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Abstract 

 

Oxygen Vacancy Roles in Transition Metal Oxides and Related 

Heterostructures 

 

Lingyuan Gao, PhD 

The University of Texas at Austin, 2018 

 

Supervisor:  Alexander A. Demkov 

 

Transition metal oxides have exhibited many emergent phenomena. Recent 

advancements in growth techniques have made their applications in devices even more 

promising. During growth, an oxygen vacancy is one of the most abundant types of point 

defects. In this dissertation, I use density functional theory to investigate the oxygen 

vacancy role in transition metal oxides and related heterostructures. I show how oxygen 

vacancies influence the phonon spectrum of HfO2 films. With ab-initio calculations, a 

spin-polarized two-dimensional electron gas is predicted at the interface of a 

ferromagnetic insulator EuO and oxygen-deficient SrTiO3. Experimental results agree 

with the theoretical discovery and a positive linear magnetoresistance is observed for this 

two-dimension electron system. Based on the first principles calculation results, we use 

the conventional Boltzmann transport theory to show that Zeeman splitting caused by 

proximity magnetism from EuO is responsible for the behavior of this unusual 

magnetoresistance. 
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Chapter 1 Introduction 

Transition metal oxides (TMO) exhibit many intriguing phenomena: from being 

insulating, semiconducting and even metallic, to showing ferroelectricity, 

ferromagnetism, superconductivity and colossal magnetoresistance (Figure 1.1). Different 

electronic phases are inherently related to internal degrees of freedom of TMO, which 

include orbital, charge, spin and lattice degree of freedom. With delicate designing and 

controlling, one has a great opportunity to exploit novel functionalities out of these 

materials. 

 

Figure 1.1 Complexity and multifunctionality of perovskites, an important class of 

transition metal oxides which attract lots of attention [1].  

In this dissertation, we will primarily focus on two types of transition metal 

oxides. The first one is HfO2, which is very important in technological applications. HfO2 

is a hard material with high bulk modulus, high melting point and high chemical stability. 

Because of its high static dielectric permittivity, it has replaced SiO2 as a gate dielectric 
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in the metal-oxide-semiconductor field-effect transistor (MOSFET). At atmospheric 

pressure, bulk hafnia has three polymorphs: At low temperature, it is monoclinic with a 

space group 𝑃21/𝑐 , and transforms to a tetragonal structure with a space group 

𝑃42/𝑛𝑚𝑐 at 1720℃, and finally transforms to a cubic structure with a space group 

𝐹𝑚3𝑚 at 2600℃. The three phases are illustrated in Figure 1.2.  

The second oxide we are going to talk about is SrTiO3. SrTiO3 has a perovskite 

structure with a chemical formula ABO3. In the primitive cubic cell, A atom is at the cube 

corner, B atom is at the cube center, while three O atoms are at the center of three faces. 

Thus a corner-shared octahedron BO6 can be formed. In general, both A and B are cations 

and X are anions. Illustration of the perovskite structure is presented in Figure 1.3 as 

below.  

 

Figure 1.2 Three polymorphs of bulk HfO2. Oxygen atoms are in red and Hf atoms are in 

olive. Arrows in (a) show displacements necessary to transform to the 

tetragonal phase [2]. 
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Figure 1.3 Structure of perovskite ABO3. A is the green ball, B is the blue ball in the 

center, while O is the red ball. 

SrTiO3 also undergoes several structural phase transitions with the change of 

temperature. At room temperature it has a cubic structure with space group 𝑃𝑚3̅𝑚. 

When temperature is at 105 K, it transforms from the cubic to tetragonal structure with an 

antiferrodistortive rotation (Figure 1.4): The neighbouring TiO6 octahedra will rotate in 

opposite direction and changes the 𝑐/𝑎 ratio accordingly [3–5]. In addition, SrTiO3 also 

exhibits quantum paraelectricity: The dielectric constant 𝜖 can increase from 300 at 

room temperature to 30000 at about 4 K [6]. 
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Figure 1.4 Illustration of antiferrodistortive rotation of SrTiO3. At the same horizontal 

plane, the neighbouring octahedra are rotated in opposite direction around 

the in-plane axis. 

If we bring two complex oxides together, emergent phenomena would occur at 

interface. When two oxides have different chemical potentials, charge transfer could take 

place between them. This could create a quasi-two-dimensional electron gas at the 

interfaces. The 2D system has attracted much attention as it exhibits many new effects, 

which are not observed in bulk constituent oxides. Among them, the most prominent are 

ferromagnetism and superconductivity. Recently, many experiments have shown that 2D 

system occurring in the SrTiO3-based heterostructures can host both ferromagnetic and 

superconducting orders, which makes SrTiO3-based heterostructures even more 

remarkable [7]. 

Much progress in the thin film growth techniques has been made recently [8]. To 

grow SrTiO3 and related heterostructures, atomic layer deposition (ALD), pulsed laser 
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deposition (PLD). Molecular beam epitaxy (MBE), laser MBE and sputtering method are 

often used. However, during the growth process, many defects can be introduced into the 

system, which would affect the structural and electronic properties significantly. For 

example, by annealing SrTiO3 under low pressure, oxygen vacancies are easily created. 

Also, as-grown films are almost always nonstoichiometric, though this can be corrected 

by high-temperature annealing. In HfO2, oxygen vacancies may affect leakage current 

through the oxide, and charge vacancies can contribute to dielectric loss [9]. In SrTiO3, 

oxygen vacancies are the most abundant types of point defects. They could induce 

structural distortions, free or localize carriers and hence can influence conductivity, and 

also change the optical properties dramatically. Therefore, investigating oxygen 

vacancies effect in transition metal oxide and related heterostructures is of fundamental 

importance. 

The dissertation is a summary of theoretical work. However, for most of the 

studies we are working together with experimental collaborators. To make the story 

complete, experimental results are also presented. The rest of the dissertation is organized 

as follows. In Chapter 2, the computational method based on density functional theory is 

introduced. In Chapter 3, we discuss the effect of strain and oxygen vacancies on the 

phonon spectrum of HfO2 films. In Chapter 4, we present the ab-initio study of spin-

polarized two-dimensional electron gas at the interface of EuO and oxygen-deficient 

SrTiO3. In Chapter 5, based on calculation results from Chapter 4, we propose a 

theoretical explanation for the experimentally observed positive linear magnetoresistance 

of two-dimensional electron gas in the EuO/SrTiO3-systems. 
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Chapter 2 Computational Methodology: Density Functional Theory 

In this chapter, we review density functional theory (DFT), which is the main 

computational methodology we use throughout this dissertation. The chapter is organized 

as follows: In 2.1, we introduce the fundamental many-body problem to be solved and an 

independent-electron-approximation treatment at early stage. In 2.2, we discuss the 

foundation of DFT Hohenberg-Kohn theorem and the auxiliary Kohn-Sham equations. In 

2.3, we list different forms of density functional that are related with exchange-

correlation term in the equations. Also, the LDA+U and hybrid functional methods are 

discussed in this chapter. In 2.4, we talk about the pseudopotential method, which can 

simplify the calculation. In 2.5, we introduce a widely used plane-wave basis in DFT and 

the related parameters. In 2.6, we introduce another real-space DFT method, which can 

solve the Kohn-Sham equations in real space and we give one example of using this 

method to calculate the work function of metallic nanocrystals.  

2.1 BACKGROUND: FROM MANY-BODY HAMILTONIAN TO INDEPENDENT ELECTRON 

APPROXIMATION 

The starting point of a theory describing a solid-state system is the interacting 

many-body Hamiltonian, which involves both electrons and nuclei, 

𝐻 = 𝑇𝐼 + 𝑉𝐼−𝐼 + 𝑇𝑒 + 𝑉𝑒−𝑒 + 𝑉𝐼−𝑒

= −∑
ħ2

2𝑀𝐼
𝐼

∇𝐼
2 +

1

2
∑

𝑍𝐼𝑍𝐽𝑒
2

|𝑅𝐼 − 𝑅𝐽|𝐼≠𝐽

−∑
ħ2

2𝑚𝑒
𝑖

∇𝑖
2 +

1

2
∑

𝑒2

|𝑟𝑖 − 𝑟𝑗|𝑖≠𝑗

−∑
𝑍𝐼𝑒

2

|𝑅𝐼 − 𝑟𝑖|
𝐼,𝑖

 ,                                                                                                                            (2.1) 

where 𝑇𝐼 , 𝑉𝐼−𝐼 , 𝑇𝑒 , 𝑉𝑒−𝑒 , 𝑉𝐼−𝑒  represent the kinetic energy of the nuclei, nucleus-

nucleus interaction, kinetic energy of electrons, electron-electron interaction, and  the 

electron-nucleus interaction, respectively. ħ, 𝑀𝐼 , 𝑍𝐼 , 𝑅𝐼 , 𝑚𝑒 , 𝑟𝑖  represent the Planck 
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constant, ion mass, ion charge, ion position, electron mass and electron position, 

respectively. This is a complicated problem and to reduce the complexity, the first good 

approximation is the Born-Oppenheimer or adiabatic approximation [10]. As ions move 

much slower compared to electrons due to their large mass, the core of this 

approximation is to separate the total wave functions (WFs) into a product of the WFs of 

electrons and the WFs of ions: 

(𝑟, 𝑅) = (𝑅)(𝑟) ,                                                                         (2.2) 

where (𝑟) is the electronic WF, and (𝑅) is the ionic WF. In this way, 𝑇𝐼 and 𝑉𝐼−𝐼 

can be separated from the total Hamiltonian and for the electrons, we only use: 

𝐻 = 𝑇𝑒 + 𝑉𝑒−𝑒 + 𝑉𝐼−𝑒 = −∑
ħ2

2𝑚𝑒
𝑖

∇𝑖
2 +

1

2
∑

𝑒2

|𝑟𝑖 − 𝑟𝑗|𝑖≠𝑗

−∑
𝑍𝐼𝑒

2

|𝑅𝐼 − 𝑟𝑖|
𝐼,𝑖

  (2.3) 

Looking at the current Hamiltonian, we realize the only hard term to deal with is 

the two-body interaction term, as it includes terms describing the interaction of two 

electrons. To solve this problem, historically, the simplified approach is to replace the 

interacting Hamiltonian with a non-interacting Hamiltonian, which can incorporate the 

two-body interactions into an effective potential on one electron.  

There are two independent-electron approaches: the first is called the “Hartree-

like” approximation [11], and the second is called the “Hartree-Fock” approximation. For 

the “Hartree-like” approximation [12], the total WF is written down as the product of WF 

of the individual electrons. Then the energy and WF of each electron can be found from a 

Schrodinger-like equation: 

[−∑
ħ2

2𝑚𝑒
𝑖

∇2 + 𝑉𝑒𝑓𝑓
𝜎 (𝒓)]

𝑖
(𝒓) = 𝜀𝑖

𝜎
𝑖
(𝒓)                                     (2.4) 

This is the heart of the independent-electron approximation, as it includes the 

Coulomb interaction as an effective potential and reduces the many-electron problem to a 
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one-electron problem. After solving WF for each electron in the system, the total WF can 

be constructed from the product of all these one electron states.  

For the “Hartree-Fock” approximation, the starting point is to establish an 

antisymmetrized determinant WF with N orbitals for each electron, and then use it to 

compute the expectation value of the Hamiltonian in 2.3. The WF has a form of Slater 

determinant:  

𝛷 =
1

(𝑁!)1/2 |

|

𝜙1(𝒓1, 𝜎1)     𝜙1(𝒓2, 𝜎2)     𝜙1(𝒓3, 𝜎3)… 

𝜙2(𝒓1, 𝜎1)     𝜙2(𝒓2, 𝜎2)     𝜙2(𝒓3, 𝜎3)… 

𝜙3(𝒓1, 𝜎1)     𝜙3(𝒓2, 𝜎2)     𝜙3(𝒓3, 𝜎3)… 
.
.
.

|

|
          ,                (2.5) 

where 𝜙1(𝒓𝑖, 𝜎𝑖) is a product of WF space part 
𝑖
(𝒓𝑖) and spin part 𝛼𝑖(𝜎𝑖). Also, 


𝑖
(𝒓𝑖)is orthogonal with each other. With this antisymmetric WF, we can compute the 

expectation value of the Hamiltonian of (2.3), which is the total energy of the system. In 

the atomic units, the expectation value is: 

⟨𝛷|𝐻|𝛷⟩ =∑∫𝑑𝒓
𝑖
𝜎∗(𝒓)

𝑖,𝜎

[−
1

2
∇2 + 𝑉𝑒𝑥𝑡(𝒓)]𝑖

𝜎(𝒓)

+
1

2
∑ ∫𝑑𝒓′𝑑𝒓

𝑖

𝜎𝑖∗(𝒓)
𝑗

𝜎𝑗∗(𝒓′)

𝑖,𝑗,𝜎𝑖,𝜎𝑗

1

|𝒓 − 𝒓′|

𝑖

𝜎𝑖(𝒓)
𝑗

𝜎𝑗(𝒓′)

−
1

2
∑∫𝑑𝒓′𝑑𝒓

𝑖
𝜎∗(𝒓)

𝑗
𝜎∗(𝒓′)

𝑖,𝑗,𝜎

1

|𝒓 − 𝒓′|

𝑗
𝜎(𝒓)

𝑖
𝜎(𝒓′)                           (2.6) 

The first term includes all single-particle term and 𝑉𝑒𝑥𝑡(𝒓) is the 𝑉𝐼−𝑒term of 

(2.3). The second term is the classical Coulomb repulsion so it represents “direct 

interaction” between two electrons. Energy of this term is also called the Hartree energy. 

For the third term, at the same position, orbitals at bra vectors and ket vectors are 

different. So we call this term the “exchange interaction”. To minimize the total energy, 

the Lagrange multipliers method is used and a Schrodinger-like equation for each 
𝑖
(𝒓) 

is:  
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[−∑
ħ2

2𝑚𝑒
𝑖

∇2 +∑∫𝑑𝒓′
𝑖

𝜎𝑗∗(𝒓′)
𝑗

𝜎𝑗∗(𝒓′)

𝑗,𝜎𝑗

1

|𝒓 − 𝒓′|
]

𝑖
𝜎(𝒓)

−
1

2
∑∫𝑑𝒓′

𝑗
𝜎∗(𝒓′)

𝑖
𝜎∗(𝒓′)

𝑗

1

|𝒓 − 𝒓′|

𝑗
𝜎(𝒓)   = 𝜀𝑖

𝜎
𝑖
𝜎(𝒓)                  (2.7) 

This is called the Hartree-Fock equation. We note the unphysical interaction 

between 
𝑖
(𝒓𝑖) and 

𝑖
(𝒓𝑖) in the “direct interaction” is cancelled in the “exchange 

interaction”, so we don’t need to require 𝑖 ≠ 𝑗 in the sum. This unphysical interaction is 

called the “self-interaction”, and we will talk about its importance later. We want to 

emphasize the Hartree-Fock approximation only considers the correlation originating 

from the Pauli principle: The Orthogonality of basis orbitals 
𝑖
(𝒓𝑖) is based upon the 

exclusion principle that electrons are automatically kept away when they have the same 

spin. However, in reality the single determinant is not enough. The fact that two electrons 

with the same orbital but opposite spins can’t be at the same place due to Coulomb 

repulsion is not considered. This in general, is called the “correlation effect”, which is 

different from the “exchange effect” originating from the exchange term. 

The simplest model system that can be solved by the independent-electron 

approach is the homogenous electron gas (HEG), where the ions are replaced by a 

uniform positively charged background. Thomas and Fermi solved this model under the 

non-interacting approximation, namely, only the kinetic energy term is 

considered [13,14]. The eigenvector is the normalized plane wave 
𝒌
(𝒓) =

1

𝑉1/2
𝑒𝑖𝒌∙𝒓, 

and the total ground state is a Slater determinant constructed with plane waves, and the 

wave vectors of these plane waves are all inside the Fermi sphere. Using the total electron 

number conservation, we can get the Fermi wave vector: 

4𝜋

3
(𝑘𝐹
𝜎)3 =

(2𝜋)3

𝑉
𝑁𝜎 ,        𝑘𝐹

𝜎 = (3𝜋2)
1
3𝑛

1
3(𝑛↑ = 𝑛↓)                                      (2.8) 

The total kinetic energy per electron for unpolarized case is: 
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𝑇0
𝜎 =

3

5
𝐸𝐹0
𝜎 ,               𝐸𝐹0

𝜎 =
1

2
( 𝑘𝐹

𝜎)2                                                              (2.9) 

Dirac solved the model analytically under the Hartree-Fock approximation [15]. 

Now the eigenenergy of the HEG model also contains the exchange energy term: 

𝜀𝑘 =
1

2
𝑘2 +

𝑘𝐹
𝜋
𝑓(𝑥), 𝑓(𝑥) = −(1 +

1 − 𝑥2

2𝑥
𝑙𝑛 |
1 + 𝑥

1 − 𝑥
|) , 𝑥 =

𝑘

𝑘𝐹
            (2.10) 

It is seen clearly that for both approximations, the total energy is related, and can 

even be expressed with the electron density. This suggests the idea to formulate the total 

energy as: 

𝐸𝑇𝐹(𝑛) = 𝐶1∫𝑑
3𝑟𝑛(𝒓)5/3 + 𝐶2∫𝑑

3𝑟𝑛(𝒓)4/3 +∫𝑑3𝑟𝑉𝑒𝑥𝑡(𝒓)𝑛(𝒓)

+ ∫𝑑3𝑟𝑑3𝑟′
𝑛(𝒓)𝑛(𝒓′)

|𝒓 − 𝒓′|
 ,                                                                             (2.11) 

where the first term is the kinetic energy with 𝐶1 =
3

10
(3𝜋2)2/3, the second term is the 

exchange energy with 𝐶2 = −
3

4
(
3

𝜋
)1/3 (for non-spin-polarized case), the third term is the 

electron-ion interaction and the fourth term is the classical electrostatic Hartree energy. 

Though the Thomas-Fermi-Dirac approximation is crude, it is the original form of 

density functional theory, which expresses the total energy as the density functional. 

2.2 HOHENBERG-KOHN THEOREMS AND KOHN-SHAM EQUATION 

There are two parts to the Hohenberg-Kohn theory [16]: 

Theorem I: For any system of interacting particles in an external potential 

𝑉𝑒𝑥𝑡(𝒓), the potential 𝑉𝑒𝑥𝑡(𝒓) is determined uniquely, except for a constant, by the 

ground sate particle density 𝑛0(𝒓). 

Theorem II: A universal functional for the energy E[n] in terms of the density 

n(𝒓) can be defined, valid or any external potential 𝑉𝑒𝑥𝑡(𝒓). For any particle 𝑉𝑒𝑥𝑡(𝒓), 

the exact ground state energy of the system is the global minimum value of this 
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functional, and the ground density n(𝒓) that minimizes the functional is the exact 

ground state density 𝑛0(𝒓). 

We refer the reader to see the proof in [16]. Theorem I tells that the ground state 

density uniquely determines the external potential (except for a constant). Corresponding 

corollary follows that as the Hamiltonian is uniquely determined, the many-body WFs are 

also determined. Therefore, all properties of the system are determined only by the 

ground state electron density n(𝒓). For Theorem II, it follows that if the functional 

𝐹𝐻𝐾[𝑛] = 𝑇[𝑛] + 𝐸𝐼𝑁𝑇[𝑛] was known, then by minimizing the total energy functional 

𝐸𝐻𝐾[𝑛] as the sum of ∫𝑑3𝑟𝑉𝑒𝑥𝑡(𝒓)𝑛(𝒓) and 𝐹𝐻𝐾[𝑛] respect to n(𝒓), one would find 

the exact ground state density and energy. 

The Hohenberg-Kohn theorem states that the Hamiltonian can be fully determined 

by the ground state density 𝑛0(𝒓). However, many-body WFs of the interacting many-

body system are hard to calculate, which means 𝑛0(𝒓) is also difficult to obtain. In 

1965, Kohn and Sham introduced an ansatz to replace the interacting many-body problem 

with a different auxiliary independent-particle problem. The Kohn-Sham ansatz has two 

assumptions: 

1. The exact ground state density can be represented by the ground state of an 

auxiliary system of non-interacting particles. This is called “non-interacting-

V-representability”.  

2. The auxiliary Hamiltonian is chosen to have the usual kinetic operator and an 

effective local potential 𝑉𝑒𝑓𝑓
𝜎 (𝐫) acting on an electron of spin σ at point 𝐫. 

The schematic representation of Kohn-Sham ansatz is shown in Figure 2.1: by 

equating the ground state density of the original interacting system with that of some 

chosen non-interacting system, we convert the many-body interacting problem to the 

non-interacting problem. The auxiliary Hamiltonian has the form like: 
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𝐻𝑎𝑢𝑥
𝜎 = −

1

2
∇2 + 𝑉𝜎(𝒓)                                                                   (2.12) 

 

Figure 2.1 Schematic representation of Kohn-Sham ansatz. 

For a system of N independent electrons, the ground state has one electron in each 

of the 𝑁𝜎 orbitals 
𝑖
𝜎(𝒓) with the lowest eigenvalues 𝜀𝑖

𝜎 of Hamiltonian (2.12). The 

density of the auxiliary system is given by the sums of squares of the orbitals for each 

spin: 

𝑛(𝒓) = ∑ 𝑛(𝒓, 𝜎)𝜎 = ∑ ∑ |
𝑖
𝜎(𝒓)|

2𝑁𝜎

𝑖=1𝜎                                         (2.13)  

The independent-electron kinetic energy 𝑇𝑠 is: 

𝑇𝑠 = −
1

2
∑∑ ⟨

𝑖
𝜎|∇2|

𝑖
𝜎⟩

𝑁𝜎

𝑖=1
𝜎

=
1

2
∑∑ ∫𝑑3𝑟

𝑁𝜎

𝑖=1
𝜎

|∇
𝑖
𝜎(𝒓)|

2
                             (2.14) 

Similar to the Thomas-Fermi-Dirac approximation, the classical electrostatic 

Hartree energy is: 

𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝑛] =
1

2
∫𝑑3𝑟𝑑3𝑟′

𝑛(𝒓)𝑛(𝒓′)

|𝒓 − 𝒓′|
                                        (2.15) 

The Kohn-Sham approach rewrites the total energy functional of the many-body 

into single-electron form: 
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𝐸𝐾𝑆[𝑛] = 𝑇𝑠[𝑛] + 𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝑛] + ∫𝑑
3𝑟𝑉𝑒𝑥𝑡(𝒓)𝑛(𝒓) + 𝐸𝑥𝑐[𝑛],            (2.16) 

where 

𝐸𝑥𝑐[𝑛] = 〈𝑇〉 − 𝑇𝑠[𝑛] + 〈𝑉𝑖𝑛𝑡〉 − 𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝑛]                                      (2.17) 

Here 𝐸𝑥𝑐[𝑛] is called the exchange-correlation functional. All unknown many-

body terms are incorporated into this term. Therefore, to improve the accuracy of the 

density functional theory, we need to make the approximation of the exchange-

correlation functional as good as possible. This will be discussed in the next sub-chapter. 

We use the variational method to deal with the Kohn-Sham total energy 

functional 𝐸𝐾𝑆[𝑛] . By varying the WF 
𝑖
𝜎(𝒓)  and using the Lagrange multiplier 

method, we get the well-known Kohn-Sham equations as a set of equations for all N 

electrons in the system: 

 (−
1

2
∇2 + 𝑉𝑒𝑥𝑡(𝒓) + 𝑉𝐻𝑎𝑟𝑡𝑟𝑒𝑒(𝒓) + 𝑉𝑥𝑐

𝜎(𝒓))
𝑖
𝜎(𝒓) = 𝜀𝑖

𝜎
𝑖
𝜎(𝒓)         (2.18) 

The equations have the form of independent-particle equations with a potential 

that must be found self-consistently with the resulting density. Steps of solving these 

equations are shown as a flow in the Figure 2.2 below [17]. Initially, we give a n
in

 as the 

input density. We use the density n
in

 to construct the effective potential, solve Kohn-

Sham equations and get the output density n
out

. If the output density n
out

 doesn’t agree 

with n
in

, we use a mixture of n
in

 and n
out

 to solve the Kohn-Sham equations until the final 

output is equal to the input density. If the exact form of 𝐸𝑥𝑐[𝑛] is known, they would 

give the exact ground state information. 
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Figure 2.2 Schematic representation of the self-consistent loop for solution of Kohn-

Sham equations [17]. 

 

2.3 EXCHANGE-CORRELATION DENSITY FUNCTIONAL AND ADVANCED METHODS  

As discussed by Kohn and Sham, solids can be compared with the HEG, in which 

the effects of exchange and correlation are local in nature. Therefore, they propose 

making the local density approximation (LDA), where the exchange-correlation energy is 

an integral over all space with the exchange-correlation energy density taken as that of 

the HEG at each point: 

𝐸𝑥𝑐
𝐿𝑆𝐷𝐴[𝑛↑, 𝑛↓] = ∫𝑑3𝑟𝑛(𝒓)𝜖𝑥𝑐

ℎ𝑜𝑚(𝑛↑(𝒓), 𝑛↓(𝒓))

= ∫𝑑3𝑟𝑛(𝒓)[𝜖𝑥
ℎ𝑜𝑚 (𝑛↑(𝒓), 𝑛↓(𝒓)) + 𝜖𝑐

ℎ𝑜𝑚 (𝑛↑(𝒓), 𝑛↓(𝒓))]               (2.19) 
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The exchange energy of the HEG is the second term in equation (2.10), and the 

correlation energy can be calculated with the Quantum Monte Carlo (QMC) 

methods [18]. The most widely used form for the exchange-correlation functional is that 

formulated by Perdew and Zunger [19], and has parameterized analytic forms for 

𝐸𝑐
𝐿𝑆𝐷𝐴[𝑛↑, 𝑛↓] based on the QMC results. The initial thought of treating a solid as the 

HEG sounds not that rational. However, the calculation results agree with the 

experimental results very well. This demonstrates that for most solids, effects of 

exchange and correlation are in the short range, which is similar to the HEG.  

The most notorious flaw of the LDA is the spurious self-interaction term. As we 

have discussed in the context of the Hartree-Fock method, the unphysical interaction 

between 
𝑖
(𝒓𝑖) and 

𝑖
(𝒓𝑖) in the “direct interaction” is cancelled in the “exchange 

interaction”. However, in LDA, it is only partially cancelled. Nevertheless, LDA still 

works very well for most of the solid systems, as the self-interaction vanishes quickly for 

delocalized orbitals or over extended systems. On the other hand, the Hartree-Fock 

method is more important for inner shell orbitals and atoms, as the exchange energy is 

more important there. For low density valence electrons, the correlation energy is as 

important as the exchange energy.  

Though LDA is very successful, the functional can be further improved by 

considering the gradient of the density ∇𝑛(𝒓) along with the density 𝑛(𝒓) at each 

point. This would input more local density information into the functional. However, the 

gradients in solids are very large and the expansion breaks down. Therefore, different 

ways are proposed to modify the behavior of the functional for large gradients. The 

method is called the generalized-gradient expansion (GGA). The generalized form is 
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𝐸𝑥𝑐
𝐺𝐺𝐴[𝑛↑, 𝑛↓] = ∫𝑑3𝑟𝑛(𝒓)𝜖𝑥𝑐(𝑛

↑(𝒓), 𝑛↓(𝒓), |∇𝑛↑(𝒓)|, |∇𝑛↓(𝒓)|)

= ∫𝑑3𝑟𝑛(𝒓)𝜖𝑥
ℎ𝑜𝑚(𝑛)𝐹𝑥𝑐(𝑛

↑(𝒓), 𝑛↓(𝒓), |∇𝑛↑(𝒓)|, |∇𝑛↓(𝒓)|) ,                                         (2.20) 

where 𝜖𝑥
ℎ𝑜𝑚(𝑛)  is the exchange energy of the HEG and 𝐹𝑥𝑐  is a dimensionless 

function. There are three different forms of 𝐹𝑥𝑐  that are most widely used: 

Becke(B898) [20], Perdew and Wang (PW91) [21], and Perdew, Burke and 

Ernzerhof [22], which use different numerical forms of 𝐹𝑥. The GGA usually leads to the 

exchange energy being lower than that of the LDA and this leads to greater lowering of 

the exchange energy in atoms than in molecules and solids. Therefore, GGA will reduce 

the binding energy, and correct the LDA overbinding problem. On the other hand, the 

behavior of the functional depends on a specific physical condition: One form of 𝐹𝑥 

working well for some properties or some systems doesn’t guarantee that it will work for 

others. 

Though LDA or GGA are successful for many solid state systems, they are not 

applicable to all situations. One deficiency is their inability to describe the strong 

correlated systems, such as the transition element or a rare-earth element, with partially 

filled d or f orbitals. With the orbital-independent LDA or GGA methods, the rare-earth 

or transition metal oxides are predicted to be metallic, which is obviously not true. In 

fact, d or f orbitals are well localized and there is a gap between the occupied and 

unoccupied parts. To solve this problem, a regular LDA or GGA method is coupled with 

the additional orbital-dependent interaction, and this method is the so-called 

LDA/GGA+U [23,24]. In this methodology, electrons are separated into two subsystems: 

localized d or f orbitals and delocalized s or p electrons. For the former group, a mean-

field type approximation of Coulomb d-d or f-f interaction is applied by considering a 

1

2
𝑈∑ 𝑛𝑖𝑛𝑗𝑖≠𝑗  (𝑛𝑖 is the site occupation). For the latter group, the regular LDA or GGA 
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approximation is used. A simple example is illustrated here: Consider a d ion with a 

fluctuating number of d electrons. In LDA or GGA, the Coulomb d-d interaction energies 

is 𝐸 =
𝑈𝑁(𝑁−1)

2
, where 𝑁 = ∑𝑛𝑖 is the total number of d electrons. If we subtract this 

term and add a Hubbard-like term, the functional will be like: 

𝐸 = 𝐸𝐿𝐷𝐴 −
𝑈𝑁(𝑁 − 1)

2
+
1

2
𝑈∑𝑛𝑖𝑛𝑗
𝑖≠𝑗

                                              (2.21) 

The orbital energies 𝜀𝑖  are derivatives of (2.21) with respect to the orbital 

occupation 𝑛𝑖: 

𝜀𝑖 = 𝜀𝐿𝐷𝐴 + 𝑈(
1

2
− 𝑛𝑖)                                                        (2.22) 

For occupied orbitals, 𝑛𝑖 = 1, and 𝜀𝑖 = 𝜀𝐿𝐷𝐴 −
1

2
𝑈. For unoccupied orbitals, 

𝑛𝑖 = 0 , and 𝜀𝑖 = 𝜀𝐿𝐷𝐴 +
1

2
𝑈 . We note now that the effective potential 𝑉𝑖(𝑟)  also 

becomes dependent on the orbital occupancy. This gives the correct physics for Mott-

Hubbard insulators, for which the energy gap exists between the upper and lower 

Hubbard bands. 

Another deficiency in LDA/GGA is the uncancelled self-interaction. We have 

discussed it above and this won’t cause trouble for the extended solid systems. However, 

it will be problematic for atomic or molecular systems. Since the self-interaction term is 

fully cancelled in the Hartree-Fock method, people sometimes mix the Hartree-Fock 

theory with LDA or GGA to cancel the self-interaction. The mixing of these two methods 

is called the hybrid functional. The hybrid functional improves a lot of the accuracy of 

the molecular and atomic bonding and is very welcomed in the chemistry 

community [25]. 

The hybrid functional approach is based on the coupling constant integration: 

𝐸𝑥𝑐 = ∫ 𝑈𝑋𝐶


1

0

𝑑 ,                                                              (2.23) 
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where   is the coupling-strength parameter. When  = 0 , 𝑈𝑥𝑐  is the exchange-

correlation potential energy of the non-interacting reference system, which is just the 

Hartree-Fock exchange energy. When  = 1, 𝑈𝑥𝑐 is the exchange-correlation potential 

energy of the fully-interacting real system. To first order, the integral (2.23) can be 

approximated with the linear interpolation: 

𝐸𝑥𝑐 =
1

2
(𝑈𝑋𝐶

0 + 𝑈𝑋𝐶
1 ),                                                        (2.24) 

where 𝑈𝑋𝐶
0  is the pure exchange energy of the Kohn-Sham Slater determinant, and 𝑈𝑋𝐶

1  

is the exchange-correlation functional of the LDA or GGA. With this hybrid functional, 

results for the atomization energies, ionization potentials and proton affinities for many 

molecules and atoms are largely improved [25]. 

 

2.4 PSEUDOPOTENTIAL 

In a solid state system, electrons can be divided into two groups: core electrons 

and valence electrons. Core electrons are tightly bound to ionic cores and hardly take part 

in the chemical bonding, while valence electrons determine the bonding of atoms, which 

form molecules and crystals. On the other hand, WFs of valence electrons oscillate 

rapidly near the core region, as to be orthogonal to WFs of core electrons. As will be 

discussed in Section 2.5, usually people take plane waves as the basis set. From this point 

of view, to correctly describe valence electrons, a very large plane-wave basis set is 

needed. This will make the calculation extremely difficult.  

The pseudopotentials are constructed to reproduce the scattering of the full ionic 

potential. Since core electrons remain almost unchanged during interaction, and valence 

electrons feel an effective core screened by core electrons, the sharp Coulomb potential 

near the core region can be replaced by an effective pseudopotential, which keeps the 
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nuclei and core states frozen. As a consequence, all-electron WFs of valence electrons are 

replaced with much smoother WFs, and valence electrons can still be accurately 

described outside the core region. The comparison between the all-electron WF and 

pseudo WF is illustrated in Figure 2.3 below. 

 

Figure 2.3 Comparison between the all-electron WF and pseudo WF. We can see the 

pseudo WF is much smoother than all-electron WF in the near-core region 

but matches it pretty well outside that region. 

Three different pseudopotentials are most popular in the community: the norm-

conserving pseudopotentials [26], ultrasoft pseudopotentials [27] and projected 

augmented wave method [28]. Most of the pseudopotentials are based on all-electron 

calculations. By assuming a spherical screening approximation, we could solve Kohn-

Sham equation: 

[−
1

2

𝑑2

𝑑𝑟2
+
𝑙(𝑙 + 1)

2𝑟2
+ 𝑉[𝜌; 𝑟]] 𝑟𝑅𝑛𝑙(𝑟) = 𝜀𝑛𝑙𝑅𝑛𝑙(𝑟),                                   (2.25) 

where 𝑉[𝜌; 𝑟] is the one-electron potential. It includes three parts: 

𝑉[𝜌; 𝑟] = −
𝑍

𝑟
+ 𝑉𝐻[𝜌; 𝑟] + 𝑉𝑥𝑐

𝐿𝐷𝐴(𝜌(𝑟))                                                (2.26) 
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Here, 𝑉𝐻[𝜌; 𝑟] is the Hartree potential, 𝑉𝑥𝑐
𝐿𝐷𝐴(𝜌(𝑟)) is the exchange-correlation 

potential and 𝜌(𝑟) is the corresponding electron density of occupied WF 𝑅𝑛𝑙(𝑟). For a 

“norm-conserving” pseudopotential, it needs to satisfy several different conditions: First, 

we want the pseudo WFs have non nodes to make it as smooth as possible. Second, the 

angular momentum l component of the radial pseudo WF should be equal to the all-

electron WF beyond a cutoff radius 𝑟𝑐: 

𝑅𝑙
𝑃𝑃(𝑟) = 𝑅𝑙

𝐴𝐸(𝑟),        𝑟 > 𝑅𝑐                                                   (2.27)  

Third, the charge within 𝑟𝑐 should be equal to both WFs: 

∫ |𝑅𝑙
𝑃𝑃(𝑟)|2𝑟2𝑑𝑟 =

𝑟𝑐

0

∫ |𝑅𝑙
𝐴𝐸(𝑟)|

2
𝑟2𝑑𝑟

𝑟𝑐

0

,                                    (2.28) 

where 𝑃𝑃 and AE stands for pseudopotential and all-electron, respectively. This is 

where the terminology “norm conserving” comes from. Fourth, eigenvalues for two WFs 

also should be the same: 

𝜀𝑙
𝑃𝑃 = 𝜀𝑙

𝐴𝐸                                                                               (2.29) 

It is clear that the pseudo WF is not unique so we have freedom to choose a 

desired form. Once the pseudo WF is fixed, we can get the screened pseudopotential by 

inverting equation (2.25): 

𝑉𝑠𝑐𝑟,𝑙
𝑃𝑃 (𝑟) = 𝜀𝑙 −

𝑙(𝑙 + 1)

2𝑟2
+

1

2𝑟𝑅𝑙
𝑃𝑃(𝑟)

𝑑2

𝑑𝑟2
[𝑟𝑅𝑙

𝑃𝑃(𝑟)]                    (2.30) 

Equation (2.30) tells us that in order to have a continuous PP, the pseudo WF 

should have continuous derivatives up to second order, and also behave as 𝑟𝑙 at the 

origin. The continuity of the first derivative also indicates that at the point 𝑟0 the WF is 

uniquely determined by its logarithmic derivative:  
𝑑

𝑑𝑟
ln[𝑅𝑙(𝑟, 𝜀)] |𝑟=𝑟0 =

1

𝑅𝑙(𝑟, 𝜀)

𝑑𝑅𝑙(𝑟, 𝜀)

𝑑𝑟
|𝑟=𝑟0                                      (2.31) 

This leads the condition (2.27) to become: 
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1

𝑅𝑙
𝑃𝑃(𝑟, 𝜀)

𝑑𝑅𝑙
𝑃𝑃(𝑟, 𝜀)

𝑑𝑟
=

1

𝑅𝑙
𝐴𝐸(𝑟, 𝜀)

𝑑𝑅𝑙
𝐴𝐸(𝑟, 𝜀)

𝑑𝑟
                     (2.32) 

There is another important property of the PP which is called “transferability”. 

This means that if the pseudopotential generated for atom is in chemical environments 

such as solids or molecules, the calculation results are the same compared with the all-

electron calculations in that environment. The simple approach to increase the 

transferability is to decrease 𝑟𝑐  so 𝑅𝑙
𝑃𝑃(𝑟)  is equal to 𝑅𝑙

𝐴𝐸(𝑟) in a larger range. 

However, that means we need to have more Fourier components in the plane-wave basis 

as when 𝑟𝑐 decreases, 𝑅𝑙
𝐴𝐸(𝑟) rapids more rapidly. This indicates that if we want to 

improve the transferability, we have to sacrifice the smoothness of the pseudopotential. 

Troullier and Martins [26] suggested a method for generating smooth 

pseudopotentials. The pseudo WF is defined as: 

𝑅𝑙
𝑃𝑃(𝑟)] = {

𝑅𝑙
𝐴𝐸(𝑟)     𝑟 ≥ 𝑟𝑐

𝑟𝑙 exp[𝑝(𝑟)]       𝑟 ≤ 𝑟𝑐  
 ,                                       (2.33) 

where 𝑝(𝑟) is a polynomial or order six in 𝑟2, 

𝑝(𝑟) = 𝑐0 + 𝑐2𝑟
2 + 𝑐4𝑟

4 + 𝑐6𝑟
6 + 𝑐8𝑟

8 + 𝑐10𝑟
10 ++𝑐12𝑟

12        (2.34) 

The seven coefficients can be determined by seven conditions, which are one 

norm-conservation, five continuity conditions of the pseudo WF and its derivatives up to 

the fourth order, and zero curvature of the pseudo WF at the origin.  

Norm-conserving pseudopotentials reach the goal of accuracy, but the 

“transferability” is lost to some extent. A different approach was suggested by 

Vanderbilt [27]. There, the norm-conservation condition is relaxed, which would cause a 

charge deficit in the core region. But the pseudo WF is allowed to be softer, and the 

scattering properties and the transferability of the pseudo potential can be improved by 

using projector function for each angular momentum channel. This method reduces the 

size of plane-wave basis set compared with the norm-conserving pseudopotential. 
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However, more projections and operations are needed, which also decreases the 

computational efficiency. 

The projector augmented wave method is an approach to reformulate the 

orthogonalized plane wave method. The strategy of this method is to divide the valence 

WF into a partial-wave expansion within an atom-centered sphere and envelope functions 

outside the spheres. The envelope function is expanded into plane waves or some other 

convenient basis set. Then two parts are matched with the value and the derivative at the 

sphere radius. The integrals of WFs are evaluated by the augmentation method. Different 

from other two methods discussed above, this method keeps the all-electron WF instead 

of the pseudo WF. First, a smooth pseudo WF ̃(𝑟) can be defined and a linear 

transformation can connect this pseudo WF ̃(𝑟) and the all-electron WF (𝑟):  

(𝑟) = 𝑇̃(𝑟)                                                                 (2.35) 

Since ̃(𝑟) is smooth, it can be expanded with different partial waves m in each sphere: 

|̃⟩ =∑𝑐𝑚|𝑚̃⟩

𝑚

                                                          (2.36) 

Hence the all-electron WF is written as: 

|⟩ = |̃⟩ +∑𝑐𝑚{|𝑚⟩

𝑚

− |
𝑚̃
⟩}                             (2.37) 

If the transformation is linear, then coefficients can be obtained by projection in each 

sphere: 

𝑐𝑚 = ⟨𝑝𝑚̃|̃⟩                                                                    (2.38) 

For projection operator (vector) 𝑝𝑚̃, it satisfies the orthogonal condition: 

⟨𝑝𝑚̃|𝑚̃⟩ = 𝛿𝑚𝑚′                                                              (2.39) 

Therefore, the all-electron valence WF can be obtained from the pseudo valence WF: 

|⟩ = |̃⟩ +∑⟨𝑝𝑚̃|̃⟩{|𝑚⟩

𝑚

− |
𝑚̃
⟩}                             (2.37) 
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For any operator 𝐴̂ in the original all-electron problem, a transformed operator 𝐴̃ 

operating on the pseudo WF can also be introduced: 

𝐴̃ = 𝑇+𝐴𝑇 = 𝐴 +∑|𝑝𝑚̃⟩(⟨𝑚|𝐴|𝑛⟩

𝑚,𝑛

− ⟨
𝑚̃
|𝐴|

𝑛̃
⟩)⟨𝑝𝑛̃|             (2.38) 

This method has been incorporated in VASP and we use this method for most 

calculations in this dissertation. 

 

2.5 PLANE-WAVE BASIS 

Equation (2.4) has shown that the many-electron problem in a solid can be 

approximated as a one-electron problem, and all the many-body terms can be 

incorporated into an effective one-electron potential 𝑉𝑒𝑓𝑓(𝒓). Typically in a crystal 

atoms are arranged periodically so the effective potential is also periodic: 

𝑉(𝒓 + 𝑹) = 𝑉(𝒓)                                                                          (2.39) 

Here R is the Bravais lattice vector. With a periodic potential, WF of electrons solved 

from equation (2.4) will have the form: 


𝑘
(𝒓) = 𝑒𝑖𝒌∙𝒓𝑢𝒌(𝒓)                                                                    (2.40) 

where 

𝑢𝒌(𝒓 + 𝑹) = 𝑢𝒌(𝒓)                                                                     (2.41) 

This is called Bloch theorem, and it indicates that the one-electron WF in solids 

can be written as a product of a plane wave and a periodic function. Considering that any 

periodic function can be expanded in a complete reciprocal lattice vector basis set, we 

get: 


𝑘
(𝒓) =

1

√
∑𝑐𝑖,𝑮𝑒

𝑖(𝒒+𝑮)∙𝒓

𝑮

,                               (2.42) 
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where  is the volume of the solid, 𝑮 is the reciprocal lattice vector and q is the plane-

wave vector k within the first Brillouin zone. On the other hand, since 𝑉𝑒𝑓𝑓(𝒓) is 

periodic, we can also do a Fourier expansion for 𝑉𝑒𝑓𝑓(𝒓) to get the Fourier components: 

𝑉𝐺 =
1

0
∫𝑑𝒓𝑒−𝑖𝑮∙𝒓𝑉(𝑟),                                                                 (2.42) 

where 0 is the volume of the unit cell. All of these suggest that it is convenient to 

solve the one-electron Schrodinger equation in the reciprocal space.  

First we get the matrix element for the kinetic energy term: 

⟨𝑮′|−
∇2

2
|𝑮⟩ =

ħ2|𝑮|2

2𝑚
𝛿𝑮,𝑮′                                             (2.43) 

Then we get the matrix element for the 𝑉𝑒𝑓𝑓(𝒓) term: 

⟨𝑮′|−𝑉𝑒𝑓𝑓(𝒓)|𝑮⟩ = 𝑉𝑮−𝑮′                                               (2.44) 

Therefore, we will have 𝑁𝑞 independent matrices, and for each matrix, the size is 

(𝑁𝐺 × 𝑁𝐺), where 𝑁𝑞 is the number of k points in the first Brillouin zone, and 𝑁𝐺  is the 

number of Fourier components determined by the cutoff energy parameter 𝐸𝑐𝑢𝑡𝑜𝑓𝑓 

(𝐸𝑐𝑢𝑡𝑜𝑓𝑓 =
ħ2𝑮2

2𝑚
). Typically, for the transition metal oxide, we take the value as 600 eV. 

With all these Matrix elements, we could solve the Schrodinger equation: 

∑𝐻𝑛,𝑛′(𝒒)

𝑛′

𝑐𝑖,𝑛′(𝒒) = 𝜀𝑖(𝒒)𝑐𝑖,𝑛′(𝒒)                                          (2.45) 

The dimension of 𝑐𝑖(𝒒) is the number of Fourier components 𝑁𝐺 , equal to the 

number of bands in the band structure. 

As for a specific calculation, it involves integration over the Brillouin zone. The 

continuous integration can be replaced by summation over a finite grid of k points. The 

most widely adopted scheme to sample the Brillouin zone was proposed by Monkhorst 

and Pack [29]. In a three-dimensional system, the three reciprocal lattice vectors along 
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each lattice vector are recorded as 𝒃𝟏, 𝒃𝟐 and 𝒃𝟑, respectively. Coordinate of each k 

point is given as: 

𝒌𝑝𝑟𝑠 = 𝑢𝑝𝒃𝟏 + 𝑢𝑟𝒃𝟐 + 𝑢𝑠𝒃𝟑,                                             (2.46) 

where 𝑢𝑟 =
2𝑟−𝑞𝑟−1

2𝑞𝑟
, 𝑟 = 1, 2, … 𝑞𝑟. 𝑞𝑟 determines number of k points in the r direction 

and all 𝑞𝑟 × 𝑞𝑝 × 𝑞𝑠 points are distributed homogenously over the Brillouin zone. 

Another function is defined as: 

𝐴𝑚(𝒌) = 𝑁𝑚
−1/2

∑ 𝑒𝑖𝒌∙𝑹

|𝑹|=𝐶𝑚

,                                               (2.47) 

where the sum is over all R vectors which are related by the operations of the lattice point 

group. 𝑁𝑚 is the number of members in the mth star of R. Therefore, any integration 

function 𝑓(𝒌) can be approximated as a summation of 𝐴𝑚(𝒌): 

𝑓(𝒌) =∑𝑓𝑚𝐴𝑚(𝒌)

𝑚

                                                           (2.48) 

We note that the lattice point group can reduce the summation work significantly 

and will influence the weight factor for inequivalent k points. Here we give a simple 

example. Consider a two-dimensional lattice and we take 4 points along both the row and 

column. As illustrated in Figure 2.4, there are only 3 inequivalent k points while all other 

k points are actually related to them due to symmetry. In the entire Brillouin zone, 

𝑘1appears 4 times, 𝑘2 appears 4 times, and 𝑘3 appears 8 times. Therefore we have 

different weights for different k points and the integral can be written as: 

1

𝐵𝑍
∫ 𝐹(𝒌)𝑑𝒌 ≈

1

4
𝐹(𝒌𝟏) +

1

4
𝐹(𝒌𝟐) +

1

2
𝐹(𝒌𝟑)

𝐵𝑍

                  (2.49) 
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Figure 2.4 An illustration of Monkhorst-Pack Scheme. For two-dimensional lattice, 16 k 

points can be reduced to 3 inequivalent k points [30,31].  

Consider an operator X: The expectation value 〈𝑋〉 is obtained by integrate the 

matrix elements over the first Brillouin zone first, and then sum over all occupied bands: 

〈𝑋〉 =
1

𝑉𝐺
∑∫𝑑3𝒌𝑋𝑛(𝒌)𝑓(𝜀𝑛(𝒌))

𝑛

=
1

𝑉𝐺
∑∫𝑑3𝒌⟨𝑛(𝒌)|𝑋|𝑛(𝒌)⟩𝑓(𝜀𝑛(𝒌))

𝑛

,                                         (2.50) 

where 𝑉𝐺 is the volume of the reciprocal unit cell, and 𝑓(𝜀) is the occupation number. 

To compute 𝑓(𝜀𝑛(𝒌)), different methods are used to determine the partial occupancy 

𝑓(𝜀𝑛(𝒌)) for each orbital. Three methods are most widely used: the Gaussian-smearing 

method, the Methfessel-Paxton order N method [32] and the tetrahedron method. The 
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Methfessel-Paxton method usually works well for the metal. For semiconductors and 

insulators, the tetrahedron method is often used [33]. The procedure is to first divide the 

Brillouin zone into different tetrahedral (Figure 2.5), and then linearly interpolate 𝑋𝑛(𝒌) 

within each tetrahedron (Figure 2.6), and eventually integrate the interpolated function 

𝑋𝑛̃ by performing the summation with different weights: 

〈𝑋〉 =∑𝑋𝑛(𝒌𝒋)
̃

𝑗,𝑛

𝜔𝑛𝑗                                                                                (2.51) 

 

Figure 2.5 Break-up of a submesh cell into six tetrahedra [33].  
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Figure 2.6 Illustration of the linearly-interpolated weight function 𝜔𝑗(𝒌) that is used in 

integration [33].  

 

2.6 REAL SPACE DESNITY FUNCTIONAL METHOD 

The plane-wave based DFT method has been widely used. However, for localized 

systems, such as clusters, nanocrystals and slabs, the plane-wave method is not efficient 

due to the broken periodicity. We can still use it by taking a large supercell with thick 

vacuum, but the computational cost is large. Also, for a charged system, the supercell 

approach would give a divergent value of the total energy. To avoid it, a compensating 

background charge needs to be provided. 

Chelikowsky et al. developed a finite-difference method to solve the Kohn-Sham 

Schrodinger-like equation on a real space grid [34]. On a uniform orthogonal three-

dimensional grid with points (𝑥𝑖, 𝑦𝑗, 𝑧𝑘), the kinetic energy laplacian operator can be 

expanded: 
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𝜕2𝜓

𝜕𝑥2
= ∑ 𝐶𝑛𝜓(𝑥𝑖 + 𝑛ℎ, 𝑦𝑗 , 𝑧𝑘)

𝑁

𝑛=−𝑁

+ 𝑂(ℎ2𝑁+2) ,                                    (2.52) 

where h is the grid spacing. In a real space finite-difference-method, the grid spacing 

plays the role of the cutoff energy in a plane-wave calculation, which can be 

approximated by 𝜋2/2ℎ2, if h is in atomic unit [35]. The approximation can be accurate 

to the order of 𝑂(ℎ2𝑁+2) and the grid spacing h needs to be refined until the calculation 

is converged. To describe a localized system with this approach, a confining domain 

condition is adopted. The domain dimension should be large enough to allow the WF to 

vanish at the domain boundary. Overall, the Kohn-Sham equation on a real space grid is: 

−
ħ2

2𝑚
[ ∑ 𝐶𝑛𝜓(𝑥𝑖 + 𝑛ℎ, 𝑦𝑗 , 𝑧𝑘)

𝑁

𝑛=−𝑁

+ ∑ 𝐶𝑛𝜓(𝑥𝑖 , 𝑦𝑗 + 𝑛ℎ, 𝑧𝑘)

𝑁

𝑛=−𝑁

+ ∑ 𝐶𝑛𝜓(𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘 + 𝑛ℎ)

𝑁

𝑛=−𝑁

]

+ [𝑉𝑖𝑜𝑛(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘) + 𝑉𝐻(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘) + 𝑉𝑥𝑐(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘)]𝜓(𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘)

= 𝐸𝜓(𝑥𝑖, 𝑦𝑗, 𝑧𝑘) ,                                                                                                                        (2.53) 

where 𝑉𝑖𝑜𝑛 is the nonlocal pseudopotential, 𝑉𝐻 is the Hartree potential, and 𝑉𝑥𝑐 is the 

exchange-correlation potential. The number of grid points M is proportional to the 

domain size and inverse to the grid spacing. Accordingly, the Hamiltonian matrix has the 

size of 𝑀 ×𝑀.  

As an example, we use the real-space-pseudopotential code PARSEC to 

investigate the local work function variation around 3D metallic nanocrystals [34,36,37]. 

This work has been published as Lingyuan Gao, Jamie Souto-Casares, James R. 

Chelikowsky, Alexander A. Demkov, J. Chem. Phys, 147, 214301 (2017). Aluminum 

nanocrystals are examined. The local work function can be considered as the difference 

between Fermi level and the local electrostatic potential outside the crystal. For a 

nanocrystal, the potential can vary from one facet to another. We consider two Al 
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nanocrystals: a tetrakaidecahedron and a cuboid shown in Figure 2.7(a) and Figure 

2.7(b), respectively. The two structures were generated from a bulk supercell and are 

highly symmetric, which improves the convergence of the calculations. Our 

tetrakaidecahedron contains 490 atoms and has six (001)-oriented and eight (111)-

oriented facets and the cuboid has two (001)-oriented and four (110)-oriented facets and 

contains 371 atoms, thus all low-index surfaces are considered. Our spherical domain has 

a radius of 25 Å to avoid any artifacts of the artificial confinement. All structures are 

fully relaxed. The residual interatomic forces are less than 0.1eV/Å. 
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Figure 2.7 (a) A tetrakaidecahedron nanocrystal with the (001) and (111) facets, (b) A 

cuboid nanocrystal with (001) and (110) facets, (c) The relative potential of 

a tetrakaidecahedron nanocrystal across the 𝑥 + 𝑦 = 0 plane, (d) The 

relative potential of a cuboid nanocrystal across the 𝑥 + 𝑦 = 0 plane. In (a) 

and (b), surface atoms are highlighted yellow. 

 

We plot the relative potential across a plane defined by 𝑥 + 𝑦 = 0. In this 

manner, we can observe the potential change around different facets. Figure 2.7(c) shows 

the corresponding cut through the tetrakaidecahedron. Gold lines indicate the geometric 

edges (the line drawn through the atomic centers) of the nanocrystal. On this hexagonal 
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cross section, two horizontal edges belong to the (001) surface, while the other four 

belong to the (111) surface. The value inside the crystal has no physical significance as 

we reference to the Fermi energy. From Figure 2.7(c), 4 Å above the (001) facet, the 

potential is 4.2 eV, while at the same height above the (111) facet, it is 100 meV lower. 

At larger distances, the potential decreases along the (001) direction but increases along 

(111); at approximately 1 nm above the surface, it merges to a single value of 4.15 eV.  

Variation around the crystal implies that there are directions along which it is 

easier for electron to leave the crystal. In order to escape through the (001) facet, an 

electron needs to overcome the 4.2 eV potential barrier near that surface. This means 4.2 

eV is the local work function for the (001) facet of a tetrakaidecahedron. For the (111) 

facet, as the potential changes monotonously, the minimum work to free an electron 

through this facet is 4.15 eV.  

Similarly, the anisotropy is also found for the cuboid crystal shown in Figure 

2.7(d). The potential reaches the maximum value of 4.2 eV near (001) facet and then 

drops to 4.09 eV at large distances, while outside (110) facet, potential does not 

significantly vary and is fixed near 4.09 eV. Thus, the local work function (LWF) of the 

(001) facet in cuboid is counted as 4.2 eV and the LWF of (110) facet is 4.09 eV.  

Alternatively, we generate another type of local electrostatic potential map by 

plotting the potential relative to the Fermi level at planes parallel to each facet slightly 

“above” the crystal surface. For tetrakaidecahedron, potentials 4 Å above the (001) and 

(111) facets are shown in Figure 2.8(b) and Figure 2.8(e). As can be seen, the potential is 

uniform in the central region, which is right above the surface of nanocrystal, as 

highlighted in Figure 2.8(a) and Figure 2.8(d). For a plane parallel to (001) facet, the 

potential at the central square is approximately 4.20 eV, or 50~100 meV higher than in 

other regions on that plane. In contrast, at the center of a plane parallel to the (111) facet, 
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local work function is only 4.10 eV, and this is the low value for this plane. Thus, a 

difference of the order of 100~150 meV is observed between the potential values above 

the (001) and (111) facets of the nanocrystal. Further away from the nanocrystal, the 

difference diminishes and potential converges to a single value of 4.17 eV approximately 

1 nm away from the crystal, as shown in Figure 2.8(c) and Figure 2.8(f).  

Results for the cuboid nanocrystal are also shown in Figure 2.8(g) to 2.8(l). The 

electrostatic potential 4 Å above the (110) facet is 4.10 eV, or 100 meV lower than that 

for the (001) facet. But at a larger distance, the potential around the nanocrystal 

converges to 4.09±0.01 eV. Near the (001) facet, a nearly uniform, high potential area is 

roughly the size of a 6 × 6 atomic array instead of the entire surface layer. This is 

different from the case of the tetrakaidecahedron. We note that for the potential 4 Å 

above the (110) facet (Figure 2.8(k)), the potential extrema are not located in the center, 

but are along the edge. This feature has been discussed for the work function of two 

dimensional metallic nanowires and is attributed to the sharp edge feature of the 

cuboid  [38,39]. 
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Figure 2.8 (continued on next page)
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Figure 2.8 The relative electrostatic potential viewed across differently sliced planes: (a) 

to (f) are for the tetrakaidecahedron and (g) to (l) are for the cuboid. (a) The 

atomic view of a (001) facet,(b) the potential across the plane placed 4 Å 

above the (001) facet, (c) same 1 nm above the (001) facet, (d) the atomic 

view of the (111) facet, (e) the potential across the plane placed 4 Å above 

the (111) facet, (f) same 1 nm above the (111) facet, (g) The atomic view of 

a (001) facet, (h) the potential across the plane placed 4 Å above the (001) 

facet, (i) same 1 nm above the (001) facet, (j) The atomic view of a (110) 

facet, (k) the potential across the plane placed 4 Å above the (110) facet, (l) 

same 1 nm above the (110) facet. In (a) and (d), surface atoms are 

highlighted yellow. 

In addition, we calculate the ionization potential (IP) for five cuboid clusters of 

different sizes. IP is defined as the energy needed to remove an electron from the system. 

Ideally, in the bulk limit, IP is equal to the work function. However, for nano-sized 

clusters, two values become different as this will be discussed in the following. Owing to 

the confined boundary conditions employed in PARSEC, calculations of a charged 

system are readily done. We calculate IPs by subtracting the total energies of the 𝑁- and 

𝑁 − 1-electron systems. Sizes of these cuboids are 7 × 7 × 5, 6 × 6 × 5, 5 × 5 × 5, 

4 × 4 × 4 and 3 × 3 × 3 and the corresponding numbers of atoms, n, are 389, 280, 189, 

91 and 35, respectively. It has been suggested that the size-dependent ionization potential 

can be calculated using the following equation [40–42]: 

𝐼𝑛 = 𝑊 +
3

8

𝑒2

𝑅𝑛
= 𝑊 +

3

8

𝑒2

𝑟0
𝑛−1/3 ,  (2.54) 
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where 𝑅𝑛 is the cluster radius and 𝑟0 is the atomic radius. The first term W 

corresponds to the bulk work function value. The second term arises from a classical 

electrostatic effect: the electronic level of a charged cluster is shifted relative to a neutral 

cluster upon ionization. This has two contributions: The image potential at the surface of 

a metallic sphere is 
5

8

𝑒2

𝑟0
𝑛−1/3 larger than that near a neutral metallic slab, which leads to

a decrease of bulk work function. On the other hand, once the electron is liberated by 

photons, there will be an additional attraction between the electron and a remaining 

positive charge +e on the isolated sphere, which gives rise to an additional energy 
𝑒2

𝑟0
𝑛−1/3. As a result, the work function will increase by

3

8

𝑒2

𝑟0
𝑛−1/3. This is the so-called

conducting sphere droplet (CSD) model. The results are shown in Figure 2.9 along with a 

fitting line.  The IP has a linear dependence on n
-1/3

, in good agreement with theory.

Also, the bulk work function value of 3.88 eV extrapolated from the data is close to 4.11 

eV of a (110)-orientation plane from a slab calculation. Also, from this line, we see 

change of IP can be as much as 1.5 eV when cluster size is varied, which is on the same 

scale as IP of gold clusters [43]. We note that the disparity between the IP and the work 

function is significant when the cluster size is small, and this can be attributed to the 

electronic level shift of a finite system as discussed above. Due to this effect, the IP is 

larger than the work function for clusters of a finite size. In our tetrakaidecahedron and 

cuboid, the calculated IP is about 0.4 eV higher than the work function. When the cluster 

size gradually increases, the IP approaches the work function.  
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Figure 2.9 The calculated ionization potentials for five cuboids of different sizes. A 

fitting line is also plotted to show the linear relationship between atom 

number n
-1/3

 and ionization potential (IP). Intercept of the fitting line is

noted as the bulk work function W. 
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Chapter 3 Effect of oxygen vacancies and strain on the phonon 

spectrum of HfO2 thin films  

In this chapter, the effect of strain and oxygen deficiency on the Raman spectrum 

of monoclinic HfO2 is investigated theoretically using first-principle calculations. 1% in-

plane compressive strain applied to a and c axes is found to blue shift the phonon 

frequencies, while 1% tensile strain does the opposite. The simulations are compared to 

and good agreement is found with experimental results of Raman frequencies greater than 

110 cm
-1

 on 50 nm HfO2 thin films. Several Raman modes measured below 110 cm
-1

 and

previously assigned to HfO2 are found to be rotational modes of gases present in air 

ambient (nitrogen and oxygen). However, localized vibrational modes introduced by 

threefold-coordinated oxygen (O3) vacancies are identified at 96.4 cm
-1

 computationally.

These results are important for a deeper understanding of vibrational modes in HfO2, 

which has technological applications in transistors, and particularly in resistive random-

access memory (RRAM) whose operation relies on oxygen-deficient HfOx.  

Results have been published as: Lingyuan Gao, Eilam Yalon, Annabel R. Chew, 

Sanchit Deshmukh, Alberto Salleo, Eric Pop, and Alexander A. Demkov, J. Appl. Phys. 

121, 224101 (2017). For the experimental work, E.Y. measured the Raman spectra. 

A.R.C. performed X-ray diffraction measurements.  

3.1 INTRODUCTION 

Hafnium dioxide (HfO2) or hafnia is an important transition metal oxide that finds 

applications in information technology as a gate dielectric in field effect transistors  [44–

46], as a resistive switching material in memory devices  [47] , and in optical 

coatings  [48]. As such, it has been studied extensively both theoretically and 

experimentally  [49–62]. In particular, fundamental Raman frequencies of the HfO2 
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monoclinic phase have been previously reported  [50–54,56,57,60,63]. However, in 

electronic applications, thin films of HfO2 are typically sputtered or grown by atomic 

layer deposition (ALD) and are often subject to stoichiometric deviations and 

strain  [49,64–66]. Strain, induced by either thermal or lattice mismatch, may shift or 

even split Raman peaks  [67–70].
 
In bulk ceria, for example, lattice expansion causes a 

substantial softening of the B1u mode  [71]. In Li2O, when the volume is increased 

around the superionic transition point, the zone boundary transverse acoustic mode along 

[110] at the X point is found to be softened  [72,73]. On the other hand, oxygen 

vacancies, as one of the most common defects in the sample  [74,75], can also lead to 

shifts in phonon frequencies or even to the appearance of normally symmetry-forbidden 

first-order Raman peaks  [56,76,77]. In addition, Raman spectroscopy has been 

previously used to characterize impurities and phase in hafnia films under different 

annealing conditions [78–81]. Thus, it is of fundamental interest to investigate the effects 

of strain and oxygen vacancies on the phonon spectrum of hafnia. Furthermore, low 

wavenumber peaks in the range below 110 cm
-1

 were previously reported

experimentally  [52–54], but were not found computationally in stoichiometric 

unstrained monoclinic HfO2  [50,56–58].  

In this chapter we carry out first principles calculations and analysis of Raman 

spectra of hafnia under compressive and tensile strain, and in the presence of oxygen 

vacancies. In the case of strain we compare the results of calculations with experimental 

data obtained for HfO2 films deposited by sputtering on thin (50 nm) Au and Pt films on 

sapphire substrates. The low wavenumber peaks (below 110 cm
-1

) are carefully

examined. The chapter is organized as follows. The calculation and experimental 

methods are described in Section 3.2. The phonon spectrum of bulk monoclinic hafnia is 

discussed in Section 3.3. The influence of strain on the zone-center frequencies is 
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discussed in Section 3.4. We discuss the effect of oxygen vacancies in Section 3.5 and 

summarize our findings in Section 3.6. 

3.2 COMPUTATIONAL AND EXPERIMENTAL METHOD 

All calculations are carried out using the Vienna ab initio simulation package 

(VASP)  [30,31]. The exchange-correlation functional is approximated within the local 

density approximation (LDA) and projector-augmented-wave (PAW) pseudopotentials 

are used. The electronic configuration for Hf is 5𝑑2 6𝑠2 and 2𝑠2 2𝑝4 for O. The use 

of PAW pseudopotentials allows one to achieve a total energy convergence of 

10−8 eV/atom with a cutoff energy of 600 eV. An 8 × 8 × 8 Monkhorst k-point mesh is 

used for the Brillouin zone (BZ) integration for the monoclinic simulation cell. Full 

structural relaxation is performed until the Hellman-Feynman forces are less than 10
-4

 

eV/Å.  

We calculate the phonon dispersion within the harmonic approximation by using 

the “frozen phonon method.” Force constants in a 2 × 2 × 2 supercell are calculated 

with the Phonopy code  [82]. The phonopy code generates the structure according to 

crystal symmetry, which reduces the computational load significantly. The dynamical 

matrix is computed via the lattice Fourier transformation and frequencies across the BZ 

are obtained from the eigenvalues of the dynamical matrix.  

A neutral oxygen vacancy is simulated by removing one oxygen atom from the 

supercell and in our case, this corresponds to a vacancy concentration of 1.56%. Owing 

to the large size of the supercell, for the defect case, only the Γ-point frequencies are 

computed as this is sufficient to account for the Raman-active modes. 

Because the measured Raman signal of thin HfO2 films is very weak and often 

only the Raman spectrum of the substrate is detected, we used here a thin metal film to 
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block the substrate signal. In addition, this structure is technologically relevant for 

resistive random-access memory (RRAM) devices, where thin HfO2 is deposited on a 

metal electrode. HfO2 films were deposited by room temperature reactive sputtering from 

an Hf target in an Ar:O2 (7:3) plasma at 4 mT, with a forward RF power of 150 W, on 

thin (50 nm) Au and Pt films on sapphire substrates. The as-deposited 50 nm thick 

amorphous HfO2 film did not show any clear Raman features. After annealing at 600 ºC 

for 30 minutes in air the HfO2 partially crystallized to the monoclinic phase, which is 

confirmed by X-ray diffraction (XRD), and Raman features were observed. 

Measurements were obtained using a Horiba LabRAM HR with 532 nm and 633 nm 

lasers operated at 2.5 mW and 2 mW, respectively, at room temperature. Structural 

characterization was carried out using a PANalytical X’Pert PRO X-ray diffractometer 

equipped with a copper Kα source. The XRD measurement was carried out at a small 

grazing incidence (1
o
) to increase the path length of the probing X-ray beam, as well as to

minimize diffraction from the underlying substrate. 

3.3 PHONON SPECTRUM OF MONOCLINIC HAFNIA 

Bulk crystalline hafnia has three phases: the cubic structure at high temperature 

(space group 𝐹𝑚3𝑚 ), the tetragonal structure (space group 𝑃42/𝑛𝑚𝑐 ) and the 

monoclinic structure at low temperature (space group 𝑃21/𝑐). In this work we only 

consider the monoclinic structure. We list the optimized structural parameters of hafnia 

compared with experimental data in Table 3.1. Also, Hf cation is at the Wyckoff position 

4𝑒 (0.277, 0.042, 0.208), while threefold-coordinated O3 anion and fourfold-coordinated 

O4 anion are at 4𝑒 (0.073, 0.341, 0.337) and 4𝑒 (0.446, 0.759, 0.483), respectively. 

This agrees well with data reported previously  [50]. The theoretical volume is a little 
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smaller than the experimental value, as the LDA tends to overbind, resulting in a smaller 

lattice constant. Also, the calculation corresponds to zero temperature while experiment 

is done at room temperature. Note, however, that the generalized gradient approximation 

(GGA) often matches better with experimental lattice constants than LDA, but LDA 

gives a better description of phonons in hafnia  [50]. 

Table 3.1.Structural parameters of monoclinic HfO2. Th. = theoretical, Exp. = 

experimental. 

a (Å) b (Å) c (Å) β (deg) From 

5.029 5.132 5.183 99.48 Th. [57] 

5.106 5.165 5.281 99.35 Th. [50] 

5.116 5.172 5.295 99.18 Exp. [43] 

5.119 5.169 5.29 99.25 Exp. [44] 

5.117 5.172 5.284 99.37 Exp. [45] 

5.025 5.118 5.192 99.52 Present Theory 

In Figure 3.1(a) we show the phonon spectrum of monoclinic hafnia computed 

including only the short range contribution to the dynamical matrix (blue line). It has 

been shown that the long range influence on phonon spectra is not large so we only 

consider the short range  [57]. The BZ path of the calculation starts and ends at the Γ(0, 

0, 0) point, going through B(0, 0, 0.5), A(0.5, 0, 0.5), E(0.5, 0.5, 0.5) and Y(0.5, 0, 0) 

high symmetry points of the BZ. From group theoretical analysis, the zone-center modes 

can be decomposed as: 

𝛤 = 9𝐴𝑔 + 9𝐵𝑔⏟      
Raman

+ 8𝐴𝑢 + 7𝐵𝑢⏟      
IR

+ 𝐴𝑢 + 2𝐵𝑢⏟      
Acoustic

                                    (7.1)
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Figure 3.1 (a) Calculated phonon dispersion of monoclinic hafnia. Blue, black and red 

lines represent no strain, 1% compressive and tensile strain applied to a and 

c axes case, respectively. (b) Phonon density of states for no strain case. 

The phonon density of states is plotted as Figure 3.1(b). We can see a quasi-gap 

around 350 cm−1  which divides the spectrum into low frequency part and high

frequency part. As pointed out in Ref.  [57], low frequency modes involve 

predominantly metal atoms while high frequency modes are associated with movement of 

oxygen atoms. Among these low frequency modes, however, some are still anomalous, as 

along with hafnium, oxygen ions also exhibit large displacements. We illustrate the 

eigenvector corresponding to the lowest frequency Raman-active mode at 127 cm
-1

 in

Figure 3.2. In this mode the threefold-coordinated oxygen atoms (marked by red) show 

the most significant displacement, while displacements of hafnium atoms are only half of 

that. The fourfold-coordinated oxygen atoms (magenta colored) practically do not move. 
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Figure 3.2 Relative atomic displacements of the lowest Raman mode. Arrows denote the 

direction of the movement at each atom and the length is proportional to 

displacement amplitude. Monoclinic angle is between a and c axes. Bonds 

are also plotted to show different coordinations of O atom. 3-folded O atoms 

are marked by red and 4-folded O atoms are marked by magenta.  

In Table 3.2, we list the frequencies of the Raman-active modes obtained in our 

calculation along with two sets of previous experimental results. Agreement between the 

calculation and experiments is very good. 

Table 3.2.Calculated Raman frequencies (in cm
-1

) for monoclinic HfO2 and available

experimental data. Th. = theoretical, Exp. = experimental. 

𝐴𝑔 Th. [5

7] 

Th. [5

0] 

Exp

. [5

1] 

Exp. [6

0] 

Present 

Work 
𝐵𝑔 Th. 

 [57] 

Th. [5

0] 

Exp. 

 [51] 

Exp.

 [60] 

Present 

Theory 

1 133 128 112 113 127 1 136 131 133 133 135 

2 140 142 135 133 138 2 171 175 167 164 169 

3 153 152 150 149 153 3 246 250 243 242 250 

4 257 261 257 256 260 4 339 380 335 336 339 

5 361 326 322 323 352 5 421 424 397 398 414 
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6 410 423 381 382 397 6 537 533 522 520 516 

7 512 514 498 498 498 7 578 570 550 551 564 

8 601 608 581 577 581 8 663 667 642 640 642 

9 696 738 674 672 663 9 785 821 776 872 780 

3.4 INFLUENCE OF STRAIN 

In the monoclinic phase of hafnia, the three crystallographic axes are not 

orthogonal to each other. Here, we model the case when the out-of-plane direction of the 

film is along the b axis, and in-plane biaxial strain is applied to a and c axes. Strain is 

fixed to be 1% and both the tensile and compressive strains are considered. The lattice 

constants in the ac plane are changed by 1% of original value, while the monoclinic angle 

is fixed. We optimize the b lattice constant, letting the ions move freely until the ionic 

forces are less than 10
-4

 eV/Å. The corresponding change of b lattice constant is

0.75±0.01%, which means the Poisson ratio is 0.75. From the elastic energy theory, with 

a biaxial strain applied to a and c axes, Poisson ratio 𝜈 = −
𝜀𝑏

𝜀𝑎
 could be expressed as

𝐶12+𝐶23

𝐶22
, where 𝐶 stands for elastic constants. From our calculation, 𝐶12, 𝐶23 and 𝐶22 

are 489 GPa, 180 GPa and 201 Gpa, respectively. Following this, Poisson ratio ν is 

calculated as 0.78, very close to what we get from relaxation. For comparison, by taking 

elastic constants from  [86,87], the Poisson ratio ν is calculated to be 0.82 and 0.88, 

respectively. The phonon spectrum is then calculated as previously described. 

The effect of strain on the phonon spectrum is shown in Figure 3.1(a). The 

average of frequencies of three acoustic modes at the  point is 0.06 cm
-1

, we use this as

an error estimate of the calculation. The main conclusion is that 1% strain applied to a 

and c axes does not significantly change the phonon spectrum. Compressive strain shifts 

all modes up in frequency while tensile strain does exactly the opposite. This is an 

Table 3.2 continued 
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expected result considering the overall shape of interatomic potentials. We list the 

frequencies of the main Raman active modes in Table 3.3. 

Table 3.3. Calculated Raman frequencies of monoclinic hafnia (in cm-1) in four different cases: 

without strain, with 1% in-plane biaxial compressive and tensile strain applied to a 

and c axes, and strain applied on sample (sample strain). Calculation results are 

compared with eleven identified Raman peaks in experiment. 

mode no 

strain 

compressive 

strain 

tensile 

strain 

sample 

strain 

measured % Error 

Ag1 127 137 111 137 

Ag2 138 147 136 144 

Ag3 153 162 148 158 150 5.6 

Ag4 260 268 257 267 258 3.4 

Ag5 352 364 337 363 

Ag6 397 405 388 405 383 5.4 

Ag7 498 499 495 500 498 0.4 

Ag8 581 580 582 588 578 1.9 

Ag9 663 666 659 668 667 0.1 

Bg1 135 138 132 139 135 2.9 

Bg2 169 172 167 171 

Bg3 250 251 248 251 240 4.4 

Bg4 339 343 333 344 326 5.2 

Bg5 414 419 402 419 399 4.8 

Bg6 516 514 509 515 

Bg7 564 574 553 575 

Bg8 642 652 634 655 638 2.6 

Bg9 780 778 779 783 

. 

Experimentally, the film is crystallized at 600 ℃ first and then cooled down to 

room temperature. XRD determines the HfO2 thin film strain based on the known crystal 

structure. Since the metallic substrate diffracts at larger 2θ, we focus on the diffraction 

peaks at lower angles, which can be unambiguously attributed to HfO2. The multiple 

peaks observed from the out-of-plane XRD data (Figure 3.3), correspond well to the 

known monoclinic phase of HfO2. No texture is observed as the relative intensities of the 
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peaks observed in the measurement correspond well to the powder diffraction [88], 

demonstrating that the film is polycrystalline in nature. The calculated lattice constants a, 

b and c for HfO2 deposited on Pt are measured to be 5.1±0.1 Å, 5.19±0.06 Å and 

5.22±0.05 Å respectively, with a tilt angle β of 99.0° ±0.2°. Compared with the 

experimental bulk values in Table 3.1, a and c axes are under compressive strain while 

the b axis is strained slightly. This is not unexpected as the material is deposited 

amorphous and becomes polycrystalline upon annealing. 
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Figure 3.3 X-ray diffraction scan of sputtered hafnia on a platinum substrate, measured at 

a grazing incidence (1
o
). The scan demonstrates that polycrystalline

monoclinic hafnia is formed after annealing. 

Figure 3.4(a) displays the Raman spectra of the HfO2 deposited on Pt, measured 

using a 532 nm laser. The Lorentzian fit to the HfO2 on Pt spectrum is also shown in 

Figure 3.4(a), offset vertically for clarity. Measurements using 633 nm laser were 

showing the same spectra. In order to have a fair comparison, we strain the simulation 
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cell the same way as is measured experimentally, and compute Raman frequencies, which 

are listed in Table 3.3. The result is very similar to that obtained for the compressively 

strained material. This is expected, as both a and c axes are under compressive strain. 

Eleven out of the eighteen calculated Raman modes are identified in the measured 

spectrum. Fitted peak positions are summarized in Table 3.3 and compared against the 

calculated peaks for the case of a cell having the strain measured experimentally. We 

note that calculations were carried out at zero temperature, whereas the measurement was 

done at room temperature. No measureable peak shifts were observed following an 

additional annealing step in Ar ambient at 600 ºC for 2 hours, suggesting that the main 

Raman modes in HfO2 are insensitive to minor changes in the film stoichiometry, unlike 

TaOx  [89] and SrTiO3  [76]. Previous studies have shown that annealing SrTiO3 in 

reducing ambient results in the appearance of forbidden first order Raman peaks and 

features associated with oxygen vacancies [33]. Similarly, the Raman spectra of sputtered 

TaOx films were showing clear dependence on x by varying the oxygen pressure during 

the sputtering process  [89]. 
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Figure 3.4 Experimental Raman spectra of HfO2. (a) Bottom: measured Raman spectra of 

50 nm HfO2 on Pt using 532 nm laser (blue) and top: Lorentzian fit (green – 

for each peak, black – sum over all Lorentzians). Spectra are vertically 

offset for clarity. The HfO2 was heated to 600 
o
C, then cooled to room

temperature, forming a polycrystalline monoclinic phase. (See Figure 3.3) 

(b) Low wavenumber range: measured HfO2 (blue, same as in a) vs. control 

experiment without sample and without objective in the laser path (red) 

showing similar features below 120 cm
-1

. (c) Control measurement of the

low wavenumber Raman spectrum (same as red curve in (b), measured data 

in black solid line) compared with rotational Raman modes of N2 (red 

dashed) and O2 (blue dash-dot). The low wavenumber modes at 59, 83, and 

107 cm
-1

 are clearly observed in the Raman spectra of the thin HfO2 sample

(marked “ambient peaks” in (a)) and are of comparable intensity due to the 

weak Raman response of the HfO2 and the enhanced Raman signal of the 

rotational modes, where N2 and O2 modes overlap. 
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Interestingly, some features appear in the measured Raman spectra of our HfO2 

films below 110 cm
-1

. In particular, Raman modes at ~59 cm
-1

 ~83 cm
-1

 and ~107 cm
-1

 

consistently appear across different measurements on different substrates. The ~82 cm
-1

 

Raman line was also reported by Quintard et al.  [52] who interpreted this line as 

fundamental, even though bulk unstrained HfO2 does not have any modes at that low a 

wavenumber. Low wavenumber peak in the range 105-108 cm
-1

 was also reported by 

Refs.  [17–19].  

According to our theoretical results, the strain found in our sample is not capable 

of causing a frequency downshift of that magnitude. We further investigated 

experimentally the weak Raman lines below 110 cm
-1

as shown in Figure 3.4(b,c). We 

carried out a control experiment at high laser power (20 mW) and long accumulation (15 

min.) without sample and objective in the laser path. We found the same low 

wavenumber peaks, namely at ~59, 83 and 107 cm
-1

 and few other smaller features 

[Figure 3.4(b)]. We attribute these low wavenumber modes to rotational Raman modes of 

the oxygen and nitrogen molecules present in air ambient as discussed below. We note 

that the presence of these “ambient peaks” does not exclude the possibility of having 

fundamental HfO2 modes in that range (as reported in [17,18]), however measurements 

carried out in air ambient cannot detect such modes. 

Figure 3.4(c) shows very good agreement between the low wavenumber features 

found in our control measurement and reported rotational Raman modes of N2 and O2 

from literature [38,39]. In particular, the modes at ~59 cm
-1

 ~83 cm
-1

 and ~107 cm
-1

 are 

enhanced due to overlap between the O2 and N2 modes. It is evident from Figure 3.4(a) 

that the same peaks (marked as “ambient peaks”) are of comparable intensity to the 

fundamental HfO2 peaks. This is an important note to any Raman measurement carried 

out in air of a material having low absorption and crystallinity, such that the Raman 
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signal of the ambient may become comparable to the signal of the sample. Here, the 

periodic features at low wavenumbers (Δω ≈ 24 cm
-1

 for the 3 peaks outlined above) are

a hallmark of rotational Raman modes. The vibrational Raman modes of these gases 

present in air are located at much higher wavenumbers, but their rotational modes are 

spectrally located at the low wavenumber range measured here. Figure 3.4(c) shows that 

the specific modes which are comparable to the HfO2 signal correspond to overlap 

between N2 and O2 modes, where the N2 modes have a periodicity of ~8 cm
-1

 and the O2

have a periodicity of ~12 cm
-1

 resulting in the enhanced Raman features with a

periodicity of ~ 24 cm
-1

.

3.5 THE ROLE OF OXYGEN VACANCIES 

Thin HfO2 films are often non-stoichiometric, and the most prevalent defect is 

oxygen vacancies. In monoclinic hafnia, there are two non-equivalent oxygen sites: (i) 

threefold-coordinated oxygen O3, bonded with the nearest-neighbor Hf atoms in an 

almost planar configuration; and (ii) fourfold-coordinated oxygen O4, bonded with its Hf 

neighbors in a distorted tetrahedral configuration. This means that one can have two 

different types of oxygen vacancies  [40,41]. Also, since the formation energies for 

neutral O3 and O4 vacancies are very close (9.36 eV and 9.34 eV, respectively  [40]), it is 

worth investigating the effect of both vacancy types on the phonon spectrum. For ease of 

comparison, we also compute zone-center frequencies in pure hafnia, in the same 

2 × 2 × 2 supercell. For pure hafnia, there are 288 modes in a 96 atom cell. However, all 

Γ-point frequencies are related to those computed for the primitive cell by a 

corresponding reciprocal lattice vector. As we double the lattice parameters, the new BZ 

becomes twice as small and the high symmetry points of the primitive are translated back 

to the Γ-point [Figure 3.5(a)]. Therefore, the zone-center frequencies of this calculation 
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are the frequencies from the eight high symmetry points of the primitive cell: (0, 0, 0), 

(0.5, 0, 0), (0, 0.5, 0), (0, 0, 0.5), (0.5, 0.5, 0), (0, 0.5, 0.5), (0.5, 0, 0.5), (0.5, 0.5, 0.5). 

We illustrate how the hafnia phonon spectrum “folds” along the direction from the high 

symmetry point 𝚪 to E in Figure 3.5(b) (up to 200 cm−1). Blue and red lines represent

the phonon spectrum in the primitive cell and in the supercell, respectively. The green 

arrows show how the original spectrum is translated back to the new first BZ. 

Figure 3.5 (a) The first Brillouin zone (FBZ) of the conventional monoclinic (MCL) 

lattice. Under this convention, (0.5, 0, 0), (0, 0.5, 0), (0, 0, 0.5), (0.5, 0.5, 0), 

(0, 0.5, 0.5), (0.5, 0, 0.5), (0.5, 0.5, 0.5) are the Z, X, Y, A, C, D, E points in 

the figure. Black lines represent the FBZ of the primitive cell while the red 

lines denote the FBZ of the doubled supercell. The primitive cell and 

supercell reciprocal lattice vectors 𝒃𝒊 and 𝒃𝒊′are also shown with black 

and red arrows, respectively, and 𝒃𝒊′=
𝟏

𝟐
𝒃𝒊. We can see the high symmetry 

points in the primitive FBZ can be translated back to the Gamma point by 

purple vectors, which is the combination of 𝑏𝑖′. (b) The phonon spectrum 

folding along the direction from Γ to E. 

To establish whether or not a mode is introduced by a vacancy, we compare 

frequencies computed for both the vacancy-containing and defect-free cells. For a 

specific frequency in the spectrum of a cell with a vacancy, if the corresponding mode 
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with a similar frequency (±2 cm
-1

) can be found in the vacancy-free spectrum, then this

mode is thought to be a bulk mode and the small shift in frequency is the result of 

perturbation introduced by the vacancy. However, if no related bulk modes are found and 

there is a large gap (10 cm
-1

 or larger) between the frequencies of two cells, then the

mode is directly related to the vacancy. We focus on the low frequency modes first 

(which are metal-dominated). All frequencies below 127 cm
-1

 (the first Raman mode of

the primitive cell) for O3 and O4 vacancy cells are listed in Table 3.4. The defect-free 

calculation results are also included for comparison. We can see that in most cases, the 

differences between the frequencies calculated for these cells are very small (±2 cm
-1

).

The majority of the modes are only slightly perturbed by the defect. However, for the cell 

with an O3 vacancy, a very low frequency mode (see Table 3.4) is found at 96.4 cm
-1

. It is

clearly distinct from the nearby bulk modes at 93.8 cm
-1

 and 103.2 cm
-1

. Note that only

the short range effects are captured, as we do not include the long range correction to the 

dynamical matrix. This however, is not very rigorous and to obtain the quantitative 

description and we use the following approach. 

Table 3.4. Zone-centered frequencies (in cm
-1

) below 127 cm
-1

 for pure hafnia supercell case, O3

and O4 vacancy cases. The corresponding k-points in the primitive cell are also 

listed.  

k-points in 

primitive 

cell 

defect-

free 

supercell 

case 

O3 
oxygen 

vacancy 

O4 
oxygen 

vacancy 

k-points in 

primitive 

cell 

defect-

free 

supercell 

case 

O3 
oxygen 

vacancy 

O4 
oxygen 

vacancy 

(0.5,0,0) 83.0 81.3 82.6 (0.5,0,0.5) 107.1 106.3 106.3 

(0,0,0.5) 84.5 83.2 82.9 (0.5,0,0.5) 107.1 108.2 106.8 

(0,0,0.5) 84.5 83.9 84.1 (0,0.5,0) 111.2 110.4 109.2 

(0.5,0.5,0.

5) 92.3 90.2 90.2 (0,0.5,0) 111.2 112.4 110.9 

(0.5,0.5,0.

5) 92.3 91.5 90.6 (0.5,0,0) 112.9 112.7 111.3 

(0.5,0.5,0) 93.5 92.4 92.3 (0.5,0.5,0) 113.8 113.3 112.6 
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(0.5,0.5,0) 93.5 92.8 92.9 (0.5,0.5,0) 113.8 114.3 113.1 

(0,0.5,0) 93.8 93.1 93.3 (0.5,0,0) 114.7 114.8 114.0 

(0,0.5,0) 93.8 93.6 93.8 

(0.5,0.5,0.

5) 115.8 115.3 115.1 

(0,0,0.5) 103.2 101.2 101.7 

(0.5,0.5,0.

5) 115.8 117.1 115.7 

(0,0,0.5) 103.2 102.9 103.1 

(0.5,0.5,0.

5) 120.8 119.7 119.3 

(0.5,0,0) 105.7 105.2 104.3 

(0.5,0.5,0.

5) 120.8 120.9 120.5 

(0,0.5,0.5) 106.3 105.9 105.0 (0.5,0,0.5) 122.5 121.5 121.1 

(0,0.5,0.5) 106.3 106.3 105.4 (0.5,0,0.5) 122.5 123.5 122.0 

(0.5,0,0) 83.0 81.3 82.6 (0.5,0,0.5) 107.1 106.3 106.3 
 

 

A more accurate way to identify the vacancy-related modes is by calculating the 

inner product between the eigenvectors of a vacancy-containing cell with those of a 

defect-free cell. We use Φα(𝑞), where 𝛼 = 1,2…288 to represent 288 phonon modes 

at the Γ point of a 96-atom, defect-free cell. Every eigenvector has 288 components 

𝑢𝛼
𝑖 (𝑞) corresponding to 3xN degrees of freedom. Similarly, in a vacancy cell, 285 

phonon modes at the Γ point are recorded as Φα′(𝑞), where 𝛼 = 1, 2…285 and they 

have 285 components 𝑢𝛼
𝑖 ′(𝑞). Since the eigenvector of a vacancy cell has 3 fewer 

components, we set them to zero. We calculate the inner product between Φα′(𝑞) and 

Φβ(𝑞) and define a distribution function 𝑓𝛼(𝛽) = ⟨Φα′(𝑞)|Φβ(𝑞)⟩
2
 for Φα′(𝑞). If the 

distribution is close to a delta function 𝛿𝛼𝛽, that indicates Φα′(𝑞) is similar to a bulk-

like mode. If, on the other hand, the distribution is broad, that manifests the mode could 

not be simply represented by a single, bulk-like mode but is related to a vacancy. 

Overall ∑ 𝑓𝛼(𝛽) = 1
288
𝛽=1 . In Figure 3.6(a) and Figure 3.6(b), we use 3D plots to show 

𝑓𝛼(𝛽) for O3 and O4 vacancy cells, respectively. We find that for the O4-based vacancy 

case, most of vacancy-related modes appear in the high frequency region of the spectrum, 

while for the O3-based vacancy case, the modes are distributed more evenly. We 

Table 3.4 continued 
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calculate 𝑔𝛼 = max𝛽(𝑓𝛼(𝛽)
−1) for all Φα′(𝑞) in both O3 and O4 vacancy cells as

shown in Figure 3.6(c) and 6(d). A large 𝑔𝛼 corresponds to a broad distribution while a 

small 𝑔𝛼(~1) corresponds to a narrow distribution. We use 4 as a cutoff value for 𝑔𝛼. 

Combing these two methods, all vacancy-related frequencies are listed in Table V and 

Table VI for O3 and O4 vacancies, respectively.  

Figure 3.6 (a) Distribution of square of the inner product 𝑓𝛼(𝛽) in O3 vacancy cell. (b)

Distribution of square of the inner product 𝑓𝛼(𝛽) in O4 vacancy cell. (c) 𝑔𝛼
for vacancy-related modes in O3 vacancy cell. (d) 𝑔𝛼 for vacancy-related 

modes in O4 vacancy cell. 
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To characterize the degree of localization of the vacancy-related modes 

quantitatively, we calculate the inverse participation ratio (IPR) for all the modes listed in 

Table 3.5 and Table 3.6. The IPR is defined as 𝑃𝑘
−1 = ∑ (∑ 𝑢𝑖𝛼,𝑘

23
𝛼=1 )2𝑁  (note that the

eigenvector is normalized), where N is the total number of atoms and α refers to three 

spatial directions  [42]. For the phonon mode where all atoms contribute equally (have 

the same amplitude), IPR is 1/N, and in our case it is around 0.01. If there are only m 

atoms that vibrate in the mode, then IPR is 1/m. For comparison, we compute IPR values 

-point modes in a defect-free cell. For most of them the IPR is less than 0.03 and 

the maximum value is less than 0.05. We use this value as a cutoff for identifying 

localized modes. From Table 3.5 and Table 3.6, we find that modes at 96.4 cm
-1

, 411.6

cm
-1

, 680.4 cm
-1

,
 
751.2 cm

-1
 and 788.2 cm

-1
 in the O3 vacancy cell and 476.3 cm

-1
, 755.6

cm
-1

 in the O4 vacancy cell have large IPR values, which indicates that a significant

vibration is only around a few atoms for these modes.  

Table 3.6. Frequencies (in cm
-1

) of vacancy-related modes in O4 vacancy cell and

corresponding inverse participation ratio (IPR) values. Modes with large 

IPR values are highlighted. 

frequency IPR frequency IPR 

178.2 0.038 647.2 0.027 

377.6 0.042 647.8 0.024 

417.3 0.032 684.6 0.022 

476.3 0.06 706.4 0.036 

499.2 0.029 731.3 0.031 

519.8 0.031 733.0 0.036 

533.0 0.028 737.0 0.043 

542.4 0.032 755.6 0.051 

553.9 0.029 758.8 0.044 

634.6 0.033 790.2 0.045 
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We carefully checked atomic movements of each vacancy-related, high-IPR-value 

mode and concluded that the 96.4 cm
-1

 mode in the O3 vacancy cell and 755.6 cm
-1

 mode

in the O4 vacancy cell are localized defect modes, with atomic displacements localized 

around the defect site. In Figure 3.7(a) and (b), using bar plots we show relative 

displacement amplitudes in real space for each atom in these two modes 

(
𝟏

√𝒎𝒊
√𝑢𝑖,𝑥2 + 𝑢𝑖,𝑦2 + 𝑢𝑖,𝑧2  where mi is the atomic mass and ui is the entry in the

eigenvector corresponding to the i-th atom of the basis, with the eigenvector normalized 

to unity). For the 96.4 cm
-1 

mode, one Hf atom and one O atom move more significantly

than others, and we mark these two as black in Figure 3.7(c). We note that the Hf atom is 

directly bonded to the missing 3-fold oxygen and the other O atom is also very close to a 

vacancy (2.8 Å). For the 755.6 cm
-1

 mode, as this is a high frequency mode, all 5 atoms

that move most significantly are oxygens.  In Figure 3.7(d), except for the blue O atom, 

which is 4.5 Å from the vacancy site, all of other 4 black O atoms are close to the 

vacancy site (distances to vacancy are 2.5 Å, 2.9 Å, 2.9 Å and 3.2 Å). 
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Figure 3.7 (a) Bar plot of the mode. The X axis represents atomic number in the cell and 

first 32 atoms are Hf atoms, while other 63 atoms are O atoms. Colors of 

different atoms are selected according to Figure 3.7(c). (b) Bar plot of the 

mode. Colors of different atoms are selected according to Figure 3.7(d). (c) 

The simulation cell containing an O3 vacancy. Red balls represent oxygen 

atoms and cyan balls represent Hf atoms. The O3 vacancy is created by 

removing the grey atom. Atoms that have significant displacements in 96.4 

cm-1 mode are highlighted with black. (d) The simulation cell containing an 

O4 vacancy. The O4 vacancy is created by removing the grey atom. Atoms 

that have significant displacements in 755.6 cm-1 mode are highlighted. 

3.6 CONCLUSION 

Using density functional theory, we investigated the phonon spectra of HfO2 in 

the presence of oxygen vacancies and strain, comparing it against experimental Raman 
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measurements of thin HfO2 films. The measured Raman spectra show low wavenumbers 

features (below 110 cm
-1

) which we assign to rotational Raman modes of the gases 

present in air ambient rather than the HfO2 film. It is found that a 1% in-plane tensile 

strain to a and c axes can result in down-shift while a 1% compressive strain can cause 

the up-shift of the Raman active modes. For the threefold-coordinated oxygen vacancy 

case, a low frequency metal-dominated 96.4 cm
-1

 mode, which is 30 cm
-1

 lower than the 

first Raman active mode of stoichiometric hafnia, is predicted. For the four-coordinated 

oxygen vacancy case, a high frequency, oxygen-dominated mode at 755.6 cm
-1

 is 

predicted. We reveal these two modes to be highly localized by calculating the inverse 

participation ratio (IPR) and by analyzing atomic displacements in real space, verifying 

that they could be introduced by oxygen vacancies. 
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Chapter 4 Ab-initio study of spin-polarized two-dimensional t2g electron 

gas at EuO/ SrTiO3- interface 

In this chapter, using first-principles calculations we predict the existence of a 

spin-polarized two-dimensional electron gas at the interface of a ferromagnetic insulator 

EuO and oxygen-deficient SrTiO3. The carriers are generated by oxygen vacancies in 

SrTiO3 near the interface and have predominantly Ti-t2g orbital character. At the 

interface, the split-off dxy-derived conduction band of SrTiO3 is fully spin-polarized and 

the in-gap vacancy-induced state, found below the conduction band edge, is aligned 

ferromagnetically with EuO. The calculations suggest a possible mechanism for 

generating spin-polarized 2DEG for spintronic applications. Results have been published 

as Lingyuan Gao, Alexander A. Demkov, Phys. Rev. B. 97, 125305 (2018). 

4.1 INTRODUCTION 

With a rapidly growing interest in transition metal oxides, perovskite SrTiO3 

(STO) stands out as a substrate of choice in oxide epitaxy, and for the important role it 

plays among the oxide heterojunctions and interfaces. The best known example is 

arguably the LaAlO3/SrTiO3 interface. Though comprised of two wide-band-gap 

insulators it shows a two-dimensional electron gas (2DEG)  [92,93] that exhibits a host 

of intriguing phenomena, including magnetism  [94] and superconductivity [95], as well 

as their coexistence [96,97]. After a decade-long research effort, the mechanism behind 

the 2DEG formation at this interface is still under debate. The “intrinsic” one (the so-

called “polar catastrophe”  [98]) refers to electron transfer from the polar oxide (LaAlO3) 

surface to the interface. While the “extrinsic” mechanism points to oxygen 

vacancies  [99,100] that are one of the most common doping defects during the film 

growth in ultra-high vacuum and to interface cation exchange  [101–103]. The purely 
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vacancy-related 2DEG has been observed at the interface of STO and 𝛾 -

Al2O3  [104,105]. And 2DEG is also observed at the bare STO (001) surface, where it is 

attributed to oxygen vacancies  [106,107]. Interestingly, in this case, along with the 

2DEG, an in-gap state is observed 1.3 eV below the Fermi level by an angle-integrated 

photoemission measurement  [107]. On the other hand, an in-gap level 2.7 eV above the 

valence band edge is observed for the SrO-terminated surface with scanning tunneling 

spectroscopy  [108]. The controversial role of oxygen vacancies in STO has drawn much 

attention and has been investigated using density functional theory (DFT)  [109–114]. 

Recently, the Anderson impurity model  [115] and DFT plus dynamical-mean field 

theory (DMFT)  [116] applied to an Ov reached qualitative agreement with each other 

and experiment, suggesting that itinerant t2g–derived states do coexist with a localized in-

gap eg–derived state in bulk oxygen-deficient SrTiO3. 

EuO is a ferromagnetic semiconductor with the Curie temperature Tc of 69 

K  [117]. The large magnetic moment of 7 μB on Eu ions originates from the half-filled 

4f states and causes a large spin-split of the conduction 5d band of 0.6 eV  [118]. Spin-

polarized 2DEG in the Eu 5d band has been predicted at the LaAlO3/EuO 

interface  [119,120]. Due to this spin polarization, EuO has potential applications in 

spin-filter tunneling junctions  [121,122]. Theoretically, EuO has been proposed to 

induce ferromagnetic ordering in graphene and transition-metal dichalcogenide 

monolayers by the proximity effect that could open a 36 meV exchange-splitting gap in 

graphene, and lift the valley degeneracy and create a giant valley splitting (over 300 

meV) in MoTe2  [123,124]. Recent reports discuss successful growth of graphene on 

EuO  [125,126], making this an intriguing possibility.  

Posadas et al., have discussed the ability of many metals to scavenge oxygen from 

STO at high temperatures [127]. Eu has been demonstrated to form epitaxial EuO layers 



62 

on STO when deposited in UHV at 300ºC, leaving an oxygen deficient layer of STO 

below the interface. This opens an intriguing possibility. In this chapter, using first-

principles theory at the DFT+U level, we propose an alternative approach to creating 

spin-polarized 2DEG at the interface of oxygen-deficient STO and EuO. The carriers are 

-

Al2O3/STO interface  [104,105] rather than by the polar field in the case of LaAlO3 [23]. 

Also, unlike the previous work, here the carriers would reside not in the Eu 5d states but 

mostly in Ti-derived t2g states of STO, and polarization is induced via a proximity effect 

due to EuO. An eg in-gap Ov-induced state found below the conduction band edge is 

singly occupied and aligned ferromagnetically with Eu.  

4.2 COMPUTATIONAL METHOD 

We perform DFT calculations within the generalized gradient approximation 

(GGA)  [22] and projected augmented wave pseudopotentials  [28], using Vienna Ab-

Initio Simulation Package  [31]. For Sr, Ti, Eu and O, 4s
2
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 are included, respectively. To properly describe the Eu 4f orbitals, the

GGA+U approach  [23,24] is employed with an empirical value of Uf = 5.0 eV. We use a 

17-electron configuration for Eu (4f orbitals are not frozen in the core). The calculated 

EuO lattice constant of 5.164 Å agrees well with the experimental value of 5.144 Å. To 

include electron correlation in SrTiO3-, a combination of Ud = 5.0 eV and Jd = 0.64 eV is 

used for the Ti 3d orbitals  [128]. The calculated bulk lattice constant of STO is 3.948 Å. 

This overestimates slightly the experiment value of 3.905 Å as typical for GGA. The 

calculated 2.4 eV band gap is still smaller than the experimental value of 3.2 eV; 

nevertheless, these parameters provide a reasonable description of an oxygen vacancy in 
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STO  [109–111,129,130]. As will be discussed later, the U value for Eu does not affect 

the present results significantly, while that for Ti indeed requires a careful consideration. 

To model the epitaxial SrTiO3-/EuO (001) structure, we employ periodically repeated 

symmetric slabs (EuO)3/TiO2-(SrO-TiO2)6/(EuO)3 separated by a thick vacuum region (in 

access of 20Å). As for the in-plane geometry, the rock salt EuO cell is rotated by 45° to 

match the perovskite that is understood as being a substrate. This results in an 8.5% 

tensile strain in EuO. In previous reports, it has been suggested that a tensile strain may 

induce an in-plane ferroelectricity in EuO  [131,132]. We note 8.5% tensile strain of the 

EuO thin film is quite large. However, we have some experimental evidence showing that 

despite high strain, the EuO/STO heterostructure is stable. As shown in the high-angle 

annular-dark-field image in Figure 4.1, the bottom part of the image is STO and the top is 

rock salt EuO. The film is epitaxial at least for a few layers. EELS mapping (Ti L-edge 

analysis) reveals oxygen defects (vacancies) in a few STO layers close to the interface. 

We just want to assure the reviewer that this is not an entirely frivolous calculation. The 

reader interested in the effects of strain in oxide epitaxy is referred to an excellent review 

by Schlom et al.  [133]. However, as it is beyond the intended scope of this work, we 

preserve the in-plane symmetry and only allow oxygen relaxation along the z direction, 

normal to the interface. To consider the role of oxygen vacancies in STO, we employ a 

2 × 2 STO supercell (Figure 4.2(b)), where a single vacancy is created. We use 600 eV 

as the plane-wave cutoff energy and sample the Brillouin zone with 4 × 4 × 1 

Monkhorst-Pack k-point grids  [29]. The entire structure is relaxed until the residual 

force is smaller than 0.02 eV/Å. 
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Figure 4.1 High-angle annular dark-field scanning transmission electron microscopy 

[100] projection image of the EuO/STO interface. 

Figure 4.2 The simulation cell of (EuO)3/TiO2-(SrO-TiO2)6/(EuO)3 heterostructure. (a) 

Top view of two different types of interfaces: Eu on top of a hollow site in a 

TiO2 plane (top-H) and on top of an oxygen in a TiO2 plane (top-O); (b) 

2 × 2 supercell with a single vacancy at the sub-interface SrO plane. Only 

half of the cell is presented due to mirror symmetry. The oxygen vacancy 

site is marked in black. 
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As shown in Figure 4.2(a), there are two obvious possible epitaxial interfaces 

between EuO and SrTiO3: (1) Eu is above a hollow site in the TiO2 plane as a 

continuation of the Sr sub-lattice (top-H) and (2) Eu is above oxygen in the TiO2 plane to 

maintain the Eu-O chain (top-O). As the number of atoms needed to model these 

interfaces is the same for both types, we can simply compare their total energies in order 

to decide, which one is more stable. We find the top-H interface to be more stable by 

4886 mJ/m
2
, and in the rest of the paper we focus on this structure. An oxygen vacancy

can be created in the sub-interface SrO plane as shown in Figure 4.2(b). The vacancy 

formation energy is estimated to be 5.63 eV, close to 5.66 eV calculated for a stand-alone 

2 × 2 × 4 SrTiO3 supercell. If a vacancy is created in the interfacial TiO2 plane, the 

formation energy is 6.37 eV. This suggests that EuO layers have a small influence on the 

formation of an oxygen vacancy in SrTiO3. However, the presence of metallic Eu layer 

would lower the formation energy of a vacancy [127,134]. 

4.3 ELECTRONIC STRUCTURE AND DISCUSSION 

We start our discussion with the (EuO)3/TiO2-(SrO-TiO2)6/(EuO)3 heterostructure 

(top-H) without a vacancy. Figures 4.3(a) and (b) show the density of states (DOS) 

projected on specific atoms for each layer of this heterostructure. Owing to a mirror-

symmetry of the cell, the results for one half of the simulation cell are presented. The 

system is insulating as expected, since no carriers are introduced. In the EuO layers, the 

majority-spin Eu 4f states seen right below the Fermi level (there is a weak hybridization 

with the oxygen p states). This band becomes evanescent in the STO region across the 

interface. It decays into the STO band gap and disappears at the second TiO2 layer, 6 Å 

away from the interface. Also, a EuO surface state right above the top of the oxygen-
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derived valence band is clearly seen for both spin channels. This state decays slowly and 

is even recognized at the interfacial layer due to a modest thickness of the EuO region in 

our simulation. The minority spin empty Eu 4f states are much higher in energy, beyond 

the energy window in Figure 4.3. On the other hand, the EuO conduction band edge is 

composed mainly of the spin-up Eu 5d states, and demonstrates the spin-splitting of about 

0.6 eV, similar to that in bulk ferromagnetic EuO  [119]. In STO, the valence band top is 

oxygen-dominated and is 1.7 eV below the Fermi level (this suggests a 1.7 eV valence 

band offset between the two oxides). The STO conduction band bottom is 0.6 eV above 

the Fermi level. The corresponding theoretical band gaps of STO and EuO are 2.3 eV and 

0.6 eV, respectively. 
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Figure 4.3 Density of states (DOS) projected on a specific atom for each layer in top-H 

heterostructure without and with a vacancy.  Only the results for the upper 

half cell are shown due to symmetry. Eu, O, Ti, Sr states are marked by 

magenta, red, dark blue and green, respectively. EuO surface states are 

indicated with the square. (a) and (c) panels correspond to the spin-up while 

(b) and (d) correspond to spin-down components, respectively. 
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We now introduce an oxygen vacancy in the sub-interface SrO plane, as shown in 

Figures 4.3(c) and (d), and the system becomes metallic. In EuO, the valence band top is 

shifted down to -0.7 eV relative to the Fermi level and the conduction band bottom is also 

0.1 eV below the Fermi level. In STO, the valence band top is shifted down in energy to -

2.5 eV. At the interface, the Ti-derived conduction band bottom is at -0.3 eV while in the 

other three Ti layers, the conduction band edge is at -0.2 eV (all energies are with respect 

to the Fermi level). We also find that a localized in-gap state is created at the vacancy 

position in the sub-interface SrO layer. It resides on Ti atoms adjacent to the vacancy site 

(the interface TiO2 layer and TiO2 layer right below the vacancy). One electron is trapped 

in this in-gap state. As has been discussed by Lin and Demkov, in bulk STO, the 

vacancy-induced localized state can trap at most one electron, while the second electron 

occupies the conduction band due to electron-electron repulsion  [115]. Also, Hou et al. 

discussed a similar scenario  [111]. The result has also been reproduced by Jeschke et al. 

using DFT+U  [130], however their calculation was restricted to a nonmagnetic case and 

required multiple vacancies to be arranged in a specific way. Interestingly, in our case, 

the in-gap state appears only in the spin-up channel, and is aligned ferromagnetically with 

the Eu ions above the interface. This in-gap state decays quickly into both the STO and 

EuO regions on both sides of the interface. In EuO, the evanescent states can be seen two 

layers away from interface. The decay length is estimated as 7.8 Å and 9.3 Å for SrTiO3 

and EuO, respectively. 

The orbital decomposition of the Ti d states for each STO layer is shown in 

Figure 4.4(a). The in-gap vacancy state has mainly a 𝑑3𝑧2−𝑟2 orbital character, mixed

with the Ti 4pz and s orbitals due to lifting of the local cubic symmetry caused by the 

vacancy [135]. This increases the spatial extent of Ti orbitals sufficiently far to introduce 

coupling between the Ti ions adjacent to the vacancy in layers 3 and 4 (interface). At the 
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interface, the dxy state is shifted down in energy from the other t2g states (dxz/dyz) and is 

the only one occupied, while in the bulk-like STO region (layer 1), the dxz/dyz states tend 

to be occupied similarly to dxy. This is similar to the LaAlO3/SrTiO3 system and has been 

attributed to the symmetry lowering and orbital reconstruction at the interface [136–139]. 

In addition, for all 4 Ti ions at the interface, the dxy state has a spin-splitting of about 0.3 

eV and only the spin-up channel (same spin as Eu and a vacancy level) is occupied 

resulting in a spin polarized interface channel. 
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Figure 4.4 DOS projected on the Ti d states in each layer. Layer 1 represents the central 

“bulk” part of SrTiO3, while layer 4 represents the interfacial layer. (a) DOS 

of top-H heterostructure with a vacancy; (b) DOS of top-H heterostructure 

without vacancies but artificially doped with two extra electrons.  

We compute the total number of itinerant carriers (excluding the eg vacancy state) 

n =𝑛↑ + 𝑛↓ and spin polarization 𝑝 =
𝑛↑−𝑛↓

𝑛↑+𝑛↓
for each layer. Thus computed number of 

carriers n (per 2x2 STO area) and corresponding spin polarization p from layer 1 to layer 

4 are 0.22 e
-
, 0.2 e

-
, 

 
0.13 e

-
, 0.19 e

-
, and  0%, 8.7%, 30.7% and 100%, respectively. We

note the way we calculate the number of carriers in each layer is we do the integral for 

each atomic orbital-projected DOS from the conduction band edge to the Fermi level, and 



71 

then we take a sum for all orbitals and all atoms for that layer. Since there are spaces 

between atoms (spheres used for the projection), after the projection a small fraction of 

electron is lost (here is about 0.26). On the other hand, if we do the integral using the 

total DOS (no layer projection), the number is indeed 1. The number of carriers in 

different layers doesn’t change much, while the spin polarization increases significantly 

when approaching the interface. Note, that the Ti dxy state could carry more electrons 

compared with the spin-split Eu 5d band, the DOS of which is rather low. Therefore, the 

current regime may have an advantage for generating spin-polarized 2DEG over 

previously suggested schemes, where doping occurs in the EuO layers [28, 29]. To better 

understand the origin of the spin-split of the interfacial dxy state, we perform the 

following computational experiment. We consider the same (EuO)3/TiO2-(SrO-

TiO2)6/(EuO)3 heterostructure (top-H) but without vacancies and artificially introduce two 

extra electrons (a homogeneous compensating background charge is added to maintain 

the neutrality). The resulting partial DOS projected on the Ti ions is shown in Figure 

4.4(b). There are no vacancy-related in-gap states, but we still see spin polarization in the 

dxy band at the interface. This suggests that interfacial states are influenced by the 7 𝜇𝐵 

magnetization of the neighbouring Eu ions and the spin-polarization of 2DEG is caused 

by the proximity effect (superexchange). 

4.4 THE EFFECT OF ON-SITE COULOMB REPULSION U 

As we use the on-site Coulomb repulsion U on both Eu 4f states and Ti 3d states, 

the theory is not completely ab-initio. And it is important to understand the influence of 

these semi-empirical parameters on the results of the calculations. Within the DFT+U 

formalism, the orbital energy 𝜀𝑖
′ could be written as 𝜀𝑖

′ = 𝜀𝑖 + 𝑈(
1

2
− 𝑛𝑖), where 𝜀𝑖 is
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the orbital energy of the regular LDA/GGA functional, U is the Coulomb repulsion and 

𝑛𝑖 is the orbital occupation [24]. Since the spin-up Eu 4f states form the valence band, 

increasing the Eu U value would shift the occupied spin-up 4f states down and the f-d 

band gap would increase accordingly. This agrees well with the calculation; for a Eu U 

value of 5.0 eV, the band gap is 0.6 eV, and the valence band offset between the Eu 4f 

states and O p states of STO is 1.7 eV. While with a Eu U value of 8.0 eV, the band gap 

of EuO is 1.2 eV and the valence band offset decreases to 1.1 eV. Apart from that, the 

band structure doesn’t change significantly, including the EuO conduction band edge 

comprised of Eu 5d states. 

However, when we vary the Ti U value, the effect is quite different: Figure 4.5 

shows the DOS projected onto each atomic layer in top-H heterostructure with vacancy 

while using Ti U = 8 eV. The in-gap state now is completely filled by two electrons from 

the vacancy and there are no itinerant electrons. Also, instead of being ferromagnetic as 

in the case of U = 5 eV, the spins on two Ti ions adjacent to the vacancy prefer the 

antiferromagnetic arrangement. For Ti ion close to the interface, the spin is aligned 

ferromagnetically with the Eu ion.  
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Figure 4.5 Similar to Figure 4.2, the atom-projected DOS for each layer in he 

heterostructure containing a vacancy with UTi-d = 8 eV. 

To explain this result, we use a three-orbital model following Lin et al.’s [115]: 

𝐻 = 𝜀1 ∑(𝑛1𝜎 + 𝑛2𝜎) − 𝑔𝜇𝐵𝐻 ∑(𝑛𝑖↑ − 𝑛𝑖↓)

𝑖=1,2

− 𝑡 ∑ 𝑐1𝜎
+ 𝑐2𝜎

𝜎=↑,↓

− 𝑡 ∑ 𝑐1𝜎𝑐2𝜎
+

𝜎=↑,↓𝜎=↑,↓

+ 𝑈 ∑ 𝑛𝑖↑𝑛𝑖↓
𝑖=1,2

+ 𝜀0 ∑ 𝑛0𝜎
𝜎=↑,↓

− 𝑔𝜇𝐵𝐻(𝑛0↑ − 𝑛0↓).  (4.1) 

Here, 0 represents the uncorrelated bath orbital with energy 𝜀0 (for convenience 

we set 𝜀0 to 0). Indices 1 and 2 refer to two Ti 𝑑3𝑧2−𝑟2-based localized orbitals with

energy 𝜀1 , which are adjacent to vacancy. The hopping parameter t describes the 

coupling between them and the on-site repulsion U is applied to both orbitals. 

Furthermore, g is the g factor, 𝜇𝐵 is the Bohr magneton and H is the “external” magnetic 

field coming from Eu ions. As one vacancy provides two electrons, we need to determine 

two-electron ground state of this Hamiltonian.  There are three possibilities for the 
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ground state: (I) both electrons occupy the itinerant orbital; (II) one electron occupies 

localized orbital, and the other occupies itinerant orbital; (III) two electrons occupy two 

localized orbitals. For phase (I), the lowest energy 𝐸𝐼 is 0. For phase (II), the lowest 

energy 𝐸𝐼𝐼  is 𝜀1 − 2𝑔𝜇𝐵𝐻 − 𝑡 . In the lowest energy configuration, spins of both 

electrons are aligned along the magnetic field. For phase (III), there are two different 

lowest energies: 

𝐸𝐼𝐼𝐼 = 2𝜀1 − 𝑔𝜇𝐵𝐻,   𝐸𝐼𝐼𝐼
′ = 2𝜀1 +

1

2
(𝑈 − √𝑈2 + 16𝑡2),  (4.2) 

𝐸𝐼𝐼𝐼 corresponds to a configuration where each electron occupies one localized 

orbital and spins are ferromagnetically aligned, parallel to the magnetic field. 𝐸𝐼𝐼𝐼′ 

corresponds to a configuration where the spins of two electrons are antiferromagnetically 

aligned, which is the singlet for a two-site Hubbard model [140].  In terms of our DFT 

calculation, “0” represents the itinerant 𝑑𝑥𝑦  band while “1” and “2” refer to the 

localized impurity state. Since 𝜀1 is larger than 𝜀0 (which is equal to 0), 𝐸𝐼𝐼 < 𝐸𝐼𝐼𝐼. 

Also, as approximated in [115],  𝜀1 − 𝑡 is smaller than 0, hence 𝐸𝐼𝐼 < 0 = 𝐸𝐼. Thus we 

shall only focus on configurations related to 𝐸𝐼𝐼 and 𝐸𝐼𝐼𝐼′. Phenomenologically, the 

DFT result with Ti U =5.0 eV corresponds to 𝐸𝐼𝐼 configuration while U = 8.0 eV 

corresponds to 𝐸𝐼𝐼𝐼′ configuration. This shows that for U = 5 eV, 𝐸𝐼𝐼 is lower than 

𝐸𝐼𝐼𝐼′. In the large U limit, 𝐸𝐼𝐼𝐼′ can be approximated as 2𝜀1 −
4𝑡2

𝑈
and if we increase U, 

𝐸𝐼𝐼𝐼′ would increase while 𝐸𝐼𝐼 remains the same, provided that other parameters are 

fixed. This suggests that for a larger U, the ground state should remain in phase II, which 

is contrary to what we find from the DFT calculation. An alternative possibility is that 𝜀1 

shifts down with the increasing U. This could make 𝐸𝐼𝐼𝐼′ lower than 𝐸𝐼𝐼 and then the 

ground state configuration corresponds to 𝐸𝐼𝐼𝐼′. To clarify this, we plot the DOS for the 

Ti-derived 𝑡2𝑔 and 𝑒𝑔 bands in bulk SrTiO3 for U = 5.0 eV and U = 8.0 eV in Figure 
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4.6. For U =8.0 eV, the 𝑡2𝑔-𝑒𝑔 splitting indeed becomes smaller by 0.2 eV compared to 

that obtained using U = 5.0 eV. This will cause 𝜀1 to be even lower and Ti 𝑑3𝑧2−𝑟2-

based localized orbital to shift further down in energy relative to 𝑑𝑥𝑦 orbital. We note 

this shift only occurs in DFT and we conclude the ground state should be phase (II). 

According to Lin et al. [50], the two-peak structure of the Ti 3𝑑3𝑧2−𝑟2 density of states

(DOS) corresponds to the bonding and antibonding combinations of Ti-Ti 3𝑑3𝑧2−𝑟2-

based orbitals and the separation between the peaks is twice the hopping parameter 2t. 

When we compare the partial density of states projected on the Ti ion adjacent to a 

vacancy in a  2 × 2 × 4 SrTiO3 supercell for U = 5 eV and U = 8 eV, the separation is 

approximately 2.2 eV in both cases. This suggests that t has a fairly weak dependence on 

U. 
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Figure 4.6 (a) The eg-t2g splitting in bulk SrTiO3 for UTi-d = 5 eV and (b) UTi-d = 8 eV. 

To estimate the magnitude of the EuO-generated magnetic field H, we compare 

the electronic structure of the oxygen-deficient SrTiO3 with and without EuO layers 

present. For a magnetic system, with an external magnetic field, the majority band is 

shifted down and minority band is shifted up. The pro

change as:𝑓↑(𝜀) → 𝑓↑(𝜀 +
1

2
𝑔𝜇𝐵𝐻), 𝑓

↓(𝜀) → 𝑓↓(𝜀 −
1

2
𝑔𝜇𝐵𝐻), where g and B are the 

g factor and Bohr magneton. This means once we apply an external magnetic field, two 

bands will have a relative shift of 𝑔𝜇𝐵𝐻 . For a vacancy in a 2 × 2 × 4  SrTiO3 

supercell, 𝑑𝑥𝑦↑ is aligned with 𝑑𝑥𝑦↓. In Figure 4.4(a), under the influence of EuO layers, 

the splitting between 𝑑𝑥𝑦↑ and 𝑑𝑥𝑦↓ is about 0.3 eV. This gives a rough estimate of 

about 0.3 eV for 𝑔𝜇𝐵𝐻. 
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4.5 CONCLUSION 

In summary, using first-principles calculations we predict a spin-polarized 2DEG 

at the TiO2/EuO interface of EuO and an oxygen-deficient SrTiO3. Carriers are residing 

mostly at the SrTiO3 side of the interface and the strong spin polarization is induced by a 

proximity effect from the ferromagnetic insulator EuO. In addition, a vacancy-induced 

localized state appears within the band gap of STO just below the conduction band edge. 

This system provides a robust mechanism for generating spin-polarized 2DEG, which can 

possibly be used in spintronic applications, and it may have an advantage as unlike the 

conduction band of EuO that of STO can host a large number of carriers due to a higher 

density of states. 
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Chapter 5 Large Positive Linear Magnetoresistance in the two-

dimensional t2g electron gas at EuO/SrTiO3- Interface 

Inspired by the theoretical prediction of Chapter 4, my colleague Kristy J. 

Kormondy grew the highly spin-split ferromagnetic semiconductor EuO onto perovskite 

SrTiO3 (001) with the molecular beam epitaxy. As been suggested by Posadas et 

al. [127], Eu has been demonstrated that it can scavenge oxygen from STO at high 

temperatures to form epitaxial EuO layers on STO, leaving an oxygen deficient layer of 

STO below the interface. This in turn leaves a highly conductive interfacial layer below 

via the generation of oxygen vacancies. This is similar to the scenario discussed in the 

previous section. Below the Curie temperature of EuO 70 K, this spin-polarized two-

dimensional t2g electron gas at the EuO/SrTiO3- interface displays very large positive 

linear magnetoresistance (MR). By using Soft-x-ray angle-resolved photoemission 

spectroscopy (SX-ARPES) technique, t2g nature of the carriers is recognized. In this 

chapter, using the first principles calculations results presented in Chapter 4, we use 

conventional Boltzmann transport theory to calculate the conductivity and 

magnetoresistance of the spin-polarized two-dimensional t2g electron gas at the EuO/ 

SrTiO3- interface. Results suggest Zeeman splitting caused by proximity effect of 

magnetic insulator EuO is responsible for the MR. This provides an alternative approach 

to developing novel spintronic devices with transition metal oxides.  

Results have been published as Kristy J. Kormondy, Lingyuan Gao, Xiang Li, 

Sirong Lu, Agham B. Posadas, Shida Shen, Maxim Tsoi, Martha R. McCartney, David J. 

Smith, Jianshi Zhou, Leonid L. Lev, Marius-Adrian Husanu, Vladimir N. Strocov, and 

Alexander A. Demkov, Sci Rep. 8 , 7721 (2018). For the experimental part, K. J. 

Kormondy and A. B. P. performed sample growth, XRD, XPS, and SQUID experiments, 

and analyzed the data. X.L., S.S., M.T. and J.S.Z. designed and performed the electrical 
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measurements. L.L.L., M.-A.H., and V.N.S designed and performed ARPES experiments 

and analyzed the ARPES data. M.R.M., S.L. and D.J.S. performed the STEM and EELS 

experiments and analyzed the data. 

5.1 EXPERIMENTAL RESULT 

5.1.1 Epitaxial Growth 

EuO is highly sensitive to oxygen pressure and tends to form paramagnetic 

Eu2O3. Therefore, special care is needed to ensure proper stoichiometry. We grow our 

EuO films in the thicknesses range of ~5-10 nm by molecular beam epitaxy (MBE). 

Following our previous study by depositing Eu metal onto STO (001) under ultra-high 

vacuum  [127], we demonstrate this is possible to crystallize stoichiometric EuO, where 

oxygen is provided only by the substrate. 

Figure 5.1 (a) Schematic plot of the EuO/SrTiO3 heterointerface.(b) (b) Reciprocal space 

map of the STO (002) and EuO (113) peaks for 7 nm EuO on STO. The 

EuO rocksalt unit cell is rotated 45° with respect to the surface unit cell of 

the perovskite. 

Since EuO films crystallize in the rock-salt structure, the primary EuO unit cell 

axis is rotated by 45° with respect to the axis of substrate surface to minimize lattice 

mismatch between EuO and SrTiO3 (~7%). The schematic plot of the EuO/SrTiO3 

structure is presented in Figure 5.1(a) and the reciprocal space map is in Figure 5.1(b). 
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Additional x-ray diffraction results are presented in Figure 5.2. Lattice parameters 

extracted from the in-plane and out-of-plane scans are 0.513 and 0.515 nm, respectively, 

agreeing well with the bulk EuO value. 

Figure 5.2 (a) X-ray diffraction coupled scans with corresponding (b) in-plane reciprocal 

space map and positions in reciprocal space for (c) STO and (b) EuO with a 

45° rotation of the surface unit cell. 

High-angle annular-dark-field image of the EuO/SrTiO3 interface in Figure 5.3(a) 

demonstrates films are epitaxial with defects in the first few layers. False color maps of 

the Ti-L energy-loss near-edge fine-structure edge fitting in Figure 5.3(b) show oxygen 

vacancies are distributed at the interface. In Figure 5.3(c), with the image of 

heterostructure cross-section, proximity of EuO to the confined SrTiO3-δ conducting layer 

is clearly seen. It has also been shown theoretically that due to large dielectric constant, 

the SrTiO3 2DEG can spread across 50 unit cells in the low density region (n <

1014𝑐𝑚−2). While in the high density region (n > 5 × 1014𝑐𝑚−2) (relevant here), the

2DEG is mostly confined within a few unit cells, and the tail may still be quite 

long  [141].  



81 

Figure 5.3 (a) High-angle annular-dark-field scanning transmission electron microscopy 

[100]-projection image of the EuO/STO interface. (b) Corresponding false 

color map shows a distribution map from the Ti L-edge fit (SrTiO3, red; 

SrTiO3-δ, green). (c) Ti-L coefficient as a function of position shows a sharp 

peak at the interface. 

5.1.2 Photoemission Measurement 

We use soft x-ray angle-resolved photoemission spectroscopy (SX-ARPES) to 

elucidate the t2g character of the low dimensional electron system. The experimental X-

ray absorption spectra and resonant (angle integrated) photoemission intensity across the 

Ti 2p edge is presented in Figure 5.4(a) and Figure 5.4(b). Figure 5.4(b) embeds the Eu 4f 

around EB ~ -2.5 eV and the O 2p derived valence band states of EuO and SrTiO3 below, 

while at EF is the Ti t2g derived 2DEG signal. The photoemission intensity variations in 

the corresponding EB-regions are shown in Figure 5.4 (c): There the 2DEG and valence 

band response resonates near the Ti absorption peaks. This confirms that the the 2DEG 
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originates from Ti 3d states and they hybridize with the O 2p states, which are all very 

similar to LaAlO3/SrTiO3 interface  [142,143]. On the other hand, the Eu 4f response 

shows no correlation with the Ti 2p absorption, indicating no hybridization is between the 

Eu 4f and Ti 3d states. Furthermore, resonant data of Eu 3d absorption edge shown in 

Figure 5.5 indicates no sign of any significant admixture of Eu 4f states in the 2DEG. All 

of these indicate that the 2DEG in the EuO/SrTiO3 heterostructure resides on the SrTiO3 

side of the interface, in good agreement with density functional calculations presented in 

Chapter 4. 
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Figure 5.4 Resonant soft-X-ray ARPES of 2-nm EuO/STO heterointerface through the Ti 

L-edge. (a) XAS spectrum. (b) Resonant photoemission from the valence 

band as a function of excitation energy. Intensity the near-EF region is 

scaled up by ~30. (c) Resonant intensity for constant EB in the valence band, 

Eu level and 2DEG. The valence band and 2DEG signals follow the Ti L-

edge XAS spectrum that confirms their Ti-derived character. (d,e) SX-

ARPES images at hv = 460.3 and 466 eV enhancing the dxy- and dyz-derived 

states, respectively. The intensity waterfalls are reveal polaronic nature of 

the interface charge carriers. (f) Fermi surface of the interface states 

measured at hv = 466 eV. 
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Figure 5.5 (a) Resonance photoemission spectra of valence band near Eu 3d threshold. 

Strong resonance of the Eu
2+

 states in the valence band at hv = 1128 eV and

Eu
3+

 states at hv = 1130 eV. No resonating states at the EF. (b) Valence band

spectrum at hv = 457 eV shows the prevalence of Eu
2+

.

Photoelectron images visualizing electron dispersions E(k) in the 2DEG are 

shown in Figure 5.4(d) for hv = 460.3 eV. Compared with Figure 5.4(e) of a similar 

dispersion for 466 eV, the former emphasizes Ti dxy states are localized near the 

interface, while the latter emphasizes Ti dyz/dxz states extended into the SrTiO3 

bulk  [143]. However, we note the small Fermi vector kF of the heavy dyz band in Figure 

5.4(e) demonstrates the band filling is smaller compared to the LaAlO3/SrTiO3 

case  [143]. Figure 5.4(f) shows the Fermi surface formed by the electrons at interface. 
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This was measured at hv = 466 eV to emphasize external contours formed by the 

ellipsoidal Ti dyz/dxz sheets. As expected from the experimental E(k) dispersions, the 

Fermi surface is nevertheless dominated by the circular dxy derived electron pocket with 

only small filling of the dyz/dxz sheets compared to the LaAlO3/SrTiO3 case  [143]. 

Therefore, the overall electron density has in our case stronger interface localization 

compared to LaAlO3/SrTiO3 interface. These are all consistent with DFT calculations in 

the Chapter 4 very well. 

5.1.3 Electrical Characterization 

Figure 5.6(a) gives the measurement of the sheet resistance RS for 7-nm 

EuO/STO. Results reveal in temperature range from 2-300 K the systems display metallic 

behavior. We also conduct Hall measurements shown as Figure 5.6(b). Sheet carrier 

densities can be as high as the order of 10
16

 cm
-2

.
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Figure 5.6 (a) Sheet resistance for a 7-nm EuO film as a function of temperature. (b) Hall 

resistance RXY for a 7-nm EuO film at 120 K. Solid lines indicate linear fits. 

Figure 5.7(a) shows the field-cooled magnetization of a 7-nm EuO film as a 

function of temperature. The EuO film exhibits a paramagnetic to ferromagnetic 

transition with decreasing temperature. Curie-Weiss fitting to this data give a Curie 

temperature of TC ~70 K and an effective magnetization of ~6.3 μB. From the 

magnetization loops measured at 10 K with magnetic fields applied in the plane of the 

film [see inset to Figure 5.7(a)] we extract a coercive field ~0.02 T and remnant 

magnetization ~4.3 μB. These are essentially the values for bulk EuO. 

Four-probe magnetoresistance RS(B) measurements for a 7-nm EuO film in a 

perpendicular magnetic field is shown in Figure 5.6(b). We find RS increases linearly 
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with the magnetic field at 20 K and quadratically at 100 K. Solid lines indicate fits to the 

data of the form, 

𝑅𝑠(𝐵) = 𝑅𝑠(0) × [𝑐1|𝐵| + (𝑐2𝐵)
2] ,                                                         (5.1) (

where c1 and c2 are the linear and quadratic fit coefficients, respectively, shown in 

Figure 5.7(b) as a function of temperature. The quadratic magnetoresistance component 

is present below ~150 K, while the linear component emerges below ~80 K. The 

magnetoresistance (MR), defined as, 

𝑀𝑅 =
𝑅𝑠 (𝐵) − 𝑅𝑠(0)

𝑅𝑠(0)
 ,  (5.2) 

decreases rapidly as the measurement temperature increases, and is essentially 

zero at room temperature as shown in Figure 5.6(c). These demonstrate our EuO/STO 

heterostructures display temperature-dependent linear positive magnetoresistance below 

the Curie temperature. 
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Figure 5.7 (a) Magnetoresistance (MR) data measured in a perpendicular magnetic field 

at 20 K, 100 K, and 300 K. Solid lines indicate fits to the data. The MR 

increases linearly with the magnetic field at 20 K, quadratically at 100 K, 

and is field-independent at room temperature. (b) Linear c1 and quadratic c2 

MR fit coefficients for the same film as a function of temperature. (c) Field-

cooled magnetization M of a similar 7-nm EuO film as a function of 

temperature at constant in-plane magnetic field of 0.01 T. Inset: 

corresponding magnetization loop measured at 10 K. 
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5.2 INTRODUCTION TO ORIGINS OF POSITIVE LINEAR MAGNETORESISTANCE 

A positive linear magnetoresistance (LMR) can have several possible origins: 

(1) A classical mechanism proposed by Parish and Littlewood attributes 

LMR as a consequence of potential and mobility fluctuations in an 

inhomogeneous electronic system  [144,145]. This is found in doped 

silver chalcogenides Ag2+δSe over a large temperature range between 

4.5 K and 300 K. The classical mechanism considers the strong 

inhomogeneity of the system as the main influence and models a 

random resistor network. The hypothesis assumes inhomogeneous 

distribution of silver ions results in large spatial fluctuation of 

conductivity of the material, as the doped silver chalcogenides is 

“granular” material. The assumption also explains why MR decreases 

with increasing temperature as resistance only depends on mobility but 

is independent of carrier density. 

(2) A quantum mechanism proposed by Abrikosov includes effects due to 

electronic correlations [146,147]. The quantum mechanism is based on 

the assumption that the energy spectrum is gapless and linear. It also 

takes inhomogeneity of metals into consideration. LMR would occur at 

the quantum limit if the applied magnetic field is so large that only one 

or few Landau levels (LLs) are populated. The required condition is 

that only one Landau level is participating, and a condition that 

𝑛 < (
𝑒𝐻

𝑐ħ
)

3

2
needs to be fulfilled. With 𝐻 in the order of ~10T, the 

right-hand side value is 1018𝑐𝑚−3.

(3) A quantum interference explanation introduced by Manya et al. 

attributes the LMR of to the interaction. In a weakly disordered 
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system, a magnetic field suppresses localization effect and predicts a 

negative MR. If interaction is considered, spin-orbit scattering and 

orbital effects of an interacting electron gas can lead to a positive 

LMR. This has been observed in Fe1-xCoxSi and geometrically 

constrained ferromagnets Fe and Ni films [148,149]. For the former, it 

has been explained as the enhanced electron-electron interactions by 

disorder. For the latter, the magnetic field induces a spin gap 

suppressing the contribution to conductivity and leads to a positive 

MR. 

(4) LMR induced by Zeeman splitting, which is due to the gradual 

increase of the splitting between minority spin-up and majority spin-

down carriers in presence of a magnetic field. For this mechanism, the 

differences in mobility are crucial in order to get specifically a positive 

sign (and not negative) of the magnetoresistance. Onose et al. have 

used this origin to explain the LMR observed in Fe1-xCoxSi [150]. 

There is no strong evidence suggesting that the mechanism of LMR in our current 

system could be related with the inhomogeneity. Under the classical mechanism, LMR 

could exist over a large temperature range and has a weak dependence on temperature: 

Doped silver chalcogenides Ag2+δSe and Ag2+δTe display a positive LMR from 4.5 K 

to room temperature 300 K. While in our sample, the positive LMR is only present below 

the EuO Curie temperature Tc. Above Tc, the behavior is quadratic, similar to 

conventional semiconductors. It would be too much of a coincidence that it becomes 

linear at the transition temperature. Therefore, we rule out the first possibility. 

For the second, in quantum mechanism, the predicted density of carriers is too 

low compared with the carrier density in our system. We have a carrier density of 



91 

1016𝑐𝑚−2 within a conductive layer of ~2.5-5 nm, which corresponds to 1022𝑐𝑚−3,

much larger than 1018𝑐𝑚−3.

For the third quantum correlation mechanism, we follow Gerber et al.’s work and 

calculate the correction to resistivity due to correlation. Though the MR is linearly 

dependent, the order of MR over magnetic field is over ten orders of magnitude smaller 

compared with our measurement. Thus we also excluded this mechanism. 

Considering the quadratic MR to linear MR transition over 𝑇𝐶 , we consider 

Zeeman splitting model applicable. We’d like to point out that though oxygen vacancies 

commonly exist in thin films of SrTiO3, no positive LMR in oxygen deficient SrTiO3 has 

ever been reported. 

5.3 PROPERTIES OF CONFINED TWO-DIMENSIONAL ELECTRON GAS IN SRTIO3 

When we talk about confined 2DEG in SrTiO3, we refer to SrTiO3 heterostructure 

with polar perovskites, electrostatically-gated SrTiO3 or SrTiO3 surfaces. In these 

systems, several subbands are confined in direction perpendicular to the interface (z 

direction) and 2DEG can spread within N layers. As suggested by [141], an intralayer 

hopping t and interlayer hopping 𝑡′ parameter can be introduced for the t2g states (t >

𝑡′). In this way, we can use a tight-binding model to describe these states and the one

electron energy dispersion has a familiar trigonometric function form. Near the Γ point, 

the energy of three bulk t2g-derived bands are:  

𝜀 =

{

ħ2

2𝑚𝐿
𝑘𝑥
2 +

ħ2

2𝑚𝐿
𝑘𝑦

2 +
ħ2

2𝑚𝐻
𝑘𝑧
2  𝑑𝑥𝑦 orbital

ħ2

2𝑚𝐿
𝑘𝑥
2 +

ħ2

2𝑚𝐻
𝑘𝑦

2 +
ħ2

2𝑚𝐿
𝑘𝑧
2  𝑑𝑥𝑧 orbital

ħ2

2𝑚𝐻
𝑘𝑥
2 +

ħ2

2𝑚𝐿
𝑘𝑦

2 +
ħ2

2𝑚𝐿
𝑘𝑧
2  𝑑𝑦𝑧 orbital

  (5.3) 
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Here, 𝑚𝐿 stands for light mass while 𝑚ℎ stands for heavy mass. According to the 

APRES data [106], 𝑚𝐿 ≈ 0.7𝑚𝑒 , 𝑚ℎ ≈ 10~20𝑚𝑒 . Therefore, three bands are 

degenerate at the 𝛤 point, and the 𝑑𝑥𝑦- and 𝑑𝑥𝑧-derived bands have the same larger 

curvature along x axis. 

If states are confined within a few layers along the z direction, there would be no 

hopping along the z direction so there should be no dispersion in the kz direction. Then for 

the confined 2DEG, we have: 

𝜀 =

{

ħ2

2𝑚𝐿
𝑘𝑥
2 +

ħ2

2𝑚𝐿
𝑘𝑦

2 − 4𝑡  𝑑𝑥𝑦 band

ħ2

2𝑚𝐿
𝑘𝑥
2 +

ħ2

2𝑚𝐻
𝑘𝑦

2 − 2(𝑡 + 𝑡′)  𝑑𝑥𝑧 band 

ħ2

2𝑚𝐻
𝑘𝑥
2 +

ħ2

2𝑚𝐿
𝑘𝑦

2 − 2(𝑡 + 𝑡′)  𝑑𝑦𝑧 band

 (5.4) 

Now at the 𝛤 point, the splitting between the dxy and dxz/dyz states is 2(𝑡 − 𝑡′). From the

density of states (DOS) in our ab-initio calculation, we see that the interfacial dxy band is 

shifted down in energy by 0.3 eV relative to the other t2g bands. 

The DOS for the anisotropic 2DEG is calculated first. The energy is: 

𝜀 =
ħ2

2𝑚𝐿
𝑘𝑥
2 +

ħ2

2𝑚𝐻
𝑘𝑦

2  (5.5) 

Without considering the spin degree of freedom, we can calculate the DOS: 

𝐷(𝜀) =
1

(2𝜋)2
∫𝑑𝑘𝑥𝑑𝑘𝑦𝛿(𝜀 − 𝜀𝑘)

=
1

(2𝜋)2
∫𝑑𝑘𝑥𝑑𝑘𝑦𝛿 (𝜀 −

ħ2

2𝑚𝐿
𝑘𝑥
2 −

ħ2

2𝑚𝐻
𝑘𝑦

2)  (5.6) 

By changing variables, 

𝑘𝑥̅̅ ̅ =
𝑘𝑥

√2𝑚𝐿𝜀
ħ2

, 𝑘𝑦̅̅ ̅ =
𝑘𝑦

√2𝑚𝐻𝜀
ħ2

 ,  (5.7) 
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and also by changing from the orthogonal coordinate system to the polar coordinate 

system, we calculate: 

𝐷(𝜀) =
1

(2𝜋)2
2𝜀

ħ2
√𝑚𝐿𝑚𝐻∫𝑑𝑘𝑥̅̅ ̅𝑑𝑘𝑦̅̅ ̅𝛿 (𝜀 (1 − 𝑘𝑥̅̅ ̅

2
− 𝑘𝑦̅̅ ̅

2
))      

=
1

(2𝜋)2
2𝜀

ħ2
√𝑚𝐿𝑚𝐻

1

𝜀
∫2𝜋𝑘̅𝑑𝑘̅𝛿 ((1 − 𝑘̅2))

=
1

(2𝜋)2
2𝜀

ħ2
√𝑚𝐿𝑚𝐻

1

𝜀
∫𝜋𝑑𝑘̅2𝛿 ((1 − 𝑘̅2))

=
√𝑚𝐿𝑚𝐻

2𝜋ħ2
                                                                                                         (5.8) 

If 𝑚𝐿 = 𝑚𝐻, Then 𝐷(𝜀) =
𝑚𝐿

2𝜋ħ2
. This can be considered as the DOS for confined dxy 

2DEG in SrTiO3. Similarly, we can obtain the density of states for the dxz and dyz 2DEG, 

respectively. To summarize, the DOS for the 2DEG in all three t2g-dervied bands is: 

𝐷 =

{
 
 

 
 

𝑚𝐿

2𝜋ħ2
                               𝑑𝑥𝑦 band

√𝑚𝐿𝑚𝐻

2𝜋ħ2
                           𝑑𝑥𝑧 band  

√𝑚𝐿𝑚𝐻

2𝜋ħ2
                       𝑑𝑦𝑧 band

                                                                         (5.9) 

We note that in the 2D case, the DOS is independent of the energy. Also, 𝐷(𝑑𝑥𝑧) =

𝐷(𝑑𝑦𝑧). As a comparison, we calculate the DOS of 3D electron gas (3DEG) and show 

the relationship between DOS and energy. The energy is: 

𝜀 =
ħ2

2𝑚𝐿
𝑘𝑥
2 +

ħ2

2𝑚𝐿
𝑘𝑦

2 +
ħ2

2𝑚𝐻
𝑘𝑧
2,                            (5.10) 

and the DOS is: 
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𝐷(𝜀) =
1

(2𝜋)3
(√
2𝑚𝐿𝜀

ħ2
)

2

√
2𝑚𝐻𝜀

ħ2
∫𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝑘𝑧𝛿 (𝜀 − (

ħ2

2𝑚𝐿
𝑘𝑥
2 +

ħ2

2𝑚𝐿
𝑘𝑦

2

+
ħ2

2𝑚𝐻
𝑘𝑧
2))

=
1

(2𝜋)3
(√
2𝑚𝐿𝜀

ħ2
)

2

√
2𝑚𝐻𝜀

ħ2
∫𝑑𝑘𝑥̅̅ ̅𝑑𝑘𝑦̅̅ ̅𝑑𝑘𝑧̅̅ ̅𝛿 (𝜀 (1 − 𝑘𝑥̅̅ ̅

2
− 𝑘𝑦̅̅ ̅

2
− 𝑘𝑧̅̅ ̅

2
))

=
1

(2𝜋)3
(√
2𝑚𝐿𝜀

ħ2
)

2

√
2𝑚𝐻𝜀

ħ2
1

𝜀
∫𝑑𝑘𝑥̅̅ ̅𝑑𝑘𝑦̅̅ ̅𝑑𝑘𝑧̅̅ ̅𝛿 ((1 − 𝑘𝑥̅̅ ̅

2
− 𝑘𝑦̅̅ ̅

2
− 𝑘𝑧̅̅ ̅

2
))

=
1

(2𝜋)3
(√
2𝑚𝐿𝜀

ħ2
)2√

2𝑚𝐻𝜀

ħ2
1

𝜀
2𝜋 =

1

4𝜋2
2𝑚𝐿

ħ2
√
2𝑚𝐻

ħ2
√𝜀  (5.11) 

Therefore, for the 3DEG, the DOS has a ~𝜀1/2 relationship.

5.4 CLASSICAL CONDUCTIVITY FOR TWO-DIMENSIONAL ELECTRON GAS 

Our calculation starts from the original derivation of the electrical conductivity, as 

introduced in Chapter 7.2 of [151]. When scattering occurs, there would be a change in 

the distribution function 𝑔𝑘 = 𝑓𝑘 − 𝑓𝑘
𝑡=0

, and 𝑓𝑘, 𝑔𝑘 obey:

−
𝜕𝑓𝑘
𝜕𝑡

= −
𝜕𝑔𝑘
𝜕𝑡

=
𝑔𝑘
𝜏

 (5.12) 

Here we assume 𝑔𝑘(𝑡) = 𝑔𝑘(0)𝑒
−𝑡/𝜏, and consider 𝜏 as the relaxation time. According

to the Boltzmann equation, we have: 

−
𝜕𝑓𝑘
𝜕𝑡

= (−
𝜕𝑓0

𝜕𝜀
) 𝒗𝒌 ∙ 𝑒𝑬  (5.13) 

𝑔𝑘 = (−
𝜕𝑓0

𝜕𝜀
) 𝜏𝒗𝒌 ∙ 𝑒𝑬  (5.14) 

Therefore, the corresponding current density is: 
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𝒋 = ∫𝑒𝒗𝒌 𝑓𝒌𝑑
3𝒌 = ∫𝑒𝒗𝒌 (𝑓𝒌

0 + 𝑔𝒌)𝑑
3𝒌 = ∫𝑒𝒗𝒌 𝑔𝒌𝑑

3𝒌

=
1

(2𝜋)3
∫𝑒2𝜏𝒗𝒌 (𝒗𝒌 ∙ 𝑬) (−

𝜕𝑓0

𝜕𝜀
)𝑑3𝒌

=
1

(2𝜋)3
∫𝑒2𝜏𝒗𝒌 𝒗𝒌  (−

𝜕𝑓0

𝜕𝜀
)𝑑3𝒌 ∙ 𝑬  (5.15) 

As the current density is defined as the product of the conductivity tensor and the external 

electric field, the conductivity tensor is: 

𝜎𝛼𝛽 =
1

(2𝜋)3
∫𝑒2𝜏𝒗𝒌

𝛼𝒗𝒌
𝛽  (−

𝜕𝑓0

𝜕𝜀
)𝑑3𝒌  (5.16) 

For isotropic systems, the conductivity tensor is symmetric: 

𝜎𝑥𝑥 = 𝜎𝑦𝑦 (2𝐷),   𝜎𝑥𝑥 = 𝜎𝑦𝑦  = 𝜎𝑧𝑧(3𝐷),  (5.17) 

and the 2D conductivity tensor is obtained as: 

𝜎𝑥𝑥 =
1

(2𝜋)2
∫ 𝑒2𝜏𝒗𝒌

𝑥𝒗𝒌
𝑥  (−

𝜕𝑓0

𝜕𝜀
)𝑑3𝒌 =

𝑒2𝜏

(2𝜋)2
∫
𝒗𝒌
2

2
(−

𝜕𝑓0

𝜕𝜀
)𝑑3𝒌 =

𝑒2𝜏

(2𝜋)22
∫𝒗𝒌

2  𝛿(𝜀 − 𝜀𝐹)𝑑
3𝒌 =

𝑒2𝜏

2

𝑣(𝜀𝐹)
2

(2𝜋)2
∫ 𝛿(𝜀 − 𝜀𝐹)𝑑

3𝒌  =

𝑒2𝜏𝑣(𝜀𝐹)
2

2
𝐷(𝜀𝐹)        (5.18) 

We note that 𝑣(𝜀𝐹) only depends on the Fermi energy rather than direction of the Fermi 

vector. For the 3D conductivity tensor, the derivation is similar: 

𝜎𝑥𝑥 =
𝑒2𝜏𝑣(𝜀𝐹)

2

3
𝐷(𝜀𝐹)  (5.19) 

Below we show the conductivity tensor for the anisotropic case, which is more general. 

We first deal with the 𝑑𝑥𝑧 2DEG:  

𝜀 =
ħ2

2𝑚𝐿
𝑘𝑥
2 +

ħ2

2𝑚𝐻
𝑘𝑦

2  (5.20) 

The xx component of the conductivity tensor is: 
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𝜎𝑥𝑥 =
1

(2𝜋)2
∫𝑒2𝜏𝒗𝒌

𝑥𝒗𝒌
𝑥  (−

𝜕𝑓0

𝜕𝜀
)𝑑3𝒌

=
1

(2𝜋)2
∫𝑒2𝜏(

ħ𝑘𝑥
𝑚𝐿
)𝟐𝛿 (

ħ2

2𝑚𝐿
𝑘𝑥
2 +

ħ2

2𝑚𝐻
𝑘𝑦

2 − 𝜀𝐹) 𝑑
3𝒌

=
𝑒2𝜏

(2𝜋)2
(
ħ

𝑚𝐿
)𝟐
2𝑚𝐿𝜀𝐹
ħ2

√
2𝑚𝐿𝜀𝐹
ħ2

√
2𝑚𝐻𝜀𝐹
ħ2

∫𝑑𝑘𝑥̅̅ ̅𝑑𝑘𝑦̅̅ ̅ 𝑘𝑥̅̅ ̅
2
𝛿 (𝜀𝐹 (1 − 𝑘𝑥̅̅ ̅

2

− 𝑘𝑦̅̅ ̅
2
)) =

𝑒2𝜏𝜀𝐹
2𝜋𝑚𝐿

√𝑚𝐿𝑚𝐻

ħ2
=
𝑒2𝜏

2

𝜀𝐹
𝑚𝐿

√𝑚𝐿𝑚𝐻

𝜋ħ2
                                     (5.21) 

To summarize, the 2D 𝜎𝑥𝑥 for all three t2g 2DEG is: 

𝜎𝑥𝑥 =

{
 
 
 
 

 
 
 
 
𝑒2𝜏

2

𝜀𝐹
𝜋ħ2

=
𝑒2𝜏𝑣(𝜀𝐹)

2

2
𝐷(𝜀𝐹)     𝑑𝑥𝑦 band

𝑒2𝜏

2

𝜀𝐹
𝜋ħ2

√
𝑚𝐻

𝑚𝐿
                                   𝑑𝑥𝑧 band  

𝑒2𝜏

2

𝜀𝐹
𝜋ħ2

√
𝑚𝐿

𝑚𝐻
                                𝑑𝑦𝑧 band

                      (5.22) 

Since 
𝜎𝑥𝑧

𝜎𝑦𝑧
=
𝑚𝐻

𝑚𝐿
 is very large, the contribution from the 𝑑𝑦𝑧 2DEG to the total 𝜎𝑥𝑥 can 

be neglected.  

We end the current section by calculating 3D 𝜎𝑥𝑥. Result for the 𝑑𝑥𝑦 state is 

shown first: 

𝜎𝑥𝑥 =
1

(2𝜋)3
∫𝑒2𝜏𝒗𝒌

𝑥𝒗𝒌
𝑥  (−

𝜕𝑓0

𝜕𝜀
)𝑑3𝒌

=
1

(2𝜋)3
∫𝑒2𝜏(

ħ𝑘𝑥
𝑚𝐿
)𝟐𝛿 (

ħ2

2𝑚𝐿
𝑘𝑥
2 +

ħ2

2𝑚𝐿
𝑘𝑦

2 +
ħ2

2𝑚𝐻
𝑘𝑧
2 − 𝜀𝐹) 𝑑

3𝒌

=
𝑒2𝜏

(2𝜋)3
(
ħ

𝑚𝐿
)
𝟐 2𝑚𝐿𝜀𝐹

ħ2
2𝑚𝐿𝜀𝐹
ħ2

√
2𝑚𝐻𝜀𝐹
ħ2

∫𝑑𝑘𝑥̅̅ ̅𝑑𝑘𝑦̅̅ ̅𝑑𝑘𝑧̅̅ ̅ 𝑘𝑥̅̅ ̅
2
𝛿 (𝜀𝐹 (1 − 𝑘𝑥̅̅ ̅

2

− 𝑘𝑦̅̅ ̅
2
− 𝑘𝑧̅̅ ̅

2
)) =

𝑒2𝜏

3𝜋2
𝜀𝐹
ħ2
√
2𝑚𝐻𝜀𝐹
ħ2

=
𝑒2𝜏

3

𝜀𝐹
𝑚𝐿

𝑚𝐿

𝜋2ħ2
√
2𝑚𝐻𝜀𝐹
ħ2

=
𝑒2𝜏𝑣(𝜀𝐹)

2

3
𝐷(𝜀𝐹)                                                                                       (5.23) 

And the 3D 𝜎𝑥𝑥 for all three t2g states is summarized as: 
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𝜎𝑥𝑥 =

{

𝑒2𝜏

3𝜋2
𝜀𝐹
ħ2
√
2𝑚𝐻𝜀𝐹
ħ2

 𝑑𝑥𝑦 band

𝑒2𝜏

3𝜋2
𝜀𝐹
ħ2
√
2𝑚𝐻𝜀𝐹
ħ2

 𝑑𝑥𝑧 band 

𝑒2𝜏

3𝜋2
𝑚𝐿

𝑚𝐻

𝜀𝐹
ħ2
√
2𝑚𝐻𝜀𝐹
ħ2

             𝑑𝑦𝑧 band

 (5.24) 

Similar to a 2D system, we can neglect the 𝑑𝑦𝑧 contribution to 𝜎𝑥𝑥 in a 3D system.

5.5 MAGNETORESISTANCE IN SPIN-POLARIZED SRTIO3 TWO-DIMENSIONAL ELECTRON

GAS 

Now we come back to our spin-polarized 2DEG system at the interface of the 

EuO/SrTiO3 heterostructure. First we talk about the band shift under a magnetic field: 

With an external field H, the majority spin band is shifted down in energy while the 

minority band is shifted up. Functions related with energy 𝜀 will change as:  

𝑓↑(𝜀) → 𝑓↑ (𝜀 +
1

2
𝑔𝜇𝐵𝐻)  (5.25) 

𝑓↓(𝜀) → 𝑓↓ (𝜀 −
1

2
𝑔𝜇𝐵𝐻)  (5.26) 

With a magnetic field, the Fermi level 𝜀𝐹 is adjusted accordingly. We start from the 

simplest two-bands model. Without the magnetic field, 𝐷+(𝜀) = 𝐷−(𝜀), and the total

number of electrons is:  

𝑁 = ∫ 𝐷+(𝜀)𝑑𝜀
𝜀𝐹

−∞

+∫ 𝐷−(𝜀)𝑑𝜀
𝜀𝐹

−∞

  (5.27) 

With a magnetic field, the total number is counted as: 

𝑁 = ∫ 𝐷+(𝜀 +
1

2
𝑔𝜇𝐵𝐻)𝑑𝜀

𝜀𝐹+𝛿𝜀𝐹

−∞

+∫ 𝐷−(𝜀 −
1

2
𝑔𝜇𝐵𝐻)𝑑𝜀

𝜀𝐹+𝛿𝜀𝐹

−∞

  (5.28) 

The change of Fermi level 𝛿𝜀𝐹 is: 

𝛿𝜀𝐹 =
1

2
𝑔𝜇𝐵𝐻

𝐷↓ (𝜀𝐹) − 𝐷↑(𝜀𝐹)

𝐷↓ (𝜀𝐹) + 𝐷↑(𝜀𝐹)
 (5.29) 
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In the current system, we have one interfacial (IF) 𝑑↑𝑥𝑦 band, and three non-

spin-polarized t2g bands in the bulk-like region (we call them bulk t2g bands). From the 

ab-initio calculation, IF band is shifted down by ∆ relative to the bulk-like t2g bands. We 

show the confined 2DEG in SrTiO3 in a schematic plot in Figure 5.8. 

 

Figure 5.8 Schematic plot of the two dimensional t2g electron gas in SrTiO3. 

The energy of these bands is given by: 

𝜀 =

{
 
 
 
 

 
 
 
 
ħ2

2𝑚𝐿
𝑘𝑥
2 +

ħ2

2𝑚𝐿
𝑘𝑦

2 − ∆                    𝐼𝐹 𝑑↑𝑥𝑦 bands 

ħ2

2𝑚𝐿
𝑘𝑥
2 +

ħ2

2𝑚𝐿
𝑘𝑦

2                         𝑏𝑢𝑙𝑘 𝑑𝑥𝑦 band

ħ2

2𝑚𝐿
𝑘𝑥
2 +

ħ2

2𝑚𝐻
𝑘𝑦

2                        𝑏𝑢𝑙𝑘 𝑑𝑥𝑧 band 

ħ2

2𝑚𝐻
𝑘𝑥
2 +

ħ2

2𝑚𝐿
𝑘𝑦

2                       𝑏𝑢𝑙𝑘 𝑑𝑦𝑧 band

                     (5.30) 

With an external magnetic field, the change of the Fermi level 𝛿𝜀𝐹 is: 

𝛿𝜀𝐹 =
1

2
𝑔𝜇𝐵𝐻

∑ 𝐷↓(𝜀𝐹)bulk 𝑡2𝑔 − ∑ 𝐷↑(𝜀𝐹)bulk 𝑡2𝑔 − 𝐷↑𝐼𝐹(𝜀𝐹 + ∆)

∑ 𝐷↓(𝜀𝐹)bulk 𝑡2𝑔 + ∑ 𝐷↑(𝜀𝐹) + 𝐷↑𝐼𝐹(𝜀𝐹 + ∆)bulk 𝑡2𝑔 

       (5.31) 

𝐷↓(𝜀𝐹) = 𝐷
↑(𝜀𝐹), 𝐷↑𝐼𝐹(𝜀𝐹) = 𝐷

↑(𝜀𝐹 + ∆)                  (5.32) 
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The total conductivity tensor is: 

𝜎𝑥𝑥(𝐻 = 0) = 𝜎𝐼𝐹𝑥𝑦(↑)
𝑥𝑥 + 𝜎𝑏𝑢𝑙𝑘 𝑑𝑥𝑦(↑)

𝑥𝑥 + 𝜎𝑏𝑢𝑙𝑘 𝑑𝑥𝑦(↓)
𝑥𝑥 + 𝜎𝑏𝑢𝑙𝑘 𝑑𝑥𝑧(↑)

𝑥𝑥

+ 𝜎𝑏𝑢𝑙𝑘 𝑑𝑥𝑧(↓)
𝑥𝑥 + 𝜎𝑏𝑢𝑙𝑘 𝑑𝑦𝑧(↑)

𝑥𝑥 + 𝜎𝑏𝑢𝑙𝑘 𝑑𝑦𝑧(↓)
𝑥𝑥

=
𝑒2𝜏𝐼𝐹
2

𝜀𝐹 + ∆

𝜋ħ2
+ 2 ×

𝑒2𝜏𝑏𝑢𝑙𝑘 𝑑𝑥𝑦 

2

𝜀𝐹
𝜋ħ2

+ 2 ×
𝑒2𝜏𝑏𝑢𝑙𝑘 𝑑𝑥𝑧

2

𝜀𝐹
𝜋ħ2

√
𝑚𝐻

𝑚𝐿
+ 2

×
𝑒2𝜏𝑏𝑢𝑙𝑘 𝑑𝑦𝑧

2

𝜀𝐹
𝜋ħ2

√
𝑚𝐿

𝑚𝐻
 (5.33) 

When we apply magnetic field, the conductivity tensor becomes: 

𝜎𝑥𝑥(𝐻 ≠ 0) =
𝑒2𝜏𝐼𝐹
2

𝜀𝐹 + 𝛿𝜀𝐹 + ∆ +
1
2𝑔𝜇𝐵𝐻

𝜋ħ2
+
𝑒2𝜏𝑏𝑢𝑙𝑘 𝑑𝑥𝑦

2

𝜀𝐹 + 𝛿𝜀𝐹 +
1
2𝑔𝜇𝐵𝐻

𝜋ħ2

+
𝑒2𝜏𝑏𝑢𝑙𝑘 𝑑𝑥𝑦

2

𝜀𝐹 + 𝛿𝜀𝐹 −
1
2𝑔𝜇𝐵𝐻

𝜋ħ2

+
𝑒2𝜏𝑏𝑢𝑙𝑘 𝑑𝑥𝑧

2

𝜀𝐹 + 𝛿𝜀𝐹 +
1
2𝑔𝜇𝐵𝐻

𝜋ħ2
√
𝑚𝐻

𝑚𝐿

+
𝑒2𝜏𝑏𝑢𝑙𝑘 𝑑𝑥𝑧

2

𝜀𝐹 + 𝛿𝜀𝐹 −
1
2𝑔𝜇𝐵𝐻

𝜋ħ2
√
𝑚𝐻

𝑚𝐿

+
𝑒2𝜏𝑏𝑢𝑙𝑘 𝑑𝑦𝑧

2

𝜀𝐹 + 𝛿𝜀𝐹 +
1
2𝑔𝜇𝐵𝐻

𝜋ħ2
√
𝑚𝐿

𝑚𝐻

+
𝑒2𝜏𝑏𝑢𝑙𝑘 𝑑𝑦𝑧

2

𝜀𝐹 + 𝛿𝜀𝐹 −
1
2𝑔𝜇𝐵𝐻

𝜋ħ2
√
𝑚𝐿

𝑚𝐻
 (5.34) 

By taking the difference between 𝜎𝑥𝑥(𝐻 ≠ 0) and 𝜎𝑥𝑥(𝐻 = 0), we obtain:
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𝜎𝑥𝑥(𝐻 ≠ 0) − 𝜎𝑥𝑥(𝐻 = 0)

=
𝑒2𝜏𝐼𝐹
2

𝛿𝜀𝐹 +
1
2𝑔𝜇𝐵𝐻

𝜋ħ2
+ 2 ×

𝑒2𝜏𝑏𝑢𝑙𝑘 𝑑𝑥𝑦 

2

𝛿𝜀𝐹
𝜋ħ2

+ 2 ×
𝑒2𝜏𝑏𝑢𝑙𝑘 𝑑𝑥𝑧 

2

𝛿𝜀𝐹
𝜋ħ2

√
𝑚𝐻

𝑚𝐿
+ 2

×
𝑒2𝜏𝑏𝑢𝑙𝑘 𝑑𝑦𝑧 

2

𝛿𝜀𝐹
𝜋ħ2

√
𝑚𝐿

𝑚𝐻

=
𝑒2𝜏𝐼𝐹
2

1
2𝑔𝜇𝐵𝐻

2∑ 𝐷↓(𝜀𝐹)bulk 𝑡2𝑔 

∑ 𝐷↓(𝜀𝐹)bulk 𝑡2𝑔 + ∑ 𝐷↑(𝜀𝐹) + 𝐷
↑
𝐼𝐹(𝜀𝐹)bulk 𝑡2𝑔 

𝜋ħ2

+
𝑒2𝜏𝑏𝑢𝑙𝑘 𝑑𝑥𝑦

2

1
2𝑔𝜇𝐵𝐻

2(∑ 𝐷↓(𝜀𝐹)bulk 𝑡2𝑔 − ∑ 𝐷↑(𝜀𝐹)bulk 𝑡2𝑔 − 𝐷↑𝐼𝐹(𝜀𝐹))

∑ 𝐷↓(𝜀𝐹)bulk 𝑡2𝑔 + ∑ 𝐷↑(𝜀𝐹) + 𝐷
↑
𝐼𝐹(𝜀𝐹)bulk 𝑡2𝑔 

𝜋ħ2

+
𝑒2𝜏𝑏𝑢𝑙𝑘 𝑑𝑥𝑧

2
√
𝑚𝐻

𝑚𝐿

1
2𝑔𝜇𝐵𝐻

2(∑ 𝐷↓(𝜀𝐹)bulk 𝑡2𝑔 − ∑ 𝐷↑(𝜀𝐹)bulk 𝑡2𝑔 − 𝐷↑𝐼𝐹(𝜀𝐹))

∑ 𝐷↓(𝜀𝐹)bulk 𝑡2𝑔 + ∑ 𝐷↑(𝜀𝐹) + 𝐷
↑
𝐼𝐹(𝜀𝐹)bulk 𝑡2𝑔 

𝜋ħ2

+
𝑒2𝜏𝑏𝑢𝑙𝑘 𝑑𝑦𝑧

2
√
𝑚𝐿

𝑚𝐻

1
2𝑔𝜇𝐵𝐻

2(∑ 𝐷↓(𝜀𝐹)bulk 𝑡2𝑔 − ∑ 𝐷↑(𝜀𝐹)bulk 𝑡2𝑔 −𝐷↑𝐼𝐹(𝜀𝐹))

∑ 𝐷↓(𝜀𝐹)bulk 𝑡2𝑔 + ∑ 𝐷↑(𝜀𝐹) + 𝐷
↑
𝐼𝐹(𝜀𝐹)bulk 𝑡2𝑔 

𝜋ħ2
       (5.35) 

After cancelling the bulk t2g 𝐷↓(𝜀𝐹) with the bulk t2g 𝐷↑(𝜀𝐹), we obtain: 

𝜎𝑥𝑥(𝐻 ≠ 0) − 𝜎𝑥𝑥(𝐻 = 0)

=
𝑒2
1
2𝑔𝜇𝐵𝐻

2

2(

𝜏𝐼𝐹 ∑ 𝐷↓(𝜀𝐹)bulk 𝑡2𝑔 − 𝜏𝑏𝑢𝑙𝑘 𝑑𝑥𝑦𝐷
↑
𝐼𝐹(𝜀𝐹) −

√
𝑚𝐻

𝑚𝐿
𝜏𝑏𝑢𝑙𝑘 𝑑𝑥𝑧𝐷

↑
𝐼𝐹(𝜀𝐹) − √

𝑚𝐿

𝑚𝐻
𝜏𝑏𝑢𝑙𝑘 𝑑𝑦𝑧𝐷

↑
𝐼𝐹(𝜀𝐹)

)

∑ 𝐷↓(𝜀𝐹)bulk 𝑡2𝑔 + ∑ 𝐷↑(𝜀𝐹) + 𝐷
↑
𝐼𝐹(𝜀𝐹)bulk 𝑡2𝑔 

𝜋ħ2
                             (5.36) 

Using equation (5.9), we obtain: 
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𝜎𝑥𝑥(𝐻 ≠ 0) − 𝜎𝑥𝑥(𝐻 = 0)

=
𝑒2
1
2𝑔𝜇𝐵𝐻

2

2(
𝜏𝐼𝐹 (

𝑚𝐿

2𝜋ħ2
+ 2√

𝑚𝐿𝑚𝐻

2𝜋ħ2
) − 𝜏𝑏𝑢𝑙𝑘 𝑑𝑥𝑦

𝑚𝐿

2𝜋ħ2

−√
𝑚𝐻

𝑚𝐿
𝜏𝑏𝑢𝑙𝑘 𝑑𝑥𝑧

𝑚𝐿

2𝜋ħ2
−−√

𝑚𝐿

𝑚𝐻
𝜏𝑏𝑢𝑙𝑘 𝑑𝑦𝑧

𝑚𝐿

2𝜋ħ2

)

3
𝑚𝐿

2𝜋ħ2
+ 4√

𝑚𝐿𝑚𝐻

2𝜋ħ2

𝜋ħ2

=
𝑒2
1
2𝑔𝜇𝐵𝐻

2

2(
(𝜏𝐼𝐹 − 𝜏𝑏𝑢𝑙𝑘 𝑑𝑥𝑦)

𝑚𝐿

2𝜋ħ2
+ (𝜏𝐼𝐹 − 𝜏𝑏𝑢𝑙𝑘 𝑑𝑥𝑧)

√𝑚𝐿𝑚𝐻

2𝜋ħ2

+(𝜏𝐼𝐹 −
𝑚𝐿

𝑚𝐻
𝜏𝑏𝑢𝑙𝑘 𝑑𝑦𝑧)

√𝑚𝐿𝑚𝐻

2𝜋ħ2

)

3
𝑚𝐿

2𝜋ħ2
+ 4√

𝑚𝐿𝑚𝐻

2𝜋ħ2

𝜋ħ2
 (5.37) 

A positive linear magnetoresistance is: 

𝜌(𝐻) − 𝜌(0) =
1

𝜎(𝐻)
−

1

𝜎(0)
=

1

𝜎(0)
(

1

(1 +
𝜎(𝐻) − 𝜎(0)

𝜎(0)
)
− 1)

≈ −
1

𝜎(0)2
(𝜎(𝐻) − 𝜎(0)) > 0  (5.38) 

The condition to make 𝜎𝑥𝑥(𝐻 ≠ 0) − 𝜎𝑥𝑥(𝐻 = 0) < 0 is

𝜏𝐼𝐹 < 𝜏𝑏𝑢𝑙𝑘 𝑑𝑥𝑦 ,   2𝜏𝐼𝐹 < 𝜏𝑏𝑢𝑙𝑘 𝑑𝑥𝑧 +
𝑚𝐿

𝑚𝐻
𝜏𝑏𝑢𝑙𝑘 𝑑𝑦𝑧≈𝜏𝑏𝑢𝑙𝑘 𝑑𝑥𝑧  (5.39) 

Considering strong scattering at interface, which is enhanced due to FM alignment of the 

vacancy-related moments and dxy 2DEG, it is highly possible that this condition can be 

satisfied. Therefore, we argue that the proximity-induced-Zeeman effect from the 

magnetic insulator EuO is the origin of the positive LMR in our system. 
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Chapter 6 The LaAlO3/SrTiO3 Quantum Well 

In this chapter, we discuss a different application of the confined 2DEG in 

SrTiO3: the creation of quantum well (QW) states. Experimentally, LaAlO3/SrTiO3 

(LAO/STO) quantum wells (QW) are grown by molecular beam epitaxy (MBE) in our 

lab at the University of Texas at Austin. The electronic structure and particularly the band 

alignment is analyzed by in-situ X-ray photoemission in our lab and electron energy loss 

spectroscopy (EELS) in the Oak Ridge National Lab. Using density function theory, we 

examine the density of states (DOS) of confined t2g 2DEG in the LAO/STO 

heterostructure. We compute the band offset of the heterostructure, investigate the orbital 

character of conduction states, and identify their features corresponding to the QW states. 

In addition, we model the EELS spectrum using first-principle calculations by adopting 

the Z+1 approximation and considering the core-hole effect. Site-projected unoccupied p 

and d DOS are extracted and compared with the experimental O K and Ti L edges that 

correspond to 1s to 2p and 2p to 3d transitions, respectively. We find that in the 

LAO/STO QW, there are evanescent Ti-originated states in the LAO layer and relate 

them with the peak in the EELS spectrum. We show that the LaAlO3/SrTiO3 system 

could potentially be a good candidate for QW device applications. 

6.1 COMPUTATIONAL DETAILS  

We use the Vienna ab initio simulation package (VASP) code to carry out the 

calculations [30,31]. The exchange-correlation functional is approximated within the 

local density approximation (LDA) and projection augmented wave (PAW) 

pseudopotentials are used) [19,28]. The electronic configurations for each element are as 

follows: 5𝑠2 5𝑝6 5𝑑1 6𝑠2 for La, 3𝑠2 3𝑝1 for Al, 2𝑠2 2𝑝4 for O, 4𝑠2 4𝑝6 5𝑠2 

for Sr, and 3𝑠2 3𝑝6 3𝑑2 4𝑠2 for Ti. The cutoff energy of 700 eV is chosen and an 
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8 × 8 × 8  k-point mesh is selected to achieve the Brillouin zone integration 

convergence, for both bulk STO and LAO [29]. Bulk structures are optimized first and 

the lattice constants are found to be 3.86Å and 3.74Å for STO and LAO, respectively. 

This is typical of LDA calculations to have the lattice constant slightly smaller when 

compared with experiment as the calculation is done at zero Kelvin and LDA tends to 

over-bind. The spin-orbit interaction is not included. For the quantum well, we construct 

a (LAO)4.5/(STO)5.5 supercell with the LaO+/TiO2 interfaces on both sides. We take the

LAO as the substrate and use the theoretical aLAO = 3.74 Å as the in-plane lattice 

constant. A 1 × 1 lateral cell dimension is adopted. All atomic positions were fully 

relaxed until residual forces were less than 0.01 eV Å
-1

. We sampled the Brillouin zone

with 8 × 8 × 1 Monkhorst-Pack k-point grids for self-consistent calculation.  

The main method we use is the analysis of the layer-resolved DOS that is 

projected onto different elements and orbitals. In this way, we can analyze the 

composition of the electronic states and their behavior in real space. Therefore, to ensure 

the accuracy of the spectrum, a 16 × 16 × 16 and a 16 × 16 × 1 k-point meshes are 

used for the bulk and supercell accurate DOS calculation, respectively. The accuracy was 

checked further with a finer 32 × 32 × 32 k-point mesh. Due to symmetry, we only 

need to consider a half of the simulation cell along the z axis. The simulation cell is 

shown in Figure 6.1. 
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Figure 6.1. A (LAO)4.5/(STO)5.5 simulation cell with two symmetric n-type interfaces. 

 

In the EELS experiment, a core-electron excitation leaves a hole in the inner core 

shell, resulting in a change in the electrostatic screening of the nucleus and the effective 

potential felt by remaining electrons. This is usually referred to as a “core-hole effect,” 

and it can be approximately accounted for in the so-called Z+1 approximation, where the 

exited atom can be substituted by an atom of the element with the next higher atomic 

number. With the dipole selection rule, O K edge in STO and LAO corresponds to a 1s 

→2p excitation at oxygen sites, while Ti L2/L3 edge is related to a 2p→ 3d process. 

Therefore, O and Ti at specific sites in the QW structure are replaced with flourine and 

vanadium, and after a self-consistent calculation, locally-projected unoccupied p and d 

DOS are extracted, to be compared with the experimental O K and Ti L2/L3 edges. The 

electronic structure of F and V are 2𝑠22𝑝5 and 3𝑠23𝑝63𝑑34𝑠2, and we use Gaussian 

broadening of 0.7 eV to make the projected DOS (PDOS) look smoother. 
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6.2 BULK DENSITY OF STATES OF SRTIO3 AND LAALO3 

We focus on bulk STO first. Figure 6.2 below shows the DOS projected onto SrO 

and TiO2 planes. The conduction band edge mostly comes from the TiO2 layer. In Figure 

6.3(a) we show the DOS projected onto Sr, Ti and O. The antibonding Ti 3d t2g band is 

found around 2.0 eV above the valence band top energy. Meanwhile, the Sr states start 

around 5.0 eV, overlapping with the Ti e2g band. The oxygen states mainly form the top 

of the valence band, but are also found in the conduction band in the same region as Ti 

states due to p-d hybridization. However, the density is low and we have to zoom in to 

see more details (see figure 6.3(b)).  

Figure 6.2. Total DOS of bulk STO projected onto TiO2 and SrO layers. Zero of energy is 

set at the top of the valence band. 
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Figure 6.3. (a) PDOS for Sr, Ti and O atoms individually. (b) Magnified PDOS of O 

atoms (10 ×). 

Next, we consider bulk LAO. We show the DOS projected onto the LaO and 

AlO2 layers in Figure 6.4(a). The LaO layer plays the dominant role at the edge of the 

conduction band as can be seen from the prominent La peak in Figure 6.4(b). This peak 

has a significant f component and a relatively small d component. But above 5.0 eV, the 

states are composed almost entirely of the La d-orbitals. Here bonding is between La and 

O atoms and Al appears to be in the ionic limit.  

Figure 6.4. (a) Total DOS of bulk LAO projected onto AlO2 and LaO layers Zero of 

energy is set at the top of the valence band. (b) PDOS of bulk La, Al and O 

atoms individually. 
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6.3 BAND OFFSET AND ORBITAL ANALYSIS FOR SRTIO3/LAALO3 SUPERCELL 

We show the total DOS of a QW structure projected layer-by-layer in Figure 6.5 

(a). The valence-band offset between LAO and STO is -0.2eV and this is in agreement 

with previous calculations. Albina et al. report a valence-band offset of -0.3eV~-0.4eV, 

with the same DOS approach by comparing valence band edges [152]. Using the 

reference potential method, Lee and Demkov found a -0.1 eV valence-band offset [153]. 

Pentcheva and Picket calculated the band offset using the difference between the O-1s 

core level in bulk-like regions of two oxides. With the energy difference from the valence 

band top and core level in bulk, they obtain a band offset of -0.15eV [154].  

Due to the inability of the LDA to give a correct band gap, the conduction band 

offset taken directly from the calculation is not reliable. We first use the metal-induced 

gap states (MIGS) model to estimate the conduction band offset [155,156]. In this model, 

the conduction band offset between two semiconductors is given by 𝜙 = (𝜒𝑎 − 𝛷𝑎) −

(𝜒𝑏 − 𝛷𝑏) + 𝑆(𝛷𝑎 − 𝛷𝑏), where 𝜒 is the electron affinity, 𝛷 is the charge neutrality

level (CNL) measured from vacuum level, and S is the pinning parameter of the wider-

gap semiconductor. If 𝑆 = 1, the offset is given by a difference in electron affinities, 

which is called the Schottky limit and no pinning happens. On the other hand, when 

𝑆 = 0, the strong pinning controls the charge neutrality level line up and this is called the 

Bardeen limit. Generally, the pinning parameter can be estimated by an empirical 

formula: 𝑆 =
1

1+0.1(𝜖∞−1)2
 [157], where 𝜖∞  is the high frequency component of the 

dielectric constant. The electron affinities of STO and LAO are 3.9 and 2.5 eV, 

respectively [157,158]. The CNL is the Fermi level of the ideal surface and is associated 

with the branch point of the complex band structure of the bulk. It can also be calculated 

using the bulk Green’s function [159]. Demkov and co-workers estimated the CNL of 

STO to be 5.9 eV below the vacuum level by adopting the complex band structure 
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method [160], while Peacock and Robertson obtained the CNL of LAO to be 3.8 eV 

above the valence band maximum, or 4.3 eV below vacuum level from shifted LDA 

bands [158], considering the experimental band gaps of STO and LAO are 3.2 and 5.6 

eV. Thus, in the Schottky limit, the conduction band offset between STO and LAO is -1.4 

eV while in the Bardeen limit, the CBO is 0.2 eV. Actually, Peacock and Robertson also 

gave an approximated S value as 0.53 [158] and with this, CBO is calculated as -0.85 eV. 

It is interesting to point out that through pure serendipity this is close to our value of -

1.25eV from the DOS analysis.  

As the f-peak in LaO is very large it dominates all other states making the 

visualization hard, therefore, we remove the f component in LAO in Figure 6.5(b). If one 

looks at the energy window from 0 to 1eV, the gap states appear in the interface LaO 

layer but then vanish quickly, deeper in the LAO bulk. These states have mainly d-

character and they are STO-originated Ti-d evanescent states as they decay very fast 

away from the interface. The complex band structures of La2O3, -Al2O3 and STO 

suggest the decay lengths of 3.6, 2.8 and 2.0 Å, respectively [160]. This is consistent with 

the situation at the STO/LAO interface. 
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Figure 6.5 (a). Total DOS of the LAO/STO QW, layer by layer. (b) Total DOS of QW, 

layer by layer without La f components. DOS on 3 LaO layers are magnified 

by 5 times to show evanescent states, which is highlighted by square box.  

To compare with the measured EELS O K edge (that records the dipole transition 

magnitude from O 1s →2p), we calculate the O-p PDOS in a QW layer by layer. The 

result is shown in the left of Figure 6.6. Clearly, the p-states within the energy range from 

0 to 1eV are located only in the LaO layer at the interface. Compared with the EELS 

spectrum on the right, these states may correspond to peak a as the height decreases 

gradually and disappears eventually when it goes to bulk LAO. This effect is more 

evident from p-type interface side. Nevertheless, peak a disappears completely within 

two LaO layers (a unit cell) in experiment, while in the calculation one layer (half a unit 

cell) is enough for it to decay. 
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Figure 6.6. p-PDOS of QW, layer by layer and experimental EELS O K edge. 

It is well known that a two-dimensional electron gas (2DEG) may form at the n-

type LAO/STO interface and electrons occupy the Ti-d states [92].Therefore, it is of 

interest to look at the orbital composition of the states near the Fermi level in the well. In 

Figure 6.7 we show the Ti-d DOS projected onto three different layers going from the 

interface to the bulk. At the interface, the occupied d-states are mainly 𝑑𝑥𝑦 orbitals, and 

further away from interface, 𝑑𝑥𝑦 and 𝑑𝑦𝑧/𝑑𝑥𝑧 contributions are almost equal to each 

other.  
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Figure 6.7. Ti-d PDOS of QW, layer by layer. 

Finally, for the most bulk-like layer, the contribution of the 𝑑𝑦𝑧/𝑑𝑥𝑧 is larger 

than 𝑑𝑥𝑦. We can get a direct view of the 2DEG, by plotting the 3D charge density 

projected on the occupied conduction bands (from -0.5eV to 0 in Figure 6.8(a)). The 𝑑𝑥𝑦 

character of the charge distribution in the interface layer is clearly seen. Also, in Figure 

6.8(b) we show a cut through the charge distribution with an yz/xz plane. The 

distinctively 𝑑𝑦𝑧/𝑑𝑥𝑧-like character is observed in the bulk region. Furthermore, if we set 

the density range to a relatively low value, even the evanescent states in the LaO layer 

could be captured, though it is a little hard to see (Figure 6.8(c)). From the DOS (Figure 

6.8(d)) we conclude that the evanescent state is a combination of the f and d states. The d-

states have the 𝑑𝑥𝑦 character (not the 𝑑𝑦𝑧/𝑑𝑥𝑧) suggesting that this is a decaying state 

of the STO 2DEG. It should be pointed out that the charge itself is due to the 

stoichiometry of the well (it has one extra TiO2 plane) and not due to a polar catastrophe 

or doping. 
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Figure 6.8. (a) 3D charge density of electron gas. (b) 2D yz plane of the electron gas (c) 

Same as Figure 8(b). Color bar range is from [0, 10%]. (d) PDOS of 

evanescent states highlighted by square box in Figure 6.8(c). 

6.4 EELS MODELING FOR SRTIO3/LAALO3 SUPERCELL 

Figure 6.9 below shows the Z+1 approximation results for the O K edge in bulk 

STO computed with different cell sizes. At the site of interest, oxygen is replaced by 

fluorine. Zero energy is set at the Fermi level and the bulk sample experimental result is 

in the top panel for comparison. Here, we align the first peak for all data, as we are 

mostly interested in the peak separation. From the figure, we can see the three main peaks 

within the 15 eV energy range in good agreement with experiment. Overall, the peak 

position and separation looks reasonable even for the smallest simulation cell. 

Theoretically, results appear to converge with the cell size (the larger the cell the better 

the k-point sampling). The peak separation however, appears to be consistently 

underestimated. However, this may be a matrix element effect. Also, we will need to 

average the PDOS computed for different oxygen atoms in the same plane. As you can 

see the degeneracy is lifted in the p-shell, but this is because this is just one atom. 
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Figure 6.9. Computed O K edge spectrum in bulk SrTiO
3
 as a function of the simulation 

cell size. 

Next we show the Z+1 approximation results for the Ti L2/L3 edges in figure 

6.10. The zero energy is set to the Fermi level and the first peak is aligned to experiment. 

We should point out that in the experimental data there are four peaks, of which two are 

L2 and the other two are L3 peaks. This is due to the spin-orbital coupling and initial 

states for L2 and L3 peaks are 2𝑝1/2 and 2𝑝3/2. In our calculation, the spin-orbital

coupling is not considered, which results in a double degeneracy of our peaks. We can 

see that a 3x3x3 cell gives results that are closest to experiment as two peaks are almost 

at the same position. The height of corresponding peaks in experiment looks different as 

it is influenced by the matrix element |⟨𝜑𝑖|𝒑|𝜑𝑓⟩|
2
, while in calculation it is only the

density of states. From the crystal field theory, we know that the Ti d states will be split 
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into two levels due to octahedral cubic environment. At the bottom of Figure 6.10, we 

show the decomposed results of L2/L3 edges. The 𝑒𝑔 and 𝑡2𝑔 peaks are well separated 

and the crystal filed splitting is approximately 2.4 eV. 

 

Figure 6.10. Computed Ti L2/ L3 edge in bulk SrTiO3. 

 

We also have the results for the O K edge in bulk LaAlO3. As there is no directly 

related experimental data, we take the LaAlO3 layer furthest from the interface in the 

quantum well structure, as reference. The result is shown in figure 6.11 below. 
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Figure 6.11. Computed oxygen K edge spectrum in bulk LaAlO3 as a function of the 

simulatino cell size (2.0 eV broadedning is applied). Experimental data is 

shown in the top panel for comparison. 

As shown above, the bulk cell with the √2 × √2 lateral dimensions allows to 

model L2/L3 edge accurately. Therefore, results for the √2 × √2 cell of LAO4.5/STO5.5 

QW will be demonstrated in the following. Results of L2/L3 edge are shown in figure 

6.12. Because the spectrum for each layer comes from an independent calculation, there 

exists a problem of alignment. Nevertheless, since there is only one substitution out of 

200 atoms, the valence band maximum (VBM) shouldn’t change siginificantly though 

substitution occur at different layers. We check the VBM of the total DOS for each 

calculation and the band offset is indeed at most 0.1 eV. Thus we align the VBM of three 

spectra and then shift them as a whole to match the position of the experimental peaks. In 

the experiment, spectra don’t vary a lot from the interface to the bulk region and this also 

happens in our calculation.  



 116 

 

Figure 6.12. Computed L2/ L3 edge in the QW structure. 

In Figure 6.13(a) we show the results for the O K edge. It is well known that LDA 

couldn’t give a correct band gap and this problem becomes even worse when we use 

fluorine instead of oxygen. Figure 6.13(b) is the p-PDOS spectra of non-fluorine system 

and though band gap is not correct, we can easily tell the difference between LAO and 

STO band gaps. However, once fluorine is added, the difference in the band gap becomes 

pretty small. Thus we couldn’t get the conduction band offsets directly from calculation 

and had to shift the LAO part manually to make up for the band gap difference. 
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Figure 6.13. (a) O K edge for the LAO/STO QW heterostructure (broadening of 2.0 eV is 

applied). Thick soild lines are calcualted and thin lines are experiment. (b) 

p-PDOS for the LAO/STO QW heterostructure layer by layer. 

In the Z+1 approximation, even for the independent calculation, the VBM is 

almost the same (valence band offset is at most 0.2 eV). Experimentally, the valence 

band offset is around 0.1eV [161] and in real experiment the LAO band gap is 5.6 eV and 

that of STO is 3.2 eV. So we shifted LAO spectra to the right by 2.3 eV and then shift all 

calculated spectra until the first peak in the calculation aligns with the peak in 

experiment. 

In Figure 6.13(a), three peaks in STO part agrees with experiments well, just as in 

the bulk case while for the LAO part, apart from two peaks shown in bulk case, there is 

still one peak in front of the edge, which is not very clear in calculation. A possible 

explanation is that this peak comes from surface state from STO side. However, we 

didn’t capture that in our calculation. Another possible reason is that it is due to the 

diffusion of Ti atoms into the LAO region. Actually we can see the gradual decay of this 

peak when it is further away from the interface and this is more significant from the p-

type interface side as there is one more layer of LAO.  
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In conclusion, we use density functional theory and Z+1 approximation to model 

the EELS spectra of STO/LAO heterostructures. We modelled the O K and L2/L3 edges 

for bulk STO, and O K edge for bulk LAO and identified the EELS peaks and their 

orbital composition. The cell’s size effect is also investigated. We then performed similar 

analysis for a SrTiO3/LaAlO3 heterostructure. However, due to the limitations of the 

LDA, we couldn’t obtain the correct conduction band offset, which had to be included ad 

hoc. There is also one peak in the LAO O K edge structure that is out of expectation from 

calculation and it might be explained as diffusion of Ti atoms. Overall the calculation 

reproduces the experimental results reasonably well.  

6.5 QUANTUM WELL STATES IN SRTIO3/LAALO3 SUPERCELL 

In Chapter 4 we have discussed several properties of the 2DEG in transition metal 

oxide heterostructures. Here we talk about a different application of the confined 2DEG 

in SrTiO3: the creation of quantum well (QW) states. Lin et al. has explored the 

possibility of creating QW states in SrO/STO/SrO heterostructures with density 

functional theory and tight-binding model [162]. As introduced in Section 5.3, the energy 

dispersion along kx and ky of the three t2g states has the trigonometric function form. 

However, For the Ti dxy-derived band, the dominant bonding is along x and y direction, 

while coupling along the z direction is weak. Therefore, if STO is confined in the z 

direction, the dxy-spectrum is only slightly modified and change of the dxy density of 

states (DOS) profile is negeligible. However, for the Ti dxz/ dyz-derived bands, since 

coupling along the z direction is strong, the z-direction confinement will modify the dxz/ 

dyz-spectrum strongly. According to the tight-binding model analysis [162], sharp peaks 

will rise in the dxz/ dyz density of states (DOS) profile. These peaks correspond to different 

levels of quantum well states and the number of peaks depends on the STO thickness. 
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Therefore, we only focus on DOS of the dxz/ dyz-derived bands and count energy spacing 

between the sharp peaks as the observed absorption energy. 

We vary symmetric QWs composition from (LAO)7.5/(STO)3.5 to 

(LAO)7.5/(STO)5.5, which correspond to three-,four-, and five-u.c. QWs in experiment, 

respectively. In Figure 6.14(a), we plot the calculated density of states (DOS) for three-, 

four-, and five-u.c. QW heterostructures. The energy differences between the ground 

state and the first-excited state peaks in the DOS are 510 meV, 420 meV and 350 meV 

for three-, four-, and five-u.c. QWs, respectively. DFT results for the five-u.c. QW agree 

closely with our experiment while the calculated energy spacing of the three- and four-

u.c. QWs are about 0.1 eV smaller than the observed peaks in our experiment [163].  

In Figure 6.14(b), we plot the charge density of the QW subbands for an 

(LAO)7.5/(STO)4.5 QW in real space. The excess charge is introduced into the STO 

conduction band automatically via the symmetric interfaces, analogous to the n-type La 

doping in the experimental structures. In the figure, the nodal character of each subband 

is illustrated to the right of each sub-panel, indicating the shape of the corresponding 

wave function in real space. The nodal structure in our calculations is consistent with that 

of the QW wave functions, with the charge density varying sinusoidally between 

neighboring Ti atoms. The correspondence between the expected charge density for the 

QW states and the calculated charge density in our structures supports our claim that the 

sharp features we have calculated in the DOS of the STO conduction band are indeed the 

QW states we hope to probe via absorption measurements and the spacing between the 

adjacent peaks corresponds to the intersubband absorption energy in the real system.  
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Figure 6.14. Density functional theory calculations of quantum well states. (a) The 

calculated density of states (DOS) displaying the sum of dxz/yz states for 

three-, four-, and five-u.c. QW structures. The red, green, and blue arrows 

indicate the transition energy between the ground state and first-excited state 

in five-, four-, and three-u.c. QWs, respectively. (b) Charge distribution in 

real space corresponding to the five QW subbands in an (LAO)7.5/(STO)4.5 

cell. The energy of each state is labeled below the figure. Each plot is 

accompanied with its schematic wave function on the right. The width of 

each state is 0.2 eV. La, Al, Sr, Ti, and O atoms are colored as dark blue, 

magenta, green, light blue and red, respectively. 

 As explained in several theoretical reports about the STO/LAO 

system [154,164,165], in an asymmetric supercell with both n- and p-type interfaces, 

polar nature of LAO will induce an electric field inside LAO, and this will cause a 
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potential drop throughout LAO layers. Due to the periodic boundary condition limit in 

DFT calculation, in the supercell, the potential at top LAO layer should be the same as 

the bottom STO layer. As a result, to cancel the potential drop in LAO part, an electric 

field is automatically formed in STO region. This does not accurately model the reality in 

a doped-LAO/STO system, as the high electron doping density within the STO quantum 

wells will screen the electric field. Therefore, a symmetric supercell is reasonable, as it 

would introduce the n-type doping automatically, and avoid the formation of an electric 

field across the STO region. However, we also model the asymmetric (LAO)7/(STO)4 

supercell, which is exactly the same as we use in experiment. The calculated DOS is 

presented in Figure 6.15: Four QW peaks can be clearly seen, in both undoped and La-

doped supercells. The electric field in STO is 0.035 eV/Å, which is contributed by formal 

ionic charges of (LaO)
+
 and (AlO2)

-
 planes, and the polarization inside SrTiO3 and

LaAlO3. This demonstrates that the QW states also form in the asymmetric LAO/STO 

supercell, and supports our claim of intersubband transitions in LAO/STO QWs. 

Figure 6.15. The calculated density of states (DOS) displaying the sum of dxz/yz states for 

stoichiometric (asymmetric) QW structures. (a) Pure (LAO)7/(STO)4 cell. 

(b) La doped (LAO)7/(STO)4 cell. Each QW state peak is denoted by the 

black arrow. 
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