
Copyright

by

Cho-Jui Hsieh

2015

The Dissertation Committee for Cho-Jui Hsieh
certifies that this is the approved version of the following dissertation:

Exploiting Structure in Large-scale Optimization for

Machine Learning

Committee:

Inderjit S. Dhillon, Supervisor

Pradeep Ravikumar

Keshav Pingali

Ambuj Tewari

Stephen J. Wright

Exploiting Structure in Large-scale Optimization for

Machine Learning

by

Cho-Jui Hsieh, B.S. EE; B.S. Math; M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2015

Acknowledgments

I would like to thank my supervisor Inderjit Dhillon for sharing his

knowledge, pushing me to work hard and constantly try to improve my work,

and giving me the freedom to explore a diverse set of projects. I would like

to thank other machine learning faculty at the University of Texas at Austin,

especially Pradeep Ravikumar, for the substantial collaboration and advising

on my research. I gratefully acknowledge the members for my Ph.D. commit-

tee Keshav Pingali, Ambuj Tewari, and Stephen Wright for their time and

valuable feedback on a preliminary version of this thesis. I would like to ac-

knowledge my other co-authors for their help in letting me be more productive

than I would have been able to on my own: Si Si, Hsiang-Fu Yu, Kai-Yang

Chiang, S.V.N. Vishwanathan, Peder Olsen, Hyokun Yun, Matyas Sustik, Rus-

sell Poldrack, Stephen Becker, Arindam Banerjee, Huahua Wang, Ian En-Hsu

Yen, Nagarajan, Natarajan, Ambuj Tewari, Mitul Tiwari, Sam Shah, Deep-

ack Argawal, Chih-Jen Lin, Kai-Wei Chang, Guo-Xun Yuan, Yin-Wen Chang,

Ron-En Fan, Sathiya Keerthi, S. Sundararajan, and Michael Ringgaard. The

National Science Foundation and IBM provided funding for part of my work.

Finally, and most importantly, I’d like to dedicate this thesis to my Fiancée

Si Si, and my parents Shu-Miao Lin and Lin-Fen Hsieh.

iv

Exploiting Structure in Large-scale Optimization for

Machine Learning

Publication No.

Cho-Jui Hsieh, Ph.D.

The University of Texas at Austin, 2015

Supervisor: Inderjit S. Dhillon

With an immense growth of data, there is a great need for solving

large-scale machine learning problems. Classical optimization algorithms usu-

ally cannot scale up due to huge amount of data and/or model parameters.

In this thesis, we will show that the scalability issues can often be resolved

by exploiting three types of structure in machine learning problems: problem

structure, model structure, and data distribution. This central idea can be

applied to many machine learning problems. In this thesis, we will describe in

detail how to exploit structure for kernel classification and regression, matrix

factorization for recommender systems, and structure learning for graphical

models. We further provide comprehensive theoretical analysis for the pro-

posed algorithms to show both local and global convergent rate for a family

of in-exact first-order and second-order optimization methods.

v

Table of Contents

Acknowledgments iv

Abstract v

List of Tables ix

List of Figures x

Chapter 1. Introduction 1

Chapter 2. Structure in Machine Learning Problems 7

2.1 Structure of the Problem . 8

2.2 Structure of the Model . 9

2.3 Data Distribution . 11

Chapter 3. Exploiting Structure for Sparse Inverse Covariance
Estimation 12

3.1 Background . 13

3.2 Exploiting Problem Structure—Fast Coordinate Descent Solver
for Computing Newton Direction 15

3.3 Exploiting Model Structure—Fixed and Free Variable Selection 17

3.4 Exploiting Data Distribution—Divide-and-Conquer QUIC . . . 20

3.5 Scaling Beyond Memory Capacity – BigQUIC 24

3.6 Summary of the Contribution 35

Chapter 4. Exploiting Structure for other Machine Learning
Problems 37

4.1 Greedy Coordinate Descent for NMF 37

4.1.1 Exploiting Problem Structure 38

4.1.2 Exploiting Model Structure—Greedy Coordinate Descent 39

vi

4.1.3 Experimental Comparisons 43

4.2 kernel Support Vector Machine 45

4.2.1 Exploiting Problem and Model Structure—Greedy Coor-
dinate Descent Updates 46

4.2.2 Exploring data distribution—Divide and Conquer kernel
SVM . 47

4.2.3 Experimental Results 52

4.3 Proximal Newton method for Dirty Statistical Models 53

4.3.1 Exploiting Problem Structure – Block Coordinate De-
scent for Computing Newton direction 56

4.3.2 Exploiting Model Structure – Active Subspace Selection 57

4.3.3 Experimental Results 61

4.4 Summary of the Contribution 64

Chapter 5. Exploiting Structure for General Problems 65

5.1 Exploiting Problem Structure—Efficient Proximal Newton Meth-
ods for General Functions . 65

5.2 Exploiting Model Structure—Coordinate Descent with Priority 69

5.3 Exploiting Data Distribution—Distributed Divide-and-Conquer
Algorithms . 72

5.3.1 Related Work . 73

5.3.2 A Parallel Proximal Newton Framework 73

5.3.3 Quality of the Variable Partition 75

5.3.4 Application to Kernel Machines 76

5.4 Summary of the Contribution 84

Chapter 6. Theoretical Analysis for In-exact Proximal Gradient
and Newton Methods 88

6.1 A Unified Algorithmic Framework for Composite Minimization
Problems . 91

6.1.1 Quality of the approximate solution. 93

6.1.2 Assumption on the objective function. 95

6.2 Global Linear Convergence Rate for In-exact Proximal Gradient
and Newton Methods . 98

6.2.1 Lemmas . 99

vii

6.2.2 Global Linear Convergence for Functions with Global Er-
ror Bound . 105

6.2.3 Global Linear Convergence for Functions with Constant
Nullspace Strong Convexity (CNSC) 109

6.3 Local Super-linear Convergence Rate for In-exact Proximal Gra-
dient and Newton Methods . 113

6.3.1 Asymptotic Convergence Rate with Objective Function
Reduction Subproblem Solvers 114

6.3.2 Asymptotic Convergence Rate and Global Convergence
Rate with Gradient Reduction Subproblem Solvers . . . 120

6.3.3 Subproblem solvers that can be used 125

6.4 Applications . 126

6.4.1 Convergence Rate of In-exact Proximal Gradient Descent
and Newton Method . 126

6.4.2 Global linear convergence for in-exact Proximal Gradient
Descent or Newton Method with Active Subspace Selection128

6.4.3 Global linear convergence for Parallel Algorithms 129

6.4.4 Summary of the Contribution 130

Bibliography 131

Vita 144

viii

List of Tables

4.1 The comparisons for least squares NMF solvers on dense datasets.
For each method we present time/FLOPs (number of floating
point operations) cost to achieve the specified relative error.
The method with the shortest running time is boldfaced. The
results indicate that GCD is most efficient both in time and
FLOPs. 44

4.2 Comparison on real datasets using the RBF kernel. 52

4.3 The comparisons on multi-task problems. 64

5.1 Dataset statistics for Kernel SVM Experiments. 81

5.2 Comparison on real datasets using 32 machines. The first col-
umn shows that PBM achieves good test accuracy after 1 iter-
ation, and the second column shows PBM can achieve an accu-

rate solution (with f(α)−f(α∗)
|f(α∗)| < 10−3) quickly and obtain even

better accuracy. The timing for kernel logistic regression (LR)
is much slower because α will always be dense using the logistic
loss. 84

ix

List of Figures

3.1 Size of free sets and objective value versus iterations. For both
datasets, the sizes of free sets are always less than 6‖X∗‖0 when
running QUIC algorithm. 20

3.2 Comparison of algorithms on real datasets. The results show
that DC-QUIC is much faster than other state-of-the-art solvers.
25

3.3 The comparison of scalability on three types of graph structures.
In all the experiments, BigQUIC can solve larger problems than
QUIC even with a single core, and using 32 cores BigQUIC can
solve million dimensional data in one day. 35

3.4 (Best viewed in color) Results from BigQUIC analyses of resting-
state fMRI data. Left panel: Map of degree distribution across
voxels, thresholded at degree=20. Regions showing high degree
were generally found in the gray matter (as expected for truly con-
nected functional regions), with very few high-degree voxels found in
the white matter. Right panel: Left-hemisphere surface renderings
of two network modules obtained through graph clustering. Top
panel shows a sensorimotor network, bottom panel shows medial
prefrontal, posterior cingulate, and lateral temporoparietal regions
characteristic of the “default mode” generally observed during the
resting state. Both of these are commonly observed in analyses of
resting state fMRI data. 36

4.1 Illustration of our variable selection scheme. Figure 4.1(a) shows
that our method GCD reduces the objective value more quickly
than FastHals. With the same number of coordinate updates (as
specified by the vertical dotted line in Figure 4.1(a)), we fur-
ther compare the distribution of their coordinate updates. In
Figure 4.1(b) and 4.1(c), the X-axis is the variables of H listed
by descending order of their final values. The solid line gives
their final values, and the light blue bars indicate the number
of times they are chosen. The figures indicate that FastHals up-
dates all variables uniformly, while the number of updates for
GCD is proportional to their final values, which helps GCD to
converge faster. 42

x

4.2 Comparison of algorithms on the latent feature GMRF problem
using gene expression datasets. Our algorithm is much faster
than PGALM and LogdetPPA. 63

5.1 Comparison of different variances of PBM. PBM-random uses
random partition of data points, which performs the worst.
PBM-cluster use kmeans partitioning and converges much faster
than PBM-random. PBM-localPred further applies a local pre-
diction heuristic on top of PBM-cluster to get better prediction
accuracy in the early stage. 85

5.2 (a)-(d): Comparison with other distributed SVM solvers using
32 workers. Markers for RFF-LIBLINEAR and NYS-LIBLINEAR
are obtained by varying a number of random features and land-
mark points respectively. (e)-(f): The objective function of
PBM as a function of computation time (time in seconds ×
the number of workers), when the number of workers is varied.
Results show that PBM has good scalability. 86

5.3 Comparison with DC-SVM (a sequential kernel SVM solver). 87

xi

Chapter 1

Introduction

Recently data is being generated at a tremendous rate in modern ap-

plications, including recommender systems, social network analysis, computer

vision, and bio-informatics. As a result, there is a great need for developing

scalable and efficient solvers for large-scale machine learning problems, where

the input data size can be very large (big data), and the model can be very

high dimensional (big models).

To solve large-scale machine learning problems, usually one cannot di-

rectly apply classical optimization solvers. For example, in nonlinear SVM

problems, the size of the kernel matrix is growing quadratically with the num-

ber of samples, which usually leads to the computer running out of memory.

In sparse inverse covariance estimation problems, the time complexity grows

cubically with the number of random variables, so it is hard to solve problems

with size larger than tens of thousands. For matrix factorization problems, the

size of the input matrix can be very large when solving web-scale problems.

For instance, the adjacency matrix of the LinkedIn social network has more

than 300 million users. The above problems are extremely challenging if we

directly apply classical techniques such as Newton methods or interior point

1

methods.

In this thesis, we demonstrate that it is very important to exploit the

structure in large-scale optimization problems in order to develop fast and

scalable algorithms. We consider the following three types of structure in

machine learning problems:

1. Problem Structure: When facing large-scale machine learning prob-

lems, researchers and practitioners usually apply algorithms with simple

update rules, such as stochastic gradient descent or coordinate descent

methods. More advanced techniques, such as greedy coordinate descent

or second order methods, albeit achieving much faster convergence speed,

are rarely used in solving large-scale problems due to their high compu-

tational cost per iteration. In this thesis, we show that by carefully

analyzing and exploiting the structure of objective functions, those opti-

mization techniques can also be implemented very efficiently — in many

applications they can have the same computational complexity as the

gradient descent method. In particular, we show that the structure of

Hessian matrix is very important for developing efficient optimization al-

gorithms. Therefore we will analyze the structure of the Hessian matrix

for several machine learning problems, and develop efficient algorithms

by exploiting the structure.

2. Model Structure: Many modern machine learning applications lead

to high dimensional optimization problems. To avoid over-fitting, a com-

2

mon way is to add a regularization term to enforce the solution to have

a low intrinsic dimension (e.g., sparsity, low-rank, . . .) In this thesis, we

demonstrate several ways to speed up the optimization procedure by de-

tecting the low intrinsic dimensional space of the solution and reducing

the problem size by variable selection or elimination. We formally state

the procedure for problems with decomposable-norm regularizers, which

includes sparse, low-rank, or group sparse regularizations. We apply this

technique to many machine learning applications, and formally provide

convergence guarantee of the proposed algorithms.

3. Data Distribution: Real datasets usually have a local (clustering)

structure. In classification problems, data points are usually generated

non-uniformly from several hidden topics. For the problem of learning

the relationship between stock prices, there are some natural group-

ing structure (e.g., industrial groups) of stock symbols, which lead to

the structure that within-group correlations is usually stronger than

between-group correlations.

With the above observation, we develop a family of divide-and-conquer

algorithms to explore data distribution for speeding up optimization algo-

rithms. The main idea is to detect the clustering structure by a fast pre-

processing step, and then divide the whole problem into several smaller

subproblems. Each sub-problem can then be efficiently solved, and then

combined together to give a solution to the original problem.

3

In Chapter 3, we use the sparse inverse covariance estimation prob-

lem as a running example to develop a series of fast and scalable optimiza-

tion solvers by exploiting structures of problem, model, and data distribution.

By analyzing the problem structure, we develop an efficient proximal New-

ton method for sparse inverse covariance estimation (QUIC), which achieves

super-linear convergence rate and has the same time complexity as first order

methods (proximal gradient or ADMM). By exploiting the model structure,

we overcome the difficulty that the number of parameters quadratically grow

with number of random variables, and significantly reduce the time complexity

of the proximal Newton method. By exploiting the data structure, we com-

bine the idea of divide-and-conquer and block-coordinate descent updates to

arrive at the BigQUIC algorithm, which can solve problems with one million

random variables in one day using a single machine.

In Chapter 4, we discuss more machine learning problems that can be

efficiently solved by exploiting structure. In Section 4.1, we discuss another

example, Nonnegative Matrix Factorization (NMF), where structure of the

problem allows the “importance” of each parameter to be maintained effi-

ciently. As a result, the greedy coordinate descent algorithm can be efficiently

implemented. Kernel Support Vector Machine (kernel SVM) is another im-

portant machine learning problem where greedy coordinate descent can be

efficiently applied. By further exploring the structure of data distribution, we

develop an efficient Divide-and-Conquer solver for kernel SVM (DC-SVM) in

Section 4.2. For many machine learning problems it is non-trivial to maintain

4

the importance efficiently, thus the importance of each variable has to be re-

computed periodically during the optimization procedure. In Section 4.3 we

focus on the class of dirty statistical models for high dimensional problems,

where the objective function is composed with a loss function with a general

super-position structured regularizations. We show that the Hessian matrix

has a block structure, thus a block coordinate descent algorithm can be applied

efficiently to compute the Newton direction. We further propose an active sub-

space selection approach for selecting an important subspace of the model for

any decomposable norm regularizations. There are many applications of the

proposed method, including matrix completion, principal component analysis,

graphical model structure learning, and multi-task learning problems.

In Chapter 5, we conclude the proposal by generalizing our algorithms

to some general machine learning problems. In Section 5.1, we discuss the

structure of problem for two machine learning problems: Empirical Risk Min-

imization (ERM) and matrix optimization with simple matrix functions (such

as covariance selection, matrix completion, PCA, . . .). We show the structure

can be explored by applying in-exact proximal Newton method. In Section 5.2,

we summarized two ways to exploit model structure: coordinate descent with

priority and active subspace selection. In Section 5.3, we discuss a divide-and-

conquer parallel proximal Newton method for any twice differentiable func-

tions. The algorithm is based on partition the variables into blocks, and each

processor focuses on updating its own block of variables. By exploiting the

data distribution, we can obtain a better partition than random, and as a

5

result the algorithm converges to the optimal solution quickly.

Finally, in Chapter 6 we show the theoretical gaurantee for the tech-

niques discussed in this thesis. We discuss a general framework for in-exact

proximal gradient and Newton methods, and show the local and global con-

vergence rate. Using this framework, we can prove the convergence rate for in-

exact proximal Newton method, active variable selection, and parallel divide-

and-conquer proximal Newton method.

6

Chapter 2

Structure in Machine Learning Problems

We focus on large-scale machine learning problems, where there is a

large volume of data or the problem to be solved is very high dimensional. We

tackle these challenges in the context of the Regularized Risk Minimization

(RLM) problem for machine learning—the model is estimated by solving the

following optimization problem:

min
θ
g(θ, X) + h(θ) ≡ f(θ), (2.1)

where g is the loss function measuring the goodness of the model θ based on

training data X, and h is the regularization term to impose prior knowledge of

the model. This framework covers a large number of modern machine learning

problems such as SVM, logistic regression, matrix completion, and most of the

statistical estimators. There are many classical solvers that can be applied

to solve (2.1); however, directly applying those general solvers usually yields

very poor performance on large-scale machine learning problems. In order

to develop an efficient algorithm, we have to carefully study the structure

of problem, model and data distribution for machine learning problems, and

speed up the optimization algorithms by exploiting the structure.

7

2.1 Structure of the Problem

The efficiency of an optimization method depends on two factors – the

convergence rate and the computational complexity (per iteration). Devel-

oping an efficient solver usually leads to the trade-off problem between these

two factors. Most of the first order methods, including coordinate descent or

gradient descent, have slower convergence rate but very quick updates. On the

other hand, second order methods often have a much faster (quadratic) con-

vergence rate while the computational complexity usually grows quadratically

with dimensionality.

In this thesis, the problem structure indicates the structure of the loss

function in the regularized risk minimization framework (2.1). The problem

structure has been used in developing scalable optimization methods in lit-

erature, but most of the previous work focuses on first order methods. For

example, in empirical risk minimization problems, the loss function g(w, X)

can be written as the summation of individual loss components defined on

data points:

g(θ, X) =
n∑
j=1

`(h(xi;θ), yi), (2.2)

where each xi is a training sample, yi is the corresponding target, h(xi;θ) is

the prediction function, and `(ŷ, y) is a non-negative real-valued loss function

which measures how different the prediction ŷ is from the true outcome y. The

structure of (2.2) suggests that the gradient can be written as the summation of

n individual terms. As a result, first order methods including gradient descent

8

or stochastic gradient descent can be efficiently applied. Another interesting

example is the ADMM algorithm [5], where they focus on problems with the

structure of
∑k

i=1 vi(θ) + r(θ). When each subproblem vi(·) can be easily

solved, the ADMM algorithm can be applied to solve the combined problem.

In this thesis, We develop several efficient algorithms, including second

order methods and greedy coordinate descent, by exploiting the structure of

the Hessian matrix. In Section 3.2, we show that the Hessian matrix for the

inverse covariance matrix estimation problem can be written as the Kronecker

product of two matrices, and an efficient proximal Newton method can be

developed based on exploiting this structure. We will also discuss the structure

of other problems in Section 4. In Section 5.1, we will discuss the Hessian

structure of a broad class of linear models and matrix functions.

2.2 Structure of the Model

Modern machine learning applications usually lead to high-dimensional

problems. Statistically, there has been considerable research addressing the

sample complexity problem. In many cases, it has been shown that if the un-

derlying parameters have a much lower intrinsic dimensionality, the problem

using the appropriate regularizer can recover the solution using samples that

scale with the intrinsic dimensionality. For example, the low rank regulariza-

tion for matrix completion in [6], and the Lasso regularization for recovering

sparse models [72].

However, in terms of computational complexity, there is limited work

9

on speeding up algorithms by exploring the low intrinsic dimensionality of the

solution. In many cases, due to the difficulty of dealing with non-smooth reg-

ularizations, the resulting problem is usually considered harder to solve, and

most existing work focused on applying first order methods including proxi-

mal gradient descent or coordinate descent methods. In this thesis, we want

to tackle the following problem: can we utilize the low intrinsic dimensional-

ity of the solution to develop efficient algorithms that scale with the intrinsic

dimensionality?

We develop a family of algorithms that scale with the intrinsic dimen-

sionality of the model. The main idea is to detect the low intrinsic dimension-

ality of solutions in the early stage of optimization procedure, which helps to

significantly reduce the problem size. In Section 3.3, we consider the sparse

inverse covariance estimation problem, where the `1 regularization is used to

promote the sparsity. We develop an effective variable selection scheme, where

the time complexity of the proximal Newton method can be significantly re-

duced according to the sparsity of the solution. In Section 4.1, we show another

example of Non-negative matrix factorization problems, where the “impor-

tance” of each variable can be efficiently maintained during the optimization

process, thus the greedy coordinate descent method can be developed to ex-

plore the model sparsity structure. The same trick can be applied for solving

the kernel SVM problem as discussed in Section 4.2. In Section 4.3, we will

then generalize the variable selection scheme to the active subspace selection

scheme, which can be applied to solve a general decomposable norm regular-

10

ization. Finally, in Section 5.2, we are going to discuss the general principal

for exploiting the model structure.

2.3 Data Distribution

Real datasets usually have a local (clustering) structure. In stock

datasets, stock prices within each industrial category are more correlated to

each other; in document datasets, samples are usually generated from several

hidden topics. We propose a family of divide-and-conquer algorithms to speed

up optimization methods by exploiting the data distribution, in particular

the clustering structure of data. In this framework, we only requires a very

rough estimator of the local (clustering) distribution, which can be computed

by different kinds of inexact clustering algorithms and will not add too much

overhead to the overall procedure. Our divide-and-conquer algorithms has

two steps. In the “divide” step, the large-scale problem is decomposed into

several smaller sub-problems. Each sub-problem is defined only on a subset

of data and can be efficiently solved. In the “conquer” step, solutions to the

sub-problems are then combined to give a solution to the original problem.

We will discuss the divide-and-conquer algorithm for sparse inverse co-

variance estimation in Section 3.4, and further show the divide-and-conquer

algorithm for solving the kernel SVM problem in Section 4.2. Finally we will

develop a general divide-and-conquer proximal Newton framework for devel-

oping distributed optimization algorithms in Section 5.3.

11

Chapter 3

Exploiting Structure for Sparse Inverse

Covariance Estimation

In this chapter, we use the sparse inverse covariance estimation prob-

lem as a running example to demonstrate the idea of exploiting structures of

problem, model, and data distribution. Let y be a p-variate Gaussian ran-

dom vector, with distribution N(µ,Σ). Given n independently drawn samples

{y1, . . . ,yn} of this random vector, the sample covariance matrix can be writ-

ten as

S =
1

n− 1

n∑
k=1

(yk − µ̂)(yk − µ̂)T , where µ̂ =
1

n

n∑
k=1

yk. (3.1)

Given a regularization penalty λ > 0, the `1-regularized Gaussian MLE for

the inverse covariance matrix can be written as the solution of the following

regularized log-determinant program:

arg min
X�0

{
− log detX + tr(SX) + λ

p∑
i,j=1

|Xij|
}
. (3.2)

We will describe the proximal Newton method in Section 3.1, which is

the second order method for composite functions. The direct implementation

0The material in this chapter has been published in [31, 27, 33, 32].

12

requires computing and computing p2 by p2 Hessian matrix, which is imprac-

tical for large-scale datasets. Therefore, we show in Section 3.2 that the time

complexity of proximal Newton can be significantly reduced by exploiting the

problem structure. We then show how to speed up the algorithm by a

variable selection scheme that explores the model structure in Section 3.3.

Finally we show how to scale the algorithm to ultra-high dimensional problems

in Section 3.4 and 3.5 by exploiting the data distribution.

3.1 Background

Many problems in machine learning, signal processing, and bioinfor-

matics can be formulated as the following composite function minimization

problem:

min
θ
f(θ) = g(θ) + h(θ), (3.3)

where g is a convex twice differentiable function, and h is a convex regular-

ization function. Most of the RLM problems (2.1) with twice-differentiable

loss functions fall in this framework. The sparse inverse covariance estimation

problem (3.2) is a special case of (6.1).

Proximal Newton method is a second order iterative method to solve

(6.1). Let θt denotes the current solution, we build a quadratic approximation

around θt by the second-order Taylor expansion of the smooth component

g(θ):

ḡθt(∆) ≡ g(θt) +∇g(θt)
T∆ +

1

2
∆T∇2g(θt)∆. (3.4)

13

The Newton direction d∗t for the entire objective can then be written as the

solution of the regularized quadratic program:

d∗t = arg min
∆

{
ḡθt(∆) + h(θt + ∆)

}
. (3.5)

We use this Newton direction to compute a sequence of solutions {θt}∞t=1 of the

optimization problem (6.1). This variant of Newton method for such composite

objectives is also referred to as a “proximal Newton-type method.” We note

that a key caveat to applying such second-order methods in high-dimensional

settings is that the computation of the Newton direction appears to have a

large time complexity. As a result, first-order methods have been so popular for

minimizing the high-dimensional composite functions. However, we will show

that many efficient solvers can be developed for solving (3.5) by exploiting the

structure of the Hessian matrix ∇2g(θt).

Following the computation of the Newton direction d∗t , we need to find a

step size α ∈ (0, 1] that ensures positive definiteness of the next iterate θt+αd
∗
t

and leads to a sufficient decrease of the objective function. We adopt Armijo’s

rule [2, 79] and try step-sizes α ∈ {β0, β1, β2, . . . } with a constant decrease

rate 0 < β < 1 (typically β = 0.5), until we find the smallest k ∈ N with

α = βk such that θt + αd∗t satisfies the following sufficient decrease condition:

f(θt + αd∗t) ≤ f(θt) + ασδt, δt = ∇g(θt)
Td∗t + h(θt + d∗t)− h(θt), (3.6)

where 0 < σ < 0.5. The basic version of proximal Newton method can be

summarized in Algorithm 1.

14

Algorithm 1: Basic Proximal Newton Method

Input : Initial iterate θ0.
Output: Sequence {θt} that converges to the optimal solution.

1 for t = 0, 1, . . . do
2 Form the second order approximation

f̄θt(∆) := ḡθt(∆) + h(θt + ∆) to f(θt + ∆).
3 Compute the Newton direction d∗t = arg min∆ f̄θt(θt + ∆)
4 Use an Armijo-rule based step-size selection to get α such that

θt+1 = θt + αd∗t sufficiently decrease the objective function
value (see (3.6)).

3.2 Exploiting Problem Structure—Fast Coordinate De-
scent Solver for Computing Newton Direction

Now we focus on solving the sparse inverse covariance estimation prob-

lem (3.2) by the second order method (Algorithm 1). In order to compute the

Newton direction, we have to solve (3.5), which is a Lasso regression problem

when h(·) is the `1 regularization. In [20], the authors show that coordinate

descent methods are very efficient for solving the Lasso-typed problems. An

obvious way to update each element of ∆ (to solve (3.5)) requires O(p2) float-

ing point operations since the Hessian matrix is a p2×p2 matrix, thus yielding

an O(p4) procedure for computing the Newton direction. As we show be-

low, our implementation reduces the cost of updating one variable to O(p) by

exploiting the structure of the Hessian matrix.

The gradient and Hessian for g(X) = − log detX + tr(SX) are (see,

for instance, [4, Chapter A.4.3])

∇g(X) = S −X−1 and ∇2g(X) = X−1 ⊗X−1. (3.7)

15

In order to formulate our problem accordingly, we can verify that for a sym-

metric matrix ∆ we have tr(X−1
t ∆X−1

t ∆) = vec(∆)T (X−1
t ⊗X−1

t) vec(∆), so

that ḡXt(∆) in (3.5) can be rewritten as

ḡXt(∆) = − log detXt + tr(SXt) + tr((S −Wt)
T∆) +

1

2
tr(Wt∆Wt∆), (3.8)

where Wt = X−1
t .

For notational simplicity, we will omit the iteration index t in the deriva-

tions below where we only discuss a single Newton iteration (Hence, the nota-

tion for ḡXt is also simplified to ḡ.) Furthermore, we omit the use of a separate

index for the coordinate descent updates. Thus, we simply use D to denote

the current iterate approximating the Newton direction and use D′ for the up-

dated direction. Consider the coordinate descent update for the variable Xij,

with i < j that preserves symmetry: D′ = D + µ(eie
T
j + eje

T
i). The solution

of the one-variable problem corresponding to (3.5) is:

arg min
µ

ḡ(D + µ(eie
T
j + eje

T
i)) + 2λ|Xij +Dij + µ|. (3.9)

We expand the terms appearing in the definition of ḡ after substituting D′ =

D + µ(eie
T
j + eje

T
i) for ∆ in (3.8) and omit the terms not dependent on µ.

The quadratic term can be rewritten to yield:

tr(WD′WD′) = tr(WDWD) + 4µwT
i Dwj + 2µ2(W 2

ij +WiiWjj),(3.10)

where wi refers to the i-th column of W . In order to compute the single

variable update we seek the minimum of the following quadratic function of

16

µ:

1

2
(W 2

ij +WiiWjj)µ
2 + (Sij −Wij + wT

i Dwj)µ+ λ|Xij +Dij + µ|. (3.11)

Letting a = W 2
ij + WiiWjj, b = Sij −Wij + wT

i Dwj, and c = Xij + Dij the

minimum is achieved for:

µ = −c+ S(c− b/a, λ/a), (3.12)

where

S(z, r) = sign(z) max{|z| − r, 0} (3.13)

is the soft-thresholding function. Since a and c are easy to compute, the main

computational cost arises while evaluating wT
i Dwj, the third term contribut-

ing to coefficient b above. Direct computation requires O(p2) time. Instead,

we maintain a p × p matrix U = DW , and then compute wT
i Dwj by wT

i uj

using O(p) flops, where uj is the j-th column of matrix U. In order to maintain

the matrix U , we also need to update 2p elements, namely two coordinates of

each uk when Dij is modified. We can compactly write the row updates of

U as follows: ui· ← ui· + µwj· and uj· ← uj· + µwi·, where ui· refers to the

i-th row vector of U . There are totally O(p2) variables in X, thus the overall

complexity for computing the Newton direction is O(p3).

3.3 Exploiting Model Structure—Fixed and Free Vari-
able Selection

In this section, we are going to further reduce the time complexity

by exploiting the model structure. Since `1 regularization is imposed in the

17

objective function (3.2), the final solution will be sparse. Our goal is to identify

the nonzero pattern of X during the optimization steps, and as a result we can

significant reduce the number of variables in the coordinate descent updates.

Specifically, we partition the variables into free and fixed sets based on

the value of the gradient at the start of the outer loop that computes the

Newton direction. We define the free set Sfree and fixed set Sfixed as:

Xij ∈ Sfixed if |∇ijg(X)| ≤ λ, and Xij = 0,

Xij ∈ Sfree otherwise. (3.14)

Our definition of the fixed and free sets is clearly motivated by the

minimum norm subgradient defined by

gradSij f(X) =


∇ijg(X) + λ if Xij > 0,

∇ijg(X)− λ if Xij < 0,

sign(∇ijg(X)) max(|∇ijg(X)| − λ, 0) if Xij = 0.

We can show that gradS f(X) = 0 if and only if X is the global optimum. A

variable Xij belongs to the fixed set if and only if Xij = 0 and gradSijf(X) = 0.

Therefore, we can show that for any Xt and corresponding fixed and free sets

Sfixed and Sfree as defined by (3.14), ∆∗ = 0 is the solution of the following

optimization problem:

arg min
∆

f(Xt + ∆) such that ∆ij = 0 ∀(i, j) ∈ Sfree.

Based on the above property, if we perform block coordinate descent restricted

to the fixed set, then no updates would occur. We then perform the coordinate

18

descent updates restricted to only the free set to find the Newton direction.

Therefore the convergence of our method can be proved by formulated it as a

block coordinate descent algorithm.

With this modification, the number of variables over which we perform

the coordinate descent update (3.12) can be potentially reduced from p2 to

the number of non-zeros in Xt. But will the size of the free set be small?

We initialize X0 to a diagonal matrix, which is sparse. The following lemma

shows that after a finite number of iterations, the iterates Xt will have a similar

sparsity pattern as the limit X∗.

Lemma 1. Assume that {Xt} converges to X∗, the optimal solution of (3.2).

If for some index pair (i, j), |∇ijg(X∗)| < λ (so that X∗ij = 0), then there

exists a constant t̄ > 0 such that for all t > t̄, the iterates Xt satisfy

|∇ijg(Xt)| < λ and (Xt)ij = 0. (3.15)

Note that |∇ijg(X∗)| < λ implies X∗ij = 0 from the optimality condition

of (3.2). This theorem shows that after t̄-th iteration we can ignore all the

indexes that satisfies (3.15), and in practice we can use (3.15) as a criterion

for identifying the fixed set.

To further demonstrate the power of fixed/free set selection, we use

Hereditarybc dataset as an example. In Figure 3.1, we plot the size of the

free set versus the number of Newton iterations. Starting from a total of

18692 = 3, 493, 161 variables, the size of the free set progressively drops, in

19

fact to less than 120, 000 in the very first iteration. We can see the super-

linear convergence of QUIC even more clearly when we plot it against the

number of iterations. A summary of the QUIC algorithm is presented in

Algorithm 2.

(a) ER dataset (b) Hereditarybc dataset

Figure 3.1: Size of free sets and objective value versus iterations. For both
datasets, the sizes of free sets are always less than 6‖X∗‖0 when running QUIC
algorithm.

3.4 Exploiting Data Distribution—Divide-and-Conquer
QUIC

In this section, we discuss a divide-and-conquer procedure for solving

the sparse inverse covariance estimation problem by exploiting the clustering

structure of data distribution. As we discussed in Section 3.2, solving

this problem requires O(p3) computational time and O(p2) memory, so we

aim to apply the following divide-and-conquer approach: in the divide step,

we partition random variables into k clusters. Let V = {1, . . . , p} denote the

node set (random variables), given a partition {Vc}kc=1 of V, our divide and

20

Algorithm 2: QUadratic approximation for sparse Inverse Covari-
ance estimation (QUIC overview)

Input : Empirical covariance matrix S (positive semi-definite,
p× p), regularization parameter matrix Λ, initial iterate
X0 � 0.

Output: Sequence {Xt} that converges to arg minX�0 f(X),
where f(X) = g(X) + h(X), where
g(X) = − log detX + tr(SX), h(X) = ‖X‖1,Λ.

1 for t = 0, 1, . . . do
2 Compute Wt = X−1

t .
3 Form the second order approximation

f̄Xt(∆) := ḡXt(∆) + h(Xt + ∆) to f(Xt + ∆).
4 Partition the variables into free and fixed sets based on the

gradient, see Section 3.3.
5 Use coordinate descent to find the Newton direction

D∗t = arg min∆ f̄Xt(Xt + ∆) over the set of free variables,
see (3.9) and (3.12) Section 3.2. (A Lasso problem.)

6 Use an Armijo-rule based step-size selection to get α such that
Xt+1 = Xt + αD∗t is positive definite and there is sufficient
decrease in the objective function.

conquer algorithm first solves GMRF for all node partitions to get the inverse

covariance matrices {X(c)}kc=1, and then uses the following matrix

X̄ =


X(1) 0 . . . 0

0 X(2) . . . 0
...

...
...

...
0 0 0 X(k)

 , (3.16)

to initialize the solver for the whole GMRF. The skeleton of the divide and

conquer framework is quite simple and is summarized in Algorithm 3.

If the partition is balanced, each subproblem only has O(p/k) random

variables, so only requires O(p2/k2) space complexity and O(p3/k3) time com-

21

plexity, which is significant faster than solving the global problem. In the

conquer step, we gather all the results and use the combined solution to ini-

tialize the global solver. In order that Algorithm 3 be efficient, we require

that X̄ defined in (3.16) should be close to the optimal solution of the original

problem X∗. In the following, we will derive a bound for ‖X∗ − X̄‖F . Based

on this bound, we propose a spectral clustering algorithm to find an effective

partitioning of the nodes.

Algorithm 3: Divide and Conquer method for Sparse Inverse Co-
variance Estimation

Input : Empirical covariance matrix S, scalar λ
Output: X∗, the solution of (3.2)

1 Obtain a partition of the nodes {Vc}kc=1 ;
2 for c = 1, . . . , k do
3 Solve (4.17) on S(c) and subset of variables in Vc to get X(c);

4 Form X̄ by X(1), X(2), . . . , X(k) as in (3.16) ;
5 Use X̄ as an initial point to solve the whole problem (3.2) ;

Bounding the distance between X∗ and X̄

Recently, [58] showed that when all the between cluster elements in

S have absolute values smaller than λ, then X∗ will have a block-diagonal

structure and X∗ = X̄. However, in most real examples, a perfect partitioning

does not exist. In the following we bound the distance between X∗ and X̄.

Given the partition (clusters) {Vc}kc=1, we define E as the following matrix:

Eij =

{
0 if i, j are in the same cluster,

max(|Sij| − λ, 0) otherwise.
(3.17)

22

If E = 0, all the off-diagonal elements are below the threshold λ, so X∗ = X̄.

In the following we consider a more interesting case where E 6= 0. In this case

‖E‖F measures how much the off-diagonal elements exceed the threshold λ,

and a good clustering algorithm should be able to find a partition to minimize

‖E‖F . In the following theorem we show that ‖X∗− X̄‖F can be bounded by

‖E‖F :

Theorem 1. If there exists a γ > 0 such that ‖E‖2 ≤ (1− γ) 1
‖σmin(X∗)‖2 , then

‖X∗ − X̄‖F ≤
pmax(σmax(X̄), σmax(X

∗))2σmax(X̄)

γmin(σmin(X∗), σmin(X̄))
‖E‖F ,

where σmin(·), σmax(·) denote the minimum/maximum singular values.

Clustering algorithm

In order to obtain computational savings, the clustering algorithm for

the divide-and-conquer algorithm (Algorithm 3) should satisfy three condi-

tions: (1) minimize the distance between the approximate and the true solu-

tion ‖X̄ − X∗‖F , (2) be cheap to compute, and (3) partition the nodes into

balanced clusters.

To find a partition minimizing ‖E‖F , we want to find a partition

{Vc}kc=1 such that the sum of off-diagonal block entries of Sλ is minimized,

where Sλ is defined as

(Sλ)ij = max(|Sij| − λ, 0)2 ∀ i 6= j and Sλij = 0 ∀i = j. (3.18)

At the same time, we want to have balanced clusters. Therefore, we minimize

23

the following normalized cut objective value [76]:

NCut(Sλ, {Vc}kc=1) =
k∑
c=1

∑
i∈Vc,j /∈Vc

Sλij

d(Vc)
where d(Vc) =

∑
i∈Vc

p∑
j=1

Sλij. (3.19)

The time complexity of normalized cut on Sλ is mainly from computing

the leading k eigenvectors of the Laplacian D−1/2SλD−1/2, which is at most

O(p3). If Sλ is sparse, as is common in real situations, we could speed up the

clustering phase by using the Graclus multilevel algorithm, which is a faster

heuristic to minimize normalized cut [15].

We demonstrate that our algorithm outperforms other approaches in

Figure 3.2. We use two datasets: the gene expression data Leukemia with p =

1, 255 is provided by [51], and the Climate dataset with p = 10, 512 generated

from NCEP/NCAR Reanalysis data1, with focus on the daily temperature at

several grid points on earth. Figure 3.2 demonstrates that the Divide-and-

Conquer algorithms – DC-QUIC-1 and DC-QUIC-3 (three levels of hierarchical

clustering) are faster than other approaches.

3.5 Scaling Beyond Memory Capacity – BigQUIC

In the previous sections (Section 3.2, 3.3 and 3.4) we have developed a

divide-and-conquer method for sparse inverse covariance estimation. However,

the number of parameters in the optimization problem quadratically grows

with number of random variables, so all the state-of-the-art methods cannot

1www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html

24

(a) Leukemia (b) Climate

Figure 3.2: Comparison of algorithms on real datasets. The results show that
DC-QUIC is much faster than other state-of-the-art solvers.

scale to problems with more than 20,000 nodes. In this section, we develop a

new algorithm, BigQUIC, based on the proximal Newton method described

in Section 3.2, and show that the algorithm can solve a one million dimensional

problem in one day using a single machine. As we discussed below, one of the

main building block of our algorithm is the block coordinate descent method,

and we successfully speed it up by exploiting the clustering structure of the

solutions Xt.

Again we want to solve the sparse inverse covariance estimation problem

(3.2) . where the dimensionality p can be larger than 1 million. To begin, we

list the difficulties of scaling QUIC (Algorithm 2) to million dimensional data:

1. Difficulty in Approximating the Newton Direction. In step 5 of

Algorithm 2, we have to compute the Newton direction by solving the

25

optimization problem

Dt = arg min
D
{ḡΘt(D) + h(Xt +D)}, (3.20)

where ḡΘt(·) is the quadratic approximation of the smooth part. In

QUIC, we apply a coordinate descent method to solve (3.20), where

each coordinate update rule can be written as (3.12). The key com-

putational bottleneck here is in computing the terms wT
i Dwj, which

take O(p2) time when implemented naively. To address this in QUIC

(Section 3.2), we proposed to store and maintain U = DW , which re-

duced the cost to O(p) flops per update. However, this is not a strategy

we can use when dealing with very large data sets: storing the p by p

dense matrices U and W in memory would be prohibitive. The straight-

forward approach is to compute (and recompute when necessary) the

elements of W on demand, resulting in O(p2) time complexity.

2. Difficulty in the Line Search Procedure. After finding the gen-

eralized Newton direction Dt, QUIC then descends using this direction

after a line-search via Armijo’s rule. Specifically, it selects the largest

step size α ∈ {β0, β1, . . . } such that X+αDt is (a) positive definite, and

(b) satisfies the following sufficient decrease condition (3.6). The key

computational bottleneck is checking positive definiteness (typically

by computing the smallest eigenvalue), and the computation of the de-

terminant of a sparse matrix with dimension that can reach a million.

The time and space complexity of classical sparse Cholesky decomposi-

26

tion generally grows quadratically to dimensionality even when fixing the

number of nonzero elements in the matrix, so it is nontrivial to address

this problem.

To address the two computational problems above, we propose a BigQUIC

algorithm, where we develop an efficient block coordinate descent algo-

rithm to solve the Newton direction subproblem using limited memory, and

we also propose an efficient procedure for checking (a) and (b) in the line

search procedure usinc Schur complement and sparse linear equation solving.

Block Coordinate Descent Method

The most expensive step during the coordinate descent update for Dij

is the computation of wT
i Dwj, where wi is the i-th column of W = X−1;

see (3.12). It is not possible to compute W = X−1 with Cholesky factoriza-

tion as was done in QUIC, nor can it be stored in memory. Note that wi

is the solution of the linear system Xwi = ei. We thus use the conjugate

gradient method (CG) to compute wi, leveraging the fact that X is a positive

definite matrix. This solver requires only matrix vector products, which can

be efficiently implemented for the sparse matrix X. CG has time complexity

O(mT), where T is the number of iterations required to achieve the desired

accuracy, and m = ‖X‖0 is the number of nonzero elements in X. In the

following analysis we use s to denote the current size of free set.

27

Vanilla Coordinate Descent

A single step of coordinate descent requires the solution of two linear

systems Xwi = ei and Xwj = ej which yield the vectors wi, wj, and we can

then compute wT
i Dwj. The time complexity for each update would require

O(mT + s) operations, and the overall complexity will be O(msT + s2) for

one full sweep through the entire matrix. Even when the matrix is sparse, the

quadratic dependence on nonzero elements is expensive.

Our Approach: Block Coordinate Descent with memory cache scheme

In the following we present a block coordinate descent scheme that can

accelerate the update procedure by storing and reusing more results of the

intermediate computations. The resulting increased memory use and speedup

is controlled by the number of blocks employed, that we denote by k.

Assume that only some columns of W are stored in memory. In order

to update Dij, we need both wi and wj; if either one is not directly available,

we have to recompute it by CG and we call this a “cache miss”. A good

update sequence can minimize the cache miss rate. While it is hard to find

the optimal sequence in general, we successfully applied a block by block update

sequence with a careful clustering scheme, where the number of cache misses

is sufficiently small.

Assume we pick k such that we can store p/k columns of W (p2/k

elements) in memory. Suppose we are given a partition of N = {1, . . . , p}

into k blocks, S1, . . . , Sk. We divide matrix D into k × k blocks accordingly.

28

Within each block we run Tinner sweeps over variables within that block, and

in the outer iteration we sweep through all the blocks Touter times. We use

the notation WSq to denote a p by |Sq| matrix containing columns of W that

corresponds to the subset Sq.

Coordinate descent within a block

To update the variables in the block (Sz, Sq) of D, we first compute WSz

and WSq by CG and store it in memory, meaning that there is no cache miss

during the within-block coordinate updates. With Usq = DWSq maintained,

the update for Dij can be computed by wT
i uj when i ∈ Sz and j ∈ Sq. After

updating each Dij to Dij + µ, we can maintain USq by

Uit ← Uit + µWjt, Ujt ← Ujt + µWit, ∀t ∈ Sq.

The above coordinate update computations cost only O(p/k) operations be-

cause we only update a subset of the columns. Observe that Urt never changes

when r /∈ {Sz ∪ Sq}.

Therefore, we can use the following arrangement to further reduce the

time complexity. Before running coordinate descent for the block we compute

and store Pij = (wi)
T
Sz̄q̄

(uj)Sz̄q̄ for all (i, j) in the free set of the current block,

where Sz̄q̄ = {i | i /∈ Sz and i /∈ Sq}. The term wT
i uj for updating Dij can

then be computed by wT
i uj = Pij + wT

Sz
uSz + wT

Sq
uSq . With this trick, each

coordinate descent step within the block only takes O(p/k) time, and we only

need to store USz ,Sq , which only requires O(p2/k2) memory. Computing Pij

29

takes O(p) time for each i, j, so if we update each coordinate Tinner times within

a block, the time complexity is O(p + Tinnerp/k) and the amortized cost per

coordinate update is only O(p/Tinner + p/k). This time complexity suggests

that we should run more iterations within each block.

Sweeping through all the blocks

To go through all the blocks, each time we select a z ∈ {1, . . . , k} and

updates blocks (Sz, S1), . . . , (Sz, Sk). Since all of them share {wi | i ∈ Sz}, we

first compute them and store in memory. When updating an off-diagonal block

(Sz, Sq), if the free sets are dense, we need to compute and store {wi | i ∈ Sq}.

So totally each block ofW will be computed k times. The total time complexity

becomes O(kpmT), where m is number of nonzeros in X and T is number of

conjugate gradient iterations. Assume the nonzeros in X is close to the size

of free set (m ≈ s), then each coordinate update costs O(kpT) flops.

Selecting the blocks using clustering. We now show that a careful

selection of the blocks using a clustering scheme can lead to dramatic speedup

for block coordinate descent. When updating variables in the block (Sz, Sq),

we would need the column wj only if some variable in {Dij | i ∈ Sz} lies in

the free set. Leveraging this key observation, given two partitions Sz and Sq,

we define the set of boundary nodes as: B(Sz, Sq) ≡ {j | j ∈ Sq and ∃i ∈

Sz s.t. Fij = 1}, where the matrix F is an indicator of the free set.

The number of columns to be computed in one sweep is then given by

p+
∑

z 6=q |B(Sz, Sq)|. Therefore, we would like to find a partition {S1, . . . , Sk}

30

for which
∑

z 6=q |B(Sz, Sq)| is minimal. It appears to be hard to find the par-

titioning that minimizes the number of boundary nodes. However, we note

that the number in question is bounded by the number of cross cluster edges:

B(Sz, Sq) <
∑

i∈Sz ,j∈Sq Fij. This suggests the use of graph clustering algo-

rithms, such as METIS [38] or Graclus [15] which minimize the right hand

side. Assuming that the ratio of between-cluster edges to the number of total

edges is r, we observe a reduced time complexity of O((p+ rm)T) when com-

puting elements of W , and r is very small in real datasets. In real datasets,

when we converge to very sparse solutions, more than 95% of edges are in

the diagonal blocks. In case of the fMRI dataset with p = 228483, we used

20 blocks, and the total number of boundary nodes were only |B| = 8697.

Compared to block coordinate descent with random partition, which generally

needs to compute 228483× 20 columns, the clustering resulted in the compu-

tation of 228483 + 8697 columns, thus achieved an almost 20 times speedup.

Line Search

The line search step requires an efficient and scalable procedure that

computes log det(A) and checks the positive definiteness of a sparse matrix A.

We present a procedure that has complexity of at most O(mpT) where T is the

number of iterations used by the sparse linear solver. We note that computing

log det(A) for a large sparse matrix A for which we only have a matrix-vector

multiplication subroutine available is an interesting subproblem on its own and

we expect that numerous other applications may benefit from the approach

31

presented below. The following lemma can be proved by induction on p:

Lemma 2. If A =

(
a bT

b C,

)
is a partitioning of an arbitrary p × p ma-

trix, where a is a scalar and b is a p − 1 dimensional vector then det(A) =

det(C)(a − bTC−1b). Moreover, A is positive definite if and only if C is

positive definite and (a− bTC−1b) > 0.

The above lemma allows us to compute the determinant by reducing

it to solving linear systems; and also allows us to check positive-definiteness.

Applying Lemma 2 recursively, we get

log detA =

p∑
i=1

log(Aii − AT(i+1):p,iA
−1
(i+1):p,(i+1):pA(i+1):p,i), (3.21)

where each Ai1:i2,j1:j2 denotes a submatrix of A with row indexes i1, . . . , i2 and

column indexes j1, . . . , j2. Each A−1
(i+1):p,(i+1):pA(i+1):p,i in the above formula can

be computed as the solution of a linear system and hence we can avoid the

storage of the (dense) inverse matrix. By Lemma 2, we can check the positive

definiteness by verifying that all the terms in (3.21) are positive definite. Notice

that we have to compute (3.21) in a reverse order (i = p, . . . , 1) to avoid the

case that A(i+1):p,(i+1):p is non positive definite.

Summary of the algorithm

We present BigQUIC as Algorithm 4. In summary, the time needed to

compute the columns of W in block coordinate descent, O((p+ |B|)mTTouter),

dominates the time complexity, which underscores the importance of minimiz-

ing the number of boundary nodes |B| via our clustering scheme.

32

Algorithm 4: BigQUIC algorithm

Input : Samples Y , regularization parameter λ, initial iterate
X0

Output: Sequence {Xt} that converges to X∗.
1 for t = 0, 1, . . . do
2 Compute Wt = X−1

t column by column, partition the
variables into free and fixed sets.

3 Run graph clustering algorithm based on absolute values on
free set.

4 for sweep = 1, . . . , Touter do
5 for s = 1, . . . , k do
6 Compute WSs by CG.
7 for q = 1, . . . , k do
8 Identify boundary nodes Bsq := B(Ss, Sq) ⊂ Sq

(only need if s 6= q)
9 Compute WBsq for boundary nodes (only need if

s 6= q).
10 Compute UBsq , and Pij for all (i, j) the current

block.
11 Conduct coordinate updates for updating Ds,q.

12 Use an Armijo-rule based step-size selection to get α such
that Xt+1 = Xt + αDt is positive definite and there is
sufficient decrease in the objective function.

Experimental Results

Scalability of BigQUIC on high-dimensional datasets. In the

first set of experiments, we show BigQUIC can scale to extremely high di-

mensional datasets. We conduct experiments on the following synthetic and

real datasets:

(1) Chain graphs: the ground truth precision matrix is set to be Σ−1
i,i−1 = −0.5

and Σ−1
i,i = 1.25.

33

(2) Graphs with random pattern: we use the procedure mentioned in Example

1 in [51] to generate random pattern. When generating the graph, we assume

there are 500 clusters, and 90% of the edges are within clusters. We fix the

average degree to be 10.

(3) FMRI data: The original dataset has dimensionality p = 228, 483 and

n = 518. For scalability experiments, we subsample various number of ran-

dom variables from the whole dataset.

We use λ = 0.5 for chain and random Graph so that number of recov-

ered edges is close to the ground truth, and set number of samples n = 100.

We use λ = 0.6 for the fMRI dataset, which recovers a graph with average

degree 20. We set the stopping condition to be gradS(Xt) < 0.01‖Xt‖1. In

all of our experiments, number of nonzeros during the optimization phase do

not exceed 5‖X∗‖0 in intermediate steps, therefore we can always store the

sparse representation of Xt in memory. For BigQUIC, we set blocks k to be

the smallest number such that p/k columns of W can fit into 32G memory.

For both QUIC and BigQUIC, we apply the divide and conquer method

proposed in [27] with 10-clusters to get a better initial point. The results are

shown in Figure 3.3. We can see that BigQUIC can solve one million dimen-

sional chain graphs and random graphs in one day, and handle the full fMRI

dataset in about 5 hours. Finally, we show the output of BigQUIC on fMRI

datasets in Figure 3.4. The results show that the output of our algorithm is

consistent with some biological domain knowledge.

34

(a) Comparison on chain graph. (b) Comparison on random
graph.

(c) Comparison on fmri data.

Figure 3.3: The comparison of scalability on three types of graph structures. In
all the experiments, BigQUIC can solve larger problems than QUIC even with a
single core, and using 32 cores BigQUIC can solve million dimensional data in one
day.

3.6 Summary of the Contribution

The QUIC algorithm mentioned in Section 3.1, 3.2 and 3.3 is pub-

lished in [31, 32], and the code can be downloaded from http://www.cs.

utexas.edu/~sustik/QUIC/. The DC-QUIC algorithm mentioned in Sec-

tion 3.4 is published in [27]. The BigQUIC algorithm mentioned in Sec-

tion 3.5 is published in [33], and the code can be downloaded from http:

//www.cs.utexas.edu/~cjhsieh/BigQUIC-1.21.tgz.

35

Figure 3.4: (Best viewed in color) Results from BigQUIC analyses of resting-state
fMRI data. Left panel: Map of degree distribution across voxels, thresholded at
degree=20. Regions showing high degree were generally found in the gray matter
(as expected for truly connected functional regions), with very few high-degree vox-
els found in the white matter. Right panel: Left-hemisphere surface renderings of
two network modules obtained through graph clustering. Top panel shows a sen-
sorimotor network, bottom panel shows medial prefrontal, posterior cingulate, and
lateral temporoparietal regions characteristic of the “default mode” generally ob-
served during the resting state. Both of these are commonly observed in analyses
of resting state fMRI data.

36

Chapter 4

Exploiting Structure for other Machine

Learning Problems

In this section, we develop efficient algorithms for other problems by

exploiting structure of problem, model, and data distribution.

4.1 Greedy Coordinate Descent for NMF

Non-negative matrix factorization (NMF) ([67, 48]) is a popular matrix

decomposition method for finding non-negative representations of data. Given

a matrix V ∈ Rm×n, V ≥ 0, and a specified positive integer k, NMF seeks to

approximate V by the product of two non-negative matrices W ∈ Rm×k and

H ∈ Rk×n, and usually k � m,n. Suppose each column of V is an input data

vector, the main idea behind NMF is to approximate these input vectors by

nonnegative linear combinations of nonnegative “basis” vectors (columns of

W) with the coefficients stored in columns of H. The distance between V and

WH can be measured by various distortion functions. The most commonly

used one is the Frobenius norm, which leads to the following minimization

0The material in this chapter has been published in [26, 30, 29, 28].

37

problem:

min
W,H≥0

f(W,H) ≡ 1

2
‖V −WH‖2

F =
1

2

∑
i,j

(Vij − (WH)ij)
2. (4.1)

To achieve better sparsity, researchers ([25, 69]) have proposed adding regu-

larization terms, on W and H, to (4.1). For example, an L1-norm penalty on

W and H can achieve a more sparse solution:

min
W,H≥0

1

2
‖V −WH‖2

F + ρ1

∑
i,r

Wir + ρ2

∑
r,j

Hrj. (4.2)

Many algorithms ([49, 23, 1, 90, 52, 43, 42]) have been proposed for this

purpose. A cyclic coordinate descent method, called FastHals [12], has been

proposed to solve the least squares NMF problem (4.1). Despite being a

state-of-the-art method, FastHals has an inefficiency in that it uses a cyclic

coordinate descent scheme and thus, may perform unneeded descent steps on

unimportant variables. In this section we show that the greedy coordinate de-

scent method can be applied to solve the NMF problem to focus on updating

important variables, and the algorithm has the same time complexity to cyclic

coordinate descent by exploring the problem structure.

4.1.1 Exploiting Problem Structure

The objective function (4.1) is not convex. However, when we fix one of

the W,H and update the other, the problem will become convex. Therefore,

most of existing algorithms fall into the alternating minimization framework,

which switches between W and H in the outer iterations:

(W 0, H0)→ (W 1, H0)→ (W 1, H1)→ · · · (4.3)

38

We will apply this alternating minimization scheme as well.

Now we analyze the problem structure. When we fix H and update

W , the objective function of (4.1) is a quadratic problem with the following

Hessian matrix:

∇2
Wf(W,H) =


HHT 0 · · · 0

0 HHT · · · 0
...

...
...

...
0 0 · · · HHT

 ,
where each HHT is a k by k matrix. Since the Hessian is a block-diagonal

matrix, each row-subproblem of W is independent, minW f(W,H) is equivalent

to solve the following m independent quadratic problems:

Wi· ← argmin
w≥0

1

2
‖V T

i· −HTw‖2
2 (4.4)

= argmin
w≥0

1

2
wTHHTw − Vi·HTw + constant ≡ gi(w).

where we use Wi· to denote the i-th row of W . We can develop an efficient

greedy coordinate descent algorithm based on this structure.

4.1.2 Exploiting Model Structure—Greedy Coordinate Descent

In the NMF problem, due to the bounded constraints W ≥ 0, H ≥ 0,

there will be many zeros in W and H. The sparsity will be even increased

when the `1 regularization is added in the objective function, such as in (4.2).

Therefore, we want to develop algorithms for solving (4.4) that can focus

on “important” variables. In Section 3.3, we compute the free/fixed sets in

the beginning of each Newton iteration to conduct variable selection. This

39

approach has a drawback that the variable selection is only done periodically

and cannot be updated on the fly. We will show that a greedy coordinate

descent method can be applied to solve the NMF problem, which dynamically

maintain the “importance” of each variable without having too much overhead.

Now we apply a coordinate descent algorithm for solving (4.1) for the

i-th row. Assume w̄ is the current solution, then the current gradient has the

form ∇gi(w̄) = HHT w̄ − HV T
i· , and the Hessian has the form ∇2gi(w̄) =

HHT . To update the r-th element of w, the optimal update can be written

as

wi ← wi + δ where δ = max(0, wi −∇rgi(w̄)/(HHT)rr)− wi, (4.5)

and the change of objective function value is reduced by

gi(w̄)− gi(w̄ + δer) =
∇rgi(w̄)

2(HHT)rr
.

Therefore, we can maintain two vectors g,d ∈ Rk when applying the greedy

coordinate descent algorithm, where

gr = ∇rgi(w̄) and dr = gr/(HH
T)rr.

Since HHT ∈ Rk×k is shared by all the subproblems, it is relatively cheap to

pre-compute HHT and store it in memory. The greedy coordinate descent

update then has the following steps:

1. Choose r = argmaxr dr.

2. Compute the update δ by (4.5).

40

3. Update wr ← wr + δ.

4. Update gs ← gs + δ(HHT)s,r, ds ← gs/(HH
T)ss for all s = 1, . . . , k.

Each greedy coordinate descent update only takes O(k) time.

Note that FastHals applied a cyclic coordinate descent method to solve

the NMF problem, which apply the update rule (4.5) cyclically. In our greedy

coordinate descent algorithm, we can always select most important variable to

update, and the time complexity is exactly the same with the cyclic coordinate

descent method FastHals.

In Figures 4.1(b) and 4.1(c) the variables of the final solution H are

listed on the X-axis — note that the solution is sparse as most of the variables

are 0. Figure 4.1(b) shows the behavior of FastHals, which clearly shows that

each variable is chosen uniformly. In contrast, as shown in Figure 4.1(c),

by applying our new coordinate descent method, the number of updates for

the variable is roughly proportional to their final values. For most variables

with final value 0, our algorithm will never pick them to update. Therefore

our new method focuses on nonzero variables and reduces the objective value

more efficiently. Figure 4.1(a) shows that we can attain a 10-fold speedup by

applying our variable selection scheme.

In the following we use G ∈ Rm×k to denote the matrix where each row

is its gradient g, and D ∈ Rm×k to denote the matrix where each row is the

corresponding d.

41

(a) Coordinate updates
versus objective value

(b) The behavior of
FastHals

(c) The behavior of GCD

Figure 4.1: Illustration of our variable selection scheme. Figure 4.1(a) shows
that our method GCD reduces the objective value more quickly than FastHals.
With the same number of coordinate updates (as specified by the vertical
dotted line in Figure 4.1(a)), we further compare the distribution of their
coordinate updates. In Figure 4.1(b) and 4.1(c), the X-axis is the variables of
H listed by descending order of their final values. The solid line gives their final
values, and the light blue bars indicate the number of times they are chosen.
The figures indicate that FastHals updates all variables uniformly, while the
number of updates for GCD is proportional to their final values, which helps
GCD to converge faster.

Overall Greedy Coordinate Descent algorithm for NMF

We use the alternating minimization scheme: at each time we fix one

of the W,H and update the other matrix. We run greedy coordinate descent

algorithm for solving W (or H), and a stopping condition is needed for a

sequence of updates. At the beginning of updates to W , we can store

pinit = max
i,j

DW
ij . (4.6)

Our algorithm then iteratively chooses variables to update until the following

stopping condition is met:

max
i,j

DW
ij < εpinit, (4.7)

42

where ε is a small positive constant. Note that (4.7) will be satisfied in a finite

number of iterations as f(W,H) is lower bounded, and so the minimum for

f(W,H) with fixed H is achievable. A small ε value indicates each sub-problem

is solved to high accuracy, while a larger ε value means our algorithm switches

more often between W and H. We choose ε = 0.001 in our experiments.

More interestingly, with this setting of stopping condition, we can prove

that our algorithm GCD converges to a stationary point:

Theorem 2. For least squares NMF, if a sequence {(Wi, Hi)} is generated by

GCD, then every limit point of this sequence is a stationary point.

This convergence result holds for any inner stopping condition ε < 1,

thus it is different from the proof for exact methods, which assumes that each

sub-problem is solved exactly. It is easy to extend the convergence result

for GCD to regularized least squares NMF. Note that our proof is the first

convergence gaurantee for alternative NMF solvers which does not assume

subproblems (minW≥0 f(W,H) and minH≥0 f(W,H)) are not solved exactly.

4.1.3 Experimental Comparisons

For least squares NMF, we compare GCD with three other state-of-the-

art solvers:

1. ProjGrad: the projected gradient method in [52]. We use the MATLAB

source code at http://www.csie.ntu.edu.tw/~cjlin/nmf/.

43

Table 4.1: The comparisons for least squares NMF solvers on dense datasets.
For each method we present time/FLOPs (number of floating point operations)
cost to achieve the specified relative error. The method with the shortest
running time is boldfaced. The results indicate that GCD is most efficient
both in time and FLOPs.

dataset m n k relative error
Time (in seconds)/FLOPs

GCD FastHals ProjGrad BlockPivot

Synth03 500 1,000
10 10−4 0.6/0.7G 2.3/2.9G 2.1/1.4G 1.7/1.1G
30 10−4 4.0/5.0G 9.3/16.1G 26.6/23.5G 12.4/8.7G

Synth08 500 1,000
10 10−4 0.21/0.11G 0.43/0.38G 0.53/0.41G 0.56/0.35G
30 10−4 0.43/0.46G 0.77/1.71G 2.54/2.70G 2.86/1.43G

CBCL 361 2,429 49
0.0410 2.3/2.3G 4.0/10.2G 13.5/14.4G 10.6/8.1G
0.0376 8.9/8.8G 18.0/46.8G 45.6/49.4G 30.9/29.8G
0.0373 14.6/14.5G 29.0/75.7G 84.6/91.2G 51.5/53.8G

ORL 10,304 400 25
0.0365 1.8/2.7G 6.5/14.5G 9.0/9.1G 7.4/5.4G
0.0335 14.1/20.1G 30.3/66.9G 98.6/67.7G 33.9/38.2G
0.0332 33.0/51.5G 63.3/139.0G 256.8/193.5G 76.5/82.4G

2. BlockPivot: the block-pivot method in [44]. We use the MATLAB source

code at http://www.cc.gatech.edu/~hpark/nmfsoftware.php.

3. FastHals: Cyclic coordinate descent method in [12]. We implemented the

algorithm in MATLAB.

We test the performance on dense image datasets. We construct two synthetic

datasets, Synth03 and Synth08, where the suffix numbers indicate 30% or 80%

variables in the groundtruth W,H are zeros. We also test the algorithms on

two image datasets CBCL and ORL. The results are summarized in Table 4.1.

Table 4.1 compares the CPU time for each solver to achieve the specified

relative error defined by ‖V −WH‖2
F/‖V ‖2

F , and we can conclude that GCD

is two to three times faster than BlockPivot and FastHals on dense image data.

44

4.2 kernel Support Vector Machine

The support vector machine (SVM) [14] is probably the most widely

used classifier in varied machine learning applications. For problems that are

not linearly separable, kernel SVM uses a “kernel trick” to implicitly map

samples from input space to a high-dimensional feature space, where samples

become linearly separable. Due to its importance, optimization methods for

kernel SVM have been widely studied [70, 37], and efficient libraries such as

LIBSVM [10] and SVMLight [37] are well developed. However, the kernel

SVM is still hard to scale up when the sample size reaches more than one

million instances. The bottleneck stems from the high computational cost

and memory requirements of computing and storing the kernel matrix, which

in general is not sparse. Many previous exact or inexact solvers have been

proposed to speed up the SVM training speed, including decomposition meth-

ods [66, 70], chunking and shrinking [68, 37], cascade SVM [24], kernel low

rank approximations [85, 18, 17, 92, 91], random feature approaches [71, 46],

AESVM [61], and online SVMs [3, 16].

Given a set of instance-label pairs (xi, yi), i = 1, . . . , n,xi ∈ Rd and

yi ∈ {1,−1}, the main task in training the kernel SVM is to solve the following

quadratic optimization problem:

min
α
f(α) =

1

2
αTQα− eTα, s.t. 0 ≤ α ≤ C, (4.8)

where e is the vector of all ones; C is the balancing parameter between loss

and regularization in the SVM primal problem; α ∈ Rn is the vector of dual

45

variables; and Q is an n×n matrix with Qij = yiyjK(xi,xj), where K(xi,xj)

is the kernel function. Letting α∗ denote the optimal solution of (4.8), the

decision value for a test data x can be computed by

n∑
i=1

α∗i yiK(x,xi). (4.9)

4.2.1 Exploiting Problem and Model Structure—Greedy Coordi-
nate Descent Updates

The kernel SVM problem (4.8) is a quadratic minimization problem

with bounded constraint, and the matrix Q is an n by n dense matrix. With

the bounded constraint α ≥ 0, the model usually has a sparse structure – there

will be many zero elements in α, and the SVM prediction (4.9) is only related

to the set of support vectors: {αi : αi > 0}. Therefore, we apply a greedy

coordinate descent algorithm to solve the problem, which is able to identify

the support vectors quickly and ignore non support vectors. This algorithm is

originally proposed as the decomposition method [66, 70] for solving the kernel

SVM problem with the bias term, where they update two variables at a time

due to the additional constraint
∑

i yiαi = 0 in the dual problem.

Similar to the case discussed in Section 4.1, by exploiting the problem

structure, the greedy coordinate descent method has the same time complexity

with cyclic or random coordinate descent algorithms. Assume αi is updated

by αi ← αi + δi at a coordinate descent step, the optimal δi has a closed form

solution:

δi ← min(max(αi − eTi Qα/Qii, 0), C)− αi,

46

which requires O(n) computation if the i-th row of Q is stored in memory. Now

we analyze the time complexity for the following greedy coordinate descent

method. During the optimization process, we maintain the gradient g =

Qα− e in memory, and δi can be computed by

δi ← min(max(αi − gi/Qii, 0), C)− αi,

which requires only O(1) operation. We then need to maintain g by

g ← g + δi(Qei),

which requires O(n) operations. Therefore the time complexity of greedy coor-

dinate descent is exactly the same with the cyclic coordinate descent algorithm.

We will use this algorithm as a base solver for the kernel SVM problem.

4.2.2 Exploring data distribution—Divide and Conquer kernel SVM

Next we develop a divide-and-conquer procedure for solving kernel SVM

by exploiting the clustering structure of data points. Clustering structure

appears in many real world applications. In classification problems, data points

are usually generated non-uniformly from the input domain, and it is often

the case that the sample points are dense in some areas, resulting in a local

clustering structure.

We begin by describing the single-level version of our proposed algo-

rithm. The main idea behind our divide and conquer SVM solver (DC-SVM)

is to divide the data into smaller subsets, where each subset can be handled

47

efficiently and independently. The subproblem solutions are then used to ini-

tialize a coordinate descent solver for the whole problem. To do this, we first

partition the dual variables into k subsets {V1, . . . ,Vk}, and then solve the

respective subproblems independently

min
α(c)

1

2
(α(c))

TQ(c,c)α(c)−eTα(c), s.t. 0≤α(c)≤C, (4.10)

where c = 1, . . . , k, α(c) denotes the subvector {αi | i ∈ Vc} and Q(c,c) is the

submatrix of Q with row and column indexes Vc.

The quadratic programming problem (4.8) has n variables, and takes

at least O(n2) time to solve in practice (as shown in [59]). By dividing it

into k subproblems (4.10) with equal sizes, the time complexity for solving the

subproblems can be reduced to O(k · (n
k
)2) = O(n2/k). Moreover, the space

requirement is also reduced from O(n2) to O(n2/k2).

After computing all the subproblem solutions, we concatenate them

to form an approximate solution for the whole problem ᾱ = [ᾱ(1), . . . , ᾱ(k)],

where ᾱ(c) is the optimal solution for the c-th subproblem. In the conquer

step, ᾱ is used to initialize the solver for the whole problem. We show that

this procedure achieves faster convergence since ᾱ is close to the optimal so-

lution for the whole problem {α}∗.

Divide Step. We now discuss in detail how to divide problem (4.8) into

subproblems. In order for our proposed method to be efficient, we require ᾱ to

be close to the optimal solution of the original problem α∗. In the following,

48

we derive a bound on ‖ᾱ−α∗‖2 by first showing that ᾱ is the optimal solution

of (4.8) with an approximate kernel.

Lemma 3. ᾱ is the optimal solution of (4.8) with kernel function K(xi,xj)

replaced by

K̄(xi,xj) = I(π(xi), π(xj))K(xi,xj), (4.11)

where π(xi) is the cluster that xi belongs to; I(a, b) = 1 iff a = b and I(a, b) = 0

otherwise.

Based on the above lemma, we are able to bound ‖α∗ − ᾱ‖2 by the

sum of between-cluster kernel values:

Theorem 3. Given data points {(xi, yi)}ni=1 with labels yi ∈ {1,−1} and a

partition indicator {π(x1), . . . , π(xn)},

0 ≤ f(ᾱ)− f(α∗) ≤ (1/2)C2D(π), (4.12)

where f(α) is the objective function in (4.8) and D(π) =
∑

i,j:π(xi)6=π(xj)
|K(xi,xj)|.

Furthermore, ‖α∗ − ᾱ‖2
2 ≤ C2D(π)/σn where σn is the smallest eigenvalue of

the kernel matrix.

In order to minimize ‖α∗ − ᾱ‖, we want to find a partition with small

D(π). Moreover, a balanced partition is preferred to achieve faster training

speed. This can be done by the kernel kmeans algorithm, which aims to

minimize the off-diagonal values of the kernel matrix with a balancing nor-

malization. However, kernel kmeans has O(n2d) time complexity, which is too

49

expensive for large-scale problems. Therefore we consider a simple two-step

kernel kmeans approach as in [22]. The two-step kernel kmeans algorithm first

runs kernel kmeans on m randomly sampled data points (m� n) to construct

cluster centers in the kernel space. Based on these centers, each data point

computes its distance to cluster centers and decides which cluster it belongs

to. The algorithm has time complexity O(nmd) and space complexity O(m2).

In our implementation we just use random initialization for kernel kmeans,

and observe good performance in practice.

Conquer Step. After computing ᾱ from the subproblems, we use ᾱ to

initialize the solver for the whole problem. In principle, we can use any SVM

solver in our divide and conquer framework, but we focus on using the coor-

dinate descent method as in LIBSVM to solve the whole problem.

Divide and Conquer SVM with multiple levels. There is a trade-off

in choosing the number of clusters k for a single-level DC-SVM with only one

divide and conquer step. When k is small, the subproblems have similar sizes

as the original problem, so we will not gain much speedup. On the other hand,

when we increase k, time complexity for solving subproblems can be reduced,

but the resulting ᾱ can be quite different from α∗ according to Theorem 3,

so the conquer step will be slow. Therefore, we propose to run DC-SVM with

multiple levels to further reduce the time for solving the subproblems, and

meanwhile still obtain ᾱ values that are close to α∗.

In multilevel DC-SVM, at the l-th level, we partition the whole dataset

50

into kl clusters {V(l)
1 , . . . ,V

(l)

kl
}, and solve those kl subproblems independently

to get ᾱ(l). In order to solve each subproblem efficiently, we use the solutions

from the lower level ᾱ(l+1) to initialize the solver at the l-th level, so each

level requires very few iterations. This allows us to use small values of k, for

example, we use k = 4 for all the experiments.

Early prediction strategy. Computing the exact kernel SVM solution

can be quite time consuming, so it is important to obtain a good model using

limited time and memory. We now propose a way to efficiently predict the

label of unknown instances using the lower-level models ᾱl. We will see in the

experiments that prediction using ᾱl from a lower level l already can achieve

near-optimal testing performance.

When the l-th level solution ᾱl is computed, we propose the following

early prediction strategy. From Lemma 3, ᾱ is the optimal solution to the

SVM dual problem (4.8) on the whole dataset with the approximated kernel

K̄ defined in (4.11). Therefore, we propose to use the same kernel function K̄

in the testing phase, which leads to the prediction

k∑
c=1

∑
i∈Vc

yiαiK̄(xi,x) =
∑

i∈Vπ(x)

yiαiK(xi,x), (4.13)

where π(x) can be computed by finding the nearest cluster center. Therefore,

the testing procedure for early prediction is: (1) find the nearest cluster that

x belongs to, and then (2) use the model trained by data within that cluster

to compute the decision value.

51

Table 4.2: Comparison on real datasets using the RBF kernel.
ijcnn1 cifar census covtype

C = 32, γ = 2 C = 8, γ = 2−22 C = 512, γ = 2−9 c = 32, γ = 32
time(s) acc(%) time(s) acc(%) time(s) acc(%) time(s) acc(%)

DC-SVM (early) 12 98.35 1977 87.02 261 94.9 672 96.12
DC-SVM 41 98.69 16314 89.50 1051 94.2 11414 96.15
LIBSVM 115 98.69 42688 89.50 2920 94.2 83631 96.15

LIBSVM (subsapmle) 6 98.24 2410 85.71 641 93.2 5330 92.46
LaSVM 251 98.57 57204 88.19 3514 93.2 102603 94.39

CascadeSVM 17.1 98.08 6148 86.8 849 93.0 5600 89.51
LLSVM 38 98.23 9745 86.5 1212 92.8 4451 84.21

FastFood 87 95.95 3357 80.3 851 91.6 8550 80.1
SpSVM 20 94.92 21335 85.6 3121 90.4 15113 83.37
LTPU 248 96.64 17418 85.3 1695 92.0 11532 83.25

BudgetedSVM 24 96.88 5722 87.62 430 91.8 3839 87.83
AESVM 10 93.10 9519 87.83 335 93.61 3821 87.03

4.2.3 Experimental Results

We include the exact kernel SVM solvers (LIBSVM [10], CascadeSVM [24]),

approximate SVM solvers (SpSVM [39], LLSVM [91], FastFood [46], LTPU [60],

AESVM [61], BudgetedSVM [16]), and online SVM (LaSVM [3]) in our com-

parison. The results are shown in Table 4.2. Experimental results show that

the early prediction approach in DC-SVM (stopped at the level with 64 clus-

ters, denoted by DC-SVM(early)) achieves near-optimal test performance. By

going to the top level (handling the whole problem), DC-SVM achieves better

test performance but needs more time. Both DC-SVM and DC-SVM(early)

are much faster than other approaches.

52

4.3 Proximal Newton method for Dirty Statistical Mod-
els

In this section, our goal is to extend the proximal Newton method with

variable selection to handle the following broader class of problems. Con-

sider a general superposition-structured parameter θ̄ :=
∑k

r=1 θ
(r), where

{θ(r)}kr=1 are the parameter-components, each with their own structure. Let

{R(r)(·)}kr=1 be regularization functions suited to the respective parameter

components, and let L(·) be a loss function that measures the goodness of fit of

the superposition-structured parameter θ̄ to the data. We consider a popular

class of M -estimators studied in the papers above for these superposition-

structured models:

min
{θ(r)}kr=1

L

(∑
r

θ(r)

)
+
∑
r

λrR
(r)(θ(r)) := F (θ), (4.14)

where {λr}kr=1 are regularization penalties. Note that in (4.14), the over-

all regularization contribution is separable in the individual parameter com-

ponents, but the loss function term itself is not, and depends on the sum

θ̄ :=
∑k

r=1 θ
(r). Throughout this section, we will use θ̄ =

∑k
r=1 θ

(r) to de-

note the overall superposition-structured parameter, and θ = [θ(1), . . . ,θ(k)]

to denote the concatenation of all the parameters. This kind of estimators are

used in many machine learning problems [83, 34], and most of the state-of-

the-art solvers use proximal gradient descent approach or the ADMM method

[5, 56, 73].

53

Decomposable norms. We consider the case where all the regular-

izers {R(r)}kr=1 are decomposable norms ‖ · ‖Ar . A norm ‖ · ‖ is decomposable

at x if there is a subspace T and a vector e ∈ T such that the sub differential

at x has the following form:

∂‖x‖r = {ρ ∈ Rn | ΠT(ρ) = e and ‖ΠT⊥(ρ)‖∗Ar ≤ 1}, (4.15)

where ΠT(·) is the orthogonal projection onto T, and ‖x‖∗ := sup‖a‖≤1〈x,a〉

is the dual norm of ‖ · ‖. The decomposable norm was defined in [63, 6], and

many interesting regularizers belong to this category, including:

• Sparse vectors: for the `1 regularizer, T is the span of all points with the

same support as x.

• Group sparse vectors: suppose that the index set can be partitioned into a

set of NG disjoint groups, say G = {G1, . . . , GNG
}, and define the (1,α)-group

norm by ‖x‖G,α :=
∑NG

t=1 ‖xGt‖α. If SG denotes the subset of groups where

xGt 6= 0, then the subgradient has the following form:

∂‖x‖1,α := {ρ | ρ =
∑
t∈SG

xGt/‖xGt‖∗α +
∑
t/∈SG

mt},

where ‖mt‖∗α ≤ 1 for all t /∈ SG. Therefore, the group sparse norm is also

decomposable with

T := {x | xGt = 0 for all t /∈ SG}. (4.16)

• Low-rank matrices: for the nuclear norm regularizer ‖ · ‖∗, which is defined

to be the sum of singular values, the subgradient can be written as

∂‖X‖∗ = {UV T +W | UTW = 0,WV = 0, ‖W‖2 ≤ 1},

54

where ‖ · ‖2 is the matrix 2 norm and U, V are the left/right singular vectors

of X corresponding to non-zero singular values. The above subgradient can

also be written in the decomposable form (4.15), where T is defined to be

span({uivTj }ki,j=1) where {ui}ki=1, {vi}ki=1 are the columns of U and V .

Applications. Next we discuss some widely used applications of

superposition-structured models, and the corresponding instances of the class

of M -estimators in (4.14).

• Gaussian graphical model with latent variables: let Θ denote the precision

matrix with corresponding covariance matrix Σ = Θ−1. [8] showed that the

precision matrix will have a low rank + sparse structure when some random

variables are hidden, thus Θ = S−L can be estimated by solving the following

regularized MLE problem:

min
S,L:L�0,S−L�0

− log det(S − L) + 〈S − L,Σ〉+ λS‖S‖1 + λL tr(L). (4.17)

• Multi-task learning: given k tasks, each with sample matrix X(r) ∈ Rnr×d

(nr samples in the r-th task) and labels y(r), [36] proposes minimizing the

following objective:

k∑
r=1

`(y(r), X(r)(S(r) +B(r))) + λS‖S‖1 + λB‖B‖1,∞, (4.18)

where `(·) is the loss function and S(r) is the r-th column of S.

• Noisy PCA: to recover a covariance matrix corrupted with sparse noise, a

widely used technique is to solve the matrix decomposition problem [9]. In

55

contrast to the squared loss above, an exponential PCA problem [13] would

use a Bregman divergence for the loss function.

4.3.1 Exploiting Problem Structure – Block Coordinate Descent
for Computing Newton direction

Given k sets of variables θ = [θ(1), . . . ,θ(k)], and each θ(r) ∈ Rn, let

∆(r) denote perturbation of θ(r), and ∆ = [∆(1), . . . ,∆(k)]. We define g(θ) :=

L(
∑k

r=1 θ
(r)) = L(θ̄) to be the loss function, and h(θ) :=

∑k
r=1 R(r)(θ(r)) to

be the regularization. To apply the proximal Newton method (as described in

Section 3.1), given the current estimate θ, we form the quadratic approxima-

tion of the smooth loss function:

ḡ(θ + ∆) = g(θ) +
k∑
r=1

〈∆(t), G〉+
1

2
∆TH∆, (4.19)

where G = ∇L(θ̄) is the gradient of L and H is the Hessian matrix of g(θ).

Note that ∇θ̄L(θ̄) = ∇θ(r)L(θ̄) for all r so we simply write ∇ and refer to the

gradient at θ̄ as G (and similarly for ∇2). By the chain rule, we can show that

the Hessian Matrix has the following structure:

H := ∇2g(θ) =

H · · · H
...

. . .
...

H · · · H

 , H := ∇2L(θ̄). (4.20)

The Newton direction d is defined to be:

[d(1), . . . ,d(k)] = argmin
∆(1),...,∆(k)

ḡ(θ + ∆) +
k∑
r=1

λr‖θ(r) + ∆(r)‖Ar := QH(∆;θ).

(4.21)

56

Based on the structure of Hessian in (4.20), we propose a block coordinate de-

scent (or alternating minimization) method to solve (4.21). At each iteration,

we pick a variable set ∆(r) where r ∈ {1, 2, . . . , k} by a cyclic (or random) or-

der, and update the parameter set ∆(r) while keeping other parameters fixed.

Assume ∆ is the current solution (for all the variable sets), then the subprob-

lem with respect to ∆(r) can be written as

∆(r) ← argmin
d∈Rn

1

2
dTHd+ 〈d, G+

∑
t:r 6=t

H∆(t)〉+ λr‖θ(r) + d‖Ar . (4.22)

The subproblem (4.22) is just a typical quadratic problem with a specific

regularizer, so there already exist efficient algorithms for solving it for different

choices of ‖ · ‖A.

4.3.2 Exploiting Model Structure – Active Subspace Selection

Since the quadratic subproblem (4.21) contains a large number of vari-

ables, directly applying the above quadratic approximation framework is not

efficient. In this subsection, we provide a general active subspace selection

technique, which dramatically reduces the size of variables by exploiting the

structure of regularizers.

Given the current θ, our subspace selection approach partitions each

θ(r) into S
(r)
fixed and S

(r)
free = (S

(r)
fixed)

⊥, and then restricts the search space of the

Newton direction in (4.21) within Sfree, which yields the following quadratic

approximation problem:

[d(1), . . . ,d(k)] = argmin
∆(1)∈S

(1)
free,...,∆

(k)∈S
(k)
free

ḡ(θ+∆)+
k∑
r=1

λr‖θ(r) +∆(r)‖Ar . (4.23)

57

Each group of parameter has its own fixed/free subspace, so we now focus

on a single parameter component θ(r). An ideal subspace selection procedure

would satisfy:

Property (I). Given the current iterate θ, any updates along directions

in the fixed set, for instance as θ(r) ← θ(r) + a, a ∈ S
(r)
fixed, does not

improve the objective function value.

Property (II). The subspace Sfree converges to the support of the final

solution in a finite number of iterations.

Suppose given the current iterate, we first do updates along directions

in the fixed set, and then do updates along directions in the free set. Property

(I) ensures that this is equivalent to ignoring updates along directions in the

fixed set in this current iteration, and focusing on updates along the free set.

As we will show in the next section, this property would suffice to ensure

global convergence of our procedure. Property (II) will be used to derive the

asymptotic quadratic convergence rate.

We will now discuss our active subspace selection strategy which will

satisfy both properties above. Consider the parameter component θ(r), and

its corresponding regularizer ‖ · ‖Ar . Based on the definition of decomposable

norm in (4.15), there exists a subspace Tr where ΠTr(ρ) is a fixed vector for

any subgradient of ‖ · ‖Ar . The following proposition explores some properties

of the sub-differential of the overall objective F (θ) in (4.14).

58

Proposition 4. Consider any unit-norm vector a, with ‖a‖Ar = 1, such that

a ∈ T⊥r .

(a) The inner-product of the sub-differential ∂θ(r)F (θ) with a satisfies:

〈a, ∂θ(r)F (θ)〉 ∈ [〈a, G〉 − λr, 〈a, G〉+ λr]. (4.24)

(b) Suppose |〈a, G〉| ≤ λr. Then, 0 ∈ argminσ F (θ + σa).

The proposition thus implies that if |〈a, G〉| ≤ λr and S
(r)
fixed ⊂ T⊥r then

Property (I) immediately follows. The difficulty is that the set {a | |〈a, G〉| ≤

λr} is possibly hard to characterize, and even if we could characterize this set,

it may not be amenable enough for the optimization solvers to leverage in order

to provide a speedup. Therefore, we propose an alternative characterization

of the fixed subspace:

Definition 5. Let θ(r) be the current iterate, prox
(r)
λ be the proximal operator

defined by

prox
(r)
λ (x) = argmin

y

1

2
‖y − x‖2 + λ‖y‖Ar ,

and Tr(x) be the subspace for the decomposable norm (4.15) ‖ · ‖Ar at point x.

We can define the fixed/free subset at θ(r) as:

S
(r)
fixed := [T(θ(r))]⊥ ∩ [T(prox

(r)
λr

(G))]⊥, S
(r)
free = S

(r)
fixed

⊥
. (4.25)

59

It can be shown that from the definition of the proximal operator, and

Definition 5, it holds that |〈a, G〉| < λr, so that we would have local optimality

in the direction a as before. We have the following proposition:

Proposition 6. Let S
(r)
fixed be the fixed subspace defined in Definition 5. We

then have:

0 = argmin
∆(r)∈S

(r)
fixed

Q̄H([0, . . . ,0,∆(r),0, . . . ,0];θ).

We are also able to prove that Sfree as defined above converges to the

final support, as required in Property (II) above. We will now detail some

examples of the fixed/free subsets defined above.

• For `1 regularization: Sfixed is span{ei | θi = 0 and |∇iL(θ̂)| ≤ λ} where ei

is the ith canonical vector.

• For nuclear norm regularization: the selection scheme can be written as

Sfree = {UADV T
A | D ∈ Rk×k}, (4.26)

where UA = span(U,Ug), VA = span(V, Vg), with Θ = UΣV T is the thin SVD

of Θ and Ug, Vg are the left and right singular vectors of proxλ(Θ −∇L(Θ)).

The proximal operator proxλ(·) in this case corresponds to singular-value soft-

thresholding, and can be computed by the iterative QR algorithm or the Lanc-

zos algorithm.

60

• For group sparse regularization: in the (1, 2)-group norm case, let SG be

the nonzero groups, then the fixed groups FG can be defined by FG := {i | i /∈

SG and ‖GGi‖ ≤ λ}, and the free subspace will be

Sfree = {θ | θi = 0 ∀i ∈ FG}. (4.27)

Algorithm 5: Quic & Dirty: Quadratic Approximation
Framework for Dirty Statistical Models

Input : Loss function L(·), regularizers λr‖ · ‖Ar for
r = 1, . . . , k, and initial iterate θ0.

Output: Sequence {θt} such that {θ̄t} converges to θ̄
?
.

1 for t = 0, 1, . . . do

2 Compute θ̄t ←
∑k

r=1 θ
(r)
t .

3 Compute ∇L(θ̄t).
4 Compute Sfree by (4.25).
5 for sweep = 1, . . . , Touter do
6 for r = 1, . . . , k do

7 Solve the subproblem (4.22) within S
(t)
free.

8 Update
∑k

r=1∇2L(θ̄t)∆
(r).

9 Find the step size α.

10 θ(r) ← θ(r) + α∆(r) for all r = 1, . . . , k.

4.3.3 Experimental Results

We demonstrate that our algorithm is extremely efficient for two appli-

cations: Gaussian Markov Random Fields (GMRF) with latent variables (with

sparse + low rank structure) and multi-task learning problems (with sparse +

group sparse structure).

61

GMRF with Latent Variables Due to the importance of the latent vari-

able Gaussian Markov Random Fields (GMRF) model, several software pack-

ages have been recently developed that solve the corresponding superposition-

structured M -estimator in eq (4.17). We compare our algorithm with two

state-of-the-art software packages. The LogdetPPA algorithm was proposed

in [83] and used in [8] to solve (4.17). The PGALM algorithm was proposed in

[56]. We run our algorithm on three gene expression datasets: the ER dataset

(p = 692), the Leukemia dataset (p = 1255), and a subset of the Rosetta

dataset (p = 2000)1 For the parameters, we use λS = 0.5, λL = 50 for the

ER and Leukemia datasets, which give us low-rank and sparse results. For

the Rosetta dataset, we use the parameters suggested in LogdetPPA, with

λS = 0.0313, λL = 0.1565. The results in Figure 4.2 shows that our algorithm

is more than 10 times faster than other algorithms. Note that in the begin-

ning PGALM tends to produce infeasible solutions (L or S−L is not positive

definite), which is not plotted in the figures.

Multiple-task learning with superposition-structured regularizers.

We follow [36] and transform multi-class problems into multi-task problems.

For a multiclass dataset with k classes and n samples, for each r = 1, . . . , k,

we generate yr ∈ {0, 1}n to be the vector such that y
(k)
i = 1 if and only if

the i-th sample is in class r. Our first dataset is the USPS dataset which was

first collected in [81] and subsequently widely used in multi-task papers. On

1The full dataset has p = 6316 but the other methods cannot solve this size problem.

62

0 50 100 150
900

1000

1100

1200

1300

time (sec)

O
b
je

c
ti
v
e
 v

a
lu

e

Quic & Dirty
PGALM
LogdetPPM .

(a) ER dataset
0 100 200 300 400 500

1500

2000

2500

3000

time (sec)

O
b
je

c
ti
v
e
 v

a
lu

e

Quic & Dirty
PGALM
LogdetPPM .

(b) Leukemia dataset
0 200 400 600

−2000

−1500

−1000

−500

time (sec)

O
b
je

c
ti
v
e
 v

a
lu

e

Quic & Dirty
PGALM
LogdetPPM .

(c) Rosetta dataset

Figure 4.2: Comparison of algorithms on the latent feature GMRF problem
using gene expression datasets. Our algorithm is much faster than PGALM
and LogdetPPA.

this dataset, the use of several regularizers is crucial for good performance.

For example, [36] demonstrates that on USPS, using lasso and group lasso

regularizations together outperforms models with a single regularizer. How-

ever, they only consider the squared loss in their paper, whereas we consider

a logistic loss which leads to better performance. For example, we get 7.47%

error rate using 100 samples in USPS dataset, while using the squared loss

the error rate is 10.8% [36]. Our second dataset is a larger document dataset

RCV1 downloaded from LIBSVM Data, which has 53 classes and 47,236 fea-

tures. We show that our algorithm is much faster than other algorithms on

both datasets, especially on RCV1 where we are more than 20 times faster

than proximal gradient descent. Here our subspace selection techniques works

well because we expect that the active subspace at the true solution is small.

63

Table 4.3: The comparisons on multi-task problems.

dataset
number of relative Dirty Models (sparse + group sparse) Other Models

training data error Quic & Dirty proximal gradient ADMM Lasso Group Lasso

USPS

100 10−1 8.3% / 0.42s 8.5% / 1.8s 8.3% / 1.3
10.27% 8.36%

100 10−4 7.47% / 0.75s 7.49% / 10.8s 7.47% / 4.5s
400 10−1 2.92% / 1.01s 2.9% / 9.4s 3.0% / 3.6s

4.87% 2.93%
400 10−4 2.5% / 1.55s 2.5% / 35.8 2.5% / 11.0s

RCV1

1000 10−1 18.91% / 10.5s 18.5%/47s 18.9% / 23.8s
22.67% 20.8%

1000 10−4 18.45% / 23.1s 18.49% / 430.8s 18.5% / 259s
5000 10−1 10.54% / 42s 10.8% / 541s 10.6% / 281s

13.67% 12.25%
5000 10−4 10.27% / 87s 10.27% / 2254s 10.27% / 1191s

4.4 Summary of the Contribution

The greedy coordinate descent algorithm for NMF is published in [26],

and the code can be downloaded at http://www.cs.utexas.edu/~cjhsieh/

nmf. The active subspace selection approach for nuclear norm has been pub-

lished in [29] and the code can be downloaded at http://www.cs.utexas.edu/

~cjhsieh/nuclear_active_1.1.zip, and in [28] we extend the algorithm to

solve dirty statistical models. The divide-and-conquer algorithm for Kernel

SVM presented in Section 4.2 is published in [30], and the code can be down-

loaded from http://www.cs.utexas.edu/~cjhsieh/dcsvm.

64

Chapter 5

Exploiting Structure for General Problems

In this section, we discuss how to explore the structure of problem,

model, and data distribution for a wide class of optimization problems, and we

further develop a novel divide-and-conquer framework on distributed systems.

5.1 Exploiting Problem Structure—Efficient Proximal
Newton Methods for General Functions

We have provided several examples in this proposal showing that ex-

ploiting problem structure is very important for developing efficient optimiza-

tion algorithms, especially second order methods. To conclude the thesis, we

discuss two classes of problems where proximal Newton methods can be effi-

ciently applied by exploiting structure of the Hessian matrix.

Linear Empirical Risk Minimization Problems

We first discuss problems that aim to learn a linear model under the

Empirical Risk Minimization framework. In those cases, the objective function

can be written as

min
w∈Rd

g(w) + h(w) where g(w) =
∑

i=1,...,n

`(wTxi, yi),

65

where {xi, yi}ni=1 is the training dataset, w is the model and h(·) is the regu-

larizer. The Hessian of the loss function has the following form:

H = ∇2g(w) = XTDX, (5.1)

where X ∈ Rn×d is the data matrix, and D is a diagonal matrix with

Dii =
∂2`(z, yi)

∂z2

∣∣
z=wTxi

Therefore, we can efficiently conduct the following two operations when solving

the quadratic approximation subproblem (3.5) for proximal Newton method:

• Hessian Vector Product: Without exploiting the structure of the

Hessian matrix, Hessian vector product has to be computed in O(d2)

time where d is the dimensionality. This is very time consuming for

high-dimensional (sparse) problems. Using the structure of Hessian in

(5.1), the Hessian-vector product computation can be improved from

O(d2) to O(nnz(X)) time, and this is very efficient when the input data

X is a sparse matrix. The approach has been used in [53] for solving the

`2-regularized logistic regression problem, where they use a trust region

Newton method to solve the quadratic approximation problem (3.5).

• Coordinate descent update: If we apply the coordinate descent al-

gorithm to solve the quadratic subproblem (3.5), each coordinate descent

update mainly involves the computation of eTi Hw where w ∈ Rd is the

current solution. Without exploiting the structure of Hessian, we have to

66

compute eTi Hx in O(d) time. Furthermore, the O(d2) space complexity

is needed for storing H in memory.

By exploiting the structure of Hessian matrix in (5.1), each coordinate

descent update can be conducted efficiently. We can maintain a vector

h = Xw, and at each iteration eTi Hw can be computed by x̄Ti Dh, where

x̄i is the i-th column of X. This only requires O(di) time complexity,

where di is number of nonzero elements in x̄i. After each coordinate up-

date, we have to maintain h, which takes only O(di) time. This approach

has been used in [21, 89] for `1-regularized logistic regression.

Matrix Functions

In Section 3.2, we have shown that the Hessian of sparse inverse covari-

ance estimation loss function f(X) = − log det(X) + trace(SX) is X−1⊗X−1

where ⊗ indicates the Kronecker product. By exploiting this structure, we

can improve the time complexity of coordinate descent updates for solving the

Newton direction subproblem (3.5). But do we have the similar structure for

other functions? Luckily, the answer is yes for most of the matrix functions.

Define a matrix function to be f : Rd×d → R, we can define the gradient

to be ∇f : Rd×d → Rd×d where ∇ijf(X) = ∂f(X)
∂Xij

, and the Hessian matrix to

be ∇2f : Rd×d → Rd2×d2
, where

∂f

∂X
=

∂vec(f>)

∂vec>(X>)
=


∂f11

∂X11

∂f11

∂X12
· · · ∂f11

∂Xmn
∂f12

∂X11

∂f12

∂X12
· · · ∂f12

∂Xmn
...

...
. . .

...
∂fkl
∂X11

∂fkl
∂X12

· · · ∂fkl
∂Xmn

 .

67

We then consider the class of rational matrix-matrix functions, where

f(·) is formed by four operations: +,−,×, (·)−1. [65] prove the following

theorem:

Theorem 7. For any rational matrix-matrix functions, the derivative can be

written as

∇2f(X) =

(
k∑
i=1

Ai ⊗Bi

)
vec(D), (5.2)

where Ai, Bi are rational matrix-matrix functions of X.

Given this following two differentiation rules for matrix-vector func-

tions:

vec

((
∂

∂X
log det(f(X))

)>)
=

(
∂f

∂X

)>
vec
(
(f(X))−1)

vec

((
∂

∂X
trace(f(X))

)>)
=

(
∂f

∂X

)>
vec(I)

We can conclude that the Hessian matrix for all the matrix-vector functions

composed with log det(·), trace(·),+,−,×, (·)−1 can be written as (5.2). There-

fore, if we apply a proximal Newton method to minimize f(X) + h(X) where

h(X) is the regularization, the Newton direction subproblem has the following

form:
k∑
i=1

vec(D)TAi ⊗Bi vec(D) + 〈∇f(X), D〉+ h(X).

We are able to efficiently conduct the following two operations when solving

this quadratic subproblem.

68

• Hessian Vector Product: Without exploiting the structure of the

Hessian matrix, the Hessian vector product has to be computed in O(d4)

time where d is the dimensionality. This is too expensive for high-

dimensional problems. Using the structure of Hessian in (5.2), the

Hessian-vector product can be computed in O(d3) time by using the

fact that (Ai ⊗Bi) vec(D) = AiDBi.

• Coordinate descent update: If we apply the coordinate descent

algorithm for solving the quadratic subproblem (3.5), each coordinate

descent update requires O(d2) time and O(d4) space to store the Hes-

sian matrix in memory. By exploiting the structure of Hessian matrix

as shown in (5.2), each coordinate descent update can be conduct effi-

ciently. We can maintain a set of matrices Wi = DBi for all i = 1, . . . , k,

and then (
∑k

i=1 AiDBi)ij can be computed efficiently by
∑k

i=1(AiWi)ij,

which only requires O(d) time. This is the strategy we used in the sparse

inverse covariance estimation problem (Section 3.2), and here we show

this strategy can be generalized to the matrix function.

5.2 Exploiting Model Structure—Coordinate Descent
with Priority

In machine learning problems, usually only a subset of variables are

crucial and needed to be updated frequently, and thus variable selection is

a very important technique for speeding the optimization process. We consider

minimizing the objective function f(θ). To conduct variable selection, we first

69

define and measure the “importance” of each variable. This can be mathe-

matically defined as a function q : Rd → Rd that maps the current solution θ̄

to the importance of each variable. This mapping can be defined in multiple

ways, and the most straightforward definition is the maximum amount of ob-

jective function reduction when updating each variable, which can be written

formally as:

qi(θ̄) := max
d∈R

f(θ̄)− f(θ̄ + dei), (5.3)

where ei is the i-th indicator vector. However, this quantity is sometimes hard

to compute. Instead, if we approximate the current function by a quadratic

function:

f(θ) ≈ f̃(θ) := f(θ̄) + (θ − θ̄)T∇f(θ̄) +
γ

2
(θ − θ̄)T (θ − θ̄), (5.4)

then the approximate objective function decrease can be measured by

q̃i(θ̄) := max
d∈R

f̃(θ̄)− f̃(θ̄ + dei) =
∇2
i f(θ̄)

2γ
, (5.5)

and thus the importance is proportional to the gradient. Therefore it is very

common to use the gradient as the importance of each variable.

The natural way to incorporate variable selection into the optimization

procedure is to conduct the greedy coordinate descent update. In classical

coordinate descent algorithms, each time only one variable is updated, and

the update sequence can be chosen cyclically [54, 2] or randomly [64]. To

explore the importance of variables, a straightforward way is to choose the

most important variable to update at each step, resulting a greedy coordinate

70

descent algorithm. The greedy coordinate descent algorithm first appeared in

[19], and have been widely used in machine learning applications [93, 78]. Also,

the decomposition method with maximum violating pair selection for solving

the kernel SVM problem is very close to greedy coordinate descent, where

a pair important variables instead of one single variable are selected at each

step. This important technique has been proposed by [41] and implemented

in many state-of-the-art SVM solvers including LIBSVM [10] and SVMLight

[37].

For most problems, it is non-trivial to maintain the gradient efficiently,

so the “importance” has to be recomputed periodically during the optimiza-

tion procedure. Therefore, in Section 4.3, we further develop an active sub-

space selection approach within this proximal Newton framework to exploit

the model structure. In the proximal Newton method proposed in Section 4.3,

the “importance” of each variable (or subspace) is measured by 0 (inactive) or

1 (active) using the optimality condition of the problem, and then we solve the

reduce-sized subproblem which contains only active variables (or subspace).

In general, for any optimization methods solving the RLM problem

with decomposable norm regularization, we can periodically compute the “im-

portance” or gradient for each variable/subspace, and then only solve the

reduce-sized problem. The algorithm is guaranteed to converge if the active

variable/subspace selection is done by our proposed rule in Section 4.3.

71

5.3 Exploiting Data Distribution—Distributed Divide-
and-Conquer Algorithms

In this section we discuss a parallel proximal Newton framework that

can be used for solving composite optimization problems. The idea of the

algorithm is to divide the variable set into several disjoint partitions, and each

worker conducts updates using the local information. At each synchronization

point, the workers communicate the gradient information and coordinating

together to find a suitable step size to do the update. We will also show two

interesting aspects of the proposed algorithm:

1. The convergence speed of the algorithm highly depends on the quality of

the partition of variables. Therefore, to develop an efficient algorithm,

we have to exploit the (clustering) structure of data to obtain a better

partition which minimizes the correlation between variables.

2. When the smooth part of the objective function is quadratic and the

non-smooth part is separable, the line search procedure can be conducted

with O(1) communication time.

3. Combining the above two observations, we implement a distributed ker-

nel SVM solver PBM. Our algorithm achieves the state-of-the-art per-

formance.

72

5.3.1 Related Work

Recently there are some divide-and-conquer approaches for parallel pro-

gramming, but all of them are based on the random partition. Assume the

dataset is randomly partitioned into k blocks, [96] proposed to train each par-

tition independently and averaging the results, and [94] further provided the

theoretical guarantee for this approach. Recently, [75] proposed an iterative

algorithm based on a distributed Alternating Direction Method of Multipliers

(ADMM, [5]). Recently, [86, 47, 35] propose parallel block minimization for

dual linear SVM, where they all use random partition of dual variables. In-

stead of using random partition, our proposed work uses clustering algorithm

based on the objective.

5.3.2 A Parallel Proximal Newton Framework

To introduce the new framework, we take another view of the divide-

and-conquer algorithms—all of them are trying to approximate the Hessian

matrix by a block-diagonal matrix.

Consider the composite minimization problem

argmin
x

{
g(x) + h(x)

}
= f(x), (5.6)

where g(x) is the smooth part (usually corresponds to the loss function), and

h(x) is a convex function (usually corresponds to the regularization). We

partition the variables x into k disjoint index sets {Sr}kr=1 such that

S1 ∪ S2 ∪ · · · ∪ Sk = {1, . . . , n} and Sp ∩ Sq = φ ∀p 6= q,

73

and we use π(i) to denote the cluster indicator that i belongs to. We associate

each worker r with a subset of variables xSr := {xi | i ∈ Sr}. We require h(x)

to be block-separable, i.e., h(x) =
∑k

r=1 hSr(xSr). Note that our framework

allows any partition, and we will discuss how to obtain a better partition later.

At each iteration, to solve Problem (5.6) we form the following quadratic

approximation around the current solution:

f(x+ d)− f(x) ≈ f̄x(d) = ∇g(x)Td+
1

2
dT H̄d+ h(x+ d)− h(x), (5.7)

where the Hessian matrix is replaced by a block-diagonal approximation H̄

where

H̄ij =

{
∇2
ijg(x) if π(i) = π(j)

0 otherwise.
(5.8)

By solving (5.7), we obtain the descent direction d∗:

d∗ := argmin
d

f̄x(d). (5.9)

Since H̄ is block-diagonal, problem (5.9) can be decomposed into k indepen-

dent subproblems based on the partition {Sr}kr=1:

dSr = arg min
dSr

{∑
i∈Sr

∇ig(x)di+
1

2
dTSrHSr,SrdSr +hSr(xSr +dSr)

}
:= f (r)

α (dSr),

(5.10)

The subproblem can be solved by any solver, and it does not need to be solved

exactly. In Chapter 6 we will show the theoretical guarantee even when each

subproblem is not solved exactly (for example, each subproblem can be solved

by a fixed number of coordinate descent updates).

74

The descent direction d is the concatenation of dS1 , . . .dSr . Since f(x+

d) might even increase the objective function value f(x), we find the step size

β to ensure the following sufficient decrease condition of the objective function

value:

f(x+ βd)− f(x) ≤ βσ∆, (5.11)

where ∆ = ∇g(x)Td+h(x+d)−h(x), and σ ∈ (0, 1) is a constant. We then

update x← x+ βd. The algorithm is summarized in Algorithm 6.

Algorithm 6: Parallel Proximal Newton Method for solv-
ing (5.6)

Input : The objective function (5.6), initial x0.
Output: The solution x∗.

1 Obtain a disjoint index partition {Sr}kr=1.
2 for t = 0, 1, . . . do
3 Update the diagonal blocks of the Hessian matrix in

parallel.
4 Obtain dSr by solving subproblems (5.10) in parallel.
5 Obtain the step size β using line search.
6 xSr ← xSr + βxSr .

5.3.3 Quality of the Variable Partition

We will show in Section 6.4 that Algorithm 6 converges to the optimal

solution and has a global linear convergence rate. However, it is important to

select a good partition in order to achieve faster convergence speed. Note that

if H̄ = ∇2g(x) in subproblem (5.7), then the quadratic subproblem (5.7) is

the same with the subproblem in proximal Newton method where the exact

Hessian is used. Therefore, to achieve faster convergence, we want to minimize

75

the difference between H̄ and ∇2g(x) = H, and this can be solved by finding a

partition {Sr}kr=1 to minimize error ‖H̄ −H‖2
F =

∑
i,j H

2
ij −

∑k
r=1

∑
i,j∈Sr H

2
ij.

The minimizer can be obtained by maximizing the second term. However, we

also want to have a balanced partition in order to achieve better paralleliza-

tion speedup. Therefore, a common approach is to apply spectral clustering

algorithms [82] on the Hessian matrix H, where the above error is normalized

by the partition sizes.

5.3.4 Application to Kernel Machines

In this section, we apply the above parallel proximal Newton framework

to solve the following composite optimization problem:

arg min
α∈Rn

{
αTQα+

∑
i

gi(αi)
}

:= f(α) s.t. a ≤ α ≤ b, (5.12)

where Q ∈ Rn×n is positive semi-definite and each gi is a univariate convex

function. Note that we can easily handle the box constraint a ≤ α ≤ b by

setting gi(αi) = ∞ if αi /∈ [ai, bi], so we will omit the constraint in most part

of the paper. Since the quadratic term in problem (5.12) is fixed, we do not

need to recompute the Hessian matrix at each iteration (step 3 in Algorithm

6), and we will also show that the line search step (step 5 in Algorithm 6) can

be computed using only O(1) communication time. The resulting algorithm,

called Parallel Block Minimization (PBM), beats state-of-the-art algorithms

for solving kernel machines.

An important application of (5.12) in machine learning is that it is

the dual problem of `2-regularized empirical risk minimization. Given a set of

76

instance-label pairs {xi, yi}ni=1, we consider the following `2-regularized empir-

ical risk minimization problem:

arg min
w

1

2
wTw + C

∑n

i=1
`i(w

TΦ(xi)), (5.13)

where `i is the loss function depending on the label yi, and Φ(·) is the feature

mapping. For example, `i(u) = max(0, 1 − yiu) for SVM with hinge loss,

and `i(u) = log(1 + exp(−yiu)) for regularized logistic regression. The dual

problem of (5.13) can be written as

arg min
α∈Rn

1

2
αTQα+

n∑
i=1

`∗i (−αi), (5.14)

where Q ∈ Rn×n in this case is the kernel matrix with Qij = Φ(xi)
TΦ(xj).

Our proposed approach works in the general setting, but we will discuss in

more detail the applications to kernel SVM, where Q is the kernel matrix and

α is the vector of dual variables. Note that, as in [27], we ignore the bias

term in Eq.(5.13). Indeed, in our experimental results we did not observe

improvement in test accuracy by adding the bias term.

Quadratic Subproblems. When the objective function is (5.12), the

quadratic subproblem (5.10) can be written as

dSr = arg min
∆αSr

{1

2
∆αTSrQSr,Sr∆αSr +

∑
i∈Sr

ḡi(∆αi)
}

:= f (r)
α (∆αSr), (5.15)

where ḡi(∆αi) = gi(αi+∆αi)+(Qα)i∆αi. This subproblem has the same form

with the original kernel SVM problem, so can be solved (approximately) by

any existing method. We use greedy coordinate descent in our implementation.

77

At each iteration the variable with the largest projected gradient is

chosen:

i∗ := argmax
i∈Sr

∣∣Π[ai,bi]

(
αi + ∆αi −∇if

(r)
α (∆αSr)

)
− αi −∆αi

∣∣
= argmax

i∈Sr

∣∣Π[ai,bi]

(
αi + ∆αi − (QSr,Sr∆αSr)i − ḡ′i(∆αi)

)
− αi −∆αi

∣∣
(5.16)

where Π[ai,bi] is the projection to the interval. The selection only requires

O(|Si|) time if QSr,Sr∆αSr is maintained in local memory. Variable ∆αi is

then updated by solving the following one-variable subproblem:

∆αi∗ ← argmin
δ:ai∗≤αi+∆αi+δ≤bi∗

1

2
(∆αSr + δei∗)QSr,Sr(∆αSr + δei∗) + ḡi∗(∆αi∗ + δ)

= argmin
δ:ai∗≤αi+∆αi+δ≤bi∗

1

2
δ2 + (QSr,Sr∆αSr)δ + ḡi∗(∆αi∗ + δ) (5.17)

For kernel SVM, the one-variable subproblem (5.17) has a closed form solution,

while for logistic regression the subproblem can be solved by Newton’s method

(see [88]). The bottleneck of both (5.16) and (5.17) is to compute QSr,Sr∆αSr ,

which can be maintained after each update using O(|Sr|) time.

Communication Cost. There is no communication needed for solving

the subproblems between workers; however, after solving the subproblems and

obtaining d, each worker needs to obtain the updated (Qd)Sr vector for next

iteration. Since each worker only has local dSr , we compute Q:,Sr(dSr) in

each worker, and use a Reduce Scatter collective communication to obtain

updated (Qd)Sr for each worker. The communication cost for the collective

Reduce Scatter operation for an n-dimensional vector requires

78

log(k)Tinitial +
k − 1

k
nTbyte (5.18)

communication time, where Tinitial is the message startup time and Tbyte is the

transmission time per byte (see Section 6.3 of [7]). When n is large, the second

term usually dominates, so we need O(n) communication time and this does

not grow with number of workers.

Communication-efficient Line Search. After obtaining (Qd)Sr for each

worker, we propose two communication efficient line search approaches in the

following. Earlier work on distributed linear SVM solvers usually set a fixed

step size [86, 35], and only recently [47] proposed an efficient line search for

distributed linear SVM by synchronizing primal variables. Our algorithm is

different from [47] since we focus on kernelized problems where the primal

variables cannot be used.

1. Armijo-rule based step size selection. For general gi(·), a com-

monly used line search approach is to adopt the Armijo-rule based step

size selection and try step sizes β ∈ {1, 1
2
, 1

4
, . . . } until β satisfies the

sufficient decrease condition (5.11), and the only cost is to evaluate the

objective function value. For each choice of β, f(α + βd) can be com-

puted as

f(α+βd) = f(α)+
∑
r

{βdTSr(Qα)Sr+
1

2
β2dTSr(Qd)Sr+

∑
i∈Sr

gi(αi+βdi)},

so if each worker has the vector (Qd)Si , we can compute f(α+βd) using

O(n/k) time and O(1) communication cost.

79

2. Optimal step size selection. If each gi is a linear function with

bounded constraint (such as for the kernel SVM case), the optimal step

size can be computed without communication. The optimal step size is

defined by

β∗t := arg min
β
f(α+ βd) s.t. a ≤ α+ βd ≤ b. (5.19)

If
∑

i gi(αi) = pα, then f(α + βd) with respect to β is a univariate

quadratic function, and thus β∗t can be obtained by the following closed

form solution:

β = min(η̄,max(η,−α
TQd+ pTd

dTQd
)), (5.20)

where η̄ := minni=1(bi − αi) and η := maxni=1(ai − αi). This can also be

computed in O(n/k) time and O(1) communication time.

Data Partition. When Q is the kernel matrix, e.g., in kernel SVM, then

the problem is equivalent to finding a good block diagonal approximation for

the kernel matrix. The same problem has been discussed in [30, 77], and they

showed that kmeans algorithm can be used for shift-invariant kernels, and

kernel kmeans (on a subset of samples) algorithm can be used for a general

kernel.

We observe PBM with kmeans partition converges much faster com-

pared to random partition. In Figure 5.1, we test the PBM algortihm on the

kernel SVM problem with Gaussian kernel, and show that the convergence is

80

much faster when the partition is obtained by kmeans clustering. Note that

previous work for parallel linear SVM solvers [47, 35] all use random partition.

The oscillatory behavior of PBM-random in Figure 5.1 was also observed in [47]

for solving linear SVM problems.

The detail of PBM is in Algorithm 7.

Algorithm 7: PBM: Parallel Block Minimization for solv-
ing (5.12)

Input : Initial α0.
Output: The solution α∗.

1 Obtain a disjoint index partition {Sr}kr=1.
2 for t = 0, 1, . . . do
3 Obtain dSr by solving subproblems (6.2) in parallel.
4 Compute Q:,SrdSr in parallel.
5 Use Reduce Scatter to obtain (Qd)Sr in each worker.
6 Obtain the step size β using line search.
7 αSr ← αSr + βdSr and (Qα)Sr ← (Qα)Sr + β(Qd)Sr in

parallel.

Experimental Results We conduct experiments on four large-scale datasets

listed in Table 5.1. We follow the procedure in [91, 30] to transform cifar and

mnist8m into binary classification problems, and Gaussian kernel K(xi,xj) =

Table 5.1: Dataset statistics for Kernel SVM Experiments.
Dataset # training samples # testing samples Number of features C γ

cifar 50,000 10,000 3072 23 2−22

covtype 464,810 116,202 54 25 25

webspam 280,000 70,000 254 23 25

mnist8m 8,000,000 100,000 784 20 2−21

81

e−γ‖xi−xj‖
2

is used in all the comparisons. We follow the parameter settings

in [30], where C and γ are selected by 5-fold cross validation on a grid of pa-

rameters. The experiments are conducted on a parallel platform at the Texas

Advanced Computing Center, where each machine has an Intel E5-2680 CPU

and 256GM memory. We will release our code later.

We first compare our PBM method with the following distributed kernel

SVM training algorithms:

1. P-pack SVM [95]: a parallel Stochastic Gradient Descent (SGD) algo-

rithm for kernel SVM training. We set the pack size r = 100 according

to the original paper.

2. Random Fourier feature with distributed LIBLINEAR: random Fourier

feature [71] has become popular for solving kernel SVM. In a distributed

system, we can compute random features for each sample in parallel,

and then solve the resulting linear SVM problem by distributed dual

coordinate descent [47] implemented in MPI LIBLINEAR.

3. Nyström approximation with distributed LIBLINEAR: We implemented

the ensemble Nyström approximation [45] in a distributed system and

solve the resulting linear SVM problem by MPI LIBLINEAR. The ap-

proach is similar to [57], but they use a MapReduce system and we use

an MPI implementation.

4. PSVM [11]: a parallel kernel SVM solver by in-complete Cholesky fac-

torization and a parallel interior point method. We test the performance

82

of PSVM with the rank suggested by the original paper (n0.5 or n0.6

where n is number of samples).

Comparison with other solvers. We use 32 machines (each with 1 thread)

and the best C, γ for all the solvers. The results in Figure 5.2 (a)-(d) indicate

that our proposed algorithm is much faster than other approaches. We further

test the algorithms with varied number of workers and parameters in Table 5.2.

Note that PSVM usually got lower test accuracy since they approximate the

kernel function by incomplete Cholesky factorization, so we only show the

results in the table. We also compare our algorithm with the state-of-the-art

sequential kernel SVM algorithm DC-SVM [30]. The results in Figure 5.3

shows that PBM is much faster by multiple machines.

Scalability of PBM. For the second experiment we varied the number

of workers from 8 to 64, and plot the scaling behavior of PBM. In Figure 5.2

(e)-(f), we set y-axis to be the relative error defined by (f(αt)−f(α∗))/f(α∗)

whereα∗ is the optimal solution, and x-axis to be the total CPU time expended

which is given by the number of seconds elapsed multiplied by the number of

workers. We plot the convergence curves by setting the # cores=8, 32, 64.

The perfect linear speedup is achieved if the curves overlap. This is indeed the

case for covtype, and the difference is also small for webspam.

Kernel logistic regression. Finally, we implement the PBM algo-

rithm to solve the kernel logistic regression problem. We use greedy coordinate

descent proposed in [40] to solve each subproblem (6.2). The results are also

83

Table 5.2: Comparison on real datasets using 32 machines. The first column
shows that PBM achieves good test accuracy after 1 iteration, and the second
column shows PBM can achieve an accurate solution (with f(α)−f(α∗)

|f(α∗)| < 10−3)
quickly and obtain even better accuracy. The timing for kernel logistic regres-
sion (LR) is much slower because α will always be dense using the logistic
loss.

PBM (first step) PBM (10−3 error) P-packSGD PSVM p = n0.5 PSVM p = n0.6

time(s) acc(%) time(s) acc(%) time(s) acc(%) time(s) acc(%) time(s) acc(%)
webspam (SVM) 16 99.07 360 99.26 1478 98.99 773 75.79 2304 88.68
covtype (SVM) 14 96.05 772 96.13 1349 92.67 286 76.00 7071 81.53

cifar (SVM) 15 85.91 540 89.72 1233 88.31 41 79.89 1474 69.73
mnist8m (SVM) 321 98.94 8112 99.45 2414 98.60 - - - -
webspam (LR) 1679 92.01 2131 99.07 4417 98.96 - - - -

cifar (LR) 471 83.37 758 88.14 2115 87.07 - - - -

presented in Table 5.2, showing that our algorithm is faster than distributed

SGD algorithm. Note that PSVM cannot be directly applied to kernel logistic

regression.

5.4 Summary of the Contribution

We have developed an automatic differentiation software to compute

the gradient and Hessian for matrix functions (as discussed in Section 5.1),

and use the special structure of the Hessian to optimize matrix functions. The

software can be downloaded at https://github.com/pkambadu/AMD. The

paper for distributed divide-and-conquer kernel SVM has been submitted to

a conference.

84

(a) webspam obj (b) webspam accuracy

(c) covtype obj (d) covtype accuracy

Figure 5.1: Comparison of different variances of PBM. PBM-random uses
random partition of data points, which performs the worst. PBM-cluster use
kmeans partitioning and converges much faster than PBM-random. PBM-
localPred further applies a local prediction heuristic on top of PBM-cluster to
get better prediction accuracy in the early stage.

85

(a) webspam, comparison (b) covtype, comparison

(c) cifar, comparison (d) mnist8m, comparison

(e) webspam, scaling (f) covtype, scaling

Figure 5.2: (a)-(d): Comparison with other distributed SVM solvers using 32
workers. Markers for RFF-LIBLINEAR and NYS-LIBLINEAR are obtained
by varying a number of random features and landmark points respectively.
(e)-(f): The objective function of PBM as a function of computation time
(time in seconds × the number of workers), when the number of workers is
varied. Results show that PBM has good scalability.

86

(a) webspam, obj (b) webspam, accuracy

(c) covtype, obj (d) covtype, accuracy

Figure 5.3: Comparison with DC-SVM (a sequential kernel SVM solver).

87

Chapter 6

Theoretical Analysis for In-exact Proximal

Gradient and Newton Methods

We have discussed several techniques to speedup optimization algo-

rithms by exploiting structure of problem, model, and data distribution. In

this chapter, we prove the global convergence and local convergence rate when

applying these techniques. We consider two types of objective functions: (1)

Functions that admit a global error bound (see Definition 10) and (2) Func-

tions that admit a constant nullspace strong convexity (see Definition 12).

These two assumptions cover most machine learning objective functions that

may not be strongly convex (for example, SVM dual problem with a positive

semidefinite kernel matrix, `1-regularized empirical risk minimization problems

in a high-dimensional setting, and many others). We prove the convergence

rate of the techniques proposed in this thesis, including:

• Convergence rate of in-exact proximal Newton method. We

showed in Section 5.1 that the Hessian matrix of empirical risk min-

imization problems and simple matrix function optimization problems

have special structures. In order to exploit the structure, we proposed

a family of proximal Newton methods to solve the problem. At each

88

iteration, we form a quadratic approximation around the current solu-

tion using the Hessian matrix, and the resulting problem can be solved

efficiently by coordinate descent or other optimization algorithms.

Since there is no close form solution of the quadratic subproblems, in

practice we have to apply an iterative solver with a certain stopping

condition, so only an “approximate” solution can be computed at each

outer iteration. Unfortunately, most existing analysis focused on “ex-

act” proximal Newton methods where they assume the subproblems are

solved exactly. In this chapter we prove the following global and local

convergence rate for in-exact proximal Newton methods:

1. If the subproblem solver S has global linear convergence, the prox-

imal Newton method will also have global linear convergence if we

apply S with ≥ 1 iteration for solving each quadratic subproblem.

2. If the subproblem solver S has global linear convergence, and we

apply S with a fixed number of iterations for solving each quadratic

subproblem, then we can obtain an ε-accurate solution using a total

number of O(log(1
ε
)) inner iterations.

3. When the sequence of stopping conditions at each outer iteartion

{ηt} converges to 0, then the proximal Newton method has an

asymptotic super-linear convergence rate in terms of outer itera-

tions.

• Convergence rate of proximal Newton method with active sub-

89

space selection. In Section 5.2, we discussed a general active subspace

selection technique for exploiting model structure. At each proximal

Newton iteration, we partition the solution space into active subspace

and in-active subspace, and then we only search for the optimal solution

within the active subspace. In this section, we show that the in-exact

proximal Newton method with active subspace selection has the same lin-

ear convergence rate with the original in-exact proximal Newton method.

Therefore, we can apply active subspace selection in proximal Newton

methods to speedup the algorithm without changing the convergence

rate.

• Convergence rate of distributed proximal Newton methods. In

Section 5.3, we show a general framework of distributed proximal Newton

methods. Using the analysis in this section we can prove the global linear

convergence for these distributed proximal Newton methods.

In order to show the above theoretical results, we discuss a general

algorithmic framework for in-exact proximal gradient and Newton methods in

Section 6.1. We discuss the global linear convergence in Section 6.2, and local

super-linear convergence in Section 6.3. Finally we will show in Section 6.4

that the in-exact proximal Newton (with or without active subspace selection)

and the distributed proximal Newton methods are special cases of this general

framework, therefore the global convergence rates are guaranteed using our

analysis.

90

6.1 A Unified Algorithmic Framework for Composite
Minimization Problems

We focus on the following composite minimization problem:

argmin
x∈Rd

{
g(x) + h(x)

}
:= f(x), (6.1)

where g(x) is a smooth convex function, and h(x) is convex but not necessarily

differentiable. Most of the machine learning algorithms can be written in this

way. For example, in regularized loss minimization problems, g(x) is the loss

function that measures the quality of the model parameters x based on the

data, and h(x) is the regularization term that measures the model complexity.

We discuss a general class of descent algorithms for minimizing the

composite problem (6.1). We use x to denote the current solution, and x+

to denote the next (outer) iteration. At each outer iteration, we obtain the

descent direction by minimizing the following approximate function:

f̂x,H(d) = ∇g(x)Td+
1

2
dTHd+ h(x+ d)− h(x). (6.2)

This subproblem is assumed to be solved exactly in “exact” proximal gradient

or Newton methods:

d∗ = argmin
d

f̂x,H(d). (6.3)

When H = I, this is equivalent to a proximal gradient operation, and when

H = ∇2g(x) this will become a proximal Newton operation.

However, in many real applications we cannot solve subproblems ex-

actly; therefore the quadratic subproblems f̂x,H(·) are usually solved “approx-

imately” at each outer iteration. We use d̂ to denote the approximate solution

91

of (6.2), and we will define the “quality” of the approximate solution in Sec-

tion 6.1.1.

After computing the direction d̂, we then update the solution by

x+ ← x+ αd̂, (6.4)

where α is computed by finding the largest number in {1, β, β2, . . . } such that

x+ αd̂ satisfies the following sufficient decrease condition:

f(x+)− f(x) ≤ σαγ, where γ = ∇g(x)T d̂+ h(x+ d̂)− h(x), (6.5)

and σ ∈ (0, 1) is a constant. Note that for the asymptotic super-linear conver-

gence we require σ < 0.5.

This framework can be summarized in Algorithm 8.

Algorithm 8: Inexact Proximal Gradient (Newton) Method for
Composite Minimization Problems.

Input : Objective function f , Ht ∈ Rn×n at each iteration,
line search parameters σ ∈ (0, 1

2
), β ∈ (0, 1).

Output: Sequence {xt} that converges to argminx f(x).
1 for t = 0, 1, . . . do

2 Compute an approximate solution d̂ of the subproblem

f̂xt,Ht(d).
3 Choose α to be the largest element of {βj}j=0,1,... satisfying

f(xt + αd̂) ≤ f(xt) + σαγ

where γ := ∇g(x)T d̂+ h(x+ d̂)− h(x).

92

6.1.1 Quality of the approximate solution.

We make the following assumption on the “quality” of the approximate

solution. The first assumption measures the quality of solution by the objective

function, and the second assumption measures the quality by the magnitude

of proximal gradient.

Objective Function Reduction Subproblem Solvers.

Assumption 8. An inexact solver for minimizing f̂x,H(·) achieves an “η-obj

reduction” if the inexact solution d̂ satisfies

E[f̂x,H(d̂)]− f̂x,H(d∗) ≤ η
(
f̂x,H(0)− f̂x,H(d∗)

)
, (6.6)

for some constant η < 1. Note that d∗ is a minimizer of f̂x,H(·).

This assumption requires the subproblem solver to reduce the objective

function by a linear rate, and a larger η indicates a more accurate subprob-

lem solver. Many first order methods have global linear convergence rates,

which means they can achieve linear improvement in objective function using

1 iteration. The constant η can thus be simply controlled by varying number

of iterations of the subproblem solver. For example, [32] uses an increasing

number of iterations, and [74] showed a sub-linear convergence rate by using

this strategy. We will show a super-linear convergence rate if η → 1, and a

global linear convergence rate if η is a constant.

93

Gradient Reduction Subproblem Solvers. Assumption 8 cannot be

easily measured for some subproblem solvers. Therefore, we also discuss an-

other assumption that measures quality of solution by magnitude of proximal

gradient.

We follow the notations used in [50]. For any given function f(x) =

g(x) + h(x), we define

Gf,α(u) =
1

α
(u− proxαh(u− α∇g(u))),

where the prox operator is defined by

proxh(u) = argmin
v

1

2
‖v − u‖2 + h(v).

Similarly, for the quadratic subproblem

f̂x(u) = ĝx(u)+h(u), ĝx(u) := g(x)+∇g(x)T (u−x)+
1

2
(u−x)T∇2g(x)(u−x),

(6.7)

we define

Gf̂x,α
(u) =

1

α
(u− proxαh(u− α∇ĝ(u))).

For simplicity, we define Gf := Gf,1 when the step size is 1.

Assumption 9. An inexact solver for minimizing f̂x(·) achieves an “η-gradient

reduction” if the inexact solution x+ satisfies

‖Gf̂x,
1
L

(x+)‖ ≤ (1− η)‖Gf̂x,
1
L

(x)‖. (6.8)

94

Note that by definition Gf̂x,
1
L

(x) = Gf, 1
L

(x), which is the initial value of

composite gradient in the beginning at each outer iteration. Since Gf̂x,
1
L

(x+)

can usually be computed efficiently, this assumption can be used as a stopping

criteria for the subproblem solver.

6.1.2 Assumption on the objective function.

We show the convergence for two types of objective functions.

Functions with a Global Error Bound. We first describe the following

definition of the global error bound defined in [55, 80, 84]:

Definition 10. The problem f(x) := g(x) + h(x) admits a “global error

bound” if there is a constant κ such that

‖x− PS(x)‖ ≤ κ‖dI(x)‖, (6.9)

where PS(·) is the Euclidean projection to the set S of optimal solutions, and

dI(x) is defined by

dI(x) = argmin
d

f̂x,I(d).

The algorithm satisfies a “global error bound from the beginning” if (6.9) holds

for the level set {x : f(x) ≤ f(x0)}.

Although the above definition is widely used, eq (6.9) is often hard to

verify. Some composite functions that satisfy the global error bounds have

been proved in the literature [80, 84, 62]:

95

Proposition 11. The following composite functions satisfy Definition 10:

• g(·) is strongly convex and h(·) is convex.

• g(x) = g̃(Px) + bTx where P is a constant matrix, g̃ is strongly convex,

and h(x) is an indicator function of a polyhedral set.

Functions with Constant Nullspace Strong Convexity. In addition to

functions with global error bounds, we further consider the following Constant

Nullspace Strong Convexity (CNSC) introduced in [87]. This assumption is

easier to verify and can be naturally applied to empirical risk minimization

problems.

Definition 12. The problem f(x) := g(x)+h(x) admits a Constant Nullspace

Strong Convexity (CNSC) if g(x) is twice differentiable, and there is a constant

vector space T ⊆ Rd such that the Hessian matrix ∇2g(x) satisfies

uT (∇2g(x))u ≥ m‖u‖2 ∀u ∈ T,x ∈ Rd, (6.10)

for some m > 0, and

uT∇2g(x)u = 0 ∀u ∈ T⊥,x ∈ Rd. (6.11)

A function satisfies CNSC from the beginning if (6.10) and (6.11) are satisfied

in the level set {x : f(x) ≤ f(x0)}.

It is easy to verify if a function satisfies CNSC. For example, we list

several important application:

96

Proposition 13. The following composite functions satisfy Definition 12:

• g(·) is strongly convex and h(·) is convex.

• g(·) = g̃(Px) where g̃ is a strongly convex function; h(·) is any convex

function.

The first case is easy to show, and the second case can be shown by

taking the Hessian matrix of g(x):

∇2g(x) = P TDP, where D = ∇2g̃(Px).

If g̃ is strongly convex, then D is positive definite, which implies the CNSC

condition with T⊥ := null(P). Note that the widely-used empirical risk mini-

mization problems have the following form:

argmin
x

n∑
i=1

`i(x
Tai, yi) + h(x),

where each ai is a training data and yi is the corresponding label. This type of

problems clearly satisfies the second case of Proposition 13 if each `i is strongly

convex in the level set. Examples include logistic loss and squared loss.

Other notations and constants:

• x̄: the closest optimal solution to x.

• σ: constant in the line search condition (6.5).

97

• η: constant for inexact solver (Definition 8), η ∈ [0, 1).

• κ: constant for global error bound (Definition 10), κ > 0.

• d∗H : optimal solution of (6.2), d̂H : approximate solution of (6.2). satis-

fies Assumption 8 or 9.

• dI : optimal solution of (6.2) with H = I.

• ‖d‖H =
√
dTHd.

• PT(x): the Euclidean projection of x onto the vector space T ∈ Rd.

• Lg: we assume g(·) is differentiable and ∇g(·) is Lg-Lipchitz continuous.

• E[f(x+)]: the expectation of the objective function at the next iteration.

We allow the subproblem solvers to be randomized algorithms, so f(x+)

can be a random variable.

6.2 Global Linear Convergence Rate for In-exact Prox-
imal Gradient and Newton Methods

We first discuss the global convergence rate for in-exact proximal Gra-

dient and Newton methods (Algorithm 8). We prove the linear convergence

for functions with global error bound in Theorem 15 in Section 6.2.2, and

linear convergence for functions with CNSC in Theorem 16 in Section 6.2.3.

In this section we focus on the subproblem solvers with an η-obj reduction

(Assumption 8). Guarantee when approximate solutions have an η-gradient

reduction will be discussed in Section 6.3.

98

We make an assumption on Ht used at each iteration:

Assumption 14. We consider slightly different assumptions for the matrices

H used in the algorithm.

1. For functions admit global error bound (Definition 10), we assume MI �

H � mI.

2. For functions satisfy CNSC (Definition 12), we assume MI � H, Hu =

0 ∀u ∈ T⊥, and

uTHu ≥ m if u ∈ T.

6.2.1 Lemmas

In order to prove the global convergence rate, we first derive the fol-

lowing lemmas.

Lemma 4. If h(·) is a convex function, then

h(x+ αd)− h(x) ≤ α(h(x+ d)− h(x))

for any α ∈ [0, 1], x,d ∈ Rd.

Proof.

h(x+ αd)− h(x) = h(α(x+ d) + (1− α)x)− h(x)

≤ αh(x+ d) + (1− α)h(x)− h(x) (by convexity of h(·))

= α(h(x+ d)− h(x)).

99

Lemma 5. If the approximate step size d̂ satisfies Assumption 8, and the

objective function satisfy Definition 10 or Definition 12, then the step size α

in Algorithm 8 satisfies

α ≥ α :=
m

Lg
(1− σ)β.

Proof. We first consider functions satisfy Definition 10. Note that in this case,

g(·) may not be twice differentiable.

f(x+)− f(x)

=g(x+)− g(x) + h(x+)− h(x)

≤g(x+)− g(x) + α(h(x+ d̂)− h(x)) (by Lemma 4)

≤∇g(x)T (αd̂) +

∫ 1

0

((
∇g(x+ s(αd̂))−∇g(x)

)T
(αd̂)

)
ds+ α(h(x+ d̂)− h(x))

(6.12)

≤α
(
∇g(x)T d̂+ h(x+ d̂)− h(x)

)
+

∫ 1

0

‖∇g(x+ sαd̂)−∇g(x)‖‖αd̂‖ds

≤αγ +

∫ 1

0

Lg‖sαd̂‖‖αd̂‖ds (by Lg-Lipchitz continuous of ∇g(·))

=αγ +
Lgα

2‖d̂‖2

2
(6.13)

By the definition of “Objective Reduction Subproblem Solvers” in (6.6), we

have

f̂x,H(d̂) ≤ f̂x,H(0) = 0.

Also, f̂x,H(d̂) = γ + 1
2
d̂
T
Hd̂ (from the definition of γ in (6.5)). Therefore,

γ +
1

2
d̂
T
Hd̂ ≤ 0,

100

and since H has lower bounded eigenvalue m (Assumption 14a),

γ ≤ −1

2
d̂
T
Hd̂ ≤ −m

2
‖d̂‖2. (6.14)

Combining (6.13) and (6.14), we have

f(x+)− f(x) ≤ αγ(1− Lgα

m
).

Therefore, the line search condition (6.5) is satisfied for all α ≤ (1− σ)m/Lg.

Since we try step sizes with α = {1, β, β2, . . . }, the step size selected by our

algorithm will be larger than (1− σ)mβ/Lg.

For objective functions that satisfy CNSC (Definition 12), since g(·) is

twice differentiable, the integral in (6.12) can be rewritten as∫ 1

0

((
∇g(x+ s(αd̂))−∇g(x)

)T
(αd̂)

)
ds

=α2

∫ 1

0

sd̂
T
∇2g(xs)d̂ds where xs is some vector in line(x,x+ sαd̂)

≤α2

∫ 1

0

αLg‖PT(d̂)‖2sds

=
α2‖PT(d̂)‖2Lg

2
.

Therefore, eq (6.13) can be re-written as

f(x+)− f(x) ≤ αγ +
Lgα

2‖PT(d̂)‖2

2
.

Also, due to the definition of H in Assumption 14b, eq (6.14) will become

γ ≤ −1

2
d̂
T
Hd̂ ≤ −m

2
‖PT(d̂)‖2.

101

Combining the above two inequalities we get

f(x+)− f(x) ≤ αγ(1− Lgα

m
),

and this proves the theorem for CNSC functions.

Lemma 6. The optimal direction d∗H = argmind f̂x,H(d) satisfies

∇g(x)Td∗H + h(x+ d∗H)− h(x) ≤ −‖d∗H‖2
H .

Any approximate direction d̂H that satisfies Assumption 8 has the following

property:

E[γ] = E[∇g(x)T d̂H + h(x+ d̂H)− h(x)] ≤ −η
2
‖d∗H‖2

H .

Proof. Since d∗H is the optimal solution of f̂x,H(d), we have

∇g(x)Td∗H +
1

2
(d∗H)THd∗H + h(x+ d∗H)− h(x)

≤∇g(x)T (td∗H) +
1

2
(td∗H)TH(td∗H) + h(x+ td∗H)− h(x)

≤t∇g(x)Td∗H +
1

2
t2(d∗H)THd∗H + t(h(x+ d∗H)− h(x)) (by Lemma 4)

Therefore,

(1− t)∇g(x)Td∗H +
1

2
(1− t2)(d∗H)THd∗H + (1− t)(h(x+ d∗H)− h(x)) ≤ 0

∇g(x)Td∗H +
1

2
(1 + t)(d∗H)THd∗H + h(x+ d∗H)− h(x) ≤ 0.

Taking t ↑ 1 we get

∇g(x)Td∗H + h(x+ d∗H)− h(x) ≤ −(d∗H)THd∗H . (6.15)

102

To prove the property for the approximate solution d̂H , by Assump-

tion 8,

E

[
∇g(x)T d̂H +

1

2
d̂
T

HHd̂H + h(x+ d̂H)− h(x)

]
≤η
(
∇g(x)Td∗H +

1

2
(d∗H)THd∗H + h(x+ d∗H)− h(x)

)
≤η
(
− 1

2
(d∗H)THd∗H

)
(by (6.15)).

Therefore,

E[γ] ≤ −η
2
‖d∗H‖2

H −
1

2
d̂
T

HHd̂H ≤ −
η

2
‖d∗H‖2

H .

Lemma 7. If MI � H, the optimal direction d∗H of argmind f̂x,H(d) satisfies

‖d∗H(x)‖ ≥ 1

1 +M
‖dI(x)‖.

Proof. Since d∗H is the optimal solution of f̂x,H(d), by the optimality condition,

0 ∈ ∇g(x) +Hd∗H + ∂h(x+ d∗H). (6.16)

And (6.16) is also the optimality condition of the following function:

p(d) := (∇g(x) +Hd∗H)Td+ h(x+ d).

Therefore, we have

d∗H ∈ argmin
d

(∇g(x) +Hd∗H)Td+ h(x+ d) (6.17)

dI ∈ argmin
d

(∇g(x) + dI)
Td+ h(x+ d). (6.18)

103

Note that (6.18) can be shown by replacing H with I. By substituting dI

into (6.17) and d∗H into (6.18) we have

(∇g(x) +Hd∗H)Td∗H + h(x+ d∗H) ≤(∇g(x) +Hd∗H)TdI + h(x+ dI)

(∇g(x) + dI)
TdI + h(x+ dI) ≤(∇g(x) + dI)

Td∗H + h(x+ d∗H).

Sum the above two inequalities we get

(∇g(x)+Hd∗H)Td∗H+(∇g(x)+dI)
TdI ≤ (∇g(x)+Hd∗H)TdI+(∇g(x)+dI)

Td∗H .

Therefore,

(d∗H)THd∗H − (d∗H)THdI − dTI d∗H + dTI dI ≤ 0

(d∗H)THd∗H − (d∗H)T (H + I)dI + dTI dI ≤ 0∥∥dI − (H + I)

2
d∗H
∥∥2 − (d∗H)T

(H + I

2

)2
d∗H + (d∗H)THd∗H ≤ 0

As a result,

‖dI −
(H + I)

2
d∗H‖2 ≤ 1

4
‖(H + I)d∗H‖2 − (d∗H)THd∗H

‖dI −
(H + I)

2
d∗H‖ ≤

1

2
‖(H + I)d∗H‖

‖dI‖ − ‖
(H + I)

2
d∗H‖ ≤

1

2
‖(H + I)d∗H‖

Since MI � H, we have

‖dI‖ ≤ ‖(H + I)d∗H‖ ≤ (1 +M)‖d∗H‖.

104

Lemma 8. If the objective function satisfies Definition 10 and Ht satisfies

Assumption 14a, or objective function satisfies Definition 12 and Ht satisfies

Assumption 14b, then

E[f(x+)]− f(x) ≤ −σᾱη
2
‖d∗H‖2

H .

Proof.

E[f(x+)]− f(x) ≤ σαγ (line search condition)

≤ σᾱγ (by Lemma 5)

≤ −σᾱη
2
‖d∗H‖2

H (by Lemma 6).

6.2.2 Global Linear Convergence for Functions with Global Error
Bound

Theorem 15. Assume the objective function admits a global error bound from

the beginning (Definition 10), the H matrix used at each iteration satisfies

Assumption 14a, and the subproblem solver has linear improvement in objective

function (Assumption 8). Then the in-exact proximal Newton method has a

global linear convergence rate:

E[f(x+)]− f(x̄) ≤ C

1 + C

(
f(x)− f(x̄)

)
,

where x̄ is an optimal solution and

C =
2Lg
mσᾱ

(
1 + κ2 1 +M

√
η

)
+

1

σᾱη
+
κ2M(1 +M)

mσᾱη
.

105

Proof. By Mean Value Theorem,

f(x+)− f(x̄) = g(x+)− g(x̄) + h(x+)− h(x̄)

= ∇g(ψ)T (x+ − x̄) + h(x+)− h(x̄),

where ψ = tx+ + (1− t)x̄ for some t ∈ [0, 1]. Therefore we have

f(x+)− f(x̄) (6.19)

=

(
∇g(ψ)−∇g(x)

)T
(x+ − x̄) +∇g(x)T (x+ − x̄) + h(x+)− h(x̄)

− 1

2
(x̄− x)TH(x̄− x) +

1

2
(x̄− x)TH(x̄− x)

=

(
∇g(ψ)−∇g(x)

)T
(x+ − x̄)︸ ︷︷ ︸

1©

+

(
∇g(x)T (x+ − x) + h(x+)− h(x)

)
︸ ︷︷ ︸

2©

−
(
∇g(x)T (x̄− x) +

1

2
(x̄− x)TH(x̄− x) + h(x̄)− h(x)

)
︸ ︷︷ ︸

3©

+
1

2
(x̄− x)TH(x̄− x)︸ ︷︷ ︸

4©
(6.20)

Now we want to bound each term in (6.20). To bound the second term, since

x+ = x+ αd̂,

2© = α

(
∇g(x)T (d̂) + h(x+ d̂)− h(x)

)
(by Lemma 4)

≤ ᾱγ (by Lemma 5).

≤ −ηᾱ
2
‖d∗H‖2

H (by Lemma 6)

≤ 0. (6.21)

106

For the third term, since d∗H is the optimal solution of f̂x,H(d), we have

3© ≤ −
(
∇g(x)Td∗H +

1

2
(d∗H)THd∗H + h(x+ d∗H)− h(x)

)
≤ −1

η
E

[
∇g(x)T d̂+

1

2
d̂
T
Hd̂+ h(x+ d̂)− h(x)

]
(by Assumption 8)

≤ −1

η
E[γ] (by H � 0)

≤ 1

ηασ
E
[
f(x)− f(x+)

]
(by eq (6.5))

≤ 1

ηᾱσ
E
[
f(x)− f(x+)

]
(by Lemma 5). (6.22)

For the fourth term,

4© =
1

2
(x̄− x)TH(x̄− x)

≤ M

2
‖x̄− x‖2

≤ κM

2
‖dI(x)‖2 (by the global error bound (Definition 10))

≤ κ2M(1 +M)

2
‖d∗H(x)‖2 (by Lemma 7)

≤ κ2M(1 +M)

2m
‖d∗H(x)‖2

H (since H � mI)

≤ κ2M(1 +M)

mσᾱη
E
[
f(x)− f(x+)

]
(by Lemma 8) (6.23)

Finally, for the first term,

1© = (∇g(ψ)−∇g(x))T (x+ − x̄)

≤ Lg‖x+ − x‖‖x+ − x̄‖ (since ∇g(·) is Lg-Lipchitz continuous)

≤ Lg‖x+ − x‖
(
‖x+ − x‖+ ‖x− x̄‖

)
= Lg‖x+ − x‖2 + Lg‖x+ − x‖‖x− x̄‖. (6.24)

107

Now we bound each term. First,

‖x+ − x‖ = α‖d̂‖ ≤ 1√
m
‖d̂‖H ≤

√
−2γ

m
,

where the last inequality is from γ + 1
2
‖d̂‖2

H = f̂x,H(d̂) ≤ 0. Also, from the

line search condition (6.5),

−γ ≤ f(x)− f(x+)

ασ
≤ f(x)− f(x+)

ᾱσ
, (6.25)

where the last inequality is from Lemma 5. Therefore,

‖x+ − x‖ ≤
√

2

mσᾱ

√
f(x)− f(x+). (6.26)

Finally, we bound ‖x− x̄‖ by

‖x− x̄‖ ≤ κ‖dI(x)‖ (Global error bound)

≤ (1 +M)κ‖d∗H‖ (Lemma 7)

≤ (1 +M)κ√
m

‖d∗H(x)‖H (since H � mI)

≤ (1 +M)κ
√

2√
mσᾱη

√
E
[
f(x)− f(x+)

]
. (by Lemma 8). (6.27)

Combining (6.27), (6.26), and (6.24) we get

1© ≤ 2Lg
mσᾱ

(
1 + κ2 1 +M

√
η

)
E
[
f(x)− f(x+)

]
. (6.28)

By combining (6.28), (6.21), (6.22), (6.23), we have

E
[
f(x+)− f(x̄)

]
≤ CE

[
f(x)− f(x+)

]
,

where

C =
2Lg
mσᾱ

(
1 + κ2 1 +M

√
η

)
+

1

σᾱη
+
κ2M(1 +M)

mσᾱη

108

Finally,

E[f(x+)]− f(x̄) ≤ C(f(x)− E[f(x+)])

= C(f(x)− f(x̄) + f(x̄)− E[f(x+)])

= C(f(x)− f(x̄))− C(E[f(x+)]− f(x̄))

Therefore,

E[f(x+)]− f(x̄) ≤ C

1 + C
(f(x)− f(x̄)).

6.2.3 Global Linear Convergence for Functions with Constant Nullspace
Strong Convexity (CNSC)

To prove the convergence rate, we first state the following important

lemma for CNSC functions.

Lemma 9. If f(x) satisfies CNSC from the beginning (Definition 12) and

H satisfies the condition in Assumption 14b, then for any x ∈ {x : f(x) ≤

f(x0)},

‖PT(x− x̄)‖ ≤ κ̄‖PT(d∗H(x))‖

where x̄ is any optimal solution and κ̄ = M+Lg
m

.

Proof. By definition, d∗H(x) is the solution of the following problem:

d∗H(x) = argmin
d
∇g(x)Td+

1

2
dTHd+ h(x+ d),

109

therefore, it is also the solution of the following problem since they have the

same optimality condition.

d∗H(x) = argmin
d

(∇g(x) +Hd∗H(x))Td+ h(x+ d).

Therefore, for any optimal solution x̄,

(∇g(x)+Hd∗H(x))Td∗H(x)+h(x+d∗H(x)) ≤ (∇g(x)+Hd∗H(x))T (x̄−x)+h(x̄).

(6.29)

Also, since x̄ is an optimal solution of f(·), 0 ∈ ∇g(x̄) + ∂h(x̄), therefore x̄ is

also the solution of the following problem:

x̄ = argmin
x

g(x̄)Tx+ h(x).

So we have

∇g(x̄)T x̄+ h(x̄) ≤ ∇g(x̄)T (x+ d∗H(x)) + h(x+ d∗H(x)). (6.30)

Adding (6.29) and (6.30) together we get

(∇g(x) +Hd∗H(x))Td∗H(x) +∇g(x̄)T x̄

≤(∇g(x) +Hd∗H(x))T (x̄− x) +∇g(x̄)T (x+ d∗H(x))

By rearranging terms, we get

(d∗H(x))TH(d∗H(x)) + (∇g(x)−∇g(x̄))T (x− x̄)

≤(d∗H(x))TH(x̄− x) + (∇g(x̄)−∇g(x))Td∗H(x) (6.31)

110

We first bound the left hand side.

the left hand side ≥ (∇g(x)−∇g(x̄))T (x− x̄)

= (x− x̄)T∇2g(φ)(x− x̄) (by Mean Value Theorem)

≥ m‖PT(x− x̄)‖2 (by Definition 12) (6.32)

where ψ = tx+ (1− t)x̄ for some t ∈ [0, 1]. Also,

the right hand side ≤ (d∗H(x))TH(x̄− x) + (x̄− x)∇2g(ψ)d∗H(x)

≤ (M + Lg)‖PT(d∗H(x))‖‖PT(x̄− x)‖ (6.33)

(by Definition 12 and Assumption 14b).

Combining (6.31), (6.32), and (6.33), we get

‖PT(x− x̄)‖ ≤ M + Lg
m

‖PT(d∗H(x))‖.

Theorem 16. If the objective function satisfies CNSC from the beginning

(Definition 12), the H matrix used at each iteration satisfies Assumption 14b,

and the subproblem solver has linear improvement in objective function (As-

sumption 8). Then the in-exact proximal Newton method has a global linear

convergence rate:

E[f(x+)]− f(x̄) ≤ C

1 + C

(
f(x)− f(x̄)

)
,

where x̄ is an optimal solution of f(·) and

C =
2Lg
mσᾱ

(
1 +

κ̄2

√
η

)
+

1

σᾱη
+

κ̄2M

mσᾱη
.

111

Proof. Follow the poorf of Theorem 15, eq. (6.20) also satisfies for objective

functions with CNSC assumption. We thus need to bound the four terms

1©, 2©, 3©, 4©.

For 2©, 3©, eq (6.21) and (6.22) still hold since we do not use any as-

sumption on H and Global Error Bound.

For 4©, we have

4© =
1

2
(x̄− x)TH(x̄− x)

≤ M

2
‖PT(x̄− x)‖2

≤ κ̄2M

2
‖PT(d∗H(x))‖2 (by Lemma 9).

≤ κ̄2M

2m
‖d∗H(x)‖2

H (by Definition 12).

≤ κ̄2M

mσᾱη

(
f(x)− E[f(x+)]

)
(by Lemma 8). (6.34)

For 1©, we have

1© = (∇g(ψ)−∇g(x))T (x+ − x̄)

= (ψ − x)T∇2g(ψ̄)(x+ − x̄),

where ψ̄ = tψ+(1−t)x for some t ∈ [0, 1] by Mean Value Theorem. Therefore,

1© ≤ Lg‖PT(ψ − x)‖‖PT(x+ − x̄)‖ (by CNSC in Definition 12)

≤ Lg‖PT(x+ − x)‖‖PT(x+ − x̄)‖ (by definition of ψ)

≤ Lg‖PT(x+ − x)‖(‖PT(x+ − x)‖+ ‖PT(x− x̄)‖) (triangular inequality)

≤ Lg‖PT(x+ − x)‖2 + Lg‖PT(x+ − x)‖‖PT(x− x̄)‖. (6.35)

112

We further bound each term. First,

‖PT(x+ − x)‖ = α‖PT(d̂)| ≤ 1√
m
‖d̂‖H ≤

√
−2γ

m
.

And thus, by (6.25),

‖PT(x+ − x)‖ ≤
√

2

mσᾱ

√
f(x)− f(x+). (6.36)

Also follow the derivation in (6.27),

‖PT(x− x̄)‖ ≤ κ̄‖PT(d∗H)‖ ≤
√
κ̄
√
m‖d∗H‖H ≤

κ̄
√

2√
mσᾱη

√
f(x)− E[f(x+)].

(6.37)

Combining (6.35), (6.36), (6.37), we get

1© ≤ 2Lg
mσᾱ

(1 +
κ̄2

√
η

)
(
f(x)− E[f(x+)]

)
. (6.38)

Combining (6.38), (6.21), (6.22) and (6.34), we get

E[f(x+)]− f(x̄) ≤ C(f(x)− E[f(x+)]),

where

C =
2Lg
mσᾱ

(
1 +

κ̄2

√
η

)
+

1

σᾱη
+

κ̄2M

mσᾱη

Following the last part of the proof of Theorem 15, we can prove this theorem.

6.3 Local Super-linear Convergence Rate for In-exact
Proximal Gradient and Newton Methods

To show the asymptotic convergence rate, we focus on the functions

that satisfy the CNSC assumption (Definition 12), and set the Ht = ∇2g(xt)

113

at each iteration. Therefore, we will simplify the notation of d̂H ,d
∗
H by d̂,d∗

respectively. We need the following assumption for proving the super linear

asymptotic convergence rate:

Assumption 17. ∇2g(·) is L2-Lipchitz continuous:

‖∇2g(x)−∇2g(y)‖2 ≤ L2‖x− y‖2.

6.3.1 Asymptotic Convergence Rate with Objective Function Re-
duction Subproblem Solvers

In this section we show the asymptotic convergence rate when the sub-

problem solver satisfies Assumption 8, which means the inner solver improves

the objective function of the quadratic subproblem by a certain rate. To prove

the convergence rate, we first bound the reduction of objective function f(·)

by the following lemmas:

Lemma 10. Any approximate direction d̂H uses an “objective function reduc-

tion subproblem solver” (Assumption 8) has the following property:

E[γ] = E[∇g(x)T d̂+ h(x+ d̂)− h(x)] ≤ −1

η
E[‖d̂‖2

H].

114

Proof. By the definition of objective function linear reduction in Assumption 8:

E
[
∇g(x)T d̂+

1

2
d̂
T
Hd̂+ h(x+ d̂)− h(x)

]
≤η
(
∇g(x)T (td̂) +

1

2
(td̂)TH(td̂) + h(x+ td̂)− h(x)

)
=ηt∇g(x)T d̂+

1

2
ηt2d̂

T
Hd̂+ ηt

(
h(x+ d̂)− h(x)

)
(by Lemma 4).

Therefore,

(1− ηt)E
[
∇g(x)T d̂

]
+

1

2
(1− ηt2)E

[
d̂
T
Hd̂
]

+ (1− ηt)E
[
h(x+ d̂)− h(x)

]
≤ 0

E
[
∇g(x)T d̂

]
+

1

2

1− ηt2

1− ηt
E
[
d̂
T
Hd̂
]

+ E
[
h(x+ d̂)− h(x)

]
≤ 0

(6.39)

Taking t ↑ 1
η

, using L’Hospital’s rule, we have

lim
t↑ 1
η

1− ηt2

1− ηt
= lim

t↑ 1
η

−2ηt

−η
=

2

η
(6.40)

Combining (6.39) and (6.40) we get

E[γ] = E
[
∇g(x)T d̂+ h(x+ d̂)− h(x)

]
≤ −1

η
E
[
d̂
T
Hd̂
]
.

We then proof the step size will always be 1 when x is close enough to

the optimal solution. The following proof is similar to Proposition 5 in [32].

Lemma 11. Assume the objective function satisfies CNSC (Definition 12)

from the beginning, the subproblem solver reduces objective function (Assump-

tion 8), and σ < 0.5 in the line search condition (6.5). Then the step size

α = 1 satisfies the sufficient decrease condition (6.5) if x is close enough to

an optimal solution x̄.

115

Proof. We define g̃(t) = g(x+td̂) and by chain rule we have g̃′′(t) = d̂
T
∇g(x+

td̂)d̂. Thus we have

|g̃′′(t)− g̃′′(0)| = |d̂
T

(∇2g(x+ td̂)−∇2g(x))d̂|

≤ ‖∇2g(x+ td̂)−∇2g(x)‖‖PT(d̂)‖2

≤ L2‖PT(d̂)‖3.

Therefore,

g̃′′(t) ≤ g̃′′(0) + tL2‖PT(d̂)‖3

= d̂
T
∇2g(x)d̂+ tL2‖PT(d̂)‖3.

Integrate both side twice we get

g̃(t) ≤ g̃(0) + td̂
T
∇g(x) +

1

2
t2d̂

T
∇2g(x)d̂+

1

6
t3L2‖PT(d̂)‖3.

Taking t = 1 we get

g(x+ d̂) ≤ g(x) + d̂
T
∇g(x) +

1

2
d̂
T
∇2g(x)d̂+

1

6
L2‖d̂‖3.

As a result,

f(x+ d̂) = g(x+ d̂) + h(x+ d̂)

= f(x) +∇g(x)T d̂+ h(x+ d̂)− h(x) +
1

2
d̂
T
∇2g(x)d̂+

1

6
L2‖PT(d̂)‖3

≤ f(x) + γ +
1

2
‖d̂‖2

H +
1

6m
L2‖d̂‖2

H‖PT(d̂)‖ (by Assumption 12)

≤ f(x) + γ − 1

2η
γ +

L2

6mη
‖PT(d̂)‖γ (by Lemma 10)

= f(x) +
(
1− 1

2η
− L2‖PT(d̂)‖

6mη

)
γ.

116

Since η < 1, ‖d̂‖ → 0, and σ < 0.5, for x is close enough to x∗ we have

f(x+ d̂)− f(x) ≤ σγ.

Finally, we prove the following theorem showing the asymptotic con-

vergence speed of the in-exact proximal Newton method.

Theorem 18. If the objective function satisfies CNSC from the beginning

(Definition 12), the subproblem solver satisfies Assumption 8, and Ht = ∇2g(xt)

at each iteration of Algorithm 8, then we have

E[f(x+)]− f(x∗) ≤ (1− η)
(
f(x)− f(x̄)

)
+ C

(
f(x)− f(x̄)

) 3
2 ,

when x is close enough to an optimal solution x̄, where

C =
L2

2
(

1

mη
)

3
2

(
1 + η(

κ̄2

σ
)

3
2

)
.

Proof. We bound the improvement made at each step. By mean value theorem,

there exists a ψ ∈ line(x,x+) such that

f(x+)− f(x) = g(x+)− g(x) + h(x+)− h(x)

= ∇g(x)T (x+ − x) +
1

2
(x+ − x)T∇2g(ψ)(x+ − x) + h(x+)− h(x)

= ∇g(x)T (x+ − x) +
1

2
(x+ − x)T∇2g(x)(x+ − x) + h(x+)− h(x)

+
1

2
(x+ − x)T

(
∇2g(ψ)−∇2g(x)

)
(x+ − x).

117

By Lemma 11, α = 1, so x+ = x+ d̂. Since ∇2g(x) is L2-Lipchitz continuous

(Assumption 17),

f(x+)− f(x) ≤ f̂x,H(d̂) +
1

2
L2‖PT(x+ − x)‖3 (6.41)

By mean value theory, there exists a ψ̄ ∈ line(x, x̄) such that

g(x̄) = g(x) +∇g(x)T (x̄− x) +
1

2
(x̄− x)T∇2g(ψ̄)(x̄− x).

We define H̄ = ∇2g(ψ̄), d̄ = x̄− x, d∗ = argmind f̂x,H(d), and H = ∇2g(x).

Then we have

f̂x,H(d∗) ≤ f̂x,H(d̄)

= ∇g(x)T d̄+
1

2
d̄
T
Hd̄+ h(x+ d̄)− h(x)

= ∇g(x)T d̄+
1

2
d̄
T
H̄d̄+ h(x+ d̄)− h(x) +

1

2
d̄
T

(H − H̄)d̄

≤ f̂x,H̄(d̄) +
1

2
L2‖PT(d̄)‖3

= f(x̄)− f(x) +
1

2
L2‖PT(d̄)‖3. (6.42)

From the definition of d̂, f̂x,H(d̂) ≤ ηf̂x,H(d∗). Combining this with (6.41)

and (6.42) we get

f(x+)−f(x) ≤ η
(
f(x̄)−f(x)

)
+
ηL2

2
‖PT(x−x̄)‖3+

L2

2
‖PT(x+−x)‖3. (6.43)

Now we further bound each term in (6.43). First,

‖PT(x− x̄)‖2 ≤ κ̄2‖PT(d∗H(x))‖2 (by Lemma 9)

≤ κ̄2

m
‖PT(d∗H(x))‖2

H (by CNSC assumption)

≤ κ̄2

mση
(f(x)− f(x+)) (by Lemma 8 and Lemma 11).

(6.44)

118

Also,

‖PT(x+ − x)‖ = ‖PT(d̂)‖ ≤ 1√
m
‖d̂‖H ≤

√
−γ
mη

, (6.45)

where the last inequality is from Lemma 10. Combining (6.43), (6.44), (6.45)

we have

f(x+)−f(x) ≤ η
(
f(x̄)−f(x)

)
+
ηL2

2
(
κ̄2

mση
)

3
2

(
f(x)−f(x+)

) 3
2 +

L2

2
(

1

mη
)

3
2

(
F (x)−F (x+)

) 3
2 .

Adding f(x)− f(x̄) to both sides and using the fact that

f(x)− f(x+) ≤ f(x)− f(x̄),

we get

f(x+)− f(x̄) ≤ (1− η)
(
f(x)− f(x̄)

)
+ C

(
f(x)− f(x̄)

) 3
2 ,

where

C =
L2

2
(

1

mη
)

3
2

(
1 + η(

κ̄2

σ
)

3
2

)
.

Based on Theorem 18, we know the convergence rate of the algorithm

with different setting of ηt. For example, we can show the super-linear conver-

gence when limt→∞ ηt = 1.

Corollary 19. Under the same assumption of Theorem 18 and if limt→∞ ηt =

1, then f(x) converges super-linearly to f(x̄).

119

Proof. To show the super linear convergence rate, we compute

lim
t→∞

f(xt+1)− f(x̄)

f(xt)− f(x̄)

= lim
t→∞

(1− η)(f(xt)− f(x̄)) + C(f(xt)− f(x̄))
3
2

f(xt)− f(x̄)

= lim
t→∞

(1− η) + C(f(xt)− f(x̄))
1
2 .

Therefore, when (1− η)→ 0,

lim
t→∞

f(xt+1)− f(x̄)

f(xt)− f(x̄)
= 0.

6.3.2 Asymptotic Convergence Rate and Global Convergence Rate
with Gradient Reduction Subproblem Solvers

Next we discuss the convergence rate if each subproblem solver satisfies

Assumption 9, which means they reduce the magnitude of composite gradient

of the quadratic subproblem by a certain ratio (ηt). In this case, instead of

proving the convergence in terms of objective function value {f(xt)}, we can

show the convergence of {xt}, which is more standard in the literature for

proving the quadratic convergence of second order methods. Note that the

following analysis is similar to [50], but they only consider the case when g(·)

is strongly convex, which is not true for many machine learning problems.

Instead, we consider a more general CNSC objective functions which may not

be strongly convex.

Note that [87] showed that if x is decomposed into z + y, where z =

PT(x) and y = PT⊥(x), then the proximal Newton operation can be rewritten

120

as

zt+1 = argmin
z∈T

h(z + ŷ(z)) +∇g(xt)T (z − zt) +
1

2
(z − zt)T∇2g(xt)(z − zt),

where

ŷ(z) = argmin
y∈T⊥

h(z + y),

so the optimality is actually determined by PT(xt) at the t-th iteration. More-

over, this also implies the convergence in the objective function by the following

lemma proved in [87] for CNSC functions:

Lemma 12. If g(·) is Lg-Lipschitz continuous and h(·) is Lh-Lipschitz con-

tinuous, then for proximal Newton method

f(x+)− f(x) ≤ max(Lg, Lh)‖PT(x− x̄)‖.

Therefore, for CNSC functions, instead of showing the convergence rate

of ‖x−x̄‖, we show the convergence of ‖PT(x−x̄)‖. We first show the following

lemmas. Note that the notations Gf (·) was defined in Section 6.1.1.

Lemma 13. Given a composite function f(u) = g(u) + h(u) that satisfies

CNSC from the beginning (Definition 12), and f̂x defined in (6.7), then

‖Gf (u)−Gf̂x
(u)‖ ≤ L2

2
‖PT(x− u)‖2.

Note that f̂x := f̂x,∇2g(x).

121

Proof.

‖Gf (u)−Gf̂x
(u)‖ ≤ ‖ proxh(u−∇g(u))− proxh(u−∇ĝ(u))‖

≤ ‖∇g(u)−∇ĝ(u)‖ (by non-expensive of prox(·))

= ‖∇g(u)−∇g(x)−∇2g(x)(u− x)‖ (by definition of ĝ(x))

≤ L2

2
‖PT(x− u)‖2

Lemma 14. If f(·) satisfies CNSC from the beginning (Definition 12), then

for any α ≤ 1
Lg

we have

(u− v)T (Gf,α(u)−Gf,α(v)) ≥ m

2
‖PT(u− v)‖2,

‖Gf, 1
L

(u)−Gf, 1
L

(v)‖ ≥ m

2
‖PT(u− v)‖.

Proof. Using the Moreau decomposition,

x = proxh(x) + proxh∗(x) ∀x,

where h∗ is the conjugate of h. Therefore,

Gf,α(u)−Gf,α(v) = ∇g(u)−∇g(v)+
1

α
(prox(αh)∗(u−α∇g(u))−prox(αh)∗(v−∇g(v))).

Let

w = prox(αh)∗(u− α∇g(u))− prox(αh)∗(v − α∇g(v)) and

d = (u− v)− α(∇g(u)−∇g(v))

W =
wwT

wTd
.

122

Then we have

Gf,α(u)−Gf,α(v) = ∇g(u)−∇g(v) +
1

α
Wd.

Multiply both sides by (u− v) we get

(u− v)T (Gf,α(u)−Gf,α(v))

=(u− v)T (∇g(u)−∇g(v)) +
1

α
(u− v)TW

(
(u− v)− α(∇g(u)−∇g(v))

)
.

Let H(θ) = ∇2g(x+ θ(y − x)) for θ ∈ [0, 1], we have

(u− v)T (Gf,α(u)−Gf,α(v))

=

∫ 1

0

(u− v)TH(θ)(u− v)dθ +

∫ 1

0

(u− v)T
W

α
(u− v)dθ −

∫ 1

0

(u− v)WH(θ)(u− v)dθ

=

∫ 1

0

(u− v)T (H(θ)− 1

2
(WH(θ) +H(θ)W) +

1

α
W)(u− v)dθ.

Since

αH(θ)2 +
1

α
W 2 ≥ WH(θ) +H(θ)W,

we have

(u−v)T (Gf,α(u)−Gf,α(v)) =

∫ 1

0

(u−v)T
(
H(θ)−α

2
H(θ)2+

1

α
(W−1

2
W 2)

)
(u−v)dθ.

Since prox(·) is non-expensive, ‖w‖2 ≤ wTd, so

W =
wwT

wTd
=
‖w‖2

wTd

wwT

‖w‖2
� I

So

(u− v)T (Gf,α(u)−Gf,α(v)) ≥
∫ 1

0

(u− v)T (H(θ)− α

2
H(θ)2)(u− v)dθ

≥ m

2
‖PT(u− v)‖2 (since α ≤ 1

L
and H � LgI).

123

We show the following theorem characterize the convergence rate of

in-exact proximal Newton method.

Theorem 20. If the objective function satisfies CNSC from the beginning

(Definition 12), the subproblem solver satisfies (Assumption 9), and at each

iteration Ht = ∇2g(xt), then

‖PT(x+ − x̄)‖ ≤ L2

mL
‖PT(x− x̄)‖2 +

4(1− η)

m2
‖PT(x− x̄)‖,

where x̄ is an optimal solution of f .

Proof.

‖PT(x+ − x̄)‖ ≤ 2

m
‖Gf̂ , 1

L
(x+)−Gf̂ , 1

L
(x̄)‖ (Lemma 14)

≤ 2

m

(
‖Gf̂ , 1

L
(x+)‖+ ‖Gf̂ , 1

L
(x̄)‖

)
(triangular inequality)

≤ 2

m

(
(1− η)‖Gf, 1

L
(x)‖+ ‖Gf̂ , 1

L
(x̄)‖

)
(by Assumption 9)

≤ 2

m

(
2

m
(1− η)‖PT(x− x̄)‖+ ‖Gf̂ , 1

L
(x̄)‖

)
(Lemma 14)

≤ 4(1− η)

m2
‖PT(x− x̄)‖+

2

m

(
‖Gf, 1

L
(x̄)‖+

L2

2L
‖PT(x− x̄)‖2

)
(by Lemma 13)

≤ 4(1− η)

m2
‖PT(x− x̄)‖+

L2

mL
‖PT(x− x̄)‖2.

Based on Theorem 20, we know the convergence rate of the algorithm

with different setting of ηt. For example, we can show the super-linear conver-

gence when limt→∞ ηt = 1.

124

Corollary 21. Under the same assumption of Theorem 20 and if limt→∞ ηt =

1, then ‖PT(x− x̄)‖ converges super-linearly to 0.

Furthermore, if η is controlled properly, we can have a quadratic con-

vergence rate:

Corollary 22. Under the same assumption of Theorem 20 and if 1 − ηt ≤

θGf (xt) for each t with a constant θ, then ‖PT(x− x̄)‖ converges quadratically

to 0.

Proof. Since g(·) is Lg-Lipschitz continuous, we have

Gf (xt) ≤ Lg‖PT(xt − x̄)‖.

Combining with Theorem 20 we have

‖PT(x+ − x̄)‖ ≤ L2

mLg
‖PT(x− x̄)‖2 +

4θLg
m2
‖PT(x− x̄)‖2,

which implies ‖PT(x− x̄)‖ converges to 0 quadratically.

6.3.3 Subproblem solvers that can be used

Any optimization algorithm can be used to solve the subproblem f̂x,H(·)

approximately in Algorithm 8. Based on Theorem 15, we can easily derive the

following Corollary:

Corollary 23. If a subproblem solver S used in Algorithm 4 has a global

linear convergence rate in terms of objective function, then Algorithm 4 also

has a global linear convergence rate if each subproblem is solved by S with ≥ 1

125

iterations. Moreover, if each subproblem is solved by S with a fixed number of

iterations, then the total number of inner iterations needed for obtaining an

ε-accurate solution is O(log(1
ε
)).

We list some commonly used subproblem solvers with global linear

convergence rate:

1. Randomized Coordinate Descent: [62] proved the convergence of ran-

domized coordinate descent under the global error bound assumption.

2. Cyclic Coordinate Descent: [80] proved the convergence of randomized

coordinate descent under the global error bound assumption.

3. Greedy Coordinate Descent: [80] proved the convergence of greedy coor-

dinate descent (with Gauss-Southwell rule) under the global error bound

assumption.

4. Proximal Gradient Descent: [87] showed a global linear convergence rate

for proximal gradient descent when h(·) satisfies certain condition (for

example, h(x) is lasso or group-lasso regularization).

6.4 Applications

6.4.1 Convergence Rate of In-exact Proximal Gradient Descent
and Newton Method

When Ht = ∇2g(xt) at each iteration, Algorithm 8 is the proximal

Newton method used in many applications, including sparse inverse covariance

estimation [32] and `1-regularized logistic regression [89].

126

In sparse inverse covariance estimation, the objective function for the

`1-regularized maximum likelihood estimator can be written as

argmin
X�0

− log det(X) + trace(SX) + λ
∑
i,j

|Xij|.

It has been shown in [32] that the smooth part is strongly convex in the level

set ({X : f(X) ≤ f(X0)}), so it satisfies both global error bound (Defini-

tion 10) and CNSC (Definition 12) from the beginning. The proximal Newton

method has been proposed for solving this sparse inverse covariance estima-

tion problem [32], and the algorithm is implemented in the QUIC package.

In the implementation, each subproblem is solved with an increasing number

of coordinate descent operations. This has not been justified in the previ-

ous theoretical analysis [32, 50], but we here we provide the analysis of the

convergence rate.

Our framework also provides the convergence guarantee when applying

inexact proximal Newton methods to regularized loss minimization problems:

argmin
x

n∑
i=1

`i(x
Tai) + h(x), (6.46)

where {ai}ni=1 are training samples, `i measures the training error defined on

each sample, and h(x) is the regularization to minimize the model complexity.

Since g(x) =
∑n

i=1 `i(x
Tai), the Hessian matrix can be written as

∇2g(x) = ADAT ,

where A = [a1, a2, . . . ,an], and D is a diagonal matrix with

Dii = `′′i (u) |u=xTai .

127

Therefore, if `i is strongly convex and nonzero in the level set, the function

g(x) will satisfy CNSC condition from the beginning (Definition 12) where

T = col(A).

Therefore, we show the linear convergence when applying in-exact prox-

imal Newton method to any regularized loss minimization problems. For ex-

ample, the GLMNET [89] algorithm for solving the `1-regularized logistic re-

gression problem falls into our framework.

6.4.2 Global linear convergence for in-exact Proximal Gradient De-
scent or Newton Method with Active Subspace Selection

As discussed in Section 5.2, an active subspace selection technique can

be used to speed up proximal Newton methods when the regularization term

h(·) is a decomposable norm. At each iteration, the space is partitioned into

the active subspace Sfree and the complementary subspace Sfixed by eq (4.25):

Sfiexed := [T(x)]⊥ ∩ [T(prox(x−∇g(x)))]⊥ and Sfree = S⊥fixed,

where T(x) is the support of x. and we solve the quadratic subproblem only

within the active subspace:

d̃ = argmin
d∈Sfree

{
∇g(x)Td+

1

2
dT∇2g(x)d+ h(x+ d)− h(x)

}
:= f̂x,∇2g(x)(d).

(6.47)

The following theory shows that d̃ is equivalent to the solution of f̂x,H(d) with

a specific H matrix:

Theorem 24. If d∗ is the optimal solution of (6.47), then it is also the optimal

128

solution of f̂x,H(d) with H = R(RT∇2g(x)R)RT + R⊥(R⊥)T , where R =

[r1, . . . , rq] are the orthogonal basis for Sfree.

Combining this theorem with Theorem 15 and 16, we can conclude

that (in-exact) proximal Newton method with active subspace selection has a

global linear convergence rate.

6.4.3 Global linear convergence for Parallel Algorithms

The framework discussed in Algorithm 8 can also be applied to dis-

tributed proximal-Newton typed algorithms described in Section 5.3. This

algorithm has been applied to solve the dual problem of linear SVM/logistic

regression in [86, 35, 47], and in Section 5.3 we generalized it to any composite

function, and showed it is effective for solving kernel machines.

We revisit the proposed distributed proximal-Newton framework again.

In this framework, the variables are first partitioned into k disjoint index sets

S1 ∪ S2 ∪ · · · ∪ Sk = {1, . . . , d} and Sp ∩ Sq = φ ∀p 6= q,

and we use π(i) to denote the cluster indicator that i belongs to. Each worker

r is associated with a subset of variables xSr := {xi | i ∈ Sr}.

At each synchronization point, a worker obtain the latest global vector

xt, and then runs coordinate descent (or other algorithms) to update the local

variables dSr while keep other variables fixed. These algorithms are equivalent

to Algorithm 8 with Ht set by

H =

{
∇2g(x)ij if π(i) = π(j)

0 otherwise.

129

Moreover, since the subproblems are usually solved by coordinate descent,

using our analysis we can prove the global linear convergence rate of these

parallel solvers. For example [86, 35, 47] focus on the dual problem of the

`2-regularized empirical risk minimization, and the parallel proximal Newton

method discussed in Section 5.3 also has a global linear convergence rate.

6.4.4 Summary of the Contribution

In this chapter we provide a comprehensive theoretical study of in-exact

proximal gradient and Newton methods. The work is under preparation for

submitting to an optimization journal.

130

Bibliography

[1] Michael Berry, Murray Browne, Amy Langville, Paul Pauca, and Robert

Plemmon. Algorithms and applications for approximate nonnegative ma-

trix factorization. Computational Statistics and Data Analysis, 2006.

[2] Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, Bel-

mont, MA 02178-9998, second edition, 1999.

[3] A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers

with online and active learning. JMLR, 6:1579–1619, 2005.

[4] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge Univer-

sity Press, 7th printing edition, 2009.

[5] S. P. Boyd, N. Parikh, E. Peleato, and J. Eckstein. Distributed optimiza-

tion and statistical learning via alternating direction method of multipli-

ers. Foundations and Trends in Machine Learning, 3(1):1–122, 2011.

[6] E. Candes and B. Recht. Simple bounds for recovering low-complexity

models. Mathemetical Programming, 2012.

[7] E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn. Collec-

tive communication: Theory, practice, and experience. Concurrency and

Computation: Practice and Experience, 19:1749–1783, 2007.

131

[8] V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky. Latent variable

graphical model selection via convex optimization. The Annals of Statis-

tics, 2012.

[9] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky. Rank-

sparsity incoherence for matrix decomposition. Siam J. Optim, 21(2):572–

596, 2011.

[10] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support

vector machines. ACM Transactions on Intelligent Systems and Technol-

ogy, 2:27:1–27:27, 2011.

[11] Edward Chang, Kaihua Zhu, Hao Wang, Hongjie Bai, Jian Li, Zhihuan

Qiu, and Hang Cui. Parallelizing support vector machines on distributed

computers. In NIPS, pages 257–264. 2008.

[12] A. Cichocki and A-H. Phan. Fast local algorithms for large scale non-

negative matrix and tensor factorizations. IEICE Transaction on Funda-

mentals, E92-A(3):708–721, 2009.

[13] M. Collins, S. Dasgupta, and R. E. Schapire. A generalization of principal

component analysis to the exponential family. In NIPS, 2012.

[14] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,

20:273–297, 1995.

132

[15] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigen-

vectors: A multilevel approach. IEEE Transactions on Pattern Analysis

and Machine Intelligence (TPAMI), 29:11:1944–1957, 2007.

[16] N. Djuric, L. Lan, S. Vucetic, and Z. Wang. Budgetedsvm: A toolbox for

scalable svm approximations. JMLR, 14:3813–3817, 2013.

[17] P. Drineas and M. W. Mahoney. On the Nyström method for approximat-

ing a Gram matrix for improved kernel-based learning. JMLR, 6:2153–

2175, 2005.

[18] S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel

representations. JMLR, 2:243–264, 2001.

[19] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval

Research Logistics Quarterly, 3:95–110, 1956.

[20] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordi-

nate optimization. Annals of Applied Statistics, 1(2):302–332, 2007.

[21] Jerome H. Friedman, Trevor Hastie, and Robert Tibshirani. Regulariza-

tion paths for generalized linear models via coordinate descent. Journal

of Statistical Software, 33(1):1–22, 2010.

[22] Radha Ghitta, Rong Jin, Timothy C. Havens, and Anil K. Jain. Approx-

imate kernel k-means: Solution to large scale kernel clustering. In KDD,

2011.

133

[23] Edward F. Gonzales and Yin Zhang. Accelerating the Lee-Seung algo-

rithm for non-negative matrix factorization. Technical report, Depart-

ment of Computational and Applied Mathematics, Rice University, 2005.

[24] H. P. Graf, E. Cosatto, L. Bottou, I. Dundanovic, and V. Vapnik. Parallel

support vector machines: The cascade SVM. In NIPS, 2005.

[25] Patrik O. Hoyer. Non-negative sparse coding. In Proceedings of IEEE

Workshop on Neural Networks for Signal Processing, pages 557–565, 2002.

[26] C.-J. Hsieh and I. S. Dhillon. Fast coordinate descent methods with

variable selection for non-negative matrix factorization. In KDD, 2011.

[27] C.-J. Hsieh, I. S. Dhillon, P. Ravikumar, and A. Banerjee. A divide-

and-conquer method for sparse inverse covariance estimation. In NIPS,

2012.

[28] C.-J. Hsieh, I. S. Dhillon, P. Ravikumar, S. Becker, and P. A. Olsen.

Quic & Dirty: A quadratic approximation approach for dirty statistical

models. In NIPS, 2014.

[29] C.-J. Hsieh and P. A. Olsen. Nuclear norm minimization via active sub-

space selection. In ICML, 2014.

[30] C.-J. Hsieh, S. Si, and I. S. Dhillon. A divide-and-conquer solver for kernel

support vector machines. In ICML, 2014.

134

[31] C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, and P. Ravikumar. Sparse inverse

covariance matrix estimation using quadratic approximation. In NIPS,

2011.

[32] C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, and P. Ravikumar. QUIC:

Quadratic approximation for sparse inverse covariance estimation. JMLR,

2014.

[33] C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, P. Ravikumar, and R. A. Poldrack.

Big & Quic: Sparse inverse covariance estimation for a million variables.

In NIPS, 2013.

[34] D. Hsu, S. M. Kakade, and T. Zhang. Robust matrix decomposition with

sparse corruptions. IEEE Trans. Inform. Theory, 57:7221–7234, 2011.

[35] Martin Jaggi, Virginia Smith, Martin Takáč, Jonathan Terhorst, Thomas

Hofmann, and Michael I Jordan. Communication-efficient distributed

dual coordinate ascent. In NIPS. 2014.

[36] A. Jalali, P. Ravikumar, S. Sanghavi, and C. Ruan. A dirty model for

multi-task learning. In NIPS, 2010.

[37] T. Joachims. Making large-scale SVM learning practical. In Advances in

Kernel Methods – Support Vector Learning, pages 169–184, 1998.

[38] G. Karypis and V. Kumar. A fast and high quality multilevel scheme

for partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392,

1999.

135

[39] S. S. Keerthi, O. Chapelle, and D. DeCoste. Building support vector

machines with reduced classifier complexity. JMLR, 7:1493–1515, 2006.

[40] S. Sathiya Keerthi, Kaibo Duan, Shirish Shevade, and Aun Neow Poo.

A fast dual algorithm for kernel logistic regression. Machine Learning,

61:151–165, 2005.

[41] S. Sathiya Keerthi, Shirish Krishnaj Shevade, Chiranjib Bhattacharyya,

and Karuturi Radha Krishna Murthy. Improvements to Platt’s SMO

algorithm for SVM classifier design. Neural Computation, 13:637–649,

2001.

[42] D. Kim, S. Sra, and I. S. Dhillon. Fast Newton-type methods for the

least squares nonnegative matrix appoximation problem. Proceedings of

the Sixth SIAM International Conference on Data Mining, pages 343–354,

2007.

[43] Jingu Kim and Haesun Park. Non-negative matrix factorization based

on alternating non-negativity constrained least squares and active set

method. SIAM Journal on Matrix Analysis and Applications, 30(2):713–

730, 2008.

[44] Jingu Kim and Haesun Park. Toward faster nonnegative matrix factor-

ization: A new algorithm and comparisons. Proceedings of the IEEE

International Conference on Data Mining, pages 353–362, 2008.

136

[45] S. Kumar, M. Mohri, and A. Talwalkar. Ensemble nyström method. In

NIPS, 2009.

[46] Q. V. Le, T. Sarlos, and A. J. Smola. Fastfood – approximating kernel

expansions in loglinear time. In ICML, 2013.

[47] C.-P. Lee and D. Roth. Distributed box-constrained quadratic optimiza-

tion for dual linear SVM. In ICML, 2015.

[48] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by

non-negative matrix factorization. Nature, 401:788–791, 1999.

[49] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative ma-

trix factorization. In Todd K. Leen, Thomas G. Dietterich, and Volker

Tresp, editors, Advances in Neural Information Processing Systems 13,

pages 556–562. MIT Press, 2001.

[50] J. D. Lee, Y. Sun, and M. A. Saunders. Proximal Newton-type methods

for convex optimization. In NIPS, 2012.

[51] L. Li and K.-C. Toh. An inexact interior point method for L1-reguarlized

sparse covariance selection. Mathematical Programming Computation,

2:291–315, 2010.

[52] Chih-Jen Lin. Projected gradient methods for non-negative matrix fac-

torization. Neural Computation, 19:2756–2779, 2007.

137

[53] Chih-Jen Lin, Ruby C. Weng, and S. Sathiya Keerthi. Trust region New-

ton method for large-scale logistic regression. In Proceedings of the 24th

International Conference on Machine Learning (ICML), 2007.

[54] Zhi-Quan Luo and Paul Tseng. On the convergence of coordinate descent

method for convex differentiable minimization. Journal of Optimization

Theory and Applications, 72(1):7–35, 1992.

[55] Zhi-Quan Luo and Paul Tseng. Error bounds and convergence analysis

of feasible descent methods: a general approach. Annals of Operations

Research, 46:157–178, 1993.

[56] S. Ma, L. Xue, and H. Zou. Alternating direction methods for la-

tent variable Gaussian graphical model selection. Neural Computation,

25(8):2172–2198, 2013.

[57] D. Mahajan, S. S. Keerthi, and S. Sundararajan. A distributed algorithm

for training nonlinear kernel machines. 2014.

[58] Rahul Mazumder and Trevor Hastie. Exact covariance thresholding into

connected components for large-scale graphical lasso. Journal of Machine

Learning Research, 13:723–736, 2012.

[59] A. K. Menon. Large-scale support vector machines: algorithms and the-

ory. Technical report, University of California, San Diego, 2009.

[60] John Moody and Christian J. Darken. Fast learning in networks of locally-

tuned processing units. Neural Computation, pages 281–294, 1989.

138

[61] M. Nandan, P. R. Khargonekar, and S. S. Talathi. Fast svm training

using approximate extreme points. JMLR, 15:59–98, 2014.

[62] I. Necoara and D. Clipici. Parallel random coordinate descent method for

composite minimization. 2013.

[63] S. N. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified

framework for high-dimensional analysis of m-estimators with decompos-

able regularizers. Statistical Science, 27(4):538–557, 2012.

[64] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale opti-

mization problems. SIAM Journal on Optimization, 22(2):341–362, 2012.

[65] P. A. Olsen, S. J. Rennie, and V. Goel. Efficient automatic differentiation

of matrix functions. Recent Advances in Algorithmic Differentiation, 2012.

[66] E. Osuna, R. Freund, and F. Girosi. Training support vector machines:

An application to face detection. In Proceedings of IEEE Computer So-

ciety Conference on Computer Vision and Pattern Recognition (CVPR),

pages 130–136, 1997.

[67] Pentti Paatero and Unto Tapper. Positive matrix factorization: A non-

negative factor model with optimal utilization of error. Environmetrics,

5:111–126, 1994.

[68] F. Pérez-Cruz, A. R. Figueiras-Vidal, and A. Artés-Rodŕıguez. Double

chunking for solving SVMs for very large datasets. In Proceedings of

Learning, 2004.

139

[69] Jon Piper, Paul Pauca, Robert Plemmons, and Maile Giffin. Object

characterization from spectral data using nonnegative factorization and

information theory. In Proceedings of AMOS Technical Conference, 2004.

[70] J. C. Platt. Fast training of support vector machines using sequential

minimal optimization. In Advances in Kernel Methods - Support Vector

Learning, 1998.

[71] A. Rahimi and B. Recht. Random features for large-scale kernel machines.

NIPS, 2008.

[72] P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu. High-

dimensional covariance estimation by minimizing `1-penalized log-

determinant divergence. ejs, 5:935–980, 2011.

[73] K. Scheinberg, S. Ma, and D. Goldfarb. Sparse inverse covariance selection

via alternating linearization methods. NIPS, 2010.

[74] Katya Scheinberg and Xiaocheng Tang. Practical inexact proximal quasi-

newton method with global complexity analysis. 2014.

[75] O. Shamir, N. Srebro, and T. Zhang. Communication efficient distributed

optimization using an approximate newton-type method. In ICML, 2014.

[76] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE

Trans. Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

140

[77] S. Si, C. J. Hsieh, and I. S. Dhillon. Memory efficient kernel approxi-

mation. In International Conference on Machine Learning (ICML), June

2014.

[78] A. Tewari, P. Ravikumar, and I. Dhillon. Greedy algorithms for struc-

turally constrained high dimensional problems. In NIPS, 2011.

[79] P. Tseng and S. Yun. A coordinate gradient descent method for nons-

mooth separable minimization. Mathematical Programming, 117:387–423,

2007.

[80] P. Tseng and S. Yun. A coordinate gradient descent method for nons-

mooth separable minimization. Mathematical Programming, 117:387–423,

2009.

[81] M. van Breukelen, R. P. W. Duin, D. M. J. Tax, and J. E. den Har-

tog. Handwritten digit recognition by combined classifiers. Kybernetika,

34(4):381–386, 1998.

[82] Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and

Computing, 17(4):395–416, 2007.

[83] C. Wang, D. Sun, and K.-C. Toh. Solving log-determinant optimization

problems by a Newton-CG primal proximal point algorithm. SIAM J.

Optimization, 20:2994–3013, 2010.

141

[84] Po-Wei Wang and Chih-Jen Lin. Iteration complexity of feasible descent

methods for convex optimization. Journal of Machine Learning Research,

15:1523–1548, 2014.

[85] Christopher K. I. Williams and Matthias Seeger. Using the Nyström

method to speed up kernel machines. In NIPS, 2001.

[86] T. Yang. Trading computation for communication: Distributed stochastic

dual coordinate ascent. In NIPS, 2013.

[87] I. Yen, C.-J. Hsieh, P. Ravikumar, and I. S. Dhillon. Constant nullspace

strong convexity and fast convergence of proximal methods under high-

dimensional settings. In Neural Information Processing Systems Confer-

ence (NIPS), December 2014.

[88] Hsiang-Fu Yu, Fang-Lan Huang, and Chih-Jen Lin. Dual coordinate de-

scent methods for logistic regression and maximum entropy models. Ma-

chine Learning, 85(1-2):41–75, October 2011.

[89] G.-X. Yuan, C.-H. Ho, and C.-J. Lin. An improved GLMNET for l1-

regularized logistic regression. In ACM SIGKDD, 2011.

[90] R. Zdunek and A. Cichocki. Non-negative matrix factorization with quasi-

newton optimization. Eighth International Conference on Artificial Intel-

ligence and Soft Computing, ICAISC, pages 870–879, 2006.

[91] K. Zhang, L. Lan, Z. Wang, and F. Moerchen. Scaling up kernel SVM on

limited resources: A low-rank linearization approach. In AISTATS, 2012.

142

[92] K. Zhang, I. W. Tsang, and J. T. Kwok. Improved Nyström low rank

approximation and error analysis. In ICML, 2008.

[93] T. Zhang. Sequential greedy approximation for certain convex optimiza-

tion problems. IEEE Transactions on Information Theory, 49(3):682–691,

2003.

[94] Y. Zhang, J. Duchi, and M. Wainwright. Communication-efficient algo-

rithms for statistical optimization. JMLR, 14:3321–3363, 2013.

[95] Zeyuan A. Zhu, Weizhu Chen, Gang Wang, Chenguang Zhu, and Zheng

Chen. P-packSVM: Parallel primal gradient descent kernel SVM. In

Proceedings of the IEEE International Conference on Data Mining, 2009.

[96] M. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized stochastic

gradient descent. In NIPS, 2010.

143

Vita

Cho-Jui Hsieh is a Ph.D. student at University of Texas at Austin.

His research focus is developing new algorithms and optimization techniques

for large-scale machine learning problems. Cho-Jui obtained his B.S. degree

in 2007 and M.S. degree in 2009 from National Taiwan University (advisor:

Chih-Jen Lin). Currently he is a member of Center for Big Data Analytics

led by Inderjit Dhillon. He is the recipient of the IBM Ph.D. fellowship in

2013-2015, the best research paper award in KDD 2010, and the best paper

award in ICDM 2012.

Email address: cjhsieh@cs.utexas.edu

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

144

