
Copyright

by

Vandana Gambhir

2015

The Report Committee for Vandana Gambhir
certifies that this is the approved version of the following report:

UToobe Media Share Application:

A Study of Emerging Web Technologies

APPROVED BY

SUPERVISING COMMITTEE:

Adnan Aziz, Supervisor

William Bard

UToobe Media Share Application:

A Study of Emerging Web Technologies

by

Vandana Gambhir, M.B.A.

REPORT

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2015

Dedicated to my mother-in-law late Mrs. Vidya Devi Gupta, my husband

Amitabh Gupta and my parents for their unwavering support and patience

during the course of my M.S.E. Program.

Acknowledgments

I would like to thank my supervisor, Dr. Adnan Aziz whose guidance

and vision made this report possible. He inspired me to explore and learn the

new technologies for this project. Special thanks to Prof. William Bard for

graciously agreeing to be my reader. Thanks to all my professors at UT, from

whom I continually draw support and inspiration.

v

UToobe Media Share Application:

A Study of Emerging Web Technologies

Vandana Gambhir, M.S.E.

The University of Texas at Austin, 2015

Supervisor: Adnan Aziz

This report studies some of the latest web application development

technologies. I have created UToobe, a media sharing web application that

uses components of the MEAN stack, namely MongoDB, Express and Node.js,

as a way of learning these technologies. The application allows users to search

for media files uploaded by other users, view them, comment on them, rate

them, as well as upload their own media and share it with others.

The primary goal of the project was to identify the challenges faced

by Java Developers and explore the benefits and shortcomings of using the

new technologies. With a professional background in Java development, I

found working with JavaScript and the callback oriented style of Node.js to

be a challenging paradigm shift. It gave me a completely new perspective

on writing web services using REST and JSON. The inbuilt capabilities of

frameworks like Bootstrap, and Jade helped give a very professional look and

vi

feel to the application. It was a good educational experience to learn about

NoSQL databases, and how they are able to solve the problem of persisting

unstructured and large data efficiently.

Based on the experience with the application, I feel the new technologies

can cut down development time by two-third as compared to Java technologies.

The current application has 1500 lines of code while a Java implementation of

the same would have taken around 4500 lines of code. The new technologies

also reduce the testing and deployment time by half.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables xi

List of Figures xii

List of Sources xiii

Chapter 1. Introduction 1

1.1 Motivation . 1

1.2 Project Overview . 2

1.3 Contributions . 3

1.4 Report Organization . 3

Chapter 2. Technology Stack 4

2.1 Back-end Technologies . 4

2.1.1 MongoDB . 4

2.1.1.1 Review . 4

2.1.1.2 Structure and Operational Interface 6

2.1.1.3 Advantages of MongoDB 8

2.1.1.4 GridFS . 10

2.1.2 Node.js . 11

2.1.2.1 Event Loop & Non-Blocking I/O 12

2.1.2.2 Closure . 15

2.1.2.3 NPM . 16

2.1.3 Web Services . 16

2.1.3.1 REST . 16

viii

2.1.3.2 JSON . 17

2.1.4 Express . 19

2.1.4.1 Express-Session 19

2.1.4.2 Body-Parser . 20

2.1.4.3 Busboy-Body-Parser 20

2.1.4.4 MongoDB Node.js Driver 21

2.1.4.5 Async . 21

2.1.4.6 Other Modules 22

2.1.5 Multimedia . 22

2.1.5.1 Fluent-Ffmpeg 22

2.1.5.2 GridFS-Stream 23

2.2 Front-end Technologies . 24

2.2.1 Ajax and jQuery . 24

2.2.2 Jade . 26

2.2.3 Bootstrap . 27

2.2.4 Bootstrap-Fileinput . 28

Chapter 3. Application Overview 29

3.1 Functionality . 29

3.2 High Level Architecture . 30

3.3 Request-Response Pipeline . 31

3.4 Summary of Technologies Used 32

3.5 Data Model . 33

3.5.1 Media Collection . 33

3.5.2 User Collection . 34

3.5.3 fs.chunks Collection . 34

3.5.4 fs.files Collection . 35

3.6 Source Structure . 35

3.7 RESTful Services . 36

ix

Chapter 4. Implementation 37

4.1 Navigation Bar . 37

4.2 Authentication . 38

4.3 Account Creation . 41

4.4 Dashboard . 43

4.5 View Media . 45

4.6 Search . 47

4.7 Add Media . 50

4.8 My Media . 54

4.9 Clip . 55

4.10 Profile . 58

4.11 Sign Out . 59

4.12 Utilities and Configuration Files 60

Chapter 5. Conclusion 61

5.1 Lessons & Reflections: An Introspection 61

5.1.1 JavaScript . 61

5.1.2 Node.js . 62

5.1.3 jQuery-Ajax and Jade 63

5.1.4 Bootstrap . 65

5.1.5 Express . 65

5.1.6 MongoDB . 66

5.1.7 Development Environment 67

5.1.8 Documentation . 68

5.1.9 Performance . 68

5.1.10 Testing . 68

5.2 Source Code . 69

5.3 Future Work . 69

5.4 Summary . 70

Bibliography 72

Vita 79

x

List of Tables

3.1 Summary and Version of Library/Frameworks Used 33

3.2 List of RESTful Services consumed by UToobe 36

5.1 Media Upload Time(milliseconds) 68

xi

List of Figures

2.1 Event Loop & Non-Blocking I/O 13

3.1 High Level Architecture of UToobe 30

3.2 Request-Response Pipeline . 31

4.1 Navigation Bar . 37

4.2 Login Page . 39

4.3 Account Creation Page . 41

4.4 Dashboard Page . 44

4.5 Comments on Media . 46

4.6 Search Capability . 47

4.7 Add Media Page . 51

4.8 My Media List . 54

4.9 Media Manipulation . 55

4.10 Media Clip . 57

4.11 User Profile . 58

xii

Listings

2.1 Storage Structure . 7

2.2 Collections and Documents . 7

2.3 Sort Query Operation . 8

2.4 Storing data in GridFS . 11

2.5 Blocking I/O Code . 13

2.6 Non Blocking I/O Code . 14

2.7 Closure . 15

2.8 Example of using Express Session 20

2.9 Body Parser for JSON . 20

2.10 Multipart request parser . 21

2.11 ffprobe used for retrieving media metadata 23

2.12 Read and Write Stream using gridfs-stream 23

2.13 Example of Ajax POST . 25

2.14 Example of Jade template and interpolation 26

2.15 Example of generated HTML with interpolation 27

2.16 Template Engine Configuration with Express 27

3.1 Media Document . 33

3.2 User Document . 34

3.3 fs.chunk Document . 34

3.4 fs.file Document . 35

xiii

4.1 Navigation bar with (+) Glyphicon 38

4.2 Authentication request . 40

4.3 Credentials Validation callback 40

4.4 Data Store findOne callback 40

4.5 Create new user request . 42

4.6 Create User callback . 42

4.7 User Data (JSON) and insert callback 43

4.8 REST calls for get Recent and Most Likes 44

4.9 DB call for get Recent Media 45

4.10 Add Comments . 47

4.11 Search Request . 48

4.12 Search results (JSON) array 48

4.13 Data Store find call . 48

4.14 Async Waterfall to fetch data from Multiple collections 49

4.15 bootstrap-fileinput plug-in . 50

4.16 jQuery extract form data . 52

4.17 Create Media Request . 52

4.18 Multipart request parser with Write request 53

4.19 Media data persistence in Data Store 53

4.20 Jade Iterator for parsing document array 54

4.21 Datastore find, update, remove 55

4.22 Vertical flip Request . 56

4.23 Clip Media Request . 57

xiv

4.24 View Profile callback . 59

4.25 LogOut callback . 59

4.26 Database Configuration . 60

xv

Chapter 1

Introduction

1.1 Motivation

Web applications are client-server programs used for exchanging in-

formation over the Internet. The client-side of these applications typically

runs within a browser such as Internet Explorer, Chrome, Mozilla, etc. The

client uses the Internet to connect to the server using HTTP [47]. Initial web-

applications were made up of mostly static pages. Only a few technologies

were available for producing dynamic content. The technology stack mostly

consisted of JSP/ASP/JavaScript on the front-end, some J2EE/.NET based

server in the middle, ultimately connecting to an RDBMS.

As the cost of data storage dropped, while the speeds of communication

increased, web applications began to hit the boundaries of these technologies.

Phone based digital cameras became ubiquitous. Social media emerged. And

with that came the desire to share a lot of data on the Internet. All the content

which was hitherto in the domain of newspaper and television, suddenly shifted

to the Internet. Web applications needed to be a lot of more responsive. These

applications put too much demands on the web technologies which the current

stack was no longer able to fulfill. At the same time, there was emergence of

1

open-source software. Developers started freely contributing to development

of new tools and frameworks. This resulted in an explosion of technologies

and software bundles. Some of these tools and frameworks include Motion

UI, Web UI components, AngularJS, SPA (Single Page Apps [1]), etc. This is

very different from purely Java based programming stack that I have worked

with in the past. This report studies these new technologies, namely Mon-

goDB, Express, and Node.js in the context of the web-application UToobe

development and compares the development effort with Java technologies.

1.2 Project Overview

When it comes to web technologies, most of the advancement in recent

times has happened in two areas, namely, responsive UI and storage of large-

sized unstructured data. UToobe concentrates on these two areas in the

context of an online media sharing application. UToobe has been implemented

on full stack JavaScript using Node.js, MongoDB, Express, Jade, jQuery and

REST APIs. The application allows users to create their profile, upload videos,

images and other media, search and watch other user’s media, manipulate

uploaded media, rate their postings and add comments. Bootstrap and Jade

made up the responsive UI. It helped me to learn the event-driven non-blocking

I/O paradigm of Node.js. Data persistence has been done using MongoDB,

one of the most popular NoSQL databases.

2

1.3 Contributions

• Designed, implemented and tested UToobe, a media sharing web appli-

cation.

• Reported on benefits and pitfalls of new web technologies like Node.js,

Express, Jade, Bootstrap and MongoDB from the perspective of a Java

developer.

• Made the source code and documentation for the application available

freely as open source.

1.4 Report Organization

Multiple front-end and back-end technologies like MongoDB, Node.js,

Express were used to develop UToobe. Chapter 2 provides a brief introduction

to these technologies, their strengths and weaknesses. Chapter 3 provides

an overview of the application in terms of its functionality. This chapter

also explains the system architecture, request pipeline, data model and how

the various technologies were used. Chapter 4 discusses the implementation

details. It describes the main use cases and how they were realized, together

with code snippets. Chapter 5 summarizes the report, talks about future work

and closes with conclusions.

3

Chapter 2

Technology Stack

This chapter describes the software technologies used in order to achieve

the goals of the project. These technologies are part of the MEAN stack. I

specifically used MongoDB, Express and Node.js.

2.1 Back-end Technologies

2.1.1 MongoDB

2.1.1.1 Review

With the increase in communication speeds and the drop in communi-

cation and storage costs, the size of data that can now be stored in computer

applications has exploded. Growth of social media and ubiquity of phone-

cameras has also made it easy for users to record and share their media files

(audio/video, pictures, etc.) online which require large storage. Although re-

lational databases have been very successful in storage and retrieval of data

for enterprise applications, these Internet applications posed a new challenge.

Size of data was huge and it was not as well organized as business data, and

could not be properly stored in the tabular/relational structure of relational

databases. RDBMS [58](Relational Database Management System) offered

the facility to store large files in the form of LOBS [11](Large Objects) but

4

their storage and retrieval was both cumbersome as well as slow. RDBMS also

do not provide an efficient way to distribute data as well as the storage/re-

trieval tasks across multiple servers.

This requirement led to the popularity of a different type of databases,

called NoSQL [9] databases. MongoDB [33] used in my application is one of

the most popular NoSQL databases. NoSQL (also known as Non-SQL or Non-

relational) databases were first conceived in 1960s but did not become pop-

ular until Web 2.0 came along some 10 years back. Unlike RDBMS, NoSQL

databases do not store information in a tabular format and instead use a key-

value, graph or a document based data-structure. The particular suitability of

a given NoSQL database depends on the problem it must solve. Choice of the

database would depend on the type of data and the application. For example,

for an enterprise application that deals with structured data, transactional op-

erations and multiple updates, RDBMS might be a better choice than NoSQL.

On the other hand, for social media applications that have unstructured data,

have many optional fields, have very few updates and deal with storing large

media files, a NoSQL database will be more appropriate.

Typically NoSQL databases compromise consistency in order to pro-

vide better availability, partition tolerance, and speed. NoSQL databases also

provide simplicity of design, simpler horizontal scaling to clusters of machines,

which is a problem for relational databases, and finer control over availability.

The data structures used by NoSQL databases are also viewed as more flexible

than relational database tables. For example, in typical NoSQL database like

5

MongoDB, a new attribute can be added to the store on the fly, without first

altering the table structure [15]. NoSQL databases are increasingly used in

big data [42] and real-time web applications. NoSQL systems are also some-

times called Not only SQL to emphasize that they may support SQL-like query

languages [61].

NoSQL databases do have some drawbacks. They require use of low-

level query languages (instead of SQL to perform ad-hoc JOINs across tables)

and lack standardized interfaces. Most NoSQL stores lack true ACID [43]

transactions. Instead they offer a concept of eventual consistency in which

database changes are propagated to all nodes eventually (typically within mil-

liseconds) so queries for data might not return updated data immediately.

MongoDB [56] is one of the popular NoSQL databases that I chose to

use in the project. It is a cross-platform document-oriented database. Mon-

goDB uses JSON-like documents [5] with dynamic schemas (called BSON [2]),

making the integration of data in certain types of applications easier and faster

[37].

2.1.1.2 Structure and Operational Interface

Storage Structure: MongoDB [33] stores data in the form of documents,

which are JSON-like field and value pairs [5]. Documents are analogous to

structures in programming languages that associate keys with values (e.g.,

dictionaries, hashes, maps, and associative arrays). Formally, MongoDB doc-

uments are BSON documents. BSON [2] is a binary representation of JSON

6

with additional type information. In the documents, the value of a field can

be any of the BSON data types, including other documents, arrays, and arrays

of documents. For more information, refer to Listing 2.1:

{

name : "tom", // field : value

age : 10, // field : value

grade : "A",

interest : ["news", "sports"]

}

Listing 2.1: Storage Structure

MongoDB stores all documents in collections. A collection is a group of related

documents that have a set of shared common indexes [44]. Collections are

analogous to a table in relational databases and a row to a document in the

collection. For more information, refer to Listing 2.2.

UsersCollection

[

doc#1 {

name : "tom", // field : value

age : 10, // field : value

}

doc#2 {

name : "jane",

age : 11,

}

doc#3 {

name : "joe",

age : 11,

}

]

Listing 2.2: Collections and Documents

Database Operations:

7

• Query Operations: In MongoDB a query targets a specific collection

of documents. Queries specify criteria, or conditions, that identify the

documents that MongoDB returns to the clients. A query may include

a projection that specifies the fields from the matching documents to

return. You can optionally modify queries to impose limits, skips, and

sort orders. In the following Listing 2.3, the query process specifies a

query criteria and a sort modifier.

// Query Criteria : age > 12.

// Sort by age ascending.

db.userCollection.find({ age: {$gt :10}}).sort({
age :1})

Listing 2.3: Sort Query Operation

• Data Modification Operations: Data modification refers to opera-

tions that create, update, or delete data. These operations modify the

data of a single collection. For the update and delete operations, one

can specify the criteria to select the documents to update or remove.

2.1.1.3 Advantages of MongoDB

Following are some of the main advantages [56] of MongoDB and rea-

sons why I chose MongoDB for this application:

• It is has a number of resources and drivers (client libraries) available to

handle the interaction with database in a language appropriate to the

application.

• It has a small learning curve and suitable for project timelines.

8

• It is available for free under the GNU Affero General Public License and

installation is simple.

• It uses JSON-like documents with dynamic schemas. Since my applica-

tion heavily uses JavaScript, a JSON based interface would be a natural

choice.

• It is designed for OLTP workloads and provides the ability to do complex

queries.

• It enables horizontal scalability by using a technique called sharding.

Sharding distributes the data across physical partitions to overcome the

hardware limitations. The data is automatically balanced in the clusters.

• It also provides ACID [43] properties at the document level as in the

case of relational databases.

• It supports replica sets, in other words, a failover mechanism is automat-

ically handled. If the primary server goes down, the secondary server

becomes the primary automatically without any human intervention.

• It supports the common authentication mechanisms, such as LDAP [51],

AD [38], and certificates. Users can connect to MongoDB over SSL [59]

and the data can be encrypted.

• It can be a cost effective solution as it is flexible and reduces cost of

hardware and storage.

However, MongoDB has some disadvantages. It is not suitable for

complex transactions or for applications that have reporting-style workloads.

Unlike HBase [41], it does not provide easy support for Hadoop [45].

9

2.1.1.4 GridFS

Efficient storage and retrieval of large media files is critical for this

application, as is for any social media application. MongoDB is helpful in that

via GridFS [33]. GridFS is a specification for storing and retrieving files that

exceed the BSON [2] document size limit of 16MB. Instead of storing a file in

a single document, it divides a file into parts, or chunks, and stores each of

those chunks as a separate document. By default it limits chunk size to 255

kilobytes.

GridFS Collections: It uses two collections to store files. One collection

stores the file chunks, and the other stores file metadata. When one queries

a GridFS store for a file, the driver or client will reassemble the chunks as

needed. A range of queries can be executed on files stored. One also can

access information from arbitrary sections of files, for example, skipping into

the middle of a video or audio file. To store and retrieve files using GridFS, I

used a MongoDB Node.js driver and gridfs-stream module.

Collections are placed in a common bucket by prefixing each with the

bucket name. By default, it uses two collections with names prefixed by fs

bucket, namely, fs.files and fs.chunks. One can also choose a different bucket

name than fs. Each file chunk is identified by its unique ObjectId stored in its

id field. GridFS uses a unique, compound index [44] on the chunks collection

for the files id and and fields.

10

The application stores media data in GridFS. The following code-

snippet shows how large files are stored/retrieved using GridFS using gridfs-

stream [29]

//gfs : instance of gridfs -stream

var writeStream = gfs.createWriteStream ({

_id: fileId ,

filename: filename ,

mode: 'w',
content_type: mimetype ,

});

file.pipe(writeStream);

}).on('finish ', function () { });

Listing 2.4: Storing data in GridFS

2.1.2 Node.js

Node.js [7] is an open-source software hosted and supported by the

Node.js Foundation and is a collaborative project at Linux Foundation. Simply

put, it provides a JavaScript runtime environment. It runs on Google’s V8

Engine. With the help of inbuilt and external libraries, Node.js provides much

more. For instance, Node.js contains a built-in library to allow applications

to act as a stand-alone web server. It provides the ability to create real-

time, two-way connection applications where both the client and server can

initiate communication and exchange data. A large percentage of the basic

modules are written in JavaScript. It is a cross-platform runtime environment

for developing server-side web applications.

11

2.1.2.1 Event Loop & Non-Blocking I/O

What sets Node.js apart is its event-driven architecture and a non-

blocking I/O design to optimize an application’s throughput and scalability,

especially for real-time web applications. In most languages like C or Java, a

system’s performance can be enhanced by using a higher number of threads.

When one thread is blocked for I/O, other threads can make use of the CPU

time and provide better throughput. However, that results in wasted CPU

cycles due to thread-context switching as well allocation of memory and other

resources to each thread.

Ultimately, only one thread can execute within a core at a time [18].

Multithreading helps performance by scheduling another thread for processing

while one thread is waiting for I/O. Node instead uses a single main thread to

service all requests while requiring that I/O activities be non-blocking, thereby

making sure I/O calls are not preventing optimum CPU utilization. This is a

much simpler approach. It requires that any function performing I/O must use

a callback. This means that HTTP requests, database queries, file I/O, and

other things that require a program to wait for a system call, do not force the

main thread to wait for the call completion. Instead, they run independently,

and then emit an event when the call is completed.

JavaScript runtimes contain a message queue (Figure 2.1) which stores

a list of events to be processed and their associated callback functions. In a

loop, the queue is polled for the next message (each poll referred to as a tick)

and when a message is encountered, the callback for that message is executed.

12

Sharing a single thread between all the requests enables it to support highly

concurrent applications. In order to accommodate the single-threaded event

loop, it utilizes the libuv library which in turn uses a fixed-sized thread-pool

that is responsible for all non-blocking asynchronous I/O operations. As soon

as event-loop encounters a system call, the I/O operation is delegated to the

thread-pool while the main thread goes on to process next task from the queue.

Figure 2.1: Event Loop & Non-Blocking I/O

Let’s first see how a regular blocking I/O code works. In the following

code, we are retrieving a team’s ranking from database and then displaying it

on console. :

function getTeamRank(teamname) {

var team = db.query(teamname);

return team;

}

console.log('Team Rockets Rank is' + getTeamRank('
Rockets ').rank);

Listing 2.5: Blocking I/O Code

13

In this case, the function getTeamRank() blocks until the database

query is complete. As a result, the thread executing this code will block

until the function returns. In Node.js, same functionality will be implemented

differently. Instead of waiting for the query to finish, the query code is passed

a callback function to be invoked when the query is complete. This leaves the

executing thread free to execute another task from the queue while the query

executes in a separate thread. To realize this, the code makes use of an async

function. (Listing 2.6)

function getTeamRank (teamname , callback) {

db.query(teamname , callback);

}

function display(team) {

console.log(team.rank);

}

getTeamRank ("Rockets", display);

Listing 2.6: Non Blocking I/O Code

In Listing 2.6, getTeamRank() is an async function. All async functions accept

a callback as a last parameter and the callback function accepts error as a

first parameter. Call to function getTeamRank() returns immediately without

waiting for database query(db.query()) to finish, freeing the execution thread

for other tasks. The callback function display() is invoked once the query

finishes.

A downside of this single-threaded approach is that Node.js does not

utilize multiple cores of the machine unless we use additional modules such

as cluster, StrongLoop Process Manager, or pm2. Developers can increase

the default number of threads in the libuv threadpool. These threads will be

14

delegated to available cores by the operating system. Another downside is

that programming in Node.js has lots of callbacks to deal with non-blocking

I/Os. Callbacks often initiate other callbacks in a cascading fashion. This

makes code difficult to understand and debug.

2.1.2.2 Closure

Closure is a powerful programming concept in Node.js that helps in

data-encapsulation and loose coupling. Simply put, a closure is a function that

is nested within the scope of another function. The inner function has access

to the outer function’s variables as well as the outer function’s parameters.

As such, the inner function uses the values of variables of the outer function

as they are happen to be at the time of execution. The state of the external

function is stored as a variable. Below, is a small example that explains this

concept:

function currentYear (currYear) {

var nameIntro = "This celebrity is ";

// this inner function has access to the outer

function 's variables , including the parameter

function calcAge (yearofBirth) {

return "Age is " (currYear - yearofBirth);

}

return calcAge;

}

var thisYear = currentYear (2015);

thisYear.calcAge (1980); // Returns 'Age is 35' as it

uses the value 2015 for currYear.

Listing 2.7: Closure

15

2.1.2.3 NPM

NPM [57] stands for Node Package Manager. It is bundled and au-

tomatically installed with Node.js. It is written entirely in JavaScript. It

provides a command line interface and helps manage dependencies for an ap-

plication using a manifest file called package.json. It also allows users to con-

nect to NPM registry to download, upload, publish and share libraries. This

enables easy access to the most commonly used and powerful modules like

express, async, mocha, underscore, stringify, etc.

2.1.3 Web Services

2.1.3.1 REST

Web services are client and server applications that communicate over

the World Wide Web using HyperText Transfer Protocol (HTTP). REST

(Representational State Transfer) and SOAP (Simple Object Access Proto-

col) are the two main software architectural styles for implementation of web-

services. Since Web Services interact using text based formats (mostly XML,

JSON or plain-text) they are language and platform independent. SOAP is

an XML-based protocol and consists of envelope and a body.

Typically, the interface of a SOAP based web service is defined in term

of a WSDL (WebService Description Language), an XML based interface def-

inition language. A WSDL defines the methods that can be invoked by the

clients as well as the structure of input/output parameters in the form of XML

schemas (XSDs). SOAP is very bulky and verbose since it is XML based. Con-

16

suming SOAP services can become extremely complex and cumbersome if the

programming language does not have inbuilt support for it.

In comparison, REST provides a lightweight alternative. In REST

Architecture everything is a resource. Instead of using XML to invoke remote

methods, a REST client relies on URIs (Universal Resource Identifiers) to

query the state of a particular resource. In response, the RESTful web service

returns a representation of the requested resource. Any type of text format

can be used for data-exchange, such as plain text, JSON, XML, etc.

It is important to note that REST is not a standard but more of a

guideline. RESTful web services are easier to learn, develop and consume.

For these reasons, I picked it for the design of the application.

REST also has some disadvantages in that it does not cover all web

services standards, like Transactions, Security, Addressing, Trust, Coordina-

tion, etc. REST requests (especially GET method) are not suitable for large

amount of data. There is no direct support for generating a client from server-

side-generated metadata.

2.1.3.2 JSON

The first wave of web applications and distributed systems was accom-

panied by the popularity of XML as a format for data exchange between the

applications. It is a human readable format, is technology/platform indepen-

dent, can be associated with schema definitions thereby enabling validation,

and supports hierarchical structures. However, it has some drawbacks, e.g.,

17

it can become very bulky and does not render itself to easy consumption by

software programs. These points together with the popularity of JavaScript

for writing web application gave rise to JSON (JavaScript Object Notation).

JSON is a lightweight data-interchange format. Like XML, it is a human read-

able format, but at the same time it is also easy for machines to parse and

generate it. Unlike XML, it is very compact and concise. It supports hierarchi-

cal structures. Although it is language independent, JSON is a natural choice

for JavaScript based applications since it can be automatically parsed/gener-

ated by JavaScript without the need for any developer written code. Libraries

exist to do the same for other languages like Java, C, etc. JSON is built on

two structures:

• A collection of name/value pairs. In various languages, this is realized as

an object, record, struct, dictionary, hash table, keyed list, or associative

array.

• An ordered list of values. In most languages, this is realized as an array,

vector, list, or sequence.

These are platform/language independent universal data structures. It makes

sense that a data format that is interchangeable with programming languages

also be based on these structures. For these reasons I chose to use JSON for

my application.

18

2.1.4 Express

Express [3] is an application server framework that is used for building

web and mobile applications. It is the de facto standard server framework for

Node.js. It is the back-end part of the MEAN stack, together with MongoDB

database. It facilitates a rapid development of Node.js based web applications.

Following are some of the core features of Express framework:

• Acts as an HTTP server and respond to HTTP Requests (GET, HEAD,

PUT and DELETE).

• Defines a routing table which is used to perform different action based

on HTTP verb and URL.

• Allows dynamically rendering of HTML pages via configured middle-

ware.

• Cookies management is available via cookie-parser middleware.

• Provides an easy integration with Database with use of appropriate

Node.js driver.

2.1.4.1 Express-Session

In any web application, we need to track state of a user’s activity as

the user traverses from one page to another. This is done through session

management. Express Sessions [26] is a Node.js module that helps web appli-

cations to maintain user sessions. Session data is stored on the server-side as

session ID. MemoryStore is the default server-side session storage. Following

code snippet creates and associates a session object with request.

19

app.use(session(

{secret: 'mySecret ', cookie: {maxAge:

3600000} ,

resave: false , saveUninitialized: false}

))

Listing 2.8: Example of using Express Session

2.1.4.2 Body-Parser

Body-Parser [23] provides body parsing mechanism to request objects.

The module provides the following capabilities: 1) JSON body parsing 2)

Raw body parsing 3) Text body parsing 4) URL-encoded form body parsing.

Middleware populates req.body property with the parsed body or provides an

error to the callback. This, however, does not handle multipart bodies due to

their complex and typically large nature.

// parse application/json

app.use(bodyParser.json());

Listing 2.9: Body Parser for JSON

2.1.4.3 Busboy-Body-Parser

Busboy-Body-Parser [25] is a module that provides ability to parse the

body of multipart form-data. The parser adds regular fields to HttpRequest

object (req.body) as per body-parser but also adds uploaded files to req.files.

The limit of the file size can be defined which is applied to individual files

rather than the total body size. Example of format of req.files is given below.

20

req.files:

{

fieldName: {

data: "raw file data",

name: "upload.txt",

encoding: "utf8",

mimetype: "text/plain",

truncated: false

}

}

Listing 2.10: Multipart request parser

2.1.4.4 MongoDB Node.js Driver

The MongoDB [30] Node.js driver is the officially supported Node.js

driver for MongoDB. It is written in pure JavaScript and provides a native

asynchronous Node.js interface to MongoDB [21]. The driver is optimized for

simplicity. Some of the calls that it provides for CRUD operations are collec-

tion.insert(), collection.find(), collection.findAndModify(), collection.update()

and collection.delete().

2.1.4.5 Async

Async library is designed to control execution flow of an asynchronous

program. There are a number of such libraries available, namely, Async, Step,

Node Fibers and Syncify. I used Async.js [22] which is the most popular async

library in the JavaScript Community. It is available for Node.js as well as for

browsers. It has a simple design and implements several methods that one

can combine to achieve a parallelism or a composition model. It provides the

21

ability to control asynchronicity and facilitates serial, parallel, waterfall and

queued execution. I used two functions, namely, .each and .waterfall.

• .each : This is a loop for executing asynchronous task. Each task can

be called in parallel using this function.

• .waterfall : Modules written in waterfall model pass data to next mod-

ule in a waterfall pattern.

2.1.4.6 Other Modules

Morgan [31] is an HTTP request logger middleware for Node.js. This

logger middleware provides the ability to configure the format and options of

the output. Available format configurations includes - combine, tiny, common,

dev and short. By default the output is STDOUT but it can be configured

to output to file system. Nodemailer [32] module is used to send emails. It

supports different transport methods, namely, SMTP, sendmail, etc. I used

the preconfigured services for using SMTP with Gmail.

2.1.5 Multimedia

2.1.5.1 Fluent-Ffmpeg

FFmpeg [4] is a free software project that produces libraries for han-

dling multimedia data. It includes libavcodec (an audio/video codec library)

and libavformat (a generic framework for multiplexing and demultiplexing). It

provides command line program for transcoding multimedia files. FFmpeg is

published under GNU General Public License 2+. The name of the project is

inspired by FF for fast forward and the MPEG video. FFmpeg is comprised

22

of various components - ffmpeg, ffserver, ffplay, ffprobe, etc.

I used fluent-ffmpeg [28] module. This provides an abstraction of com-

plex command-line usage of ffmpeg and ffprobe into a fluent, easy to use

Node.js module. This library was used to manipulate media, namely, horizon-

tal and vertical flips, reading media metadata and clipping it.

ffmpeg ()

.input('/path/to/image.jpeg ')

.ffprobe(function(err , data) {

console.log('image metadata:');
console.dir(data);

});

Listing 2.11: ffprobe used for retrieving media metadata

2.1.5.2 GridFS-Stream

Gridfs-Stream [29] is a Node.js module that provides streams for writing

to and reading from GridFS on MongoDB. Following code creates and reads

stream.

// streaming to gridfs

var writestream = gfs.createWriteStream ({

filename: 'my_file.txt'
});

fs.createReadStream('/some/path ').pipe(writestream);
// streaming from gridfs

var readstream = gfs.createReadStream ({

filename: 'my_file.txt'
});

Listing 2.12: Read and Write Stream using gridfs-stream

23

2.2 Front-end Technologies

Today, there are multiple front-end frameworks that make web develop-

ment faster and easier. The frameworks are modular and lightweight making

it easy for developers to mix components. Each framework however, has its

own strengths/weaknesses and specific areas of application. This allows one

to choose the tools based on the needs of a project.

2.2.1 Ajax and jQuery

Ajax stands for asynchronous JavaScript and XML. It is a set of web

development techniques used on the client-side to create asynchronous Web

applications. With Ajax, web applications can send and receive data from

a server asynchronously without interfering with the display and behavior of

the existing page. Data can be sent or retrieved using the XMLHttpRequest

object. Despite the name, the use of XML is not required (JSON is often used

in the AJAJ variant), and the requests do not need to be asynchronous. HTML

and CSS can be used in combination to mark up and style the information.

JavaScript and jQuery are used for creating Ajax request and the response is

used for dynamically update web pages. It provides a way for exchanging data

asynchronously between browser and server without full page reloads. This

greatly enhances the user experience. The Google search type ahead feature

is an everyday example of Ajax in action.

jQuery is a cross-platform JavaScript library designed to simplify the

client-side scripting of HTML. jQuery, at its core, is a DOM (Document Object

24

Model) manipulation library. The DOM is a tree-structure representation of a

web page. jQuery simplifies the syntax for finding, selecting, and manipulating

DOM elements. For example, jQuery can be used for finding an element in the

document with a certain property (e.g., all elements with an h1 tag), changing

one or more of its attributes (e.g., color, visibility), or making it respond to

an event (e.g., a mouse click). It can also be used to create animations as well

as Ajax applications. It is an open-source software licensed under the MIT

License. It also provides capabilities for developers to create plugins on top of

the JavaScript library [12]. It is possible to perform browser-independent Ajax

queries using $.ajax and associated methods to load and manipulate remote

data.

$.ajax({
type: "POST",

url: "/user/city",

data: "name=John&location=Austin"

})

.done(function(msg) { alert("Data Saved: " + msg

); })

.fail(function(xmlHttpRequest , statusText ,

errorThrown)

{

alert("Your form submission failed.");

}

);

Listing 2.13: Example of Ajax POST

The example (Listing 2.13) posts the data name=John and location=Austin

to URI /user/city on the server. When this request finishes, the success

function is called to alert the user. If the request fails, it will alert the user to

25

the failure. Note that the above example uses the deferred nature of $.ajax()

to handle its asynchronous nature: .done() and .fail() create callbacks that

run only when the asynchronous process is complete.

2.2.2 Jade

A template engine is a library or framework that uses some language/rules

to interpret the data coming from the back-end and rendering HTML views.

There are a number of JavaScript template engines available today, namely,

Jade, Mustache.js, Dust.js, EJS, etc., Jade being the most popular of them.

It is heavily influenced by Haml [46] and is implemented with JavaScript for

Node.js and browsers. It has a clean, whitespace-sensitive syntax for writing

HTML with no requirement for closing tags. It has an extensive layout in-

heritance. It supports use of locals or variables, setting of attribute values,

scripts, style blocks, conditions, iterations, filters, interpolations and includes.

Variables inside templates are either passed from the server-side code or set

into the template [17].

1 input { "name": "John" }

2 /******* JADE template: *****/

3 doctype html

4 html

5 head

6 title Example of a Jade Template

7 body

8 h1 Hello #{name}

Listing 2.14: Example of Jade template and interpolation

Listing 2.14 and 2.15 displays Jade interpolation example.

26

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>Example of a Jade Template </title>

5 </head>

6 <body>

7 <h1>Hello John</h1>

8 </body>

9 </html>

Listing 2.15: Example of generated HTML with interpolation

A view engine can be set up in Express using the following code.

express.set("view engine", "jade");

Listing 2.16: Template Engine Configuration with Express

2.2.3 Bootstrap

Bootstrap is a framework designed for building responsive, accessible

and mobile-ready websites. It is an open-source platform. It uses HTML5,

CSS3, and jQuery. It contains HTML and CSS-based design templates for

typography, forms, buttons, navigation and other interface components, as

well as optional JavaScript extensions. It features a 12-column grid and icons

that one can incorporate into the user interface.

Bootstrap is compatible with the latest versions of Google Chrome,

Firefox, Internet Explorer, Opera, and Safari browsers. Since version 2.0 it

also supports responsive web design. This means the layout of web pages ad-

justs dynamically, taking into account the characteristics of the device used

(desktop, tablet, mobile phone). Starting with version 3.0, Bootstrap adopted

27

a mobile first design philosophy, emphasizing responsive design by default. I

used Bootstrap’s CSS and components to build the front-end of the applica-

tion.

2.2.4 Bootstrap-Fileinput

Bootstrap-Fileinput is an enhanced HTML 5 file input [24] plugin with

the ability to preview files and offers multiple files selection. The plugin allows

one to setup an advanced file picker/upload control. It is built to work with

Bootstrap CSS3 styles. It enhances the file input functionality by offering

support to preview a wide variety of files, i.e., images, text, html, video, audio,

flash, and objects. In addition, it provides Ajax based uploads, dragging and

dropping files, viewing upload progress, and selectively previewing, adding,

or deleting files. I used this plugin in my application give user the ability to

select/drag-drop media files for adding to the data store.

28

Chapter 3

Application Overview

3.1 Functionality

UToobe is a web-based application that allows users to view and share

media online. It provides the following functionality:

• Create unique users by choosing login ID and password.

• View and edit user profile.

• Create social-circles and restrict media share.

• Upload media files together with their title and keywords.

• Search for media files that match based on keywords, title, author and

category.

• View/play media files.

• Add comments to media submitted by other users.

• Rate media submitted by other users.

• Manipulate media.

• View most recent/highly voted media.

29

3.2 High Level Architecture

Figure 3.1: High Level Architecture of UToobe

The application makes use of three of the components of the MEAN

stack, namely, MongoDB [34], Express [3] and Node.js [7]. Instead of Angu-

larJS [40], my application uses jQuery [50] and Jade [14]. MongoDB provides

an easy, JSON oriented interface for storing large, unstructured data in a

NoSQL persistent store. Express is the lightweight HTTP Server module that

receives the web-requests and performs routing, redirection and caching. It

also supports configuration of template engines for the view. Node.js provides

a server platform for non-blocking I/O and callbacks for executing JavaScript

in headless mode. It makes available a library of modules like busboy-body-

parser, fluent-ffmpeg, express-session, morgan, gridfs-stream and MongoDB

driver that were used for implement the functionalities. jQuery [50] library is

30

used for making Ajax [39] requests, manipulating elements, triggering and lis-

tening for events, selecting elements from the DOM, getting and setting form

input values and traversing the DOM. This worked well with template engine

Jade and eased the task of interacting with elements on a web page.

3.3 Request-Response Pipeline

Figure 3.2: Request-Response Pipeline

The application has mainly two flows (Figure 3.2) that are described

below.

1. Static pages: This flow is followed when serving static pages such as

the landing page. In this case, the request from browser is intercepted by

Express middleware which uses Jade template engine to render HTML

31

back to the browser.

2. Dynamic Content: Most of the functionality of the application is

served via dynamic content. In this case, the user inputs are validated

in the browser using jQuery/JavaScript. If the validation fails, user is

given the error message. All this happens in the browser itself without

a hop to the server. If the input validation succeeds, a JSON document

is created by the client-side JavaScript. This document is posted to the

back-end by a jQuery/Ajax call via HTTP verb (GET, PUT, POST,

DELETE). The target is the REST web service hosted by Express mid-

dleware. Express redirects this request to the mapped JavaScript code

which then services the request. This JavaScript code is responsible for

rendering the response. Depending on functionality, it could make a call

to the back-end data store, MongoDB in our case, to store or retrieve

data (CRUD operations). The results from the store come in JSON for-

mat which are then interpolated by the JADE template engine to render

the HTML back to the browser.

3.4 Summary of Technologies Used

The following table lists the libraries or frameworks used for building

UToobe application.

32

Library/Module Version Summary
Body-Parser 1.14.0 Request body parser
Bootstrap 13.3.5 CSS and Component framework
Bootstrap-Fileinput 4.2.7 HTML5 file input for Bootstrap 3.x
Busboy-Body-Parser 0.0.9 Multipart form data parser
Express 4.13.3 HTTP Server
Express-Session 1.11.3 Session management library
Fluent-Ffmpeg 2.0.1 Media manipulation library
Gridfs-Stream 1.1.1 Interface to GridFS
Jade 1.11.0 Template engine
jQuery/Ajax 2.1.4 DOM manipulation & asynchronous JS
MongoDB 3.0.5 NoSQL data store
Morgan 1.6.1 Logger library
Node.js 0.12.7 Async, Non Blocking I/O framework
Nodemailer 1.10.0 Library for Sending Emails
NPM 2.12.1 Node Package Manager

Table 3.1: Summary and Version of Library/Frameworks Used

3.5 Data Model

To support the application the following four collections were used. The

collections and their document instance are outlined below.

3.5.1 Media Collection

Listing 3.1: Media Document

1 { _id: Object ,

2 title: String ,

3 description: String ,

4 keywords: String ,

5 category:String ,

6 fileName: String ,

7 contentType:String ,

8 likeCount: integer ,

33

9 dislikeCount: integer ,

10 userID: Object ,

11 comment: Array ,

12 fileID: Object ,

13 createDate: Date }

Listing 3.1: Media Document

3.5.2 User Collection

1 { _id: Object ,

2 loginName: String ,

3 passwd: String ,

4 email: String ,

5 firstName: String ,

6 lastName: String ,

7 dob: Date ,

8 profilePic: Object ,

9 mediaCount: integer ,

10 commentCount: integer ,

11 likeCount: integer ,

12 dislikeCount: integer ,

13 createDate: Date }

Listing 3.2: User Document

3.5.3 fs.chunks Collection

GridFS uses fs.chunks to store the media data.

1 { _id : Object ,

2 filename : String ,

3 contentType : String ,

4 length : Double ,

5 chunkSize : Double ,

6 uploadDate : Date ,

7 aliases : Array ,

8 metadata : Object ,

9 md5 : Object }

Listing 3.3: fs.chunk Document

34

3.5.4 fs.files Collection

GridFS uses fs.files to store metadata for the media.

1 { _id : Object ,

2 files_id : Object ,

3 n : Double ,

4 data : Binary Data }

Listing 3.4: fs.file Document

3.6 Source Structure

This section describes the organization of the source code. The skeleton

of the project was generated using express-generator [27] module. The project

has the following structure:

• package.json - It is a manifest/configuration file that directs npm to

install dependencies and modules.

• app.js - It is the starting point of the application. It loads required

modules and starts the HTTP server.

• devDb Config.txt - contains database configuration details, namely, path

to data store file, port, maximum number of connections and logging

level.

• routes/ - contains Express application routing middleware.

• views/ - provides templates which are rendered and served by configured

routes.

• config/ - contains application configuration files, for example, database

config.

35

• public/ - contains all static files like images, styles and JavaScript.

• lib/ - contains common code and functionality shared by different parts

of the project.

3.7 RESTful Services

The following table summarizes RESTful services used by UToobe

application. The main parameters passed to these services are uID (userID)

and mID (mediaID) which are the unique IDs of user and media respectively.

HTTP verbs (GET, PUT, POST and DELETE) are used for performing read,

update and delete operations.

Route HTTP Verb Description
/user/:uID GET Get user details
/user/:uID PUT Update a user
/user/:uID DELETE Disable a user
/user/signup POST Create new user
/media/:mID GET Get media details
/media/:mID PUT Update a media
/media/:mID DELETE Delete a media
/media/add POST Create new media
/media/recent GET Get most recent media
/media/mostLike GET Get most voted media
/media/search POST Get media list that match criteria
/media/list GET Get user media list
/media/clip/:mID POST Clip media
/media/manip/:mID POST Manipulate media

Table 3.2: List of RESTful Services consumed by UToobe

36

Chapter 4

Implementation

This chapter describes the implementation details of the application. I

will go over the various use cases and how they were realized. These details

are explained in terms of the screenshots, data-interchange formats, and the

web-services [62] created for achieving the functionality. The application was

developed using WebStorm [36] IDE [48]. The main technologies used in the

application are jQuery [50], Ajax [39], Jade [14], Node.js, NPM [57] (Node

Package Manager), MongoDB [56] and MongoDB Node.js Driver [30].

4.1 Navigation Bar

A navigation bar is the navigation header placed at the top of every

page after the user has logged in. It provides the ability to navigate to various

parts of the application. I used Bootstrap navbar and navbar-default class

with HTML5 nav tag. The navigation bar can extend or collapse, depending

on the screen size.

Figure 4.1: Navigation Bar

37

As can be seen in the Figure 4.1, Bootstrap components called Glyph-

icon have been used. Bootstrap includes over 250 free glyphs in font format

from the Glyphicon Halflings set. The navigation bar is added to the top of

every page by use of Jade includes API.

1 <ul class="nav navbar-default">

2 <span class="glyphicon

glyphicon-plus-sign">

3 Add

4

Listing 4.1: Navigation bar with (+) Glyphicon

4.2 Authentication

The following screenshot (Figure 4.2) shows the landing page of the

application. This page provides a new user with the ability to create an account

while an existing user can use this page to enter his/her credentials and login

to the system.

38

Figure 4.2: Login Page

The validation script (loginCtrl.js) together with a call to HTTP POST

to /user/login ensures that a user is valid. If a user credentials are not valid

then an error message is thrown on the Login Page and the user is prompted

to try logging in again. On successful authentication, a user is taken to the

dashboard page. I used a simple key value comparison for authentication.

Express-session module has been used for storing the user login name and

userID. If a user has forgotten his/her password, they can select Forgot your

password? link and a Bootstrap modal box pops up where they can enter

their email address. The current password would then be emailed to them.

Nodemailer [32] module is used to send emails.

jQuery Ajax is used for posting the JSON document containing user-

39

name and password to /user/login.

1 $.ajax(
2 {

3 type: 'POST ',
4 data: user ,

5 url: '/user/login ',
6 dataType: 'JSON '
7 }

Listing 4.2: Authentication request

The following callback function ensures that the userID exists in the data store

and the supplied password is valid. Express-session [26] is used for storing

session details.

1 userMgr.authUser(req.body , function validateUser(err ,

result) {

2 // query db

3 if (result != null) {

4 //set user details in the session

5 req.session.userID = result._id;

6 req.session.loginName = result.loginName;

7 }

8 resp.send((result === null) ? {'msg': 'User does

not exist '} : {'msg': 'SUCCESS '});
9 });

Listing 4.3: Credentials Validation callback

The following call to MongoDB tries to find a user document that contains

matching username and password.

1 collection.findOne(data ,callback);

Listing 4.4: Data Store findOne callback

40

4.3 Account Creation

This use case handles creation of a new user in the system. Users can

navigate to this screen by selecting Create new account link on the Login Page.

Figure 4.3: Account Creation Page

It takes the following inputs in the HTML form - username, password,

41

loginID and date of birth to create a unique user in the system. On filling the

details and submitting the form, the form validation takes place on the client

side using signUpCtrl.js. On a successful validation, a JSON document is

created containing user details. jQuery-Ajax is used to call HTTP PUT to URI

- /user/signup. Express then routes the request to the associated callback

methods. The following jQuery-Ajax called is made to create a new user in

the system.

1 $.ajax(
2 {

3 type: 'PUT',
4 data: newUser ,

5 url: '/user/signup ',
6 dataType: 'JSON '
7 }

8);

Listing 4.5: Create new user request

The following associated callback function is used for forwarding JSON docu-

ment to the URI.

1 router.put('/signup ', function createUser(req , res) {

2 userMgr.addUser(req.body , function insertCb(err ,

result) {

3

4 res.send((err === null) ? {msg: 'SUCCESS '} : {

msg: err});

5 });

6 });

Listing 4.6: Create User callback

The following MongoDB JS function is called to insert the user JSON docu-

ment in the data store. Refer to Listing 4.7.

42

1 {

2 "_id" : ObjectId("561 ac7xxxxxx"),

3 "loginName" : "johnK",

4 "passwd" : "123 secret",

5 "email" : "john@macworld.com",

6 "firstName" : "John",

7 "lastName" : "King",

8 "dob" : ISODate("1975 -11 -26 T00 :00:00Z"),

9 "mediaCount" : 0,

10 "commentCount" : 0,

11 "likeCount" : 0,

12 "dislikeCount" : 0,

13 "createDate" : ISODate("2015 -10 -11 T20 :33:09.206Z")

14 }

15 collection.insert(data ,callback)

Listing 4.7: User Data (JSON) and insert callback

4.4 Dashboard

On successful login, a user is taken to dashboard page. This page

consists of two sections with thumbnails view of shared media. Top section

displays the media sorted by popularity while the bottom section displays the

most recently uploaded media. Selecting any of the media files takes the user

to the View media.

43

Figure 4.4: Dashboard Page

The page uses Jade template engine on the server side to render the

content. This is a two step process. First GET /media/dashboard URI is

invoked which retrieve a static content. After that two separate jQuery Ajax

calls are made to GET /media/recent and /media/mostLiked. The result is

an array of JSON documents which is parsed by the Jade engine.

1 a) router.get('/recent ', function getRecentList(req ,

res) {

2;

3 res.json(rSet);

4 });

5 b) router.get('/mostLikes ', function getMostLike(req ,

res) {

6;

7 res.json(rSet);

8 });

Listing 4.8: REST calls for get Recent and Most Likes

44

1 /**** MongoDB JS data store find function : ***/

2 exports.getRecent = function (limit , cb) {

3 var options = {

4 "limit": limit ,

5 "sort": [['createDate ', 'desc ']],
6 }

7 return connMgr.mediaColl ().find({}, options).

toArray(cb);

8 };

Listing 4.9: DB call for get Recent Media

4.5 View Media

On selecting View on thumbnail of the media in the Dashboard, the

application takes the user to View media. On this page the user can play the

media if it is a video file or simply see a larger version in case of static images.

User can also add his or her comments, vote for the media, and read other

users comments.

45

Figure 4.5: Comments on Media

The view is composed of the Jade template and call to HTTP GET

/media/:mID/view. The request returns media document associated with

given mID. On adding a comment and pressing the Add Comment, an HTTP

POST /media/:mID.

46

1 mediaMgr.upateMedia(req.params.mID , function (err ,

result) {

2 res.render('mediaView ',result);
3 });

4 /**** MongoDB data store find and update ***/

5 collection.findOne(data ,callback)

6 collection.update ({_id:"foo"}, data , callback)

Listing 4.10: Add Comments

4.6 Search

The application provides the ability to search for media by title, key-

words, author and category. The search page can be reached by clicking Ad-

vanced Search on the navigation bar. On entering the value in the search form

and hitting submit, jQuery extracts the values of the form and a JSON doc-

ument is created. jQuery Ajax posts the form data to /media/search. The

result is a list of documents that match the search criteria. Array of JSON

documents is parsed, html constructed and then the content is injected into

the page.

Figure 4.6: Search Capability

47

1 searchDoc = {

2 'title ': searchTitle ,

3 'category ': searchCat };

4 $.ajax(
5 { type: POST ,

6 data: searchDoc ,

7 url: /media/search ,

8 dataType: JSON })

Listing 4.11: Search Request

The following callback function is called to get a list of media that matches

the search criteria.

1 router.post('/search ', function getSearchResult(req ,

res) {

2 mediaMgr.findMedia(req.body , function (err , result){

3 res.json(result); } }

4 /** Search results injected usint jQuery **/

5 $('#resultSet ').html(htmlLine);

Listing 4.12: Search results (JSON) array

The following MongoDB JS function is called to find the matching

media:

1 collection ().find(data).toArray(callback);

2 /** regular expression to match search criteria **/

3 collection ().find({ title: { $regex: result[,

$options: 'i'] } });

Listing 4.13: Data Store find call

Async.js library is used with waterfall pattern along with async.each

to retrieve data in two collections on the common key - userID. The media

document contains the userID but the UI displays the loginId associated with

user name. This could have been done with two calls but it was more efficient

this way to do as one call on the server side.

48

1 /**Use Async library to control execution of multiple

callbacks , use result of one call back in the

following callback function **/

2 async.waterfall ([

3 function (cb) {

4 // find matching media documents

5 mediaMgr.findMedia(req.body , function (err

, result) { cb(err , result); });

6 },

7 function (result , cb) {

8 // calculate and set elapsed time

9 var currDt = new Date();

10 result.forEach(function (r) {

11 r.timeElapsed = helper.getTimeDiffStr(

r.createDate);

12 r.commentCount = r.comments.length;

13 });

14 cb(null , result); } ,

15 function (result , cb) {

16 // parallel exec to get loginId for userId

17 async.each(result , function (rec , cb) {

18 userMgr.getLoginName(rec.userID ,

function (err , loginInfo) {

19 rec.loginName = loginInfo.

loginName;

20 cb(); });

21 }, function (err) {

22 if (err) { // if one of the iterations

produced an error , all processing

will stop.

23 console.log('err has occurred ');
24 } else {

25 console.log('Records successfully

updated ');
26 cb(null , result); } }); }

27], function (err , rSet) { // return resultSet

28 res.json(rSet);

29 });

Listing 4.14: Async Waterfall to fetch data from Multiple collections

49

4.7 Add Media

UToobe provides the ability to upload and share media. The Add

Media page can be reached by clicking + Add on the navigation bar. The

web page consists of HTML form that prompts user to provide details for the

media to upload - title, keywords, description and category. A user can then

select the file to be uploaded either by browsing the local file system or using

a drag and drop. User can also remove the file for upload from this preview

box by selecting remove. The upload-view provides the ability to preview the

uploaded file i.e. view image, play video, audio etc.

This form template uses bootstrap-fileinput plug-in. This plug-in is

built to work with Bootstrap CSS3 styles. It allows developers to setup file

picker directly through html tags or using jQuery. I have used the former.

Snippet of Jade plug in code is shown in Listing 4.15.

1 /*** Jade head ***/

2 link(href= '/css/fileinput.min.css ', media= 'all ', rel= '
stylesheet ', type= 'text/css ')

3 script(src= '/ bootstrap-fileinput/js/plugins/
canvas-to-blob.min.js ', type= 'text/javascript ')

4 script(src= '/ bootstrap-fileinput/js/fileinput.min.js ',
type= 'text/javascript ')

5 /*** Jade body ***/

6 input#fileSelectedData.file.input-sm(type= 'file ',
data-show-upload= 'false ')

Listing 4.15: bootstrap-fileinput plug-in

On submitting the form, the validation for the form fields takes place

by addMediaCtrl.js followed by creation of media JSON object. jQuery Ajax

call is made to HTTP PUT /media/add. The multipart request form data is

50

Figure 4.7: Add Media Page

51

handled by busboy-body-parser module followed by callback to uploadMedia.

The uploaded file data and its attributes are passed to data store for persis-

tence. The gridfs-stream module instance is used for creating writestream to

persist data in MongoDB store. The media attributes below are stored in the

mediaCollection. Listing 4.16 code extracts the form data and assembles it to

create a media JSON document.

1 var formData = new FormData ();

2 var newMedia = {

3 'title ': $('#textTitle ').val(),
4 'description ': $('#textAreaDesc ').val(),
5 'keywords ': $('#textKeyword ').val(),
6 'category ': $('#optCategory ').val()
7 };

8 formData.append("newMedia", JSON.stringify(

newMedia));

9 formData.append("fileSelectedData", $('#
fileSelectedData ')[0]. files [0]));

Listing 4.16: jQuery extract form data

The following code calls HTTP PUT to create a new media object in

data store.

1 $.ajax({ type: 'PUT',
2 data: formData ,

3 cache: false ,

4 contentType: false ,

5 processData: false ,

6 url: '/media/add' })

Listing 4.17: Create Media Request

The following callback function is used to parse the multipart request data

and then upload media data and attributes to data store.

52

1 router.put('/add', busboyBodyParser ({ limit: '100mb'}),
function uploadMedia(req , res) {....}

2 // use gridfs -stream instance to create a write Stream

3 var writeStream = connMgr.getGFSInstance ().

createWriteStream ({

4 _id: imageStorageID ,

5 filename: mediaData.name ,

6 mode: 'w',
7 content_type: mediaData.mimetype

8 });

9 writeStream.write(mediaData.data);

Listing 4.18: Multipart request parser with Write request

The following displays the structure of Media JSON.

1 { "_id" : ObjectId("56217 xxxxx"),

2 "fileName" : "oceans.mp4",

3 "contentType" : "video/mp4",

4 "title" : "ocean video",

5 "description" : "View of the ocean",

6 "keywords" : "ocean birds",

7 "category" : "Entertainment",

8 "comments" : [

9 { "userID" : ObjectId("5621 xxxxxxx"),

10 "createDate" : ISODate("2015 -10 -16 T22

:16:25.021Z"),

11 comment: "I like this video. Very

refreshing" }

12],

13 "likeCount" : 0,

14 "dislikeCount" : 0,

15 "fileID" : ObjectId("562177398 axxxxx"),

16 "userID" : ObjectId("561 ac7855xxxxx"),

17 "createDate" : ISODate("2015 -10 -16 T22 :16:25.021Z")

}

18 /**** MongoDB insert function : ***/

19 collection ().insert(data , cb)

Listing 4.19: Media data persistence in Data Store

53

4.8 My Media

This functionality queries the data store and renders a list of the media

uploaded by a user. An HTTP GET /media/list call is made and userId is

passed to data store to query for media(s) uploaded by user. The view is made

up of Jade template and iterator is used to parse the JSON document array.

The list-view also provides the following:

• The ability to edit media details like title, description, keywords, and

category by using HTTP POST /media/:mID.

• The ability to remove the media from the store by calling HTTP DELETE

/media/:mID.

Figure 4.8: My Media List

1 router.get('/list ', function getMediaList(req , res) {

2 mediaMgr.getUploadedList(req.session.userID ,

function (err , result) {

3 // setting result in resultSet for Jade

iterator.

4 res.render("mediaList", {resultSet: result}

5);

6 }); });

Listing 4.20: Jade Iterator for parsing document array

54

1 /**** MongoDB data store find , update , remove ***/

2 collection.find({_id:"foo"}. toArray (callback))

3 collection.update ({_id:"foo"}, data , callback)

4 collection.remove ({_id:"foo"}, callback)

Listing 4.21: Datastore find, update, remove

4.9 Clip

This use case allows the user to manipulate the media. A user can up-

load a media file or manipulate a shared media. Media manipulation includes

horizontal and vertical flip option for images and clipping for a video. A user

can then choose to save the clipped or manipulated media.

Figure 4.9: Media Manipulation

Fluent-ffmpeg module is used to perform media manipulation. For

instance on selecting the vertical flip option available to images, a call to HTTP

55

PUT is made to /media/manip/:mID with details of the media and required

manipulation request. Results of media manipulation are then rendered to

the client. A user then has the option to save the media.

1 router.post("/manip/:mID", function manMedia(req , res)

2 {

3// use ffprobe to get the format of the

stream

4// vertically flip the media

5 ffmpeg(r_stream)

6 // format of stream

7 .format('mjpeg ')
8 .outputOptions('-vf vflip ')
9 .output(w_stream) ;

10 });

Listing 4.22: Vertical flip Request

56

Figure 4.10: Media Clip

In Figure 4.10, on selecting clip media option available to videos, a call to

HTTP PUT is made to /media/clip/:mID with details of the media and re-

quired manipulation params, namely, duration and start position.

1 router.post("/clip/:mID", function manMedia(req , res)

2 {

3// use ffprobe to get format of stream

4 ffmpeg(r_stream)

5 .setStartTime('00:00:10 ')
6 .duration (5)

7 .save(w_stream);

8 });

Listing 4.23: Clip Media Request

57

4.10 Profile

This use case provides the ability to view the profile of the currently

logged in user. Profile details consists of name, loginID, current number of

like(s) and dislike(s) votes, number of uploaded media, user creation date and

number of comments added by user. This functionality achieved by a call to

HTTP GET /user/profile. UserID stored in the session is used for finding

the associated user details. Jade template is used for building the page and

Jade interpolation is used for displaying the details of the user.

Figure 4.11: User Profile

58

The profile view also provides the ability to edit details of the profile

- name, email and date of birth. This is achieved by a call to HTTP PUT

/user/:userID.

1 router.get('/profile ', function viewProfile(req , res)

{

2 userMgr.getUser(req.session.userID ,

3 function getProf(err , result) {

4 result.createDate = helperFn.

convertDtToString(result.createDate);

5 result.dob = helperFn.convertDtToString(

result.dob);

6 res.render('userProfile ', result);

7 })

8 });

9 /**** MongoDB JS data store find and update : ***/

10 userColl ().findOne ({_id: "foo"}, cb);

11 userColl ().update ({_id:"foo"},{$set:userDoc })

Listing 4.24: View Profile callback

4.11 Sign Out

Sign Out link in the navigation bar provides the functionality of de-

stroying the user session and rendering a logout page. This page provides the

ability to re-login.

1 router.get('/logout ', function logOut(req , res , next)

{

2 req.session.destroy ();

3 res.render("logout");

4 });

Listing 4.25: LogOut callback

59

4.12 Utilities and Configuration Files

MongoDB configurations are stored in db config.js. This configuration

consists of the name of the database instance and names of the collections. On

application server startup, this configuration is read by connMgr.js. It then

creates a pool of database connections and make them available for servicing

database requests.

1 exports.config = {

2 db_params: {

3 host: "localhost",

4 port: 27017,

5 poolSize: 6,

6 dbName: "utoobe"

7 } ,

8 userColl: "users",

9 mediaColl: "medias"

Listing 4.26: Database Configuration

60

Chapter 5

Conclusion

UToobe application building was a valuable exercise in my goal to

learn new tools and emerging web technologies. This chapter documents the

lessons learnt and enhancements that I would like to make in future.

5.1 Lessons & Reflections: An Introspection

5.1.1 JavaScript

In my professional career I have mostly worked with Java. I have used

JavaScript in the past, but mostly for the front-end development. In this

application, I have used JavaScript both on front-end as well as the server

side. The code in JavaScript is very concise and compact. Amount of code

written for this application is approximately 1500 lines. This includes front-

end code (Jade, JavaScript), as well as back-end (Express, Node.js, etc.). In

my estimate, the same thing would have taken a plethora of classes and over

three times more lines of code using Java technologies [13]. For example, in

order to parse a JSON message in a Java program, I would have to use libraries

like Gson which would convert JSON message into Java classes. After that

I would have to traverse the Java classes to extract the data. In contrast

61

JavaScript allows me to traverse JSON strings directly and extract the data

that I need. This inbuilt support for JSON reduces the size of code and makes

it lucid.

5.1.2 Node.js

Software development in Node.js was a complete paradigm shift, es-

pecially due to my prior experience with Java. Initially it was very difficult

to understand and develop code using Node.js’s single-thread model and the

concept of non-blocking I/O. But it had a small learning curve and soon I was

comfortable with it. I would strongly recommend Node.js as a powerful tool

for any web developer for the following reasons:

Single thread model: I had faced performance issues with Java pro-

grams even when using multi-threading. I appreciated how Node.js takes care

of performance by using a simple single-threaded design thereby removing the

overhead of thread context switching, and resource hogging by each thread.

The single thread model frees the developers from the complexity of writing

multi-threaded code for performance, as is done in Java [16]. The latter re-

quires developers to hone difficult and bug-prone concepts like thread-pools,

class/instance level locks and synchronization, inter-thread communication,

and deal with issues like race-conditions, thread-starving, runaway threads,

etc. At the same time, Node.js does allow you to make use of multiple cores

of your machine by allowing you to spawn child processes or send messages to

additional worker processes. In this design, one thread manages the flow of

62

events and other threads perform system calls.

However, this simplicity in runtime design comes at the cost of code

complexity. Callbacks were hard to debug. Order of execution of the callbacks

is not predictable. I would suggest keeping nested callbacks to a minimum

to reduce complexity of debugging and error-handling. Also naming functions

rather than using anonymous functions helped. Use of Async.js bind() to

attach a context to the object can make Async callback patterns easy to follow.

Non Blocking I/O: The single thread model of Node.js requires that

all I/O operations are non-blocking, so that the main thread is never waiting

for I/O. This is realized using callbacks functions. Requiring I/O operations

to be non-blocking, and handling them via separate pool of threads is a clever

way to improve CPU utilization.

Succinct: As compared to Java, the code written using Node.js is very

compact and succinct. Dynamic typing helps to write more loosely coupled

applications and easier integration. Closures help scoping the access of the

function’s variables and this in turn helps in creating a concise and expressive

code.

5.1.3 jQuery-Ajax and Jade

AngularJS is the A in the MEAN stack and quite popular. AngularJS

is a powerful two-way data-binding framework that allows usage of directives

for creating reusable custom components. It is [40] built for SPA(Single Page

Applications) [60] and offers capabilities much more than DOM manipulation.

63

However, it has a high learning curve. I spent some time understanding its

view patterns but later decided in favor of jQuery-Ajax. I would like to learn

it in future for creating dynamic SPA where a page is highly interactive.

jQuery [50] library worked very well for making Ajax [39] requests,

manipulating elements, triggering and listening for events, selecting elements

from the DOM, getting and setting form input values and traversing the DOM.

This complemented Jade template engine and acted as a facade to standardize

and ease the task of interacting with elements on a web page.

Jade provides the features of interpolation, iterator, inheritance, in-

cludes and embedded logic to substitute values in generated HTML. One can

write html in few lines of Jade code. It does not required closing tags but is

space and indentation sensitive. This can be annoying at first. I used tools

like Jade2HTML and HTML2Jade to help debug the issues.

If this application was developed using Java web technologies, this part

of the application would have been implemented using Servlets or JSPs. There

is a tradeoff between the two technologies. Although the statically typed Java

framework makes it easy to maintain/refactor code [19] and gives better per-

formance for high volumes, the write-compile-deploy cycle slows down develop-

ment. The dynamically typed frameworks like jQuery/Jade provide for faster

prototyping and increased developer productivity.

64

5.1.4 Bootstrap

As a server side engineer, I have always been uncomfortable venturing

into the creative world of UI development. I have found the use of CSS,

view controls and pixel controls to be challenging. The availability of the

frameworks like Bootstrap with inbuilt components and styling capabilities

helped put together a user-interface that looks professional rather than the

work of a rookie web-developer. The responsive UI with the inbuilt grid column

control was very powerful. I did not get a chance to use it to its full potential

but would like to do so in future.

5.1.5 Express

Use of Express as a HTTP server turned out to be very simple. It

received the web-requests and carried out the functionality of routing, redi-

rection and caching. Configuring Express was much simpler than a typical

HTTP server which requires configuring web.xml. Express performs routing

using GET, POST, PUT, DELETE methods which take route path parame-

ters and invoke the mapped handlers at runtime. As a route can have one or

more handler functions, this renders flexibility, enables handler chaining and

facilitates code reuse. The routing configurations also provides the ability to

accept optional parameters and match wildcards.

65

5.1.6 MongoDB

This was my first interaction with a NoSQL database. Having worked

with RDBMS all my professional life, I was able to appreciate the ability of

MongoDB to handle unstructured data. RDBMS systems become slow as the

amount of data increases. They are not able to scale horizontally by utilizing

multiple servers, but mostly scale vertically by demanding more capacity from

a single server. Though lately some of the RDBMS systems have come up

the feature of sharding (ability to distribute data partitions across multiple

servers), it however, does not come out of the box. MongoDB on the other

hand is capable of providing horizontal scaling by distributing the data across

multiple servers [55].

Dealing with large-sized data pieces is also very slow as well as cum-

bersome in RDBMS system. In the RDBMS world, they are referred as LOBs

(Large Objects) which can be of type BLOB or CLOB [20] (binary or char-

acter data respectively). RDBMS systems store the entire LOB at a single

location. This makes storage and retrieval operations very slow. MongoDB

on the other hand, via its GridFs interface [54], divides large files into smaller

chunks of default size 255 kilobytes, and stores each chunk separately. This

not only speeds up read/write operations, but also provides the ability to load

only certain parts of the file instead of the whole. What makes it even better

is that all this happens behind the scene and developers do not have to deal

with individual chunks. Developer’s code stores and retrieves the full file and

chunking happens transparently.

66

Another aspect of MongoDB is that it provides an easy, JSON oriented

interface for storing large, unstructured data. This was especially helpful since

I used full-stack JavaScript which has native support for JSON.

5.1.7 Development Environment

IDE and Supervisor: I used WebStorm [36] from JetBrains for the

application development. It was lightweight and provided a good set of debug-

ging tools. Using Supervisor programs like nodemon [8] helped speed up devel-

opment. In the development environment, Nodemon automatically restarted

the application whenever it detected any modification in the source code or if

the application crashed.

NPM: This is a packaging tool that comes with Node.js and greatly

speeds up development. The application dependency declaration file pack-

age.json is a simple JSON file. Developers can share the libraries easily by

pushing them to the npm registry.

Packages are constantly being updated on Node.js platform. There is

a big community of developers enhancing and modifying the platform. There-

fore, restrict the module versions in your manifest file i.e. package.json to use

fixed versions rather than ˜(tilde) or ˆ(caret) before a module version. The

˜matches the most recent minor version and ˆforces package-manager to up-

date to the most recent major version. Use node update command to view if

you have any latest updates in the npm registry and then perform the update.

This will help the builds from failing.

67

5.1.8 Documentation

As Node.js is evolving rapidly and the community is growing, the doc-

umentation is not able to keep up the new code and changes. Node.js founda-

tion is doing a good job but it is not enough. Stack Overflow [35] Q & A and

developer blogs helped fill that void.

5.1.9 Performance

File Size Type Time to Upload (milliseconds)
6.5 MB Image File 143
11.5 MB Audio File 231
23 MB Movie File 662

Table 5.1: Media Upload Time(milliseconds)

I found the performance of the application to be satisfactory. Uploading

a 23 MB file takes approximately 662 milliseconds. A more formal performance

valuation would require the application to be hosted on the net, together with

a larger size test data.

5.1.10 Testing

Testing of application developed using MEAN stack can be performed

with tools like Mocha, NodeUnit, Jasmine etc. For stub generation, tools like

JsMockito, Sinon.JS etc. can be used. The testing follows the same patterns

as in Java technologies. I did not get time to write formal test scripts. This

would be an enhancement for the future.

68

5.2 Source Code

The source code and documentation for UToobe is available in a public

Git repository at BitBucket.com. The following links can be used to access it:

https://vgambhir@bitbucket.org/vgambhir/utoobe.git.

A demonstration of the application can be found at:

https://vgambhir@bitbucket.org/vgambhir/utoobe/demo/utoobeDemo.swf

5.3 Future Work

Given more time, I would have liked to incorporate more features into

this application, ability to rank users based on popularity of the media posted

by them, upload profile picture, etc. I would also like to further explore ffmpeg

[4] library and provide other interesting abilities to edit the media.

Passport [10] module is an authentication middleware that supports a

comprehensive set of strategies to support authentication against Facebook,

Twitter and more. I would like to open the application to use this broader

authentication.

Mongoose [6] is an object modeling package for Node.js. It works like

an ORM and provides schema-based solution to model the application data.

It includes built-in type casting, validation, query building and provides hooks

for business logic. I would like to use this in place of MongoDB Node.js native

driver. For a small application the native driver sufficed.

69

I did not make use of AngularJS [40] due to lack of time. AngularJS is

part of the MEAN stack and is very popular. In future enhancements to this

application I would like to explore AngularJS.

5.4 Summary

All the components used in this application worked very well with each

other. Each component provides a particular functionality of the stack. jQuery

provides client-side validation and creation of HTTP request. Express provides

the HTTP server functionality and routes requests to appropriate code. Mon-

goDB provides the persistent store with a JSON interface.

Node.js provided an overall framework with a single thread model and

a non-blocking I/O. Availability of libraries like busboy-body-parser, fluent-

ffmpeg, express-session, morgan, gridfs-stream and MongoDB reduced the ap-

plication development effort drastically.

It was very enlightening to learn NoSQL databases, and it gave me

a new perspective on storing unstructured and large data efficiently. The

programming interface as well as their capabilities are very different from the

traditional RDBMS systems.

This application helped me to learn the latest web-technologies and

appreciate their strengths better. These new technologies provide an easy way

to quickly build an application and greatly reduce the time to market, since

they have a lot of inbuilt functionality. Developers can concentrate on business

70

functionality rather than spend too much time and effort on the peripheral

tasks. At the same time, there are so many new technologies and acronyms

floating around that it becomes very confusing to a rookie. I was able to parse

the various technologies and understand each one’s role in the solution stack.

As such the goal of this project was successfully achieved.

71

Bibliography

[1] Zing Design. Top 10 web development trends and predictions for 2015.

http://www.zingdesign.com/top-10-web-development-trends-and-

predictions-for-2015/, November

2015.

[2] BSON Doc. BSON Document. http://bsonspec.org/, November 2015.

[3] Express Doc. Express Doc. http://expressjs.com/, November 2015.

[4] FFMpeg Doc. FFmpeg public site. http://www.ffmpeg.org/, November

2015.

[5] JSON Doc. JSON Document. http://www.json.org/, November 2015.

[6] Mongoose Doc. Mongoose Object Modeling. http://mongoosejs.com/,

November 2015.

[7] Node.js Doc. Node.js Site. http://nodejs.org/en/, November 2015.

[8] Nodemon Doc. Nodemon Site. http://nodemon.io/, November 2015.

[9] NoSQL Doc. NoSQL. http://nosql-database.org/, November 2015.

[10] Passport Doc. Passport Site. http://passportjs.org/, November 2015.

72

[11] Oracle Docs. Large Object in Database.

http://docs.oracle.com/cd/B28359 01/appdev.111/b28427/pc 16lob.htm#i1003528/,

November 2015.

[12] Jon Duckett. JavaScript and JQuery: Interactive Front-End Web

Development. Wiley, 2014.

[13] Ralph Johnson John Vlissides Erich Gamma, Richard Helm. Design

Patterns: Elements of Reusable Object-Oriented Software. Addison

Wesley, 2014.

[14] Jade Home. Jade home. http://jade-lang.com/, November 2015.

[15] David Hows and Peter Membrey. MongoDB Basics. Apress, 2015.

[16] Paul Hyde. Java Thread Programming. Sams Publishing, 2014.

[17] Sean Lang. Web Development with Jade. packt publishing, 2014.

[18] Azat Mardan. Practical Node.js: Building Real-World Scalable Web

Apps. Apress, 2014.

[19] Robert C. Martin. Clean Code: A Handbook of Agile Software

Craftsmanship. Prentice Hall, 2008.

[20] Jon Paris. BLOB - CLOBS.

http://www.ibmsystemsmag.com/ibmi/developer/general/BLOBs,-

CLOBs-and-RPG/, November

2015.

73

[21] Mithun Satheesh. Web Development with MongoDB and NodeJS .

Packt Publishing, 2015.

[22] Open Source. Async JS library. http://github.com/caolan/async/,

November 2015.

[23] Open Source. Body-Parser library.

http://github.com/expressjs/body-parser/, November 2015.

[24] Open Source. bootstrap-fileinput library.

http://github.com/kartik-v/bootstrap-fileinput/, November 2015.

[25] Open Source. busboy-body-parser library.

https://github.com/lennym/busboy-body-parser/, November 2015.

[26] Open Source. express-session library.

http://github.com/expressjs/session/, November 2015.

[27] Open Source. Express Skeleton Generator.

http://expressjs.com/starter/generator.html/, November 2015.

[28] Open Source. fluent-ffmpeg library.

http://github.com/fluent-ffmpeg/node-fluent-ffmpeg/, November 2015.

[29] Open Source. GridFS-Stream library.

http://github.com/aheckmann/gridfs-stream/, November 2015.

[30] Open Source. Mongo DB Driver library.

http://docs.mongodb.org/ecosystem/drivers/node-js/, November 2015.

74

[31] Open Source. Morgan library. http://github.com/expressjs/morgan/,

November 2015.

[32] Open Source. Nodemailer: A utility for sending emails from Node.js

applications. http://github.com/andris9/Nodemailer/, November 2015.

[33] MongoDB team. MongoDB Documentation.

http://docs.mongodb.org/manual/, November 2015.

[34] MongoDB team. MongoDB Org. https://www.mongodb.org/,

November 2015.

[35] Stack Overflow Team and Developers. Stack Overflow Site.

http://stackoverflow.com/, November 2015.

[36] WebStorm Team. WebStorm IDE from JetBrains.

http://www.jetbrains.com/webstorm/, November 2015.

[37] Marc Wandschneider. Learning Node.js: A Hands-On Guide to Building

Web Applications in JavaScript. Addison Wesley, 2015.

[38] Wikipedia. Active Directory.

http://en.wikipedia.org/wiki/Active Directory/, November 2015.

[39] Wikipedia. AJAX - Asynchronous JavaScript and XML.

http://en.wikipedia.org/wiki/Ajax (programming)/, November 2015.

[40] Wikipedia. AngularJS Doc. http://en.wikipedia.org/wiki/AngularJS/,

November 2015.

75

[41] Wikipedia. Apache HBase.

http://en.wikipedia.org/wiki/Apache HBase/, November 2015.

[42] Wikipedia. Big Data. http://en.wikipedia.org/wiki/Big data/,

November 2015.

[43] Wikipedia. Database ACID property.

https://en.wikipedia.org/wiki/ACID/, November 2015.

[44] Wikipedia. Database Index.

http://en.wikipedia.org/wiki/Database index/, November 2015.

[45] Wikipedia. Hadoop Ecosystem. http://hadoop.apache.org/, November

2015.

[46] Wikipedia. HAML - A light-weight mark up language.

http://en.wikipedia.org/wiki/Haml/, November 2015.

[47] Wikipedia. Hypertext Transfer Protocol.

http://en.wikipedia.org/wiki/Hypertext Transfer Protocol/, November

2015.

[48] Wikipedia. IDE - Integrated Development Environment.

http://en.wikipedia.org/wiki/Integrated developmen environment/,

November 2015.

[49] Wikipedia. JavaScript. http://en.wikipedia.org/wiki/JavaScript,

November 2015.

76

[50] Wikipedia. jQuery. http://en.wikipedia.org/wiki/JQuery/, November

2015.

[51] Wikipedia. LDAP.

http://en.wikipedia.org/wiki/Lightweight Directory Access Protocol/,

November 2015.

[52] Wikipedia. Mean Stack.

http://en.wikipedia.org/wiki/MEAN (software bundle), November 2015.

[53] Wikipedia. Model-View-Controller.

http://en.wikipedia.org/wiki/Model-view-controller, November 2015.

[54] Wikipedia. MongoDB: GridFS.

http://docs.mongodb.org/manual/core/gridfs/, November 2015.

[55] Wikipedia. MongoDB: sharding concept.

http://docs.mongodb.org/manual/core/sharding-introduction/,

November 2015.

[56] Wikipedia. MongoDB Wiki. http://en.wikipedia.org/wiki/MongoDB/,

November 2015.

[57] Wikipedia. NPM Wiki. https://en.wikipedia.org/wiki/Npm/,

November 2015.

[58] Wikipedia. RDMS.

http://en.wikipedia.org/wiki/Relational database management system/,

November 2015.

77

[59] Wikipedia. Secure Socket Layer.

http://en.wikipedia.org/wiki/Transport Layer Security/, November

2015.

[60] Wikipedia. SPA - Single Page Application.

http://en.wikipedia.org/wiki/Single-page application/, November 2015.

[61] Wikipedia. Structured Query Language.

http://en.wikipedia.org/wiki/SQL/, November 2015.

[62] Wikipedia. Web Service and classes of web service.

http://en.wikipedia.org/wiki/Web service/, November 2015.

78

Vita

Vandana Gambhir was born in Bangkok, Thailand. She received her

Bachelor of Arts with Geography (Honors) and Masters in Business Admin-

istration from Guru Nanak Dev University in India. She works as a software

engineer in Austin, Texas and began graduate studies in Software Engineering

at the University of Texas at Austin in August 2012.

Permanent address: vgambhir@gmail.com

This report was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

79

