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DExD/H-box proteins are a diverse class of proteins that are implicated in RNA and RNP 

remodeling. They have sequence homology to DNA helicases and share conserved 

ATPase domains, suggesting that they use the energy of ATP binding and hydrolysis to 

mediate conformational rearrangements in RNAs. In the past, the action of DExD/H-box 

proteins has been characterized primarily on simple model substrates such as small RNA 

duplexes. It is not known how DExD/H-box proteins manipulate structured RNA, what 

determines target specificity and what molecular events follow their action. Here, using 

the well-characterized Tetrahymena group I intron ribozyme, I performed kinetic and 

thermodynamic studies to understand the mechanism of CYT-19 and related DExD/H-

box proteins. CYT-19 has been shown previously to facilitate the folding of several group 

I and group II introns. I demonstrated that CYT-19 acts as a chaperone, accelerating the 

re-folding of a long-lived misfolded species of the Tetrahymena group I ribozyme to its 

native state. Further characterization of this reaction gave insights into how CYT-19 

achieves this action; CYT-19 partially unfolds the misfolded ribozyme and allows it to 
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fold again along the same pathway that exists in the absence of CYT-19. In addition to 

acting on the misfolded state, CYT-19 also acts on the native state, but this action is 

largely obscured under stabilizing conditions for the native state because the action is 

inefficient under such conditions. However, under conditions where the native state is 

destabilized, the native ribozyme was indeed shown to be partially unfolded by CYT-19. 

By acting on either species, CYT-19 sets up a steady state of unfolding, and the 

distribution is shifted from equilibrium to kinetic control, increasing the relative 

populations of conformations that are kinetically preferred during folding. The efficiency 

of action seems to correlate with the stability of the ribozyme. These activities are not 

restricted to CYT-19; the DExD/H-box proteins Mss116p and Ded1 were demonstrated 

to possess similar activities. Together, these studies give important insights into the 

mechanisms of action for this ubiquitous class of proteins and have implications for all 

structured RNAs in cells.  
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 1 

Chapter 1: Overview of misfolding and conformational transitions in RNAs and the 

role of RNA chaperones 

 

1.1 Introduction 

A unifying theme among structured, biological molecules is that form follows 

function. RNAs rival proteins in achieving a splendid array of structures that underlie 

their diverse cellular functions. Structured RNAs display a variety of sizes and shapes, 

from the small, L-shaped tRNAs to the large globular rRNAs that comprise the 

interlocking pieces of the ribosomal subunits
1
. They perform a multitude of functions, 

from simple binding by base-pairing to the formation of intricate active sites that are 

capable of accelerating chemical reactions by many orders of magnitude
2-4

. In order to 

become functional molecules, the structured RNAs have to fold from linear polymers into 

specific three-dimensional structures. This is a challenge for RNAs because they have an 

enormous propensity to form alternative structures that can persist on a timescale long 

enough to interfere with their biological functions
5
. 

Misfolding of RNAs has been documented extensively and appears to be 

pervasive. Essentially every large RNA studied in vitro has been found to form 

functionally compromised, alternative structures
6
. However, the extent of misfolding 

appears to be lower in vivo, and this discrepancy has been attributed largely to the 

association of proteins in vivo
6,7

. Indeed, many non-specific RNA binding proteins have 

been shown to facilitate formation of correct structures in vitro, strongly suggesting that 

proteins also assist with RNA folding in cells
8,9

. These proteins, termed RNA chaperones, 
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have been proposed to disrupt non-native structures in RNAs to allow folding to correct 

structures
7,8,10

. Attractive candidates for RNA chaperoning are the DExD/H-box proteins 

(pronounced “DEAD box” proteins after the major subgroup with sequence D-E-A-D). 

These proteins have been implicated in promoting ATP-dependent conformational 

changes of RNA or RNP structures
11-13

.  

Many cellular processes involve remodeling of RNA and RNP structures by 

DExD/H-box proteins; among these are translation initiation, ribosome biogenesis, 

nuclear export of RNAs, 5‟ and 3‟ RNA processing, and RNA decay. Because DExD/H-

box proteins act in a gamut of cellular processes, it is essential to understand how they 

are targeted to act on specific RNAs and how they mediate RNA remodeling. Is the 

mechanism, for example, purely mediated by unwinding of RNA duplexes, or are there 

other specific actions such as displacement of proteins or disruption of tertiary contacts 

during remodeling of structure? Investigations to address these questions will provide 

insight into the mechanisms of this ubiquitous class of proteins, increasing the 

understanding of the similarities between them and how they act in the context of 

different processes. 

 

1.2 Folding of structured RNAs 

 All of the information for folding of RNAs, as for proteins, is contained in the 

primary sequence. Although RNAs and proteins share this fundamental property, RNA 

folding encounters both thermodynamic and kinetic challenges that are distinct from 

those of proteins. First, with the limited information of only four bases, specifying the 
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correctly folded structure by stabilizing it over all other structures, such as partially 

folded and alternative structures, can be extremely difficult. Second, the secondary 

structures of RNAs, short helical segments, have substantial local stability (Figure 1.1). 

Thus the formation of secondary structure can be independent of the overall structure
14

. 

This is in marked contrast to protein secondary structural elements, which are typically 

unstable without the tertiary interactions they make with the rest of the protein
14

 (Figure 

1.1). Thus, the inherent local stability of RNA gives RNA a greater propensity to form 

misfolded or alternative secondary structures that can persist for a long time. 

Proteins and RNAs differ with respect to the strategies they employ for folding. 

Protein folding is facilitated by an increase in entropy of surrounding water that 

accompanies interactions between hydrophobic amino acids. The folding process for 

many proteins is “all or none”, where the tertiary structure forms in conjunction with the 

formation of secondary structure due to the latter‟s instability in the absence of enforcing 

tertiary contacts. However, due to the high local stability, RNA secondary structure can 

independently exist such that its formation can precede formation of tertiary interactions. 

This type of folding is called hierarchical folding because secondary structure can form 

prior to the formation of tertiary structure. 

 As first pointed out by Levinthal for protein folding, it would not be possible for 

RNAs to sample every possible conformer during folding to their final structures
15

. 

Instead, RNAs must fold through intermediates. As a first step, global collapse can 

reduce the astronomical number of possible conformations to fewer partially folded 

structures. Collapse during RNA folding refers to compaction that results from the 
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shielding of the negatively charged phosphodiester backbone by the positively charged 

counter ions during in vitro folding. Upon addition of Mg
2+

, there may be non-specific 

relaxation of RNA from denatured states to compact but partially denatured states
16,17

. 

Following electrostatic relaxation, there could be formation of native contacts
17

, some of 

which may be disrupted during rearrangement of the collapsed RNA to form the final 

structure.  

In contrast to the model of global collapse and subsequent rearrangement, an 

alternative model was proposed for group II intron folding, where the rate-limiting steps 

involve slow conformational searches
18

. However, this could be as a result of misfolding, 

which may have gone unnoticed presumably because folding from it to subsequent 

conformational search was not rate-limiting.  

Binding of site-specific metal ions has been suggested to represent a slow 

„folding‟ step for RNAs that fold rapidly and without detectable misfolding, such as the 

catalytic domain of RNAse P from Bacillus subtilis
19

. In this case, the rate constant for 

folding decreased upon urea addition and increased with increasing magnesium 

concentration
20

, suggesting the presence of a rate-limiting step that involves magnesium 

binding rather than folding from a kinetically-trapped species. Magnesium-dependent 

folding has also been demonstrated for the catalytic core of the bI5 group I intron
21

. 

Despite the proposal and observation, in some cases, of hierarchical assembly, where 

formation of secondary structure precedes formation of tertiary contacts, there are 

exceptions. For example, in the case of the P5abc sub-domain from a group I intron from 

Tetrahymena thermophila, the secondary structure that forms in solution in the absence 
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of magnesium differs at 15 positions in the 56-nucleotide RNA upon comparison to the 

structure that forms in the presence of magnesium. The latter structure more closely 

resembles the solved crystal structure
22

. This suggests that ordered folding with the 

formation of secondary structure prior to the formation of tertiary structure does not 

always hold true and that some folding events may occur concurrently, or that secondary 

structure could be rearranged upon formation of tertiary structure. Nevertheless, 

formation of intermediates can help RNA folding by reducing the number of possible 

conformations; however, if the intermediates are long-lived, this can potentially lead to 

interference of normal function. In vitro studies of RNA folding are rife with examples of 

misfolded structures
23

. 

 

1.3 Misfolding and formation of alternative structures in RNAs 

The earliest evidence for misfolding comes from studies of tRNAs
24,25

. Many 

tRNAs have been found to form functionally compromised, alternative structures. For 

example, a misfolded state of leucyl tRNA requires several weeks to convert to the native 

state
24

, suggesting the presence of a kinetic trap during folding. Tryptophanyl tRNA was 

also found to exist in two forms, only one of which was capable of being charged with 

the correct amino acid, tryptophan, and the two forms could be interconverted by 

changing divalent ion concentration or pH
25

. By systematically examining thermal 

denaturation profiles for various tRNAs, such as tRNA
Tyr

, tRNA
Phe

, tRNA
Val

 and 

tRNA
fMet

, Cole et. al. proposed an inactive species that forms at low temperature and low 
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salt conditions and has an extended secondary structure, in contrast to the clover leaf 

conformation of the active structure
26,27

.  

These studies suggested that misfolding is prevalent even in the small structured 

tRNA, about 76 nucleotides in length, and implies that larger structured RNAs may be 

vulnerable to misfolding to a greater degree. This idea was confirmed by later 

experiments with larger RNAs. The slightly larger 5S RNA (120 nucleotides) was clearly 

shown to exist in two different conformations, which interconverted slowly and with a 

high activation energy
28,29

. Novel structures were proposed for the two conformations 

based on comparative sequence analysis, enzymatic degradation, and chemical 

modification patterns
30

.  

In certain cases, formation of alternative secondary structures may control gene 

expression, and this is seen in many riboswitches, which are RNA control elements that 

directly bind metabolite substrates and change conformation to regulate gene 

expression
31-34

. A classic example of alternative RNA structure is the bacterial trp operon 

mRNA, which has a cis element that adopts two different structures based on the 

availability of tryptophan
35

. Similarly, large-scale structural reorientation occurs in S-

adenosylmethionine (SAM) riboswitch upon SAM binding
36

. 

With the discovery of ribozymes, distinguishing native states from misfolded 

states became more straightforward because of the former‟s enzymatic activity. Altman 

and Takada found that the catalytic subunit of ribonuclease P from Escherichia coli 

reaches the catalytically active state in a folding transition with a high activation energy 

barrier
37

. The RNA demonstrated a distinct lag in cleavage, which was eliminated by 
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longer periods of incubation at a certain temperature before performing the cleavage 

reaction. The time required for incubation was also considerably shortened by increasing 

the incubation temperature. Investigation of variants of the self-cleaving, viral 

„Hammerhead‟ ribozyme using steady-state substrate cleavage reactions isolated a 

particular variant that was incapable of cleaving the substrate to completion
38

. 

Purification of uncleaved substrate and addition to this ribozyme variant resulted in the 

same incomplete reaction, strongly suggesting the presence of the same misfolded 

species. Tetrahymena group I ribozyme, obtained through in vitro transcription and gel 

purification, was also found to possess less activity, and the activity was restored by 

heating and cooling in the presence of magnesium ions
39

. The smallest known ribozyme, 

the hairpin ribozyme, can form alternative structures as demonstrated by the biphasic 

kinetics in which the fast phase represents cleavage by active ribozymes and the slow 

phase represents rearrangement of inactive species
40,41

. Later studies using single 

molecule methods revealed a much more complex picture with multiple distinct substrate 

docked states in the hairpin ribozyme
42

.  

Some of the largest RNAs must undoubtedly be those that form the ribosomal 

subunits, and it is not surprising that misfolding has been observed during formation of 

ribosomal subunits. Although several proteins associate with the 16S rRNA to form the 

functional 30S ribosomal subunit, reconstitution to the active form in vitro requires an 

activation step, suggesting the existence of misfolding
43

. Studies have shown significant 

changes in kethoxal reactivity of many residues of the 16S rRNA in the inactive 30S 

subunit, and the original reactivity was restored when the subunit was reactivated
44

. 
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These results strongly suggested the presence of alternative conformations of the 30S 

ribosomal subunit. More recent work on the 30S ribosomal subunit indicates that 

ribosomal assembly involves binding of multiple proteins with potential for several 

rearrangement steps during this assembly landscape
45

. Other RNAs that show misfolding 

include the Col E1 primer RNA and the E.coli  mRNA pseudoknot. The isolated 

pseudoknot from E.coli  mRNA was found to occur in two forms based on differential 

migration during electrophoresis
46

. The interconversion between the two forms proceeds 

with a high energy of activation and depends on the concentrations of Mg
2+

, K
+
 or H

+ 

ions. The results discussed have provided evidence for misfolding in RNAs from in vitro 

studies. Although results from in vivo folding studies can be hard to interpret due to the 

difficulty in isolating variables, recent evidence does provide some insight into the nature 

of RNA folding in vivo.  

 

1.4 In vitro versus In vivo folding 

In vivo folding may or may not be the same as in vitro magnesium-induced 

folding. In some cases, it is plausible that misfolding observed in vitro originates from 

RNA handling during in vitro studies. Typically, RNAs are made by in vitro transcription 

using a template DNA, which has the great advantage of yielding very large quantities of 

RNAs in the lab. After subjecting the RNAs to denaturing conditions, they are stored in 

EDTA, which chelates magnesium and prevents acceleration of non-specific cleavage by 

magnesium and other cations. Prior to use in experiments, the RNAs are renatured using 

magnesium. Such a treatment could result in RNA structures that differ from those found 
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in vivo, where RNAs fold co-transcriptionally
6
. Nevertheless, folding studies of isolated 

RNAs in vitro can provide valuable information on fundamental principles, without 

interference from a multitude of factors that can complicate interpretation of results from 

such studies in vivo. On the other hand, in vivo folding studies are necessary to validate 

results from in vitro studies and to place folding in the context of cellular gene 

expression.  

It has been suggested that the speed of transcription relative to folding could play 

a very important role in determining whether RNAs that misfold in vitro will also misfold 

in vivo
47

. If transcription occurs much faster than folding, folding may be essentially the 

same in both cases because folding is initiated after the entire RNA is synthesized. Using 

the hairpin ribozyme, Fedor and colleagues demonstrated that the kinetics of folding were 

the same in vitro and in vivo and that a ribozyme mutant that slowed kinetics in vitro also 

slowed kinetics in vivo
48-50

. This suggests that the rate-limiting steps are likely the same 

in both cases and that folding is presumably slower than transcription in vivo. In contrast 

to the hairpin ribozyme, the L-21ScaI version of the Tetrahymena group I ribozyme 

showed differences between in vitro and in vivo folding. The folding of this RNA was at 

least an order of magnitude faster in vivo than folding in vitro
51,52

. This difference could 

be due to host-associated polymerase transcription, which could involve pausing, or 

interaction of trans-acting factors, such as maturases, that prevent misfolding in vivo. The 

ribozyme also lacks the flanking exon sequences normally found in vivo, and these 

extensions may also contribute to efficient splicing observed in vivo
53,54

. 
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Proteins can help facilitate folding in vivo by potentially avoiding formation of 

misfolded structures. The folded structures of human telomerase RNA showed several 

differences in the chemical modification pattern
55

 in vivo compared to that folded in vitro, 

presumably due to association of proteins. The differences suggest that protein 

association can avoid formation of certain structures in vivo. Transcriptional pausing by 

proteins can also facilitate folding during transcription. If the formation of a long 

transcript is slow during the elongation phase, the 5‟ end could form structures that 

compete with formation of a downstream alternative non-native structure. The effect of 

pausing during transcription and the effect of a trans-acting protein factor were described 

by Sosnick, Pan and colleagues
56,57

. First, they demonstrated that in a circularly 

permutated RNA (RNA in which the 5‟ and 3‟ ends are covalently connected and new 5‟ 

and 3‟ ends are created at a different location), both magnesium induced and co-

transcriptional folding introduces kinetic traps. Addition of the transcription elongation 

factor, NusA, increased the correct folding of certain domains due to NusA‟s ability to 

induce pausing during co-transcription and potentially avoid formation of kinetic traps
56

. 

A subsequent study demonstrated that pausing indeed prevented formation of misfolded 

structures in a particular domain, apparently by accelerating folding of that domain
57

. 

Although details of the mechanisms need to be investigated, these studies clearly 

demonstrate that co-transcriptional folding can differ from magnesium-induced folding. 

However, co-transcriptional folding alone cannot account for differences between in vitro 

and in vivo folding, as demonstrated in a study by Mahen et. al
58

. Here, kinetic traps were 

demonstrated in cell free transcription system, but no such traps were observable in yeast 
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cells, suggesting that the in vitro transcription system may lack factors that contribute to 

efficient folding in vivo. 

 

1.5 Structural transitions in cellular RNAs  

Many cellular processes involving RNAs are dynamic in nature. Formation and 

assembly of functional RNA and RNP complexes involve formation of favorable base 

pairing, disruption of protein-RNA conglomerates, disruption of non-native interactions, 

and other conformational changes. Many of these structural transitions are 

thermodynamically unfavorable and require activation energy. The same features that 

allow formation of stable misfolded species in RNA may also account for the difficulty in 

undergoing these transitions. For example, in eukaryotic splicing, many steps involve 

transient RNA-RNA and RNA-protein contacts that have to be disrupted before 

proceeding to subsequent steps
59

 (see section 1.10.2).  

The folding of ribosomal RNAs involves several steps, many of which may have 

to undergo extensive structural transitions. Some of these transitions can be facilitated by 

other RNAs that are separate from the molecule being modified. Trans-acting RNAs 

called snoRNAs (small nucleolar RNAs) are proposed to base-pair to complementary 

sequences on the pre-ribosomal RNA and facilitate RNA modification and ribosome 

assembly. For example, the U3 snoRNA interacts with the 5‟ end of the nascent small 

ribosomal subunit RNA to help in formation of a highly conserved structure, the 5‟ end 

pseudoknot of the small subunit
60,61

. The formation of this pseudoknot is likely to be 
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preceded by a thermodynamically unfavorable step
62

, necessitating assistance from co-

factors.  

 

1.6 DExD/H-box proteins as ATP dependent RNPases 

In vivo, RNAs are generally associated with proteins, either transiently or 

persistently. Many of the conformational dynamics in RNAs and RNPs are thought to be 

facilitated by RNA binding proteins that have low sequence specificity
12

. DExD/H-box 

proteins  are major players in this regard, necessary for both the assembly and remodeling 

of ribonucleoproteins, such as the spliceosome and the ribosome
12

. They are also crucial 

for proper functioning of many fundamental processes of the cell, including translation 

initiation and RNA decay
63-65

. During their initial discovery, many of these proteins had a 

common amino acid sequence “DEAD” in one of their motifs, and so, the acronym was 

designated to represent this group of proteins. Later analysis revealed that a subset of 

proteins contained DEAH motifs and other amino acids in place of alanine; thus, the 

general name of DExD/H-box proteins came to represent the whole family
66

. Sequence 

analysis also revealed another important feature. Six residues, including GK in motif I 

and DE in motif II (Figure 1.2), were invariant among DExD/H-box proteins and DNA 

helicases from viruses and bacteria. This observation immediately suggested that 

DExD/H-box proteins could possess helicase activities
67

. Although the role of every 

motif in DExD/H-box proteins was not clearly defined, all of these motifs were highly 

conserved within “DEAD”-box proteins from different organisms and showed similar 

spacing between them
68

. This led to the speculation that the “core” of these proteins 
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possesses a common mechanism of action. Later findings showed that the core was 

flanked by less conserved N- and C-terminal extensions
69

, and these have been 

implicated in binding specificity toward their targets. 

At present, all DExD/H-box proteins are classified as a separate family of “RNA 

helicases” under the super family 2 (SF2); DNA helicases are classified under SF1 and 

along with SF3, which comprise mostly viral hexameric helicases, they represent the 

three helicase superfamilies
70

. Two other smaller families of helicases are the DNA-B 

like and Rho families that mostly contain viral and bacterial hexameric helicases
71

. 

Although such classifications are useful to understand the relationships between these 

proteins, it should be noted that DExD/H-box proteins are likely to possess activities 

distinct from canonical DNA helicases because structured RNAs are more complex than 

long stretches of double-stranded polynucleotides. Attesting to this view are recent 

demonstrations that many DExD/H-box proteins are non-processive, suggesting local 

action rather than persistent unwinding
72,73

. 

 

1.7 Domains and motifs in DExD/H-box proteins 

All members of the DExD/H-box protein family have two “RecA-like domains”, 

so called because of the domain‟s structural homology to RecA protein. RecA is a crucial 

enzyme involved in the process of homologous recombination that generates genetic 

diversity
74

. RecA aids in both pairing and unwinding of DNA strands. The RecA domain 

consists of five α-helices and five β-sheets arranged in an alternating fashion (Figure 1.3). 

The β-sheets are surrounded by α-helices in three dimensional space. The RecA-like 
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domains that form the conserved core region are about 400 amino acids in length and 

contain eight motifs based on sequence conservation (Figures 1.2). DEAD-box proteins 

have an additional motif termed the Q-motif. Generally, the conserved motifs are 

considered to have specific functions, although some of the functions may overlap
64

. 

Motif I and II in domain 1 are ATP binding and hydrolysis motifs, whereas motifs Ia and 

Ib in domain 2 are RNA binding motifs. Motif III has been proposed to couple the energy 

of ATP binding and hydrolysis to RNA unwinding. The motifs of domain 2, IV and V, 

have been proposed to act similarly to motifs Ia and Ib, respectively, by binding RNA. In 

addition to having RecA-like domains, all SF1 and SF2 family members have additional 

extensions or insertions
64

 (Figure 1.3). 

Motif I, also known as the Walker A motif, has the consensus AxTGoGKT. 

Mutations in these residues strongly affect ATP binding and hydrolysis, suggesting that 

they form interactions with the magnesium coordinated phosphate backbone
75,76

. In one 

study, where the N-terminal glycine or the C-terminal lysine was mutated, only the lysine 

mutation affected the ability of dATP to crosslink to the protein, suggesting that the 

lysine plays an important role in ATP binding
76

. However, the glycine was found to be 

important not for ATP binding, but for ATP hydrolysis and helicase activities
77

. Motif I 

makes interactions with motif Q and motifs II and III
64

. Pause and Sonenberg 

demonstrated that all four motifs (I, II, III and VI) reduced ATP binding or hydrolysis 

and affected RNA binding activities, suggesting that these activities are inter-

dependent
75

.   
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Motif I is followed by motifs Ia and Ib, whose consensus sequences are PTRELA 

and TPGR respectively. Motifs Ia and Ib along with motifs IV and V, which are 

structurally similar to Ia and Ib
78

, are implicated in RNA binding
79

. However, their exact 

roles are yet to be clarified. 

Motif II or the Walker B motif gives the family its name. The highly conserved 

„DEAD‟ or „DEAH‟ motifs are present in many known DExD/H-box proteins; however, 

the alanine can be replaced, as in the human splicing factor UAP56, by other residues 

such as cysteine. Motif II makes functional interactions with the magnesium coordinated 

phosphate of ATP. Mutating the glutamic acid residue to alanine results in substantial 

loss of ATP hydrolysis activity
75

 and, consequently, RNA unwinding activity. This 

strongly suggests that the two activities are coupled
80

. Motif I and motif VI interact and 

show co-variation. The last D residue of DEAD interacts with the first H residue of motif 

VI and the last H residue makes an interaction with the Q residue of motif VI
64

.  

Motif III is proposed to couple ATP hydrolysis and RNA unwinding activities. 

Conserved residues in motif III (also called SAT motif because of the residues S-A-T) are 

responsible for flexibility of this region and are proposed to transmit the molecular 

changes accompanying ATP hydrolysis to conformational changes in RNA
81

. In a 

DEAD-box protein, eIF4A, when the amino acids SAT were converted to AAA, the 

resulting protein was less efficient in unwinding activity but not RNA binding and ATP 

binding activities
75

. Schwer and Meszaros found that individual alanine substitutions in 

„S‟ or „T‟ of SAT motif in splicing factor Prp22 resulted in proteins defective in duplex 
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unwinding and mRNA release activities although they retained their ability to hydrolyze 

ATP
82

. 

 Motifs IV and V are not well characterized. In the yeast DExD/H-box protein, 

Dhh1P, motif V was proposed to interact with motif I and the newly discovered Q motif, 

bringing these two domains together
83

.  

Motif VI has the consensus sequence HRIGRTGR in DEAD-box proteins and 

QRxGRxGR in DEAH-box proteins. The sequences are always associated with the 

specific Walker B motifs. This co-variation could imply evolutionary interrelationships 

between the two domains and could be important for their prescribed activities. Any 

mutation in motif VI of the DEAD-box protein, eIF4A, affects the helicase activity. 

However, only some mutations affect ATP binding and hydrolysis, consistent with the 

view that the motif is involved in coupling of ATP binding and hydrolysis to helicase 

activity
84

.  

Recently, a novel motif was discovered in Patrick Linder‟s lab
85,86

. This motif, 

called the Q motif due to the highly conserved glutamine residue, is only present in 

DEAD-box proteins and forms a cap structure in the RecA-like domain 1. The Q motif is 

proposed to act as a sensor for the bound nucleotide and modulate RNA binding 

activity
86

. The motifs listed above are the ones that have been characterized at this time. 

However, like the discovery of the Q motif, there may be other motifs that are yet to be 

discovered. 
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1.8 Three-dimensional structure of DExD/H-box proteins 

Atomic level structural information is now available for a number of DExD/H-

box proteins. These structures provide unprecedented detail on the orientation of the two 

domains and on the various motif interactions with substrate polynucleotide and NTP 

analogs. However, all of the known crystal structures consist only of the core region, and 

this may reflect the difficulty of the extensions to crystallize. The first crystal structure of 

any helicase belonging to either families (possessing DExx in motif II) emerged in 1996 

from Dale Wigley‟s lab
87

. The structure was that of the DNA helicase from Bacillus 

thermophilus bacteria, PcrA. The striking feature of this structure is the helicase having a 

strong resemblance to the DNA recombination factor, RecA
87

. In addition to having two 

RecA-like domains, the structure also shows the presence of insertions in both domains. 

Later, two structures of Escherichia coli Rep helicase, one in complex with ssDNA and 

ADP, and the other without ADP, were solved
88

. The latter structure also shows two 

forms of Rep in the asymmetric unit, the open and the closed conformation and suggests 

that Rep can undergo very large conformational changes to allow for transient clamping 

down of the Rep monomer on DNA in accordance with the “active rolling” model of 

translocation
89

. This model requires that the protein be a multimer, at least a dimer, to be 

a functional helicase. The open conformation of Rep also closely resembles the structure 

of PcrA. Later, Velankar et. al. solved the crystal structure of PcrA with either ATP or a 

substrate resembling ADP
90

. Both structures were in monomeric form, suggesting that 

dimerization is not a requirement, supporting the “inchworm” model.  
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The first crystal structure from the SF2 family was that of a DEAH-box protein, 

the Hepatitis C virus (HCV) NS3 helicase. Its nucleotide binding pocket shows striking 

resemblance to the DNA helicases, Rep and PcrA of the SF1 family
91

. The structure 

shows the helicase in complex with a single stranded DNA. Two RecA-like domains are 

observed. In contrast to Rep/PcrA, however, only one insertion is present. The structure 

shows DNA bound in the groove between the first two domains and the third domain. 

The insertions, typical of DNA helicases, are absent in putative RNA helicases. However, 

the insertions may be functionally analogous to the N- and C-terminal extensions of RNA 

helicases
64

.  

The first DEAD-box protein to be crystallized was the N-terminal domain of 

eIF4A. The structure shows unequivocal resemblance to NS3 and PcrA, suggesting a 

common mode of ATP binding
92

. Other DExD/H-box proteins that have been crystallized 

are bstDEAD, UAP56, mjDEAD, eIF4AIII and eIF4A
78,93-95

. Most DExD/H-box proteins 

crystallized have been found to be monomeric without DNA or RNA bound. The crystal 

structure of mjDEAD is the only structure that shows dimeric molecules, although it is 

unclear if dimerization is required for biological activity
78

. The first crystal structure of a 

DExD/H-box protein involved in pre-mRNA splicing was that of UAP56
95

. The structure 

in the presence or absence of ADP suggests a conformational change that could be 

functionally important. Caruthers et. al. solved the structure of the full length eIF4A. The 

structure shows the protein as a dumbbell shaped molecule with a flexible linker
94

. The 

core structure of bstDEAD is similar to that of other DEAD-box proteins. However, there 

is a “closed” domain that sterically blocks binding of ATP, suggesting that this could be 
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an important regulatory mechanism
93

. ATP binding in the cleft region between the two 

domains may help orient the two RecA-like domains relative to each other
96

. Thus, ATP 

binding and hydrolysis may cause a major conformational change in the RNA
97

. 

Despite the apparent similarity to conventional DNA helicases, it has been 

difficult to determine how local separation of RNA duplexes is achieved by the action of 

DExD/H-box proteins
98

. Sengoku et. al. provided the first crystal structure of a DEAD-

box protein, (Drosophila protein VASA) in complex with RNA and an ATP analog
99

. 

The structure shows how local unwinding may be mediated by sharp bending of the RNA 

strand. Additionally, it shows that general specificity without preference to a particular 

RNA sequence can be achieved through predominant interactions of VASA with the 

RNA occurring through 2‟ hydroxyl groups and phosphates of RNA and not the bases. 

Although the crystal structures are useful starting points for understanding the 

basic mechanism of DExD/H-box proteins, which could be common to many because of 

a conserved core, they provide few answers to mechanistic questions concerning the 

dynamic role of DExD/H-box proteins in mediating conformational rearrangements in 

RNAs and in what roles, if any, the less conserved extensions of these proteins are 

involved. Mechanistic studies, on the other hand, have provided extensive information 

about many basic features of DExD/H-box proteins such as unwinding activity
73,100-106

, 

nucleotide usage
84,85,105-108

, cycles of nucleotide binding and induction of conformational 

change
109,110

. Kinetic studies have also provided evidence for the role of extensions for at 

least one protein, DbpA, whose 76-residue carboxyl terminal domain is proposed to act 

as targeting domain and make specific interactions with the substrate
111-114

. The further 
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combination of biochemical and structural studies may provide more insight to the 

mechanism and targeting of these proteins to their RNA substrates. 

 

1.9 Specificity of DExD/H-box proteins toward their targets 

In general, DExD/H-box proteins are considered to be non-specific motors that 

disrupt structures independent of sequence. On the other hand, the participation of many 

DExD/H-box proteins in specific biological processes implies that they act in the context 

of defined RNA/RNP complexes, suggesting specific recognition of defined structural 

motifs. In vitro studies, however, do not provide strong evidence for structural targeting 

or high affinity binding. This is presumably because the targets are poorly defined in 

biochemical studies. For example, a structured RNA may transiently fold to a 

conformation that acts as a target, but such structures are, by necessity, difficult to 

populate for in vitro studies. Purification of DExD/H-box proteins by over-expression in 

bacteria yields large amount of proteins for biochemical studies, but they may lack the 

necessary co-factors that normally associate with them in vivo. The association of protein 

co-factors has been reported to stimulate the activity of one DExD/H-box protein 

eIF4A
115,116

 (Table 1.1). From the protein perspective, the N and C terminal extensions of 

DExD/H-box proteins have long been implicated to act as targeting domains. However, 

the evidence is clear only for one protein so far, the E.coli protein DbpA and its B.subtilis 

homolog, YxiN. It remains to be seen how the various DExD/H-box proteins that act in 

different processes are targeted to act on certain RNAs or RNPs.  
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eIF4A is a DEAD-box protein known to interact with several factors at the 5‟ end 

of the eukaryotic mRNA to facilitate initiation of translation. Its helicase activity is 

proposed to disrupt secondary structure and to help the formation of the initiation 

complex. eIF4A forms part of the larger eIF4F complex which contains a scaffolding 

protein, eIF4G and a cap-binding protein, eIF4E. eIF4A makes direct interactions with 

the scaffolding protein, eIF4G
117

. eIF4A is stimulated by eIF4G with its two interacting 

sites and the sites differ in the way they stimulate the RNA-dependent ATPase rates
115,116

. 

The ATPase activity of eIF4A has also been known to be stimulated by another factor, 

eIF4B
108

. The stimulation of eIF4A by other factors suggests that its activity might be 

localized to its specific target, the 5‟ end of mRNAs for example, by these factors. 

The proposed role of N and C terminal extensions is to provide specificity by 

interacting with their specific RNA and RNP targets and stimulating the activity of 

DExD/H-box proteins, although it is unclear if the substrate-dependent stimulation of 

activity is universally true. For one DExD/H-box protein, DbpA, the activity is stimulated 

by a specific fragment of the 23S ribosomal RNA
111-113

 (Table 1.1). To investigate the 

specific portion of 23S rRNA responsible for this stimulation, Tsu et. al. carefully made 

sub-fragments from this RNA and monitored ATPase activity. The results provide strong 

evidence that hairpin 92 with at least one extension either on the 5‟ or 3‟ end is sufficient 

to provide maximum stimulation of the ATPase activity
114

. The protein domain that is 

responsible for the specific stimulation was localized to the C-terminus, and the transfer 

of this segment from a DbpA ortholog (Yxin) in B.subtilis to the non-specific core 

domain of DbpA resulted in a chimeric protein which possessed specific 23S rRNA 
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stimulated activity
118

. The carboxyl-terminal domain of DbpA has been crystallized and it 

resembles the RRM (RNA recognition motif) present in many RNA binding proteins
119

. 

Pre-mRNA splicing involves several proteins of the DExD/H-box family which 

may mediate various structural transitions. The strongest evidence for specific RNA-

dependent stimulation during splicing is provided by Prp16 and Prp5 (Table 1.1). The 

second transesterification step in splicing is facilitated by Prp16. Several studies have 

shown that its ATPase activity is stimulated by U2 and U6 RNAs, suggesting that some 

features of these RNAs are recognized specifically by Prp16
120

. Prp5 is a DExD/H-box 

protein that has a role in assembly of the pre-spliceomal complexes. Specifically, Prp5 

has been proposed to bring U2 snRNP to the branchpoint
65

. Comparison of ATPase 

activity in the presence of the full length U2 snRNA versus other snRNAs or non-specific 

RNAs showed that the activity was stimulated only by the U2 snRNA, suggesting a 

specific interaction between the protein and the RNA
121

. 

Recently, the processivity of HCV NS3 was shown to be enhanced by E.coli 

single stranded binding protein (SSB) on DNA substrates
122

. NS3 is unusual among 

DExD/H-box proteins because it can bind both RNA and DNA substrates
123

. It remains to 

be seen whether NS3 can also have such protein stimulated processive action on RNAs. 

 

 1.10 Involvement of DExD/H-box proteins in RNA-mediated cellular processes 

Genetic, mutational, and biochemical studies have established clear roles for 

many DExD/H-box proteins in RNA mediated processes. Many of these proteins are 

essential, since mutations of the residues have resulted in unviable organisms. The ability 
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to modify structures in a non-specific manner makes them versatile enzymes of RNAs 

and RNPs. Almost every cellular process that involves RNA conformational changes 

requires DExD/H-box proteins. The processes include, but are not limited to, 

transcription, ribosome assembly, prokaryotic and eukaryotic RNA decay, pre-mRNA 

splicing, and nuclear export of tRNAs and mRNAs in eukaryotes. Besides playing 

indispensable roles in molecular processes, DExD/H-box proteins are also imperative for 

proper functioning of cellular organelles, such as mitochondria and chloroplasts. In 

addition, clear evidence is emerging for multiple roles of some DExD/H-box proteins. 

 

1.10.1 Transcription  

 Transcription in eukaryotes is an elaborate process involving association of 

several transcription factors, both general and specific, with the 5‟ and 3‟ ends of open 

reading frames (ORFs) of DNA. Although the precise roles of several DExD/H-box 

proteins involved in transcription remain to be defined, current evidence suggests that 

many are multifunctional, interacting with multiple substrates, such as nascent mRNAs, 

transcription factors, and potentially promoters on DNA
124

. Examples of DExD/H-box 

proteins involved are Dhx9, Ddx20, Ddx5 and Ddx17, and these have been implicated to 

function as transcriptional repressors or activators
124

. RNA helicase A (RHA) (or Dhx9) 

belonging to the DExH family, has been shown to act as a mediator for the interaction of 

a co-activator, CBP with RNA pol II
125

. The DEAD-box protein, Ddx20 or Gemin 3, has 

roles in snRNP assembly and in both transcription activation and repression
124

 .    
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1.10.2 Pre-mRNA splicing 

 In eukaryotes, mature mRNA is processed from pre-mRNA by the spliceosome. 

Pre-mRNA splicing involves five snRNPs containing five snRNAs and over 200 

proteins
126

. For formation of a functional complex and for splicing to occur, the pre-

mRNA and snRNPs have to undergo precise rearrangements that result ultimately in a 

lariat intron and a spliced exon. The traditional step-wise view of this assembly process 

involves association of U1 and U2 to the 5‟ splice site and the branch point, respectively, 

followed by association of the tri-snRNP, U4/U6.U5. This view has been challenged 

recently with the isolation of penta-snRNP in yeast
127

. The penta-snRNP contains all five 

known snRNPs preassembled
128

 and is capable of being fully functional
129,130

. Instead of 

the cascade hypothesis of stepwise assembly, a holoenzyme hypothesis has been 

postulated
131

. Regardless, rearrangement of snRNPs with mRNAs requires both 

formation and disruption of base pairs (Figure 1.4) and association and dissociation of 

trans-acting protein factors that are the hallmark of spliceosomes
128

. Many of these 

actions are performed by DExD/H-box proteins that interact with the spliceosome 

transiently. In yeast, where pre-mRNA splicing has been studied extensively
101

, both 

DEAD-box and DEAH-box proteins are involved, and they are called precursor RNA 

processing (or Prp) factors. The association of U1 to the 5‟ splice site is the only step not 

known to require any DExD/H-box proteins. The association of U2 to the branch point is 

facilitated by Prp5. This protein has been shown to possess U2 snRNA stimulated 

ATPase activity; therefore, Prp5 may act in a substrate targeted manner. Another protein, 

sub2p, is also required. The breaking of U4/U6.U5 and the separation of the extensively 
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base-paired U4/U6, together with replacement of U1 by U6, requires Prp28
132

. The first 

transesterification step is facilitated by Prp2
133

 and the second step by Prp16
134,135

. Prp22 

has been implicated in release of the mature mRNA
136,137

 (exon) and Prp43 is considered 

a recycling factor to help dislodge protein factors associated with snRNAs from the lariat 

after splicing
138,139

.  

 

1.10.3 Nuclear export of tRNAs and mRNAs  

In eukaryotes, RNAs originate in the nucleus and must be exported from the 

nucleus and into the cytoplasm. So far, mRNA export is known to involve primarily two 

DExD/H-box proteins, one on the nuclear side and the other on the cytoplasmic side of 

the nuclear pore complex
140

. On the nuclear side, the Yeast DECD protein, Sub2p, and its 

mammalian counterpart, UAP56 are required
141,142

. UAP56 was shown to interact with an 

mRNA export factor, Aly, and to be present with Aly in spliced mRNA in complex with 

other proteins
143

. The data suggest that UAP56 recruits Aly for mRNA export. Similarly, 

Sub2p was shown to associate with an export factor, Yra1
144

, which is essential in yeast. 

In addition to spliced mRNA, intronless mRNAs were also exported, suggesting that 

splicing is not a prerequisite for Sub2p mediated mRNA export
145

. Analogous to 

UAP56/Sub2p mediated export on the nuclear side, the cytoplasmic export is performed 

by the DExD/H-box protein, Dbp5. Dbp5 was found exclusively on the cytoplasmic side 

of the nuclear pore
146

 and its mutation resulted in accumulation of mRNAs in the 

nucleus
147

.  
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1.10.4 Ribosome assembly 

The ribosome is an enormous RNP complex that requires folding of extremely 

long RNAs (and, thus, is prone to formation of kinetic traps
148

) and precise positioning of 

ribosomal proteins during folding. It is not surprising that many DEAD-box proteins are 

involved in facilitating the assembly process. Of the 24 DExD/H-box proteins discovered 

in yeast, 14 have been found to be involved in ribosome assembly process
64,149

. In 

Escherichia coli, three DEAD-box proteins, DbpA, DeaD and SrmB are all essential for 

ribosome assembly
150

. DbpA specifically interacts with a fragment of 23S RNA and is 

presumably involved in its assembly
111-114

, and SrmB is implicated during steps that 

involve rearrangement during ribosome assembly
151

.  

 

1.10.5 Translation initiation 

Translation is a major step during gene regulation that is primarily executed by 

the ribosome, although several other factors are indispensable. The process is generally 

divided into 3 phases: initiation, elongation and termination. Eukaryotic initiation is more 

complicated than prokaryotic initiation, and DExD/H-box proteins have been shown to 

play crucial roles by presumably disrupting structure and facilitating binding of the 

ribosomal subunit
117

. The eukaryotic translation initiation factor, eIF4A has been 

extensively characterized
117

. It contains only the core and is one of the simplest DExD/H-

box proteins, structure-wise. In fact, the family of DEAD-box protein was identified 

based on sequence analysis of eIF4A from different species
68

. Initial biochemical 

characterization demonstrated that eIF4A can act non-processively
152

. Several factors are 
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implicated in enhancing the activity of eIF4A. eIFB was shown to clearly stimulate the 

helicase activity of eIF4A
152

. Other factors that could possibly stimulate the activity are 

eIf4H
153

 and eIF4G 
115,116

 (discussed in section 1.9). Binding of substrates, ATP and 

RNA, can cause changes in affinity and conformation of DExD/H-box proteins. Lorsch 

and Herschlag demonstrated that cycles of ATP/ADP binding are coupled to affinity for 

single stranded RNA and showed how such an activity can induce conformational 

changes in eIF4A
109,110

. Like eIF4A, Ded1 from yeast is also essential for translation 

initiation
154

 although its exact role is not yet defined. Ded1 has also been implicated in 

splicing and ribosomal assembly from proteomic characterization
127,155

.  

 

1.10.6 RNA decay  

RNA decay is one of the most important modes of gene regulation in prokaryotes, 

and it plays crucial roles in eukaryotes
150

. In E.coli, the 3‟ to 5‟ degradosome complex 

contains a DEAD-box protein, Rh1B and is part of a larger degradosome complex with 

an endonuclease and exonuclease
64,156

. This illustrates one way in which specificity can 

be achieved, i.e., by making the DExD/H-box protein part of the degradation machinery. 

There is evidence that Rh1B can also have activity independent of the degradosome 

complex
157

. In metazoans, the DEAD-box protein eIF4AIII is involved in nonsense-

mediated decay (NMD) and is deposited in the exon junction complex (EJC) following 

splicing. eIF4AIII is associated with three other proteins in this complex, and the entire 

complex appears to undergo conformational changes during assembly and disassembly of 
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the EJC
158

. Other DExD/H-box proteins in eukaryotic exosomes, that have not been well 

characterized, include DEAH-box, Suv3 and Ski2 proteins. 

 

1.10.7 Organelle function  

Mitochondria and chloroplasts have their own genome encoding RNA and 

proteins. Both contain group I introns, which are self-splicing RNAs. Neurospora crassa 

DEAD-box protein CYT-19 and related yeast protein Mss116p are nuclear-encoded 

proteins and act as chaperones for the folding of a diverse set of group I intron splicing in 

mitochondria
107,159

. In yeast, group II intron splicing requires another DEAD-box protein, 

Mrh4, in addition to Mss116p
159,160

.  

The functions of CYT-19 have been well characterized biochemically. CYT-19 

facilitates folding in vivo and accelerates splicing in vitro, suggesting that it functions as a 

chaperone by resolving kinetic traps
107

. Additional evidence for chaperone action comes 

from structural changes induced in the secondary structure of a well-characterized 

misfolded species of Tetrahymena group I ribozyme
107

. CYT-19 has also been shown to 

interact non-specifically with the ribozyme and unwind loosely associated duplexes
73

. It 

has also been shown to recognize the general RNA structure with the help of its C-

terminal domain
161

.  

 

1.10.8 Multiple functions 

Many DExD/H-box proteins are involved in multiple processes
100

. An example is 

the splicing factor, Sub2p, which is also required for mRNA export
144

. More recently, the 
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spliceosome disassembly factor Prp43 was shown to be involved in ribosome 

assembly
162-164

.  

 

1.11 Studies of DExD/H-box proteins on simple model substrates 

The involvement of DExD/H proteins in diverse cellular processes immediately 

suggests the existence of more than one functional role for these proteins. Studies of 

DExD/H-box proteins on model RNA and protein substrates have indeed revealed the 

enormous potential of these proteins in modulating both RNA and RNP structure. 

Although DExD/H-box proteins are synonymous with RNA helicases, the latter name can 

be somewhat misleading because canonical helicase activity is not a hallmark of 

DExD/H-box proteins. Indeed, DExD/H-box proteins have been shown to possess 

activities that are not limited to and separate from helicase activity
72,165

. The varied 

functions, including processive helicase activity, emphasize the diversity of actions for 

these proteins. Comparative studies may shed light onto the features that direct individual 

DExD/H-box proteins to specific functions.  

Studies on simple RNA duplexes and RNA-protein complexes demonstrate the 

capability of DExD/H-box proteins. The DExD/H-box proteins were thought to require 

single-stranded RNA targets with a defined polarity, either 5‟ to 3‟ or 3‟ to 5‟ for loading. 

However, eIF4A was shown to unwind in a non-polar fashion either from the 5‟ end or 

from the 3‟ end
11

. Recently, eIF4A has been shown to unwind blunt-ended RNA 

duplexes
152,153,166

, strongly suggesting that the loading strand may not be a requirement. 

Additionally, the protein may be capable of local action
152

. 
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 Processivity is another property of many canonical DNA helicases; however, the 

RNA substrates of DExD/H-box proteins do not have long, extended duplexes. 

Therefore, there is no expectation of processive unwinding by DExD/H-box proteins. 

Consistent with this idea, eIF4A has been shown to unwind duplexes in a non-processive 

manner
152

. Again, this property is not universal as processive unwinding has been 

demonstrated for NPH-II
102

 and HCV-NS3
104

. NPH-II and HCV-NS3 are involved in 

viral replication, and it remains to be seen if this processive action is a unique property of 

the DExD/H-box proteins involved in virus replication.  

For many DExD/H-box proteins, non-processive local disruption of duplexes 

seems to be the general mode of action
72,73,167

, and it is consistent with the recent crystal 

structure of a DEAD-box protein, VASA
99

. The structure shows how local unwinding can 

be achieved by contorting and inducing a bend in the structure (Figure 1.2). Strikingly, in 

addition to unwinding, annealing of simple duplexes has also been demonstrated for 

several DExD/H-box proteins
168

. Annealing and unwinding by Ded1 have been shown to 

be modulated by the ratio of ATP and ADP concentrations with higher ATP favoring 

unwinding and higher ADP favoring annealing
106

.  

DExD/H-box proteins have been demonstrated to displace simple protein-RNA 

complexes. The DExD/H-box protein, NPH-II, was shown to accelerate dissociation of 

U1A protein by more than three orders of magnitude without affecting the efficiency of 

unwinding of the duplex to which the protein was bound
169

. Active disruption of protein 

suggests that DExD/H-box proteins can act as “RNPases”
170

. However, it was unclear 

whether protein displacement activity was a result of duplex unwinding or an 
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independent activity. Using two model systems in which proteins are bound to single 

stranded RNAs, Fairman et. al showed that two DExD/H-box proteins, NPH-II and Ded1, 

are each capable of displacing proteins without unwinding duplexes, although, there 

appears to be some differences in their efficiencies
165

. Thus, DExD/H-box proteins can 

not only unwind/anneal duplexes but can also displace proteins due to their active 

translocation
171

, although a recent study suggests a more localized action for Ded1
72

. The 

protein displacement activity has been documented in vivo for several DExD/H-box 

proteins, which includes displacement of U1snRNA by Prp28, of Mud2p by Sub2p and 

of Cus2p by Prp5
12

. 

The studies described above demonstrate the versatility of DExD/H-box proteins 

in remodeling RNAs and RNPs. Although such studies are tremendously useful in 

exploring how DExD/H-box proteins can affect simple duplex structures, induce changes 

in local structure, or modify proteins-RNA interaction, these activities need to be 

demonstrated in the context of a structured RNA, for large biological RNAs are 

extensively structured. Further, folding of structured RNAs involves well-defined 

pathways and it remains unclear how DExD/H-box proteins act in the context of specific 

folding pathways and to what structural features, if any, these proteins are targeted to act.  

 

1.12 In vitro chaperone activities of non-specific RNA binding proteins  

An “RNA chaperone” is a protein that induces structural changes in the RNA and 

must be dispensable following the action
8
. Although DExD/H-box proteins are primary 

candidates for this category, such activities are not restricted solely to DExD/H-box 
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proteins. Prior to the discovery of DExD/H-box proteins, various single stranded RNA 

binding proteins have been shown to possess RNA remodeling activities. One class, the 

hnRNP proteins, coat nascent mRNAs formed during transcription and are thought to 

either promote or restrict formation of structure. These proteins have been extensively 

characterized, and many have been found to bind several types of RNAs, independent of 

sequence (Ref
172

 and references therein). The nucleocapsid protein (NC) of the HIV virus 

has been shown to possess similar activities. Studies showed that NC enhances catalysis 

of hammerhead ribozyme by acting as a chaperone in vitro. The enhanced catalysis was 

the result of two actions: 1) NC increased the turnover (kcat) by dissociation of the 

product strands, and 2) NC increased specificity (kcat/Km) by increasing annealing rate of 

the substrate strands
173,174

. Other proteins have been shown to act in an analogous manner 

including the calf thymus protein, UP1
175

, the Escherichia coli proteins StpA
176-178

, 

Hfq
179

 and the ribosomal small subunit protein, S12
180

.  

 

1.13 DExD/H-box proteins as general RNA chaperones: CYT-19 and Mss116p  

The aforementioned studies with non-specific proteins suggest the possibility that 

these proteins may function as RNA chaperones in vivo. A direct demonstration that a 

protein functions as an RNA chaperone in vivo came in 2002. The Neurospora crassa 

DEAD-box protein, CYT-19, is the first DExD/H-box protein shown to possess RNA 

chaperone activity in vivo
107

. CYT-19 is encoded by a nuclear gene and is targeted to 

mitochondria for action on group I introns, which are encoded by the mitochondrial 

genome. Mutations in the CYT-19 gene produced splicing defects in vivo but were 
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rescued by over-expression of CYT-19 from an exogenous plasmid in vivo at the non-

permissive temperature of 25 °C. Additionally, the same splicing defects were overcome 

by growing the organisms at the permissive temperature of 37 °C, suggesting that the 

necessary activation energy for splicing was provided by CYT-19
107

. In vitro splicing 

assays performed in the presence of CYT-19 showed acceleration of splicing and 

produced a greater amount of spliced products, presumably by resolution of kinetic traps 

by CYT-19
107

. Finally, footprinting analysis with a well-characterized, misfolded 

structured RNA from Tetrahymena strongly suggests that CYT-19 induces structural 

changes in RNA as shown by clear changes in the protection/enhancement pattern
107

. 

Later studies also found that the structural changes can be maintained after complete 

elimination of CYT-19 action, suggesting that it acts as a true RNA chaperone
73,181,182

.  

CYT-19 and a related protein, Mss116p, can act on a number of different related 

RNAs. The first evidence came from the finding that mutations in nuclear MSS116 gene 

produced splicing defects in RNA transcripts of mitochondrial cytochrome b (cob) and 

cytochrome c oxidase subunit I (cox1) ORFs
183

. In a different study, over-expression of 

Mss116p resulted in a marked increase of group II bI1 intron splicing, suggesting an 

important role in splicing of this group II intron
184

. More recently, Mss116p was found to 

produce splicing defects in both group I and group II introns in yeast
159

. The CYT-19 

mutation also produced splicing defects in several group I introns
107

. Importantly, CYT-

19 has been found to rescue, at least partially, splicing for both group I and group II 

introns as well. Together, the data suggest that both CYT-19 and Mss116p act 

promiscuously on a variety of group I and group II introns and that some DExD/H-box 
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proteins can function as general RNA chaperones by recognizing global features of 

RNAs.  

Originally, CYT-19 action was thought to require another protein, CYT-18. This 

model was based on the earlier finding that three introns that required CYT-19 for 

splicing (mtLSU, ND1-I1 and cob-I2) also required CYT-18. Additional introns were 

tested that were independent of CYT-18 and did not require CYT-19, suggesting that 

CYT-18 could act as a targeting factor for CYT-19 action. However, later studies 

revealed that CYT-19 could act on other group I and even on group II introns 

independent of CYT-18, indicating that the interaction with RNA is more general and a 

protein cofactor is not a requirement for CYT-19 action
159,181

.  

Although CYT-19 and Mss116p are the first examples of DExD/H-box proteins 

that act on RNAs by recognizing general features of RNAs, many DExD/H-box act in the 

context of defined processes and may require additional co-factors. Specificity of 

DExD/H-box proteins toward RNA or RNP substrates has not been thoroughly 

investigated. There are very few cases where specificity has been demonstrated using in 

vitro studies. Examples include E. coli DbpA
111-114,118

 and to a lesser extent, Prp5 in 

yeast
121

. The lack of observed specificity may be due to a lack of interacting partners or it 

could be a common feature of DExD/H-box proteins as these proteins are usually 

involved in multiple cellular processes and encounter different RNAs or RNPs
64

. The 

finding that some proteins act as general chaperones is exciting and paves the way to 

understanding some of the molecular mechanism for targeting and action. Probing the 

actions of CYT-19 and Mss116p, therefore, is imperative to obtain clues regarding the 
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mechanisms. The discovery of these proteins also provides an opportunity to investigate 

the mechanism of how general RNA chaperones function inside cells. 

 

1.14 Tetrahymena group I intron as a model structured RNA for studying chaperone 

function 

In order to understand the mechanism of the DExD/H-box RNA chaperone CYT-

19 and related proteins on a structured RNA, a well characterized RNA is desired. The 

Tetrahymena group I intron was the first RNA shown to possess catalytic activity. In 

1982, Cech and colleagues demonstrated that a ribosomal RNA, transcribed using 

purified polymerase, exhibited self-splicing activity in the absence of any proteins
185

. 

This was the first demonstration of such activity and coined the term “ribozyme”. Later, 

the self-splicing construct was modified to cleave an oligonucleotide added in trans and 

act as a true RNA enzyme
186,187

. This development led to an explosion of studies and to 

Tetrahymena group I ribozyme becoming, structurally and functionally, one of the most 

well-characterized ribozymes. 

 

1.14.1 Structural and biochemical characterization of Tetrahymena group I ribozyme 

The catalytic nature of ribozymes is due to their ability to adopt specific tertiary 

structures. The Tetrahymena group I ribozyme has been a prototype for studying RNA 

structure and folding. The overall structure of the ribozyme consists of a catalytic core, 

highly conserved among group I introns, and the variable peripheral elements that 

surround the core and increase the overall structural stability. The core elements are P4-
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P6 and P3-P9 and the peripheral elements are P5abc, P2 and P9.1 and 9.2 (Figure 1.5). 

The core and peripheral elements are held together by five long-range tertiary contacts. 

The first crystal structure of Tetrahymena ribozyme was that of P4-P6 domain 

determined by Cate. et. al.
188

. This 2.8 Å crystal structure showed how the two helices 

interact by forming tertiary contacts through the A-rich bulge and the GAAA tetraloop-

receptor, which lead to tight packing
188

. Golden et. al. solved the first crystal structure of 

the core, lacking the peripheral elements such as P1, P2-2.1 and P9-9.1
189

. This structure 

showed how the domains are packed together by the formation of a base triple that 

bridges the two domains together
190

. This structure also demonstrated for the first time 

that the active site of ribozymes can be pre-organized, similar to protein enzymes, to 

perform catalysis. More recently, a 3.8 Å crystal structure was obtained from the Cech 

lab that gave a refined view of the active site organization in terms of the positioning of 

the guanosine nucleophile and the catalytic metal ions
191

. 

 Enzymatic characterization of the Tetrahymena group I ribozyme began almost 

immediately following the discovery of its catalytic activity. Many features of the 

ribozyme were similar to that of some protein enzymes, such as the existence of a pre-

organized active site
189

, use of binding energy
192

 and metal ion for catalysis
193-195

. Certain 

other features were unique to the ribozymes. Because the catalyst is an RNA molecule, 

structural metal ions are required for folding. The ions counteract the highly negative 

phosphodiester backbone of RNA and allow the RNA to fold into specific structures. 

Catalysis can occur only if the ribozyme folds to the correct conformation, which 

includes a binding pocket for the nucleophile guanosine and a docking site for the 
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substrate RNA. Upon precise positioning of the residues, guanosine attacks and cleaves 

the substrate RNA strand
196

. 

 

1.14.2 The folding pathway of Tetrahymena ribozyme  

The folding of RNAs is in general hierarchical with the formation of stable 

secondary elements preceding the formation of tertiary elements. Folding of the 

Tetrahymena ribozyme is an example of hierarchical folding, with early and late events in 

the pathway
197

. The hallmark of the ribozyme is that it folds to a specific and long-lived 

misfolded conformation late in the folding pathway (discussed in 1.14.3). Pioneering 

studies by Zarrinkar and Williamson
198

 and Sclavi et. al.
199

 provided details on the nature 

of the early folding events. Using hybridization of a DNA oligonucleotide and specific 

cleavage of the resulting RNA-DNA duplex, Zarrinkar and Williamson
198

 demonstrated 

that formation of P4-P6 occurs on the seconds timescale and is followed by the formation 

of P3-P7 on the minute timescale. Using time resolved hydroxyl radical footprinting, 

Sclavi et. al.
199

 obtained a more quantitative measure of these events, showing that the 

P4-P6 domain forms early with a rate constant of 2-3 s
-1

, whereas the regions that are 

close to P3-P7 (J5/4) and the regions that mediate tertiary contacts with P3-P9 (P2, P2.1 

and P9.1) are protected much more slowly at 0.2 to 0.4 s
-1

. Finally, folding of P3-P7-P9 

occurred at an even slower pace of about 0.02 to 0.06 s
-1

. Using a series of selection for 

mutations in RNA that accelerate the rate of folding, Treiber et. al. found five mutants 

that had single nucleotide substitutions, all of which were concentrated in the P4-P6 

region
200

. These results were surprising considering that the slow folding steps were 
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shown to occur in the P3-P7 region
199

. The results suggested that native interactions of 

P4-P6 to the core region stabilized a kinetic trap during folding of RNA. Indeed, addition 

of urea, which partially unfolds the ribozyme, accelerated folding suggesting the 

existence of a kinetic trap in the folding of wild type ribozyme
200

.  

Folding landscapes with multiple folding intermediates, as previously proposed 

for protein folding, have been suggested for RNA folding. RNA folding proceeds through 

multiple intermediates and folding pathways on a three dimensional free energy 

scheme
201

. Using a previously characterized oligo-nucleotide hybridization assay, Rook 

et. al. probed mutants that were faster in folding and identified more folding traps, 

demonstrating that the folding pathway is rugged with multiple folding 

intermediates
201,202

.  

 

1.14.3 The long-lived misfolded ribozyme 

Catalytic activity gives a precise read-out for the formation of the active native 

state, differentiating it from near-native and other intermediates. Russell and Herschlag 

demonstrated the presence of a long-lived misfolded species in the folding of the 

Tetrahymena ribozyme at 25 °C
203

. This misfolded species forms late and behaves as a 

single species during its re-folding to the native state 
204

.  

 The long-lived misfolded ribozyme under various solution conditions has been 

carefully investigated. An alternative base-pairing termed Alt P3 was proposed to occur 

in the misfolded ribozyme
205

. This was based on chemical modification interference and 

mutational analysis. The mutations of residues that weakened or stabilized the interaction 
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led to a decrease or increase, respectively, in the accumulation of this conformer. A later 

study, however, questioned the existence of Alt P3 in the long-lived misfolded species
206

. 

Hydroxyl radical footprinting, fluorescence measurements and activity assays did not 

reveal the presence of Alt P3 but only the native P3
206

. The results of these experiments 

suggested a model where formation of Alt P3 leads to the accumulation of misfolded 

species (Figure 1.6); however, this alternative base-pairing is resolved before the 

formation of misfolded species. Acceleration of re-folding by an increase in temperature 

or urea addition and strong inhibition of re-folding upon increase in magnesium 

concentration suggested the existence of a substantial energetic barrier to re-fold to the 

native species from the misfolded species. Combining experimental data with computer 

modeling, a misfolded structure differing only in topology from the native species was 

proposed
206

 (Figure 1.6). Importantly, the study emphasizes that, despite the high surface 

similarity between native and misfolded species, re-folding to the native state can require 

global unfolding. 

 

1.14.4 Tetrahymena ribozyme: A good model system for probing CYT-19 action 

The Tetrahymena group I ribozyme is a good model system. Its folding pathway has been 

well studied and thus the properties of the intermediates are well known. In addition, the 

long-lived misfolded species can be populated and it behaves as a single species (or a 

family or related ensemble) and refolds slowly to the native state with a rate constant that 

can be modulated by varying solution conditions. Thus CYT-19‟s action on native and 

misfolded species can be effectively separated for comparison, which might provide 
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insight into how misfolded RNAs are targeted for action. The ability to form a large 

fraction of misfolded species provides an opportunity to understand how misfolded 

species are dealt with in nature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Structural elements differ in proteins and RNAs 

 

On the left is the portion of a protein helix with polypeptide backbone (in blue) and 

amino acid side chains on the exterior (green), that are free to interact with other amino 

acid residues. On the right is the section of a short RNA helix with the phosphodiester 

backbone (blue) and bases (green) forming base pairs and are on the interior (Figures 

made using Pymol and atomic coordinates of 2dx3 and 1yfv). 
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Figure 1.2: Structure of VASA, a Drosophila DExD/H-box protein  

 

The structure of a DExD/H-box protein from Drosophila, VASA. The picture on top 

shows the different conserved motifs (N terminus to C terminus) that are common to 

many DExD/H-box proteins. The Q motif is only present in DEAD-box proteins. There 

are two RecA like domains connected together by a linker that is indicated by the thick 

black line. The picture below shows front and side views of VASA, with the different 

motifs color coded the same as the motifs picture above. (Adapted from Sengoku et. al.
99

) 
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Figure 1.3: DExD/H-box proteins have two RecA-like domains 

 

The top figure is that of RecA protein which contains the large ATP binding domain (in 

yellow) present in virtually all DExD/H-box proteins. Shown in red is the secondary 

structure not common to other proteins and in green is the structure specific to RecA 

protein. The middle structure shows two RecA-like domains that are present in all 

DExD/H-box proteins. The bottom figure shows the secondary structure of DEAD-box 

protein, eIF4A
96

. 
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Table 1.1: Proposed RNA substrates and co-factors for DExD/H-box proteins 

 

 

 

DExD/H-

box protein 

Organism Cellular 

process 

Proposed 

substrates or 

co-factors 

Proposed role of 

specific substrates 

or co-factors 

eIF4A 

 

 

 

 

 

Prp16 

 

 

 

 

PrP5  
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HCV NS3 
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E.coli 
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splicing 
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Nuclear 

export of 

RNAs 

 

Nuclear 
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RNAs 

 

Viral 

genome 
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eIF4B
152,153

 

 

 

eIF4H
153

, 

eIF4G
115,116

 

 

U2 and U6 

snRNA
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U2 snRNA
121
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23S rRNA
111-

114
 

 

Yra1
144

 

 

 

 

Aly
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E.coli SSB
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Stimulation of 
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Facilitate second 
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mRNA export 
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mRNA export 
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Enhancement of 

processivity 
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Figure 1.4: An example for structural rearrangement during pre-mRNA splicing 

 

Large scale structural rearrangement involves formation and disruption of base pairs. 

Shown here is the rearrangement following the first step and before the second step of 

eukaryotic pre-mRNA splicing. (Adapted from Nagai, K
207

.) 
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Figure 1.5: Structure of Tetrahymena group I ribozyme 

 

(A) Schematic representation of the different elements of Tetrahymena group I ribozyme. 

The core elements are P4-P6 (purple), and P3-P9 (red) domains, which contain the active 

site that bind the P1 duplex (yellow). The peripheral elements are P9.1-9.2 (green), P2-

2.2 (orange) and the P5abc sub-domain (blue). Tertiary interactions are denoted by dotted 

white lines. (B) Three dimensional structure of Tetrahymena ribozyme is color coded 

similar to (A). 
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Figure 1.6: Model for the formation of the long-lived misfolded species, a topological 

isomer of native species in Tetrahymena ribozyme 

 

Folding of Tetrahymena ribozyme from unfolded state with pre-formed secondary 

structure. Domains P4-P6 (blue), P2 (orange) and P9 (green) are shown as cylinders and 

P3-P8 (black) and 5‟ portion of P3 (red) are shown as strands. Alt P3 (purple disk), which 

biases folding to the long-lived misfolded species is also shown. The red “stop” symbol 

indicates that native and misfolded do not interconvert but require extensive unfolding to 

form their topological isomer (Adapted from Russell, R et. al.
206

 ). 
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Chapter 2: The DEAD-box proteins give ATP-dependent acceleration of         

folding transitions  

 

2.1 Introduction  

DExD/H-box proteins are extensively involved in RNA mediated processes and 

many function in the context of defined cellular processes. Although their specific 

substrates remain to be defined for most DExD/H-box proteins, recent evidence suggests 

that a subset of DExD/H-box proteins can act on a variety of group I introns found in 

vivo
107,159

 and are even active in the folding of group II introns
159,181

, suggesting that they 

have a more general action, recognizing broad features of RNA structure. These are the 

Neurospora crassa DExD/H-box protein, CYT-19, and the related yeast protein, 

Mss116p.  

In an attempt to understand the mechanism of general RNA chaperones on a well defined 

misfolded RNA, pre-steady state kinetics and equilibrium binding measurements were 

performed using CYT-19 and the Tetrahymena group I ribozyme as a substrate. The 

catalytic activity of the ribozyme allows one to unambiguously distinguish between the 

native conformer and all other conformers, including misfolded ones. CYT-19 is found to 

accelerate the re-folding of the long-lived misfolded species to the native state and is 

dispensable following this re-folding, suggesting that it functions as a true RNA 

chaperone. In addition to demonstrating the chaperone action on the well-characterized 

Tetrahymena ribozyme, strong evidence is also provided for chaperone action of CYT-19 

on one of its natural substrate, the Neurospora mitochondrial large subunit (mtLSU) 
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intron ribozyme. Results from these experiments provide novel biochemical insight into 

the molecular mechanism of DEAD-box protein CYT-19. Surprisingly, another DEAD-

box protein, Ded1, which primarily acts on substrates unrelated to group I introns in 

vivo
154

, was also found to accelerate re-folding of the misfolded Tetrahymena group I 

ribozyme. Together, these studies provide the first empirical evidence for general 

chaperone action on a defined misfolded state in RNA.  

 

2.2 Materials and Methods 

2.2.1 Preparation of ribozymes 

L-21 version of Tetrahymena mtLSU (pUC18) (Figure 2.2) and a version of 

Neurospora mtLSU (pUC19) group I ribozyme (Figure 2.3) were prepared from in vitro 

run off transcription of ScaI enzyme cut cloning vector
206

. Transcription reactions were 

performed with 1  Transcription buffer (40 mM Tris.Cl, pH 8.0, 25 mM MgCl2, 2 mM 

spermidine, 0.01% Triton X-100), 40 mM DTT, NTPs (1 mM each of ATP, GTP, UTP 

and CTP), 125 μL of approx. 1 mg/mL T7 RNA polymerase, and 5 μg/mL cut vector to a 

final volume of 5 mL and incubated at 37 °C for 4 hours. Following incubation, 0.5 mL 

of 0.5M EDTA was added to stop the reaction. 0.6 mL of 3 M sodium acetate and 2M 

acetic acid were added and mixed. 18 mL of ethanol (100%) was added, mixed and 

incubated overnight at -20 °C. Following the incubation, the mixture was centrifuged at 

12,000 rpm for 30 minutes and the supernatant was discarded. The RNA pellet was 

allowed to air dry and resuspended in 1 mL of RNase free water. The RNA was purified 

using RNeasy midi kit (Qiagen). 
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2.2.2 Purification of CYT-19 

2.2.2.1 Materials: 

The following is the list of chemicals (with their makers in parenthesis) used in 

purification of CYT-19. PEI (J.T.Baker), Tris base (J.T.Baker), IPTG (EMD chemicals), 

EDTA (J.T.Baker), KCl (J.T.Baker), DTT (Fisher Biotech), potassium phosphate 

(J.T.Baker). The equipment used in purification include a centrifuge (Beckman, Avanti J-

30I) and a sonicator (Branson sonifier, VWR). 

 

2.2.2.2 pTwin system of purification of CYT-19: 

Plasmid (pTwin2, NEB) encoding CYT-19 protein contains the 524 amino acid 

ORF lacking the mitochondrial targeting sequence which is fused to the N and C terminal 

mini inteins containing a chitin binding domain. pTwin-CYT-19 vector was transformed 

into HMS174 (DE3) strain Escherichia coli cells (containing a carbenicillin resistant 

marker). The cells were grown in LB media at 25 °C with 50 μg/mL carbenicillin to an 

O.D.600 value of about 0.5 and then induced with 1 mM IPTG for 16 to 20 hours at 25 °C. 

The cells were harvested by centrifugation at 6000 rpm for 10 minutes at 4 °C (Beckman 

Avanti J-30I centrifuge) and the pellets were washed with 100 mL of 150 mM NaCl. 

Freeze thaw cycles were performed three times with 15 mL of lysis buffer for 2 pellets 

obtained from a 2 liter culture. The lysis buffer contained 1  buffer A (25 mM Tris.Cl 

pH 7.5, 1 mM EDTA pH 7.5; 10% glycerol) and 24 mM KCl. Following freeze thaw, the 

volume was made up to 200 mL with a final concentration of 10% glycerol, 50 mM 

Tris.Cl pH 7.5 and 400 mM KCl. The mixture was sonicated at setting 5 (Branson 
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sonifier, VWR) in the cold room. The lysate was then centrifuged at 10,000 rpm for 15 

minutes and the supernatant was transferred to a fresh tube. PEI precipitation (which 

frees bound proteins from RNA) was performed 5 times. Each time 0.4 mL of PEI was 

added slowly using a pipet for about 2 minutes (a total of 2 mL) and mixed thoroughly by 

swirling followed by centrifugation at 10,000 rpm for 15 minutes at 4 °C. The 

supernatant was transferred to a new tube before the addition of PEI. Following the final 

PEI precipitation, the lysate was again centrifuged and the supernatant was loaded on to a 

pre-equilibrated chitin bead column. The column was prepared by adding 8.5 mL chitin 

beads in 20% ethanol (NEB). This was equilibrated at room temperature with buffer A 

and loaded with the supernatant from PEI precipitation at about 1 mL/minute. The 

column was washed with buffer B2 (20 mM Tris.Cl pH 7.0, 500 mM KCl, 1 mM EDTA). 

After washing was complete, the column was stopped and left overnight at 4 °C. CYT-19 

was eluted by thiol induced cleavage using buffer B3 (20 mM Tris.Cl, pH 8.5, 500 mM 

KCl, 1 mM EDTA and 40 mM DTT). Following elution, the peak fractions were pooled 

and dialyzed against 500 mL of CYT-19 storage buffer (20 mM Tris.Cl, pH 8.5, 500 mM 

KCl, 1 mM EDTA, 1 mM DTT and 50% glycerol) at 4 °C for 12 hours using 10 kDa 

cutoff dialysis tubing (snakeskin® Pierce, Rockford, IL). Following dialysis, aliquots 

were made, snap frozen using liquid nitrogen and stored at -80 °C. 

CYT-19 used in this study was also purified by a slightly modified version of the 

above protocol
73

 and a second method described in Ref
161

.  
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2.2.3 5‟ labeling of RNA oligonucleotide substrates and Tetrahymena ribozyme
186

 

Oligos shown in Figure 2.4 were deprotected using the protocol supplied by the 

manufacturer (Dharmacon, Inc.) and dried in a speedvac. For the Tetrahymena ribozyme, 

a dephosphorylation reaction was performed using 2 units of shrimp alkaline phosphatase 

(Promega, Madison, WI) added to 1μL of 50 μM ribozyme, which was incubated at 37 

°C for 1 hour followed by incubation at 65 °C for 15 minutes to inactivate the 

phosphatase. A kinase reaction was then performed using 2‟-OH deprotected RNA oligo 

and 5‟-dephosphorylated ribozyme. 1μL each of T4 polynucleotide kinase (New England 

Biolabs) and [γ-
32

P] ATP label (PerkinElmer Life Science) were added and incubated for 

1 hour at 37 °C. The reactions were stopped using 20 mM EDTA-formamide dye solution 

and the labeled oligos and ribozymes were separated by 20% and 8% native 

polyacrylamide gel electrophoresis (PAGE) respectively. The labeled RNAs were cut out 

of the gel and eluted overnight in TE (10 mM Tris.Cl, pH 8.0 and 1 mM EDTA) and 

stored at -20 °C until use. 

 

2.2.4 Kinetic and thermodynamic assays 

2.2.4.1 Materials: 

The following chemicals were used in the assays. MOPS buffer pH 7.0, MgCl2, 

Mg(CH3COO)2, ATP (Sigma), guanosine (Sigma), and proteinase K (Fisher 

Bioreagents). The equipment used in performing the assays were a temperature controlled 

water bath (VWR), filter binding apparatus (VWR), Nitrocellulose filter membranes 
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(Protran), DEAE (Schleicher and Schull), phosphorimager (Stormscan, Molecular 

Dynamics), Software for data analysis (Kaleidagraph), and standard PAGE apparatus. 

 

2.2.4.2 Buffers used in the study: 

All reactions (catalytic and binding assays) were performed in 50 mM Na-MOPS, 

pH 7.0. For diluting labeled RNA for use in trace amounts, TE (10 mM Tris.Cl, 1 mM 

EDTA, pH 8.0), which is also the RNA storage buffer, was used. For diluting CYT-19, 

CYT-19 storage buffer (20 mM Tris.Cl, pH 8.5, 500 mM KCl, 1 mM EDTA, 1 mM DTT 

and 50% glycerol) was used. All reactions used in the study contained the same 10 

dilution of this CYT-19 storage buffer, irrespective of CYT-19 concentration. PAGE 

running buffer was 1  TBE (100 mM Tris.Cl, 83 mM Boric acid and 1 mM EDTA). 

 

2.2.4.3 Ribozyme activity assay to follow re-folding of misfolded state to native state: 

Re-folding of ribozyme was followed by measuring the fraction of native 

ribozyme over time (Figure 2.5A, B, C, D). A population of misfolded ribozyme was 

generated by incubation with 10 mM Mg
2+

 for 10 minutes at 25 °C. This time was 

sufficient to allow complete conversion of unfolded ribozymes to predominantly 

misfolded species and a small fraction native ribozyme, but not sufficient for any 

significant conversion of misfolded species to the native state under these conditions. The 

magnesium concentration was then decreased to the desired concentration (standard 

condition is 5 mM) and CYT-19 was added to initiate re-folding. The standard solution 

conditions of the re-folding reactions were 50 mM Na-MOPS (pH 7.0), 5 mM Mg
2+

, 50 
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mM KCl, 2 mM ATP-Mg
2+

 and 5% glycerol. Aliquots from the re-folding reaction were 

added to a re-folding quench containing 50 mM MgCl2 and 500 μM guanosine without 

changing the Na-MOPS concentration. Quenching inhibits re-folding of the ribozyme 

substantially
204

 such that it essentially stops the reaction (See Figure A1 in appendix). 

The fraction of the native ribozyme at each time was determined by adding trace 
32

P-

labeled substrate (S) and performing a cleavage reaction for 1 minute (Figure 2.5B). This 

time is sufficient for binding of labeled substrate to both native and misfolded ribozyme 

species (approx. kon = 10
8
 M

-1
min

-1
 for both and at concentration of 30 nM ribozyme, 

calculated rate constant for binding = 3 min
-1

 and binding is rate-limiting for substrate 

cleavage; the measured cleavage rate constant was also found to be 3 min
-1

 – see A.1) but 

not sufficient for the dissociation of substrate from the misfolded ribozyme (0.02 min
-1

) 

and rebinding to native ribozyme. Thus the fraction of substrate cleaved in the burst 

(Figure 2.5B) reflects the fraction of native ribozyme at different folding times (Figure 

2.5D). Labeled substrate was separated from the shorter labeled product by using 20% 

denaturing PAGE. The data was analyzed using a phosphorimager (GE Healthcare, 

Fairfield, CT). Kinetic analysis was performed using Kaleidagraph. 

 

2.2.4.4 Equilibrium binding assay to measure affinity of CYT-19 to ribozyme: 

Equilibrium binding of wild-type CYT-19 and a C-terminally truncated CYT-19 

(Δ578-626) to misfolded or native ribozymes was performed using a double 

nitrocellulose filter binding assay
208

. Predominantly native or predominantly misfolded 

ribozymes were generated using 
32

P-labeled ribozyme (<2 nM) and incubated with CYT-
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19 for 15 minutes at 25 °C (50 mM Na-MOPS, pH 7.0, 5 mM Mg
2+

) to allow 

equilibrium. Pulse-chase dissociation experiment established that 15 minutes was 

sufficient for dissociation of nearly all CYT-19 from the ribozyme suggesting that this is 

sufficient length of time to achieve equilibrium (data not shown). Protein-bound RNA 

was separated from free RNA by applying the mixture to a filter holder fitted with 

nitrocellulose membrane and a diethylaminoethyl (DEAE) membrane beneath the 

nitrocellulose membrane. Membranes were washed with 2 mL of 50 mM Na-MOPS 

buffer and dried along with the retained 
32

P-label. Both membranes were exposed to a 

phosphor imager screen and quantitated using a phosphorimager to allow determination 

of the fraction of ribozyme bound to protein. 

 

2.3 Results 

2.3.1 Chaperone action of CYT-19 on the Tetrahymena group I ribozyme 

Many of the known catalytic activities of DExD/H-box proteins come from 

studies characterizing their action on model RNA substrates
72,79,102,104-

106,136,152,153,165,166,169,209
. For example, it has been demonstrated that Ded1 can catalyze 

both strand displacement and annealing of complementary RNA strands
106

. Studies on 

model RNA substrates have been phenomenally useful to understand the capabilities of 

these proteins. However, although many structured RNAs are made up of duplexes, they 

are also extensively structured, having motifs such as loops, tertiary contacts, and metal 

binding motifs, 
210-212

 all of which can influence folding and local/global stabilities of the 

structure. In this context, at least two reasons can be envisioned as to why studies of 
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DExD/H box proteins with structured RNAs are imperative. First, it is plausible that the 

actions of DExD/H-box proteins are not limited to mere duplex unwinding and their 

capability extends beyond this action. Second, DExD/H-box proteins in vivo are known 

to act in specific processes, suggesting that they are targeted to act on specific RNA or 

RNP substrates and it is essential to understand how DExD/H-box proteins achieve this 

targeting. 

In the following research, for the first time, a structural transition from a well-

defined misfolded species of Tetrahymena ribozyme to native ribozyme was probed in 

the presence of the DExD/H-box protein CYT-19. In addition, the chaperone action of 

CYT-19 was also demonstrated on one of its cognate introns with which CYT-19 

interacts in vivo. Both Tetrahymena and Neurospora ribozymes used in the study (Figure 

2.2 and Figure 2.3) are engineered versions of group I introns, which are self-splicing 

RNAs found in organellar genomes of plant and fungal mitochondria and chloroplasts
213

. 

All group I introns catalyze a 2 step trans-esterification reaction as shown in Figure 2.1. 

In the first step, an exogenous guanosine (G) attacks and cleaves the 5‟ splice site. This 

results in the covalent attachment of the 3‟-OH of G at the 5‟ end of the intron. In the 

second step, a conformational change brings the 3‟ splice site to the active site. The 3‟ 

end of the 5‟exon attacks and cleaves the 3‟ splice site resulting in spliced exons and a 

free intron. An engineered version of the intron in which the first 21 nucleotides and the 

last 5 nucleotides are deleted is called the L-21ScaI ribozyme (Figure 2.2), and this 

version can cleave a substrate that is complementary to the internal guide sequence 

(IGS)
213

. 
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The re-folding of the ribozyme was followed using catalytic activity. The catalytic 

activity gives an accurate read-out for the formation of the native state, thus 

unambiguously distinguishing the native ribozyme from all other related but misfolded 

and unfolded species. The re-folding in the absence of CYT-19 is slow (Figure 2.6A), on 

the time-scale of hours, under the standard solution conditions (5 mM Mg
2+

). Upon 

addition of CYT-19, the reaction showed acceleration in re-folding and this acceleration 

required the presence of ATP, as leaving out ATP did not significantly increase the re-

folding rate over the basal re-folding rate. This result suggests that CYT-19 can mediate 

an ATP-dependent conformational transition and resolve misfolded structures of a 

complex structured RNA. The observed rate constant for re-folding increased linearly up 

to at least 500 nM, giving an efficiency or kcat/Km value of 9.5  10
4
 M

-1
min

-1
 (Figure 

2.6B). The lack of saturation suggests that CYT-19 binds relatively weakly with a lower 

limit of 500 nM for the Kd for functional binding of CYT-19. An alternative explanation 

for the weak binding could be rate-limiting binding such that 9.5 10
4
 M

-1
min

-1
 

represents bimolecular association rate constant. However, previous results demonstrate 

that CYT-19 unwinds a duplex (P1 duplex of Tetrahymena ribozyme) with an efficiency 

of about 4.1  10
7 

M
-1

min
-1

(
Ref.161

), imposing a lower limit of the same value on the 

association rate constant. Thus it is likely that 500 nM represents a lower limit for 

functional binding of CYT-19. This result implies that CYT-19 does not bind tightly to 

the intron substrate and this is presumably important for its action as a general RNA 

chaperone of group I introns. The result is also consistent with previous findings that 

CYT-19 binds relatively non-specifically to group I introns
107

. In the re-folding assay, 
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CYT-19 is completely inactivated before determination of the fraction of native ribozyme 

(Figure A2 in Appendix), indicating that CYT-19 chaperones folding of the ribozyme to 

the native state rather than give formation of a species that requires its continued 

presence. Additionally, the final fraction of native ribozyme either in the presence of 

CYT-19 or in its absence was the same (Figure 2.6A), suggesting that CYT-19 does not 

substantially shift the distribution of species away from their values at equilibrium. 

Together all of these data suggest that CYT-19 functions as an ATP-dependent enzyme to 

accelerate formation of native structure from a misfolded structure and is dispensable 

following its action, thus acting as a true RNA chaperone
8
. 

The action of CYT-19 strongly indicates that it induces structural modifications in 

the misfolded ribozyme and reduces the activation energy for the transition between 

misfolded and native states. In order to probe these conformational transformations 

mediated by CYT-19, it is essential to determine the rate-limiting steps during the 

process. At the standard solution conditions of 5 mM Mg
2+

, no saturation behavior was 

observed up until 500 nM (Figure 2.6B), suggesting weak binding under these conditions. 

One way to increase binding is to increase CYT-19 concentration. An alternative 

approach is to reduce the magnesium concentration. Prior characterization of the 

ribozyme in the absence of CYT-19 demonstrated that at lower magnesium concentration 

the re-folding becomes faster
203

. In addition, lowering magnesium salt concentration 

presumably increases the efficiency of CYT-19 because of increased electrostatic 

interaction with the highly basic residues of CYT-19. Experiments were therefore 

performed at lower magnesium concentration (2 mM) to potentially saturate binding in an 
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attempt to identify the rate-limiting first-order step(s). The plot of observed rate constant 

against the concentration of CYT-19 shows saturation behavior at 2 mM Mg
2+

 (Figure 

2.7) with a kcat of about 0.58 ± 0.02 min
-1

. This indicates that a rate-limited step(s) does 

exist during CYT-19 mediated conversion of misfolded to native state. The simplest 

explanation is that this slow step involves a conformational change in the RNA. It 

remains to be determined whether the rate limiting step is unfolding accelerated by CYT-

19 or the subsequent re-folding of the ribozyme to the native state. 

The lack of saturation under standard solution conditions (5 mM Mg
2+

) suggests 

weak binding. Therefore, it was desired to directly determine the binding affinity of 

CYT-19 to the ribozyme to corroborate this finding. Equilibrium binding experiments 

demonstrate that CYT-19 binds the wild type ribozyme with an affinity of 30 nM (Figure 

2.8), a value much lower than the predicted lower limit for Kd for functional binding to 

ribozyme. This suggests that, although misfolded ribozymes are apparently bound at 

lower concentrations of CYT-19, it takes substantially higher concentrations of CYT-19 

to facilitate re-folding of misfolded to native ribozyme (Figure 2.6B). Equilibrium 

binding experiments were also performed to determine whether CYT-19 preferentially 

binds the misfolded ribozyme relative to native ribozyme. Such preference would 

indicate how misfolded ribozymes are targeted by CYT-19, but it would not be clear how 

such differential binding could be elicited given that the native and misfolded are 

structurally similar species. The results are not surprising, therefore, that CYT-19 binds 

the native and misfolded ribozymes with similar affinity (Figure 2.9). However, there 
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could be differences with respect to functional binding such that the action on misfolded 

ribozyme is greater than that on the native species. 

CYT-19, like other proteins of DExD/H-box family, have both amino and 

carboxyl terminal extensions. Although these extensions have been proposed to play a 

role in targeting, similar to that of the internal extensions of DNA helicases
64

, it was 

unclear how CYT-19, which has to recognize multiple group I introns, can achieve 

specificity. Comparative binding studies of wild type and a C-terminal truncated CYT-19 

were performed as part of a broader study to investigate the significance of the C-

terminus. The C-terminus of CYT-19 was shown to be involved in general recognition of 

structured RNA
161

. In this study, the C-terminal truncated CYT-19 (Δ578-626) was much 

less efficient compared to wild type CYT-19 in unwinding a P1 duplex when the duplex 

was attached to Tetrahymena ribozyme than when it was free in solution
161

. In order to 

directly probe whether this difference in efficiency arose as a result of difference in 

binding affinities between wild type and truncated CYT-19, equilibrium binding 

experiments were performed.  

The Δ578-626 protein bound the ribozyme with a Kd of 200 nM, about 7-fold 

weaker than the wild type CYT-19 (Figure 2.8). This difference in binding affinity is 

similar to the difference in efficiency of unwinding of P1 duplex that is attached to the 

ribozyme
161

. Thus the C-terminus domain potentially plays an important role in general 

recognition of structured RNA by CYT-19.  
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2.3.2 Chaperone action of CYT-19 on Neurospora group I ribozyme 

The Tetrahymena group I ribozyme is one of the most highly characterized RNA 

in terms of structure and folding pathway (discussed in chapter 1). Thus it acts as a well-

defined substrate to probe the properties and actions of the DEAD-box protein CYT-19. 

The activity of CYT-19 on Tetrahymena ribozyme suggests a non-specific action. 

However, it remains to be determined whether there is specific action of CYT-19 on one 

or more of its cognate substrates from Neurospora because of co-evolution. In addition, 

CYT-18 may play a role in targeting of CYT-19 to specific substrates. To explore the 

aforementioned possible modes of chaperone action, the activity of CYT-19 on a cognate 

group I intron from Neurospora crassa, the mitochondrial large ribosomal subunit 

(mtLSU) ribozyme, was investigated. 

The Neurospora mtLSU ribozyme gave little or no observable cleavage of the 

oligonucleotide substrate in trans in the absence of CYT-18, consistent with the previous 

findings that CYT-18 gives functional binding to the ribozyme
214-219

 (Figure 2.10). 

Although much needs to be investigated about the ribozyme‟s structure(s) and folding 

pathway(s), data presented here provides strong evidence that the Neurospora mtLSU 

ribozyme misfolds and that CYT-19 can facilitate formation of native species thus acting 

as chaperone. In vitro, the substrate cleavage reaction at 25 °C (after incubation with 

CYT-18 for 30 minutes at 37 ºC) did not go to completion and it showed a 20% burst of 

product formation followed by a slow phase of product accumulation (Figure 2.10). This 

most likely reflects the presence of non-native species among native species, with the 

amplitude of the burst corresponding to the fraction of native ribozyme.  



 62 

An alternative interpretation of the 20% burst in substrate cleavage is that it 

represents a rapid formation of equilibrium between substrate cleavage and re-ligation. In 

this model, substrate cleavage does not go to completion because there is concurrent re-

ligation of the products. However, this model is less likely because the burst amplitudes 

of substrate cleavage reactions depend on their prior incubation times and conditions 

(Figure 2.13 and data not shown). In a purely dynamic equilibrium model, the burst 

amplitudes would be expected to stay the same regardless of prior incubation times. In 

addition, two experiments strongly argue against the equilibrium model. First, a pulse-

chase experiment performed suggests that the second phase involves dissociation of 

substrate from non-native species and rebinding to a species that can cleave the substrate, 

suggesting that the latter species is native (Figure 2.11A). Second, a dilution experiment 

in which the concentration of guanosine was diluted from 200 μM to 10 μM, the latter 

being less than that of the Kd value previously determined for other group I 

introns
2,220,221

, did not result in decrease in the fraction product (Figure 2.11B), arguing 

against the equilibrium model. Additional evidence for misfolding comes from 

experiments with CYT-19, which show larger bursts following CYT-19 action and its 

inactivation as described later in this section. 

In Figure 2.11A, it is possible that the 20% burst is not an accurate reflection of 

the fraction of native ribozyme because of differences in rate constants for binding 

between native and misfolded species. For example, there might be 5% native ribozyme 

that bind with a rate constant 4-fold faster than that of the misfolded species, which 

would also give a 20% burst of product formation. To more accurately measure the 
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fraction of native ribozyme, pre-steady state multiple turnover substrate cleavage 

reactions were performed with a slight excess of substrate over the ribozyme 

concentration (Figure 2.11C). This experiment was performed under the same solution 

conditions as that of a single turnover reaction (data not shown) similar to the one shown 

in Figure 2.11A, except that the reaction was transferred to 4 °C prior to addition of 

substrate. The reaction at low temperature presumably makes product dissociation rate-

limiting. Thus, even if there are differences in the binding rate constants between native 

and misfolded species, they would not influence the estimation of fraction native species 

from the magnitude of burst amplitude. Two independent reactions with a slight excess of 

labeled substrate concentrations (400 nM and 250 nM) over the ribozyme concentration 

(200 nM) gave burst amplitudes of 7% and 17% respectively. Thus the actual fraction of 

native ribozyme is likely to be about 14 to 21% in contrast to 29% estimated from the 

single turnover reaction (Figure 2.11A). The higher fraction of native species in the 

single turnover reaction is presumably because S binds the native ribozyme about 1.4- to 

2-fold faster than it binds the misfolded ribozyme(s), overestimating the fraction native 

ribozyme in the single turnover reaction. 

Magnesium induced folding of mtLSU ribozyme and the effect of CYT-18 was 

monitored by activity assay at 25 °C (Figure 2.12A). For simplicity, the fraction of 

ribozyme species that become native and non-native species upon CYT-18 addition will 

be called native and misfolded species respectively but both conformers could have non-

native contacts in the absence of CYT-18. At 2 mM and 20 mM Mg
2+

, the maximum 

fraction of native species obtained in the absence of CYT-18 was 32% at equilibrium and 
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longer incubations did not affect this value, although experimental uncertainty makes it 

slightly variable. The equilibrium value suggests that, under these conditions, neither the 

native nor misfolded mtLSU ribozyme are strongly favored over each other. The results 

are consistent with the previous findings that the RNA remains largely devoid of tertiary 

structure, even at 25 mM Mg
2+

, in the absence of CYT-18, however the results here 

demonstrates that a small fraction of the ribozyme folds to a species that rapidly forms 

native ribozyme upon CYT-18 addition. The rate constant for folding at 20 mM 

magnesium concentration was faster (0.05 min
-1

) than at 2 mM magnesium (0.003 min
-1

), 

presumably because of formation of different intermediates at different magnesium 

concentrations in the absence of CYT-18. On the other hand, addition of CYT-18 and 

concurrent dilution to 3 mM Mg
2+

, to a reaction pre-equilibrated with the maximum 

fraction of native ribozyme obtained at 25 °C and 10 mM Mg
2+

, 
 
gave a rapid decrease in 

the fraction of native ribozyme from 0.34 to about 0.15 with a rate constant of 1.8 min
-1

, 

whereas addition of CYT-18 dilution buffer, 1 Na-MOPS only slightly affected the 

equilibrium presumably because of change in Mg
2+

 concentration from 10 mM to 3 mM 

(Figure 2.12C). Moreover, addition of CYT-18 at higher magnesium (50 mM) also 

affected the equilibrium value, albeit at a slower rate (Figure 2.12B). CYT-19 did not 

seem to affect this equilibrium in the presence of CYT-18 but decreases the rate constant 

for approach to this apparent equilibrium value, although absence of any CYT-19 effect 

cannot be ruled out because of uncertainty in the data. These results suggest a surprising 

scenario in which CYT-18 binds the non-native species of Neurospora mtLSU ribozyme 

more favorably than it binds the native species under these solution conditions.  
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In order to determine whether CYT-19 acts as a chaperone of mtLSU ribozyme, 

CYT-19 was incubated with mtLSU ribozyme, in the absence of CYT-18, at low 

magnesium where the re-folding of misfolded to native species is slow. Under these 

conditions (50 mM KCl, 5% glycerol, 3 mM Mg
2+

), CYT-19 was found to transiently 

give formation of a species that rapidly became native ribozyme upon CYT-18 addition. 

Figure 2.13 shows the increase in the fraction of native ribozyme from about 17% to 

40%, strongly supporting the notion that CYT-19 can convert non-native species of 

Neurospora mtLSU ribozyme to native species. However, this increase is followed by a 

slow decrease in the fraction of native ribozyme. The slow decrease is presumably 

because of the inability of CYT-19 to maintain its action. These data are consistent with a 

model in which CYT-19 acts on the misfolded ribozyme to set up a steady state, where 

there is interconversion between native and misfolded ribozymes with misfolded species 

being only slightly favored less than at equilibrium. The higher fraction of native 

ribozyme is not maintained presumably because of CYT-19 death, inhibition by 

accumulating ADP, or ATP depletion. One of the predictions of this model is that a 

second addition of CYT-19, replenishing ATP, or relieving ADP inhibition would 

increase the fraction of native ribozyme again. This was indeed observed experimentally. 

Figure 2.13B shows a second transient increase in fraction native ribozyme upon addition 

of 500 nM CYT-19 along with compensatory magnesium to maintain its concentration at 

3 mM and addition of fresh Mg
2+

·ATP at 2 mM. This second increase had higher 

amplitude presumably because of higher CYT-19 and ATP concentration in the reaction.  
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In addition to evidence for chaperone activity, data presented here and in Ref
73

, 

suggest that CYT-19 can accelerate dissociation of substrate bound to Neurospora 

ribozyme. Using catalytic activity, it was found that the substrate cleavage reaction in the 

presence of CYT-19 apparently goes to completion. However, CYT-19 was unable to 

allow completion of substrate cleavage when excess unlabeled substrate was added prior 

to CYT-19 addition (Figure 2.14). This suggests that the excess unlabeled substrate 

blocks the dissociation of substrate and that the increased fraction native upon addition of 

CYT-19 is not acceleration of re-folding from misfolded to native species. These results 

demonstrate that CYT-19 accelerates dissociation of substrate from species that is/are 

presumably misfolded and allows rebinding to a fraction of native ribzoyme in the 

population. Additional more direct evidence for the acceleration of substrate release from 

Neurospora ribozyme by CYT-19 was demonstrated using gel shift assay
73

. Thus, one 

action of CYT-19, acceleration of P1 duplex in both Neurospora and Tetrahymena 

ribozyme, appears to be similar.  

 

2.3.3 An unrelated DExD/H-box protein can function as a chaperone of group I ribozyme 

A highly conserved core in all DExD/H-box proteins suggests a common 

mechanism of action amongst these proteins, although many are involved in specific 

cellular processes. In vivo, group I introns are the substrates of DEAD-box protein CYT-

19. It is possible that other DEAD-box proteins, which function in different processes, 

can act as a chaperone of group I introns. To probe this possibility, and to determine a 
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potential general mechanism of action, Ded1, a related DEAD-box protein involved in 

translation initiation in yeast
165

, was tested. 

Figure 2.15 shows plots comparing re-folding of the ribozyme in the presence and 

absence of either CYT-19 or Ded1. Although the solution conditions are slightly 

different, the very similar rate constants in the absence of proteins suggest that these 

slight differences in solution conditions do not affect the re-folding behavior of the 

ribozyme and hence, any difference arising could be attributed to the difference in 

mechanism of action of the proteins. On the other hand, any difference in efficiency of 

action in the presence of proteins would not necessarily rule out similar mechanism of 

action. Both the proteins showed similar rate constants, within error, in the presence of 

either CYT-19 or Ded1, suggesting a similar general mechanism of action. 

 

2.4 Discussion 

DExD/H box proteins are some of the most diverse and abundant proteins found 

in nature, yet so little is known about how they act on structured RNAs or what strategies 

they use. Here, using the highly characterized Tetrahymena group I ribozyme, the action 

of a general RNA chaperone, CYT-19, was investigated. CYT-19 was found to interact 

with a kinetically stable misfolded form of the ribozyme and accelerate its folding to the 

native functional state. Prior studies indicated that this misfolded state resembles the 

native state on the surface but has topological differences within the core
206

 and it 

requires high activation energy to fold to the active conformer
206

. Under standard solution 

conditions, CYT-19 action was strongly dependent on the presence of ATP, suggesting 
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that CYT-19 uses the energy of ATP binding and hydrolysis to overcome a kinetic 

barrier. The efficiency of CYT-19 mediated re-folding was low compared to efficiency of 

unwinding of a 6 bp duplex
73

 under similar solution conditions, most likely because 

partial unfolding of a highly structured RNA requires more energy than unwinding of a 

simple duplex.  

Magnesium ions are essential for folding and stabilization of RNA structures. 

Previous studies showed that the re-folding of L-21ScaI ribozyme is slowed at higher 

magnesium concentration
204

 and increased at lower magnesium concentration, suggesting 

that magnesium ions have to be displaced during re-folding of the ribozyme. Higher 

concentrations of magnesium salt also have an inhibitory effect on the efficiency of CYT-

19 action. This is because CYT-19 is a highly basic protein and the positively charged 

residues are presumably counteracted by the anions derived from the divalent salt. 

Electrostatic interactions have been shown to be important for the action of many basic 

single-stranded binding proteins that can cause RNA structural rearrangements. Such 

interactions presumably play a role in function of CYT-19 as well, facilitating 

conformational changes by stabilizing the negative charges on the phosphodiester 

backbone of RNA thereby replacing the role of divalent cations.  

The Kd for CYT-19 to ribozyme was much lower than the apparent K1/2 for re-

folding suggesting weaker functional binding than that detected in equilibrium binding 

experiments. This could also reflect a requirement of multimerisation or action of 

multiple CYT-19 molecules for re-folding. However, the former seems less likely 

because sedimentation equilibrium experiments suggest that CYT-19 remains as a 
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monomer under a wide range of solution conditions (data not shown). The effect of CYT-

19 can be saturated at higher CYT-19 and lower magnesium concentrations, giving a kcat 

of 0.6 min
-1

. This suggests that a rate-limiting step(s) exists during modulation of 

misfolded ribozyme structure by CYT-19 to allow folding to the native state. Presumably, 

this step involves multiple cycles of partial unfolding of the misfolded state to fold to the 

native state, perhaps even through the same intermediates, such as Itrap, that exist in the 

pathway in the absence of CYT-19. Further studies need to be performed to validate this 

model. 

The actions of DExD/H-box proteins on structured RNAs are in general, difficult 

to study in vitro because of the lack of defined substrates or interacting partners. The 

Tetrahymena group I ribozyme is a great system for studying the action of CYT-19 

because it folds to a defined misfolded species (or a family of rapidly interconverting 

species)
203

 and therefore behaves as a single species in kinetic studies. This is important 

because it allows one to interpret the parameters directly from kinetic studies rather than 

from the more complicated modeling of multiple species. In fact, the structural changes 

of RNA induced by CYT-19 observed in footprinting studies, which was key to providing 

strong support for chaperone action, was demonstrated using this misfolded ribozyme 

presumably because of its homogenous nature.  

The folding of Neurospora mtLSU ribozyme to the native species is quite 

unfavorable even under high magnesium (20 mM), consistent with the previous 

footprinting data that mtLSU intron remains largely unfolded in the absence of CYT-18 

even up to 25 mM Mg
2+ 

(Ref.
214

). However, the results obtained here show that at least a 
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small fraction is able to fold to the native species or form a conformer that rapidly 

becomes native species upon addition of CYT-18. It is intriguing that the folding of this 

species is enhanced at higher magnesium concentration. Perhaps here, the magnesium 

ions play a role in stabilizing distinct structural intermediates, which fold with different 

rate constants upon binding to CYT-18.  

Non-native conformation(s) of Neurospora is favored over the native species at 

equilibrium under certain solution conditions. Much needs to be investigated about the 

type and number of misfolded species, however, CYT-19 can give accumulation of a 

ribozyme species which is predisposed to fold to the native state upon CYT-18 addition. 

The accumulation of native ribozyme is transient suggesting that CYT-19 action is not 

maintained either because it forms an unproductive complex following its action or 

because of unfavorable solution conditions, such as increased ADP concentration, that 

can be inhibitory to the action of CYT-19. Additional evidence for CYT-19 inactivation 

comes from the finding that the transient action can be regenerated by a second addition 

of CYT-19. It has to be emphasized that these results support a hypothesis, where under 

certain conditions, when misfolded ribozymes are favored at equilibrium, the fraction of 

native ribozymes are increased due to the constant presence of active CYT-19. This in 

turn suggests that CYT-19 action is either due to 1) repeated cycles of structure 

disruption followed by dissociation or 2) CYT-19 binding in the ground state to native 

ribozyme. The latter model, however, is inconsistent with CYT-19‟s low affinity of 

binding. The action on misfolded ribozyme suggests a crucial finding, that is, CYT-19‟s 

ability to apparently create a steady-state distribution that differs from equilibrium. It is 
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plausible that CYT-19 shifts the equilibrium distribution by setting up a dynamic steady 

state between the different populations of ribozymes. Such an effect has been 

demonstrated in case of Ded1 on model duplex substrates
209

 and perhaps could also be 

demonstrated for Tetrahymena ribozyme where under some conditions, CYT-19 action 

on the stable native ribozyme leads to an increase in the population of the 

thermodynamically less favored species.  

A second action of CYT-19 on Neurospora mtLSU ribozyme, which is distinct 

from the one described above, was also demonstrated. Previously, CYT-19 has been 

shown to accelerate dissociation of substrate from the misfolded Tetrahymena ribozyme. 

Here, catalytic assays provide strong evidence that CYT-19 accelerates dissociation of 

substrate from the P1 duplex of Neurospora ribozyme. The efficiency of duplex 

unwinding was comparable to that of Tetrahymena ribozyme, suggesting that CYT-19 is 

not specifically targeted to structural features of either ribozyme, consistent with its role 

as a general chaperone. 

The mtLSU ribozyme is one of the three group I introns in Neurospora that 

requires CYT-18 for its function
218

. CYT-18 induces tertiary structure formation upon 

binding to its cognate group I introns including the mtLSU intron
214

. Footprinting studies 

and in vitro splicing assays have indeed demonstrated that formation of tertiary structure 

and enhancement of splicing requires the continued presence of CYT-18, suggesting that 

the protein provides functional binding to the mtLSU intron
214,218,222

. In addition, a recent 

X-ray crystal structure shows CYT-18 in complex with native conformation of a non-

cognate RNA
217

. It was therefore surprising to find that, in case of a cognate RNA, an 
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apparently misfolded conformation was stabilized relative to the native-like conformation 

by CYT-18. The paradoxical behavior requires further investigation. Perhaps, this is a 

peculiar feature of the ribozyme version and is due to the manner in which the ribozyme 

was generated by in vitro transcription, hence may not be biological. 

Initial comparative studies of CYT-19 and Ded1 suggest that these proteins may 

have similar mechanism of action. Given that CYT-19 and other DExD/H-box proteins 

share the same conserved core which is involved in RNA/ATP binding and hydrolysis, 

the present results are not surprising. The C-terminal region of CYT-19 was previously 

demonstrated to recognize general features of the RNA for efficient unwinding of 

duplexes. A similar mode of action could be envisioned for Ded1, which could explain 

the similar efficiency of action on Tetrahymena ribozyme. On the other hand, CYT-19 is 

a chaperone of group I introns but Ded1 is involved in translation initiation in yeast and 

has no known function in folding of group I introns. This raises the question as to how 

specificity is achieved in vivo for action of Ded1 on its substrate. Perhaps, one way to 

achieve specificity is to have additional recognition motifs in its N- or C-terminal 

regions. There are a few known examples for such an active specificity among DExD/H-

box proteins where the protein uses these extensions to potentially make additional 

interactions with its substrates and thereby increase binding affinity. On the other hand, 

the specificity could be achieved in a more passive manner where some of these proteins 

are confined in space, for example, by having barriers such as nuclear envelope or in 

time, by expression of specific DExD/H-box proteins during different stages of gene 

function.  
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Figure 2.1: Overview of group I intron splicing 

 

A simplified 2-step mechanism for group I intron. In the first step, a nucleophile, 

guanosine, attacks and cleaves the 5‟ splice site. The resulting 5‟ exon attacks and cleaves 

the 3‟ splice site, splicing out the intron and ligating the exons together. (Adapted from 

Tanner, K
213

) 
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Figure 2.2: Secondary structure of Tetrahymena thermophila mtLSU ribozyme 

 

Secondary structure of L-21ScaI ribozyme with core (P4-P6 and P3-P8) & peripheral 

elements (P5abc, P2-P2.1, and P9) are shown. P1 duplex is formed when substrate (red) 

binds the IGS region by base-pairing. The cleavage site on the substrate is indicated by 

black arrow; cleavage results in 5‟CCCUCU3‟ and 5‟AAAAA3‟ products. 
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Figure 2.3: Secondary structure of Neurospora crassa mtLSU ribozyme 

Neurospora crassa mtLSU ribozyme shows core (P4-P6 and P3-P8) and peripheral 

elements (P2, P9, and extension on P6). The substrate (red) binding to internal guide 

sequence (IGS) results in the formation of P1 duplex. The substrate cleavage (indicated 

by arrow) results in the formation of a long 5‟ product (5‟AAGGAU) and a shorter 3‟ 

product (5‟AACC). 
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Figure 2.4: Sequence of oligonucleotide substrates that base pair with internal guide 

sequence (IGS) of ribozyme to form P1 duplex 

 

P1 duplex forms upon binding of specific substrates, indicated by 5‟ and 3‟ at the ends, to 

Tetrahymena mtLSU (above) and Neurospora mtLSU (below) group I intron ribozymes 

by base pairing with their respective IGS to form the P1 duplex. The arrow indicates the 

site of cleavage which is 3‟ to a G.U wobble pair in both ribozymes.       
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Figure 2.5: Assay to monitor re-folding of the Tetrahymena group I misfolded 

ribozyme 

 

(A) Scheme of the ribozyme re-folding reaction. Predominantly misfolded ribozyme 

(about 90%) was formed by incubating Tetrahymena ribozyme at 25 °C for 10 minutes at 

10 mM Mg
2+

; CYT-19 and Mg
2+

-ATP were added and solution conditions adjusted to 5 

mM Mg
2+

, 1  Na-MOPS, 50 mM KCl, 5% glycerol and 2 mM ATP-Mg
2+

 (final 

concentration of ribozyme = 100 to 200 nM). Over time (re-folding time), aliquots were 

quenched in high MgCl2 folding quench. After incubation for 5 minutes, oligonucleotide 

substrate and guanosine were added to aliquots and a second incubation was performed. 

The cleavage reactions were monitored by taking a second set of aliquots, which were 

quenched over time (reaction time) with formamide and EDTA. (B) Labeled substrate 

and product are separated on a 20% denaturing gel containing 8M Urea and quantitated. 

(C) Substrate cleavage reactions at varying re-folding time – 1.33 min (green), 6 min 

(orange), 18 min (magenta), 36 min (light blue), 58 min (red) and 122 min (dark blue). 

The fraction cleaved at 1 minute for the aliquots quenched at different folding times is 

indicated by the dotted line (D) The amplitude of substrate cleavage reaction () and the 

fraction of substrate cleaved at 1 minute () are plotted against the folding time (same 

color coding as that of (C)). [Note: The ribozyme reactions shown here are for the P5a 

mutant (see chapter 3), whose re-folding in the absence of CYT-19 is much faster than 

that of the L-21ScaI ribozyme without any difference in substrate cleavage rate constants] 
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Figure 2.6: CYT-19 accelerates re-folding of the Tetrahymena group I misfolded 

ribozyme 

 

(A) Fraction native was plotted as a function of time (minutes) to give rate constants for 

re-folding of misfolded to native species in the presence of CYT-19 storage buffer (), 

100 nM (), 200 nM () and 500 nM () CYT-19. All reactions had a final 

concentration of 100 nM ribozyme and 2 mM mg
2+·ATP. An equivalent reaction in the 

presence of 500 nM CYT-19 but without 2 mM ATP was also performed (). Rate 

constants for re-folding were 0.0064 (), 0.016 (), 0.0225 (), 0.054 () and 0.0054 

(). All data points are normalized to the average end points of the three reactions in the 

presence of CYT-19 and ATP. Curve fitting was performed by forcing the end points of 

all the reactions to 1 and floating the starting point. (B) Rate constants obtained from (A) 

were plotted against CYT-19 concentration and the data fit to a straight line. The slope, 

which represents kcat/Km, gave a value of 9.5 × 10
4
M

-1
min

-1
. 
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Figure 2.7:  Efficiency of re-folding of L-21ScaI ribozyme by CYT-19 at 2 mM Mg
2+

 

 

Efficiency of CYT-19 action for re-folding can be saturated at 2 mM Mg
2+

. Re-folding 

experiments analogous to that shown in Figure 2.6 were performed but at 2 mM instead 

of 5 mM Mg
2+

. Reactions were at 100 nM ribozyme and at varying CYT-19 

concentrations as shown. The rate constants (kobs) obtained from two independent sets of 

experiments, 1 () and 2 () were plotted against CYT-19 concentration. Data from 

either sets were fit to Michaelis-Menten equation (kcat*[S0]/ Km+[S0])+0.05, where kcat 

represents the maximal rate constant, Km signifies Michaelis constant, which is the 

concentration that gives ½ maximal rate constant, S0 is the free CYT-19 concentration 

approximated to initial concentration and „+0.05‟ represents an offset in the equation 

which represents the rate constant for re-folding in the absence of CYT-19. kcat and Km 

obtained from experimental set 1 were 0.56 min
-1

 and 900 nM respectively and that from 

set 2 were 0.6min
-1

 and 687 nM. The efficiency of re-folding calculated from the 

independent measurements of kcat/Km were 8.7 × 10
5 

M
-1

min
-1

 and 6.3 × 10
5 

M
-1

min
-1

 for 

the two sets. 
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Figure 2.8: The C-terminal truncated CYT-19 binds Tetrahymena group I ribozyme 

less tightly compared to wild-type CYT-19 

 

Equilibrium binding assays were performed using nitro-cellulose/DEAE double filter 

binding approach (experimental details in methods). The fraction of labeled ribozyme 

bound by wild type () or C-terminal truncated CYT-19, Δ 578-626 (), were plotted 

against CYT-19 concentration and the data were fit to hyperbolic function, fraction 

bound = [So]/ [So] + Kd, where [So] represents concentration of unbound CYT-19, 

approximated to total CYT-19 concentration. The fits gave a Kd value of 30 nM for the 

wild type and 200 nM for the C-terminal truncated CYT-19, a difference of 6.7-fold 

weaker binding. 
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Figure 2.9: Binding affinity of wild type CYT-19 to predominantly native or 

predominantly misfolded ribozymes 

 

Filter binding experiments were performed at 25 ºC. 
32

P-labeled ribozymes were either 

allowed to misfold () (25 ºC for 10 minutes at 10 mM Mg
2+

) or allowed to fold to native 

species () (50ºC for 30 minutes at 10 mM Mg
2+

) followed by incubation of either 

ribzoymes at 25 ºC for 15 minutes at 5 mM Mg
2+

 with CYT-19 at concentrations shown 

before applying to the double membrane filters. Other solution conditions were 50 mM 

Na-MOPS and pH 7.0. The data of fractions of labeled ribozymes bound at equilibrium 

for each concentration of CYT-19 were fit to the hyperbolic binding equation, 

[So]/Kd+[So], where [So] is the free CYT-19 concentration, approximated to initial 

concentration and Kd is the equilibrium dissociation constant. The affinity of CYT-19 to 

native ribozyme (Kd) was 54 nM, the same within error as that of CYT-19‟s affinity to 

misfolded ribozyme (Kd = 41 nM). Both these values were same within error as that of 

the affinity of CYT-19 to misfolded ribozyme measured in a separate experiment (Figure 

2.8). 
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Figure 2.10: Neurospora mtLSU group I ribozyme cleavage requires CYT-18 

 

Neurospora Crassa mtLSU group I ribozyme (200 nM) was incubated with () and 

without () 400 nM CYT-18, 500 μM guanosine and 5.5 mM Mg
2+ 

at 37 °C for 30 

minutes. Reactions were transferred to 25 °C and trace substrate added to initiate the 

cleavage reaction. The final concentration of Mg
2+

 was 5 mM. The ribozyme cleavage 

occurs only in the presence of CYT-18 () and leaving out CYT-18 does not produce any 

appreciable amount of cleavage (). The reaction produces a burst of product with a rate 

constant of 0.19 min
-1

, followed by a slow phase of product accumulation (0.0039 min
-1

).  
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Figure 2.11: Neurospora mtLSU group I ribozyme misfolds 

 

(A) Neurospora mtLSU group I ribozyme cleavage reaction demonstrates evidence for 

the presence of native and alternative conformation(s). The ribozyme was incubated with 

CYT-18 (1:2 ratio) at 37 °C for 30 minutes before transferring to 25 °C. Trace labeled 

substrate was added and incubated for 10 minutes before 500 μM G (final concentration), 

with () and without () excess unlabeled substrate (chase) was added to initiate the 

cleavage reaction. The final Mg
2+

 concentration was 5 mM. The reaction shows a 

biphasic behavior with a 7-fold difference in rate constants for the slow phase in the 

absence (, 0.004 min
-1 

) and presence (, 0.0006 min
-1

) of excess unlabeled chase (16.9 

μM over 200 nM ribozyme/400 nM CYT-18 concentration). (B) Does the burst of 

fraction native reflect an equilibrium between product formation and re-ligation? Diluting 

the substrate cleavage reaction 20 fold into 1 × Na-MOPS buffer containing 5 mM Mg
2+

 

after completion of the burst shows that the products did not re-ligate to give substrate. 

Substrate cleavage reactions with ribozyme and CYT-18 concentrations as in (A). The 

reactions with () and without () dilution of guanosine (200 μM to 10 μM) following 

the completion of the burst phase (25 minutes) are shown. (C) Pre-steady state multiple 

turnover reaction at 4 °C to estimate the true fraction of native ribozyme. 200 nM 

ribozyme was pre-incubated with CYT-18 as in (A) and transferred to 4 °C before the 

addition of 400 nM () or 250 nM () labeled „S‟. The burst amplitudes obtained were 

7% () and 17% () respectively giving an estimated fraction of native ribozyme as 14 

to 21%. 
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Figure 2.12: CYT-18 affects the equilibrium of Neurospora mtLSU ribozyme  
 

(A) Neurospora mtLSU ribozyme was heated at 92 °C for 2 minutes and rapid cooled on 

ice before use. The folding reaction was initiated by adding magnesium to 2 mM () or 

20 mM Mg
2+ 

(). Aliquots were quenched in 50 mM MgCl2 containing 600 μM 

guanosine and 400 nM CYT-18  (200 nM ribozyme) followed by addition of labeled S 

and performing complete cleavage reactions. The burst amplitudes were plotted against 

re-folding time and the first (red, 1 min) and last time points (blue, 1129 min) for the 

reaction at 2 mM are indicated. The rate constant for formation of native state (from 

unfolded or non-native state) is 0.003 min
-1

 at 2 mM and 0.05 min
-1

 at 20 mM Mg
2+

. (B) 

Fraction native monitored over time in the folding quench containing 400 nM CYT-18 at 

early (red, 1 min) and late (blue, 1129 min) re-folding times corresponding to the points 

in plot (A). (C) Effects of CYT-18 and CYT-19 on native ribozyme. 200 nM ribozyme 

was heated and rapidly cooled as in (A). 1.33 μM ribozyme was incubated with 10 mM 

Mg
2+

 and 6.66 mM Mg
2+

-ATP. A „0‟ time point was taken after incubation for 80 to 92 

minutes before the addition of 1 Na-MOPS (), 500 nM CYT-18 (), or 500 nM CYT-

18 and 400 nM CYT-19 (). Aliquots were quenched in high MgCl2 (50 mM) along with 

600 nM guanosine (and 500 nM CYT-18 for reaction with 1 Na-MOPS). The fraction 

native ribozyme was determined as in (A). Addition of Na-MOPS shifted the equilibrium 

slightly from 0.37 to 0.27 toward misfolded species with a rate constant of 0.01 min
-1

. 

Addition of CYT-18 also shifted the equilibrium but from 0.34 to about 0.155 with a rate 

constant of 1.8 min
-1

. Addition of CYT-19 slowed this transition (0.2 min
-1

). 
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Figure 2.13: CYT-19 gives increase in fraction native species of Neurospora group I 

ribozyme 

 

(A) Substrate cleavage reactions of Neurospora mtLSU ribozyme (pre-incubated by 

heating to 92 °C for 2 minutes and cooled for 5 minutes) after incubation with 3 mM 

Mg
2+

 400 nM CYT-19 (indicated by an arrow and the number 1 in B) and ATP-Mg
2+

 for 

0.33 (orange), 1 (red), 3 (magenta), 8.5 (cyan) and 31 (blue) minutes. (Light green), No 

CYT-19. Following incubation, the magnesium concentration was adjusted to 50 mM 

MgCl2 along with final concentrations of 500 nM guanosine and 550 nM CYT-18 (about 

2  higher than ribozyme concentration). Fraction of substrate cleaved were plotted 

against reaction time and the data are fit to double exponential model – (A1(1-exp
(-

k
1
time) 

+ (1-A1)(1-exp
(-k

2
time)

), where A1 represents amplitude of the fast phase and k1 

and k2 represent rate constants for the fast and slow phases respectively. (B) The 

amplitudes from (A) were plotted against the folding time with the same color code as in 

(A). Solution conditions were 3 mM Mg
2+

, 1  Na-MOPS, 2 mM Mg
2+

.ATP, 50 mM KCl 

and 5% glycerol. Aliquots from the reaction were diluted three fold into folding quench 

containing final concentrations of 500 nM guanosine, 550 nM CYT-18 (about 2  higher 

than ribozyme concentration) and 50 mM MgCl2. Complete substrate cleavage reactions 

(A) were performed to determine the burst amplitudes that represents fraction native. The 

fraction of native ribozyme increases rapidly at a rate constant of 1.3 min
-1

 () upon 

addition of 400 nM CYT-19 (first addition), followed by a slow decrease (, kobs = 1.3  

10
3
 min

-1
). The second addition of CYT-19 (indicated by an arrow and the number 2), 

increases the fraction of native ribozyme (), followed by a rapid decrease in fraction 

native (, kobs = 0.018 min
-1

). The last data point at about 1140 minutes presumably 

reflects the equilibrium for native ribozyme.  
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Figure 2.14: CYT-19 acts on Neurospora mtLSU group I ribozyme and      

accelerates substrate dissociation from the ribozyme  

 

Neurospora ribozyme (200 nM) was incubated with CYT-18 (400 nM) at 37 °C for 30 

minutes and substrate cleavage reactions were performed with 500 nM CYT-19 () or 

without CYT-19 (). The substrate cleavage reaction in the absence of CYT-19 () 

showed biphasic kinetics with a fast rate constant of 0.29 min
-1 

and an amplitude of 0.3, 

followed by a slow phase which has a rate constant of 0.0059 min
-1

. The substrate 

cleavage reaction in the presence of CYT-19, gave maximum amplitude of about 0.8 

(substantially higher than the reaction in the absence of CYT-19) and with an apparent 

single exponential (). Substrate cleavage reactions were performed, in which the rapid 

first phase was allowed to complete (, ) before the addition of either CYT-19 alone 

() or addition of excess unlabeled substrate (1.3 μM over 160 nM ribozyme) followed 

by the addition of CYT-19 (400 nM, ). The reaction went to the higher endpoint of 0.8 

in the presence of CYT-19 (). Addition of excess unlabeled substrate chase obliterated 

this activity and further slowed the rate constant for the slow phase ( versus ).  
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Figure 2.15: Comparison of chaperone activity of CYT-19 and Ded1 

 

Tetrahymena L-21ScaI ribozyme was allowed to misfold (25 °C for 10 minutes at 10 mM 

Mg
2+

); adjusted to 5 mM Mg
2+

 and allowed to refold either in the presence of 500 nM 

CYT-19 () or in the presence of 500 nM Ded1 (). Control reactions in the absence of 

proteins are also shown (filled symbols). The rate constant for re-folding in the presence 

of either CYT-19 storage buffer (final concentration of 50 mM KGlu, 5% glycerol) () 

or Ded1 storage buffer (final concentration of 30 mM NaCl, 1% glycerol) (); common 

solution conditions are 5 mM Mg(OAc)2; 50 mM Na-MOPS pH 7.0, 25 ºC. The same 

rate constant of 0.11 min
-1

 for both CYT-19 and Ded1 mediated reactions suggests that 

these slightly different buffer conditions do not affect the rate constants of re-folding. The 

rate constants for re-folding in the presence of 500 nM CYT-19 () was 0.15 min
-1

, the 

same, within error, as that of re-folding in the presence of 500 nM Ded1 () (0.20 min
-1

). 
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Chapter 3: Kinetic redistribution of native and misfolded RNAs by the DEAD-box 

chaperone protein, CYT-19* 

 

3.1 Introduction 

All organisms encode a host of RNAs that must fold into functional structures and 

undergo extensive conformational transitions as they mediate essential cellular processes 

such as pre-mRNA splicing and translation. Essentially all processes that are mediated by 

structured RNAs also require DExD/H-box proteins, which use cycles of ATP binding 

and hydrolysis to accelerate RNA conformational changes
11,167

. Although they are related 

to DNA helicases
223

, and some viral DExD/H-box proteins possess at least modest 

canonical RNA or DNA helicase activity
102,104,224

, many DExD/H-box proteins display 

very low activity in conventional helicase assays and are poorly processive, consistent 

with roles in disrupting local structural elements rather than unwinding long helices
63,167

. 

There has been much progress using short model duplex RNAs and RNA-protein 

complexes to elucidate the basic capabilities of DExD/H-box proteins
72,152,165,209

. 

However, relatively little is known at the molecular level about how DExD/H-box 

proteins interact with structured RNAs to mediate conformational changes, and what 

determines which RNAs, and which of their conformations, are targeted for action.  

 

* Significant portions of this chapter has been previously published in Nature 449, 1044-

1088 



 89 

Whereas many DExD/H-box proteins are thought to function in the context of a defined 

RNA or RNA-protein complexes, some proteins of the major subfamily, DEAD-box, 

function as general RNA chaperones by interacting less discriminately with structured 

RNAs to promote their folding
107,159

. This latter group includes the Neurospora crassa 

CYT-19 protein, which is required for efficient splicing of several mitochondrial group I 

introns and can facilitate folding of a diverse set of group I and group II introns in vitro or 

when expressed in Saccharomyces cerevisiae
107,159,181

.  

These systems are valuable experimentally because the relatively simple groups I 

RNAs are likely to provide insight into the mechanisms of DExD/H-box proteins in more 

complex systems. A particularly attractive candidate for detailed mechanistic studies of 

CYT-19 is the ribozyme derived from a group I intron of Tetrahymena thermophila, 

because its in vitro folding has been extensively characterized
16,198-200,225

. Further, 

because it folds preferentially to a long-lived misfolded conformation which then slowly 

re-folds to the native structure
201,203,204,226,227

, it is possible to generate populations of 

either predominantly native or predominantly misfolded ribozyme. 

 

3.2 Results 

3.2.1 Redistribution of native and misfolded ribozyme 

 Using a quantitative assay for ribozyme catalytic activity, it was shown previously 

that CYT-19 interacts with the misfolded ribozyme, giving ATP-dependent re-folding to 

the catalytically active, native state
73,161

. Because the misfolded ribozyme is extensively 

structured, including all five long-range native tertiary contacts, and must unfold 
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substantially to reach the native state
206

, CYT-19 apparently accelerates this folding 

reaction by promoting partial unfolding of the misfolded ribozyme. 

Here, in order to probe the mechanism of CYT-19 action and to explore whether 

it recognizes structural features that are specific to the misfolded conformer or whether it 

can also mediate unfolding of the native ribozyme, CYT-19 along with ATP was added 

to a preparation of ribozyme that was pre-folded to the native state (Figure 3.1A). At 

various times thereafter, CYT-19 was inactivated by adding proteinase K and increasing 

Mg
2+

 concentration. The fraction of the ribozyme present in the native conformation was 

then determined, without interference from CYT-19 (Figure A3 in Appendix), by 

measuring the fraction of added oligonucleotide substrate (CCCUCUA5) that was rapidly 

cleaved by the ribozyme
73

. Prior work showed that the substrate binds the native and 

misfolded species with similar rate constants but is only cleaved by the native 

ribozyme
204

, so that a burst of product is obtained, with the amplitude indicating the 

fraction of native ribozyme (Figure 3.1B). This burst is followed by a slower phase of 

product accumulation, which reflects dissociation of the substrate from the misfolded 

ribozyme and subsequent binding and cleavage by the native ribozyme
73,204

. As expected, 

no net unfolding was observed under conditions shown previously to give complete 

accumulation of native ribozyme (5 mM Mg
2+

, Figure 3.1C). However, under less 

stabilizing conditions (1 mM Mg
2+

), the fraction of native ribozyme decreased upon 

addition of high CYT-19 concentrations, indicating that CYT-19 can also unfold the 

native ribozyme (Figure 3.1B, 3.1C and 3.2A; a subsequent slow increase reflects time-

dependent inactivation of CYT-19 and inhibition by accumulating ADP, data not shown). 
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 The reaction was dependent on ATP, as its omission or replacement with ADP or 

AMP-PNP gave only low levels of residual activity (Figure 3.1C, 3.2A and 3.2B and data 

not shown; higher concentrations of CYT-19, not shown, gave significant ATP-

independent activity, presumably reflecting passive „strand capture‟
228

). The ribozyme 

ultimately reached an apparent steady state between the native and alternative 

conformers, which was dependent on CYT-19 concentration (Figure 3.2A). The observed 

rate constant for steady-state formation increased modestly with CYT-19 concentration, 

giving an efficiency of < 10
5
 M

–1
 min

–1
. The same steady-state distribution was obtained 

whether starting from a population of predominantly native or misfolded ribozyme 

(Figure 3.3), indicating that the entire ribozyme population is subject to the action of 

CYT-19. 

Additional insight into the action of CYT-19 on the native ribozyme and the 

nature of the steady-state redistribution came from the finding that the decrease in native 

ribozyme was accompanied by formation of the previously-characterized misfolded 

conformer. Upon inactivation of CYT-19 by proteinase K, the native ribozyme 

accumulated with the same rate constant as that for re-folding from the long-lived 

misfolded species and gave the same Mg
2+

 and urea concentration dependences (Figure 

3.4A, 3.4B and 3.4C). The very similar rate constants for re-folding reactions of the 

misfolded ribozyme and reactions of the intermediates that are formed from CYT-19 

action under a wide range of solution conditions shown indicate that a large population of 

the misfolded conformer was either formed during the CYT-19 reaction or immediately 

upon its inactivation. These observations suggested a simple model in which CYT-19 
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partially unfolds both the native and misfolded ribozyme species, giving intermediates 

that subsequently fold along the same pathway that predominates in the absence of CYT-

19. This pathway includes a late commitment point for folding from a trapped 

intermediate (Itrap) to the native and misfolded species, with preferential partitioning to 

the misfolded species
200,204

 (Scheme 1).  

 

 

This kinetic preference could allow the misfolded species to accumulate despite its lower 

stability than the native species. 

 

3.2.2 Unfolding efficiency depends on RNA stability 

3.2.2.1 Stability of the ribozyme structure determines the efficiency of unfolding by 

CYT-19 

 To explore the redistribution model (section 3.2.1) further, features of the 

ribozyme were investigated to potentially identify those that affect the efficiency of 

unfolding by CYT-19. Although CYT-19 is able to act upon the native ribozyme, the 

efficiency was estimated to be at least 50-fold lower than for the misfolded ribozyme 

(Figure 3.2A and ref.
73

). This difference raised the possibility that CYT-19 derives 

Scheme 1 
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specificity from structural features of the misfolded species, but an alternative possibility 

was that the native ribozyme is unfolded less efficiently because it is more stable
204,229

. 

Therefore, two ribozyme variants with decreased native stability were examined (Figure 

3.5). First, it was found that the native species of a ribozyme variant with a disrupted 

tertiary contact between the P4 helix and an A-rich internal loop in the peripheral helix 

P5a
230,231

 was unfolded efficiently by CYT-19 even at 5 mM Mg
2+

 (Figure 3.6A and 3.7), 

conditions that do not give detectable unfolding of the wild-type ribozyme. Again, the 

reaction was strongly ATP-dependent (Figure 3.9A and 3.9C) and, for a given CYT-19 

concentration, the same steady state was reached when starting from populations of 

predominantly native or misfolded ribozyme (Figure 3.6B).  

To test the model that CYT-19 produces intermediates that subsequently fold 

along the pathway that predominates in its absence, the unfolding reactions were 

compared to kinetic simulations (curves in Figure 3.6B). The data were well-described 

using the experimental value for CYT-19-mediated unfolding of the native species and 

values for subsequent folding that were determined in the absence of CYT-19 (Figure 

3.10 and 3.11). Thus, CYT-19 apparently gives partial unfolding of the native and 

misfolded species and then allows the unfolded intermediates to fold again without 

significant interference in this latter process. 
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3.2.2.2 Quantitative correlation between degree of destabilization and efficiency of 

unfolding 

To probe whether a quantitative relationship exists between the degree of 

destabilization and the efficiency of action by CYT-19, a ribozyme variant, with the 

entire P5abc peripheral element deleted, was examined (E
ΔP5abc

, Figure 3.5)
232

. This 

ribozyme populates the native and misfolded species nearly equally at equilibrium,
229

 

leading to the prediction that the two species would be unfolded with comparable 

efficiency. CYT-19 readily acted on the native ribozyme to decrease the fraction native 

(1.4  10
6
 M

–1
 min

–1
, Figure 3.8A and 3.8B) and again, the reaction was ATP dependent 

(Figure 3.9B and 3.9C). However, when starting from a population of misfolded 

ribozyme, net re-folding was not observed; instead, a steady state was reached with the 

fraction of native ribozyme approximately equal to the small fraction that avoids the 

misfolded species and folds to the native state directly (Figure 3.8A). This behavior 

supports the model because, if the native and misfolded species are rapidly unfolded with 

nearly equal efficiencies, even at modest CYT-19 concentrations the relative populations 

will be determined by the kinetic partitioning that occurs between them during folding. 

Nevertheless, the lack of native ribozyme accumulation prevented determination of the 

efficiency of CYT-19 for unfolding the misfolded ribozyme.  

This limitation was circumvented by including a small excess of the group I intron-

binding protein CYT-18 (ref.
233

), which binds the native E
ΔP5abc

 ribozyme tightly
216

 but 

does not bind stably to the misfolded ribozyme under these conditions (A. Chadee and 

R.R., unpublished results), such that it traps any newly-formed native ribozyme. Net re-
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folding of misfolded E
ΔP5abc

 ribozyme to the native state was indeed observed. After 

correcting for the bias of the ribozyme to misfold again after CYT-19 action
234

, this 

measurement gave an efficiency for unfolding of the misfolded ribozyme of 3.1  10
6
 M

–

1
 min

–1
 (Figure 3.8B). This value is ~2-fold larger than that for unfolding of the native 

E
ΔP5abc

 ribozyme, similar to the equilibrium value of 1.4 (ref.
229

). Thus, the relative 

stabilities of the native and misfolded species appear to play a central role in determining 

their efficiencies of unfolding by CYT-19, although the possibility that the region of the 

ribozyme near P5abc is the preferred site of action by CYT-19 and it is the local stability 

of this region, rather than the global RNA stability, that governs CYT-19 efficiency 

cannot be excluded. Again, kinetic simulation of the approaches to a steady-state mixture 

of native and misfolded ribozyme (Figure 3.8A) gave good agreement with the data using 

the experimental values for CYT-19-mediated unfolding of the native and misfolded 

species and prior experimental values for folding of the E
ΔP5abc

 ribozyme in the absence 

of CYT-19 (ref.
234

) 

 

3.3 Model for kinetic redistribution by CYT-19 

All of the results are consistent with the model shown in Figure 3.12. CYT-19 

unfolds both the native and misfolded species, with efficiencies that depend on their 

relative stabilities, and then allows folding to proceed along the same pathway that 

dominates in its absence
204

. This generates an ATP-dependent steady state in which the 

misfolded species, and presumably earlier folding intermediates, are populated to much 

larger extents than at equilibrium because their formation is favored kinetically during 
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folding. It is intriguing that CYT-19 does not appear to affect subsequent folding of the 

ribozyme even though folding proceeds through intermediates that are, by definition, less 

stable than the native and misfolded species. Most likely, CYT-19 transiently unfolds 

these intermediates also, but the unfolding is not observed because the same 

intermediates are readily re-formed. Physical studies, probably at the single molecule 

level, will be necessary to explore the intermediates that result directly from CYT-19 

action.  

 It was proposed prior to the discovery of RNA chaperones that proteins might be 

required to accelerate formation of the most stable conformations of RNA by facilitating 

transitions that require unfolding
8,175

, and these general ideas were made more specific a 

decade later in a model in which CYT-19 actively unfolds misfolded group I RNAs, 

allowing them multiple chances to fold properly
235

. Whereas it was assumed for 

simplicity that the native species would be impervious to further chaperone action and 

would therefore accumulate, here the findings suggest that CYT-19 can have the opposite 

effect, decreasing the fraction of native ribozyme even though it is the most stable 

species. The mechanism of CYT-19 action is presumably the same as proposed earlier, 

but because it acts on the native as well as misfolded species it changes the distribution 

from equilibrium to kinetic control, allowing increased population of intermediates that 

can form rapidly, even if they are less stable. 
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3.4 Implications 

These results suggest that, in vivo, DExD/H-box proteins can act with sufficient 

breadth and efficiency to allow structured RNAs to populate a wider range of 

conformations than would be present at equilibrium. This redistribution of intermediates 

is analogous to an effect demonstrated for DEAD-box proteins using model RNA 

duplexes of varying stability
209

, and it is reasonable to imagine that depletion of the 

native state, rather than accumulation, is a general issue for RNA
58

. Indeed, co-expression 

of an unrelated RNA chaperone protein was shown to decrease in vivo self-splicing of 

several mutant group I RNAs with reduced thermostability by unfolding their native 

structures
236

. The underlying reason for this behavior is probably that RNA chaperones 

are unable to distinguish unambiguously between native and misfolded RNAs. Although 

an analogous challenge exists for protein chaperones, they can achieve a strong bias for 

interacting productively with misfolded species by recognizing exposed hydrophobic 

surfaces (ref. 
237

and references therein). In contrast, native and misfolded RNAs can be 

highly similar in global structure and perhaps identical on their surfaces
230

. 

 Thus, RNAs that are required to populate one native structure may face selective 

pressure to minimize the extent to which their native structures are disrupted by 

DExD/H-box chaperones. Presumably, one important strategy is to „hyper-stabilize‟ the 

native structures relative to alternative structures, beyond the level necessary simply to 

ensure their accumulation at equilibrium. Such an effect may contribute to the 

observation that the native state of the wild-type Tetrahymena ribozyme is ~6 kcal/mol 

more stable than the misfolded conformation under standard in vitro conditions
229

, as this 
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large energy gap results in the native species being unfolded by CYT-19 so infrequently 

compared to the misfolded species that the kinetic preference for misfolding is overcome, 

and CYT-19 action gives accumulation of the native state
73

. For many RNAs, proteins 

that associate to form functional complexes also presumably contribute to this energy 

gap. 

There may be additional strategies available to structured RNAs to minimize 

action of DExD/H-box proteins on their native states. CYT-19 is strongly biased to 

unwind a duplex when it is unable to form tertiary contacts with the body of the 

Tetrahymena ribozyme
73

 suggesting that tight packing of a native structured RNA would 

direct CYT-19 to interact more efficiently with extended or loosely-packed misfolded 

structures. The quality control protein Ro selectively binds single-stranded ends of 

structured RNAs
238

, so native RNAs can presumably evade its action by protecting their 

ends. A further strategy, available for certain RNAs, is for the native structure to rapidly 

undergo an irreversible process, such as self-splicing, allowing mass action to drive the 

equilibrium toward the native form even if it is efficiently unfolded by chaperones. 

Last, the ability of DExD/H-box proteins to increase the relative populations of less 

stable RNA structures is also likely to present opportunities for a broad range of RNAs 

whose functions require formation of multiple structures. A striking example is the 

spliceosome, which relies on several DExD/H-box proteins to facilitate conformational 

changes during its reaction cycle
170,239

. Some of these transitions are likely to be 

thermodynamically unfavorable, as exemplified by the required separation of the 

extensively-base-paired U4 and U6 snRNAs, and the action of DExD/H-box proteins 



 99 

may be necessary to prevent the more stable complex from dominating the steady-state 

population. MicroRNAs, which regulate gene expression by forming base-paired 

complexes with mRNA targets, may also use the action of chaperones to increase the 

sampling of alternative complexes, allowing a broader spectrum of physiological targets 

than would be expected from the relative stabilities of the target complexes
240

. This 

action of DExD/H-box proteins may also assist in the evolution of structured RNAs by 

allowing them to sample alternative structures, some of which could fortuitously possess 

beneficial activities
241

 and would then be subject to further selection for stability and 

activity. 

 

3.5 Yeast Mss116p, a related protein of CYT-19, can also give ATP dependent 

unfolding of native Tetrahymena ribozyme  

Neurospora protein, CYT-19 has a related DEAD-box protein in yeast - Mss116p, 

which has 52% sequence similarity to CYT-19 in the core ATPase domain
159

. Both CYT-

19 and Mss116p are encoded in the nucleus
107,183

 and function in similar processes, that is 

to resolve kinetic traps during folding of mitochondrial group I and group II 

introns
107,159,181,242

. It is reasonable to imagine that they share a similar mechanism of 

action to facilitate folding of these RNAs. Indeed overexpression of CYT-19 in MSS116-

deleted mutant of yeast partially rescues the splicing defects suggesting that they are 

interchangeable and act non-specifically on their substrates
159

. 

The role of CYT-19 and Mss116p in splicing of group II introns has been 

investigated previously
159,181,242

. In vitro splicing of many group II introns can be 
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achieved under high monovalent or divalent ion concentrations but can be very slow, 

presumably because of kinetically trapped forms, that it is not observed under near-

physiological ion concentrations. In the case of yeast aI5γ group II intron, it was shown 

previously that both CYT-19
181

 and Mss116p
242

 can accelerate folding of this intron most 

likely by disrupting non-native structures using RNA unwinding activity, thereby acting 

as chaperones under such conditions. The acceleration was strictly dependent on the 

presence of ATP suggesting that resolution of such structures require energy from 

binding and hydrolysis of ATP. Nevertheless, ATP-independent effects have been 

observed at high concentrations of Mss116p in group II intron splicing
242

.  

In contrast to the actions described above for Mss116p on group II intron splicing, 

recent evidence suggested a model in which Mss116p functioned not by resolving kinetic 

traps but by binding and stabilizing on-pathway intermediates in yeast aI5γ group II 

intron
243

. Solem et. al. reported that Mss116p can facilitate splicing of aI5γ intron without 

the unwinding of duplexes. This was based on the finding that a motif III mutant (amino 

acids SAT replaced by AAA), which was assumed to completely uncouple ATP 

hydrolysis from unwinding activity, was highly defective in unwinding of 12 bp duplexes 

whereas showed only two-fold reduction in formation of spliced products.  

The experiments described above and their conclusions are quite intriguing and 

contrary to the role of DExD/H-box proteins as ATP-dependent RNA unwinding 

helicases. If this is true, then it is possible that such an action would also be significant 

for remodeling RNA by DExD/H-box proteins in vivo. However, there is contrasting 

evidence that Mss116p facilitates group II intron, including aI5γ, splicing through its 
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helicase activity. First, on a more general level, all DExD/H-box proteins have strong 

structural homology to that of DNA helicases suggesting duplex unwinding activity as 

the primary mode of action and indeed many DExD/H-box proteins tested in vitro have 

been found to possess helicase activity
65

. Second, the efficiency of unwinding of RNA 

duplexes by Mss116p was strongly dependent on the duplex length with increasing 

duplex length decreasing the efficiency of unwinding. The 12 bp duplex used in solem et. 

al. study is not typically found in structured RNAs and the inability to unwind such long 

duplexes may be consistent with its physiological role of unwinding short duplexes in a 

non-processive manner. Last and more importantly, SAT/AAA mutant may not 

completely unlink ATPase activity from RNA unwinding activity. Indeed, there is 

evidence for residual in vivo splicing activity of SAT/AAA mutant
244

. It is imperative to 

rule out the incorrect mechanism and therefore experiments were performed as part of a 

larger study to investigate the mechanism of Mss116p on aI5γ splicing. The assays 

developed here, unfolding of native Tetrahymena ribozyme, proved to be instrumental 

because this group I ribozyme is a simple yet highly structured and well studied RNA 

that it is likely to provide mechanistic insight into the more complex and less well studied 

group II aI5γ intron.  

To investigate, whether duplex unwinding is completely abolished by SAT/AAA 

mutant and compare its efficiency to wild type Mss116p, Del Campo et. al. used a shorter 

6 base pair duplex which are typically found in RNAs
228

. CYT-19 mediated unwinding of 

the isolated P1 duplex (that forms following binding of the oligonucleotide substrate in 

the context of the ribozyme) had been shown previously to be much faster when it is 
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attached to the ribozyme
73

. Wild type Mss116p showed similar results in unwinding 

assays but SAT/AAA mutant also showed ATP-dependent activity, albeit, with much less 

efficiency (7-fold less when P1 was free in solution and 15-fold when attached to the 

ribozyme)
228

. More importantly, splicing of group II intron aI5γ by SAT/AAA mutant 

protein was affected to about the same extent relative to wild type (8 to 28 fold). These 

data indeed suggest that SAT/AAA mutant can have residual helicase activity and that 

the mutation does not completely uncouple ATP binding and splicing activity. They are 

also consistent with the results of Solem et. al. without the need to invoke a model in 

which Mss116p stabilized on-pathway intermediates. 

 Here, in order to compare the action of wild type Mss116p and SAT/AAA on the 

unfolding of a structured RNA, Tetrahymena ribozyme unfolding assays were performed 

as described for CYT-19 (chapter 3). The results are summarized in Figure 3.13. Both 

Mss116p and SAT/AAA proteins were active giving ATP-dependent unfolding of the 

ribozyme and thus a decrease in fraction of native species. However, the efficiency of 

unfolding of SAT/AAA mutant was about 15-fold lower than that of wild-type consistent 

with results from splicing assays
228

. Further, both proteins showed comparable ATP-

independent activity (<0.8  10
5
 M

-1
min

-1
, data not shown) at much higher concentration 

presumably due to passive strand capture
228

. Taken together, all of these results strongly 

suggest that ATP-dependent helicase action is the predominant mode of action of 

DExD/H-box proteins Mss116p and related protein, CYT-19 and that they function 

primarily by resolution of kinetic traps during folding and splicing of group I and group 

II introns including aI5γ.  
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3.6 Summary 

DExD/H-box proteins are ubiquitously involved in RNA-mediated processes and 

use ATP to accelerate RNA conformational changes. However, their mechanisms of 

action, and what determines which RNA species are targeted, are not well understood. 

Here, the DExD/H-box protein CYT-19, a general RNA chaperone was shown to mediate 

ATP-dependent unfolding of both the native and a long-lived misfolded conformation of 

a group I catalytic RNA with efficiencies that depend on the stabilities of the RNA 

species but not on specific structural features. CYT-19 then allows the RNA to re-fold, 

changing the distribution from equilibrium to kinetic control. Because misfolding is 

favored kinetically, conditions that allow unfolding of the native RNA give large 

increases in the population of misfolded species. The results suggest that DExD/H-box 

proteins act with sufficient breadth and efficiency to allow structured RNAs to populate a 

wider range of conformations than would be present at equilibrium. Thus, RNAs may 

face selective pressure to stabilize their active conformations relative to inactive ones to 

avoid significant redistribution by DExD/H-box proteins. Conversely, RNAs whose 

functions depend on forming multiple conformations may rely on DExD/H-box proteins 

to increase the populations of less stable conformations, thereby increasing their overall 

efficiencies. 
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Figure 3.1: Unfolding of Native Tetrahymena ribozyme 
 
(A) Reaction scheme. (B) Substrate cleavage after incubation with 1 mM Mg

2+
, 2 µM 

CYT-19 and 2 mM Mg
2+·ATP for 0.25 (orange), 0.67 (red), 1 (cyan), 2.5 (magenta), 9.5 

(blue), or 22 min (dark green). (Light green), no CYT-19. Fraction of substrate cleaved 

plotted against reaction time and the data are fit to double exponential model – (A1(1-

exp
(-k

1
time)

+(1-A1)(1-exp
(-k

2
time)

), where A1 represents amplitude of the fast phase and 

kobs1 and kobs2 represent rate constant for the fast and slow phases respectively. (C) 

Amplitudes obtained from 1B are plotted as fraction native against time. Native ribozyme 

unfolding (1 mM Mg
2+

). CYT-19 was 1 µM (), 2 µM (solid colored circles), or 3 µM 

without () or with 2 mM Mg
2+

•ATP (). Colored circles show burst amplitudes from 

corresponding curves (panel b). , no CYT-19; , 2 µM CYT-19, 2 mM Mg
2+·ATP,  

5 mM Mg
2+

.  
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Figure 3.2: Unfolding of native ribozyme by CYT-19 is moderately efficient and 

requires ATP binding and hydrolysis 

 

(A) Plot of rate constant (circles) and steady state value (triangles) against CYT-19 

concentration. The kobs data are fit to a straight line giving a modest kcat/Km value of less 

than 10
5
M

-1
min

-1
. (B) Unfolding of native ribozyme by CYT-19 requires ATP. Unfolding 

reactions were performed by 2 μM CYT-19 with 2 mM ATP.Mg
2+

 (); No ATP (), 2 

mM ADP.Mg
2+

 (); and 2 mM AMP.PNP.Mg
2+

 (). 
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Figure 3.3: CYT-19 sets up a steady state of unfolding 

 

Approach to steady state from native () or misfolded () ribozyme with 1.2 µM (blue) 

or 2 µM (red) CYT-19. Native ribozyme was formed by incubation in 10 mM Mg
2+

 at 50 

°C for 30 minutes and allowed to cool to reaction temperature (25 °C); Predominantly 

misfolded ribozyme (about 90%) was formed by incubating the ribozyme in 10 mM Mg
2+

 

at 25 °C for 10 minutes to trap the misfolded species 
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Figure 3.4: Native ribozyme gets converted to the long-lived misfolded state during 

CYT-19 action or upon its inactivation 

 

 (A) Re-folding to the native state () after unfolding by CYT-19 () and inactivation by 

proteinase K. , no CYT-19. (B) and (C) Magnesium and Urea dependence on re-

folding. Reactions were performed in the absence of CYT-19 () or following CYT-19 

action () in the presence of varying concentrations of Mg
2+

 (panel a) or urea (panel b). 

The wild-type ribozyme was misfolded under standard conditions (25 °C, 10 mM Mg
2+

, 

50 mM Na-MOPS, pH 7.0 for 10 min, ) or first allowed to fold to the native state (50 

°C, 10 mM Mg
2+

, 50 mM Na-MOPS, pH 7.0 for 30 min, ). CYT-19 (2 µM) was then 

added to the native ribozyme with 2 mM ATP-Mg
2+

, and reactions were incubated at 25 

°C for 15–30 min to allow formation of a steady-state mixture of the native state and 

intermediates. CYT-19 was then inactivated by addition of 1 mg/ml proteinase K (and 

incubated for an additional 2 min for reactions to which urea would subsequently be 

added). Reactions with and without CYT-19 were adjusted to the conditions shown and 

native state formation was monitored by ribozyme activity. The rate constant under 

standard conditions (25 °C, pH 7.0, 10 mM Mg
2+

, no urea) is shown from independent 

determinations in each panel, performed side-by-side with the set of reactions shown.  
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Figure 3.5: Secondary structure, long-range tertiary contacts, and mutations of the 

Tetrahymena ribozyme  
 

The five long-range tertiary contacts are indicated with red arrows. In the P5abc deletion 

variant (E
ΔP5abc

), the region shown in yellow is deleted and nucleotides 126 and 196 are 

directly connected (thick gray line above yellow region). In the P5a mutant, nucleotides 

183-188 (shaded cyan) are each changed to uridine
230

. This mutation disrupts the tertiary 

contact indicated by the black „X‟. 
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Figure 3.6: CYT-19 mediated unfolding of destabilized ribozyme variant, P5a 

 

(A) Unfolding of destabilized ribozyme variant, P5a at 5 mM Mg
2+

 with 0.8 µM CYT-19 

(). Upon CYT-19 inactivation, native ribozyme accumulated (, 0.056 min
–1

) with the 

same rate constant within error as for re-folding of the misfolded ribozyme (, 0.032 

min
–1

). (B) Approach to steady state for native () or misfolded () P5a variant with 0.5 

µM (blue) or 1 µM (red) CYT-19. Curves depict kinetic simulations using 

experimentally-derived values (Figure 11A), not fits to the data. 
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Figure 3.7: CYT-19 concentration dependence for unfolding the native P5a variant 

ribozyme 

 

A linear fit to the data (solid line) gives an efficiency of 5 ± 1  10
5
 M

–1
 min

–1
. (25 °C, 

pH 7.0, and 5 mM Mg
2+

). kobs was plotted against CYT-19 concentration and the data 

was fit to a straight line equation (kobs = (kcat/Km [CYT-19]) + Y intercept), where 

kcat/Km represents slope of the line, equal to 5 ± 1  10
5
 M

-1
min

-1
. The Y intercept 

potentially represents the rate-limiting step during CYT-19 mediated unfolding of P5a 

mutant.  
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Figure 3.8: CYT-19 mediated unfolding of destabilized ribozyme variant, E
ΔP5abc

 

  

(A) Approach to steady state for native () or misfolded () E
ΔP5abc

 ribozyme with 0.5 

µM (blue) or 1.2 µM (red) CYT-19. Curves depict kinetic simulations using 

experimentally-derived values (Figure 11B and ref.
234

), not fits to the data (B) Unfolding 

of native () and misfolded () E
ΔP5abc

 ribozyme. All reactions were 25 °C, pH 7.0, 5 

mM Mg
2+

.  
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Figure 3.9: ATP concentration dependence for CYT-19 mediated unfolding of 

ribozyme variants 

 

(A) Native P5a variant ribozyme was incubated in 5 mM Mg
2+

 with 1 µM CYT-19 and 

no ATP-Mg
2+

 () or ATP-Mg
2+

 concentrations of 100 µM (), 200 µM (), 400 µM 

(), 1 mM (), or 2 mM (). (B) P5abc-deleted ribozyme (E
ΔP5abc

) was folded to an 

equilibrium mixture of the native and misfolded conformers (10 mM Mg
2+

) and then 

transferred to conditions of 5 mM Mg
2+

, 0.5 µM CYT-19 and no ATP-Mg
2+

 () or ATP-

Mg
2+

 concentrations of 10 µM (), 50 µM (), 250 µM (), or 2 mM (). The slow 

decrease in the fraction of native ribozyme observed in the absence of CYT-19 reflects 

adjustment of the equilibrium of native and misfolded ribozyme upon the decrease in 

Mg
2+

 concentration from 10 mM to 5 mM (ref.
229

). (C) Dependence of rate constant on 

ATP concentration. Hyperbolic fits to the data gave K1/2 values of 0.3 ± 0.2 µM for the 

P5a variant () and 0.7 ± 0.1 µM for E
ΔP5abc

 (). 

 

A B 

C 



 113 

      

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Folding to the native and misfolded species by the P5a ribozyme 

variant 

 

Progress curves of native ribozyme formation, as measured by substrate cleavage (see 

Methods). Folding was performed in the presence of 5 mM (), 10 mM (), 30 mM (), 

or 50 mM () Mg
2+

. b, Dependence of rate constant for formation of native ribozyme on 

Mg
2+

 concentration, obtained from the progress curves in panel a. This rate constant 

reflects formation of the native state by the small fraction of the ribozyme that avoids the 

long-lived misfolded species (folding from Itrap to the native species). c, Fraction of the 

ribozyme that folds to the native state without forming the misfolded species. No 

dependence of this amplitude on Mg
2+

 concentration was observed, analogous to prior 

observations for the wild-type ribozyme
203

. In panels b and c, dashed lines are shown at 5 

mM Mg
2+

, the conditions of the CYT-19 unfolding experiments, and the values obtained 

from extrapolation of the data to 5 mM Mg
2+

 were used in simulations (see Figure 3.11, 

Figure 3.6B and Figure 3.8A). It was not possible to determine these values directly at 5 

mM Mg
2+

 because re-folding of the misfolded ribozyme is fast enough under these 

conditions to obscure the burst of native ribozyme that reflects folding directly from Itrap 

(shown by the squares in panel a, where a discrete burst of product formation was not 

observed). 

A B 

C 
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Figure 3.11: Schemes and kinetic parameters used for simulation of CYT-19-

mediated approach to steady state of the native and misfolded ribozyme species 

 
(A) Simulation of CYT-19-mediated unfolding of the P5a variant. (B) Simulation of 

CYT-19-mediated-unfolding of the P5abc deletion variant (E
ΔP5abc

).  

For each scheme, values for CYT-19-mediated unfolding of the native ribozyme were 

obtained from experiments described herein. Values for subsequent folding of the 

ribozymes were determined here for the P5a variant (Figure 3.10) or previously for the 

E
ΔP5abc

 variant
234

. These schemes are essentially equivalent to the one shown in Figure 

3.12, but the versions shown here allow the observed folding parameters to translate more 

directly into individual rate constants. For example, experiments establish a rate constant 

for the rate-limiting step, which in this scheme represents folding from Itrap as shown. The 

experiments also reveal the fraction that folds to the native state without forming the 

misfolded intermediate, which is reflected in the partitioning between pathways to the 

native and misfolded species. This partitioning is shown as occurring from a late 

intermediate, as determined previously
204,245

, and is depicted as ratios of „X‟, where X ≥ 5 

min
–1

. (Provided that X is at least 5 min
–1

, its value does not affect the simulations.) 

Additional experiments (not shown) indicated that, consistent with the model shown, 

CYT-19 does not affect the rate constant for folding of the ribozyme (≤ 500 nM CYT-19; 

higher concentrations cannot be used because they increase the rate of re-folding of 

misfolded ribozyme such that the initial folding cannot be distinguished from re-folding). 

For CYT-19-mediated unfolding of the misfolded ribozyme, the value for the E
ΔP5abc

 

ribozyme was obtained directly from experiment (Figure 3.8B) and the value for the P5a 

variant was allowed to vary in the simulation. We found that with the other parameters 

constrained by their experimental values, a value within 2-fold of that shown, 1.7  10
7
 

M
–1

 min
–1

, was required to give a reasonable description of the data. In order for the 

simulations to accurately model what would be observed in experiments, it was necessary 

to include in the simulation the process of inactivating CYT-19 and allowing subsequent 

folding to occur. Thus, the simulated curves in Figure 3.6B and Figure 3.8A show the 

fraction of ribozyme represented by ([Native] + [Itrap]  the fraction that folds to native 

from Itrap (0.085 for the P5a variant and 0.14 for E
ΔP5abc

). Simulations were performed 

using Berkeley Madonna and Kinetic Explorer (Kintek, Austin TX). 

 

A B 
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Figure 3.12: Model for chaperone activity 

 

CYT-19 generates ribozyme intermediates (I) and then allows them to fold again, thus 

increasing the population of less stable intermediates that are kinetically favored. Values 

are for the P5a variant, normalized by native ribozyme unfolding (red; (1) indicates 5  

10
5
 M

–1
 min

–1
, Figure 3.7), or „direct‟ native state formation (black; (1) indicates 0.4  

min
–1

, Figure 3.10). The wild-type ribozyme behaves similarly at low Mg
2+

 

concentration, but at higher Mg
2+

 concentration the native species is sufficiently stable 

that CYT-19 unfolds it poorly and therefore can accelerate its formation from the 

kinetically-trapped misfolded species. 

 

 

 

 

 

 

 

 

         



 116 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Efficient unfolding of ribozyme by DEAD-box protein, Mss116p 

compared to less efficient unfolding by SAT/AAA mutant  

 

(A) P5a ribozyme was incubated at 50 °C for 30 minutes with 10 mM Mg
2+

 to allow 

formation of native ribozyme before adjusting the magnesium concentration to reaction 

conditions (5 mM). Native ribozyme unfolding of P5a variant by Mss116p and 

SAT/AAA mutant was performed at either 800 nM (circles) or 1500 nM (triangles). The 

reactions were quenched by adding MgCl2 to 50 mM followed by addition of substrate to 

determine the fraction of native ribozyme. Progress curves of unfolding with Mss116p 

WT (filled symbols) or SAT/AAA (open symbols) is shown; No protein control with just 

storage buffer added (diamonds) is also shown. (B) Comparison of efficiency of WT 

Mss116p (circles) versus SAT/AAA mutant (triangles). kcat/Km values for WT Mss116p 

is 3  10
6
 M

-1
min

-1
 and SAT/AAA (triangles) is 0.2  10

6
 M

-1
min

-1
. 
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Chapter 4: The role of global stability versus local stability of RNA for efficient 

action by CYT-19 

 

4.1 Introduction 

To form functional structures, RNAs have to fold and stabilize their native states 

relative to both unfolded and misfolded states. The strategies that RNAs employ to 

stabilize structures include formation of networks of hydrogen bonded interactions, 

induction of  physical constraints due to structures such as pseudoknots and binding of 

site-specific metal ions
246,247

. The factors that affect the stability of Tetrahymena 

ribozyme have been studied extensively
229,248-250

 and suggest involvement of both 

localized and cooperative interactions. The core of the Tetrahymena ribozyme is highly 

conserved and is stabilized by peripheral elements that surround the core. The peripheral 

elements are in turn held by long-range tertiary contacts between them and the core. One 

such contact, the A-rich bulge interaction (Figure 4.1), was shown to be equally stable in 

the isolated P4-P6 sub-domain and when it is part of the whole ribozyme, suggesting that 

its effect is local; whereas, the loop 5b tetraloop-receptor interaction was found to be 

more stable in the whole ribozyme than as isolated P4-P6, suggesting a cooperative type 

of interaction
251

. Within the P4-P6 sub-domain, base stacking, hydrogen bonding and 

Mg
2+

 binding call contribute to a favorable enthalpy change upon tertiary structure 

formation
249

.  

Magnesium ions play important roles in stabilizing RNA structure. Diffuse 

magnesium ions counteract the negative charge on the phosphodiester backbone whereas 
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site-bound magnesium coordinates interactions with the tightly folded RNA
252

. In the 

Tetrahymena ribozyme, phosphorotioate substitutions of oxygen in the backbone of 

peripheral element, P5abc, drastically affected the entire ribozyme structure
250

. This 

indicates that backbone interactions to the known metal ions are weakened in the 

mutants, strongly suggesting that local, site-bound magnesium ions are crucial for the 

global stability of the whole ribozyme.  

RNA stability may play an important role during structural modification processes 

involving DExD/H-box proteins. The efficiency of unwinding simple RNA duplexes by 

some DExD/H-box proteins has been shown to depend on duplex length with longer and 

more stable duplexes unwound with much lower efficiency compared to shorter 

ones
106,152,253

. Structured RNAs, containing RNA duplexes, may also depend on their 

stability to modulate the efficiency of action of DExD/H-box proteins upon them. Indeed, 

the stability of the Tetrahymena group I ribozyme was demonstrated to play an important 

role in determining the efficiency of its unfolding by CYT-19 (Ref
182

 and Chapter 3). In 

addition, the degree of stability seems to quantitatively correlate with the efficiency of 

unfolding at least in the case of E
ΔP5abc

 version of the ribozyme
182

 (See Chapter 3). Here, 

to explore this correlation further, each of the five long-range tertiary contacts was 

disrupted. The equilibrium values for native species relative to misfolded species for a 

mutant (P5a in Figure 4.1), in which an A-minor tertiary contact has been disrupted, was 

shown to strongly correlate with the unfolding efficiency of CYT-19 on the native and 

misfolded species. 
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Thermodynamic analyses were performed to obtain an estimate of the degree of 

destabilization of the different mutants. The efficiencies of re-folding of misfolded state 

by CYT-19, which is an indirect measure of the unfolding efficiencies, were determined 

for the mutants. Initial studies show that, although global destabilization leads to an 

increase in the efficiency of re-folding by CYT-19, there is not an absolute correlation 

between the degree of destabilization and re-folding efficiency. The results suggest that 

local stabilities of certain interactions could play a role in efficient unfolding by CYT-19. 

 

4.2 Results and Discussion 

4.2.1 Construction of mutants:  

There are five long-range tertiary contacts in the Tetrahymena ribozyme (Figure 

4.1), each of which has been disrupted in separate mutants. Single stranded loop 

sequences that form tertiary contacts were changed to the canonical “UUCG” tetraloops 

in four out of the six mutants. The rationale behind this approach was to disrupt the 

tertiary contacts without affecting the stability of the secondary structure
230

. Plasmids for 

all tertiary contact mutants (except L9) (Figure 4.1) were made by in vitro transcription 

as described for wild type ribozyme in section 2.2.1 of chapter 2. The L9 mutation was 

introduced in the L-21ScaI plasmid using Quikchange site-directed mutagenesis kit 

(Stratagene, La Jolla, CA) and transcribed using in vitro transcription. 
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4.2.2 Equilibrium for native P5a ribozyme relative to misfolded ribozyme corresponds to 

difference in efficiency of their unfolding by CYT-19: 

Previous data suggests that the efficiency of unfolding of native conformer of P5a 

mutant by CYT-19 is much higher compared to that of native wild type ribozyme
182

 

(Chapter 3). In addition, the native and the misfolded species of E
ΔP5abc

 ribozyme which 

have comparable stability are unfolded with equal efficiency, suggesting that stability 

might be a key factor in determining efficiency of unfolding by CYT-19. In order to 

determine whether there is quantitative correlation between CYT-19 mediated unfolding 

efficiency for P5a mutant and its stability, the stability of the native ribozyme relative to 

the misfolded species was determined by measuring their equilibrium values. The 

ribozyme was allowed to fold to equilibrium under one solution condition, and the 

equilibrium was perturbed by changing the solution condition to that of the CYT-19 

reaction (Figure 4.2). During re-equilibration, the fraction native shifted from 0.91 to a 

new equilibrium value of 0.86, giving a calculated equilibrium value of native relative to 

misfolded as 10. This value is similar to the 30-fold difference in efficiency between the 

experimentally determined value for unfolding of native species (5  10
5
 M

-1
min

-1
) and 

the predicted value from simulation for misfolded ribozyme (1.7  10
7
 M

-1
min

-1
) (see 

Chapter 3). These data bolster the previous finding that the efficiency of unfolding 

inversely correlates with the global stability of the ribozyme structure
182

. 
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4.2.3 Preliminary evidence for correlation between local stability of ribozyme and the 

efficiency of its unfolding by CYT-19: 

The native RNAs of both the P5a and E
ΔP5abc

 mutants are unfolded efficiently by 

CYT-19. Since the tertiary contact P5a (Figure 4.1) is disrupted in both mutants it could 

be that the region close to P5a tertiary contact is important for efficient unfolding by 

CYT-19. However, an alternative possibility is that disruption of specific tertiary contacts 

destabilizes the RNAs globally and that it is purely global stability that matters for 

efficient unfolding by CYT-19. In order to probe whether global stability plays a crucial 

role or whether local stability is important, specific tertiary contacts were disrupted, and 

their effects on global stability of native state were compared to their efficiency of 

unfolding by CYT-19. If there is a strict correlation between the degree of destabilization 

and the efficiency of unfolding, this would strongly suggest that global stability of the 

ribozyme is the principal determinant for CYT-19 mediated unfolding. On the other hand, 

if certain tertiary contact mutants showed increased efficiency of unfolding by CYT-19 

without any correlation with the degree of global destabilization, this would suggest that 

CYT-19 mediated unfolding involves disruption of specific tertiary contacts such that it 

followed a specific pathway.  

 Folding of Tetrahymena ribozyme to the native state at equilibrium was 

dependent on the concentration of magnesium at a low background monovalent ion 

concentration. Ribozyme mutants were made in which each of the five tertiary contacts 

was disrupted (Figure 4.1). The magnesium concentration required for folding to the 

native state was determined using an activity assay (Ref
234

 and Figure 4.3A). Briefly, the 
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assay involves incubating the ribozyme at different concentrations of magnesium to allow 

equilibration between the native and unfolded (or other intermediate states). This is 

followed by addition of high magnesium to a concentration of 50 mM which allows rapid 

conversion of all the unfolded and partial folded intermediates to fold to mostly (about 

90%) the misfolded species and the rest (about 10%) to fold to native ribozyme. A 

substrate cleavage assay was then performed to determine the fraction of native versus 

misfolded ribozyme at each concentration of magnesium.  

Magnesium binding to folded RNA is highly cooperative
254

, and thus, Hill plot 

analysis of magnesium binding can provide information on the stability of folded RNA. 

K1/2 for magnesium obtained from such experiments can give an idea as to how stable the 

native RNA is relative to other intermediates. Although quantitative analysis of such data 

to obtain free energy relationships between two states is possible if the two states are 

defined, the analyses become complicated if there are multiple states
255

. Thus, direct 

comparison of free energy changes between the wild type and the mutants becomes 

difficult because the higher magnesium concentration required for folding may also allow 

accumulation of a different ensemble of unfolded species for mutants compared to wild 

type. Nonetheless, magnesium K1/2 provides an approximation of degree of 

destabilization of native species of mutant ribozyme compared to native ribozyme of wild 

type.   

The magnesium K1/2 data for the different mutants are shown in Figure 4.3B and 

summarized in Table 4.1. The efficiency for re-folding of misfolded species to native 

species of these mutants by CYT-19 was also obtained by measuring rate constants at 



 123 

different concentrations of CYT-19 and plotting them against CYT-19 concentration 

(Figure 4.3C). These results are also summarized in Table 4.1.  

All the mutants require increased Mg
2+

 for folding as indicated by higher K1/2 

values compared to wild type. This suggests that local disruption of any tertiary contact 

destabilizes the ribozyme globally. K1/2s for mutants vary, suggesting that the degree of 

destabilization is different for different mutants. Consistent with previous observations
231

, 

the P5a  mutant was, indeed, destabilizing for the native state; however, it is noteworthy 

to mention that the P5a mutant was the most destabilizing of all the mutants tested 

(observed from the K1/2 values).  

In the absence of direct data for CYT-19 mediated unfolding, it is reasonable to 

assume that re-folding efficiency reflects efficiency of unfolding because re-folding to 

the native state probably involves multiple cycles of unfolding of the misfolded 

ribozyme
182

. A comparison of the efficiency of re-folding by CYT-19 for all of the 

different mutants shows that, indeed, the most destabilizing of the tertiary mutants, the 

P5a, was refolded with the greatest efficiency by CYT-19. This contact was also 

disrupted in another mutant, E
ΔP5abc

, whose stability was shown to directly correlate with 

the degree of unfolding by CYT-19
182

. Perhaps, this contact is crucial for efficient 

unfolding by CYT-19, presumably by a pathway that involves its disruption, facilitating 

large scale rearrangement of the ribozyme. CYT-19 mediated efficiency (kcat/Km) for re-

folding of the misfolded species for all other mutants was higher compared to wild type, 

indicating that stability, indeed, determines efficient CYT-19 action and is also consistent 

with previous results
182

. In addition, the mutant with the most global destabilization (P5a) 
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showed the most efficient re-folding of its misfolded state by CYT-19. On the other hand, 

there is no strict correlation between the K1/2 and the efficiency of re-folding of misfolded 

structures among the different mutants. These data suggest that the stability of local 

structures such as the region encompassing the P5a contact might be important.  

There are limitations to the experiments described above. First, the re-folding 

efficiency is not a direct estimate of unfolding efficiency because multiple cycles of 

unfolding of misfolded state, based on the kinetic partitioning, would have to be taken 

into account to estimate the unfolding efficiency of native state. Second, the K1/2 values 

obtained here reflect the stability of the native state of mutants relative to all other 

unfolded states and intermediates and not exclusively the misfolded state. Therefore, 

even if re-folding is a good measure of the unfolding of the misfolded ribozyme, it is 

necessary to estimate the stability of the misfolded species of various mutants for direct 

comparison with unfolding efficiencies. 

 The limitations stated above can be overcome by directly measuring the 

efficiency of unfolding of native ribozymes for the different mutants under the same 

solution conditions. Direct comparisons using the K1/2 can then be made between the 

efficiency of unfolding of native ribozyme and the degree of destabilization of native 

species for the various mutants. 

 

4.3 Summary and prospectus 

 Many DExD/H- box proteins act at discrete steps during RNA mediated processes 

suggesting that they act on specific RNA substrates. However, some proteins of the 
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DEAD-box family, namely CYT-19 and Mss116p, act more generally on group I and 

group II intron substrates
107,159,181

, and it is unclear how their non-specific action would 

allow distinguishing native from misfolded RNAs. Using the catalytic property of 

Tetrahymena group I ribozyme, it was demonstrated that the efficiency of unfolding of 

the ribozyme primarily depends on the stability of the Tetrahymena ribozyme
182

. In order 

to further probe the effect of stability on the action of CYT-19 and to determine whether 

local stability or global stability plays a crucial role, several tertiary mutants were 

constructed. CYT-19‟s action was compared between mutant ribozymes and wild type. 

The native conformers of mutants were found to be globally destabilized by disruption of 

local structures. Initial results suggest that disrupting any local structure results in 

ribozymes that are destabilized to varying degrees. Results also suggest that CYT-19 

action is more efficient at re-folding misfolded ribozymes for all mutants compared to 

wild type. In addition, there is no absolute correlation between the degree of global 

destabilization and efficiency of re-folding, suggesting that certain local structures might 

play a role. Efficiency of unfolding must be directly monitored to corroborate these 

findings.  
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Figure 4.1: Tertiary contact disruption mutants of Tetrahymena group I ribozyme 

 

Secondary structure of Tetrahymena group I ribozyme showing the five tertiary contacts 

(red broken arrows). Single contact disruption mutants were made at the residues 

highlighted in yellow. New residues that were introduced are shown in blue and the 

names of tertiary contacts are shown in red (the abbreviated names used in text, also in 

red, are in parenthesis). The five mutants are P5a, L2, L9, L5b, L9.1 and L2.1 (the last 

two mutants disrupt the same tertiary contact, P13) 

 

 

 

L9 P5 (L9)  
“UUCG” 

ARB – P4 / 3HJ 
(P5a) 

       “UUUUUU” 

L5b – J6a/6b  
(L5b) “CUUCGG” 

A5 

 P13 (L9.1) 
“CUUCGG”  

P13 (L2.1)  
  “ACG” 

P13 

P14 

  P14 (L2) 
“CUUCGG” 
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Figure 4.2: Equilibrium for native state of P5a mutant relative to misfolded species 

under the same solution conditions as CYT-19-mediated unfolding is about 10 

 

P5a ribozyme was incubated at 50 °C for 30 minutes to make native ribozyme and cooled 

to 25 °C before use. The ribozyme at 2 μM with 50 mM Mg
2+

 was diluted to either 200 

nM ribozyme and 5 mM Mg
2+

 () or to 200 nM ribozyme, 5 mM Mg
2+

 and 50 mM KCl 

(). Control reactions in which the ribozyme alone was diluted from 2μM to 200 nM, 

maintaining the 50 mM Mg
2+

 () or when no dilution was performed (2 μM ribozyme 

and 50 mM Mg
2+

()) showed no decrease in fraction of native ribozyme, indicating 50 

mM KCl concentration affects equilibrium of native ribozyme of P5a mutant  
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Figure 4.3: Tertiary contact disruption mutants require higher magnesium to fold to 

native state and all mutants are efficiently re-folded by CYT-19 

 

(A) Scheme for measuring fraction of the ribozyme that fold to native state as a function 

of magnesium concentration at equilibrium. The wild type and mutant ribozymes were 

incubated at different magnesium concentrations for 24 hours to allow equilibrium. 

Magnesium was adjusted to 50 mM in all reactions. The reactions were incubated for 5 

minutes following this adjustment to allow complete folding to either native or misfolded 

ribozymes. Substrate and guanosine were added and complete time course reactions were 

performed for substrate cleavage. At each magnesium concentration the fraction of native 

ribozyme relative to misfolded species are plotted against each magnesium concentration 

shown in (B). Conditions were 50 mM Na.MOPS and 25 °C. (B) The fraction of native 

ribozyme at equilibrium plotted against Mg
2+

 concentration for wild type () and L2.1 

(), L9.1 (), L9 (), L2 (), P5a (), L5b () mutants. The data were fit to the Hill 

equation – ([Mg
2+

]
n
)/(K1/2

n
 + [Mg

2+
]
n
) + C, where K1/2 represents magnesium 

concentration required to give ½ of native ribozyme, n represents Hill coefficient and C 

represents offset which is the fraction of the ribozyme that directly folds to native from 

unfolded or partially unfolded species giving a minimum fraction native species (~10%) 

even at 0 mM Mg
2+

 concentration (C) Efficiency of re-folding for wild type and mutants 

at different concentration of CYT-19. Colors and symbols the same as in (B) Data were 

fit to straight line and the slopes (kcat/Km) obtained are summarized in Table 4.1. 

 

A B 

C 
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at 7 mM Mg

2+
; Results from simulation predicts a value of 1.4 × 10

6
 M

-1
min

-1
  

at 5 mM Mg
2+

 

 

 

 

 

  

Table 4.1: Comparison of efficiency of CYT-19 mediated re-folding reactions and 

Mg
2+

 K1/2 values for various tertiary contact disruption mutants 

 

  

 

 

 

 

 

 

 

 

 

Ribozyme Average 

K1/2 

mM 

Efficiency of re-folding by 

CYT-19 ( at 5 mM Mg
++

) 

M
-1

min
-1

 

Wild type 

L9P5 

P13 (L9.1) 

P13 (L2.1) 

P14 

L5bTL 

P5a 

E
ΔP5abc

 

0.54 

0.61 

0.73 

0.84 

1.17 

1.2 

2.3 

2.4 
234

 

9 × 10
4 

(Ref.
73

) 

4.1 × 10
5 

1.1 × 10
6
 

1.1 × 10
6
 

5.5 × 10
5

 

1.8 ×10
5 

6.5 × 10
5 # 

4.4 × 10
5
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Chapter 5: Chaperone activities of nucleocapsid protein (NC) on the Tetrahymena 

group I ribozyme 

 

5.1 Introduction 

Non-specific RNA binding proteins have long been known to possess RNA 

chaperone activities in vitro
103,172,174,175,180,256,257

. They interact with RNAs with little or 

no sequence specificity and disrupt base pairs to allow formation of alternative, more 

favorable pairings. Many single stranded RNA binding proteins, including hnRNP, stpA, 

S12, HIV nucleocapsid (NC) protein and Hfq, contain RNA binding motifs such as the 

RGG box and the zinc knuckle domain, and they modify RNA structures both locally and 

globally
258

. The mode of interaction is thought to be largely electrostatic between the 

protein‟s positively charged basic residues and the negatively charged phosphodiester 

backbone of RNA
259

.  

The first demonstrations of chaperone activity by single-stranded binding proteins 

came from the pioneering studies of Karpel, Fresco and colleagues
103,175,260

. Small 

structured RNAs, such as the tRNA
Leu

, were shown to misfold in vitro
260

, and in one 

study, UP1, a nucleic acid binding protein, was demonstrated to induce helix 

destabilization in tRNA
Leu

 and E. coli 5S RNA, presumably by binding tightly to exposed 

single stranded regions
175

. hnRNP proteins also bind single stranded RNAs, coating the 

nascent mRNA
172

. These proteins provide the strongest evidence for non-specific RNA 

binding
261,262

, which probably is a requirement because they have to bind to several 

different mRNAs made by the cell. Catalytic activity allows estimation of fraction of 
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native folded structures versus inactive or unfolded species in a mixture. This allows one 

to unambiguously distinguish correctly folded from incorrect structures. Using an activity 

assay, Coetzee et. al. demonstrated that the Eshcerichia coli ribosomal protein, S12, can 

promote splicing of inactive ribozymes
180

. In vivo, overexpression of non-specific RNA 

binding protein, StpA, has been shown to resolve a folding trap in T4 phage td group I 

intron splicing construct
176-178,256

. StpA can also facilitate strand annealing and exchange 

activities on model substrates in vitro
10,178

 and may have such activities in vivo. Although 

these proteins were not shown directly to function as chaperones in vivo, quantitative 

comparisons of their in vitro chaperone properties with those of DExD/H-box proteins 

may be useful for understanding how DExD/H-box proteins transduce energy from ATP 

to facilitate RNA rearrangements.  

HIV nucleocapsid protein is a non-specific RNA binding protein that was shown 

to possess chaperone activity based on its enhancement of substrate strand annealing and 

product strand dissociation activities of the hammerhead ribozyme
173,174

. NC is a small, 

55-amino acid protein containing two zinc-finger motifs (Figure 5.1) and is involved in 

various aspects of retrovirus maturation
263,264

. One of the steps involves utilization of the 

3‟end of a cellular tRNA as a primer for making viral DNAs. In this context, NC-

mediated strand exchange reactions might be especially significant in vivo because they 

are crucial for replication of the HIV virus genome
257,265-267

. The mechanism of tRNA 

primer annealing to primer binding site (PBS), including negative and positive strand 

transfers by NC, have been well investigated
268,269

. In addition, structural modifications in 

tRNAs were shown to be induced by NC mediated non-specific binding
270

 and structure 
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disruption
271

. For several of these functions, stoichiometric binding is essential, and NC 

binds to tRNAs in a 1:1 or a 5:1 ratio, depending upon the function
271,272

. Recently, single 

molecule studies showed that a recognition element TAR exists in two distinct 

conformations and that NC shifts the equilibrium population of one to another
273,274

 

presumably by disrupting base-pairs and allowing formation of more stable conformers.  

Here, in order to probe whether the non-ATP dependent non-specific RNA binding 

protein NC can facilitate re-folding of a highly structured RNA and to compare 

mechanistic features of a DEAD-box protein, CYT-19, with NC, ribozyme re-folding 

kinetics were investigated by performing reactions with NC under identical solution 

conditions to that of CYT-19. NC was found to accelerate re-folding of the long-lived 

misfolded conformation of Tetrahymena group I ribozyme, suggesting that it can act as a 

chaperone of a structured RNA. Additional results also indicate that, although the two 

classes of chaperones act, in in vitro assays, in a generally similar manner, there might be 

key differences in their action.  

 

5.2 Results 

 NC acts as a chaperone of the misfolded Tetrahymena group I ribozyme. Re-

folding assays were performed similarly to the one shown in scheme 1 (Chapter 2) (NC 

instead of CYT-19), and NC was found to accelerate re-folding of the long-lived 

misfolded species to the native state in an ATP-independent manner (Figure 5.2). The 

efficiency of re-folding, under similar solution condition, was similar (within error) to 

that of CYT-19; 1.6  10
5
 M

-1
min

-1
 for NC (Figure 5.3A, B) versus 9  10

4
 M

-1
min

-1
 for 
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CYT-19 (Separate assays to monitor the efficiency of partial unfolding of native 

ribozyme also gave comparable efficiencies for NC and CYT-19). This suggests that NC 

acts as a chaperone and can resolve misfolded conformations in structured RNA to 

facilitate re-folding. However, in contrast to CYT-19, there is an effect of ribozyme 

concentration on the rate constant for re-folding, even though NC is in excess. The rate 

constant for re-folding increases with increasing NC concentration but is sharply 

dependent on NC concentration after an initial non-dependent phase (Figure 5.3B). This 

effect is similar to the ATP-independent effect seen for unfolding of native wild type 

ribozyme by CYT-19 at higher concentrations (data not shown). The concentration of 

NC, at which the linear dependence on rate constant begins increases with increases in 

ribozyme concentration (Figure 5.4). This suggests a stoichiometric effect with respect to 

ribozyme concentration rather than upward curvature reflecting a requirement for NC 

multimerization. In this experiment, two concentrations of ribozyme were used – 150 nM 

and 500 nM. With 150 nM ribozyme concentration, the rate constant increases linearly 

starting at about 500 nM NC suggesting a possibility of approximately 3 potential tight 

binding sites in the RNA bound by NC. At 500 nM ribozyme concentration, uncertainty 

in the data suggests a range of stoichiometry of 2:1 to 8:1 NC to ribozyme (Figure 5.4). 

Additional evidence for the stoichiometric effect comes from experiments probing 

unwinding of the P1 duplex of Tetrahymena ribozyme in which the acceleration of re-

folding by NC was dependent on the ribozyme concentration (Pilar Tijerna and Rick 

Russell - data not shown). More data needs to be obtained in order to evaluate both the 

dependence of rate constants and the stoichiometry.  
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Prior studies have demonstrated the requirement of a threshold concentration of 

about 1 NC molecule for every 7 nucleotides in RNA or DNA for chaperone action 
263

. 

This stoichiometry would most simply predict about 60 NC (for the 413 nucleotide 

ribozyme). This value is much more than the 2-8 NC implied by the data, but it is 

possible that the number of binding sites is much lower for a highly structured RNA such 

as the Tetrahymena group I ribozyme.  

 

5.3 Summary and prospectus 

Cells employ two types of proteins in various cellular processes involving RNA -  

ATPases such as DExD/H-box proteins and non-ATP dependent simple basic proteins. 

Although many non-specific RNA binding proteins possess RNA chaperone activities in 

vitro, it remains to be seen whether these proteins actually function as RNA chaperone in 

vivo. Comparative studies of DExD/H-box proteins and non-specific RNA binding 

proteins on structured RNAs will potentially give mechanistic insights and help provide 

clues to their evolution. With this goal, activities of NC protein were compared with a 

bona fide DExD/H-box chaperone, CYT-19. On a general level, both proteins seem to 

perform well and mediate re-folding of a misfolded structured RNA to its native state 

with equal efficiency. However, detailed probing suggests an important difference: NC 

protein shows a stoichiometric effect, that is, the efficiency of re-folding is much higher 

at higher concentration than at lower concentration with a distinct cutoff point, which in 

turn, is dependent on the concentration of ribozyme. The significance of this “threshold” 

effect awaits further investigation. 
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Figure 5.1: Structure of the 55-amino acid HIV NC protein 

 

HIV Nucleocapsid (NC) protein, pNL4-3 isolate used in the study, has two zinc finger 

motifs, with the two site-bound zinc ions specifically coordinating interactions between 

conserved residues. The variable amino acids in each domain are indicated by curved 

lines. Figure adapted from ref
264

. 
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Figure 5.2: Non-ATP dependent NC protein accelerates re-folding of misfolded 

ribozyme of Tetrahymena to the native state. 

 

Misfolded WT ribozyme was formed by incubating the unfolded ribozyme with 10 mM 

Mg
2+

 at 25 °C for 10 minutes before adjusting the concentration to that of the reaction (5 

mM); Final ribozyme concentration in the reaction is 100 nM. Re-folding of misfolded L-

21ScaI ribozyme in the presence (,,) or absence () of NC. Rate constants for re-

folding were 0.002 min
-1

 in the absence of NC (), 0.017min
-1

 in the presence of 500 nM 

NC (), and 0.28min
-1

 in the presence of 2 μM NC (). Addition of 2 mM Mg
2+

-ATP 

() gave a rate constant of 0.35 min
-1

, the same within error as that of the reaction in the 

absence of ATP (). Reactions were performed under similar solution conditions as that 

of CYT-19 mediated re-folding (1  Na-MOPS, 50 mM KCl, 5% glycerol). 
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Figure 5.3: Plot of concentration dependence on re-folding shows upward curvature 

at higher concentrations of NC 

 

(A) Misfolded L-21ScaI ribozyme was formed by incubating in 10 mM Mg
2+

 at 25 °C for 

10 min before adjusting the magnesium concentration to reaction conditions (5 mM). 

Ribozyme concentration in the reaction is 100 nM. Re-folding reactions at different NC 

concentrations gave rate constants that increased with increasing NC concentrations – 0 

nM, 0.002 min
-1

 (), 150 nM, 0.0028 min
-1

 (), 300 nM, 0.005 min
-1

 (), 500 nM, 0.01 

min
-1

 (), 800 nM, 0.034 min
-1

 (), 1000 nM, 0.061 min
-1

 (), 1200 nM, 0.085 min
-1

 

(), 1400 nM, 0.123 min
-1

 (), 1700 nM, 0.17 min
-1

 (), 2000 nM, 0.23 min
-1

 (). (B) 

The dependence of rate constant (obtained from fits in Figure 5.3A) on NC concentration 

gave a sharp upward curvature with the slope representing kcat/Km (efficiency) of 1.6  

10
5
 M

-1
min

-1
. Solution conditions were 5 mM Mg

2+
, 50 mM KCl, and 5% glycerol. 

 

A 

B 
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Figure 5.4: Plot of concentration dependence of NC on re-folding shows 

stoichiometric effect of ribozyme concentration 

 

Rate constants plotted against NC concentration. Reactions were performed at two 

different ribozyme concentrations – 150 nM () and 500 nM (). The steep linear 

increase of rate constants at 150 nM ribozyme concentration () extrapolates back to the 

x-intercept at about 500 nM NC. A possible fit at 500 nM ribozyme concentration () 

extrapolates to about 3880 nM NC (black dotted line). However, it is also possible that 

the slope of the linear increase in rate constant is different (gray dotted line)  at 500 nM 

ribozyme concentration. At 150 nM ribozyme concentration, the stoichiometry of NC to 

ribozyme is about 3:1 ratio. At 500 nM ribozyme, uncertainty in the data gives an 

estimated range for NC to ribozyme stoichiometry of 2:1 to 8:1. 
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Appendix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A1: Control reactions demonstrating that CYT-19 is inactivated under folding 

quench conditions 

 

(A) The reaction scheme. CYT-19 (500 nM) was added to the misfolded ribozyme in the 

presence of ATP for 2 min (t1), at which time further re-folding was blocked by addition 

of MgCl2 to a final concentration of 50 mM. The quenched solutions were then incubated 

at 25 °C for various times, t2, before substrate cleavage reactions were performed to 

determine the fraction of native ribozyme. (B) Fraction native in the folding quench that 

contains 50 mM MgCl2 () or 50 mM MgCl2 and 1 mg/mL Proteinase K () plotted 

against t2. A control reaction in which CYT-19 was replaced by storage buffer () is also 

shown. The fraction native ribozyme remains the same in the folding quench even for 

long incubations greater than 500 minutes suggesting that CYT-19 was completely 

eliminated in the folding quench and that the quench stops re-folding. 
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A2: Control reactions demonstrating that the fraction native ribozyme does not 

decrease in the folding quench. 

 

(A) Reaction scheme. This experiment was identical to A1 except that the incubation 

time with CYT-19 was also varied. Incubation time, t1, was 2 min (), 3.67 min (), 

13.17 min (), 25 min (), 49.67 min (), or 94.67 min (). (B) The fraction of native 

ribozyme at various times, t2, in the re-folding quench is plotted. The fraction of native 

ribozyme obtained from panel B were plotted against t1 to give a progress curve for re-

folding of the misfolded ribozyme. The same curve obtained whether the Y-intercepts 

were plotted () or the final time points greater than 400 minutes were plotted () 

against folding time, t1, clearly demonstrating that little or no re-folding occurs in the 

folding quench and that the folding quench is effective at any concentration of CYT-19 

used. 

 

A B 

C 
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A3: Control reactions to ensure effectiveness of the folding quench in CYT-19 

mediated unfolding reactions. 

 

Wild type ribozyme (A), P5a variant (B), or P5abc-delted ribozyme (E
ΔP5abc

) (C) were 

pre-folded to give predominantly native ribozyme and then transferred to folding quench 

conditions (1 mg/mL Proteinase K for (A) and (B), 50 mM MgCl2 for all panels, blue 

curves) or to the folding reaction conditions (red curves). CYT-19 (4 μM, 1 μM and 1.2 

μM respectively for (A), (B) and (C)) was added and reactions performed. The fraction of 

native ribozyme does not decrease upon CYT-19 addition under quench conditions (blue 

curves) for any ribozyme indicating CYT-19 is inactivated under the quench conditions. 

Analagous experiments in which the folding quench did not include proteinase K for P5a 

variant and E
ΔP5abc

 showed similar results as shown here suggesting CYT-19 mediated 

unfolding was blocked even in the absence of proteinase K. 

 

 

 

A B 
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List of abbreviations and short forms used in thesis 

 

Alt P3 – P stands for paired region; Alt P3 is the proposed alternative pairing of P3 

region of Tetrahymena group I ribozyme, in which J8/7 strand is paired. 

ATP – Adenosine triphosphate 

ADP – Adenosine diphosphate 

AMPPNP – Analog of ATP: 5'-adenylyl-beta, gamma-imidodiphosphate 

CYT – Associated with cytochrome function in mitochondria 

DEAD-box or DEAH-box – The ATP binding motif in the DExD/H-box proteins, 

representing the amino acids aspartic acid (D), glutamic acid (E), alanine (A) and either 

aspartic acid (D) or histidine (H) from N-terminus to C-terminus. 

DTT - Dithiothreitol 

E
ΔP5abc

 – Ribozyme mutant of Tetrahymena group I intron which lacks the P5abc domain 

EDTA – ethylenediaminetetraacetic acid   

eIF – Eukaryotic initiation factor 

EJC – Exon junction complex 

G – Guanosine  

IPTG – Isopropyl β-D-1-thiogalactopyranoside 

LB media - Luria-Bertani media (1.0% tryptone, 0.5% yeast extract, and 

 0.5% NaCl) 

L-21ScaI – Wild type ribozyme, containing 413 nucleotides and lacking the first 21 

nucleotides, derived from self-splicing Tetrahymena group I intron  

MOPS – 3-(N-morpholino) propanesulfonic acid 

mtLSU – Mitochondrial Large subunit 

mRNA – Messenger RNA 

NPH – II – Nucleotide phosphohydrolase II 

O.D. – Optical density 

P5abc – P stands for paired region; 5abc stand for subdomains a, b and c in P5 element 

of group I ribozyme 

PAGE – Polyacrylamide gel electrophoresis 

PEI – Polyethyleneimine 

Prp – Precursor RNA processing 

RNP – Ribonucleoprotein  

rpm – Revolutions per minute 

rRNA – Ribosomal RNA 

ScaI - Restriction enzyme  

snoRNA – small nucleolar RNA 

snRNA – small nuclear RNA 

tRNA – transfer RNA 

TBE buffer – 100 mM Tris, 83 mM boric acid and 1 mM EDTA 

TE buffer – 10 mM Tris and 1 mM EDTA 

TRIS – Trishydroxymethylaminomethane 

Triton-X 100 – Surfactant  

WT – Wild type 
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