .86 3.6471 283.6 22JUL89 A 1 3-10 Polychaeta 8 5.02 1. 4237 2268.8 22JUL89 A 2 0-3 Mollusca 7 6.01 1.7044 1985.2 22JUL89 A 2 0-3 Polychaeta 15 0.42 0.1191 4254.0 22JUL89 A 2 3-10 Polychaeta 6 1.19 0.3375 1701.6 22JUL89 A 3 0-3 Crustacea 3 0.01 0.0028 850 .8 22JUL89 A 3 0-3 Mollusca 6 4.75 1. 3471 1701.6 22JUL89 A 3 0-3 Polychaeta 15 1.41 0.3999 4254.0 22JUL89 A 3 3-10 Mollusca 2 0.20 0.0567 567.2 22JUL89 A 3 3-10 Polychaeta 9 7.76 2.2007 2552.4 22JUL89 c 1 0-3 Crustacea 3 0.22 0.0624 850.8 22JUL89 c 1 0-3 Nemertea 1 4.34 1.2308 283 .6 22JUL89 c 1 0-3 Polychaeta 5 0.09 0.0255 1418.0 22JUL89 c 1 3-10 Nemertea 1 0.07 0.0199 283.6 I I I I I II I I I I I I I I I I I I I LPMACMG.DAT 281 I 22JUL89 c 1 3-10 Ophiuroidea 1 0.03 0.0085 283.6 22JUL89 c 1 3-10 Polychaeta 15 4.54 1.2875 4254.0 22JUL89 c 2 0-3 Crustacea 3 0.17 0.0482 850.8 22JUL89 c 2 0-3 Mo 1 lusca 1 0.01 0.0028 283.6 I I I I I I I I I I I I I I I 282 GEMACSP.DAT I GEMACSP.DAT Guadalupe Estuary Macrofauna species data. I 3 replicates (REP) were taken each time, N=n/section (SEC) nm2=n/mA2. Sections in cm. I SP NAME DATE STA REP SEC N NM2 I Littoridina sphinctostoma 28JAN87 A 1 0-3 1 283.6 Mediomastus californiensis 28JAN87 A 1 0-3 1 283.6 Streblospio benedicti 28JAN87 A 1 0-3 9 2552.4 Mediomastus californiensis 28JAN87 A 1 3-10 30 8508.0 01 igochaeta 28JAN87 A 1 3-10 1 283.6 I Hobsonia f lorida 28JAN87 A 2 0-3 1 283.6 Macoma mitche 11 i 28JAN87 A 2 0-3 12 3403.2 Mediomastus californiensis 28JAN87 A 2 0-3 11 3119. 6 Streblospio benedicti 28JAN87 A 2 0-3 19 5388.4 I Capitella capitata 28JAN87 A 2 3-10 1 283.6 Mediomastus californiensis 28JAN87 A 2 3-10 25 7090.0 Parandalia ocularis 28JAN87 A 2 3-10 1 283.6 Macoma mitche 11 i 28JAN87 A 3 0-3 5 1418.0 Mediomastus californiensis 28JAN87 A 3 0-3 1 283.6 I Monoculoides sp. 28JAN87 A 3 0-3 1 283.6 Streblospio benedicti 28JAN87 A 3 0-3 5 1418.0 Capitella capitata 28JAN87 A 3 3-10 2 567.2 Macoma mitche 11 i 28JAN87 A 3 3-10 1 283.6 I Mediomastus californiensis 28JAN87 A 3 3-10 15 4254.0 Streblospio benedicti 28JAN87 A 3 3-10 1 283.6 Truncatella caribaeensis 28JAN87 A 10 81 4 1134.4 Littoridina sphinctostoma 28JAN87 B 1 0-3 7 1985.2 I Macoma mitche 11 i 28JAN87 B 1 0-3 7 1985.2 Mediomastus californiensis 28JAN87 B 1 0-3 10 2836.0 Monoculoides sp. 28JAN87 B 1 0-3 2 567.2 Mulinia lateralis 28JAN87 B 1 0-3 3 850.8 Polydora socialis 28JAN87 B 1 0-3 1 283.6 I Rhynchocoels 28JAN87 B 1 0-3 1 283.6 Streblospio benedicti 28JAN87 B 1 0-3 16 4537.6 Capitella capitata 28JAN87 B 1 3-10 1 283.6 Macoma mitche 11 i 28JAN87 B 1 3-10 2 567.2 I Mediomastus californiensis 28JAN87 B 1 3-10 48 13612.8 01 igochaeta 28JAN87 B 1 3-10 1 283.6 Rhynchocoels 28JAN87 B 1 3-10 1 283.6 Edotea montosa 28JAN87 B 2 0-3 1 283.6 Littoridina sphinctostoma 28JAN87 B 2 0-3 6 1701. 6 I Macoma mitche 11 i 28JAN87 B 2 0-3 1 283.6 Mediomastus californiensis 28JAN87 B 2 0-3 32 9075.2 Monoculoides sp. 28JAN87 B 2 0-3 6 1701. 6 Rhynchocoels 28JAN87 B 2 0-3 1 283.6 I Streblospio benedicti 28JAN87 B 2 0-3 5 1418.0 Capitella capitata 28JAN87 B 2 3-10 1 283.6 Mediomastus californiensis 28JAN87 B 2 3-10 9 2552.4 Littoridina sphinctostoma 28JAN87 B 3 0-3 1 283.6 Macoma mitche 11 i 28JAN87 B 3 0-3 6 1701. 6 I Mediomastus californiensis 28JAN87 B 3 0-3 29 8224.4 Rhynchocoels 28JAN87 B 3 0-3 1 283.6 Streblospio benedicti 28JAN87 B 3 0-3 13 3686.8 Capitella capitata 28JAN87 B 3 3-10 1 283.6 I Ma coma mi tche 11 i 28JAN87 B 3 3-10 1 283.6 Mediomastus californiensis 28JAN87 B 3 3-10 18 5104.8 Rhynchocoels 28JAN87 B 3 3-10 1 283.6 Cyclaspis varians 30JAN87 c 1 0-3 1 283.6 Glycinde solitaria 30JAN87 c 1 0-3 1 283.6 I Haploscoloplos foliosus 30JAN87 c 1 0-3 9 2552.4 Macoma mitche 11 i 30JAN87 c 1 0-3 2 567.2 I I I GEMACSP.DAT 283 I Mediomastus californiensis 30JAN87 c 1 0-3 5 1418.0 Monoculoides sp. 30JAN87 c 1 0-3 2 567.2 I Paraprionospio pinnata 30JAN87 c 1 0-3 1 283.6 Streblospio benedicti 30JAN87 c 1 0-3 1 283.6 Cossura delta 30JAN87 c 1 3-10 3 850.8 Mediomastus californiensis 30JAN87 c 1 3-10 3 850.8 I Rhynchocoels 30JAN87 c 1 3-10 1 283.6 Cyclaspis varians 30JAN87 c 2 0-3 1 283.6 Glycinde solitaria 30JAN87 c 2 0-3 1 283.6 Haploscoloplos foliosus 30JAN87 c 2 0-3 6 1701.6 Macoma mitche 11 i 30JAN87 c 2 0-3 1 283.6 I Mediomastus californiensis 30JAN87 c 2 0-3 16 4537.6 Mulinia lateralis 30JAN87 c 2 0-3 1 283.6 Paraprionospio pinnata 30JAN87 c 2 0-3 1 283.6 Streblospio benedicti 30JAN87 c 2 0-3 1 283.6 I Gyptis vittata 30JAN87 c 2 3-10 1 283.6 Mediomastus californiensis 30JAN87 c 2 3-10 1 283.6 Polydora caulleryi 30JAN87 c 2 3-10 1 283.6 Ampelisca abdita 30JAN87 c 3 0-3 1 283.6 Haploscoloplos foliosus 30JAN87 c 3 0-3 4 1134. 4 I Macoma mitche 11 i 30JAN87 c 3 0-3 2 567.2 Mediomastus californiensis 30JAN87 c 3 0-3 18 5104.8 Paraprionospio pinnata 30JAN87 c 3 0-3 1 283.6 Streblospio benedicti 30JAN87 c 3 0-3 2 567.2 I Clymenella mucosa 30JAN87 c 3 3-10 1 283.6 Cossura delta 30JAN87 c 3 3-10 1 283.6 Paraprionospio pinnata 30JAN87 c 3 3-10 1 283.6 Macoma mitche 11 i 30JAN87 0 1 0-3 3 850.8 Mediomastus californiensis 30JAN87 0 1 0-3 2 567.2 I Paraprionospio pinnata 30JAN87 0 1 0-3 2 567.2 Pyramidella sp. 30JAN87 0 1 0-3 2 567.2 Haploscoloplos foliosus 30JAN87 0 1 3-10 1 ' 283.6 Mediomastus californiensis 30JAN87 0 1 3-10 10 2836.0 I I Neanthes succinea 30JAN87 0 1 3-10 1 283.6 Macoma mitche 11 i 30JAN87 0 2 0-3 10 2836.0 Mediomastus californiensis 30JAN87 0 2 0-3 6 1701.6 Macoma mitchelli 30JAN87 0 2 3-10 1 283.6 Mediomastus californiensis 30JAN87 0 2 3-10 8 2268.8 Cyclaspis varians 30JAN87 D 3 0-3 4 1134 .4 Macoma mitche 11 i 30JAN87 D 3 0-3 4 1134 .4 Mediomastus californiensis 30JAN87 D 3 0-3 5 1418.0 Streblospio benedicti 30JAN87 0 3 0-3 1 283.6 I I Macoma mitche 11 i 30JAN87 0 3 3-10 1 283.6 Mediomastus californiensis 30JAN87 D 3 3-10 3 850.8 Polydora caulleryi 30JAN87 D 3 3-10 1 283.6 Xenanthura brevitelson 30JAN87 D 3 3-10 1 283.6 Hobsonia florida 03MAR87 A 1 0-3 3 850.8 Littoridina sphinctostoma 03MAR87 A 1 0-3 62 17583.2 Mediomastus californiensis 03MAR87 A 1 0-3 5 1418.0 Mulinia lateralis 03MAR87 A 1 0-3 18 5104.8 Rhynchocoels 03MAR87 A 1 0-3 1 283.6 I I Streblospio benedicti 03MAR87 A 1 0-3 18 5104.8 Turbe llaria 03MAR87 A 1 0-3 1 283.6 Mediomastus californiensis 03MAR87 A 1 3-10 5 1418.0 01 igochaeta 03MAR87 A 1 3-10 1 283.6 Parandalia ocularis 03MAR87 A 1 3-10 1 283.6 Streblospio benedicti 03MAR87 A 1 3-10 1 283.6 Littoridina sphinctostoma 03MAR87 A 2 0-3 90 25524.0 Mulinia lateralis 03MAR87 A 2 0-3 15 4254.0 Streblospio benedicti 03MAR87 A 2 0-3 20 5672.0 I Capitella capitata 03MAR87 A 2 3-10 1 283.6 Ma coma mi tche 11 i 03MAR87 A 2 3-10 1 283.6 Mediomastus californiensis 03MAR87 A 2 3-10 11 3119. 6 Oligochaeta 03MAR87 A 2 3-10 3 850.8 Hobsonia florida 03MAR87 A 3 0-3 2 567.2 Littoridina sphinctostoma 03MAR87 A 3 0-3 108 30628.8 Macoma mitche 11 i 03MAR87 A 3 0-3 1 283.6 GEHACSP.DAT 284 I Mediomastus californiensis 03MAR87 A 3 0-3 4 1134.4 Mulinia lateralis 03MAR87 A 3 0-3 18 5104.8 I Oligochaeta 03MAR87 A 3 0-3 2 567.2 Rangia cuneata 03MAR87 A 3 0-3 1 283.6 Streblospio benedicti 03MAR87 A 3 0-3 12 3403.2 Mediomastus californiensis 03MAR87 A 3 3-10 6 1701.6 01 igochaeta 03MAR87 A 3 3-10 1 283.6 I Littoridina sphinctostoma 03MAR87 B 1 0-3 1 283.6 Macoma mitche 11 i 03MAR87 B 1 0-3 4 1134.4 Mediomastus californiensis 03MAR87 B 1 0-3 12 3403.2 Streblospio benedicti 03MAR87 B 1 0-3 12 3403.2 I Macoma mitchelli 03MAR87 B 1 3-10 4 1134 .4 Mediomastus californiensis 03MAR87 B 1 3-10 17 4821 . 2 Littoridina sphinctostoma 03MAR87 B 2 0-3 15 4254.0 Macoma mi tche 11 i 03MAR87 B 2 0-3 5 1418.0 I Mediomastus californiensis 03MAR87 B 2 0-3 19 5388.4 Monoculoides sp. 03MAR87 B 2 0-3 1 283.6 Mulinia lateralis · 03MAR87 B 2 0-3 8 2268.8 Streblospio benedicti 03MAR87 B 2 0-3 16 4537.6 Capitella capitata 03MAR87 B 2 3-10 1 283.6 I Macoma mitche 11 i 03MAR87 B 2 3-10 1 283.6 Mediomastus californiensis 03MAR87 B 2 3-10 26 7373.6 I Rhynchocoels 03MAR87 B 2 3-10 1 283.6 Littoridina sphinctostoma 03MAR87 B 3 0-3 6 1701. 6 I Macoma mitche 11 i 03MAR87 B 3 0-3 3 850.8 Mediomastus californiensis 03MAR87 B 3 0-3 12 3403.2 Mulinia lateralis 03MAR87 B 3 0-3 6 1701. 6 Rhynchocoels 03MAR87 B 3 0-3 1 283.6 Streblospio benedicti 03MAR87 B 3 0-3 11 3119. 6 ,I Macoma mitchelli 03MAR87 B 3 3-10 3 850.8 Mediomastus californiensis 03MAR87 B 3 3-10 16 4537.6 Glycinde solitaria 03MAR87 c 1 0-3 2 567.2 Haploscoloplos foliosus 03MAR87 c 1 0-3 4 1134 .4 I Mediomastus californiensis 03MAR87 c 1 0-3 13 3686.8 Monoculoides sp. 03MAR87 c 1 0-3 4 1134.4 Mulinia lateralis 03MAR87 c 1 0-3 10 2836.0 Streblospio benedicti 03MAR87 c 1 0-3 1 283.6 Clymenella mucosa 03MAR87 c 1 3-10 1 283.6 I Cossura delta 03MAR87 c 1 3-10 1 283.6 Macoma mitchelli 03MAR87 c 1 3-10 1 283.6 Mediomastus californiensis 03MAR87 c 1 3-10 1 283.6 Ampelisca abdita 03MAR87 c 2 0-3 1 283.6 I Garrmarus mucronatus 03MAR87 c 2 0-3 3 850.8 Haploscoloplos foliosus 03MAR87 c 2 0-3 7 1985.2 Mediomastus californiensis 03MAR87 c 2 0-3 15 4254.0 Monoculoides sp. 03MAR87 c 2 0-3 2 567 . 2 Streblospio benedicti 03MAR87 c 2 0-3 1 283.6 I Diopatra cuprea 03MAR87 c 2 3-10 1 283.6 Haploscoloplos foliosus 03MAR87 c 2 3-10 2 567.2 Mediomastus californiensis 03MAR87 c 2 3-10 3 850.8 Glycinde solitaria 03MAR87 c 3 0-3 2 567.2 I Haploscoloplos foliosus 03MAR87 c 3 0-3 4 1134 .4 Leucon sp. 03MAR87 c 3 0-3 1 283.6 Macoma mitche 11 i 03MAR87 c 3 0-3 2 567.2 Mediomastus californiensis 03MAR87 c 3 0-3 10 2836.0 I Mulinia lateralis 03MAR87 c 3 0-3 9 2552.4 Pectinaria gouldii 03MAR87 c 3 0-3 1 283.6 Streblospio benedicti 03MAR87 c 3 0-3 1 283.6 Clymenella mucosa 03MAR87 c 3 3-10 1 283.6 Cossura delta 03MAR87 c 3 3-10 2 567.2 I Glycinde solitaria 03MAR87 c 3 3-10 1 283.6 Haploscoloplos foliosus 03MAR87 c 3 3-10 1 283.6 Mediomastus californiensis 03MAR87 c 3 3-10 3 850.8 Mulinia lateralis 03MAR87 c 3 3-10 1 283.6 I Macoma mitche 11 i 03MAR87 0 1 0-3 5 1418.0 Mediomastus californiensis 03MAR87 D 1 0-3 12 3403.2 Mulinia lateralis 03MAR87 D 1 0-3 11 3119. 6 I I I GEMACSP.DAT 285 I Streblospio benedicti 03MAR87 D 1 0-3 2 567.2Ma coma mi tche11 i 03MAR87 D 1 3-10 3 850.8 I Mediomastus californiensis 03MAR87 D 1 3-10 7 1985.2 Paraprionospio pinnata 03MAR87 D 1 3-10 1 283.6 Macoma mitche 11 i 03MAR87 D 2 0-3 3 850.8 Mediomastus californiensis 03MAR87 D 2 0-3 2 567.2 I Mulinia lateralis 03MAR87 D 2 0-3 8 2268.8 Streblospio benedicti 03MAR87 D 2 0-3 5 1418.0 Capitella capitata 03MAR87 D 2 3-10 1 283.6 Haploscoloplos foliosus 03MAR87 D 2 3-10 1 283.6 Macoma mitchelli 03MAR87 D 2 3-10 1 283.6 I Mediomastus californiensis 03MAR87 D 2 3-10 6 1701. 6 Paraprionospio pinnata 03MAR87 D 2 3-10 1 283.6 Macoma mitche 11 i 03MAR87 D 3 0-3 3 850.8 Mediomastus californiensis 03MAR87 D 3 0-3 5 1418.0 I Mulinia lateralis 03MAR87 D 3 0-3 7 1985.2 Pyramidella sp. 03MAR87 D 3 0-3 1 283.6 Streblospio benedicti 03MAR87 D 3 0-3 6 1701. 6 Cossura delta 03MAR87 D 3 3-10 4 1134.4 Macoma mitchelli 03MAR87 D 3 3-10 3 850.8 I Mediomastus californiensis 03MAR87 D 3 3-10 11 3119. 6 Paraprionospio pinnata 03MAR87 D 3 3-10 2 567.2 Hobson ia flor ida 08APR87 A 1 0-3 25 7090.0 Littoridina sphinctostoma 08APR87 A 1 0-3 295 83662.0 I Ma coma mi tche11 i 08APR87 A 1 0-3 1 283.6 Mediomastus californiensis 08APR87 A 1 0-3 3 850.8 Mulinia lateralis 08APR87 A 1 0-3 23 6522.8 01 igochaeta 08APR87 A 1 0-3 4 1134 .4 Streblospio benedicti 08APR87 A 1 0-3 13 3686.8 Turbe llaria 08APR87 A 1 0-3 2 567.2 I Hobsonia florida 08APR87 A 1 3-10 1 283.6 Mediomastus californiensis 08APR87 A 1 3-10 7 1985.2 Oligochaeta 08APR87 A 1 3-10 2 567.2 Parandalia ocularis 08APR87 A 1 3-10 1 283.6 Rhynchocoels 08APR87 A 1 3-10 1 283.6 I Streblospio benedicti 08APR87 A 1 3-10 1 283.6 I Hobson ia florida 08APR87 A 2 0-3 36 10209.6 Littoridina sphinctostoma 08APR87 A 2 0-3 15 4254.0 Macoma mitche 11 i 08APR87 A 2 0-3 1 283.6 Mediomastus californiensis 08APR87 A 2 0-3 6 1701.6 Mulinia lateralis 08APR87 A 2 0-3 8 2268.8 01 igochaeta 08APR87 A 2 0-3 1 283.6 I Streblospio benedicti 08APR87 A 2 0-3 10 2836.0 Macoma mitche 11 i 08APR87 A 2 3-10 1 283.6 Mediomastus californiensis 08APR87 A 2 3-10 6 1701.6 01 igochaeta 08APR87 A 2 3-10 2 567.2 I Hobsonia f lorida 08APR87 A 3 0-3 44 12478.4Littoridina sphinctostoma 08APR87 A 3 0-3 74 20986.4Macoma mitche 11 i 08APR87 A 3 0-3 5 1418.0Mediomastus californiensis 08APR87 A 3 0-3 2 567.2Mulinia lateralis 08APR87 A 3 0-3 9 2552.4 I I 0l i gochaeta 08APR87 A 3 0-3 1 283.6 Streblospio benedicti 08APR87 A 3 0-3 7 1985.2 Hobson i a flor ida 08APR87 A 3 3-10 1 283.6 Mediomastus californiensis 08APR87 A 3 3-10 8 2268.8 01 igochaeta 08APR87 A 3 3-10 6 1701.6 Brachidontes exustus 08APR87 B 1 0-3 2 567.2 Capitella capitata 08APR87 B 1 0-3 1 283.6 Cassidinidea lunifrons 08APR87 B 1 0-3 1 283 .6 Corophium louisianum 08APR87 B 1 0-3 1 283.6 I Hobsonia florida 08APR87 B 1 0-3 2 567.2 Littoridina sphinctostoma 08APR87 B 1 0-3 10 2836.0 Mediomastus californiensis 08APR87 B 1 0-3 15 4254.0 Monoculoides sp. 08APR87 B 1 0-3 1 283.6 Mulinia lateralis 08APR87 B 1 0-3 25 7090.0 Rhynchocoels 08APR87 B 1 0-3 1 283.6 I Streblospio benedicti 08APR87 B 1 0-3 3 850.8 I 286 GEHACSP.DAT I Littoridina sphinctostoma 08APR87 B 1 3-10 1 283.6 Mediomastus californiensis 08APR87 B 1 3-10 10 2836.0 I Brachidontes exustus 08APR87 B 2 0-3 3 850.8 Edotea montosa 08APR87 B 2 0-3 1 283.6 Hobsonia f lorida 08APR87 B 2 0-3 4 1134 .4 Littoridina sphinctostoma 08APR87 B 2 0-3 5 1418.0 Macoma mitche 11 i 08APR87 B 2 0-3 1 283.6 I Mediomastus californiensis 08APR87 B 2 0-3 41 11627. 6 Mulinia lateralis 08APR87 B 2 0-3 7 1985.2 Streblospio benedicti 08APR87 B 2 0-3 7 1985.2 Mediomastus califor.niensis 08APR87 B 2 3-10 3 850.8 I Brachidontes exustus 08APR87 B 3 0-3 2 567.2 Hobsonia florida 08APR87 B 3 0-3 7 1985.2 Littoridina sphinctostoma 08APR87 B 3 0-3 16 4537.6 Mediomastus californiensis 08APR87 B 3 0-3 20 5672.0 Mulinia lateralis 08APR87 B 3 0-3 10 2836.0 I 01 igochaeta 08APR87 B 3 0-3 1 283.6 Streblospio benedicti 08APR87 B 3 0-3 7 1985.2 Mediomastus californiensis 08APR87 B 3 3-10 7 1985.2 Mediomastus californiensis 10APR87 c 1 0-3 24 6806.4 I Monoculoides sp. 10APR87 c 1 0-3 6 1701.6 Polydora socialis 10APR87 c 1 0-3 3 850.8 Streblospio benedicti 10APR87 c 1 0-3 4 1134 .4 Tagelus plebius 10APR87 c 1 0-3 1 283 .6 ICossura delta 10APR87 c 1 3-10 2 567.2 Macoma mitche 11 i 10APR87 c 1 3-10 3 850.8 Mediomastus californiensis 10APR87 c 1 3-10 1 283.6 Turbellaria 10APR87 c 1 3-10 5 1418.0 Corophium louisianum 10APR87 c 2 0-3 1 283.6 I Edotea montosa 10APR87 c 2 0-3 1 283.6 Mediomastus californiensis 10APR87 c 2 0-3 11 3119. 6 Monoculoides sp. lOAPR87 c 2 0-3 1 283.6 2 2 567.2 Mulinia lateralis 10APR87 c 0-3 I Polydora socialis 10APR87 c 2 0-3 5 1418.0 Streblospio benedicti 10APR87 c 2 0-3 4 1134 .4 Tagelus plebius 10APR87 c 2 0-3 2 567.2 Macoma mitche 11 i 10APR87 c 2 3-10 1 283.6 Mediomastus californiensis 10APR87 c 2 3-10 7 1985.2 I Polydora socialis 10APR87 c 2 3-10 1 283.6 Mediomastus californiensis 10APR87 c 3 0-3 13 3686.8 Polydora socialis 10APR87 c 3 0-3 1 283.6 Streblospio benedicti 10APR87 c 3 0-3 6 1701.6 I Macoma mitche 11 i 10APR87 c 3 3-10 2 567.2 Mediomastus californiensis 10APR87 c 3 3-10 5 1418.0 Turbe llar ia 10APR87 c 3 3-10 11 3119. 6 Littoridina sphinctostoma 10APR87 D 1 0-3 1 283.6 Macoma mitche 11 i 10APR87 D 1 0-3 1 283.6 I Monoculoides sp. 10APR87 D 1 0-3 1 283.6 Mulinia lateralis lOAPR87 D 1 0-3 4 1134 .4 Streblospio benedicti 10APR87 D 1 0-3 8 2268.8 Turbellaria 10APR87 D 1 0-3 1 283.6 I Ma coma mi tche 11 i 10APR87 D 1 3-10 1 283.6 Mediomastus californiensis 10APR87 D 1 3-10 2 567.2 I Paraprionospio pinnata 10APR87 D 1 3-10 1 283.6 Phoronis architecta 10APR87 D 1 3-10 3 850.8 I Tagelus plebius 10APR87 D 1 3-10 2 567.2 Eteone heteropoda 10APR87 D 2 0-3 1 283.6 Mediomastus californiensis 10APR87 D 2 0-3 1 283.6 Monoculoides sp. 10APR87 D 2 0-3 3 850.8 Mulinia lateralis 10APR87 D 2 0-3 2 567.2 ,I Streblospio benedicti 10APR87 D 2 0-3 9 2552.4 Turbe llaria 10APR87 D 2 0-3 1 283.6 Cossura delta 10APR87 D 2 3-10 1 283.6 Macoma mitchelli 10APR87 D 2 3-10 1 283.6 Mediomastus californiensis 10APR87 D 2 3-10 27 7657.2 I Turbellaria 10APR87 D 2 3-10 1 283.6 Mediomastus californiensis 10APR87 D 3 0-3 1 283.6 I ,} .. I GEMACSP.DAT 287 I Mulinia lateralis 10APR87 D 3 0-3 3 850.8 Streblospio benedicti 10APR87 D 3 0-3 8 2268.8 I Turbe llaria 10APR87 D 3 0-3 1 283.6 Capite 11 idae 10APR87 D 3 3-10 3 850.8 Cossura delta 10APR87 D 3 3-10 1 283.6 Macoma mitchelli 10APR87 D 3 3-10 1 283.6 I Mediomastus californiensis 10APR87 D 3 3-10 8 2268.8 Chironomidae 03JUN87 A 1 0-3 1 283.6 Littoridina sphinctostoma 03JUN87 A 1 0-3 270 76572.0 Mulinia lateralis 03JUN87 A 1 0-3 13 3686.8 01 igochaeta 03JUN87 A 1 0-3 1 283.6 I Streblospio benedicti 03JUN87 A 1 0-3 3 850.8 Mediomastus californiensis 03JUN87 A 1 3-10 4 1134.4 Chironomidae 03JUN87 A 2 0-3 3 850.8 Littoridina sphinctostoma 03JUN87 A 2 0-3 192 54451. 2 I Mediomastus californiensis 03JUN87 A 2 0-3 6 1701. 6 Mulinia lateralis 03JUN87 A 2 0-3 13 3686.8 01 igochaeta 03JUN87 A 2 0-3 3 850.8 Parandalia ocularis 03JUN87 A 2 0-3 1 283.6 Mediomastus californiensis 03JUN87 A 2 3-10 4 1134. 4 I Oligochaeta 03JUN87 A 2 3-10 1 283.6 Chironomidae 03JUN87 A 3 0-3 1 283.6 Hobsonia f lorida 03JUN87 A 3 0-3 1 283.6 Littoridina sphinctostoma 03JUN87 A 3 0-3 77 21837.2 I Mediomastus californiensis 03JUN87 A 3 0-3 5 1418.0 Mulinia lateralis 03JUN87 A 3 0-3 10 2836.0 Mediomastus californiensis 03JUN87 A 3 3-10 4 1134. 4 Littoridina sphinctostoma 03JUN87 B 1 0-3 63 17866.8 Mediomastus californiensis 03JUN87 B 1 0-3 3 850.8 I Mulinia lateralis 03JUN87 B 1 0-3 8 2268.8 Streblospio benedicti 03JUN87 B 1 0-3 3 850.8 Macoma mitche 11 i 03JUN87 B 1 3-10 2 567.2 Mediomastus californiensis 03JUN87 B 1 3-10 21 5955.6 I I Littoridina sphinctostoma 03JUN87 B 2 0-3 47 13329.2 Mediomastus californiensis 03JUN87 B 2 0-3 4 1134 .4 Mulinia lateralis 03JUN87 B 2 0-3 5 1418.0 Streblospio benedicti 03JUN87 B 2 0-3 11 3119. 6 Macoma mitche 11 i 03JUN87 B 2 3-10 2 567.2 Mediomastus californiensis 03JUN87 B 2 3-10 17 4821.2 Littoridina sphinctostoma 03JUN87 B 3 0-3 12 3403.2 Mediomastus californiensis 03JUN87 B 3 0-3 5 1418.0 Mulinia lateralis 03JUN87 B 3 0-3 1 283.6 I I Streblospio benedicti 03JUN87 B 3 0-3 3 850.8 Ma coma mi tche 11 i 03JUN87 B 3 3-10 3 850.8 Mediomastus californiensis 03JUN87 B 3 3-10 18 5104.8 Mediomastus californiensis 03JUN87 c 1 0-3 8 2268.8 Neanthes succinea 03JUN87 c 1 0-3 1 283.6 Streblospio benedicti 03JUN87 c 1 0-3 4 1134 .4 Cossura delta 03JUN87 c 1 3-10 4 1134. 4 Macoma mitche 11 i 03JUN87 c 1 3-10 1 283.6 Mediomastus californiensis 03JUN87 c 1 3-10 15 4254.0 I Neanthes succinea 03JUN87 c 1 3-10 1 283.6 Tagelus plebius 03JUN87 c 1 3-10 1 283.6 Mediomastus californiensis 03JUN87 c 2 0-3 8 2268.8 Rhynchocoels 03JUN87 c 2 0-3 1 283.6 I Streblospio benedicti 03JUN87 c 2 0-3 2 567.2 Mediomastus californiensis 03JUN87 c 2 3-10 10 2836.0 Mediomastus californiensis 03JUN87 c 3 0-3 5 1418.0 Streblospio benedicti 03JUN87 c 3 0-3 2 567.2 Ma coma mi tche 11 i 03JUN87 c 3 3-10 1 283.6 I Mediomastus californiensis 03JUN87 c 3 3-10 4 1134 .4 Mediomastus californiensis 03JUN87 D 1 0-3 7 1985.2 Monoculoides sp. 03JUN87 D 1 0-3 1 283.6 Mulinia lateralis 03JUN87 D 1 0-3 1 283.6 Streblospio benedicti 03JUN87 D 1 0-3 2 567.2 Mediomastus californiensis 03JUN87 D 1 3-10 17 4821. 2 Rhynchocoels 03JUN87 D 1 3-10 1 283.6 I 288 GEMACSP.DAT I Littoridina sphinctostoma 03JUN87 D 2 0-3 2 567.2 Mediomastus californiensis 03JUN87 D 2 0-3 7 1985.2 I Monoculoides sp. 03JUN87 D 2 0-3 1 283.6 Mulinia lateralis 03JUN87 D 2 0-3 2 567.2 Rhynchocoels 03JUN87 D 2 0-3 1 283.6 Streblospio benedicti 03JUN87 D 2 0-3 1 283.6 Glycinde solitaria 03JUN87 D 2 3-10 1 283.6 I Macoma mitche 11 i 03JUN87 D 2 3-10 1 283.6 Mediomastus californiensis 03JUN87 D 2 3-10 9 2552.4 Tagelus plebius 03JUN87 D 2 3-10 1 283.6 Capitella capitata· 03JUN87 D 3 0-3 1 283.6 I Glycinde solitaria 03JUN87 D 3 0-3 1 283.6 Mediomastus californiensis 03JUN87 D 3 0-3 5 1418.0 Pectinaria gouldii 03JUN87 D 3 0-3 1 283.6 Streblospio benedicti 03JUN87 D 3 0-3 2 567.2 Callianassa sp. juvenile 03JUN87 D 3 3-10 1 283.6 I Macoma mitche 11 i 03JUN87 D 3 3-10 2 567.2 Mediomastus californiensis 03JUN87 D 3 3-10 12 3403.2 Parandalia ocularis 03JUN87 D 3 3-10 1 283.6 Rhynchocoels 03JUN87 D 3 3-10 1 283.6 I Tagelus plebius 03JUN87 D 3 3-10 1 283.6 Chironomidae 15JUL87 A 1 0-3 2 567.2 Littoridina sphinctostoma 15JUL87 A 1 0-3 96 27225.6 Mediomastus californiensis 15JUL87 A 1 0-3 2 567.2 I Mulinia lateralis 15JUL87 A 1 0-3 15 4254.0 0 l i gochaeta 15JUL87 A 1 0-3 1 283.6 Mediomastus californiensis 15JUL87 A 1 3-10 1 283.6 01 igochaeta 15JUL87 A 1 3-10 1 283.6 Chironomidae 15JUL87 A 2 0-3 5 1418.0 I Littoridina sphinctostoma 15JUL87 A 2 0-3 81 22971. 6 Mediomastus californiensis 15JUL87 A 2 0-3 5 1418.0 Mulinia lateralis 15JUL87 A 2 0-3 21 5955.6 0 l i gochaeta 15JUL87 A 2 0-3 2 567.2 I No species observed 15JUL87 A 2 3-10 0 0.0 Chironomidae 15JUL87 A 3 0-3 6 1701. 6 Littoridina sphinctostoma 15JUL87 A 3 0-3 119 33748.4 Mediomastus californiensis 15JUL87 A 3 0-3 4 1134 .4 Mulinia lateralis 15JUL87 A 3 0-3 22 6239.2 I Parandalia ocularis 15JUL87 A 3 0-3 1 283.6 Parandalia ocularis 15JUL87 A 3 3-10 2 567.2 Chironomidae 15JUL87 B 1 0-3 1 283.6 Littoridina sphinctostoma 15JUL87 B 1 0-3 29 8224.4 I Mediomastus californiensis 15JUL87 B 1 0-3 4 1134. 4 Mulinia lateralis 15JUL87 B 1 0-3 5 1418.0 Streblospio benedicti 15JUL87 B 1 0-3 2 567.2 Littoridina sphinctostoma 15JUL87 B 1 3-10 1 283.6 Mediomastus californiensis 15JUL87 B 1 3-10 4 1134.4 I Chironomidae 15JUL87 B 2 0-3 1 283.6 Littoridina sphinctostoma 15JUL87 B 2 0-3 5 1418.0 Macoma mitchelli 15JUL87 B 2 0-3 1 283.6 Mediomastus californiensis 15JUL87 B 2 0-3 2 567.2 11 Mulinia lateralis 15JUL87 B 2 0-3 2 567.2 Streblospio benedicti 15JUL87 B 2 0-3 1 283.6 Mediomastus californiensis 15JUL87 B 2 3-10 3 850.8 Chironomidae 15JUL87 B 3 0-3 1 283.6 Littoridina sphinctostoma 15JUL87 B 3 0-3 41 11627 .6 I Mediomastus californiensis 15JUL87 B 3 0-3 4 1134. 4 Mulinia lateralis 15JUL87 B 3 0-3 7 1985.2 Streblospio benedicti 15JUL87 B 3 0-3 2 567.2 ·1 Mediomastus californiensis 15JUL87 B 3 3-10 6 1701. 6 Littoridina sphinctostoma 15JUL87 c 1 0-3 10 2836.0 Mediomastus californiensis 15JUL87 c 1 o.-3 5 1418.0 Mulinia lateralis 15JUL87 c 1 0-3 2 567.2 Rhynchocoels 15JUL87 c 1 0-3 1 283.6 Streblospio benedicti 15JUL87 c 1 0-3 1 283.6 I Macoma mitche 11 i 15JUL87 c 1 3-10 1 283.6 Chironomidae 15JUL87 c 2 0-3 2 567.2 I -..,,. ----... --~ ·-_..... I I GEMACSP.DAT 289 I Littoridina sphinctostoma 15JUL87 c 2 0-3 13 3686.8 I Mediomastus californiensis 15JUL87 c 2 0-3 4 1134 .4 Streblospio benedicti 15JUL87 c 2 0-3 6 1701.6 Mediomastus californiensis 15JUL87 c 2 3-10 9 2552.4 Turbe l laria 15JUL87 c 2 3-10 7 1985.2 283 .6 I Callianassa sp. juvenile 15JUL87 c 3 0-3 1 Littoridina sphinctostoma 15JUL87 c 3 0-3 10 2836.0 Mediomastus californiensis 15JUL87 c 3 0-3 4 1134.4 Mulinia lateralis 15JUL87 c 3 0-3 4 1134.4 Streblospio benedicti 15JUL87 c 3 0-3 8 2268.8 c 3 3-10 3 850.8 I I Mediomastus californiensis 15JUL87 Turbe llaria 15JUL87 c 3 3-10 1 283.6 Mediomastus californiensis 15JUL87 D 1 0-3 1 283.6 Mulinia lateralis 15JUL87 D 1 0-3 4 1134 .4 Streblospio benedicti 15JUL87 D 1 0-3 3 850.8 Capitella capitata 15JUL87 0 1 3-10 2 567.2 Mediomastus californiensis 15JUL87 0 1 3-10 5 1418.0 Littoridina sphinctostoma 15JUL87 0 2 0-3 1 283.6 Mediomastus californiensis 15JUL87 0 2 0-3 3 850.8 I Mulinia lateralis 15JUL87 0 2 0-3 1 283.6 Streblospio benedicti 15JUL87 0 2 0-3 6 1701.6 Capitella capitata 15JUL87 0 2 3-10 1 283.6 Ma coma mi tche 11 i 15JUL87 D 2 3-10 1 283.6 Mediomastus californiensis 15JUL87 0 2 3-10 2 567.2 283.6 Parandalia ocularis 15JUL87 D 2 3-10 1 Chironomidae 15JUL87 0 3 0-3 1 283.6 I 0-3 1 283.6 Mediomastus californiensis 15JUL87 D 3 0-3 1 283.6 Mulinia lateralis 15JUL87 D 3 D 3 0-3 5 1418.0 Streblospio benedicti 15JUL87 3 3-10 2 567.2 Mediomastus californiensis 15JUL87 0 I 1 0-3 3 850.8 Capitella capitata 18APR88 AA 1 0-3 1 283.6 Chironomidae 18APR88 A 1 0-3 1 283.6 Gammarus mucronatus 18APR88 1 0-3 2 567.2 Hobsonia florida 18APR88 A I A 1 0-3 40 11344. 0Littoridina sphinctostoma 18APR88 A 1 0-3 6 1701. 6 Mediomastus californiensis 18APR88 A 1 0-3 2 567.2 Monoculoides sp. 18APR88 A 1 0-3 12 3403.2 Mulinia lateralis 18APR88 Polydora websteri 18APR88 A 1 0-3 1 283.6 I A 1 0-3 177 50197.2 Streblospio benedicti 18APR88 Capitella capitata 18APR88 A 1 3-10 2 567.2 I Hobsonia florida 18APR88 A 1 3-10 3 850.8 Mediomastus californiensis 18APR88 A 1 3-10 1 283.6 Rhynchocoels 18APR88 A 1 3-10 1 283.6 Capitella capitata 18APR88 A 2 0-3 8 2268.8 567.2 Hobsonia florida 18APR88 A 2 0-3 2 71 20135.6 Littoridina sphinctostoma 18APR88 A 2 0-30-3 3 850.8 I Mediomastus californiensis 18APR88 A 2 Monoculoides sp. 18APR88 A 2 0-3 4 1134 .4 A 2 0-3 41 11627. 6 Mulinia lateralis 18APR88 Polydora websteri 18APR88 A 2 0-3 2 567.2 A 2 0-3 212 60123.2 I Streblospio benedicti 18APR88 Capitella capitata 18APR88 A 2 3-10 2 567.2 Hobsonia florida 18APR88 A 2 3-10 1 283.6 Mediomastus californiensis 18APR88 A 2 3-10 1 283.6 I Rhynchocoels 18APR88 A 2 3-10 1 283.6 Streblospio benedicti 18APR88 A 2 3-10 4 1134 .4 Capitella capitata 18APR88 A 3 0-3 4 1134 .4 Chironomidae 18APR88 A 3 0-3 4 1134.4 I Hobsonia florida 18APR88 A 3 0-3 10 2836.0 Littoridina sphinctostoma 18APR88 A 3 0-3 65 18434.0 Mediomastus californiensis 18APR88 A 3 0-3 1 283.6 Mega lops 18APR88 A 3 0-3 1 283.6 Monoculoides sp. 18APR88 A 3 0-3 2 567.2 9642.4 Mulinia lateralis 18APR88 A 3 0-3 34 Polydora websteri 18APR88 A 3 0-3 2 567.2 I 159 45092.4 Streblospio benedicti 18APR88 A 3 0-3 I GEHACSP.DAT 290 I Hobson i a fl or ida 18APR88 A 3 3-10 3 850.8 Mediomastus californiensis 18APR88 A 3 3-10 2 567.2 II Capitella capitata 18APR88 B 1 0-3 1 283.6 Glycinde solitaria 18APR88 B 1 0-3 1 283.6 Littoridina sphinctostoma 18APR88 B 1 0-3 59 16732.4 Mediomastus californiensis 18APR88 B 1 0-3 4 1134. 4 Mega lops 18APR88 B 1 0-3 1 283.6 I Monoculoides sp. 18APR88 B 1 0-3 8 2268.8 Mulinia lateralis 18APR88 B 1 0-3 90 25524.0 Mysidopsis almyra 18APR88 B 1 0-3 1 283.6 Oxyurosty l is smith i. 18APR88 B 1 0-3 2 567.2 I Rangia cuneata 18APR88 B 1 0-3 1 283.6 Streblospio benedicti 18APR88 B 1 0-3 389 110320.4 Capitella capitata 18APR88 B 1 3-10 5 1418.0 Eteone heteropoda 18APR88 B 1 3-10 1 283.6 Mediomastus californiensis 18APR88 B 1 3-10 46 13045.6 I Mysidopsis almyra 18APR88 B 1 3-10 1 283.6 Oligochaeta 18APR88 B 1 3-10 1 283.6 Rhynchocoels 18APR88 B 1 3-10 1 283.6 Streblospio benedicti 18APR88 B 1 3-10 5 1418.0 I Capitella capitata 18APR88 B 2 0-3 2 567.2 Eteone heteropoda 18APR88 B 2 0-3 1 283.6 Glycinde solitaria 18APR88 B 2 0-3 1 283.6 Hobsonia f lorida 18APR88 B 2 0-3 1 283.6 Littoridina sphinctostoma 18APR88 B 2 0-3 53 15030.8 I Mediomastus californiensis 18APR88 B 2 0-3 10 2836.0 Monoculoides sp. 18APR88 B 2 0-3 4 1134 .4 Mulinia lateralis 18APR88 B 2 0-3 87 24673.2 Mysidopsis almyra 18APR88 B 2 0-3 1 283.6 I Rangia cuneata 18APR88 B 2 0-3 1 283.6 Rhynchocoels 18APR88 B 2 0-3 3 850.8 Streblospio benedicti 18APR88 B 2 0-3 290 82244.0 Capitella capitata 18APR88 B 2 3-10 3 850.8 Chironomidae 18APR88 B 2 3-10 1 283.6 I Eteone heteropoda 18APR88 B 2 3-10 4 1134 .4 Mediomastus californiensis 18APR88 B 2 3-10 47 13329.2 Rhynchocoels 18APR88 B 2 3-10 2 567.2 Streblospio benedicti 18APR88 B 2 3-10 4 1134. 4 I Capitella capitata 18APR88 B 3 0-3 1 283.6 Eteone heteropoda 18APR88 B 3 0-3 1 283.6 Glycinde solitaria 18APR88 B 3 0-3 1 283.6 Littoridina sphinctostoma 18APR88 B 3 0-3 88 24956.8 I Mediomastus californiensis 18APR88 B 3 0-3 4 1134 .4 Monoculoides sp. 18APR88 B 3 0-3 7 1985.2 Mulinia lateralis 18APR88 B 3 0-3 107 30345.2 Mysidopsis almyra 18APR88 B 3 0-3 1 283.6 Pectinaria gouldii 18APR88 B 3 0-3 1 283.6 I Pyramidella sp. 18APR88 B 3 0-3 1 283.6 Rhynchocoels 18APR88 B 3 0-3 2 567.2 Streblospio benedicti 18APR88 B 3 0-3 372 105499.2 Capitella capitata 18APR88 B 3 3-10 4 1134 .4 I Chironomidae 18APR88 B 3 3-10 2 567.2 Eteone heteropoda 18APR88 B 3 3-10 4 1134 .4 Macoma mitche 11 i 18APR88 B 3 3-10 1 283.6 Mediomastus californiensis 18APR88 B 3 3-10 52 14747.2 01 igochaeta 18APR88 B 3 3-10 1 283.6 I Rhynchocoels 18APR88 B 3 3-10 1 283.6 Streblospio benedicti 18APR88 B 3 3-10 6 1701. 6 Cyclaspis varians 18APR88 c 1 0-3 1 283.6 Glycinde solitaria 18APR88 c 1 0-3 4 1134. 4 I Littoridina sphinctostoma 18APR88 c 1 0-3 41 11627 . 6 Mediomastus californiensis 18APR88 c 1 0-3 73 20702.8 Monoculoides sp. 18APR88 c 1 0-3 2 567.2 Mulinia lateralis 18APR88 c 1 0-3 45 12762.0 Oxyurostylis smithi 18APR88 c 1 0-3 3 850.8 I Scolelepis squamata 18APR88 c 1 0-3 2 567.2 Streblospio benedicti 18APR88 c 1 0-3 17 4821. 2 I I I GEHACSP.DAT 291 I Glycinde solitaria 18APR88 c 1 3-10 1 283.6 Mediomastus californiensis 18APR88 c 1 3-10 41 11627. 6 I I Rhynchocoels 18APR88 c 1 3-10 1 283.6 Glycinde solitaria 18APR88 c 2 0-3 6 1701. 6 Littoridina sphinctostoma 18APR88 c 2 0-3 78 22120.8 Mediomastus californiensis 18APR88 c 2 0-3 60 17016.0 Mulinia lateralis 18APR88 c 2 0-3 78 22120.8 Nereidae 18APR88 c 2 0-3 1 283.6 Oxyurostylis smithi 18APR88 c 2 0-3 4 1134 .4 Rhynchocoels 18APR88 c 2 0-3 2 567.2 Scolelepis squamata 18APR88 c 2 0-3 2 567.2 I I Streblospio benedicti 18APR88 c 2 0-3 19 5388.4Turbe llaria 18APR88 c 2 0-3 1 283.6Capitella capitata 18APR88 c 2 3-10 4 1134.4Glycinde solitaria 18APR88 c 2 3-10 2 567.2Mediomastus californiensis 18APR88 c 2 3-10 57 16165.2Parandalia ocularis 18APR88 c 2 3-10 1 283.6Rhynchocoels 18APR88 c 2 3-10 1 283.6Scolelepis squamata 18APR88 c 2 3-10 1 283.6Capitella capitata 18APR88 c 3 0-3 1 283.6 I I Cyclaspis varians 18APR88 c 3 0-3 2 567.2 Diopatra cuprea 18APR88 c 3 0-3 1 283.6 Glycinde solitaria 18APR88 c 3 0-3 5 1418.0 Littoridina sphinctostoma 18APR88 c 3 0-3 55 15598.0 Mediomastus californiensis 18APR88 c 3 0-3 79 22404.4 Mulinia lateralis 18APR88 c 3 0-3 59 16732.4 Nereidae 18APR88 c 3 0-3 1 283.6 Oxyurostylis smithi 18APR88 c 3 0-3 2 567.2 Rhynchocoels 18APR88 c 3 0-3 1 283.6 I I Scolelepis squamata l8APR88 c 3 0-3 2 567.2 Streblospio benedicti 18APR88 c 3 0-3 12 3403.2 Capitella capitata 18APR88 c 3 3-10 i 283.6 Glycinde solitaria 18APR88 c 3 3-10 2 567.2 Mediomastus californiensis 18APR88 c 3 3-10 23 6522.8 Turbellaria 18APR88 c 3 3-10 2 567.2 Acteocina canaliculata 18APR88 D 1 0-3 1 283.6 Glycinde solitaria 18APR88 D 1 0-3 9 2552.4 Littoridina sphinctostoma 18APR88 D 1 0-3 14 3970.4 I Mediomastus californiensis 18APR88 D 1 0-3 58 16448.8 Mulinia lateralis 18APR88 D 1 0-3 19 5388.4 Mysidopsis bahia 18APR88 D 1 0-3 1 283.6 Streblospio benedicti 18APR88 D 1 0-3 4 1134. 4 I Glycinde solitaria 18APR88 D 1 3-10 1 283.6Haploscoloplos fragilis 18APR88 D 1 3-10 2 567.2Mediomastus californiensis 18APR88 D 1 3-10 17 4821. 2Rhynchocoels 18APR88 D 1 3-10 1 283.6Turbe llaria 18APR88 D 1 3-10 1 283.6 I Glycinde solitaria 18APR88 D 2 0-3 5 1418.0 Hesionidae 18APR88 D 2 0-3 1 283.6 Littoridina sphinctostoma 18APR88 D 2 0-3 18 5104.8 Mediomastus californiensis 18APR88 D 2 0-3 71 20135.6 I Melita sp. 18APR88 D 2 0-3 1 283.6Mulinia lateralis 18APR88 D 2 0-3 22 6239.2Oxyurostylis smithi 18APR88 D 2 0-3 1 283.6Streblospio benedicti 18APR88 D 2 0-3 6 1701.6Glycinde solitaria 18APR88 D 2 3-10 4 1134. 4 I Mediomastus californiensis 18APR88 D 2 3-10 14 3970.4Glycinde solitaria 18APR88 D 3 0-3 6 1701.6Littoridina sphinctostoma 18APR88 D 3 0-3 9 2552.4Mediomastus californiensis 18APR88 D 3 0-3 57 16165.2 I I Mulinia lateralis 18APR88 D 3 0-3 22 6239.2Oxyurostylis smithi 18APR88 D 3 0-3 1 283.6Streblospio benedicti 18APR88 D 3 0-3 8 2268.8Glycinde solitaria 18APR88 D 3 3-10 2 567.2Mediomastus californiensis 18APR88 D 3 3-10 17 4821. 2Hobsonia f lorida 07JUL88 A 1 0-3 1 283.6Littoridina sphinctostoma 07JUL88 A 1 0-3 22 6239.2 I 292 GEHACSP.DAT I Mediomastus californiensis 07JUL88 A 1 0-3 25 7090.0 Monoculoides sp. 07JUL88 A 1 0-3 1 283.6 I Mulinia lateralis 07JUL88 A 1 0-3 48 13612.8 Mysidopsis sp. 07JUL88 A 1 0-3 1 283.6 Polydora sp. 07JUL88 A 1 0-3 1 283.6 Streblospio benedicti 07JUL88 A 1 0-3 76 21553.6 Capitella capitata 07JUL88 A 1 3-10 14 3970.4 I Mediomastus californiensis 07JUL88 A 1 3-10 54 15314.4 Rhynchocoels 07JUL88 A 1 3-10 1 283 .6 Littoridina sphinctostoma 07JUL88 A 2 0-3 40 11344.0 Mediomastus califor-niensis 07JUL88 A 2 0-3 17 4821. 2 I Monoculoides sp. 07JUL88 A 2 0-3 3 850.8 Mulinia lateralis 07JUL88 A 2 0-3 61 17299.6 Streblospio benedicti 07JUL88 A 2 0-3 60 17016.0 Capitella capitata 07JUL88 A 2 3-10 10 2836.0 I Mediomastus californiensis 07JUL88 A 2 3-10 72 20419.2 Mulinia lateralis 07JUL88 A 2 3-10 2 567.2 Oligochaeta 07JUL88 A 2 3-10 1 283.6 Rhynchocoels 07JUL88 A 2 3-10 2 567.2 Capitella capitata 07JUL88 A 3 0-3 4 1134. 4 I Littoridina sphinctostoma 07JUL88 A 3 0-3 36 10209.6 Mediomastus californiensis 07JUL88 A 3 0-3 6 1701.6 Monoculoides sp. 07JUL88 A 3 0-3 5 1418.0 Mulinia lateralis 07JUL88 A 3 0-3 51 14463.6 I Streblospio benedicti 07JUL88 A 3 0-3 53 15030.8 Capitella capitata 07JUL88 A 3 3-10 5 1418.0 Mediomastus californiensis 07JUL88 A 3 3-10 57 16165.2 Oligochaeta 07JUL88 A 3 3-10 2 567.2 II Rhynchocoels 07JUL88 A 3 3-10 1 283.6 Capitella capitata 07JUL88 B 1 0-3 1 283.6 Littoridina sphinctostoma 07JUL88 B 1 0-3 37 10493.2 Mediomastus californiensis 07JUL88 B 1 0-3 20 5672.0 Mulinia lateralis 07JUL88 B 1 0-3 70 19852.0 I Oxyurostylis smithi 07JUL88 B 1 0-3 1 283.6 Streblospio benedicti 07JUL88 B 1 0-3 29 8224.4 Tellina sp. 07JUL88 B 1 0-3 1 283.6 Glycinde solitaria 07JUL88 B 1 3-10 1 283.6 Mediomastus californiensis 07JUL88 B 1 3-10 29 8224.4 I 01 igochaeta 07JUL88 B 1 3-10 2 567.2 Paraprionospio pinnata 07JUL88 B 1 3-10 1 283.6 Littoridina sphinctostoma 07JUL88 B 2 0-3 45 12762.0 Mediomastus californiensis 07JUL88 B 2 0-3 48 13612.8 I Mulinia lateralis 07JUL88 B 2 0-3 69 19568.4 Streblospio benedicti 07JUL88 B 2 0-3 38 10776.8 Glycinde solitaria 07JUL88 B 2 3-10 1 283.6 Macoma mi tche 11 i 07JUL88 B 2 3-10 1 283.6 Mediomastus californiensis 07JUL88 B 2 3-10 31 8791. 6 I 01 igochaeta 07JUL88 B 2 3-10 2 567.2 Cyclaspis varians 07JUL88 B 3 0-3 1 283.6 Littoridina sphinctostoma 07JUL88 B 3 0-3 25 7090.0 Mediomastus californiensis 07JUL88 B 3 0-3 23 6522.8 I Mulinia lateralis 07JUL88 B 3 0-3 72 20419.2 Rangia cuneata 07JUL88 B 3 0-3 1 283.6 Streblospio benedicti 07JUL88 B 3 0-3 8 2268.8 Mediomastus californiensis 07JUL88 B 3 3-10 29 8224.4 Spionidae 07JUL88 B 3 3-10 1 283.6 I Littoridina sphinctostoma 08JUL88 c 1 0-3 2 567.2 Mediomastus californiensis 08JUL88 c 1 0-3 29 8224.4 Mulinia lateralis 08JUL88 c 1 0-3 5 1418.0 Streblospio benedicti 08JUL88 c 1 0-3 8 2268.8 I Glycinde solitaria 08JUL88 c 1 3-10 1 283.6 Mediomastus californiensis 08JUL88 c 1 3-10 27 7657.2 Scolelepis squamata 08JUL88 c 1 3-10 1 283.6 Edotea montosa 08JUL88 c 2 0-3 1 283.6 I Mediomastus californiensis 08JUL88 c 2 0-3 21 5955.6 Mulinia lateralis 08JUL88 c 2 0-3 3 850.8 Rhynchocoels 08JUL88 c 2 0-3 1 283.6 I I GEMACSP.DAT 293 I Streblospio benedicti 08JUL88 c 2 0-3 6 1701.6 I Mediomastus californiensis 08JUL88 c 2 3-10 20 5672.0 Paraprionospio pinnata 08JUL88 c 2 3-10 1 283 .6 Glycinde solitaria 08JUL88 c 3 0-3 2 567.2 Littoridina sphinctostoma 08JUL88 c 3 0-3 2 567.2 Mediomastus californiensis 08JUL88 c 3 0-3 34 9642 .4 I Mulinia lateralis 08JUL88 c 3 0-3 2 567.2 Rhynchocoels 08JUL88 c 3 0-3 1 283.6 Streblospio benedicti 08JUL88 c 3 0-3 5 1418.0 Glycinde solitaria 08JUL88 c 3 3-10 1 283 .6 I Mediomastus californiensis 08JUL88 c 3 3-10 18 5104.8 Diopatra cuprea 08JUL88 D 1 0-3 1 283.6 Glycinde solitaria 08JUL88 D 1 0-3 1 283.6 Haploscoloplos foliosus 08JUL88 D 1 0-3 1 283.6 Macoma mitchell i 08JUL88 D 1 0-3 1 283.6 I Mediomastus californiensis 08JUL88 D 1 0-3 27 7657.2 Paraprionospio pinnata 08JUL88 D 1 0-3 1 283.6 Pyramidella sp. 08JUL88 D 1 0-3 1 283.6 Streblospio benedicti 08JUL88 D 1 0-3 4 1134. 4 I Mediomastus californiensis 08JUL88 D 1 3-10 5 1418.0 Haploscoloplos foliosus 08JUL88 D 2 0-3 1 283.6 Mediomastus californiensis 08JUL88 D 2 0-3 23 6522.8 Streblospio benedicti 08JUL88 D 2 0-3 2 567.2 Glycinde solitaria 08JUL88 D 2 3-10 1 283 .6 I Mediomastus californiensis 08JUL88 D 2 3-10 2 567 . 2 Rhynchocoels 08JUL88 D 2 3-10 1 283.6 Acteocina canaliculata 08JUL88 D 3 0-3 2 567.2 Cyclaspis varians 08JUL88 D 3 0-3 2 567.2 I Glycinde solitaria 08JUL88 D 3 0-3 1 283 .6 Macoma tenta 08JUL88 D 3 0-3 1 283.6 Mediomastus californiensis 08JUL88 D 3 0-3 30 . 8508.0 Oxyurostylis salioni 08JUL88 D 3 0-3 1 283.6 Polydora websteri 08JUL88 D 3 0-3 1 283 .6 I Serpulidae 08JUL88 D 3 0-3 2 567 . 2 Diopatra cuprea 08JUL88 D 3 3-10 .< 2 567.2 Glycinde solitaria 08JUL88 D 3 3-10 2 567.2 Mediomastus californiensis 08JUL88 D 3 3-10 4 1134 .4 I Anthozoa 22NOV88 A 1 0-3 1 283.6 Capitella capitata 22NOV88 A 1 0-3 1 283.6 Cyclaspis varians 22NOV88 A 1 0-3 2 567.2 Littoridina sphinctostoma 22NOV88 A 1 0-3 10 2836 .0 Mediomastus californiensis 22NOV88 A 1 0-3 7 1985.2 I Monoculoides sp . 22NOV88 A 1 0-3 1 283.6 Mulinia lateralis 22NOV88 A 1 0-3 11 3119 . 6 Polydora sp. 22NOV88 A 1 0-3 2 567 . 2 Streblospio benedicti 22NOV88 A 1 0-3 19 5388.4 I Capitella capitata 22NOV88 A 1 3-10 1 283.6 Mediomastus californiensis 22NOV88 A 1 3-10 39 11060. 4 01 igochaeta 22NOV88 A 1 3-10 1 283.6I Parandalia ocularis 22NOV88 A 1 3-10 1 283.6 Rhynchocoels 22NOV88 A 1 3-10 1 283.6 Scolelepis squamata 22NOV88 A 1 3-10 1 283.6 Capitella capitata 22NOV88 A 2 0-3 1 283 .6 Capre 11 id a 22NOV88 A 2 0-3 2 567.2 Littoridina sphinctostoma 22NOV88 A 2 0-3 14 3970.4 I Mediomastus californiensis 22NOV88 A 2 0-3 14 3970.4 Mulinia lateralis 22NOV88 A 2 0-3 11 3119 . 6 Oxyurostylis smithi 22NOV88 A 2 0-3 1 283.6I Polydora sp. 22NOV88 A 2 0-3 1 283.6 Streblospio benedicti 22NOV88 A 2 0-3 11 3119. 6 Capitella capitata 22NOV88 A 2 3-10 2 567.2 Mediomastus californiensis 22NOV88 A 2 3-10 25 7090.0 Polydora sp. 22NOV88 A 2 3-10 1 283.6 Rhynchocoels 22NOV88 A 2 3-10 1 283.6 I Balanus eburneus 22NOV88 A 3 0-3 3 850.8 Capitella capitata 22NOV88 A 3 0-3 3 850.8 Cyclaspis varians 22NOV88 A 3 0-3 1 283.6 294 GEMACSP.DAT I Littoridina sphinctostoma 22NOV88 A 3 0-3 4 1134 .4 Macoma mitche 11 i 22NOV88 A 3 0-3 1 283.6 I Mediomastus californiensis 22NOV88 A 3 0-3 5 1418.0 Mulinia lateralis 22NOV88 A 3 0-3 7 1985.2 Polydora sp. 22NOV88 A 3 0-3 2 567.2 Streblospio benedicti 22NOV88 A 3 0-3 9 2552.4 Capitella capitata 22NOV88 A 3 3-10 1 283.6 I Mediomastus californiensis 22NOV88 A 3 3-10 30 8508.0 Oxyurostylis smithi 22NOV88 A 3 3-10 1 283.6 Balanus eburneus 22NOV88 B 1 0-3 1 283.6 Cyclaspis varians 22NOV88 B 1 0-3 1 283.6Littoridina sphinctostoma 22NOV88 B 1 0-3 I 31 8791.6 Mediomastus californiensis 22NOV88 B 1 0-3 9 2552.4 Mulinia lateralis 22NOV88 B 1 0-3 52 14747.2 Oligochaeta 22NOV88 B 1 0-3 19 5388.4Streblospio benedicti 22NOV88 B 1 0-3 12 3403.2 'I Mediomastus californiensis 22NOV88 B 1 3-10 18 5104.8Mulinia lateralis 22NOV88 B 1 3-10 3 850.8 01 igochaeta 22NOV88 B 1 3-10 1 283.6Balanus eburneus 22NOV88 B 2 0-3 1 283.6 I Littoridina sphinctostoma 22NOV88 B 2 0-3 31 8791. 6 Mediomastus californiensis 22NOV88 B 2 0-3 10 2836.0 Mulinia lateralis 22NOV88 B 2 0-3 32 9075.2 0l i gochaeta 22NOV88 B 2 0-3 9 2552.4Streblospio benedicti 22NOV88 B 2 0-3 10 2836.0 I Mediomastus californiensis 22NOV88 B 2 3-10 20 5672.0Acteocina canaliculata 22NOV88 B 3 0-3 2 567.2 Littoridina sphinctostorna 22NOV88 B 3 0-3 24 6806.4Mediomastus californiensis 22NOV88 B 3 0-3 7 1985.2Mulinia lateralis 22NOV88 B 3 I 0-3 29 8224.4 Oligochaeta 22NOV88 B 3 0-3 4 1134 .4 Streblospio benedicti 22NOV88 B 3 0-3 6 1701. 6 Haploscoloplos foliosus 22NOV88 B 3 3-10 1 283.6 Littoridina sphinctostoma 22NOV88 B 3 3-10 1 283.6 I Mediomastus californiensis 22NOV88 B 3 3-10 29 8224.4 Mediomastus californiensis 22NOV88 c 1 0-3 6 1701.6 Rhynchocoels 22NOV88 c 1 0-3 1 283.6 Streblospio benedicti 22NOV88 c 1 0-3 6 1701. 6 IGyptis vittata 22NOV88 c 1 3-10 3 850.8 Haploscoloplos foliosus 22NOV88 c 1 3-10 1 283.6 Mediomastus californiensis 22NOV88 c 1 3-10 18 5104 .8 Rhynchocoels 22NOV88 c 1 3-10 1 283.6 Mediomastus californiensis 22NOV88 c 2 0-3 13 3686.8 I Rhynchocoels 22NOV88 c 2 0-3 1 283.6 Streblospio benedicti 22NOV88 c 2 0-3 3 850.8 Mediomastus californiensis 22NOV88 c 2 3-10 17 4821. 2Mediomastus californiensis 22NOV88 c 3 0-3 20 5672.0 I Mulinia lateralis 22NOV88 c 3 0-3 2 567.2 Rhynchocoels 22NOV88 c 3 0-3 1 283.6 Streblospio benedicti 22NOV88 c 3 0-3 4 1134. 4 Mediomastus californiensis 22NOV88 c 3 3-10 18 5104.8 Glycinde solitaria 22NOV88 D 1 0-3 1 283.6 I Haploscoloplos foliosus 22NOV88 D 1 0-3 2 567.2 Mediomastus californiensis 22NOV88 D 1 0-3 17 4821. 2 Mulinia lateralis 22NOV88 D 1 0-3 1 283.6 Streblospio benedicti 22NOV88 D 1 0-3 3 850.8 I Mediomastus californiensis 22NOV88 D 1 3-10 6 1701. 6 Rhynchocoels 22NOV88 D 1 3-10 1 283.6 Glycinde solitaria 22NOV88 D 2 0-3 1 283.6 Mediomastus californiensis 22NOV88 D 2 0-3 21 5955.6 Mysidopsis sp. 22NOV88 D 2 0-3 1 283.6 I Nuculana acuta 22NOV88 D 2 0-3 1 283.6 Streblospio benedicti 22NOV88 D 2 0-3 4 1134. 4 Haploscoloplos foliosus 22NOV88 D 2 3-10 1 283.6 Mediomastus californiensis 22NOV88 D 2 3-10 2 567.2 I Paraprionospio pinnata 22NOV88 D 2 3-10 1 283.6 Glycinde solitaria 22NOV88 D 3 0-3 1 283.6 I ,.·:;· I GEMACSP.DAT 295 I Gyptis vittata 22NOV88 D 3 0-3 2 567.2 Haploscoloplos foliosus 22NOV88 D 3 0-3 1 283.6 I Mediomastus californiensis 22NOV88 D 3 0-3 12 3403.2 Oxyurostylis smithi 22NOV88 D 3 0-3 1 283.6 Polydora websteri 22NOV88 D 3 0-3 1 283.6 Rhynchocoels 22NOV88 0 3 0-3 2 567.2 Streblospio benedicti 22NOV88 0 3 0-3 1 283.6 I Glycinde solitaria 22NOV88 0 3 3-10 1 283.6 Gyptis vittata 22NOV88 0 3 3-10 2 567.2 Mediomastus californiensis 22NOV88 0 3 3-10 2 567.2 Polydora caulleryi 22NOV88 0 3 3-10 1 283.6 I Rhynchocoels 22NOV88 0 3 3-10 1 283.6 Streblospio benedicti 22NOV88 0 3 3-10 1 283.6 Acteocina canaliculata 04APR89 A 1 0-3 1 283.6 Capitella capitata 04APR89 A 1 0-3 4 1134.4 Gastropoda 04APR89 A 1 0-3 43 12194.8 I Littoridina sphinctostoma 04APR89 A 1 0-3 17 4821.2 Monoculoides sp. 04APR89 A 1 0-3 3 850.8 Mulinia lateralis 04APR89 A 1 0-3 10 2836.0 Mysidopsis bahia 04APR89 A 1 0-3 1 283.6 Pyramidella sp. 04APR89 A 1 0-3 1 283.6 Rhynchocoels 04APR89 A 1 0-3 5 1418.0 Streblospio benedicti 04APR89 A 1 0-3 184 52182.4 I Capitella capitata 04APR89 A 1 3-10 1 283.6 Littoridina sphinctostoma 04APR89 A 1 3-10 3 850.8 Macoma mitche 11 i 04APR89 A 1 3-10 1 283.6 I Mediomastus californiensis 04APR89 A 1 3-10 29 8224.4 Parandalia ocularis 04APR89 A 1 3-10 1 283.6 Streblospio benedicti 04APR89 A 1 3-10 36 10209.6 I I Capitella capitata 04APR89 A 2 0-3 3 850.8 Gastropoda 04APR89 A 2 0-3 23 6522.8 Littoridina sphinctostoma 04APR89 A 2 0-3 16 4537.6 Monoculoides sp. 04APR89 A 2 0-3 7 1985.2 Mulinia lateralis 04APR89 A 2 0-3 16 4537.6 Pyramidella sp. 04APR89 A 2 0-3 2 567.2 Rhynchocoels 04APR89 A 2 0-3 2 567.2 Streblospio benedictt 04APR89 A 2 0-3 229 64944.4 Capitella capitata 04APR89 A 2 3-10 2 567.2 I I Mediomastus californiensis 04APR89 A 2 3-10 22 6239.2 01 igochaeta 04APR89 A 2 3-10 1 283.6 Streblospio benedicti 04APR89 A 2 3-10 64 18150.4 Gastropoda 04APR89 A 3 0-3 65 18434.0 Littoridina sphinctostoma 04APR89 A 3 0-3 18 5104.8 Mediomastus californiensis 04APR89 A 3 0-3 1 283.6 Monoculoides sp. 04APR89 A 3 0-3 2 567.2 Mulinia lateralis 04APR89 A 3 0-3 7 1985.2 Pyramide lla sp. 04APR89 A 3 0-3 3 850.8 I Rhynchocoels 04APR89 A 3 0-3 2 567.2 Streblospio benedicti 04APR89 A 3 0-3 208 58988.8 Capitella capitata 04APR89 A 3 3-10 2 567.2 Gastropoda 04APR89 A 3 3-10 1 283.6 I Gyptis vittata 04APR89 A 3 3-10 1 283.6 Mediomastus californiensis 04APR89 A 3 3-10 20 5672.0 Streblospio benedicti 04APR89 A 3 3-10 20 5672.0 Cyclaspis varians 04APR89 B 1 0-3 1 283.6 Littoridina sphinctostoma 04APR89 B 1 0-3 31 8791. 6 I Mediomastus californiensis 04APR89 B 1 0-3 5 1418.0 Mulinia lateralis 04APR89 B 1 0-3 2 567.2 Oxyurostylis smithi 04APR89 B 1 0-3 1 283.6 Streblospio benedicti 04APR89 B 1 0-3 146 41405.6 I Acteocina canaliculata 04APR89 B 1 3-10 1 283.6 Haploscoloplos foliosus 04APR89 B 1 3-10 1 283.6 Macoma mitchelli 04APR89 B 1 3-10 2 567.2 Mediomastus californiensis 04APR89 B 1 3-10 12 3403.2 Streblospio benedicti 04APR89 B 1 3-10 9 2552.4 Acteocina canaliculata 04APR89 B 2 0-3 1 283.6 Haploscoloplos foliosus 04APR89 B 2 0-3 1 283.6 296 GEMACSP.DAT I I Littoridina sphinctostoma 04APR89 B 2 0-3 26 7373.6 Mediomastus californiensis 04APR89 B 2 0-3 2 567.2 I Mulinia lateralis 04APR89 B 2 0-3 1 283.6 Streblospio benedicti 04APR89 B 2 0-3 143 40554.8 Glycinde solitaria 04APR89 B 2 3-10 1 283.6 Mediomastus californiensis 04APR89 B 2 3-10 31 8791.6 Streblospio benedicti 04APR89 I B 2 3-10 10 2836.0 Acteocina canaliculata 04APR89 B 3 0-3 1 283.6 Capitella capitata 04APR89 B 3 0-3 1 283.6 Haploscoloplos foliosus 04APR89 B 3 0-3 2 567.2 Littoridina sphinctostoma 04APR89 B 3 0-3 30 8508.0 I Mediomastus californiensis 04APR89 B 3 0-3 5 1418.0 01 igochaeta 04APR89 B 3 0-3 1 283.6 Rhynchocoels 04APR89 B 3 0-3 1 283.6 Streblospio benedicti 04APR89 B 3 0-3 170 48212.0 Capitella capitata 04APR89 B 3 3-10 1 283.6 I Haploscoloplos foliosus 04APR89 B 3 3-10 1 283.6 Littoridina sphinctostoma 04APR89 B 3 3-10 2 567.2 Macoma mitche 11 i 04APR89 B 3 3-10 3 850.8 Mediomastus californiensis 04APR89 B 3 3-10 19 5388.4 I Streblospio benedicti 04APR89 B 3 3-10 9 2552.4 Cyclaspis varians 04APR89 c 1 0-3 9 2552.4 Mediomastus californiensis 04APR89 c 1 0-3 32 9075.2 Microprotopus spp. 04APR89 c 1 0-3 1 283.6 IMonoculoides sp. 04APR89 c 1 0-3 6 1701. 6 Oxyurostylis smithi 04APR89 c 1 0-3 12 3403.2 Streblospio benedicti 04APR89 c 1 0-3 7 1985.2 Mediomastus californiensis 04APR89 c 1 3-10 8 2268.8 Acteocina canaliculata 04APR89 c 2 0-3 2 I 567.2 Cyclaspis varians 04APR89 c 2 0-3 3 850.8 Glycinde solitaria 04APR89 c 2 0-3 1 283.6 Leucon sp. 04APR89 c 2 0-3 1 283.6 Macoma mitche 11 i 04APR89 c 2 0-3 1 283.6 I Mediomastus californiensis 04APR89 c 2 0-3 16 4537.6 Monoculoides sp. 04APR89 c 2 0-3 2 567.2 Oxyurostylis smithi 04APR89 c 2 0-3 6 1701.6 Streblospio benedicti 04APR89 c 2 0-3 6 1701.6 Ensis minor 04APR89 c 2 3-10 1 283.6 I Gypt is vittata 04APR89 c 2 3-10 1 283.6 Haploscoloplos foliosus 04APR89 c 2 3-10 1 283.6 Mediomastus californiensis 04APR89 c 2 3-10 11 3119. 6 Rhynchocoels 04APR89 c 2 3-10 1 283.6 I Acteocina canaliculata 04APR89 c 3 0-3 1 283.6 Cyclaspis varians 04APR89 c 3 0-3 3 850.8 Mediomastus californiensis 04APR89 c 3 0-3 42 11911. 2 Monoculoides sp. 04APR89 c 3 0-3 2 567.2 Mulinia lateralis 04APR89 c 3 0-3 2 567.2 I Oxyurostylis smithi 04APR89 c 3 0-3 7 1985.2 Streblospio benedicti 04APR89 c 3 0-3 2 567.2 Mediomastus californiensis 04APR89 c 3 3-10 8 2268.8 Paraprionospio pinnata 04APR89 c 3 3-10 1 283.6 I Aligena texasiana 04APR89 D 1 0-3 1 283.6 Ampelisca abdita 04APR89 D 1 0-3 2 567.2 Batea catharinensis 04APR89 D 1 0-3 1 283.6 Capitella capitata 04APR89 D 1 0-3 1 283.6 Caprellid a 04APR89 D 1 0-3 2 567.2 I Clymenella torquata calida 04APR89 D 1 0-3 1 283.6 Cyclaspis varians 04APR89 D 1 0-3 15 4254.0 Diopatra cuprea 04APR89 D 1 0-3 1 283.6 Ensis minor 04APR89 D 1 0-3 5 1418.0 I Erichthonias brasiliensis 04APR89 D 1 0-3 7 1985.2 Glycera americana 04APR89 D 1 0-3 1 283.6 Gypt is vittata 04APR89 D 1 0-3 1 283.6 Haploscoloplos foliosus 04APR89 D 1 0-3 3 850.8 Mediomastus californiensis 04APR89 D 1 0-3 28 7940.8 I Megalomma bioculatum 04APR89 D 1 0-3 1 283.6 Microprotopus spp. 04APR89 D 1 0-3 1 283.6 I I '4 ,: I I GEMACSP.DAT 297 I Monoculoides sp. 04APR89 D 1 0-3 1 283.6 Mulinia lateralis 04APR89 D 1 0-3 1 283.6 I I Mysella planulata 04APR89 D 1 0-3 4 1134.4 Oxyurostylis smithi 04APR89 D 1 0-3 8 2268.8 Polydora websteri 04APR89 D 1 0-3 1 283.6 Streblospio benedicti 04APR89 D 1 0-3 1 283.6 Te 11 ina sp. 04APR89 D 1 0-3 1 283.6 Aligena texasiana 04APR89 D 1 3-10 1 283.6 Mediomastus californiensis 04APR89 D 1 3-10 11 3119. 6 Neanthes succinea 04APR89 D 1 3-10 1 283.6 Acteocina canaliculata 04APR89 D 2 0-3 2 567.2 I I Arnpelisca abdita 04APR89 D 2 0-3 1 283.6 Cyclaspis varians 04APR89 D 2 0-3 4 1134.4 Ensis minor 04APR89 D 2 0-3 2 567.2 Erichthonias brasiliensis 04APR89 D 2 0-3 1 283.6 Haploscoloplos foliosus 04APR89 D 2 0-3 1 283.6 Mediomastus californiensis 04APR89 D 2 0-3 22 6239.2 Mulinia lateralis 04APR89 D 2 0-3 1 283.6 Mysella planulata 04APR89 D 2 0-3 1 283.6 Oxyurostylis smithi 04APR89 D 2 0-3 7 1985.2 I I Pandora trilineata 04APR89 D 2 0-3 1 283.6 Pseudodiaptomus coronatus 04APR89 D 2 0-3 1 283.6 Mediomastus californiensis 04APR89 D 2 3-10 4 1134 .4 Neanthes succinea 04APR89 D 2 3-10 1 283.6 Rhynchocoels 04APR89 D 2 3-10 2 567.2 Clymenella t orquata calida 04APR89 D 3 0-3 2 567.2 Ensis minor 04APR89 D 3 0-3 2 567.2 Glycinde solitaria 04APR89 D 3 0-3 2 567.2 Haploscoloplos foliosus 04APR89 D 3 0-3 3 850.8 I I Isolda pulchella 04APR89 D 3 0-3 1 283.6 Mediomastus californiensis 04APR89 D 3 0-3 46 13045.6 Megalonma bioculatum 04APR89 D 3 0-3 3 850.8 Melinna maculata 04APR89 D 3 0-3 1 283.6 Monoculoides sp. 04APR89 D 3 0-3 1 283.6 Mulinia lateralis 04APR89 D 3 0-3 1 283.6 Mysella planulata 04APR89 D 3 0-3 1 283.6 Neanthes succinea 04APR89 D 3 0-3 1 283.6 Oxyurostylis smithi 04APR89 D 3 0-3 11 3119. 6 I Polydora caulleryi 04APR89 D 3 0-3 3 850.8 Polydora websteri 04APR89 D 3 0-3 1 283.6 Terebe 11 idae 04APR89 D 3 0-3 1 283.6 Diopatra cuprea 04APR89 D 3 3-10 1 283.6 I Mediomastus californiensis 04APR89 D 3 3-10 8 2268.8 Neanthes succinea 04APR89 D 3 3-10 1 283.6 Oxyurostylis smithi 04APR89 D 3 3-10 1 283.6 Parandalia ocularis 04APR89 D 3 3-10 2 567.2 Polydora caulleryi 04APR89 D 3 3-10 18 5104.8 I Acteocina canaliculata 23JUL89 A 1 0-3 1 283.6 Glycinde solitaria 23JUL89 A 1 0-3 1 283.6 Littoridina sphinctostoma 23JUL89 A 1 0-3 17 4821. 2 Mediomastus californiensis 23JUL89 A 1 0-3 3 850.8 I Mysidopsis almyra 23JUL89 A 1 0-3 1 283.6Pyramidella crenulata 23JUL89 A 1 0-3 1 283.6Rhynchocoels 23JUL89 A 1 0-3 1 283.6Streblospio benedicti 23JUL89 A 1 0-3 15 4254.0Mediomastus californiensis 23JUL89 A 1 3-10 31 8791. 6 I Cyclaspis varians 23JUL89 A 2 0-3 2 567.2 Littoridina sphinctostoma 23JUL89 A 2 0-3 27 7657.2 Mediomastus californiensis 23JUL89 A 2 0-3 5 1418.0 Monoculoides sp. 23JUL89 A 2 0-3 4 1134. 4 I Mulinia lateralis 23JUL89 A 2 0-3 6 1701.6Mysidopsis sp. 23JUL89 A 2 0-3 2 567.2Pseudodiaptomus coronatus 23JUL89 A 2 0-3 1 283.6Streblospio benedicti 23JUL89 A 2 0-3 15 4254.0Mediomastus californiensis 23JUL89 A 2 3-10 40 11344. 0 I Streblospio benedicti 23JUL89 A 2 3-10 1 283.6Bowmaniella sp. 23JUL89 A 3 0-3 1 283.6 I 298 GEHACSP.DAT I Littoridina sphinctostorna 23JUL89 A 3 0-3 24 6806.4 Hediornastus californiensis 23JUL89 A 3 0-3 10 2836.0 Hicroprotopus spp. 23JUL89 A I 3 0-3 1 283.6 Hulinia lateralis 23JUL89 A 3 0-3 1 283.6 Hysidopsis alrnyra 23JUL89 A 3 0-3 2 567.2 Hysidopsis sp. 23JUL89 A 3 0-3 1 283.6 Oligochaeta 23JUL89 A 3 0-3 1 283.6 I Rhynchocoels 23JUL89 A 3 0-3 2 567.2 Streblospio benedicti 23JUL89 A 3 0-3 23 6522.8 Heterornastus filiformis 23JUL89 A 3 3-10 1 283.6 Hediomastus californiensis 23JUL89 A 3 3-10 35 9926.0 01 igochaeta 23JUL89 A 3 3-10 I 1 283.6 Anaitides erythrophyllus 23JUL89 c 1 0-3 2 567.2 Batea catharinensis 23JUL89 c 1 0-3 1 283.6 Bivalvia 23JUL89 c 1 0-3 2 567.2Capre 11 id a 23JUL89 c 1 0-3 6 1701.6 I Hediomastus californiensis 23JUL89 c 1 0-3 24 6806.4 Hegalomrna bioculaturn 23JUL89 c 1 0-3 1 283.6Melita sp. 23JUL89 c 1 0-3 3 850.8 Odostornia sp. 23JUL89 c 1 0-3 1 283.601 igochaeta 23JUL89 c 1 0-3 1 283.6 I Pista palmata 23JUL89 c 1 0-3 7 1985.2Polychaete juvenile (Unidentified) 23JUL89 c 1 0-3 1 283.6Polydora caulleryi 23JUL89 c 1 0-3 1 283.6Rhynchocoels 23JUL89 c 1 0-3 1 283.6 I Streblospio benedicti 23JUL89 c 1 0-3 3 850.8Capre 11 id a 23JUL89 c 1 3-10 2 567.2Glycinde solitaria 23JUL89 c 1 3-10 1 283.6 Hediomastus californiensis 23JUL89 c 1 3-10 5 1418.0Paraprionospio pinnata 23JUL89 I c 1 3-10 1 283.6 Pista palmata 23JUL89 c 1 3-10 1 283.6 23JUL89 c 2 0-3 1 283.6Crepidula fornicata 23JUL89 c 2 0-3 1 283.6 Cyclaspis varians 23JUL89 2 c 0-3 5 1418.0 I Diopatra cuprea 23JUL89 c 2 0-3 2 567.2 Lyonsia hyalina floridana 23JUL89 c 2 0-3 1 283.6Hacoma mitche 11 i 23JUL89 c 2 0-3 1 283.6 Hediomastus californiensis 23JUL89 c 2 0-3 20 5672.0Oxyurostylis salioni 23JUL89 I c 2 0-3 2 567.2 Periplorna margaritaceurn (=inequale) 23JUL89 c 2 0-3 1 283.6 Pista palmata 23JUL89 c 2 0-3 5 1418.0 Rhynchocoels 23JUL89 c 2 0-3 2 567.2 Streblospio benedicti 23JUL89 c I 2 0-3 3 850.8 Turban i lla sp. 23JUL89 c 2 0-3 1 283.6 Caecum johnsoni 23JUL89 c 2 3-10 1 283.6 Cyclaspis varians 23JUL89 c 2 3-10 1 283.6 Mediornastus californiensis 23JUL89 c 2 3-10 3 850.8 I Spiochaetopterus costarurn 23JUL89 c 2 3-10 1 283.6 Littoridina sphinctostorna 23JUL89 c 3 0-3 1 283.6 Mediomastus californiensis 23JUL89 c 3 0-3 30 8508.0 Nereidae 23JUL89 c 3 0-3 1 283.6 Oxyurostylis salioni 23JUL89 c 3 0-3 ,I 1 283.6 Pista palmata 23JUL89 c 3 0-3 7 1985.2 Podarke obscura 23JUL89 c 3 0-3 1 283.6 Rhynchocoels 23JUL89 c 3 0-3 1 283.6 I ·I I I I NCHACSP.DAT 299 I NCMACSP.DAT Nueces-Corpus Estuary Macrofauna species data. 3 replicates (REP) were taken each time, N=n/section (SEC) I nm2=n/mA2. Sections in cm. I SP NAME DATE STA REP SEC N NM2 I Diopatra cuprea 190CT87 c 1 0-3 2 567.2 Mediomastus californiensis 190CT87 c 1 0-3 4 1134.4 Streblospio benedicti 190CT87 c 1 0-3 8 2268.8 Cossura delta 190CT87 c 1 3-10 2 567.2 I I Glycinde solitaria 190CT87 c 1 3-10 1 283.6 Gyptis vittata 190CT87 c 1 3-10 3 850.8 Lumbrineris parvapedata 190CT87 c 1 3-10 1 283 .6 I Mediomastus californiensis 190CT87 c 1 3-10 7 1985.2 01 igochaeta 190CT87 c 1 3-10 1 283.6I ~aleanotus heteroseta 190CT87 c 1 3-10 1 283.6 Periploma cf. orbiculare 190CT87 c 1 3-10 1 283.6 Rhynchocoels 190CT87 c 1 3-10 1 283.6 Sigambra tentaculata 190CT87 c 1 3-10 1 283.6 I I Streblospio benedicti 190CT87 c 1 3-10 1 283.6 Tharyx setigera 190CT87 c 1 3-10 1 283.6 Glycinde solitaria 190CT87 c 2 0-3 3 850.8 Leucon sp. 190CT87 c 2 0-3 1 283.6 Mediomastus californiensis 190CT87 c 2 0-3 13 3686.8 Paraprionospio pinnata 190CT87 c 2 0-3 2 567.2 Streblospio benedicti 190CT87 c 2 0-3 19 5388.4 Clymenella mucosa 190CT87 c 2 3-10 1 283.6 Listriella barnardi 190CT87 c 2 3-10 1 283.6 I Mediomastus californiensis 190CT87 c 2 3-10 4 1134. 4 Paraprionospio pinnata 190CT87 c 2 3-10 2 567.2 Rhynchocoels 190CT87 c 2 3-10 1 283.6 Streblospio benedicti 190CT87 c 2 3-10 1 283.6 I Turbellaria 190CT87 c 2 3-10 1 283.6 Glycinde solitaria 190CT87 c 3 0-3 1 283.6 Leucon sp. 190CT87 c 3 0-3 3 850.8 Mediomastus californiensis 190CT87 c 3 0-3 11 3119. 6 Mega lops 190CT87 c 3 0-3 1 283.6 I Nuculana acuta 190CT87 c 3 0-3 1 283.6 Streblospio benedicti 190CT87 c 3 0-3 15 4254.0 Glycinde solitaria 190CT87 c 3 3-10 1 283.6 Gyptis vittata 190CT87 c 3 3-10 3 850.8 I Lumbrineris parvapedata 190CT87 c 3 3-10 1 283.6 Mediomastus californiensis 190CT87 c 3 3-10 7 1985.2 Paleanotus heteroseta 190CT87 c 3 3-10 3 850.8 Periploma cf. orbiculare 190CT87 c 3 3-10 2 567.2 Rhynchocoels 190CT87 c 3 3-10 1 283.6 I Tharyx setigera 190CT87 c 3 3-10 1 283.6 Streblospio benedicti 200CT87 A 1 0-3 17 4821. 2 Mediomastus californiensis 200CT87 A 1 3-10 3 850.8 Mediomastus californiensis 200CT87 A 2 0-3 1 283.6 I Mulinia lateralis 200CT87 A 2 0-3 1 283.6 Streblospio benedicti 200CT87 A 2 0-3 11 3119. 6 Mediomastus californiensis 200CT87 A 2 3-10 5 1418.0 Streblospio benedicti 200CT87 A 2 3-10 1 283.6 Mediomastus californiensis 200CT87 A 3 0-3 1 283.6 I Streblospio benedicti 200CT87 A 3 0-3 8 2268.8 Mediomastus californiensis 200CT87 A 3 3-10 1 283.6 Rhynchocoels 200CT87 A 3 3-10 1 283.6 Streblospio benedicti 200CT87 A 3 3-10 1 283.6 Mediomastus californiensis 210CT87 B 1 0-3 1 283.6 Streblospio benedicti 210CT87 B 1 0-3 1 283.6 Cossura delta 210CT87 B 1 3-10 3 850.8 I 300 NCMACSP.DAT I Mediomastus californiensis 210CT87 B 1 3-10 2 567.2 Paraprionospio pinnata 210CT87 B 1 3-10 1 283.6 Rhynchocoels 210CT87 B I 1 3-10 1 283.6 Glycinde solitaria 210CT87 B 2 0-3 1 283.6 Mediomastus californiensis 210CT87 B 2 0-3 1 283.6 Streblospio benedicti 210CT87 B 2 0-3 4 1134 .4 Mediomastus californiensis 210CT87 B 2 3-10 4 1134.4 I Glycinde solitaria 210CT87 B 3 0-3 1 283.6 Mediomastus californiensis 210CT87 B 3 0-3 1 283.6Streblospio benedicti 210CT87 B 3 0-3 4 1134 .4 Cossura delta 210CT87 B 3 3-10 1 283.6 Glycinde solitaria 210CT87 B 3 3-10 1 I 283.6 Mediomastus californiensis 210CT87 B 3 3-10 2 567.2 Paraprionospio pinnata 210CT87 B 3 3-10 1 283.6Streblospio benedicti 210CT87 B 3 3-10 1 283.6 Mediomastus californiensis 220CT87 D 1 0-3 11 3119. 6 I Paraprionospio pinnata 220CT87 D 1 0-3 1 283.6Rhynchocoels 220CT87 1 D 0-3 2 567.2 Streblospio benedicti 220CT87 D 1 0-3 12 3403.2Cossura delta 220CT87 D 1 3-10 1 283.6 IMediomastus californiensis 220CT87 D 1 3-10 4 1134 .4 Paraprionospio pinnata 220CT87 D 1 3-10 2 567.2Rhynchocoels 220CT87 D 1 3-10 1 283.6 Mediomastus californiensis 220CT87 D 2 0-3 20 5672.0Minuspio cirrifera 220CT87 D 2 0-3 1 283.6 I Paraprionospio pinnata 220CT87 D 2 0-3 1 283.6Rhynchocoels 220CT87 D 2 0-3 1 283.6 Streblospio benedicti 220CT87 D 2 0-3 13 3686.8 Mediomastus californiensis 220CT87 D 2 3-10 2 567.2 Paraprionospio pinnata 220CT87 D I 2 3-10 2 567.2 Glycinde solitaria 220CT87 D 3 0-3 1 283.6 Mediomastus californiensis 220CT87 D 3 0-3 20 5672.0 Sabe 11 idae 220CT87 D 3 0-3 1 283.6 Streblospio benedicti 220CT87 D 3 0-3 11 3119. 6 I Mediomastus californiensis 220CT87 D 3 3-10 1 283.6 01 igochaeta 220CT87 D 3 3-10 1 283.6 Paraonidae grp. A 220CT87 D 3 3-10 1 283.6 Spiochaetopterus costarum 220CT87 D 3 3-10 1 283.6 I Streblospio benedicti 220CT87 D 3 3-10 1 283.6 Eudorella monodon 07DEC87 c 1 0-3 2 567.2 Leucon sp. 07DEC87 c 1 0-3 1 283.6 Mediomastus californiensis 07DEC87 c 1 0-3 4 1134. 4 Mulinia lateralis 07DEC87 c 1 0-3 1 283 .6 Streblospio benedicti 07DEC87 c 1 0-3 1 283.6 • Ampelisca sp. B (=amphipod A) 07DEC87 c 1 3-10 1 283.6 Clymenella mucosa 07DEC87 c 1 3-10 1 283.6 Drilonereis magna 07DEC87 c 1 3-10 1 283.6 I Mediomastus californiensis 07DEC87 c 1 3-10 2 567.2 Paleanotus heteroseta 07DEC87 c 1 3-10 2 567.2 Paraprionospio pinnata 07DEC87 c 1 3-10 2 567 .2 Periploma cf. orbiculare 07DEC87 c 1 3-10 1 283.6 Ampelisca abdita 07DEC87 c 2 0-3 1 283.6 I Glycinde solitaria 07DEC87 c 2 0-3 1 283.6 Gyptis vittata 07DEC87 c 2 0-3 1 283.6 Leucon sp. 07DEC87 c 2 0-3 2 567.2 Mediomastus californiensis 07DEC87 c 2 0-3 15 4254.0 I Paraprionospio pinnata 07DEC87 c 2 0-3 4 1134 .4 Streblospio benedicti 07DEC87 c 2 0-3 3 850.8 Tharyx setigera 07DEC87 c 2 0-3 1 283.6 Cossura delta 07DEC87 c 2 3-10 2 567.2 Drilonereis magna 07DEC87 c 2 3-10 1 283. 6 I Glycinde solitaria 07DEC87 c 2 3-10 1 283.6 Gyptis vittata 07DEC87 c 2 3-10 1 283.6 Mediomastus californiensis 07DEC87 c 2 3-10 1 283.6 01 igochaeta 07DEC87 c 2 3-10 1 283.6 I Paraprionospio pinnata 07DEC87 c 2 3-10 1 283.6 Periploma cf. orbiculare 07DEC87 c 2 3-10 1 283.6 I ;· ~ µ."' I I NCHACSP.DAT 301 I Ampelisca abdita 07DEC87 c 3 0-3 1 283.6 Eudorella monodon 07DEC87 c 3 0-3 2 567.2 I Leucon sp. 07DEC87 c 3 0-3 1 283.6 Macoma mitche 11 i 07DEC87 c 3 0-3 1 283.6 Mediomastus californiensis 07DEC87 c 3 0-3 4 1134 .4 Paraprionospio pinnata 07DEC87 c 3 0-3 1 283.6 I Streblospio benedicti 07DEC87 c 3 0-3 1 283.6 Drilonereis magna 07DEC87 c 3 3-10 1 283.6 Mediomastus californiensis 07DEC87 c 3 3-10 4 1134.4 Macoma mitche 11 i 08DEC87 A 1 0-3 14 3970.4 Mediomastus californiensis 08DEC87 A 1 0-3 1 283.6 I Streblospio benedicti 08DEC87 A 1 0-3 5 1418.0 Mediomastus californiensis 08DEC87 A 1 3-10 2 567.2 Streblospio benedicti 08DEC87 A 1 3-10 1 283.6 Macoma mitche 11 i 08DEC87 A 2 0-3 10 2836.0 I Mediomastus californiensis 08DEC87 A 2 0-3 1 283.6 Rhynchocoels 08DEC87 A 2 0-3 1 283.6 Streblospio benedicti 08DEC87 A 2 0-3 8 2268.8 Mediomastus californiensis 08DEC87 A 2 3-10 1 283.6 Macoma mitche 11 i 08DEC87 A 3 0-3 8 2268.8 I Mulinia lateralis 08DEC87 A 3 0-3 2 567.2 Mysidopsis sp. 08DEC87 A 3 0-3 1 283.6 Streblospio benedicti 08DEC87 A 3 0-3 3 850.8 Mediomastus californiensis 08DEC87 A 3 3-10 3 850.8 I Streblospio benedicti 08DEC87 A 3 3-10 1 283.6 Haploscoloplos foliosus 09DEC87 B 1 0-3 1 283.6 Hydrozoa 09DEC87 B 1 0-3 1 283.6 Macoma mitche 11 i 09DEC87 B 1 0-3 3 850.8 Mediomastus californiensis 09DEC87 B 1 0-3 6 1701.6 I Mulinia lateralis 09DEC87 B 1 0-3 1 283.6 Streblospio benedicti 09DEC87 B 1 0-3 1 283.6 Glycinde solitaria 09DEC87 B 1 3-10 1 283.6 Mediomastus californiensis 09DEC87 B 1 3-10 1 283.6 I Paraprionospio pinnata 09DEC87 B 1 3-10 1 283.6 Rhynchocoels 09DEC87 B 1 3-10 1 283.6 Clymenella mucosa 09DEC87 B 2 0-3 1 283.6I Glycinde solitaria 09DEC87 B 2 0-3 4 1134. 4 Haploscoloplos foliosus 09DEC87 B 2 0-3 1 283.6 Macoma mitche 11 i 09DEC87 B 2 0-3 4 1134 .4 Mediomastus californiensis 09DEC87 B 2 0-3 16 4537.6 Streblospio benedicti 09DEC87 B 2 0-3 1 283.6 Cossura delta 09DEC87 B 2 3-10 1 283.6 I I Glycinde solitaria 09DEC87 B 2 3-10 1 283.6 Mediomastus californiensis 09DEC87 B 2 3-10 5 1418.0 Haploscoloplos foliosus 09DEC87 B 3 0-3 1 283.6 Macoma mitchelli 09DEC87 B 3 0-3 4 1134 .4 Mediomastus californiensis 09DEC87 B 3 0-3 12 3403.2 Streblospio benedicti 09DEC87 B 3 0-3 1 283.6 Cossura delta 09DEC87 B 3 3-10 1 283.6 Glycinde solitaria 09DEC87 B 3 3-10 1 283.6 Medi omastus californiensis 09DEC87 B 3 3-10 2 567.2 I I Paraprionospio pinnata 09DEC87 B 3 3-10 2 567.2 Capre 11 id a 10DEC87 D 1 0-3 2 567.2 Erichthonias brasiliensis 10DEC87 D 1 0-3 3 850.8 Gyptis vittata 10DEC87 D 1 0-3 1 283.6 Lembos sp. 10DEC87 D 1 0-3 1 283.6 Mediomastus californiensis 10DEC87 D 1 0-3 18 5104.8 Ancistrosyllis papillosa 10DEC87 D 1 3-10 2 567.2 Caprellid a 10DEC87 D 1 3-10 1 283.6 Gypti s vittata 10DEC87 D 1 3-10 1 283.6 I Mediomastus californiensis 10DEC87 D 1 3-10 3 850.8 Ophiuroidea 10DEC87 D 1 3-10 1 283.6 Paleanotus heteroseta 10DEC87 D 1 3-10 1 283.6 Parahesione luteola 10DEC87 D 1 3-10 4 1134 .4 Polydora caulleryi 10DEC87 D 1 3-10 7 1985.2 Rhynchocoels 10DEC87 D 1 3-10 1 283.6 Tharyx setigera lODEC87 D 1 3-10 1 283.6 I 302 NCHACSP.DAT I Clymenella mucosa 10DEC87 D 2 0-3 3 850.8 Listriella barnardi 10DEC87 D 2 0-3 1 283.6 I Mediomastus californiensis 10DEC87 D 2 0-3 21 5955.6 Paleanotus heteroseta 10DEC87 D 2 0-3 1 283.6 Paraonidae grp. A 10DEC87 D 2 0-3 1 283.6 Paraonidae grp. B 10DEC87 D 2 0-3 1 283.6 Paraprionospio pinnata 10DEC87 D 2 0-3 2 567.2 I Polydora caulleryi lODEC87 D 2 0-3 3 850.8 Rhynchocoels 10DEC87 D 2 0-3 1 283.6 Drilonereis magna 10DEC87 D 2 3-10 1 283.6 Magelona phyllisae 10DEC87 D 2 3-10 1 283.6 I Mediomastus californiensis 10DEC87 D 2 3-10 1 283.6 Paleanotus heteroseta 10DEC87 D 2 3-10 5 1418.0 Paraonidae grp. A 10DEC87 D 2 3-10 2 567.2 Polydora caulleryi 10DEC87 D 2 3-10 4 1134 .4 Bivalvia 10DEC87 D 3 0-3 1 283.6 I Clymenella torquata calida 10DEC87 D 3 0-3 1 283.6 Drilonereis magna 10DEC87 D 3 0-3 1 283 . 6 Eteone heteropoda 10DEC87 D 3 0-3 1 283.6 Mediomastus californiensis lODEC87 D 3 0-3 28 7940.8 I Paraonidae grp. A 10DEC87 D 3 0-3 1 283.6 Paraprionospio pinnata 10DEC87 D 3 0-3 5 1418.0 Polydora caulleryi 10DEC87 D 3 0-3 21 5955.6 Rhynchocoels 10DEC87 D 3 0-3 1 283.6 I Streblospio benedicti 10DEC87 D 3 0-3 1 283.6 Tharyx setigera 10DEC87 D 3 0-3 4 1134. 4 Mediomastus californiensis 10DEC87 D 3 3-10 7 1985.2 Nereidae 10DEC87 D 3 3-10 1 283.6 Oligochaeta 10DEC87 D 3 3-10 1 283.6 I Podarke obscura 10DEC87 D 3 3-10 2 567.2 Polydora caulleryi 10DEC87 D 3 3-10 637 180653.2 Tharyx setigera 10DEC87 D 3 3-10 37 10493.2 Glycinde solitaria 15FEB88 c 1 0-3 2 567.2 I Leucon sp. 15FEB88 c 1 0-3 1 283.6 Mediomastus californiensis 15FEB88 c 1 0-3 11 3119. 6 01 igochaeta 15FEB88 c 1 0-3 l 283.6 Phascolion strombi 15FEB88 c 1 0-3 2 567.2 Streblospio benedicti 15FEB88 c 1 0-3 2 567.2 'I Cossura delta 15FEB88 c 1 3-10 2 567.2 Mediomastus californiensis 15FEB88 c 1 3-10 2 567.2 Rhynchocoels 15FEB88 c 1 3-10 1 283.6 Clymenella mucosa 15FEB88 c 2 0-3 2 567.2 I Eudorella monodon 15FEB88 c 2 0-3 1 283.6 Glycinde solitaria 15FEB88 c 2 0-3 2 567.2 Macoma tenta 15FEB88 c 2 0-3 1 283.6 Mediomastus californiensis 15FEB88 c 2 0-3 3 850.8 Monoculoides sp. 15FEB88 c 2 0-3 1 283.6 I Mulinia lateralis 15FEB88 c 2 0-3 2 567.2 Nuculana acuta 15FEB88 c 2 0-3 1 283.6 Paraprionospio pinnata 15FEB88 c 2 0-3 2 567.2 Streblospio benedicti 15FEB88 c 2 0-3 1 283.6 I Turbellaria 15FEB88 c 2 0-3 1 283.6 Gypt is vittata 15FEB88 c 2 3-10 2 567.2 Mediomastus californiensis 15FEB88 c 2 3-10 2 567.2 Rhynchocoels 15FEB88 c 2 3-10 1 283.6 Sigambra tentaculata 15FEB88 c 2 3-10 1 283.6 I Clymenella mucosa 15FEB88 c 3 0-3 1 283.6 Macoma tenta 15FEB88 c 3 0-3 1 283.6 Mediomastus californiensis 15FEB88 c 3 0-3 2 567.2 Mulinia lateralis 15FEB88 c 3 0-3 1 283.6 I Nuculana acuta 15FEB88 c 3 0-3 2 567.2 Paleanotus heteroseta 15FEB88 c 3 0-3 1 283.6 Rhynchocoels 15FEB88 c 3 0-3 1 283.6 Streblospio benedicti 15FEB88 c 3 0-3 1 283.6 I Drilonereis magna 15FEB88 c 3 3-10 1 283.6 Mediomastus californiensis 15FEB88 c 3 3-10 3 850.8 Macoma mitche 11 i 16FEB88 A 1 0-3 4 1134.4 I . ' l ~ I I I I I I I I I I I I I I I I I I 304 NCHACSP.DAT I Nuculana acuta 18FEB88 D 1 0-3 1 283.6 ,I 0 l i gochaeta 18FEB88 D 1 0-3 1 283.6 Paleanotus heteroseta 18FEB88 D 1 0-3 2 567 . 2 Phoronis architecta 18FEB88 D 1 0-3 1 283.6 Polydora caulleryi 18FEB88 D 1 0-3 2 567.2 Rhynchocoels 18FEB88 D 1 0-3 3 850.8 Streblospio benedicti 18FEB88 D 1 0-3 1 283.6 I Tharyx setigera 18FEB88 D 1 0-3 1 283.6 Turbonilla sp. 18FEB88 D 1 0-3 3 850.8 Aligena texasiana 18FEB88 D 1 3-10 9 2552.4 Caecum glabrum 18FEB88 D 1 3-10 4 1134.4 I Clymenella torquata calida 18FEB88 D 1 3-10 6 1701.6 Gyptis vittata 18FEB88 D 1 3-10 3 850.8 Mediomastus californiensis 18FEB88 D 1 3-10 6 1701.6 Notomastus cf. latericeus 18FEB88 D 1 3-10 1 283.6 Paraprionospio pinnata 18FEB88 D 1 3-10 3 850.8 I Polydora caulleryi 18FEB88 D 1 3-10 33 9358.8 Rhynchocoels 18FE,B88 D 1 3-10 1 283.6 Tharyx setigera 18FEB88 D 1 3-10 7 1985.2 Vitrinellidae 18FEB88 D 1 3-10 4 1134 .4 I Batea catharinensis 18FEB88 D 2 0-3 5 1418 . 0 Caprellid a 18FEB88 D 2 0-3 3 850.8 Clymenella torquata calida 18FEB88 D 2 0-3 2 567.2 Corophium acherusicum 18FEB88 D 2 0-3 2 567.2 Crepidula plana 18FEB88 D 2 0-3 1 283.6 I Cyclaspis.varians 18FEB88 D 2 0-3 1 283.6 Diopatra cuprea 18FEB88 D 2 0-3 2 567.2 Erichthonias brasiliensis 18FEB88 D 2 0-3 2 567.2 Haploscoloplos foliosus 18FEB88 D 2 0-3 1 283.6 I Lembos sp. 18FEB88 D 2 0-3 3 850.8 Lyonsia hyalina floridana 18FEB88 D 2 0-3 1 283.6 Haldane sarsi 18FEB88 D 2 0-3 1 283.6 Mediomastus californiensis 18FEB88 D 2 0-3 42 11911.2 Paraonidae grp. A 18FEB88 D 2 0-3 2 567.2 I Phascolion strombi 18FEB88 D 2 0-3 1 283.6 Phoronis architecta 18FEB88 D 2 0-3 3 850.8 Polydora caulleryi 18FEB88 D 2 0-3 27 7657.2 Rhynchocoels 18FEB88 D 2 0-3 1 283.6 I Spiophanes bombyx 18FEB88 D 2 0-3 1 283.6 Streblospio benedicti 18FEB88 D 2 0-3 1 283.6 Tharyx setigera 18FEB88 D 2 0-3 7 1985.2 Turbonilla sp. 18FEB88 D 2 0-3 1 283.6 Aligena texasiana 18FEB88 D 2 3-10 5 1418.0 I Caecum glabrum 18FEB88 D 2 3-10 1 283.6 Clymenella torquata calida 18FEB88 D 2 3-10 2 567.2 Gyptis vittata 18FEB88 D 2 3-10 1 283.6 Listriella clymenellae 18FEB88 D 2 3-10 1 283.6 I Mediomastus californiensis 18FEB88 D 2 3-10 8 2268.8 Nereidae 18FEB88 D 2 3-10 1 283.6 Paraonidae grp. A 18FEB88 D 2 3-10 1 283.6 Paraprionospio pinnata 18FEB88 D 2 3-10 1 283.6 Podarke obscura 18FEB88 D 2 3-10 5 1418.0 I Polydora caulleryi 18FEB88 D 2 3-10 166 47077. 6 Tharyx setigera 18FEB88 D 2 3-10 7 1985.2 Vitrinellidae 18FEB88 D 2 3-10 3 850.8 Acteocina canaliculata 18FEB88 D 3 0-3 1 283.6 I Aligena texasiana 18FEB88 D 3 0-3 3 850.8 Capre 11 id a 18FEB88 D 3 0-3 2 567.2 Clymenella torquata calida 18FEB88 D 3 0-3 3 850.8 Cossura delta 18FEB88 D 3 0-3 1 283.6 I Glycinde solitaria 18FEB88 D 3 0-3 1 283.6 Lyonsia hyalina floridana 18FEB88 D 3 0-3 1 283.6 Mediomastus californiensis 18FEB88 D 3 0-3 30 8508.0 Mulinia lateralis 18FEB88 D 3 0-3 6 1701. 6 Nuculana acuta 18FEB88 D 3 0-3 1 283.6 I Paraprionospio pinnata 18FEB88 D 3 0-3 1 283.6 Phascolion strornbi 18FEB88 D 3 0-3 1 283.6 I I I NCHACSP.DAT 305 I Phoronis architecta 18FEB88 D 3 0-3 2 567.2Podarke obscura 18FEB88 D 3 0-3 1 283.6 I Rhynchocoels 18FEB88 D 3 0-3 1 283 .6 Spiophanes bombyx 18FEB88 D 3 0-3 1 283.6Streblospio benedicti 18FEB88 D 3 0-3 1 283.6Tharyx setigera 18FEB88 D 3 0-3 1 283.6Turboni lla sp. 18FEB88 D 3 0-3 2 567.2 I Aligena texasiana 18FEB88 D 3 3-10 3 850.8Caecum glabrum 18FEB88 D 3 3-10 3 850.8Clymenella torquata calida 18FEB88 D 3 3-10 2 567.2Cossura delta 18FEB88 D 3 3-10 2 567.2 I I Gypt is vittata 18FEB88 D 3 3-10 1 283.6Mediomastus californiensis 18FEB88 D 3 3-10 2 567.2Paraprionospio pinnata 18FEB88 D 3 3-10 2 567.2Polydora caulleryi 18FEB88 D 3 3-10 1 283.6Brada cf. villosa capensis 11APR88 c 1 0-3 1 283.6Euceramus praelongus 11APR88 c 1 0-3 1 283.6Gyptis vittata 11APR88 c 1 0-3 5 1418.0Lyonsia hyalina floridana 11APR88 c 1 0-3 1 283.6Maldane sarsi 11APR88 c 1 0-3 1 283.6 I I Mediomastus californiensis 11APR88 c 1 0-3 6 1701. 6Melinna maculata 11APR88 c 1 0-3 4 1134 .4Mulinia lateralis 11APR88 c 1 0-3 2 567.2Mysella planulata 11APR88 c 1 0-3 2 567 .2 Nereidae 11APR88 c 1 0-3 1 283.6Nuculana acuta 11APR88 c 1 0-3 19 5388.4Polychaete juvenile (Unidentified) 11APR88 c 1 0-3 1 283.6Rhynchocoels 11APR88 c 1 0-3 1 283.6Serpu l idae 11APR88 c 1 0-3 4 1134 .4 I I Syll idae 11APR88 c 1 0-3 4 1134 .4Tellina sp. 11APR88 c 1 0-3 2 567.2Tharyx setigera 11APR88 c 1 0-3 3 850.8Amphilochus sp. 11APR88 c 1 3-10 1 283.6Drilonereis magna 11APR88 c 1 3-10 1 283.6Melinna maculata 11APR88 c 1 3-10 2 567.2Nuculana acuta 11APR88 c 1 3-10 2 567.2Sagelus divisus 11APR88 c 1 3-10 2 567.2Sa rs iella texana 11APR88 c 1 3-10 1 283.6 I I Tharyx setigera 11APR88 c 1 3-10 2 567.2Amphilochus sp. 11APR88 c 2 0-3 1 283.6Armandia maculata 11APR88 c 2 0-3 2 567.2Dorvil leidae 11APR88 c 2 0-3 1 283.6Gyptis vittata 11APR88 c 2 0-3 2 567.2Maldane sars i 11APR88 c 2 0-3 2 567.2Mediomastus californiensis 11APR88 c 2 0-3 2 567.2Melinna maculata 11APR88 c 2 0-3 7 1985.2Mysella planulata 11APR88 c 2 0-3 1 283.6 I Mysidopsis bahia 11APR88 c 2 0-3 1 283.6 Nassarius acutus 11APR88 c 2 0-3 1 283.6 Nuculana acuta 11APR88 c 2 0-3 16 4537.6 Paraonidae grp. A 11APR88 c 2 0-3 1 283.6 I Periploma cf. orbiculare 11APR88 c 2 0-3 3 850 .8Phascolion strombi 11APR88 c 2 0-3 1 283.6Rhynchocoels 11APR88 c 2 0-3 2 567.2Spi ophanes bombyx 11APR88 c 2 0-3 1 283.6Syll idae 11APR88 c 2 0-3 2 567.2 I Tellina sp. 11APR88 c 2 0-3 5 1418.0 Tharyx setigera 11APR88 c 2 0-3 1 283.6 Mediomastus californiensis 11APR88 c 2 3-10 3 850.8 Melinna maculata 11APR88 c 2 3-10 5 1418.0 I Nuculana acuta 11APR88 c 2 3-10 3 850.8Paraprionospio pinnata 11APR88 c 2 3-10 1 283.6Tharyx setigera 11APR88 c 2 3-10 4 1134 .4Amphilochus sp. 11APR88 c 3 0-3 2 567.2Anachis obesa 11APR88 c 3 0-3 1 283.6 Dorvi 1leidae 11APR88 c 3 0-3 1 283.6 Drilonereis magna 11APR88 c 3 0-3 2 567.2 I I 306 NCMACSP.DAT I Lembos sp. 11APR88 c 3 0-3 1 283.6 Mediomastus californiensis 11APR88 c 3 0-3 1 283.6 I Melinna maculata 11APR88 c 3 0-3 8 2268.8 Mysella planulata 11APR88 c 3 0-3 3 850.8 Nassarius acutus 11APR88 c 3 0-3 1 283.6 Nuculana acuta 11APR88 c 3 0-3 18 5104. 8 Paraonidae grp. A 11APR88 I c 3 0-3 1 283.6 Paraprionospio pinnata 11APR88 c 3 0-3 1 283.6 Periploma cf. orbiculare 11APR88 c 3 0-3 5 1418.0 Rhynchocoels 11APR88 c 3 0-3 1 283.6 Schistomeringos spa 11APR88 c 3 0-3 2 567.2 I Syll idae 11APR88 c 3 0-3 1 283.6 Tellina sp. 11APR88 c 3 0-3 1 283.6 Gyptis vittata 11APR88 c 3 3-10 1 283.6 Mediomastus californiensis 11APR88 c 3 3-10 1 283.6 I Mega lops 11APR88 c 3 3-10 1 283.6 Melinna maculata 11APR88 c 3 3-10 3 850.8 Sagelus divisus 11APR88 c 3 3-10 1 283.6 Syll idae 11APR88 c 3 3-10 1 283.6 Tharyx setigera 11APR88 c 3 3-10 2 567.2 I Macoma mitche 11 i 12APR88 A 1 0-3 1 283.6Mediomastus californiensis 12APR88 A 1 0-3 2 567.2Mulinia lateralis 12APR88 A 1 0-3 6 1701. 6 Streblospio benedicti 12APR88 A 1 0-3 1 283.6Macoma mitchelli 12APR88 I A 1 3-10 2 567.2 Mediomastus californiensis 12APR88 A 1 3-10 7 1985.2 Mulinia lateralis 12APR88 A 1 3-10 2 567.2 Macoma mitche 11 i 12APR88 A 2 0-3 1 283.6 Mediomastus californiensis 12APR88 A 2 0-3 3 850.8 I Mulinia lateralis 12APR88 A 2 0-3 10 2836.0 Streblospio benedicti 12APR88 A 2 0-3 2 567.2Macoma mitche 11 i 12APR88 A 2 3-10 3 850.8Mediomastus californiensis 12APR88 A 2 3-10 1 283.6 I Macoma mitche 11 i 12APR88 A 3 0-3 1 283.6Mediomastus californiensis 12APR88 A 3 0-3 1 283.6Mulinia lateralis 12APR88 A 3 0-3 11 3119. 6Streblospio benedicti 12APR88 A 3 0-3 4 1134.4 Macoma mitche 11 i I 12APR88 A 3 3-10 2 567.2 Mediomastus californiensis 12APR88 A 3 3-10 8 2268.8 Capre 11 id a 13APR88 B 1 0-3 1 283.6 Cyclaspis varians 13APR88 B 1 0-3 2 567.2 Cyclopoid copepod 13APR88 B 1 0-3 2 567.2 I Mediomastus californiensis 13APR88 B 1 0-3 15 4254.0 Microprotopus spp. 13APR88 B 1 0-3 4 1134 .4Mulinia lateralis 13APR88 B 1 0-3 3 850.8 Oxyurostylis salioni 13APR88 B 1 0-3 1 283.6 Rhynchocoels 13APR88 B 1 0-3 1 283.6 I Streblospio benedicti 13APR88 B 1 0-3 1 283.6 Clymenella torquata calida 13APR88 B 1 3-10 2 567.2Ensis minor 13APR88 B 1 3-10 1 283.6Gyptis vittata 13APR88 B 1 3-10 II 2 567.2 Haploscoloplos foliosus 13APR88 B 1 3-10 1 283.6 Marphysa sanguinea 13APR88 B 1 3-10 1 283.6 Mediomastus californiensis 13APR88 B 1 3-10 1 283.6 Melinna maculata 13APR88 B 1 3-10 1 283.6 Mysella planulata 13APR88 B 1 3-10 1 283.6 I Tharyx setigera 13APR88 B 1 3-10 1 283.6 Acteocina canaliculata 13APR88 B 2 0-3 1 283.6 Caprellid a 13APR88 B 2 0-3 1 283.6 Clymenella torquata calida 13APR88 B 2 0-3 1 283.6 I Cyclaspis varians 13APR88 B 2 0-3 1 283.6 Diopatra cuprea 13APR88 B 2 0-3 1 283.6 Erichthonias brasiliensis 13APR88 B 2 0-3 1 283.6 Mediomastus californiensis 13APR88 B 2 0-3 8 2268.8 Melinna maculata 13APR88 B 2 0-3 1 283.6 I Mulinia lateralis 13APR88 B 2 0-3 2 567.2 Haploscoloplos foliosus 13APR88 B 2 3-10 1 283.6 I ·"i:: I I NCMACSP.DAT 307 ~ I Mediomastus californiensis 13APR88 B 2 3-10 1 283.6 Clymenella mucosa 13APR88 B 3 0-3 2 567.2 I Clymenella torquata calida 13APR88 B 3 0-3 1 283.6 Cyclaspis varians 13APR88 B 3 0-3 1 283.6 Lyonsia hyalina floridana 13APR88 B 3 0-3 2 567.2 Mediomastus californiensis 13APR88 B 3 0-3 4 1134 .4 I Megalomma bioculatum 13APR88 B 3 0-3 1 283.6 Mulinia lateralis 13APR88 B 3 0-3 2 567.2 Clymenella torquata calida 13APR88 B 3 3-10 2 567.2 Gyptis vittata 13APR88 B 3 3-10 2 567.2 Mediomastus californiensis 13APR88 B 3 3-10 3 850.8 I Amphilochus sp. 13APR88 c 1 0-3 1 283.6 Cyclaspis varians 13APR88 c 1 0-3 1 283.6 Drilonereis magna 13APR88 c 1 0-3 1 283.6 Eudorella monodon 13APR88 c 1 0-3 1 283.6 I Leucon sp. 13APR88 c 1 0-3 1 283.6 Mediomastus californiensis 13APR88 c 1 0-3 15 4254.0 Paraprionospio pinnata 13APR88 c 1 0-3 3 850.8 Phascolion strombi 13APR88 c 1 0-3 2 567.2 Phoronis architecta 13APR88 c 1 0-3 1 283.6 I Streblospio benedicti 13APR88 c 1 0-3 1 283.6 Cossura delta 13APR88 c 1 3-10 1 283.6 Haploscoloplos foliosus 13APR88 c 1 3-10 1 283.6 Mediomastus californiensis 13APR88 c 1 3-10 2 567.2 I Paraprionospio pinnata 13APR88 c 1 3-10 1 283.6 Sigambra tentaculata 13APR88 c 1 3-10 1 283.6 Cossura delta 13APR88 c 2 0-3 1 283.6I Drilonereis magna 13APR88 c 2 0-3 1 283 .6 Eudorella monodon 13APR88 c 2 0-3 1 283 .6 Glycinde solitaria 13APR88 c 2 0-3 1 283.6 Leucon sp. 13APR88 c 2 0-3 3 850.8 Maldane sarsi 13APR88 c 2 0-3 1 283.6 Mediomastus californiensis 13APR88 c 2 0-3 9 2552.4 I I Mulinia lateralis 13APR88 ·c 2 0-3 2 567.2 Nuculana acuta 13APR88 c 2 0-3 1 283.6 Nuculana concentrica 13APR88 c 2 0-3 2 567.2 Phascolion strombi 13APR88 c 2 0-3 2 567.2 Rhynchocoels 13APR88 c 2 0-3 1 283.6 Streblospio benedicti l3APR88 c 2 0-3 1 283.6 Syll idae 13APR88 c 2 0-3 1 283.6 Cossura delta 13APR88 c 2 3-10 1 283.6 Drilonereis magna 13APR88 c 2 3-10 1 283.6 I Mediomastus californiensis 13APR88 c 2 3-10 4 1134. 4 Ophiuroidea 13APR88 c 2 3-10 1 283.6 Rhynchocoels 13APR88 c 2 3-10 2 567.2 Diopatra cuprea 13APR88 c 3 0-3 2 567.2 I Eudorella monodon 13APR88 c 3 0-3 2 567.2 Leucon.sp. 13APR88 c 3 0-3 3 850.8 Mediomastus californiensis 13APR88 c 3 0-3 5 1418.0 Mulinia lateralis 13APR88 c 3 0-3 3 850.8 Nuculana concentrica 13APR88 c 3 0-3 3 850.8 I Paraprionospio pinnata 13APR88 c 3 0-3 1 283.6 Phascolion strombi 13APR88 c 3 0-3 1 283.6 Streblospio benedicti 13APR88 c 3 0-3 2 567.2 Turbonilla sp. 13APR88 c 3 0-3 1 283.6 I Haldane sarsi 13APR88 c 3 3-10 1 283.6 Mediomastus californiensis 13APR88 c 3 3-10 4 1134 .4 Oxyurostylis smithi 13APR88 c 3 3-10 1 283.6 Sigambra tentaculata 13APR88 c 3 3-10 1 283.6 Bivalvia 14APR88 D 1 0-3 1 283.6 I Crepidula plana 14APR88 D 1 0-3 1 283.6 Diopatra cuprea 14APR88 D 1 0-3 1 283.6 Epitonium sp. 14APR88 D 1 0-3 1 283.6 Erichthonias brasiliensis 14APR88 D 1 0-3 2 567.2 Lyonsia hyalina floridana 14APR88 D 1 0-3 2 567.2 Macoma tenta 14APR88 D 1 0-3 1 283.6 Mediomastus californiensis 14APR88 D 1 0-3 30 8508.0 I ,I NCMACSP.DAT 308 I Microprotopus spp. 14APR88 D 1 0-3 1 283.6 Mulinia lateralis 14APR88 D 1 0-3 1 283.6 'I Nereidae 14APR88 D 1 0-3 1 283 .6 Nuculana acuta 14APR88 D 1 0-3 1 283.6 Paraprionospio pinnata 14APR88 D 1 0-3 2 567.2 Phoronis architecta 14APR88 D 1 0-3 8 2268.8 Polydora caulleryi 14APR88 D 1 0-3 1 283.6 I Rhynchocoels 14APR88 D 1 0-3 1 283 .6 Spiophanes bombyx 14APR88 D 1 0-3 3 850.8 Streblospio benedicti 14APR88 D 1 0-3 1 283.6 Terebellidae 14APR88 D 1 0-3 1 283.6 I Tharyx setigera 14APR88 D 1 0-3 1 283.6 Anaitides erythrophyllus 14APR88 D 1 3-10 1 283.6 Cossura delta 14APR88 D 1 3-10 6 1701.6 Haploscoloplos foliosus 14APR88 D 1 3-10 1 283.6 I Haldane sarsi 14APR88 D 1 3-10 1 283.6 Mediomastus californiensis 14APR88 D 1 3-10 10 2836.0 Notomastus latericeus 14APR88 D 1 3-10 2 567.2 Paraonidae grp. A 14APR88 D 1 3-10 1 283.6 Phoronis architecta 14APR88 D 1 3-10 1 283.6 I Rhynchocoels 14APR88 D 1 3-10 2 567.2 Spiophanes bombyx 14APR88 D 1 3-10 2 567.2 Tharyx setigera 14APR88 D 1 3-10 1 283.6 Aligena texasiana 14APR88 D 2 0-3 1 283.6 I Ampelisca abdita 14APR88 D 2 0-3 1 283.6 Cossura delta 14APR88 D 2 0-3 1 283.6 Eteone heteropoda 14APR88 D 2 0-3 1 283.6 Glycinde solitaria 14APR88 D 2 0-3 3 850.8 Haploscoloplos foliosus 14APR88 D 2 0-3 1 283.6 I Haldane sarsi 14APR88 D 2 0-3 1 283.6 Hediomastus californiensis 14APR88 D 2 0-3 34 9642.4 Hulinia lateralis 14APR88 D 2 0-3 4 1134 .4 Nereidae 14APR88 D 2 0-3 2 567.2 I 0-3 1 283.6 Nuculana acuta 14APR88 D 2 0-3 3 850.8 Paraprionospio pinnata 14APR88 D 2 0-3 3 850.8 Phoronis architecta 14APR88 D 2 0-3 9 2552.4 Polydora caulleryi 14APR88 D 2 0-3 1 283.6 Notomastus latericeus 14APR88 D 2 I Spiophanes bombyx 14APR88 D 2 0-3 1 283.6 Streblospio benedicti 14APR88 D 2 0-3 1 283.6 Syllidae 14APR88 D 2 0-3 1 283.6 Tellina sp. 14APR88 D 2 0-3 2 567.2 I Turbe llar ia 14APR88 D 2 0-3 2 567.2 Aligena texasiana 14APR88 D 2 3-10 2 567.2 Mediomastus californiensis 14APR88 D 2 3-10 8 2268.8 Notomastus latericeus 14APR88 D 2 3-10 2 567.2 Phoronis architecta 14APR88 D 2 3-10 3 850.8 I Rhynchocoels 14APR88 D 2 3-10 1 283.6 Spiophanes bombyx 14APR88 D 2 3-10 2 567.2 Tharyx setigera 14APR88 D 2 3-10 3 850.8 Bivalvia 14APR88 D 3 0-3 2 567.2 I Glycinde solitaria 14APR88 D 3 0-3 3 850.8 D 3 0-3 1 283.6 Haldane sarsi 14APR88 Hediomastus californiensis 14APR88 D 3 0-3 31 8791. 6 Mulinia lateralis 14APR88 D 3 0-3 1 283.6 I 283.6 Paraprionospio pinnata 14APR88 D 3 0-3 1 3 0-3 3 850.8 Phoronis architecta 14APR88 D Polydora caulleryi 14APR88 D 3 0-3 2 567.2 Rhynchocoels 14APR88 D 3 0-3 2 567.2 Tharyx setigera 14APR88 D 3 0-3 1 283.6 I Hacoma tenta 14APR88 D 3 3-10 1 283.6 Mediomastus californiensis 14APR88 D 3 3-10 4 1134 .4 Notomastus latericeus 14APR88 D 3 3-10 1 283.6 2 567.2 Phoronis architecta 14APR88 D 3 3-10 I Polydora caulleryi 14APR88 D 3 3-10 1 283.6 Rhynchocoels 14APR88 D 3 3-10 1 283.6 1 283.6 Spiochaetopterus costarum 14APR88 D 3 3-10 I • 't 1~,4~ I I NCHACSP.DAT 309 I I Tharyx setigera 14APR88 D 3 3-10 1 283.6 Cyclaspis varians 09MAY88 c 1 0-3 1 283.6 Oiopatra cuprea 09MAY88 c 1 0-3 1 283.6 Eudorella monodon 09MAY88 c 1 0-3 1 283.6 Glycinde solitaria 09MAY88 c 1 0-3 1 283.6 Leucon sp. 09MAY88 c 1 0-3 7 1985.2 I Mediomastus californiensis 09MAY88 c 1 0-3 20 5672.0 Microprotopus spp. 09MAY88 c 1 0-3 1 283.6 Monoculoides sp. 09MAY88 c 1 0-3 1 283.6 Oxyurostylis smithi 09MAY88 c 1 0-3 1 283.6 I Paraprionospio pinnata 09MAY88 c 1 0-3 1 283.6 Rhynchocoels 09MAY88 c 1 0-3 1 283.6 Streblospio benedicti 09MAY88 c 1 0-3 1 283.6 Mediomastus californiensis 09MAY88 c 1 3-10 3 850.8 Paraprionospio pinnata 09MAY88 c 1 3-10 1 283.6 I Rhynchocoels 09MAY88 c 1 3-10 1 283.6 Tharyx setigera 09MAY88 c 1 3-10 1 283.6 Cossura delta 09MAY88 c 2 0-3 1 283.6 Oiopatra cuprea 09MAY88 c 2 0-3 3 850.8 I Eudorella monodon 09MAY88 c 2 0-3 4 1134 .4 Leucon sp. 09MAY88 c 2 0-3 2 567.2 Mediomastus californiensis 09MAY88 c 2 0-3 14 3970.4 Mulinia lateralis 09MAY88 c 2 0-3 1 283.6 Paraprionospio pinnata 09MAY88 c 2 0-3 1 283.6 I Rhynchocoels 09MAY88 c 2 0-3 1 283.6 Streblospio benedicti 09MAY88 c 2 0-3 1 283.6 Cossura delta 09MAY88 c 2 3-10 1 283.6 Glycinde solitaria 09MAY88 c 2 3-10 2 567.2 I Medi omastus californiensis 09MAY88 c 2 3-10 6 1701. 6 01 igochaeta 09MAY88 c 2 3-10 1 283.6 Paraprionospio pinnata 09MAY88 c 2 3-10 4 1134. 4 Anaitides erythrophyllus 09MAY88 c 3 0-3 1 283.6 Batea catharinensis 09MAY88 c 3 0-3 9 2552.4 I Bivalvia 09MAY88 c 3 0-3 2 567.2 Caprellid a 09MAY88 c 3 0-3 2 567.2 Crepidula plana 09MAY88 c 3 0-3 1 283.6 Cyclaspis varians 09MAY88 c 3 0-3 2 567.2 I Oiopatra cuprea 09MAY88 c 3 0-3 2 567.2 Eudorella monodon 09MAY88 c 3 0-3 1 283.6 Leucon sp. 09MAY88 c 3 0-3 2 567.2 Mediomastus californiensis 09MAY88 c 3 0-3 13 3686.8 Mega lops 09MAY88 c 3 0-3 1 283.6 I Nereidae 09MAY88 c 3 0-3 1 283.6 Oxyurostylis smithi 09MAY88 c 3 0-3 3 850.8 Paraprionospio pinnata 09MAY88 c 3 0-3 1 283.6 Phoronis architecta 09MAY88 c 3 0-3 1 283.6 I I Sarsiella texana 09MAY88 c 3 0-3 1 283.6 Streblospio benedicti 09MAY88 c 3 0-3 1 283.6 Batea catharinensis 09MAY88 c 3 3-10 3 850.8 Capre 11 id a 09MAY88 c 3 3-10 1 283.6 Cossura delta 09MAY88 c 3 3-10 1 283.6 Drilonereis magna 09MAY88 c 3 3-10 1 283.6 Haldane sarsi 09MAY88 c 3 3-10 1 283.6 Mediomastus californiensis 09MAY88 c 3 3-10 7 1985.2 Ophiuroidea 09MAY88 c 3 3-10 1 283.6 I I Parametopella sp. 09MAY88 c 3 3-10 1 283.6 Phoronis architecta 09MAY88 c 3 3-10 1 283.6 Rhynchocoels 09MAY88 c 3 3-10 1 283.6 Tharyx setigera 09MAY88 c 3 3-10 1 283.6 Mediomastus californiensis 10MAY88 A 1 0-3 1 283.6 Mulini a lateralis 10MAY88 A 1 0-3 6 1701. 6 Streblospio benedicti 10MAY88 A 1 0-3 12 3403.2 Mediomastus californiensis 10MAY88 A 1 3-10 10 2836.0 Mulinia lateralis 10MAY88 A 1 3-10 1 283.6 I Mulinia lateralis 10MAY88 A 2 0-3 6 1701. 6 Streblospio benedicti 10MAY88 A 2 0-3 4 1134 .4 Macoma mitche 11 i 10MAY88 A 2 3-10 2 567.2 NCHACSP.DAT 310 I Mediomastus californiensis 10MAY88 A 2 3-10 10 2836.0 Streblospio benedicti 10MAY88 A 2 3-10 1 283.6 I Mulinia lateralis 10MAY88 A 3 0-3 6 1701. 6 Streblospio benedicti 10MAY88 A 3 0-3 11 3119. 6 Mediomastus californiensis 10MAY88 A 3 3-10 12 3403.2 Mulinia lateralis 10MAY88 A 3 3-10 1 283.6 Batea catharinensis 11MAY88 B 1 0-3 2 567.2 I Clymenella torquata calida 11MAY88 B 1 0-3 1 283.6 Cyclaspis varians 11MAY88 B 1 0-3 1 283.6 Erichthonias brasiliensis 11MAY88 B 1 0-3 5 1418.0 Mediomastus californiensis 11MAY88 B 1 0-3 14 3970.4 I Microprotopus spp. 11MAY88 B 1 0-3 3 850.8 Mulinia lateralis 11MAY88 B 1 0-3 4 1134 .4 Streblospio benedicti 11MAY88 B 1 0-3 4 1134.4 Xenanthura brevitelson 11MAY88 B 1 0-3 1 283.6 Clymenella torquata calida 11MAY88 B 1 3-10 1 283.6 I Erichthonias brasiliensis 11MAY88 B 1 3-10 2 567.2 Gyptis vittata 11MAY88 B 1 3-10 1 283.6 Mediomastus californiensis 11MAY88 B 1 3-10 3 850.8 Acteocina canaliculata 11MAY88 B 2 0-3 1 283.6 ,I Mediomastus californiensis 11MAY88 B 2 0-3 2 567.2 Mulinia lateralis 11MAY88 B 2 0-3 1 283.6 Nuculana acuta 11MAY88 B 2 0-3 1 283.6 Ensis minor 11MAY88 B 2 3-10 1 283.6 I Mediomastus californiensis 11MAY88 B 2 3-10 2 567.2 Sabe 11 idae 11MAY88 B 2 3-10 1 283.6 Tharyx setigera 11MAY88 B 2 3-10 1 283.6 Acteocina canaliculata 11MAY88 B 3 0-3 1 283.6 Ampelisca abdita 11MAY88 B 3 0-3 1 283.6 ·I Batea catharinensis 11MAY88 B 3 0-3 1 283.6 Cyclaspis varians 11MAY88 B 3 0-3 1 283.6 Erichthonias brasiliensis 11MAY88 B 3 0-3 1 283.6 Haldane sarsi 11MAY88 B 3 0-3 2 567.2 I Mediomastus californiensis 11MAY88 B 3 0-3 5 1418.0 Mulinia lateralis 11MAY88 B 3 0-3 6 1701.6 Streblospio benedicti 11MAY88 B 3 0-3 2 567.2 Aligena texasiana 11MAY88 B 3 3-10 1 283.6 Clymenella torquata calida 11MAY88 B 3 3-10 1 283.6 I Mediomastus californiensis 11MAY88 B 3 3-10 8 2268.8 Rhynchocoels 11MAY88 B 3 3-10 1 283.6 Acteocina canaliculata 12MAY88 D 1 0-3 1 283.6 Gastropoda 12MAY88 D 1 0-3 1 283.6 I Mediomastus californiensis 12MAY88 D 1 0-3 5 1418.0 Nereidae 12MAY88 D 1 0-3 1 283.6 Pyramide lla sp. 12MAY88 D 1 0-3 2 567.2 Rhynchocoels 12MAY88 D 1 0-3 1 283.6 Turbonilla sp. 12MAY88 D 1 0-3 1 283.6 I Aligena texasiana 12MAY88 D 1 3-10 4 1134. 4 Ancistrosyllis papillosa 12MAY88 D 1 3-10 2 567.2 Caecum glabrum 12MAY88 D 1 3-10 1 283.6 Clymenella mucosa 12MAY88 D 1 3-10 1 283.6 I Clymenella torquata calida 12MAY88 D 1 3-10 1 283.6 Cossura delta 12MAY88 D 1 3-10 4 1134. 4 Glycinde solitaria 12MAY88 D 1 3-10 2 567.2 Gyptis vittata 12MAY88 D 1 3-10 6 1701.6 Mediomastus californiensis 12MAY88 D 1 3-10 6 1701.6 I Mega lops 12MAY88 D 1 3-10 1 283.6 Nereidae 12MAY88 D 1 3-10 1 283.6 Paleanotus heteroseta 12MAY88 D 1 3-10 2 567.2 Paraprionospio pinnata 12MAY88 D 1 3-10 1 283.6 I Spiophanes bombyx 12MAY88 D 1 3-10 1 283.6 D 2 0-3 2 567.2 Cossura delta 12MAY88 Glycinde solitaria 12MAY88 D 2 0-3 1 283.6 Mediomastus californiensis 12MAY88 D 2 0-3 13 3686.8 I Paraprionospio pinnata 12MAY88 D 2 0-3 1 283.6 Pinnixa 12MAY88 D 2 0-3 1 283.6 Polydora caulleryi 12MAY88 D 2 0-3 1 283.6 I I NCHACSP.DAT 311 I Pyramidella sp. 12MAY88 D 2 0-3 1 283.6 Rhynchocoels 12MAY88 D 2 0-3 3 850.8 Te 11 ina sp. 12MAY88 D 2 0-3 1 283.6 I I Turbellaria 12MAY88 D 2 0-3 1 283.6 Cossura delta 12MAY88 D 2 3-10 1 283.6 Gyptis vittata 12MAY88 D 2 3-10 1 283.6 Haldane sarsi 12MAY88 D 2 3-10 1 283.6 Mediomastus californiensis 12MAY88 D 2 3-'-10 1 283.6 Nereidae 12MAY88 D 2 3-10 1 283.6 Phoronis architecta 12MAY88 D 2 3-10 1 283.6 Spiophanes bombyx 12MAY88 D 2 3-10 1 283.6 Callianassa sp. juv.enile 12MAY88 D 3 0-3 1 283.6 I Glycinde solitaria 12MAY88 D 3 0-3 1 283.6 Mediomastus californiensis 12MAY88 D 3 0-3 5 1418.0 Microprotopus spp. 12MAY88 D 3 0-3 1 283.6 Nereidae 12MAY88 D 3 0-3 1 283.6 I Paraprionospio pinnata 12MAY88 D 3 0-3 1 283.6 Phoronis architecta 12MAY88 D 3 0-3 1 283.6 Spiophanes bombyx 12MAY88 D 3 0-3 1 283.6 Tharyx setigera 12MAY88 D 3 0-3 1 283.6 I I Turbe llaria 12MAY88 D 3 0-3 1 283.6 Turbonilla sp. 12MAY88 D 3 0-3 1 283.6 Aligena texasiana 12MAY88 D 3 3-10 2 567.2 Clymenella torquata calida 12MAY88 D 3 3-10 1 283.6 Cossura delta 12MAY88 D 3 3-10 4 1134 .4 Ma ldane sars i 12MAY88 D 3 3-10 2 567.2 Mediomastus californiensis 12MAY88 D 3 3-10 6 1701.6 01 igochaeta 12MAY88 D 3 3-10 1 283.6 Paraprionospio pinnata 12MAY88 D 3 3-10 1 283.6 I Phoronis architecta 12MAY88 D 3 3-10 1 283.6 Spiophanes bombyx 12MAY88 D 3 3-10 3 850.8 Tharyx setigera 12MAY88 D 3 3-10 2 567.2 Leucon sp. 26JUL88 c 1 0-3 8 2268.8 Mediomastus californiensis 26JUL88 c 1 0-3 1 283.6 Caecum johnsoni 26JUL88 c 1 3-10 1 283.6 I Cossura delta 26JUL88 c 1 3-10 2 567.2 Gyptis vittata 26JUL88 c 1 3-10 3 850.8 Ma ldane sars i 26JUL88 c 1 3-10 2 567.2 I Mediomastus californiensis 26JUL88 c 1 3-10 4 1134.4 Melinna maculata 26JUL88 c 1 3-10 1 283.6 Ophiuroidea 26JUL88 c 1 3-10 1 283.6 Periploma cf. orbiculare 26JUL88 c 1 3-10 1 283.6 I Rhynchocoels 26JUL88 c 1 3-10 3 850.8 Leucon sp. 26JUL88 c 2 0-3 8 2268.8 Mediomastus californiensis 26JUL88 c 2 0-3 3 850.8 Streblospio benedicti 26JUL88 c 2 0-3 1 283.6 Tharyx setigera 26JUL88 c 2 0-3 1 283.6 Cossura delta 26JUL88 c 2 3-10 1 283.6 Maldane sarsi 26JUL88 c 2 3-10 1 283.6 Mediomastus californiensis 26JUL88 c 2 3-10 1 283.6 Microprotopus spp. 26JUL88 c 2 3-10 1 283.6 Paraprionospio pinnata 26JUL88 c 2 3-10 1 283.6 Streblospio benedicti 26JUL88 c 2 3-10 1 283.6 I Leucon sp. 26JUL88 c 3 0-3 7 1985.2 Mediomastus californiensis 26JUL88 c 3 0-3 1 283.6 Phascolion strombi 26JUL88 c 3 0-3 1 283.6 Rhynchocoels 26JUL88 c 3 0-3 1 283.6 I Cossura delta 26JUL88 c 3 3-10 1 283.6 Mediomastus californiensis 26JUL88 c 3 3-10 7 1985.2 Ophi uroidea 26JUL88 c 3 3-10 1 283.6 I Rhynchocoels 26JUL88 c 3 3-10 2 567.2 Cossura delta 26JUL88 D 1 0-3 1 283 .6 Medi omastus californiensis 26JUL88 D 1 0-3 4 1134 .4 Nassarius acutus 26JUL88 D 1 0-3 1 283.6 Paraprionospi o pinnata 26JUL88 D 1 0-3 1 283.6 Phascolion strombi 26JUL88 D 1 0-3 3 850.8 Pyramide lla sp. 26JUL88 D 1 0-3 1 283.6 I 312 NCHACSP.DAT I Streblospio benedicti 26JUL88 D 1 0-3 1 283.6 Turbonilla sp. 26JUL88 D 1 0-3 1 283.6 I Nereidae 26JUL88 D 1 3-10 1 283.6 Oligochaeta 26JUL88 D 1 3-10 1 283.6 Paleanotus heteroseta 26JUL88 D 1 3-10 1 283.6 Phoronis architecta 26JUL88 D 1 3-10 1 283.6 Tharyx setigera 26JUL88 D 1 3-10 2 567.2 I Glycinde solitaria 26JUL88 D 2 0-3 1 283.6 Mediomastus californiensis 26JUL88 D 2 0-3 3 850.8 Phascolion strombi 26JUL88 D 2 0-3 1 283.6 Phoronis architecta 26JUL88 D 2 0-3 1 283.6 I Polydora caulleryi 26JUL88 D 2 0-3 1 283.6 Streblospio benedicti 26JUL88 D 2 0-3 1 283.6 Cossura delta 26JUL88 D 2 3-10 4 1134 .4 Gyptis vittata 26JUL88 D 2 3-10 1 283.6 Mediomastus californiensis 26JUL88 D 2 3-10 1 283.6 I Phoronis architecta 26JUL88 D 2 3-10 1 283.6 Polydora caulleryi 26JUL88 D 2 3-10 47 13329.2 Tharyx setigera 26JUL88 D 2 3-10 16 4537.6 Gyptis vittata 26JUL88 D 3 0-3 1 283.6 I Leucon sp. 26JUL88 D 3 . 0-3 1 283.6 Mediomastus californiensis 26JUL88 D 3 0-3 7 1985 . 2 Paraonidae grp. A 26JUL88 D 3 0-3 1 283.6 Phascolion strombi 26JUL88 D 3 0-3 1 283 .6 Polydora caulleryi 26JUL88 D 3 0-3 2 567 . 2 I Pyramide lla sp. 26JUL88 D 3 0-3 1 283 .6 Streblospio benedicti 26JUL88 D 3 0-3 1 283.6 Tharyx setigera 26JUL88 D 3 0-3 2 567.2 Cossura delta 26JUL88 D 3 3-10 1 283 .6 I Gyptis vittata 26JUL88 D 3 3-10 2 567.2 Rhynchocoels 26JUL88 D 3 3-10 2 567.2 Tharyx setigera 26JUL88 D 3 3-10 6 1701. 6 Mulinia lateralis 27JUL88 A 1 0-3 5 1418.0 Streblospio benedicti 27JUL88 A 1 0-3 5 1418.0 I Mediomastus californiensis 27JUL88 A 1 3-10 2 567.2 Mediomastus californiensis 27JUL88 A 2 0-3 2 567.2 Mulinia lateralis 27JUL88 A 2 0-3 5 1418.0 Mysidopsis bahia 27JUL88 A 2 0-3 1 283.6 I Oxyurostylis salioni 27JUL88 A 2 0-3 1 283.6 Streblospio benedicti 27JUL88 A 2 0-3 8 2268.8 Macoma mitche 11 i 27JUL88 A 2 3-10 1 283.6 Mediomastus californiensis 27JUL88 A 2 3-10 2 567 . 2 Acteocina canaliculata 27JUL88 A 3 0-3 1 283.6 I Mediomastus californiensis 27JUL88 A 3 0-3 2 567.2 Mulinia lateralis 27JUL88 A 3 0-3 6 1701. 6 Pyramide lla sp. 27JUL88 A 3 0-3 1 283.6 Streblospio benedicti 27JUL88 A 3 0-3 10 2836.0 I Macoma mitchelli 27JUL88 A 3 3-10 1 283.6 Mediomastus californiensis 27JUL88 A 3 3-10 4 1134. 4 Phoronis architecta 27JUL88 A 3 3-10 1 283.6 Acteocina canaliculata 27JUL88 B 1 0-3 6 1701. 6 Macoma mitche 11 i 27JUL88 B 1 0-3 1 283.6 I Mediomastus californiensis 27JUL88 B 1 0-3 4 1134 .4 Megalomma bioculatum 27JUL88 B 1 0-3 2 567.2 Microprotopus spp. 27JUL88 B 1 0-3 1 283.6 Mulinia lateralis 27JUL88 B 1 0-3 4 1134 .4 I Clymenella mucosa 27JUL88 B 1 3-10 2 567.2 Haploscoloplos foliosus 27JUL88 B 1 3-10 1 283.6 Haldane sarsi 27JUL88 B 1 3-10 1 283.6 Rhynchocoels 27JUL88 B 1 3-10 1 283.6 I Asychis sp. 27JUL88 B 2 0-3 2 567.2 Clymenella torquata calida 27JUL88 B 2 0-3 1 283.6 Cyclaspis varians 27JUL88 B 2 0-3 2 567 .2 Mediomastus californiensis 27JUL88 B 2 0-3 9 2552.4 Megalomma bioculatum 27JUL88 B 2 0-3 2 567.2 I Microprotopus spp. 27JUL88 B 2 0-3 2 567 .2 Mulinia lateralis 27JUL88 B 2 0-3 2 567.2 • J f. .. i I I NCHACSP.DAT 313 I I Mysidopsis bahia 27JUL88 B 2 0-3 1 283.6 Dorvilleidae 27JUL88 B 2 3-10 1 283.6 Marphysa sanguinea 27JUL88 B 2 3-10 1 283.6 Glycinde solitaria 27JUL88 B 3 0-3 2 567.2 Mediomastus californiensis 27JUL88 B 3 0-3 4 1134 .4 Megalonma bioculatum 27JUL88 B 3 0-3 1 283.6 Microprotopus spp. 27JUL88 B 3 0-3 2 567.2 Mulinia lateralis 27JUL88 B 3 0-3 6 1701. 6 Mysella planulata 27JUL88 B 3 0-3 1 283.6I Melinna maculata 27JUL88 B 3 3-10 1 283.6 I I I I I I I I I I I I I 314 LPHACSP.DAT ,. LPMACSP.DAT Lavaca-Tres Palacios Estuary Macrofauna species data. I 3 replicates (REP) were taken each time, N=n/section (SEC) nm2=n/m~2. Sections in cm. I SP NAME DATE STA REP SEC N NM2 Ampelisca abdita 18APR88 A 1 I 0-3 2 567.2 Cyclaspis varians 18APR88 A 1 0-3 2 567.2 Eteone heteropoda 18APR88 A 1 0-3 1 283.6 Glycinde solitaria 18APR88 A 1 0-3 9 2552.4 Mediomastus californiensis 18APR88 A 1 0-3 68 19284.8 I Mulinia lateralis 18APR88 A 1 0-3 5 1418.0 Nereidae 18APR88 A 1 0-3 1 283.6 Oxyurostylis smithi 18APR88 A 1 0-3 3 850.8 Phyllodoc idae 18APR88 A 1 0-3 1 283.6 Scolelepis squamata 18APR88 A I 1 0-3 1 283.6 Streblospio benedicti 18APR88 A 1 0-3 4 1134.4 Ensis minor 18APR88 A 1 3-10 3 850.8 Ganmarus mucronatus 18APR88 A 1 3-10 1 283.6 Mediomastus californiensis 18APR88 A 1 3-10 3 850.8 I Tagelus plebius 18APR88 A 1 3-10 2 567.2 Ampelisca abdita 18APR88 A 2 0-3 2 567.2Capitella capitata 18APR88 A 2 0-3 1 283.6 Cyclaspis varians 18APR88 A 2 0-3 4 1134 .4Glycinde solitaria 18APR88 A 2 I 0-3 11 3119. 6 Littoridina sphinctostoma 18APR88 A 2 0-3 1 283.6Mediomastus californiensis 18APR88 A 2 0-3 60 17016.0 Mulinia lateralis 18APR88 A 2 0-3 19 5388.4Oxyurostylis smithi 18APR88 A 2 0-3 1 283.6 I Scolelepis squamata 18APR88 A 2 0-3 1 283.6 Streblospio benedicti 18APR88 A 2 0-3 2 567.2Cossura delta 18APR88 A 2 3-10 1 283.6 Ensis minor 18APR88 A 2 3-10 2 567.2 IMediomastus californiensis 18APR88 A 2 3-10 3 850.8 Nereidae 18APR88 A 2 3-10 1 283.6 Capitella capitata 18APR88 A 3 0-3 1 283 . 6 Cyclaspis varians 18APR88 A 3 0-3 1 283.6 Edotea montosa 18APR88 A 3 0-3 1 283.6 I Glycinde solitaria 18APR88 A 3 0-3 4 1134.4 Littoridina sphinctostoma 18APR88 A 3 0-3 1 283.6 Mediomastus californiensis 18APR88 A 3 0-3 53 15030.8Monoculoides sp. 18APR88 3 A 0-3 1 283.6 IMulinia lateralis 18APR88 A 3 0-3 11 3119. 6 Nereidae 18APR88 A 3 0-3 1 283.6Oxyurostylis smithi 18APR88 A 3 0-3 2 567.2 Rhynchocoels 18APR88 A 3 0-3 1 283.6Streblospio benedicti 18APR88 3 A 0-3 7 1985.2 I Mediomastus californiensis 18APR88 A 3 3-10 5 1418.0 Parandalia ocularis 18APR88 3 A 3-10 3 850.8 Tagelus plebius 18APR88 A 3 3-10 5 1418.0 Cossura delta 18APR88 B 1 0-3 2 567.2 I Cyclaspis varians 18APR88 B 1 0-3 1 283.6 Cyclopoid copepod 18APR88 B 1 0-3 1 283.6 Mediomastus californiensis 18APR88 B 1 0-3 27 7657.2 Melinna maculata 18APR88 B 1 0-3 1 283.6 Mulinia lateralis 18APR88 B 1 0-3 6 1701.6 I Oxyurostylis smithi 18APR88 B 1 0-3 1 283.6 Polychaete juvenile (Unidentified) 18APR88 B 1 0-3 1 283.6 Pyramidella sp. 18APR88 B 1 0-3 1 283.6 Streblospio benedicti 18APR88 B 1 0-3 2 567.2 I Cossura delta 18APR88 B 1 3-10 9 2552.4 Glycinde solitaria 18APR88 B 1 3-10 2 567.2 II I I LPHACSP.DAT 315 I Mediomastus californiensis 18APR88 B 1 3-10 11 3119. 6 I Cossura delta 18APR88 B 2 0-3 3 850.8 Cyclaspis varians 18APR88 B 2 0-3 1 283.6 Cyclopoid copepod 18APR88 B 2 0-3 1 283.6 Glycinde solitaria 18APR88 B 2 0-3 1 283.6 Haploscoloplos foliosus 18APR88 B 2 0-3 1 283.6 I Mediomastus californiensis 18APR88 B 2 0-3 24 6806.4 Mulinia lateralis 18APR88 B 2 0-3 6 1701. 6 Oxyurostylis smithi 18APR88 B 2 0-3 1 283.6 Streblospio benedicti 18APR88 B 2 0-3 4 1134 .4 I Cossura delta 18APR88 B 2 3-10 10 2836.0 Glycinde solitaria 18APR88 B 2 3-10 2 567.2 Mediomastus californiensis 18APR88 B 2 3-10 19 5388.4 Rhynchocoels 18APR88 B 2 3-10 1 283.6 Ampelisca abdita 18APR88 B 3 0-3 1 283.6 I Glycinde solitaria 18APR88 B 3 0-3 2 567.2 Mediomastus californiensis 18APR88 B 3 0-3 20 5672.0 Microprotopus spp. 18APR88 B 3 0-3 1 283.6 Mulinia lateralis 18APR88 B 3 0-3 8 2268.8 I Streblospio benedicti 18APR88 B 3 0-3 1 283.6 Cossura delta 18APR88 B 3 3-10 11 3119. 6 Haploscoloplos foliosus 18APR88 B 3 3-10 1 283.6 Maldane sarsi 18APR88 B 3 3-10 1 283.6 Mediomastus californiensis 18APR88 B 3 3-10 11 3119. 6 I Brania clavata 18APR88 c 1 0-3 6 1701. 6 Drilonereis magna 18APR88 c 1 0-3 2 567.2 Glycinde solitaria 18APR88 c 1 0-3 3 850.8 Mediomastus californiensis 18APR88 c 1 0-3 11 3119. 6 I Nuculana acuta 18APR88 c 1 0-3 1 283.6 01 igochaeta 18APR88 c 1 0-3 2 567.2 Oxyurostylis smithi 18APR88 c 1 0-3 2 567.2 Polydora caulleryi 18APR88 c 1 0-3 2 567.2 Rhynchocoels 18APR88 c 1 0-3 1 283.6 I Sarsiella texana 18APR88 c 1 0-3 1 283.6 Turbellaria 18APR88 c 1 0-3 1 283.6 Bivalvia 18APR88 c 1 3-10 2 567.2 Clymenella mucosa 18APR88 c 1 3-10 2 567.2 I Cossura delta 18APR88 c 1 3-10 1 283.6 Gyptis vittata 18APR88 c 1 3-10 1 283.6 Haldane sarsi 18APR88 c 1 3-10 1 283.6 Mediomastus californiensis 18APR88 c 1 3-10 17 4821. 2 01 i gochaeta 18APR88 c 1 3-10 2 567.2 I Paraprionospio pinnata 18APR88 c 1 3-10 1 283.6 Polydora caulleryi 18APR88 c 1 3-10 11 3119. 6 Rhynchocoels 18APR88 c 1 3-10 2 567.2 Schizocardium sp. 18APR88 c 1 3-10 1 283.6 I Spionidae 18APR88 c 1 3-10 1 283.6 Acteocina canaliculata 18APR88 c 2 0-3 1 283.6 Brania clavata 18APR88 c 2 0-3 31 8791. 6 I Dri lonereis magna 18APR88 c 2 0-3 1 283.6 Glycinde solitaria 18APR88 c 2 0-3 7 1985.2 Gyptis vittata 18APR88 c 2 0-3 1 283.6 Mediomastus californiensis 18APR88 c 2 0-3 15 4254.0 Oxyurostylis smithi 18APR88 c 2 0-3 2 567.2 Polydora caulleryi 18APR88 c 2 0-3 1 283.6 I I Rhynchocoels 18APR88 c 2 0-3 1 283.6 Streblospio benedicti 18APR88 c 2 0-3 1 283.6 Brania clavata 18APR88 c 2 3-10 1 283.6 Cossura delta 18APR88 c 2 3-10 1 283.6 Drilonereis magna 18APR88 c 2 3-10 2 567.2 Glycinde solitaria 18APR88 c 2 3-10 1 283.6 Gyptis vittata 18APR88 c 2 3-10 4 1134 .4 Haploscoloplos foliosus 18APR88 c 2 3-10 2 567.2 Mediomastus californiensis 18APR88 c 2 3-10 28 7940.8 Notomastus cf. latericeus 18APR88 c 2 3-10 1 283.6 01 igochaeta 18APR88 c 2 3-10 1 283.6 Paleanotus heteroseta 18APR88 c 2 3-10 1 283.6 I 316 LPMACSP.DAT Polydora caulleryi 18APR88 c 2 3-10 44 12478.4Rhynchocoels 18APR88 c 2 3-10 5 1418.0 Schizocardium sp. 18APR88 c 2 3-10 5 1418.0Spionidae 18APR88 c 2 3-10 3 850.8 Brania clavata 18APR88 c 3 0-3 15 4254.0 Clymenella torquata calida 18APR88 c 3 0-3 1 283.6Drilonereis magna 18APR88 c 3 0-3 2 567.2Glycinde solitaria 18APR88 c 3 0-3 1 283.6Gyptis vittata 18APR88 c 3 0-3 1 283.6 Haploscoloplos foliosus 18APR88 c 3 0-3 1 283.6Mediomastus californiensis 18APR88 c 3 0-3 11 3119. 6Nassarius acutus 18APR88 c 3 0-3 1 283.6Nuculana concentrica 18APR88 c 3 0-3 1 283.6Polydora caulleryi 18APR88 c 3 0-3 7 1985.2 Rhynchocoels 18APR88 c 3 0-3 3 850.8 Streblospio benedicti 18APR88 c 3 0-3 1 283.6Caecum johnsoni 18APR88 c 3 3-10 1 283.6Drilonereis magna 18APR88 c 3 3-10 1 283.6 Gyptis vittata 18APR88 c 3 3-10 4 1134.4 Haploscoloplos foliosus 18APR88 c 3 3-10 1 283.6Haldane sarsi 18APR88 c 3 3-10 1 283.6Mediomastus californiensis 18APR88 c 3 3-10 27 7657.2Paraonidae grp. A 18APR88 c 3 3-10 1 283.6 Phoronis architecta 18APR88 c 3 3-10 1 283.6Polydora caulleryi 18APR88 c 3 3-10 20 5672.0Rhynchocoels 18APR88 c 3 3-10 2 567.2Schizocardium sp. 18APR88 c 3 3-10 1 283.6 Spionidae 18APR88 c 3 3-10 2 567.2 Tharyx setigera 18APR88 c 3 3-10 1 283.6Anthozoa 18APR88 D 1 0-3 2 567.2 Apseudes sp. A 18APR88 D 1 0-3 47 13329.2Bivalvia 18APR88 D 1 0-3 1 283.6Corbula contracta 18APR88 D 1 0-3 3 850.8Diopatra cuprea 18APR88 D 1 0-3 1 283.6Glycera americana 18APR88 D 1 0-3 2 567.2Glycinde solitaria 18APR88 D 1 0-3 2 567.2Gyptis vittata 18APR88 D 1 0-3 2 567.2Mediomastus californiensis 18APR88 D 1 0-3 38 10776.8Notomastus cf. latericeus 18APR88 D 1 0-3 1 283.6Ophiuroidea 18APR88 D 1 0-3 1 283.6Oxyurostylis smithi 18APR88 D 1 0-3 1 283.6Phoronis architecta 18APR88 D 1 0-3 1 283.6Polydora caulleryi 18APR88 D 1 0-3 1 283.6Polydora sp. 18APR88 D 1 0-3 1 283.6Apseudes sp. A 18APR88 D 1 3-10 14 3970.4Bivalvia 18APR88 D 1 3-10 15 4254.0Corbula contracta 18APR88 D 1 3-10 2 567.2Cossura delta 18APR88 D 1 3-10 2 567.2Gyptis vittata 18APR88 D 1 3-10 3 850.8Mediomastus californiensis 18APR88 D 1 3-10 16 4537.6Oligochaeta 18APR88 D 1 3-10 4 1134.4Ophiuroidea 18APR88 D 1 3-10 2 567.2Paraonidae grp. B 18APR88 D 1 3-10 1 283.6Periploma cf. orbiculare 18APR88 D 1 3-10 5 1418.0Polydora caulleryi 18APR88 D 1 3-10 5 1418.0Rhynchocoels 18APR88 D 1 3-10 1 283.6Spionidae 18APR88 D 1 3-10 9 2552.4Apseudes sp. A 18APR88 D 2 0-3 222 62959.2Bivalvia 18APR88 D 2 0-3 1 283.6Caecum johnsoni 18APR88 D 2 0-3 1 283.6Corbula contracta 18APR88 D 2 0-3 1 283.6Cossura delta 18APR88 D 2 0-3 1 283.6Diopatra cuprea 18APR88 D 2 0-3 1 283.6Glycera americana 18APR88 D 2 0-3 1 283.6Glycinde solitaria 18APR88 D 2 0-3 1 283.6Mediomastus californiensis 18APR88 D 2 0-3 23 6522.8Periploma cf. orbiculare 18APR88 D 2 0-3 1 283.6 I 'I I I I I I I I I I I I I I I I I I ~ --. I I LPHACSP.OAT 317 I Apseudes sp. A 18APR88 D 2 3-10 57 16165.2 I Bivalvia 18APR88 D 2 3-10 10 2836.0 Clymenella mucosa 18APR88 D 2 3-10 1 283.6 Corbula contracta 18APR88 D 2 3-10 1 283.6 Cossura delta 18APR88 D 2 3-10 6 1701. 6 Drilonereis magna 18APR88 D 2 3-10 1 283.6 I Eunoe cf nodulosa 18APR88 D 2 3-10 1 283.6 Glycinde solitaria 18APR88 D 2 3-10 1 283.6 Gyptis vittata 18APR88 D 2 3-10 1 283.6 Haploscoloplos foliosus 18APR88 D 2 3-10 2 567.2 I Mediomastus californiensis 18APR88 D 2 3-10 14 3970.4 Notomastus latericeus 18APR88 D 2 3-10 1 283.6 Oligochaeta 18APR88 D 2 3-10 5 1418.0 Ophiuroidea 18APR88 D 2 3-10 3 850.8 Paraonidae grp. B 18APR88 D 2 3-10 2 567.2 I Periploma cf. orbiculare 18APR88 D 2 3-10 2 567.2 Polychaete juvenile (Unidentified) 18APR88 D 2 3-10 3 850.8 Polydora caulleryi 18APR88 D 2 3-10 1 283.6 Rhynchocoels 18APR88 D 2 3-10 3 850.8 I Terebellidae 18APR88 D 2 3-10 1 283.6 Anthozoa 18APR88 D 3 0-3 1 283.6 Apseudes sp. A 18APR88 D 3 0-3 329 93304.4 Armandia maculata 18APR88 D 3 0-3 1 283.6 Bivalvia 18APR88 D 3 0-3 2 567.2 I Brania clavata 18APR88 D 3 0-3 1 283.6 Cossura delta 18APR88 D 3 0-3 2 567.2 Glycinde solitaria 18APR88 D 3 0-3 4 1134.4 Mediomastus californiensis 18APR88 D 3 0-3 53 15030.8 I Paraonidae grp. B 18APR88 D 3 0-3 1 283.6 Paraprionospio pinnata 18APR88 D 3 0-3 1 283.6 Rhynchocoels 18APR88 D 3 0-3 2 567.2 Spionidae 18APR88 D 3 0-3 2 567.2 Apseudes sp. A 18APR88 D 3 3-10 43 12194.8 I Bivalvia 18APR88 D 3 3-10 5 1418.0 Corbula contracta 18APR88 D 3 3-10 4 1134.4 Cossura delta 18APR88 D 3 3-10 2 567.2 Gyptis vittata 18APR88 D 3 3-10 2 567.2 I Mediomastus californiensis 18APR88 D 3 3-10 22 6239.2 0 l i gochaeta 18APR88 D 3 3-10 9 2552.4 Ophiuroidea 18APR88 D 3 3-10 1 283.6 Paleanotus heteroseta 18APR88 D 3 3-10 1 283.6 Periploma cf. orbiculare 18APR88 D 3 3-10 2 567.2 I Polydora caulleryi 18APR88 D 3 3-10 3 850.8 Rhynchocoels 18APR88 D 3 3-10 1 283.6 Spionidae 18APR88 D 3 3-10 26 7373.6 Acteocina canaliculata 07JUL88 A 1 0-3 l 283.6 I Ampelisca abdita 07JUL88 A 1 0-3 1 283.6 Macoma mitche 11 i 07JUL88 A 1 0-3 1 283.6 Mediomastus californiensis 07JUL88 A 1 0-3 16 4537.6I Mulinia lateralis 07JUL88 A 1 0-3 1 283.6 Pyramide lla sp. 07JUL88 A 1 0-3 1 283.6 Streblospio benedicti 07JUL88 A 1 0-3 4 1134 .4 Cossura delta 07JUL88 A 1 3-10 2 567.2 Mediomastus californiensis 07JUL88 A 1 3-10 7 1985.2 Paraprionospio pinnata 07JUL88 A 1 3-10 1 283.6 I Ampelisca abdita 07JUL88 A 2 0-3 1 283.6 Cossura delta 07JUL88 A 2 0-3 1 283.6 Glycinde solitaria 07JUL88 A 2 0-3 1 283.6I Mediomastus californiensis 07JUL88 A 2 0-3 14 3970.4 Mysidopsis bahia 07JUL88 A 2 0-3 1 283.6 Streblospio benedicti 07JUL88 A 2 0-3 3 850.8 Cossura delta 07JUL88 A 2 3-10 1 283.6 Mediomastus californiensis 07JUL88 A 2 3-10 2 567.2 Ampelisca abdita 07JUL88 A 3 0-3 1 283.6 I Diopatra cuprea 07JUL88 A 3 0-3 1 283.6 Mediomastus californiensis 07JUL88 A 3 0-3 17 4821. 2 Mysidopsis bahia 07JUL88 A 3 0-3 1 283.6 318 LPHACSP.OAT I Pyramide lla sp. 07JUL88 A 3 0-3 1 283.6 Streblospio benedicti 07JUL88 A 3 0-3 4 1134 .4 I No species observed 07JUL88 A 3 3-10 0 0.0 Ampelisca abdita 07JUL88 B 1 0-3 1 283.6 Bivalvia 07JUL88 B 1 0-3 1 283.6 Glycinde solitaria 07JUL88 B 1 0-3 1 283.6 Leucon sp. 07JUL88 B 1 0-3 1 283.6 I Mediomastus californiensis 07JUL88 B 1 0-3 15 4254.0 Mulinia lateralis 07JUL88 B 1 0-3 2 567.2 Paraprionospio pinnata 07JUL88 B 1 0-3 1 283.6 Pyramidella sp. 07JUL88 B 1 0-3 1 283.6 I Cossura delta 07JUL88 B 1 3-10 1 283.6 Odostomia sp. 07JUL88 B 1 . 3-10 2 567.2 Paraprionospio pinnata 07JUL88 B 1 3-10 1 283.6 Ampelisca abdita 07JUL88 B 2 0-3 2 567.2 Cyclaspis varians 07JUL88 B 2 0-3 1 283.6 I Mediomastus californiensis 07JUL88 B 2 0-3 31 8791. 6 Mulinia lateralis 07JUL88 B 2 0-3 1 283.6 Streblospio benedicti 07JUL88 B 2 0-3 1 283.6 Bivalvia 07JUL88 B 2 3-10 1 283.6 I Clymenella mucosa 07JUL88 B 2 3-10 2 567.2 Cossura delta 07JUL88 B 2 3-10 1 283.6 Mediomastus californiensis 07JUL88 B 2 3-10 5 1418.0 Leucon sp. 07JUL88 B 3 0-3 1 283.6 Mediomastus californiensis 07JUL88 B 3 0-3 29 8224.4 I Mulinia lateralis 07JUL88 B 3 0-3 1 283.6 Paraprionospio pinnata 07JUL88 B 3 0-3 1 283.6 Pyramidella sp. 07JUL88 B 3 0-3 1 283.6 Cossura delta 07JUL88 B 3 3-10 1 283.6 I Glycinde solitaria 07JUL88 B 3 3-10 4 1134.4 Gyptis vittata 07JUL88 B 3 3-10 1 283.6 Macoma mitchelli 07JUL88 B 3 3-10 1 283.6 Mediomastus californiensis 07JUL88 B 3 3-10 5 1418.0 I Rhynchocoels 07JUL88 B 3 3-10 2 567.2 Mediomastus californiensis 08JUL88 c 1 0-3 3 850.8 Monoculoides sp. 08JUL88 c 1 0-3 1 283.6 Paraprionospio pinnata 08JUL88 c 1 0-3 1 283.6 Periploma cf. orbiculare 08JUL88 c 1 0-3 1 283.6 I Polydora caulleryi 08JUL88 c 1 0-3 2 567.2 Rhynchocoels 08JUL88 c 1 0-3 2 567.2 Schizocardium sp. 08JUL88 c 1 0-3 1 283.6 Syll idae 08JUL88 c 1 0-3 1 283.6 I Clymenella mucosa 08JUL88 c 1 3-10 1 283.6 Gyptis vittata 08JUL88 c 1 3-10 1 283.6 Ma ldane sars i 08JUL88 c 1 3-10 1 283.6 Mediomastus californiensis 08JUL88 c 1 3-10 15 4254.0 01 igochaeta 08JUL88 c 1 3-10 2 567.2 I Paraonidae grp. B 08JUL88 c 1 3-10 1 283.6 Polydora caulleryi 08JUL88 c 1 3-10 54 15314.4 Rhynchocoels 08JUL88 c 1 3-10 2 567.2 Schizocardium sp. 08JUL88 c 1 3-10 1 283.6 I Spiochaetopterus costarum 08JUL88 c 1 3-10 1 283.6 Tharyx setigera 08JUL88 c 1 3-10 3 850.8 Drilonereis magna 08JUL88 c 2 0-3 1 283.6 Glycinde solitaria 08JUL88 c 2 0-3 1 283.6 Haldane sarsi 08JUL88 c 2 0-3 1 283.6 I Mediomastus californiensis 08JUL88 c 2 0-3 6 1701.6 Minuspio cirrifera 08JUL88 c 2 0-3 1 283.6 01 igochaeta 08JUL88 c 2 0-3 1 283.6 Paraprionospio pinnata 08JUL88 c 2 0-3 1 283.6 I Polydora caulleryi 08JUL88 c 2 0-3 3 850.8 Schizocardium sp. 08JUL88 c 2 0-3 1 283.6 Syll idae 08JUL88 c 2 0-3 1 283.6 Turbellaria 08JUL88 c 2 0-3 1 283.6 Turbonilla sp. 08JUL88 c 2 0-3 1 283.6 I Cossura delta 08JUL88 c 2 3-10 3 850.8 Drilonereis magna 08JUL88 c 2 3-10 1 283.6 I I I LPHACSP.DAT 319 I Glycinde solitaria 08JUL88 c 2 3-10 1 283.6 Gyptis vittata 08JUL88 c 2 3-10 2 567.2 I Haldane sarsi 08JUL88 c 2 3-10 1 283.6 Mediomastus californiensis 08JUL88 c 2 3-10 19 5388.4 Ophiuroidea 08JUL88 c 2 3-10 1 283.6 Schizocardium sp. 08JUL88 c 2 3-10 3 850.8 Ma ldane sars i 08JUL88 c 3 0-3 1 283.6 I Mediomastus californiensis 08JUL88 c 3 0-3 4 1134 .4 Minuspio cirrifera 08JUL88 c 3 0-3 1 283.6 Paraonidae grp. B 08JUL88 c 3 0-3 1 283.6 Polydora caulleryi 08JUL88 c 3 0-3 3 850.8 I Rhynchocoels 08JUL88 c 3 0-3 1 283.6 Syll idae 08JUL88 c 3 0-3 5 1418.0 Bivalvia 08JUL88 c 3 3-10 1 283.6 Clymenella mucosa 08JUL88 c 3 3-10 1 283.6 Haldane sarsi 08JUL88 c 3 3-10 1 283.6 I Mediomastus californiensis 08JUL88 c 3 3-10 19 5388.4 Minuspio cirrifera 08JUL88 c 3 3-10 1 283.6 Paraonidae grp. B 08JUL88 c 3 3-10 1 283.6 Polydora caulleryi 08JUL88 c 3 3-10 1 283.6 I Rhynchocoels 08JUL88 c 3 3-10 1 283.6 Schizocardium sp. 08JUL88 c 3 3-10 2 567.2 Tharyx setigera 08JUL88 c 3 3-10 2 567.2 Apseudes sp. A 08JUL88 D 1 0-3 3 850.8 I Armandia maculata 08JUL88 D 1 0-3 1 283.6 Gyptis vittata 08JUL88 D 1 0-3 1 283.6 Listriella barnardi 08JUL88 D 0-3 1 1 283.6 Mediomastus californiensis 08JUL88 D 1 0-3 6 1701.6 Periploma cf. orbiculare 08JUL88 D 1 0-3 1 283.6 Phascolion strombi 08JUL88 D 1 0-3 1 283.6 Pinnixa chacei 08JUL88 D 1 0-3 1 283.6 I Polydora caulleryi 08JUL88 D 1 0-3 1 283.6 Rhynchocoels 08JUL88 D 1 0-3 5 1418.0 Sigambra tentaculata 08JUL88 D 1 0-3 1 283.6 I Apseudes sp. A 08JUL88 D 1 3-10 35 9926.0 Armandia maculata 08JUL88 D 1 3-10 1 283.6 Bivalvia 08JUL88 D 1 3-10 1 283.6 Mediomastus californiensis 08JUL88 D 1 3-10 7 1985.2 01 igochaeta 08JUL88 D 1 3-10 10 2836.0 Ophiuroidea 08JUL88 D 1 3-10 1 283.6 I Paraonidae grp. A 08JUL88 D 1 3-10 1 283.6 I Paraonidae grp. B 08JUL88 D 1 3-10 3 850.8 Periploma cf. orbiculare 08JUL88 D 1 3-10 2 567.2 Pinnixa chacei 08JUL88 D 1 3-10 1 283.6 Polydora caulleryi 08JUL88 D 1 3-10 5 1418.0 Rhynchocoels 08JUL88 D 1 3-10 3 850.8 Schizocardium sp. 08JUL88 D 1 3-10 1 283.6 I Spionidae 08JUL88 D 1 3-10 5 1418.0 Dentalium texasianum 08JUL88 D 2 0-3 1 283.6 Gyptis vittata 08JUL88 D 2 0-3 1 283.6 Mediomastus californiensis 08JUL88 D 2 0-3 6 1701. 6 Nuculana concentrica 08JUL88 D 2 0-3 1 283.6 Paleanotus heteroseta 08JUL88 D 2 0-3 1 283.6 I Pinnixa chacei 08JUL88 D 2 0-3 1 283.6 Polydora caulleryi 08JUL88 D 2 0-3 3 850.8 Rhynchocoels 08JUL88 D 2 0-3 2 567.2 Spionidae 08JUL88 D 2 0-3 2 567.2 I Anthozoa 08JUL88 D 2 3-10 1 283.6 Apseudes sp. A 08JUL88 D 2 3-10 17 4821. 2 Bivalvia 08JUL88 D 2 3-10 1 283.6 Caecum johnsoni 08JUL88 D 2 3-10 1 283.6 I Cossura delta 08JUL88 D 2 3-10 3 850.8 Eunoe cf nodulosa 08JUL88 D 2 3-10 3 850.8 Mediomastus californiensis 08JUL88 D 2 3-10 9 2552.4 0l i gochaeta 08JUL88 D 2 3-10 9 2552.4 Ophiuroidea 08JUL88 D 2 3-10 3 850.8 Paleanotus heteroseta 08JUL88 D 2 3-10 1. 283.6 I I 320 LPHACSP.DAT I Paraonidae grp. A 08JUL88 D 2 3-10 1 283.6 Paraonidae grp . B 08JUL88 D 2 3-10 1 283.6 I Periploma cf. orbiculare 08JUL88 D 2 3-10 1 283.6 Polydora caulleryi 08JUL88 D 2 3-10 3 850.8 Rhynchocoels 08JUL88 D 2 3-10 3 850.8 Spionidae 08JUL88 D 2 3-10 3 850.8 I Abra aequalis 08JUL88 D 3 0-3 1 283.6 Bivalvia 08JUL88 D 3 0-3 1 283.6 Glycinde solitaria 08JUL88 D 3 0-3 1 283.6 Mediomastus californiensis 08JUL88 D 3 0-3 8 2268.8 Periploma cf . orbiculare 08JUL88 D 3 0-3 1 283.6 I Pinnixa chacei 08JUL88 D 3 0-3 1 283.6 Rhynchocoels 08JUL88 D 3 0-3 3 850.8 Turbe llaria 08JUL88 D 3 0-3 1 283.6 Turbonilla sp. 08JUL88 D 3 0-3 1 283.6 I Ampelisca sp. B (=amphipod A) 08JUL88 D 3 3-10 1 283.6 Apseudes sp. A 08JUL88 D 3 3-10 40 11344 .0 Cossura delta 08JUL88 D 3 3-10 2 567.2 Gyptis vittata 08JUL88 D 3 3-10 2 567.2 Mediomastus californiensis 08JUL88 D 3 3-10 5 1418.0 I Mega lops 08JUL88 D 3 3-10 1 283.6 Notomastus latericeus 08JUL88 D 3 3-10 2 567.2 01 i gochaeta 08JUL88 D 3 3-10 7 1985.2 Ophiuroidea 08JUL88 D 3 3-10 1 283.6 I Paleanotus heteroseta 08JUL88 D 3 3-10 4 1134 .4 Paraonidae grp. B 08JUL88 D 3 3-10 1 283.6 Periploma cf. orbiculare 08JUL88 D 3 3-10 3 850.8 Polydora caulleryi 08JUL88 D 3 3-10 1 283 .6 Rhynchocoels 08JUL88 D 3 3-10 3 850.8 I Sigambra tentaculata 08JUL88 D 3 3-10 1 283.6 Spionidae 08JUL88 D 3 3-10 4 1134 .4 Syll idae 08JUL88 D 3 3-10 1 283 . 6 Ampelisca abdita 22NOV88 A 1 0-3 1 283.6 I Edotea montosa 22NOV88 A 1 0-3 1 283.6 Haploscoloplos foliosus 22NOV88 A 1 0-3 3 850.8 Mediomastus californiensis 22NOV88 A 1 0-3 10 2836.0 Streblospio benedicti 22NOV88 A 1 0-3 1 283.6 Cossura delta 22NOV88 A 1 3-10 1 283.6 I Glycinde solitaria 22NOV88 A 1 3-10 1 283.6 Haploscoloplos foliosus 22NOV88 A 1 3-10 2 567.2 Hemicyclops sp. 22NOV88 A 1 3-10 1 283.6 Heteromastus filiformis 22NOV88 A 1 3-10 2 567.2 I Mediomastus californiensis 22NOV88 A 1 3-10 6 1701.6 Rhynchocoels 22NOV88 A 1 3-10 1 283.6 Spiochaetopterus costarum 22NOV88 A 1 3-10 1 283.6 Glycinde solitaria 22NOV88 A 2 0-3 1 283.6 I Haploscoloplos foliosus 22NOV88 A 2 0-3 1 283.6 Mediomastus californiensis 22NOV88 A 2 0-3 11 3119. 6 Paraprionospio pinnata 22NOV88 A 2 0-3 1 283.6 Cossura delta 22NOV88 A 2 3-10 5 1418.0 Gyptis vittata 22NOV88 A 2 3-10 1 283.6 I Mediomastus californiensis 22NOV88 A 2 3-10 9 2552.4 Ampelisca abdita 22NOV88 A 3 0-3 1 283.6 Bivalvia 22NOV88 A 3 0-3 1 283.6 Gastropoda 22NOV88 A 3 0-3 1 283.6 I Glycinde solitaria 22NOV88 A 3 0-3 1 283.6 Mediomastus californiensis 22NOV88 A 3 0-3 21 5955.6 Mediomastus californiensis 22NOV88 A 3 0-3 3 850.8 Rhynchocoels 22NOV88 A 3 0-3 1 283.6 Streblospio benedicti 22NOV88 A 3 0-3 4 1134.4 I Cossura delta 22NOV88 A 3 3-10 3 850.8 Parandalia ocularis 22NOV88 A 3 3-10 1 283.6 Ampelisca abdita 22NOV88 B 1 0-3 1 283.6 Gastropoda 22NOV88 B 1 0-3 1 283 .6 I Mediomastus californiensis 22NOV88 B 1 0-3 2 567.2 Streblospio benedicti 22NOV88 B 1 0-3 21 5955.6 Cossura delta 22NOV88 B 1 3-10 2 567.2 I I '· I LPMACSP.DAT 321 I Streblospio benedicti 22NOV88 B 1 3-10 2 567.2Ampelisca abdita 22NOV88 B 2 0-3 1 283.6 I Mediomastus californiensis 22NOV88 B 2 0-3 4 1134 .4Paraprionospio pinnata 22NOV88 B 2 0-3 1 283.6Streblospio benedicti 22NOV88 B 2 0-3 21 5955.6Cossura delta 22NOV88 B 2 3-10 2 567.2 Mediomastus californiensis 22NOV88 B 2 3-10 6 1701. 6Paraprionospio pinnata I 22NOV88 B 2 3-10 2 567.2 Leucon sp. 22NOV88 B 3 0-3 1 283.6 Maldanidae 22NOV88 B 3 0-3 1 283.6 Paraprionospio pin~ata 22NOV88 B 3 0-3 1 283.6 I I Rhynchocoels 22NOV88 B 3 0-3 1 283.6 Streblospio benedicti 22NOV88 B 3 0-3 17 4821. 2 Cossura delta 22NOV88 B 3 3-10 1 283.6 Mediomastus californiensis 22NOV88 B 3 3-10 2 567.2 Bivalvia 22NOV88 c 1 0-3 1 283.6 Drilonereis magna 22NOV88 c 1 0-3 1 283.6 Glycinde solitaria 22NOV88 c 1 0-3 1 283.6 Listriella barnardi 22NOV88 c 1 0-3 1 283.6 Maldanidae 22NOV88 c 1 0-3 1 283.6 I Mediomastus californiensis 22NOV88 c 1 0-3 7 1985.2 Paraonidae grp. B 22NOV88 c 1 0-3 1 283.6 Paraprionospio pinnata 22NOV88 c 1 0-3 1 283.6 Rhynchocoels 22NOV88 c 1 0-3 1 283.6 Spiochaetopterus costarum 22NOV88 c 1 0-3 1 283.6 Capite11 idae 22NOV88 c 1 3-10 1 283.6 I Cossura delta 22NOV88 c 1 3-10 1 283.6 Drilonereis magna 22NOV88 c 1 3-10 1 283.6 Glycinde solitaria 22NOV88 c 1 3-10 1 283.6 I I Mediomastus californiensis 22NOV88 c 1 3-10 19 5388.4 Paraonidae grp. B 22NOV88 c 1 3-10 9 2552.4 Polydora caulleryi 22NOV88 c 1 3-10 4 1134 .4 Tharyx setigera 22NOV88 c 1 3-10 4 1134 .4 Clymenella torquata calida 22NOV88 c 2 0-3 1 283.6 Haldane sarsi 22NOV88 c 2 0-3 2 567.2 Maldanidae 22NOV88 c 2 0-3 2 567.2 Mediomastus californiensis 22NOV88 c 2 0-3 11 3119. 6 Polydora caulleryi 22NOV88 c 2 0-3 1 283.6 I Polydora ligni 22NOV88 c 2 0-3 1 283.6 Schizocardium sp. 22NOV88 c 2 0-3 1 283.6 Turbonilla sp. 22NOV88 c 2 0-3 1 283.6 Cossura delta 22NOV88 c 2 3-10 2 567.2 I Gyptis vittata 22NOV88 c 2 3-10 4 1134 .4Haldane sarsi 22NOV88 c 2 3-10 3 850.8Maldanidae 22NOV88 c 2 3-10 1 283.6Mediomastus californiensis 22NOV88 c 2 3-10 11 3119. 6Minuspio cirrifera 22NOV88 c 2 3-10 1 283.6 I Parandalia ocularis 22NOV88 c 2 3-10 1 283.6 Paraonidae grp. B 22NOV88 c 2 3-10 3 850.8 Polydora caulleryi 22NOV88 c 2 3-10 1 283.6 Rhynchocoels 22NOV88 c 2 3-10 1 283.6 I Schizocardium sp. 22NOV88 c 2 3-10 1 283.6Tharyx setigera 22NOV88 c 2 3-10 5 1418.0Cossura delta 22NOV88 c 3 0-3 1 283.6Glycinde solitaria 22NOV88 c 3 0-3 1 283.6Gyptis vittata 22NOV88 c 3 0-3 1 283.6 I Listriella barnardi 22NOV88 c 3 0-3 2 567.2 Maldanidae 22NOV88 c 3 0-3 7 1985.2 Mediomastus californiensis 22NOV88 c 3 0-3 8 2268.8 Monoculoides sp. 22NOV88 c 3 0-3 1 283.6 I Drilonereis magna 22NOV88 c 3 3-10 2 567.2Gyptis vittata 22NOV88 c 3 3-10 4 1134.4Haldane sarsi 22NOV88 c 3 3-10 1 283.6Mediomastus californiensis 22NOV88 c 3 3-10 10 2836.0Paraonidae grp. A 22NOV88 c 3 3-10 1 283.6 I Paraonidae grp. B 22NOV88 c 3 3-10 1 283.6Paraprionospio pinnata 22NOV88 c 3 3-10 1 283.6 I 322 LPHACSP.DAT I Schizocardium sp. 22NOV88 c 3 3-10 1 283.6 Apseudes sp. A 22NOV88 D 1 0-3 33 9358.8 I Armandia maculata 22NOV88 D 1 0-3 1 283.6 Corbula contracta 22NOV88 D 1 0-3 2 567.2 Cossura delta 22NOV88 D 1 0-3 1 283.6 Diopatra cuprea 22NOV88 D 1 0-3 2 567.2 I Maldanidae 22NOV88 D 1 0-3 2 567.2 Mediomastus californiensis 22NOV88 D 1 0-3 12 3403.2 Minuspio cirrifera 22NOV88 D 1 0-3 2 567.2 Nuculana acuta 22NOV88 D 1 0-3 3 850.8 Ophiuroidea 22NOV88 D 1 0-"3 4 1134 .4 I Paraprionospio pinnata 22NOV88 D 1 0-3 1 283.6 Periploma cf. orbiculare 22NOV88 D 1 0-3 1 283.6 Sphaerosyllis spa 22NOV88 D 1 0-3 1 283.6 Apseudes sp. A 22NOV88 D 1 3-10 51 14463.6 I Bivalvia 22NOV88 D 1 3-10 3 850.8 Corbula contracta 22NOV88 D 1 3-10 1 283.6 Diopatra cuprea 22NOV88 D 1 3-10 1 283.6 Drilonereis magna 22NOV88 D 1 3-10 1 283.6 Gyptis vittata 22NOV88 D 1 3-10 2 567.2 I Mediomastus californiensis 22NOV88 D 1 3-10 2 567.2 Minuspio cirrifera 22NOV88 D 1 3-10 10 2836.0 Ophiuroidea 22NOV88 D 1 3-10 1 283.6 Paraprionospio pinnata 22NOV88 D 1 3-10 2 567.2 I Terebellidae 22NOV88 D 1 3-10 1 283.6 Tharyx setigera 22NOV88 D 1 3-10 1 283.6 Apseudes sp. A 22NOV88 D 2 0-3 13 3686.8 Corbula contracta 22NOV88 D 2 0-3 2 567.2 Maldanidae 22NOV88 D 2 0-3 2 567.2 I Maldanidae 22NOV88 D 2 0-3 2 567.2 Mediomastus californiensis 22NOV88 D 2 0-3 10 2836.0 Mercenaria campechiensis 22NOV88 D 2 0-3 1 283.6 Minuspio cirrifera 22NOV88 D 2 0-3 6 1701. 6 I Nuculana acuta 22NOV88 D 2 0-3 2 567.2 Ophiuroidea 22NOV88 D 2 0-3 3 850.8 Periploma cf. orbiculare 22NOV88 D 2 0-3 1 283.6 Phoronis architecta 22NOV88 D 2 0-3 1 283.6 Pinnixa chacei 22NOV88 D 2 0-3 2 567.2 I Polychaete juvenile (Unidentified) 22NOV88 D 2 0-3 1 283.6 Sphaerosyllis spa 22NOV88 D 2 0-3 1 283.6 Terebellidae 22NOV88 D 2 0-3 1 283.6 Turbe llaria 22NOV88 D 2 0-3 1 283.6 I Ancistrosyllis cf. fa lea ta 22NOV88 D 2 3-10 1 283.6 Apseudes sp. A 22NOV88 D 2 3-10 28 7940.8 Bivalvia 22NOV88 D 2 3-10 4 1134. 4 Corbula contracta 22NOV88 D 2 3-10 6 1701.6 Gypt is vittata 22NOV88 D 2 3-10 1 283.6 I Haploscoloplos foliosus 22NOV88 D 2 3-10 6 1701.6 Listriella barnardi 22NOV88 D 2 3-10 1 283.6 Mediomastus californiensis 22NOV88 D 2 3-10 7 1985.2 Nereidae 22NOV88 D 2 3-10 1 283.6 I Oligochaeta 22NOV88 D 2 3-10 2 567.2 Ophiuroidea 22NOV88 D 2 3-10 1 283.6 Paraonidae grp. B 22NOV88 D 2 3-10 3 850.8 Paraprionospio pinnata 22NOV88 D 2 3-10 1 283.6 I Periploma cf. orbiculare 22NOV88 D 2 3-10 2 567.2 Polydora caulleryi 22NOV88 D 2 3-10 2 567.2 Rhynchocoels 22NOV88 D 2 3-10 6 1701.6 Apseudes sp. A 22NOV88 D 3 0-3 23 6522.8 Armandia maculata 22NOV88 D 3 0-3 2 567.2 I Bivalvia 22NOV88 D 3 0-3 1 283.6 Corbula contracta 22NOV88 D 3 0-3 2 567.2 Cossura delta 22NOV88 D 3 0-3 1 283.6 Drilonereis magna 22NOV88 D 3 0-3 1 283.6 I Glycinde solitaria 22NOV88 D 3 0-3 1 283.6 Macoma tenta 22NOV88 D 3 0-3 1 283.6 Mediomastus californiensis 22NOV88 D 3 0-3 11 3119. 6 I I ''· I LPHACSP.DAT I Minuspio cirrifera 22NOV88 D 3 0-3 1 283.6Nuculana acuta 22NOV88 D 3 0-3 1 283.6 I Ophiuroidea 22NOV88 D 3 0-3 1 283.6Periploma cf. orbiculare 22NOV88 D 3 0-3 2 567.2Sphaerosyllis spa 22NOV88 D 3 0-3 3 850.8Tellina sp. 22NOV88 D 3 0-3 1 283.6 Apseudes sp. A 22NOV88 D 3 3-10 62 17583.2 Bivalvia 22NOV88 D 3 3-10 8 2268.8 I Corbula contracta 22NOV88 D 3 3-10 5 1418.0 Cossura delta 22NOV88 D 3 3-10 1 283.6Gyptis vittata 22NOV88 D 3 3-10 1 283.6 Haploscoloplos foliosus 22NOV88 D 3 3-10 3 850.8Listriella barnardi 22NOV88 0 3 3-10 I 1 283.6 Mediomastus californiensis 22NOV88 D 3 3-10 9 2552.4Minuspio cirrifera 22NOV88 D 3 3-10 14 3970.4 Nereidae 22NOV88 D 3 3-10 1 283.6Oligochaeta 22NOV88 D 3 3-10 4 1134 .4 I Ophiuroidea 22NOV88 D 3 3-10 1 283.6Paraonidae grp. B 22NOV88 D 3 3-10 1 283.6 Periploma cf. orbiculare 22NOV88 D 3 3-10 5 1418.0 Pinnixa chacei 22NOV88 D 3 3-10 1 283.6 I Polychaete juvenile (Unidentified) 22NOV88 D ·3 3-10 3 850.8Polydora caulleryi 22NOV88 D 3 3-10 2 567.2Acteocina canaliculata 05APR89 A 1 0-3 1 283.6 Ampelisca abdita 05APR89 A 1 0-3 62 17583.2Cyclopoid copepod 05APR89 A 1 0-3 6 1701. 6 I Diopatra cuprea 05APR89 A 1 0-3 1 283.6Glyceridae 05APR89 A 1 0-3 3 850.8 Mediomastus californiensis 05APR89 A 1 0-3 7 1985.2 Mulinia lateralis 05APR89 A 1 0-3 18 5104.8 Mysella planulata 05APR89 A I 1 0-3 2 567.2 Pyramidella sp. 05APR89 A 1 0-3 1 283.6 Spiochaetopterus costarum 05APR89 A 1 0-3 1 283.6 Streblospio benedicti 05APR89 A 1 0-3 1 283.6 I Tagelus plebius 05APR89 A 1 0-3 1 283.6Turbe 1laria 05APR89 A 1 0-3 1 283.6Ensis minor 05APR89 A 1 3-10 1 283.6 Mediomastus californiensis 05APR89 A 1 3-10 7 1985.2 I Parandalia ocularis 05APR89 A 1 3-10 1 283.6Ampelisca abdita 05APR89 A 2 0-3 40 11344. 0 Anaitides erythrophyllus 05APR89 A 2 0-3 1 283.6Caprellid a 05APR89 A 2 0-3 1 283 .6 Cyclaspis varians 05APR89 A 2 0-3 3 850.8Cyclopoid copepod 05APR89 A 2 0-3 I 5 1418.0 Ensis minor 05APR89 A 2 0-3 1 283.6 Glyceridae OSAPR89 A 2 0-3 2 567.2Haploscoloplos foliosus 05APR89 A 2 0-3 1 283.6 Mediomastus californiensis 05APR89 A 2 0-3 7 1985.2 I Monoculoides sp. 05APR89 A 2 0-3 1 283.6 Mulinia lateralis 05APR89 A 2 0-3 19 5388.4 Mysella planulata 05APR89 A 2 0-3 2 567.2 I Oxyurostylis smithi 05APR89 A 2 0-3 1 283.6Paraprionospio pinnata 05APR89 A 2 0-3 1 283.6 Streblospio benedicti 05APR89 A 2 0-3 2 567.2Ampelisca abdita 05APR89 A 2 3-10 1 283.6 Clymenella torquata calida 05APR89 A 2 3-10 1 283.6 Cossura delta 05APR89 A 2 3-10 2 567.2 I Ensis minor 05APR89 A 2 3-10 1 283.6 Gyptis vittata 05APR89 A 2 3-10 1 283.6 Mediomastus californiensis 05APR89 A 2 3-10 6 1701. 6 Acteocina canaliculata 05APR89 A 3 0-3 1 283.6 Ampelisca abdita 05APR89 A 3 0-3 28 7940.8 I Cyclaspis varians 05APR89 A 3 0-3 1 283.6Edotea montosa 05APR89 A 3 0-3 1 283.6 Ensis minor 05APR89 A 3 0-3 3 850.8 Mediomastus californiensis 05APR89 A 3 0-3 9 2552.4 I Monoculoides sp. 05APR89 A 3 0-3 1 283.6 I 324 LPHACSP.DAT I Mulinia lateralis 05APR89 A 3 0-3 11 3119. 6 Oxyurostylis smithi 05APR89 A 3 0-3 3 850.8 I Streblospio benedicti 05APR89 A 3 0-3 1 283.6 Cossura delta 05APR89 A 3 3-10 1 283.6 Ensis minor 05APR89 A 3 3-10 2 567.2 Haploscoloplos foliosus 05APR89 A 3 3-10 1 283.6 I Mediomastus californiensis 05APR89 A 3 3-10 7 1985.2 Cossura delta 05APR89 B 1 0-3 1 283.6 Haploscoloplos foliosus 05APR89 B 1 0-3 1 283.6 Mediomastus californiensis 05APR89 B 1 0-3 10 2836.0 Mulinia lateralis · 05APR89 B 1 0-3 1 283.6 I Nuculana concentrica 05APR89 B 1 0-3 1 283.6 Ogyrides limicola 05APR89 B 1 0-3 1 283.6 Acteocina canaliculata 05APR89 B 1 3-10 1 283.6 Ampelisca abdita 05APR89 B 1 3-10 1 283.6 I Diopatra cuprea 05APR89 B 1 3-10 1 283.6 Haploscoloplos foliosus 05APR89 B 1 3-10 1 283.6 Macoma mitchelli 05APR89 B 1 3-10 2 567.2 Mediomastus californiensis 05APR89 B 1 3-10 21 5955.6 Mulinia lateralis 05APR89 B 1 3-10 2 567.2 I Mysella planulata 05APR89 B 1 3-10 1 283.6 Paraprionospio pinnata 05APR89 B 1 3-10 2 567.2 Mediomastus californiensis 05APR89 B 2 0-3 3 850.8 Mulinia lateralis 05APR89 B 2 0-3 2 567 .2 I Acteocina canaliculata 05APR89 B 2 3-10 1 283.6 Clymenella mucosa 05APR89 B 2 3-10 1 283.6 Cossura delta 05APR89 B 2 3-10 1 283.6 Gyptis vittata 05APR89 B 2 3-10 1 283.6 Macoma mitchelli 05APR89 B 2 3-10 1 283.6 I Mediomastus californiensis 05APR89 B 2 3-10 17 4821. 2 Mulinia lateralis 05APR89 B 2 3-10 1 283.6 Paraprionospio pinnata 05APR89 B 2 3-10 1 283.6 Cossura delta 05APR89 B 3 0-3 2 567.2 I Glyceridae 05APR89 B 3 0-3 1 283.6 Haploscoloplos foliosus 05APR89 B 3 0-3 2 567.2 Leucon sp. 05APR89 B 3 0-3 1 283.6 Mediomastus californiensis 05APR89 B 3 0-3 1 283.6 Mulinia lateralis 05APR89 B 3 0-3 1 283.6 I Nuculana concentrica 05APR89 B 3 0-3 1 283.6 Pandora trilineata 05APR89 B 3 0-3 1 283.6 Schizocardium sp. 05APR89 B 3 0-3 1 283.6 Acteocina canaliculata 05APR89 B 3 3-10 2 567.2 I Cyclopoid copepod 05APR89 B 3 3-10 1 283.6 Diopatra cuprea 05APR89 B 3 3-10 1 283.6 Glycinde solitaria 05APR89 B 3 3-10 1 283.6 Haploscoloplos foliosus 05APR89 B 3 3-10 3 850.8 II Macoma mitchelli 05APR89 B 3 3-10 1 283.6 Maldanidae 05APR89 B 3 3-10 1 283.6 Mediomastus californiensis 05APR89 B 3 3-10 19 5388.4 Mulinia lateralis 05APR89 B 3 3-10 3 850.8 Paraprionospio pinnata 05APR89 B 3 3-10 1 283.6 I Streblospio benedicti 05APR89 B 3 3-10 2 567.2 Turbellaria 05APR89 B 3 3-10 1 283.6 I Clymenella mucosa 05APR89 c 1 0-3 1 283.6 Drilonereis magna 05APR89 c 1 0-3 1 283.6 I Haldane sarsi 05APR89 c 1 0-3 1 283.6 Mediomastus californiensis 05APR89 c 1 0-3 1 283.6 Mediomastus californiensis 05APR89 c 1 0-3 18 5104.8 Oxyurostylis smithi 05APR89 c 1 0-3 1 283.6 Paraprionospio pinnata 05APR89 c 1 0-3 2 567.2 I Pyramidella sp. 05APR89 c 1 0-3 1 283.6 Streblospio benedicti 05APR89 c 1 0-3 2 567.2 Turbonilla sp. 05APR89 c 1 0-3 1 283.6 Ma coma mi tche 11 i 05APR89 c 1 3-10 1 283.6 Paraonidae grp. A 05APR89 c 1 3-10 1 283.6 I Paraprionospio pinnata 05APR89 c 1 3-10 1 283.6 Polychaete juvenile (Unidentified) 05APR89 c 1 3-10 1 283.6 I .. ;;~· I I LPHACSP.DAT 325 I I Rhynchocoels 05APR89 c 1 3-10 1 283.6 Callinectes similis 05APR89 c 2 0-3 1 283.6 Glycinde solitaria 05APR89 c 2 0-3 1 283.6 Glycinde solitaria 05APR89 c 2 0-3 1 283.6 Mediomastus californiensis 05APR89 c 2 0-3 1 283.6 Mulinia lateralis 05APR89 c 2 0-3 1 283.6 I Streblospio benedicti 05APR89 c 2 0-3 1 283.6 Ceratonereis irritabilis 05APR89 c 2 3-10 1 283.6 Clymenella mucosa 05APR89 c 2 3-10 6 1701. 6I Drilonereis magna 05APR89 c 2 3-10 2 567.2 Glycinde solitaria 05APR89 c 2 3-10 1 283.6 Gypt is vittata 05APR89 c 2 3-10 1 283.6 Mediomastus californiensis 05APR89 c 2 3-10 16 4537.6 Minuspio cirrifera 05APR89 c 2 3-10 1 283.6 01 i gochaeta 05APR89 c 2 3-10 1 283.6 I I Paraonidae grp. A 05APR89 c 2 3-10 1 283.6 Rhynchocoels 05APR89 c 2 3-10 2 567.2 Tharyx setigera 05APR89 c 2 3-10 4 1134.4 Gyptis vittata 05APR89 c 3 0-3 1 283.6 Mediomastus californiensis 05APR89 c 3 0-3 2 567.2 Rhynchocoels 05APR89 c 3 0-3 1 283.6 Drilonereis magna 05APR89 c 3 3-10 1 283.6 Mediomastus californiensis 05APR89 c 3 3-10 5 1418.0 Pinnixa chacei 05APR89 c 3 3-10 1 283.6 I I Sphaerosyllis erinaceus 05APR89 c 3 3-10 1 283.6 Ampelisca sp. B (=amphipod A) 05APR89 D 1 0-3 2 567.2 Amphipoda 05APR89 D 1 0-3 1 283.6 Corbula contracta 05APR89 D 1 0-3 3 850.8 Cossura delta 05APR89 D 1 0-3 1 283.6 Drilonereis magna 05APR89 D 1 0-3 1 283.6 Gypt is vittata 05APR89 D 1 0-3 1 283.6 Mediomastus californiensis 05APR89 D 1 0-3 22 6239.2 Minuspio cirrifera 05APR89 D 1 0-3 4 1134. 4 I I Nassarius vibex 05APR89 D 1 0-3 1 283 . 6 Nereidae 05APR89 D 1 0-3 1 283.6 Nuculana concentrica 05APR89 D 1 0-3 1 283 .6 Ophiuroidea 05APR89 D 1 0-3 1 283.6 Paleanotus heteroseta 05APR89 D 1 0-3 1 283.6 Periploma cf. orbiculare 05APR89 D 1 0-3 4 1134. 4 Pseudodiaptomus coronatus 05APR89 D 1 0-3 1 283.6 Rhynchocoels 05APR89 D 1 0-3 1 283.6 Sigambra tentaculata 05APR89 D 1 0-3 1 283.6 I Sphaerosyllis cf. sublaevis 05APR89 D 1 0-3 1 283.6 Sphaerosyllis erinaceus 05APR89 D 1 0-3 1 283.6 Sphaerosyllis spa 05APR89 D 1 0-3 1 283.6 Tellina texana 05APR89 D 1 0-3 1 283.6 I Terebellidae 05APR89 D 1 0-3 1 283.6 Anthozoa 05APR89 D 1 3-10 1 283 .6 Apseudes sp. A 05APR89 D 1 3-10 6 1701. 6 Corbula contracta 05APR89 D 1 3-10 2 567.2 Cossura delta 05APR89 D 1 3-10 2 567.2 I Drilonereis magna 05APR89 D 1 3-10 1 283.6 Haploscoloplos foliosus 05APR89 D 1 3-10 1 283.6 Mediomastus californiensis 05APR89 D 1 3-10 16 4537.6 Minuspio cirrifera 05APR89 D 1 3-10 2 567.2 I Ophiuroidea 05APR89 D 1 3-10 1 283.6 Paleanotus heteroseta 05APR89 D 1 3-10 1 283.6 Paraonidae grp. B 05APR89 D 1 3-10 3 850.8 Periploma cf. orbiculare 05APR89 D 1 3-10 4 1134. 4 Polydora caulleryi 05APR89 D 1 3-10 4 1134. 4 I Rhynchocoels 05APR89 D 1 3-10 3 850.8 Abra aequalis 05APR89 D 2 0-3 2 567.2 Acteocina canaliculata 05APR89 D 2 0-3 1 283.6 Ampelisca sp. B (=amphipod A) 05APR89 D 2 0-3 1 283.6 Anadara ovalis 05APR89 D 2 0-3 1 283.6 Apseudes sp. A 05APR89 D 2 0-3 2 567.2 Bivalvia 05APR89 D 2 0-3 1 283.6 I 326 LPHACSP.DAT I Corbula contracta 05APR89 D 2 0-3 9 2552.4 Drilonereis magna 05APR89 D 2 0-3 1 283.6 I Glycinde solitaria 05APR89 D 2 0-3 1 283.6 listriella barnardi 05APR89 D 2 0-3 1 283.6 Haldane sarsi 05APR89 D 2 0-3 1 283.6 Mediomastus californiensis 05APR89 D 2 0-3 15 4254.0 Minuspio cirrifera 05APR89 D 2 0-3 3 850.8 I Mulinia lateralis 05APR89 D 2 0-3 1 283.6 Notomastus cf. latericeus 05APR89 D 2 0-3 1 283.6 Nuculana concentrica 05APR89 D 2 0-3 2 567.2 Paleanotus heteroseta 05APR89 D 2 0-3 1 283.6 ,1 Paraprionospio pinnata 05APR89 D 2 0-3 1 283.6 Periploma cf. orbiculare 05APR89 D 2 0-3 2 567.2 Phascolion strombi 05APR89 D 2 0-3 1 283.6 Rhynchocoels 05APR89 D 2 0-3 2 567.2 Sphaerosyllis spa 05APR89 D 2 0-3 4 1134.4 I Apseudes sp. A 05APR89 D 2 3-10 9 2552.4 Corbula contracta 05APR89 D 2 3-10 8 2268.8 Drilonereis magna 05APR89 D 2 3-10 1 283.6 Mediomastus californiensis 05APR89 D 2 3-10 11 3119. 6 I Minuspio cirrifera 05APR89 D 2 3-10 1 283.6 Mysella planulata 05APR89 D 2 3-10 1 283.6 Notomastus cf. latericeus 05APR89 D 2 3-10 1 283.6 Ophiuroidea 05APR89 D 2 3-10 1 283.6 Paleanotus heteroseta 05APR89 D 2 3-10 2 567.2 I Periploma cf. orbiculare 05APR89 D 2 3-10 7 1985.2 Rhynchocoels 05APR89 D 2 3-10 2 567.2 Sigambra tentaculata 05APR89 D 2 3-10 1 283.6 Acteocina canaliculata 05APR89 D 3 0-3 1 283.6 I Ampelisca sp. B (=amphipod A) 05APR89 D 3 0-3 1 283.6 Apseudes sp. A 05APR89 D 3 0-3 8 2268.8 Corbula contracta 05APR89 D 3 0-3 7 1985.2 Gyptis vittata 05APR89 D 3 0-3 1 283.6 Macoma tenta 05APR89 D 3 0-3 1 283.6 I Mediomastus californiensis 05APR89 D 3 0-3 21 5955.6 Melinna maculata 05APR89 D 3 0-3 1 283.6 Minuspio cirrifera OSAPR89 D 3 0-3 6 1701. 6 Nassarius vibex OSAPR89 D 3 0-3 1 283.6 I Oligochaeta OSAPR89 D 3 0-3 1 283.6 Ophiuroidea 05APR89 D 3 0-3 1 283.6 Paraonidae grp. B OSAPR89 D 3 0-3 1 283.6 Periploma cf. orbiculare OSAPR89 D 3 0-3 5 1418.0 Phascolion strombi OSAPR89 D 3 0-3 4 1134. 4 I Polydora caulleryi 05APR89 D 3 0-3 2 567.2 Pseudodiaptomus coronatus OSAPR89 D 3 0-3 1 283.6 Rhynchocoels OSAPR89 D 3 0-3 3 850.8 Sphaerosyllis spa OSAPR89 D 3 0-3 1 283.6 I Apseudes sp. A OSAPR89 D 3 3-10 17 4821. 2 Corbula contracta 05APR89 D 3 3-10 2 567.2 Drilonereis magna OSAPR89 D 3 3-10 1 283.6 Mediomastus californiensis 05APR89 D 3 3-10 14 3970.4 I Minuspio cirrifera OSAPR89 D 3 3-10 2 567.2 Ophiuroidea OSAPR89 D 3 3-10 3 850.8 Paleanotus heteroseta OSAPR89 D 3 3-10 3 850.8 Periploma cf. orbiculare OSAPR89 D 3 3-10 5 1418.0 Polychaete juvenile (Unidentified) 05APR89 D 3 3-10 1 283.6 I Polydora caulleryi OSAPR89 D 3 3-10 1 283.6 Rhynchocoels 05APR89 D 3 3-10 1 283.6 Bivalvia 22JUL89 A 1 0-3 1 283.6 Glycinde solitaria 22JUL89 A 1 0-3 1 283.6 I Mediomastus californiensis 22JUL89 A 1 0-3 8 2268.8 Microprotopus spp. 22JUL89 A 1 0-3 1 283.6 Macoma mitchelli 22JUL89 A 1 3-10 1 283.6 Mediomastus californiensis 22JUL89 A 1 3-10 6 1701.6 Melinna maculata 22JUL89 A 1 3-10 1 283.6 I Parandalia ocularis 22JUL89 A 1 3-10 1 283.6 Acteocina canaliculata 22JUL89 A 2 0-3 3 850.8 I t,. I I LPHACSP.DAT 327 I I Glycinde solitaria 22JUL89 A 2 0-3 1 283.6 Mediomastus californiensis 22JUL89 A 2 0-3 9 2552.4 Mulinia lateralis 22JUL89 A 2 0-3 3 850.8 Nassarius acutus 22JUL89 A 2 0-3 1 283.6 Streblospio benedicti 22JUL89 A 2 0-3 5 1418.0 Medi omastus californiensis 22JUL89 A 2 3-10 5 1418.0 I Paraprionospio pinnata 22JUL89 A 2 3-10 1 283.6 Acteocina canaliculata 22JUL89 A 3 0-3 2 567.2 Ampelisca abdita 22JUL89 A 3 0-3 1 283.6I Bivalvia 22JUL89 A 3 0-3 1 283.6 Diopatra cuprea 22JUL89 A 3 0-3 1 283.6 Glycinde solitaria 22JUL89 A 3 0-3 1 283.6 Mediomastus californiensis 22JUL89 A 3 0-3 6 1701. 6 Microprotopus spp. 22JUL89 A 3 0-3 2 567.2 Mulinia lateralis 22JUL89 A 3 0-3 4 1134 .4 I I Odostomia sp. 22JUL89 A 3 0-3 1 283.6 Streblospio benedicti 22JUL89 A 3 0-3 7 1985.2 Clymenella mucosa 22JUL89 A 3 3-10 1 283.6 Cossura delta 22JUL89 A 3 3-10 3 850.8 Glycinde solitaria 22JUL89 A 3 3-10 1 283.6 Mediomastus californiensis 22JUL89 A 3 3-10 2 567.2 Odostomia sp. 22JUL89 A 3 3-10 2 567.2 Paraprionospio pinnata 22JUL89 A 3 3-10 1 283.6 Streblospio benedicti 22JUL89 A 3 3-10 1 283.6 I I Cossura delta 22JUL89 c 1 0-3 1 283.6 Glycinde solitaria 22JUL89 c 1 0-3 1 283.6 Gyptis vittata 22JUL89 c 1 0-3 1 283 .6 Listriella barnardi 22JUL89 c 1 0-3 1 283.6 Mediomastus californiensis 22JUL89 c 1 0-3 2 567.2 Mysidopsis bahia 22JUL89 c 1 0-3 1 283 .6 Mysidopsis sp. 22JUL89 c 1 0-3 1 283.6 Rhynchocoels 22JUL89 c 1 0-3 1 283.6 Cossura delta 22JUL89 c 1 3-10 1 283.6 I I Haldane sarsi 22JUL89 c 1 3-10 1 283.6 Mediomastus californiensis 22JUL89 c 1 . 3-10 12 3403.2 Ophiuroidea 22JUL89 c 1 3-10 1 283.6 Rhynchocoels 22JUL89 c 1 3-10 1 283.6 Tharyx setigera 22JUL89 c 1 3-10 1 283.6 Acteocina canaliculata 22JUL89 c 2 0-3 1 283.6 Glycinde solitaria 22JUL89 c 2 0-3 2 567.2 Listriella barnardi 22JUL89 c 2 0-3 1 283.6 Mediomastus californiensis 22JUL89 c 2 0-3 3 850.8 I I Mysidopsis bahia 22JUL89 c 2 0-3 1 283.6 Ogyrides limicola 22JUL89 c 2 0-3 1 283.6 Mediomastus californiensis 22JUL89 c 2 3-10 6 1701.6 Paraprionospio pinnata 22JUL89 c 2 3-10 1 283.6 Glycinde solitaria 22JUL89 c 3 0-3 1 283.6 Mediomastus californiensis 22JUL89 c 3 0-3 1 283.6 Megalomma bioculatum 22JUL89 c 3 0-3 1 283.6 Nassarius acutus 22JUL89 c 3 0-3 1 283 .6 Pseudodiaptomus coronatus 22JUL89 c 3 0-3 1 283.6 Mediomastus californiensis 22JUL89 c 3 3-10 3 850.8 Paraonidae grp. B 22JUL89 c 3 3-10 1 283.6 I I I I I 328 GEMEIOSP.DAT I GEMEIOSP.DAT Guadalupe Estuary Meiofauna species data. 3 replicates (REP) were taken each time, N=n/section (SEC) I nm2=n/mA2. Sections in cm. 1=0-1 cm. SP NAME STA REP N DATE SEC NM2 I Amphipoda A 1 1 28JAN87 1 1243.0 Harpact icoida A 1 19 28JAN87 1 23617.0 Nematoda A 1 41 28JAN87 1 11627. 6 Polychaete larvae . A 1 1 28JAN87 1 1243.0 I Unidentified (Miscellaneous) A 1 28 28JAN87 1 34804.0 Harpacticoida A 2 11 28JAN87 1 13673.0 Mollusca A 2 2 28JAN87 1 2486.0 Nematoda A 2 30 28JAN87 1 37290.0 Polychaete larvae A 2 2 28JAN87 1 2486.0 I Unidentified (Miscellaneous) A 2 36 28JAN87 1 44748 .0 Harpacticoida A 3 24 28JAN87 1 29832 . 0 Nematoda A 3 46 28JAN87 1 57178.0 I Unidentified (Miscellaneous) A 3 32 28JAN87 1 39776. 0 Harpacticoida A 4 7 28JAN87 1 8701. 0 Mollusca A 4 1 28JAN87 1 1243.0 Nematoda A 4 58 28JAN87 1 72094.0 Polychaete larvae A 4 1 28JAN87 1 1243.0 Unidentified (Miscellaneous) A 4 11 28JAN87 1 13673.0 I Harpacticoida A 5 24 28JAN87 1 29832.0 Nematoda A 5 66 28JAN87 1 82038.0 Polychaete larvae A 5 2 28JAN87 1 2486.0 Unidentified (Miscellaneous) A 5 32 28JAN87 1 39776. 0 I Harpacticoida A 6 11 28JAN87 1 13673.0 Nematoda A 6 63 28JAN87 1 78309.0 Polychaete larvae A 6 3 28JAN87 1 3729.0 Unidentified (Miscellaneous) A 6 24 28JAN87 1 29832.0 Harpacticoida A 7 29 28JAN87 1 36047.0 I Mollusca A 7 1 28JAN87 1 1243.0 Nematoda A 7 79 28JAN87 1 98197.0 Unidentified (Miscellaneous) A 7 34 28JAN87 1 42262.0 Harpacticoida A 8 20 28JAN87 1 24860 . 0 I Nematoda A 8 63 28JAN87 1 78309.0 Polychaete larvae A 8 2 28JAN87 1 2486.0 Unidentified (Miscellaneous) A 8 48 28JAN87 1 59664.0 Harpacticoida A 9 17 28JAN87 1 21131. 0 I Mollusca A 9 6 28JAN87 1 7458.0 Nematoda A 9 52 28JAN87 1 64636.0 Unidentified (Miscellaneous) A 9 46 28JAN87 1 57178.0 Amphipoda B 1 1 28JAN87 1 1243.0 Harpacticoida B 1 65 28JAN87 1 80795.0 I Mollusca B 1 4 28JAN87 1 4972.0 Nematoda B 1 196 28JAN87 1 243628.0 Polychaete larvae B 1 4 28JAN87 1 4972.0 Unidentified (Miscellaneous) B 1 66 28JAN87 1 82038.0 I Harpacticoida B 2 49 28JAN87 1 60907.0 Mollusca B 2 45 28JAN87 1 55935.0 Nematoda B 2 65 28JAN87 1 80795.0 Polychaete larvae B 2 5 28JAN87 1 6215.0 Unidentified (Miscellaneous) B 2 69 28JAN87 1 85767.0 I Harpacticoida B 3 63 28JAN87 1 78309.0 Mollusca B 3 48 28JAN87 1 59664.0 Nematoda B 3 165 28JAN87 1 205095.0 Polychaete larvae B 3 4 28JAN87 1 4972.0 I Unidentified (Miscellaneous) B 3 72 28JAN87 1 89496.0 Harpacticoida B 4 64 28JAN87 1 79552.0 Mollusca B 4 3 28JAN87 1 3729.0 Nematoda B 4 95 28JAN87 1 118085.0 Polychaete larvae B 4 10 28JAN87 1 12430.0 I Unidentified (Miscellaneous) B 4 61 28JAN87 1 75823.0 Harpacticoida B 5 76 28JAN87 1 94468.0 I I, I 1· ~~ . I GEMEIOSP.DAT 329 I Mollusca B 5 52 28JAN87 1 64636.0 Nematoda B 5 137 28JAN87 1 170291.0 I Polychaete larvae B 5 4 28JAN87 1 4972.0 Unidentified (Miscellaneous) B 5 59 28JAN87 1 73337.0 Harpacticoida B 6 43 28JAN87 1 53449.0 Mollusca B 6 28 28JAN87 1 34804.0 I Nematoda B 6 122 28JAN87 1 151646.0 Polychaete larvae B 6 2 28JAN87 1 2486.0 Unidentified (Miscellaneous) B 6 155 28JAN87 1 192665.0 Amphipoda B 7 1 28JAN87 1 1243.0 Harpacticoida B 7 55 28JAN87 1 68365.0 I Mollusca B 7 22 28JAN87 1 27346.0 Nematoda B 7 151 28JAN87 1 187693.0 Polychaete larvae B 7 2 28JAN87 1 2486.0 Unidentified (Miscellaneous) B 7 45 28JAN87 1 55935.0 I Amphipoda B 8 1 28JAN87 1 1243.0 Harpacticoida B 8 47 28JAN87 1 58421. 0 Mollusca B 8 34 28JAN87 1 42262.0 Nematoda B 8 127 28JAN87 1 157861. 0 Polychaete larvae B 8 1 28JAN87 1 1243.0 I Unidentified (Miscellaneous) B 8 74 28JAN87 1 91982.0 Harpacticoida B 9 47 28JAN87 1 58421. 0 Mollusca B 9 21 28JAN87 1 26103.0 Nematoda B 9 133 28JAN87 1 165319.0 I Polychaete larvae B 9 8 28JAN87 1 9944.0 Unidentified (Miscellaneous) B 9 61 28JAN87 1 75823.0 Amphipoda c 1 1 30JAN87 1 1243.0 Harpacticoida c 1 396 30JAN87 1 492228.0 Mollusca c 1 4 30JAN87 1 4972.0 I Nematoda c 1 1213 30JAN87 1 1507759. 0 Polychaete larvae c 1 2 30JAN87 1 2486.0 Unidentified (Miscellaneous) c 1 180 30JAN87 1 223740.0 Amphipoda c 2 1 30JAN87 1 1243.0 I Harpacticoida c 2 745 30JAN87 1 926035.0 Mollusca c 2 3 30JAN87 1 3729. 0 Nematoda c 2 1609 30JAN87 1 1999987.0 Polychaete larvae c 2 5 30JAN87 1 6215.0 Unidentified (Miscellaneous) c 2 245 30JAN87 1 304535.0 I Harpacticoida c 3 489 30JAN87 1 607827.0 Mollusca c 3 1 30JAN87 1 1243.0 Nematoda c 3 1181 30JAN87 1 1467983.0 Polychaete larvae c 3 8 30JAN87 1 9944 .0 I Unidentified (Miscellaneous) c 3 219 30JAN87 1 272217.0 Cumacea (unidentified or damaged) c 4 1 30JAN87 1 1243.0 Harpacticoida c 4 340 30JAN87 1 422620.0 I Mollusca c 4 8 30JAN87 1 9944.0 Nematoda c 4 1116 30JAN87 1 1387188.0 Polychaete larvae c 4 2 30JAN87 1 2486.0 Unidentified (Miscellaneous) c 4 182 30JAN87 1 226226.0 Harpacticoida c 5 413 30JAN87 1 513359.0 Mo 1 lusca c 5 1 30JAN87 1 1243.0 I Nematoda c 5 1085 30JAN87 1 1348655.0 Polychaete larvae c 5 5 30JAN87 1 6215.0 Unidentified (Miscellaneous) c 5 177 30JAN87 1 220011. 0 Harpacticoida c 6 370 30JAN87 1 459910.0 I Mollusca c 6 2 30JAN87 1 2486.0 Nematoda c 6 1231 30JAN87 1 1530133.0 Polychaete larvae c 6 5 30JAN87 1 6215.0 Unidentified (Miscellaneous) c 6 188 30JAN87 1 233684.0 Harpacticoida c 7 228 30JAN87 1 283404.0 I Mollusca c 7 2 30JAN87 1 2486.0 Nematoda c 7 1323 30JAN87 1 1644489.0 Polychaete larvae c 7 9 30JAN87 1 11187. 0 Unidentified (Miscellaneous) c 7 164 30JAN87 1 203852.0 Harpacticoida c 8 323 30JAN87 1 401489.0 Mollusca c 8 1 30JAN87 1 1243.0 Nematoda c 8 1060 30JAN87 1 1317580. 0 I 330 GEHEIOSP.DAT I Polychaete larvae c 8 11 30JAN87 1 13673.0 Unidentified (Miscellaneous) c 8 141 30JAN87 1 175263.0 Harpacticoida c 9 292 30JAN87 1 362956.0 I Mollusca c 9 4 30JAN87 1 4972.0 Nematoda c 9 1310 30JAN87 1 1628330.0 Polychaete larvae c 9 15 30JAN87 1 18645.0 Unidentified (Miscellaneous) c 9 169 30JAN87 1 210067.0 I Harpacticoida 0 1 121 30JAN87 1 150403.0 Nematoda 0 1 1223 30JAN87 1 1520189.0 Polychaete larvae 0 1 3 30JAN87 1 3729.0 Unidentified (Miscell~neous) 0 1 166 30JAN87 1 206338.0 Amphipoda 0 2 1 30JAN87 1 1243.0 I~ Harpacticoida 0 2 113 30JAN87 1 140459.0 Mollusca 0 2 3 30JAN87 1 3729.0 Nematoda 0 2 850 30JAN87 1 1056550.0 Polychaete larvae 0 2 3 30JAN87 1 3729.0 I Unidentified (Miscellaneous) 0 2 496 30JAN87 1 616528.0 Harpacticoida 0 3 138 30JAN87 1 171534.0 Mollusca 0 3 2 30JAN87 1 2486.0 Nematoda 0 3 684 30JAN87 1 850212.0 I Unidentified (Miscellaneous) 0 3 582 30JAN87 1 723426.0 Harpacticoida 0 4 143 30JAN87 1 177749.0 Mollusca 0 4 1 30JAN87 1 1243.0 Nematoda 0 4 1076 30JAN87 1 1337468.0 Polychaete larvae 0 4 4 30JAN87 1 4972.0 I Unidentified (Miscellaneous) 0 4 238 30JAN87 1 295834.0 Harpacticoida D 5 80 30JAN87 1 99440.0 Mollusca D 5 4 30JAN87 1 4972.0 Nematoda D 5 759 30JAN87 1 943437.0 I Polychaete larvae D 5 3 30JAN87 1 3729.0 Unidentified (Miscellaneous) D 5 693 30JAN87 1 861399.0 Harpacticoida D 6 111 30JAN87 1 137973.0 Nematoda D 6 849 30JAN87 1 1055307.0 Polychaete larvae D 6 2 30JAN87 1 2486.0 I Unidentified (Miscellaneous) D 6 475 30JAN87 1 590425.0 Harpacticoida D 7 168 30JAN87 1 208824.0 Nematoda D 7 1138 30JAN87 1 1414534.0 Polychaete larvae D 7 1 30JAN87 1 1243.0 I Unidentified (Miscellaneous) D 7 346 30JAN87 1 430078.0 Harpacticoida D 8 100 30JAN87 1 124300.0 Mollusca D 8 3 30JAN87 1 3729.0 Nematoda D 8 712 30JAN87 1 885016.0 Polychaete larvae D 8 3 30JAN87 1 3729.0 I Unidentified (Miscellaneous) D 8 545 30JAN87 1 677435.0 Cumacea (unidentified or damaged) D 9 1 30JAN87 1 1243.0 Harpacticoida D 9 168 30JAN87 1 208824.0 Nematoda D 9 1037 30JAN87 1 1288991. 0 I Polychaete larvae D 9 7 30JAN87 1 8701. 0 Unidentified (Miscellaneous) D 9 241 30JAN87 1 299563.0 Harpacticoida A 1 47 09APR87 1 58421.0 Mollusca A 1 42 09APR87 1 52206.0 Nematoda A 1 4 09APR87 1 4972.0 I Polychaete larvae A 1 15 09APR87 1 18645.0 Unidentified (Miscellaneous) A 1 36 09APR87 1 44748.0 Harpacticoida A 2 73 09APR87 1 90739.0 II Mollusca A 2 34 09APR87 1 42262.0 Nematoda A 2 11 09APR87 1 13673.0 Polychaete larvae A 2 41 09APR87 1 50963.0 Unidentified (Miscellaneous) A 2 76 09APR87 1 94468.0 Harpacticoida A 3 58 09APR87 1 72094.0 I Mollusca A 3 31 09APR87 1 38533.0 Nematoda A 3 20 09APR87 1 24860.0 Polychaete larvae A 3 18 09APR87 1 22374.0 Unidentified (Miscellaneous) A 3 54 09APR87 1 67122.0 Harpacticoida A 4 72 09APR87 1 89496.0 I Mollusca A 4 35 09APR87 1 43505.0 Nematoda A 4 128 09APR87 1 159104.0 I I GEHEIOSP.DAT 331 I I Polychaete larvae A 4 7 09APR87 1 8701.0 Unidentified (Miscellaneous) A 4 64 09APR87 1 79552.0 Harpacticoida A 5 31 09APR87 1 38533.0 Mollusca A 5 66 09APR87 1 82038.0 Nematoda A 5 23 09APR87 1 28589.0 Polychaete larvae A 5 11 09APR87 1 13673.0 I I Unidentified (Miscellaneous) A 5 44 09APR87 1 54692.0 Harpacticoida A 6 61 09APR87 1 75823.0 Mollusca A 6 41 09APR87 1 50963.0 Nematoda A 6 25 09APR87 1 31075.0 Polychaete larvae · A 6 19 09APR87 1 23617.0 Unidentified (Miscellaneous) A 6 54 09APR87 1 67122.0 Harpacticoida A 7 43 09APR87 1 53449.0 Mollusca A 7 1 09APR87 1 1243.0 Nematoda A 7 67 09APR87 1 83281.0 I I Polychaete larvae A 7 19 09APR87 1 23617.0 Unidentified (Miscellaneous) A 7 35 09APR87 1 43505 . 0 Harpacticoida A 8 59 09APR87 1 73337.0 Mollusca A 8 24 09APR87 1 29832 .0 Nematoda A 8 28 09APR87 1 34804.0 Polychaete larvae A 8 21 09APR87 1 26103.0 Unidentified (Miscellaneous) A 8 46 09APR87 1 57178.0 Harpacticoida A 9 27 09APR87 1 33561 .0 Mollusca A 9 38 09APR87 1 47234.0 I Nematoda A 9 8 09APR87 1 9944.0 Polychaete larvae A 9 5 09APR87 1 6215.0 Unidentified (Miscellaneous) A 9 54 09APR87 1 67122.0 Harpacticoida A 10 61 09APR87 1 75823.0 I Mollusca A 10 53 09APR87 1 65879.0 Nematoda A 10 46 09APR87 1 57178.0 Polychaete larvae A 10 3 09APR87 1 3729.0 Unidentified (Miscellaneous) A 10 58 09APR87 1 72094. 0 Harpacticoida A 11 50 09APR87 1 62150.0 Mollusca A 11 52 09APR87 1 64636.0 I Nematoda A 11 44 09APR87 1 54692.0 Polychaete larvae A 11 8 09APR87 1 9944.0 Unidentified (Miscellaneous) A 11 60 09APR87 1 74580.0 I Harpacticoida A 12 72 09APR87 1 89496.0 Mollusca A 12 23 09APR87 1 28589.0 Nematoda A 12 258 09APR87 1 320694.0 Polychaete larvae A 12 16 09APR87 1 19888.0 Unidentified (Miscellaneous) A 12 43 09APR87 1 53449.0 I Harpacticoida B 1 73 09APR87 1 90739.0 Mollusca B 1 6 09APR87 1 7458.0 Nematoda B 1 110 09APR87 1 136730.0 Polychaete larvae B 1 7 09APR87 1 8701 .0 I Unidentified (Miscellaneous) B 1 46 09APR87 1 57178.0 Harpacticoida B 2 68 09APR87 1 84524.0 Mollusca B 2 24 09APR87 1 29832.0 Nematoda B 2 54 09APR87 1 67122.0 I Polychaete larvae B 2 8 09APR87 1 9944.0 Unidentified (Miscellaneous) B 2 33 09APR87 1 41019.0 Harpacticoida B 3 78 09APR87 1 96954.0 Mollusca B 3 20 09APR87 1 24860.0 Nematoda B 3 126 09APR87 1 156618.0 I Polychaete larvae B 3 13 09APR87 1 16159.0 Unidentified (Miscellaneous) B 3 43 09APR87 1 53449.0 Amphipoda B 4 1 09APR87 1 1243.0 Harpacticoida B 4 129 09APR87 1 160347.0 Mollusca B 4 30 09APR87 1 37290.0 I Nematoda B 4 37 09APR87 1 45991. 0 Polychaete larvae B 4 6 09APR87 1 7458.0 Tanaidacea B 4 1 09APR87 1 1243.0 Unidentified (Miscellaneous) B 4 40 09APR87 1 49720.0 Harpacticoida B 5 53 09APR87 1 65879 . 0 Mollusca B 5 5 09APR87 1 6215.0 Nematoda B 5 74 09APR87 1 91982.0 I 332 GEHEIOSP.DAT I Polychaete larvae B 5 8 09APR87 1 9944.0 Unidentified (Miscellaneous) B 5 26 09APR87 1 32318.0 I Harpacticoida B 6 41 09APR87 1 50963.0 Mollusca B 6 4 09APR87 1 4972. 0 Nematoda B 6 30 09APR87 1 37290.0 Polychaete larvae B 6 4 09APR87 1 4972.0 Unidentified (Miscellaneous) B 6 18 09APR87 1 22374.0 I Harpacticoida B 7 104 09APR87 1 129272.0 Mollusca B 7 14 09APR87 1 17402.0 Nematoda B 7 103 09APR87 1 128029.0 Po lychaete larvae · B 7 8 09APR87 1 9944.0 I Unidentified (Miscellaneous) B 7 61 09APR87 1 75823.0 Harpacticoida B 8 50 09APR87 1 62150.0 Mollusca B 8 20 09APR87 1 24860.0 Nematoda B 8 36 09APR87 1 44748.0 Polychaete larvae B 8 5 09APR87 1 6215.0 I Unidentified (Miscellaneous) B 8 15 09APR87 1 18645.0 Harpacticoida B 9 83 09APR87 1 103169.0 Mollusca B 9 18 09APR87 1 22374.0 Nematoda B 9 139 09APR87 1 172777. 0 I Polychaete larvae B 9 13 09APR87 1 16159.0 Unidentified (Miscellaneous) B 9 41 09APR87 1 50963.0 Harpacticoida B 10 116 09APR87 1 144188.0 Mollusca B 10 6 09APR87 1 7458.0 I Nematoda B 10 101 09APR87 1 125543.0 Polychaete larvae B 10 3 09APR87 1 3729.0 Unidentified (Miscellaneous) B 10 39 09APR87 1 48477.0 Harpacticoida B 11 132 09APR87 1 164076.0 Mollusca B 11 12 09APR87 1 14916.0 I Nematoda B 11 99 09APR87 1 123057.0 Polychaete larvae B 11 8 09APR87 1 9944.0 Unidentified (Miscellaneous) B 11 52 09APR87 1 64636.0 Harpacticoida B 12 91 09APR87 1 113113. 0 Mollusca B 12 13 09APR87 1 16159.0 I Nematoda B 12 33 09APR87 1 41019.0 Polychaete larvae B 12 9 09APR87 1 11187 .0 Unidentified (Miscellaneous) B 12 39 09APR87 1 48477.0 Harpacticoida c 1 344 09APR87 1 427592.0 I Mollusca c 1 2 09APR87 1 2486.0 Nematoda c 1 919 09APR87 1 1142317.0 Polychaete larvae c 1 10 09APR87 1 12430.0 Unidentified (Miscellaneous) c 1 89 09APR87 1 110627.0 I Harpacticoida c 2 235 09APR87 1 292105.0 Nematoda c 2 694 09APR87 1 862642.0 Polychaete larvae c 2 10 09APR87 1 12430.0 Unidentified (Miscellaneous) c 2 54 09APR87 1 67122.0 Harpacticoida c 3 332 09APR87 1 412676.0 I Nematoda c 3 534 09APR87 1 663762.0 Polychaete larvae c 3 6 09APR87 1 7458.0 Unidentified (Miscellaneous) c 3 39 09APR87 1 48477.0 Amphipoda c 4 2 09APR87 1 2486.0 I Harpacticoida c 4 333 09APR87 1 413919.0 Nematoda c 4 781 09APR87 1 970783.0 Polychaete larvae c 4 5 09APR87 1 6215.0 Unidentified (Miscellaneous) c 4 87 09APR87 1 108141. 0 Amphipoda c 5 1 09APR87 1 1243.0 I Harpacticoida c 5 357 09APR87 1 443751. 0 Mollusca c 5 1 09APR87 1 1243.0 Nematoda c 5 1369 09APR87 1 1701667.0 Polychaete larvae c 5 5 09APR87 1 6215.0 I Unidentified (Miscellaneous) c 5 69 09APR87 1 85767.0 Harpacticoida c 6 141 09APR87 1 175263.0 Nematoda c 6 820 09APR87 1 1019260.0 Polychaete larvae c 6 43 09APR87 1 53449.0 Unidentified (Miscellaneous) c 6 78 09APR87 1 96954.0 I Harpacticoida c 7 401 09APR87 1 498443.0 Mollusca c 7 2 09APR87 1 2486.0 I I I I I I I I I I I I I I I I I I I I ~· ; '""' GEHEIOSP.DAT Nematoda c 7 566 09APR87 1 703538.0 Polychaete larvae c 7 5 09APR87 1 6215.0Unidentified (Miscellaneous) c 7 44 09APR87 1 54692.0Amphipoda c 8 1 09APR87 1 1243.0Harpacticoida c 8 223 09APR87 1 277189.0 Ho l lusca c 8 1 09APR87 1 1243.0 Nematoda c 8 681 09APR87 1 846483.0 Polychaete larvae c 8 9 09APR87 1 11187.0Unidentified (Miscellaneous) c 8 38 09APR87 1 47234.0Amphipoda c 9 1 09APR87 1 1243.0Harpacticoida c 9 382 09APR87 1 474826.0Mollusca c 9 4 09APR87 1 4972.0Nematoda c 9 1079 09APR87 1 1341197. 0 Polychaete larvae c 9 12 09APR87 1 14916.0Unidentified (Miscellaneous) c 9 91 09APR87 1 113113. 0Amphipoda c 10 1 09APR87 1 1243.0Harpacticoida c 10 197 09APR87 1 244871. 0Ho l lusca c 10 2 09APR87 1 2486.0 Nematoda c 10 589 09APR87 1 732127.0Polychaete larvae c 10 10 09APR87 1 12430.0Unidentified (Miscellaneous) c 10 34 09APR87 1 42262.0Amphipoda c 11 1 09APR87 1 1243.0Harpacticoida c 11 394 09APR87 1 489742.0Ho l lusca c 11 1 09APR87 1 1243.0 Nematoda c 11 463 09APR87 1 575509.0Polychaete larvae c 11 2 09APR87 1 2486.0Unidentified (Miscellaneous) c 11 50 09APR87 1 62150.0Harpacticoida c 12 195 09APR87 1 242385.0Nematoda c 12 578 09APR87 1 718454.0 Polychaete larvae c 12 7 09APR87 1 8701. 0Unidentified (Miscellaneous) c 12 47 09APR87 1 58421. 0Harpacticoida D 1 202 09APR87 1 251086.0Nematoda D 1 280 09APR87 1 348040.0 Polychaete larvae D 1 3 09APR87 1 3729. 0Unidentified (Miscellaneous) D 1 45 09APR87 1 55935.0Harpacticoida D 2 213 09APR87 1 264759.0Nematoda D 2 150 09APR87 1 186450.0 Polychaete larvae D 2 1 09APR87 1 1243.0Unidentified (Miscellaneous) D 2 71 09APR87 1 88253.0Harpacticoida D 3 169 09APR87 1 210067.0Mollusca D 3 4 09APR87 1 4972.0Nematoda D 3 242 09APR87 1 300806.0 Unidentified (Miscellaneous) D 3 98 09APR87 1 121814.0Harpacticoida D 4 168 09APR87 1 208824.0 Nematoda D 4 94 09APR87 1 116842. 0Unidentified (Miscellaneous) D 4 132 09APR87 1 164076.0 Harpacticoida D 5 263 09APR87 1 326909.0Nematoda D 5 403 09APR87 1 500929.0 Polychaete larvae D 5 7 09APR87 1 8701.0Unidentified (Miscellaneous) D 5 119 09APR87 1 147917.0Harpacticoida D 6 226 09APR87 1 280918.0Nematoda D 6 119 09APR87 1 147917.0 Polychaete larvae D 6 2 09APR87 1 2486.0Unidentified (Miscellaneous) D 6 66 09APR87 1 82038.0Amphipoda D 7 1 09APR87 1 1243.0Harpacticoida D 7 236 09APR87 1 293348.0 Nematoda D 7 111 09APR87 1 137973.0 Polychaete larvae D 7 1 09APR87 1 1243.0Unidentified (Miscellaneous) D 7 40 09APR87 1 49720.0Harpacticoida D 8 214 09APR87 1 266002.0 Nematoda D 8 298 09APR87 1 370414.0 Polychaete larvae D 8 7 09APR87 1 8701.0Unidentified (Miscellaneous) D 8 64 09APR87 1 79552.0Harpacticoida D 9 231 09APR87 1 287133.0Ho l lusca D 9 1 09APR87 1 1243.0Nematoda D 9 147 09APR87 1 182721.0 Unidentified (Miscellaneous) D 9 43 09APR87 1 53449.0 334 GEHEIOSP.DAT I Harpacticoida D 10 221 09APR87 1 274703.0 Mollusca D 10 2 09APR87 1 2486.0 I Nematoda D 10 229 09APR87 1 284647.0 Polychaete larvae D 10 4 09APR87 1 4972 . 0 Unidentified (Miscellaneous) D 10 82 09APR87 1 101926.0 Harpacticoida D 11 240 09APR87 1 298320.0 Nematoda D 11 148 09APR87 1 183964.0 I Polychaete larvae D 11 1 09APR87 1 1243.0 Unidentified (Miscellaneous) D 11 41 09APR87 1 50963.0 Amphipoda D 12 1 09APR87 1 1243.0 Harpacticoida D 12 248 09APR87 1 308264.0 I Nematoda D 12 176 09APR87 1 218768.0 Polychaete larvae D 12 2 09APR87 1 2486.0 Unidentified (Miscellaneous) D 12 70 09APR87 1 87010.0 Mollusca A 1 2 15JUL87 1 2486.0 ,I Nematoda A 1 33 15JUL87 1 41019.0 Unidentified (Miscellaneous) A 1 5 15JUL87 1 6215.0 Harpacticoida A 2 2 15JUL87 1 2486.0 Mollusca A 2 43 15JUL87 1 53449.0 Nematoda A 2 111 15JUL87 1 137973.0 I Polychaete larvae A 2 1 15JUL87 1 1243.0 Unidentified (Miscellaneous) A 2 188 15JUL87 1 233684.0 Harpacticoida A 3 3 15JUL87 1 3729.0 Mollusca A 3 52 15JUL87 1 64636 . 0 Nematoda A 3 40 15JUL87 1 49720. 0 I Polychaete larvae A 3 1 15JUL87 1 1243.0 Unidentified (Miscellaneous) A 3 133 15JUL87 1 165319.0 Harpacticoida A 4 6 15JUL87 1 7458.0 Mollusca A 4 29 15JUL87 1 36047 .0 I Nematoda A 4 72 15JUL87 1 89496.0 Polychaete larvae A 4 5 15JUL87 1 6215.0 Unidentified (Miscellaneous) A 4 106 15JUL87 1 131758.0 Harpacticoida A 5 9 15JUL87 1 11187.0 Mollusca A 5 55 15JUL87 1 68365.0 I Nematoda A 5 60 15JUL87 1 74580.0 Polychaete larvae A 5 2 15JUL87 1 2486.0 Unidentified (Miscellaneous) A 5 156 15JUL87 1 193908.0 Harpacticoida A 6 8 15JUL87 1 9944.0 I Mollusca A 6 51 15JUL87 1 63393.0 Nematoda A 6 148 15JUL87 1 183964.0 Polychaete larvae A 6 3 15JUL87 1 3729. 0 Unidentified (Miscellaneous) A 6 166 15JUL87 1 206338 . 0 I Harpacticoida A 7 4 15JUL87 1 4972 .0 Mollusca A 7 56 15JUL87 1 69608.0 Nematoda A 7 90 15JUL87 1 111870.0 Polychaete larvae A 7 4 15JUL87 1 4972 .0 Unidentified (Miscellaneous} A 7 109 15JUL87 1 135487.0 I Harpacticoida A 8 10 15JUL87 1 12430.0 Mollusca A 8 38 15JUL87 1 47234.0 Nematoda A 8 83 15JUL87 1 103169 . 0 Polychaete larvae A 8 5 15JUL87 1 6215.0 I Unidentified (Miscellaneous) A 8 186 15JUL87 1 231198. 0 Harpacticoida A 9 7 15JUL87 1 8701. 0 Mollusca A 9 46 15JUL87 1 57178 . 0 Nematoda A 9 84 15JUL87 1 104412.0 Polychaete larvae A 9 1 15JUL87 1 1243 . 0 I Unidentified (Miscellaneous) A 9 140 15JUL87 1 174020.0 Harpacticoida B 1 33 15JUL87 1 41019.0 Mollusca B 1 13 15JUL87 1 16159.0 Nematoda B 1 25 15JUL87 1 31075.0 I Polychaete larvae B 1 1 15JUL87 1 1243.0 Unidentified (Miscellaneous) B 1 22 15JUL87 1 27346.0 Harpacticoida B 2 32 15JUL87 1 39776. 0 Mollusca B 2 19 15JUL87 1 23617.0 Nematoda B 2 30 15JUL87 1 37290.0 I Polychaete larvae B 2 3 15JUL87 1 3729 .0 Unidentified (Miscellaneous) B 2 21 15JUL87 1 26103.0 I ' ~,,., I I GEMEIOSP.DAT I Harpacticoida B 3 39 15JUL87 1 48477. 0Mollusca B 3 12 15JUL87 1 14916.0 I Nematoda B 3 27 15JUL87 1 33561.0Polychaete larvae B 3 1 15JUL87 1 1243.0Unidentified (Miscellaneous) B 3 18 15JUL87 1 22374.0Harpacticoida B 4 51 15JUL87 1 63393.0Mollusca B 4 11 15JUL87 1 13673.0Nematoda B 4 13 15JUL87 1 16159.0 I Unidentified (Miscellaneous) B 4 22 15JUL87 1 27346.0Harpacticoida B 5 38 15JUL87 1 47234.0Mollusca B 5 4 15JUL87 1 4972.0 I Nematoda B 5 50 15JUL87 1 62150.0Polychaete larvae B 5 2 15JUL87 1 2486.0Unidentified (Miscellaneous) B 5 9 15JUL87 1 11187. 0Harpacticoida B 6 40 15JUL87 1 49720.0Mollusca B 6 6 15JUL87 1 7458.0 I Nematoda B 6 36 15JUL87 1 44748.0Unidentified (Miscellaneous) B 6 22 15JUL87 1 27346.0Harpacticoida B 7 36 15JUL87 1 44748.0Mollusca B 7 6 15JUL87 1 7458.0 I Nematoda B 7 20 15JUL87 1 24860.0Polychaete larvae B 7 2 15JUL87 1 2486.0Unidentified (Miscellaneous) B 7 20 15JUL87 1 24860.0Harpacticoida B 8 35 15JUL87 1 43505.0Mollusca B 8 5 15JUL87 1 6215.0 I Nematoda B 8 34 15JUL87 1 42262.0Polychaete larvae B 8 1 15JUL87 1 1243.0Unidentified (Miscellaneous) B 8 6 15JUL87 1 7458.0Harpacticoida B 9 53 15JUL87 1 65879.0 I I Mollusca B 9 23 15JUL87 1 28589.0Nematoda B 9 12 15JUL87 1 14916.0Polychaete larvae B 9 3 15JUL87 1 3729. 0Unidentified (Miscellaneous) B 9 8 15JUL87 1 9944.0Harpacticoida c 1 44 17JUL87 1 54692.0Mollusca c 1 4 17JUL87 1 4972. 0Nematoda c 1 225 17JUL87 1 279675.0 Polychaete larvae c 1 1 17JUL87 1 1243.0Unidentified (Miscellaneous) c 1 52 17JUL87 1 64636.0 I Harpacticoida c 2 44 17JUL87 1 54692.0Mollusca c 2 3 17JUL87 1 3729.0Nematoda c 2 309 17JUL87 1 384087.0 I Polychaete larvae c 2 2 17JUL87 1 2486.0Unidentified (Miscellaneous) c 2 30 17JUL87 1 37290.0Harpacticoida c 3 37 17JUL87 1 45991. 0Mollusca c 3 2 17JUL87 1 2486.0Nematoda c 3 135 17JUL87 1 167805.0 Polychaete larvae c 3 2 17JUL87 1 2486.0 I Unidentified (Miscellaneous) c 3 64 17JUL87 1 79552.0Harpacticoida c 4 30 17JUL87 1 37290.0Mollusca c 4 5 17JUL87 1 6215.0Nematoda c 4 261 17JUL87 1 324423.0 I Polychaete larvae c 4 3 17JUL87 1 3729.0Unidentified (Miscellaneous) c 4 33 17JUL87 1 41019. 0Harpacticoida c 5 13 17JUL87 1 16159.0Mollusca c 5 3 17JUL87 1 3729. 0Nematoda c 5 326 17JUL87 1 405218.0 I Polychaete larvae c 5 3 17JUL87 1 3729.0Unidentified (Miscellaneous) c 5 23 17JUL87 1 28589.0Harpacticoida c 6 67 17JUL87 1 83281.0Mollusca c 6 8 17JUL87 1 9944.0 I Nematoda c 6 306 17JUL87 1 380358.0Polychaete larvae c 6 4 17JUL87 1 4972.0Unidentified (Miscellaneous) c 6 73 17JUL87 1 90739.0Harpacticoida c 7 39 17JUL87 1 48477. 0Nematoda c 7 159 17JUL87 1 197637.0 Polychaete larvae c 7 5 17JUL87 1 6215.0Unidentified (Miscellaneous) c 7 27 17JUL87 1 33561. 0 I I GEHEIOSP.DAT 336 Harpacticoida c 8 45 17JUL87 1 55935.0 Mollusca c 8 9 17JUL87 1 11187.0 1 303292.0 Nematoda c 8 244 17JUL87 Polychaete larvae c 8 3 17JUL87 1 3729.0 Unidentified (Miscellaneous) c 8 67 17JUL87 1 83281.0 Harpacticoida c 9 26 17JUL87 1 32318.0 Nematoda c 9 116 17JUL87 1 144188.0 Polychaete larvae c 9 4 17JUL87 1 4972.0 Unidentified (Miscellaneous) c 9 33 17JUL87 1 41019.0 D 1 45 17JUL87 1 55935.0 Harpacticoida D 1 1 17JUL87 1 1243.0 Mollusca D 1 179 17JUL87 1 222497.0 NematodaPolychaete larvae D 1 2 17JUL87 1 2486.0 Unidentified (Miscellaneous) D 1 65 17JUL87 1 80795.0 2 51 17JUL87 1 63393.0 Harpacticoida DD 2 2 17JUL87 1 2486.0 Mollusca 2 55 17JUL87 1 68365.0 Nematoda D Polychaete larvae D 2 2 17JUL87 1 2486.0 Unidentified (Miscellaneous) D 2 40 17JUL87 1 49720.0 Harpacticoida D 3 36 17JUL87 1 44748.0 Mollusca D 3 8 17JUL87 1 9944.0 D 3 122 17JUL87 1 151646.0 Nematoda D 3 3 17JUL87 1 3729.0 Polychaete larvae 3 39 17JUL87 1 48477.0 Unidentified (Miscellaneous) DD 4 52 17JUL87 1 64636.0 Harpacticoida 4 3 17JUL87 1 3729. 0Mollusca DD 4 109 17JUL87 1 135487.0 Nematoda D 4 4 17JUL87 1 4972.0 Polychaete larvae Unidentified (Miscellaneous) D 4 35 17JUL87 1 43505.0 D 5 31 17JUL87 1 38533.0 Harpacticoida D 5 1 17JUL87 1 1243.0 Mollusca D 5 145 17JUL87 1 180235.0 Nematoda D 5 1 17JUL87 1 1243.0 Polychaete larvae Unidentified (Miscellaneous) D 5 39 17JUL87 1 48477. 0 D 6 60 17JUL87 1 74580.0 Harpacticoida D 6 7 17JUL87 1 8701.0 Mollusca D 6 139 17JUL87 1 172777. 0Nematoda D 6 3 17JUL87 1 3729.0 Polychaete larvae Unidentified (Miscellaneous) D 6 62 17JUL87 1 77066. 0 D 7 40 17JUL87 1 49720.0 Harpacticoida D 7 3 17JUL87 1 3729. 0Mollusca D 7 113 17JUL87 1 140459.0 Nematoda 17JUL87 1 3729.0 Polychaete larvae D 7 37 30 17JUL87 1 37290.0 Unidentified (Miscellaneous) DD 8 56 17JUL87 1 69608.0 Harpacticoida D 8 5 17JUL87 1 6215.0 Mollusca D 8 160 17JUL87 1 198880.0 Nematoda 1 17JUL87 1 1243.0 Polychaete larvae D 8 Unidentified (Miscellaneous) D 8 35 17JUL87 1 43505.0 D 9 42 17JUL87 1 52206.0 Harpacticoida D 9 3 17JUL87 1 3729.0 Mollusca D 9 285 17JUL87 1 354255.0 Nematoda D 9 5 17JUL87 1 6215.0 Polychaete larvae Unidentified (Miscellaneous) D 9 58 17JUL87 1 72094.0 A 1 1 18APR88 1 3602.0 Capitella capitata Copepod nauplii A 1 4 18APR88 1 14408.0 1 2 18APR88 1 7204. 0 Enhydrosoma spp. A Halacaridae (Hydracarina) A 1 5 18APR88 1 18010.0 A 1 1 18APR88 1 3602.0 Laophonte spp. A 1 3 18APR88 1 10806.0 Littoridina sphinctostoma A 1 1 18APR88 1 3602.0 Monoculoides sp. 1 2 18APR88 1 7204. 0 Mulinia lateralis A A 1 134 18APR88 1 482668.0 Nematoda A 1 13 18APR88 1 46826.0 Ostracoda A 1 1 18APR88 1 3602.0 Polydora sp. 18APR88 1 14408.0 Schizopera sp. A 1 4 Scottolana canadensis A 1 25 18APR88 1 90050.0 I I I I I I I I I I I I I I I I I I I I GEHEIOSP.DAT 337 I I Streblospio benedicti A 1 19 18APR88 1 68438.0 Unidentifi ed (Miscellaneous) A 1 5 18APR88 1 18010.0 Capitella capitata A 1 1 18APR88 1-3 3602.0 Harpacticoida A 1 2 18APR88 1-3 7204.0 Littoridina sphinctostoma A 1 1 18APR88 1-3 3602.0 Mediomastus californiensis A 1 1 18APR88 1-3 3602.0 I I Nematoda A 1 87 18APR88 1-3 313374.0 Oligochaeta A 1 1 18APR88 1-3 3602.0 Ostracoda A 1 1 18APR88 1-3 3602.0 Rhynchocoels A 1 1 18APR88 1-3 3602.0 Scottolana canadensis A 1 4 18APR88 1-3 14408.0 Unidentified (Miscellaneous) A 1 8 18APR88 1-3 28816.0 Capitella capitata A 2 3 18APR88 1 10806.0 Enhydrosoma spp. A 2 1 18APR88 1 3602.0 Halacaridae (Hydracarina) A 2 5 18APR88 1 18010.0 I I Laophonte spp. A 2 5 18APR88 1 18010.0 Littoridina sphinctostoma A 2 3 18APR88 1 10806.0 Mulinia lateralis A 2 1 18APR88 1 3602.0 Nematoda A 2 180 18APR88 1 648360.0 Ostracoda A 2 14 18APR88 1 50428.0 Rhynchocoels A 2 1 18APR88 1 3602.0 Schizopera sp . A 2 14 18APR88 1 50428.0 Scottolana canadensis A 2 20 18APR88 1 72040.0 Streblospio benedicti A 2 29 18APR88 1 104458.0 I I Unidentified (Miscellaneous) A 2 4 18APR88 1 14408.0 Capitella capitata A 2 1 18APR88 1-3 3602.0 Nematoda A 2 105 18APR88 1-3 378210.0 Rhynchocoels A 2 1 18APR88 1-3 3602.0 Scottolana canadensis A 2 1 18APR88 1-3 3602.0 Streblospio benedicti A 2 4 18APR88 1-3 14408.0 Unidentified (Miscellaneous) A 2 3 18APR88 1-3 10806.0 Copepod nauplii A 3 2 18APR88 1 7204. 0 Laophonte spp. A 3 1 18APR88 1 3602.0 I I Littoridina sphinctostoma A 3 2 18APR88 1 7204. 0 Monoculoides sp. A 3 1 18APR88 1 3602.0 Mulinia lateralis A 3 2 18APR88 1 7204.0 Nematoda A 3 221 18APR88 1 796042.0 Ostracoda A 3 9 18APR88 1 32418.0 Scottolana canadensis A 3 30 18APR88 1 108060.0 Streblospio benedicti A 3 25 18APR88 1 90050.0 Unidentified (Miscellaneous) A 3 7 18APR88 1 25214.0 Littoridina sphinctostoma A 3 1 18APR88 1-3 3602.0 I Mediomastus californiensis A 3 1 18APR88 1-3 3602.0 Nematoda A 3 137 18APR88 1-3 493474.0 Ostracoda A 3 1 18APR88 1-3 3602.0 Rhynchocoels A 3 2 18APR88 1-3 7204.0 Scottolana canadensis A 3 7 18APR88 1-3 25214.0 Streblospio benedicti A 3 1 18APR88 1-3 3602.0 Unidentified (Miscellaneous) A 3 9 18APR88 1-3 32418.0 I Bivalvia B 1 1 18APR88 1 3602.0 Copepod nauplii B 1 12 18APR88 1 43224.0 I Cyclopoida B 1 1 18APR88 1 3602.0 Dioasaccidae nauplii B 1 10 l8APR88 1 36020.0 Ectinosomidae B 1 1 18APR88 1 3602.0 Enhydrosoma spp. B 1 5 18APR88 1 18010.0 I Halacaridae (Hydracarina) B 1 8 18APR88 1 28816.0 Halicyclops sp. B 1 1 18APR88 1 3602.0 Kinoryncha B 1 1 18APR88 1 3602.0 Laophonte spp. B 1 16 18APR88 1 57632.0 Mulinia lateralis B 1 1 18APR88 1 3602.0 I Nematoda B 1 62 18APR88 1 223324.0 Ostracoda B 1 21 18APR88 1 75642.0 Rhynchocoels B 1 1 18APR88 1 3602.0 Saphirella sp. B 1 1 18APR88 1 3602.0 Schizopera sp. B 1 33 18APR88 1 118866. 0 Scottolana canadensis B 1 8 18APR88 1 28816 .0 Streblospio benedicti B 1 35 18APR88 1 126070.0 I GEMEIOSP.DAT 338 I Unidentified (Miscellaneous) B 1 9 18APR88 1 32418.0 Capitella capitata B 1 1 18APR88 1-3 3602.0 I Enhydrosoma spp. B 1 1 18APR88 1-3 3602.0 Laophonte spp. B 1 1 18APR88 1-3 3602.0 Littoridina sphinctostoma B 1 4 18APR88 1-3 14408.0 Mediomastus californiensis B 1 1 18APR88 1-3 3602.0 Mulinia lateralis B 1 4 18APR88 1-3 14408.0 I Nematoda B 1 360 18APR88 1-3 1296720.0 Ostracoda B 1 3 18APR88 1-3 10806.0 Rhynchocoels B 1 2 18APR88 1-3 7204.0 Schizopera sp. B 1 1 18APR88 1-3 3602.0 I Scottolana canadensis B 1 1 18APR88 1-3 3602.0 Streblospio benedicti B 1 17 18APR88 1-3 61234.0 Copepod nauplii B 2 40 18APR88 1 144080.0 Dioasaccidae nauplii B 2 11 18APR88 1 39622.0 I Ectinosomidae B 2 1 18APR88 1 3602.0 Enhydrosoma spp. B 2 5 18APR88 1 18010.0 Halacaridae (Hydracarina) B 2 1 18APR88 1 3602.0 Halicyclops sp. B 2 1 18APR88 1 3602.0 Laophonte spp. B 2 15 18APR88 1 54030.0 I Littoridina sphinctostoma B 2 4 18APR88 1 14408.0 Mediomastus californiensis B 2 5 18APR88 1 18010.0 Mulinia lateralis B 2 3 18APR88 1 10806.0 Nematoda B 2 76 18APR88 1 273752.0 I Ostracoda B 2 19 18APR88 1 68438.0 Rangia cuneata B 2 1 18APR88 1 3602.0 Rhynchocoels B 2 2 18APR88 1 7204.0 Schizopera sp. B 2 14 18APR88 1 50428.0 Scottolana canadensis B 2 29 18APR88 1 104458.0 I Streblospio benedicti B 2 80 18APR88 1 288160.0 Unidentified (Miscellaneous) B 2 7 18APR88 1 25214.0 Capitella capitata B 2 1 18APR88 1-3 3602.0 Dioasaccidae nauplii B 2 1 18APR88 1-3 3602.0 I Littoridina sphinctostoma B 2 2 18APR88 1-3 7204.0 Mulinia lateralis B 2 2 18APR88 1-3 7204.0 Nematoda B 2 314 18APR88 1-3 1131028.0 Ostracoda B 2 1 18APR88 1-3 3602.0 Rhynchocoels B 2 4 18APR88 1-3 14408.0 I Scottolana canadensis B 2 10 18APR88 1-3 36020.0 Streblospio benedicti B 2 21 18APR88 1-3 75642.0 Unidentified (Miscellaneous) B 2 4 18APR88 1-3 14408.0 Argulus sp. B 3 1 18APR88 1 3602.0 I Capitella capitata B 3 3 18APR88 1 10806.0 Copepod nauplii B 3 13 18APR88 1 46826.0 Cyclopoida B 3 1 18APR88 1 3602.0 Dioasaccidae nauplii B 3 7 18APR88 1 25214.0 Ectinosomidae B 3 1 18APR88 1 3602.0 I Enhydrosoma spp. B 3 3 18APR88 1 10806.0 Halacaridae (Hydracarina) B 3 5 18APR88 1 18010.0 Halicyclops sp. B 3 2 18APR88 1 7204.0 Laophonte spp. B 3 12 18APR88 1 43224.0 I Mediomastus californiensis B 3 2 18APR88 1 7204.0 Monoculoides sp. B 3 1 18APR88 1 3602.0 Mulinia lateralis B 3 4 18APR88 1 14408.0 Nematoda B 3 100 18APR88 1 360200.0 I Ostracoda B 3 20 18APR88 1 72040.0 Rhynchocoels B 3 2 18APR88 1 7204.0 Saph ire lla sp. B 3 1 18APR88 1 3602.0 Schizopera sp. B 3 21 18APR88 1 75642.0 Scottolana canadensis B 3 3 18APR88 1 10806.0 I Streblospio benedicti B 3 46 18APR88 1 165692.0 Unidentified (Miscellaneous) B 3 7 18APR88 1 25214.0 Copepod nauplii B 3 1 18APR88 1-3 3602.0 Cyclopoida B 3 1 18APR88 1-3 3602.0 I Littoridina sphinctostoma B 3 1 18APR88 1-3 3602.0 Mediomastus californiensis B 3 1 18APR88 1-3 3602.0 Mulinia lateralis B 3 3 18APR88 1-3 10806.0 I ':\t•• I I GEMEIOSP.DAT 339 ,. I I Nematoda B 3 560 18APR88 1-3 2017120.0 01 i gochaeta B 3 1 18APR88 1-3 3602 .0 I Rhynchocoels B 3 1 18APR88 1-3 3602 . 0 Scottolana canadensis B 3 1 18APR88 1-3 3602.0 Streblospio benedicti B 3 25 18APR88 1-3 90050.0 Unidentified (Miscellaneous) B 3 6 18APR88 1-3 21612 .0 I Copepod nauplii c 1 14 18APR88 1 50428.0 Dioasaccidae nauplii c 1 3 18APR88 1 10806.0 Ectinosomidae c 1 1 18APR88 1 3602.0 Enhydrosoma spp. c 1 1 18APR88 1 3602 .0 laophonte spp. c 1 1 18APR88 1 3602.0 I littoridina sphinctostoma c 1 5 18APR88 1 18010.0 Mediomastus californiensis c 1 3 18APR88 1 10806 . 0 Mulinia lateralis c 1 5 18APR88 1 18010.0 Nematoda c 1 83 18APR88 1 298966.0 I Ostracoda c 1 12 18APR88 1 43224.0 Schizopera sp. c 1 10 18APR88 1 36020.0 Scottolana canadensis c 1 7 18APR88 1 25214.0 Streblospio benedicti c 1 19 18APR88 1 68438.0 Unidentified (Miscellaneous) c 1 4 18APR88 1 14408.0 I Copepod nauplii c 1 2 18APR88 1-3 7204.0 Ectinosomidae c 1 1 18APR88 1-3 3602.0 Haploscoloplos foliosus c 1 1 18APR88 1-3 3602.0 Kinoryncha c 1 1 18APR88 1-3 3602.0 I I Macoma mitche 11 i c 1 1 18APR88 1-3 3602.0 Mediomastus californiensis c 1 9 18APR88 1-3 32418.0 Nematoda c 1 258 18APR88 1-3 929316.0 Rhynchocoels c 1 1 18APR88 1-3 3602 . 0 Scottolana canadensis c 1 1 18APR88 1-3 3602.0 Streblospio benedicti c 1 3 18APR88 1-3 10806.0 Unidentified (Miscellaneous) c 1 1 18APR88 1-3 3602.0 Copepod nauplii c 2 22 18APR88 1 79244.0 Cyclaspis varians c 2 1 18APR88 1 3602.0 I _I Cyclopoida c 2 1 18APR88 1 3602.0 Diastylis sp . c 2 1 18APR88 1 3602.0 Dioasaccidae nauplii c 2 2 18APR88 1 7204. 0 Enhydrosoma spp. c 2 7 18APR88 1 25214 .0 littoridina sphinctostoma c 2 5 18APR88 1 18010.0 Mulinia lateralis c 2 4 18APR88 1 14408.0 Nematoda c 2 82 18APR88 1 295364.0 Ostracoda c 2 16 18APR88 1 57632.0 Schizopera sp. c 2 19 18APR88 1 68438 . 0 I I Scottolana canadensis c 2 1 18APR88 1 3602.0 Streblospio benedicti c 2 17 18APR88 1 61234 .0 Unidentified (Miscellaneous) c 2 4 18APR88 1 14408.0 Capitella capitata c 2 1 18APR88 1-3 3602.0 Copepod nauplii c 2 3 18APR88 1-3 10806.0 Cyclopoida c 2 1 18APR88 1-3 3602.0 Enhydrosoma spp. c 2 3 18APR88 1-3 10806.0 Kinoryncha c 2 1 18APR88 1-3 3602 .0 longipedia americana c 2 1 18APR88 1-3 3602.0 I Mediomastus californiensis c 2 8 18APR88 1-3 28816 .0 Mulinia lateralis c 2 1 18APR88 1-3 3602.0 Nematoda c 2 330 18APR88 1-3 1188660.0 Schizopera sp. c 2 8 18APR88 1-3 28816.0 I Scottolana canadensis c 2 2 18APR88 1-3 7204.0 Streblospio benedicti c 2 4 18APR88 1-3 14408.0 Unidentified (Miscellaneous) c 2 1 18APR88 1-3 3602.0 Copepod nauplii c 3 64 18APR88 1 230528.0 Cyclopoida c 3 2 18APR88 1 7204.0 I Dioasaccidae nauplii c 3 8 18APR88 1 28816.0 Ectinosomidae c 3 5 18APR88 1 18010.0 Enhydrosoma spp . c 3 7 18APR88 1 25214.0 Glycinde solitaria c 3 1 18APR88 1 3602 . 0 Halicyclops sp. c 3 1 18APR88 1 3602.0 Kinoryncha c 3 9 18APR88 1 32418.0 Laophonte spp. c 3 1 18APR88 1 3602.0 I I 340 GEME IOSP •DAT I Littoridina sphinctostoma c 3 2 18APR88 1 7204.0 Longipedia americana c 3 4 18APR88 1 14408.0 I Mediomastus californiensis c 3 1 18APR88 1 3602.0 Mulinia lateralis c 3 5 18APR88 1 18010.0 Nematoda c 3 188 18APR88 1 677176.0 Ostracoda c 3 44 18APR88 1 158488.0 Oxyurostylis smithi c 1 3 18APR88 1 3602.0 I Rhynchocoels c 3 1 18APR88 1 3602.0 Saphirella sp. c 1 3 18APR88 1 3602.0 Schizopera sp. c 3 40 18APR88 1 144080.0 Scottolana canadensis c 3 4 18APR88 1 14408.0 I Streblospio benedicti c 3 46 18APR88 1 165692.0 Unidentified (Miscellaneous) c 3 10 18APR88 1 36020.0Copepod nauplii c 3 5 18APR88 1-3 18010.0 Cyclopoida c 3 1 18APR88 1-3 3602.0 Diopatra cuprea c 3 1 18APR88 1-3 3602.0 I Enhydrosoma spp. c 3 1 18APR88 1-3 3602.0 Halacaridae (Hydracarina) c 3 2 18APR88 1-3 7204.0Kinoryncha c 3 1 18APR88 1-3 3602.0 Mediomastus californiensis c 3 3 18APR88 1-3 10806.0 I Mulinia lateralis c 3 1 18APR88 1-3 3602.0 Nematoda c 3 276 18APR88 1-3 994152.0 ISchizopera sp. c 3 5 18APR88 1-3 18010.0 Scottolana canadensis c 3 1 18APR88 1-3 3602.0 Streblospio benedicti c 3 2 18APR88 1-3 7204.0 I Unidentified (Miscellaneous) c 3 1 18APR88 1-3 3602.0Copepod nauplii D 1 34 18APR88 1 122468.0 Cyclopoida D 1 1 18APR88 1 3602.0 Dioasaccidae nauplii D 1 21 18APR88 1 75642.0 I Ectinosomidae D 1 1 18APR88 1 3602.0 Enhydrosoma spp. D 22 1 18APR88 1 79244 .0 Gastropoda D 1 1 18APR88 1 3602.0 Halacaridae (Hydracarina) D 1 11 18APR88 1 39622.0 Halicyclops sp. D 1 5 18APR88 1 18010.0 I Harpacticoida D 1 17 18APR88 1 61234.0 Kinoryncha D 1 77 18APR88 1 277354.0 Laophonte spp. D 1 1 18APR88 1 3602.0Longipedia americana D 1 1 18APR88 1 3602.0 IMediomastus californiensis D 1 26 18APR88 1 93652.0 Mulinia lateralis D 1 1 18APR88 1 3602.0 Nematoda D 1 397 18APR88 1 1429994.0 Ostracoda D 1 31 18APR88 1 111662.0 Schizopera sp. D I 1 27 18APR88 1 97254.0 Scottolana canadensis D 1 3 18APR88 1 10806.0 Streblospio benedicti D 1 6 18APR88 1 21612.0 Unidentified (Miscellaneous) D 1 11 18APR88 1 39622.0Copepod nauplii D 1 1 18APR88 1-3 3602.0 I Glycinde solitaria D 1 2 18APR88 1-3 7204.0 Halacaridae (Hydracarina) D 1 1 18APR88 1-3 3602.0 Mediomastus californiensis 0 1 6 18APR88 1-3 21612.0Nematoda D 1 443 18APR88 1-3 1595686.0 Scottolana canadensis D 1 1 18APR88 1-3 3602.0 I Unidentified (Miscellaneous) D 1 3 18APR88 1-3 10806.0 Copepod nauplii D 2 7 18APR88 1 25214.0 Oioasaccidae nauplii D 2 5 18APR88 1 18010.0 Enhydrosoma spp. D 2 11 18APR88 1 39622.0 I Gastropoda 0 2 3 18APR88 1 10806.0 Halacaridae (Hydracarina) D 2 7 18APR88 1 25214 .0 Harpacticoida D 2 12 18APR88 1 43224.0 Kinoryncha D 2 53 18APR88 1 190906.0 Laophonte spp . D 2 6 18APR88 1 21612.0 I Mediomastus californiensis D 2 10 18APR88 1 36020.0 Mulinia lateralis D 2 1 18APR88 1 3602.0 Nematoda D 2 392 18APR88 1 1411984. 0 Ostracoda D 2 19 18APR88 1 68438.0 I Schizopera sp. D 2 25 18APR88 1 90050.0 Scottolana canadensis 0 2 4 18APR88 1 14408.0 I I GEHEIOSP.DAT 341 I Streblospio benedicti D 2 9 18APR88 1 32418.0 Unidentified (Miscellaneous) D 2 4 18APR88 1 14408.0 I Copepod nauplii D 2 2 18APR88 1-3 7204. 0 Halacaridae (Hydracarina) D 2 1 18APR88 1-3 3602.0 Mulinia lateralis 0 2 1 18APR88 1-3 3602.0 Nematoda D 2 479 18APR88 1-3 1725358.0 I Schizopera sp. D 2 1 18APR88 1-3 3602.0 Streblospio benedicti 0 2 5 18APR88 1-3 18010.0 Unidentified (Miscellaneous) D 2 1 18APR88 1-3 3602.0 Copepod nauplii D 3 22 18APR88 1 79244.0 I Dioasaccidae nauplii D 3 12 18APR88 1 43224.0 Ectinosomidae D 3 3 18APR88 1 10806.0 Enhydrosoma spp. D 3 14 18APR88 1 50428.0 Halacaridae (Hydracarina) D 3 4 18APR88 1 14408.0 Halicyclops sp. D 3 6 18APR88 1 21612.0 I Harpacticoida D 3 15 18APR88 1 54030.0 Kinoryncha D 3 65 18APR88 1 234130.0 Laophonte spp. D 3 3 18APR88 1 10806.0 Longipedia americana D 3 1 18APR88 1 3602.0 I Mediomastus californiensis D 3 10 18APR88 1 36020.0 Mulinia lateralis D 3 9 18APR88 1 32418.0 Nematoda D 3 325 18APR88 1 1170650. 0 Ostracoda D 3 25 18APR88 1 90050.0 Schizopera sp. D 3 22 18APR88 1 79244.0 I Scottolana canadensis D 3 4 18APR88 1 14408.0 Streblospio benedicti D 3 6 18APR88 1 21612.0 Unidentified (Miscellaneous) D 3 8 18APR88 1 28816.0 Mediomastus californiensis D 3 6 18APR88 1-3 21612.0 I Nematoda D 3 290 18APR88 1-3 1044580.0 Scottolana canadensis D 3 1 18APR88 1-3 3602.0 Unidentified (Miscellaneous) D 3 4 18APR88 1-3 14408.0 Capitella capitata A 1 1 07JUL88 1 3602.0 Copepod nauplii A 1 2 07JUL88 1 7204.0 I Halacaridae (Hydracarina) A 1 3 07JUL88 1 10806.0 Littoridina sphinctostoma A 1 41 07JUL88 1 147682.0 Mediomastus californiensis A 1 3 07JUL88 1 10806.0 Mulinia lateralis A 1 1 07JUL88 1 3602.0 Nematoda A 1 62 07JUL88 1 223324.0 I I Ostracoda A 1 34 07JUL88 1 122468.0 Scottolana canadensis A 1 17 07JUL88 1 61234.0 Streblospio benedicti A 1 23 07JUL88 1 82846.0 Unidentified (Miscellaneous) A 1 24 07JUL88 1 86448.0 Capitella capitata A 1 1 07JUL88 1-3 3602.0 Copepod nauplii A 1 2 07JUL88 1-3 7204.0 Littoridina sphinctostoma A 1 1 07JUL88 1-3 3602.0 Mediomastus californiensis A 1 4 07JUL88 1-3 14408.0 Nematoda A 1 298 07JUL88 1-3 1073396 . 0 I I Ostracoda A 1 5 07JUL88 1-3 18010.0 Streblospio benedicti A 1 4 07JUL88 1-3 14408.0 Unidentified (Miscellaneous) A 1 1 07JUL88 1-3 3602.0 Copepod nauplii A 2 7 07JUL88 1 25214.0 Dioasaccidae nauplii A 2 1 07JUL88 1 3602.0 Halacaridae (Hydracarina) A 2 1 07JUL88 1 3602.0 Halicyclops sp. A 2 2 07JUL88 1 7204. 0 Littoridina sphinctostoma A 2 65 07JUL88 1 234130.0 I Mediomastus californiensis A 2 3 07JUL88 1 10806.0 Monoculoides sp. A 2 2 07JUL88 1 7204.0 Mulinia lateralis A 2 2 07JUL88 1 7204.0 Nematoda A 2 45 07JUL88 1 162090.0 Ostracoda A 2 42 07JUL88 1 151284.0 Polychaete larvae A 2 1 07JUL88 1 3602.0 I Scottolana canadensis A 2 24 07JUL88 1 86448.0 Streblospio benedicti A 2 7 07JUL88 1 25214.0 Unidentified (Miscellaneous) A 2 45 07JUL88 1 162090.0 Capitella capitata A 2 1 07JUL88 1-3 3602.0 I Copepod nauplii A 2 1 07JUL88 1-3 3602.0 Littoridina sphinctostoma A 2 1 07JUL88 1-3 3602.0 342 GEHEIOSP.DAT I Mediomastus californiensis A 2 4 07JUL88 1-3 14408.0 Mulinia lateralis A 2 1 07JUL88 1-3 3602.0 I Nematoda A 2 192 07JUL88 1-3 691584.0 Ostracoda A 2 1 07JUL88 1-3 3602.0 Streblospio benedicti A 2 2 07JUL88 1-3 7204. 0 Unidentified (Miscellaneous) A 2 7 07JUL88 1-3 25214.0 Capitella capitata A 3 1 07JUL88 1 3602.0 I Copepod nauplii A 3 2 07JUL88 1 7204.0 Littoridina sphinctostoma A 3 33 07JUL88 1 118866.0 Mediomastus californiensis A 3 5 07JUL88 1 18010.0 Mulinia lateralis A 3 1 07JUL88 1 3602.0 I Nematoda A 3 52 07JUL88 1 187304.0 Ostracoda A 3 33 07JUL88 1 118866.0 Scottolana canadensis A 3 8 07JUL88 1 28816.0 Streblospio benedicti A 3 16 07JUL88 1 57632.0 I Unidentified (Miscellaneous) A 3 19 07JUL88 1 68438.0 Copepod nauplii A 3 1 07JUL88 1-3 3602.0 Halicyclops sp. A 3 1 07JUL88 1-3 3602.0 Mediomastus californiensis A 3 1 07JUL88 1-3 3602.0 Mulinia lateralis A 3 1 07JUL88 1-3 3602.0 I Nematoda A 3 345 07JUL88 1-3 1242690.0 Streblospio benedicti A 3 2 07JUL88 1-3 7204. 0 Unidentified (Miscellaneous) A 3 4 07JUL88 1-3 14408.0 Bivalvia B 1 1 07JUL88 1 3602.0 I Copepod nauplii B 1 11 07J.UL88 1 39622.0 Dioasaccidae nauplii B 1 9 07JUL88 1 32418.0 Ectinosomidae B 1 7 07JUL88 1 25214.0 Enhydrosoma spp. B 1 13 07JUL88 1 46826.0 Halacaridae (Hydracarina) B 1 14 07JUL88 1 50428.0 I Halicyclops sp. B 1 2 07JUL88 1 7204.0 Harpacticoida B 1 27 07JUL88 1 97254.0 Kinoryncha B 1 3 07JUL88 1 10806.0 Laophonte spp. B 1 1 07JUL88 1 3602.0 I Littoridina sphinctostoma B 1 6 07JUL88 1 21612.0 Mediomastus californiensis B 1 16 07JUL88 1 57632.0 Mulinia lateralis B 1 5 07JUL88 1 18010.0 Nematoda B 1 85 07JUL88 1 306170.0 Ostracoda B 1 28 07JUL88 1 100856.0 I Schizopera sp . B 1 5 07JUL88 1 18010.0 Scottolana canadensis B 1 10 07JUL88 1 36020.0 Streblospio benedicti B 1 15 07JUL88 1 54030.0 Unidentified (Miscellaneous) B 1 44 07JUL88 1 158488.0 I Dioasaccidae nauplii B 1 1 07JUL88 1-3 3602 . 0 Halacaridae (Hydracarina) B 1 1 07JUL88 1-3 3602.0 Mediomastus californiensis B 1 9 07JUL88 1-3 32418.0 Mulinia lateralis B 1 1 07JUL88 1-3 3602.0 'I Nematoda B 1 157 07JUL88 1-3 565514.0 Ostracoda B 1 1 07JUL88 1-3 3602.0 Rhynchocoels B 1 1 07JUL88 1-3 3602.0 Unidentified (Mi see llaneous) B 1 1 07JUL88 1-3 3602.0 Bivalvia B 2 3 07JUL88 1 10806.0 I I Copepod nauplii B 2 8 07JUL88 1 28816.0 Dioasaccidae nauplii B 2 3 07JUL88 1 10806.0 Ectinosomidae B 2 7 07JUL88 1 25214.0 Enhydrosoma spp . B 2 12 07JUL88 1 43224.0 Halacaridae (Hydracarina) B 2 10 07JUL88 1 36020.0 I Harpacticoida B 2 12 07JUL88 1 43224.0 Littoridina sphinctostoma B 2 2 07JUL88 1 7204. 0 Mediomastus californiensis B 2 24 07JUL88 1 86448.0 Mulinia lateralis B 2 7 07JUL88 1 25214.0 I Nematoda B 2 48 07JUL88 1 172896.0 Ostracoda B 2 31 07JUL88 1 111662. 0 Polychaete larvae B 2 1 07JUL88 1 3602.0 Schizopera sp. B 2 4 07JUL88 1 14408.0 I Scolelepis squamata B 2 1 07JUL88 1 3602.0 Scottolana canadensis B 2 11 07JUL88 1 39622.0 Streblospio benedicti B 2 20 07JUL88 1 72040.0 I I GEMEIOSP.DAT 343 I I Unidentified (Miscellaneous) B 2 43 07JUL88 1 154886.0 Copepod nauplii B 2 2 07JUL88 1-3 7204.0 Medi omastus californiensis B 2 5 07JUL88 1-3 18010.0 Nematoda B 2 238 07JUL88 1-3 857276.0 Ostracoda B 2 2 07JUL88 1-3 7204.0 Streblospio benedicti B 2 2 07JUL88 1-3 7204.0 I I Unidentified (Miscellaneous) B 2 1 07JUL88 1-3 3602.0 Bivalvia B 3 3 07JUL88 1 10806.0 Copepod nauplii B 3 11 07JUL88 1 39622.0 Dioasaccidae nauplii B 3 10 07JUL88 1 36020.0 Ectinosomidae B 3 6 07JUL88 1 21612.0 Enhydrosoma spp. B 3 6 07JUL88 1 21612.0 Halacaridae (Hydracarina) B 3 11 07JUL88 1 39622.0 Halicyclops sp. B 3 1 07JUL88 1 3602.0 Harpacticoida B 3 17 07JUL88 1 61234.0 I Laophonte spp. B 3 1 07JUL88 1 3602.0 Littoridina sphinctostoma B 3 6 07JUL88 1 21612.0 Mediomastus californiensis B 3 15 07JUL88 1 54030.0 Mulinia lateralis B 3 5 07JUL88 1 18010.0 I Nematoda B 3 67 07JUL88 1 241334.0 Ostracoda B 3 28 07JUL88 1 100856.0 Pseudodiaptomus coronatus B 3 1 07JULB8 1 3602.0 Schizopera sp. B 3 5 07JUL88 1 18010.0 Scottolana canadensis B 3 4 07JUL88 1 14408.0 I Streblospio benedicti B 3 8 07JUL88 1 28816.0 Unidentified (Miscellaneous) B 3 33 07JUL88 1 118866.0 Copepod nauplii B 3 3 07JUL88 1-3 10806.0 Mediomastus californiensis B 3 5 07JUL88 1-3 18010.0 I Nematoda B 3 314 07JUL88 1-3 1131028.0 Unidentified (Miscellaneous) B 3 3 07JUL88 1-3 10806.0 Bivalvia c 1 14 08JUL88 1 50428.0 Copepod nauplii c 1 19 08JUL88 1 68438.0 Cyclaspis varians c 1 1 08JUL88 1 3602.0 I Dioasaccidae nauplii c 1 3 08JUL88 1 10806.0 Enhydrosoma spp. c 1 6 08JUL88 1 21612.0 Gastropoda c 1 2 08JUL88 1 7204.0 Halacaridae (Hydracarina) c 1 12 08JUL88 1 43224.0 I Halicyclops sp. c 1 17 08JUL88 1 61234.0 Harpacticoida c 1 11 08JUL88 1 39622.0 Kinoryncha c 1 49 08JUL88 1 176498.0 Mediomastus californiensis c 1 22 08JUL88 1 79244.0 Mulinia lateralis c 1 6 08JUL88 1 21612.0 I Nematoda c 1 188 08JUL88 1 677176.0 Ostracoda c 1 28 08JUL88 1 100856.0 Paraprionospio pinnata c 1 1 08JUL88 1 3602.0 Pseudodiaptomus coronatus c 1 2 08JUL88 1 7204.0 I I Rhynchocoels c 1 1 08JUL88 1 3602.0 Schizopera sp. c 1 38 08JUL88 1 136876.0 Scottolana canadensis c 1 4 08JUL88 1 14408.0 Streblospio benedicti c 1 11 08JUL88 1 39622.0 Unidentified (Miscellaneous) c 1 65 08JUL88 1 234130.0 Mediomastus californiensis c 1 6 08JUL88 1-3 21612.0 Nematoda c 1 398 08JUL88 1-3 1433596.0 Ostracoda c 1 2 08JUL88 1-3 7204.0 Schizopera sp. c 1 2 08JUL88 1-3 7204 .0 I Scottolana canadensis c 1 1 08JUL88 1-3 3602.0 Streblospio benedicti c 1 1 08JUL88 1-3 3602.0 Unidentified (Miscellaneous) c 1 4 08JUL88 1-3 14408.0I Bivalvia c 2 10 08JUL88 1 36020.0 Copepod nauplii c 2 6 08JUL88 1 21612.0 Cyclaspis varians c 2 1 08JUL88 1 3602.0 Diopatra cuprea c 2 1 08JUL88 1 3602.0 Enhydrosoma spp. c 2 13 08JUL88 1 46826.0 Gastropoda c 2 2 08JUL88 1 7204. 0 I Halacaridae (Hydracarina) c 2 4 08JUL88 1 14408.0 Ha licyc lops sp. c 2 9 08JUL88 1 32418.0 Harpacticoida c 2 4 08JUL88 1 14408.0 GEMEIOSP.DAT 344 I Kinoryncha c 2 25 08JUL88 1 90050.0 Mediomastus californiensis c 2 23 08JUL88 1 82846.0 I Monoculoides sp. c 2 1 08JUL88 1 3602.0 Mulinia lateralis c 2 2 08JUL88 1 7204.0 Nematoda c 2 133 08JUL88 1 479066.0 Ostracoda c 2 18 08JUL88 1 64836.0 I Schizopera sp. c 2 29 08JUL88 1 104458.0 Scottolana canadensis c 2 5 08JUL88 1 18010.0 Streblospio benedicti c 2 7 08JUL88 1 25214.0 Unidentified {Miscellaneous) c 2 47 08JUL88 1 169294.0 Copepod nauplii c 2 1 08JUL88 1-3 3602.0 I Enhydrosoma spp. c 2 3 08JUL88 1-3 10806.0 Halicyclops sp. c 2 1 08JUL88 1-3 3602.0 Kinoryncha c 2 1 08JUL88 1-3 3602.0 Mediomastus californiensis c 2 13 08JUL88 1-3 46826.0 Nematoda c 2 507 08JUL88 1-3 1826214.0 I Ostracoda c 2 2 08JUL88 1-3 7204.0 Schizopera sp. c 2 6 08JUL88 1-3 21612.0 Streblospio benedicti c 2 5 08JUL88 1-3 18010.0 Unidentified {Miscellaneous) c 2 6 08JUL88 1-3 21612.0 I Bivalvia c 3 6 08JUL88 1 21612.0 Copepod nauplii c 3 11 08JUL88 1 39622.0 Dioasaccidae nauplii c 3 2 08JUL88 1 7204.0 Ectinosomidae c 3 1 08JUL88 1 3602.0 I Enhydrosoma spp. c 3 4 08JUL88 1 14408.0 Gastropoda c 3 1 08JUL88 1 3602.0 Halacaridae {Hydracarina) c 3 4 08JUL88 1 14408.0 Ha 1icyc lops sp. c 3 4 08JUL88 1 14408.0 Harpacticoida c 3 6 08JUL88 1 21612.0 I Kinoryncha c 3 21 08JUL88 1 75642.0 Mediomastus californiensis c 3 6 08JUL88 1 21612.0 Mulinia lateralis c 3 3 08JUL88 1 10806.0 Nematoda c 3 47 08JUL88 1 169294.0 I Ostracoda c 3 23 08JUL88 1 82846.0 Schizopera sp. c 3 15 08JUL88 1 54030.0 Scottolana canadensis c 3 3 08JUL88 1 10806.0 Streblospio benedicti c 3 2 08JUL88 1 7204.0 I Unidentified (Miscellaneous) c 3 42 08JUL88 1 151284.0 Copepod nauplii c 3 1 08JUL88 1-3 3602.0 Enhydrosoma spp. c 3 2 08JUL88 1-3 7204.0 Kinoryncha c 3 4 08JUL88 1-3 14408.0 Mediomastus californiensis c 3 14 08JUL88 1-3 50428.0 I Nematoda c 3 479 08JUL88 1-3 1725358.0 Ostracoda c 3 1 08JUL88 1-3 3602.0 Schizopera sp. c 3 2 08JUL88 1-3 7204.0 Streblospio benedicti c 3 2 08JUL88 1-3 7204.0 ·1 Unidentified (Miscellaneous) c 3 1 08JUL88 1-3 3602.0 Bivalvia D 1 8 08JUL88 1 28816.0 Copepod nauplii D 1 31 08JUL88 1 111662. 0 Dioasaccidae nauplii D 1 4 08JUL88 1 14408.0 Ectinosomidae D 1 8 08JUL88 1 28816.0 I Enhydrosoma spp. D 1 17 08JUL88 1 61234.0 Halacaridae {Hydracarina} D 1 9 08JUL88 1 32418.0 Harpacticoida D 1 10 08JUL88 1 36020.0 Kinoryncha D 1 31 08JUL88 1 111662. 0 Laophonte spp. D 1 12 08JUL88 1 43224.0 I Mediomastus californiensis D 1 8 08JUL88 1 28816.0 1 691584.0 Nematoda D 1 192 08JUL88 Ostracoda D 1 37 08JUL88 1 133274.0 Polychaete larvae D 1 1 08JUL88 1 3602.0 I Pseudodiaptomus coronatus D 1 2 08JUL88 1 7204.0 Schizopera sp. D 1 6 08JUL88 1 21612.0 Scottolana canadensis D 1 2 08JUL88 1 7204.0 Streblospio benedicti D 1 2 08JUL88 1 7204.0 I Unidentified {Miscellaneous) D 1 57 08JUL88 1 205314.0 3602 .0 Zausodes arenicolus D 1 1 08JUL88 1 Enhydrosoma spp. D 1 1 08JUL88 1-3 3602.0 I I GEHEIOSP.DAT 345 I Glycinde solitaria D 1 1 08JUL88 1-3 3602.0 Haploscoloplos foliosus D 1 1 08JUL88 1-3 3602.0 I I Kinoryncha D 1 1 08JUL88 1-3 3602.0 Longipedia americana D 1 1 08JUL88 1-3 3602.0 Mediomastus californiensis D 1 2 08JUL88 1-3 7204.0 Nematoda D 1 309 08JUL88 1-3 1113018. 0 Schizopera sp. D 1 1 08JUL88 1-3 3602.0 Unidentified (Miscellaneous) D 1 5 08JUL88 1-3 18010.0 Bivalvia D 2 1 08JUL88 1 3602.0 Copepod nauplii D 2 13 08JUL88 1 46826.0 Dioasaccidae nauplii D 2 8 08JUL88 1 28816.0 I I Ectinosomidae D 2 10 08JUL88 1 36020.0 Enhydrosoma spp. D 2 19 08JUL88 1 68438.0 Halacaridae (Hydracarina) D 2 11 08JUL88 1 39622.0 Halicyclops sp. D 2 1 08JUL88 1 3602.0 Harpacticoida D 2 11 08JUL88 1 39622.0 Kinoryncha D 2 33 08JUL88 1 118866.0 Laophonte spp . D 2 19 08JUL88 1 68438.0 Mediomastus californiensis D 2 3 08JUL88 1 10806.0 Nematoda D 2 172 08JUL88 1 619544.0 I I Ostracoda D 2 34 08JUL88 1 122468.0 Schizopera sp. D 2 1 08JUL88 1 3602.0 Scottolana canadensis D 2 7 08JUL88 1 25214.0 Streblospio benedicti D 2 1 08JUL88 1 3602.0 Unidentified (Miscellaneous) D 2 34 08JUL88 1 122468.0 Zausodes arenicolus D 2 3 08JUL88 1 10806.0 Halacaridae (Hydracarina) D 2 1 08JUL88 1-3 3602.0 Mediomastus californiensis D 2 2 08JUL88 1-3 7204. 0 Nematoda D 2 244 08JUL88 1-3 878888.0 I I Schizopera sp. D 2 3 08JUL88 1-3 10806.0 Unidentified (Miscellaneous) D 2 5 08JUL88 1-3 18010.0 Bivalvia D 3 5 08JUL88 1 18010.0 Copepod nauplii D 3 34 08JUL88 1 122468.0 Dioasaccidae nauplii D 3 7 08JUL88 1 25214.0 Ectinosomidae D 3 1 08JUL88 1 3602.0 Enhydrosoma spp. D 3 13 08JUL88 1 46826.0 Glycinde solitaria D 3 1 08JUL88 1 3602.0 Halacaridae (Hydracarina) D 3 5 08JUL88 1 18010.0 I Harpacticoida D 3 10 08JUL88 1 36020.0 Kinoryncha D 3 70 08JUL88 1 252140.0 Laophonte spp. D 3 3 08JUL88 1 10806.0 Mediomastus californiensis D 3 6 08JUL88 1 21612.0 I Nematoda D 3 308 08JUL88 1 1109416. 0 Ostracoda D 3 23 08JUL88 1 82846.0 Polychaete larvae D 3 1 08JUL88 1 3602.0 Schizopera sp. D 3 2 08JUL88 1 7204.0 Scottolana canadensis D 3 7 08JUL88 1 25214.0 I Streblospio benedicti D 3 2 08JUL88 1 7204.0 Turbe llaria D 3 1 08JUL88 1 3602.0 Unidentified (Miscellaneous) D 3 56 08JUL88 1 201712.0 Copepod nauplii D 3 1 08JUL88 1-3 3602.0 I Halacaridae (Hydracarina) D 3 1 08JUL88 1-3 3602.0 Kinoryncha D 3 3 08JUL88 1-3 10806.0 Mediomastus californiensis D 3 7 08JUL88 1-3 25214.0 Nematoda D 3 486 08JUL88 1-3 1750572.0 I I I 346 NCHEIOSP.DAT I NCMEIOSP.DAT Nueces Estuary Meiofauna species data. 3 replicates (REP) were taken each time, N=n/section (SEC) I nm2=n/mA2. Sections in cm. SEC: 1=0-1 cm and 3=1-3 cm. I SP NAME DATE STA REP SEC N NM2 Bivalvia 190CT87 c 1 1 8 28816 Copepod nauplii 190CT87 c 1 1 37 133274 I Cossura delta 190CT87 c 1 1 1 3602 Dioasaccidae nauplii 190CT87 c 1 1 33 118866 Enhydrosoma spp. 190CT87 c 1 1 23 82846 Halicyclops sp. 190CT87 c 1 1 1 3602 Harpacticoida 190CT87 c 1 1 29 104458 I Kinoryncha 190CT87 c 1 1 47 169294 Leucon sp. 190CT87 c 1 1 1 3602 Mediomastus californiensis 190CT87 c 1 1 17 61234 Microarthridion sp. 190CT87 c 1 1 9 32418 ,I Nematoda 190CT87 c 1 1 71 255742 Ostracoda 190CT87 c 1 1 2 7204Stenhelia sp. 190CT87 c 1 1 28 100856 Streblospio benedicti 190CT87 c 1 1 3 10806Unidentified (Miscellaneous) 190CT87 c 1 1 34 122468 I Copepod nauplii 190CT87 c 1 3 2 7204 Dioasaccidae nauplii 190CT87 c 1 3 1 3602 Glycinde solitaria 190CT87 c 1 3 1 3602Harpacticoida 190CT87 c 1 3 1 3602 'I Kinoryncha 190CT87 c 1 3 2 7204 Mediomastus californiensis 190CT87 c 1 3 2 7204 Microarthridion sp. 190CT87 c 1 3 1 3602Nematoda 190CT87 c 1 3 24 86448 Stenhelia sp. 190CT87 c 1 3 1 3602 I Bivalvia 190CT87 c 2 1 6 21612 Copepod nauplii 190CT87 c 2 1 40 144080 Dioasaccidae nauplii 190CT87 c 2 1 26 93652Enhydrosoma spp. 190CT87 c 2 1 11 39622 I Halicyclops sp. 190CT87 c 2 1 3 10806 Harpacticoida 190CT87 c 2 1 9 32418 Kinoryncha 190CT87 c 2 1 7 25214 Longipedia americana 190CT87 c 2 1 1 3602 Mediomastus californiensis 190CT87 I c 2 1 5 18010 Microarthridion sp. 190CT87 c 2 1 5 18010 Nassarius acutus 190CT87 c 2 1 1 3602 Nematoda 190CT87 c 2 1 24 86448 Ophiuroidea 190CT87 c 2 1 1 3602 I Ostracoda 190CT87 c 2 1 8 28816 Parametopella sp. 190CT87 c 2 1 1 3602 Stenhelia sp. 190CT87 c 2 1 17 61234 Streblospio benedicti 190CT87 c 2 1 1 3602 IUnidentified (Miscellaneous) 190CT87 c 2 1 21 75642 Kinoryncha 190CT87 c 2 3 1 3602 Nematoda 190CT87 c 2 3 52 187304 Streblospio benedicti 190CT87 c 2 3 2 7204 Tharyx setigera 190CT87 c 2 3 1 3602 I Bivalvia 190CT87 c 3 1 8 28816 Copepod nauplii 190CT87 c 3 1 46 165692 Cossura delta 190CT87 c 3 1 1 3602 Dioasaccidae nauplii 190CT87 c 3 1 53 190906 Enhydrosoma spp. 190CT87 c 3 1 19 68438 I Halicyclops sp. 190CT87 c 3 1 6 21612 Harpacticoida 190CT87 c 3 1 26 93652 Kinoryncha 190CT87 c 3 1 13 46826 Leucon sp. 190CT87 c 3 1 1 3602 I Longipedia americana 190CT87 c 3 1 2 7204 Mediomastus californiensis 190CT87 c 3 1 8 28816 I I NCMEIOSP.OAT 347 I Microarthridion sp . 190CT87 c 3 1 10 36020 Nematoda 190CT87 c 3 1 53 190906 I Ophiuroidea 190CT87 c 3 1 1 3602 Ostracoda 190CT87 c 3 1 4 14408 Stenhelia sp . 190CT87 c 3 1 33 118866 Unidentified (Miscellaneous) 190CT87 c 3 1 16 57632 I Enhydrosoma spp. 190CT87 c 3 3 1 3602 Harpacticoida 190CT87 c 3 3 6 21612 Mediomastus californiensis 190CT87 c 3 3 3 10806 Nematoda 190CT87 c 3 3 77 277354 Stenhelia sp . 190CT87 c 3 3 2 7204 I Bivalvia 200CT87 A 1 1 22 79244 Copepod nauplii 200CT87 A 1 1 25 90050 Enhydrosoma spp. 200CT87 A 1 1 1 3602 Halicyclops sp. 200CT87 A 1 1 5 18010 I Harpacticoida 200CT87 A 1 1 16 57632 Mediomastus californiensis 200CT87 A 1 1 6 21612 Nematoda 200CT87 A 1 1 20 72040 Ostracoda 200CT87 A 1 1 30 108060 Polychaete larvae 200CT87 A 1 1 1 3602 I Scottolana canadensis 200CT87 A 1 1 8 28816 Streblospio benedicti 200CT87 A 1 1 4 14408 Unidentified (Miscellaneous) 200CT87 A 1 1 22 79244 Bivalvia 200CT87 A 1 3 2 7204 I Enhydrosoma spp. 200CT87 A 1 3 1 3602 Halicyclops sp. 200CT87 A 1 3 1 3602 Harpacticoida 200CT87 A 1 3 2 7204 Mediomastus californiensis 200CT87 A 1 3 6 21612 Nematoda 200CT87 A 1 3 60 216120 I Scottolana canadensis 200CT87 A 1 3 2 7204 Streblospio benedicti 200CT87 A 1 3 2 7204 Unidentified (Miscellaneous) 200CT87 A 1 3 6 21612 Bivalvia 200CT87 A 2 1 25 90050 I Copepod nauplii 200CT87 A 2 1 18 64836 Enhydrosoma spp. 200CT87 A 2 1 10 36020 Halicyclops sp. 200CT87 A 2 1 8 28816 Harpacticoida 200CT87 A 2 1 18 64836 Laophonte spp. 200CT87 A 2 1 1 3602 I Mediomastus californiensis 200CT87 A 2 1 4 14408 Nematoda 200CT87 A 2 1 31 111662 Ostracoda 200CT87 A 2 1 29 104458 Scottolana canadensis 200CT87 A 2 1 2 7204 I I Streblospio benedicti 200CT87 A 2 1 5 18010 Unidentified (Miscellaneous) 200CT87 A 2 1 12 43224 Bivalvia 200CT87 A 2 3 6 21612 Copepod nauplii 200CT87 A 2 3 1 3602 Dioasaccidae nauplii 200CT87 A 2 3 2 7204 Enhydrosoma spp. 200CT87 A 2 3 6 21612 Laophonte spp. 200CT87 A 2 3 2 7204 Mediomastus californiensis 200CT87 A 2 3 19 68438 Nematoda 200CT87 A 2 3 40 144080 I I Ostracoda 200CT87 A 2 3 4 14408 Streblospio benedicti 200CT87 A 2 3 2 7204 Unidentified (Miscellaneous) 200CT87 A 2 3 10 36020 Bi valvia 200CT87 A 3 1 30 108060 Copepod nauplii 200CT87 A 3 1 38 136876 Enhydrosoma spp . 200CT87 A 3 1 4 14408 Gastropoda 200CT87 A 3 1 1 3602 Halicyclops sp. 200CT87 A 3 1 10 36020 Harpacticoida 200CT87 A 3 1 77 277354 I Laophonte spp. 200CT87 A 3 1 10 36020 Mediomastus californiensis 200CT87 A 3 1 18 64836 Nematoda 200CT87 A 3 1 17 61234 Ostracoda 200CT87 A 3 1 60 216120 Scottolana canadensis 200CT87 A 3 1 3 10806 Streblospio benedicti 200CT87 A 3 1 5 18010 Unidentified (Miscellaneous) 200CT87 A 3 1 17 61234 I 348 NCHEIOSP.DAT I Bivalvia 200CT87 A 3 3 3 10806 Mediomastus californiensis 200CT87 A 3 3 10 36020 I Nematoda 200CT87 A 3 3 101 363802 Ostracoda 200CT87 A 3 3 2 7204 Streblospio benedicti 200CT87 A 3 3 1 3602 Unidentified (Miscellaneous) 200CT87 A 3 3 8 28816 Bivalvia 210CT87 B 1 1 7 25214 I Capitellides jonesi 210CT87 B 1 1 1 3602 Copepod nauplii 210CT87 B 1 1 18 64836 Cossura delta 210CT87 B 1 1 1 3602 Dioasaccidae nauplii 210CT87 B 1 1 2 7204 'I Enhydrosoma spp. · 210CT87 B 1 1 12 43224 Harpacticoida 210CT87 B 1 1 47 169294 Mediomastus californiensis 210CT87 B 1 1 2 7204 Nematoda 210CT87 B 1 1 71 255742 Ostracoda 210CT87 B 1 1 1 3602 I Unidentified (Miscellaneous) 210CT87 B 1 1 51 183702 Bivalvia 210CT87 B 1 3 1 3602 Copepod nauplii 210CT87 B 1 3 2 7204 Enhydrosoma spp. 210CT87 B 1 3 1 3602 I Glycinde solitaria 210CT87 B 1 3 1 3602 Harpacticoida 210CT87 B 1 3 4 14408 Mediomastus californiensis 210CT87 B 1 3 1 3602 Nematoda 210CT87 B 1 3 34 122468 Ostracoda 210CT87 B 1 3 1 3602 I Streblospio benedicti 210CT87 B 1 3 1 3602 Unidentified (Miscellaneous) 210CT87 B 1 3 12 43224 Bivalvia 210CT87 B 2 1 3 10806 Copepod nauplii 210CT87 B 2 1 31 111662 I Dioasaccidae nauplii 210CT87 B 2 1 2 7204 Enhydrosoma spp. 210CT87 B 2 1 11 39622 Halicyclops sp. 210CT87 B 2 1 2 7204 Harpacticoida 210CT87 B 2 1 53 190906 Laophonte spp. 210CT87 B 2 1 5 18010 I Mediomastus californiensis 210CT87 B 2 1 9 32418 Nematoda 210CT87 B 2 1 34 122468 Ostracoda 210CT87 B 2 1 2 7204 Scottolana canadensis 210CT87 B 2 1 5 18010 I Unidentified (Miscellaneous) 210CT87 B 2 1 47 169294 Mediomastus californiensis 210CT87 B 2 3 3 10806 Nematoda 210CT87 B 2 3 51 183702 Unidentified (Miscellaneous) 210CT87 B 2 3 16 57632 I Bivalvia 210CT87 B 3 1 3 10806 Copepod nauplii 210CT87 B 3 1 15 54030 Cossura delta 210CT87 B 3 1 1 3602 Dioasaccidae nauplii 210CT87 B 3 1 1 3602 Enhydrosoma spp . 210CT87 B 3 1 11 39622 I Glycinde solitaria 210CT87 B 3 1 1 3602 Halicyclops sp . 210CT87 B 3 1 2 7204 Harpacticoida 210CT87 B 3 1 49 176498 Laophonte spp . 210CT87 B 3 1 2 7204 I Mediomastus californiensis 210CT87 B 3 1 10 36020 Nematoda 210CT87 B 3 1 48 172896 Ostracoda 210CT87 B 3 1 1 3602 Scottolana canadensis 210CT87 B 3 1 1 3602 Streblospio benedicti 210CT87 B 3 1 2 7204 I Unidentified (Miscellaneous) 210CT87 B 3 1 21 75642 Enhydrosoma spp. 210CT87 B 3 3 2 7204 Harpacticoida 210CT87 B 3 3 2 7204 Laophonte spp. 210CT87 B 3 3 1 3602 I Nematoda 210CT87 B 3 3 19 68438 Unidentified (Miscellaneous} 210CT87 B 3 3 16 57632 Bivalvia 220CT87 D 1 1 1 3602 Copepod nauplii 220CT87 D 1 1 11 39622 Enhydrosoma spp. 220CT87 D 1 1 2 7204 I Halicyclops sp. 220CT87 D 1 1 1 3602 Harpacticoida 220CT87 D 1 1 3 10806 I I I NCHEIOSP.DAT 349 I Mediomastus californiensis 220CT87 D 1 1 4 14408Nematoda 220CT87 D 1 1 428 1541656 I I Ostracoda 220CT87 0 1 1 13 46826Polychaete larvae 220CT87 0 1 1 1 3602Streblospio benedicti 220CT87 0 1 1 1 3602Unidentified (Miscellaneous) 220CT87 0 1 1 61 219722Enhydrosoma spp. 220CT87 D 1 3 1 3602Nematoda 220CT87 0 1 3 836 3011272Unidentified (Miscellaneous) 220CT87 0 1 3 22 79244Copepod nauplii 220CT87 0 2 1 5 18010Cossura delta 220CT87 0 2 1 2 7204 I Enhydrosoma spp. 220CT87 0 2 1 5 18010Halicyclops sp . 220CT87 0 2 1 5 18010Harpacticoida 220CT87 0 2 1 3 10806Laophonte spp. 220CT87 0 2 1 1 3602 Mediomastus californiensis 220CT87 0 2 1 4 14408Mysidopsis sp. 220CT87 0 2 1 1 3602 I Nematoda 220CT87 0 2 1 392 1411984 Ostracoda 220CT87 0 2 1 10 36020Photis sp. 220CT87 0 2 1 1 3602 Polychaete larvae 220CT87 0 2 1 1 3602 I I Streblospio benedicti 220CT87 D 2 1 4 14408Terebellidae 220CT87 0 2 1 1 3602Unidentified (Miscellaneous) 220CT87 D 2 1 64 230528Mediomastus californiensis 220CT87 D 2 3 2 7204Nematoda 220CT87 D 2 3 468 1685736Ostracoda 220CT87 D 2 3 1 3602Unidentified (Miscellaneous) 220CT87 D 2 3 33 118866Bivalvia 220CT87 0 3 1 4 14408 I I Copepod nauplii 220CT87 D 3 1 17 61234Cossura delta 220CT87 0 3 1 1 3602Enhydrosoma spp. 220CT87 D 3 1 2 7204Halicyclops sp. 220CT87 D 3 1 4 14408Harpacticoida 220CT87 D 3 1 4 14408Mediomastus californiensis 220CT87 D 3 1 5 18010Nematoda 220CT87 D 3 1 304 1095008Ostracoda 220CT87 0 3 1 27 97254Polychaete larvae 220CT87 0 3 1 1 3602 Streblospio benedicti 220CT87 0 3 1 8 28816Tardigrade 220CT87 I 0 3 1 1 3602Terebellidae 220CT87 0 3 1 1 3602 I Unidentified (Miscellaneous) 220CT87 0 3 1 109 392618Asychis sp. 220CT87 0 3 3 1 3602Bivalvia 220CT87 0 3 3 1 3602Enhydrosoma spp. 220CT87 0 3 3 1 3602Mediomastus californiensis 220CT87 0 3 3 1 3602Nematoda 220CT87 D 3 3 1611 5802822 I Streblospio benedicti 220CT87 0 3 3 1 3602Unidentified (Miscellaneous) 220CT87 D 3 3 23 82846Bivalvia 07DEC87 c 1 1 18 64836Clymenella mucosa 070EC87 c 1 1 1 3602 I Copepod nauplii 07DEC87 c 1 1 84 302568Cyclopoida 070EC87 c 1 1 1 3602Oioasaccidae nauplii 070EC87 c 1 1 45 162090Enhydrosoma spp. 07DEC87 c 1 1 23 82846Harpacticoida 070EC87 c 1 1 50 180100 I Kinoryncha 070EC87 c 1 1 29 104458 Longipedia americana 070EC87 c 1 1 1 3602 Mediomastus californiensis 070EC87 c 1 1 8 28816 Microarthridion sp. 070EC87 c 1 1 29 104458 I I Nematoda 070EC87 c 1 1 109 392618Ostracoda 070EC87 c 1 1 10 36020Stenhelia sp. 070EC87 c 1 1 35 126070Streblospio benedicti 070EC87 c 1 1 1 3602Unidentified (Miscellaneous) 070EC87 c 1 1 22 79244Zausodes arenicolus 07DEC87 c 1 1 1 3602Bivalvia 07DEC87 c 1 3 1 3602 I 350 NCMEIOSP.DAT I Dioasaccidae nauplii 07DEC87 c 1 3 1 3602 Enhydrosoma spp. 07DEC87 c 1 3 3 10806 I Kinoryncha 07DEC87 c 1 3 2 7204 Maldanidae 07DEC87 c 1 3 1 3602 Mediomastus californiensis 07DEC87 c 1 3 3 10806 Nematoda 07DEC87 c 1 3 163 587126 0l i gochaeta 07DEC87 c 1 3 2 7204 I Streblospio benedicti 07DEC87 c 1 3 1 3602 Unidentified (Miscellaneous) 07DEC87 c 1 3 2 7204 Bivalvia 07DEC87 c 2 1 10 36020 Copepod nauplii 07DEC87 c 2 1 44 158488 I Dioasaccidae nauplii 07DEC87 c 2 1 22 79244 Enhydrosoma spp. 07DEC87 c 2 1 17 61234 Harpacticoida 07DEC87 c 2 1 11 39622 Kinoryncha 07DEC87 c 2 1 10 36020 Longipedia americana 07DEC87 c 2 1 2 7204 I Mediomastus californiensis 07DEC87 c 2 1 3 10806 Microarthridion sp. 07DEC87 c 2 1 33 118866 Nematoda 07DEC87 c 2 1 77 277354 Ostracoda 07DEC87 c 2 1 21 75642 I Stenhelia sp. 07DEC87 c 2 1 22 79244 Streblospio benedicti 07DEC87 c 2 1 3 10806 Unidentified (Miscellaneous) 07DEC87 c 2 1 17 61234 Bivalvia 07DEC87 c 2 3 1 3602 Copepod nauplii 07DEC87 c 2 3 1 3602 I Dioasaccidae nauplii 07DEC87 c 2 3 3 10806 Enhydrosoma spp. 07DEC87 c 2 3 2 7204 Harpacticoida 07DEC87 c 2 3 2 7204 Nematoda 07DEC87 c 2 3 167 601534 I Phascolion strombi 07DEC87 c 2 3 1 3602 Stenhelia sp. 07DEC87 c 2 3 2 7204 Streblospio benedicti 07DEC87 c 2 3 1 3602 Unidentified (Miscellaneous) 07DEC87 c 2 3 3 10806 I Bivalvia 07DEC87 c 3 1 13 46826 Copepod nauplii 07DEC87 c 3 1 89 320578 Dioasaccidae nauplii 07DEC87 c 3 1 67 241334 Diopatra cuprea 07DEC87 c 3 1 1 3602 Enhydrosoma spp. 07DEC87 c 3 1 10 36020 I Halicyclops sp. 07DEC87 c 3 1 1 3602 Harpacticoida 07DEC87 c 3 1 21 75642 Kinoryncha 07DEC87 c 3 1 42 151284 Longipedia americana 07DEC87 c 3 1 1 3602 I Mediomastus californiensis 07DEC87 c 3 1 4 14408 Microarthridion sp. 07DEC87 c 3 1 53 190906 Nematoda 07DEC87 c 3 1 60 216120 Ostracoda 07DEC87 c 3 1 23 82846 Stenhelia sp. 07DEC87 c 3 1 37 133274 I Streblospio benedicti 07DEC87 c 3 1 1 3602 Unidentified (Miscellaneous) 07DEC87 c 3 1 28 100856 Bivalvia 07DEC87 c 3 3 2 7204 Cossura delta 07DEC87 c 3 3 1 3602 I Enhydrosoma spp. 07DEC87 c 3 3 6 21612 Harpacticoida 07DEC87 c 3 3 4 14408 Kinoryncha 07DEC87 c 3 3 4 14408 Mediomastus californiensis 07DEC87 c 3 3 3 10806 Nematoda 07DEC87 c 3 3 145 522290 I Stenhelia sp. 07DEC87 c 3 3 3 10806 Streblospio benedicti 07DEC87 c 3 3 1 3602 Unidentified (Miscellaneous) 07DEC87 c 3 3 8 28816 Bivalvia 08DEC87 A 1 1 4 14408 I Enhydrosoma spp. 08DEC87 A 1 1 3 10806 Hal icyc lops sp. 08DEC87 A 1 1 4 14408 Harpacticoida 08DEC87 A 1 1 11 39622 Nematoda 08DEC87 A 1 1 55 198110 Ostracoda 08DEC87 A 1 1 7 25214 I Rhynchocoels 08DEC87 A 1 1 1 3602 Scottolana canadensis 08DEC87 A 1 1 1 3602 I ., I I NCMEIOSP.DAT 351 I Unidentified (Miscellaneous) 08DEC87 A 1 1 88 316976 Copepod nauplii 08DEC87 A 1 3 1 3602 Nematoda I 08DEC87 A 1 3 87 313374 Stenhe l ia sp . 08DEC87 A 1 3 1 3602 Unidentified (Miscellaneous) 08DEC87 A 1 3 26 93652 Bivalvia 08DEC87 A 2 1 3 10806 I Copepod nauplii 08DEC87 A 2 1 1 3602 Enhydrosoma spp. 08DEC87 A 2 1 4 14408 Halicyclops sp. 08DEC87 A 2 1 2 7204 Harpacticoida 08DEC87 A 2 1 31 111662 Nematoda 08DEC87 A 2 1 65 234130 I Ostracoda 08DEC87 A 2 1 14 50428 Scottolana canadensis 08DEC87 A 2 1 5 18010 Stenhelia sp. 08DEC87 A 2 1 1 3602 Streblospio benedicti 08DEC87 A 2 1 1 3602 Unidentified (Miscellaneous) 08DEC87 A 2 1 194 698788 Nematoda 08DEC87 A . 176498 2 3 49 I Stenhelia sp. 08DEC87 A 2 3 4 14408 Unidentified (Miscellaneous) 08DEC87 A 2 3 39 140478 Bivalvia 08DEC87 A 3 1 3 10806 Copepod nauplii 08DEC87 A 3 1 4 14408 Enhydrosoma spp. 08DEC87 A 3 1 2 7204 Halicyclops sp. 08DEC87 A 3 1 2 I 7204 Harpacticoida 08DEC87 A 3 1 58 208916 Mediomastus californiensis 08DEC87 A 3 1 1 3602 Nematoda 08DEC87 A 3 1 96 345792 I Ostracoda 08DEC87 A 3 1 9 32418 Scottolana canadensis 08DEC87 A 3 1 1 3602 Streblospio benedicti 08DEC87 A 3 1 1 3602 Unidentified (Miscellaneous) 08DEC87 A 3 1 355 1278710 Bivalvia 08DEC87 A 3 3 2 7204 Harpacticoida 08DEC87 A 3 3 4 I 14408 Mediomastus californiensis 08DEC87 A 3 3 1 3602 Nematoda 08DEC87 A 3 3 96 345792 Scottolana canadensis 08DEC87 A 3 3 3 10806 Stenhe l ia sp. 08DEC87 A 3 3 1 3602 I Streblospio benedicti 08DEC87 A 3 3 1 3602 Unidentified (Miscellaneous) 08DEC87 A 3 3 18 64836 Bivalvia 09DEC87 B 1 1 3 10806 Copepod nauplii 09DEC87 B 1 1 41 147682 I Cossura delta 09DEC87 B 1 1 1 3602 Dioasaccidae nauplii 09DEC87 B 1 1 13 46826 Enhydrosoma spp. 09DEC87 B 1 1 27 97254 I Halicyclops sp. 09DEC87 B 1 1 7 25214 Harpacticoida 09DEC87 B 1 1 150 540300 Kinoryncha 09DEC87 B 1 1 1 3602 Laophonte spp. 09DEC87 B 1 1 6 21612 Mediomastus californiensis 09DEC87 B 1 1 5 18010 I Nematoda 09DEC87 B 1 1 189 680778 Ostracoda 09DEC87 B 1 1 29 104458 Scottolana canadensis 09DEC87 B 1 1 1 3602 Stenhelia sp. 09DEC87 B 1 1 1 3602 I Streblospio benedicti 09DEC87 B 1 1 4 14408 Unidentified (Miscellaneous) 09DEC87 B 1 1 56 201712 Zausodes arenicolus 09DEC87 B 1 1 1 3602Enhydrosoma spp. 09DEC87 B 1 3 1 3602 I Harpacticoida 09DEC87 B 1 3 3 10806 Medi omastus californiensis 09DEC87 B 1 3 2 7204 Nematoda 09DEC87 B 1 3 19 68438 Scottolana canadensis 09DEC87 B 1 3 1 3602 Unidentified (Miscellaneous) 09DEC87 B 1 3 31 111662 Copepod nauplii 09DEC87 B 2 1 3 10806 Cossura delta 09DEC87 B 2 1 1 3602 I Dioasaccidae nauplii 09DEC87 B 2 1 2 7204 Enhydrosoma spp. 09DEC87 B 2 1 6 21612 Halicyclops sp. 09DEC87 B 2 1 3 10806 Harpacticoida 09DEC87 B 2 1 111 399822 I 352 NCHEIOSP.OAT I Laophonte spp. 09DEC87 B 2 1 3 10806 Microarthridion sp. 09DEC87 B 2 1 2 7204 I Nematoda 09DEC87 B 2 1 99 356598 Ostracoda 090EC87 B 2 1 4 14408 Scottolana canadensis 09DEC87 B 2 1 1 3602 Streblospio benedicti 09DEC87 B 2 1 2 7204 Unidentified (Miscellaneous) 09DEC87 B 2 1 29 104458 I Cossura delta 09DEC87 B 2 3 2 7204 Harpacticoida 09DEC87 B 2 3 3 10806 Mediomastus californiensis 09DEC87 B 2 3 1 3602 Nematoda 09DEC87 B 2 3 17 61234 I Scottolana canadensis 09DEC87 B 2 3 1 3602 Unidentified (Miscellaneous) 09DEC87 B 2 3 13 46826 Zausodes arenicolus 09DEC87 B 2 3 1 3602 Bivalvia 09DEC87 B 3 1 2 7204 Copepod nauplii 09DEC87 B 3 1 53 190906 I Dioasaccidae nauplii 09DEC87 B 3 1 1 3602 Enhydrosoma spp. 09DEC87 B 3 1 43 154886 Gastropoda 09DEC87 B 3 1 1 3602 Harpacticoida 09DEC87 B 3 1 192 691584 I Kinoryncha 09DEC87 B 3 1 1 3602 Laophonte spp. 09DEC87 B 3 1 8 28816 Nematoda 09DEC87 B 3 1 181 651962 Ostracoda 09DEC87 B 3 1 4 14408 Scottolana canadensis 09DEC87 B 3 1 2 7204 I Stenhelia sp. 09DEC87 B 3 1 2 7204 Streblospio benedicti 09DEC87 B 3 1 3 10806 Unidentified (Miscellaneous) 09DEC87 B 3 1 27 97254 Zausodes arenicolus 09DEC87 B 3 1 1 3602 I Copepod nauplii 09DEC87 B 3 3 1 3602 Enhydrosoma spp. 09DEC87 B 3 3 1 3602 Haploscoloplos foliosus 09DEC87 B 3 3 1 3602 Harpacticoida 09DEC87 B 3 3 1 3602 Nematoda 09DEC87 B 3 3 84 302568 I Streblospio benedicti 09DEC87 B 3 3 1 3602 Unidentified (Miscellaneous) 09DEC87 B 3 3 20 72040 Bivalvia 10DEC87 D 1 1 2 7204 Copepod nauplii 10DEC87 D 1 1 9 32418 I Cossura delta 10DEC87 D 1 1 1 3602 Enhydrosoma spp . 10DEC87 D 1 1 6 21612 Halicyclops sp. 10DEC87 D 1 1 4 14408 Harpacticoida 10DEC87 D 1 1 2 7204 I Kinoryncha 10DEC87 D 1 1 2 7204 Mysidopsis sp. lODEC87 D 1 1 1 3602 Nematoda 10DEC87 D 1 1 518 1865836 Ostracoda 10DEC87 D 1 1 3 10806 Polychaete larvae 10DEC87 D 1 1 2 7204 I Rhynchocoels 10DEC87 D 1 1 1 3602 Unidentified (Miscellaneous) 10DEC87 D 1 1 49 176498 Copepod nauplii 10DEC87 D 1 3 1 3602 Dorvilleidae 10DEC87 D 1 3 1 3602 I Enhydrosoma spp. 10DEC87 D 1 3 4 14408 Kinoryncha 10DEC87 D 1 3 1 3602 Mediomastus californiensis lODEC87 D 1 3 2 7204 Nematoda 10DEC87 D 1 3 1355 4880710 Polychaete larvae 10DEC87 D 1 3 1 3602 I Polydora caulleryi 10DEC87 D 1 3 12 43224 Rhynchocoels 10DEC87 D 1 3 2 7204 Schistomeringos spa 10DEC87 D 1 3 3 10806 Tharyx setigera 10DEC87 D 1 3 2 7204 I Unidentified (Miscellaneous) 10DEC87 D 1 3 36 129672 Bivalvia 10DEC87 D 2 1 3 10806 Copepod nauplii 10DEC87 D 2 1 20 72040 Enhydrosoma spp. 10DEC87 D 2 1 16 57632 Hal icyc lops sp . 10DEC87 D 2 1 2 7204 I Harpacticoida 10DEC87 D 2 1 8 28816 Kinoryncha 10DEC87 D 2 1 10 36020 I . ' I I I I I I I I I I I I I I I I I I 354 NCHEIOSP.DAT I Copepod nauplii 15FEB88 c 2 3 4 14408 Cossura delta 15FEB88 c 2 3 1 3602 I Enhydrosoma spp . 15FEB88 c 2 3 3 10806 Harpacticoida 15FEB88 c 2 3 2 7204 Kinoryncha 15FEB88 c 2 3 15 54030 Mediomastus californiensis 15FEB88 c 2 3 6 21612 Nematoda 15FEB88 c 2 3 240 864480 I Unidentified (Miscellaneous) 15FEB88 c 2 3 2 7204 Bivalvia 15FEB88 c 3 1 6 21612 Copepod nauplii 15FEB88 c 3 1 74 266548 Dioasacc idae naup l i-i 15FEB88 c 3 1 16 57632 I Enhydrosoma spp . 15FEB88 c 3 1 36 129672 Harpacticoida 15FEB88 c 3 1 38 136876 Kinoryncha 15FEB88 c 3 1 58 208916 Longipedia americana 15FEB88 c 3 1 1 3602 Mediomastus californiensis 15FEB88 c 3 1 3 10806 I Microarthridion sp. 15FEB88 c 3 1 86 309772 Nematoda 15FEB88 c 3 1 110 396220 Ostracoda 15FEB88 c 3 1 8 28816 Stenhelia sp . 15FEB88 c 3 1 8 28816 I Streblospio benedicti 15FEB88 c 3 1 1 3602 Unidentified (Miscellaneous) 15FEB88 c 3 1 56 201712 Bivalvia 15FEB88 c 3 3 2 7204 Copepod nauplii 15FEB88 c 3 3 3 10806 Dioasaccidae nauplii 15FEB88 c 3 3 1 3602 I Enhydrosoma spp . 15FEB88 c 3 3 2 7204 Kinoryncha 15FEB88 c 3 3 1 3602 Maldanidae 15FEB88 c 3 3 1 3602 Nematoda 15FEB88 c 3 3 130 468260 I Unidentified (Miscellaneous) 15FEB88 c 3 3 16 57632 Bivalvia 16FEB88 A 1 1 1 3602 Enhydrosoma spp. 16FEB88 A 1 1 2 7204 Harpacticoida 16FEB88 A 1 1 4 14408 Nematoda 16FEB88 A 1 1 11 39622 I Ostracoda 16FEB88 A 1 1 1 3602 Scottolana canadensis 16FEB88 A 1 1 1 3602 Unidentified (Miscellaneous) 16FEB88 A 1 1 30 108060 Enhydrosoma spp. 16FEB88 A 1 3 1 3602 I Harpacticoida 16FEB88 A 1 3 1 3602 Nematoda 16FEB88 A 1 3 21 75642 Stenhelia sp. 16FEB88 A 1 3 1 3602 Unidentified (Miscellaneous) 16FEB88 A 1 3 31 111662 Enhydrosoma spp . 16FEB88 A 2 1 1 3602 I Halicyclops sp . 16FEB88 A 2 1 2 7204 Harpacticoida 16FEB88 A 2 1 12 43224 Laophonte spp. 16FEB88 A 2 1 3 10806 Nematoda 16FEB88 A 2 1 46 165692 I Ostracoda 16FEB88 A 2 1 4 14408 Scottolana canadensis 16FEB88 A 2 1 1 3602 Stenhelia sp. 16FEB88 A 2 1 4 14408 Unidentified (Miscellaneous) 16FEB88 A 2 1 51 183702 I Nematoda 16FEB88 A 2 3 81 291762 Stenhelia sp. 16FEB88 A 2 3 1 3602 Unidentified (Miscellaneous) 16FEB88 A 2 3 58 208916 Harpacticoida 16FEB88 A 3 1 1 3602 Nematoda 16FEB88 A 3 1 8 28816 I Unidentified (Miscellaneous) 16FEB88 A 3 1 9 32418 Nematoda 16FEB88 A 3 3 3 10806 Unidentified (Miscellaneous) 16FEB88 A 3 3 1 3602 Bivalvia 17FEB88 B 1 1 2 7204 I Copepod nauplii 17FEB88 B 1 1 87 313374 Enhydrosoma spp. 17FEB88 B 1 1 9 32418 Halicyclops sp. 17FEB88 B 1 1 1 3602 Harpacticoida 17FEB88 B 1 1 79 284558 Laophonte spp. 17FEB88 B 1 1 1 3602 I Mediomastus californiensis 17FEB88 B 1 1 4 14408 Microarthridion sp. 17FEB88 B 1 1 15 54030 I I I I NCHEIOSP.DAT 355 I I Nematoda 17FEB88 B 1 1 144 518688Ostracoda 17FEB88 B 1 1 2 7204Stenhelia sp. 17FEB88 B 1 1 3 10806Unidentified (Miscellaneous) 17FEB88 B 1 1 40 144080Zausodes arenicolus 17FEB88 B 1 1 1 3602Bivalvia 17FEB88 B 1 3 1 3602 I Copepod nauplii 17FEB88 B 1 3 3 10806Cossura delta 17FEB88 B 1 3 1 3602Enhydrosoma spp. 17FEB88 B 1 3 1 3602Haploscoloplos foliosus 17FEB88 B 1 3 1 3602 I Harpacticoida 17FEB88 B 1 3 5 18010Mediomastus californiensis 17FEB88 B 1 3 4 14408Nematoda 17FEB88 B 1 3 168 605136Scottolana canadensis 17FEB88 B 1 3 3 10806Streblospio benedicti 17FEB88 B 1 3 2 7204 I Unidentified (Miscellaneous) 17FEB88 B 1 3 32 115264Bivalvia 17FEB88 B 2 1 4 14408Copepod nauplii 17FEB88 B 2 1 75 270150Enhydrosoma spp. 17FEB88 B 2 1 4 14408 I Harpacticoida 17FEB88 B 2 1 86 309772Leucon sp. 17FEB88 B 2 1 1 3602Microarthridion sp. 17FEB88 B 2 1 8 28816Nematoda 17FEB88 B 2 1 64 230528Scottolana canadensis 17FEB88 B 2 1 2 7204 I Stenhelia sp. 17FEB88 B 2 1 1 3602Unidentified (Miscellaneous) 17FEB88 B 2 1 13 46826Zausodes arenicolus 17FEB88 B 2 1 1 3602Bivalvia 17FEB88 B 2 3 3 10806 I Copepod nauplii 17FEB88 B 2 3 2 7204Enhydrosoma spp. 17FEB88 B 2 3 2 7204Harpacticoida 17FEB88 B 2 3 22 79244Mediomastus californiensis 17FEB88 B 2 3 3 10806Nematoda 17FEB88 B 2 3 120 432240 I Scottolana canadensis 17FEB88 B 2 3 3 10806Streblospio benedicti 17FEB88 B 2 3 1 3602Unidentified (Miscellaneous) 17FEB88 B 2 3 45 162090Bivalvia 17FEB88 B 3 1 1 3602 I Copepod nauplii 17FEB88 B 3 1 50 180100Dioasaccidae nauplii 17FEB88 B 3 1 1 3602Enhydrosoma spp . 17FEB88 B 3 1 2 7204Harpacticoida 17FEB88 B 3 1 42 151284Mediomastus californiensis 17FEB88 B 3 1 1 3602 I Microarthridion sp. 17FEB88 B 3 1 11 39622 Nematoda 17FEB88 B 3 1 79 284558 Ostracoda 17FEB88 B 3 1 1 3602 Scottolana canadensis 17FEB88 B 3 1 1 3602 I I Stenhelia sp. 17FEB88 B 3 1 2 7204Unidentified (Miscellaneous) 17FEB88 B 3 1 24 86448Enhydrosoma spp. 17FEB88 B 3 3 1 3602Harpacticoida 17FEB88 B 3 3 2 7204Mediomastus californiensis 17FEB88 B 3 3 5 18010Nematoda 17FEB88 B 3 3 96 345792Streblospio benedicti 17FEB88 B 3 3 1 3602Unidentified (Miscellaneous) 17FEB88 B 3 3 49 176498Bivalvia 18FEB88 D 1 1 1 3602 I I Copepod nauplii 18FEB88 D 1 1 9 32418 Enhydrosoma spp. 18FEB88 D 1 1 13 46826 Haploscoloplos foliosus 18FEB88 D 1 1 1 3602 Harpacticoida 18FEB88 D 1 1 8 28816 Kinoryncha 18FEB88 D 1 1 5 18010 laophonte spp. 18FEB88 D 1 1 1 3602 longipedia americana 18FEB88 D 1 1 1 3602 Mediomastus californiensis 18FEB88 D 1 1 2 7204 Nematoda 18FEB88 D 1 1 751 2705102 I Notomastus cf. latericeus 18FEB88 D 1 1 1 3602 Ostracoda 18FEB88 D 1 1 4 14408 Polydora caulleryi 18FEB88 D 1 1 1 3602 I 356 NCHEIOSP.DAT I Turbonilla sp. 18FEB88 D 1 1 1 3602 Unidentified (Miscellaneous) 18FEB88 D 1 1 68 244936 I Cossura delta 18FEB88 D 1 3 2 7204 Enhydrosoma spp. 18FEB88 D 1 3 1 3602 Harpacticoida 18FEB88 D 1 3 3 10806 Mediomastus californiensis 18FEB88 D 1 3 2 7204 Nematoda 18FEB88 I D 1 3 348 1253496 Unidentified (Miscellaneous) 18FEB88 D 1 3 21 75642Bivalvia 18FEB88 D 2 1 7 25214 Copepod nauplii 18FEB88 D 2 1 27 97254 Enhydrosoma spp. 18FEB88 D 2 1 38 136876Harpacticoida 18FEB88 D I 2 1 10 36020 Kinoryncha 18FEB88 D 2 1 27 97254Laophonte spp. 18FEB88 D 2 1 6 21612 Longipedia americana 18FEB88 D 2 1 1 3602Mediomastus californiensis 18FEB88 D 2 1 4 14408 Nematoda 18FEB88 D 2 1 1419 5111238 • Notomastus cf. latericeus 18FEB88 D 2 1 1 3602Ostracoda 18FEB88 D 2 1 7 25214 Polychaete larvae 18FEB88 D 2 1 1 3602 I Unidentified (Miscellaneous) 18FEB88 D 2 1 60 216120 Zausodes arenicolus 18FEB88 D 2 1 1 3602 Copepod nauplii 18FEB88 D 2 3 2 7204Enhydrosoma spp. 18FEB88 D 2 3 2 7204Kinoryncha 18FEB88 D 2 3 2 7204 IMediomastus californiensis 18FEB88 D 2 3 5 18010Nematoda 18FEB88 2 D 3 494 1779388 Unidentified (Miscellaneous) 18FEB88 D 2 3 21 75642 Bivalvia 18FEB88 D 3 1 3 10806 I Copepod nauplii 18FEB88 D 3 1 15 54030 Enhydrosoma spp. 18FEB88 D 3 1 23 82846 Halicyclops sp. 18FEB88 D 3 1 1 3602Harpacticoida 18FEB88 D 3 1 15 54030 Kinoryncha 18FEB88 I D 3 1 5 18010 Laophonte spp. 18FEB88 D 3 1 11 39622 Longipedia americana 18FEB88 D 3 1 1 3602 Mediomastus californiensis 18FEB88 D 3 1 9 32418 Nematoda 18FEB88 D 3 1 631 2272862 I Ostracoda 18FEB88 D 3 1 6 21612 Spiophanes bombyx 18FEB88 D 3 1 1 3602 Unidentified (Miscellaneous) 18FEB88 D 3 1 44 158488 Zausodes arenicolus 18FEB88 D 3 1 1 3602 ICopepod nauplii 18FEB88 D 3 3 2 7204 Enhydrosoma spp. 18FEB88 D 3 3 1 3602 Glycinde solitaria 18FEB88 D 3 3 1 3602 Kinoryncha 18FEB88 D 3 3 2 7204 Mediomastus californiensis 18FEB88 D 3 3 1 3602 I Nematoda 18FEB88 D 3 3 621 2236842 Unidentified (Miscellaneous) 18FEB88 D 3 3 35 126070 Bivalvia 11APR88 c 1 1 6 21612 Dioasaccidae nauplii 11APR88 c 1 1 3 10806 Enhydrosoma spp. 11APR88 c 1 1 12 43224 I Glycinde solitaria 11APR88 c 1 1 1 3602 Halacaridae (Hydracarina) 11APR88 c 1 1 4 14408 Harpacticoida 11APR88 c 1 1 2 7204 Harpacticoida 11APR88 c 1 1 29 104458 I Kinoryncha 11APR88 c 1 1 30 108060 Laophonte spp. 11APR88 c 1 1 2 7204 Longipedia americana 11APR88 c 1 1 4 14408 Mediomastus californiensis 11APR88 c 1 1 3 10806 Melinna maculata 11APR88 c 1 1 1 3602 I Microarthridion sp. 11APR88 c 1 1 7 25214 Nematoda 11APR88 c 1 1 75 270150 Nuculana acuta 11APR88 c 1 1 2 7204 Ophiuroidea 11APR88 c 1 1 1 3602 I Ostracoda 11APR88 c 1 1 7 25214 Polychaete larvae 11APR88 c 1 1 10 36020 I I I NCME IOSP .DAT 357 I Pseudodiaptomus coronatus 11APR88 c 1 1 2 7204Rhynchocoels 11APR88 c 1 1 1 3602 I Schizopera sp. 11APR88 c 1 1 8 28816Stenhelia sp. 11APR88 c 1 1 1 3602Unidentified (Miscellaneous) 11APR88 c 1 1 17 61234Zausodes arenicolus 11APR88 c 1 1 10 36020Copepod nauplii 11APR88 c 1 3 2 7204 I Cyclopoida 11APR88 c 1 3 1 3602Dioasaccidae nauplii 11APR88 c 1 3 1 3602Kinoryncha 11APR88 c 1 3 3 10806Melinna maculata 11APR88 c 1 3 1 3602 I I Nematoda 11APR88 c 1 3 26 93652Tharyx setigera 11APR88 c 1 3 1 3602Unidentified (Miscellaneous) 11APR88 c 1 3 4 14408Bivalvia 11APR88 c 2 1 7 25214Dioasaccidae nauplii 11APR88 c 2 1 5 118010Drilonereis magna 11APR88 c 2 1 1 3602Enhydrosoma spp. 11APR88 c 2 1 6 21612Erichthonias brasiliensis 11APR88 c 2 1 1 3602Halacaridae (Hydracarina) 11APR88 c 2 1 1 3602 I Harpacticoida 11APR88 c 2 1 25 90050 Kinoryncha 11APR88 c 2 1 41 147682 laophonte spp. 11APR88 c 2 1 2 7204 longipedia americana 11APR88 c 2 1 6 21612 I Mediomastus californiensis 11APR88 c 2 1 3 10806 Melinna maculata 11APR88 c 2 1 1 3602 Microarthridion sp. 11APR88 c 2 1 12 43224 Mulinia lateralis 11APR88 c 2 1 1 3602 Nematoda 11APR88 c 2 1 82 295364 I I Ostracoda 11APR88 c 2 1 4 14408 Polychaete larvae 11APR88 c 2 1 6 21612 Polydora caulleryi 11APR88 c 2 1 1 3602 Pseudodiaptomus coronatus 11APR88 c 2 1 2 7204 Schistomeringos rudolphi 11APR88 c 2 1 1 3602 Schizopera sp. 11APR88 c 2 1 15 54030 Sphaerosyllis erinaceus 11APR88 c 2 1 2 7204 Stenhelia sp. 11APR88 c 2 1 1 3602 Unidentified (Miscellaneous) 11APR88 c 2 1 18 64836 I I Zausodes arenicolus 11APR88 c 2 1 5 18010 Bivalvia 11APR88 c 2 3 1 3602 Copepod nauplii 11APR88 c 2 3 1 3602 Dioasaccidae nauplii 11APR88 c 2 3 2 7204 Enhydrosoma spp. 11APR88 c 2 3 1 3602 Halacaridae (Hydracarina) 11APR88 c 2 3 1 3602 Kinoryncha 11APR88 c 2 3 3 10806 Mediomastus californiensis 11APR88 c 2 3 3 10806 Microarthridion sp. 11APR88 c 2 3 1 3602 I Nematoda 11APR88 c 2 3 18 64836 Unidentified (Miscellaneous) 11APR88 c 2 3 3 10806 Zausodes arenicolus 11APR88 c 2 3 1 3602 Bivalvia 11APR88 c 3 1 4 14408 I Dioasaccidae nauplii 11APR88 c 3 1 2 7204Enhydrosoma spp. 11APR88 c 3 1 3 10806Harpacticoida 11APR88 c 3 1 21 75642Kinoryncha 11APR88 c 3 1 26 93652Haldane sarsi 11APR88 c 3 1 1 3602 I Mediomastus californiensis 11APR88 c 3 1 4 14408Nematoda 11APR88 c 3 1 82 295364Oligochaeta 11APR88 c 3 1 1 3602Ostracoda 11APR88 c 3 1 8 28816 I Schizopera sp. 11APR88 c 3 1 4 14408Sphaerosyllis erinaceus 11APR88 c 3 1 3 10806Unidentified (Miscellaneous) 11APR88 c 3 1 9 32418Zausodes arenicolus 11APR88 c 3 1 3 10806Bivalvia 11APR88 c 3 3 1 3602 I Copepod nauplii 11APR88 c 3 3 2 7204Dioasaccidae nauplii 11APR88 c 3 3 1 3602 I 358 NCHEIOSP.DAT Diopatra cuprea 11APR88 c 3 3 1 3602Drilonereis magna 11APR88 c 3 3 1 3602Enhydrosoma spp. 11APR88 c 3 3 2 7204 Kinoryncha 11APR88 c 3 3 5 18010Mysella planulata 11APR88 c 3 3 6 21612Nematoda 11APR88 c 3 3 13 46826Podarke obscura 11APR88 c 3 3 1 3602Rhynchocoels 11APR88 c 3 3 1 3602Schizopera sp. 11APR88 c 3 3 1 3602 Unidentified (Miscellaneous) 11APR88 c 3 3 1 3602Copepod nauplii 12APR88 A 1 1 5 18010 Ectinosoma sp. 12APR88 A 1 1 10 36020 Enhydrosoma spp. 12APR88 A 1 1 2 7204 Harpacticoida 12APR88 A 1 1 2 7204Microarthridion sp. 12APR88 A 1 1 1 3602 Mulinia lateralis 12APR88 A 1 1 1 3602Mysidopsis sp. 12APR88 A 1 1 1 3602 Nematoda 12APR88 A 1 1 54 194508 Ostracoda 12APR88 A 1 1 2 7204 Schizopera sp. 12APR88 A 1 1 2 7204 Stenhelia sp. 12APR88 A 1 1 1 3602 Streblospio benedicti 12APR88 A 1 1 1 3602 Unidentified (Miscellaneous) 12APR88 A 1 1 11 39622 Enhydrosoma spp. 12APR88 A 1 3 1 3602 Mediomastus californiensis 12APR88 A 1 3 1 3602 Nematoda 12AP'R88 A 1 3 135 486270 Schizopera sp. 12APR88 A 1 3 1 3602 Streblospio benedicti 12APR88 A 1 3 1 3602 Unidentified (Miscellaneous) 12APR88 A 1 3 15 54030 Copepod nauplii 12APR88 A 2 1 5 18010 Dioasaccidae nauplii 12APR88 A 2 1 2 7204 Ectinosoma sp. 12APR88 A 2 1 21 75642 Enhydrosoma spp. 12APR88 A 2 1 4 14408 Harpacticoida 12APR88 A 2 1 4 14408 Mediomastus californiensis 12APR88 A 2 1 1 3602 Mulinia lateralis 12APR88 A 2 1 1 3602 Nematoda 12APR88 A 2 1 99 356598 Stenhelia sp. 12APR88 A 2 1 3 10806 Unidentified (Miscellaneous) 12APR88 A 2 1 14 50428 Enhydrosoma spp. 12APR88 A 2 3 1 3602 Mediomastus californiensis 12APR88 A 2 3 2 7204 Nematoda 12APR88 A 2 3 78 280956 Unidentified (Miscellaneous) 12APR88 A 2 3 7 25214 Copepod nauplii 12APR88 A 3 1 3 10806 Dioasaccidae nauplii 12APR88 A 3 1 1 3602 Ectinosoma sp. 12APR88 A 3 1 6 21612 Enhydrosoma spp. 12APR88 A 3 1 3 10806 Halacaridae (Hydracarina) 12APR88 A 3 1 1 3602 Halicyclops sp. 12APR88 A 3 1 2 7204 Harpacticoida 12APR88 A 3 1 1 3602 Nematoda 12APR88 A 3 1 35 126070 Ostracoda 12APR88 A 3 1 1 3602 Scottolana canadensis 12APR88 A 3 1 1 3602 Streblospio benedicti 12APR88 A 3 1 1 3602 Unidentified (Miscellaneous) 12APR88 A 3 1 9 32418 Ectinosoma sp. 12APR88 A 3 3 1 3602 Nematoda 12APR88 A 3 3 146 525892 3 3 1 3602 Schizopera sp. 12APR88 A Streblospio benedicti 12APR88 A 3 3 1 3602 Unidentified (Miscellaneous) 12APR88 A 3 3 15 54030 B 1 1 3 10806 Bivalvia 13APR88 Copepod nauplii 13APR88 B 1 1 4 14408 1 1 3 10806 Dioasaccidae nauplii 13APR88 B Ectinosoma sp. 13APR88 B 1 1 1 3602 Ectinosomidae 13APR88 B 1 1 3 10806 B 1 1 3 10806 Longipedia americana 13APR88Mediomastus californiensis 13APR88 B 1 1 1 3602 I I I I I I I I I I I I I I I ·I I I I r------:1 ~ I I NCHEIOSP.DAT I Microarthridion sp. 13APR88 B 1 1 1 3602 Mulinia lateralis 13APR88 B 1 1 1 3602 I Nematoda 13APR88 B 1 1 142 511484Ostracoda 13APR88 B 1 1 3 10806 Schizopera sp. 13APR88 B 1 1 2 7204Stenhelia sp. 13APR88 B 1 1 1 3602 Unidentified (Miscellaneous) 13APR88 B 1 1 7 25214 Nematoda 13APR88 B 1 3 I 58 208916 Rhynchocoels 13APR88 B 1 3 1 3602Schizopera sp. 13APR88 B 1 3 1 3602 Unidentified (Miscellaneous) 13APR88 B 1 3 14 50428 Bivalvia 13APR88 B 2 1 5 18010 I Copepod nauplii 13APR88 B 2 1 6 21612Dioasaccidae nauplii 13APR88 B 2 1 3 10806 Ectinosoma sp. 13APR88 B 2 1 2 7204 Ectinosomidae 13APR88 B 2 1 15 54030 I Enhydrosoma spp. 13APR88 B 2 1 3 10806Harpacticoida 13APR88 B 2 1 2 7204 Laophonte spp. 13APR88 B 2 1 1 3602Longipedia americana 13APR88 B 2 1 3 10806 I Mediomastus californiensis 13APR88 B 2 1 2 7204Microarthridion sp. 13APR88 B 2 1 1 3602Microprotopus spp. 13APR88 B 2 1 1 3602 Nematoda 13APR88 B 2 1 126 453852 Ostracoda 13APR88 B 2 1 3 10806Oxyurostylis smithi 13APR88 I B 2 1 1 3602Schizopera sp. 13APR88 B 2 1 4 14408 Stenhelia sp . 13APR88 B 2 1 1 3602 Unidentified (Miscellaneous) 13APR88 B 2 1 6 21612 Zausodes arenicolus 13APR88 B 2 1 8 28816 I Bivalvia 13APR88 B 2 3 1 3602 Copepod nauplii 13APR88 B 2 3 2 7204 Mediomastus californiensis 13APR88 B 2 3 1 3602 I Nematoda 13APR88 B 2 3 49 176498Ostracoda 13APR88 B 2 3 1 3602 Unidentified (Miscellaneous) 13APR88 B 2 3 12 43224Bivalvia 13APR88 B 3 1 14 50428 Copepod nauplii 13APR88 B 3 1 17 61234 Dioasaccidae nauplii 13APR88 B 3 1 2 7204 I Ectinosomidae 13APR88 B 3 1 3 10806Enhydrosoma spp . 13APR88 B 3 1 1 3602Harpacticoida 13APR88 B 3 1 1 3602 I Laophonte spp. 13APR88 B 3 1 3 10806Longipedia americana 13APR88 B 3 1 2 7204 Mulinia lateralis 13APR88 B 3 1 2 7204 Nematoda 13APR88 B 3 1 171 615942 Ostracoda 13APR88 B 3 1 9 32418Polychaete larvae 13APR88 B 3 1 2 7204 Unidentified (Miscellaneous) 13APR88 B 3 1 2 7204Zausodes arenicolus 13APR88 B 3 1 1 3602 Cyclopoid copepod 13APR88 B 3 3 1 3602Mediomastus californiensis 13APR88 B 3 3 1 I 3602 I Microarthridion sp. 13APR88 B 3 3 1 3602Microprotopus spp. 13APR88 B 3 3 1 3602Nematoda 13APR88 B 3 3 96 345792Polychaete larvae 13APR88 B 3 3 1 3602Streblospio benedicti 13APR88 B 3 3 1 3602 I Unidentified (Miscellaneous) 13APR88 B 3 3 27 97254Zausodes arenicolus 13APR88 B 3 3 2 7204 Ascidiacea larvae 13APR88 c 1 1 1 3602 Bivalvia 13APR88 c 1 1 2 7204 I Copepod nauplii 13APR88Dioasaccidae nauplii 13APR88 c 1 1 46 165692c 1 1 3 10806Diopatra cuprea 13APR88 Ectinosoma sp. 13APR88 c 1 1 1 3602 c 1 1 1 3602Enhydrosoma spp. 13APR88 c 1 1 10 36020 I Harpacticoida 13APR88 c 1 1 1 3602 I 360 NCHEIOSP.DAT I Kinoryncha 13APR88 c 1 1 6 21612 Laophonte spp. 13APR88 c 1 1 1 3602 I Leucon sp. 13APR88 c 1 1 1 3602 Longipedia americana 13APR88 c 1 1 2 7204 Mediomastus californiensis 13APR88 c 1 1 4 14408 Microarthridion sp. 13APR88 c 1 1 16 57632 Nematoda 13APR88 c 1 1 85 306170 I Nuculana acuta 13APR88 c 1 1 1 3602 Ostracoda 13APR88 c 1 1 7 25214 Schizopera sp. 13APR88 c 1 1 4 14408 Stenhe 1ia sp. 13APR88 c 1 1 2 7204 I Unidentified (Miscellaneous) 13APR88 c 1 1 18 64836 Copepod nauplii 13APR88 c 1 3 1 3602 Longipedia americana 13APR88 c 1 3 1 3602 Nematoda 13APR88 c 1 3 264 950928 Schizopera sp. 13APR88 c 1 3 1 3602 I Unidentified (Miscellaneous) 13APR88 c 1 3 4 14408 Bivalvia 13APR88 c 2 1 7 25214 Copepod nauplii 13APR88 c 2 1 87 313374 Dioasaccidae nauplii 13APR88 c 2 1 10 36020 I Diopatra cuprea 13APR88 c 2 1 3 10806 Ectinosoma sp. 13APR88 c 2 1 1 3602 Ectinosomidae 13APR88 c 2 1 3 10806 Enhydrosoma spp. 13APR88 c 2 1 15 54030 Harpacticoida 13APR88 c 2 1 1 3602 I Kinoryncha 13APR88 c 2 1 13 46826 Longipedia americana 13APR88 c 2 1 4 14408 Mediomastus californiensis 13APR88 c 2 1 4 14408 Microarthridion sp. 13APR88 c 2 1 34 122468 Nematoda 13APR88 c 2 1 144 518688 • Ostracoda 13APR88 c 2 1 12 43224 Schizopera sp. 13APR88 c 2 1 13 46826 Syll idae 13APR88 c 2 1 1 3602 Unidentified (Miscellaneous) 13APR88 c 2 1 22 79244 I Copepod nauplii 13APR88 c 2 3 1 3602 Microarthridion sp. 13APR88 c 2 3 2 7204 Nematoda 13APR88 c 2 3 262 943724 Unidentified (Miscellaneous) 13APR88 c 2 3 1 3602 I Bivalvia 13APR88 c 3 1 2 7204 Copepod nauplii 13APR88 c 3 1 50 180100 Dioasaccidae nauplii 13APR88 c 3 1 8 28816 Diopatra cuprea 13APR88 c 3 1 1 3602 I Ectinosoma sp. 13APR88 c 3 1 2 7204 Ectinosomidae 13APR88 c 3 1 3 10806 Enhydrosoma spp. 13APR88 c 3 1 9 32418 Halicyclops sp. 13APR88 c 3 1 1 3602 Kinoryncha 13APR88 c 3 1 23 82846 I Longipedia americana 13APR88 c 3 1 3 10806 Mediomastus californiensis 13APR88 c 3 1 5 18010 Microarthridion sp. 13APR88 c 3 1 24 86448 Nematoda 13APR88 c 3 1 186 669972 I Ostracoda 13APR88 c 3 1 10 36020 Paraprionospio pinnata 13APR88 c 3 1 1 3602 Schizopera sp. 13APR88 c 3 1 14 50428 Scottolana canadensis 13APR88 c 3 1 2 7204 Stenhelia sp. 13APR88 c 3 1 3 10806 I Unidentified (Miscellaneous) 13APR88 c 3 1 15 54030 Zausodes arenicolus 13APR88 c 3 1 1 3602 Canthocamptidae 13APR88 c 3 3 2 7204 Mediomastus californiensis 13APR88 c 3 3 5 18010 I Microarthridion sp. 13APR88 c 3 3 2 7204 Nematoda 13APR88 c 3 3 124 446648 Unidentified (Miscellaneous) 13APR88 c 3 3 1 3602 Bivalvia 14APR88 D 1 1 5 18010 Copepod nauplii 14APR88 D 1 1 177 637554 I Ectinosoma sp. 14APR88 D 1 1 3 10806 Ectinosomidae 14APR88 D 1 1 21 75642 I I NCMEIOSP.DAT 361 I Enhydrosoma spp. 14APR88 D 1 1 52 187304 Harpacticoida 14APR88 D 1 1 176 633952 Kinoryncha 14APR88 D 1 1 19 68438 laophonte spp. 14APR88 D 1 1 119 428638 I longipedia americana 14APR88 D 1 1 6 21612I Mediomastus californiensis 14APR88 D 1 1 20 72040 Nematoda 14APR88 D 1 1 534 1923468 Ostracoda 14APR88 D 1 1 5 18010 Polychaete larvae 14APR88 D 1 1 2 7204 Pseudodiaptomus coronatus 14APR88 D 1 1 1 3602 Saphirella sp. 14APR88 D 1 1 1 3602 I Schizopera sp. 14APR88 D 1 1 1 3602 Scottolana canadensis 14APR88 D 1 1 1 3602 Thompsonula sp. 14APR88 D 1 1 5 18010 Unidentified (Miscellaneous) 14APR88 D 1 1 62 223324 Zausodes arenicolus 14APR88 D 1 1 4 14408 Bivalvia 14APR88 D 1 3 1 3602 Copepod nauplii 14APR88 D 1 3 19 68438 I Dioasaccidae nauplii 14APR88 D 1 3 1 3602 Enhydrosoma spp. 14APR88 D 1 3 7 25214 I Halacaridae (Hydracarina) 14APR88 D 1 3 1 3602 Harpacticoida 14APR88 D 1 3 6 21612 laophonte spp. 14APR88 D 1 3 1 3602 Mediomastus californiensis 14APR88 D 1 3 18 64836 Nematoda 14APR88 D 1 3 935 3367870 I Phoronis architecta 14APR88 D 1 3 1 3602 Unidentified (Miscellaneous) 14APR88 D 1 3 17 61234 Bivalvia 14APR88 D 2 1 8 28816 Copepod nauplii 14APR88 D 2 1 50 180100 I I Dioasaccidae nauplii 14APR88 D 2 1 1 3602 Ectinosoma sp. 14APR88 D 2 1 4 14408 Ectinosomidae 14APR88 D 2 1 16 57632 Ectinosomidae sp. A 14APR88 D 2 1 2 7204 Enhydrosoma spp. 14APR88 D 2 1 48 172896 Harpacticoida 14APR88 D 2 1 112 403424 Kinoryncha 14APR88 D 2 1 34 122468 Laophonte spp. 14APR88 D 2 1 29 104458 longipedia americana 14APR88 D 2 1 1 3602 I Mediomastus californiensis 14APR88 D 2 1 24 86448 Mulinia lateralis 14APR88 D 2 1 1 3602 Nematoda 14APR88 D 2 1 885 3187770 Ostracoda 14APR88 D 2 1 3 10806 I Polychaete larvae 14APR88 D 2 1 3 10806 Polydora sp. 14APR88 D 2 1 1 3602 Pseudodiaptomus coronatus 14APR88 D 2 1 1 3602 Thompsonula sp. 14APR88 D 2 1 4 14408 Unidentified (Miscellaneous) 14APR88 D 2 1 51 183702 I Zausodes arenicolus 14APR88 D 2 1 2 7204 Copepod nauplii 14APR88 D 2 3 2 7204 Enhydrosoma spp. 14APR88 D 2 3 2 7204 Halacaridae (Hydracarina) 14APR88 D 2 3 6 21612 I Mediomastus californiensis 14APR88 D 2 3 3 10806 Nematoda 14APR88 D 2 3 856 3083312 Nereidae 14APR88 D 2 3 1 3602 Spiophanes bombyx 14APR88 D 2 3 1 3602 Unidentified (Miscellaneous) 14APR88 D 2 3 22 79244 Bivalvia 14APR88 D 3 1 3 10806 Copepod nauplii 14APR88 D 3 1 106 381812 I Cyclopoida 14APR88 D 3 1 1 3602 Dioasaccidae nauplii 14APR88 D 3 1 1 3602 I Ectinosoma sp. 14APR88 D 3 1 1 3602 Ectinosomidae 14APR88 D 3 1 13 46826 Enhydrosoma spp. 14APR88 D 3 1 19 68438 Gastropoda 14APR88 D 3 1 3 10806 Halicyclops sp. 14APR88 D 3 1 1 3602 Harpacticoida 14APR88 D 3 1 128 461056 Harpacticus sp. 14APR88 D 3 1 1 3602 I 362 NCME IOSP. DAT Kinoryncha 14APR88 D 3 1 13 46826 laophonte spp. 14APR88 D 3 1 79 284558longipedia americana 14APR88 D 3 1 3 10806 Mediomastus californiensis 14APR88 D 3 1 16 57632 Mulinia lateralis 14APR88 D 3 1 1 3602 Nematoda 14APR88 D 3 1 612 2204424Ostracoda 14APR88 D 3 1 8 28816Polychaete larvae 14APR88 D 3 1 4 14408Pseudodiaptomus coronatus 14APR88 D 3 1 1 3602Schizopera sp. 14APR88 D 3 1 2 7204Thompsonula sp. 14APR88 D 3 1 6 21612 Unidentified (Miscellaneous) 14APR88 D 3 1 59 212518 Zausodes arenicolus 14APR88 D 3 1 1 3602 Copepod nauplii 14APR88 D 3 3 3 10806Ectinosomidae 14APR88 D 3 3 2 7204 Enhydrosoma spp. 14APR88 D 3 3 2 7204 Halacaridae (Hydracarina) 14APR88 D 3 3 1 3602 Harpacticoida 14APR88 D 3 3 1 3602 Mediomastus californiensis 14APR88 D 3 3 4 14408 Nematoda 14APR88 D 3 3 773 2784346 Phoronis architecta 14APR88 D 3 3 2 7204 Polychaete larvae 14APR88 D 3 3 2 7204 Spiophanes bombyx 14APR88 D 3 3 1 3602 Unidentified (Miscellaneous) 14APR88 D 3 3 21 75642 Bivalvia 09MAY88 c 1 1 2 7204 Copepod nauplii 09MAY88 c 1 1 20 72040 Dioasaccidae nauplii 09MAY88 c 1 1 9 32418 Diopatra cuprea 09MAY88 c 1 1 1 3602 Ectinosoma sp. 09MAY88 c 1 1 2 7204 Ectinosomidae 09MAY88 c 1 1 2 7204 Enhydrosoma spp. 09MAY88 c 1 1 14 50428 Halicyclops sp. 09MAY88 c 1 1 1 3602 Harpacticoida 09MAY88 c 1 1 1 3602 Kinoryncha 09MAY88 c 1 1 25 90050 Mediomastus californiensis 09MAY88 c 1 1 3 10806 Microarthridion sp . 09MAY88 c 1 1 13 46826 Nematoda 09MAY88 c 1 1 186 669972 Ostracoda 09MAY88 c 1 1 3 10806 Polychaete larvae 09MAY88 c 1 1 2 7204 Schizopera sp. 09MAY88 c 1 1 13 46826 Stenhelia sp. 09MAY88 c 1 1 1 3602 Streblospio benedicti 09MAY88 c 1 1 1 3602 Unidentified (Miscellaneous) 09MAY88 c 1 1 12 43224 Enhydrosoma spp. 09MAY88 c 1 3 2 7204 Mediomastus californiensis 09MAY88 c 1 3 1 3602 Microarthridion sp. 09MAY88 c 1 3 1 3602 Nematoda 09MAY88 c 1 3 227 817654 Tharyx setigera 09MAY88 c 1 3 1 3602 Unidentified (Miscellaneous) 09MAY88 c 1 3 1 '3602 Bivalvia 09MAY88 c 2 1 4 14408 Copepod nauplii 09MAY88 c 2 1 35 126070 Dioasaccidae nauplii 09MAY88 c 2 1 29 104458 Ectinosomidae 09MAY88 c 2 1 6 21612 c 2 1 12 43224 Enhydrosoma spp. 09MAY88Harpacticoida 09MAY88 c 2 1 3 10806 Kinoryncha 09MAY88 c 2 1 55 198110 Leucon sp. 09MAY88 c 2 1 3 10806 Mediomastus californiensis 09MAY88 c 2 1 6 21612 Microarthridion sp. 09MAY88 c 2 1 25 90050 Nematoda 09MAY88 c 2 1 222 799644 Ostracoda 09MAY88 c 2 1 10 36020 Paraprionospio pinnata 09MAY88 c 2 1 1 3602 Pseudodiaptomus coronatus 09MAY88 c 2 1 1 3602 Schizopera sp. 09MAY88 c 2 1 20 72040 Stenhelia sp. 09MAY88 c 2 1 7 25214 Unidentified (Miscellaneous) 09MAY88 c 2 1 12 43224 Copepod nauplii 09MAY88 c 2 3 5 18010 I I I I I I I I I I I I I I I I I I I I NCMEIOSP.DAT 363 I I Cossura delta 09MAY88 c 2 3 1 3602 Dioasaccidae nauplii 09MAY88 c 2 3 2 7204 Ectinosomidae 09MAY88 c 2 3 1 3602 Enhydrosoma spp. 09MAY88 c 2 3 1 3602 Halacaridae (Hydracarina) 09MAY88 c 2 3 1 3602 Microarthridion sp. 09MAY88 c 2 3 1 3602 I Nematoda 09MAY88 c 2 3 137 493474 Stenhelia sp . 09MAY88 c 2 3 1 3602 Unidentified (Miscellaneous) 09MAY88 c 2 3 13 46826 Bivalvia 09MAY88 c 3 1 5 18010 Copepod nauplii 09MAY88 c 3 1 35 126070 I Dioasaccidae nauplii 09MAY88 c 3 1 16 57632 Ectinosoma sp . 09MAY88 c 3 1 3 10806 Ectinosomidae 09MAY88 c 3 1 2 7204 Enhydrosoma spp . 09MAY88 c 3 1 23 82846 I Harpacticoida 09MAY88 c 3 1 3 10806 Kinoryncha 09MAY88 c 3 1 33 118866 Leucon sp . 09MAY88 c 3 1 1 3602I Mediomastus californiensis 09MAY88 c 3 1 5 18010 Microarthridion sp . 09MAY88 c 3 1 73 262946 Nematoda 09MAY88 c 3 1 179 644758 Ostracoda 09MAY88 c 3 1 7 25214 Phascolion strombi 09MAY88 c 3 1 1 3602 Polychaete larvae 09MAY88 c 3 1 2 7204 Schizopera sp . 09MAY88 c 3 1 24 86448 Stenhelia sp. 09MAY88 c 3 1 10 36020 I I Streblospio benedicti 09MAY88 c 3 1 1 3602 Unidentified (Miscellaneous) 09MAY88 c 3 1 16 57632 Mediomastus californiensis 09MAY88 c 3 3 3 10806 Nematoda 09MAY88 c 3 3 129 464658 Schizopera sp. 09MAY88 c 3 3 1 3602 Copepod nauplii 10MAY88 A 1 1 74 266548 Dioasaccidae nauplii 10MAY88 A 1 1 7 25214 I I Ectinosomidae 10MAY88 A 1 1 5 18010 Halicyclops sp. 10MAY88 A 1 1 3 10806 Harpacticoida 10MAY88 A 1 1 4 14408 Kinoryncha 10MAY88 A 1 1 5 18010 Mulinia lateralis 10MAY88 A 1 1 4 14408 Nematoda 10MAY88 A 1 1 52 187304 Ostracoda 10MAY88 A 1 1 5 18010 Schizopera sp . 10MAY88 A 1 1 1 3602 Stenhelia sp . 10MAY88 A 1 1 1 3602 I Streblospio benedicti 10MAY88 A 1 1 2 7204 Unidentified (Miscellaneous) 10MAY88 A 1 1 14 50428 Ectinosomidae 10MAY88 A 1 3 1 3602 Nematoda 10MAY88 A 1 3 152 547504 I Stenhelia sp . 10MAY88 A 1 3 1 3602 Streblospio benedicti 10MAY88 A 1 3 2 7204 Unidentified (Miscellaneous) 10MAY88 A 1 3 29 104458 Copepod nauplii 10MAY88 A 2 1 56 201712 Dioasaccidae nauplii 10MAY88 A 2 1 5 18010 I Ectinosomidae 10MAY88 A 2 1 21 75642 Halicyclops sp . 10MAY88 A 2 1 3 10806 Harpacticoida 10MAY88 A 2 1 2 7204 Mulinia lateralis 10MAY88 A 2 1 4 14408 I Nematoda 10MAY88 A 2 1 21 75642 Ostracoda 10MAY88 A 2 1 3 10806 Streblospio benedicti 10MAY88 A 2 1 3 10806 Unidentified (Miscellaneous) 10MAY88 A 2 1 6 21612 Nematoda 10MAY88 A 2 3 98 352996 I Schizopera sp. 10MAY88 A 2 3 1 3602 Stenhelia sp. 10MAY88 A 2 3 1 3602 Streblospio benedicti 10MAY88 A 2 3 2 7204 Unidentified (Miscellaneous) 10MAY88 A 2 3 4 14408 Copepod nauplii 10MAY88 A 3 1 40 144080 Dioasaccidae nauplii 10MAY88 A 3 1 9 32418 Ectinosomidae 10MAY88 A 3 1 10 36020 I NCHEIOSP.DAT 364 Enhydrosoma spp. 10MAY88 A 3 1 1 3602 A 3 1 2 7204Halicyclops sp. 10MAY88 1 1 3602Harpacticoida 10MAY88 A 3A 3 1 4 14408 Mulinia lateralis 10MAY88Nematoda 10MAY88 A 3 1 31 111662 A 3 1 14 50428Ostracoda lOMAY88 3 10806Streblospio benedicti 10MAY88 A 3 1A 3 1 6 21612 Unidentified (Miscellaneous) 10MAY88Nematoda 10MAY88 A 3 3 120 432240 A 3 3 1 3602Stenhelia sp. 10MAY88 3 1 3602Streblospio benedicti 10MAY88 A 3A 3 3 7 25214Unidentified (Miscellaneous) 10MAY88 Copepod nauplii 11MAY88 B 1 1 6 21612 Dioasaccidae nauplii 11MAY88 B 1 1 1 3602 3602 Ectinosomidae 11MAY88 B 1 1 11 1 3602Laophonte spp. 11MAY88 B 1B 1 1 1 3602 Longipedia americana 11MAY88Mediomastus californiensis 11MAY88 B 1 1 1 3602 B 1 1 1 3602 Mulinia lateralis 11MAY88 324180Nematoda 11MAY88 B 1 1 901 2 7204Ostracoda 11MAY88 B 1B 1 1 1 3602 Stenhelia sp. 11MAY88 Streblospio benedicti 11MAY88 B 1 1 1 3602 1 1 3 10806 Unidentified (Miscellaneous) 11MAY88 B Copepod nauplii 11MAY88 B 1 3 4 14408 1 3 3 10806 Mediomastus californiensis 11MAY88 B Nematoda 11MAY88 B 1 3 62 223324 1 3 5 18010Unidentified (Miscellaneous) 11MAY88 B Copepod nauplii 11MAY88 B 2 1 4 14408 1 1 3602Cyclaspis varians 11MAY88 B 2B 2 1 8 28816 Ectinosomidae 11MAY88Enhydrosoma spp. 11MAY88 B 2 1 8 28816 7204 Longipedia americana 11MAY88 B 2 1 211 39622Mulinia lateralis 11MAY88 B 2 1B 2 1 123 443046 Nematoda 11MAY88 Ostracoda 11MAY88 B 2 1 1 3602 Pseudodiaptomus coronatus 11MAY88 B 2 1 1 3602 3602Schizopera sp. 11MAY88 B 2 1 11 2 7204Streblospio benedicti 11MAY88 B 2B 2 1 8 28816 Unidentified (Miscellaneous) 11MAY88 Zausodes arenicolus 11MAY88 B 2 1 2 7204 Copepod nauplii 11MAY88 B 2 3 5 18010 3 10806 Mediomastus californiensis 11MAY88 B 2 3 B 2 3 234 842868 Nematoda 11MAY88 Unidentified (Miscellaneous) 11MAY88 B 2 3 7 25214 Copepod nauplii 11MAY88 B 3 1 13 46826 1 5 18010Dioasaccidae nauplii 11MAY88 B 3B 3 1 2 7204 Ectinosomidae 11MAY88Enhydrosoma spp. 11MAY88 B 3 1 13 46826 Laophonte spp. 11MAY88 B 3 1 2 7204 1 1 3602 Mediomastus californiensis 11MAY88 B 3 B 3 1 6 21612 Mulinia lateralis 11MAY88 Nematoda 11MAY88 B 3 1 137 493474 Ostracoda 11MAY88 B 3 1 3 10806 Schizopera sp. 11MAY88 B 3 1 4 14408 Stenhe1ia. sp. 11MAY88 B 3 1 2 7204 B 3 1 1 3602 Streblospio benedicti 11MAY88 Unidentified (Miscellaneous) 11MAY88 B 3 1 9 32418 3 3 2 7204Bivalvia 11MAY88 B Copepod nauplii 11MAY88 B 3 3 2 7204 3 2 7204Dioasaccidae nauplii 11MAY88 B 33 3 2 7204 Enhydrosoma spp. 11MAY88 B Mediomastus californiensis 11MAY88 B 3 3 1 3602 Nematoda 11MAY88 B 3 3 133 479066 B 3 3 11 39622Unidentified (Miscellaneous) 11MAY88 1 5 18010Bivalvia 12MAY88 D 1 Copepod nauplii 12MAY88 D 1 1 18 64836 I I I I I I I I I I I I I I I I I I I I NCHEIOSP.DAT 365 I I Cyclopoida 12MAY88 D 1 1 1 3602 Ectinosomidae 12MAY88 D 1 1 64 230528 Enhydrosoma spp . 12MAY88 D 1 1 20 72040 Gastropoda 12MAY88 D 1 1 3 10806 Halicyclops sp. 12MAY88 D 1 1 2 7204 Harpacticoida 12MAY88 D 1 1 50 180100 Kinoryncha 12MAY88 D 1 1 17 61234 I Laophonte spp. 12MAY88 D 1 1 74 266548 Longipedia americana 12MAY88 D 1 1 2 7204 Mediomastus californiensis 12MAY88 D 1 1 16 57632 Nematoda 12MAY88 D 1 1 397 1429994 I Nuculana acuta 12MAY88 D 1 1 1 3602 Ostracoda 12MAY88 D 1 1 4 14408 Polychaete larvae 12MAY88 D 1 1 2 7204 Schizopera sp. 12MAY88 D 1 1 1 3602 Turbe llaria 12MAY88 D 1 1 1 3602 I Unidentified (Miscellaneous) 12MAY88 D 1 1 41 147682 Enhydrosoma spp. 12MAY88 D 1 3 1 3602 Mediomastus californiensis 12MAY88 D 1 3 7 25214 Nematoda 12MAY88 D 1 3 1118 4027036 I Nereidae 12MAY88 D 1 3 1 3602 Polydora caulleryi 12MAY88 D 1 3 2 7204 Unidentified (Miscellaneous) 12MAY88 D 1 3 24 86448 Bivalvia 12MAY88 D 2 1 7 25214 Copepod nauplii 12MAY88 D 2 1 17 61234 I Ectinosomidae 12MAY88 D 2 1 61 219722 Enhydrosoma spp. 12MAY88 D 2 1 16 57632 Gastropoda 12MAY88 D 2 1 1 3602 Harpacticoida 12MAY88 D 2 1 27 97254 I Kinoryncha 12MAY88 D 2 1 30 108060 Laophonte spp. 12MAY88 D 2 1 65 234130 Mediomastus californiensis 12MAY88 D 2 1 19 68438 Nematoda 12MAY88 D 2 1 482 1736164 Ostracoda 12MAY88 D 2 1 10 36020 I Polychaete larvae 12MAY88 D 2 1 1 3602 Pseudodiaptomus coronatus 12MAY88 D 2 1 1 3602 Unidentified (Miscellaneous) 12MAY88 D 2 1 67 241334 Zausodes arenicolus 12MAY88 D 2 1 3 10806 I Copepod nauplii 12MAY88 D 2 3 5 18010 Mediomastus californiensis 12MAY88 D 2 3 6 21612 Nematoda 12MAY88 D 2 3 786 2831172 Unidentified (Miscellaneous) 12MAY88 D 2 3 36 129672 Bivalvia 12MAY88 D 3 1 6 21612 I Copepod nauplii 12MAY88 D 3 1 11 39622 Ectinosomidae 12MAY88 D 3 1 34 122468 Enhydrosoma spp. 12MAY88 D 3 1 21 75642 Gastropoda 12MAY88 D 3 1 1 3602 I I Glycinde solitaria 12MAY88 D 3 1 1 3602 Halicyclops sp. 12MAY88 D 3 1 1 3602 Harpacticoida 12MAY88 D 3 1 34 122468 Kinoryncha 12MAY88 D 3 1 27 97254 Laophonte spp. 12MAY88 D 3 1 44 158488 Longipedia americana 12MAY88 D 3 1 3 10806 Mediomastus californiensis 12MAY88 D 3 1 17 61234 Microarthridion sp. 12MAY88 D 3 1 1 3602 Nematoda 12MAY88 D 3 1 443 1595686 I I Ophiuroidea 12MAY88 D 3 1 1 3602 Ostracoda 12MAY88 D 3 1 8 28816 Polychaete larvae 12MAY88 D 3 1 1 3602 Turbellaria 12MAY88 D 3 1 3 10806 Unidentified (Miscellaneous) 12MAY88 D 3 1 54 194508 Zausodes arenicolus 12MAY88 D 3 1 3 10806 Copepod nauplii 12MAY88 D 3 3 1 3602 Mediomastus californiensis 12MAY88 D 3 3 2 7204 Nematoda 12MAY88 D 3 3 1318 4747436 Nereidae 12MAY88 D 3 3 1 3602 Spiochaetopterus costarum 12MAY88 D 3 3 1 3602 I NCHEIOSP.DAT 366 I Unidentified (Miscellaneous) 12MAY88 D 3 3 39 140478 Bivalvia 26JUL88 c 1 1 13 46826 I Copepod nauplii 26JUL88 c 1 1 20 72040 Dioasaccidae nauplii 26JUL88 c 1 1 3 10806 Ectinosoma sp. 26JUL88 c 1 1 3 10806 Ectinosomidae 26JUL88 c 1 1 3 10806 ,I Enhydrosoma spp. 26JUL88 c 1 1 2 7204 Halicyclops sp. 26JUL88 c 1 1 1 3602 Kinoryncha 26JUL88 c 1 1 22 79244 Longipedia americana 26JUL88 c 1 1 1 3602 Microarthridion sp. 26JUL88 c 1 1 3 10806 I Nematoda 26JUL88 c 1 1 43 154886 Nuculana acuta 26JUL88 c 1 1 1 3602 Ostracoda 26JUL88 c 1 1 4 14408 Polychaete larvae 26JUL88 c 1 1 1 3602 Schizopera sp. 26JUL88 c 1 1 4 14408 I Stenhelia sp. 26JUL88 c 1 1 4 14408 Unidentified (Miscellaneous) 26JUL88 c 1 1 13 46826 Copepod nauplii 26JUL88 c 1 3 1 3602 Cossura delta 26JUL88 c 1 3 1 3602 I Ectinosoma sp. 26JUL88 c 1 3 1 3602 Kinoryncha 26JUL88 c 1 3 2 7204 Mediomastus californiensis 26JUL88 c 1 3 2 7204 Nematoda 26JUL88 c 1 3 86 309772 Schizopera sp. 26JUL88 c 1 3 1 3602 I Unidentified (Miscellaneous) 26JUL88 c 1 3 1 3602 Bivalvia 26JUL88 c 2 1 7 25214 Copepod nauplii 26JUL88 c 2 1 29 104458 Dioasaccidae nauplii 26JUL88 c 2 1 1 3602 I Ectinosoma sp. 26JUL88 c 2 1 1 3602 Ectinosomidae 26JUL88 c 2 1 7 25214 Enhydrosoma spp. 26JUL88 c 2 1 1 3602 Ha 1 icyc lops sp. 26JUL88 c 2 1 2 7204 I Kinoryncha 26JUL88 c 2 1 1 3602 Mediomastus californiensis 26JUL88 c 2 1 3 10806 Microarthridion sp. 26JUL88 c 2 1 5 18010 Nematoda 26JUL88 c 2 1 19 68438 Ostracoda 26JUL88 c 2 1 1 3602 I Polychaete larvae 26JUL88 c 2 1 1 3602 Sabe 11 idae 26JUL88 c 2 1 1 3602 Stenhelia sp. 26JUL88 c 2 1 1 3602 Unidentified (Miscellaneous) 26JUL88 c 2 1 8 28816 I Bivalvia 26JUL88 c 2 3 2 7204 Cossura delta 26JUL88 c 2 3 1 3602 Enhydrosoma spp. 26JUL88 c 2 3 4 14408 Kinoryncha 26JUL88 c 2 3 4 14408 Mediomastus californiensis 26JUL88 c 2 3 1 3602 I Microarthridion sp. 26JUL88 c 2 3 3 10806 Nematoda 26JUL88 c 2 3 131 471862 Schizopera sp . 26JUL88 c 2 3 2 7204 Unidentified (Miscellaneous) 26JUL88 c 2 3 4 14408 I Bivalvia 26JUL88 c 3 1 10 36020 Copepod nauplii 26JUL88 c 3 1 13 46826 Ectinosoma sp. 26JUL88 c 3 1 2 7204 Enhydrosoma spp. 26JUL88 c 3 1 5 18010 Halicyclops sp. 26JUL88 c 3 1 4 14408 I Kinoryncha 26JUL88 c 3 1 11 39622 Leucon sp. 26JUL88 c 3 1 1 3602 Longipedia americana 26JUL88 c 3 1 2 7204 Mediomastus californiensis 26JUL88 c 3 1 1 3602 I Microarthridion sp. 26JUL88 c 3 1 5 18010 Nematoda 26JUL88 c 3 1 23 82846 Ostracoda 26JUL88 c 3 1 1 3602 Schizopera ~p. 26JUL88 c 3 1 1 3602 Stenhelia sp. 26JUL88 c 3 1 1 3602 I Unidentified (Miscellaneous) 26JUL88 c 3 1 8 28816 Copepod nauplii 26JUL88 c 3 3 2 7204 I I NCHEIOSP.DAT 367 I Cossura delta 26JUL88 c 3 3 1 3602 Enhydrosoma spp. 26JUL88 c 3 3 9 32418 I Kinoryncha 26JUL88 c 3 3 9 32418 Mediomastus californiensis 26JUL88 c 3 3 1 3602 Nematoda 26JUL88 c 3 3 108 389016 Paraprionospio pinnata 26JUL88 c 3 3 1 3602 I Stenhe l ia sp. 26JUL88 c 3 3 1 3602 Unidentified (Miscellaneous) 26JUL88 c 3 3 3 10806 Bivalvia 26JUL88 D 1 1 3 10806 Copepod nauplii 26JUL88 D 1 1 16 57632 Ectinosomidae 26JUL88 D 1 1 2 7204 I Enhydrosoma spp. 26JUL88 D 1 1 2 7204 Glycinde solitaria 26JUL88 D 1 1 1 3602 Halicyclops sp. 26JUL88 D 1 1 2 7204 Kinoryncha 26JUL88 D 1 1 6 21612 I Mediomastus californiensis 26JUL88 D 1 1 4 14408 Nematoda 26JUL88 D 1 1 156 561912 Polydora caulleryi 26JUL88 D 1 1 1 3602 Turbonilla sp. 26JUL88 D 1 1 1 3602 Unidentified (Miscellaneous) 26JUL88 D 1 1 91 327782 Ha 1 icyc lops sp. 26JUL88 D 1 3 1 3602 I I Harpacticoida 26JUL88 D 1 3 1 3602 Kinoryncha 26JUL88 D 1 3 1 3602 Mediomastus californiensis 26JUL88 D 1 3 2 7204 Nematoda 26JUL88 D 1 3 1086 3911772 Polydora caulleryi 26JUL88 D 1 3 6 21612 Tharyx setigera 26JUL88 D 1 3 2 7204 Unidentified (Miscellaneous) 26JUL88 D 1 3 7 25214 Copepod nauplii 26JUL88 D 2 1 5 18010 I Ectinosomidae . 26JUL88 D 2 1 4 14408 Enhydrosoma spp. 26JUL88 D 2 1 1 3602 Halicyclops sp. 26JUL88 D 2 1 1 3602 Kinoryncha 26JUL88 D 2 1 5 18010 I Mediomastus californiensis 26JUL88 D 2 1 3 10806 Microarthridion sp. 26JUL88 D 2 1 1 3602 Nematoda 26JUL88 D 2 1 501 1804602 Polydora caulleryi 26JUL88 D 2 1 1 3602 Saphirella sp. 26JUL88 D 2 1 1 3602 I Scottolana canadensis 26JUL88 D 2 1 3 10806 Turbonilla sp. 26JUL88 D 2 1 2 7204 Unidentified (Miscellaneous) 26JUL88 D 2 1 104 374608 Ectinosomidae 26JUL88 D 2 3 1 3602 I I Mediomastus californiensis 26JUL88 D 2 3 1 3602 Nematoda 26JUL88 D 2 3 556 2002712 Paraonidae grp. A 26JUL88 D 2 3 1 3602 Polychaete larvae 26JUL88 D 2 3 .1 3602 Tharyx setigera 26JUL88 D 2 3 3 10806 Unidentified (Miscellaneous) 26JUL88 D 2 3 12 43224 Bivalvia 26JUL88 D 3 1 1 3602 Copepod nauplii 26JUL88 D 3 1 8 28816 Enhydrosoma spp. 26JUL88 D 3 1 2 7204 I Halicyclops sp. 26JUL88 D 3 1 3 10806 Kinoryncha 26JUL88 D 3 1 7 25214 Mediomastus californiensis 26JUL88 D 3 1 1 3602 Nematoda 26JUL88 D 3 1 233 839266 I Scottolana canadensis 26JUL88 D 3 1 2 7204 Unidentified (Miscellaneous) 26JUL88 D 3 1 110 396220 Mediomastus californiensis 26JUL88 D 3 3 1 3602 Nematoda 26JUL88 D 3 3 352 1267904 Paraprionospio pinnata 26JUL88 D 3 3 1 3602 I Unidentified (Miscellaneous) 26JUL88 D 3 3 13 46826 Copepod nauplii 27JUL88 A 1 1 23 82846 Ectinosomidae 27JUL88 A 1 1 29 104458 Enhydrosoma spp. 27JUL88 A 1 1 1 3602 Halicyclops sp. 27JUL88 A 1 1 6 21612 Kinoryncha 27JUL88 A 1 1 1 3602 Nematoda 27JUL88 A 1 1 81 291762 I 368 NCHEIOSP.DAT I Ostracoda 27JUL88 A 1 1 10 36020 Streblospio benedicti 27JUL88 A 1 1 1 3602 I Unidentified (Miscellaneous) 27JUL88 A 1 1 13 46826 Ectinosomidae 27JUL88 A 1 3 1 3602 Nematoda 27JUL88 A 1 3 230 828460 Streblospio benedicti 27JUL88 A 1 3 1 3602 Bivalvia 27JUL88 A 2 1 I 1 3602 Copepod nauplii 27JUL88 A 2 1 11 39622 Cyclopoid copepod 27JUL88 A 2 1 1 3602 Dioasaccidae nauplii 27JUL88 A 2 1 3 10806 Ectinosoma sp. 27JUL88 A 2 1 2 7204 I Ectinosomidae 27JUL88 A 2 1 10 36020 Enhydrosoma spp. 27JUL88 A 2 1 2 7204 Halicyclops sp. 27JUL88 A 2 1 7 25214 Mediomastus californiensis 27JUL88 A 2 1 2 7204 Nematoda 27JUL88 A 2 1 146 I 525892 Ostracoda 27JUL88 A 2 1 24 86448 Schizopera sp. 27JUL88 A 2 1 2 7204Streblospio benedicti 27JUL88 A 2 1 2 7204 Unidentified (Miscellaneous) 27JUL88 A 2 1 6 21612 I Cyclopoid copepod 27JUL88 A 2 3 2 7204 Mulinia lateralis 27JUL88 A 2 3 1 3602Nematoda 27JUL88 A 2 3 149 536698 Streblospio benedicti 27JUL88 A 2 3 1 3602 I Unidentified (Miscellaneous) 27JUL88 A 2 3 1 3602 Copepod nauplii 27JUL88 A 3 1 14 50428 Dioasaccidae nauplii 27JUL88 A 3 1 2 7204 Ectinosoma sp. 27JUL88 A 3 1 2 7204Ectinosomidae 27JUL88 A 3 1 7 25214 I Enhydrosoma spp. 27JUL88 A 3 1 2 7204 Nematoda 27JUL88 A 3 1 250 900500Ostracoda 27JUL88 A 3 1 28 100856 Schizopera sp. 27JUL88 A 3 1 2 7204Streblospio benedicti 27JUL88 A 3 1 I 3 10806 Unidentified (Miscellaneous) 27JUL88 A 3 1 19 68438Harpacticoida 27JUL88 A 3 3 1 3602Nematoda 27JUL88 A 3 3 78 280956 Unidentified (Miscellaneous) 27JUL88 A 3 3 1 3602 I Bivalvia 27JUL88 B 1 1 2 7204 Copepod nauplii 27JUL88 B 1 1 15 54030Dioasaccidae nauplii 27JUL88 B 1 1 9 32418Ectinosomidae 27JUL88 B 1 1 4 14408 I Enhydrosoma spp. 27JUL88 B 1 1 5 18010 Harpacticoida 27JUL88 B 1 1 2 7204 Kinoryncha 27JUL88 B 1 1 3 10806 Laophonte spp. 27JUL88 B 1 1 1 3602Longipedia americana 27JUL88 B 1 I 1 7 25214 Maldanidae 27JUL88 B 1 1 1 3602Mediomastus californiensis 27JUL88 B 1 1 5 18010 Nematoda 27JUL88 B 1 1 111 399822 Ostracoda 27JUL88 B 1 1 2 7204 I Polychaete larvae 27JUL88 B 1 1 1 3602 Sphaerosyllis erinaceus 27JUL88 B 1 1 1 3602 Stenhelia sp. 27JUL88 B 1 1 3 10806 Unidentified (Miscellaneous) 27JUL88 B 1 1 18 64836 Copepod nauplii 27JUL88 B 1 3 1 3602 ,I Dioasaccidae nauplii 27JUL88 B 1 3 1 3602 Nematoda 27JUL88 B 1 3 84 302568 Stenhelia sp. 27JUL88 B 1 3 2 7204 Unidentified (Miscellaneous) 27JUL88 B 1 3 4 14408 I Bivalvia 27JUL88 B 2 1 1 3602 Copepod nauplii 27JUL88 B 2 1 6 21612 Dioasaccidae nauplii 27JUL88 B 2 1 4 14408 Ectinosoma sp. 27JUL88 B 2 1 2 7204 ·I Ectinosomidae 27JUL88 B 2 1 1 3602 Enhydrosoma spp . 27JUL88 B 2 1 5 18010 Halicyclops sp. 27JUL88 B 2 1 2 7204 I, I I I NCMEIOSP.DAT 369 I Mediomastus californiensis 27JUL88 B 2 1 3 10806Nematoda 27JUL88 B 2 1 102 367404 I Ostracoda 27JUL88 B 2 1 4 14408 Stenhelia sp. 27JUL88 B 2 1 6 21612 Unidentified (Miscellaneous) 27JUL88 B 2 1 11 39622 Oioasaccidae nauplii 27JUL88 B 2 3 1 3602 I Enhydrosoma spp. 27JUL88 B 2 3 1 3602 Halicyclops sp. 27JUL88 B 2 3 1 3602 Mediomastus californiensis 27JUL88 B 2 3 2 7204 Nematoda 27JUL88 B 2 3 95 342190 Bivalvia 27JUL88 B 3 1 4 14408 I Copepod nauplii 27JUL88 B 3 1 9 32418 Dioasaccidae nauplii 27JUL88 B 3 1 7 25214 Ectinosomidae 27JUL88 B 3 1 7 25214 Ectinosomidae sp. A 27JUL88 B 3 1 2 7204 I Enhydrosoma spp. 27JUL88 B 3 1 4 14408 Harpacticoida 27JUL88 B 3 1 1 3602 longipedia americana 27JUL88 B 3 1 2 7204 Mediomastus californiensis 27JUL88 B 3 1 3 10806 Nematoda 27JUL88 B 3 1 142 511484 I Ostracoda 27JUL88 B 3 1 1 3602 Polychaete larvae 27JUL88 B 3 1 1 3602 Stenhe 1 ia sp. 27JUL88 B 3 1 3 10806 Unidentified (Miscellaneous) 27JUL88 B 3 1 15 54030 I Copepod nauplii 27JUL88 B 3 3 1 3602 Oioasaccidae nauplii 27JUL88 B 3 3 1 3602 Mediomastus californiensis 27JUL88 B 3 3 1 3602 Nematoda 27JUL88 B 3 3 144 518688 I I I I I I I I I I 370 COHPFLUX.DAT COMPFLUX.DAT Estuarine comparison experiment: BAY codes: GE=Guadalupe, and LP=Lavaca-Tres Palcios Estuaries TEMP=temperature, CORE=replicate core (each was also incubated for 02 flux and Nutrient flux. GM2=g drywt macrofauna/mA2, FLUX=mmol 02/mA2/h, GCM2=g C macrofauna/mA, FLUXC=~ C respiration/mA2/h, all nutrients in mmol/mA2/h s T A F T T c D F L G s B I E 0 G A L u c p I N N N A 0 M R M T u x M 0 0 0 0 H y p N E 2 E x c 2 4 4 2 3 4 GE A 25.00 1 8.8597 04APR89 -1.19470 0.014336 3.5439 -6.2991 -5.5134 -0.22487 -5.8631 7.7819 GE A 25.00 2 9.8920 04APR89 -0.86802 0.010416 3.9568 -7.8809 -21.0870 -0.91648 -15.2667 5.3562 GE A 25.00 3 7.8841 04APR89 -1.15976 0.013917 3.1536 -10.2237 -16.0738 -0.23643 -14.7302 -0.7181 GE B 24.70 1 5.2551 04APR89 -0.61304 0.007356 2.1020 1.5223 2.8787 1.16881 6.5583 6.0749 GE B 24.70 2 5.3742 04APR89 -0.53969 0.006476 2.1497 -1.7275 -9.0931 -0.72900 -5.9551 -5.7889 GE B 24.70 3 8.0939 04APR89 -0.54467 0.006536 3.2376 0.9504 -0.1005 0.17966 1.8089 -1.5807 GE C 23.10 1 0.7345 04APR89 -1.67602 0.020112 0.2938 -1.3488 -33.3360 -2.29427 -9.5068 -20.1298 GE C 23.10 2 2.5127 04APR89 -0.99674 0.011961 1.0051 -1.1128 -44.9818 -2.53665 -2.9577 -10.9503 GE C 23.10 3 3.5308 04APR89 0.03170 -0.000380 1.4123 -0.6650 -51.5470 -2.90488 -6.4874 -12.4648 GE D 24.80 1 13.3093 04APR89 -0.46884 0.005626 5.3237 5.5944 2.1261 0.19098 12.9597 3.0030 GE D 24.80 2 6.6277 04APR89 -0.29775 0.003573 2.6511 4.8181 0.4887 -0.00441 28.9676 18.3589 GED 24.80 3 4.8354 04APR89 -0.42888 0.005147 1.9342 4.6303 -1.3508 -0.16739 26.8660 4.3969 LP A 21.70 1 8.2698 05APR89 -1.55171 0.018621 3.3079 1.8360 -68.4866 0.83780 -0.1049 -18.8375 LP A 21.70 2 18.6836 05APR89 -1.80557 0.021667 7.4734 1.4794 -2.4916 1.29171 -1.8555 -6.4182 LP A 21.70 3 5.0764 05APR89 -0.33609 0.004033 2.0306 0.7388 -38.8842 0.67587 -3.0036 -13.4950 LP B 21.20 1 7.9380 05APR89 -1.42850 0.017142 3.1752 -1.9639 -47.5339 -0.19203 -2.6439 -0.5237 LP B 21.20 2 3.9959 05APR89 -0.35000 0.004200 1.5984 -0.6283 -33.9954 1.81183 -2.5787 4.1892 LP B 21.20 3 4.6709 05APR89 -1.12201 0.013464 1.8684 -0.6115 -33.0176 -0.50188 0.0370 6.1809 LP C 22.40 1 2.0277 05APR89 -1.49841 0.017981 0.8111 -0.5320 22.2516 -0.39212 2.3405 -3.4582 LP C 22.40 2 18.9246 05APR89 -1.28814 0.015458 7.5698 -0.7646 5.2279 -0.75851 4.9379 -0.4176 LP C 22.40 3 3.4940 05APR89 -2.29087 0.027490 1.3976 -1.4103 2.5957 -1.94967 1.5324 10.1929 LP D 22.20 1 7.6288 05APR89 -1.81371 0.021765 3.0515 -0.5882 21.7385 0.15439 -2.0510 -2.3593 LP D 22.20 2 56.0337 05APR89 -2.40642 0.028877 22.4135 0.2552 23.3213 4.41253 -7.1035 6.8350 LP D 22.20 3 20.4476 05APR89 -1.27463 0.015296 8.1790 -0.0406 38.1704 0.35952 -2.6839 -0.7255 LP A 29.03 1 5.2012 22JUL89 -0.50079 0.006009 2.0805 LP A 29.03 2 2.1610 22JUL89 -0.93796 0.011256 0.8644 LP A 29.03 3 4.0073 22JUL89 -2.04666 0.024560 1.6029 LP A 29.48 4 10.7343 22JUL89 -2.03557 0.024427 4.2937 LP A 29.48 5 9.6424 22JUL89 -1.36932 0.016432 3.8570 LP A 29.48 6 5.3175 22JUL89 -1.33101 0.015972 2.1270 LP C 31.00 1 2.6346 22JUL89 -0.36626 0.004395 1.0539 LP C 31.00 2 0.2637 22JUL89 -0.49942 0.005993 0.1055 LP C 31.00 3 0.3687 22JUL89 -0.39702 0.004764 0.1475 LP C 30.82 4 0.4679 22JUL89 -0.19246 0.002310 0.1872 LP C 30.82 5 3.9279 22JUL89 -0.40486 0.004858 1.5712 LP C 30.82 6 0.6523 22JUL89 -0.15602 0.001872 0.2609 GE A 31.52 1 3.5705 23JUL89 -0.29444 0.003533 1.4282 GE A 31.52 2 5.8535 23JUL89 -1.64213 0.019706 2.3414 GE A 31.52 3 4.9176 23JUL89 -1.09270 0.013112 1.9670 GE A 31.54 4 9.1319 23JUL89 -0.59126 0.007095 3.6528 GE A 31.54 5 0.9926 23JUL89 -1.06273 0.012753 0.3970 GE A 31.54 6 6.2959 23JUL89 -1.01583 0.012190 2.5184 GE C 31.34 1 2.2546 23JUL89 -0.76148 0.009138 0.9018 GE C 31.34 2 2.7821 23JUL89 -0.97650 0.011718 1.1128 GE C 31.34 3 3.0742 23JUL89 -0.69805 0.008377 1.2297 GE C 30.62 4 0.2552 23JUL89 0.02277 -0.000273 0.1021 GE C 30.62 5 5.9698 23JUL89 -1.06640 0.012797 2.3879 GE C 30.62 6 0.5814 23JUL89 -0.54900 0.006588 0.2326 I I I I I I I I I I I I I I