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ABSTRACT

In this paper a method is described that takes the nonlinear
dynamic stiffness and damping coefficients for multiple hydrostatic
bearings and incorporates them into a rotordynamic FEM model for
arotating machine. A Newton-Raphsoniteration scheme is presented
that uses updated bearing coefficients at every iteration to the
solution. A non-linear computer program was written using the
method described whichmodels transient and synchronous response
and calculates damped eigenvalues.

SYMBOLS USED

the damping matrix which also can contain gyroscopic terms
the stiffness matrix

the mass matrix

is a coordinate transformation matrix

is a force vector

bearing clearance

displacement

radial force

tangential force

the imbalance mass multiplied by the geometric center offset
from the rotor center of mass

the number of degrees of freedom (DOF)

is the journal eccentricity in the bearing

is the angle between the line of centers

is the tangentail coordinate

is the bearing fluid viscosity

is the journal rotation speed
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INTRODUCTION

For high speed rotating machines running on hydrostatic
bearings, the lack of analysis tools to accurately model the motion of
the rotor in the bearing could lead to design errors resulting the
inability to operate the machine at design speed. Inresponse to these
requirements, anew computer analysis program was written to fully
model the situation of a flexible rotor machine supported on

hydrostatic bearings. These could then be mounted into a flexible
outer stator casing which could be hard or soft mounted to a skid
mass or to ground. Current trends for high speed lightweight rotors
is leading to more flexible structures, making this kind of analysis
more valuable.

The literature revealed numerous articles on modeling flexible
rotors in flexible stators (Rouch 1977). There is also a large amount
of information on modeling of hydrostatic bearings (Rowe 1980,
Tolk 1980). However information on a completely comprehensive
method that included a flexible rotor, coupled to a stator structure or
to ground through nonlinear hydrostatic bearings was not found in
the literature search. There was information on work that had been
performed on this problem using other fluid bearing types, mainly
Jjournal bearings.

Feria Kaiser (1987) discussed a program he had written for a
flexible shaft mounted in hydrodynamic journal bearings. This
program used energy methods. The program was not readily
amenable to model more than 2 or 3 bearings in amachine due to the
complexity involved in changing the equations. Adams (1980)
described acomputer program he developed for non-linear dynamics
of flexible multi-bearing rotors. He used the finite element technique
to model the distributed mass and elasticity of the rotor and stator
structure. The bearings he modeled were also journal bearings. He
treated gyroscopic stiffening of the shaft as an externally applied
moment on the rotor. Several other papers present models of multi-
mass flexible rotors supported innonlinear journal bearings (McLean
1983, Greenhill 1982, Rabinowitz 1977). Vaughn (1989) wrote a
program that modeled a rotor supported by a hydrostatic bearing at
each end and a hydrostatic thrust bearing at one end The program
was acoupled five degree of freedom model thatused a lumped mass
approach.

DEVELOPMENT OF THE MODEL

The program developed was to model the schematic shown in
figure 1. The side view in this figure shows the axisymmetric
flexible rotor and stator structures and lumped foundation masses.
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Figure 1. A schematic of the system to be modeled

The end view shows the two planes of motion and two of the eight
stiffness and damping coefficients that the bearing adds to the
system.

The final computer program was developed in three stages
(Headifen 1991). The first was to write a flexible rotor dynamics
finite element method (FEM) program that could accommodate
linear springs and dampers as the boundary conditions. This model
also included the stator structure and any additional nodal masses,
such as a support skid, that were required.

The second stage was to write an analytical program that could
model the nonlinear behavior of a hydrostatic bearing. These
bearings have nonlinear load capacities and stiffness and damping
properties over their eccentricity range (Ghosh 1979). Hence this
program had to account for the nonlinearity of the bearing
characteristics. The program had to be analytical because in the final
program these bearing subroutines would be called many times to

calculate the bearing terms and pass them to the FEM portion of the
program. A numerical approach would have been uneconomical
timewise. The bearing program was a stand alone program that
could model a lumped mass spinning and or whirling in a bearing.
The program could perform transient response, synchronous response
and could calculate the eight radial and tangential dynamic bearing
coefficients an any position and speed in the bearing.

Once the bearing program was operating and had been verified,
the two programs were merged in to one final program. The bearing
program subroutines that were involved with calculating reaction
forces and bearing coefficients were incorporated into the rotor
program. The rotor program subroutines were then modified to
account for the nonlinear coefficients.

THE LINEAR ROTOR PROGRAM

The method used to model the rotor and stator structure was to
use the FEM. To keep the number of degrees of freedom (DOF)
small, one dimensional elements were used that had four DOF per
node. These were X, Y translation and o, B rotations (Bathe 1982).
This formulation accounted for shear and bending deflection.
Distributed stiffness (K) and mass (M) matrices were set up and
gyroscopicterms were included ina C matrix. Even though the finite
element method can require large matrices to be generated, it was
chosen over the Transfer Matrix method because once the M, C and
K matrices have been established, they are easy to manipulate in
many different algorithms.

The equations for the FEM method are derived from the total
kinetic and potential energy associated with lateral motion of the
rotating shaft or stator. The energy terms come from a bending term,
a shear term and a spin term. These energy equations are shown in
(Manifold 1989). The final assembly form of the matrices is given
by (Headifen 1991). The final dynamic equation can be written in
the familiar form of

Mu+Cu+Ku=F (1)

where
F = vector containing the model imbalances and gravity loads
for horizontal machines
u = vector of nodal displacements
In (1), the linear boundary conditions are included in the matrices on
the left-hand side (LHS).

THE BEARING PROGRAM

This was a nonlinear program that at every time step or speed
increment solved the equation of motion for a lumped mass in a
hydrostatic bearing.

MpU = F(é‘ Mg, geom, |1, 0,0, U) 2

where
= vector summation of the applied forces (imbalance and
gravity) and the bearing reaction forces that depend on the
bearing geomeltry and fluid, whirl speed, shaft speed and
position.(Tolk 1980)
= 2x2 mass matrix for the vertical and horizontal planes.
vector containing the horizontal and vertical displacements

=
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A previously unseen method to account for bearing fluid
compressibility was developed (Headifen 1991) and included in the
program.

Bearing stiffness and damping coefficients could be calculated
at any position and were evaluated by the small displacement
method. This is the same techniques as used by Ghosh (1979) but
withdifferentdefinitions for the tangential coefficients. The definition
of the coefficients used was

AF; o AR,
cAe cAe

for a radial step, and

T

(~Fr25in A8+F, 5 cos A6)-F, )
ceAB

Ky =

€)
(~Fr,2 sin AG + F, 5 cos AB)— Fy
ceAB
for a tangential step. When a tangential step is taken the direction
that the forces are calculated in is changed by the rotation angle A6,

hence the components in the original direction must be determined.
For the damping coefficients, their definition was

Ku=

AR, AF,
C,. =—L ¢, ==t
T et e
for a radial velocity, and
Cp = AR Cy= AF ©)
ceAd ceAd

for the tangential coefficients.

FINAL FEM PROGRAM WITH NON-LINEAR BEARING
COEFFICIENTS

This program was a combination of the previous two programs.
To incorporate therelative bearing subroutines into the rotor program,
required writing linking subroutines that passed the position and
speed to the bearing subroutines which then returned the reaction
forces and coefficients back to the rotor part of the program.

At small eccentricities in the bearings, linear analysis could be
used as the coefficients are not changing to any great extent. Over
awider range of operation, nonlinear analysis is required as follows.
The general equation to solve is written as

MU(1) + CU(t) + KU(t) = F(&, M, geom, p, ,0,U) (5)

where
F = described in equation (2)

In equation (5), the matrices on the LHS only contain entries
from the FEM assembly and any other linear stiffness and damping
elements. These matrices are time invariant within each time step.
The C matrix has a speed term in it so it is updated at the beginning
of every step. Equation (5) has to be solved with a nonlinear solver.
One method to achieve this is to use a Newton-Raphson technique
and solve the problem as if the rotor was a free body acted upon by
imbalance forces and bearing reaction forces only.

TIME RESPONSE

One method that can be used for time response is a non-linear
version of the Newmark-Beta algorithm (Headifen 1991). This
method uses finite difference approximations in the time domain to
rearrange equation (5) to a form given by

K 1+A1U:1+A1R )
where_
K=K+30M+81C (7)
LR <UHAR M (agt U +ay U ag 0]
. . ®)
+C(allU+a4lU+aslU)
a toa; = constantsdefined in the Newmark-Beta method (Bathe
1982).
R = vector containing the applied forces such as imbalance

and gravity, and the bearing reaction forces.

Equation (6) can be rearranged for a function G where
G;(U)=KU-R=0 i=1,2,..,N ©
and the time superscripts have been dropped.
Using a Newton-Raphson iteration scheme (Press 1986), an

equation which solves for the increments in the solution can derived
(Headifen 1991).

N
G .
[2 L]tsu:—Gi(U) (10)
=1 an
The corrections are then added to the solution vector,
urev =y 4 su; Pl 2 (11)

The summation term on the left hand side of () is called the tangent
stiffness matrix KT. Itis an N x N matrix where N is the number of

DOF in model. Expanding the summation term in equation (10)
gives

N 3G, N 3K
Zan_Z JU,

=1 j=1 J j=1 j (12)

Hence KTis set equal to the K matrix, then any terms in the R vector
that have a U dependence are differentiated with respect to U and
added in. Recall that the time subscripts have been dropped and that
Uisreally "*'U, i.e. the displacement at the end of the time step. The
only terms in the definition of R that are dependent on *2'U are the
WAIR terms. This vector is made up of the imbalance force and the
bearing reaction forces. Only the reaction forces are dependent on
the U terms. Therefore at a node that has a bearing on it, then

3R, aR aRy aRy
=Kyy r—2=Kyy, =kyy,——=k (13)
Uy MUy ou,  au,
For all other DOF
alii ..
—=0 ' Li=xy (14)
an
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These are the bearing stiffness coefficients (relative to a reference
frame that rotates with the rotor).

Similarly, thoughnotquite so obvious dueto the finite difference
terms in the time domain, the terms in the definition of R that are

dependenton "' U are also included. These are the reaction forces
in the "R term. Therefore at a node that has a bearing on it, then

aﬁx af{x ax‘zy afzy
——— ,—-=C ,.—=C ,'.—':C (15)
X X
U, *auy,  Yau,  aU,
For all other DOF
oR
o
Uﬂ i,j=x,y (16)

Thus for every node in the model that has a bearing on it, the stiffness
and damping coefficients are added to their respective degrees of
freedom in the tangent stiffness matrix. Equation (10)is then solved
for the increments in the solution for the displacement Then the
tangent stiffness matrix and the RHS of (10) are reformed with the
updated coefficients and equation (10) is resolved. This process is
continued until either the increments in the displacements is less than
a specified convergence or the RHS of (10) is less than a specified
convergence.

REFERENCE FRAME TRANSFORMATION

Care must be taken to ensure that the bearing coefficients and
the model have the same reference frame. Normally the bearing
coefficients are expressed in a rotating reference frame that rotates
with the shaft.

If the model uses a stationary global reference frame (for
example X positive down and Y positive to the right) then the
transformation from the rotating frame to the stationary frame is
given by

QUg =Ugr a7
where
_|cosd sin ¢
Q_[—sin(p cos¢} (18)

¢ = angle between the two frames.

Therelationship between the coefficients in the stationary frame and
the rotating frame is given by (Headifen 1991)

K;=QK,Q (19)

This transformation has to be performed prior to forming the tangent
stiffness matrix.

FREQUENCY RESPONSE
Using a substitution for the synchronous displacement time
variation of

U = Ugem (20)

in equation (5) allows the equation to be written as (Rouch 1980)
pa— 2 3 -~
[~0?M + joc + KU, = F(w) i
or
[H(w)]Uo = F(w) (22)

For the same nonlinear reasons as above, incorporation of the
bearings had to be as reaction forces on the RHS and not by using the
coefficients in the matrices onthe LHS. Equation (22) is anon-linear
complex equation. To solve this, a Newton-Raphson iteration
scheme was employed in the same manner as above. Let

Gj(U)=HUy-F=0 i=1,2,..,N (23)

then following through equalions (10,12) gives

Zaci _ Z Haz F) .
=1 3=1 3

or

=H+ ——:H+K + joC ,m=X,
leaU lea nm T )0 nm n,m y

Hence the tangent stiffness matrix HT is set equal to the H matrix and
the 8F/8U terms are added to it at therespective DOF. Since equation
(25) is complex, with the terms in the C matrix being the imaginary
components, then the damping coefficients are added to the imaginary
components of the bearing DOF. They are first multiplied by the
speed o according to equation (21). The stiffness coefficients are
added in to the real components of the same DOF. The complex
solver then solves

HT 58Uy = G(Uy) (26)

similar to the time response. The Newton-Raphson iteration is
repeated until a user supplied tolerance isreached then the next speed
increment is made.

DAMPED EIGENVALUES AND LINEAR STABILITY

Eigenvalue analysis solves the homogeneous equation
MU() + CU() + KU@) = 0 27)

Since there is noright hand side to add in the bearing reaction forces,
the bearing coefficients can only be accounted for in the matrices on
the left hand side. This poses a limitation on the validity of the
analysis. The eigenvalue analysis will only be truly accurate over a
region where the coefficients are relatively constant. This would be
at small eccentricities. Since this is where most higher speed
bearings operate, then it is a valid justification in most cases (Lund
1967). Once the coefficients have been added into equation (27), the
equation can be converted to standard eigenvalue format by using a
state vector notation as shown by Rouch (1980). Then a linear
eigensolver can then be used to determine the eigenvalues and hence
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linear stability at that position. As pointed out by Vance (1988), this
type of analysis will only be able to predict the conditions for
instability and the onset frequency of the whirling, it will not predict
the actual bounded whirling amplitude as this requires equilibrium
solutions to the nonlinear equations of motion. Vance points out that
actual (measured) bounded whirling frequencies usually occur very
close to the predicted frequencies for instability of the linearized
system. A more detailed discussion of the consequences of linearized
stability approach is presented by Vance. Nonlinear stability is not
with the scope of this paper. McLean (1983) and Hahn (1979)
present analyses on nonlinear stability for dampers.

The analyst should be aware that the eigenvalue solver will
solve an eigenvalue for a mode in the tangential direction based on
the tangential stiffness and damping coefficients. If the forcing
function is rotor imbalance then this mode will never be excited.
Only modes along the local kxx direction will be excited, because the
kxx direction rotates with the shaft. An angle ¢ can be user defined
for this option. This is similar to the angle ¢ described in the
coefficient direction rotation. This allows the user to position the
local direction relative to the global direction for calculation of the
eigenvalues

EXAMPLES

To test the final coupled bearing-FEM program, comparisons
were made against a solution of a short, thick section shaft. Testing
of this type of shaft is a test of the coupling technique used to couple
the nonlinear bearings to the rotor only. The linear part of the FEM
program that models the flexibility of the rotor and stator had
previously been verified against known analytical and numerical
solutions. The only way to test the nonlinear part of the program was
to use the short beam so that all the motion occurred in the bearing.
Then direct comparisons could be made to the stand alone lumped
mass bearing program with an equivalent loading. Orbit plots were
made from the lumped mass bearing program, the nonlinear FEM
program and alinear FEM program that used the bearing coefficients
from the concentric position only. For the FEM programs a two
bearing rotor was modeled. The model for the stand alone bearing
program used the same bearing but half the rotor mass and half the
imbalance. Figure 2 is aplot of the three orbits together. Each axis
is the eccentricity in one of the two planes. Each orbit shows phase
markers. The solid orbit line is the orbit in the bearing, the short
dashed line is the orbit from the coupled FEM program and the long
dashed line is from the linear FEM program.. All orbits start off at
the concentric position and spiral out to a steady state limit orbit. The
bearing and nonlinear FEM orbits show almost exactly the same
response. The linear FEM orbit shows a significantly different
transient, before settling down to a steady state orbit which is similar
to the other two orbits. At this small an eccentricity, this would be
expected. Figure 3 is the same systems but now with twice the
imbalance applied. The orbits show similar response as in figure 2
except with a larger eccentricity. The linear FEM orbit is a small
amount larger than the other two because that type of analysis does
not account for the increasing stiffness as the eccentricity increases.
This type of diverging deviation shows the requirement for the
nonlinear analysis to accurately model the response.
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Figure 2. Whirl orbits of lumped mass program, linear
FEM program and nonlinear FEM program
0.4
0.2 4
=
S
€
8 0.0
O
w
-0.2 4
-0.4
1 1 1 1 1
-0.4 -0.2 0.0 0.2 0.4
Eccentricity
Figure 3. Whirl orbits of lumped mass program, linear FEM

program and nonlinear FEM program with twice

the imbalance used in figure 2
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CONCLUSIONS

A method for incorporating nonlinear hydrostatic bearings into
a full model rotordynamic analysis has been shown. The method
was employed into a computer program that coupled the nonlinear
hydrostatic bearings to a finite elementrepresentation of the machine
structure. The method shown is completely general. It has the full
simplicity of the FEM technique without any restrictions that other
solution methods have imposed such as the Transfer Matrix approach.
By treating the bearing nonlinearities as forces on the RHS, it avoids
reformulating the general M, C and K matrices at every iteration.
The program makes no assumptions about the mass assigned to a
bearing such as a lumped mass approach requires. It is no more
difficult to add in several bearings thanitis to include only one. Any
number of bearings and bearing geometry’s can be used. The
bearings can be in series or in parallel. The method shown can be
used to model any other kind of bearing as well, provided that a
method is availableto calculate the stiffness and damping coefficients.
Themethod shown, covered transientresponse, synchronous response
and damped eigenvalue calculation.
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