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Abstract 

 

Digital Twinning of Well Construction Operations for Improved 

Decision-Making 

 

Gurtej Singh Saini, Ph.D. 

The University of Texas at Austin, 2020 

 

Supervisor:  Dr. Eric van Oort 

 

Well construction is a highly technical, inherently unpredictable, and non-

holonomic multi-step process with vast state and action spaces, that requires complex 

decision-making and action planning at every step. Action planning demands a careful 

evaluation of the vast action-space against the system’s long-term objective. Current 

human-centric decision-making introduces a degree of bias, which can result in reactive 

rather than proactive decisions. This can lead from minor operational inefficiencies all 

the way to catastrophic health, safety, and environmental issues. A system that can 

automatically generate an optimal action sequence from any given state to meet an 

operation’s objectives is therefore highly desirable. Moreover, an intelligent agent 

capable of self-learning can offset the computation and memory costs associated with 

evaluating the action space. This dissertation details the development of such intelligent 

planning systems for well construction operations by utilizing digital twinning, reward 

shaping and reinforcement learning techniques. 

To this effect, a methodology for structuring unbiased purpose-built sequential 

decision-making systems for well construction operations is proposed. This entails 
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formulating the given operation as a Markov decision process (MDP), which demands 

carefully defining states and action values, defining goal states, building a digital twin to 

model the process, and appropriately shaping reward functions to measure feedback. An 

iterative method for building digital twins, which are vital components of this MDP 

structure, is also developed. Finally, a simulation-based search decision-time planning 

algorithm, the Monte Carlo tree search (MCTS), is adapted and utilized for learning and 

planning.  

The developed methodology is demonstrated by building and utilizing a finite-

horizon decision-making system with discrete state- and action-space for hole cleaning 

advisory during well construction. A digital twin integrating hydraulics, cuttings 

transport, and rig-state detection models is built to simulate hole cleaning operations, and 

a non-sparse reward function to quantify state-action transitions is defined. Finally, the 

MCTS algorithm, enhanced by a well-designed heuristic function tailored for hole 

cleaning operations, is utilized for action planning. The plan (action sequence) output by 

the system, results in significant performance improvement over the original decision 

maker’s actions, as quantified by the long-term reward and the final system state. 
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Chapter 1: Introduction  

Well construction is a multi-step process of drilling and completing wells in the 

subsurface for applications such as extracting hydrocarbons or accessing geothermal 

energy. It is highly complex since each step has multiple co-occurring sub-processes and 

various systems interacting with each other. Furthermore, drilling deep in the subsurface 

into variable geological environments adds unpredictability to the process. The highly 

involved and unpredictable nature of well construction can result in operational 

inefficiencies or safety and environmental issues, potentially leading to non-productive 

time (NPT). The cost of NPT can easily span from a few thousand to several million 

dollars. Currently, real-time data streams, advanced process models, and sophisticated 

simulation techniques are utilized for monitoring well construction operations (Mayani et 

al., 2018). Decision-making, however, is still primarily performed by humans, with little 

automation. The decisions are based on the understanding of the processes by the subject 

matter expert (e.g., engineer, or the driller out in the field) in control of the process. They 

are made not only based on interpretations of the model outputs, but also to a large extent 

on past experiences or ‘rules of thumb’, and sometimes ‘gut feelings.’ They are also 

affected by other human factors, such as situational awareness or even the physical and 

mental state of the decision-maker (with, e.g., fatigue playing a significant role (Chan et 

al., 2020)). Consequences of making erroneous decisions can range from poor operational 

efficiency to catastrophic failures and accidents, as was witnessed in the blowout on 

Macondo well in the Gulf of Mexico in 2010 (Griggs, 2010). Therefore, careful 

surveillance of process and equipment data for performance tracking and building 

intelligent systems for decision-making and action planning is essential. These objectives 
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can be accomplished by developing decision-engines, which are automated intelligent 

sequential decision-making and action planning systems. 

1.1 BACKGROUND  

Well construction is guided by an engineering plan called the drilling program, 

which includes information about the current well’s directional plan, the bottom hole 

assembly (BHA) design, subsurface geology, fluid and hydraulics plan, well control 

measures, casing design, cementing plans, as well as relevant information from offset 

wells (Dunn & Payne, 1986). Apart from specifying making the hole with a drill bit 

attached to a hollow flexible drillstring, which is rotated via a motor at the surface (top 

drive or rotary table), the drilling program guides many other processes, such as 

(Bourgoyne, 1986; Maidla & Haci, 2004; Mitchell & Miska, 2011): 

- ‘tripping’ the drillstring in and out of the borehole using a drilling rig’s hoisting 

system (drawworks, hook, traveling block, etc.); 

- making or breaking ‘connections’, to add or remove discrete drillstring elements 

called stands using pipe handling systems (hydrarackers and hydratongs);  

- directional drilling, to control the trajectory of the well using either mud motors 

(rotary and slide drilling operating modes) or rotary steerable systems; 

- circulating the drilling fluid (or drilling mud), to maintain its equivalent 

circulation density (ECD) within a drilling margin (as shown in Figure 1) using 

the rig’s hydraulic system (reciprocating positive displacement mud pumps, 

standpipe, etc.);  

- hole cleaning, to remove the drilled cuttings from the borehole by controlling the 

mud flowrate, mud properties and surface drilling parameters;  
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- well logging, to make high fidelity downhole measurements such as formation 

evaluation logs, near-bit drilling parameter measurements, and directional surveys 

using measurement and logging while drilling (MLWD) tools. 

Throughout the process, various drilling parameters such as weight on bit (WOB), 

drillstring rotation speed (RPM), applied torque, rate of penetration (ROP) and standpipe 

pressure are measured directly or calculated using a suite of sensors installed on the 

drilling equipment (Cayeux & Daireaux, 2009; Gul et al., 2020). Once a section of the 

well has been drilled, the next steps involve securing it by running casing and then 

cementing the casing in place (Mitchell & Miska, 2011). 

 

Figure 1 A simple representation of the drilling margin. Exceeding the fracture gradient 

can fracture the rock formation (Formation fracture), whereas a drop in 

pressure below the pore pressure can lead to an influx of formation fluids 

into the wellbore (called a kick). 

1.1.1 Hole cleaning  

One major issue that can lead to severe problems, potentially resulting in NPT, is 

inefficient or poor hole cleaning. Hole cleaning is the process of removing solids 

(cuttings, cavings, or metal shavings) from the borehole by circulating a drilling fluid in 
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and out of the well. Drilling fluid or mud is a water or oil or synthetic-based mixture of 

solids and chemicals. It serves many functions, the main ones being to provide well 

control, lubrication of the drillstring, and hole cleaning by carrying the generated rock 

cuttings back to the surface. Removal of solids is critical in ensuring different well 

construction operations (such as drilling, tripping, casing, and cementing) are performed 

safely and efficiently. Poor hole cleaning can lead to such problems as (Erge et al., 2015; 

Naganawa, 2017; Nazari et al., 2010): 

- Cuttings bed accumulation, which can lead to high torque and drag while moving 

the drillstring in or out of the borehole  

- Deteriorating wellbore quality  

- Damage to the downhole formations  

- Damage to downhole drilling assembly   

- Decreased rate of penetration  

- Adversely affect the drilling mud properties  

- Increased ECD, which can result in wellbore stability issues 

- In severe cases, it can result in stuck pipe issues or pack-offs around the larger 

BHA elements 

Annually, hole cleaning issues result in several hundred million dollars in NPT 

costs (Ahmed et al., 2019; Forshaw et al., 2020). Therefore, building a decision-engine 

for hole cleaning advisory that permits proactive action planning is of considerable 

practical importance and value. 

1.1.2 Current state of process monitoring and decision-making in well construction  

Currently, in the well construction domain, many algorithms and systems are 

utilized for performing calculations and process monitoring. To assist with decision-
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making, approaches such as case-based reasoning (Sadlier et al., 2013; Shokouhi & 

Skalle, 2009), performance tracking using digital twins (Mayani et al., 2020; Nadhan et 

al., 2018; Saini, et al., 2018), knowledge graphs and decision-trees (Danner, 2020; Miller 

& Gouveia, 2019), and type curve matching (Cordoso et al., 1995; Zhang et al., 2015) are 

being utilized. Remote process monitoring and multidisciplinary collaboration among 

domain experts have been enabled by the use of real-time (RT) data streams, advanced 

process and system models, and machine learning techniques (Abbas et al., 2019; Da 

Cruz Mazzi et al., 2020; Fjellheim, 2013). Cayeux et al. (2011, 2012), discuss the 

development and application of a system that defines and estimates some key indicators 

using physical models and real-time data to detect deviations from normal expected 

behavior. Other examples of such decision-assist tools and methods include the 

storyboarding process (Saini et al., 2018) complemented with the spider-bots technique 

(Saini et al., 2018) to calculate appropriate key performance indicators (KPIs) and present 

only the relevant information to the user in the form of a storyboard. 

 While such methodologies assist the decision-maker, the final decision, however, 

is based on the decision maker’s understanding and interpretation of the data, KPIs, and 

model outputs. Moreover, decision-making for effective hole cleaning is based on many 

rules of thumbs or best-practices that have been established over the years based on the 

experiences of drillers or rig site engineers. This human-centered decision-making not 

only introduces a degree of bias but also results in reactive, short-term decisions instead 

of proactive long-term action planning.  

1.1.3 Decision-making and action planning in other domains  

The recent technological advances in the fields of big data, artificial intelligence, 

IoT hardware, and sensor technology have resulted in accelerating digitalization in many 
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industries. Building intelligent decision-making and action planning systems using the 

concept of digital twinning is becoming the norm.  

1.1.3.1 Digital twinning 

The term ‘digital twin’ was first coined by Michael Greives and John Vickers 

(Grieves, 2014; Grieves & Vickers, 2016), initially to assist in product lifecycle 

management. It was introduced to model a physical system such as a jet propulsion 

engine or wind turbine. However, this concept has seen wider adoption across multiple 

industries because of many reasons, primary ones being: 

- Advancement in sensor technology; 

- Increased modern computational power; 

- Increased data storage capability; 

- Industry experience and expertise in the ability to handle big data. 

The literature describes the digital twinning process as having three main 

components (Grieves & Vickers, 2016, 2017): 

- The real physical system (process or equipment) and the associated sensors for 

data collection;  

- The virtual representation of integrated models of the system to digitally replicate 

its behavior (called its digital twin) to enable performance tracking and scenario 

analysis; 

- A data-stream to exchange data and information between the real system and its 

twin. 

A valuable property of digital twins is their ability to be updated in real-time (RT) 

based on the most recent data. This feature allows for their application in RT decision-

making systems (Chinesta et al., 2020; Datta, 2016; Jones et al., 2020). The concept of 
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digital twinning is successfully implemented in other industries across a variety of 

applications. Some practical applications include Formula One racing simulations and 

strategy planning (Boxall, 2016; Breuer, 2018), twinning wind turbines for digital wind 

farm management (Schmidt, 2017), twinning gas turbines to predict failures (Power 

Digital Solutions, 2016; Schmidt, 2017), aerospace asset maintenance (Etong, 2019; 

Tuegel et al., 2011), product lifecycle management (Lim et al., 2019; Lu et al., 2020; 

Macchi et al., 2018), and developing integrated models for weather forecasting (Hoffman 

& Atlas, 2016; Rasheed et al., 2019). 

1.1.3.2 Intelligent systems  

Intelligent decision-making and action planning systems have resulted in overall 

performance improvement in various other fields. For instance, areas such as microgrid 

energy management (Ji et al., 2019; Kuznetsova et al., 2013), economic dispatch and 

large-scale power dispatch problems (Guan et al., 2020; Jasmin et al., 2011), electric 

vehicle systems management (Qi et al., 2019; Vandael et al., 2015), and smart grid 

management (Kang et al., 2009), utilize reinforcement learning (RL) methods. More 

recently, very high complexity adversarial board games (e.g., chess and Go), and 

complex RT strategy games (e.g., AlphaStar, Dota, and Pac Man) have been solved using 

a combination of deep neural networks and tree-based search techniques (Arulkumaran et 

al., 2019; Moerland et al., 2018; Ontanon et al., 2013; Silver et al., 2012, 2017, 2018).  

Figure 2 demonstrates one such application of a digital twinning system for 

Formula One racing strategy planning and management. The physical system is the race 

car interacting with other competitor race cars and the racetrack. The race car itself has 

over 300 sensors that stream data about different aspects of the car (such as engine and 

tire temperatures, racetrack conditions, etc.) in real-time to the team’s control room at 
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their headquarters (Boxall, 2016). This data is then fed into an integrated multi-model 

system (the digital twin) representing the car and its interaction with the environment, to 

run many thousands of simulations per second. These simulations analyze multiple 

scenarios and decide on the best race strategy going forward. Also, throughout the race 

weekend, starting from the practice sessions on Friday until the final race on Sunday, 

many hundred gigabytes of data are collected. This data is used to update the 

understanding of the environment and the car, thereby improving the digital twin’s 

performance for future racing events (a process known as enrichment). 

 

Figure 2 The three components of digital twining demonstrated through application in 

race strategy planning (Boxall, 2016). 

1.2 RESEARCH OBJECTIVES  

To summarize, well construction is a highly technical process that requires 

continuous complex decision-making and multi-step action planning. Action selection at 

every step demands a careful evaluation of the vast action space, while guided by 

achieving long-term objectives and desired outcomes. Although there exist multiple tools 

and systems that assist the rig site personnel with decision-making, there is no system yet 

that can continually quantify the state of the well construction operation, evaluate a set of 

actions to analyze the various possible scenarios, and suggest an optimal action sequence 

to meet the operation’s objectives. A system that can automatically generate an optimal 
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action sequence from any given state to meet an operation’s objectives is highly 

desirable. In other domains, however, the use of sophisticated decision-making systems, 

coupled with digital twins of operations or equipment have resulted in an overall 

improvement in operational efficiency and safety. Therefore, the development of such 

automated intelligent decision-making and action planning systems (or decision-engines, 

as depicted in Figure 3) for improved well construction safety and performance is the 

overarching objective of the research presented in this dissertation. 

 

Figure 3 The objective of this research: development of intelligent decision-making 

systems for well construction operations. 

Recent advances in sensors and data processing technologies at the rig site allow 

more reliable access to operational and equipment data. This data can be used in 

conjunction with historical data and appropriate system models to build digital twinning 

systems of the various well construction processes. These twinning systems serve as 

basic building blocks to help improve operational performance by allowing more 

informed decision-making. These twinning systems can then be utilized to structure 

intelligent planning systems as Markov decision processes (MDPs). The development 

of such systems requires: 
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- Integrating multiple sources of information (including data and process models) to 

quantify the system state; 

- An unambiguous definition of goal or desirable states based on the operations’ 

long term objective;  

- Defining control variables or actions to manipulate these states, and using digital 

twins of the underlying process (or the environment) to simulate state-action 

transitions; 

- A well-crafted non-sparse normalized reward function to evaluate action-

sequences. 

This MDP structure is then solved by an appropriate planning algorithm to 

output a policy or action plan in the form of a recommended action-sequence. 

Simulation-based search algorithms are a category of planning algorithms that can be 

utilized to solve MDPs with vast state and action spaces, as is the case in well 

construction.  

1.2.1 Scope 

The methodology proposed in this dissertation is demonstrated by structuring a 

decision-engine for hole cleaning advisory. First, a digital twin for hole cleaning 

operations is built by integrating multiple data streams with analytical implementations of 

the cuttings transport, hydraulics, and rig-state detection models. Subsequently, an MDP 

for the hole cleaning system is set up by appropriately defining its various components. 

Finally, the Monte Carlo tree search (MCTS), a type of simulation-based search 

algorithm that has successfully been used across other domains, is used for planning. The 

MCTS’s performance is enhanced by the development of a heuristic function tailored for 
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the hole cleaning system. This decision-engine is then tested on multiple real-world oil 

well cases that exhibited hole cleaning issues. 

1.3 DISSERTATION OUTLINE  

The dissertation is structured as follows: 

- Chapter 2 reviews hole cleaning operations and discusses the different 

components of building an intelligent decision-making and planning system. For 

hole cleaning, the various cuttings transport, hydraulics, and torque and drag 

modeling approaches are presented. The current state of digital twinning in the 

well construction domain is reviewed, and finally, the concept of planning and 

building intelligent planning systems is discussed.  

- Chapter 3 defines a generalized iterative methodology for setting up digital twins 

for any well construction operation and demonstrates the same by building a 

twinning system for hole cleaning advisory. The application of such twinning 

systems is shown by performing a single-step scenario analysis.  

- Chapter 4 details the steps in structuring unbiased purpose-built sequential 

decision-making systems in an MDP formulation by utilizing digital twins and 

non-sparse normalized reward design. The application of this system is shown for 

the quantification of different multi-step scenarios or action sequences. 

- Chapter 5 builds on the Markov decision process formulation of a well 

construction operation by using the MCTS planning algorithm to develop 

decision-engines capable of self-learning. This decision-engine is then utilized for 

performance tracking and intelligent action planning for hole cleaning operations.  

- Chapter 6 summarizes the contributions of this dissertation and suggests 

recommendations for further work in this area.  
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- The various appendix sections supplement the dissertation by detailing the 

nomenclature as well as discussing the development and utilization of a digital 

twin for logistics and planning.  
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Chapter 2: Literature Review  

In well construction, there has been a significant amount of research in the areas 

of cuttings transport, hydraulics, and torque and drag modeling. Over the past few 

decades, due to the evolution of computational technology and the advent of many 

advanced modeling techniques, the models have become more sophisticated and can 

more accurately replicate the different drilling processes. Also, over the past few years, 

due to significantly improved computational power, increased data storage ability, 

advancements in sensor technology, and industry-wide expertise to handle big data, the 

concept of digital twinning has been adopted widely across multiple industries. However, 

only recently, the oil and gas industry has begun to recognize the incredible potential of 

digitally twining various equipment and processes. The following sections discuss the 

many cuttings transport, hydraulics, and torque and drag modeling approaches in the 

industry, followed by applications of digital twinning in drilling, and finally, the different 

methods available for sequential decision-making and action planning.  

2.1 HOLE CLEANING  

As previously discussed, the primary goal of hole cleaning is to remove solids 

from the wellbore to the extent that various operations such as drilling, tripping, running 

casing and cementing can be performed safely and efficiently. Therefore, it is vital to 

monitor the condition of the borehole from a hole cleaning standpoint, which can be 

quantified by deriving metrics using a digital twin comprising of the cuttings transport, 

hydraulics, and torque and drag models.  

2.1.1 Cuttings transport modeling  

There are two main mechanisms for cuttings transport: dispersion of cuttings into 

the drilling mud and mechanical removal of cuttings. Cuttings transport mechanism is 
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different in different wellbore sections, and wellbore inclination significantly affects the 

cuttings transport efficiency. These differences can be understood by dividing the 

wellbore into three distinct sections based on the inclination angles: 0 to 30 degrees 

(near-vertical section), 30 to 60 degrees (curve or the build section), and 60 to 90 degrees 

(near-lateral or horizontal section).  

In the near-vertical section of the wellbore, the principal method of suspending 

and carrying cuttings up-hole in the mud is by overcoming the particle slip velocity, and 

no cuttings bed can exist. Hole cleaning is primarily due to viscosity and flowrate of the 

drilling fluid. There have been multiple studies to quantify the effect of annular velocity 

on cuttings transport. Williams and Bruce (1951) studied the effects of mud properties on 

cuttings removal capacity and the minimum annular velocity required to lift the cuttings. 

Since then, there have been multiple studies to model the cuttings slip velocity by 

considering different factors such as cuttings size and density, drilling fluid density and 

rheology, cuttings shape, Reynold’s number, etc. (Baldino et al., 2015; Larsen et al., 

1997a; Walker & Mayes, 1975; Zeidler, 1970). A key advantage with predicting cuttings 

particle settling velocity is the ability to estimate the depth from where cuttings would 

have generated. In the curve section, an unstable cuttings bed can form below the angle 

of repose. However, there is a high possibility that when the mud circulation stops, the 

cuttings avalanche back down the annulus, which can pack-off around the bottom-hole 

assembly, causing a stuck pipe incident. For this section, the hole cleaning design 

requires tackling and preventing this cuttings avalanche. In the near-horizontal section, 

above the angle of repose for the cuttings, a stable cuttings bed will form on the low-side 

of the hole. The primary hole cleaning requirement is to move this bed up and out of the 

hole continuously (Sanchez et al., 1997; Sifferman & Becker, 1992). There has been 

extensive experimental work and model development in trying to understand the cuttings 
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transport mechanisms for deviated and horizontal wells. Figure 4 summarizes the 

cuttings transport in the different sections of the wellbore. 

 

Figure 4 Cuttings bed distribution in different inclination segments of the well. 

In deviated and horizontal sections, the drillpipe eccentricity, i.e., the drillpipe 

lying on the lower side of the borehole, and the rheological properties of the mud force 

the high-velocity fluid flow on the high-side of the wellbore. On the other hand, due to 

the shear-thinning behavior and the yield stress characteristics of the drilling mud, the 

flow velocity on the low-side of the borehole is significantly reduced. Therefore, drillpipe 

rotation is essential to agitate the cuttings from the bed into the flow stream on the high-

side of the hole. Moreover, the cuttings that are already in the flow stream experience 

multiple forces, including gravity, which can result in them falling and settling on the 

low-side of the borehole after traversing a certain distance. This distance traveled is a 

function of factors such as flowrate, rotational speed, fluid rheology, cuttings size, 

cuttings distribution, etc. (Kenny et al., 1996; Ozbayoglu et al., 2008; Sanchez et al., 

1997).  

Sanchez et al. (1997) performed over 600 experiments to study the effects of 

rotary speed, hole inclination, mud rheology, cuttings size, and flowrate on hole cleaning 
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in directional wells.  The authors discovered a strong correlation between drill pipe 

rotation speed and cuttings transport. Sifferman and Becker (1992) performed a detailed 

experimental study to understand the effects of ten different variables on hole cleaning 

and find the variables that affect it the most. The variables considered were mud density, 

annular mud velocity, mud type, mud rheology, rate of penetration, cuttings size, 

inclination angle, drillpipe dimensions, drillpipe eccentricity, and drillstring RPM. The 

authors concluded that the height of the cuttings bed was most influenced by annular mud 

velocity, mud density, inclination angle, and drillstring RPM. Walker and Li (2001, 

2000) performed experiments to study the effects of different cuttings particle sizes, fluid 

rheology, and pipe eccentricity on solids transport for coil tubing operations. Over 700 

tests were performed with three different cutting sizes, for various gas and liquid 

concentrations, at different inclination angles and for two different eccentricities. Power 

et al. (2000) discussed the advantages of using weighted sweeps rather than high viscous 

sweeps to enable more efficient cuttings removal from deviated boreholes. Saasen and 

Løklingholm (2002) and Kjøsnes et al. (2003) discussed the effect of rheological 

properties of drilling fluids such as gel strength, viscosity, and yield point on their ability 

to remove cuttings by minimizing the cuttings bed consolidation.   

Based on mass and momentum conservation equations, multiple models have 

been developed to determine the adequacy of hole cleaning by calculating parameters 

such as cuttings bed height in the well at different depths, cuttings concentration in 

suspension, the total weight of cuttings in the well, etc. These models can primarily be 

categorized as two-layer models or three-layer models. The main difference between the 

two types is the settling condition for cuttings in the drilling fluid. Two-layer models 

consider a cuttings bed layer and a suspension layer, while the three-layer models 
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consider a suspension layer, a stationary cuttings bed layer, and moving cuttings bed 

layer.  

Gavignet and Sobey (1989) developed a two-layer model to estimate the cuttings 

bed height and cuttings concentration. Martins and Santana (1992) developed a two-layer 

model with the presence of cuttings in the suspension layer. The authors calculated the 

stress at the interface between the two layers by using a friction factor, which includes the 

effect of cuttings. Iyoho and Takahashi (1993) developed a model for describing unstable 

cuttings transport at low velocities in horizontal wells. The model discusses the flow 

characteristics at low velocities, such as dunes formation, coupled with pressure 

variations. Kamp and Rivero (1999) discussed the development of a two-layer model that 

predicts cuttings build up during drilling. The suspension layer is assumed to be 

heterogeneous with both drilling mud and cuttings. Larsen (1990) developed a two-layer 

cuttings transport model to predict the required critical transport fluid velocity to keep the 

cuttings moving, and the cuttings concentration in the borehole for any velocity lower 

than this critical velocity. Larsen’s model was later supplemented by the work of Jalukar 

(1993) and Bassal (1995), to include the effects of the hole size and drillpipe rotation, 

respectively, on the critical velocity. Nguyen and Rahman (1998) developed a three-layer 

cuttings transport model. This model relates the various flow patterns such as sliding bed, 

saltation of cuttings, etc., to variables such as flow rate, cuttings size, mud rheology, and 

annulus geometry.  Similarly, Zou et al. (2000) and Cho et al. (2000) developed three-

layer cuttings transport models for estimating cuttings bed height and cuttings 

concentration in deviated and horizontal wells as functions of parameters such as 

wellbore geometry, mud rheology, cuttings characteristics etc.  

The paper by Nazari et al. (2010) compared multiple hole cleaning approaches 

from previous models and performed a classification of the different drilling parameters 
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as inputs, outputs, and internal states. The goal of this classification is to treat hole 

cleaning during drilling as an internal state, relate it to input and output variables, and be 

able to check for its observability and controllability. Cayeux et al. (2014) have 

developed a more comprehensive model for estimating real-time cuttings transport by 

accounting for downhole transient conditions. The developed model considers the 

coupled effects of both drillstring mechanics and fluid transport. More recently, Erge and 

van Oort (2020) developed a model where the localized annular velocity profile is used to 

determine the cuttings bed height. This model considers the effects of eccentricity, pipe 

rotation, and annular blockage on the annular velocity.   

2.1.2 Hydraulics modeling  

The goal with hydraulics modeling is to accurately estimate the value of 

Equivalent Circulation Density (ECD) in the annulus. ECD at a depth is the gradient of 

the sum of the hydrostatic head exerted by the drilling mud (which is a function of the 

true vertical depth (TVD) of the well) and the total circulating frictional pressure loss in 

the annulus between the drillstring and the wellbore (which is a function of the measured 

depth (MD) along the annular space) (Mitchell & Miska, 2011). The circulating frictional 

pressure loss in the annulus is affected by factors such as wall roughness and friction, 

drillstring RPM, presence of cuttings beds, annular restrictions, or any tight annular 

clearances, drillpipe eccentricity in the annulus, etc. The hydrostatic head primarily 

depends on the total vertical depth and the density of the mud, which itself is a function 

of temperature and pressure, barite sag, and any cuttings suspended in the mud. Equation 

(1) shows the formula for estimating ECD at a measured depth of 𝐷. 

 𝐸𝐶𝐷 =  
𝑃ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐_𝐷𝑇𝑉𝐷 + 𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒_𝑙𝑜𝑠𝑠_𝐷𝑀𝐷

𝐷𝑇𝑉𝐷. 𝑔
 (1) 
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 An accurate estimation of ECD is essential to manage the downhole pressure 

gradient and keep it within the drilling margin, i.e., between fracture gradient and pore 

pressure (or the minimum mud weight to maintain wellbore stability, whichever is 

higher), as shown in Figure 5. Pore pressure is exerted on the borehole by the fluids 

(hydrocarbons or brine) present in the pore spaces of the formation rocks. If the ECD 

falls below this lower limit (referred to as stability limit (SL) in this research), it can 

cause wellbore instability and, in some cases, an unwanted influx of formation fluids into 

the borehole (which is called a ‘kick’). Exceeding the upper limit (which is the fracture 

gradient (FG)) can fracture the formation and lead to mud loss, which is referred to as a 

lost circulation event (Bourgoyne, 1986). 

 

Figure 5 Representation of the drilling safety margin.  

Multiple models in literature try to quantify the effects of different parameters on 

ECD. In the paper by Erge et al. (2016), the authors investigated the impact of drillpipe 

eccentricity in horizontal wells while circulating non-Newtonian fluids. Hemphill (2015), 

Erge et al. (2014) and, Ahmed and Miska (2008) are some of the researchers that have 

tried to quantify the effect of drillpipe rotation on annular frictional pressure drop. 
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Hemphill (2015) proposed a model to calculate this frictional pressure drop by including 

the effects of drillpipe geometry and eccentricity. Shahri et al. (2018) discussed the 

development of a hydraulics model by considering the impact of drillpipe eccentricity 

and pipe rotation for real-time drilling operations.  

Other factors that need to be considered during tripping operations are the surge 

and the swab effects. Sudden and fast movement of drillstring, either in or out of the hole, 

can result in high-pressure spikes in the annulus. When running a drillstring in the hole, a 

piston effect causes a surge pressure that adds to the hydrostatic head of the mud. 

Similarly, while pulling the drillstring out of the hole, a suction effect results in a swab 

pressure that results in a temporary reduction of the hydrostatic head of the mud. These 

pressure spikes can result in the ECD going out of the drilling margin, thereby causing 

well control issues. The factors that have a significant effect on the surge and swab 

pressures are tripping velocity, drilling mud properties, BHA length, and annular space 

(Al-Abduljabbar et al., 2018). Therefore, it is important to consider these effects and 

control the drillstring velocity to keep the total ECD within the drilling margin. There 

have been many studies to model these effects, starting from a simple, conservative 

approach by Burkhardt (1961) to model surge pressures caused by pipe movement in a 

mud-filled borehole by considering a clinging factor which is a function of the ratio of 

pipe and hole diameters. Since then, there have been many other models such as the one 

by Mitchell (1988), which considered the effects of two regions: pipe to annulus and pipe 

to bottom hole, on the frictional pressure drop. The pressure drops in the two regions 

were calculated by simultaneously solving mass and momentum balance equations. In the 

study by Srivastav et al. (2012), the authors performed experimental investigations to 

study the effect of drillpipe eccentricity on surge and swab pressures and concluded that 
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eccentricity could result in a significant reduction of surge and swab pressures, of the 

order of 40 percent.  

2.1.3 Torque and drag modeling  

Drag is the axial contact force between the drillstring and the casing or the 

formation, and it acts in the direction opposite to the direction of drillstring motion. 

Torque is the rotational force acting between the drillstring and the casing or the 

formation. These forces are primarily caused by a combination of the side forces and 

frictional forces acting on the drillstring. Side forces are experienced in the drillstring due 

to its weight, tension due to bending (or dog-leg severity), buckling, and the string’s 

stiffness. The friction forces occur due to any motion of the drillstring, axial or rotational. 

Therefore, during rotary drilling, the drillstring experiences rotational friction; during 

tripping or slide drilling, it experiences axial friction, and operations such as reaming or 

back reaming result in a combination of the two friction forces acting on the drillstring.  

As the depth of the well increases, or the quality of the borehole worsens, or some issues 

are encountered downhole, the torque and drag values can increase to the point that 

drilling further can become challenging. Therefore, it is crucial to model and monitor 

these values (Mitchell & Miska, 2011).   

In literature, there are many torque and drag models based on either stiff-string or 

soft-string approximation (Mirhaj et al., 2016). The difference between them being that in 

soft-string models, the bending moments and shearing forces are considered to have a 

negligible contribution to friction. Most of the models, however, are based on the early 

work done by Johancsik et al. (1984) and Sheppard et al. (1987). Since then, the basic 

concept of torque and drag modeling and prediction has not changed much. With the 

advancements in computational technology, finite element modeling, etc. several 
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numerical models have been created, such as by Lesage et al. (1988) and Menand et al. 

(2006). Also, analytical models such as by Mitchell (2007, 2008), Aadnoy et al. (2010), 

and  Mason and Chen (2007) have been widely used. There also have been attempts to 

implement real-time torque and drag models to aid in the decision-making process, such 

as by Brown et al. (2014) and Shahri et al. (2018).  

2.2 DIGITAL TWINNING IN THE WELL CONSTRUCTION DOMAIN  

Well construction is a highly involved multi-step process where each step has 

multiple co-occurring sub-processes and various systems interacting with each other. 

This level of complexity has the potential to lead to operational inefficiencies at best, and 

safety issues at worst. Over the past few decades, much research has been conducted to 

manage this complexity. For instance, process modeling (Cayeux et al., 2014b; Erge et 

al., 2014; Gu et al., 2019) and advanced data analytics (Al-Ghunaim et al., 2017; Coley, 

2019; Gul & van Oort, 2020; Isemin et al., 2019; Okoli et al., 2019; Saini et al., 2018) 

have assisted in the monitoring of well construction operations for improving its 

efficiency and safety. Figure 6 depicts the general idea behind digital twinning for well 

construction operations.  
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Figure 6 Utilizing multiple datasets, process models and advanced analytics techniques to 

make predictions (digital twinning). 

Applications of setting up digital twins can be categorized into the following main 

groups: 

- Non-productive time (NPT) identification and prevention  

- Prognostics for equipment failure and detection  

- Invisible lost time (ILT) evaluation and mitigation  

- Logistics and planning  

- Training and development  

2.2.1 NPT identification (diagnostics) and prevention 

NPT or non-productive time refers to the time lost due to events that cause any 

well construction operation to pause or stop. Incidents such as stuck pipe, loss of well 

control due to kicks or lost circulation events, time spent ‘fishing’ for lost drillstring 
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components downhole, or time lost due to equipment or tool failures can contribute to a 

well’s NPT. NPT identification and prevention is an essential consideration for oil and 

gas companies since NPT accounts for over 30 percent of upstream production costs, and 

thus can significantly affect a project’s profitability (Forshaw et al., 2020). Some current 

and potential applications of digital twinning for NPT diagnostics and prevention include: 

- Mitigation of well control issues (such as kicks and losses) (Isemin et al., 2019; 

Mao & Zhang, 2019; Pournazari et al., 2015)  

- Drilling dysfunction identification and mitigation (Jeong et al., 2020; Zhao et al., 

2019)  

- Wellbore quality degradation identification and mitigation (Hutchinson et al., 

2019; Mayani et al., 2020a; Rommetveit et al., 2019)  

- Hole cleaning and stuck pipe prevention (Forshaw et al., 2020; Hindi et al., 2018)  

Even though the above applications have helped move the industry towards an 

overall improvement in safety and drilling efficiency, there is additional potential for 

improvement using digital twins.  

2.2.2 Prognostics for equipment failure and detection  

Due to the advancements in data-driven modeling and learning techniques, and 

the ability to instantaneously stream big data, models have become more sophisticated 

and can accurately replicate the performance of different drilling equipment. These 

advancements have allowed for performance and condition management of various 

drilling equipment, thereby improving overall operational efficiency. Condition Based 

Maintenance (CBM) or prognostics of an equipment refers to calculating its degradation, 

estimating its remaining useful life, and predicting its failure. CBM allows for optimizing 

equipment usage by operating it within an optimal window, as well as for proactively 
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scheduling maintenance to reduce cost and downtime associated with repairs. Some 

current and potential applications of digital twinning for prognostics, and equipment 

failure detection and prevention are: 

- CBM of subsea Blowout Preventer (BOP) pipe rams (Mutlu et al., 2018) 

- CBM and remaining useful life determination of downhole components such as 

MLWD tools, mud motors, and drill pipes (Carter-Journet et al., 2014; Lines et 

al., 2014; Reckmann et al., 2010; You et al., 2020)  

- CBM of surface equipment such as top drive, mud pumps, drawworks, and pipe 

handling equipment (Johnson & Rao, 2020; Kyllingstad & Nessjøen, 2011; 

Pournazari et al., 2016)  

- CBM for artificial lift systems for the prediction of failures in submersible pumps 

(Guo et al., 2015; Y. Liu et al., 2010)  

- Identifying and optimizing drilling tool performances within their operating 

windows  

2.2.3 ILT evaluation and mitigation  

ILT refers to the inefficiencies and, consequently, time lost when an operation or 

a part of the operation is not performed at its maximum efficiency (Mittal et al., 2020). 

ILT occurs due to either suboptimal operational performance, or non-optimized usage of 

equipment. Suboptimal operational performance can be related to human inefficiencies, 

or inefficient standard operating procedures. Non-optimized usage of equipment could be 

due to either not using the right equipment for the operation, or performance degradation 

of the equipment. As per statistics presented by Damski (2019), NPT and ILT taken 

together are around 40 to 50 percent of the total well construction time. Some current and 

potential applications of ILT evaluation by digital twinning include: 
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- Rig crew performance monitoring and improvement (Contreras et al., 2020; El 

Afifi et al., 2015; Ouahrani et al., 2018)  

- Defining and monitoring key performance indicators (KPIs) for quantifying rig’s 

operational performance for various auxiliary tasks (De Oliveira et al., 2016; 

Lakhanpal & Samuel, 2017; Mittal et al., 2020)  

- Efficiency gains in auxiliary operations, such as for making connections, tripping, 

cementing, and running casing 

To summarize, small amounts of ILT accrued across different activities can add 

up and result in being a significant fraction of the total operational time. Therefore, 

utilizing digital twins constructed for ILT identification and mitigation would result in 

overall increased efficiency.  

2.2.4 Logistics and planning  

Multifaceted oilfield development requires multidisciplinary collaboration. This 

necessitates the definition of overarching field development objectives that encompass 

individual well objectives. Currently, in the industry, many approaches exist for well 

planning and oilfield development, including machine learning (Kumar, 2019), systems 

planning (Brechan et al., 2018; Ciccarelli et al., 2018; McManus et al., 2012), and using 

various risk mitigation strategies (Birnie et al., 2019; Rowatt et al., 2020). Another 

planning method that has recently gained traction is by using digital twins (Brechan & 

Sangesland, 2019; Pivano et al., 2019). Some current and potential applications that 

exploit the repetitive nature of the well construction operations to build digital twins 

include: 
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- Predicting bit degradation and RT downhole drilling fluid properties, and utilizing 

this information for optimizing drilling parameters (Liu et al., 2018; Millan & 

Ringer, 2018; Shirangi et al., 2020) 

- Replication of well construction operations such as drilling, casing, tripping and 

cementing (short- and long-term operational planning) (Hutchinson et al., 2019; 

Nadhan et al., 2018)  

- Prediction of times to end of different operations, for instance, time to drill to a 

well’s planned total depth, or time till the end of the casing and cementing 

operations  

Digital twins built by combining multiple well delivery tasks can be utilized as 

dynamic planning and scheduling tools for the current well or extend to entire drilling 

programs. 

2.2.5 Training and development  

Drilling environments can be unpredictable, potentially hazardous, and may 

require rig crews to make high impact decisions under stress. Therefore, it is of utmost 

importance for the rig personnel to be adequately trained and be situationally aware at all 

times. This requires training them on realistic system replicas, or drilling simulators 

(Hodgson & Hassard, 2006). Since digital twins can replicate equipment and processes, 

an essential application of theirs is in the development of drilling simulators. Some 

applications these simulators for aiding in training and development are: 

- Industrial and academic drilling simulators to replicate surface drilling operations 

(and equipment) and downhole process behavior (Crichton et al., 2017; 

Shirkavand et al., 2010; Chan et al., 2020) 
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- Developing and testing drilling programs and operation manuals (Höhn et al., 

2019; Howell et al., 2019)  

- Testing and improving processes and software to iron out any issues before 

rolling them out to the field (Kelessidis et al., 2015) 

To summarize, the application of digital twinning of processes and equipment has 

resulted in considerable value addition to the oil and gas industry. More value addition, 

however, can still be achieved by applications of digital twinning for drilling 

optimization and advisory, as well as planning and decision-making systems.  

 Table 1 summarizes the many areas within the well construction domain where 

progress has been made. While all of these approaches use models (physics or data-

based), none of them have a framework for scenario analysis, which is an essential 

component of digital twinning (as shown in the example on race strategy planning in 

Chapter 1).  
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Table 1 Summary of the current applications for improving operational efficiency and 

safety and in well construction. 

Application Type Value Addition Potential Applications 

NPT identification 
(diagnostics) and 

prevention 

 

• Real-time process monitoring 

and diagnostics 

• Improved and faster decision 
making 

• Event detection 

• Drilling optimization 

• Mitigating well control issues (e.g., 

kicks and losses)  

• Drilling dysfunction identification and 
mitigation  

• Wellbore quality degradation 

identification and mitigation  

• Hole cleaning and stuck pipe 

prevention  

Prognostics for 

equipment failure 

and detection 

 

• Reduce downtime associated 
with operational failures 

• Early diagnosis of failures 

• Condition-based maintenance 

(CBM) of drilling tools and 

equipment   

• Optimizing drilling tool 

performances within their 
operating windows 

• CBM of subsea Blowout Preventer 
(BOP) pipe rams 

• Estimating the remaining useful life of 

downhole components (MLWD tools, 

mud motors, and drill pipes)  

• CBM of surface equipment such as top 

drive, mud pumps, drawworks, and 
pipe handling equipment  

• CBM of artificial lift systems  

ILT evaluation and 

mitigation 
 

• Improve operational 

efficiency for various 

processes 

• Key performance indicator 
(KPI) monitoring and 

tracking 

• Identification of performance 

gaps in different processes 

• Rig crew performance monitoring and 

improvement  

• Defining KPIs for quantifying rig’s 

operational performance for various 
auxiliary tasks  

 

Logistics and 
planning 

• Forecasting and planning 

• Ability to run what-if 

scenarios on multiple 
processes 

• Delivery of safe, cost-

effective wells  

• Improved well planning and 

more efficient oilfield 
development  

• Predicting bit degradation and RT 

downhole drilling fluid properties for 
optimizing drilling parameters  

• Replication of well construction 

operations such as drilling, casing, 

tripping, and cementing (short- and 
long-term operational planning)  

Training and 

development  
• Training drilling crew on 

specific technology   

• Preparing college students  

• Testing new technology in a 

safe environment 

• Replicating surface drilling operations 

(and equipment) and downhole process 

behavior  

• Developing and testing drilling 

programs and operation manuals  

• Beta-testing software before rolling 
them out to the field  
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2.2.6 Scenario analysis  

An application of digital twins for decision-making across many other industries 

is for performing scenario analysis. The primary goal of scenario development is not only 

to make predictions but understand the different driving factors and how they might 

influence the system behavior. Scenarios deal with steps or different tasks that will result 

in a certain state of the system by considering uncertainties across different variables and 

processes (Minchev & Shalamanov, 2010). The scenarios can be developmental or 

situational. In developmental scenarios, starting from a point in time, a cause-effect 

relationship can be built based on different values taken on by different parameters. 

Situational scenarios, on the other hand, are snapshots of the future states at some given 

point in time, and the goal is to analyze the situation itself rather than the process of 

arriving at that state (NATO, 2007). In other domains, the use of sophisticated decision-

making systems performing scenario analysis has resulted in an overall improvement in 

safety and operational efficiency. Such systems, coupled with digital twins of operations 

or equipment, have been utilized in areas such as manufacturing (Kunath & Winkler, 

2018), autonomous vehicles (Kiran et al., 2020; Schwarting et al., 2018), and smart grid 

management (Kang et al., 2009; Blech et al., 2017). 

There are also numerous applications of scenario analysis in defense planning and 

renewable energy forecasting and planning. For instance, Kamjoo et al. (2016) solve a 

multi-objective optimization problem to optimally design a renewable energy system for 

economics (cost) and reliability (probability of failure) by considering wind turbines, 

solar photovoltaic panels as a part of the power grid, and the associated uncertainties in 

wind speed and solar irradiance. In the field of defense planning, one application of 

scenario analysis is resource planning under a time constraint, and Abbass et al. (2009) 

discuss the underlying methodology by solving a problem to optimize the number and 
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types of required field vehicles by 2025, by generating and solving for different 

scenarios.  

2.3 SEQUENTIAL DECISION-MAKING AND ACTION PLANNING  

Planning is the process of generating an action sequence from an initial system 

state to some goal state to satisfy some high-level objective function. Setting up a 

planning system requires explicitly stating the problem objectives and constraints, 

defining the state- and action-space, and identifying goal states (LaValle, 2006). The 

various state-action transitions can either be fully specified in advance or be 

incrementally discovered (by utilizing models) as the planning proceeds. The solution of 

a planning problem is a policy or a strategy that suggests the sequence of actions for 

every successive decision-making step (called a decision epoch). The following sections 

discuss the necessary components for setting up planning systems and examine the 

different planning algorithms. 

2.3.1 Setting up planning systems  

All planning problems have the following essential components (LaValle, 2006): 

- Objective function, stating the initial and the desired (goal) states, and 

constraints that can influence decision-making; 

- Decision epochs, or the times at which decisions need to be made. Epochs can 

either be explicitly represented as time intervals, or implicitly represent a 

sequence of actions in succession;  

- State-space, to describe all possible situations or scenarios (states) the system can 

be in, at any given decision epoch;  
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- Action-space, to quantify all possible decisions or actions that can be utilized to 

manipulate states;  

- Plan, or strategy which represents the sequence of actions taken at every 

successive decision epoch.   

In effect, planning problems are sequential decision-making problems that can be 

solved by reinforcement learning (RL) techniques. In RL, a goal-directed learning agent 

interacts with an uncertain environment (either physically or virtually) based on specific 

policies or action plans. Every interaction is associated with immediate feedback or 

reward. The goal of this agent is to maximize the long-term reward. To accomplish this, 

the agent needs to exploit what it has already experienced and also try new actions to 

learn from unexplored trajectories (Gelly & Silver, 2011; Silver et al., 2012; Sutton & 

Barto, 2018). Figure 7 shows a schematic of this agent-environment interaction, where 

an action 𝑎𝑡 by the agent in the environment (observed by the agent to be in the state 𝑠𝑡) 

results in an immediate reward 𝑟𝑡 and a new observed state 𝑠𝑡+1. 

 

Figure 7 Agent-environment interaction in RL (modified from Sutton & Barto, 2018). 

Such interactions between a decision-making agent and a fully observable 

environment to achieve some long-term objective can be formalized in a Markov decision 
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process (MDP) framework. A process is said to be Markovian if it follows the Markovian 

property, i.e., any future outcomes depend only on the current system state and the 

immediate action. An MDP is defined by a tuple ({S,A,P,R}) and a policy (π) (Puterman, 

1994). 

𝑆 is the state-space, where 𝑠𝑡 (𝑠𝑡 ∈ 𝑆) represents the state of the system, as 

perceived by the agent, at time 𝑡. A state is defined by a set of parameters to quantify the 

condition of the environment completely (fully observable).  𝐴 is the action-space, where 

𝑎𝑡 (𝑎𝑡 ∈ 𝐴) is an individual action taken by the agent at time 𝑡 to manipulate the system 

in the state 𝑠𝑡. An action is a combination of different control variables that can influence 

the environment. Depending on the process, and the state and action representation, the 

state-space and action-space may be continuous or discrete.  

𝑃 is the transition function representing the state-action transition probabilities. 

𝑃𝑠𝑠′
𝑎  is the probability that a system in state 𝑠, at time 𝑡 transitions to state 𝑠′ at time 𝑡 + 1 

on taking an action 𝑎. These transitions can be learned from actual agent-environment 

interactions or calculated from process models or be derived by a combination of both.  

 𝑃𝑠𝑠′
𝑎 = Pr(𝑆𝑡+1 = 𝑠

′|𝑆𝑡 = 𝑠 , 𝐴𝑡 = 𝑎) (2) 

𝑅 is the reward function to quantify the immediate feedback associated with a 

state-action transition. Reward may depend either only on the final state, or the final state 

and the action. 𝑅𝑠𝑠′
𝑎  is the expected reward when an action 𝑎 transitions the system from 

state 𝑠 at time 𝑡 to 𝑠′ at time 𝑡 + 1. 

 
𝑅𝑠𝑠′
𝑎 =  𝐸(𝑅𝑡+1|𝑆𝑡 = 𝑠 , 𝑆𝑡+1 = 𝑠

′, 𝐴𝑡 = 𝑎) (3) 

The accumulation of rewards over multiple time steps or decision epochs is the 

system’s return. The time horizon for accumulating these rewards may be finite (fixed 

number of steps) or infinite, and may include a discount factor 𝛾(≤1) in the case of 
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infinite time horizon problems. The purpose of discounting later rewards is to vary the 

importance of future feedback in the present total return. 

 𝐺𝑡 = 𝑅𝑡+1 +  𝛾. 𝑅𝑡+2 + 𝛾
2. 𝑅𝑡+3 + 𝛾

3. 𝑅𝑡+4 +⋯ =  ∑𝛾𝑖−1
∞

𝑖=1

. 𝑅𝑡+𝑖 (4) 

 𝐺𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + 𝑅𝑡+3 +⋯𝑅𝑇  =  ∑𝑅𝑡+𝑖

𝑇−𝑡

𝑖=1

 (5) 

The policy 𝜋 is the logic or set of rules used by an agent to select an action from a 

given state, and it may be stochastic or deterministic. 𝜋(𝑎|𝑠) is the probability of 

selecting a specific action 𝑎 given the system is in state 𝑠 (as shown in equation (6)), or 

for a deterministic policy, 𝑎 is the action that is selected for the system is in state 𝑠 (as 

shown in equation (7)). 

 𝜋(𝑎|𝑠) = Pr(𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠) (6) 

 𝜋(𝑠) = 𝑎 (7) 

Associated with a policy is its value function, which can either be state-based 

value function or a state-action pair based value function. State value function 𝑉𝜋 is the 

agent’s expected return from the state 𝑠 when following the policy 𝜋. The state-action 

value function 𝑄𝜋 is the agent’s expected return after taking an action 𝑎 from state 𝑠 and 

subsequently following the policy 𝜋.   

 𝑉𝜋(𝑠) = 𝐸[𝐺𝑡|𝑆𝑡 = 𝑠] = 𝐸[𝑅𝑡+1 + 𝛾. 𝑣(𝑠𝑡+1)|𝑆𝑡 = 𝑠] 
(8) 

 𝑄𝜋(𝑠, 𝑎) = [𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑠]
=  𝐸[𝑅𝑡+1 + 𝛾. 𝑞(𝑠𝑡+1, 𝑎𝑡+1)|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑠] (9) 

The goal of an agent is to find a policy that allows it to maximize its total return. 

There is always at least one optimal policy for an MDP that helps extract the maximum 

return from the system (Feinberg, 2011). Another crucial step in MDP formulation is 

reward shaping, or engineering the reward function to get more frequent feedback on 
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appropriate system behaviors (Wiewiora, 2017). Thus, reward shaping influences the 

total return, thereby affecting the system’s policy.  

2.3.2 Planning algorithms  

Planning algorithms can be compared based on a multitude of factors, such as the 

search-space traversal methodology, requirement of a heuristic, ability to plan in a limited 

amount of time, memory requirement for storing intermediate results, computational 

complexity, etc. (LaValle, 2006). A straightforward approach to solving planning 

problems, however, is the exhaustive tree search, wherein all possible actions from all 

states are evaluated until either a goal state is reached, or the available evaluation time is 

exhausted. Although this method ensures finding an optimal plan, for large systems (with 

large state and action spaces), the associated time complexity renders this method 

impractical. Some other classifications of algorithms based on different search-space 

traversal methodologies are breadth-first search (BFS), depth-first search (DFS), and 

best-first search (BestFS). 

BFS is a first-in, first-out (FIFO) algorithm that searches equally in all directions, 

i.e., all actions from a given state are evaluated first before the evaluation of the next 

state’s actions can begin. The algorithm stops and outputs the shortest path as soon as a 

goal state is reached (LaValle, 2006; Poole & Mackworth, 2017). DFS is a more 

aggressive strategy, wherein, from any state, actions are chosen at random to traverse the 

system, until either a goal state or a dead-end state is reached. If a dead-end state is 

reached, the algorithm backtracks one step, then simulates any action not yet explored, 

i.e., this algorithm works in a last-in, first-out (LIFO) manner. The priority of such 

algorithms is to search deeper than to expand the search-space. A potential issue with this 

method is the search becoming stuck in a repetitive loop (Bennett, 2019; Poole & 
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Mackworth, 2017). Neither the DFS nor the BFS utilizes an evaluation function or a 

heuristic to direct the search, i.e., costs associated with all actions taken from all the 

states are the same. Also, both methods require keeping track of the visited, unvisited, 

and dead-end states. Therefore, these algorithms run into issues when dealing with large 

state- or action-space systems due to high computation-time and memory requirements, 

with BFS more so than DFS due to its more exhaustive nature (LaValle, 2006; 

Mussmann & See, 2017).  

The BFS algorithm can be enhanced by using some form of evaluation functions 

or heuristics or both. Dijkstra’s algorithm utilizes an evaluation function to quantify the 

path traversed to reach a given state after starting from the initial state. It, like the BFS, 

will find an optimal path (if one exists) between the initial and the goal state, but suffers 

from the same computational and memory issues associated with larger systems (Alija, 

2015; Reddy, 2013). If a heuristic is defined to quantify the approximate cost of a state 

relative to its position from the goal state, this results in a greedy BestFS algorithm. The 

next action is chosen greedily based on this heuristic. Although greedy BestFS is usually 

faster than Dijkstra’s algorithm, a drawback of this algorithm is the lack of exploration 

and backtracking, i.e., once an action is selected, it is not re-evaluated based on any new 

information (Bhaumik et al., 2019; LaValle, 2006). This search strategy is therefore not 

guaranteed to find an optimal path. Dijkstra’s algorithm supplemented by the greedy 

BestFS heuristic results in the A* search algorithm (Cui & Shi, 2011; LaValle, 2006). 

A* search is a BFS algorithm for which both an evaluation function and an admissible 

heuristic are defined. A* search will find an optimal path (if one exists) faster than BFS 

or the Dijkstra’s algorithm, but it is memory-intensive since it requires storing all the 

visited states and keeping track of all possible and tried actions from all possible states. 
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Another issue with A* search is the necessity for a well-defined admissible heuristic 

(Klein, 2015).  

Iterative deepening search (IDS) is a variant of the DFS, especially useful in 

systems with high branching factors. For IDS, the DFS algorithm is continually run with 

increasing depth bounds until a goal state or a dead-end state is reached. During each 

iteration, every state encountered in the path is expanded in a BFS manner. IDS is faster 

than the BFS and is guaranteed to find an optimal path if one exists (Li et al., 2014). The 

iterative deepening A* (IDA*) algorithm utilizes the search technique of the IDS in 

conjunction with a heuristic to quantify the cost of any state relative to the goal state. 

IDA* is guaranteed to find the optimal solution if the heuristic is admissible (LaValle, 

2006; Poole & Mackworth, 2017). The main advantage of iterative search algorithms 

(IDA and IDA*) is that they do not require much memory, since only the current path is 

stored. Evolutionary algorithms such as the genetic algorithm evaluate and rank 

multiple action sequences simultaneously using an expert-designed fitness function. The 

quality of the population of these action sequences is successively improved using 

selection, crossover, and mutation operations, until some stopping criterion is met. The 

intrinsic randomness in crossover and mutation steps ensures a balance between 

exploration and exploitation of the search space. These algorithms are the most effective 

if the search space is sufficiently small, or if time is not a constraint for search. 

Additionally, the performance of these algorithms is highly dependent on the design of 

the fitness function, and the crossover and mutation strategies (Korkmaz & Durdu, 2018; 

Sutton & Barto, 2018).  

For systems with a vast state- and action-space, lack of an admissible heuristic or 

minimal dependency on some evaluation function, memory constraints, and limited 

computation time availability, simulation-based search (SBS) methods are the best 
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suited. SBS, a decision-time planning algorithm, is a type of model-based RL method 

suited for online action planning, starting from a given state (Sutton & Barto, 2018). 

Here, a goal-directed agent interacts (virtually) with an uncertain environment (models 

representing the underlying processes) based on specific policies or action plans which 

evolve with time. These policies are designed to balance exploration and exploitation of 

the search space, and every state action transition has an associated reward. These 

algorithms build an ‘asymmetric’ search tree starting from an initial or root node using a 

sequential BestFS strategy, as shown in Figure 8. Multiple episodes of experience 

(starting from the root or the current state, 𝑠𝑡) are simulated until either the goal state or a 

fixed depth bound is reached. After every episode, one or more nodes (representing a 

state-action transition) are added to the tree, and the values of the already present nodes 

are updated. SBS algorithms do not require a heuristic (i.e., they are ‘aheuristic’); 

however, a well-defined heuristic can considerably improve the convergence time. 

Another useful feature of these algorithms is their ‘anytime’ property, i.e., the algorithm 

can be stopped at any time to return the best plan thus far (Silver, 2009).  

 

Figure 8 Asymmetric tree growth using simulation-based search algorithms. An action 𝑎𝑡 
by the agent in the environment (observed by the agent to be in a state 𝑠𝑡) 

results in an immediate reward 𝑟𝑡 and a new observed state 𝑠𝑡+1. 
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Essentially, the anytime, asymmetric, and aheuristic nature of the SBS algorithms 

makes them a preferred candidate for large systems with memory and computational 

constraints, as is the case in well construction.  

2.5 SUMMARY  

The concept of utilizing digital twins for performing scenario analysis or for 

building intelligent action planning systems is still in its infancy in the well construction 

domain. Such systems, however, have actively been utilized in many other industries to 

either outperform the competition (e.g., in race strategy planning) or to help improve 

operational safety and efficiency (e.g., in manufacturing, asset management or energy 

dispatch problems) or to achieve super-human levels of performance (e.g., in complex 

RT strategy or adversarial games). There are, however, numerous avenues for 

development and application of such intelligent decision-making and action planning 

systems in the well construction domain; hole cleaning advisory for stuck pipe prevention 

being one such critical application.  

The rest of the dissertation is dedicated to defining a generalized framework for 

building such intelligent systems for well construction operations, with hole cleaning 

advisory demonstrated as an application.  
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Chapter 3: A Framework for Developing Digital Twinning Systems for 

Real-Time Scenario Analysis  

While there are approaches and tools to monitor the well construction operations, 

there are none that evaluate potential action sequences and scenarios, and select the best 

possible sequence of actions. This chapter outlines a generalized iterative methodology 

for setting up digital twinning systems to address this shortcoming. The goal here is to 

advance state of the art in digital twinning of well construction operations by formulating 

a step by step process for building digital twins, that are also capable of real-time 

scenario analysis. The proposed methodology is then demonstrated by developing an 

integrated multi-model twin to replicate hole cleaning operations for stuck-pipe 

prevention. This twin is also used to simulate multiple future scenarios to quantify the 

effects of different actions on eventual outcomes.  

3.1 DIGITAL TWINNING METHODOLOGY  

The proposed methodology to develop digital twinning systems for any well 

construction operation consists of the following steps: 

1. The first step is to determine the objectives of the system being twinned. For 

instance, the goal of a ‘Real-time (RT) drilling dysfunction mitigation twin’ 

would be to detect signatures of dysfunctions (such as vibrations, bit balling, 

stick-slip), and suggest drilling parameters (such as RPM, WOB, torque, flowrate) 

to optimize the rate of penetration (ROP) while minimizing dysfunctions.  

2. The next step is to set up the twinning system, which is itself a cyclic process and 

requires a compromise between the desired and the practical outputs. This 

compromise depends on the system’s objectives, the available data, and the 
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computation capacity for model implementation. The following three steps are 

iterated over: 

o Based on the twin’s objectives, the metrics or outputs required to quantify 

the state of the system are identified. For the dysfunction mitigation twin, 

parameters such as mechanical specific energy, depth of cut, and stick-slip 

index would be required to quantify the drilling performance and 

dysfunctions.  

o Once these metrics are recognized, the next step is identification and 

implementation of the different models (data- or physics-based or 

combination of both) to calculate them, i.e., building the digital twin. The 

selection of these models depends on the application type and the 

associated temporal and computational constraints. For instance, since 

online action planning applications require balancing accuracy with 

runtime speed, analytical model implementations may be acceptable. On 

the other hand, for offline planning or more detailed post-job analysis, 

where computation time or capacity may not be a constraint, numerical 

models may be used.  

o Subsequently, based on the input requirements of the various models 

(twin), the necessary data streams are identified and aggregated; the data is 

filtered and processed (data wrangling) and integrated with the twin. If the 

available data stream does not support the calculation of a desired output 

component, the required system outputs or the underlying models are 

tweaked accordingly.   

3. The twinning system thus set up is then used for performance tracking and 

scenario analysis. The goal of scenario analysis is to make predictions about 
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future system states, understand the different driving factors, and how they might 

influence the system behavior. 

Figure 9 illustrates the different steps and the cyclical relationships between 

them.  

 

Figure 9 The digital twinning methodology. 

3.2 DEVELOPMENT OF A DIGITAL TWIN FOR HOLE CLEANING ADVISORY  

As discussed in the previous chapters, inadequate or poor hole cleaning can lead 

to a series of costly drilling issues such as stuck pipe, formation damage, reduction in 

drilling speed, difficulty tripping out of the hole, or issues while running casing. 

Therefore, it is of value to digitally twin the hole cleaning system to understand the 

progression of the borehole condition in real-time and track the outcomes of different 

actions. The primary objective of hole cleaning is to remove solids (including cuttings, 

caving, or cement) from the borehole to ensure the safe and efficient performance of the 

various well construction operations. The following sections discuss the creation and 

application of such a twin. 
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3.2.1 Building the digital twin  

Since a well can be many thousands of feet in depth, hole cleaning measures 

directed towards one interval of the well may not necessarily result in effective hole 

cleaning in another interval. Thus, it is essential to quantify and monitor the condition of 

the borehole in real-time for the entire well. These quantifications are based on either 

real-time data, or a combination of real-time data with models such as cuttings transport, 

hydraulics and, torque and drag. 

3.2.1.1 Identification of system outputs   

The purpose of modeling cuttings transport is to understand the process of 

removal of solids from the borehole. The solids in the borehole can be quantified using a 

combination of the cuttings bed height and the concentration of cuttings in the flow. Also, 

not maintaining the ECD within the drilling margin can result in wellbore instability 

issues such as kicks or lost circulation events. Therefore, the following metrics may be 

used to describe the state of the borehole for a hole cleaning system: 

- Height of the cuttings bed at different depths along the wellbore; 

- Concentration of cuttings in suspension along the wellbore; 

- ECD along the length of the wellbore; 

- The average friction factor of the wellbore. 

3.2.1.2 Determining the required models  

The next step is to identify the models required to calculate these metrics. 

Analytical implementations, to balance accuracy and runtime speed, of the following 

models need to be adapted, integrated, and implemented to build the twin: 

- Hydraulics model to calculate the frictional pressure losses and ECD throughout 

the well; 
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- Torque and drag model to evaluate the friction factor of the well, using rotary, 

slack-off and pick-up weights; 

- Cuttings transport model to estimate cuttings bed height and cuttings 

concentration in the flow throughout the well. 

Implementing analytical models is of importance since the ability to run 

thousands of simulations in a few minutes provides the capability to evaluate multiple 

actions and action sequences in near real-time. 

3.2.1.2.1 Hydraulics model 

The implemented hydraulics model was adapted from the narrow slot 

approximation based analytical hydraulics model for Yield power law (YPL) fluids 

discussed by Erge et al. (2015). Some modifications were made to the model to include 

the effects of cuttings bed height and cuttings concentration in the flow on the density of 

the drilling fluid. The effects of temperature on the mud rheology were also included 

based on the work of Karstad and Aadnoy (1997). At this stage of the development, the 

mud was assumed to be incompressible, but compressibility can be added without too 

many challenges to the modeling approach. The model also accounted for the drillstring 

eccentricity by modeling it as a linear function of the inclination.  

ECD calculation at any given hole depth 𝐷𝑀𝐷 and corresponding total vertical 

depth 𝐷𝑇𝑉𝐷  is performed using equations (10), (11) and (12). It is important to note that 

the density of mud in different control volumes may not be the same, since it is a function 

of cuttings concentration, temperature, and pressure.  

 𝐸𝐶𝐷 =  
𝑃ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐_𝐷𝑇𝑉𝐷 + 𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒_𝑙𝑜𝑠𝑠_𝐷𝑀𝐷

𝐷𝑇𝑉𝐷. 𝑔
 (10) 
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𝑃ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐_𝐷𝑇𝑉𝐷 = ∫ 𝜌𝑚𝑢𝑑(𝑧). 𝑔. 𝑑𝑧

𝐷𝑇𝑉𝐷

0

 (11) 

 

 
𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒_𝑙𝑜𝑠𝑠_𝐷𝑀𝐷 =  ∫ 𝑑𝑃

𝐷𝑀𝐷

0

. 𝑑𝑥  (12) 

In these equations, 𝑑𝑧 and 𝑑𝑥 are the changes in a control volume element’s total 

vertical depth and measured depth, respectively, as shown in Figure 10, and g is the 

acceleration due to gravity. 𝑑𝑃 is the frictional pressure drop in a control volume 

element. The eccentricity of the drillstring element in the borehole can be calculated 

using equation (13).  

 𝑒𝑐𝑐 =
2. 𝑑𝑐𝑐
𝐷𝑜 − 𝐷𝑖

 (13) 

 

 

Figure 10 Eccentric placement of the drillstring in a control volume. 

Frictional pressure drop calculations are performed individually for every control 

volume segment using equations (14) and (15).  

 
𝑑𝑃 = ∫2

𝑓𝑓 . 𝜌𝑚𝑢𝑑(𝑥). 𝑣𝑎𝑥𝑖𝑎𝑙
2

𝐷𝑜 − 𝐷𝑖
. 𝑑𝑥 

(14) 

 𝑣𝑎𝑥𝑖𝑎𝑙 =
𝑄

𝐴𝑓𝑙𝑜𝑤
 (15) 
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In these equations, 𝑄 is the flowrate (of drilling mud) and 𝐴𝑓𝑙𝑜𝑤 is the annular 

flow area available to the drilling mud. The annular flow area depends on borehole 

geometry, cuttings bed height, and drillstring eccentricity in the given control volume 

element. Associated with the flow of fluid in drillstring and annulus is the friction factor, 

𝑓𝑓 , and its calculation depends on the fluid flow regime. The flow regime can be either 

laminar or turbulent or transitional between the two. The friction factor also depends on 

mud density and rheology, pipe roughness, the eccentricity of the drillstring, drillstring 

RPM, and axial mud velocity (Bourgoyne, 1986; Mitchell & Miska, 2011). 

The output of this model is a plot of ECD versus measured depth. Figure 11 

demonstrates the effect of relative changes in different input variables (flowrate, cuttings 

bed height, and drillstring RPM, respectively) on ECD values versus measured depth. 

The original mud weight for simulation was 10 pounds per gallon (ppg). As the flowrate 

increases, so does the axial flow velocity, which results in a higher frictional pressure 

drop in the annulus, thus an increased ECD. Similarly, a higher cuttings bed results in 

increased axial flow velocity (due to reduced 𝐴𝑓𝑙𝑜𝑤), which also results in a higher 

frictional pressure drop in the annulus, thereby increasing the ECD. Finally, an increase 

in the drillstring rotation speed also results in an increased annular frictional pressure 

loss.  
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Figure 11 Effects of relative changes in different input variables (flowrate, cuttings bed 

height, and drillstring RPM, respectively) on the ECD along the depth of the 

well. 

The model was also tested and validated against multiple real drilling datasets 

with different wellbore geometries, various BHA designs, and different open hole section 

sizes.  

3.2.1.2.2 Torque and drag model 

For this digital twin, an analytical soft string model was implemented based on 

Aadnoy et al.’s work (Aadnoy et al., 2010; Fazaelizadeh, 2013). The model treats the 
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well as having a 3-D profile, as opposed to being restricted to a plane. Furthermore, the 

well is segmented into straight and curved sections by calculating the dog-leg severity 

(DLS) of the different control volume segments. Dog-leg angle 𝛼 measures the absolute 

change in direction, while DLS measures the rate of change of the dog-leg angle over 100 

feet (or 30 m) intervals. In straight sections of the well, drillstring weight dominates the 

tension, while in the curved sections, tension is the major contributor to the normal 

contact force. As shown in Figure 12(a), the force at the top of a segment (F2) is 

calculated using the equations (16) and (17) for straight sections and curved sections, 

respectively. The calculated force F2 then serves as F1 for the next section above it. Since 

friction acts in the direction opposite to the motion, the positive and negative signs 

indicate hoisting (or pick-up) and lowering (or slack-off) of the drillstring, respectively.   

 

Figure 12 a) Forces acting on a control volume segment, (b) Axial and tangential 

components of drillstring velocity. 

𝐹2 =  𝐹1 + 𝛽.  𝑤𝑢𝑛𝑖𝑡 . ∆𝐿. 𝑐𝑜𝑠𝜃 ±  𝜇. 𝛽.𝑤𝑢𝑛𝑖𝑡 . ∆𝐿. 𝑠𝑖𝑛𝜃. 𝑠𝑖𝑛𝜑 
(16) 

𝐹2 =  𝐹1 +  𝐹1.(𝑒
±𝜇.|𝛼2 − 𝛼1| − 1). 𝑠𝑖𝑛𝜑 +  𝛽.𝑤𝑢𝑛𝑖𝑡 . ∆𝐿. (

𝑠𝑖𝑛𝜃2 −  𝑠𝑖𝑛𝜃1
𝜃2 −  𝜃1

) (17) 

In these equations, β is the buoyancy factor and is calculated using equation (18). 

It accounts for the reduction in the effective weight of a drillstring element due to its 

immersion in the drilling mud. As shown in Figure 12(b), φ is the angle between the 

resultant and the tangential drillstring velocities and is calculated using equation (19). 
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Axial drillstring velocity is the speed at the drillpipe is hoisted or lowered, and tangential 

velocity is a function of the drillstring RPM. 

 
𝛽 = 1 − 

𝜌𝑚𝑢𝑑
𝜌𝑠𝑡𝑒𝑒𝑙

 
(18) 

 𝜑 =  𝑡𝑎𝑛−1 (
𝑣𝑎𝑥𝑖𝑎𝑙_𝑑𝑟𝑖𝑙𝑙𝑠𝑡𝑟𝑖𝑛𝑔
𝑣𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙

) (19) 

Similarly, equations (20) and (21) are used for calculating the torque for the 

straight and curved sections, respectively. In these equations 𝑟𝑒𝑙𝑒𝑚𝑒𝑛𝑡 is the radius of the 

drillstring element.  

 𝜏 =  𝜇. 𝑟𝑒𝑙𝑒𝑚𝑒𝑛𝑡 . 𝛽. 𝑤𝑢𝑛𝑖𝑡 . ∆𝐿. 𝑠𝑖𝑛𝜃. 𝑐𝑜𝑠𝜑 (20) 

 𝜏 =  𝜇. 𝑟𝑒𝑙𝑒𝑚𝑒𝑛𝑡 . 𝐹1|𝛼2 − 𝛼1|. 𝑐𝑜𝑠𝜑 (21) 

The output of this model is a broomstick chart with individual lines representing 

pick-up and slack-off weights for the various friction factors, as demonstrated on one 

dataset in Figure 13. For the given well profile with a 6.75-inch diameter production 

section, the friction factor (as indicated by the blue dots) is around 0.25. The model was 

also tested and validated against real drilling data for multiple wells, for 8.5-inch and 

6.75-inch open hole sections, with different BHA designs and casing setting points.   
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Figure 13 Torque and drag model implementation. 

3.2.1.2.3 Cuttings transport model  

A quasi-transient analytical cuttings transport model was derived and 

implemented based on a combination of concepts from the cuttings transport work by 

Larsen et al. (1990; 1997), Jalukar (1993), Bassal (1995), Duan and Miska (2009), 

Rubiandini (1999), and Naganawa et al. (2006), along with further modifications to 

account for mass conservation and physics of fluid flow. The model operates in near real-

time and tracks the evolution of the wellbore over time. In every 5-minute (or 10-minute) 

interval, RT data is collected, and the well is segmented into appropriate control volumes 
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based on the most recent information about well trajectory and profile. For every control 

volume segment, the critical transport fluid velocity (CTFV) and the axial fluid flow 

velocity are calculated, compared, and subsequently used for further state calculations. 

CTFV is the minimum fluid velocity required to prevent a cuttings bed from developing. 

CTFV is influenced by factors such as cuttings size and weight, wellbore inclination and 

geometry, mud density and rheology, and drillstring RPM.  The following metrics are 

generated as the output of the model to quantify the state of the system: 

- Height of the cuttings bed versus the hole depth for sections with inclination 

angles greater than 30 degrees;  

- Concentration of cuttings in the flow versus hole depth for the entire well;  

- Total concentration of cuttings in the annulus versus hole depth for the entire 

well.  

Calculation of these metrics depends on factors such as differences in CTFV and 

axial flow velocity, the control volume geometry, mud rheology, and the volume of 

cuttings in suspension. Furthermore, the analytical methods to calculate CTFV are 

functions of the average inclination angle for a control volume segment, i.e., if the 

average inclination of a segment is 85 degrees (lateral), it would be evaluated differently 

as compared to a segment with average inclination 25 degrees (near vertical). CTFV for 

vertical (inclination < 30 degrees) and near-lateral sections (inclination > 60 degrees) is 

calculated using equations (22) and (23), respectively. To ensure a smooth transition in 

the inclinations between 30 and 60 degrees, the CTFV is calculated using a linear 

weighted combination of the two equations.  

𝑣𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =  𝑣𝑐𝑢𝑡𝑡 +  𝑣𝑠𝑙𝑖𝑝. 𝐶𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙  (22) 

𝑣𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =  𝑣𝑐𝑢𝑡𝑡 +  𝑣𝑠𝑙𝑖𝑝 . 𝐶𝑟𝑝𝑚 . 𝐶𝑎𝑛𝑔. 𝐶𝑠𝑖𝑧𝑒. 𝐶𝑀𝑊 . 𝐶𝑔𝑒𝑜_𝑑 . 𝐶𝑔𝑒𝑜_𝑝𝑣 . 𝐶𝑔𝑒𝑜_𝑖𝑛𝑐  (23) 
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In equations (22) and (23), 𝑣𝑐𝑢𝑡𝑡  or the velocity of the cuttings particles is derived 

based on mass balance, and can be estimated using equation (24). Mass of cuttings 

generated by drilling at a rate 𝑅𝑂𝑃 should be equal to the mass of cuttings flowing in the 

available annular space, given no cuttings deposit to form a bed. 𝑐𝑐𝑢𝑡𝑡, the concentration 

of cuttings in the annulus, is a function of the ROP and has been derived experimentally 

by Larsen (1990). 𝐶𝑟𝑝𝑚 , 𝐶𝑎𝑛𝑔, 𝐶𝑠𝑖𝑧𝑒, 𝐶𝑀𝑊, 𝐶𝑔𝑒𝑜_𝑑, 𝐶𝑔𝑒𝑜_𝑝𝑣 and 𝐶𝑔𝑒𝑜_𝑖𝑛𝑐  are the correction 

factors derived based on the calculations of Larsen et al. (1990; 1997), Jalukar (1993), 

and Bassal (1995). 𝐶𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙  is the correction factor for vertical borehole sections based 

on the work by Rubiandini (1999).  

𝑣𝑐𝑢𝑡𝑡 =  
𝐴𝑏𝑖𝑡 . 𝑅𝑂𝑃

𝐴𝑓𝑙𝑜𝑤 . 𝑐𝑐𝑢𝑡𝑡
 (24) 

Since the model also has a quasi-transient or time-based component to it, the 

underlying algorithm can be summarized as follows (and supported by the schematic in 

Figure 14):  

- The well is segmented into 𝑁 control volumes based on the most recent trajectory 

information (obtained from the survey data) and any wellbore geometry changes.  

- For a given evaluation time interval 𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛  (5 or 10-minute), the total volume 

of cuttings generated while drilling, starting at segment 𝑁, is calculated using 

equation (25). 𝐴𝑏𝑖𝑡 is the surface area of the drill bit, and the factor 
12

3600
 is used 

for calculating the volume in cubic inches. 

𝑣𝑜𝑙𝑐𝑢𝑡𝑡𝑖𝑛𝑔𝑠 =
12

3600
𝑅𝑂𝑃.𝐴𝑏𝑖𝑡 . 𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 (25) 

- The maximum distance traversed (up-hole) by these newly generated cuttings is 

calculated (and the segment up to which they can travel is labeled as 𝑀). This 
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calculation requires estimating the velocity of the cuttings through each segment, 

and then calculating the time taken to cross that segment.   

- The well is then solved by dividing it into two parts: one form surface to segment 

𝑀, and the other from segment 𝑀 + 1 to 𝑁. 

 

Figure 14 Schematic for the control volumes underlying the cuttings transport model 

algorithm. 

- The calculations for segments 𝑀 + 1 to 𝑁 proceed as follows (supported by 

Figure 15): 

o For every segment, the CTFV and the fluid flow velocity are calculated.  

o Traversal of cuttings up-hole is modeled in a segment-by-segment manner, 

starting from the bottom segment 𝑁. In every segment along the way, the 

volume of cuttings not yet deposited is used in combination with the 

CTFV and the fluid flow velocity to calculate deposition and re-

suspension of cuttings.  
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o Thus, cuttings bed height, concentration of cuttings in the flow, and 

concentration of cuttings in the annulus are re-calculated for every 

segment.  

 

Figure 15 Algorithm for cuttings traversal from segments N to M+1. 

- For control volume segments from 𝑀 to the surface, the method for solution can 

be summarized as follows (Figure 16): 

o For every segment, the CTFV and the fluid flow velocity are calculated.  

o These velocities, the volume of undeposited cuttings already in suspension 

(calculated from the previous iteration), and the volume of cuttings in 

concentration are then used to solve for deposition and re-suspension of 

cuttings. 
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o The maximum distance which cuttings re-suspended from for some 

segment 𝑢 (as shown in Figure 14) can traverse up-hole in the evaluation 

interval (5- or 10-minute) is then is estimated (and labeled as segment 𝑣).  

o Finally, looping from the surface to segment 𝑀, cuttings starting from 

every individual segment 𝑢, are traversed up-hole (to at most its 

corresponding segment 𝑣), and in every segment deposition and re-

suspension calculations are performed. 

o Thus, cuttings bed height, concentration of cuttings in the flow, and 

concentration of cuttings in the annulus are re-calculated. Also, the 

volume of undeposited cuttings in the segment is then used for subsequent 

iterations. 

 

Figure 16 Algorithm for cuttings traversal from segment M to the surface. 
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The model runs in near real-time. For every 5- or 10-minute interval (which is the 

evaluation time interval), it accumulates the data, performs calculations, and returns an 

estimate of the state of the system versus the hole depth.  

The model was tested and validated by comparing the simulation results against 

the data available from the extensive experimental work performed at the University of 

Tulsa by Larsen (1990), Jalukar (1993), and Bassal (1995). The test data comprised 

measured cuttings bed heights from multiple experiments performed by varying the well 

geometry (by changing the inner pipe diameter and the flow loop inclinations), mud 

rheology and density, cutting injection velocity (to simulate different ROP values), 

flowrates, drill pipe rotation speeds and cuttings properties (diameters and densities). The 

difference between the simulations with the developed cuttings transport model and the 

experimental results averaged around 5 percent and remained within +/- 10 percent for all 

the cases. A possible cause of this discrepancy in the results could be the analytical nature 

of the underlying models, which were originally derived by performing regression 

analysis on the data. 

3.2.1.2.4 Rig state detection engine  

Rig states are mutually exclusive operational states that are used to classify the 

operations being performed on the rig site. This classification is based on the data 

collected from the surface and (or) downhole sensors. For this research, a rule-based rig 

state detection engine was implemented to classify the following rig states in real-time 

based on the surface sensor data: 

- Rotary drilling  

- Slide drilling  

- Making or breaking a connection 
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- Tripping the drillstring in or out of the borehole 

- Circulation while on or off the bottom (of the borehole) 

- Reaming (simultaneous rotation and axial movement of the drillstring) in 

or out of the borehole 

- Survey identification 

Assigning rig states to the different data points allows for a more accurate 

understanding and interpretation of the drilling process.   

3.2.2.3 Identification of the data  

The next step is the identification and aggregation of the required data streams to 

implement the above models. This data can be grouped into the following categories: 

- Information about the well profile, obtained from pre-drill well plans and near 

real-time directional survey data;    

- Details about the BHA such as geometry and unit weights of the individual 

components, obtained from pre-drill well plans; 

- Casing information such as geometry and casing setting depths for different 

casing strings and liners, obtained from well’s operational data and pre-drill well 

plans; 

- Real-time drilling data collected from surface and downhole sensors, such as 

drillstring RPM, surface torque, drilling ROP, flowrate, hookload, tripping 

velocity, mud rheology, downhole near-bit sensor data, and downhole pressure 

data. 



 58 

3.2.3 The developed digital twin  

Figure 17 summarizes the structure of the proposed digital twin for the hole 

cleaning system. Initially, well profile and well geometry information are utilized for 

segmenting the well into smaller discrete control volumes. These segments represent any 

changes in well dimensions (changes in inner or outer diameter) or different survey 

intervals. Solving each control volume with time and depth outputs an estimate of the 

state of the system (hole condition quantification metrics for the well). The actual state of 

the system is determined by utilizing downhole tools such as, pressure while drilling 

(PWD) tool for calculating ECD, and near-bit MLWD tools for estimating friction factor. 

The differences between the actual and the predicted state values can then be used to 

update the system models.  

 

Figure 17 Structure of the proposed digital twin for the hole cleaning system. 

3.3 APPLICATION OF THE DIGITAL TWIN FOR PERFORMANCE TRACKING AND 

SCENARIO ANALYSIS   

The methodology was applied on a set of wells to develop a variant of the 

proposed hole cleaning digital twin, as shown in Figure 18. The data stream did not 
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include tripping information such as tripping rig states or tripping velocities; therefore, 

the twin’s desired output was adjusted not to incorporate the friction factor (indicative of 

the cyclical nature of the methodology). Also, since the available data streams did not 

include downhole tool data (no PWD or near-bit MLWD data), no immediate feedback 

about the actual system state was possible. This resulted in a digital twin with only the 

cuttings bed height, ECD, and cuttings concentration in the flow as the outputs. The 

developed twin was used as a tool for performance tracking by continuously evaluating 

the state of the wellbore. This twin also offers the capability to perform scenario analysis 

and action planning. 

 

Figure 18 The developed variant of the digital twin for the hole cleaning system. 

3.3.1 Performance tracking  

The digital twin was deployed to replicate the hole cleaning performance of 

multiple wells. For one well, Figure 19 represents the state of the borehole after tracking 

its evolution from the surface in 10-minute intervals. In this case, the well has been 

drilled to a hole depth of 10,000 feet. In the prior 10-minute interval, the system was slide 
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drilling at an ROP of 93 feet per hour, with an average surface rotational speed of 14 

RPM (slide drilling mode), and a flowrate of 598 gallons per minute (GPM). Properties 

of the drilling mud for this system are stated in the figure. For this system, the table (inset 

Figure 19) shows some of the required initializations regarding cuttings properties, 

thermal properties, and thermal gradients. The state of the well defined by the plots of 

ECD, cuttings concentration in the flow, and cuttings bed height versus hole depth are 

displayed in the figure. In the horizontal section at depths greater than 7500 feet, there 

exist cuttings bed approximately 3 to 4 inches high (in a 7.875-inch open hole). The ECD 

at 10,000 feet is around 13.1 ppg for drilling mud with a surface density of 12.5 ppg. The 

cuttings concentration in the flow for most of the well is under 5 percent. A relatively 

high cuttings concentration near the bit is due to the recently drilled cuttings that have not 

yet been deposited.  
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Figure 19 State of the system at 10000 feet hole depth after tracking its evolution from 

the surface. 

3.3.2 Scenario analysis  

The system from its current state (Figure 19) was used to simulate multiple 

scenarios or actions (a combination of changes in action variables such a flowrate, RPM, 

and ROP) to evaluate the outcomes of each. Figure 20 describes the different actions and 

their predicted consequences on the hole cleaning system state. For the system at 10,000 

feet, its state is represented by cuttings concentration, cuttings bed height, and ECD. 

Then, five different actions over the next 10-minute interval were simulated using the 
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digital twin. As expected, different actions lead to different future system states, some 

more desirable than the others. Some actions lead to minimal improvement in hole 

condition; actions 1 and 2 result in only a slight reduction in the cutting bed height and 

the ECD. Some actions (such as actions 3 and 4) lead to improved hole condition by 

reducing the bed height, while minimally affecting the ECD. On the other hand, more 

aggressive actions (such as action 5) result in a significantly reduced bed height, but 

simultaneously result in a high ECD value. Although such actions assist with cuttings 

removal, an increase in the ECD to the fracture gradient can result in wellbore instability 

issues. 

 

Figure 20 Scenario analysis for predictive action planning. 
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This concept of a single-step scenario analysis can easily be expanded to multi-

step analysis, as shown in Figure 21. This digital twin, therefore, can be used to evaluate 

multiple action sequences over several time steps (evaluation intervals) to find the 

optimal way of traversing through the system, i.e., coming up with an optimal plan 

(action planning). Such short- and long-term scenario analysis is only possible with a 

predictive model and is a prime requirement for any twin. 

 

Figure 21 Simulating multiple action sequences. 

3.4 SUMMARY  

There are many models available in the drilling literature to address drilling 

efficiency and safety issues; however, to the best of our knowledge, none of provide a 

framework for analyzing scenarios or action planning. In this chapter, a robust cyclic 

methodology to build and use twinning systems for single-step scenario analysis was 

detailed. This methodology addresses the following aspects of digital twinning in the well 

construction domain: 
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- The cyclic process of development of the digital twin ensures that the final built 

twin is a compromise between the application type, the available data, and the 

memory and computational constraints.  

- The integrated multi-model nature of the twin results in more realistic constraints 

around the permitted action values; for instance, as shown for the hole cleaning 

system, an aggressive increase in the flowrate would result in faster cuttings 

removal, but lead to increased ECD, which could be detrimental to the wellbore 

quality.  

- Scenario design and selection is highly dependent on the twin and the available 

computation time. Thus, domain-knowledge can be employed to intelligently 

structure scenarios and build action sequences.   

Due to their short- and long-term decision-making capability, digital twins serve 

as baselines for developing intelligent decision-making systems, which is discussed in the 

following chapters.   
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Chapter 4: Structuring Finite Horizon Sequential Decision-Making 

Systems  

This chapter details the steps in structuring unbiased purpose-built sequential 

decision-making systems for well construction operations. Setting up such systems 

entails representing the operation as a Markov decision process (MDP). This requires 

explicitly defining states and action values, defining goal states, building a digital twin to 

model the process, and appropriately shaping reward functions to measure feedback. The 

digital twin, in conjunction with the reward function, is utilized for simulating and 

quantifying the different action sequences. A finite-horizon sequential decision-making 

system, with discrete state- and action-space, is then set up for hole cleaning advisory 

during well construction. A non-sparse normalized reward structure is formulated as a 

function of the state and action values. Hydraulics, cuttings transport, and rig-state 

detection models are integrated to build the hole cleaning digital twin, the development 

which is detailed in Chapter 3. This system is then used for performance-tracking and 

scenario simulations (with each scenario defined as a finite-horizon action sequence) on 

real-world oil wells. The different scenarios are compared by monitoring state-action 

transitions and the evolution of the reward with actions. The predicted output of the 

algorithm for the multiple operational scenarios is validated by comparing it with actions 

that a hole cleaning/ extended reach drilling (ERD) expert would have taken when given 

similar scenarios.  

4.1 SETTING WELL CONSTRUCTION SUB-PROCESSES AS MDPS  

Well construction is a multi-step process that requires planning and decision-

making at every step of its various sub-processes. Planning necessitates identifying 

objectives, constraints, and required data associated with the individual sub-processes. A 
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crucial step in developing such planning systems is setting them up properly, which 

requires the following elements: 

- Formulating an MDP for the operation, which includes appropriately defining 

state-and action-space   

- Defining a goal or a desired state  

- Efficient shaping of the reward function 

- Setting up an integrated-multi model system replicating the process 

(environment), i.e., building its digital twin 

4.1.1 MDP formulation  

Formulating an MDP for any process requires the following (Puterman, 1994): 

- The process should satisfy the Markovian property 

- Any state defined for the process should be fully observable 

- State-space should be finite or countably infinite, with states defined by 

exhaustively incorporating all relevant parameters   

- There is an explicit definition of the action-space with appropriately identified 

control variables  

For most well construction processes, the condition (state) of the wellbore at any 

time is a culmination of all the previous operations (actions), past conditions (past states), 

and state transitions. In other words, the current state is a representation of the well’s 

operational past, and any subsequent transition depends only on this state and the 

immediate action. The assumption that well construction operations follow the 

Markovian property is, therefore, valid. The state of the system needs to be represented 

by all relevant parameters required to describe the process under consideration fully. The 

state is also continually refined based on the data received from the surface or downhole 
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sensors (at frequencies 1 Hz or higher). This results in the state being a complete 

representation of the environment as perceived by the agent, i.e., the state is assumed to 

be fully observable. The operations or variables that can be actively controlled to bring 

about state transitions constitute the action.  

The state-and action-spaces could be either discrete or continuous; however, for 

the work presented here, both are defined as discrete sets. Figure 22 illustrates the 

proposed method for discretizing the state-space based on wellbore inclinations A 

directional well can be analyzed by dividing it into three distinct sections based on the 

inclination angles: near-vertical section, build or curve section, and horizontal section. 

The segment of the well with inclination angles between 0 and 30 degrees is the near-

vertical section, while regions of the well with inclination angles greater than 60 degrees 

constitute the near-lateral horizontal section. The intermediate inclination angle segments 

comprise the build or the curve section of a well. This method for discretizing the state-

space is proposed since the state variables’ response to different actions depends to a high 

degree on the inclination of the well segment. As discussed in Chapter 2, wellbore 

inclination significantly influences the cuttings transport mechanisms, which are different 

for near-vertical, intermediate, and lateral sections. Consequently, this affects the hole 

cleaning requirements.  
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Figure 22 The proposed strategy for defining discrete state-space based on wellbore 

inclination angles. 

Equation (26) represents the state vector, where ‘𝑝1’ through ‘𝑝𝑛’ are the 

exhaustive set of parameters required to define the system state completely. The state of 

the system here consists of some functional value of these parameters over the 

appropriate inclination intervals {[0, 30), [30,45), [45, 60), [60, 75), [75+)}. Another 

point to note is that these inclination interval definitions can be adjusted depending on the 

requirements of the underlying process.  

 

𝑠𝑡 =

{
 
 
 
 

 
 
 
 

 

𝑝1_0−30
𝑝1_30−45
𝑝1_45−60
𝑝1_60−75
𝑝1_75+
.

𝑝𝑛_0−30
.

𝑝𝑛_75+

 

}
 
 
 
 

 
 
 
 

 
(26) 

 



 69 

Similarly, the action-space is constructed by different combinations of possible 

values of the identified control variables. For drilling operations, some such control 

variables are the surface drillstring rotation speed (RPM), weight on bit (WOB), drilling 

mud properties, flowrate, and drillstring tripping speeds. These variables can take on 

discrete values between specified minimum and maximum thresholds. These thresholds 

are dictated by safety constraints, process and equipment limitations, and operational 

economics.  

4.1.2 Goal state  

The goal or desired state, as the name suggests, refers to the subset of the state-

space which the drilling agent aims to achieve. The goal state is used as the reference to 

direct the agent’s search. The desired functional values of individual goal state 

components are used for the construction of the overall goal state, as shown in equation 

(27).  

 

𝑠𝑔𝑜𝑎𝑙 =

{
 
 
 
 
 

 
 
 
 
 

 

𝑝𝑔
1_0−30

𝑝𝑔
1_30−45

𝑝𝑔
1_45−60

𝑝𝑔
1_60−75

𝑝𝑔
1_75+
.

𝑝𝑔
𝑛_0−30
.

𝑝𝑔
𝑛_75+

 

}
 
 
 
 
 

 
 
 
 
 

 
(27) 

 

4.1.3 Reward shaping  

Shaping the reward function allows for rewarding or penalizing a drilling agent’s 

behavior more frequently, instead of at sparse intervals or at the end of an episode. 

Frequent rewards, in turn, help with more directed and faster learning. A possible strategy 
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for reward shaping is to provide the agent with regular feedback based on its position 

relative to the goal state. Another factor to consider is the contribution to the reward of 

the relative changes in different action control variables. For instance, if a state transition 

from 𝑠 to 𝑠’ can be achieved by two completely different actions 𝑎 and 𝑎′, the reward 

function needs to be able to recognize and quantify this difference. This is especially 

important, for instance, in cases where the agent suggests changing drilling RPM and 

flowrate with an alternative action being a change to mud rheological parameters (which 

may be economically and temporally more expensive).  

4.1.4 Digital twin of the environment  

For action planning, a comprehensive model or digital twin of the process needs 

to be constructed. This twin is then used for replicating the environment, thereby 

simulating multiple episodes or trajectories of experience (Jones et al., 2020; Kunath & 

Winkler, 2018; Saini et al., 2020). Model-free RL techniques can then be applied to these 

episodes to improve the return value and, subsequently, to determine an optimal policy. 

Figure 23 details these steps.   

 

Figure 23 Application of MDP and digital twins for simulating episodes to determine the 

optimal policy. 



 71 

4.2 SETTING UP THE HOLE CLEANING DECISION-MAKING SYSTEM  

Here, we demonstrate step-by-step how to set up a decision-making and planning 

system for the hole cleaning operation.   

4.2.1 Formulating the MDP for the hole cleaning system  

The objective of hole cleaning operations is to manage: 

- Height of the cuttings bed (that settles on the low-side of the borehole) to low 

enough values to prevent issues during any subsequent  stage of well construction 

(Figure 24) 

 

Figure 24 Segmentation of the well into different control volumes and cuttings transport 

mechanisms in different sections of the well. 

- Downhole ECD values to remain within a given drilling margin (Figure 25) 
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Figure 25  Drilling safety margin. 

4.2.1.1 State-space  

For building such hole cleaning systems, the following parameters are required to 

quantify the condition of the borehole from the perspective of hole cleaning (Baldino et 

al., 2015; Eric Cayeux et al., 2014b): 

- Height of the cuttings bed in the curve and the lateral sections of the wellbore; 

- ECD along the entire length of the wellbore. 

The well can be treated as a series of interconnected control volumes, segmented 

based on any changes in well dimensions (e.g., changes in inner or outer diameters) or 

based on different survey intervals (as shown in Figure 24). Each control volume’s 

condition can be independently represented by absolute values of ECD and cuttings bed 

height. However, with the well being segmented into multiple inclination intervals (based 

on the strategy discussed in Figure 22), every inclination interval usually consists of 

many such control volumes. A functional value derived from the absolute value is 
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calculated for each of these parameters in every control volume. These values are then 

averaged over the different inclination segments to obtain a single value per inclination 

interval for every parameter. Converting to a functional value normalizes the absolute 

value to specific operational thresholds, and assists in reward shaping, as discussed in 

later sections.  

4.2.1.1.1 Cuttings bed height  

The absolute value of the cuttings bed height for every control volume is 

normalized to its outer diameter (Figure 26). These values are then used to calculate the 

average normalized cuttings bed height 𝐻 for every inclination segment of the well, as 

shown by equation (28).  

 

Figure 26 Absolute cuttings bed height for a single control volume element. 

 
𝐻𝑘
𝑛𝑜𝑟𝑚 =

𝐻𝑘
𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒

𝐷𝑜_𝑘
    ,  𝐻 = 

∑ 𝐻𝑘
𝑛𝑜𝑟𝑚𝑁𝑠𝑒𝑔

𝑘=1

𝑁𝑠𝑒𝑔
 

(28) 

The functional value 𝐻𝑖𝑛𝑐. is then derived from 𝐻 using equation (29), as 

visualized in Figure 27. 
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𝐻𝑖𝑛𝑐. =   

{
 
 

 
 
0                    𝑯 ≤ 0.20        
1              0.20 <  𝑯 ≤ 0.40
2              0.40 <  𝑯 ≤ 0.60
3              0.60 <  𝑯 ≤ 0.80
4                  𝑯 > 0.80          

 (29) 

 

 

Figure 27 Functional value assignment for the cuttings bed height parameter. 

The parameter 𝐻𝑖𝑛𝑐. is evaluated for all non-vertical sections because no cuttings 

bed will form in the [0, 30) degree inclination interval. Thus, the bed height components 

of the state vector are {𝐻30−45, 𝐻45−60, 𝐻60−75, 𝐻75+}. 

4.2.1.1.2 ECD 

As previously discussed, ECD needs to be managed within the drilling margin. 

There is, however, some degree of uncertainty associated with its limits, which is 

accounted for by considering an uncertainty factor 𝐷𝐹(≤ 0.25). 𝐸𝐶𝐷𝑎𝑣𝑔, the average 

ECD for an inclination interval, is calculated by averaging absolute ECD values over all 

the control volume segments in that interval (equation (30)).  Since the SL and FG values 

vary with depth, 𝐸𝐶𝐷𝑎𝑣𝑔 is calculated independently for the different intervals.   

 𝐸𝐶𝐷𝑎𝑣𝑔 = 
∑ 𝐸𝐶𝐷𝑘

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑁𝑠𝑒𝑔

𝑘=1

𝑁𝑠𝑒𝑔
 (30) 

Using 𝐸𝐶𝐷𝑎𝑣𝑔, the functional value of ECD, 𝐸𝐶𝐷𝑖𝑛𝑐. is calculated using equation 

(31), and is discussed in Figure 28. 
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Figure 28 Functional value assignment for the ECD parameter. 

𝐸𝐶𝐷𝑖𝑛𝑐. =

{
  
 

  
 
−3                                𝑬𝑪𝑫𝒂𝒗 ≤ 𝑆𝐿 − 𝐷𝐹 ∙ ∆𝑤                             
−2                          𝑆𝐿 − 𝐷𝐹 ∙ ∆𝑤 < 𝑬𝑪𝑫𝑎𝑣 ≤ 𝑆𝐿                        
−1                         𝑆𝐿 <  𝑬𝑪𝑫𝒂𝒗 ≤ 𝑆𝐿 +  𝐷𝐹 ∙ ∆𝑤                      
 0                   𝑆𝐿 +  𝐷𝐹 ∙ ∆𝑤 < 𝑬𝑪𝑫𝒂𝒗 ≤ 𝑆𝐿 +  2 ∙ 𝐷𝐹 ∙ ∆𝑤   
1               𝑆𝐿 + 2 ∙  𝐷𝐹 ∙ ∆𝑤 < 𝑬𝑪𝑫𝒂𝒗 ≤ 𝐹𝐺 −  2 ∙ 𝐷𝐹 ∙ ∆𝑤
2                           𝐹𝐺 −  2 ∙ 𝐷𝐹 ∙ ∆𝑤 < 𝑬𝑪𝑫𝒂𝒗 ≤ 𝐹𝐺               
3                                                  𝑬𝑪𝑫𝒂𝒗 >  𝐹𝐺                                

 

                         𝑤ℎ𝑒𝑟𝑒           ∆𝑤 = 𝐹𝐺 − 𝑆𝐿 

(31) 

Since keeping ECD within the drilling margin is essential throughout the well, the 

state components related to the ECD parameter, {𝐸𝐶𝐷0−30, 𝐸𝐶𝐷30−45, 𝐸𝐶𝐷45−60,  

𝐸𝐶𝐷60−75, 𝐸𝐶𝐷75+} are calculated for all intervals. 

Equation (32) represents the complete hole cleaning state of the wellbore. In this 

form, every component of the state vector is represented by its functional value at every 

decision epoch.  
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𝑠 =  

{
 
 
 
 

 
 
 
 
𝐻30−45
𝐻45−60
𝐻60−75
𝐻75+

𝐸𝐶𝐷0−30
𝐸𝐶𝐷30−45
𝐸𝐶𝐷45−60
𝐸𝐶𝐷60−75
𝐸𝐶𝐷75+

 

}
 
 
 
 

 
 
 
 

 (32) 

This representation of state is Markovian, since it fully represents the condition of 

the hole cleaning system and encompasses all the information about the system’s history. 

Any subsequent state transition depends only on the state and the action taken. 

4.2.1.2 Goal state  

The goal for any decision-making system is to first search the state- and action-

space and then move towards the desired state. The functional values for all state variable 

components are defined such that 0 represents the desired state for each; therefore, the 

target goal state for the system is as shown in equation (33). 

𝑠𝑔𝑜𝑎𝑙 =

{
 
 
 
 

 
 
 
 

 

  0  
  0  
  0  
  0  
  0  
  0  
  0  
  0  
  0  

 

}
 
 
 
 

 
 
 
 

 (33) 

4.2.1.3 Action-space  

Hole cleaning, while managing the ECD within the drilling margin, is a function 

of (see, e.g., Erge et al., 2015; Gul et al., 2020; Saasen & Løklingholm, 2002): 

- Drilling mud properties (particularly density and viscosity);  

- Cuttings properties (size and density); 
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- Drilling parameters such as drilling RPM and flowrate; 

- Drillstring geometry and its eccentricity in the borehole;  

- Rate of cuttings generation (which depends on the drilling rate); 

- Borehole geometry (diameters of the open or cased hole sections along the well) 

and inclination angle;  

- Hole cleaning pills or sweeps, i.e., limited volumes of fluid with altered density 

and/or viscosity to aid in cuttings evacuation from the hole (mostly effective in 

vertical hole rather than deviated hole).  

Some of these control variables affect the condition of the borehole to a greater 

extent than others. Also, some variables can be controlled more readily than others. 

Figure 29 illustrates a chart comparing the different control variables, plotted for their 

relative influence on hole cleaning against their ability to be actively controlled in real-

time.  
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Figure 29 Variables contributing to the hole cleaning performance in a deviated hole 

(modified from Nazari et al., 2010). 

Thus, the key parameters that have a significant influence on the hole cleaning 

performance, and can be actively controlled in the field, are flowrate, RPM, mud 

properties (rheological parameters), and the WOB to control the rate of penetration 

(ROP). In the following, we will assume that the fluid behavior is that of a Bingham 

Plastic fluid, in which case its rheology is quantified by its plastic viscosity (PV) and 

yield point (YP). Another critical parameter that influences the ECD is the mud density. 

A combination of these variables at every decision epoch constitutes an action, which is 

represented by equation (34). Each control variable can take on a finite number of values 

between some minimum and maximum thresholds that are determined by safety 

constraints, operational economics, and equipment and process limitations. For instance, 
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if the flowrate has ten values in the [0, 1800] interval, its equally spaced values, in 

gallons per minute (GPM), are {0, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800}. 

𝑎𝑡 = 

{
 
 

 
 

𝐹𝑙𝑜𝑤𝑟𝑎𝑡𝑒
𝑅𝑂𝑃
𝑅𝑃𝑀

𝑀𝑢𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
𝑀𝑢𝑑 𝑃𝑉
𝑀𝑢𝑑 𝑌𝑃 }

 
 

 
 

 (34) 

4.2.2 Digital twin of the environment  

A digital twin of the hole cleaning operations, development of which is detailed in 

Chapter 2, was built by integrating multiple data streams with analytical implementations 

of the cuttings transport, hydraulics, and rig-state detection models (Saini et al., 2020). 

The cuttings transport and hydraulics models estimate the height of the cuttings bed and 

the ECD along the well, respectively. The rig-state detection engine outputs the current 

operational state (such as rotary or slide drilling, tripping in or out the borehole, etc.)(De 

Oliveira et al., 2016). The purpose of this twin is twofold: first, for performance tracking 

by simulating different hole cleaning actions, and second, as a forward simulation model 

for assisting with action planning. Figure 30 illustrates the application of the twin as a 

forward-simulation model, where an action 𝑎𝑡 transitions the system state from 𝑠𝑡, to 

𝑠𝑡+1, at decision epoch 𝑡. The epoch is the smallest time step of the planning problem for 

which an action is determined. The digital twin was designed to plan either every 5-

minute interval into the future, or whenever there is a change in the well operations. 
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Figure 30 Digital twin of the hole cleaning system’s environment. 

4.2.3 Reward function  

To quantify the immediate feedback associated with state-action transitions, a 

reward function is defined for the hole cleaning system, which has three distinct 

components: 

- The reward associated with state transition; 

- The penalty associated with action transition; 

- The reward associated with action value. 

4.2.3.1 Reward associated with state transition 

Since the objective of the system is to reach the goal state, every component of 

the state vector tries to achieve a functional value of 0. This was used as a reference to 

calculate normalized reward values associated with every state vector component in the 

[−1,1] range.  

Table 2 details the functions used for these calculations.  
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Table 2 Reward function associated with state vector components. 

Component Reward Function Values 

𝐻30−45 
𝑅𝐻30−45 =

2− 𝐻30−45
2

 {𝟏,  𝟎. 𝟑𝟑,  − 𝟎.𝟑𝟑,  − 𝟏} 

𝐻45−60 
𝑅𝐻45−60 =

2− 𝐻45−60
2

 {𝟏,  𝟎. 𝟑𝟑,  − 𝟎.𝟑𝟑,  − 𝟏} 

𝐻60−75 
𝑅𝐻60−75 =

2− 𝐻60−75
2

 {𝟏,  𝟎. 𝟑𝟑,  − 𝟎.𝟑𝟑,  − 𝟏} 

𝐻75+ 𝑅𝐻75+ =
2− 𝐻75+

2
 {𝟏,  𝟎. 𝟑𝟑,  − 𝟎.𝟑𝟑,  − 𝟏} 

𝐸𝐶𝐷0−30 𝑅𝐸𝐶𝐷0−30 = 1 −   
2

3
. |𝐸0−30| {−𝟏,−𝟎. 𝟑𝟑 ,  𝟎. 𝟑𝟑 ,  𝟏 ,  𝟎. 𝟑𝟑 , −𝟎. 𝟑𝟑 , −𝟏} 

𝐸𝐶𝐷30−45 𝑅𝐸𝐶𝐷30−45 = 1 −   
2

3
. |𝐸30−45| {−𝟏, −𝟎. 𝟑𝟑 ,  𝟎. 𝟑𝟑 ,  𝟏 ,  𝟎. 𝟑𝟑 , −𝟎. 𝟑𝟑 , −𝟏} 

𝐸𝐶𝐷45−60 𝑅𝐸𝐶𝐷45−60 = 1 −   
2

3
. |𝐸45−60| {−𝟏, −𝟎. 𝟑𝟑 ,  𝟎. 𝟑𝟑 ,  𝟏 ,  𝟎. 𝟑𝟑 , −𝟎. 𝟑𝟑 , −𝟏} 

𝐸𝐶𝐷60−75 𝑅𝐸𝐶𝐷60−75 = 1 −   
2

3
. |𝐸60−75| {−𝟏, −𝟎. 𝟑𝟑 ,  𝟎. 𝟑𝟑 ,  𝟏 ,  𝟎. 𝟑𝟑 , −𝟎. 𝟑𝟑 , −𝟏} 

𝐸𝐶𝐷75+ 𝑅𝐸𝐶𝐷75+ = 1 −   
2

3
. |𝐸75+| {−𝟏, −𝟎. 𝟑𝟑 ,  𝟎. 𝟑𝟑 ,  𝟏 ,  𝟎. 𝟑𝟑 , −𝟎. 𝟑𝟑 , −𝟏} 

Thus, the reward function contribution of state transition is represented by the set 

given in equation (35). 

𝑹𝑺 =   {𝑅𝐻30−45, 𝑅𝐻45−60, 𝑅𝐻60−75, 𝑅𝐻75+, 𝑅𝐸𝐶𝐷0−30, 𝑅𝐸𝐶𝐷30−45, 

                                                                      𝑅𝐸𝐶𝐷45−60, 𝑅𝐸𝐶𝐷60−75, 𝑅𝐸𝐶𝐷75+} 
(35) 

4.2.3.2 Penalty associated with action transition  

Table 3 details the calculation of the penalty (negative reward) related to changes 

in action values. The purpose of these definitions is twofold: 

- To discourage the system from making extreme changes in actions, unless the 

reward associated with state transition offsets this penalty;   

- Select the least penalizing action in case multiple actions result in the same state 

transition.  
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Table 3 Reward function associated with action transition. 

Component No. of Intervals Reward Function Values 

𝐹𝑙𝑜𝑤𝑟𝑎𝑡𝑒 𝑛𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒  𝑅𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒 =  −  
|∆𝑁𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒|

𝑛𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒
 

[−𝟏,  𝟎] 

𝐷𝑟𝑖𝑙𝑙𝑖𝑛𝑔 𝑅𝑂𝑃 𝑛𝑅𝑂𝑃  
𝑅𝑅𝑂𝑃 =  −  

|∆𝑁𝑅𝑂𝑃|

𝑛𝑅𝑂𝑃
 

[−𝟏,  𝟎] 

𝐷𝑟𝑖𝑙𝑙𝑠𝑡𝑟𝑖𝑛𝑔 𝑅𝑃𝑀 𝑛𝑅𝑃𝑀 
𝑅𝑅𝑃𝑀 =  −  

|∆𝑁𝑅𝑃𝑀|

𝑛𝑅𝑃𝑀
 

[−𝟏,  𝟎] 

𝑀𝑢𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦  𝑛𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑅𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  −  
|∆𝑁𝑑𝑒𝑛𝑠𝑖𝑡𝑦|

𝑛𝑑𝑒𝑛𝑠𝑖𝑡𝑦 
 

[−𝟏,  𝟎] 

𝑀𝑢𝑑 𝑃𝑉 𝑛𝑃𝑉 
𝑅𝑃𝑉 =  −  

|∆𝑁𝑃𝑉|

𝑛𝑃𝑉
 

[−𝟏,  𝟎] 

𝑀𝑢𝑑 𝑌𝑃 𝑛𝑌𝑃 
𝑅𝑌𝑃 =  −  

|∆𝑁𝑌𝑃|

𝑛𝑌𝑃
 

[−𝟏,  𝟎] 

The terms ∆𝑁𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒  and 𝑛𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒  respectively are the number of interval 

changes between consecutive actions and the number of discrete values possible for a 

given control variable. Their use to calculate a penalty value is illustrated in Figure 31. 

The action transition based penalty set is expressed in equation (36). 

 

Figure 31 Example calculation of an action transition based penalty. 

 𝑹𝒂𝒑 = {𝑅𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒  , 𝑅𝑅𝑂𝑃 , 𝑅𝑅𝑃𝑀 , 𝑅𝑑𝑒𝑛𝑠𝑖𝑡𝑦 , 𝑅𝑃𝑉 , 𝑅𝑌𝑃} (36) 

4.2.3.3 Reward associated with action value 

In the planning phase of drilling operations, the hole cleaning requirement of the 

system would push the ROP to zero simply because no cuttings are generated at zero 

ROP leading to zero bed height and optimum ECD. However, because a critical objective 
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of drilling is to drill a well as fast as reasonably possible (within given limits), there 

needs to be a positive feedback or reward associated with the ROP. Equation (37) 

represents this reward, which is calculated using equation (38) as a ratio of the discrete 

interval number for a given ROP value to the total number of ROP intervals. This reward 

component is in the range [0,1]. 

 𝑹𝒂𝒓 = {0, 𝑅𝑅𝑂𝑃 , 0,0,0,0} (37) 

      𝑅𝑅𝑂𝑃 = 
𝑛𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
𝑛𝑅𝑂𝑃

 (38) 

4.2.3.4 Calculating the net reward  

Reward value quantifies the ‘goodness’ of taking some action from a given 

system state. Thus, the next step for the hole cleaning system is to combine the individual 

reward components to output a single reward value in the [0,1] range. This is 

accomplished by assigning different relative weights to the various components. This 

ability to assign different weights provides a way to prioritize different objectives. This 

would be advantageous in drilling wells where there, for instance, is a high risk of well 

control issues. In these wells, the objective of keeping the ECD within the drilling margin 

becomes a higher priority than completely removing the cuttings bed. Similarly, reducing 

the penalty associated with taking drastic actions will not be as important for certain 

wells as reaching the desired state quickly. Managing these objectives can be 

accomplished by assigning different relative weights to the individual state or action 

reward components.  

The sets 𝑊𝑠 , 𝑊𝑎𝑝 and 𝑊𝑎𝑟  respectively are the weights associated with sets for 

state transition reward, action transition penalty, and the action reward. Equations (39), 

(40) and (41) represent the method to combine these weights and their associated reward 
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sets. The final values of the 𝑅𝑆_𝑛𝑒𝑡, 𝑅𝑎𝑝_𝑛𝑒𝑡 and 𝑅𝑎𝑟_𝑛𝑒𝑡  are in the ranges [−1,1], [−1,0] 

and [0,1], respectively.  

 
𝑅𝑆_𝑛𝑒𝑡 =  

∑ 𝑊𝑠𝑖𝑖 𝑅𝑠𝑖
∑ 𝑊𝑠𝑖𝑖

 (39) 

 
𝑅𝑎𝑝_𝑛𝑒𝑡 =  

∑ 𝑊𝑎𝑝𝑖𝑖 𝑅𝑎𝑝𝑖
∑ 𝑊𝑎𝑝𝑖𝑖

 (40) 

 
𝑅𝑎𝑟_𝑛𝑒𝑡 =  

∑ 𝑊𝑎𝑟𝑖𝑖 𝑅𝑎𝑟𝑖
∑ 𝑊𝑎𝑟𝑖𝑖

 (41) 

Before further combining these three components, they are first normalized to the 

[0,1] range, using the method presented in equations (42), (43) and (44).  

 𝑅𝑠_𝑛𝑜𝑟𝑚 =  
𝑅𝑆_𝑛𝑒𝑡 + 1

2
  (42) 

 𝑅𝑎𝑝_𝑛𝑜𝑟𝑚 = 𝑅𝑎𝑝_𝑛𝑒𝑡 + 1 (43) 

 𝑅𝑎𝑟_𝑛𝑜𝑟𝑚 = 𝑅𝑎𝑟_𝑛𝑒𝑡  (44) 

Finally, the individual normalized rewards 𝑅𝑠_𝑛𝑜𝑟𝑚, 𝑅𝑎𝑝_𝑛𝑜𝑟𝑚 and 𝑅𝑎𝑟_𝑛𝑜𝑟𝑚 are 

combined based on the weights 𝑊𝑠_𝑛𝑜𝑟𝑚, 𝑊𝑎𝑝_𝑛𝑜𝑟𝑚 and 𝑊𝑎𝑟_𝑛𝑜𝑟𝑚  as per equation (45). 

These weights define the relative importance of the individual normalized rewards and 

can also be tuned in real-time.  

𝑅𝑛𝑒𝑡 =
𝑊𝑠_𝑛𝑜𝑟𝑚𝑅𝑠_𝑛𝑜𝑟𝑚 +  𝑊𝑎𝑝_𝑛𝑜𝑟𝑚𝑅𝑎𝑝_𝑛𝑜𝑟𝑚 +  𝑊𝑎𝑟_𝑛𝑜𝑟𝑚𝑅𝑎𝑟_𝑛𝑜𝑟𝑚

𝑊𝑠_𝑛𝑜𝑟𝑚 +𝑊𝑎𝑝_𝑛𝑜𝑟𝑚 +𝑊𝑎𝑠_𝑛𝑜𝑟𝑚
 

(45) 

The above definition of the reward function ensures immediate feedback after 

every action, as opposed to the agent having to wait until the end of an episode (as is the 

case for sparse reward functions).  

4.3 IMPLEMENTING THE SYSTEM AS AN MDP 

Here, we demonstrate the developed hole cleaning decision-making system for 

performance tracking and action planning using a specific example. The dataset used is 
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from an actual oil well that exhibited issues due to insufficient hole cleaning during 

tripping, casing, and cementing operations. The dataset for the well included information 

such as: 

- well trajectory, represented by directional surveys (inclination and azimuth versus 

the hole depth); 

- well profile, represented by the BHA, casing and bit details;  

- one-second surface sensor data, for directly and indirectly measuring the drilling 

parameters;  

- mud-checks, to determine mud density and rheology among other drilling mud 

properties.  

A digital twin of the well was developed by integrating physics-based models 

(cuttings transport and hydraulics with an incorporated thermal model), data-based 

models (rig-state detection engine), and relevant raw data sources (as detailed in Figure 

30). 

4.3.1 Well profile  

The well had a short vertical section and a shallow kick-off point (where the well 

starts building inclination from the vertical) around 300 feet MD. After kick-off, the 

inclination angle was continuously built until the well became horizontal at about 1250 

feet MD. After this, the well stayed near-horizontal until it reached its total depth (TD) of 

2500 feet MD. The well profile and trajectory are shown in Figure 32.  
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Figure 32 Well trajectory and inclination profile (negative sign indicates downward depth 

into the sub-surface). 

This well was completed in two ‘BHA runs’ where each run comprised of drilling 

to a predetermined hole depth and subsequently, casing and cementing the hole. After the 

first BHA run, a surface casing of internal diameter 13.375-inch was set at a depth of 623 

feet MD. Following this, in the second BHA run, a 12.25-inch hole section was drilled to 

well TD. Upon reaching TD, a 50-minute on-bottom circulation cycle (at a flowrate of 

around 910 GPM and 60 RPM) was performed for hole cleaning purposes. The drillstring 

was then tripped out of the hole with intermittent back-reaming (at 900 GPM and 60 

RPM), and finally, a 9.625-inch casing was run to TD and cemented. The drilling and 

tripping operations for the well are summarized in Figure 33. Poor hole cleaning 

negatively affected the last trip out of the hole with the drilling BHA, the run into the 

hole with the casing, and, ultimately, the casing cementing operation. 
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Figure 33 Operational summary for the well. 

 Calculations show that for running a 9.625-inch casing in a 12.25-inch borehole, 

the maximum theoretical cuttings bed height (on pulling the drillstring out of hole) 

should not exceed approximately 5-inches (Figure 34). This 5-inch bed height 

corresponds to 45.1 in2 of cuttings in the cross-section. 

 

Figure 34 The theoretical limit of allowed cuttings bed height for the given well profile. 
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This cross-section of cuttings was then translated to an equivalent bed height by 

assuming the drillstring to be in the hole with the drill bit at TD. For the given well 

profile and trajectory (based on changes in outer diameters and eccentric placements of 

different drillstring components), this limit is represented by the red line in Figure 35(a). 

The red shaded region corresponds to unsafe levels of cuttings bed height, while the 

green zone represents the goal state. Similarly, Figure 35(b) depicts the ECD profile 

(drilling window) for the well, bounded by SL and FG, with ten percent uncertainty in 

their values. As in Figure 35(a), the green shaded zone corresponds to the goal state, 

while the red zones represent regions with the potential for well control issues. The 

yellow zones for both profiles are safe but suboptimal states.  

    

Figure 35 (a) Equivalent bed height limits for the given well profile (b) ECD limits for 

the well considering a ten percent uncertainty in the SL and FG values 

(negative sign indicates downward depth into the sub-surface). 

The SL and FG values to define the drilling margins for the different sections of 

the well are shown in Table 4. For the near-vertical section, the SL and FG were assigned 

non-limiting values of 6 ppg and 18 ppg, respectively, because this interval was entirely 

cased while drilling the 12.25-inch section during the second BHA run.  
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Table 4 The SL and FG values to define drilling margin for the different inclination 

intervals. 

Inclination Interval Stability Limit (ppg) Fracture Gradient 

(ppg) 

[0,30)- in casing 6 18 

[30, 45) 8.2 10.6 

[45,60) 8.4 10.4 

[60, 75) 8.2 10.2 

[75+) 8.6 10.0 

4.3.2 Performance tracking of the system and summary of issues  

State transitions were monitored, and associated rewards were calculated to track 

the performance of the system during drilling operations. State-space was defined by 

dividing the well into five inclination-based segments, with the procedure as discussed in 

the previous section. The reward function was shaped based on state and action values 

and transitions. Determining the action-space required the specification of the discrete 

values of the different control variables. Table 5 shows the number and range of values 

for the different variables.   

Table 5 Value discretization of control variables. 

Control Variable Number of 

Discrete Values 

Range of Values 

Flowrate (GPM) 10 [0, 1500] 

Drilling ROP (ft/hr.) 10 [0, 900] 

Drillstring RPM (rev/min) 10 [0, 150] 

Mud Density (ppg) 5 [8.5, 9.7] 

Mud Plastic Viscosity (cP)  5 [7, 42] 

Mud Yield Point (lb./100ft2) 5 [7, 42] 

The weights assigned to the different reward function components are shown in 

Table 6. Equal weights for all the state transitions components (𝑊𝑠) assumes equal 

relative importance of the different state components. Similarly, the relative penalties 

associated with changing the different action components (𝑊𝑎𝑝) are also assumed to be 
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the same. As discussed in the previous section, these weights can be tuned by the rigsite 

engineer to prioritize different objectives. However, for the following example, the 

weights for combining the normalized reward components (weights associated with 

𝑅𝑠_𝑛𝑜𝑟𝑚, 𝑅𝑎𝑝_𝑛𝑜𝑟𝑚and 𝑅𝑎𝑟_𝑛𝑜𝑟𝑚 ) are assigned such that being in or near the goal states is 

prioritized over the penalty associated with changes in action variables, or the rewards 

due to an increased ROP. Similarly, while drilling, the weight of the reward associated 

with a higher ROP is more than the weight of the penalty associated with the changes in 

action variables. The weight of the normalized action reward component (𝑊𝑎𝑟_𝑛𝑜𝑟𝑚) has 

two values depending on the operation being tracked. A weight of zero is assigned to 

circulation operations because no new hole is being drilled (i.e., ROP is zero). 

Table 6 Weight assignments for reward function shaping. 

𝑊𝑠 = [1,1,1,1,1,1,1,1,1] 
𝑊𝑎𝑝 = [1,1,1,1,1,1] 

𝑊𝑎𝑟 = [0,1,0,0,0,0] 
𝑊𝑠_𝑛𝑜𝑟𝑚 = 0.50 

𝑊𝑎𝑝_𝑛𝑜𝑟𝑚 = 0.20 

Drilling Circulation 

𝑊𝑎𝑟_𝑛𝑜𝑟𝑚 = 0.30 𝑊𝑎𝑟_𝑛𝑜𝑟𝑚 = 0.00 

Figure 36 overlays the different normalized reward components calculated for 

decision-epoch intervals of 5-minutes. For this system, the net-reward tracks the state 

reward, since 𝑊𝑠_𝑛𝑜𝑟𝑚 is significantly higher than the other weights. The reward value at 

the end of the drilling operation stabilizes to around 0.46. An increase in reward value to 

0.68 at the end of the circulation cycle shows an improvement in the hole condition. This 

improvement is also reflected in the state reward value, which increases from 0.51 to 

0.59.  
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Figure 36 Normalized reward components versus decision epochs for the well. 

Figure 37 shows the state of the system at the end of the drilling operation 

(12.25-inch hole section), which can be represented by equation (46). The mud properties 

for drilling the last section of the well were: mud density of 9.06 ppg, PV of 11 cP, and 

YP of 36.5 lbf/100 ft2. The final bed height was around 9-inch, which needed to be 

significantly reduced.  
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𝑠𝑇𝐷 =

{
 
 
 
 

 
 
 
 

    

0
3
4
4
1
1
1
1
1

    

}
 
 
 
 

 
 
 
 

 (46) 

 

Figure 37 State of the borehole at the end of the drilling operation. 

- Thus, a 50-minute circulation cycle to remove cuttings followed. Removal of 

cuttings is essential to ensure safe tripping operations without getting stuck, as 

well as to prepare the well for casing and cementing operations. The resulting 

state of the system is represented by equation (47) and is shown in Figure 38. As 

can be seen, the cuttings bed height was very close to the allowed limit, and 

therefore still non-optimal, leading to issues while running casing and 

subsequently cementing.  
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𝑠𝑇𝐷_𝑐𝑖𝑟𝑐 =

{
 
 
 
 

 
 
 
 

    

0
2
3
3
1
1
1
1
1

    

}
 
 
 
 

 
 
 
 

 (47) 

 

Figure 38 State of the borehole at the end of the circulation cycle. 

Therefore, to summarize, the primary operational issue leading to the observed 

problems and NPT is insufficient hole cleaning. This claim can be supported based on the 

following findings by the hole cleaning digital twin: 

- Throughout the drilling operations in the lateral section, the cuttings bed height 

was approximately 5-inches during rotary drilling and approximately 9-inch 

during slide drilling 

- Even after the clean-up circulation cycle, a high cuttings bed remained 

- Back-reaming while POOH does not assist significantly with hole cleaning   
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- High friction factor while drilling, erratic torque while back-reaming, presence of 

softball-sized clay chunks while circulating, casing getting stuck and issues with 

cementing support the presence of a high cuttings bed 

4.3.3 Basic action planning  

Here, we discuss the utilization of the hole cleaning planning system to simulate 

various state-action transition options. Multiple action sequences were simulated for a 50-

minute (10 decision epochs) circulation interval starting from the state of well at the end 

of the drilling operation, 𝑠𝑇𝐷  (represented by equation (46)). The purpose of these 

simulations was to understand and quantify the effects of different action sequences on 

the hole condition, and in identifying a viable course of action. A viable action sequence 

would result in an improved wellbore condition, without compromising wellbore stability 

Table 7 details some of the simulated action sequences, where each action is structured 

in the form of equation (34). 
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Table 7 Simulated action sequences. 

Sequence 

# 
Action Sequence (10 actions) 

1 

{
 
 

 
 
1000
0
83
9.1
21
21 }

 
 

 
 

,

{
 
 

 
 
1000
0
83
9.1
21
21 }

 
 

 
 

,

{
 
 

 
 
1000
0
100
9.1
21
21 }

 
 

 
 

,

{
 
 

 
 
1000
0
100
9.1
21
21 }

 
 

 
 

,

{
 
 

 
 
1000
0
117
9.1
21
21 }

 
 

 
 

,

{
 
 

 
 
1000
0
117
9.1
21
21 }

 
 

 
 

,

{
 
 

 
 
1000
0
133
9.1
21
21 }

 
 

 
 

,

{
 
 

 
 
1000
0
133
9.1
21
21 }

 
 

 
 

,

{
 
 

 
 
1000
0
150
9.1
21
21 }

 
 

 
 

,

{
 
 

 
 
1000
0
150
9.1
21
21 }

 
 

 
 

 

2 

{
 
 

 
 
833
0
83
9.4
21
21 }
 
 

 
 

,

{
 
 

 
 
833
0
83
9.4
21
21 }

 
 

 
 

,

{
 
 

 
 
1000
0
83
9.4
21
21 }

 
 

 
 

,

{
 
 

 
 
1000
0
83
9.4
21
21 }

 
 

 
 

,

{
 
 

 
 
1167
0
83
9.4
21
21 }

 
 

 
 

,

{
 
 

 
 
1167
0
83
9.4
21
21 }

 
 

 
 

,

{
 
 

 
 
1334
0
83
9.4
21
21 }

 
 

 
 

,

{
 
 

 
 
1334
0
83
9.4
21
21 }

 
 

 
 

,

{
 
 

 
 
1500
0
83
9.4
21
21 }

 
 

 
 

,

{
 
 

 
 
1500
0
83
9.4
21
21 }

 
 

 
 

 

3 

{
 
 

 
 
833
0
83
8.8
21
21 }
 
 

 
 

,

{
 
 

 
 
833
0
83
8.8
21
21 }

 
 

 
 

,

{
 
 

 
 
1000
0
100
8.8
21
21 }

 
 

 
 

,

{
 
 

 
 
1000
0
100
8.8
21
21 }

 
 

 
 

,

{
 
 

 
 
1167
0
117
8.8
21
21 }

 
 

 
 

,

{
 
 

 
 
1167
0
117
8.8
21
21 }

 
 

 
 

,

{
 
 

 
 
1334
0
133
8.8
21
21 }

 
 

 
 

,

{
 
 

 
 
1334
0
133
8.8
21
21 }

 
 

 
 

,

{
 
 

 
 
1500
0
150
8.8
21
21 }

 
 

 
 

,

{
 
 

 
 
1500
0
150
8.8
21
21 }

 
 

 
 

 

4 

{
 
 

 
 
833
0
83
8.8
21
21 }
 
 

 
 

,

{
 
 

 
 
833
0
83
8.8
21
21 }

 
 

 
 

,

{
 
 

 
 
1000
0
83
8.8
21
21 }

 
 

 
 

,

{
 
 

 
 
1167
0
83
8.8
21
21 }

 
 

 
 

,

{
 
 

 
 
1334
0
83
8.8
21
21 }

 
 

 
 

,

{
 
 

 
 
1500
0
83
8.8
21
21 }

 
 

 
 

,

{
 
 

 
 
1500
0
100
8.8
21
21 }

 
 

 
 

,

{
 
 

 
 
1500
0
117
8.8
21
21 }

 
 

 
 

,

{
 
 

 
 
1500
0
134
8.8
21
21 }

 
 

 
 

,

{
 
 

 
 
1500
0
150
8.8
21
21 }

 
 

 
 

 

5 

{
 
 

 
 
833
0
83
8.8
28
14 }
 
 

 
 

,

{
 
 

 
 
833
0
83
8.8
28
14 }

 
 

 
 

,

{
 
 

 
 
1000
0
83
8.8
28
14 }

 
 

 
 

,

{
 
 

 
 
1167
0
83
8.8
28
14 }

 
 

 
 

,

{
 
 

 
 
1334
0
83
8.8
28
14 }

 
 

 
 

,

{
 
 

 
 
1500
0
83
8.8
28
14 }

 
 

 
 

,

{
 
 

 
 
1500
0
100
8.8
28
14 }

 
 

 
 

,

{
 
 

 
 
1500
0
117
8.8
28
14 }

 
 

 
 

,

{
 
 

 
 
1500
0
134
8.8
28
14 }

 
 

 
 

,

{
 
 

 
 
1500
0
150
8.8
28
14 }

 
 

 
 

 

6 

{
 
 

 
 
833
0
83
8.8
21
14 }
 
 

 
 

,

{
 
 

 
 
1000
0
100
8.8
21
14 }

 
 

 
 

,

{
 
 

 
 
1167
0
117
8.8
21
14 }

 
 

 
 

,

{
 
 

 
 
1334
0
134
8.8
21
14 }

 
 

 
 

,

{
 
 

 
 
1500
0
150
8.8
21
14 }

 
 

 
 

,

{
 
 

 
 
1500
0
150
8.8
21
14 }

 
 

 
 

,

{
 
 

 
 
1500
0
150
8.8
21
14 }

 
 

 
 

,

{
 
 

 
 
1500
0
150
8.8
21
14 }

 
 

 
 

,

{
 
 

 
 
1500
0
150
8.8
21
14 }

 
 

 
 

,

{
 
 

 
 
1500
0
150
8.8
21
14 }
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Changing the mud properties (density and rheology) is a time-consuming process; 

therefore, it is highly impractical to change them in the middle of the circulation cycle, 

they are changed at the beginning of the action sequences. For the first four action 

sequences, PV value is increased to 21 cP, while the YP value is reduced to 21 lbf/100 

ft2. For the fifth action sequence, the PV and YP are changed to 28 cP and 14 lbf/100 ft2, 

respectively. Finally, for the sixth sequence, PV and YP values are adjusted to 21 cP and 

14 lbf/100 ft2, respectively. For the first action sequence, the mud density is unaltered (at 

9.1 ppg); for the second sequence, the density is increased to 9.4 ppg. For the remaining 

four action sequences, the mud density is reduced to 8.8 ppg.  

Implementing action sequence number one would have resulted in a slightly 

better hole condition than for the actual hole after circulation, as shown in Figure 39. 

Note that drillstring RPM was the only parameter that was changed (from 83 to 150 

RPM) in this case. The reward obtained by the system would have stabilized at around 

0.76, compared with 0.68 after the circulation cycle. Also, the normalized state reward 

would have been 0.67, as compared to 0.59 after the circulation cycle (which can be seen 

in Figure 36).  
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Figure 39 Predicted final system state and rewards after implementing action sequence 

one. 

Action sequence two would have resulted in an even lower bed height; however, 

the predicted ECD value at greater depths nears the upper instability region, as shown in 

Figure 40. In this case, only the flowrate parameter is changed (from 833 to 1500 GPM) 

during the operation. The expected net reward for this case would have approached 0.77, 

and the state reward would have stabilized around 0.69. 
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Figure 40 Predicted final system state and rewards after implementing action sequence 

two. 

Figure 41 shows the predicted state after simulating action sequence number three. There 

would have been a significant reduction in the bed height (to approximately 4.5-inch), 

and the ECD value would be very close to the desired region. Both flowrate and 

drillstring RPM are changed during the operation; the flowrate varies from 833 to 1500 

GPM, and the drillstring RPM from 83 to 150. The net and the state reward for this case 

would have been around 0.79 and 0.70, respectively.      
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Figure 41 Predicted final system state and rewards after implementing action sequence 

three. 

Figure 42 shows the final state of the system after simulating action sequence four. The 

expected net and the state reward for this case would also have been around 0.79 and 

0.70, respectively. Like action sequence three, both the flowrate and the drillstring RPM 

are increased during the operation. The primary difference between the two sequences is 

the order in which the changes are suggested.   
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Figure 42 Predicted final system state and rewards after implementing action sequence 

four. 

The output of the execution of action sequence five is depicted in Figure 43. This 

sequence would result in a substantially reduced bed height (under 3.5-inch) and an ECD 

value very close to the desired region. The net and the state reward values for this case 

are 0.82 and 0.76, respectively. In this case, both the flowrate and the RPM are increased 

from 833 to 1500 GPM and 83 to 150 RPM, respectively. 



 101 

 

 

Figure 43 Predicted final system state and rewards after implementing action sequence 

five. 

Figure 44 shows the expected output of implementing action sequence six. This 

sequence would also result in a substantially reduced bed height (under 2.5-inch) and an 

ECD value very close to the desired region. The expected net and state rewards would be 

0.86 and 0.81, respectively, highest among all previous simulated trajectories. In this 

case, both the flowrate and the RPM are increased from 833 to 1500 GPM and 83 to 150 

RPM, respectively.   
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Figure 44 Predicted final system state and rewards after implementing action sequence 

six. 

This example shown on field data, clearly illustrates the potential for such a 

decision-making approach. Explicitly classifying the hole condition (state) and 

quantifying state -action transitions allows evaluation and comparison of the different 

action sequences, which is a vital component in building an intelligent hole cleaning 

advisory system.  
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Table 8 summarizes the net and the state rewards associated with the different 

action sequences. Here, action sequence number 6 performs the best (as quantified by the 

highest final state reward) and has the highest net reward (which depends on both the 

final state and the state-action transitions).  

Table 8 Summary of the rewards associated with the different action sequences. 

Action Sequence # Net Reward Final State Reward 

0 (Original) 0.68 0.59 

1 0.76 0.68 

2 0.77 0.69 

3 0.79 0.70 

4 0.79 0.70 

5 0.82 0.76 

6 0.86 0.81 

4.4 SUMMARY  

This chapter presents a novel method of setting up well construction operations as 

long-term finite-horizon sequential decision-making systems. This is the first time a well 

construction operation has been structured as an MDP with carefully shaped rewards and 

an integrated multi-model digital twin, and subsequently utilized for evaluating action 

sequences. To summarize, this chapter: 

- Discusses the requirements and the steps in setting up such systems (formulating 

an MDP, defining the goal state, efficient reward shaping, and digitally twinning 

the underlying process) by detailing the development of a hole cleaning decision-

making system.  

- Discusses the importance of reward shaping for well construction operations to 

ensure frequent and suitable feedback, thereby facilitating effective policy design. 

It also demonstrates the use of a non-sparse normalized reward function designed 

for hole cleaning system for performance tracking and simple action planning.   
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- Demonstrates the use of digital twins for simulating various action sequences to 

track the state evolution and reward progression, thereby allowing ranking of the 

different sequences based on their long-term returns.  

Furthermore, more directed search and planning methods such as simulation-

based search can be deployed on these systems to enhance system performance 

considerably. The development and applications of such intelligent decision-making 

systems are discussed in the next chapter.  
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Chapter 5: Developing Intelligent Decision-Making and Action 

Planning Systems  

This chapter builds on the Markov Decision Process (MDP) system formulation 

presented in the previous chapter. The development of intelligent systems for well 

construction operations that can utilize the underlying digital twinning framework and the 

reward structure of the MDP setup to simulate and self-learn by strategically generating 

action sequences is detailed here. The Monte Carlo tree search (MCTS), a simulation-

based search technique, is used for action planning. MCTS is further enhanced by 

incorporating domain-specific heuristics. An action planning system to monitor and 

improve hole cleaning performance is then developed and subsequently tested on oil well 

construction data. The heuristic design for policy enhancement considers factors such as 

safety versus performance trade-offs, distance to the goal state, and feasibility of specific 

actions from specific states. The action sequence recommended by the system, when 

implemented, would have resulted in significant performance improvement over the 

original decision maker’s actions, as is quantified by the long-term reward and the final 

system state. 

5.1 SETTING UP DECISION-ENGINES FOR WELL CONSTRUCTION OPERATIONS 

Well construction processes are non-holonomic since the wellbore condition at 

any time (state) is a function of the well’s operational past, i.e., all previous wellbore 

conditions (past states) and previous operations (actions)(Cayeux et al., 2020). The states 

themselves, depending on the process, can be represented by combinations of parameters 

such as equivalent circulation density (ECD), cuttings bed height, cuttings concentration 

in the flow, friction factor, and drilling dysfunction indicators. To adequately represent a 

process and distinguish different states, each of these parameters can take on many 
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different values. These unique combinations of values for the many state parameters can 

result in a vast state-space. Similarly, various combinations of values for the many action 

control variables result in a vast action-space. Some action variables for drilling 

operations include drillstring rotation speed (RPM), weight on bit (WOB), flowrate, 

tripping speeds, mud properties (density and rheology), etc. (Robert F. Mitchell & Miska, 

2011). Furthermore, the online or near real-time planning requirements impose 

constraints on computation time. Decision-time algorithms that can plan in limited time 

by considering the search-space in the vicinity of the current state are therefore needed to 

address these requirements. SBS algorithms, such as flat Monte Carlo (MC) and Monte 

Carlo tree search (MCTS), have been successfully used for planning in systems with 

large state- and action-space (e.g., game AI engines for chess and Go, as discussed). The 

game AI engines utilize the MCTS in conjunction with deep neural networks (for policy 

and value evaluations) to identify, shortlist and sequentially simulate legal actions from a 

given position (state) for both players. Multiple episodes of such self-play are used to 

improve the policy incrementally and finally select the most promising line of play (an 

optimal action sequence). Likewise, the utilization of such SBS techniques for action 

planning during the various well construction operations can result in improved 

efficiency and operational performance.  

5.1.1 Monte Carlo tree search  

The MCTS is an SBS algorithm that combines MC search with an incremental 

tree structure. Successive MC simulations (by using a forward model of the process) are 

utilized for iteratively expanding the search tree and evaluating the various nodes in the 

tree structure. A node represents a state and contains information about its parent node, 

possible next actions, the number of current implementations of each action, and the 
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average value associated with each action implementation thus far. Instead of building 

the entire tree, a few promising lines of play are developed further, resulting in 

asymmetric tree growth. The selective growth of the search tree is brought about by using 

two distinct action selection policies: the tree policy and the rollout policy (James et al., 

2017; Vodopivec et al., 2017).  

Tree policies can be either greedy (i.e., focusing on exploiting what is already 

known), or try to balance exploring new or potentially promising paths of the search 

space with greedy exploitation. This balance is commonly referred to as the exploration-

exploitation trade-off. One such policy can be devised by treating every state within the 

tree as a multi-armed bandit (MAB) problem where the Upper confidence bound (UCB1) 

algorithm is utilized for action selection within the tree structure (Browne et al., 2012). 

The resulting algorithm is referred to as Upper confidence bound for trees (UCT). The 

UCT guarantees convergence to an optimal policy (given enough time) since the 

exploration factor (𝐶𝑒𝑥𝑝) not only ensures exploration of unvisited parts of the search 

space, but the exploration term (√
2∙ln𝑁(𝑠)

𝑁(𝑠,𝑎)
) also gets less exploratory with increasing 

number of visits (Kocsis et al., 2006). Equation (48), represents the basic UCT policy, 

where 𝑁(𝑠) is the total number of visits to the state 𝑠, 𝑁(𝑠, 𝑎) represents the number of 

times action 𝑎 has been taken from state 𝑠. 𝑄(𝑠, 𝑎) is the exploitation term representing 

the average value associated with implementing action 𝑎 from state 𝑠. 𝑄UCT(𝑠, 𝑎) is the 

upper confidence bound or the urgency term, and the next action within the search tree is 

selected based on maximizing this term over the action space 𝐴𝑠 from the state 𝑠 

(equation (49)). The rollout policy, by default, is a uniform-random policy. 

 𝑄UCT(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝐶𝑒𝑥𝑝. √
2 ∙ ln𝑁(𝑠)

𝑁(𝑠, 𝑎)
 (48) 
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 𝑎𝑛+1 = 𝑚𝑎𝑥𝑎𝑖∈𝐴𝑠(𝑄𝑈𝐶𝑇(𝑠, 𝑎𝑖))  (49) 

Primarily, MC control (a model-free RL technique) is applied to simulated 

episodes of experiences (model-based RL) from a root node, to grow the search tree 

iteratively and improve the action plan by backpropagating feedback. A single MCTS 

iteration consists of the following four phases, as detailed in Figure 45 (Browne et al., 

2012): 

- Selection from nodes already in the search tree using the tree policy 

- Expansion of the tree at the leaf node by adding one (or more) node(s) 

- Simulation or rollout of actions, using the rollout policy, until the terminal condition 

is met (either reaching a terminal state or the end of the planning time horizon, T) 

- Backpropagation or backing the rewards up the expanded tree to update the values 

of different state-action pairs (𝑄(𝑠, 𝑎)) encountered during the episode 

 

Figure 45 Monte Carlo tree search algorithm (modified from Browne et al., 2012). 



 109 

As the number of simulations increases over time, the tree expands, and any 

inherent bias is removed. Every MCTS episode commences from the root node (from 

which an action plan or action sequence needs to be determined), and traverses the tree 

based on the most recently acquired knowledge (which is incorporated in the 𝑄 values). 

Thus, MCTS is fundamentally a generalized policy iteration (GPI) algorithm, where the 

policy or action plan is iteratively evaluated and improved, as shown in Figure 46. 

(Sutton & Barto, 2018; Vodopivec, 2018). Even with naïve or vanilla policies (such as 

the standard UCT and uniform random), the MCTS works well and starts to move the 

results towards optimality.  

 

Figure 46 Generalized policy iteration (Sutton and Barto, 2018). 

Although the vanilla MCTS blends the generality of random sampling with the 

exactness of tree search, its convergence rate can be relatively low. Therefore, in practice, 

the two MCTS policies have been enhanced by incorporating prior-knowledge or 

handcrafted strategies. This has resulted in different methods, such as progressive 

widening, progressive bias, using prior-knowledge, and Rapid action value estimation 

(RAVE) (Browne et al., 2012; Chaslot et al., 2008; Gelly and Silver, 2011). All these 
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strategies require evaluation of some heuristic function, which can either be learned 

(using deep neural networks) or designed using domain-knowledge or be a combination 

of both. The heuristic function devised for most other applications depends on factors 

such as the proximity of the state to the goal state, values associated with patterns, 

previous action values, how dangerous or safe is the state as compared to the adversary’s 

positions, etc.(Chaslot et al., 2008; Efroni et al., 2019; Silver et al., 2018).   

5.1.2 Structuring well construction operations as sequential decision-making 

systems 

The goal of well construction is to drill and complete a well safely, quickly, 

efficiently, and economically in line with a drilling program. As previously stated, 

accomplishing these objectives requires efficient planning and informed decision-making 

at each step of every well construction process. Additionally, due to the non-holonomic 

property of well construction operations, any action implemented at the current time will 

not only affect the immediate system state but also influence the long-term evolution of 

the system. This necessitates the development of intelligent decision-making systems, the 

foundation of which is a Markov Decision Process (MDP) framework. An MDP is 

composed of the tuple ({𝑆, 𝐴, 𝑃, 𝑅}) and a policy (𝜋) that address the following elements 

of finite-horizon long-term sequential decision-making (LaValle, 2006; Puterman, 1994): 

- Identification of appropriate parameters to quantify the state (𝑠𝑡) of the system, and 

defining the desired or goal states (𝑠𝑔𝑜𝑎𝑙) based on the operation’s objective;  

- Identification of relevant control variables or actions (𝑎𝑡) that can affect the system 

state;  

- Building the state-space (𝑆) and the action-space (𝐴) such that 𝑠𝑡 ∈ 𝑆 and 𝑎𝑡 ∈ 𝐴 for 

all 𝑠𝑡 and 𝑎𝑡; 
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- Incorporating problem-specific heuristics (𝜋ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐) to identify legitimate and 

promising actions from every state;  

- Building models (digital twins) of the underlying processes to simulate the state 

transitions (𝑷𝒔𝒔′
𝒂 ) brought about by different actions; 

- Defining a method to quantify the various state action transitions, for instance, by 

using reward functions (𝑅) to calculate long-term value functions (𝑄); 

- Selection of a suitable action-planning technique to formulate a plan (𝜋 – the 

suggested sequence of actions for successive decision epochs).  

For a process to be Markovian, it must satisfy the Markovian property, i.e., any 

transition from a given state depends only on the current state and the immediate action. 

In other words, the current state completely summarizes the system’s operational past. As 

previously discussed, this is true of well construction operations; therefore, the 

Markovian property assumption is valid. The MCTS algorithm is particularly well-suited 

for well construction action planning because of its ability to handle vast search-spaces 

efficiently. The UCT policy assists with asymmetric tree growth along promising paths 

while balancing exploration and exploitation of the search space. Although MCTS is 

inherently aheuristic, it still permits the use of domain-knowledge-derived heuristics for 

speeding up the search. Also, the GPI property of MCTS ensures that over time better 

plans (action sequences) are found. Figure 47 shows the proposed structure for well 

construction decision-making systems. 
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Figure 47 Structure of the proposed decision-engine. 
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5.2 DESIGN OF A SYSTEM FOR HOLE CLEANING ACTION PLANNING USING THE MCTS 

As discussed in the previous chapters, effective and safe hole cleaning requires 

keeping the cuttings bed height low enough to prevent issues in any stage of well 

construction operation. Moreover, the equivalent circulation density (ECD) needs to be 

managed within a drilling margin. To this effect, a step-by-step method for formulating 

an MDP for the hole cleaning decision-making and planning system is detailed in Section 

4.2. To summarize: 

-  The state of the system, at any decision epoch, is represented by functional values of 

cuttings bed height and the ECD over the different inclination intervals 

 {[0, 30), [30,45), [45,60), [60, 75), [75+)}. The functional values defined for all 

state components are such that 0 represents the goal state for each. 

- Hole cleaning and ECD management are influenced, to varying degrees, by multiple 

factors, some of which can be actively controlled in real-time in the field. Factors 

such as drilling mud properties (particularly density and rheology), drilling 

parameters (such as drillstring RPM and flowrate), and rate of cuttings generation 

(which is a function of ROP) significantly influence hole cleaning performance, and 

can be actively controlled in the field (Gul et al., 2020; Nazari et al., 2010). The 

action set is a combination of discrete values of these control variables. 

- A digital twin was built by integrating the available well initializations (data streams 

such as well plans, well surveys, well geometry information, etc.) with analytical 

implementations of the hydraulics and cuttings transport models, and a rule-based rig 

state detection engine. 

- A reward function that outputs a normalized feedback (in the [0,1] interval) for every 

state-action transition was designed by considering the rewards and penalties 

associated with state and action values and changes in them.   
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5.2.1 MCTS setup for hole cleaning  

Action planning with MCTS requires solving a sub-MDP starting from the current 

system state (root-node) in a finite amount of time. The hole cleaning digital twin is 

utilized as the forward-simulation model to simulate the results of different actions on the 

wellbore condition, and the feedback obtained using the reward function is accumulated 

and backpropagated. Vanilla MCTS, however, has some limitations: 

- The agent is rewarded only when a terminal or a goal state is reached, i.e., sparse 

rewarding; 

- From any state within the tree, all actions in its action-space (𝐴𝑠) are evaluated by the 

UCT policy regardless of their practicability for the operation; 

- The rollout policy is random uniform, i.e., all actions (irrespective of their feasibility) 

have an equal probability of being selected. 

These limitations result in the requirement to conduct more simulations to expand 

the search tree to the extent that it can be meaningfully used for trajectory evaluation, 

thereby slowing down the search. To address these issues this research makes the 

following changes to the vanilla MCTS: 

- Definition of a non-sparse reward function, such that the reward for every state-action 

transition during the rollout step is utilized for updating all tree nodes’ 𝑄 values. This 

is addressed by the reward function shaping strategy, which was discussed in detail in 

the previous chapter; 

- Using a heuristic function to improve the tree policy;  

- Using a heuristic function to reduce the randomness in the rollout policy.   
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5.2.1.1 Heuristic function development  

A domain-knowledge based heuristic 𝜋ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐  is carefully crafted by balancing 

the following criteria: 

- Safety and performance metric (𝐴𝑠𝑝), to prevent well control issues (such as kicks 

and lost circulation events) from occurring, as well as to ensure efficient cuttings bed 

removal and ROP maximization for optimal drilling performance; 

- Performance metric, to ensure efficient cuttings bed removal and ROP 

maximization for optimal drilling performance;  

- Sequential metric (𝐴𝑠𝑞), to ensure smoother or sequential changes in values of action 

control variables;  

- Feasibility constraints (𝐴𝑓𝑒), to suggest realistic changes in values of the action 

control variables; 

- Proximity metric (𝐴𝑝𝑥), to prioritize actions based on Euclidean distance to the goal 

state.  

Balancing safety and performance are accomplished by incorporating guidelines 

for well control, hole cleaning, and drilling optimization. Figure 48 is a simplistic 

representation of some such rules as a decision-tree. The result is a set of feasible actions 

𝐴𝑠𝑝 satisfying the safety and performance requirements.  
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Figure 48 A simplistic representation of an action selection decision-tree for satisfying 

safety and performance metrics. 

Similarly, to satisfy the sequential metric and the feasibility constraints, action 

sets 𝐴𝑠𝑞 and 𝐴𝑓𝑒 are evaluated, respectively. Figure 49 is a simple representation for 

estimating 𝐴𝑠𝑞 for a system with an action set containing three control variables (RPM, 

flowrate, and mud density). 𝐴𝑠𝑞 consists of actions in the vicinity of the most recent 

action. The reasoning behind such selection is to dissuade sudden changes in control 

variables, thereby constraining the rate of change of control variable values to safe limits. 

Changing mud properties (both density and rheology) is a time-consuming process; it 

cannot be performed in near real-time during conventional drilling or circulation 

operations (note that the effective density can be changed quickly in managed pressure 

drilling operations, where circulation takes place in a closed system where hydrostatic 

pressure can be quickly raised using a choke system). However, while planning for the 

circulation operation, adjusting mud properties is a crucial element of efficient hole 

cleaning. The purpose of defining 𝐴𝑓𝑒 is to incorporate such information. 
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Figure 49 Method for estimating the action set associated with sequential metric. 

To calculate the proximity metric, first, the normalized Euclidean distance for the 

current state (from 𝑠𝑔𝑜𝑎𝑙), 𝑑𝑛𝑜𝑟𝑚−𝑒𝑢𝑐, is computed using equation (50). 𝑠𝑖 is the 𝑖𝑡ℎ 

element of the state vector s, and 𝑠𝑖_𝑚𝑎𝑥 is the maximum magnitude for the 𝑖𝑡ℎ state 

vector component. The 𝑑𝑛𝑜𝑟𝑚−𝑒𝑢𝑐 is then compared with the radius of a ‘greed sphere’. 

This greed sphere is defined based on a normalized Euclidean distance of 0.5 from the 

goal state, and it is an indication of whether the states are far away from the goal state. 

 

𝑑𝑛𝑜𝑟𝑚−𝑒𝑢𝑐 =  
√∑ 𝒔𝒊

𝟐𝑵
𝒊=𝒊

√∑ 𝒔𝒊_𝒎𝒂𝒙
𝟐𝑵

𝒊=𝒊

 (50) 

Figure 50 shows an example of this by considering a three-parameter system state 

(𝐻𝑖 , 𝐻𝑗  𝑎𝑛𝑑 𝐸𝐶𝐷𝑖). The near-goal states (𝑠𝑔𝑜𝑎𝑙
" )  represent the states for which the 

magnitudes of all state vector components are either 0 or 1.  
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Figure 50 Method for estimating the action set associated with proximity metric. 

The action selection strategy is given by equation (51). In case the current state is 

at or near the goal state, the same action as the most recent action (𝑎−1) is selected. 

However, if the current state is further out than the greed sphere, more aggressive actions 

are included in the action set 𝐴𝑝𝑥. Aggressive actions represent greater magnitude 

changes in values of action control variables relative to the most recent action.  

 
𝐴𝑝𝑥 = {

𝑎−1 ,                𝒅𝒏𝒐𝒓𝒎−𝒆𝒖𝒄 ≤ 𝑠𝑔𝑜𝑎𝑙
"            

𝑎𝑟𝑒𝑔 , 𝑠𝑔𝑜𝑎𝑙
"  < 𝒅𝒏𝒐𝒓𝒎−𝒆𝒖𝒄 < 𝑟𝑔𝑟𝑒𝑒𝑑

𝑎𝑎𝑔𝑔  ,               𝒅𝒏𝒐𝒓𝒎−𝒆𝒖𝒄 ≥ 𝑟𝑔𝑟𝑒𝑒𝑑            

 (51) 

Finally, the different action sets are combined, as shown in equation (52), to 

output heuristic values for any action 𝑎 in the action space 𝐴𝑠.  

 𝜋ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐_𝑎 =  {
1 ,          𝑖𝑓 𝑎 ∈ 𝐴𝑠𝑝 ∩ 𝐴𝑠𝑞 ∩ 𝐴𝑓𝑒 ∩ 𝐴𝑝𝑥
0 ,                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  

 
(52) 

Thus, 𝜋ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐  assigns a probability of either 0 or 1 to all the available actions in 

the action-space for a given state. 
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5.2.1.2 MCTS structure  

For finite-horizon action planning ( T decision epochs into the future) in a limited 

amount of time 𝑡𝑚𝑎𝑥, the system starting in state 𝑠0 proceeds according to the algorithm 

shown in Figure 51(a). The root node 𝑛𝑜𝑑𝑒0 corresponds to the starting state 𝑠0, 

𝑛𝑜𝑑𝑒𝑙𝑒𝑎𝑓 is the leaf node reached at the end of the selection phase in a given episode, and 

𝑛𝑜𝑑𝑒𝑒𝑥𝑝 is the randomly expanded node from the leaf node. The rollout phase then 

proceeds to plan until 𝑇 epochs are reached (with root node as epoch 0), where 𝑛𝑜𝑑𝑒𝑇 is 

the final state (may or may not be the goal state), and 𝐺𝑇 is the net discounted return. 

Equation (53) shows the calculation for 𝐺𝑇, where 𝛾(≤ 1) is the discount factor, 𝑟𝑘 is the 

reward associated with the 𝑘𝑡ℎ state-action transition, and |𝑒𝑥𝑝| is the level for 𝑛𝑜𝑑𝑒𝑒𝑥𝑝 

in the tree. Finally, the backup function updates the 𝑄 value associated with all nodes 

from the 𝑛𝑜𝑑𝑒𝑒𝑥𝑝 until 𝑛𝑜𝑑𝑒0 by averaging this return value.  

 𝐺𝑇 = ∑ 𝑟𝑘. 𝛾
𝑘−1

𝑇

𝑘=|𝑒𝑥𝑝|

 
(53) 

 

Figure 51 (a) MCTS algorithm (b) Action sequence selection method. 

As previously discussed, MCTS builds an asymmetric search tree in the allocated 

time (𝑡𝑚𝑎𝑥), after which an action sequence is given as output, based on the method 

shown in Figure 51(b). The ‘best child’ from any node is its child-node corresponding to 
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the action with the highest average 𝑄 value. Each node in the search tree contains the 

following information and can be represented by equation (54): 

- The current system state (𝑠𝑡) 

- The most recent action (𝑎𝑡−1) 

- The action space of the node (𝐴𝑠𝑡) 

- The total number of visits to the node so far (𝑁𝑠𝑡) 

- All implemented actions and the resulting transitions, i.e., all child nodes 

({𝑎𝑖: 𝑛𝑜𝑑𝑒𝑖}) 

- The total value associated with all iterations passing through the current state 

(∑ 𝑄(𝑠𝑡, 𝑎𝑖)𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑖 ) 

- The parent node (𝑛𝑜𝑑𝑒𝑡−1) 

 

𝑛𝑜𝑑𝑒𝑡 = 

(

 
 
 
 
 
 

𝑠𝑡
𝑎𝑡−1
𝐴𝑠𝑡
𝑁𝑠𝑡

𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛:  {𝑎𝑖: 𝑛𝑜𝑑𝑒𝑖}

∑ 𝑄(𝑠𝑡 , 𝑎𝑖)

𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑖 

𝑛𝑜𝑑𝑒𝑡−1 )

 
 
 
 
 
 

 (54) 

The average value (𝑄(𝑠𝑡, 𝑎𝑡)) associated with a state-action transition is 

calculated as the mean state-action value over all of its subsequent state’s (𝑠𝑡+1) children 

(𝑎𝑗).  

 𝑄(𝑠𝑡, 𝑎𝑡) =  
∑ 𝑄(𝑠𝑡+1, 𝑎𝑗)𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑗 

𝑁(𝑠𝑡 , 𝑎𝑡)
 (55) 

The tree policy is modified by including the 𝜋ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 in the exploration term of 

the UCT formula (Moerland et al., 2018), as shown by equation (56).  

 𝜋𝑡𝑟𝑒𝑒 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴𝑠 [𝑄(𝑠𝑡 , 𝑎) + 𝜋ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐_𝑎 . 𝐶𝑒𝑥𝑝. √
2 ∙  ln𝑁𝑠𝑡
𝑁(𝑠𝑡,𝑎)

 ] (56) 
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Since the value of the exploitation term (𝑄(𝑠𝑡, 𝑎)) is in the [0,1] range, 𝐶𝑒𝑥𝑝 is 

key in determining the number of simulations that would be required to make the values 

of the exploration (𝐶𝑒𝑥𝑝. √
2∙ ln𝑁𝑠𝑡

𝑁(𝑠𝑡,𝑎)
 ) and the exploitation terms comparable. Figure 52 

shows the plots for exploration terms calculated for different 𝐶𝑒𝑥𝑝 values as a function of 

the number of child node visits, given a total of 100 visits to the parent node(𝑁𝑠𝑡). For the 

exploitation-heavy cases with 𝐶𝑒𝑥𝑝 values 0.25 and 0.5, the values of the two terms 

become comparable almost immediately, i.e., there is minimal exploration. On the other 

hand, for the exploration-heavy cases with 𝐶𝑒𝑥𝑝 values of 2 and 4, it takes a significant 

number of simulations to start exploiting its knowledge of the system. For the system 

developed in this research a 𝐶𝑒𝑥𝑝 value of 1 is thus selected.   

 

Figure 52 Calculation of exploration terms for different 𝐶𝑒𝑥𝑝 values as a function of the 

number of child node visits, given a total of 100 visits to the parent node. 
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During the rollout phase from any node, a uniform random selection policy is 

followed on a reduced action space (which is constructed based on equation (57)).  

 𝐴𝑟𝑜𝑙𝑙𝑜𝑢𝑡 = ⋃ 𝜋ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐_𝑎 . 𝑎

𝑎∈𝐴𝑠

  
(57) 

5.3 APPLICATION OF THE SYSTEM  

The developed action planning system for hole cleaning was evaluated by 

performing post-mortem analysis on the real-world oil well cases discussed in Section 

4.3, that exhibited hole cleaning issues. The analyses were performed by suggesting 

action sequences from some critical points during well construction. The final states 

associated with these plans were then compared with the actual well performance. As 

previously discussed, the dataset included the well’s directional survey data, well profile 

information (casing, BHA and bit details), one-second surface sensor data, and mud 

check information. A hole cleaning digital twin, as discussed in Chapter 2, was developed 

by integrating the various models with the relevant data sources. 

5.3.1 Well profile and summary of issues  

The well had a short vertical section with a shallow kick-off point around 300 feet 

MD. The inclination angle reached 30 degrees at approximately 750 feet MD, and 75 

degrees (horizontal section) around 1250 feet MD. After this, the well remained near 

horizontal until it reached its total depth (TD) of 2500 feet MD. The well did not report 

any issues while drilling, however, while pulling out of hole (POOH), and while running 

casing, some problems were encountered that indicated likely poor hole cleaning. During 

back-reaming operations while POOH, an increase in torque was logged at multiple 

depths, and while circulating during this phase, the well unloaded broken up clay 

particles as well as softball-sized chunks of clay particles at multiple depths. While 
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running in the casing (9.625 in.), some resistance was encountered, and pulldowns had to 

be used to set the casing in place. Also, during cementing operations while pumping 

slurry, intermittent losses were observed, the casing string locked up and had to be pulled 

free. These issues encountered at the different stages of well construction suggested poor 

hole cleaning. Figure 53 depicts the optimal (green-shaded zone), the sub-optimal but 

safe (yellow-shaded zone), and the unsafe (red-shaded zone) regions for both the ECD 

and the cuttings bed height. A detailed discussion around their derivation was presented 

in Section 4.3.1.  

    

Figure 53 (a) ECD limits for the well considering an uncertainty factor (DF) of ten 

percent in the SL and FG values (b) Limits for the cuttings bed height for 

the given well profile(negative sign indicates downward depth into the sub-

surface). 

5.3.2 Performance tracking and action planning  

The system was set up in the MDP framework by using the procedure discussed 

in Chapter 4. Table 9 shows the number and ranges of values associated with the 

different control variables utilized for defining the action-space, and Table 10 shows the 
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different weights assigned for reward calculations. A detailed discussion around these 

values was presented in Section 4.3.2. 

Table 9 Action-space definition for the hole cleaning action planning system. 

Control Variable Number of Discrete 

Values 

Range of Values 

Flowrate (GPM) 10 [0, 1800] 

Drilling ROP (ft/hr.) 10 [0, 900] 

Drillstring RPM (rev/min) 10 [0, 180] 

Mud Density (ppg) 5 [8.5, 9.7] 

Mud Plastic Viscosity (cP)  5 [7, 42] 

Mud Yield Point 

(lb./100ft2) 

5 [7, 42] 

Table 10 Weight assignments for the hole cleaning action planning system. 

𝑊𝑠 = [1,1,1,1,1,1,1,1,1] 
𝑊𝑎𝑝 = [1,1,1,1,1,1] 

𝑊𝑎𝑟 = [0,1,0,0,0,0] 
𝑊𝑠_𝑛𝑜𝑟𝑚 = 0.50 

𝑊𝑎𝑝_𝑛𝑜𝑟𝑚 = 0.20 

Drilling Circulation 

𝑊𝑎𝑟_𝑛𝑜𝑟𝑚 = 0.30 𝑊𝑎𝑟_𝑛𝑜𝑟𝑚 = 0.00 

5.3.2.1 Performance tracking 

State transitions were monitored, and associated rewards were calculated to track 

the performance of the system. The state of the system at the end of the drilling 

operations (during second BHA run) is represented by equation (46), and can be 

visualized by Figure 54. The mud properties for drilling the last section of the well were: 

mud density of 9.06 ppg, PV of 11 cP, and YP of 36.5 lbf/100 ft2.  
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𝑠𝑇𝐷 = 
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(58) 

 

Figure 54 The state of the borehole at the end of the drilling operation during the second 

BHA run. 

The final cuttings bed was around 9-inch, which is significantly higher than the 

limits specified in Figure 53(b). Therefore, to ensure safe tripping operations without 

getting stuck, and to prepare the well for casing and cementing operations, these cuttings 

needed to be removed. A 50-minute circulation cycle was then performed, the resulting 

state of which is represented by equation (59), and Figure 55. The final cuttings bed 

height was still close to the allowed limit, and therefore non-optimal, explaining the 

issues encountered during tripping, casing, and cementing. 
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𝑠𝑇𝐷_𝑐𝑖𝑟𝑐 =
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(59) 

 

Figure 55 State of the borehole at the end of the circulation cycle (a) The cuttings bed 

profile (b) The ECD profile. 

5.3.2.2 Action planning  

The developed decision-making system was then used for planning the circulation 

cycle. The goal of the system, as previously discussed, is to reduce the cuttings bed 

height to safe limits while maintaining the ECD within the drilling margin (i.e., bed 

height and ECD need to be managed to in or around the green-shaded zones defined in 

Figure 53).  

The following metrics are used to evaluate the different action sequences: 

- The final system state; 



 127 

- The average return value of the action sequence (𝑉), which is the mean of total 

accumulated reward over the given trajectory that results from following the action 

sequence; 

𝑉 =
∑ 𝑅𝑡
𝑇
𝑡=1

𝑇
  (60) 

- Progression of the normalized Euclidean distance of the system’s states with actions.  

For the well’s actual circulation operation, the final state represented by equation 

(59) was considerably far from the goal state. The 𝑉 value for this action sequence was 

evaluated to be 0.74. The progression of the normalized Euclidean distance of the system 

state is shown in Figure 56. The green line at 0.2 corresponds to those states which have 

an absolute Euclidean distance of around two. With the definition of the state vector for 

this system, the theoretical maximum Euclidean distance is evaluated as 10.44, as 

detailed in equation (61). For the ratio in equation (50) to be 0.2, the maximum value for 

the current state’s Euclidean distance can be two. For such states, the values of either four 

of their components have magnitude one, or one of their components has a magnitude of 

two, while the rest of the components are zero. 

√∑ 𝒔𝒊_𝒎𝒂𝒙
𝟐𝟗

𝒊=𝒊   = √𝟒(𝟒𝟐) + 𝟓(𝟑𝟐) =   𝟏𝟎. 𝟒𝟒 (61) 
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Figure 56 Progression of the normalized Euclidean distance of the system states during 

the actual well circulation operation. 

The purpose of this 0.2 line is purely to serve as a visual aid, such that states 

closer to the line represent states closer to the goal state. 

5.3.2.2.1 Plan 1  

Using the initializations defined in Table 9 and Table 10, and with a 𝐶𝑒𝑥𝑝 value 

1, the decision-engine was used to plan ahead for eight decision epochs (40-minutes) 

starting from the state 𝑠𝑇𝐷  (equation (46)). Equation (62) represents the action sequence 

(𝑎𝑠𝑒𝑞1) recommended by the system. Selecting the right mud properties at the beginning 

of the circulation cycle is essential, since changing them is a time-consuming process. It 

is, therefore, highly impractical to adjust them in the middle of the circulation cycle. To 

this effect, the system suggested changing the mud properties (at the beginning of the 

circulation cycle) to mud density of 8.9 ppg, PV of 17.5 cP, and YP of 10.5 lbf/100 ft2 

from mud density 9.06 ppg, PV 11 cP, and YP 36.5 lbf/100 ft2 initially. 
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 (62) 

The predicted output state of the system is shown in Figure 57. The cuttings bed 

is almost entirely removed (as represented by the blue line), and the ECD values are very 

close to the desired regions throughout the well. Equation (63) represents the final state 

of the system. 

 

Figure 57 (a) ECD profile (b) Cuttings bed height (output state) for 𝑎𝑠𝑒𝑞1. 
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 (63) 
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Figure 58 illustrates the progression of the system with actions for the sequence 

𝑎𝑠𝑒𝑞1. Figure 58 (a) shows the reduction in the cuttings bed height with different actions, 

and Figure 58 (b)  represents the progression of the normalized Euclidean distance with 

actions. 

 

Figure 58 a) Progression of the cuttings bed (b) Progression of the normalized Euclidean 

distance of the system states for 𝑎𝑠𝑒𝑞1. 

By the fourth action, the system has already moved close to the 0.2 line (by 

cuttings bed being reduced to the goal state), where it stays until the end. Figure 59 

shows the progression of the rewards associated with this action sequence. Thus, the 𝑉 

value calculated for 𝑎𝑠𝑒𝑞1 is 0.82.  
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Figure 59 Progression of the rewards associated with 𝑎𝑠𝑒𝑞1. 

An interesting observation in the action sequence is the system actively trying to 

manage the ECD by reducing the flowrate, after the cuttings bed has been removed. 

Initially, the system suggests increasing the flowrate and the RPM, which helps with 

cuttings bed removal (as can be seen by the reduced Euclidean distance), and then later 

tries to reduce the ECD.   

5.3.2.2.2 Plan 2 

Another planning operation was performed by changing the flowrate and RPM 

thresholds, as shown in Table 11. No changes were made to the mud density and 

rheology thresholds, and the weights associated with the different reward components 

were also unaltered.  
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Table 11 Modified flowrate and RPM thresholds for varying the action-space. 

Control Variable Number of Discrete 

Values 

Range of Values 

Flowrate (GPM) 10 [0, 1500] 

Drillstring RPM (rev/min) 10 [0, 150] 

Equation (64) represents the action sequence (𝑎𝑠𝑒𝑞2) output by the planning 

system, over a 40-minute (eight decision epochs) interval. Due to the truncated flowrate 

and RPM thresholds, the system suggests different mud density and rheology than for 

𝑎𝑠𝑒𝑞1 to help with the cuttings removal.  

𝑎𝑠𝑒𝑞2 =
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The final state of the system (𝑠𝑇𝐷_𝑐𝑖𝑟𝑐2), represented by equation (65), is shown in 

Figure 60.  

𝑠𝑇𝐷_𝑐𝑖𝑟𝑐2 =
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(65) 
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Figure 60 (a) ECD profile (b) Cuttings bed height (c) Progression of the normalized 

Euclidean distance of the system states for 𝑎𝑠𝑒𝑞2. 

The normalized Euclidean distance does decrease with time, but it only reaches 

the 0.2 line on the seventh action (Figure 61(b)). An interesting observation in Figure 

61(a) is that the cuttings bed is not entirely removed but is reduced to the goal state 

(green-shaded zone) values.  

 

Figure 61 (a) Progression of the cuttings bed (b) Progression of the normalized Euclidean 

distance of the system states for 𝑎𝑠𝑒𝑞2. 
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The ECD is also in the safe-but-suboptimal region, but it is much higher than for 

the first case due to a higher suggested mud density. Although, the final state 

representations for both the plans (𝑎𝑠𝑒𝑞1 and 𝑎𝑠𝑒𝑞2) are the same, the average 𝑉 value 

calculated for 𝑎𝑠𝑒𝑞2 is 0.79, which is lower than for  𝑎𝑠𝑒𝑞1. The progression of rewards 

for the sequence 𝑎𝑠𝑒𝑞2 is shown in Figure 62. 

 

Figure 62 Progression of the rewards associated with 𝑎𝑠𝑒𝑞2. 

5.3.2.3 Discussion  

For both the plans, 𝑎𝑠𝑒𝑞1 𝑎𝑛𝑑 𝑎𝑠𝑒𝑞2, the decision-engine was able to self-learn by 

simulating multiple episodes of experience and output action sequences that would have 

helped move the system towards the goal states. To summarize:     

- The non-holonomic nature of drilling operations combined with the decision engine's 

long-term planning capabilities allow for more robust plans. An example of this is the 

system selecting appropriate mud properties at the beginning of the circulation cycle 

by evaluating multiple steps into the future. Both plans that were generated result in a 
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better outcome than the actual plan generated and implemented by a human decision-

maker. 

- Tuning the weights associated with the different reward components allows 

prioritizing different objectives or different sections of the well over others.  

- Utilizing the domain-knowledge enriched MCTS allows for faster and more efficient 

planning, and well-defined heuristic functions make such planning systems 

implementable in the field. Exhaustively evaluating all nodes in the search tree to the 

eighth level (eight decision epochs or 40-minutes) would require over a hundred 

million simulations, as well as require storing the results of each state-action 

transition. This would be highly computationally and memory inefficient. MCTS, on 

the other hand, requires a number of simulations that are many orders of magnitude 

lower (only a few thousand in total), and all state-action transition results do not need 

to be stored. For the cases discussed in this paper, the planning algorithm, without 

any parallel processing or multi-threading on a standard laptop using an 

unstreamlined python code, was able to generate these plans in under an hour.  

- Planning with higher 𝐶𝑒𝑥𝑝 values does result in the convergence of the state’s 

Euclidean distance towards the 0.2 line, but it requires many more simulations. On 

the other hand, lower 𝐶𝑒𝑥𝑝 values introduce an element of bias depending on the order 

in which the nodes are added to the tree, which itself depends on the random rollout 

policy for MC simulations.  

5.4 SUMMARY  

This chapter discusses a method for the development of intelligent decision 

engines for well construction operations by utilizing an MDP formalism (detailed in 

Chapter 4) with the MCTS for action planning. This method is demonstrated by 
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implementing a hole cleaning action planning system and comparing its performance 

against a human decision maker’s performance. To summarize:  

- MCTS planning systems allow for a hybrid approach to managing conflicting 

objectives by combining the advantages of the exploration-exploitation trade-off 

offered by the MCTS, with domain-knowledge derived heuristics, thereby helping 

make better decisions. 

- A combination of the digital twin and a non-sparse reward function, with 

backpropagation of the episodic returns, allows the system to learn from simulated 

experience. A non-sparse reward structure ensures that the feedback received by the 

agent is frequent and meaningful, thereby speeding up the policy improvement 

process.  

- The underlying tree and rollout policies of the MCTS algorithm can be enhanced by 

using well-defined process-specific heuristics. This assists in improving the 

convergence rate of the system towards an optimal action sequence. For the hole 

cleaning system, the heuristic was designed to balance safety, performance, 

feasibility, and proximity constraints. 

- Utilizing such systems can aid in overall performance improvement by eliminating 

the need to wait on decisions, as well as suggesting optimal drilling parameters for 

the given wellbore condition. 
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Chapter 6: Conclusions and Recommendations 

The dissertation attempted to address the problem of inherent bias that can result 

because of human-centered decision-making in the well construction domain by 

proposing a framework for the development of intelligent decision-engines. 

6.1 CONCLUSIONS AND MAJOR CONTRIBUTIONS 

The development of such decision-engines requires addressing the following three 

key elements: 

- Digital twinning of the underlying well construction process, which is 

discussed in Chapter 3. Here, a novel three-step framework (identification of 

the objectives, building the digital twin, and performance tracking and 

scenario analysis) was developed for setting up twinning systems to help 

analyze potential drilling scenarios for action planning. This robust cyclic 

methodology builds and uses the twinning system for single-step scenario 

analysis. Hence, more informed decision-making is achieved, which improves 

operational performance and drilling efficiency. The presented approach also 

opens the doors for the digital twinning of any well construction operation. 

- MDP formulation or setting up the decision-engine, as is detailed in 

Chapter 4. Here, a novel method for designing well construction operations as 

finite-horizon sequential-decision making systems for long-term action 

planning was detailed. The concept of digital twinning is combined with a 

well-crafted non-sparse normalized reward function to quantify states and 

evaluate state-action transitions. Such representation of well construction 

operations allows for an unbiased quantification and comparison of different 
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action sequences or scenarios, thereby allowing ranking of the different 

sequences based on their long-term returns.   

- Planning or solving the MDP formulation to find an optimal action sequence 

or plan, which is discussed in Chapter 5. The concept of self-play used by 

game AI engines (such as in Google DeepMind’s AlphaGo and AlphaZero) 

was adapted for well construction operations. Here, a drilling agent 

continually improves the policy (or the action plan) by backpropagating 

returns from simulated episodes of experience that are generated using the 

digital twin. The MCTS algorithm, enhanced by domain-specific heuristics to 

help speed up the learning, was utilized for action planning. The development 

of such intelligent sequential decision-making systems for well construction 

operations that use heuristics and an exploration-exploitation trade-off to 

guide the search towards promising regions of the search space is novel. 

This methodology was demonstrated through the chapters by building such a 

system for hole cleaning advisory, which inherently is a multi-step decision-making 

problem. Such a system tracks the performance by simulating different hole cleaning 

actions and provides decisions regarding action planning. For the real well applications 

presented, using the action plans output by this system would have significantly reduced 

the cuttings bed height (to within safe limits for performing tripping, running casing and 

cementing operations) while maintaining the ECD to within the drilling margin. This 

was, in part, accomplished by the ability of the decision-engine to intelligently generate, 

evaluate and learn by simulating multiple scenarios, multiple steps into the future, which 

enabled it to suggest the optimal mud rheology at the beginning of the plan. Such 

complex multi-step scenario analysis and evaluation would have been difficult for a 

human decision-maker to perform, as was demonstrated by the original sequence of 
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actions taken. Moreover, the designed heuristic function utilized in the MCTS helped 

reduce the required number of simulations by a thousand-fold as compared to the vanilla 

MCTS, thereby improving the convergence rate and the memory efficiency.      

Hence, completely automated decision making in terms of hole cleaning was 

achieved and validated. The automated process of classifying hole cleaning system states, 

defining controllable action variables, simulating, and learning from the quantification of 

multiple viable hole cleaning action sequences, and finally selecting the best course of 

action, is another novel contribution of this work.  

6.2 RECOMMENDATIONS 

6.2.1 Applications  

- The methodology presented in the dissertation is readily applicable across a 

multitude of field operations. For instance, such decision engines can be 

developed for well construction applications, such as well control, drilling 

parameter optimization, tripping automation, and cementing.  

- Furthermore, in the long-term, such decision engines can be integrated into a 

rig’s control system to help automate monitoring, planning, and control of 

action variables such as drilling rate, drillstring rotation speed, tripping speed, 

flowrate, and mud properties, thereby fully automating drilling operations and 

avoiding any human-centric bias.   

6.2.2 Technical improvements   

- Value function approximation techniques can be used for quantifying the 

state-space by treating the state-space as a continuous set, with discrete action-

space. 
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- Policy-gradient methods or actor-critic reinforcement learning methods can be 

used to find the best action for any given state by treating both the state- and 

action-space as continuous. 

- Real-time downhole sensor data, when available, can be incorporated to 

enhance the digital twin models.   

- The speed of the search of the action-space can be improved multifold by 

utilizing techniques such as: 

o Multi-threading and parallel processing by running several instances of 

the MCTS simultaneously to build and learn from multiple trees in 

parallel  

o Implementing the underlying code more optimally in a C or C++ 

environment, as opposed to in python  
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Appendix A: List of Symbols and Abbreviations 

A.1 SYMBOLS  

Symbol Meaning 

𝐴 Action-space 

𝐴𝑏𝑖𝑡 Area of the drill bit  

𝐴𝑓𝑒 Action set associated with feasibility constraints (for hole cleaning 

heuristic) 

𝐴𝑓𝑙𝑜𝑤  Annular flow area available to the drilling mud 

𝐴𝑝𝑥  Action set associated with proximity metric (for hole cleaning 

heuristic) 

𝐴𝑟𝑜𝑙𝑙𝑜𝑢𝑡  Reduced action space for a state during the rollout phase of the 

MCTS 

𝐴𝑠 Action space from state 𝑠 

𝐴𝑠𝑡 The action space of the node associated with state 𝑠𝑡 

𝐴𝑠𝑝 Action set associated with safety and performance metrics (for hole 

cleaning heuristic) 

𝐴𝑠𝑞 Action set associated with sequential metric (for hole cleaning 

heuristic) 

𝑎−1 The most recently executed action 

𝑎𝑎𝑔𝑔 Aggressive actions representing greater magnitude changes in values 

of action control variables relative to the most recent action 

𝑎𝑟𝑒𝑔 Regular actions representing small changes in action control variables 

with respect to the most recent action  

𝑎𝑠𝑒𝑞1 Action sequence recommended by the decision engine for the first 

planning case  

𝑎𝑠𝑒𝑞2 Action sequence recommended by the decision engine for the second 

planning case  

𝑎𝑡 Action executed by the agent at time 𝑡  

𝐶𝑎𝑛𝑔 Correction factor (in the hole cleaning model) to account for the 

inclination angle 
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𝐶𝑒𝑥𝑝 The exploration factor in the UCT formula 

𝐶𝑔𝑒𝑜_𝑑  Correction factor (in the hole cleaning model) for geometry 

(hydraulic diameter)  

𝐶𝑔𝑒𝑜_𝑖𝑛𝑐  Correction factor (in the hole cleaning model) for geometry 

(inclination angle) 

𝐶𝑔𝑒𝑜_𝑝𝑣 Correction factor (in the hole cleaning model) for geometry (mud 

rheology) 

𝐶𝑀𝑊  Correction factor (in the hole cleaning model) for the mud weight  

𝐶𝑟𝑝𝑚 Correction factor (in the hole cleaning model) for drillpipe rotation  

𝐶𝑠𝑖𝑧𝑒  Correction factor (in the hole cleaning model) for the size of the 

cuttings 

𝐶𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙  Correction factor (in the hole cleaning model) for vertical section 

𝑐𝑐𝑢𝑡𝑡  Concentration of cuttings in the flow  

𝐷𝑖 Diameter of the drillstring element 

𝐷𝑜 Diameter of the borehole (or the casing) 

𝐷𝑜_𝑘  Outer diameter of the kth control volume segment (𝑖𝑛𝑐ℎ𝑒𝑠) 

𝐷𝑇𝑉𝐷  Total vertical depth (𝑚) 

𝑑𝑐𝑐  Center to center distance (between the drillstring and the borehole) 

𝑑𝑛𝑜𝑟𝑚−𝑒𝑢𝑐  Normalized Euclidean distance for the current state 

𝑑𝑃 The frictional pressure drop in a control volume element 

𝑑𝑥 Change in a control volume element’s total measured depth 

𝑑𝑧 Change in a control volume element’s total vertical depth 

𝐸𝐶𝐷𝑘
𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒  Absolute ECD value in the kth control volume segment (ppg) 

𝐸𝐶𝐷𝑎𝑣𝑔 The average ECD value for an inclination interval (ppg) 

𝐸𝐶𝐷𝑖𝑛𝑐. Functional value of ECD in the inclination interval segment 𝑖𝑛𝑐. 

𝑒𝑐𝑐 The eccentricity of the drillstring element in the borehole 

|𝑒𝑥𝑝| The level at 𝑛𝑜𝑑𝑒𝑒𝑥𝑝 is in the tree 

𝑓𝑓  Friction factor associated with the flow of drilling mud in the 

drillstring and the annulus 
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𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒 Rate of flow of the drilling mud through the drillstring controlled by 

the mud pump on the surface (measured in GPM) 

𝐺𝑇  Net discounted return to 𝑇 decision epochs  

𝑔 Acceleration due to gravity (9.81 𝑚/𝑠2) 

𝐻 Normalized cuttings bed height for an inclination interval 

𝐻𝑖𝑛𝑐. Functional value of the cuttings bed height in the inclination interval 

segment 𝑖𝑛𝑐𝑙. 

𝐻𝑘
𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒  Absolute cuttings bed height in the kth control volume segment 

(inches) 

𝐻𝑘
𝑛𝑜𝑟𝑚  Normalized cuttings bed height in the kth control volume segment 

𝑖𝑛𝑐𝑙 Inclination angle range (degrees) 

𝑁(𝑠) Total number of visits to the state 𝑠 

𝑁(𝑠, 𝑎) Number of times action 𝑎 has been taken from state 𝑠 

𝑁𝑠𝑒𝑔 Number of control volume segments within an inclination interval 

segment  

𝑁𝑠𝑡 Total number of visits to the node associated with state 𝑠𝑡 

𝑛𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  Number of discrete values possible for a given control variable 

𝑛𝑜𝑑𝑒0 Root node corresponding to the starting state 𝑠0 

𝑛𝑜𝑑𝑒𝑒𝑥𝑝 Randomly expanded node from the leaf node during the expansion 

phase of the MCTS 

𝑛𝑜𝑑𝑒𝑙𝑒𝑎𝑓 Leaf node reached at the end of the selection phase of the MCTS 

𝑛𝑜𝑑𝑒𝑡 Node at decision epoch 𝑡 

𝑃 Transition probability set 

𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
_𝑙𝑜𝑠𝑠_𝐷𝑀𝐷

 Frictional pressure drop in the annulus (Pa) at a measured depth H 

𝑃ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐_𝐷𝑇𝑉𝐷  Hydrostatic Pressure (Pa) at a vertical depth of 𝑇𝑉𝐷𝐻 

𝑃𝑠𝑠′
𝑎  Transition probability of a system in the state 𝑠 to the state 𝑠’ when an 

agent executes action 𝑎 

𝑝𝑖  ith parameter component of the state vector 

𝑝𝑔
𝑖
 Goal state value of the ith parameter component of the state vector 
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𝑄 Flowrate of the drilling mud  

𝑄(𝑠, 𝑎) Average value associated with implementing action 𝑎 from state 𝑠 

𝑄𝑈𝐶𝑇(𝑠, 𝑎) The upper confidence bound or the urgency term in the UCT formula 

𝑄𝜋 State-action value function   

𝑅 Reward set 

𝑅𝐸𝐶𝐷𝑖𝑛𝑐𝑙. State reward component associated with ECD in the inclination 

interval 𝑖𝑛𝑐𝑙. 

𝑅𝐻𝑖𝑛𝑐𝑙. State reward component associated with cuttings bed height in the 

inclination interval 𝑖𝑛𝑐𝑙. 

𝑅𝑃𝑉 Action Penalty component associated with changing mud PV  

𝑅𝑅𝑂𝑃  Action Penalty component associated with changing ROP  

𝑅𝑅𝑃𝑀 Action Penalty component associated with changing RPM  

𝑅𝑆 State transition based reward set  

𝑅𝑆_𝑛𝑒𝑡  Non-normalized state reward for the hole cleaning system 

𝑅𝑌𝑃  Action Penalty component associated with changing mud YP  

𝑅𝑎_𝑑𝑒𝑛𝑠𝑖𝑡𝑦  Action reward component associated with the density value 

𝑅𝑎_𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒  Action reward component associated with the flowrate value  

𝑅𝑎_𝑃𝑉 Action reward component associated with the PV value 

𝑅𝑎_𝑅𝑂𝑃  Action reward component associated with the ROP value  

𝑅𝑎_𝑅𝑃𝑀 Action reward component associated with the RPM value 

𝑅𝑎_𝑌𝑃  Action reward component associated with the YP value 

𝑅𝑎𝑝 Action transition based penalty set 

𝑅𝑎𝑝_𝑛𝑒𝑡  Non-normalized action penalty for the hole cleaning system 

𝑅𝑎𝑝_𝑛𝑜𝑟𝑚 Normalized action penalty for the hole cleaning system 

𝑅𝑎𝑟  Action value based reward set  

𝑅𝑎𝑟_𝑛𝑒𝑡  Non-normalized action reward for the hole cleaning system 

𝑅𝑎𝑟_𝑛𝑜𝑟𝑚  Normalized action reward for the hole cleaning system  

𝑅𝑑𝑒𝑛𝑠𝑖𝑡𝑦  Action Penalty component associated with changing mud density  
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𝑅𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒  Action Penalty component associated with changing flowrate  

𝑅𝑛𝑒𝑡  Net normalized reward function for the hole cleaning system 

𝑅𝑠_𝑛𝑜𝑟𝑚 Normalized state reward for the hole cleaning system 

𝑟𝑒𝑙𝑒𝑚𝑒𝑛𝑡  Radius of the drillstring element  

𝑟𝑔𝑟𝑒𝑒𝑑  Radius of the greed sphere for 𝐴𝑝𝑥 evaluation  

𝑟𝑘 Reward associated with the 𝑘𝑡ℎ state-action transition 

𝑟𝑡 Reward received by the system at time 𝑡 

𝑆 State-space 

𝑠𝑇𝐷  State of the hole cleaning system at the well TD 

𝑠𝑇𝐷_𝑐𝑖𝑟𝑐  State of the wellbore after performing a circulation cycle at TD  

𝑠𝑇𝐷_𝑐𝑖𝑟𝑐1 State of the wellbore after performing a circulation cycle at TD 

following 𝑎𝑠𝑒𝑞1 

𝑠𝑇𝐷_𝑐𝑖𝑟𝑐2 State of the wellbore after performing a circulation cycle at TD 

following 𝑎𝑠𝑒𝑞2 

𝑠𝑔𝑜𝑎𝑙  Goal or desired state for the hole cleaning system 

𝑠𝑔𝑜𝑎𝑙
“  The states near the goal state (for evaluating the 𝐴𝑝𝑥 set) 

𝑠𝑡 State of the system at time 𝑡 

𝑇 Number of decision epochs to evaluate till in the future  

𝑡 Time step or decision epoch 𝑡 

𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛  Time interval being considered for evaluation  

𝑡𝑚𝑎𝑥  Time available for MCTS algorithm to plan 

𝑉 The average return value of an action sequence 

𝑉𝜋 State value function  

𝑣𝑎𝑥𝑖𝑎𝑙  Axial flow velocity of the drilling mud in the annulus  

𝑣𝑎𝑥𝑖𝑎𝑙_𝑑𝑟𝑖𝑙𝑙𝑠𝑡𝑟𝑖𝑛𝑔  Axial component of the drillstring’s velocity 

𝑣𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  Critical velocity (or CTFV) 

𝑣𝑐𝑢𝑡𝑡  Velocity of the cuttings in the fluid flow  

𝑣𝑠𝑙𝑖𝑝  Slip velocity  



 147 

𝑣𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙  Tangential component of the drillstring’s velocity  

𝑣𝑜𝑙𝑐𝑢𝑡𝑡𝑖𝑛𝑔𝑠 Volume of cuttings generated in the given time interval  

𝑊𝑎𝑝  Weight set associated with the action transition penalty 

𝑊𝑎𝑝_𝑛𝑜𝑟𝑚 Weight value associated with the normalized action penalty  

𝑊𝑎𝑟  Weight set associated with the action value reward  

𝑊𝑎𝑟_𝑛𝑜𝑟𝑚   Weight value associated with the normalized action reward 

𝑊𝑠  Weight set associated with state transition reward  

𝑊𝑠_𝑛𝑜𝑟𝑚 Weight value associated with the normalized state reward 

𝑤𝑢𝑛𝑖𝑡  Unit weight of the drillstring element  

∆𝑁𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒  Number of interval changes between consecutive actions 

∆𝑤 Difference between the FG and SL of the drilling window (ppg) 

𝛼 Dog-leg angle  

𝛽 Buoyancy factor 

𝜃 Inclination angle  

∅ Azimuth angle 

𝜑 Angle between the resultant and the tangential drillstring velocity 

components 

𝜏 Torque  

𝜇 Friction factor  

𝜌𝑚𝑢𝑑  Density of the drilling mud (ppg) 

𝜌𝑠𝑡𝑒𝑒𝑙  Density of steel  

𝜋 Policy  

𝜋ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐_𝑎 Problem specific heuristic (probability of selecting action 𝑎) 

𝜋𝑡𝑟𝑒𝑒  Tree policy – the action selected from a given node in the search tree 

during the selection phase of the MCTS  

𝛾 Discount factor for return calculation 
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A.2 ABBREVIATIONS  

Abbreviation Meaning 

𝐶𝐵𝑀 Condition-based maintenance 

𝐶𝑅𝑉 Critical resuspension velocity 

𝐶𝑇𝐹𝑉 Critical transport fluid velocity 

𝐷𝐿𝑆 Dog-leg severity 

𝐸𝐶𝐷 Equivalent circulation density (ppg) 

𝐹𝐺 Fracture gradient (ppg) 

𝐺𝑃𝑀 Gallons per minute  

𝑀𝐿𝑊𝐷 Measurement and logging while drilling 

𝑁𝑃𝑇 Non-productive time 

𝑃𝑂𝑂𝐻 Pulling out of hole 

𝑃𝑃𝐺 Pounds per gallon 

𝑃𝑉 Plastic viscosity (cP) 

𝑃𝑊𝐷 Pressure while drilling 

𝑅𝑂𝑃 Rate of Penetration (ft/hr.) 

𝑅𝑃𝑀 Surface rotation rate of the drillstring (revs/min) 

𝑅𝑇 Real-time 

𝑆𝐿 Stability limit (ppg) 

𝑇𝐷 Total depth of the well (feet) 

𝑊𝑂𝐵 Weight on bit (Klbs.) 

𝑌𝑃 Yield point (lb./100ft2) 
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Appendix B: Development of a Digital Twinning System for Logistics 

and Planning  

During well construction, drilling of a well section or interval is generally 

followed by circulation cycles for hole cleaning, then casing and cementing operations, 

and in some cases, by clean-out operations and casing/formation integrity tests. These 

steps are repeated until the objectives laid out in the drilling program are met, which 

includes drilling the well to its planned total depth (TD). The unpredictability in reaching 

TD affects the overall logistics and completion schedule of the well, which, in turn, 

affects the drilling program. It is, therefore, essential to be able to estimate and optimize 

the times required for the different well construction operations.  

B.1 DETERMINING THE OBJECTIVE OF THE TWINNING SYSTEM 

This section discusses the development of a digital twin for predicting, updating, 

and optimizing in real-time, the time remaining to drill a section or reach well TD, 

referred to as ‘time to TD’. This time prediction can be made using information such as: 

- The operational performance of the offset (historical) wells   

- The current position of the drill bit relative to the well plan  

- The operational performance of the current well up to its present depth   

- Degradation in performance of drilling tools, equipment, or drill bit  

B.2 BUILDING THE DIGITAL TWIN 

The following sections describe the different steps involved in building this 

digital twin. 
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B.2.1 Identification of system outputs  

The first step in estimating time to TD is the identification of components that 

comprise this time, and the factors affecting these individual components. Time to TD 

from the standpoint of rig activities is the sum of anticipated times spent performing the 

different operations (or time spent in different rig states). The following generally 

comprise time to TD: 

- Total anticipated on-bottom drilling time  

- Total time for acquiring the directional surveys  

- Total expected time for making connections  

- Total tripping time (including times for tripping in, tripping out, making up and 

laying down BHAs) 

- Total circulation time 

- Total miscellaneous time to capture the times for all other activities and 

operations not considered above 

The anticipated on-bottom drilling time further depends on the following: 

- Total distances to be drilled individually by rotary and slide drilling  

- The remaining formations to be drilled through and the approximate depths of 

each  

- The estimated average drilling speeds (for both slide and rotary drilling modes) 

through each remaining formation  

Approximation of the total connection and the total survey times requires 

estimating the remaining number of connections and surveys until the planned TD is 

reached. Similarly, metrics are designed to extrapolate the estimated circulation and 

tripping times until the planned TD is reached. To summarize, the time to TD can be 

calculated using equation (66).  
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𝑇𝑤𝑒𝑙𝑙 𝑇𝐷 = 𝑇𝐷𝑟𝑖𝑙𝑙𝑖𝑛𝑔 + 𝑇𝑆𝑢𝑟𝑣𝑒𝑦𝑠 + 𝑇𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 + 𝑇𝑇𝑟𝑖𝑝𝑝𝑖𝑛𝑔 + 𝑇𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

+ 𝑇𝑀𝑖𝑠𝑐𝑒𝑙𝑙𝑎𝑛𝑒𝑜𝑢𝑠  
(66) 

B.2.2 Determining the required models  

The next step is the identification of models required to calculate the individual 

components. Knowledge derived from offset wells is used in combination with the 

current well’s performance, along with the information about planned tasks, to anticipate 

future events and estimate the different time components. The following models need to 

be implemented to accomplish this: 

- Rig state detection engine to classify the real-time data into different operational 

categories such as on-bottom drilling (slide and rotary drilling), tripping (in and 

out), circulating, reaming, and making connections. 

- Slide and rotary drilling predictive models to predict relative amounts of slide and 

rotary drilling required until the TD, based on the well plan and the learnings 

from offset wells  

- Predictive data-based models to estimate different component times by utilizing 

an adaptive weighed scheme for combining statistics obtained from real-time data 

and offset well data, as shown in Figure 63. 

In the adaptive weighted scheme, the most recently acquired data has the highest 

weight (W1), while historical data is assigned the lowest weight (W4). The sum of all the 

weights is 1, and the various times (t1, t2, etc.) are not fixed; instead, they are functions of 

the number of data points collected thus far. 

 



 152 

 

Figure 63 Adaptive weighted scheme for combining data collected at different times (for 

average connection time approximation). 

B.2.3 Identification of the data  

The following data streams are required for implementing this digital twin: 

- Real-time drilling data obtained from the surface sensor measurements, 

specifically data channels such as drillstring RPM, applied WOB, drilling ROP, 

flowrate, standpipe pressure, tripping speed, surface torque and hookload 

measurements 

- Formation top information (anticipated start and end depths of different 

formations) 

- BHA and bit information, obtained from the well plan 
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- Well trajectory information, derived from the well plan and the well survey 

data, quantified using azimuth and inclination angles at different depths along the 

well 

- Descriptive statistics, derived from offset well data, to quantify past 

performances for the various operations 

Figure 64 summarizes the structure of the designed digital twin. First, the offset 

well data in combination with the current well’s well plan, and formation top information 

is used to derive pre-drill or ‘a priori’ initializations. Subsequently, these initializations, 

in conjunction with RT drilling data, are fed into the multi-model digital twin. The twin 

then estimates the different time components that are summed together to make a time to 

TD prediction. As a new real-time data point is collected, the various statistics are re-

calculated, and a new prediction is made. The differences between this prediction and the 

actual time are then utilized for tuning the adaptive weights of the prediction model. 

Therefore, the structure of the developed digital twin ensures that the system is 

continuously learning and updating itself based on the latest data. 

 

Figure 64 Final structure of the designed digital twin for making time to TD predictions. 
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B.3 APPLICATION OF THE TWIN FOR PERFORMANCE TRACKING AND SCENARIO 

ANALYSIS 

The developed digital twin was implemented on a dataset comprising four wells; 

three were used as ‘offset wells’, and the fourth was treated as the ‘test well’. Figure 65 

illustrates the use of the three offset wells to derive a priori initializations for the twin. 

Initially, the number of collected data points from the test well is low. This results in the 

times and weights associated with the adaptive weighting tuned to give more importance 

to the offset well data for making predictions. However, as more real-time data is 

collected, the twin starts learning, thereby updating the different weights and times.  

 

Figure 65 Utilizing offset well data for deriving a priori initializations. 
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B.3.1 Performance tracking  

The twin was used to make real-time predictions for the time required to reach TD 

for drilling the horizontal lateral section of the test well. As per the well plan, the lateral 

section was scheduled to be drilled with a single bit run starting at approximately 11,500 

feet till the planned TD of 20,700 feet. However, unexpected tool failures mandated three 

bit runs (or consequently two trips in and out of the borehole to replace the failed tools). 

Since these trips were not planned, the initial predictions made by the twin were 

optimistic. However, the predictions became more realistic once the rig state engine 

identified the unexpected trips. Figure 66 shows the results of the predictions on plots 

between the predicted time versus the actual operation times. Figure 66(a) details the 

individual time predictions for different operations. Figure 66(b) shows the total time to 

TD predictions along with the three bit runs. Another feature of the various time 

predictions is their ability to adapt rapidly due to: 

- Different weights being assigned to different data points at different times 

(adaptive weighting); 

- Continuous real-time re-evaluation of the slide and rotary drilling requirements.  
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Figure 66 (a) Estimated individual times for different rig states versus time, (b) Total 

time to TD predictions versus time. 

Figure 67 is another way to visualize the predictions by overlaying the predicted 

and actual remaining times to TD versus the drilled hole depth. The two time jumps 

around 13,250 feet and 15,850 feet represent the trips to change the failed tools. Spikes 

are visible in the predicted times in both these instances as soon as the algorithm 
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identifies the beginning of tripping operations. Since a spike accounts for the time related 

to completing the tripping procedure from the given depth, it is directly proportional to 

the depth at which tripping starts. 

 

Figure 67 Comparison of the predicted and actual remaining times to TD versus drilled 

hole depth. 

B.3.2 Scenario analysis  

Like the hole cleaning advisory twin, this twin also permits scenario analysis to 

estimate the outcome of different logistical actions on the time to reach TD. Some 

examples of such logistical decisions include: 

- Analyzing the effect of tripping out at a certain depth to change the drill bit 

- Examining the impact of different drilling parameters on the various operational 

times 

- Inspecting ‘what-if’ scenarios with varying values of time components such as 

tripping speeds or connection times  
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Some examples of scenarios that were analyzed using basic CBM models and 

data are summarized in Figure 68. 

 

Figure 68 Analyzing post-run ‘what-if’ scenarios. 

Observations include: 

- Integrating CBM models such as for estimating bit degradation provides the twin 

with the ability to estimate the bit condition and remaining useful bit life in RT. 

This, in turn, allows for evaluating the benefits of continued drilling with a 

potentially worn bit, versus the time cost of tripping operations to change to a 

newer bit. The entire horizontal section (over 9,000 feet) was drilled using a 

single drill bit. However, if the drill bit were changed (to a newer bit) during 

either of the trips, it would have resulted in reducing the total drilling time. 

Assuming a linear bit degradation as a function of the depth drilled would have 
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resulted in finishing the last section almost 4 hours faster if the bit were changed 

during the second trip. 

- Operationally, the average time for making a connection while drilling the well 

was 171 seconds, while the P25 time was 112 seconds (Figure 69).  Making all 

connections throughout drilling at 112 seconds would have resulted in the total 

operation time being reduced by 1.64 hours. 

 

Figure 69 Connection times for the drilling operation. 

- This twin is a good starting point for making initial time predictions and 

estimations and can be further enhanced by using advanced process models. 

Integrating more comprehensive CBM models for mud motor failure would not 

only have allowed for the prediction of ‘unexpected’ tool failures, thereby saving 

the extra downhole trips (NPT prevention), but also suggested optimal drilling 

parameters to prolong tool life. 
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B.4 SUMMARY  

This section details another application of the concept of digital twinning for 

performance tracking and scenario analysis in well construction. Here, an algorithm and 

its implementation are presented to make predictions in real-time, of the approximate 

time remaining to TD. This estimation to TD encompasses the rig state detection, 

descriptive statistical analysis, and estimation of individual rig state times for both 

historical as well as real-time wells. The underlying algorithm employs an adaptive 

weighting scheme wherein different weights are assigned to different data based on when 

it was collected.  The predictions are then utilized for analyzing multiple ‘what-if’ 

scenarios. The time-based predictions to TD generated by a digital twin can help plan and 

optimize the logistics on a rig. Moreover, digital twins can help predict and thereby 

prevent unwanted failures, reducing the likelihood of NPT events. This can bring about 

significant benefits in terms of reducing well construction time and unnecessary trouble 

costs.   
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Appendix C: Monte Carlo Tree Search Enhancements  

Many strategies exist that help enhance the vanilla policies of the Monte Carlo 

tree search (MCTS), some of the more important ones are (Browne et al., 2012; 

CHASLOT et al., 2008):  

- Progressive strategies 

- Prior knowledge  

- Rapid action value evaluation (RAVE)  

These strategies require evaluation of a heuristic, which can either be programmed (be 

rule-based) or be learned in real-time or be a combination of both.  

C.1 PROGRESSIVE STRATEGIES 

For systems with large state and action spaces, progressive strategies can be used 

to transition between simulation strategy and the selection strategy. A combination of 

some domain-specific heuristic and the vanilla MCTS selection policy is used. When 

only a few simulations have been run, a strategy similar to the simulation policy is used. 

However, as the number of simulations or episodes increase, these strategies converge to 

the standard UCT selection policy. Progressive widening and progressive bias are two 

such strategies. 

Progressive bias introduces a function of some knowledge-based heuristic into the 

UCT term, the effect of which decreases as the number of simulations increase. Equation 

(67) depicts the modified selection policy, where 𝑓(𝑁(𝑠, 𝑎) is the progressive bias term, 

which is evaluated using the method shown in equation (68). 𝐻𝑁(𝑠,𝑎) is the heuristic 

representing the domain knowledge (CHASLOT et al., 2008). 

𝜋𝑡𝑟𝑒𝑒 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴 [𝑄(𝑠, 𝑎) + 𝐶𝑒𝑥𝑝. √
𝑙𝑛𝑁𝑠
𝑁(𝑠, 𝑎)

+ 𝑓(𝑁(𝑠, 𝑎))] 
(67) 
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𝑓(𝑁(𝑠, 𝑎)) =  
𝐻𝑁(𝑠,𝑎)

𝑛(𝑠, 𝑎) + 1
  

(68) 

The heuristic inherently allows for exploration of the most promising node when 

there is not enough knowledge available, and as the number of simulations increases, 

𝑓(𝑁(𝑠, 𝑎)) decreases, thereby allowing the 𝑄(𝑠, 𝑎) to take over. 

Progressive widening, also referred to as progressive unpruning, initially 

artificially reduces the branching factor during the selection phase. However, as the 

number of simulations increases, the branching factor is also slowly increased. A 

heuristic function 𝐻𝑁(𝑠,𝑎) is used to evaluate all actions, and eliminate or prune some 

based on low heuristic scores.  

C.2 PRIOR KNOWLEDGE  

A method to enhance the selection policy is by introducing some ‘prior-

knowledge’ into the UCT term, as shown in equation (69). The term, 𝑄(𝑠, 𝑎)𝑝𝑟𝑖𝑜𝑟 is an 

estimation of the value function based on historical process or simulation data, and 𝑁𝑝𝑟𝑖𝑜𝑟 

is an experimentally tuned parameter to represent an equivalent of the number of visits to 

a node. 

𝜋𝑡𝑟𝑒𝑒 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴 [
𝑁(𝑠, 𝑎). 𝑄(𝑠, 𝑎)𝑐𝑢𝑟𝑟𝑒𝑛𝑡 +𝑁𝑝𝑟𝑖𝑜𝑟 . 𝑄(𝑠, 𝑎)𝑝𝑟𝑖𝑜𝑟

𝑁𝑝𝑟𝑖𝑜𝑟 + 𝑁(𝑠, 𝑎)
 

+ 𝐶𝑒𝑥𝑝. √
𝑙𝑛 𝑁𝑠

𝑁(𝑠, 𝑎) + 𝑁𝑝𝑟𝑖𝑜𝑟  
] 

(69) 

Instead of selecting a random node, a node is selected based on the prior 

knowledge heuristic. 
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C.3 RAVE   

Since every episode of the MCTS is independently simulated, the algorithm is 

unable to generalize between related positions or related actions. The fundamental idea of 

the RAVE algorithm is to allow the sharing of knowledge between different parts of the 

search space by using an All moves as first (AMAF) heuristic for every node in the 

search tree. The underlying concept of AMAF is to update all relevant parts of the search 

space for every action taken. Equation (70) shows the modifications to the selection 

policy, and equation (71) shows the method for evaluating the AMAF term for every 

node in the simulated episode (Silver & Gelly, 2011).  

𝜋𝑡𝑟𝑒𝑒 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴 [(1 − 𝛽(𝑁𝑠)) ∗ ( 𝑄(𝑠, 𝑎) + 𝐶𝑒𝑥𝑝 . √
𝑙𝑛 𝑁𝑠
𝑁(𝑠, 𝑎)

)

+ 𝛽(𝑁𝑠) ∗ 𝐴𝑀𝐴𝐹𝑠,(𝑠,𝑎)] 

(70) 

𝐴𝑀𝐴𝐹 = 𝐴𝑀𝐴𝐹 +  
𝑄 − 𝐴𝑀𝐴𝐹

𝑛𝑎𝑚𝑎𝑓
 (71) 

Every simulation path in which the action 𝑎 is implemented, and the system 

reaches a value 𝑄, the value of the AMAF metric if incrementally changed to account for 

that state-action transition. 𝛽(𝑁𝑠) is an experimentally tuned weighting parameter for a 

given state and action.   

A drawback of the RAVE algorithm is the requirement to keep track of the 

AMAF values for every node. 
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Appendix D: Publications  

D.1 PUBLISHED PAPERS 

- Zhou, Y., Baumgartner, T., Saini, G., Ashok, P., Oort, E. van, Isbell, M. R., & 

Trichel, D. K. (2017, March 14). Future Workforce Education through Big Data 

Analysis for Drilling Optimization. Society of Petroleum Engineers. 

doi:10.2118/184739-MS. 

- Saini, G., Chan, H., Ashok, P., van Oort, E., & Isbell, M. R. (2018, March 6). 

Automated Large Data Processing: A Storyboarding Process to Quickly Extract 

Knowledge from Large Drilling Datasets. Society of Petroleum Engineers. 

doi:10.2118/189605-MS. 

- Saini, G., Chan, H. C., Ashok, P., van Oort, E., Behounek, M., Thetford, T., & 

Shahri, M. (2018, August 9). Spider Bots: Database Enhancing and Indexing 

Scripts to Efficiently Convert Raw Well Data Into Valuable Knowledge. 

Unconventional Resources Technology Conference. doi:10.15530/URTEC-2018-

2902181. 

- Saini, G., Chan, H. C., Ashok, P., van Oort, E., Behounek, M., Thetford, T., & 

Shahri, M. (2018, August 9). Spider Bots: Database Enhancing and Indexing 

Scripts to Efficiently Convert Raw Well Data Into Valuable Knowledge. 

Unconventional Resources Technology Conference. doi:10.15530/URTEC-2018-

2902181. 

- Saini, G., Ashok, P., van Oort, E., & Isbell, M. R. (2018, August 9). Accelerating 

Well Construction Using a Digital Twin Demonstrated on Unconventional Well 

Data in North America. Unconventional Resources Technology Conference. 

doi:10.15530/URTEC-2018-2902186. 
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- Mehta, R.K., Peres, S.C., Shortz, A.E., Hoyle, W., Lee, M., Saini, G, Chan, H, 

Pryor, M.W. (September 2018). Operator situation awareness and physiological 

states during offshore well control scenarios. Journal of Loss Prevention in the 

Process Industries, Volume 55, 2018, Pages 332-337, ISSN 0950-4230, 

https://doi.org/10.1016/j.jlp.2018.07.010. 

- Saini, G. S., Ashok, P., & van Oort, E. (2020, February 25). Predictive Action 

Planning for Hole Cleaning Optimization and Stuck Pipe Prevention Using 

Digital Twinning and Reinforcement Learning. Society of Petroleum Engineers. 

doi:10.2118/199548-MS. 

- H. Chan, M. M. Lee, G. S. Saini, M. Pryor and E. van Oort, "Development and 

Validation of a Scenario-Based Drilling Simulator for Training and Evaluating 

Human Factors," in IEEE Transactions on Human-Machine Systems, vol. 50, no. 

4, pp. 327-336, Aug. 2020, doi: 10.1109/THMS.2020.2969014. 

- Saini, G.S., Hender, D., James, C., Sankaran, S., Sen, V., and van Oort, E., An 

Automated Physics-based  Workflow  for Identification and Classification  of 

Drilling Dysfunctions  Drives Drilling Efficiency  and Transparency for 

Completion  Design, Paper SPE 200006, SPE Unconventional  Resources 

Conference  to be held 28 September – 2 October 2020 in Calgary, Alberta, 

Canada 

- Fallah, A., Gu, Q., Saini, G., Chen, D., Ashok, p., van Oort, E., Karimi Vajargah, 

A., Hole Cleaning Case Studies  Analyzed with a Transient Cuttings Transport 

Model, SPE-201461-MS,  SPE ATCE 2020. 

 

https://doi.org/10.1016/j.jlp.2018.07.010
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D.2 PLANNED JOURNAL PUBLICATIONS 

- Saini, G., Pournazari, P., Ashok, P., van Oort, E., Intelligent Decision-Making 

and Action Planning Systems for Well Construction Operations Demonstrated by 

Application for Hole Cleaning Improvement, submitted to the Journal of 

Engineering Applications of Artificial Intelligence 

- Saini, G., Erge, O., Ashok, P., van Oort, E., Structuring Well Construction 

Operations as Finite Horizon Sequential Decision-Making Systems for Action 

Planning, submitted to the Expert Systems with Applications Journal 

- Saini, G., Fallah, A., Ashok, P., van Oort, E., A Generalized Digital Twinning 

Methodology for Well Construction Operations with Performance Tracking and 

Scenario Analysis, submitted to the Information Fusion Journal  
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