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The dissertation consists of three essays. In the �rst essay, I analyze the dynamic

interactions in a decentralized distribution channel, composed of a manufacturer and

a retailer, to launch an innovative durable product (IDP) whose underlying retail

demand is in�uenced by word-of-mouth from past adopters and follows a Bass-type

di�usion process. The word-of-mouth in�uence creates a trade-o� between imme-

diate and future sales/ pro�ts, resulting in a multi-period dynamic supply chain

coordination problem. The analysis shows that the manufacturer and retailer may

have con�icts regarding their trade-o�s and preferences between immediate and fu-

ture pro�ts. I characterize equilibrium pricing strategies and the resulting sales and

pro�t trajectories. Surprisingly, I �nd that the manufacturer, and sometimes even

the retailer, is better o� with a myopic retailer strategy in some cases. Further-

more, I propose that revenue sharing contracts can coordinate the IDP supply chain

throughout the entire planning horizon.
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In the second essay, I extend the demand model by considering the impact of

shelf space allocation on the retail demand of an IDP. I assume the retail demand to

be an increasing and concave function of the merchandise displayed on the shelf. I

include a linear cost of shelf space in the retailer's objective function. I characterize

the optimal dynamic shelf space allocation and retail pricing policies for the retailer

and wholesale pricing policies for the manufacturer. I �nd that a myopic retailer

allocates the constant amount of shelf-space to the IDP over the selling horizon,

whereas the shelf space allocated to the IDP by a far-sighted retailer varies over

time. Consistent with the �rst essay, the manufacturer and the retailer have con�ict

over the retailer's pro�tability strategy.

In the third essay, I review the Stackelberg di�erential game models that study

such issues in dynamic environments as production and inventory policies, outsourc-

ing decisions, channel coordination, and competitive advertising. I introduce the ba-

sic concepts of the basics of the Stackelberg di�erential games. I focus on the models

that derive the Stackelberg equilibria in the area of supply chain management and

marketing channels.
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Chapter 1

Introduction

Supply chain management is a subject that has been extensively studied by re-

searchers in operations management, marketing, and economics. Most of the papers

have focused on the static models which do not account for the e�ect of current

period decisions of channel members on their future actions. While the demand

may evolve gradually over time due to the word-of-mouth e�ect, understanding the

dynamic behavior of channel members is important for designing various strategies,

including dynamic pricing, production, inventory, outsourcing, shelf space alloca-

tion, and production capacity allocation. However, the dynamic nature of the co-

ordination aspects of these various in a distribution channel has received limited

attention in the literature. The studies by Elishberg and Steinberg (1987), Desai

(1992, 1996), and Kogan and Tapiero (2007) are the notable exceptions.

The focus here is on the dynamic nature of supply chain and marketing channel

coordination. In the �rst essay, we analyze the dynamic interactions in a decentral-

ized distribution channel, composed of a manufacturer and a retailer, to launch an

innovative durable product (IDP) whose underlying retail demand is in�uenced by

word-of-mouth from past adopters and follows a Bass-type di�usion process. The
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retailer (she) has alternative uses for the critical resources that are essential to sell

the manufacturer's new product. The word-of-mouth in�uence creates a trade-o�

between immediate and future sales/ pro�ts, resulting in a multi-period dynamic

supply chain coordination problem.

The maximization of life-cycle pro�ts derived from an IDP presents us with a

multi-period, dynamic supply chain coordination problem. We address the following

research questions: Is it desirable for the manufacturer, through an up-front fee, to

induce the retailer to dedicate a number of her selling resources to the IDP? This

type of agreement is analogous to the �store within a store� practice utilized in

the retailing of consumer products. What is the bene�t of such an agreement for

the manufacturer, for the retailer, and for the supply chain? Finally, we ask if

it is possible to fully coordinate the supply chain throughout the entire life-cycle

of the IDP? If so, what are the terms of such contract? How will the pro�ts be

split between the manufacturer and the retailer under a coordinating contract? We

provide explicit answers to these questions.

The complexities of the supply chain coordination issues described above cannot

be captured by a static or a single period model. In this research we develop and

analyze a dynamic multi-period model to address and provide insights into the

above questions. Our analysis shows that the manufacturer and retailer may have

con�icts regarding their trade-o�s and preferences between immediate and future

pro�ts. We characterize equilibrium pricing strategies and the resulting sales and

pro�t trajectories, and propose that revenue sharing contracts can coordinate the

IDP supply chain throughout the entire planning horizon and arbitrarily allocate

the channel pro�t.

In the second essay, we consider a supply chain in which a manufacturer sells an
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innovative durable product to an independent retailer over its life-cycle. We assume

that the product demand follows a Bass-type di�usion process, and it is determined

by the market in�uences, retail price of the product, and shelf-space allocated to

it. We consider the following retailer pro�t optimization strategies: (i) the �myopic�

strategy of maximizing the current-period pro�t and (ii) the �far-sighted� strategy

of maximizing the life-cycle pro�t. We characterize the optimal dynamic shelf space

allocation and retail pricing policies for the retailer and wholesale pricing policies

for the manufacturer. We �nd that a myopic retailer allocates the constant amount

of shelf-space to the IDP over the selling horizon, whereas the shelf space allocated

to the IDP by a far-sighted retailer varies over time. Surprisingly, we �nd that the

manufacturer, and sometimes even the retailer, is better o� with a myopic retailer

strategy in some cases.

In the last essay, we investigate the applications of the Stackelberg di�erential

game (DG) models to the supply chain management and marketing channels. Stack-

elberg di�erential game models have been used to study such issues in dynamic envi-

ronments as production and inventory policy, capacity investment, dynamic pricing

for new products, shelf-space allocation over the life-cycle of the products, competi-

tive advertising, government's subsidy policy in new technology, and monetary and

�scal policies in economics. This review focuses on these applications. We consider

Stackelberg equilibria as the solution concept for the games under consideration. We

shall begin our review with an introduction to the basics of the Stackelberg DGs.

We then summarize the important managerial insights obtained in each of the stud-

ies being reviewed. Finally, we point out future research avenues for applications of

the Stackelberg DGs in supply chain and marketing channel.

The rest of the paper is organized as follows. In the next section, we review
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the related literature. In Section 2, we analyze the life-cycle channel coordinations

issues in launching an IDP. In Section 3, we study the dynamic slotting and pricing

decisions in a durable product supply chain. In Section 4, we review the Stackelberg

DGs in the supply chain and marketing channel management.
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Chapter 2

Life-cycle Channel Coordination

Issues in Launching an Innovative

Durable Product

2.1 Introduction

2.1.1 Motivation

This research addresses the strategic interactions between manufacturers with in-

novative durable products (IDPs) and the specialized retailers to sell the IDPs to

�nal users; it was motivated by the distribution of Computer Aided Design (CAD)

hardware and software; however, the models developed and the results obtained

are applicable to the distribution of multiple innovative industrial products. These

products are technically very sophisticated, and buyers require extensive technical

information and attention before they commit to purchasing a unit. In this context,

the distributor/retailer needs to devote important resources to the distribution of

the product. The motivation for a manufacturer to use this Value Adding Resellers

(VARs) channel is to reach the VARs' current customer base faster and more ef-

�ciently. Since these VARs are already experienced and knowledgeable in dealing
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with potential product adopters as they are already providing them with other re-

lated products and services, these VARs can reach potential customers faster and

more economically; moreover, since they are typically located in the same geograph-

ical region as their customer base, they are more e�cient in providing �eld support

and technical assistance regarding the product's utilization. From the perspective of

the customer, the cost of buying the IDP include not only the price of the physical

product, but also the price of the service component provided by the VAR. In this

research we aim to provide insights that will help IDP manufacturers to understand

better the strategic interactions and challenges speci�c to this type of distribution

channel, and provide guidelines to help them improve the e�ciency and pro�tability

of their distribution systems. To the best of our knowledge this is the �rst paper

to address supply chain coordination issues in a multi-period dynamic environment

for a durable product.

To analyze the strategic interactions between the manufacturer and the VARs,

we consider a stylized model of a supply chain in which a monopolist manufacturer

produces an IDP, and sells it through an independent retailer (a VAR operating in

a geographical region) who serves the �nal market. We assume the retailer buys

the product from the manufacturer at a wholesale price, she adds a pro�t margin

on the IDP, and then she may charge a premium for the value adding services she

provides; for simplicity in the rest of the paper, we will refer by retailer price to

the total cost of acquisition and deployment for the �nal customer including the

price paid by the customer for additional necessary services provided by the VAR

such as technical assistance, training, �eld service etc. However, we would like to

emphasize that this view of life-cylce di�ers from the conventional de�nition; in par-

ticular, if the window of opportunity to sell the product is small enough, the IDP
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will never reach stages of maturity and decline. We assume there is an exogenously

determined (by competition or other factors) window of opportunity to sell the IDP,

and we will refer to this window of opportunity as the planning horizon or product

life-cycle. We assume there is a �nite number of potential adopters for the IDP and

each potential adopter would purchase at most one unit (no repeat purchases). The

advantages of distributing an IDP through VARs are signi�cant, however, as we

shall discuss below, introducing an intermediary in this distribution channel creates

a host of coordination problems for the channel. In our analysis we concentrate on

the following three challenges: (a) con�ict of inter-temporal optimization objectives

( �myopic�, i.e., short-term, versus �far-sighted�, i.e., long-term) between the manu-

facturer and the VAR, (b) competition for resources between the IDP in question

and other products carried by the VAR and (c) double marginalization problems in

a dynamic multi-period environment. Below we elaborate each of these challenges.

(a) Con�ict of Inter-Temporal Optimization Objectives. The life-cycle

sales of the IDP are in�uenced by retail price as well as a variety of factors including

word-of-mouth or network e�ects, which work through the interaction between the

current and future potential adopters. This word-of-mouth interaction suggests that

future product sales are in�uenced by cumulative past sales. Correspondingly, there

is a trade-o� between current and future pro�ts when we aim to maximize the

IDP's life-cycle pro�ts. Speci�cally, lowering current period prices may stimulate

immediate sales possibly at the expense of immediate pro�ts, while an increase in

the number of current adopters may increase future demand through word-of-mouth

or network in�uences and possibly leading to larger future pro�ts. Furthermore, if

both the manufacturer and the retailer make independent pricing decisions, neither

of them has full control of their pro�tability or the pro�tability of the supply chain.
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By setting the retail prices, the retailer can a�ect retail demand for the IDP, but her

pro�tability is also a�ected by the wholesale prices charged by the manufacturer.

The manufacturer on the other hand can a�ect retail prices and sales only indirectly.

Even in cases in which the manufacturer has the ability to set the customer price

for the physical IDP, the VAR can a�ect the �nal deployed cost for the customer by

varying the prices charged by her services and hence a�ect the customer demand.

Moreover, both of these supply chain partners might place signi�cantly di�erent

values to the trade-o� between immediate and future pro�ts.

(b) Competition for Critical Selling Resources. An independent VAR

would carry multiple products thus creating a competition for limited critical selling

resources. We will refer to this case as the shared resource setting. If alternative

products provide the VAR with a high pro�t margin per unit of resource utilized, the

VAR will increase the IDP's sale price to increase her pro�t margin; the justi�cation

of this price increase is to make it pro�table for her to allocate selling resources to

the IDP, but it will also have the e�ect of reducing the IDP's sales volume. This

competition for resources will a�ect negatively the manufacturer's pro�ts and it will

hinder the IDP's di�usion as well.

(c) Multi-Period Double Marginalization. Since the VAR is an indepen-

dent decision maker she will formulate her pricing strategies to maximize her own

pro�ts disregarding the pro�tability of the manufacturer's as well as the distribution

channel's. In our context, this will consit of a series of myopic local optimizations

(on a rolling horizon) or of a multi-period local optimization by the VAR, leading

the manufacturer to select the wholesale pricing strategy that maximizes his own

pro�ts over the IDP's life-cycle.

The maximization of life-cycle pro�ts derived from an IDP presents us with

8



a multi-period, dynamic supply chain coordination problem, and we address the

following research questions: Is it desirable for the manufacturer, through an up-

front fee, to induce the VAR to dedicate a number of her selling resources to the IDP?

This type of agreement is analogous to the �store within a store� practice utilized

in the retailing of consumer products. What is the bene�t of such an agreement

for the manufacturer, for the retailer, and for the supply chain? Finally, we ask if

it is possible to fully coordinate the supply chain throughout the entire life-cycle of

the IDP? If so, what are the terms of such contract? How will the pro�ts be split

between the manufacturer and the retailer under a coordinating contract?

The complexities of the supply chain coordination issues described above cannot

be captured by a static or a single period model. In this research we develop and an-

alyze a dynamic multi-period model to address and provide insights into the above

questions. Further we emphasize that the scope of application of this research is not

limited to the distribution of CAD hardware. The tradeo�s and con�icts described

above are present in the distribution of IDPs such as complex industrial products,

high-end audio products, as well as hardware-software systems for commercial ap-

plications; in particular, the VARs distribution channels is also intensively used

by both IBM and HP to distribute computer hardware and specialized software to

commercial customers. In this latter case the services added by the intermediaries

include installation, training and technical support.

2.1.2 Overview of the Model

Following the marketing literature, we assume that the underlying retail demand of

an IDP follows a Bass-type di�usion process with market dynamics modeled with a

nonlinear di�erential equation. According to the Bass (1969) model, the purchase
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decisions of potential adopters of an IDP are a�ected by two market in�uences: ex-

ternal and internal market in�uence. Examples of external market in�uence include

advertising, such as the manufacturer's national advertising in the mass media and

specialized trade magazines, shows and conventions, as well the retailer's (in the rest

of the paper, we will refer to the VAR as the �retailer�) local advertising and pro-

motional activities and sales e�orts. The internal market in�uence works through

the word-of-mouth and network e�ects spreading from the previous adopters to the

potential adopters. We incorporate the impact of retail price on retail demand,

enabling us to capture the role of an independent retailer on the dynamics of the

supply chain.

We formulate the problem in an optimal control framework. We assume that the

manufacturer takes the leader role in his relationship with the retailer. Speci�cally,

the manufacturer and retailer play a Stackelberg (sequential) di�erential game: the

manufacturer announces his wholesale price to the retailer, and the retailer sets

the retail price that maximizes her pro�ts taking the manufacturer's contractual

wholesale price as given. The manufacturer takes the retailer's optimal reaction

into consideration when he makes his wholesale price decision. The solution concept

for the Stackelberg di�erential game we identify is an open-loop equilibrium which

means, at the start of the game, the manufacturer and retailer decide on a strategy

that depends on time. In this study, we assume that the manufacturer is able to

credibly commit to his wholesale price strategy.

2.1.3 Key Results

We have identi�ed a con�ict of preferences between the manufacturer and the re-

tailer. First, a manufacturer will not always prefer the retailer to take a long-term
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(i.e, far-sighted) optimization strategy; that is, the manufacturer sometimes is bet-

ter o� if the retailer has a short-term (i.e., myopic) optimization focus. That is, in

some instances the manufacturer will prefer the retailer to react to the wholesale

prices by setting retail prices that maximizes her immediate (instantaneous) pro�ts

at any instant rather than her long-term pro�ts over the entire horizon. On the

other hand, the retailer's preferences over her optimization focus (short-term versus

long-term) change with the market characteristics of the IDP and they do not al-

ways agree with the manufacturer's preferences. It is not immediately obvious that

a seemingly myopic retailer behavior may enhance the performance of the supply

chain.

In the shared resources setting (the VAR distributes other products in addition

to the IDP), the manufacturer and the entire channel make lower pro�ts than with a

dedicated resources setting in which the retailer dedicates a share of her resources to

sell exclusively the manufacturer's product. We explore the possibility of a two-part

tari�, wholesale price and an up-front fee (a fee paid by the manufacturer to the

retailer for the exclusive use of a given quantity of resources), to partially improve

the channel performance.

Finally, we demonstrate that revenue sharing contracts are in principle capable

of coordinating a durable product supply chain with a long-term as well as a short-

term retailer pro�tability focus and arbitrarily allocate the channel pro�t. More

speci�cally, we show that the coordinating wholesale price for a retailer with a long

term focus is constant over the IDP's life cycle while the coordinating wholesale

price for a retailer with a short-term focus varies over time.
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2.1.4 Organization

The rest of the paper is organized as follows. In the next section, we review the

related literature. In Section 2.3, we introduce the demand model. In Section 2.4,

we study the case of a retailer with a long-term pro�tability focus. In Section 2.5,

we study the case of a retailer with a short-term focus. In Section 2.6, we present

a numerical study that compares the case of long-term and short-term focus. In

Section 2.7, we propose an up-front fee to improve the channel performance. We

use revenue sharing contracts to fully coordinate the channel in Section 2.8. We

conclude the paper by summarizing the results and summarizing the managerial

implications and pointing out future research avenues in Section 2.9.

2.2 Literature Review

This work is related to multiple streams of literature, but the three most closely

related literatures are optimal dynamic pricing for new products, revenue sharing

contracts in supply chain management literature, and di�erential games with appli-

cations in management science.

In the marketing literature, Bass (1969) and its variants have been widely used

to forecast the demand of a new durable product. We refer readers to Mahajan et

al. (1990) and Mahajan et al. (2000) for comprehensive reviews on di�usion models.

The original Bass (1969) model does not include the pricing variables. A number

of later papers extended the Bass model by incorporating the (competitive) price

impact on retail demand of an IDP, including Robinson and Lakhani (1975), Bass

(1980), Dolan and Jeuland (1981), Bass and Bultez (1982), Kalish (1983), Kalish

and Lilien (1983), Clarke and Dolan (1984), Thompson and Teng (1984), Rao and

12



Bass (1985), Eliashberg and Jeuland (1986), Raman and Charterjee (1995), and

Krishnan at el. (1999). Regarding the market conditions, Eliashberg and Jeuland

(1986), Thompson and Teng (1984) analyze oligopoly pricing strategies while the

rest analyze the optimal monopolist pricing strategies.

In order to derive the dynamic pricing strategies, a researcher needs to make a

key assumption about the �rm's pro�t-maximizing strategy, i.e., the �rm maximizes

the short-term or long term pro�ts? Bass (1980) and Bass and Bultez (1982) assume

the �rm maximizes the current period (instantaneous) pro�ts. The corresponding

pricing strategies in these two papers are called myopic pricing strategies as com-

pared to (global) optimal pricing strategies which maximize the �rm's aggregated

pro�ts over the product's life cycle. Robinson and Lakhani compared the results

from the optimal pricing with the myopic pricing strategies. Their numerical results

show that the di�erences are signi�cant while Bass and Bultez (1982) reported small

di�erence.

As noted by Dolan and Jeuland (1981), it is very critical to properly incorporate

the pricing impact into the demand model. Several papers, including Robinson

and Lakhani (1975), Dolan and Jeuland (1981), and Thompson and Teng (1984),

assume the demand is an exponential function of price. In contrast, like Eliashberg

and Jeuland (1986) and Raman and Chatterjee (1995), we assume that the demand

is a linearly decreasing function of retail price. We selected this demand model to

be able to extend our analysis to explore contracting and coordination issues with

two independent echelons supply chain.

All of above papers assume a centralized decision maker will decide the pricing

strategy and by implication, production quantities. Since the above models assume

centralized decision making they are unable to examine the role that an independent
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retailer may play in distributing the IDP.

In the supply chain management literature, various types of supply contracts

have been designed to mitigate or eliminate the double marginalization and in-

centive misalignment problems due to the independent decisions of a retailer in a

decentralized channel. We refer the readers to Krishnan et al. (2004) and Cachon

(2003) for excellent reviews on the supply contracting literature. The most relevant

papers are those that study revenue sharing contracts. For example, Gerchak and

Wang (2004) study the revenue-sharing contracts between an assembler/ retailer

and its component suppliers. In their paper, the assembler sets the shares of the

revenue then the suppliers decide delivery quantities. They show that revenue share

alone cannot coordinate the assembly system. However, a revenue sharing scheme

coupled with a subsidy paid by the assembler to component suppliers can coordinate

the assembly supply chain. Cachon and Lariviere (2005), in a newsvendor setting,

study the revenue sharing contracts between a retailer and manufacturer who sets

the wholesale price. Gerchak et al. (2006) study the revenue sharing contracts in a

decentralized Stackelberg setting in which the video rental channel and the studio

make independent decisions. However, all the above papers focus the one-shot inter-

action between the supplier (manufacturer) and the retailer. In contrast, we study

the channel coordination between a manufacturer and a retailer over the life-cycle

of the IDP in a dynamic environment, i.e., both channel members make dynamic

retail and wholesale pricing decisions rather than static decisions.

We assume that the manufacturer and the retailer play a Stackelberg di�eren-

tial game. The di�erential game approach is very popular to study the problems

involving dynamic environments. Mathematically, in close spirit to our approach,

Jørgensen et al. (2003) study the dynamic advertising strategies of a manufacturer
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and a retailer in a decentralized setup in which a retailer can be myopic (max-

imizes the instantaneous payo�) or far-sighted (maximizes the long term payo�).

Eliashberg and Steinberg (1987) formulated a Stackelberg di�erential game to study

the interactions between a manufacturer and a downstream distributor. However,

their focus is on the joint inventory and pricing strategies of the manufacturer and

the distributor. Additionally, since they assume a constant (not varying over time)

transfer price, they do not allow the manufacturer to dynamically set the wholesale

price. By contrast, we study the optimal dynamic wholesale prices as well as dy-

namic retail prices. Additionally, their speci�c demand model captures the seasonal

sales �uctuation while there is no di�usion process involved.

2.3 The Demand Model

Amanufacturer produces an innovative durable product whose retail demand follows

Bass type di�usion process. Let x (t) be the instantaneous sales rate at time t. The

demand dynamics are described by the following di�erential equation:

x (t) = Ẋ (t) =
dX (t)

dt
= (M −X (t)) (α+ βX (t)) (1− γr (t)) ,

where X (t) is the cumulative sales up to time t, M is the potential market size, the

term (M −X (t)) is the unsaturated market size, α and β are positive coe�cients of

external and internal market in�uences, respectively, and γ is a positive parameter

that measures the customers' sensitivity to the retail price r (t). According to our

formulation, x (t) is determined by three factors: the external market in�uence, the

internal market in�uence and price sensitivity.

A few additional comments are in order now. First, we use a multiplicatively
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separable function to model the impact of price and cumulative sales (past sales)

on the instantaneous demand rate. Second, the instantaneous sales rate x (t) is a

linearly decreasing function of retail price. Linear demand functions have been used

by researchers in the stream of dynamic pricing that particularly used Bass model,

including Eliashberg and Jeuland (1988), Raman and Chartejee (1995), and Kalish

(1983). Third, we observe that the main drivers of sales change during the entire

selling horizon an IDP. Initially, the market saturation level is low, di�usion e�ect

outweighs saturation e�ect (shrinking potential market size). However, if the selling

horizon is very long, after a certain period of time, the market gets highly saturated

and every additional sale is more di�cult thus we can say that the saturation e�ect

dominates the di�usion e�ect.

The retailer needs certain critical resources to sell the IDP. Examples of such

resources include specialized salespeople, and in some cases equipment and facilities.

We assume that the amount of resources required are proportional to the sales

volume. Let K be the capacity of retailer's critical resources. The retailer may

have alternative pro�table uses other than for the manufacturer's product. It is in

the retailer's best interest to allocate the K units of resources �exibly among the

products she sells. Let O be the pro�t margin of the alternative use; we will refer

to O as the �outside� pro�t margin for the retailer as it refers to products that are

external to the supply chain of the IDP in consideration. By implication, O will

a�ect the retailer's pricing decisions hence the sales volume for the IDP. By de�ning

the resource units appropriately, we assume that each unit of sales requires a unit of

resource. We refer to these resources as dedicated resources if the retailer only uses

them to sell the manufacturer's product and �exible resources if she can �exibly

allocates them among alternative products.
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We use the superscripts �L� and �S� denote the long-term and short-term retailer

pro�tability strategy (focus), respectively. Subscripts �M�, �R�, and �C� denote the

manufacturer, the retailer and the channel, respectively.

2.4 A Retailer with a Long-term Focus

Consider the case of a retailer with a long-term pro�tability strategy who maximizes

her pro�ts over the entire life cycle T of the IDP. We assume that she has alternative

uses for her critical sales resources and �exibly allocates them among the di�erent

products she sells. We assume that the manufacturer and retailer play a Stackelberg

di�erential game with the manufacturer acting as the leader. That is, the manu-

facturer announces the wholesale price path {wL (t) : t ∈ [0, T ]} at time 0. Then

the retailer decides a retail price path {rL (t) : t ∈ [0, T ]}. This retail price includes

the price the consumer pays for the physical IDP as well as the price charged by

the retailer for the service component required by the product. The retailer's in-

stantaneous pro�t function is given by [rL (t)− wL (t)− s] ẊL (t)+
[
K − ẊL (t)

]
O,

where s is the retailer's cost associating with selling the product. This cost should

include not only the variable costs associated with closing the sale of the physical

IDP, but it should also include the variable cost of the additional services provided.

As stated previously, the retailer with a long-term strategy maximizes the life cycle

pro�ts ΠL
R

(T ):

ΠL∗
R

(T ) = max
rL (t)

∫ T

0

{
[rL (t)− wL (t)− s]xL (t) +

(
K − ẊL (t)

)
O
}
dt(2.1)

s.t. xL (t) = (M −XL (t)) (α+ βXL (t)) (1− γrL (t)) (2.2)

XL (0) = XL

0
(2.3)
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where XL (0) is the initial sales condition. Note that (2.1)-(2.3) is an optimal control

problem with rL (t) and XL (t) as control and state variables, respectively. The

di�erential equation (2.2) along with the initial condition (2.3) explicitly describes

how the the cumulative sales XL (t) and retail price rL (t) jointly determine the

immediate sales (demand) rate xL (t). We shall assume that the retailer has enough

capacity to sell the manufacturer's product, i.e., K ≥ xL (t) holds for ∀t ∈ [0, T ].

We �rst solve the retailer's problem and use her best response to formulate the

manufacturer's problem. We formulate the retailer's problem in the optimal control

framework with a control variable rL (t) and a state variable XL (t). From now on,

for notational simplicity, we may omit the time argument in some equations. The

retailer's Hamiltonian HL
R
is given by:

HL

R
= F L (1− γrL)

[
rL − wL − s−O + λL

R

]
, (2.4)

where F L = (M −XL) (α+ βXL) and λL
R
is the shadow price associated with the

state variable XL . Note that we ignore the constant term KO when formulating the

retailer's Hamiltonian. De�ne fL = dF L

dXL
= −α + Mβ − 2βXL . The shadow price

λL
R
satis�es the following condition:

λ̇L
R

= −
∂HL

R

∂XL
= −fL (1− γrL)

[
rL − wL − s−O + λL

R

]
, (2.5)

with the terminal value λL
R

(T ) = 0 ( because XL (T ) is free to move). Let rL∗ be the

retailer's best response retail price. The necessary �rst order condition to maximize

HL
R
is given by:

∂HL
R

∂rL
= 0 =⇒ rL∗ =

1 + k
(
wL + s+O − λL

R

)
2γ

. (2.6)
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The economic interpretation of λL
R

(t) is the value of additional unit of sales. λL
R

(t) >

0 implies that the retailer bene�ts from current sales (see Sethi and Thompson

2000 for detailed discussion of the economic interpretation of the shadow price);

accordingly, the retailer sets rL (t) below the myopic retail response which is de�ned

as the price that would result if we set λL
R

(t) = 0. With the myopic retail response,

the retailer does not take into account the impact of current sales on future sales.

On the other hand, when λL
R

(t) < 0, the retailer has no incentive to sacri�ce current

pro�ts for future pro�ts, and she will increase rL (t) above the myopic price level.

Let HL∗
R

be the maximized Hamiltonian. HL∗
R

is given by:

HL∗
R

=
F L
[
1− k

(
wL + s+O − λL

R

)]2
4γ

.

It is easy to verify that HL∗
R

is concave and continuously di�erentiable with respect

to XL for all t ∈ [0, T ]. Therefore rL∗ is an optimal path.

Note that for each wholesale price path {wL (t) : t ∈ [0, T ]} the manufacturer

announces, there is a corresponding optimal retail price path {rL∗ (t) : t ∈ [0, T ]}.

The manufacturer takes the retailer's best response into consideration when solving

his optimization problem. Assume that the manufacturer incurs a constant per unit

production cost c0 . The manufacturer's optimization problem is given by:

ΠL∗
M

(T ) = max
wL

∫ T

0

[wL − c0 ]x
L∗dt

s.t. xL∗ =
F L∗

{
1− γ

[
wL + s+O − λL

R

]}
2

(2.7)

λ̇L

R
= −

fL∗
{
1− γ

[
wL + s+O − λL

R

]}
2

4k
(2.8)

XL (0) = XL

0
, λL

R
(T ) = 0, (2.9)
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where the expressions for xL∗ and λ̇L
R
are obtained by substituting (2.6) into (2.2)

and (2.5), respectively. Note that the manufacturer has two state variables: XL∗ and

λ̇L
R
. Dockner et. al. (2000) used a similar approach. By now, we have de�ned a two-

player di�erential game with two control variables wL and rL . The manufacturer's

Hamiltonian equation HL
M
is given by:

HL

M
=
(
wL − c0 + λL

M

)
xL + µλ̇L

R
(2.10)

where λL
M
and µ are the shadow prices associated with xL∗ and λ̇L

R
, respectively. λL

M

and µ satisfy the following conditions:

λ̇L

M
= −

∂HL
M

∂XL
, µ̇ = −

∂HL
M

∂λL
R

.

Speci�cally, we have:

λ̇L

M
= −

fL
(
wL − c0 + λL

M

) [
1− γ

(
wL + s+O − λL

R

)]
2

(2.11)

µ̇ = −
γF L

(
wL − c0 + λL

M

)
2

+
µfL

[
1− γ

(
wL + s+O − λL

R

)]
2

, (2.12)

with boundary conditions λL
M

(T ) = 0 and µ (0) = 0.We impose λL
R

(T ) = 0 because

XL (T ) is free to move and impose µ (0) = 0 because our problem is controllable, i.

e., the associated initial state λL
R

(0) is dependent on wL . Substituting 2.7 into 2.10,

we get:

HL
M

=
F L
(
wL − c0 + λL

M

) {
1− γ

[
wL + s+O − λL

R

]}
2

−
µfL

{
1− γ

[
wL + s+O − λL

R

]}
2

4γ
. (2.13)
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The necessary �rst order condition to maximize HL
M
is given by:

∂HL
M

∂wL
= 0 =⇒ wL∗ =

1 + γ
(
λL

R
− s−O

)
γ

− F L∗ψL

k (2F L∗ + µfL∗)
, (2.14)

where ψL = 1 + k
(
λL

M
+ λL

R
− s−O − c0

)
. Substituting (2.14) into (2.16), we have

rL∗ =
1

γ
− F L∗ψL

2γ (2F L∗ + µfL∗)
(2.15)

Substituting (2.14) into (2.13), after simplifying the expression, the maximized

Hamiltonian equation HL∗
M

is given by:

HL∗
M

=
(ψLF L∗)2

4γ (2F L∗ + µfL∗)
.

Substituting (2.14) into (2.7), (2.8), (2.11), and (2.12), respectively, we have:

xL∗ =
ψL [F L∗]2

2 (2F L∗ + µfL∗)
(2.16)

λ̇L

R
=

−fL∗ (ψLF L∗)2

4γ (2F L∗ + µfL∗)2
(2.17)

λ̇L

M
= −F

L∗ [ψL ]2 {2fL∗F L∗ + µ [2 (fL∗)2 + 2βF L∗]}
4γ (2F L∗ + µfL∗)2

(2.18)

µ̇ = − ψL (F L∗)2

2 (2F L∗ + µfL∗)
. (2.19)

with boundary conditions

XL (0) = X0L , µ (0) = 0, λL

R
(T ) = λL

M
(T ) = 0. (2.20)

We assume that Sign (ψL) = Sign (2F L∗ + µfL∗) to guarantee that the right-hand

side of Equation (2.16) is positive. Comparing Equation (2.9) to Equation (2.16),
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we �nd that µ̇ = −ẊL∗ < 0, for ∀t ∈ [0, T ]. This implies that µ (t) < 0,∀t ∈ [0, T ],

because we have µ (0) = 0. Equations (2.16)-(2.19) consist a system of four dif-

ferential equations with four unknowns, which, along with the boundary conditions

(2.10), imply a solution; however, it is very di�cult to derive analytical solutions

for all the variables as functions of time and system parameters (See Eliashberg and

Jeuland (1986) for a discussion of the complexity of the solutions to a similar system

of non-linear di�erential equations.).

We observe, from Equation (2.17), that the sign of λ̇L
R
depends on the sign of

fL∗: if fL∗ = −α + Mβ − 2βXL∗ > 0, λ̇L
R
< 0, i.e., λL

R
is decreasing; otherwise,

λ̇L
R
≥ 0.

2.5 A Retailer with a Short-term Focus

For a given wholesale price contract, it is always to the retailer's advantage to set the

retail prices with a life-cycle (global) optimization objective. However, the manufac-

turer adjusts the wholesale prices that he will o�er the retailer taking into account

the retailer's optimization objective; in this situation, it is not clear that the life-

cycle optimization strategy will be in the retailer's best interest. Speci�cally, if the

manufacturer knows that the retailer sets retail prices with a short-term pro�tabil-

ity strategy, and then o�ers the retailer the wholesale prices under this assumption,

the retailer may be better o� than if the manufacturer assumes that she sets the

retail prices with a long-term pro�tability strategy and o�ers her wholesale prices

re�ecting this long-term strategy. To study this hypothesis, we model the optimal

pricing strategy of the manufacturer under the assumption that the retailer sets the

retail prices with a short-term optimization objective. At the end of section, we

discuss alternative incentives that may lead to the short-term retailer pro�tability
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strategy.

With a short-term pro�tability strategy, at any time t, the retailer maximizes

her instantaneous pro�t rate, taking the wholesale price wS (t) as given:

πS∗
R

(t) = max
rS (t)

{[rS (t)− wS (t)− s]xS (t) +O [K − xS (t)]}

s.t. xS (t) = F S (XS (t)) [1− γrS (t)] , XS (0) = XS

0
,∀t ∈ [0, T ] (2.21)

where F S (XS (t)) = (M −XS (t)) (α+ βXS (t)). Similar to the case of a long-term

pro�tability strategy, we shall assume that K ≥ xS (t) holds for ∀t ∈ [0, T ]. From

the �rst order condition, we obtain the retailer's best response:

rS∗ =
1

2γ
[1 + γ (wS + s+O)] . (2.22)

The manufacturer takes the retailer's best response into the consideration when

solving his own optimization problem. He maximizes the life cycle pro�ts and his

optimization problem is given by:

ΠS∗
M

(T ) = max
wS (t)

∫ T

0

[wS (t)− c0 ]x
S (t) dt

s.t. xS =
1

2
F S [1− γ (wS + s+O)] , XS (0) = XS

0
. (2.23)

where the expression for xS is obtained by substituting (2.22) into (2.21). The

manufacturer has a control variable wS and a state variable xS . His Hamiltonian

equation HS is given by

HS =
1

2
F S [1− k (wS + s+O)] [wS − c0 + λS ] ,
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where λS is the shadow price associated with the state variable XS . Let fS = dF S

dXS
=

−α+Mβ − 2βXS . The shadow price λS satis�es the following equation:

λ̇S = −∂H
S

∂XS
= −1

2
fS [1− γ (wS + s+O)] [wS − c0 + λS ] (2.24)

with the boundary condition λS (T ) = 0. We can determine the optimal control wS

from the �rst order condition of ∂HS

∂wS
= 0:

wS∗ =
1

2k
[1 + γ (c0 − s−O − λS)] . (2.25)

The maximized Hamiltonian HS∗is given by:

HS∗ =
F S [1 + γ (λS − c0 − s−O)]2

8k
.

We can verify that HS∗ is concave in XS and continuously di�erentiable with respect

to XS for all t ∈ [0, T ]. Therefore wS∗ is an optimal path.

Substituting wS∗ into (2.21)-(2.23), we derive the optimal retail price, instanta-

neous sales rate, and shadow price as follows:

rS∗ =
1

4γ
[3− γ (λS − s−O − c0)] , (2.26)

xS∗ =
F S∗

4
[1 + γ (λS − s−O − c0)] , (2.27)

λ̇S = −f
S∗

8γ
[1 + γ (λS − s−O − c0)]

2 . (2.28)

The solution to the problem is determined by (2.27) and (2.28) together with bound-

ary conditions: XS (0) = XS
0
and λS (T ) = 0. We will characterize the equilibrium

in terms of cumulative sales in the following several lemmas.
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The following lemma derives the relationship between λS and XS∗. De�ne φ̄ =

1 − γ (c0 + s+O), a function of the system parameters, and assume the values of

the parameters are such that φ̄ > 0.

lemma 2.1. The shadow price trajectory λS (t) is given by

λS (t) =
φ̄

γ

[√
F S∗ (XS∗ (T ))

F S∗ (XS∗ (t))
− 1

]
, t ∈ [0, T ] . (2.29)

Proof: Combining Equations (2.27) and (2.28), we have

λ̇S (τ)

xS∗ (τ)
= −f

S∗ (xS∗ (τ)) [1 + γ (λS (τ)− s−O − c0)]

2γF S∗ (xS∗ (τ))

=⇒ γdλS (τ)

[1 + γ (λS (τ)− s−O − c0)]
= −f

S∗ (xS∗ (τ)) dXS∗ (τ)

2F S∗ (xS∗ (τ))

=⇒
∫

λS (T )

λS (t)

γdλS (τ)

[1 + γ (λS (τ)− s−O − c0)]
= −

∫
XS∗(T )

XS∗(t)

fS∗ (xS∗ (τ)) dXS∗ (τ)

2F S∗ (xS∗ (τ))

=⇒ ln [1 + γ (λS (τ)− s−O − c0)] |λ
S (T )

λS (t)
= − ln

√
F S∗ (xS∗ (τ)) |XS∗(T )

XS∗(t)

=⇒ 1− γ (s+O + c0)

1 + γ (λS (t)− s−O − c0)
=

√
F S∗ (xS∗ (t))

F S∗ (xS∗ (T ))

=⇒ λS (t) =
1− γ (c0 + s+O)

γ

[√
F S∗ (xS∗ (T ))

F S∗ (xS∗ (t))
− 1

]
,

with λS (T ) = 0. We obtain the expression in Lemma 2.1.�

remarks. We have Sign [λS (t)] = Sign
[√

F S∗(XS∗(T ))
F S∗(XS∗(t))

− 1
]
. When

√
F S∗(XS∗(T ))
F S∗(XS∗(t))

>

1, i.e., F S∗ (XS∗ (T )) > F S∗ (XS∗ (t)), λS (t) > 0; if
√

F S∗(XS∗(T ))
F S∗(XS∗(t))

< 1, i.e., F S∗ (XS∗ (T )) <

F S∗ (XS∗ (t)), λS (t) < 0. Lemma 2.1 enables us to eliminate λS from the optimality

conditions and characterize the variables in terms of the cumulative sales XS∗ (t).

lemma 2.2. With a short-term retailer pro�tability strategy, for t ∈ [0, T ],
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(i) The instantaneous shadow price λ̇S (t) is given by

λ̇S (t) = − φ̄
2fS∗ (XS∗ (t))

8γ

F S∗ (XS∗ (T ))

F S∗ (XS∗ (t))
.

(ii) The equilibrium retail price trajectory rS∗ (t) and wholesale price trajectory

wS∗ (t) are:

rS∗ (t) =
1

4γ

[
4− φ̄

√
F S∗ (XS∗ (T ))

F S∗ (XS∗ (t))

]

wS∗ (t) =
1

2γ

[
2 (1− γ (s+O))− φ̄

√
F S∗ (XS∗ (T ))

F S∗ (XS∗ (t))

]
.

(iii) The equilibrium instantaneous sales rate xS∗ (t) is given by

xS∗ (t) =
φ̄

4

√
F S∗ (XS∗ (t))F S∗ (XS∗ (T )).

(iv) RS∗ (t) =
√

F S∗(XS∗(T ))
F S∗(XS∗(t))

= xS∗(T )
xS∗(t)

.

(v) The retailer's and manufacturer's equilibrium (optimal) instantaneous pro�ts

are given by

πS∗
R

(t) =
φ̄2F S∗ (XS∗ (T ))

16γ
+KO

πS∗
M

(t) =
φ̄2

8γ

(
2
√
F S∗ (XS∗ (t))F S∗ (XS∗ (T ))− F S∗ (XS∗ (T ))

)
.

Proof: (i) Substituting the result from Lemma 2.1 into Equation (2.28), we
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have

λ̇S (t) = −f
S∗ (xS∗ (t)) [1 + γ (λS (t)− s−O − c0)]

2

8γ

= − φ̄
2fS∗ (xS∗ (t))

8γ

F S∗ (xS∗ (T ))

F S∗ (xS∗ (t))
.

(ii) Substituting (2.29) into (2.25) and (2.26), we have

rS∗ (t) =
1

4γ

[
4− φ̄

√
F S∗ (xS∗ (T ))

F S∗ (xS∗ (t))

]

and

wS∗ (t) =
1

2γ

[
2 (1− γ (s+O))− φ̄

√
F S∗ (xS∗ (T ))

F S∗ (xS∗ (t))

]
.

(iii) Substituting (2.29) into (2.27), we have

xS∗ (t) =
φ̄

4

√
F S∗ (xS∗ (t))F S∗ (xS∗ (T )).

(iv) From (iii), we have the results.

(v) We have

πS∗
R

(t) = (rS∗ − wS∗ − s)xS∗ +O (K − xS∗)

and

πS∗
M

(t) = (wS∗ − c0)x
S∗.
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Substituting the results in (ii) and (iii) into πS∗
R
, we have

πS∗
R

(t) =
φ̄2F S∗ (xS∗ (T ))

16γ
+KO.

We have πS∗
M

(t) = (wS∗ − c0)xS∗. Substituting the results in (ii) and (iii) into

πS∗
M

(t), we have

πS∗
M

(t) =
φ̄2

8γ

[
2
√
F S∗ (xS∗ (t))F S∗ (xS∗ (T ))− F S∗ (xS∗ (T ))

]
.

remarks. According to part (i), the sign of λ̇S (t) is determined by the sign of

fS∗ (XS∗ (t)): we have λ̇S (t) > 0 when

fS (XS∗ (t)) = −α+Mβ − 2βXS∗ (t) < 0

, i.e., XS∗ (t) > −α+Mβ
2β

, and λ̇S (t) < 0, when XS∗ (t) < −α+Mβ
2β

. This result is

consistent with that in the case of a retailer with a long-term pro�tability strategy.

According to part (iv), RS∗ (t) is equal to the ratio of the end-of-horizon

instantaneous sales rate to the instantaneous sales rate at any instant t.

According to part (v), the retailer achieves a constant instantaneous pro�t rate

over time. This result is surprising because both the instantaneous sales volume

xS∗ (t) and the retail margin vary over time. Our assumption of multiplicativly

separable demand function partially contributes to this result. On the other hand,

the manufacturer's instantaneous pro�t rate varies over time.

Proposition 2.1. The optimal retail price rS∗, wholesale price wS∗ and in-

stantaneous sales rate ẊS∗peak at the same time. We can observe three retail/

wholesale pricing patterns, depending on the system parameters.
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(i) When XS∗ (T ) < M
2
− α

2β
, rS∗ (t) and wS∗ (t) are both monotonically increasing

over the entire selling horizon.

(ii) When XS∗ (T ) > M
2
− α

2β
> XS (0), rS∗ (t) and wS∗ (t) are increasing up to

the peak sales and decreasing thereon.

(iii) When XS (0) > M
2
− α

2β
, rS∗ (t) and wS∗ (t) are monotonically decreasing

over the entire selling horizon.

Proof: Examing the results in Lemma 2.2(ii) and 2.2(iii), rS∗, wS∗ and xS∗peak

when
√

F S∗(XS∗(T ))
F S∗(XS∗(t))

achieves its minimum.

(i) When XS∗ (T ) ≤ M
2
− α

2β
, F S∗ (XS∗ (t)) is an increasing function of XS∗ (t)

throughout the horizon with t ∈ [0, T ].
√

F S∗(XS∗(T ))
F S∗(XS∗(t))

decreases over time t. From

Lemma 2.2(ii),rS∗and wS∗are both increasing over the entire selling horizon.

(ii) WhenXS∗ (T ) ≥ M
2
− α

2β
, F S∗ (XS∗ (t)) is an increasing function of XS∗ (t) for

t ∈ [0, t1 ], where t1 is such that X (t1) = M
2
− α

2β
, while F S∗ (XS∗ (t)) is a decreasing

function of XS∗ (t) throughout the horizon for t ∈ [t1 , T ]. Therefore rS∗ and wS∗

increase up to t1then decrease.

(iii) When X0 > M
2
− α

2β
, F S∗ (XS∗ (t)) is an decreasing function of XS∗ (t)

throughout the entire horizon. Therefore rS∗ and wS∗ are monotonically decreasing

over the entire horizon.

Proposition 2.1 states that we may observe three di�erent patterns of retail and

wholesale prices: monotonically increasing, increasing then declining, and mono-

tonically declining. The ultimate determinant of pricing patterns is the interaction

between the demand dynamics: the di�usion e�ect (word-of-mouth) and the sat-

uration e�ect. When the market saturation level is low, the word-of-mouth e�ect

stimulates sales, i.e., the di�usion e�ect outweighs the saturation e�ect, the retailer

(manufacturer) will start with relatively low price to stimulate early sales. As the
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sales grows, the saturation e�ect takes its turn, the retailer (manufacturer) will price

high to capture the immediate pro�t rather than sacri�cing current pro�ts for future

pro�ts. This result is a generalization of Kalish (1983). Kalish examined the optimal

dynamic pricing strategy within a centralized channel setting. Here we show that

with a short-term retailer pro�tability strategy, the optimal retail price and whole-

sale price patterns should follow the sales curves. In contrast, in the decentralized

channel with a long-term retailer pro�tability strategy, neither the retail price nor

the wholesale price pattern mimic the sales curves as illustrated by Figures 2.1 and

2.2.

Figure 2.1: Retail price under long-term and short-term strategies
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Figure 2.2: Instantaneous sales rate under long-term and short-term strategies

Note: the parameters are M = 4 × 107 , X0 = 1 × 107 , α = 0.016, β = 8 × 10−9 , γ =

5× 10−4 , c0 = $100, s = $10, O = 0, T = 10.

From Lemma 2.2, we have demonstrated the importance of obtaining the cu-

mulative sales trajectory XS∗ (t). The following provides a method to calculate the

equilibrium cumulative sales up to time t, XS∗ (t).

lemma 2.3. The equilibrium (optimal) cumulative sales trajectory XS∗ (t) can

be determined by the unique solution to the following equation:

tan
−1

[
fS∗ (XS∗ (t))

2
√
βF S∗ (XS∗ (t))

]
= tan

−1

[
fS (XS (0))

2
√
βF S (XS (0))

]
−
φ̄t
√
βF S∗ (XS∗ (T ))

4

(2.30)

P roof : De�ne a function G = − fS√
F S

. We can show that G (t) is an increasing

function of XS (t) for t ∈ [0, T ] by taking the �rst derivative of G (t) with regard to
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XS (t):

dG

dXS
=
β (α+ βXS)2

2 (F S)3/2
> 0.

The proof of Lemma 2.3 will proceed in two steps. First we show that Equation

(2.30) holds. Second, we show the uniqueness of solution. The second step itself

includes 3 substeps as we will see shortly. From Lemma 2.2, we have

xS∗ (t) =
φ̄

4

√
F S∗ (XS∗ (t))F S∗ (XS∗ (T ))

=⇒ dXS∗ (t)√
F S∗ (XS∗ (t))

=
φ̄
√
F S∗ (XS∗ (T ))dt

4
.

Integrating the left hand side of equation from XS (0) to XS∗ (t) and right hand side

from 0 to t, we have

∫ XS∗(t)

XS (0)

dXS∗ (τ)√
F S∗ (XS∗ (τ))

=
φ̄
√
F S∗ (XS∗ (T ))

4

∫ t

0

dτ

1√
β

tan
−1

[
α− βM + 2βXS∗ (τ)

2
√
βF S∗ (XS∗ (τ))

]τ=t

τ=0

=
φ̄t
√
F S∗ (XS∗ (T ))

4

Rearranging the terms, we will get the result in (2.30).

Next we shall show the uniqueness of solution to (2.30). In the �rst substep, we

show that the following equation provides a unique solution for XS∗ (T ):

tan
−1 fS∗ (XS∗ (T ))

2
√
βF S∗ (XS∗ (T ))

= tan
−1 fS (XS (0))

2
√
βF S (XS (0))

−
φ̄T
√
βF S∗ (XS∗ (T ))

4
.
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De�ne the following functions:

F1 (X) = − tan
−1 fS∗ (X)

2
√
βF S∗ (X)

+ tan
−1 fS (XS (0))

2
√
βF S (XS (0))

;

F2 (X) =
T φ̄
√
βF S∗ (X)

4
;

4F = F1 (X)− F2 (X) .

where F S∗ (X) = (M −X) (α+ βX) and fS∗ (X) = −α + βM − 2βX. We have

shown that have G is a strictly increasing function of X, hence F1 is strictly in-

creasing in X as well. So the uniqueness of solution can be easily extended to any

instant t. We will focus on proving the uniqueness of the solution to (2.30). We will

proceed the proof in three steps listed as follows:

Step One: Prove that there is at least one solution to the equation;

Step Two: Prove that there is at most one extreme point for 4F ;

Step Three: Prove F1 and F2 intersect with each other either within
(
XS (0) , M

2
− α

2β

)
or within

(
M
2
− α

2β
,M
)
, but not both.

Next we will prove this part according to the steps speci�ed above.

Step One: Prove that there is at least one solution to the equation.

Checking the sign of 4F at XS (0) and X →M . We have limX→M F2 (X) = 0.

Since F1 is increasing inX, we have4F (X →M) = limX→M 4F = limX→M (F1 − F2) =

limX→M F1 > 0. At X = X0 ,we have

4F (X = X0) = −
T φ̄
√
βF S∗ (XS (0))

4
< 0.

Therefore we have 4F di�erent signs at X = X0 and X → M. We conclude that

there is at least one solution to equation (2.30) within (XS (0) ,M).
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Step Two: Prove that there is at most one extreme point for 4F .

Taking the derivative of 4F with regard to X, we have

d4F
dX

=

√
β√

F S∗ (X)

8− T φ̄fS∗ (X)

8
.

The unique solution to d4F
dX)

= 0 is X = M
2
− α

2β
− 4

Tβφ̄
. Hence we conclude that there

is at least one extreme point over (XS (0) ,M), depending on whether M
2
− α

2β
− 4

Tβφ̄

is within or out of (XS (0) ,M).

Step Three: Prove that there is a unique solution.

It is easy to show that F2 is an increasing function of X for an arbitrary X ∈(
XS (0) , M

2
− α

2β

)
and an decreasing function of X for X ∈

(
M
2
− α

2β
,M
)
. We will

show that F1 and F2 intersect with each other only once, i.e, they either intersect

within the region
(
XS (0) , M

2
− α

2β

)
or within

(
M
2
− α

2β
,M
)
, but not both.

We will check the sign of the function 4F at three points, i.e., XS (0) , M
2
− α

2β

and M :

4F
(
M

2
− α

2β

)
= tan

−1 fS (XS (0))√
2βF S (XS (0))

− T φ̄ (α+ βM)

2

Note that for 4F
(

M
2
− α

2β

)
> 0 to hold, we need

tan
−1 fS (XS (0))√

βF S (XS (0))
− T φ̄ (α+ βM)

2
> 0

⇐⇒ fS (XS (0))√
βF S (XS (0))

> tan

[
T φ̄ (α+ βM)

2

]

When fS (XS (0))√
βF S (XS (0))

< tan
[

T φ̄(α+βM)
2

]
holds,4F (X = M) and4F

(
X = M

2
− α

2β

)
have di�erent signs. Because there is no extreme point, there is only one intersection
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only.

When fS (XS (0))√
βF S (XS (0))

> tan
[

T φ̄(α+βM)
2

]
holds,4F (X = X0) and4F

(
X = M

2
− α

2β

)
have di�erent signs. We know that the extreme point occurs at XS = M

2
− α

2β
− 4

Tβφ̄

. If XS (0) < M
2
− α

2β
− 4

Tβφ̄
< M

2
− α

2β
, then there is an extreme point within

(XS (0) ,M), otherwise there is no extreme point. Furthermore, if

Sign

[
4F

(
X =

M

2
− α

2β
− 4

Tβφ̄

)]
= Sign [4F (X = X0)] ,

the intersection must fall in
(
X (0) , M

2
− α

2β
− 4

Tβφ̄

)
; otherwise, if

Sign

[
4F

(
X =

M

2
− α

2β
− 4

Tβφ̄

)]
= Sign

[
4F

(
X =

M

2
− α

2β

)]
,

then the intersection must fall in
(

M
2
− α

2β
− 4

Tβφ̄
,M
)
.

Now we have proved that there is unique solution of XS∗ (T ). We can show that

there is unique solution of XS∗ (t). �.

Managerially, Lemma 2.3 is very useful for two major reasons. First, it is useful

for forecasting purposes. The manufacturer can assess the life time cumulative

sales XS∗ (T ) using (30) to solve for the unique solution. Note that XS∗ (T ) is a

function of initial sales XS (0) and parameters of the problem. Once the life time

cumulative sales is obtained, the cumulative sales trajectory XS∗ (t) for any given

time t is determined as well as the wholesale and retail price trajectories. Second,

the managers can plan for operations decisions such as production rate, production

capacity, and distribution channel capacity installation at any instant t.

Let ΠS∗
SC

(T ) denote the channel pro�t up to time t, which is the sum of the

manufacturer's and retailer's pro�ts from selling the manufacturer's product. The

following result characterizes the life cycle equilibrium (optimal) pro�ts up to time
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t, ΠS∗
R

(t) and ΠS∗
M

(t) and πS∗
SC

(T ), in terms of the cumulative sales XS∗ (t).

Lemma 2.4. Let 4XS∗ (t) = XS∗ (t)−XS (0).

(i) The manufacturer's optimal cumulative pro�t up to time t, ΠS∗
M

(t), and

retailer's optimal cumulative pro�t up to time t, ΠS∗
R

(t), are are given by:

ΠS∗
M

(t) =
φ̄4XS∗ (t)

γ
− φ̄2tF S∗ (T )

8γ
,

ΠS∗
R

(t) =
φ̄2tF S∗ (T )

16γ
+ tOK;

ΠS∗
M

(t) is a decreasing function of O, i.e.,
∂ΠS∗

M (t)

∂O
< 0.

(ii) The life-cycle supply chain pro�ts ΠS∗
SC

(T ) is given by

ΠS∗
SC

(T ) =
[1− γ (c0 + s)]4XS∗ (T )

γ
− φ̄2TF S∗ (XS∗ (T ))

16γ
.

Proof: 2.4(i) From Lemma 2.2, we have πS∗
R

(t) = φ̄2F S∗(xS∗(T ))
16γ

+KO. We

integrate πS∗
R

(t) from time 0 to t to obtain the retailer's cumulative pro�t up to

time t as ΠS∗
R

(t) = tφ̄2F S∗(xS∗(T ))
16γ

+ tKO. From Lemma 2.2(iii), we have

xS∗ (t) = φ̄
4

√
F S∗ (xS∗ (t))F S∗ (xS∗ (T )). Integrating from 0 to t, we have

∫
t

0

xS∗ (τ) dτ =
φ̄

4

√
F S∗ (xS∗ (T ))

∫
t

0

√
F S∗ (xS∗ (τ))dτ

=⇒
∫

t

0

√
F S∗ (xS∗ (τ))dτ =

4 [XS∗ (t)−XS (0)]

φ̄
√
F S∗ (xS∗ (T ))

From Lemma 2.2(v), we have

πS∗
M

(t) =
φ̄2

8γ

[
2
√
F S∗ (xS∗ (t))F S∗ (xS∗ (T ))− F S∗ (xS∗ (T ))

]
.
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Integrating from 0 to t, we have:

ΠS∗
M

(T ) =
∫

t

0
πS∗

M
(τ) dτ =

φ̄2
√
F S∗ (xS∗ (T ))

4γ

∫
t

0

√
F S∗ (xS∗ (τ))dτ − tφ̄2F S∗ (xS∗ (T ))

8γ

=
φ̄2
√
F S∗ (xS∗ (T ))

4γ

4 [XS∗ (t)−XS (0)]

φ̄
√
F S∗ (xS∗ (T ))

− tφ̄2F S∗ (xS∗ (T ))

8γ

=
φ̄ [XS∗ (t)−XS (0)]

γ
− tφ̄2F S∗ (XS∗ (T ))

8γ

From (2.30), for t = T , we have:

tan
−1 fS∗ (XS∗ (T ))

2
√
βF S∗ (XS∗ (T ))

= tan
−1 fS (XS (0))

2
√
βF S (XS (0))

−
φ̄T
√
βF S∗ (XS∗ (T ))

4
.

Taking the derivative of both sides of (2.30) with regard to O, we have:

1√
F S∗ (XS∗ (T ))

∂XS∗ (T )

∂O
= −

γT
√
F S∗ (XS∗ (T ))

4
+

φ̄TfS∗ (XS∗ (T ))

8
√
F S∗ (XS∗ (T ))

∂XS∗ (T )

∂O

=⇒ ∂XS∗ (T )

∂O
= −γTF

S∗ (XS∗ (T ))

4
+
φ̄TfS∗ (XS∗ (T ))

8

∂XS∗ (T )

∂O

=⇒ ∂XS∗ (T )

∂O

[
1− φ̄TfS∗ (XS∗ (T ))

8

]
= −γTF

S∗ (XS∗ (T ))

4

=⇒ ∂XS∗ (T )

∂O
= − γTF S∗ (XS∗ (T ))

8− φ̄TfS∗ (XS∗ (T ))

Taking the derivative of ΠS∗
M

(T ) with regard to O, we have:

∂ΠS∗
M (T )

∂O
= −4XS∗ (T ) +

φ̄

γ

∂XS∗ (T )

∂O
+
T φ̄F S∗ (XS∗ (T ))

4
− T φ̄2fS∗ (XS∗ (T ))

8γ

∂XS∗ (T )

∂O

= −4XS∗ (T ) +
φ̄

γ

∂XS∗ (T )

∂O

(
1− T φ̄2fS∗ (XS∗ (T ))

8γ

)
+
T φ̄F S∗ (XS∗ (T ))

4

= −4XS∗ (T ) < 0
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2.4(ii) From the de�nition, we have

ΠS∗
SC

(T ) = ΠS∗
M

(T ) + ΠS∗
R

(T )−
∫

T

0

(K − xS∗)Odt

= ΠS∗
M

(T ) + ΠS∗
R

(T )−KOT +O4XS∗ (T )

=
φ̄4XS∗ (T )

γ
− T φ̄2F S∗ (XS∗ (T ))

8γ
+
T φ̄2F S∗ (XS∗ (T ))

16γ

+KOT −KOT +O4XS∗ (T )

=
[1− γ (c0 + s)]4XS∗ (T )

γ
− T φ̄2F S∗ (XS∗ (T ))

16γ

We conclude this section by pointing out that the retailer's strategy of having a

short-term strategy may or may not be optimal from the retailer's perspective, as

will be discussed in the following section.

2.6 Numerical Analysis: Long-term Focus versus

Short-term Focus

We have analyzed the models with both the long-term and short-term retailer prof-

itability strategies. Our analysis so far leaves open the following questions: Will the

retailer and manufacturer have con�icts over the preferred retailer pro�tability strat-

egy? If so, under what conditions will they have con�icts? A priori, it is not clear

whether the long-term pro�tability objective will be preferred when both the retailer

and manufacturer solve their global optimization problem. We must recognize that

this sequential local maximization will not necessarily lead to a better global solu-

tion than if the retailer has a short term optimization focus. Let i and j denote the

manufacturer's and retailer's preferences, respectively. Accordingly, there are four
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possible combinations of preferences, i.e., {i, j} = {L,L} , {L, S} , {S, L} , {S, S}.

Preferences Over the Retailer's Pro�tability Strageties. We conducted

a numerical study with di�erent values of T and β. Table 2.1 reports the preferred

retailer strategy, market saturation level, and pro�t gain with di�erent combinations

of T and β. We have a few observations. First, we can observe all four combinations

of preferences. In some cases, the manufacturer and the retailer have aligned pref-

erences over the retailer pro�tability strategy while in other cases, they may have

con�icts. Second, for a �xed value of β, preferences shift in the following order:

{L,L}, {L, S}, {S, S} and {S, L} as T increases. Moreover, for a �xed value of T ,

preferences shifts in the same order as β increases. Third, the preferences of both

parties depend on the level of market saturation at the end of the selling horizon.

Finally, the con�icts between the manufacturer and the retailer can be signi�cant

when the market is highly saturated at the end of the selling horizon, i.e., when

either T or β or both are very large. For example, when the market penetration

level is over 80%, the manufacturer's pro�t gain is between 10% and 18% with his

preferred pro�tability strategy while the retailer's pro�t gain is more signi�cant: it

can be from 13% to 115%. However, when the market is not highly saturated, the

con�ict is far less signi�cant.

In a decentralized channel, due to the di�erences in the cost structure, the man-

ufacturer and the retailer see di�erent future bene�ts of current sales therefore they

make a di�erent adjustment of their pricing strategies when they are trading o�

current with future pro�ts. For both the manufacturer and the retailer, shadow

prices represent the future value of an additional sale. The determination of the

magnitude of the shadow prices and therefore the trade-o�s depends on the market

saturation level which itself depends on the particular parameter settings such as T ,
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α and β. When the combination of these parameters leads to high levels of market

penetration, the saturation e�ect will reduce the retailer's shadow price eventually

reaching negative levels; this saturation e�ect will lead the retailer to increase her

pro�t margins. A higher retail price is not in the manufacturer's interest there-

fore the manufacturer will switch his preference to a �myopic� retailer pro�tability

strategy when the market reaches high enough saturation level at the end of the

horizon.

The retailer's preferences are more complex to explain because she needs to bal-

ance (a) the cost due to the myopic pricing decision and (b) the gain, in terms

of favorable wholesale price terms received from the manufacturer under this my-

opic retailer strategy. When the window of opportunity to sell the IDP leads to

a low level of market saturation, the manufacturer is interested in stimulating the

di�usion of the IDP and he o�ers favorable wholesale price terms when the re-

tailer cooperates with his di�usion goal by lowering the retail price ( a long-term

pro�tability strategy). When the window of opportunity is long enough, the man-

ufacturer's wholesale price terms are not attractive to the retailer and she switches

her preference to a short-term pro�tability strategy. When the market saturation

level is extremely high, the retailer knows additional sales will be very low so she

is interested in �milking� the market and switches her preference to a long-term

pro�tability strategy (in this case the shadow price is negative so she will increase

her pro�t margins) regardless of the manufacturer's wholesale price increase as a

reaction to her long-term optimization preference.
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Table 2.1: Prefered retailer focus, market saturation, and pro�t gain

T β = 2.5× 10−9 β = 8× 10−9 β = 2× 10−8 β = 5× 10−8

P SL G P S G P SL G P SL G

1 − − − {L, L} (27, 27) < 1 {L, L} (29, 29) (2, 2) {L, L} (36, 36) (5, 3)

2 − − − {L, L} (29, 29) (2, 1) {L, L} (34, 33) (4, 3) {L, S} (49, 48) (5, 4)

5 {L, L} (28, 28) (3, 1) {L, L} (35, 34) (3, 2) {L, S} (49, 48) (4, 4) {S, S} (74, 74) (5, 19)

10 {L, L} (32, 32) (5, 1) {L, S} (45, 45) (4, 2) {S, S} (68, 68) (2, 17) {S, S} (90, 90) (12, 10)

25 {L, S} (44, 45) (1, 3) {S, S} (70, 70) (4, 17) {S, S} (88, 88) (12, 9) {S, L} (91, 98) (13, 23)

100 {S, S} (80, 80) (10, 13) {S, L} (87, 95) (14, 8) {S, L} (94, 99) (11, 50) {S, L} (97, 99) (18, 115)

200 {S, L} (83, 92) (14, 1) − − − − − − − − −

Notes. Parameters are M = 4 × 10
7
, X0 = 1 × 10

7
, α = 0.016, k = 5 × 10

−4
, c0 = $100,

and O = 0. Let P = {P
M

, P
R
} denotes the manufacturer and retailer's preferred pro�tability foci

and SL = {SL
M

, Sl
R
} denote the market saturation level at the end of the selling horizon, i.e.,

SL
M(R) =

X
M(R) (T )

M × 100%. Let P̄ =
(
P̄

M
, P̄

R

)
denote the combination of the manufacturer's

and retailer's unpreferred pro�tability foci. Let G = {G
M

, G
R
} and G

M(R) =
(

πP
M(R)

(T )

πP̄
M(R) (T )

− 1
)
×

100%, i.e., the percentage of the pro�t gain to the manufacturer (retailer) with a preferred retailer

pro�tability strategy, where πP

M(R)
(T ) denote the manufacturer (retailer) 's life-cycle pro�t under

his (her) preferred retailer pro�tability strategy.

Wholesale Price Contracts Implementation Issues. Clearly, it is impor-

tant to understand what the resulting wholesale price contracts will be under di�er-

ent scenarios. For scenarios {L,L} and {L, S}, the manufacturer o�ers the whole-

sale price contract assuming that the retailer will be farsighted and he may safely

do so because for a given wholesale price strategy, the retailer is better o� being

far-sighted no matter her preferences are. For the scenarios {S, S} and {S, L}, the

manufacturer o�ers the wholesale price contract assuming that the retailer will be

myopic. However, in order to implement these wholesale price contracts, the man-
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ufacturer needs to monitor the retailer's sales volume or retail price at any instant

of time. Without monitoring, for a given wholesale price, the retailer is better o�

setting the retail price with a long-term perspective. Note that for scenarios {L, S}

and {S, L}, the resulting wholesale price contracts are consistent with the manufac-

turer's preferences, but not in the retailer's �rst preference, so there may be some

implementation resistance from the retailer.

Although larger αand β lead to increased life-cycle supply chain pro�ts, the e�ect

of larger values of αand β on the split of this pro�t between the manufacturer and

the retailer is not straightforward. When the selling window leads to a low level of

market saturation, the retailer will tend to capture a higher share of the pro�t than

when the selling window allow high levels of market saturation.

2.7 Two-part Contracts

Without additional transfers of pro�ts from the manufacturer to the VAR, the VAR

will consider the opportunity cost O of diverting sale resources from alternative

products to the IDP when making pricing decisions (see (2.1) and (2.21)). We

shall demonstrate in this section that the existence of alternative products in the

retailer's portfolio competing with the IDP for sales resources, creates for the retailer

a �exibility in allocation of resources, which hurts the manufacturer as well as the

IDP's supply chain. As a possibility to overcome this problem, we consider a lump-

sum up-front payment A paid by the manufacturer to the retailer for the exclusive

use of sale resources to the IDP. Once these resources are contractually allocated to

the IDP, the retailer foregoes the possibility of using these resources for an alternative

product, making the opportunity cost of dedicating these resources to the IDP

e�ectively equal to zero. We assume that this contractual agreement is initiated by
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the manufacturer. If the retailer accepts the terms of trade with an upfront fee, she

entirely dedicates the K units of resources to the manufacturer.

We assume that the manufacturer knows the pro�tability objective of the retailer,

i.e., either a long-term or a short-term strategy. The sequence of events is as follows:

At date 1, the manufacturer launches a new product and proposes two terms of trade

(contracts), a two-part contract, i.e., a wholesale price coupled with an up-front fee,

{A,w (t)}, and a wholesale-price-only contract, {w (t)}. At date 2, the retailer

decides which contract to choose. At date 3, she decides the retail price path and

thereby her instantaneous sales rate, depending on the contract she chose at date

2. At date 4, production and trade occur. We assume that when the retailer is

indi�erent between the two contracts, she will choose the one with an up-front fee.

2.7.1 Two-part Contracts with a Long-term Focus

Let ΠLD∗
R

(T ) be the life cycle pro�ts obtained by the retailer who accepts the two-

part contract {A,w (t)} to dedicate her selling resources to the manufacturer's IDP.

Note that ΠLD∗
R

(T ) can be obtained by solving (1) with O = 0. A rational retailer

with a long-term strategy accepts a two-part contract with an upfront payment

A only if she earns no less than she does under the wholesale-price-only contract

(Incentive Compatibility Constraint), mathematically,

ΠLD∗
R

(T ) + A ≥ ΠL∗
R

(T ) . (2.31)

Given her acceptance of the two-part contract, the retailer regards the outside pro�t

margin O and the allowance A as sunk costs and foregoes them when setting her

dynamical retail price strategy.
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The manufacturer decides whether to induce the dedicated retail resources. He

needs to compare the maximum pro�t he earns with a two-part contract to that

with a wholesale price contract. If it is pro�table for him to induce the retailer

to accept the up-front payment, the manufacturer would extract the entire gain in

channel pro�t, i.e., the manufacturer will make the retailer break-even between the

two-part contract and wholesale-price-only contract. The manufacturer will o�er the

retailer an up-front fee ABEL = ΠL∗
R

(T )−ΠLD∗
M

(T ) coupled with the corresponding

transfer price wLD∗ (t) if it is to his advantage or just a transfer price contract wL∗ (t).

Let πLD∗
M

(T ) and πL∗
M

(T ) be the manufacturer's pro�ts with dedicated and �exible

resources, respectively. The manufacturer o�ers an up-front fee only if he is not worse

o� than with a wholesale-price alone contract, i.e., ΠLD∗
M

(T )− ABEL ≥ ΠL∗
M

(T ) .

2.7.2 Two-part Contracts with a Short-term Focus

Let ΠSD∗
R

(T ) be the retailer's life cycle pro�t with a short-term pro�tability strategy

who accepts the two-part contract {A,w (t)}. The analysis in the section parallels

that of a retailer with a long-term pro�tability strategy. Her participation constraint

for a two-part contract is:

ΠSD∗
R

(T ) + A ≥ ΠS∗
R

(T ) , (2.32)

Let πSD∗
R

(T ) be the manufacturer's pro�t from the sales of the product (with the ded-

icated resources). The two-part contract o�ered to the retailer will be {AS , wSD∗ (t)}

where ABES = ΠS∗
R

(T ) − ΠSD∗
R

(T ). Alternatively, if ΠSD∗
M

(T ) − ABES < ΠS∗
M

(T )

, the manufacturer will simply o�er a transfer price contract wS∗ (t). Let φ =
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1− γ (c0 + s) , a function of parameters.

Proposition 2.2. Given the acceptance of {ABES , wSD∗ (t)}, where wSD∗ (t)

is given by

wSD∗ (t) =
1

2γ

[
2 (1− γs)− φ

√
F SD∗ (XSD∗ (T ))

F SD∗ (XSD∗ (t))

]

and ABES is given by:

ABES = KOT +
φ̄2

16γ
TF S∗ (XS∗ (T ))− φ2

16γ
TF SD∗ (XSD∗ (T )) ;

(i) The retailer's cumulative life-cycle pro�t ΠSD∗
R

(T ) is given by ΠSD∗
R

(T ) = φ2TF SD∗(XSD∗(T ))
16γ

.

(ii) The manufacturer's life-cycle pro�t ΠSD∗
M

(T ) is given by

ΠSD∗
M

(T ) =
φ4XS∗ (T )

γ
− φ2TF SD∗ (T )

8γ
.

ΠSD∗
M

(T ) is a decreasing function of O:
∂ΠSD∗

M (T )

∂O
= −4XSD∗ (T ) < 0.

Two-part contracts may improve the manufacturer-retailer channel e�ciency;

however, for many situations (e.g., a large outside pro�t margin), such contracts

may not be feasible, as the additional pro�t cannot recoup the retailer's loss. In

other words, the manufacturer cannot a�ord to pay a high up-front fee to secure

the retailer's resources. Even in the situations that this two-part tari� contract is

implementable, such a mechanism cannot achieve full channel coordination

because it cannot overcome the double marginalization problem. In the next

section, we explore the utilization of revenue sharing contracts to increase the

supply chain performance.
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2.8 Revenue Sharing Contracts

In this section, we use revenue sharing contracts to coordinate the channel. Sub-

section 1.8.1 determines the benchmark solution, i.e., the integrated channel's retail

price, sales and pro�t rate trajectories. Subsection 1.8.2 studies the coordination

with a long-term retailer pro�tability strategy. Subsection 1.8.3 studies the revenue

sharing contract with a short-term retailer pro�tability strategy. Subsection 1.8.4

discusses the channel coordination implications of retailer pro�tability strategy and

combined sharing contract with an upfront fee.

2.8.1 Integrated Channel

We now consider an integrated channel in which the manufacturer is the central

decision maker. The channel maximizes the life cycle pro�t obtained from selling

the IDP. The channel incurs a constant per unit production cost c0 and a selling cost

s. This problem corresponds to a specialization of the demand function in Kalish

(1983). For this special case, we obtain an implicit expression for the optimal

sales trajectory (Lemma 2.7) and we are able to express the optimal retail price

trajectory (Lemma 2.6) and the optimal pro�t trajectory (Lemma 2.8) as functions

of the cumulative sales. The integrated channel's pro�t maximization problem is

given by

ΠI∗ (T ) = max
rI (t)

∫ T

0

[rI (t)− c0 − s] ẊI (t) dt

s.t. xI = (M −XI ) (α+ βXI ) (1− γrI ) , XI (0) = XI

0

De�ne f I = dF I

dXI
= −α + βM − 2βXI . Let λI (t) denote the shadow price as-

sociated with the state variable XI . Using a similar approach to the one applied
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in the previous several sections, we establish the relationship between the optimal

cumulative sales XI∗ and shadow price λI trajectories in the following lemma. Let

φ = 1 − γ (c0 + s) and assume that φ > 0. Let RI∗ (t) =
√

F I∗(XI∗(tT ))
F I∗(XI∗(t))

, where

F I∗ (t) = (M −XI∗ (t)) (α+ βXI∗ (t)), ∀t ∈ [0, T ].

Lemma 2.5. λI (t) is given by

λI (t) =
φ

γ

(√
F I∗ (XI∗ (T ))

F I∗ (XI∗ (t))
− 1

)
, t ∈ [0, T ] .

Proof: Similar to the proofs of lemma 2.2.1 and 2, respectively.

Lemma 2.6. For the integrated channel, the optimal retail price rI∗, the in-

stantaneous sales rate xI∗, and the instantaneous pro�t rate πI∗ are given by:

rI∗ (t) =
1

2γ

[
2− φ

√
F I∗ (XI∗ (T ))

F I∗ (XI∗ (t))

]
xI∗ (t) =

φ

2

√
F I∗ (XI∗ (T ))F I∗ (XI∗ (t))

πI∗ (t) =
φ2

4γ

[
2
√
F I∗ (XI∗ (T ))F I∗ (XI∗ (t))− F I∗ (XI∗ (T ))

]

Proof: Similar to the proofs of Lemma 2.1 and 2.2, respectively.

Lemma 2.7. The optimal cumulative sales trajectory XI∗ (t) is determined by

the unique solution to the following equation:

tan
−1

[
f I∗ (XI∗ (t))

2
√
βF I∗ (XI∗ (t))

]
= tan

−1

[
f I (XI (0))

2
√
βF I (XI (0))

]
−
φt
√
βF I∗ (XI∗ (T ))

2

Using the results from Lemma 2.6 and 7, we can now establish the pro�t trajectory
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to the integrated channel.

Proof: From Lemma 2.6, we have

xI∗ (t) =
φ

2

√
F I∗ (XI∗ (t))F I∗ (XI∗ (T ))

=⇒ dXI∗ (t)√
F I∗ (XI∗ (t))

=
φ
√
F I∗ (XI∗ (T ))dt

2

Integrating the left hand side of equation from XI (0) to XI∗ (t) and right hand side

from 0 to t, we have

∫ XI∗(t)

XI (0)

dXI∗ (τ)√
F I∗ (XI∗ (τ))

=
φ
√
F I∗ (XI∗ (T ))

2

∫ t

0

dτ

=⇒ 1√
β

tan
−1

[
α− βM + 2βXI∗ (τ)

2
√
βF I∗ (XI∗ (τ))

]τ=t

τ=0

=
tφ
√
F I∗ (XI∗ (T ))

2

Rearrange the above equation and we will get the equation in Lemma. �.

Lemma 2.8. De�ne 4XI∗ (t) = XI∗ (t) − XI (0). The optimal integrated

channel's cumulative pro�t up to time t, ΠI∗ (t), is given by:

ΠI∗ (t) =
φ4XI∗ (t)

γ
− tφ2F I∗ (XI∗ (T ))

4γ
.

Proof: From Lemma 2.6, we have

xI∗ (t) =
φ

2

√
F I∗ (XI∗ (t))F I∗ (XI∗ (T ))

=⇒
∫ XI∗(t)

XI (0)

dXI∗ (t) =
φ

2

√
F I∗ (XI∗ (T ))

∫
t

0

√
F I∗ (XI∗ (t))dt

=⇒ 4XI∗ (t) =
φ

2

√
F I∗ (XI∗ (T ))

∫
t

0

√
F I∗ (XI∗ (t))dt

=⇒
∫

t

0

√
F I∗ (XI∗ (t)) =

24XI∗ (t)

φ
√
F I∗ (XI∗ (T ))
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Integrating the left hand side equation from πI (0) = 0 to πI∗ (t) and the right hand

side equation from XI (0) to XI∗ (t) , we have

ΠI∗ (t) =
∫

t

0
πI∗ (τ) dτ =

φ2
√
F I∗ (XI∗ (T ))

4γ

∫
t

0

(
2
√
F I∗ (XI∗ (t))−

√
F I∗ (XI∗ (T ))

)
dt

=
φ2
√
F I∗ (XI∗ (T ))

4γ

[
44XI∗ (t)

φ
√
F I∗ (XI∗ (T ))

− t
√
F I∗ (XI∗ (T ))

]

=
φ4XI∗ (t)

γ
− tφ2F I∗ (XI∗ (T ))

4γ

We will use these results to study the channel coordination with revenue sharing

contracts in the next two subsections.

2.8.2 Revenue Sharing with a Long-term Focus

We consider a revenue sharing contract with two parameters {qL , ŵL (t)}, where

qL ∈ [0, 1] is the manufacturer's share of revenue per unit sold by the retailer and

ŵL (t) is the wholesale price that the manufacturer charges the retailer per unit at

time t. qL is assumed to be constant over time. Note that we use the hat-accent �

ˆ � to indicate that the variable is associated with a revenue sharing contract. The

manufacturer's objective is to set ŵL (t) such that the supply chain pro�t (sales) is

the same as that with achieved by an integrated channel. The sequence of events is

as follows: On date 1, the manufacturer announces the {qL , ŵL (t)}; On date 2, the

retailer decides the retail price trajectory thereby the instantaneous sales rate with

an aim to maximize her life-cycle pro�t; On date 3, production starts and trade

occurs. We assume that the revenue sharing contract is not accompanied by an

up-front fee so the retailer takes the O into consideration when dynamically setting

the retail price.
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The problem for the retailer with a long-term strategy is formulated as follows:

π̂L∗
R

(T ) = max
r̂L (t)

∫ T

0

{
[(1− qL) r̂L (t)− ŵL (t)− s]

˙̂
XL (t) +O

[
K − ˙̂

XL (t)
]}

dt

s.t.
˙̂
XL (t) = F̂ L

(
X̂L (t)

)
[1− γr̂L (t)] , X̂L (0) = X̂L

0

Let λ̂L
R

(t) be the shadow price associated with the state variable
˙̂
XL (t). De�ne

π̂L∗
SC

(T ) as the maximum channel pro�ts obtained from selling the manufacturer's

product.

Theorem 2.1. Consider a revenue sharing contract with qL ∈ [0, 1] and the

wholesale price trajectory ŵL∗ (t) set as follows ŵL∗ (t) =(1− qL) c0−qLs−O.

(i)The retailer's instantaneous pro�t rate is given by

π̂L∗
R

(t) = (1− qL)πI∗ (t) +KO

and her life-cycle pro�t is given by Π̂L∗
R

(T ) = (1− qL) ΠI∗ (T ) +KOT .

(ii) The manufacturer's instantaneous pro�t rate is given by

π̂L∗
M

(t) = qLπI∗ (t)−OxI∗ (t)

and his life-cycle pro�t is given by Π̂L∗
M

(T ) = qLΠI∗ (T )−O4XI∗ (T ).

(iii) The above revenue sharing contract coordinates the channel, i.e.,

Π̂L∗
SC

(T ) = ΠI∗ (T ). The retailer's instantaneous sales rate is xI∗ (t) and the retail

price is set at rI∗ (t).

(iv) When O = 0, the revenue sharing contract leads to pro�t sharing between the

manufacturer and retailer.
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Proof: To get the optimal retail price, we take the �rst order condition of ĤL
R

with regard to r̂L to obtain:

∂ĤL
R

∂r̂L
= 0 =⇒ −γ

[
(1− q) r̂L (t)− ŵL (t)− s−O + λ̂L

R
(t)
]

+ (1− qL) [1− γr̂L (t)] = 0

=⇒ r̂L (t) =
1− qL + γ

(
ŵL (t) + s+O − λ̂L

R
(t)
)

2γ (1− qL)

The shadow price λ̂L
R

(t) satis�es the following equation:

˙̂
λL

R
(t) = −

∂ĤL
R

∂X̂L

= −f̂L∗ (1− γr̂L)
[
(1− qL) r̂L − ŵL − s−O + λ̂L

R

]

The manufacturer sets the wholesale price such that

r̂L (t) = rI∗ =
1

2γ

[
2− φ

√
F I∗ (XI∗ (T ))

F I∗ (XI∗ (t))

]
.

The corresponding ŵL∗ (t) is obtained by;

1− qL + γ
(
ŵL (t) + s+O − λ̂L

R
(t)
)

2γ (1− qL)
=

1

2γ

[
2− φ

√
F I∗ (XI∗ (T ))

F I∗ (XI∗ (t))

]

=⇒ ŵL∗ (t) =
1− qL

γ

[
1− φ

√
F I∗ (XI∗ (T ))

F I∗ (XI∗ (t))

]
+ λ̂L

R
(t)− s−O

Substituting ŵL and r̂L (t) into
˙̂
λL

R
(t), after simpli�cation, we have

˙̂
λL

R
(t) = −(1− qL)φ2f I∗ (XI∗ (t))

4γ

F I∗ (XI∗ (T ))

F I∗ (XI∗ (t))

Recall that we have x̂L
R

(t) = xI (t) = φ
2

√
F I∗ (XI∗ (T ))F I∗ (XI∗ (t)). We can estab-
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lish the relationship between
˙̂
λL

R
(t) and x̂L

R
(t) as:

˙̂
λL

R (t)

x̂L
R (t)

= −
φf I∗ (XI∗ (t)) (1− qL)

√
F I∗ (XI∗ (T ))

2γ [F I∗ (XI∗ (t))]
3/2

=⇒
∫ λL

R
(T )

λL
R

(t)

dλ̂L
R

(τ) = −
φ (1− qL)

√
F I∗ (XI∗ (T ))

2γ

∫ FI (T )

FI (t)

[F I∗ (XI∗ (t))]−3/2 dF I (τ)

=⇒ λ̂L
R

(t) = −
φ (1− qL)

√
F I∗ (XI∗ (t))

2γ
[F I∗ (XI∗ (t))]−3/2 |

FI (T )

FI (t)

=
φ (1− qL)

γ

(√
F I∗ (XI∗ (T ))

F I∗ (XI∗ (t))
− 1

)

We note that λ̂L
R

(t) = (1− qL)λI
R

(t) . Substituting λ̂L
R

(t) and λI (t) into ŵL∗ (t), we

can simplify ŵL∗ as:

ŵL∗ (t) =
1− qL

γ

[
1− φ

√
F I∗ (XI∗ (T ))

F I∗ (XI∗ (t))

]
+ λ̂L

R
(t)− s−O =

=
1− qL

γ

[
1− φ

√
F I∗ (XI∗ (T ))

F I∗ (XI∗ (t))

]
+
φ (1− qL)

γ

(√
F I∗ (XI∗ (T ))

F I∗ (XI∗ (t))
− 1

)
−s−O

= (1− qL) (c0 + s)− s−O

Obviously, ŵL (t) is constant across time.

Theorem 2.1(i). Substituting ŵL∗ (t) into π̂L∗
R

(t), we have

π̂L∗
R

(t) = [(1− qL) rL∗ (t)− ŵL∗ (t)− s] x̂L∗ +O (K − x̂L∗)

= (1− qL)πI∗ (t) +KO.
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Integrating π̂L
R

(t) from 0 to t, we have

Π̂L∗
R

(T ) =

∫
T

0

π̂L∗
R

(t) dt

= KOT + (1− qL)

∫ T

0

πI∗ (t) dt

= KOT + (1− qL) ΠI∗ (T )

Theorem 2.1 (ii). The manufacturer's instantaneous pro�t rate π̂L∗
M

(t) is given by:

π̂L∗
M

(t) = [ŵL∗ − c0 + qL r̂L∗] x̂L∗

= [(1− qL) (c0 + s)− s−O − c0 + qL r̂L∗] x̂I∗

= [−qL (c0 + s)−O + qL r̂L∗] x̂I∗

= qLπI∗ (t)−Ox̂I∗

The manufacturer's life-cycle pro�t Π̂L∗
M

(T ) is given by

Π̂L∗
M

(T ) =

∫ T

0

[ŵL∗ − c0 + qL r̂L∗] x̂L∗dt

= qLΠI∗ (T )−O4XI∗ (T )

Theorem 2.1(iii) According to the de�nition,

Π̂
L∗
SC

(T ) = Π̂L∗
M

(T ) + Π̂L∗
R

(T )−
∫

T

0

O (K − x̂L∗) dt.
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Substituting Π̂L∗
M

(T ) and Π̂L∗
R

(T ) into Π̂L∗
SC

(T ) we have

Π̂L∗
SC

(T ) = Π̂L∗
M

(T ) + Π̂L∗
R

(T )−
∫

T

0

O (K − x̂L∗) dt

= qLΠI∗ (T )−O4XI∗ (T ) +KOT + (1− qL) ΠI∗ (T )−KOT +O4X̂L∗ (T )

= ΠI∗ (T )

Theorem 2.1(iv) When O = 0, we have

Π̂L∗
R

(T ) = (1− qL) ΠI∗ (T )

and Π̂L∗
M

(T ) = qLΠI (T ). �

We have a few observations from Theorem 2.1. First, the wholesale is constant

over time and below the manufacturer's per unit production cost. Therefore, the

manufacturer loses money in his wholesale transaction, and only makes money by

sharing the retailer's revenue. Second, when O is positive, the share of the pro�ts

earned by the manufacturer is smaller than his share of revenue qL .

2.8.3 Revenue Sharing with a Short-term Retailer Strategy

In this section, we consider a revenue sharing contract {qS , ŵS (t)} signed by a

manufacturer and a retailer with a short-term pro�tability strategy. Note that the

revenue sharing contract is not accompanied with up-front fees hence the retailer

�exibly allocates her resources between the products that she sells. Suppose that the

manufacturer's objective is to set the wholesale price ŵS such that the instantaneous

sales rate x̂S = xI . The retailer's problem is to maximize her instantaneous pro�t
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rate:

π̂S∗
R

(t) = max
r̂S (t)

{[(1− qS) r̂S (t)− ŵS (t)− s] x̂S (t) +O [K − x̂S (t)]}

s.t. x̂S (t) = F̂ S

(
X̂s (t)

)
[1− γr̂S (t)] , X̂S (0) = X̂0

Let πS∗
SC

(T ) be the channel's optimal life cycle pro�ts.

Theorem 2.2. Consider a revenue sharing contract with qS ∈ [0, 1] and the

wholesale price trajectory ŵS∗ (t) set as

ŵS∗ (t) =
1

γ
(1− qS)

[
1− φ

√
F I∗ (XI∗ (t))

F I∗ (XI∗ (t))

]
− s−O.

(i) The resulting retailer's instantaneous pro�t rate is given by

π̂S∗
R

(t) =
φ2

4γ
(1− qS)F I∗ (XI∗ (T )) +KO.

When O = 0, the retailer's optimal instantaneous pro�t rate π̂S∗
R

(t) is constant over

time. The retailer's cumulative life-cycle pro�t is given by

Π̂S∗
R

(T ) =
(1− qS)φ2

4γ
TF I∗ (XI∗ (T )) +KOT.

(ii) The manufacturer's instantaneous pro�t rate π̂S∗
M

(t) is given by:

π̂S∗
M

(t) =

[
φ̄− φRI∗ (XI∗ (t))

γ
+
qSφRI∗ (XI∗ (t))

2γ

]
xI∗ (t)
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and the cumulative life cycle pro�t Π̂S∗
M

(T ) is given by

Π̂S∗
M

(T ) =
φ̄

γ
4XI∗ (T ) +

Tφ2 (qS − 2)F I∗ (XI∗ (T ))

4γ
.

(iii) The above revenue sharing contract coordinates the the channel, i.e., Π̂S∗
SC

(T ) =

ΠI∗ (T ). At any time t, the retailer's instantaneous sales rate is xI∗ (t) and the retail

price rI∗ (t).

Proof: For a given wholesale price trajectory ŵS (t), the retailer's best response

retail price trajectory r̂S (t) is obtained by taking the �rst order condition of π̂S
R

with regard to r̂S :

∂π̂S
R

∂r̂S
= 0 =⇒ (1− qS) [1− γr̂S ]− γ [(1− qS) r̂S − ŵS − s−O] = 0

=⇒ r̂S∗ =
1− qS + γ (ŵS + s+O)

2γ (1− qS)
.

Suppose that manufacturer sets the wholesale price ŵS∗ in a way such that rS = rI .

Then the optimal wholesale price is obtained by solving the following equation:

1− qS + γ (ŵS∗ + s+O)

2γ (1− qS)
=

1

2γ

[
2− φ

√
F I∗ (XI∗ (T ))

F I∗ (XI∗ (t))

]

=⇒ ŵS∗ =
(1− qS)

γ

[
1− φ

√
F I∗ (XI∗ (T ))

F I∗ (XI∗ (t))

]
− s−O.
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Let RI∗ (XI∗ (t)) =
√

F I∗(XI∗(T ))
F I∗(XI∗(t))

. Then, we have:

ŵS∗ =
(1− qS) [1− φRI∗ (XI∗ (t))]

γ
− s−O,

r̂S∗ (t) =
2− φRI∗ (XI∗ (t))

2γ
,

x̂S∗ (t) =
φF I∗ (XI∗ (t))RI∗ (XI∗ (t))

2
.

Theorem 2.2(i). Substituting wS (t) into the manufacturer's instantaneous pro�t

rate π̂S∗
R

(t), we have

π̂S∗
R

(t) = [(1− qS) r̂S∗ (t)− ŵS∗ (t)− s−O] x̂S∗ (t) +KO

=

[
(1− qS)

2− φRI∗ (XI∗ (t))

2γ
− (1− qS) [1− φRI∗ (XI∗ (t))]

γ

]
x̂S∗ (t) +KO

= (1− qS)
φRI∗ (XI∗ (t))

2γ

φF I∗ (XI∗ (t))RI∗ (XI∗ (t))

2
+KO

=
(1− qS)φ2F I∗ (XI∗ (T ))

4γ
+KO

To derive the retailer's life-cycle pro�t, we integrate π̂S∗
R

(t) from 0 to t:

Π̂S∗
R

(T ) =

∫
T

0

π̂S∗
R

(t) dt =
T (1− qS)φ2F I∗ (XI∗ (T ))

4γ
+KOT

Theorem 2.2(ii). The manufacturer's instantaneous pro�t rate is given by

π̂S∗
M

(t) = [ŵS∗ (t) + qS r̂S∗ (t)− c0 ] x̂
S∗ (t)

=

[
(1− qS) [1− φRI∗ (XI∗ (t))]

γ
+
qS [2− φRI∗ (XI∗ (t))]

2γ
− s−O − c0

]
xI∗ (t)

=

[
φ̄− φRI∗ (XI∗ (t))

γ
+
qSφRI∗ (XI∗ (t))

2γ

]
xI∗ (t)
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The cumulative life cycle pro�t to the manufacturer is given by

Π̂S∗
M

(T ) =
∫ T

0
π̂S∗

M
(τ) dτ =

∫ T

0

[
φ̄− φRI∗ (XI∗ (τ))

γ
+
qSφRI∗ (XI∗ (τ))

2γ

]
xI∗ (τ) dτ

=
φ̄

γ
4XI∗ (T )− Tφ2F I∗ (XI∗ (T ))

2γ
+
TqSφ2F I∗ (XI∗ (T ))

4γ

=
φ̄

γ
4XI∗ (T ) +

Tφ2 (qS − 2)F I∗ (XI∗ (T ))

4γ

2.2(iii) We can derive Π̂S
SC

(T ) as follows:

Π̂S∗
SC

(T ) = Π̂S∗
M

(T ) + Π̂S∗
R

(T )−
∫

T

0

O (K − x̂L∗) dt

=
φ̄

γ
4XI∗ (T ) +

Tφ2 (qS − 2)F I∗ (XI∗ (T ))

4γ
+
Tφ2 (1− qS)F I∗ (XI∗ (T ))

4γ

+O4XI∗ (T )

=
φ4XI∗ (T )

γ
− Tφ2F I∗ (XI∗ (T ))

4
= ΠI∗ (T )

Di�erent from the revenue sharing with a long-term retailer pro�tability strategy,

the wholesale price is no longer constant under a short-term retailer pro�tability

strategy. The manufacturer will o�er lower ŵS (t) with a higher O.

A computational experiment over the ranges of parameters in Table 1, shows

that the revenue sharing contract has the potential to increase the supply chain

pro�t by up to 72% when market saturation levels reach 45%.

2.9 Conclusion

In this paper, we focus on the strategic interactions and decisions in a supply chain

to launch an innovative durable production in the context of a decentralized distribu-

tion channel. We analyze the potential con�icts of interests between a manufacturer
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and an independent retailer in the retailer's choice of pro�tability strategy and her

pricing decisions. Our results show that the length of selling horizon may greatly im-

pact the retailer's preference over her pro�tability strategy, and thereby her pricing

strategy. Additionally, we investigate the impact of retailer's resource allocation on

the channel performance, and we propose a two-part tari� to partially improve the

channel performance. Finally, we use the revenue sharing contracts to coordinate

the channel with both types of retailer pro�tability strategy.

Our model allows the managers to improve the decisions in three ways. First, we

highlight the impact of retailer's pro�t optimizing strategy on the manufacturer's

as well as channel's pro�t. The manufacturer may need to monitor the retailer's

sales volume and retail price in order to implement his most preferred pro�tability

strategy. Second, we demonstrate that the manufacturer may propose the revenue

sharing contracts to achieve full coordination. It is important to emphasize that a

sale commission agreement will have the properties of a revenue sharing agreement,

and we can point out that commission sales agreement are actually common in the

VARs distribution channel. However, for a commission sales agreement to coordinate

the channel we need the price of the product to be inclusive of the service component

of the IDP paid by the customer. That is, a commission sales agreement between

a manufacturer and a VAR that permits the VAR to charge additional fees for

services to the customer will not coordinate the channel. What is required is that

the manufacturer set a price for the IDP inclusive of all the required services and

then negotiate a commission with the VAR over the inclusive price precluding them

to charge additional fees to the customer. Finally, as a by-product, we characterize

the equilibrium retail and wholesale pricing strategies as functions of cumulative

sales rather than shadow prices as was done by in the literature. This leads to more
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convenient pricing guidelines.

Our di�usion model in the context of a decentralized supply chain opens up

several avenues for future research. One direction is to model manufacturer level

competition. It would be interesting to investigate how the manufacturer's pricing

strategy and his preference over the retailer pro�tability strategy change in com-

petitive environments. Furthermore, it would also be interesting to study how the

channel will be coordinated with competing manufacturers. Future research may

consider the di�erent demand situations, such as products with repeat purchases,

and incorporation the alternative demand functions. Our model assumes that the

consumers do not postpone purchase on purpose in anticipation of future product

price. Modeling such strategic consumer behavior is a natural extension to this

work. Our model can also be extended to study dynamic two-part tari�s to secure

di�erent amounts of selling resources throughout the planning horizon.
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Chapter 3

Dynamic Slotting and Pricing

Decisions in a Durable Product

Supply Chain

3.1 Introduction

Consider a supply chain in which a manufacturer (he) sells an innovative durable

product (IDP) to an independent retailer (she) over its life-cycle of a �xed time

horizon. During this period, the retailer makes decisions to in�uence the retail

demand for the IDP in order to maximize her pro�t objective. We focus on four

important factors that a�ect the retail demand of the IDP. (a) Di�usion e�ect

(network e�ect) by which we mean that the customers who have purchased the IDP

inform those who have not. (b) Saturation e�ect: Because the product is durable,

the consumers purchase only once during the selling horizon of the IDP. Therefore,

the more the cumulative adopters, the smaller is the remaining potential market. (c)

Retail price: The consumer demand for the product is inversely related to the unit

retail price charged. (d) Shelf space: While the shelf space has a positive impact on

the demand for the IDP, it is a scare resource for the retailer.

We formulate the problem in a Stackelberg di�erential game framework. We
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assume that the manufacturer takes the role of the leader in his relationship with

the retailer. Thus, the manufacturer announces his wholesale price to the retailer,

and the retailer decides on the retail price and the shelf space allocation over time

in order to maximize her pro�t objective, taking the wholesale price as given. When

setting the wholesale price, the manufacturer takes the retailer's best response into

consideration in order to maximize his life-cycle pro�t over the horizon. We consider

the following two retailer's pro�t strategies: (i) far-sighted strategy and (ii) myopic

strategy. By far-sighted we mean that the retailer maximizes her life-cycle pro�t

over the selling horizon, whereas by myopic we mean that the retailer maximizes

her instantaneous pro�t rates at each time instant in the selling horizon.

We address the following research questions. (1) For a given retailer's pro�t

strategy, what are the optimal pricing and slotting policies for the retailer and the

optimal wholesale pricing policy for the manufacturer? (2) Should the retailer be

far-sighted or myopic? (3) Does the manufacturer prefer the retailer to be far-sighted

or myopic? (4) Is there a con�ict of preference between the manufacturer and the

retailer?

The solution concept for the Stackelberg di�erential game that we use is the

open-loop equilibrium. This means that the manufacturer and the retailer decide

on the their respective policies at the start of the game. It is known that an open-

loop equilibrium is time inconsistent if the leader cannot credibly commit to his

policy, i.e., if the leader is given the opportunity to revise his policy, he would, at

sometime during the selling horizon, switch to another policy di�erent from the one

he chose at the beginning of the game. Hence, open-loop policies make sense only

when the leader can pre-commit to his policy (Jørgensen 2003). In this study, we

assume that the manufacturer is able to commit to his wholesale pricing policy.
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There is a vast literature on supply chain management dealing with stochastic

demand and modeled as newsvendor problems ( see De Kok and Graves 2003). A

serious limitation of such analyses is that they address only single period models.

Yet the real world problems are dynamic. Our work is an early attempt to formulate

supply chain management problems as dynamic games of Stackelberg type.

Our contributions include characterization of optimal solutions and their numer-

ical computations. Furthermore, based on these, we conclude that the following

possibilities may arise in terms of the preferred pro�t strategies of the game play-

ers. First, the manufacturer may not always prefer the retailer to have a far-sighted

strategy, i.e., the manufacturer sometimes is better o� if the retailer is myopic. On

the other hand, the retailer's preference ( myopic /far-sighted) changes with market

characteristics and they do not always agree with the manufacturer's preference.

Our results show that both the manufacturer and the retailer are better o� if the

retailer is far-sighted when the �nal market saturation level is low. However, if the

level is high at the end of the horizon, the manufacturer is better o� with a myopic

retailer, while the retailer prefers that the manufacturer sets his wholesale prices

assuming that she is far-sighted. The con�ict between the manufacturer and the

retailer over the preferred retail pro�t focus raises some contract implementation

issues that are worth exploring as a future research topic.

The rest of the paper is organized as follows. In the next section, we review the

related literature. In Section 3.3 we introduce the demand model. In Section 3.4 we

study the case of a myopic retailer. In Section 3.5 we study the case of a far-sighted

retailer. In Section 3.6 we present a numerical study that compares the cases of

far-sighted and myopic foci. In Section 3.7 we conclude by summarizing the results

and pointing out future research directions.
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3.2 Literature Review

This research is closely related to the new product di�usion and shelf space allocation

models in the marketing literature and the di�erential game models in the optimal

control literature.

The Bass (1969) di�usion model and its variants have been widely used to fore-

cast demand of a durable new product. We refer the readers to Mahajan et al.

(1990, 2000) for comprehensive reviews of this literature. The original Bass (1969)

model does not include price as a variable. A number of later papers extended the

Bass model by incorporating the (competitive) price impact on retail demand of an

IDP. These include Robinson and Lakhani (1975), Bass (1980), Dolan and Jeuland

(1981), Bass and Bultez (1982), Kalish (1983), Kalish and Lilien (1983), Clarke and

Dolan (1984), Thompson and Teng (1984), Rao and Bass (1985), Eliashberg and

Jeuland (1986), Raman and Charterjee (1995), and Krishnan at el (1999). Regard-

ing the market conditions, Eliashberg and Jeuland (1986) and Thompson and Teng

(1984) analyze equilibrium oligopoly pricing, whereas the others study the optimal

monopolist pricing.

In the context of optimal dynamic pricing, an important consideration is whether

a �rm maximizes its short-term pro�t or its long-term pro�t. Bass (1980) and Bass

and Bultez (1982) assume that the �rm maximizes the current period (instanta-

neous) pro�t, and the pricing strategies that they obtain are myopic in nature, as

compared to (far-sighted) optimal pricing policies which maximize the �rm's aggre-

gated pro�t over the product's life cycle. Robinson and Lakhani (1975) compared

the total pro�ts resulting from far-sighted optimal pricing and myopic optimal pric-

ing. Their numerical results show that the di�erences in pro�ts are signi�cant,

whereas Bass and Bultez (1982) report only small di�erences.
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As noted by Dolan and Jeuland (1981), it is very critical to properly incorporate

the impact of pricing into the demand model. Several papers, including Robinson

and Lakhani (1975), Dolan and Jeuland (1981), and Thompson and Teng (1984),

assume that the demand is an exponential function of price. In contrast, as in

Eliashberg and Jeuland (1986) and Raman and Chatterjee (1995), we assume that

the demand is a linearly decreasing function of retail price.

Over the past three decades, the marketing researchers have devoted much at-

tention to study the impact of shelf space allocation on the sales. A number of the-

oretical and empirical studies have documented that sales increase with the amount

of allocated shelf space (Cox 1970, Curhan 1971, Curhan 1973). Curhan (1971,

Dreze et al. 1994) studies the relationship between allocated shelf space and sales in

supermarkets. Curhan hypothesizes that the shelf space elasticity is a function of a

product's physical properties, merchandising characteristics, and use characteristics.

Curhan concludes that the impact of changes in shelf space on sales is small relative

to the e�ects of the other variables such as retail price, brand name, and advertising.

through a series of �eld experiments, Dereze et al. (1994) found modest gains (4%)

in sales and pro�ts from increased customization of shelf space.

Recently, researchers have integrated marketing research (studies on the impact

of shelf space on sales) and operations management (inventory management) by

developing models that incorporate the impact of displayed inventory on demand,

including Brown and Tucker (1961), Corstjens and Doyle (1981, 1983), Bultez and

Naert (1988), Borin et al. (1994), Urban (1998), Wang and Gerchak (2001), Lim

et al. (2004). Urban (1998) and Wang and Gerchak (2001) assume that the de-

mand rate at the retail level depends on the shelf space allocated to the product.

Speci�cally, in their models, the demand is an increasing and concave function of
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the merchandise displayed on the shelf, and they addressed the optimal level of that

inventory to be on the shelf. Recently, there are a few papers that jointly consider

the product assortment and pricing (Green and Saviltz 1994, Mcintyre and Miller

1999).

Di�erential game models have been applied to analyze the strategic dynamic

interactions between the players. In the supply chain management literature, El-

ishaberg and Steinberg (1986), Bykadorov (2007), and Gutierrez and He (2007) have

applied these models in the context of a channel with a manufacturer and a retailer

(distributor). Elishaberg and Steinberg (1986) focus on the inventory and pricing

decisions of the manufacturer and the distributor who faces a stochastic demand. In

a di�erential game framework, Bykadorov et al. (2007) derive the optimal control

of the manufacturer's pro�t via discounts. They analyze the types of games played

between the manufacturer and the retailer: a Stackelberg di�erential game with

the manufacturer being the leader, and a Nash game. They compare the Stackel-

berg equilibrium solution with the Nash equilibrium solution. Our work is closest

in spirit and structure to Gutierrez and He (2007), who analyze dynamic pricing

decisions in a Stackelberg di�erential game framework in the context of an IDP. We

extend Gutirrez and He (2007) by considering the impact of shelf space allocation

on the retail demand. This enables us to study the dynamic slotting decisions of

the retailer in addition to her pricing decisions. To our knowledge, this is the �rst

paper that determines optimal pricing and shelf space allocation simultaneously in

a dynamic game framework.
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3.3 The Demand Model

The manufacturer produces an IDP whose retail demand follows a Bass type di�u-

sion process. Let x (t) and X (t) be the instantaneous demand (rate of sales) and

cumulative sales at time t, 0 ≤ t ≤ T , where T denotes the selling horizon of the

IDP. The demand dynamics are described by the di�erential equation

x (t) = Ẋ (t) =
dX (t)

dt
=
√
p (t) (M −X (t)) (α+ βX (t)) (1− γr (t)) , X (0) = X0

(3.1)

where p (t) is the shelf space allocated to the product at time t ∈ [0, T ], M denotes

the potential market size, (M −X (t)) is the unsaturated market size, α and β are

positive coe�cients of external and internal market in�uences, respectively, and the

parameter γ > 0 measures the customer's sensitivity to the retail price r (t). Ac-

cording to our formulation, the sales rate x (t) is determined by four factors: the

external market in�uence, the internal market in�uence, the slotting decision, and

the retail price. We use a multiplicatively separable function in (3.1) to model the

impact of price, shelf space, and cumulative sales on the instantaneous demand rate.

The instantaneous demand rate is a linearly decreasing function of the retail price.

Linear demand functions have been used by a number of papers in the stream of

dynamic pricing that use the Bass model, such as Eliashberg and Jeuland (1988),

Raman and Chartejee (1995), and Kalish (1983). The
√
p (t) term in (3.1) signi�es

that the shelf space has marginal diminishing returns with respect to the instan-

taneous demand . The e�ect of the cumulative sales X (t) on the instantaneous

demand x (t) is as follows. Initially, the market is not saturated and the di�usion

e�ect outweighs the saturation e�ect. Over time, the market gets saturated, which
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makes additional sales more di�cult; thus as time progresses, the saturation e�ect

starts dominating the di�usion e�ect.

We use superscripts �M�, �R�, and �C� to denote the manufacturer, the retailer,

and the channel variables, respectively. We let π
R

(t), Π
R

(t), π
M

(t) and Π
M

(t)

denote the retailer's pro�t rate at time t, her total pro�t over the horizon T , the

manufacturer's pro�t rate at time t, and his total pro�t

3.4 Myopic Retailer

We consider the case of a retailer with short-term pro�t focus. The manufacturer

and the retailer play a Stackelberg di�erential game. The sequence of the events is

as follows. The manufacturer announces the wholesale price trajectory w (·). Then

the retailer simultaneously decides the retail price trajectory r (·) and the shelf space

trajectory p (·). Rewriting p (t) as c2 (t), and calling c (t) as the slotting decision,

and with s0 denoting the retailer's unit selling cost and s denoting the unit cost

of the shelf space, we formulate the retailer's optimization problem at instant t for

any given manufacturer's wholesale price trajectory w (·) = w (t) , 0 ≤ t ≤ T . The

myopic retailer's pro�t:

π
R

(t) = π
R

(Xt (t) , r (t) , c (t) ;w (t)) = [r (t)− w (t)− s0 ] Ẋ (t)− sc2 (t) .(3.2)

The problem is to choose r (t) and c (t) to maximize π
R

(t) ,0 ≤ t ≤ T , subject to

x (t) = c (t) (M −X (t)) (α+ βX (t)) [1− γr (t)] , X (0) = X0 . (3.3)
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It should be obvious in the myopic case that the retailer's best response at time t

will be depend only on the past of the announced wholesale price trajectory, i.e., on

{w (τ) , 0 ≤ τ ≤ t}. Moreover, we can characterize the structure of these decisions

by using the �rst order conditions for the maximum of π
R
. Speci�cally, solving

∂π
R

(t) �∂r (t) = 0 and ∂π
R

(t) �∂c (t) = 0 simultaneously gives the best response

r (t) = r∗ (X (t) ;w (·)) =
1 + γ (w (t) + s0)

2γ
, (3.4)

c (t) = c∗ (X (t) ;w (·)) =
F (X (t)) (1− γr (t)) [r (t)− w (t)− s0 ]

2s
, (3.5)

where F (X (t)) = (M −X (t)) (α+ βX (t)). Here we have suppressed the argument

t as is in the control theory literature, and we shall do so from now on where the

arises no confusion in doing so. Substituting r into x and c we have

x =
F 2 (X) [1− γ (w + s0)]

3

16γs
, c =

F (X) [1− γ (w + s0)]
2

8γs
, (3.6)

where F 2 (X) denotes (F (X))2 . Note that the best retail price response r (t) de-

pends only on w (t) and the best slotting response c (t) depends on the cumulative

sales X (t) and the wholesale price w (t)at time t. The manufacturer takes the re-

tailer's best response (3.6) into consideration when solving his problem over the

selling horizon T . That is, he uses (3.6) in (3.3) to obtain his state equation, and

his problem is

max
w(·)

∫ T

0

[w (t)− c0] Ẋ (t) dt, (3.7)

Ẋ (t) =
F 2 (X (t)) [1− γ (w (t) + s0)]

3

16γs
, X (0) = X0 , (3.8)
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where c0 is the manufacturer's unit production cost. We shall use the Maximum

principle to solve this optimal control problem (see Sethi and Thompson 2001). The

manufacturer's Hamiltonian

H
M

(t) ≡ H
M

(X (t) , w (t) , λ
M

(t)) = (w (t)− c0 + λ
M

(t)) Ẋ (t)

=
F 2 (X (t)) (w (t)− c0 + λ

M
(t)) [1− γ (w (t) + s0)]

3

16γs
, (3.9)

where λ
M
, the shadow price associated with the state variable X (t), satis�es the

adjoint equation

λ̇
M

= −∂HM

∂X̄
= −F

′ (X)F (X) (w − c0 + λ
M

) [1− γ (w + s0)]
3

8γs
, (3.10)

with λ
M

(T ) = 0, which raises from the fact that X (T ) is free. Using the �rst order

condition, we derive the optimal wholesale price as follows:

∂H
M

∂w
= 0 =⇒ [1− γ (w + s0)]

3 − 3γ [w − c0 + λ
M

] [1− γ (w + s0)]
2 = 0

=⇒ w (t) =
1 + γ [3c0 − 3λ

M
(t)− s0 ]

4γ
. (3.11)

We note that the higher the λ
M
, the lower is the wholesale price w. This result is the

demonstration of the economic interpretation of the shadow price: λ
M
is the future

value of an additional unit of sales. When λ
M
> 0, the higher the λ

M
, the larger

is the future value of the additional sales. Thus, the manufacturer has an incentive

to lower the wholesale price w (t) to stimulate immediate sales. Substituting the

optimal wholesale price w (t) from (3.11) into r (t), x (t), λ̇
M

(t), and c (t), we have
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their values in equilibrium:

r (t) =
5 + 3γ [c0 + s0 − λ

M
(t)]

8γ
, (3.12)

x (t) =
27F (X (t))2 [1− γ (c0 + s0 − λ

M
(t))]3

1024γs
, (3.13)

c (t) =
F (X (t)) [1− γ (c0 + s0 − λ

M
(t))]2

128γs
, (3.14)

λ̇
M

(t) = −27F ′ (X (t))F (X (t)) [1− γ (c0 + s0 − λ
M

(t))]4

2048sγ2
. (3.15)

Note that the equilibrium values of w (t), r (t), x (t), λ̇
M

(t), and c (t) are functions of

the state variable X (t) and shadow price λ
M

(t). Also, since the equilibrium values

of r (t) and x (t) depend on λ
M

(t), the retailer's optimal decisions depend on the

entire wholesale price trajectory w (·). Furthermore, one can easily see that there

is no reason for either player to change their policy in the middle of the game, and

therefore, the equilibrium in the myopic case is time consistent.

In the following lemma, we express λ
M

(t) in terms of X (t).

lemma 3.1. The shadow price trajectory λ
M

(t) is given by

λ
M

(t) =
1− γ (c0 + s0)

γ

[√
(M −X (T )) (α+ βX (T ))

(M −X (t)) (α+ βX (t))
− 1

]
, t ∈ [0, T ] .

(3.16)

Proof: From Equations (3.13) and (3.15), we have:

Ẋ (t)

λ̇
M

(t)
= − 2γF (X (t))

F ′ (X (t)) [1− γ (c0 + s0 − λ
M

(t))]
,
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which can be written as

F ′ (X (t)) dX (t)

F (X (t))
= d lnF (X (t)) = − 2γdλ

M
(t)

[1− γ (c0 + s0 − λ
M

(t))]
.

We can now integrate both sides of the equation from t to T and simplify to obtain

(3.16). �

We observe that the sign of λ
M

(t) depends on the ratio of F (X (T )) to F (X (t)) .

Thus, when F (X (T )) ≥ F (X (t)) , λ
M

(t) > 0 and when F (X (T )) ≤ F (X (t)),

λ
M

(t) < 0.

lemma 3.2. In an optimal solution for the myopic retailer, the wholesale price,

the retail price, the slotting decision, and the instantaneous sales rate, respectively,

w (t) =
4 (1− γs0)− 3

√
F (X(T ))
F (X(t))

[1− γ (c0 + s0)]

4γ
, (3.17)

r (t) =
8− 3

√
F (X(T ))
F (X(t))

[1− γ (c0 + s0)]

8γ
, (3.18)

c (t) =
9F (X (T )) [1− γ (c0 + s0)]

2

128γs
, (3.19)

x (t) = Ẋ (t) =
27F

1
2 (X (t))F

3
2 (X (T )) [1− γ (c0 + s0)]

3

1024γs
. (3.20)

Furthermore, the slotting decision is constant over time, and the retail price, the

wholesale price, and the instantaneous sales rate all peak at the same time.

Proof: Substitute for λ
M

(t) from (3.16) to (3.10), (3.11), (3.12), (3.13) and (3.14)

to obtain (3.17), (3.18), (3.19), and (3.20), respectively. The last part of the lemma

is obvious from a comparison of (3.17), (3.18) and (3.19). �

lemma 3. The optimal cumulative sales X (t) is the unique solution to the
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equation

tan
−1

[
α−βM+2βX(t)

2
√

βF (X(t))

]
= tan

−1

[
α− βM + 2βX (0)

2
√
βF (X (0))

]
+

+
27
√
βtF 3/2 (X (T )) [1− γ (c0 + s0)]

3

1024γs
. (3.21)

proof. Integrate (3.19) from 0 to t and rearrange terms to obtain (3.21). In order

to show the uniqueness, one can show that for t = T , (3.21) has a unique solution

for X (T ). In view of the fact that the left-hand side is increasing in X (t) , it follows

that X (t) is unique. �

lemma 3.4. In the optimal solution with the myopic retailer,

π
R

(t) =
81F 2 (X (T )) [1− γ (c0 + s0)]

4

s (128γ)2
(3.22)

is constant over time, and her total pro�t over the horizon T is

Π
R

(T ) =

∫
T

0

π
R

(τ) dtτ =
81TF 2 (X (T )) [1− γ (c0 + s0)]

4

s (128γ)2
. (3.23)

The manufacturer's instantaneous pro�t rate

π
M

(t) =
27

s (64γ)2
F

1
2 (X (t))F

3
2 (X (T ))

(
4− 3

√
F (X (T ))

F (X (t))

)
[1− γ (c0 + s0)]

4

(3.24)
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and his total pro�t over the horizon T is

Π
M

(T ) =

∫
T

0

π
M

(τ) dtτ

=
[X (T )−X (0)] [1− γ (c0 + s0)]

γ
− 81TtF 2 (X (T )) [1− γ (c0 + s0)]

4

s (64γ)2
.

(3.25)

Proof: Substituting r (t),w (t), x (t), and c (t) obtained in Lemma 3.2 into (3.2)

gives (3.22). Integrating (3.22) from 0 to t gives (3.23). Substituting w (t) and x (t)

obtained in Lemma 3.2 in the integrand of (3.7) gives (3.24). Integrating (3.24) from

0 to t gives (3.25). �

Based on these results, we conduct a numerical study with the following param-

eter values M = 1 × 107 , X0 = 0, α = 0.016, β = 8 × 10−9 , c0 = 100, s0 = 20,

s = 5× 107 , and γ = 5× 10−4 . We compute the decisions for various values of the

horizon T . Figure 3.1 shows the wholesale price trajectories for di�erent values of

T . We observe two patterns of wholesale price trajectories: increasing over time (for

T = 25, 40, 45, 60) and initially increasing then decreasing (for T = 75, 80). Also, a

comparison of (3.17), (3.18), and (3.19), or Figures 3.1-3.3, reveals that these tra-

jectories of w (·), r (·), and x (·) mimic one another. Furthermore, we observe that

for lower values of T , the wholesale price curves move downward as T increases, and

beyond a certain value of T , the wholesale price curves move upward as T increases.
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Figure 3.1: Wholesale price trajectories with di�erent horizons: Myopic retailer

Figure 3.2: Retail price trajectories with di�erent horizons: Myopic retailer
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Figure 3.3: Instantaneous saes rate with T = 75: Myopic retailer

Using the same parameter values, we continue our numerical study to get fur-

ther insights. Table 3.1 reports the manufacturer's pro�t Π
M

(T ), the retailer's

pro�t Π
R

(T ), and the pro�t ratios Π
M

(T ) /Π
C

(T ) and Π
R

(T ) /Π
C

(T ), where

Π
C

(T ) = Π
M

(T )+Π
R

(T ) denotes the channel's pro�t, and the slotting decisions c,

which is constant throughout the horizon, and the market saturation level X (T ) /M

for di�erent values of T . Interestingly, we �nd that the impact of T on the manufac-

turer's (retailer's) share of the channel pro�t is not uniform in T . That is, his (her)

share of the channel pro�t initially decreases (increases) as T increases, and beyond

a certain value of T , his (her) share of pro�t increases (decreases) as T increases. As

for the slotting decision c, it initially increases as T increases, and beyond a certain

value of T , c decreases in T .
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Table 3.1 Pro�ts, pro�t ratios, shelf decisions, and market saturation for di�erent T : myopic retailer

T 5 10 25 40 45 60 70 75 80 150 250

ΠM (T ) (×108 ) 0.5521 1.1610 3.4700 6.9368 8.4111 13.377 16.766 18.419 20.031 37.930 53.689

ΠR (T ) (×108 ) 0.431 0.9618 3.4819 8.4025 10.407 15.367 17.543 18.375 19.076 22.821 23.177

Π
M

(T )

Π
C

(T )
× 100% 55.69 54.05 47.73 40.98 40.05 42.04 44.95 46.45 47.90 61.61 70.15

Π
R

(T )

Π
C

(T )
× 100% 44.31 45.95 52.27 59.02 59.95 57.96 55.05 53.55 52.10 38.39 29.85

c =
√

p 0.4167 0.4386 0.5278 0.6482 0.6801 0.7157 0.708 0.70 0.69 0.56 0.4306

X(T )
M

× 100% 1.22 2.66 9.25 21.57 26.62 39.81 46.24 48.89 51.24 68.73 77.87

3.5 Far-sighted Retailer

In this section we study the model of a retailer focused on the long-term pro�t. We

use a bar over the variables to signify the retailer's far-sighted focus. The retailer's

problem for a given wholesale price trajectory w̄ (·) is

max
r̄(·),c̄(·)

∫
T

0

{[r̄ (t)− w̄ (t)− s0 ] x̄ (t)− sc̄2 (t)} dt, (3.26)

x̄ (t) = ˙̄X (t) = c̄ (t)
(
M − X̄ (t)

) (
α+ βX̄ (t)

)
[1− γr̄ (t)] , X̄ (0) = X̄0 .

(3.27)

The retailer's Hamiltonian H̄
R

(t) at time t given the wholesale price trajectory w̄ (t)

is

H̄
R

(t) = H
R

(
X̄ (t) , r̄ (t) , c̄ (t) , λ̄

R
(t) ; w̄ (t)

)
= c̄ (t)F

(
X̄ (t)

)
(1− γr̄ (t))

(
r̄ (t)− w̄ (t)− s0 + λ̄

R
(t)
)
− sc̄2 (t) ,(3.28)
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where λ̄
R

(t), the shadow price associated with X̄ (t), satis�es the adjoint equation

˙̄λ
R

(t) = −∂H̄R
(t)

∂X̄ (t)
, λ̄

R
(T ) = 0. (3.29)

The �rst order conditions for pro�t maximization are given by

∂H̄
R

∂r̄
= −γF

(
X̄
) [
r̄ − w̄ − s0 + λ̄

R

]
+ F

(
X̄
)
(1− γr̄) = 0, (3.30)

∂H̄
R

∂c̄
= F

(
X̄
)
(1− γr̄)

[
r̄ − w̄ − s0 + λ̄

R

]
− 2sc = 0. (3.31)

Their solution yields the best response retail price r̄ (t) and the best response shelf

space decision c̄ (t) as follows:

r̄ (t) =
1 + γ

(
w̄ (t) + s0 − λ̄

R
(t)
)

2γ
, (3.32)

c̄ (t) =
F
(
X̄ (t)

)
(1− γr̄ (t))

[
r̄ (t)− w̄ (t)− s0 + λ̄

R
(t)
]

2s
. (3.33)

We make a number of observations from (3.32) and (3.33). First, for a given w̄,

the retail price r̄ is a decreasing function of λ̄
R
. Intuitively, when λ̄

R
> 0, meaning

that there is a positive future value of additional sales, the retailer is willing to lower

the retail price below the myopic level (λ̄
R

= 0). On the other hand, for a given

w̄, the shelf space allocation c̄2 is an increasing function of λ̄
R
. Thus, when there is

positive future value of additional sales, the retailer is willing to allocate more shelf

space to the product to increase its sales when compared to the myopic case. Finally,

since the retailer's best response also depends on λ̄
R
, which is a�ected by the future

portion of the announced wholesale price trajectory, i.e� on {w̄ (τ) , t ≤ τ ≤ T}, we

see that the best response depends indeed on the entire wholesale price trajectory

w̄. This provides an important contrast to the case of the myopic retailer. As we
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will see, this dependence on λ̄
R
requires us to treat λ̄

R
as a state variable in the

formulation of the manufacturer's optimization problem. It is this requirement that

causes time inconsistency in the far-sighted case. For further details on the theory

of the Stackelberg di�erential games, see Dockner et al. (2000).

By substituting (3.32) into (3.33), we have the slotting decision

c̄ (t) =
F
(
X̄ (t)

) [
1 + γ

(
λ̄

R
(t)− w̄ (t)− s0

)]
2

8γs
. (3.34)

Substitution of (3.32) and (3.34) into (3.27) gives the instantaneous sales rate as a

function of w̄, i.e.,

x̄ (t) = ˙̄X (t) =
F 2
(
X̄ (t)

) [
1 + γ

(
λ̄

R
(t)− w̄ (t)− s0

)]
3

16γs
, X̄ (0) = X̄0 .(3.35)

By substituting (3.32), (3.33), and (3.35) into (3.28), we obtain the maximized

Hamiltonian

H̄∗
R

(
X̄, λ̄

R
; w̄
)

=
F 2
(
X̄
) [

1 + γ
(
λ̄

R
− w̄ − s0

)]
4

64sγ2
. (3.36)

The adjoint equation (3.29) for the shadow price λ̄
R

(t) can now be written as

˙̄λ
R

(t) = −∂H̄R

∂X̄
= −

∂H̄∗
R

∂X̄
=

= −
F ′ (X̄ (t)

)
F
(
X̄ (t)

) [
1 + γ

(
λ̄

R
(t)− w̄ (t)− s0

)]
4

32sγ2
, λ̄

R
(T ) = 0.

(3.37)

The manufacturer takes the retailer's best response into consideration. Thus, his
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problem is

max
w(t)

∫ T

0

[w̄ (t)− c0] x̄ (t) dt, (3.38)

subject to (3.35) and (3.37).

Note interestingly that the instantaneous sales rate x̄ (t) and the retailer's shadow

price λ̄
R

(t) are the manufacturer's state variables. For further details on the theory

of the Stackelberg di�erential games, see Dockner et al. (2000) or Jorgensen and

Zaccour (2001).

The manufacturer's Hamiltonian

H̄
M

= H
M

(
X̄, λ̄

R
, w̄, λ̄

M
, µ̄
)

=
[
w̄ − c0 + λ̄

M

]
Ẋ + µ̄ ˙̄λ

R

=
F 2
(
X̄
) (
w̄ − c0 + λ̄

M

) [
1 + γ

(
λ̄

R
− w̄ − s0

)]
3

16γs

−
µ̄F ′ (X̄)F (X̄) [1 + γ

(
λ̄

R
− w̄ − s0

)]
4

32γ2s
, (3.39)

where λ̄
M
and µ̄ are the shadow prices associated with X̄ and ˙̄λ

R
, and they satisfy

the adjoint equations

˙̄λ
M

= −∂H̄M

∂X̄
= −

F ′ (X̄)F (X̄) (w̄ − c0 + λ̄
M

) [
1 + γ

(
λ̄

R
− w̄ − s0

)]
3

8γs
+

µ̄
((
F ′ (X̄))2 − 2βF

(
X̄
)) [

1 + γ
(
λ̄

R
− w̄ − s0

)]
4

32γ2s
, λ̄

M
(T ) = 0, (3.40)

˙̄µ = −∂H̄M

∂λ̄
R

= −
3F 2

(
X̄
) (
w̄ − c0 + λ̄

M

) [
1 + γ

(
λ̄

R
− w̄ − s0

)]
2

16s
+

µF ′ (X̄)F (X̄) [1 + γ
(
λ̄

R
− w̄ − s0

)]
3

8γs
, µ̄ (0) = 0. (3.41)

The boundary conditions λ̄ (T ) = 0 and µ̄ (0) = 0 arise from the fact that x (T ) and

λ̄
R

(0) are free. Note that λ̇
R

(t) > 0(resp. < 0) when F ′
(
X̄ (t)

)
> 0 (resp. < 0).
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To derive the optimal control w̄, we use the �rst order condition

∂H̄
M

∂w̄
=
F 2
(
X̄
) [

1 + γ
(
λ̄

R
− w̄ − s0

)]
3

16γs
−

3γF 2
(
X̄
) (
w̄ − c0 + λ̄

M

) [
1 + γ

(
λ̄

R
− w̄ − s0

)]
2

16γs

+
µ̄F ′ (X̄)F (X̄) [1 + γ

(
λ̄

R
− w̄ − s0

)]
3

8γs
= 0. (3.42)

Note that 1 + γ
(
λ̄

R
− w̄ − s0

)
= 0 is ruled out as it would lead to x̄ = 0 according

to (3.35). Then, the other factor in (3.38) gives the equilibrium wholesale price as

w̄ =
F
(
X̄
) [

1 + γ
(
3c0 − 3λ̄

M
+ λ̄

R
− s0

)]
+ 2F ′ (X̄) µ̄ [1 + γ

(
λ̄

R
− s0

)]
2γ
(
2F
(
X̄
)

+ F ′
(
X̄
)
µ̄
) .(3.43)

By substituting (3.44) into (3.38), (3.39), (3.42), and (3.43), we obtain a two-

boundary value problem consisting of four di�erential equations. We solve this

problem numerically for the same set of the parameters values in Section 3.3 for the

myopic retailer.

The open-loop equilibrium we obtain in this case is time inconsistent. This is

because ū (t) does not stay at its initial value of zero. So if ū (t) 6= 0 at some time

τ > 0, then it is in the manufacturer interest to re-solve the problem at τ and

choose a new wholesale price trajectory from τ on that satis�es ū (t) = 0. The

intuition behind this behavior is that the manufacturer announces a wholesale price

trajectory at time zero that leads to the retailer's decisions that are favorable to

him. But by time τ , the retailer has executed her decisions in the interval [0, τ ],

and the manufacturer has no incentive to keep his promise. It is for this reason, we

have assumed that the outset of this paper that the manufacturer commits to his

announced wholesale price policy.

We make a number of observations. The retail and wholesale price trajectories

no longer mimic the instantaneous demand trajectory (Figures 3.4-3.6), as they did
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in the myopic case. Instead, we observe two patterns of wholesale price trajectories:

decreasing over time (for T = 5, 15, 20, 25) and initially decreasing then increasing

(for T = 45, 75, 100). As for the retail price, for all values of T in this study, it

increases over time. We observe that for lower values of T , the retail price trajectories

r̄(·) move downward as T increases, and beyond certain value of T , the retail price

curves move upward as T increases. A similar observation holds for the wholesale

price curves. We observe that for all values of T , the instantaneous sales rate

trajectory x̄(·) rises upward in T ( Figure 3.5). On the other hand, the behavior

of the slotting decision c̄ (·) is not constant over time, and is not uniform in T (see

Figure 3.6). We see that c̄(·) initially rises in T , and beyond a certain value of

T , it moves downward as T increases. Unlike the case of the myopic retailer, the

manufacturer's (retailer's) share of the channel pro�t in the far-sighted case is not

inform in T (Table 3.2). Instead, his/her share of the entire channel pro�t initially

decreases as T increases, and beyond a certain value of T , his/her share of the

channel pro�t increases/decreases as T increases.
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Figure 3.4: Wholesale price and retail price trajectories: Far-sighted Readier

Figure 3.5: Instantaneous sales rate: Far-sighted Readier
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Figure 3.6: Shelf space allocation: Far-sighted Readier

Table 3.2: Pro�ts, pro�t ratios, and market saturation levels: Far-sighted retaier

T 5 10 15 25 40 75 100

Π̄
M

(T ) (×108) 0.6002 1.3343 2.2860 5.4804 12.085 22.827 30.481

Π̄
R

(T ) (×108) 0.3801 1.0138 1.9584 5.1236 8.3747 11.563 13.316

Π̄
M

(T )

Π̄
C

(T )
×100% 64.18 59.00 56.47 56.50 63.47 69.06 71.40

Π̄
R

(T )

Π̄
C

(T )
×100% 35.82 41.00 43.53 43.50 36.53 30.94 28.60

X(T )
M × 100% 1.35 3.30 6.45 19.28 33.26 44.93 50.75

We use the same parameter values as ones used for in the myopic retailer to

conduct a numerical study in the case of a far-sighted retailer (Table 3.2). Like the

case of the myopic retailer, the manufacturer's (retailer's) share of the channel pro�t

is not uniform in T . His (her) share of the entire channel pro�t initially decreases
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(increases) as T increases, and beyond a certain value of T , his (her) share of pro�t

increases (decreases) as T increases.

3.6 Myopic Focus versus Far-sighted Focus

So far, we have derived the pricing and slotting decisions separately for the myopic

and far-sighted retailers. We now address the following interesting questions: Will

the retailer be better o� with a far-sighted or myopic focus? If so, when? What

is the manufacturer preference for the retailer's focus? Will the manufacturer and

the retailer have con�ict over the retailer's focus? If so, when? For a �xed transfer

price charged by the manufacturer, the retailer is certainly better o� having a far-

sighted focus. However, the manufacturer adjusts his wholesale price accordingly.

Therefore, it is not obvious that the retailer will always be better o� with a far-

sighted focus.

In Table 3.3, we report the results based on our numerical computations, and

compare the player's life-cycle pro�ts in the far-sighted retailer case to their pro�ts

in the myopic retailer case. We observe that the manufacturer and the retailer

may have four di�erent combinations of preferred retailer's pro�t foci, i.e., both

prefer a far-sighted retailer, both prefer a myopic retailer, one prefers a far-sighted

retailer and the other prefers a myopic retailer, and vice verse. Speci�cally, the

manufacturer as well as the supply chain prefers a far-sighted retailer when the

market saturation level is low (corresponding to the cases of T = 30 and T =

50), whereas he prefers a myopic retailer when the market saturation level is high

(corresponding to the cases of T = 250 and T = 1200). When the market saturation

level is low, the retailer's preference is aligned with the manufacturer. That is, the
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retailer prefers the manufacturer to o�er wholesale prices assuming a far-sighted

pro�t focus. However, as the market saturation level increases furthermore, the

retailer switches her preference to myopic pro�t focus. If the market saturation

level is extremely high (for example when T = 1200), the retailer again prefers to

be far-sighted.

Table 3.3: Preferred Retailer foci

T M's pro�t (×108) R's pro�t (×108) C's pro�t(×108) % Saturation Level

30 7.664, 4.467 6.476, 4.818 14.140, 9.286 25.29,12.63

50 16.107, 10.006 9.713,12.295 25.822, 22.301 38.39,31.48

250 51.021,53.689 16.791,23.177 67.812,76.866 62.23,77.87

1200 84.314,98.274 19.457, 18.707 103.777,116.98 75.44, 92.08

Note. Parameters are M = 1×107 ,X0 = 0, α = 0.016, β = 8×10−9 , γ = 5×10−4 ,s0 = $20, s =

5× 107 , and c0 = $100.

3.7 Conclusion

In this paper, we study the dynamic wholesale and retail pricing and shelf-space allo-

cation in a decentralized durable product supply chain consisting of a manufacturer

and a retailer. We formulate the problem as an open-loop Stackelberg di�erential

game with the manufacturer as the leader and the retailer as the follower. Our

demand model extends the Bass-type di�usion model by incorporating the impact

of retail price and shelf space allocation on the retail demand. We study two retailer

foci: myopic and far-sighted. We provide analytical results and numerical analysis

to obtain the Stackelberg equilibria for di�erent life-cycle lengths. Furthermore, we

develop insights into conditions under which the both players prefer a far-sighted
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retailer, both prefer a myopic retailer, and one prefers a far-sighted and the other

prefers a myopic retailer and vice verse.

Our analysis opens up several opportunities for future research. First, the open-

loop equilibrium that we use is time inconsistent in the far-sighted retailer case. It

would be interesting to look into the feedback Stackelberg equilibria and related

time consistency issues. Second, further analysis of our model could be carried out

the issue of channel coordination. Third, our model can be extended to allow for

multiple competing retailers. This could combine our demand model with earlier

research by Eliashberg and Jeuland (1986) and Savin and Terwiesch (2005). Finally,

our model can be extended to allow for multiple products competing for a limited

shelf space.
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Chapter 4

A Review of Stackelberg Di�erential

Game Models in Supply and

Marketing Channels

4.1 Introduction

Stackelberg di�erential game (DG) models have been used to study issues such as

inventory and production policies, outsourcing, capacity and shelf space allocation

decisions, dynamic competitive advertising strategies and pricing for new products

in the marketing literature (see Erickson 1995 for a review of Nash game models in

competitive advertising strategies). Stackelberg DG models have also been used to

the government's subsidy policy in new technology (Jørgensen and Zaccour 1999);

R&D investment in the energy industry (Harris and Vickers 1995), and monetary

and �scal policies in economics (Xie 1997).

Most studies in the supply chain management have used the single-period newsven-

dor model as a means to study the strategic interactions between the channel mem-

bers. For fashionable products, the one-period newsvendor model may be an ap-

propriate approach. However, there are many market situations where this is not

appropriate. There has been some work recently that investigates the dynamic
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interactions between the channel members. Recently, a number of papers have ap-

plied DG models to treat dynamic interactions between the channel members in

decentralized supply and marketing channels. This review focuses on these appli-

cations. Speci�cally, we review papers that analyze retail and wholesale pricing

and/or advertising strategies, slotting and pricing decisions to launch innovative

durable products, pricing and production, and investment in supply chain infras-

tructure. We focus primarily on Stackelberg equilibria as the solution concept for

the games under consideration. We shall begin our review with an introduction to

the basics of the Stackelberg DGs. We then summarize the important managerial

insights obtained in each of the studies being reviewed. Finally, we point out future

research avenues for applications of DGs in supply chain management.

The review is organized as follows. In Section 4.2, we introduce the basic concepts

of the Stackelberg di�erential games. In Section 4.3, we review the models that

derive the Stackelberg equilibria in the area of supply chain management. Section

4.4 dicusses the applications to marketing channels. Miscellaneous applications are

reviewed in Section 4.5. In Section 4.6, we conclude the paper and point out some

future research directions.

4.2 Basics of the Stackelberg Di�erential Game

A di�erential game has the following structure (1) the state of the dynamic system

at any time t is characterized by a set of variables called the state variables, (2)

there are controls to be decided by the game players, (3) the evolution of the state

variables over time is described by a set of di�erential equations involving both state

and control variables, and (4) each player has an objective function that he/she

wants to maximize by his/her choice of decisions.
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We illustrate the basics of a Stackelberg di�erential game involving two players

playing the game over a �xed �nite horizon T : a leader and a follower. Let X denote

the vector of state variables, w denote the control vector of the leader, and r denote

the control vector of the follower. The sequence of the play is as follows. The leader

announces the control path w(·). Then the follower decides on the control path r(·).

Let π
R
and π

M
denote the follower's and the leader's instantaneous pro�t functions,

respectively. The solution procedure for the Stackelberg di�erential game is the

backward induction. That is, we �rst solve the follower's problem by deriving the

follower's best response to the leader's announced policy. We then substitute the

follower's response into the leader's problem to solve for the leader's optimal policy.

This policy of the leader to together with the retailer's best response to this policy

constitutes a Stackelberg equilibrium solution. Formally, the follower's problem is

max
r(·)

{J
R
(X0, r(·);w(·)) =

∫
T

0

e−ρtπ
R

(X (t) , w (t) , r (t)) dt

}
,

Ẋ (t) = F (X (t) , w (t) , r (t)) , X (0) = X0 , (4.1)

where the function F represents the rate of sales, ρ is the follower's discount rate,

and X0 is the initial condition. The follower's Hamiltonian

H
R

(X, r, λ
R
, w) = π

R
(X,w, r) + λ

R
F (X,w, r) , (4.2)

where λ
R
is the vector of the shadow prices associated with the state variable X,

and it satis�es the adjoint equation

λ̇
R

= ρλ
R
− ∂H

R
(X, r, λ

R
, w)

∂X
, λ

R
(T ) = 0. (4.3)
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Here we have suppressed the argument t as is standard in the control theory liter-

ature, and we will do whenever convenient and when there arises no confusion in

doing so.

The necessary optimality condition for the follower's problem satisfy

∂H
R

∂r
= 0 =⇒ ∂π

R
(X,w, r)

∂r
+ λ

R

∂F (X,w, r)

∂r
= 0. (4.4)

We assume that the Hamiltonian H
R
is jointly concave in the variables X and r

for any given w. Then condition (4.4) is su�cient for the optimality of r for a

given w. From the necessary condition (4.4), we derive the follower's best response

r (X,w, λ
R
) .

The leader's problem is

max
w(·)

{J
M

(X0, w(·)) =

∫
T

0

e−µtπ
M

(X,w, r(X,w, λR)) dt

}
,

Ẋ = F (X,w, r (X,w, λ
R
)) , X0 (0) = X0 (4.5)

λ̇
R

= ρλ
R
− ∂H

R
(X, r (X,w, λ

R
) , λ

R
, w)

∂X
, λ

R
(T ) = 0,(4.6)

where µ is the leader's discount rate and the di�erential equations in (4.5) and (4.6)

are obtained by substituting the follower's best response r = r(X,w, λR) in the

state equation (4.1) and the adjoint equation (4.3), respectively.. We formulate the

leader's Hamiltonian

HM = π
M

(X,λR, w, r (X,w, λ
R
) , λM , ψ) + λF (X,w, r (X,w, λ

R
))

−µ∂HR
(X, r (X,w, λ

R
) , λ

R
, w)

∂X
, (4.7)

where λ
M
and µ are the shadow prices associated with X and λ

R
, respectively, and
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they satisfy the adjoint equations

λ̇
M

= µλ
M
− ∂H

M
(X,λ

R
, w, r(X,w, λR), λ

M
, ψ)

∂X

= µλ
M
− ∂π

M
(X,w, r(X,w, λR))

∂X
− λ

M

∂F (X,w, r (X,w, λ
R
))

∂X

−µ∂
2H

R
(X, r (X,w, λ

R
) , λ

R
, w)

∂X2
, (4.8)

ψ̇ = µψ − ∂H
M

(X,λ
R
, w, r(X,w, λR), λ

M
, ψ)

∂λ
R

,

= µψ − λ
M

∂F (X,w, r (X,w, λ
R
))

∂λ
R

− µ
∂2H

R
(X, r (X,w, λ

R
) , λ

R
, w)

∂λ∂X
,(4.9)

with the boundary conditions λ
M

(T ) = 0 and ψ (0) = 0.

Note that we use the open-loop Stackelberg solution concept to solve the leader

and the follower's problem. There are two types of Stackelberg equilibria: open-

loop and closed-loop. Open-loop solutions are said to be static in the sense that

decisions can be derived at one point in time, independent of the state variable

solutions obtained beyond that time. In contrast, closed-loop equilibrium strategies

are functions of time as well as the state variable. They are subgame perfect, if

they do not depend on initial conditions (closed-loop strategies that do not depend

on initial conditions are called feedback strategies.) They are perfect state-space

equilibria because the necessary conditions for optimality are required to hold for

all values of the state variables, not just values that lie on the optimal state-space

trajectories. Therefore, the solutions obtained should remain optimal even after the

game has begun. It is known that most open-loop Stackelberg equilibria have an

inherent instability of being time inconsistent. This means that given the oppor-

tunity to revise his strategy at any instant of time after the initial one, the leader
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would like to choose another strategy than the one he chose at the initial instant of

time. Thus, an open-loop Stackelberg equilibrium only make sense if the leader can

credibly pre-commit to his strategy.

4.3 Supply Chain Management Applications

In this section we shall review applications in the supply chain management area. the

supplier or the manufacturer decides on the wholesale price and/ or his production

rate, whereas the retailer's decision variables are retail price and/or shelf-space

allocation.

4.3.1 Gutierrez and He (2007): Life-Cycle Channel Coordi-

nation

Gutierrez and He (2007) study a decentralized channel composed of a manufacturer

and a retailer to launch an innovative durable product (IDP). The manufacturer,

being the leader, announces the wholesale price trajectory �rst, and then the retailer

follows by deciding on the retail price trajectory. While the manufacturer is assumed

to maximize his life-cycle pro�t from selling the IDP, the authors consider two types

of retailer's foci: (1) a far-sighted strategy of maximizing the life-cycle pro�t from the

IDP, and (2) a myopic strategy of maximizing the instantaneous pro�t rate at any

time t. They address the following research questions: Does the manufacturer prefer

the retailer to be far-sighted or myopic? Does the retailer prefer the manufacturer

to set the wholesale price assuming she is far-sighted or myopic?

Far-sighted Retailer. Consider the case when the retailer is far-sighted. For

a given wholesale price path w (·) , the retailer decides a retail price path r (·) by
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solving the problem:

max
r(·)

∫ T

0

{
[r (t)− w (t)− s] Ẋ (t)

}
dt (4.10)

Ẋ (t) = (M −X (t)) (α+ βX (t)) (1− γr (t)) , X (0) = X0 , (4.11)

where s is the selling cost including any opportunity cost, α and β are internal and

external in�uence parameters, γ is the price sensitivity parameter, and X is the

initial value of the sold market. Let

F (X) = (M −X) (α+ βX) .

The manufacturer's problem is

max
w(·)

∫ T

0

[w(t)− c0 ] Ẋ(t)dt, (4.12)

Ẋ(t) =
F (X(t)) {1− γ [w(t) + s− λ

R
(t)]}

2
, X (0) = X0 , (4.13)

λ̇
R
(t) = −F

′(X(t)) {1− γ [w(t) + s− λ
R
(t)]}2

4γ
, λ

R
(T ) = 0, (4.14)

where c0 is the per unit production cost and λ
R
is the retailer's shadow price.

Note that X and λ
R
are the manufacturer's two state variables, and their evolution

incorporates the retailer's best response.

Myopic Retailer. The retailer selects r(t) to maximize her instantaneous pro�t

rate [r (t)− w (t)− s] Ẋ (t) subject to (4.11). The manufacturer maximizes his life

cycle pro�ts and his optimization problem is given by (4.12) and (4.13).

Gutierrez and He identi�ed a con�ict of preferences between the manufacturer

and the retailer. First, a manufacturer does not always prefer the retailer to take

a long-term optimization focus; that is, he sometimes is better o� if the retailer is
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myopic. On the other hand, the retailer's preferred focus changes with the market

conditions, and it does not always agree with the manufacturer's preference. Their

results show that both the manufacturer and the retailer are better o� if the retailer

is far-sighted when the �nal market is insu�ciently penetrated. However, if the

market saturation level is high like at the end of the planning horizon, the manufac-

turer will shift his preference and will be better o� with a myopic retailer, while the

retailer prefers that the manufacturer sets the wholesale prices assuming that she is

far-sighted. However, monitoring the retailer sales volume or retail price becomes an

implementation necessity when the manufacturer o�ers a wholesale price contract

assuming the retailer is myopic. It is not immediately obvious that a seemingly

myopic retailer behavior may enhance the performance of the supply chain.

4.3.2 He and Sethi (2007): Pricing and Slotting Decisions

He and Sethi (2007) extend the work of Gutierrez and He (2007) by considering

the impact of shelf space allocation on the retail demand. They assume the retail

demand to be an increasing and concave function of the merchandise displayed on

the shelf. They do this by introducing the multiplicative term
√
p (t)to the right-

hand side of (4.11), where p (t) is the shelf space allocated to the product at time t.

They consider a linear cost of shelf space to be included in the retailer's objective

function (4.10). They solve for equilibrium wholesale and retail pricing and slotting

decisions, In connection with the strategic foci of the retailer, myopic and far-sighted,

they obtain results similar to those in Gutierrez and He (2007).
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4.3.3 Eliashberg and Steinberg (1987): Pricing and Produc-

tion Decisions

Eliashberg and Steinberg (1987) consider a decentralized assembly system composed

of a single manufacturer (he) and a single distributor (she). The distributor processes

further the product whose demand has seasonal �uctuations. Pekelman (1974) uses

a general time varying demand function D
R

(t) = a
R

(t)− b
R

(t)P
R

(t), where a
R

(t)

is the time varying total market potential, b
R
is the coe�cient of price sensitivity,

and P
R

(t) is the distributor's price. Eliashberg and Steinberg (1987) assumes that

b
R

(t) is constant. Speci�cally, they assume that the time varying market demand

potential a
R

(t) has the following form

a
R

(t) = −α1t
2 + α2t+ α3 , 0 ≤ t ≤ T

where T =
α2

α1
. α1 , α2 and α3are positive parameters.

The manufacturer and the distributor play a Stackelberg game with the man-

ufacturer acting as the leader and the distributor the follower. The distributor

decides on the processing, pricing, and inventory policies. The manufacturer de-

cides the inventory and pricing policies. The distributor's problem, given that P
M

is the constant transfer price charged by the manufacturer, is

max
I
R

(·),P
R

(·)
{J

R
=

∫
T

0

[P
R

(t)D
R

(t)− P
M
Q

R
(t)− f

R
(Q

R
(t))− h

R
I

R
(t)] dt

}
,

İ
R

(t) = Q
R

(t)−D
R

(t) , I
R

(0) = I
R

(T ) = 0, IR (t) ≥ 0,

where Q
R

(t) is her processing rate, f
R

(·) is her processing cost function, h
R
is

her inventory holding cost per unit, and I
R

(t) is her inventory level. Similar to
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Pekelman, Eliashberg and Steinberg (1987) use a linear holding cost function. They

also assume that the processing cost function f
R
is increasing and strictly convex.

The authors show that the distributor follows a two-part processing strategy.

During the �rst part of her processing schedule, she processes at a constantly in-

creasing rate. This policy builds up inventory initially and then draws down in-

ventory until it reaches zero at a time t∗R. During the second part, which begins

at the stockless point t∗
R
, she processes at precisely her market demand rate. She

also follows a two-part pricing strategy. The price charged by the distributor is

�rst increasing at a decreasing rate and then decreasing at an increasing rate. The

inventory builds up for a while and then reaches zero; from then on, the distributor

processes just enough to meet demand.

An intuitive interpretation is as follows. The distributor, facing a seasonal de-

mand which increases and then decreases, can smooth out her processing operations.

The reason that she may carry inventory initially is due to the assumption of convex

processing cost. In other words, if she does not carry any inventory throughout the

entire horizon, she could incur higher costs due to the convexity of her processing

cost function.

Now we turn to the manufacturer's problem. Let Q
M
, I

M
, h

M
, and f

M
(·) denote

his production rate, inventory level, inventory holding cost per unit, and production

cost function, respectively. The manufacturer's problem is given by

max
Q

M
(·),P

M

{J
M

=

∫
T

0

[(P
M
− C

M
)Q

R
(PM , t)− f

M
(Q

M
(t))− h

M
I

M
(t)] dt

}
s.t. İ

M
(t) = Q

M
(t)−Q

R
(PM , t), IM

(0) = I
M

(T ) = 0,

Q
M

(t) ≥ Q
R

(t) ≥ 0, I
M

(t) ≥ 0,
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where C
M
is his cost per unit transferred to the distributor and Q

R
(P

M
, t) is the best

response of the distributor given P
M
. They assume that P

M
> C

M
. Di�erent from

Pekelman (1974) which uses a strictly convex increasing production cost function,

Eliashberg and Steinberg (1987) use a quadratic production cost function.

The authors characterize the manufacturer's policies as follows. The manufac-

turer follows a two-part production policy. During the �rst part, he produces at a

constantly increasing rate. During the second part, which begins at the manufac-

turer's stockless point t∗
M
, he produces at exactly the distributor's processing rate.

In general, if the manufacturer's inventory holding cost per unit is su�ciently low

and the distributor's processing e�ciency and inventory holding cost per unit are

high, then the manufacturer can also smooth out his operations.

4.3.4 Desai (1992): Marketing-Production Channel under In-

dependent and Integrated channel

Desai (1992) analyzes the production and pricing decisions in a marketing-production

channel in which the retailer buys the good from the manufacturer and sells it to

the �nal consumers. The retailer faces a price-dependent seasonal demand. Like

Eliashberg and Steinberg (1987), Desai (1992) uses a general time varying demand

function D
R

(t) = a
R

(t)− bp
R

(t), where a
R

(t) = α1 +α2sin
(
α

3
t
)
; α

3
T = π, where

T is the duration of the season. Di�erent from Pekelman (1974) and Eliashberg

and Steinberg (1987) who use a linear holding cost function, Desai (1992) assumes

quadratic total production and holding cost functions and does not allow the retailer

to carry inventory.

Desai (1992) shows that once the production rate becomes positive, it does not

become zero again, which implies production smoothing. However, none of the gains
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of production smoothing are passed on to the retailer. The optimal production rate

and the inventory policy are a linear combination of the nominal demand rate, the

peak demand factor, and the salvage value, and the initial inventory. In the scenario

where the retailing operation does not require an e�ort, the pricing policies of the

manufacturer and the retailer and the production policy of the manufacturer have a

synergistic e�ect, i.e., an increase in the manufacturer's price or production rate or

the retailer's price leads to an increase in the rate of change of inventory. However, in

the scenario where the retailing operation does bene�t from the e�ort, the retailer's

pricing policy may not necessarily be synergistic with the other policies.

4.3.5 Desai (1996): Marketing-production channel under sea-

sonal demand

Desai (1996) di�ers from Eliashberg and Steinberg (1987) in three ways. First,

Eliashberg and Steinberg (1987) restrict themselves to a contract in which the man-

ufacturer's wholesale price remains constant throughout the season, while Desai

(1996) allows the manufacturer to change the wholesale price over time (i.e., more

general arrangement). Second, he does not allow the retailer to carry inventory.

Third, he assumes a quadratic holding cost function, while Eliashberg and Stein-

berg (1997) use a linear cost function.

The manufacturer makes the production and pricing decisions while the retailer

decides on the processing rate and pricing policies. Desai (1996) considers three

types of contracts: contracts under which the manufacturer charges a constant price

throughout a season, contracts under which the retailer processes at a constant rate

throughout the season, and contracts under which the manufacturer and retailer

cooperate to make decisions jointly. He compares the optimal policies under three
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di�erent contract types. He shows that the type of contract does not signi�cantly

impact the retailer's price. However, the type of contract has an impact on the

manufacturer's price and the production rate as well as the retailer's processing

rate. If the demand is not highly seasonal, a constant processing rate contract will

lead to higher production and processing rates, and a lower manufacturer's price

compared to a constant manufacturer's price contract.

4.3.6 Kogan and Tapiero (2007)a: Inventory Game with En-

dogenous Demand

Kogan and Tapiero (2007)a consider a supply chain consisting of a manufacturer

(leader) and a retailer (follower) facing time-dependent endogenous demand

depending on price set by the retailer. Furthermore, the retailer has a �nite

production capacity, which requires consideration of the e�ect of inventory. Thus,

the retailer must decide on the price p (t)as well as the production rate u (t). The

manufacturer, on the other hand, has ample capacity and must decide on only the

wholesale price. The authors assume that the game is played over a season of

length T which includes a short production period
[
ts , tf

]
such as the Christmas

time, during which both the demand potential a (t) and the customer price

sensitivity b (t) are high. Speci�cally, the demand D
R

= a (t) + b (t) p (t), where

a (t) =


a1 , t < t

S
and t ≥ t

f

a2 , tS ≤ t < t
f

b (t) =


b1 , t < t

S
and t ≥ t

f

b2 , tS ≤ t < t
f
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with a2 > a1 and b2 > b1 . Kogan and Tapiero (2007)a limit the manufacturer to set

a constant wholesale price w1 in the regular periods and w2 ≤ w1 in the promotion

period. The manufacturer aims to maximize his pro�ts, and so his problem is

max
w

∫
T

0

[w (t)u (t)− csu (t)] dt

subject to w (t) ≥ cs .

The retailer's problem is

max
u,p

∫
T

0

[w (t) (a (t)− b (t) p (t))− cru (t)− w (t)u (t)− h (X (t))] dt

s.t. Ẋ (t) = u (t)− (a (t)− b (t) p (t)) ;

0 ≤ u (t) ≤ U ;

a (t)− b (t) p (t) ≥ 0; p (t) ≥ 0.

Kogan and Tapiero (2007)a obtain the optimal solution to the centralized problem

as well as the Stackelberg equilibrium. They require the system to begin in a

steady state at time 0, go to a transient state in response to promotional decisions,

and then revert back to the steady state by the end of the season at time T . Thus,

their solution is meant to be implemented in a rolling horizon fashion.

Under reasonable conditions on the parameters, the authors are able to derive

formulas for the equilibrium values of the regular and promotional wholesale prices

for the manufacturer. Then they show that it is bene�cial for the retailer to change

pricing and processing policies in response to the reduced promotional wholesale

price and the increased customer price sensitivity during the promotion. The change

is characterized by instantaneous jump upward in quantities ordered and downward
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in retailer prices at the instant when the promotion period starts and vice versa just

when the promotion ends. In fact, the retailer starts lowering her prices sometime

before the promotion starts. This causes a greater demand when the promotion

period begins, thereby taking advantage of the reduced wholesale price during the

promotion. This is accomplished gradually to strike a trade-o� between the surplus/

backlog cost and the wholesale price over time. Speci�cally, any reduction in the

wholesale price results �rst in backlog and then in surplus. An opposite scenario

takes place on the side when the promotion periods ends.

In the symmetric case when unit backlog and surplus costs are equal, the authors

obtain the typical equilibrium as shown in Figure 4.1. As can be seen, due to

symmetric costs, the transient solution is symmetric with respect to the midpoint

of the promotion phase.

Finally, the authors show that due to inventory dynamics, the traditional two-

part tari� does not coordinate the supply chain as it does in the static case. This

is because the manufacturer when setting the promotional wholesale price ignores

not only the retailer's pro�t margin from sales, but also the pro�t margin from

handling inventories. Of course, in the very special case when the manufacturer �xes

a wholesale price throughout the season, the retailer's problem becomes identical to

the centralized problem and the supply chain is coordinated.
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Fig 4.1: Optimal policies with promotion

4.3.7 Kogan and Tapiero (2007)b: Inventory Game with Ex-

ogenous Demand

This game di�ers from Kogan and Tapiero (2007)a in two ways. First, the demand

is no longer price-dependent, and so pricing is not an issue. This simpli�es the

problem. Second, both the manufacturer and the retailer have limited capacities in

contrast to the previous game in which only the retailer has a limited capacity. This

complicates the ordering decisions which require multiple switching points induced

by coordinating inventory decision and capacity limitation. While the demand is

not price dependent, it varies with time. Thus, the optimal control problems faced

by each of the players is a standard dynamic inventory problem as discussed, e.g.,

by Bensoussan et al. (1974).
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Since production control appears linearly in these problem, the optimal produc-

tion can have three possible regimes: maximum production, (singular) production

on demand, and zero production. Sequencing of these regimes depends on the time-

varying nature of the demand and inventory cost parameters.

Kogan and Tapiero (2007)b consider the retailer as the leader and the manufac-

turer as the follower. They solve the problem explicitly in a special case of demand.

As for coordination, the authors show that if the retailer pays the manufacturer

for his inventory related cost, then the centralized solution is attained. They also

show that a two-part tari� contract can also be obtained to coordinate the supply

chain.

4.3.8 Kogan and Tapiero (2007)c: Production Balance with

Subcontracting

Kogan and Tapiero (2007)c consider a supply chain consisting of one manufacturer

(follower) and one supplier/ subcontracter (leader). The supplier has ample capacity

and so the inventory dynamics is not an issue. The manufacturer, on the other

hand, has a limited capacity, and his decisions depend on the available inventory.

The product demand rate at time t is a(t)D, where D is a random variable and a(t)

is known as the demand shape parameter. This assumption is reasonable in the case

of fashion goods.

The realization of D is observed only at the end of a short selling season, and

as a result, the manufacturer can only place an advance order to obtain an initial

end-product inventory, which is then used to balance production over time with the

limited in-house capacity.

Thus, the problem is a dynamic version of the newsvendor problem which incor-
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porates production control. The supplier's problem is to set a constant wholesale

price to maximize his pro�t from the advance order from the manufacturer. The

manufacturer must decide on the advance order as well as the production rate over

time in order to minimize his total expected cost of production, inventory/ backlog,

and advance order. The authors are able to transform this problem to a determinis-

tic optimal control problem, which can be solved to obtain the manufacturer's best

response to the supplier's announced wholesale price.

Kogan and Tapiero (2007)c consider unit in-house production cost to be greater

than the supplier's cost. They show that if the supplier makes pro�t (i.e., has a

positive margin), then the manufacturer produces more in-house and subcontracts

less than the centralized solution. This is due to the double marginalization not un-

like in the static newsvendor problem. Furthermore, if the manufacturer is myopic,

he also orders less than the centralized solution even though he does not produce

in-house since he does not take into account the inventory dynamics.

While the optimal production rate over time would depend on the nature of the

demand, it is clear that optimal production will have intervals of zero production,

maximum production, and a singular level of production. The authors also solve a

numerical example and obtain the equilibrium wholesale price, the manufacturer's

advance order quantity, and his production rate over time.

4.3.9 Kogan and Tapiero (2007)d: Outsourcing Game

Kogan and Tapiero (2007)d consider a supply chain consisting of one producer and

multiple suppliers, all having limited production capacities. The suppliers are the

leaders and set their wholesale prices over time that maximize their pro�ts. In

response to these, the producer decides on his in-house production rate and supple-
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ments this by ordering from a selection of suppliers over time in order to meet a

random demand at the end of a planning period T . The producer incurs a penalty

for any unmet demand. Unlike in the previous section, no assumption regarding

the cost of in-house production and the supplier's production cost is made in this

model. The producer's goal is to minimize his expected cost.

As in the previous section, the authors transform the producer's problem into a

deterministic optimal control problem. Because the producer's problem is linear in

his decisions, his production rate can have one of three regimes as in the previous

section, and his odering rate from any chosen supplier will also have similar three

regimes.

The authors show that the greater the wholesale price of a supplier, the longer

the producer waits before he orders from that supplier. This is because the producer

has an advantage over that supplier up to and until a breaking point in time for

outsourcing to this supplier is reached. As in the previous model, here aslo when a

supplier sets his wholesale price strictly above his cost over the entire horizon, then

the oursourcing order quantity is less than that in the centralized solution.

Once again, the supply chain is coordinated if the suppliers set their wholesale

price equal to their cost and get lump sum transfers from the producer.

4.3.10 Bykadorov et al. (2007): Trade Discount Policies

Bykadorov et al. studies the trade discount in the context of di�erential games

framework. The manufacturer controls the dynamic discount rate and the retailer

controls the dynamic shelf-price (pass-through). The paper considers two cases: the

case with the manufacturer being the game leader and the case with the retailer

being the game leader.
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4.4 Marketing Channel Applications

4.4.1 Jørgensen et al. (2000): Dynamic Cooperative Adver-

tising

Jørgensen et al. (2000) studies a two-member channel in which a manufacturer and a

retailer can make advertising expenditures that have both long-term and short-term

impacts on the retail demand.

The manufacturer controls his rate of short-term advertising e�ort and long-

term advertising advertising e�ort. The manufacturer and the retailer can enter

into a cooperative advertising program in which the manufacturer pays a certain

share of the retailer's advertising expenditure. The manufacturer is a Stackelberg

game leader in designing the program: He announces his advertising strategies and

support rates for the retailer's long-term and short-term advertising e�orts.

The results show that both the manufacturer and the retailer prefer full support

to any of the two kinds of support, which is preferred to no support at all.

4.4.2 Jørgensen et al. (2001) : Impact of Stackelberg Lead-

ership on Channel E�ciency

Jørgensen et al. (2001) studies the e�ects of strategic interactions in both pricing

and advertising in a channel consisting of a manufacturer and a retailer. They

consider three scenarios: each channel member simultaneously decides its margin

and advertising rate, the scenaro with the retailer acting as the leader, and the

scenario with the manufacturer acting as a leader. The manufacturer controls his

margin m
M

(t) and rate of advertising A
M

(t). The retailer controls her margin

m
R

(t) and her advertising rate A
R

(t). The retailer price
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The demand rate D
R

(t) is given as

D
R

(t) = A
R

(t) (a
R
− b

R
P

R
(t)) γ

√
G (t),

where P
R

(t) is the retail price; a
R
and b

R
are positive parameters; G (t) is the stock of

brand goodwill. Jørgensen et al. (2001) assumes that the retailer is myopic, meaning

that she is only concerned with the short-term e�ects of her pricing and advertising

decisions. The manufacturer is concerned with his brand image, as re�ected in the

goodwill stock which evolves according to the Nerlove-Arrow (1962) dynamics:

Ġ (t) = α
M

(t)− δG (t) , G (0) = G0 ≥ 0,

where δ > 0 is a decay constant. The manufacturer's objective functional is

J
M

=

∫
∞

0

e−ρt

[
m

M
(t)α

R
(t) (α− βp

R
(t))

√
G (t)− 1

2
w

M
α2

M
(t)

]
dt

and the retailer's is

J
R

=

∫
∞

0

e−ρt

[
m

R
(t)α

R
(t) (α− βp

R
(t))

√
G (t)− 1

2
w

R
α2

R
(t)

]
dt,

The authors show that the manufacturer and retailer leadership in a channel

are not symmetric as in pure pricing games. The manufacturer leadership improves

channel e�ciency and is desirable in terms of consumer welfare, but the retailer

leadership is not desirable for channel e�ciency and for consumer welfare.
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4.4.3 Jørgensen et al. (2003): Retail Promotions with Nega-

tive Brand Image E�ects

Jørgensen et al. (2003) consider a distribution channel with a manufacturer and a

retailer. The manufacturer (he) advertises in the national media to build up the

image for his brand. The retailer (she) promotes locally the brand (by such means

as local store displays and advertising in local newspapers) to increase sales revenue,

but these local promotional e�orts are assumed to be harmful to the brand image.

Jørgensen et al. (2003) analyze two �rms in a cooperative program in which the

manufacturer supports the retailer's promotional e�orts by paying part of the cost

incurred by the retailer when promoting the brand. The two �rms play a Stackelberg

game where the manufacturer is the leader. They address the question of whether

the cooperative promotion program is possible and whether the retailer's decision

on being a myopic or far-sighted will a�ect the implementation of a cooperative

program.

Let A (t), B (t) , and G (t) denote the manufacturer's advertising rate, the re-

tailer's promotional rate, and the brand image, respectively. The dynamics of G (t)

is described by the di�erential equation

Ġ (t) = aA (t)− bB (t)− δG (t) , G (0) = G0 > 0,

where a and b are positive parameters measuring the impact of the manufacturer's

advertising and retailer's promotion, respectively, on the brand image and δ is

the decay rate of the brand image. The sales revenue rate of the product is

Q (B (t) , G (t)) = dB (t) + eG (t) , where d and e are positive parameters that rep-

resent the e�ects of promotion and brand image on current sales revenue. With this
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formulation of the demand and the revenue, the retailer faces a trade-o� between the

sales volume and the negative impact of the local advertising on the brand image.

The manufacturer and the retailer incur quadratic advertising and promotional

costs C (A (t)) = µ
A
A2/2 and C (B (t)) = µ

B
B2/2, respectively. Let D (t) denote

the amount the manufacturer contributes to the retailer's promotion cost. The

manufacturer's objective functional is

J
M

=

∫
∞

0

{
e−ρtπ [dB (t) + eG (t)]− µ

A
A (t)2

2
− µ

B
D (t)B (t)2

2

}
dt,

and the retailer's is

J
R

=

∫
∞

0

{
e−ρt (1− π) [dB (t) + eG (t)]−−µB

(1−D (t))B (t)2

2

}
dt.

Jørgensen et al. show that a cooperative program is implementable if the initial

value of the brand image G0 is su�ciently small, and if the initial brand image is

�intermediate� but promotion is not �too damaging� (i.e., b is small) to the brand

image.

4.5 Miscellaneous Applications

4.5.1 Jørgensen and Zaccour (1999): New Technology Sub-

sidy

This paper studies the problem of new technology subsidy problem. Speci�cally, the

government uses two instruments: price subsidies and guaranteed buys, to accelerate

the adoption of new technology. The government acts as the leader and the �rm is
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the follower.

4.5.2 Kogan and Tapiero (2006): Co-Investment in Supply

Chain Infrastructure

This paper considers a supply chain with N �rms. Let K (t) denote the current

level of the supply chain infrastructure capital, L = (L1 , ...LN
) a vector of the labor

force, I = (I1 , ...IN
) a vector of investment policy, and Qj = f

(
K,L

j

)
an aggregate

production function of the jth �rm, where ∂f
∂K

≥ 0, ∂f
∂Lj

> 0 for L 6= 0, ∂f(K,0)
∂Lj

= 0,

and ∂2f
∂L2

j
< 0. The process of capital accumulation is given by

K̇ (t) = −δK (t) +
N∑

j=1

I
j
(t) , K (0) = K0 , f(K(t), Lj(t)) ≥ I

j
(t) ≥ 0, j = 1, ...N.

The jth �rm's objective is to maximize its discounted total pro�t, i.e.,

max
Lj (t),Ij (t)

{∫ ∞

0

e−ρj t
[
p

j
(t) f

(
K (t) , L

j
(t)
)
− c

j
(t)L

j
(t)− C

I

(
(1− θ) I

j
(t)
)]
dt

}
, j = 1, ...N,

where pj is the price, cj
is the unit labor cost, C

I
(.) is the investment cost function,

and θ is the portion of the cost that is subsidized.

The authors derive the Nash strategy as well as the Stackelberg strategy for the

supply chain where �rms are centralized and controlled by a �supply chain manager�.

Their results show that the Stackelberg strategy applied to consecutive subsets of

�rms will result in an equilibrium identical to that obtained in case of a Nash supply

chain. The implication is that it does not matter who the leader is and who the

followers are.
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4.6 Conclusion

The supply chain and marketing channel management has attracted a great deal of

attention in the operations management and marketing literature in the last decade.

In the supply chain management literature, most of the models are based on the

one-period newsvendor models and, therefore, are limited to examine the one-shot

interactions between the channel members. In practice, the channel members may

often interact with each other frequently. It is thus natural to explore how their

decisions evolve over time. Unfortunately, the insights under the assumption of

one-shot interaction cannot be extended into the dynamic situations. For such

situations, the di�erential game modeling approach can be used. However, we have

not observed many models that use this approach.

There are a number of reasons that have limited the applications of the Stack-

elberg di�erential games to the supply chain management area. Open-loop Stack-

elberg equilibria are used because of their mathematical tractability. But these

equilibria are in general not time consistent. On the other hand, the closed-loop

equilibria are hard to obtain. Even in the open-loop case, numerical analysis is

needed to get insights into the impact of key parameters on the issues under exam-

ination. It may be possible to limit the class of the feedback policies for analysis

of the closed-loop equilibria. Finally, researchers have adopted deterministic dif-

ferential game models, even though the situations that are modeled are a�ected

by uncertain factors. For these applications, it would be of interest to apply the

stochastic di�erential game models.
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