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We analyzed the effects of long-range interactions and disorder on the transport
properties of one-dimensional nanoparticle arrays. We described the Coulomb in-
teractions using an inverse capacitance matrix which we computed to include the
screening due to the nanoparticles and the leads. We calculated the threshold voltage
and the current and we investigated how temperature and variations in the junction
resistances affect these transport characteristics. We demonstrate that there are at
least two linear regimes, at voltages close to threshold and at high voltages, with
different slopes. We show that the low voltage linear regime persists over a very
small range of voltages, probably too small to be relevant for experiments, and that

the threshold voltage depends on how symmetrically the array is biased. At high
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voltage the linear conductance depends only on the resistances of the junctions and
the current has an asymptotic offset voltage that depends on the charging energies

of the nanoparticles.
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Chapter 1

Introduction

The question of how interactions connect local and global degrees of freedom is
a question central to condensed matter research. Sec. 1.1 explains why metallic
nanoparticle arrays provide exciting contexts for researching questions of this type.
Experiments on these systems combine some control over the microscopic degrees of
freedom of electrons with measurements of electronic properties that are the result
of the collection motion (or lack of motion) of many electrons. Sec. 1.2 introduces
the orthodox theory that has been used to model the electronic properties of these
systems. The orthodox model also has the potential to provide illustrative con-
nections between the local and global degrees of freedom of these systems. Sec. 1.3
gives an overview our approach for investigating the electronic properties of metallic

nanoparticle arrays and summarizes the organization of this dissertation.

1.1 Metallic Nanoparticle Arrays: Tunable Quantum
Solids

Metallic nanoparticle arrays are tunable crystalline solids consisting of nano-sized,

typically spherical, metallic particles separated by insulators and arranged in pe-



riodic lattices. They are tunable solids because many parameters that affect the
electronic proprieties of the arrays are subject to experimental control. These pa-
rameters include: the sizes of particles, the mean spacings between particles, the
dimensionalities of the systems, and the degrees of disorder in the systems. In addi-
tion, the electronic properties of these arrays can be varied by changing the materials
that compose the nanoparticles and spaces between them.

Metallic nanoparticle arrays are called quantum solids because the particles
that comprise the arrays are small enough that single charge tunneling (SCT) effects
are important. The motion between the nanoparticles is a quantum effect because
charges move between nanoparticles by tunneling through the insulators that sep-
arate them. SCT effects occur when the size of the particles is small enough that

the energy to add a single electron to a particle,
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is large enough to create a significant feedback against the motion of charges between
nanoparticles [12]. Cj is the self-capacitance of the nanoparticle and is proportional
to the radius of the spherical particles; its dependence on the size of the nanoparticle
makes it a tunable parameter. The charging energy for typical nanoparticles with

radii ranging from 1 to 10 nm is of order 0.1eV. When the temperature is very small

compared to the charging energy,

E¥ > kT,
the charging cost, E¥*!, may block the flow of charge between particles. This is
called Coulomb blockade. The theory that describes SCT effects will be discussed
in the following section. The remainder of this section gives a brief (by no means

exhaustive) overview of the fabrication techniques used to create the arrays that are



discussed in this dissertation.

One method for creating nanoparticle arrays is to let a collection of suffi-
ciently monodisperse nanocrystals in a coordinating solvent self-assemble into close-
packed hexagonal arrays. Nanocrystals are nanoparticles made of crystalline clus-
ters of atoms with diameters on the order of 1-10 nm. Because they are crystalline
arrangements of atoms, it is reasonable to approximate the electronic properties
of nanocrystals using the bulk electronic properties of the atoms that compose the
nanocrystals. One method to create nanocrystals is to thermally decompose a metal
precursor in the presence of a coordinating solvent (often toluene) and a capping
ligand, [14, p. 1]. The capping ligands are typically alkanethiols which are organic
molecules consisting of chains of methylene groups (—CHs). After the nanocrystals
self-assemble, the capping ligands set the spacing between them. The spacing be-
tween the nanoparticles can be varied by using different alkanethiols; these molecules
have been shown to vary the interparticle spacing by 1.25 A per methylene group
added to the alkanethiol [14, p. 2]. Another method is to reduce a metal (gold) salt
inside a mixture of liquid toluene and inverse micelles (water bubbles). The gold
atoms crystallize inside the micelles. The size of the nanocrystals is controlled by
adding capping ligands that bind to the surfaces of the nanocrystals and discontinue
their growth, [36, p. 6-7].

Close-packed hexagonal arrays can not form if the fluctuations in the nanocrys-
tal diameters exceed 10%. Once the nanocrystals are formed, size-selective pre-
cipitation methods can be used to make sufficiently monodisperse collections of
nanocrystals. In these methods, a chemical that lacks an affinity to the capping
ligands is added to the nanocrystal dispersion causing the largest nanocrystals (also
the ones coated with the most ligands) to precipitate out of the solution. This can
be done repeatedly in order to separate nanocrystals that differ by one atomic layer

of thickness, t = 5 — 74, [14, p. 2].



Figure 1.1: Disordered and ordered 2-D arrays from [39] and [36]. (a) Disordered array
with regions missing particles (voids) and with double layers (darkened regions). The mean
spacing between the nanoparticles in the monolayer regions is s = 0.85 = 0.1 nm. (b)
Ordered array with particle spacing, s = 1.2+ 0.1 nm. In (a) and (b), the mean radii of the
nanoparticles varied between 2.2 nm to 2.9 nm from sample to sample.

Parthasarathy, Lin, and Jaeger (2001) created 2-D arrays displaying long
range and short range order in the positions of the gold nanoparticles comprising
the arrays [39]. They fabricated the arrays by drop casting a solution of toluene
and dodecanethiol-capped gold nanoparticles of mean diameter 5 nm on top of
a Si substrate prepatterned with Cr leads. The nanoparticles were monodisperse
to within 5 % of the mean size of the particles. They increased the size of the
ordered regions by varying the evaporation rate of the toluene and by introduc-
ing more dodecanethiol. Slowing the evaporation rate increases the order of the
samples by allowing the nanoparticles more time to arrange into close-packed for-
mations. They decreased the evaporation rate by allowing the arrays to dry in a
toluene-rich environment . Parthasarathy explained that adding excess capping lig-
and (dodecanethiol) increased the order in the samples by increasing the mobility
of the dodecanethiol-capped gold nanoparticles [36, p. 16]. Particles with greater
mobility are better able to arrange themselves into close-packed formations before
the motion of nanoparticles stops when all the solvent has dried.

Quasi 1-D arrays can be formed by etching away sections of 2-D arrays. El-
teto, Lin, and Jaeger (2005) created the quasi-1-D arrays shown in Fig. 1.2(a) from

monolayers of gold nanocrystals [18]. After the monolayers dried, they drew lines in



the monolayers using a focused electron beam (e-beam). The e-beam cross linked the
capping ligands without affecting the positions and sizes of the nanoparticles thus
enabling the treated ligands to resist dissolving in heated toluene. After the mono-
layers were washed in heated toluene, all the nanoparticles were removed except for
the ones in the regions exposed to the e-beam.

Another way to create quasi-1-D and 1-D arrays is to let nanoparticles self
assemble while they are dispersed in a dielectric fluid that is subject to an electric
field. Bezryadin, Westervelt, and Tinkham (1999) used this technique to create the
carbon nanoparticle chains shown in Fig. 1.2(b). They immersed a Si substrate
prepatterned with Cr leads into a suspension of carbon nanoparticles in toluene.
They applied a field between the electrodes until a jump in the current occurred
indicating the formation of a chain of nanoparticles connecting the leads.

Another way to create 2-D and 1-D arrays is to combine e-beam lithography
techniques with an ionized beam deposition method [7, 8]. This technique can be
used to make very narrow 2-D arrays and 1-D arrays. In this technique, an e-beam
is used to draw a thin line in photoresist. Then, AuPd atoms are evaporated through
an electron beam while an accelerating voltage is applied to the sample. The atoms
nucleate into small islands after being deposited on top of the sample. After liftoff,
only the grains lying on the resist region remain. This technique can be used to
fabricate channels of grains that are only one grain thick. See Fig. 1.2(c).

This selection of techniques illustrates how nanoparticle arrays are tunable
systems that can be used to enhance our understanding of electronic transport. The
barriers that single electrons face as they move through nanoparticles can be actively
varied by changing the sizes and spacings between nanoparticles and by varying the
degree of disorder in the arrangements of the nanoparticles. The measured responses
of charges to electric fields applied across nanoparticle arrays are collective effects

caused by the motion of many electrons that influence each other via long range



Figure 1.2: One-dimensional (1-D ) and quasi-1-D nanoparticle arrays. (a) A quasi-
1-D array from [18] composed of 5.5 nm gold nanoparticles with 5-7% dispersity spaced
1.3 nm apart on average. The array spans a 30 nm gap between two planar Cr electrodes.
(b) A chain of graphitized carbon nanoparticles with diameter, d ~ 30 nm, from [4]. The
chain of length, L ~ 1.2um, connects two Cr electrodes. (¢) A 1-D array of 13 gold grains
of mean radius, r ~ 3nm, between two electrodes from [8].

Coulomb interactions. The ability to tune the barriers faced by single electrons
while measuring the currents and fields created by many electrons allows us to
investigate how interactions mediate microscopic and mesoscopic degrees of freedom.
The following section discusses a standard model for single electron tunneling that
can be used to predict the flow of charges through nanoparticle arrays as functions

of the tunable parameters discussed in this section.

1.2 Orthodox Model of Single Charge Tunneling

The orthodox model is a quasiclassical description of single electron tunneling through
tunneling barriers with large resistance, R, and very small capacitance, C. The
model is quasiclassical because charges are allowed to tunnel through barriers that
are classically forbidden, yet the numbers of charges on each conductor and the
interactions among the charges are treated as classical variables. The orthodox

expression for the average probability that a single electron will tunnel through a



barrier separating two adjacent conductors is given by

1 AE

Lisit1 =

AFE = Ef— E; is the difference between the values of the total electrostatic energy of
the system before and after the tunneling event. This section discusses the main as-
sumptions of the orthodox model and the length scales of systems of conductors that
are well described by this model. It concludes with a discussion of how the orthodox
model can be used to model the electronic properties of nanoparticle arrays.

The charges are approximately localized on each nanoparticle when the en-
ergy fluctuations due to the typical lifetime of a state are very small compared to
the typical energy cost of adding a single charge to a nanoparticle, E%*! = ¢2/(2C)
[12]:
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In Eqg. 1.1, the typical duration of an excess charge on a nanoparticle is taken to be
the RC time, dt = RpC, where Ry is the resistance of the tunnel barrier surrounding
the nanoparticle. Resistance values that satisfy Eq. 1.1 are very large compared to

the quantum resistance R,
Rr > Rg = h/e* =~ 25.80 .

When Eq. 1.2 is satisfied, the tunneling of charges between two adjacent nanoparti-
cles can be treated as a perturbation. The Fermi golden rule approximation for the

average tunneling rate between two adjacent sites within an array with N sites is



given by [30]
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r = 7 | Tl? ¢ f(€)[1 — fep)] (1.2)
i, f

x 0{(E(ni,...,n4...,nN) + &) — (E(ny,...,npx1,...,nn5) +€f)} -

f(e:) and f(ef) are the Fermi functions of the initial and final sites of the tunneling
event and {ni...ny} are the number of excess charges on each site. The product
involving the Fermi functions determines the probability of finding an occupied state
on the initial site and an empty state on the final site of the same energy . The
initial and final states are assumed to be equilibrium states. This is true when the
time between hops, tpep, is large compared to the time for the charges to relax to

their electrostatic equilibrium positions, t,¢jq,:
thop > trelax -

Eq. 1.2 describes elastic collisions. Inelastic collisions that exchange energy between
the system and its environment are not included. E; and E; are the initial and final
free energies of the system due to the electrostatic interactions among the charges
in the system. These interactions create a relative shift in the Fermi energies of
the two sites that can enable or prohibit tunneling depending on whether or not
occupied states align with vacant states of the same energy.

Metals can be treated in the continuum limit when the spacing between

energy levels near the Fermi level is small relative to the charging energy:
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In this limit, Eq. 1.2 can be integrated and the result is the orthodox tunneling rate:

Iy = ﬁ/deidfff(fi)[l — flep)]

X (5{(E(n1,...,ni...,nN)+e,~) —(E(nl,...,nf:tl,...,nN)+6f)}

1 AF; yix1
= where AE; ;11 = Ef — E; . (1.3)
D) NN 1—it1 f %
BT 1 — exp (S5 )

The tunneling matrix elements and the density of states are included in the tunneling
resistance, R}l =47 N TRE?I. The tunneling matrix elements are assumed to be very
small and nearly equal to a constant near the Fermi level such that ) |Tk\z2, ;= NT.
The tunneling resistance can be defined phenomenologically for a specific tunnel
junction by measuring the current, I, across the junction when the junction is
biased by a unit potential: I ~ eI’ = (Ry) ! [12]. The orthodox tunneling rate,
Eq. 1.3, does not include cotunneling events that involve the motion of more than
one electron at one time through different barriers as a result of a single coherent
process. The rates of these processes are roughly a factor of (Rg/Ry)"~! smaller
than the orthodox tunneling rates where N is the number of charges that move as a
result of a cotunneling process [31]. Systems that are well described by Eq. 1.3 have
large enough tunneling resistances (Eq. 1.2) that cotunneling effects are negligible.

Eq. 1.3 expresses the average tunneling rate as a function of temperature,
T, and the change in the total electrostatic energy of the system before and after
the tunneling event, AF. Raising the temperature increases the tunneling proba-
bility because thermal fluctuations create occupied (vacant) states above (below)
the Fermi levels of the nanoparticles. The tunneling probability increases as AFE
decreases. When the temperature is very small compared to the charging energy,

kT << E®*!, the tunneling probability is only finite when tunneling lowers the free



energy of the system:

EQ%T|AEZ'_>Z':|:1| when AE; ;41 <0.

0 when AEiﬁi:I:l > 0.

~

Disiv1 =

Eqg. 1.2 is exact when the temperature is at absolute zero. Coulomb blockade occurs
when charging costs (AFE > 0) inhibit the ability of charges to tunnel between neigh-
boring sites. Coulomb blockade can be overcome by applying currents or potentials
that modify the potentials across junctions such that AE < 0.

The orthodox tunneling rate is the tunneling probability associated with a
single charge tunneling through a singe tunnel barrier. When currents flow through
nanoparticles arrays, many charges tunnel through many tunnel barriers. Two ways
to extend the orthodox model to these systems is to use a master equation approach
and to conduct Monte Carlo simulations. The master equations for systems that
involve multiple junctions become too complex to make analytical predictions for
arrays with more than a few tunnel junctions.

Monte Carlo methods can be used to simulate the motion of charges through
many junctions. These methods iteratively simulate the stochastic tunneling events
that underly the values of time-averaged quantities such as the average current
through the array, the average current through a junction, the average potential
across a junction, etc. During each iteration of the simulation, a tunneling event is
selected, the charge state of the arrays is modified to reflect the selected tunneling
event, and the average time interval between successive tunneling events,tsp, is
calculated. The iterations are repeated until the time-averages of the quantities of
interest have converged.

During each iteration, the orthodox tunneling expression is used to select the
tunneling event and to calculate t5,,. One begins by calculating the energy costs,

AFE;, associated with every possible tunneling event that can occur across the N;
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junctions in the array. Since the charge at each nanoparticle is known at all times,
AF; can be determined using an appropriate model for the electrostatic interactions
among the charges on the array. A discussion of the various models of electrostatic
interactions that have been used to model transport through nanoparticle arrays
is included in Sec. 2.1. Using AF; and Eq. 1.3, one calculates the probabilities
associated with every possible tunneling event and then maps these probabilities on
to a number line comprised of segments of lengths proportional to all the tunneling
events. During each iteration of the simulation, a random number generator selects a
random number that falls inside a bin on the weighted number line that corresponds
to a specific tunneling event between sites ¢ and 7 £+ 1. The selected event is used to
modify the charges on the array such that Q; — @; — 1 and Q;4+1 — Q;+1 + 1. The

total tunneling probability due to all the possible events,

N;
+
Lior = Z F,’ ’
i=1

is related to the probability, P, that any process will occur in a time interval, #5p,
by
P = exp (—Toithop) -

Whether or not a process occurs in any time interval is a stochastic process. To
model the average time, tj,,, associated with this process, one can select a random
number between 0 and 1 and use this number and Eq. 1.2 to determine .
Monte Carlo simulations powered by the orthodox tunneling rate have been
used in many works to model the the electronic properties of metallic nanoparticle
arrays. See for example [32, 35, 33, 9, 2, 29, 26, 24]. The convergence between
theory and experiments has been complicated by the complexity of the Coulomb
interactions among charges occupying actual nanoparticle arrays and by the com-

plexity of the disorder in the arrays. A variety of different predictions have been
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Figure 1.3: 1-D arrays of N spheres of radii, r;5, sandwiched between two large spherical
leads of radii, Rjqq (not drawn to scale).

made by different works that use different models for disorder and for the Coulomb
interactions among charges. These models are discussed in Sec. 2.1. The threshold
predictions that have been made using these models are discussed in Sec. 3.1. The
current-voltage characteristics that have been predicted and justified using these

models are discussed in Sec. 4.1.

1.3 Overview of our approach and the organization of

this thesis

We have investigated how realistic models of Coulomb interactions and of disorder
affect the electronic properties of 1-D nanoparticle arrays. We modeled long range
Coulomb interactions that include the screening due to proximity of other conductors
(the nanoparticles and the leads) by determining the inverse capacitance matrices
of systems of N spheres of radii, r;5, representing the nanoparticles sandwiched
between two large spheres of radii, Rjeqq = 10075, that represent the leads. See
Fig. 1.3. To investigate the effects of array length, particle size, and spacing on
Coulomb interactions, we calculated the inverse capacitance matrices for several NV

and several d, the spacing between the closest surfaces of adjacent spheres. Along
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with including the leads in our inverse capacitance calculations, we developed a
method for describing the leads as non-ideal voltage sources that have potentials that
fluctuate in the response to changes in the charge states of the arrays. Ch. 2 discusses
the models that have been used to describe disorder and Coulomb interactions in
nanoparticle arrays. This chapter also discusses how we model these effects and
compares our approach to other models.

We use the orthodox model coupled with this description of the Coulomb
interactions to model electronic transport through the 1-D arrays. Ch. 3 focuses
on the work we did to understand the static states of the arrays. We investigated
how disorder, particle size, particle spacing, and long range Coulomb interactions
affect the state of the arrays at their threshold voltages and at voltages smaller
than the threshold voltages. At zero temperature, the threshold voltage is the
minimum applied voltage that allows a current to pass through an array. To better
understand how the local characteristics of arrays relate to the characteristics of
the arrays taken as a whole, we calculate the probability distributions of the static
potential gradients across individual junctions between neighboring spheres at the
threshold voltage and voltages leading up to the threshold. To investigate the effects
of long range Coulomb interactions, we analyzed and compared the static states of
systems with spacings comparable to experiments, d/r*! = 0.5, with systems with
very short range Coulomb interactions. To investigate the effects of disorder, we
analyzed and compared the properties of systems with and without disorder.

Ch. 4 discusses our work on the dynamic states of the arrays. Similar to
our approach in Ch. 3, we compared the behavior of systems with and without
disorder and with and without long range Coulomb interactions. We studied how
the scaling of IV curves is affected by applied voltage, particle size and spacing,
and the presence and absence of disorder. As in Ch. 3, we investigate how these

array characteristics relate to the characteristics of individual array junctions by
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calculating the probability distributions of the time-averaged potential gradients
across array junctions.
Ch. 5 summarizes our results and conclusions and discusses avenues for future

work.
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Chapter 2

Models of Electron Transport in
Metallic Nanoparticle Arrays

Single charge tunneling (SCT) effects, long range Coulomb interactions, and disorder
complicate models of transport through nanoparticle arrays. This chapter discusses
methods for incorporating these effects into the orthodox model discussed in Sec. 1.2.
Sec. 2.1 reviews a selection of theoretical models that describe Coulomb interactions
among charges on nanoparticle arrays and that model different types of disorder. In
Sec. 2.2, I discuss our model for transport. The new features of our model include a
realistic treatment of the biasing leads and expressions for the free energy that make

the interactions among the charges on the array and the leads more transparent.

2.1 Background

2.1.1 Models of Electrostatic Interactions

According to the orthodox model, the probability of tunneling between two neigh-
boring conductors is a function of the change in the electrostatic energy of the

system, AF, as a result of the tunneling event. The model treats the charges at
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each conductor as well-defined quantities that can be used to determine AFE prior
to each hop. At any given time between tunneling events, the total electrostatic
energy of a nanoparticle array composed of N nanoparticles and a source and drain

lead is given by

E = %i Qi¢; + terms involving the leads .
i=1

Most models divide the total electrostatic energy between terms that describe inter-
actions among charges on the nanoparticles and terms that describe interactions that
involve charges on the leads. The nanoparticles and the leads are treated differently
for several reasons. One reason is that the leads and the nanoparticles have very
different capacitances because the leads tend to be much larger than the nanoparti-
cles. Another reason is that the leads are either voltage or current biased. They are
connected to batteries that either maintain or effectively maintain their potential
values, whereas the nanoparticle potentials vary each time the charge configuration
of the array changes. Because the leads are connected to batteries, the charges on
the leads can vary discretely and continuously; the charges on the nanoparticles only
vary discretely in integer amounts of e. In both cases, the discrete changes are a
result of tunneling events. The lead charges vary continuously because the batteries
bias the leads by transferring charge to and from the leads and by polarizing the
charge on the leads.

In general, the charges and the potentials of N conductors are related by the

capacitance matrix and its inverse:

N
Qi=)_ ¢iCi; (2.1)
=1
NJ
$i=Y C;jQj. (2.2)
j=1
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The capacitance matrix is a function of the relative positions and sizes of the conduc-
tors. When this matrix is determined exactly, its elements describe all the screened
interactions among the charges on the N conductors. The matrix element C;; is
the induced charge at conductor ¢ when all the conductors are grounded except
conductor j which has a unit potential. Cj; is positive when 7 = j and negative
otherwise because conductors with positive unit potentials induce positive charges
on themselves and negative charges on nearby grounded conductors. Similarly, the
matrix element Cz-jjl is the induced potential at conductor ¢ due to a unit charge
at conductor 7 while the remaining conductors are neutral. Cijjl is always positive.
When screening is negligible, Cijjl varies with r; ;, the distance between conductors
1 and j, in the same way that the potential of a point charge varies with distance,
Cijjl X Ty ]-1. When screening is important, Cijjl is a more complicated function of
Tij-

Likharev, Bakhalov, Kazach, and Serdyukova (1989) [32, 10] used an infinite
periodic array of capacitors (Fig. 2.1) to model one-dimensional (1D) nanoparti-
cle arrays. The capacitors in the network are of two types, C and Cj, where C
is the mutual capacitance between nearest neighboring conductors and Cy is the
self capacitance of a nanoparticle. They do not include capacitors that model the
capacitative coupling between conductors that are not nearest neighbors. In terms
of C' and (), they estimate the capacitance matrix of the 1-D array in the following
way 1:

Co+2C wheni=j
Cij =4 -C wheni=j+1

0 otherwise

'Eq. 2.1.1 is consistent with equation (7) in [32], but inconsistent with equation (2) in the same
reference. In the limit of Co < C, the capacitance elements in equation (2) in [32], Ci; = Co and
Ci,j+1 = C, are unphysical because the definition of C; ; requires that |Ci ;| > |C; j2i|- In general,
the diagonal elements of capacitance matrices of this form equal Cy + nC where n is the number
of nearest neighbors surrounding a conductor.

17



The inverse of this matrix has off-diagonal elements that decay exponentially over
a characteristic length, M:

1
-1 _ . .
Cij = THGXP(—V—JVM)

where M and C¢y; are given by

M_lzln<%> ~ %whenC>>C0
eff — L0

and
Cefp = \/Cg +4CCy .

Ceyy is the effective capacitance of the network of capacitors shown in Fig. 2.1(a).
Fig. 2.1(b) shows how the periodic symmetry of the network can be used to de-
termine Cry. Unlike the capacitance matrix in Eq. 2.1.1, the inverse capacitance
matrix, Eq. 2.1.1, has many off-diagonal elements that are finite-valued. Despite
the form of the capacitance matrix, Coulomb interactions in this model are not re-
stricted to onsite and nearest neighbor interactions unless M < 1. By definition,
Eq. 2.1.1 is the potential distribution that is induced by a single excess charge.
Likharev, et al. call this distribution a soliton, and M, a soliton length, because the
potential distribution maintains its shape as long as the charge carrier is far from
the edges of the array [32].

Likharev, et al.[32] numerically determined the DC characteristics of the
array using a Monte Carlo simulation and the orthodox expression for the tunneling
rate between two neighboring conductors, Eq. 1.3. At each instance, the charges on
the N nanoparticles, Q1.Q2. ...,Qn, are known and the charges on the source and

drain leads are given by

Q+ = C(¢1— o) —emy
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Figure 2.1: Effective circuit model for 1-D nanoparticle array C and Cy are the mutual
capacitance between nearest neighboring islands and the self-capacitance of the islands.
islands. C}, is an infinite periodic network of capacitors. The effective capacitance of the
network in Fig. 2.1(a) equals Cery = Co + 2C}. The periodic symmetry of Cj, can be used
to show that C; ' = C~1+(Co+C})~!. See Fig. 2.1(b). This figure is modeled after figures
in [32] and [10].

Q- = C(dns1—¢n) +em-

where m, (m_) is the number of electrons that tunnel through the junction closest
to the source (drain) lead. They use the inverse capacitance matrix, Eq. 2.1.1, and
Eqg- 2.2 to solve for the charges on the leads and the potentials at each nanoparticle
given the numbers of charges at each nanoparticle, the number of charges that have
tunneled into and off the array (m4 and m_), and the applied potentials at the

source and drain, V. and V_. They express the total electrostatic energy as

N
E=2Y02+2Y (i —di1)’ —ViQs —V-Q_.

i=1 i=1

The potentials on the source and drain leads are treated as constants because the
leads are connected to batteries and because they are assumed to have infinite
capacitance. Prior to each tunneling event, they calculate the tunneling probabilities
of each possible hop using the orthodox tunneling rate, Eq. 1.3, and AE = E; — E;
where Ey¢ (E;) is determined by using Eq. 2.1.1 and the charges on the array after
(before) each possible hop. The Monte Carlo method used to model the average
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current through the array is described in detail in Sec. 6.1.

Many works [11, 35, 34,4, 9, 2, 3, 29, 26, 24, 28, 47] have applied the approach
pioneered by Likharev, et al. to model the interactions and dynamics of 1-D arrays
because the simple form of Eq. 2.1.1 and Eq. 2.1.1 allows for a ready calculation of
Ci,j and Cijjl for very large arrays. Some works [34, 26] focus on Coulomb interac-
tions where M is much larger than the size N of the array. Other works focus on
the opposite where the soliton length is very small compared to the length of the
array, [35, 24, 3, 47].

Middleton and Wingreen (1993) [35] added charged background disorder to
the soliton model. They used Eq. 2.1.1 for their inverse capacitance matrix and
they numerically found transport and threshold results over a wide range of soliton
lengths. They also obtained analytical results in the onsite limit:

Cl=

2%

00(52',]' .

They justified the onsite limit by including a large grounded back gate to their model
to screen out long range Coulomb interactions. They expressed the total free energy
of N nanoparticles sandwiched between a source and drain lead and adjacent to a

large back gate as
al N
FE= Z (Qz + qZ)CzTJl(QJ =+ q]) + VLQL + VRQR + Z V'iesctQi
ni=l i—1
where

xr
VEr=3"Cp > C V.
z J

Q; are the excess changes on the N nanoparticles and ¢; are offset charges that
model random background disorder. The following section discusses disorder models

in more detail. In Eq. 2.1.1, C, is the mutual capacitance C and the sum over z
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is a sum that includes the source and drain leads with potentials V7 and Vxr and
the grounded back gate with potential Vo = 0. The sum over j in Eq. 2.1.1 is
a sum over the charges that are adjacent to each lead. The leads were assumed
to have infinite self capacitances and potentials fixed to bias values. Including
disorder led to new results on the relationship between the threshold voltage and
the lengths of nanoparticles arrays. The threshold voltage is the smallest applied
voltage that overcomes the Coulomb blockade that prevents the flow of current
across nanoparticle arrays. Likharev, et al. predicted that the threshold voltage is
largely independent of the array length measured in the numbers of nanoparticles,
N. Middleton and Wingreen found the threshold voltage is proportional to .

These threshold results and other predictions are discussed in Sec. 3.1.2.

2.1.2 Models of Disorder

Nanoparticle arrays can be fabricated that exhibit periodic symmetry over many
nanoparticles. Despite this symmetry, there are several types of disorder that keep
arrays from being perfectly symmetric. The main types of disorder are structural
disorder and charged disorder. Structural disorder includes fluctuations in the sizes
of and spacings between the nanoparticles. It also includes voids, regions of the lat-
tice that are missing one or more nanoparticles. Charged disorder is due to randomly
scattered, charged impurities lodged in the materials surrounding the nanoparticles.
This section discusses how disorder of different types has been incorporated into
models of nanoparticle arrays.

Middleton and Wingreen (MW) [35] were the first to incorporate charged
disorder in models of charge transport through one-dimensional (1-D ) and two-
dimensional (2-D ) nanoparticle arrays. They included offset charges to each nanopar-
ticle that represented the induced charges due to charged impurities in the substrate.

These charges assumed random values between 0 and e. The values vary continu-
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ously in this interval because they are the result of the polarization of each island by
the potentials created by nearby charged impurities. They are constrained within
this interval because mobile charges lying on the nanoparticles tunnel when the po-
tential difference between a pair of neighboring particles becomes larger than the
charging energy E¥! = ¢2/2Cy. Including these charges leads to a linear relation-
ship between the threshold voltages of arrays and their lengths. This threshold
dependence is discussed in more detail in Sec. 3.1.2.

Kaplan, Sverdlov, and Likharev (2003) [26] developed a numerical algorithm
to determine the offset charges when interactions among charges are long range.
The algorithm determines the equilibrium configuration for the mobile charges that
screen out the induced charges due to charged impurities in the substrate. They
add charge to each island until doing so no longer lowers the total electrostatic
energy, Fyy, of the system. Then they let mobile charges hop between neighboring
sites until F;, stops decreasing. They alternate between adding charges and letting
them move until E},; assumes its minimum value. The final result is the annealed
state of the mobile charges after the system has relaxed to its global equilibrium
state. This approach finds offset charges whose values are influenced by interactions
with other offset charges. They statistically analyzed the distribution of energies to
add charge to each site, £%% when arrays are in their annealed states in order to
determine the density of states of the arrays. They defined the density of states as
the derivative, § P(E%)/§E*, where P(E®4) is the distribution of probabilities
associated with each value of E®“. They found a suppression of the density of
states at small values of E%%. They called this a Coulomb gap and remarked
that this gap is the sequential tunneling (ST) version of the Efros-Schlovskii (ES)
Coulomb gap. The main differences between ST and ES Coulomb gaps are that
the former only include hops between adjacent sites whereas the ES model is a

variable range hopping model. Also, the ES model uses an unscreened form for
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the Coulomb interactions among charges (¢ oc r~!) whereas the ST model includes
screened interactions among charges. They calculated the temperature dependence
of the zero bias conductance, Go(T), and found that it did not have the Efros-
Schlovsii dependence: Go(T) o exp(—(Ty/T)"/?. Instead, for both the 1-D and
2-D cases, they found that G((7T) followed an Arrhenius dependence: Gy(T')
exp(—Uy/(ksT)) where Uj is an energy barrier that thermally activated charges
overcome to generate current. They determined Uy for arrays of varied length; for
each length, they averaged over many configurations of disorder. They called Uj a
soft barrier because they found that it was smaller than £ the maximum value

of E%4 for all arrays. They expected Up to equal E% if disorder created a hard
profile of energy barriers because in this case E%9¢ equals the largest barrier charges
must overcome to enable current flow. They attributed the small size of Uy to
thermally injected charges modifying the distribution of array potentials away from
the annealed distribution [26).

Elteto, Antonyan, Nguyen, and Jaeger (2005) [17] analytically found the
probability distributions associated with the potential differences due to disorder for

1-D and 2-D arrays with onsite interactions, Eq. 2.1.1, and with nearest neighbor

interactions:
-1 . .
Cy when i = j

C;/=4 C' wheni=j+1
0 otherwise
Unlike the soliton model (Eq. 2.1.1), Eq. 2.1.2 is truncated to exclude interactions
among charges on nanoparticles that are spaced farther than one site apart. Like
Middleton and Wingreen, they modeled charged disorder using offset charges, g;.
They allow the offset charges to vary stochastically between +e/2. They expressed
the potential differences across each junction in terms of the offset charges, ¢;. For

example for 1-D arrays, the potential difference across the junction between sites %
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and ¢ — 1 equals
o = 2B (1 — ) (g — ¢i-1) = %5 (¢i — ¢i-1) (2.3)

where v = Cy/C. They used properties of random numbers to derive analytical
expressions for the distribution of probabilities, P(®%9), associated with each value
of ®%$ between +®%* for 1-D and 2-D arrays. In the limit of onsite interactions

(v = 0), they found that this distribution equals

P(@dis) _ 1 <1 |q)di5| ) ]

T Hdis T Hdis
QMAX (I)MAX

For v # 0, they focus on the shape of P(®%*) near small values of ®%¢ because
junctions with small disorder potentials are most sensitive to thermal fluctuations.
They use P(®%* = 0) to approximate the shape of the distribution for small values
of ®%5. For 1-D arrays, they found P(0) to equal 2

P(0) = %@81% for y<1/3.

They use these distributions to predict how the threshold of arrays respond to
increases in temperature. These threshold predictions are discussed in more detail
in Sec. 3.1.2. Sec. 2.2.2 compares Elteto, et al.’s results to our disorder results.

The works previously discussed in this section investigated the effects of
charged disorder while ignoring the effects of structural disorder. The remaining
works discussed in this section focus either on structural disorder or a combination
of charged and structural disorder.

Cordan, Goltzene, Herve, Mejias, Vieu, and Launois (1998) [8] numerically

investigated how variations in the spacings between nanoparticles affect transport

’Eq. 2.1.2 and Eq. 2.3 are written in units of E*! for easier comparison with our results. In [17],
the same expressions are written in units of e’Cy ' = 2E%*!.

24



through nanoparticle arrays. They did not include charged disorder in their model.
They derived approximate analytical expressions for the mutual capacitance, C, of a
pair of nanoparticles and the tunneling resistance, Ry, of the barrier between them
in terms of the radii of the nanoparticles, r, and their spacing, d. They used these
expressions to include variations of Ry and C into their numerical model due to
particles of equal radii,r, with randomly varied spacings, d, whose size relative to r
and acceptable range were justified by their experimental parameters: (d)/r ~ 1/3
and (d) = 2.5+ 0.2 nm. They investigated how variations in d affect the total array
resistance and the zero temperature threshold of 1-D and 2-D nanoparticle arrays.
In later works [38, 9], they used the same model of structural disorder to investigate
the temperature dependence of 1-D and 2-D array thresholds.

Jha & Middleton (2005) [24] expanded the Middleton & Wingreen model by
including some types of structural disorder. They focused on the limit of onsite
Coulomb interactions, Eq. 2.1.1. They used the same model for charged disorder as
Middleton & Wingreen. In addition, they randomly varied the onsite capacitances,
Cy, of the nanoparticles in Eq. 2.1.1. These fluctuations model changes to the charg-
ing energies of the islands due to variations in the sizes of the islands and variations
in their coupling to the back gate. They also treated the tunneling resistances as a
log normal distribution. This models fluctuations in the spacings between nanopar-
ticles since the sizes of the tunnel barriers are exponentially related to the tunneling
resistances. They found that charged disorder was the major factor in determin-
ing the relationships between the threshold and array length, N, and between the
current and applied voltage. Their threshold results are discussed in more detail in

Sec. 3.1.2 and their IV results are discussed in Sec. 4.1.
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2.2 Our Transport Model

We model the dynamics and the static states of a one-dimensional system of nanopar-
ticles using the orthodox theory for the tunneling rates. The details of the Monte
Carlo algorithm we used to simulate this system are discussed in Sec. 6.1. Our main
innovations to this standard technique are the methods we use to include the inter-
actions among charges situated on the nanoparticles and the leads. In Sec. 2.2.1,
I describe how we write the total free energy and the relevant change in the free
energy that appears in the orthodox tunneling rate equation. In Sec. 2.2.2, T discuss

how we include disorder in our model.

2.2.1 Our Model for the Coulomb Interactions of 1-D Nanoparticle

Arrays

We model one-dimensional arrays of N nanoparticles sandwiched between a source
and drain lead as N spheres of radius, 7;5, in between two larger spheres of radius,
Rjeqq- In this section, we call the spheres of radii, r;4, islands or nanoparticles. The
word, site, is used to denote any conductor in the system and includes spheres of
radii, ;5 and Ryeqq- The surface to surface distance between every pair of adjacent
sites equals d. We numerically determined the inverse capacitance matrix, C; jl, of
several arrays with different N and d in order to determine how array length and
spacing affects the electrical properties of nanoparticles arrays. For the smallest
spacings, we determined C’ijjl using a multipole method. This method is discussed
in Sec. 6.2.2. We include the leads in our systems so that we can study how their
proximity modifies the electrostatic coupling among charges on the nanoparticles.
We also include the leads to see how the islands affect the way that the applied bias

is distributed over the junctions in the array.

In the absence of charged disorder, we write the total electrostatic energy of
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a system of charges residing on IV nanoparticles and two leads as

N+1

E=2Y Quba
a=0

where
N+1

fa= CrpQs-
5=0

Indices 1 through N represent the nanoparticles and indices 0 and N + 1 label
the source and drain leads respectively. According to Eq. 2.2.1, the potentials of
all the conductors, including all the islands and both leads, are affected by all the
charges on the conductors. We model the leads as non-ideal voltage sources that
have potentials that fluctuate in response to the motion of charges in our system.
Unlike the nanoparticles, the leads are connected to a battery that contin-
uously modifies the charges on the source and drain, Q9 and Qn41, in order to
maintain their bias values: ¢9 = Vj and Vyi1 = Vy41. Using Eq. 2.2.1. one can

determine that

N
_ 2 —1 —1 i —1 —1 —1 —1
QO - Cgen lCN+1,N+1% - CN+1,0VN+1 - Z QZ (CN+1,N+1 CiO - CN+1,OCi,N+1)]

1=1

N
Qv = Cl., [Cg&VNH—O;L,OVo—ZQi (Coo' Cint — &11,00501)]
=1

with
2 11 1 2]t
Chen = [Coo Cniingr — (CN—|—1,0) ]
when ¢g = Vp and ¢nt+1 = Vny1. The sums in Eq. 2.4 and Eq. 2.4 describe the
induced charges on the source and drain leads due to the charges on each island.
The first and second terms in each sum equal the charges that are directly and

indirectly induced on each lead by the charges on the islands. The charges on the

islands directly induce charges of opposite sign relative to themselves on each lead.
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The directly induced charges on each lead induce more charges on the opposing lead.
These are the indirectly induced charges and they have the same sign as the original
island charges. Every time a charge tunnels the potentials on the leads fluctuate,
even when the charge does not originate from or arrive at a lead, because the new
charge configuration changes the net induced charge on each lead. The battery
restores the leads to their bias values by resetting QQp and Qn 41 to the values given
by Eq. 2.4 and Eq. 2.4.

We separate the work done by the battery from the work done by the charges
in our system by introducing a new time scale tpgstery- toattery is the RC time of the
external circuit that supplies charge to the source and drain leads. tp44tery is related

to the other orthodox time scales, 2., and t,¢jqq, by

trelar K tbattery < thop .

When a tunneling event between sites 7 and ¢ & 1 occurs, the charge configura-
tion changes such that the final charge configuration is given by @; — @; — e and
Qit1 — Qi+r1 + e. After the new charge configuration equilibrates the conduc-
tors are equipotentials whose values are given by Eq. 2.2.1. t,¢,, characterizes the
time for a charge to tunnel and for the system to relax to electrostatic equilibrium.
Because trejar <K toattery, the charge states that pertain to the change in energy,

AFE = Ej — E;, that determine the probability for a tunneling event,

N+1 N+1
AE = (Z Qa¢a> - (Z Qﬂ¢ﬂ>
a=1 f

p=1

2

involve charges that cause the potentials at the source and drain leads, ¢p and ¢ 41,
to deviate away from their applied values, V;, and Vy,,. Because t,¢10z < thop, the
battery has time to restore the leads to V, and Vy,, prior to the next tunneling

event. Before we recalculate the tunneling rates to determine the next tunneling
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event, we model the battery by using Eq. 2.4 and Eq. 2.4 to reset the charges on
each lead to the values that restore the applied bias potentials. We do not calculate
the work done by the battery to recharge the leads because charges do not tunnel
between the battery and the leads in this process. The energy needed to restore the
potentials is provided by an external circuit that we do not include as a part of our
system when we determine the tunneling rates through barriers in the array.

The energy cost of hopping across the i-th junction, AFE;, can by found by
simplifying Eq. 2.2.1 after substituting into this equation the relationships for the
charges on the source and drain (Eq. 2.4 and Eq. 2.4) and the relationship between
the charges and potentials at each site (Eq. 2.2.1). In the following form for AE;,
we let e = 1 and the top (bottom) signs refer to hops to the right (left) between
sites ¢ — 1 and 1i:

AEf = EF "+ @,

where

e—h _ 1 —1 —1
B = (sz +Ci—1,i—1) —Cii

N[ =

and

D, =¢; — Pi1.

We call E —h , the excitonic energy of the i-th junction, because it equals the energy
cost of adding an electron and a hole to the pair of sites on either side of the
junction. Decreasing the spacing between sites decreases the excitonic energy by
decreasing the repulsive terms and increasing the attractive term in Eq. 2.2.1. ®; is
the potential difference across the i-th junction due to charges on the leads, charges

on the islands, and induced charges created by background charged disorder:

&; = P + & pfic
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When all the islands are uncharged and the source and drain leads are biased at
potentials, Vp and V41, the leads polarize the charge densities of the surrounding
islands while keeping the net charge at each site equal to zero. We call the po-
tential differences across the junctions due to this effect, the polarization potential

differences:

B = Clr [Cia' CRha vt — Cinn O] Vo (2.4)
+ Chen [Cﬁvlﬂc(i)l - Cfolcﬁil,o] V41 -

Fig. 2.2 shows how &% o is distributed over the junctions of an array with 50 islands

when the sites are close together (d/r®! = 0.5) and far apart (d/r®! = 10). This

figure shows how this distribution changes when the total applied bias V' = V,—Vy 4

is split evenly between the two leads compared to when it is concentrated at one

lead. The applied bias V does not drop linearly, i.e. ®7° # V/(N + 1), in either
case.

The potential differences across each junction due to the charges on each

island are given by
N
o =3 Q; (G - Gil)
7j=1

where

Cit = O+ OOt (Cbn O3 + € CrbL)

gen i, N+1

- Cngn (C(;OICJ;}-UC;TJ%+1 + C;—}—I,N+lci;]10y?01) . (2'5)
In Eq. 2.5, the constant ngen is given by Eq. 2.2.1. The modified inverse capacitance
matrix, C‘Z-le, describes how the leads change the potentials created at each site per

unit charge at each island. The leads introduce extra potentials at each island

that are generated by the directly-induced and indirectly-induced charges on each
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Figure 2.2: Polarization potential differences, ®¥ °l across 1-D arrays with 50 islands. In
the top panel, the applied potentials at the source and drain leads equals Vy, = =V, = V/2.
In the bottom panel, the drain is grounded while the source lead potential equals V, = V.
Both panels have the same applied bias difference, V = V, — V., and each show how
modifying the spacing between sites changes how &7 °l is distributed over the junctions.
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Figure 2.3: Elements of C;} and C'ifjl for 50-island arrays at two spacings, d/r**' = 10 and
0.5. In both panels, C, ! is the self inverse capacitance of an isolated island; C;.l =Gyt

when interactions among sites are negligible. The top panel plots the rows of C~! and C~!
that correspond to the island closest to the source lead. The bottom panel plots the rows
that correspond to the islands in the middle of array. The solid lines show C~! and the
symbols denote the modified inverse capacitance elements. C~' differs from C~! because it
includes the potentials due to induced charges on the leads. These induced charges introduce
more screening such that C’ifjl < C;!. These differences are small and most noticeable in
terms that describe interactions among charges close to the leads.

lead. These induced charges are created by charges on the islands. See Eq. 2.4
and Eq. 2.4. Fig. 2.3 illustrates how induced charges on the leads slightly modify
the interactions among charges at the edges and in the middle of an array with 50
islands. The modified inverse capacitance elements do not appear in the definitions
of the excitonic energy, E¢~", and the polarization potential gradients, oY 0l, because
both quantities are associated with the energy costs of arrays in the absence of any
excess charges on the nanoparticles. The methods we used to determine the potential
differences due to charged disorder, ®%* are discussed in the following section.

It is important to note that we define ®¢" and &7 ° such that ®¢" depends

on the set of charges occupying the islands whereas 7 ° does not. The parts of
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the lead potentials, ¢9 and ¢n41, that fluctuate as charges move between sites
are described by the terms in ®* due to the induced charges on the leads. The
contributions due to the leads that remain in &7 % are fixed in time so long as the
applied potentials, V, and V} ., are unchanged. Separating these dynamic and static
contributions to the total potential difference across each junction, ®;, enables us to
study how these potential gradients are modified by varying the size of the applied
bias, V =V, — Vy,;. At large enough V, Coulomb blockade is unimportant and the
distribution of potential gradients is set by current conservation which requires that
the average currents through every array junction equal the average current through
the entire array, Iy. Current conservation leads to a potential difference across each
junction proportional to its junction resistance, R;. Neither @fh nor o¥ ol depend
directly on the junction resistances, however the time-averaged potential differences
due to the island charges, (®¢"), depend on R; through the orthodox tunneling
rates, Eq. 1.3. The tunneling rates are proportional to R; 1. these rates determine
the time-averaged charge, (Q;), at each island which in turn determine (®").
When the applied bias V is too small to overcome Coulomb blockade, the
potential differences are independent of the junction resistances. Instead, the poten-
tial differences are determined by the electrostatic interactions among the charges
occupying the islands and the leads. In this limit, it is important to avoid the as-
sumption that the applied bias V is distributed evenly over the array junctions. Our
definitions of ®$* and &7 °! enable us to model the potential gradients without this

assumption.

2.2.2 Our Model for Disorder

Charged impurities trapped in the substrate underlying the nanoparticle array create
random potentials at the nanoparticles. In molecularly assembled arrays, charge

transfer to the organic molecules surrounding the nanoparticles results in non-integer
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random charges at the islands. We include charged disorder in our model using a
random potential at each island ¢;ﬁs . We characterize clean arrays that have no
charged disorder by setting ¢%* = 0 for every i. In the case of disordered arrays,
the bare disorder potentials due to the charges in the substrate and in the ligands
surrounding the nanoparticles can, in principle, take values larger than the charging
energy E'!. However, charges flow to compensate large fluctuations in the disorder
potentials. As a result, the screened disorder potentials are constrained within
intervals smaller than +E!*!. The size of this interval depends on the interactions
among charges; it decreases as the strength and range of Coulomb interactions
increases.

We use a variation of the algorithm in [26] to determine the screened disor-
der potentials. In [26], Kaplan, Sverdlov, and Likharev (2003) use offset charges to
model disorder. They find the screened values of the offset charges by numerically
modeling the motion of mobile charges that screen out disorder until the entire sys-
tem relaxes to a global electrostatic equilibrium state. This algorithm was described
in Sec. 2.1.2. We use this algorithm to find the set of charges, {Q:°}, that screen
out a set of random bare disorder potentials, {qﬁgis_b‘"e}, lying within an interval of
width, =W . In each iteration of the annealing algorithm, we add charges to islands
and move charges between sites whenever these processes lower the total electro-
static energy of the system. Adding charge to an island decreases the energy of the

system when the energy to add a charge to an island, E#¢ < 0, where

7

1 ol ;
Eqdd,:l: _ 5Cf;l + Z QjC];,'l + ¢;jzs—bare .
j=1

The top (bottom) signs refer to the energy to add a positive (negative) charge to an

island. Similarly moving charges decreases the energy of the system when AFE; < 0:
AEP™ — E_efh + q)qh + (I)(.iisfbare
(2 7 2 3
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where @fh is given by Eq. 2.2.1 and the potential gradient across a junction due to
disorder is given by

dis—bare __ jdis—bare dis—bare
(I)i - ¢z - ¢i—1 .

The top (bottom) signs in Eq. 2.2.2 correspond to hops to the right (left) between
sites 1 — 1 and 4. Eq. 2.2.2 differs from the more general expression for the hopping
energy, Eq. 2.2.1, because it is missing the polarization term, ®P°". This term is
omitted because the leads are grounded, V, = Vy,; = 0, when the system anneals.
When adding charge and moving charge no longer decreases the energy of the system,
the set of charges that occupy the array islands are the annealed charges, {Q*}, we

use to define the screened disorder potentials, qﬁgis:
. N ~ .
glzs — Z C@;lQ;’c + ¢Z¢zs—bare ) (26)
j=1

Following the redefinition of the disorder potentials, we find that the disorder
potentials {¢%**} and the disorder potential drops {®%*} between adjacent islands
are independent of the interval, =W, that originally bound the bare disorder values.
Instead the values of island disorder potentials and the junction disorder potential

gradients are bound by

g
ods| < Eeh (2.8)

IA

1
50;.1 (2.7)

These bounding values arise from the fact that the total energy of the system is at
a global minimum when the original disorder configuration {¢¢*~%9"¢} is screened

out by the charges {Qjc}. While the array is in this state, all charge moves increase

35



the energy of the system:

S|
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H_
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o

(2.9)

g
&=
rs
Vv
)

(2.10)

Using Eq. 2.2.2, Eq. 2.2.2, and Eq. 2.6, one can simplify the above inequalities and
arrive at the inequalities that describe the ranges of the screened disorder values,
Eqg. 2.7 and Eq. 2.8.

Fig. 2.4(a) and (b) compare P(¢%*) and P(®%*) for arrays with purely onsite
interactions,

—l,ons _ —1g¢ .
Ci; 7 =Cy by,

with arrays with long range interactions (CZ;IJ # 0) at two spacings, d/r*! = 0.5
and d/r*! = 10. In all cases, ¢§iis and <I>;~ﬁs are calculated for arrays with 50 islands
in between two grounded leads. The histograms average the values of the potentials
of all islands and the values of the potential drops between all adjacent islands
over many realizations of disorder (O(> 10%)). The smaller spacing, d/r*! = 0.5, is
typical of chemically assembled nanoparticle arrays. The larger spacing, d/r*! = 10,
is atypical of arrays in experiments but is included as a pedagogical example because
it has interactions among islands that are finite yet comparable to the onsite case
that is often used to describe experiments [35, 39, 37, 17].

Fig. 2.4(a) shows how the distributions of disorder potentials , P(¢%*),
change as the range of interactions increases (d/r**! decreases). In the limit of onsite
interactions (Eq. 2.2.2), P(¢%*) is a flat distribution because the disorder potentials
vary in a purely stochastic way in this case. When interactions extend over several
nanoparticles, the disorder potentials do not vary stochastically because Coulomb
interactions induce correlations among the potentials. The correlations make it more

it more likely for the disorder potentials to have values close to zero. This effect be-
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Figure 2.4: Probability distributions of disorder potentials ¢%*, (a), and disorder
potential differences ®%, (b), due to disorder for 50-island arrays with purely onsite
coupling and with long range Coulomb coupling at two spacings. d/r**! = 0.5 and 10.
Vertical lines are included as guidelines to emphasize the edges of the distributions.
All potentials are displayed in units of EX! = 1/(2C?).

comes more pronounced as the spacing, d/r**!, between nanoparticles decreases. In
addition, decreasing d/r**! decreases the width of distributions according to Eq. 2.7.

P(¢%*) are bound by +(1/2)C;;! which is the screened version of E* = (1/2)Cyt.

Decreasing d/r**! reduces the cost of adding a single excess charge to an island
because induced charges on nearby sites partially screen out the added charge.

Fig. 2.4(b) shows how the distributions of disorder potential gradients, P(®%),
are modified by Coulomb interactions. Similar to the trends in Fig. 2.4(a), as the
spacing between nanoparticles decreases, the width of the distribution decreases
and the probability of small (large) |®%**| values increases (decreases). The increased
probabilities of small |®%%| are due to Coulomb correlations that make it more likely

for the disorder potentials of neighboring islands to have similar values. Increasing

the range of Coulomb interactions leads to a greater reduction in the width of this
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distribution because the disorder potential gradients are bound by :l:Ef_h (Eq. 2.8).
Whereas the disorder potentials were bound by the energy to add a single charge
to an island, the disorder potential gradients are bound by the excitonic cost of
creating an electron and a hole on a pair of adjacent islands. When a bare disorder
potential gradient exceeds this energy, an electron screens this gradient by hopping
across the junction and creating an electron (hole) on the destination (origin) site.
Decreasing the spacing decreases Eie_h because these changes increase screening and
increase the attractive term in Ef™" (Eq. 2.2.1).

Elteto, Antonyan, Nguyen, and Jaeger (2005) analytically characterized the
distribution of disorder potential gradients, P(@fis ), using a nearest-neighbor inter-
action model (Eq. 2.1.2) for the Coulomb interactions [17]. Table 2.1 compares our
numerical and their analytical results. Our distributions have the same shape as
their distributions in the onsite limit; the onsite distribution is given by Eq. 2.1.2.
When long range interactions are included, our results start to diverge. The heights
of our distributions (P(0)) are in reasonable agreement with P(0);_.p (Eq. 2.1.2).
At the smallest spacing (d/r**' = 0.5), the near agreement between our results is
surprising because Eq. 2.1.2 is only valid when v = Cy . /C~1isless than 1/3. When
d/r*" = 0.5, v for our 50-island arrays approximately equals, 7 ~ 0.412. At the
smallest spacing, our distribution is narrower than their distribution: E¢~? < ®ds

mazx"®

At this spacing, interactions among particles further apart than nearest neighbors
cease to be negligible. See for example C’i,_j1 for arrays spaced at d/r*! = 10 versus
d/r*" = 0.5 in Fig. 2.3.

In Fig. 2.5, we plot < qﬁ;ﬁsqﬁﬁ“ > to illustrate how interactions among charges
affect the correlations among disorder potentials. When the potentials are com-
pletely uncorrelated, < ¢;ﬁs¢%i5 > is finite valued only when ¢ = k. This is true for
the arrays with only onsite interactions. In the case of long-range interactions with

d/r*! = 0.5, correlations are maximal when i = k, but they do not vanish for i # k.
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df | BB S B | PO(ER) " PO)1p J(EE)
onsite 2 2 0.5 0.5
10 1.83332 1.83334 0.51 0.53
0.5 1.10198 1.17581 0.66 0.65

Table 2.1: Comparison of our distributions, P(®%%), for 50-island arrays with the equiv-
alent 1-D distributions in [17]. E¢™" and P(0) were given by the distributions in Fig. 2.4.
®%s and P(0);.p were calculated using expressions from [17]: Eq. 2.3 and Eq. 2.1.2 with

mae

v = C5h./Ciiks- v equals 0 for onsite arrays and 0.08329 and 0.41206 for arrays with d/ré!
equal to 10 and 0.5 respectively. Although the expression used to calculate P(0)_p is valid
only for v < 1/3, our numerical results, P(0), were in reasonable agreement with P(0){_p

for all cases. The widths of our distributions (E®~") decrease at a slightly faster rate than
®dis a5 the spacing decreased.

< @5 ¢dis > is finite for at least i — k| < 3 —4. Correlations of disorder decay faster
than the interactions as is seen in the figure. The correlations between ¢%¢ and its
nearest neighbors ¢%% make it more likely for the disorder potential differences ®¢

to have small magnitudes.

2.3 Conclusions

We developed a model for the Coulomb interactions among charges occupying both
the nanoparticles and the biasing leads in nanoparticle arrays. We described these
interactions using an inverse capacitance matrix that includes the nanoparticles
and the leads. We used this inverse capacitance matrix to derive expressions for
the potential gradients across junctions due to the applied potentials at the leads,
or Ol, and due to excess charges residing on the nanoparticles, ®¢*. See Eq. 2.4
and Eq. 2.2.1. While deriving these expressions, we modeled the leads as non-
ideal voltage sources, i.e. we allowed the potentials of the leads to fluctuate away
from their applied values in response to changes in the charge configurations on the
array. Grouping these induction effects into ®¢" led to a renormalized description
for the interactions among array charges, Eq. 2.5, that includes the effects of induced

charges on the leads created by charges on the nanoparticles.
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Figure 2.5: Comparison of < ¢4&¢%S > normalized by |¢%|? for 50-island arrays
with onsite (top plot) versus long range (bottom plot) Coulomb interactions. Cj %5

normalized by 055}25 is included in the long range case to show that correlations in
the disorder potentials are related to, but decay faster than the C~! elements.
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We modeled charged disorder by simulating the annealing of the system to
a global electrostatic equilibrium state while both leads were grounded. We used
the charges associated with this equilibrium state to define the potentials at each
nanoparticle due to random charged background disorder, ¢;-ﬁ3. The properties of
the global equilibrium state set natural limits on the disorder potentials, ¢gis, and
on the disorder potential gradients, @gi"”. See Eq. 2.7 and Eq. 2.8. Our description of
the Coulomb interactions among the annealing charges led to correlations among the
disorder potentials Our probability distributions for the disorder potential gradients
across junctions were in reasonable agreements with the distributions calculated

analytically by Elteto, et al. [17].
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Chapter 3

Threshold Voltage of
1-D Nanoparticle Arrays

Coulomb blockade suppresses the current across nanoparticle arrays at small tem-
peratures and small applied voltages. At zero temperature, no current flows at
voltages below a well defined threshold voltage. At small finite temperatures, the
threshold is less well defined because the current is finite at all voltages. Disorder
and Coulomb interactions complicate how the threshold depends on temperature
and the length of the array. Sec. 3.1 discusses several threshold predictions that
were made using the models for Coulomb interactions and disorder discussed in
Sec. 2.1.

Sec. 3.2 discusses our results for the threshold voltage. To better under-
stand the effects of disorder and long range Coulomb interactions, we determined
the thresholds of arrays in the presence and absence of disorder using two different
models for Coulomb interactions. In one model (the onsite model), charges only
interact if they occupy the same site. This model is easy to understand analytically
but does not describe all the interactions that influence charges in actual nanoparti-

cle arrays. The other model (long range model) includes all the interactions among
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the charges that occupy all the nanoparticles and the biasing leads. The thresh-
olds of arrays described by this model can not be predicted analytically. We found
thresholds numerically by simulating the arrays using the orthodox model and a
Monte Carlo algorithm and by by defining the threshold as the smallest applied
voltage with finite current at zero temperature.

Sec. 3.3 gives a statistical description of how the local energy costs of hopping
across junctions of disordered arrays evolve as the applied voltage approaches the
threshold. We compare the evolution of distributions of static local potentials for
the cases of onsite and long range interactions. This comparison illustrates how
long range interactions overcome barriers to current flow due to disorder and large
charging energies. Sec. 3.4 discusses how the threshold changes in response to finite

temperatures.

3.1 Background

3.1.1 Zero Temperature Threshold

Likharev, Bakhalov, Kazach, and Serdyukova (1989) [32, 10] derived an analytical

form for the threshold voltage in the absence of charged disorder:

€ €
Vi = Ly My ¢
T 2Ceff( € ) Ceff+C()

where M is the soliton length (Eq. 2.1.1) and C,y is the effective capacitance of an
infinite periodic 1-D array of capacitors (Eq. 2.1.1 and Fig. 2.1). When the array is
symmetrically biased (V, = —Vy,, = V/2), the threshold voltage equals

e
CCy

VS = 2VT ~

3
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The approximation in Eq. 2.1.1 is valid when the soliton length is very long (M =
VC/Co > 1) and the array is very long (N > 2M). When the array is much
longer than the soliton length, the threshold is independent of the array length.
In their model, the applied bias potential at each lead penetrates into the array a
distance approximately equal to M. As the array length decreases below N = 2M,
the threshold decreases due to interactions between the source and drain leads.
These interactions enable each lead to create potential gradients on the opposite
edge of the array that help overcome the costs of adding a new charge to the array.

Middleton and Wingreen (1993) extended Likharev, et al.’s model by adding
charged disorder in the form of random offset charges at each nanoparticle [35].
They found that in the limit of very long arrays, the threshold voltage depends
linearly on array length, N, in number of nanoparticles for 1-D and 2-D arrays.

For 1-D arrays, they found that the thresholds have means,

lim ﬂ — MW _ 1/2 when C/Cy — 0

N—oo N(e/Co) M~2 =~ (C/Cy)"t when C/Cy — o0

and rms fluctuations, §Vy o« N'/2. In the limit of extremely short range (onsite)

interactions (C/Cy = 0), the mean threshold is given by
(V1) = (e/Co)(Nup) = (¢/Co)(N/2)

because the average number of junctions with positive potential gradients (up-steps)
due to charged disorder, (N,,), equals N/2. Below the threshold, charges accumu-
late on the array and create charge gradients, §QQ; = —1, across junctions that are
up-steps. For every charge gradient, a charge must be added to an island at the edge
of the array and the cost of adding that charge equals (e¢/Cy) in the onsite limit.

When enough charge gradients build up to compensate for all the up-steps, the next
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charges that are added to the array create potential gradients that enable charges
to tunnel across the entire length of the array. In the opposite limit of extremely
long soliton lengths, they argued that o ~ M 2 because the maximum static charge
density prior to current flow equals e/M ~2 which corresponds to charges spaced M
apart. They numerically determined that o™" goes to 0.1 in the limit of very large
soliton lengths.

Jha and Middleton (2005) extended the Middleton and Wingreen model when
interactions are short range by including disorder in the sizes of the nanoparticles
[24] by letting Cp vary randomly. They obtained the same relationship for the
threshold, Eq. 3.1.1, except that the cost of adding a charge, e/Cy, is replaced by
the average cost of adding a charge to islands of varied sizes, (e/Cp). They also
found that the rms fluctuations, estimated up to leading order, continue to scale as
Vi o N1/2,

Melsen, Hanke, Muller, and Chao (1997) also used Likharev, et al.’s model
for Coulomb interactions (Eq. 2.1.1 and Eq. 2.1.1) and added charged disorder us-
ing offset charges [34]. Instead of focusing on the limit of extremely short range
interactions, they focused on the case of very large soliton lengths. They found
that the average threshold is proportional to N'/? when the soliton length is large
compared to the array length, N < 2.5C/Cy =~ 2.5M?. For smaller soliton lengths,
N > 2.5M?, they found that the mean threshold is proportional to N. For all values
of the soliton length, they found that the rms fluctuations of the threshold scale

with N1/2.
N1'/2  when N < 2.5C/Cy ~ 2.5M*?

N when N > 2.5C/Cy ~ 2.5M>

Vr «

3.1.2 Finite Temperature Threshold

Elteto, Antonyan, Nguyen, and Jaeger (2005) extended Middleton and Wingreen’s
(MW) model for the zero temperature threshold to finite temperatures [37, 17].

45



From this model, they adopted the idea that the threshold is a sum of uniform
potential steps, e/Cp, that each overcome an energy barrier due to disorder (an up-
step) regardless of the size and position of that barrier. This extended this picture
of the threshold that is valid for onsite interactions to the case of interactions of

longer range by estimating the threshold in the following way:
(Vr) = eC{(Nup) -

This is the same as the MW expression, Eq. 3.1.1, except that bare energy for
adding a charge to a contact island, eCj ! is replaced by the energy of adding a
charge to the same island when screening due to neighboring islands is included into
the the definition of C7 L. They argued that raising the temperature decreases the
threshold because thermal fluctuations reduce the number of junctions that need to
be prepared for current flow with an applied potential. They found that the zero

temperature threshold, V(0), drops linearly with increasing temperature,

ve(r) = vi(0) (1- 22)

where p(T) is the fraction of junctions with small enough energy barriers that ther-
mal fluctuations allow charges to tunnel across these barriers in the absence of a
applied potentials. p. is a critical fraction of junctions that need to be overcome to
allow charges to move along a path that spans the array. For 1-D arrays, p. equals
1; for 2-D arrays, p. depends on the lattice structure of the array. For square lat-
tices, Middleton and Wingreen found that p. = 0.338 and for triangular lattices,
Elteto, et al.found that p. = 0.226 [35, 17]. They estimated p(7T') in the following

way:



~ 2bkpTP(0) (3.1)

where P(®%%) is the probability distribution of the disorder potential gradients
across junctions and bkpT is the mean energy that charges gain when they hop
between occupied and vacant energy states created by finite temperatures. They
determined that b &~ 2.4. They estimated P(®%*) as a flat distribution with a height
equal to the value of P(®%%) at %5 = ( because P(®%*) is nearly flat over the
region of temperatures that bring the threshold voltage to zero. They analytically
determined the shapes of these distributions using random offset charges and a near
neighbor model for the inverse capacitance matrix, Eq. 2.1.2. They found that as
interactions increase in strength P(0) increases, Eq. 2.1.2, and P(®%*) becomes
more flat in this region. We calculated these distributions using inverse capacitance
matrices that describe the interactions among all the sites in the array, not just
neighboring sites, and our results reasonably agreed with their results. See Table 2.1
and Fig. 2.4.

Cordan, Leroy, Goltzene, Pepin, Vieu, and Launois (2000) studied how tem-
perature affects the thresholds of arrays without charged disorder [9]. They included
disorder in the spacings between nanoparticles by varying the resistance of the junc-
tions. They determined the finite temperature threshold numerically using the or-
thodox model and a definition for the threshold that equals the smallest voltage
that makes the current larger than a minimum value that corresponds to a noise
threshold. They found that the rate at which the threshold decreases with increas-
ing temperature is sensitive to the resistances of the junctions. Multiple values for

the resistances can lead to multiple slopes for Vp(T).
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3.2 Zero Temperature Threshold Results

3.2.1 Clean Arrays with Onsite Interactions

In the limit of onsite interactions, we found that the threshold of 1-D arrays with NV

nanoparticles in the absence of charged disorder (®%* = 0) has the following form,

2E¥IN = eCy'N when N is odd
Vi = , (3.2)
2E# (N —1) = eCy'(N —1) when N is even
when the array is symmetrically biased such that V, = —Vy,, = V/2. When
the length of the array is fixed, we found that varying the biasing asymmetry by
distributing the total voltage drop, V, in different ways between the two leads,
causes the threshold to fluctuate within an continuous interval defined by the two
values for the threshold in Eq. 3.2. This section discusses these two results in detail.
In the limit of onsite interactions, C’;jl = 2E25l<5,~,j, the applied bias voltage,
V =V, — Vy,1, does not directly affect the bulk junctions (junctions between neigh-
boring islands) because the bias potentials, V;, and Vy,,, do not extend beyond the
leads. The potential gradients across the array junctions due to these potentials are
given by
—aV wheni=1
(Pfd = ¢€Ol - ¢€fl1 =94 (e—1)V  wheni=N+1

0 otherwise

oF °l is only finite across the junctions in between the islands at the edges of the
array and the leads (contact junctions). « is a biasing asymmetry factor that varies
between 0 and 1; it equals 1/2 when the array is symmetrically biased and 1 (0)
when the applied bias potential is concentrated at the source (drain) lead. Although
or b — 0 across all bulk junctions, the applied bias voltage indirectly affects these

junctions by injecting charges across one or both of the contact junctions. These
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charges accumulate on the array and create potential gradients across the bulk and
contact junctions. Eventually, increasing the bias voltage allows enough charges to
build up on the array that the next injected charge(s) are able to tunnel across all
the array junctions. The threshold voltage occurs at this minimum voltage that
allows charge transfer between the two leads.

The value of the threshold voltage and the charge state of the array at this
value can be determined by studying the energy costs for hopping across the bulk
junctions and the contact junctions. The energy costs for hopping across the bulk

junctions equal

AE; = Ef"+ o

= 2B (146Q)) , (3.3)

where 6Q); = @Q; —Q);_1 is the charge gradient across the junction. Onsite interactions
simplify the excitonic energy, E'f_h, and the potential gradient across each junction
due to charges on the array, <I>§h , because the potentials due to all charges do not
extend beyond the sites that the charges occupy. The general forms for Ef_h and
¢ are given by Eq. 2.2.1 and Eq. 2.2.1 respectively. The energy costs of tunneling

across the contact junctions next to the source and drain leads equal

AE; = Bih+ o+ af
~ E“'(1-aV+2Q)) (3.4)
AEny = Byl + @, + 9%,
~ EF(14(a—1)V —2Qn) (3.5)

respectively. In Eq. 3.4 and Eq. 3.5, the approximations arise from assuming that the
self inverse capacitances of the leads approximately equal zero, C;y = Oyl vy, & 0.

These terms add a very small contribution to the equations when the leads are much
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larger than the nanoparticles. ' These terms are omitted to simplify the discussion
in this section.

When the array is unbiased, the numbers of excess charges at each island
equal zero and dQ); equals 0 across all bulk junctions. When the applied bias becomes
large enough to inject a charge across one or both of the contact junctions, the charge
gradient(s) across the bulk junction(s) next to the contact junction(s) decrease to
—1. At zero temperature, this charge gradient is too small to allow the inject
charge(s) to penetrate further into the array because the energy to hop across the
bulk junctions equals 0 when 6QQ = —1 (see Eq. 3.3 and Eq. 1.2). In nearly all
cases, current can not flow until enough charges accumulate at the contact islands,
@1 and Qp, such that the charge gradients across all bulk junctions equal -1. In
this case, the next charges that are injected across the contact junctions modify
the charge gradients across each bulk junction to values (0Q; = —2) that allow a
single net charge to tunnel across each bulk junction. The exception to this rule
occurs at threshold voltages that allow two charges of opposite sign to enter the
array, one from each lead, and meet somewhere in the middle of the array at the
islands on either side of a bulk junction. The charge gradient created by these two
charges equals §(¢); = —2 prior to prepping this bulk junction with a charge gradient
6Q; = —1. In this case, current flows when all but one bulk junction is prepared
for current flow by an accumulated charge gradient, dQ); = —1. As a result of these
two cases, the relationship between the charges on the islands closest to the leads

at the threshold voltage is given by

N Nyw=N-1 when N is odd
bulk
Q1—-Qn=-) 0Q;=
=2 Nyww —1 =N —2 when N is even

1Numerically, we used the exact values for these terms when the radii of the leads, Rjcqd,
and the nanoparticles, r;s;, are related by Rieaa = 5075 In this case, C(;(} = C;}rl,NH =
(0.02)(2E*") where 2E*' = ¢Cy ' equals the self inverse capacitance elements that correspond
to the nanoparticles.
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Figure 3.1: Potentials and charges at sites in two arrays of different length (N = 5 and
N = 6) at voltages just above the threshold. The filled bars, unfilled bars with solid
borders, and unfilled bars with dashed borders represent the polarization potential, the
total potential, and the total potential plus the excitonic energy respectively. The last
quantity equals the potential seen at a site by a charge tunneling to the right unto that site.
The arrows indicate possible tunneling events. The tick marks are spaced 2E!* units apart.
The insets show the charge at each island for each set of potentials. Filled (unfilled) circles
represent positive (negative) charges.

when the array is symmetrically biased. These values along with AE; = AExn41 =0
in Eq. 3.4 and Eq. 3.5 simplify to the threshold voltages given in Eq. 3.2. Fig. 3.1
illustrates these two cases.

These two cases also affect the value of the threshold when the biasing asym-
metry factor, «, is varied while the array length in number of nanoparticles, N, is
fixed. The threshold dependence of the threshold on « is given by Vi = min (Vs, Vi)

where

Vs = E¥(2Q,+1)/a (3.6)

Vo = E¥2Qn —1)/(a-1). (3.7)
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Eqg. 3.6 and Eq. 3.7 equal the threshold voltage when current carrying sequences of
tunneling events begin with single charges entering the array from the source and
the drain respectively. As the biasing asymmetry is varied, the threshold voltage
is alternately determined by the cost of injecting a charge unto the array from the
source and the drain and the threshold values vary continuously between maximum
and minimum values equal to the values in Eq. 3.2. The minimum value for the
threshold is due to the entrance of two charges of opposite sign from the two leads
meeting in the middle of the array; this is the same process that made the thresh-
olds of arrays with even numbers of nanoparticles smaller than their odd-numbered
counterparts when the array was symmetrically biased. At all other values of the
threshold shown in Fig. 3.2, one charge from one lead starts each sequence of tun-
neling events that transfer charge between the leads at the threshold voltage. When
the inverse self capacitance of the leads is negligible, the intervals in terms of a be-
tween adjacent minimum and maximum thresholds are given by N ! and (N —1) !
respectively.

Fig. 3.3 shows how the threshold varies with array length for several values
of a. When the array is symmetrically biased (« = 1/2), the threshold voltage
has a dependence on IV that resembles a staircase due to the two cases in Eq. 3.2.
When the bias voltage is completed distributed on one lead (@« = 0 or a = 1),
the differences between arrays with even and odd numbers of islands disappear
because charges can only enter the array from one lead at the threshold voltage. At
intermediate values of a between the symmetric and completely asymmetric cases,
the threshold dependence on N again has linear regions and flat regions but these
are spaced differently than similar regions in the symmetric case. For all values of
a, the lines that pass through the thresholds when they increase linearly with N
have slopes equal to (2Effl)a_1. The flat regions are due to arrays that differ in

length by one nanoparticle; the longer length has a threshold value determined by
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Figure 3.2: Threshold voltage of arrays in the limit of onsite interactions as a function of
arrays without (with) charged disorder. The Vs and Vp curves are examples of the family of

curves described by Eq. 3.6 and Eq. 3.7 that make up the threshold relationships for arrays
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Figure 3.3: Threshold voltage of clean arrays with onsite interactions as a function of array
length, N, for several values of the biasing asymmetry factor, «.

the entrance of two charges of opposite sign from the two leads.

3.2.2 Clean Arrays with Long Range Interactions

When interactions among sites are long range, we found that no charges need to
accumulate on the array prior to flow of current when there is no charged disorder
(@4 = 0). The threshold voltage occurs at the minimum voltage that allows a
charge to tunnel across one of the contact junctions. When the surface-to-surface
distance between adjacent nanoparticles, d, is not very large compared to the radii
of the nanoparticles, r;4, the threshold increases as the array length in numbers of
nanoparticles, N, increases. When N is very large, decreasing the spacing between
nanoparticles increases the threshold. This section discusses in more detail how the
threshold of arrays with long range interactions vary with respect to N and d/r®!

in the absence of disorder.

Prior to the entrance of any excess charge into the array, the energies to
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tunnel across all array junctions are given by
AE; = B+ &0 = BEM 4 AV

with the excitonic energy, Eie_h , given by Eq. 2.2.1 and A; = ol /V given by

A = « (CiTOICJ;-Ql—l,N+1 - CiTJ\}HCJ;}-LO) + (Ot - 1) (CiTJ\}-HO(Iol - Cz’TOICJ;-il-l,O) (3 8)
i — 5 . .

Cf(ro1 ;-11-1,N+1 _( 1;}-1,0)

By setting Eq. 3.2.2 equal to zero, one can define a local threshold, V;I* for each
junction equal to the minimum applied bias voltage V' that enables a charge to hop

across each junction when it is uncharged,

—h
VTh — _Eze .
2 AZ

V;'h tends to be smallest across one of the contact junctions because the fraction of
the total applied bias that drops across each junction, |A;|, tends to be the largest
at either of the contact junctions. In the long range case, once a charge hops across
one of the contact junctions a net charge can move between the two leads because
the polarization potential gradient, ®¥ Ol, is negative across all array junctions; this
potential drop allows the injected charge to move across all the junctions in the

array. In this case, the array threshold equals the minimum local threshold,
Vr = min (VZ-Th) .

Eqg. 3.2.2 was not valid in the case discussed in the previous section because there
are no polarization potential drops to facilitate charge flow across the bulk junctions
when interactions only occur among charges that occupy the same site.

Fig. 3.4(a) shows how the threshold relates to array length, N, at several

different array spacings, d/r*! = 0.5,1,10, when the array is symmetrically biased
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(¢ =1/2 in Eq. 3.8). All the threshold values in this figure correspond to the local
threshold, V™" of a contact junction. The symbols indicate thresholds we deter-
mined numerically. The dotted lines are analytical estimates of these thresholds
calculated using Eq. 3.2.2, Eq. 2.2.1, and Eq. 3.8 with C’l.,_j1 ~ (2E1Y)d; ! where d;;
is the center-to-center distance between spheres i and j. 2 For a given spacing,
the main source of variation in Vp when N is varied is the fraction of the polar-
ization potential that drops across either contact junction, |Ai| = [An41]. As the
separation between the leads increases (increasing N), the fraction of the polariza-
tion potential that drops across the contact junctions decreases and as a result the
threshold increases according to Eq. 3.2.2. |A;| and |An41]| stop decreasing with
increasing distance between the leads when this distance becomes large enough that
the interactions between the leads are negligible. This is why the threshold values of
the arrays with the largest spacing (d/r**! = 10) shown in Fig. 3.4(a) begin to satu-
rate with increasing N. Due to the same reason, the threshold values of the arrays
with the smaller spacings (d/r*' = 0.5 and 1) in the figure eventually saturate at
values of N larger than the ones shown in this figure. Likharev, et al. [32] predicted
that the threshold of arrays without disorder are independent of N when N is large
compared to the soliton length, N > 2M. Table 3.1 shows estimates of the values
predicted by Likharev, et al. (Eq. 3.1.1) that correspond to the spacings shown in
Fig. 3.4. Our thresholds are larger than these predicted values and they continue to
increase with N when N > 2M. Qualitatively, our results agree because eventually
our thresholds become independent of N and these values decrease as the spacings
between islands increase.

Fig. 3.4(b) shows how the clean threshold varies with array spacing for sev-

2This approximation is close to the actual value of threshold in this case because it is a function
of inverse capacitance elements that involve that leads. The leads are large enough that their inverse
capacitance elements, {C; +} and {C;, A +1}, approximately equal the unscreened potentials due to
unit charges located at their centers when the leads are far enough apart that their screening of
each other’s potentials does not significantly alter {C;,} and {C; x.,}-
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d/r 02_5,125 M VS/EgSl o~ 20;‘}(1 +exp(—M~1)
10 0.999 0.42 2.18
1 0.970 1.1 2.70
0.5 0937 14 2.72

Table 3.1: Estimates of thresholds predicted by Likharev, et al. [32] for arrays with
no disorder. These values were calculated using Vg = 2Vp where Vr is given by
Eq. 3.1.1 with C_;} = C,;L; and M extracted from rows of our inverse capacitance
matrices that correspond to islands in the middle of long arrays. See Fig. 3.5.
Likharev, et al. predicted that symmetrically biased arrays without disorder would
have thresholds that are independent of N given by Vs when N > 2M. Although
the arrays in Fig. 3.4 are long enough that N > 2M, the thresholds continue to
increase with N and are larger than the values tabulated here. Qualitatively, our
results agree because the thresholds eventually saturate at large enough N to values
that like Vg increase with decreasing spacing.
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Figure 3.4: Threshold of symmetrically biased arrays, Vr, with no disorder as a function
of number of islands, N, and of array spacing, d/r®!. The dashed lines are estimates of the
threshold that use a 7~! model to approximate the polarization potential drops across the
contact junctions, A; and Anyg.
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Figure 3.5: C;1/C5;L, for 50-island arrays spaced at d/r**' = 0.5,1 and 10.

25,25
The closed circles show our numerical results for these inverse capacitance elements.

The solid lines show fits of the soliton form, y = exp(—|25 — z| M ~!), where M~! =
0.716, 0.906, and 2.407 for spacings, d/r®! = 0.5, 1, and 10 respectively. These
correspond to M = 1.4, 1.1, and 0.42 for the same spacings. Our inverse capacitance
matrices do not conform to the soliton shape for C;!, Eq. 2.1.1, because our matrices

i,j 7
are the inverses of fully populated capacitance matrices, not the tridiagonal matrices

(Eq. 2.1.1) used to derive the soliton form for C;}.

eral array lengths. In the limit of extremely large array spacings, the polarization
potential drops are concentrated at the contact junctions. As the spacing decreases,
the polarization potential drops tend to be more homogeneously distributed over
more array junctions. As a result, decreasing the array spacing tends to decrease
the polarization potential drops across the contact junctions and therefore increase
the threshold voltage according to Eq. 3.2.2. When the distance between the op-
posing leads becomes small enough that each lead significantly contributes to the
polarization potential drop across the contact junction on the other side of the ar-
ray, decreasing d/r*! increases the polarization potential drops across the contact
junctions and the threshold decreases according to Eq. 3.2.2. Thus, the positive (neg-
ative) correlations between the threshold and the array spacing shown in Fig. 3.4(b)
are due to dependence of Eq. 3.2.2 on array spacing in the presence (absence) of

significant interactions between the opposing leads.
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Figure 3.6: Threshold voltage of clean arrays with long range Coulomb interactions as a
function of a.

Varying the biasing asymmetry factor, «, of arrays with long range inter-
actions does not cause the threshold to fluctuate up and down as it did for arrays
with onsite interactions. Instead, increasing the asymmetry between the leads (in-
creasing |1/2 — a|) always decreases the threshold by increasing the amount of the
applied bias that drops across the contact junction that sets the threshold. Fig. 3.6
shows how varying the biasing symmetry, «, modifies the threshold of a few arrays

of varied length and spacing.
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3.2.3 Disordered Arrays with Onsite Interactions

Charged disorder complicates the threshold voltage by introducing a random po-
tential difference to each bulk junction, ®¢S. In the limit of onsite interactions,
we found in agreement with Middleton and Wingreen, Ref. [35], that the average
threshold equals

(Vr) = (eCy "){(Nup) = (2E¢")(N/2)

where the average is over many configurations of disorder and Ny, is the number
of bulk junctions with non-negative disorder potential differences, ®%¢ > 0. For an
array with a specific configuration of disorder, we found that modifying the biasing
asymmetry factor, a, causes the threshold to fluctuate between two values. Similar
to the case of arrays without disorder, this range of values is due to the dependence
of the threshold on « and on two possibilities for the net excess charge on the array

at the threshold voltage,

Nyyp or

N
_ =350, =
Q- Qn i:ZQQ Ny 1

In Eq. 3.2.3, the net charge gradient is a sum over charge gradients across bulk

junctions with values equal to

—1 when @?is >0

0Qi = ,
0  when %5 <0

The smaller value for the total charge gradient in Eq. 3.2.3 is allowed when two
injected charges of opposite sign meet at a junction with an up-step and create a
potential gradient that allows charge to tunnel across that junction. Thus, the two
injected charges eliminate the need for accumulated charges to prepare one bulk

junction for current flow with a charge gradient, §Q; = —1.
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Fig. 3.2 shows how varying the biasing asymmetry factor, «, affects the
thresholds of arrays with and without disorder. Similar to the clean case, the thresh-

old dependence on « for disordered arrays is given by min (Vs‘?is, V35) where

Vs = E¥(2Q1+ ¢ +1)/a (3.9)

Vo = E®(2Qn +¢% —1)/(a—1). (3.10)

s and qS%s are the potentials due to disorder at each contact island and @1 and QN
are the charges on the contact islands given by Eq. 3.2.3. Compared to the clean
arrays, the threshold curves, Vr(«a), of the disordered array have smaller values
and less peaks because the disordered arrays have less bulk junctions that require
negative charge gradients, §Q); = —1, to prepare them for current flow. This tends
to be true for any given configuration of disorder because the number of up-steps
(junctions with ®%* > 0) tends to be less than the number of bulk junctions.

Fig. 3.7 shows how the mean values and rms fluctuations of the thresholds
averaged over many configurations of disorder vary with array length. The cost of
overcoming the mean number of up-steps, N,,;./2, along with the cost of charging the
contact junctions leads to the mean threshold dependence in Eq. 3.2.3. This agrees
with Middleton and Wingreen’s threshold results for arrays with onsite interactions
[35]. The inset of Fig. 3.7 shows that we also recovered Middleton and Wingreen’s
results for the rms fluctuations of the threshold, 6Vy o« N'/2. This dependence
is the same as the rms fluctuations of a 1-D random walk because the number of

up-steps varies stochastically [24].

3.2.4 Disordered Arrays with Long Range Interactions

We numerically found that the average threshold voltage of arrays with charged
disorder continues to vary linearly with respect to array length when charges interact

via long range Coulomb interactions. Fig. 3.8 plots the means of the thresholds for
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Figure 3.8: Average threshold, (V1) of disordered arrays versus array length, N, at
three different array spacings, d/r*' = 10,1 and 0.5. The inset displays the rms
fluctuations, 6V, of the threshold. The dashed line in each graph shows how (V)
and dVr depend on N in the limit of onsite interactions.

arrays at different spacings, d/r**! = 10,1 and 0.5. Decreasing the spacing (d/r*!)
between sites decreases the rate at which the threshold changes with respect to
increasing array length. The inset of this figure plots the rms fluctuations, §Vr, of
the thresholds at the three spacings. At the largest spacing, d/r**! = 10, interactions
among distant charges are minimal and dVr depends on N like a 1-D random walk.
At the smaller spacings, stronger interactions among distant charges cause the rms
fluctuations to deviate away from the random walk relationship.

The exact thresholds of disordered arrays with long range interactions can

not be analytically predicted because interactions complicate how the potential gra-
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dients across junctions respond to variations in the applied bias. The applied bias
can modify these potential differences directly through the polarization potential
gradients, ®¥ Ol, and indirectly by injecting charges on the array that create poten-
tial gradients across the junctions, @;?h. An upper limit for the threshold can be
estimated by making an analogy to the onsite case. Similar to the onsite case, the
applied voltage prepares the array junctions for current flow by adjusting @ o and
®¢" until the energy cost to hop across one junction is less than zero while the energy

costs to tunnel across the rest of the junctions lie between 0 and |®%%|,
0 < AE; < |90

®d < () describes an additional potential drop that occurs across junctions when
injected charge(s)s approach the junctions. ®% can be conservatively estimated by
assuming that only one injected charge modifies the potential gradients across any
one junction. The effect of this charge on any junction is greatest when the charge

arrives at the junction. At this point, its potential difference is given by

N
oY = "4 (éjjil - éj:il—l)

— GG, (3.11)

2
|
S
&

The approximation in Eq. 3.11 was made by using Eq. 2.2.1 and assuming that

C’ifjl S C’i,_j1 3. At zero applied bias, the energies to hop across down-steps and

3The renormalized inverse capacitance matrix includes the screening of Coulomb interactions
due to charges induced on the leads by charges on the array. The excitonic energy (by definition)
does not include these effects because it is the energy of charging a junction in the absence of any
charge on the array.
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up-steps fall within the following ranges,

0 <AE;<E"™ when &% <0

Ef™" < AE; <2E¢" when 8 > 0. (3-12)

To bring these energies within a range, Eq. 3.2.4 and Eq. 3.11, that enables the
next injected charges to hop in sequences that transfer charge between the leads,
the applied bias voltage, V, can create the following the potential gradients across

the junctions
5
Beh 4 ol — 0 when ®§"* <0
3 .
' —Ef" when ®dis > 0
Because V =V, — Vy,, = Ef\g‘l <(I>§h + @fal) at all applied voltages ¢ , Eq. 3.2.4

can be used to estimate the threshold:

N+1
S (B +0) = Ny (B =-Vp
=1

=><Vr> ~ (N/2)<E"> . (3.13)

Table 3.2 compares this estimate for the threshold with our numerical results for
(Vr(N)) shown in Fig. 3.8 and two other estimates for the threshold: the long soliton
length estimate for the threshold,Eq. 3.1.1, given by Middleton and Wingreen [35]
and the near-neighbor estimate for the threshold, Eq. 3.1.2, by Elteto, et al.[17].
Our numerical results for (Vr(N)) are the smaller than all these estimates and
closest to Eq. 3.13.

Fig. 3.9 compares our numerical results for (V7 (N)) to thresholds measured

in experiments with 1-D and quasi-1-D arrays. The numerical results for arrays

4This statement is true because adding the applied potential gradient across each junction to
the potential at one edge of the a,rra}]r, Vb, gives the value of the applied potential at the opposite
edge of the array, Vi1, ie. Vo+ :tl (<I>f-h + @f"l) = Vnt1

i
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d/r"" | Numerical Slope | (E¢~"/2) 02;}25/2 oMW~ M2
of (Vr(N))
10 0.86 0.90 1.00 11.59
1 0.49 0.64 0.97 11.64
0.5 0.40 0.55 0.94 1.02

Table 3.2: Comparison of slopes of (Vr(N)/E®') for disordered arrays at several spacings,
d/r®*! =10,1,0.5. The numerical slopes are the slopes of the linear fits to our numerical re-
sults in Fig. 3.8. (E°~"/2) is from an estimate, Eq. 3.13, for the threshold that approximates

the energy to overcome junctions with ®%* > 0 as Ef~". C;;1_ is from the estimate made by

Elteto, et al. to extend the MW onsite threshold to include interactions among neighboring
nanoparticles, Eq. 3.1.2. MW was the form predicted by Middleton and Wingreen (1993)
[35] in the limit of large soliton lengths. Fig. 3.5 shows how the soliton lengths, M, were
extracted from our inverse capacitance matrices. M ~2 is greater than the maximum value
for @MW =1 (in units of E®*' = 0.5eC; ") at all the spacings. At all spacings, the soliton
lengths are too short for the large M estimates to be valid and too long to be described by
the onsite value, oW =1.

with spacings comparable to spacings in experiments, d/r**! = 0.5, are in reasonable
agreement with experimental measurements of the threshold on 1-D arrays. Our
numerical results overestimate the thresholds of quasi-1-D arrays. It is possible for
the thresholds of quasi-1-D arrays to be smaller than the thresholds of 1-D arrays
because charges can access pathways in these arrays that are absent in the 1-D case
that enable them to avoid some barriers to current flow.

Fig. 3.10 shows how the threshold of 50-island arrays with different spacings,
d/r*" = 0.5 and 10, respond to varying the way the applied voltage is distributed
between the two leads. The threshold curves, Vr(«), for the disordered arrays have
more peaks than the equivalent curves for the arrays without disorder. The arrays
without disorder vary smoothly as the asymmetry increases (increasing |a — 1/2|)
because the threshold of these arrays is only determined by a single type of process,
a charge hop from a lead to a site at the edge of the array when no excess charges
reside at any nanoparticle of the array. The irregular features in Vp(a) for the

disordered arrays are due to multiple processes. Varying « can change the set of

charges that accumulate on the arrays below threshold and also change the position
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Figure 3.9: Comparison of Zero Temperature Threshold Results.
results of Delsing, et al. (1990) et al., Bezryadin, et al.[4], Elteto, et al. [17] were
rescaled by E! = ¢/(2C)) equal to 0.3 meV, 0.05 eV, and 0.26 eV respectively. The
dashed lines represent our results for arrays at different spacings, d/r*! = 0.5, 1, and
10. The Delsing, et al. results compare well with our results because they measure
thresholds on 1-D arrays whereas Bezryadin, et al.and Elteto, et al. measured the

thresholds of quasi-1-D arrays.
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Figure 3.10: Threshold, Vr, versus biasing asymmetry factor, a, for 50-island arrays
at two different spacings, d/r**! = 0.5 and 10, in the presence and absence of charged
disorder.

of the tunneling event that initiates the first sequences of hops that enable charge
transfer to occur between the leads. Decreasing the spacing between the islands
decreases the number of peaks and the sizes of the fluctuations in the threshold with
respect to the biasing asymmetry factor, @. The thresholds of arrays with onsite
interactions (Fig. 3.2) vary more regularly with « because the processes that set the
threshold only occur at the contact junctions. In the long range case, the threshold
process can occur at any junction on the array. In contrast to the onsite case, the
thresholds of disordered arrays tend to be larger than the thresholds of clean arrays
because more (as opposed to less) charges need to accumulate on disordered arrays

compared to the clean arrays before current can flow.
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3.3 Static Potentials of Disordered Arrays

This section provides a more detailed comparison of the ways that interactions affect
the thresholds of arrays with charged disorder. As the applied voltage approaches
the threshold, the energy costs of hopping across junctions, AF;, tend to decrease
because of voltage drops across junctions due to the potentials at the leads, &7 o < 0,
and due to charges that accumulate on the array, (I>§h < 0. This section shows how
probability distributions of tunneling energies, P(AE;), for arrays averaged over
many configurations of disorder, respond to applied voltages as they approach the
thresholds of the arrays. We compare how P(AE;) evolves for arrays with onsite
interactions and for arrays with long range interactions at two spacings, d/r**! = 10
and 0.5. The smaller spacing is comparable to spacings realized in experiments and
the larger spacing is included as a pedagogical example because it has interactions
that are both long range and comparable to the onsite case. For each case, we

compare arrays with different sets of junction resistances given by
Ri=[a+ 5i,k (R —a)]Ro (3.14)

where a = W, N is the number of islands, and Ry is a unit of resistance large
enough for charging effects to be relevant. We compare arrays with resistances that
are all equal, R = 1, with arrays that have one large resistance in the middle of the
array, R > 1 in Eq. 3.14. The total series resistance of all these cases are the same
and given by YNt R; = (N + 1)Ry.

Fig. 3.11 shows how the probability distributions of the bulk tunneling ener-
gies, P(AE;), of arrays with only onsite interactions change as the applied voltage
approaches the threshold voltage The similarities of the graphs in Fig. 3.11 that cor-
respond to different sets of resistances, R;, illustrate how the evolution of P(AE;)

at these voltages is independent of R;. These features are independent of the junc-
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tion resistances because the zero temperature threshold is an electrostatic effect.
At zero applied bias, all the bulk junctions are uncharged (6Q; = 0) and P(AE;)
is the distribution for the potential differences due to disorder (Eq. 2.1.2) offset by
the excitonic energy. As the voltage increases, charges enter the array and create
charge gradients, Eq. 3.2.3, that decrease (do nothing to) the energies to tunnel
across junctions with up-steps (down-steps). At the threshold voltage, the energy

costs of hopping across the bulk junctions fall within a range,
0 < AE < |9%4) |

where %44 is an extra potential drop that occurs across a junction when new injected
charge(s) arrive at that junction. For arrays with onsite interactions, ®2%¢ equals
—2FE!s! (—~4E"") when one (two) injected charge(s) arrive at a junction. The latter
case is rare for disordered arrays because the disorder potentials at the contact
islands tend to break the symmetry between the costs of hopping across the contact
junctions. This makes it unlikely for two charges of opposite sign to enter the array
from opposing leads at the threshold voltage of disordered arrays. Because the
applied voltage only modifies the potential drops across the up-steps, P(AE;) is a
flat distribution at V = Vo with height (E¢~?)~! lying between 0 and 2E!. See
Fig. 3.11 and Fig. 3.12.

Fig. 3.13 and Fig. 3.14 show how the energy costs of hopping across bulk
junctions at two spacings, d/r®! = 10 and 0.5, evolve as the applied voltage ap-
proaches the threshold for arrays with different sets of resistances. The similarities
of the probability distributions, P(AF;), of arrays with different resistances show
that the zero temperature threshold is independent of the resistances because it is an
electrostatic effect. At V' = 0, the probability distribution of these energies, P(AE;),
equals the probability distribution of the disordered potential drops, P(®%*), offset

by Ef*h. As the applied voltage increases, the distributions shift toward smaller
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Figure 3.11: Probability distributions of bulk junctions in the onsite limit for V. < V. The
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Vr = 46.5E%! is the threshold voltage of the array represented by the solid curves. The
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Figure 3.12: The sum of the distributions due to bulk junctions with down-steps (®%* < 0)
and up-steps (®%%* > 0) leads to the form of P(AE;) at the threshold voltage in the limit
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values of AFE;. At the threshold voltage, the probability distributions are bound by
0 and |®%%9|. Unlike the onsite case, the high energy side of P(AE;) does not drop
abruptly at one value. This suggests that the additional energy that junctions gain
due to the introduction of new charges at the threshold (E%4%) varies from junction
to junction. This is consistent with the long range model because the potential gra-
dients across the junctions are sensitive to all the charges on the array. The actual
values for |®%94| are larger than the estimate in Eq. 3.11 because multiple charges
reduce the energies to hop across junctions at the threshold. Similar to the onsite
case, P(AE;) is larger within the region defined by 0 < AE; < Ef™" than it is
within Ef*h < AE; < 2E’f*h. This means that a majority of the junctions allow
tunneling to occur after one additional charge arrives at (or within the vicinity of)
the junctions. Bulk junctions with AFE; between Ef_h and 2Ef_h at the threshold
require more than one additional charge to move within the vicinity of the junction
before charges can hop across them. In the extreme case that AE; = 2E'Z-e_h , two
charges of opposite sign must arrive at the islands on either side of the junction
before tunneling can occur.

Long range interactions modify the charge gradients that accumulate across
junctions at voltages leading up the threshold. In the onsite case, the charge gradi-
ents equaled 6Q; = 0 across down-steps and 6@Q; = 0 or -1 across up-steps. At finite
voltage, the polarization potential gradients across bulk junctions, (®? Ol)LR < 0, are
always smaller than the onsite polarization drop across bulk junctions, (& Ol)ON 5=
0. As a result, the charge gradients across the bulk junctions, dQFE, are always
greater than or equal to the charge gradients across junctions in the onsite case,
SQPNS:

(BPNER < (BF)ONS = 0 = 6QFF > 6QPNS . (3.15)

For example, some junctions with up-steps (®%* > 0) will not require negative

charge gradients at V = V7 because the polarization voltage drops plus the negative
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Figure 3.13: Probability distributions of the bulk junctions for 50-islands arrays and spacing
d/r*t = 10 for V. < Vr. The distributions denoted by solid (dashed) lines average over
1 (100) configuration(s) of disorder. From left to right, the graphs correspond to V =
(0,0.5,1)Vr where Vi ~ 36.55E% is the threshold voltage of the array represented by the
solid curves. The arrays in the top row have equal resistances (R = 1 in Eq. 3.14). The
arrays in the bottom row have one junction with a very large resistance (R = 30 in Eq. 3.14).
All the arrays have the same total resistance Rt = 51R,.
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contributions in @fh due to charges at other junctions are large enough to overcome
the energy barriers at these junctions without these negative charge gradients. The
charge gradients over some down-steps (junctions with ®%* < 0) may be positive
in order to compensate for the polarization voltage drops that make AFE; < 0 at
voltages smaller than the threshold.

Fig. 3.15 and Fig. 3.16 show how greater charge gradients across junctions
contribute to the total voltage difference across junctions when interactions are long
range. To make the effects of terms not included in the onsite model more clear,
these figures include the distributions due to ®ONSTE ek and @5 4 P
(Pfh’ONSITE is the potential difference across junctions due only to onsite interactions
(CZl = 5,~,jC~'iTi1). The different peaks in these distributions are caused by different
charge gradients. Across up-steps, dQ; can equal 0 and +1 in addition to the
only value for up-steps in the onsite limit, §¢Q); = —1. Across down-steps, §Q); can
equal 1 and 2 in addition to the onsite value for down-steps, 6Q; = 0. ®¢* is the
potential difference across junctions due to interactions among all charges on the
array. Comparing P(q)fh’ONSITE) and P(®¢") shows how long range interactions
screen out the potentials due to onsite interactions. The degree to which long range
interactions pull ®¢" toward values close to 0 indicates how effectively charges screen
each other’s potentials. In the onsite case, P(‘bfh’ONS ey — P(®5") because charges
can not screen the potentials of charges at other sites. Comparison of the smaller
(d/r*s"! = 0.5) and larger (d/r®*' = 10) spacings show that Coulomb interactions
that occur in arrays at the smaller spacing are more effective at screening out the
potential differences due to large charge gradients. The distributions of ®¢" 4 &
show how polarization potentials affect the potential differences. The addition of
or % shifts the distributions to lower energies (except the onsite case) because &7 ol
is negative across all junctions that interact with the leads. Adding ®¥ % does not
pol
i

maintain the shape of the distributions because ®:° is not a constant across all
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Figure 3.15: Comparison of P(®;) and P(AE;) across junctions with up-steps
(®%5 > 0) at the threshold woltage. The thin lines correspond to the distribu-
tions of 50-island arrays in the onsite limit. The thick lines in the top (bottom) row
correspond to 50-island arrays with d/r®! = 10 (d/r*! = 0.5).

junctions. Its magnitude tends to decrease as the distance between the junction
and the leads increases. Due to all of these effects, the tunneling energies of more
bulk energies approach zero at smaller applied voltages as the range and strength

of Coulomb interactions increase.

3.4 Finite Temperature Threshold

At finite temperature, the threshold voltage is less well defined because the current
is finite valued at all applied voltages. At small enough temperatures, the current
continues to be exponentially suppressed at voltages smaller than a threshold. We
define the finite temperature threshold using the second derivative of the IV curves,
0?I/0V?2. The threshold occurs at the first large peak in 0°I/0V?; at this voltage,

the IV curve changes from an Arrhenius form to a different scaling relationship.
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Figure 3.17: IV curves and thresholds of a 50-island array with disorder at finite
temperatures. The finite temperature threshold occurs at the peak in the second
derivative of each IV curves shown in the inset.

See Fig. 3.17. We found for arrays with long range interactions and with disorder
that the threshold decreases with increasing temperature. At small temperatures,
kKT < O.lEéSl, our thresholds agree with the prediction, Eq. 3.1.2, made by Elteto,
et al.[17]. At T > 0.1E®!, the threshold is hard to define using the peak in §2I/0V2.
This peak broadens with increasing temperature because the temperatures washes
out the transition between the regions above and below the threshold. See Fig. 3.17
and Fig. 3.18. Finite temperature decreases the threshold by relaxing the condition
for tunneling events across junctions. When a charge hops across a previously
uncharged bulk junction, an electron and a hole forms at the sites on either side of
the junction. If this occurs over multiple junctions and the electrons and holes drift
apart, they can meet across junctions and eliminate some of potential barriers due
to large charging costs and due to disorder.

In the limit of onsite interactions, finite temperatures dramatically change
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Figure 3.18: Awerage finite temperature thresholds versus temperature for 50-island
arrays with disorder and spacing, d/r**' = 0.5. The closed circles are the aver-
age thresholds of 15 arrays. The error bars have lengths equal to the rms fluctu-
ations of the thresholds. Each threshold was determined by locating the peak in
0?1/0V2. See Fig. 3.17. The dotted line is the prediction made by Elteto, et al. [17]:
VH(T)/VHT = 0) = 1 — 4.8P(0)kT where P(0) = 0.66(E*')~! for 50-island arrays
with d/r* = 0.5 .
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Figure 3.19: IV curves for a 5-island array without (a) and with (b) charged disorder
at several temperatures.

the IV curves because finite temperature allow hops to occur across bulk junc-
tions that were forbidden at zero temperature. See Fig. 3.19. Steps appear in the
IV curves below the zero temperature threshold voltage. The rises in the steps oc-
cur at voltages that increase the average charge at the contact islands. These are
spaced 2E’25l = eCy 1 apart. The flat regions of the steps occur because the time
for a net charge to hop across the array is dominated by multiple hops across the
bulk junctions. The rate of hopping across bulk junctions does not directly depend
on the applied voltage V because ® °l = 0 across the bulk junctions. In this case,
peaks in §21/0V? can not be used to define a threshold that decreases slowly with

increasing temperature.
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3.5 Conclusions

We have determined the threshold dependence on array length in number of nanopar-
ticles, N, and on the biasing asymmetry, o, for arrays with long range interactions
and onsite interactions in the presence and absence of disorder.

We have found that the average threshold of disordered arrays (averaged over
many configurations of disorder) scales linearly with array length, N, for arrays with
onsite interactions and with long range interactions. Our average threshold results
for the onsite case agree with Middleton and Wingreen’s (MW) results. We used
an analogy to the onsite threshold to derive an upper limit for the threshold in the
long range case:

(V) = (Bf ") (Nup) = (Ef ") (N/2)

where E'ffh is given by Eq. 2.2.1. Eq. 3.5 reduces to the MW’s equation, Eq. 3.1.1,
when interactions are extremely short range [35]. When interactions are long range,
this expression describes how the slope, 9(V't) /0N, decreases as interaction strength
increases due to decreasing the spacing between nanoparticles. This upper limit
more closely approaches the thresholds we determined numerically than a long
screening length estimate for the threshold proposed by MW and another estimate
proposed by Elteto, et al. that includes interactions among charges on nearest neigh-
boring nanoparticles [35, 17]. See Table 3.2. Eq. 3.5 overestimates the threshold
because it is based on a conservative assumption for how newly injected charges
modify the potential gradients across array junctions, i.e. only one newly injected
charge resting on an island on one side of a junction modifies the potential gradient
across any given junction. In reality, long range interactions allow multiple charges
at multiple locations on the array to modify the potential gradients across junctions.

Our numerical results for (Vr(N)) at spacings that are comparable to spac-

ings in real experiments (d/r*! = 0.5) are in reasonable agreement with experi-
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mental measurements of the threshold on 1-D arrays. Our numerical results over-
estimate the thresholds of quasi-1-D arrays. It is possible for the thresholds of
quasi-1-D arrays to be smaller than the thresholds of 1-D arrays because charges
can access pathways in these arrays that are absent in the 1-D case that enable
them to avoid some barriers to current flow. See Fig. 3.9.

In the absence of disorder, we found that the threshold has a step-like depen-
dence on array length (Fig. 3.3) in the limit of onsite interactions due to two ways
to initiate current through arrays with onsite interactions. In one way, current is
initiated by the injection of a single charge across one of the contact junctions. The
other way requires two charges of opposite sign to be injected through the two op-
posing contact junctions. These two ways for initiating current cause the thresholds
of individual arrays with onsite interactions to fluctuate continuously between two
limiting values that are separated by AV = 2E%! in response to changing a biasing
asymmetry factor, «, which describes how the applied voltage, V, is distributed be-
tween the source lead, V) = aV, and the drain lead V41 = (1 — a)V. See Fig. 3.2.
At zero temperature and in the limit of onsite interactions, the thresholds of arrays
without disorder are greater than the thresholds of arrays with disorder because
charge gradients must build up across all bulk junctions (junctions between neigh-
boring islands) in the clean case instead of just the bulk junctions with up-steps
(junctions with ®%* > 0) in the disordered case.

Arrays without disorder and with long range interactions have the smallest
thresholds because this threshold corresponds to the minimum threshold to allow a
charge to hop across a junction when the array is empty of excess charges. For all
the spacings we studied, this threshold always occurred across a contact junction
because the polarization potential gradient, ‘1)5’ Ol, is greatest across the junctions at
the edges of the array. As long as interactions among the leads are not too strong,

the thresholds in this case increased as the array length increased and as the spacing
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between islands decreased because these changes cause less of the applied voltage,
V, to fall across the contact junctions (Fig. 3.4). In the limit of very large arrays, the
threshold saturates to a value that increases as the spacing between nanoparticles
decreases. This is in qualitative agreement with the soliton threshold proposed by
Likharev, et al. (Eq. 3.1.1); however our results do not quantitatively agree because
we do not use the soliton model to derive our inverse capacitance matrices. See
Table 3.1.

Increasing the biasing asymmetry factor (increasing |a — 1/2|), caused the
thresholds of arrays with long range interactions in the absence of disorder to de-
crease smoothly because these changes cause more of the applied potential to drop
across the contact junction that sets the threshold. When the arrays include disor-
der, varying « causes the thresholds to fluctuate with less regularity than disordered
arrays in the onsite case because the long range case allows any junction (instead
of just the contact junctions) to house the first tunneling event that initiates the
first sequence of hops that transfer charge between the leads. Increasing the range
of interactions (by decreasing the spacing between nanoparticles) decreases the de-
pendence of the threshold on the biasing asymmetry factor a.

Finally we examined how temperature affects the thresholds of disordered
arrays. As long as the temperature is not too large, k7' < 0.1E!, we can define a
threshold using a peak in the second derivative of the IV curves. In the temperature
range where we are able to define a threshold, our results are in good agreement
with Elteto, et al.’s model for the finite temperature threshold [17]. See Fig. 3.18.

Arrays with onsite interactions can not be described by this model because
of the way temperature affects the local thresholds of these arrays. At zero tem-
perature, charge gradients, d@QQ; = —1, must build across any bulk junctions with
up-steps (®%° > 0) in order to create potential gradients that facilitate current flow

that the applied potentials can not directly supply because these potentials drop
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completely across the contact junctions. Finite temperatures allow charges to hop
across the bulk junctions in the absence of these charge gradients. As a result, steps
appear in the IV curves at voltages below the zero temperature threshold. See
Fig. 3.19. The steps occur at voltages that allow the time-averaged charge at the
contacts to increase by one. The flat regions in between the steps are due to current
flow that is dominated by the times spent hopping across the bulk junctions; these
time are independent of the applied voltage because the applied voltage does not

directly drop across the bulk junctions in the onsite limit.
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Chapter 4

Low Temperature Transport

Characteristics

Charging effects complicate the transport characteristics of nanoparticle arrays.
When a small bias is applied to the arrays, the response of the system is determined
by the capacitances of the system. At very large applied biases, the resistances
of the array junctions determine the transport characteristics. We have found two
distinct scaling relationships

I (V-=Vp)",

that correspond to these two regimes. Both regimes have linear scaling, 7 = 1. The
slope of the resistance regime is related to the total series resistance of the array,
oI/oV = Rt;%. The slope of the low voltage regime depends on the resistance and
the electrostatic potential drop across one or two junctions that act as bottlenecks
at voltages close to threshold. We investigated how these scaling relationships arise
from the local responses of the arrays to the applied voltage by calculating how the
probability distributions of the hopping energies of array junctions, P(AE;), and

the currents of arrays vary with applied voltage.
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Sec. 4.2 and Sec. 4.3 discuss our results for the capacitance and resistance
dominated regimes. Sec. 4.4 describes how arrays transition between these two
regimes. Sec. 4.1 reviews scaling predictions and scaling measurements from previ-

ous works and experiments.

4.1 Background

A variety of scaling forms have been predicted and measured for the IV curves of
1-D nanoparticle arrays. This section reviews these results.

For 1-D arrays, Middleton and Wingreen (1993) predicted that the IV curves
would have linear scaling at voltages very close to the threshold and at very large

voltages [35]. In both regimes, they predicted that the slope would be given by !

or 1 1
OV~ Ry(N+1)  NRy'

Close to the current, they explained the form of Eq. 4.1 by arguing that the average
voltage drop across the junction that determines the current near threshold (the
bottleneck) is approximately given (V — Vp)/N [35, 24].

Jha and Middleton (2005) revisited this model in more detail. They de-
termined the scaling exponents of arrays with uniform capacitances (UC) and the
new case of disordered capacitances (DC). They analytically argued that the scaling
should be linear at the high and low voltage regimes for both UC and DC arrays.
Numerically they found for the UC arrays, that the scaling near threshold was lin-
ear as long as the arrays were very long, N > 500 [24]. For the DC arrays, they
numerically found exponents other than n = 1 at the high and low voltages even in

the limit of very long arrays. See Table 4.1. At low voltages, their scaling exponents

!Middleton and Wingreen express the current in terms of the of the reduced voltage, v =
(V—=Vr)/Vr,ie. I=(e/(2RCo)v [35]. The derivative of this current with respect to the voltage
V along with Vr = eL/(2C) leads to the equivalent expression, Eq. 4.1 The slope is expressed in
the form for easier comparison with results that follow in this chapter.
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were depressed by plateau regions in the IV curves.

Reichhardt and Reichhardt (2003) measured the scaling exponent of arrays
using a model with a 1/r interaction between the charges in the islands and a linear
drop for the polarization potential [40] . Numerically, they found a deviation from
linearity at voltages close to the threshold. At larger voltages, v > 1, they found
that the IV scales linearly for 1-D arrays. Analytically, they argued that near the
threshold, the scaling exponent should be the same as a sliding charge-density wave,
n =1/2 [20].

Kaplan, Sverdlov, & Likharev (2003) et al.[26] numerically analyzed ar-
rays with charged disorder and with very long soliton lengths and found that the
IV scales linearly at voltages near the threshold.

Table 4.1 lists some of the scaling exponents that have been measured in
experiments with 1-D and quasi-1-D arrays. This list is typical of the variety of
scaling exponents that have been measured on nanoparticle arrays. Measurements
of the scaling relationship at voltages close to the threshold rarely found scaling
exponents equal to one. Typically this exponent was greater than one. We found
that the scaling exponent equals one in regions of voltage that are very close to
the threshold. These regions are closer to the thresholds than the regions tabulated
here. See Table 4.2.

4.2 Bottleneck Regime

In this section, we show that the current varies linearly with respect to V — Vr for
very small V' — V and that the slope is not inversely proportional to IN. The slope
is sensitive to the range of Coulomb interactions and to the degree of symmetry
between the applied bias voltages on the source and drain leads. This linear depen-
dence extends over several orders of magnitude. However, the linear regime vanishes

at voltages small enough that this regime is probably not relevant experimentally.

87



Reference Dimension n Reduced voltage
range
Rimberg, Ho, & Clarke | 1-D 1.36 £1 0.l1<v<8
(1995) [42]
1 v > 8
Bezryadin, Westervelt, | quasi-1-D 1.03, 2.06, 2.32 | 1072 < v < 10°
& Tinkham (1998) [4]
Elteto, Lin, & Jaeger | quasi-1-D 1.5-1.8 0.1<v <10
(2005) [18]
Jha & Middleton (2005) | 1-D (DC, 0.85 + 0.02 006 <v<5b
[24] N > 500)
1.24+0.05 v>1
1-D (UC, ~1 005 <v<b
N > 500)
-D (UC, ~ 0.85 005 <v<5b
N < 500)
~ 1.05 v>1
Table 4.1: Scaling exponents measured on 1-D and quasi-1-D arrays. The re-

duced voltage is related to the applied voltage, V, and the threshold voltage, V7,
by v = (V — Vp)/Vpr. Rimberg, et al.’s arrays consist of Al islands linked by
Al/A1,Oy/Al junction produced by e-beam lithography [42]. Bezryadin, et al.’s
arrays consist of 1-D chains of carbon nanoparticles that are occasionally broken
up by 2-D clusters of nanoparticles [4]. See Fig. 1.2(b). Elteto, et al.’s arrays are
composed of gold nanoparticles that are approximately 60 nanoparticles long and 4
nanoparticles wide [18]. Jha & Middleton (2005) obtained their results numerically.
DC (UC) correspond to arrays with random capacitance (uniform capacitances).

Clean Arrays Disordered Arrays
N Range Vinaz Umaz Vimaz Umaz
5 [ d/r*'=0.5]0.002 | 8 x 107* | 0.005 | 2 x 10~*
5 onsite 0.004 | 4x107* | 0.01 |2x1073
50 | d/r*' =0.5|0.002 | 1x10°*| 0.01 |2x 1074
50 | d/r*' =10 | 0.003 | 3 x 10°°
50 onsite 0.03 | 3x107*| 0.01 |2x107*

Table 4.2: Approzimate sizes of voltage ranges near threshold with linear scaling.
Linear scaling appears for V=V — Vg < V4 (in units of E*!) or for v = 1% /Vr <
Umaz (I units of reduced voltage). Linear scaling disappears at voltages smaller
than the voltage ranges used to measure the scaling exponents in Table 4.1.
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At the threshold voltage, current first begins to flow across arrays at zero
temperature. At finite temperature, current can be nonzero at smaller applied
biases. When the applied bias reaches the threshold voltage, the energy cost of
hopping across one junction, the bottleneck, becomes slightly less than 0, AEy, < 0.
Following a hop across this junction, the injected charge changes (I’fh across the other
array junctions in such a way that AFE; < AFEy, and as a result the injected charge
moves quickly across the array. The total time of this sequence of hops is so small
compared to the average time associated with the hop across the bottleneck junction
that the arrays islands and junctions surrounding the bottleneck junction effectively
behave like extensions of the leads that voltage bias the bottleneck junction. When
the time to transport a net charge between the leads nearly equals the time to
tunnel across the bottleneck, the array current nearly equals the current across the
bottleneck junction:

I = el = [AEpn|/(eRon) - (4.1)

The I(V) curve in this regime is linear and has a slope that depends on the portion
of the potential difference across the bottleneck junction that is directly related to

. . pol .
the applied bias voltage, ®; "

oI 1 9
== = —|AE,,
oV eRyn gy A Eml
1 9
_ v (Dpol
eRyy, av' bm.|
1
= & |Apn]| - (4.2)
n

A= ° IV is a negative number between 0 and 1 whose absolute value equals the
fraction of the total polarization drop that is distributed over the i-th junction. See
Eqg. 3.8. The slope of the IV curve in the bottleneck regime, Eq. 4.2, does not equal
R{oi unless the polarization potential drops linearly across the array. In this case,

or %! is constant and A; = —(N+1)~! across all the junctions. In general, this is not
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Figure 4.1: Fraction of polarization potential that drops across array junctions, A,
for 50-island and a 5-island arrays that are symmetrically biased.
A; were determined by using Eq. 3.8 with o = 1/2.

true because |A;| depends on the positions of the junctions and tends to be largest
for junctions closest to the leads. Fig. 4.1 shows how |A;| compares to (N + 1)~!
for arrays of length, N = 5 and N = 50, and spacing, d/r**' = 0.5 and 10.

In the bottleneck regime, the position of the bottleneck and the voltage drop
across the bottleneck junction is unrelated to the resistances of the array junctions
because the charge configuration on the array, (J;, is nearly static. The array spends
most of its time in the bottleneck configuration of charges and the electrostatic
potentials due to these charges determine the position and the voltage drop across
the bottleneck. The position of the bottleneck is the junction with the minimum AE;
when the array is in the bottleneck configuration. The position of the bottleneck is
unrelated to the positions of the junctions with the smallest or largest resistance.
Earlier we saw evidence of the lack of effect of the resistances on the probability
distributions, P(AE;), leading up to threshold. Fig. 3.11, Fig. 3.13, and Fig. 3.14
all show that the evolution of the hopping energies across junctions leading up to
the threshold is independent of the resistances across junctions. The independence
of the current on R; at voltages close to the threshold is also shown in the insets of
Fig. 4.9, Fig. 4.10, and Fig. 4.11.

Numerically, we were able to observe the linear scaling of the IV curves down

90



to voltages that are very close to threshold, V =V — V7 < 1. Starting from voltages
very close to the threshold, V = V — V& > 10716, we observe linear scaling over
many orders of magnitude in V. The linear scaling disappears when the bottleneck
approximation, Eq. 4.1, ceases to provide a good description of the array current.
We found that the linear behavior gave way to sublinear behavior at voltages not
much larger than the threshold. The sublinear behavior does not constitute a new
scaling regime because it does not persist over a large enough voltage interval.
The bottleneck approximation loses validity when tunneling processes, other
than the hop across the bottleneck, develop rates with increasing voltage that are
comparable to the bottleneck rate when the array is in the bottleneck state. The
bottleneck approximation also breaks down when two or more hops among a se-
quence of hops that transfer a net charge between the leads significantly contribute
to the total average time of this sequence. For example, consider the average times
associated with two hops among a sequence that transfers charge between the leads.
The average time associated with one hop (a hop across the bottleneck) equals
(1)y~! =Ty = R;7'A;V with V = V — Vi and the average time associated with the
other hop equals (7)~! =T, = Rj_l(|¢';?dd| + A;V) where |@?dd| is a gain in energy
that the second junction acquires at the threshold voltage. If these two processes
have rates much smaller than the rest of processes in the sequence, the current can

be approximated by

; 1 B RNV
P RNV
Y 1+R;1(\¢;dd|+Ajf/)
~ RV (1— — Ri;jiv _ ) . (4.3)
R (1909 + A, V)

Eq. 4.3 qualitatively suggests the linear regime will persist over wider voltage ranges

for arrays where |A;| tend to be more homogeneous. This tends to occur as N and
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d/r*" decrease.
Sec. 4.2.1 and Sec. 4.2.2 discuss how the slopes of the IV curves depend on
disorder and the biasing asymmetry factor, «, for arrays with long range interactions

and arrays with onsite interactions.

4.2.1 Bottleneck regime for arrays with long range interactions

In the absence of disorder, the same junction(s) that set the threshold voltage dis-
cussed in Sec. 3.2.2, Vy = min(V;"), are the bottleneck junction(s). These bottle-
necks occur at one or both of the contact junctions because the voltage drops across
these junctions tend to be the largest when the array is empty of any excess charge.
The behavior of the slopes of I versus V = V — Vp with respect to «, N, and
d/ ! are the opposites of the behaviors of the thresholds with respect to the same
parameters because V o< |Ay,|~!. Increasing N and decreasing d/r*s! decreases the
slope because these changes reduce the fraction of the polarization potential that
drops across the contact junctions. See Fig. 4.2(a).

With the exception of symmetrically biased arrays, biasing the array in a
more asymmetric way (increasing |o — 1/2|) always increases the slope because
this change increases the fraction of the polarization potential that drops across the

contact junction that acts as a bottleneck at small voltages. When the ordered array
/2

is symmetrically biased (@ = 1/2), the slope is proportional to 2A; - /2 instead of
AZ‘n: 72 que to the symmetry between the energy costs of hopping across the two

contact junctions. Because of this symmetry, the average bottleneck current is
given by I oc (1)1 =3, T; = (2)|AE},| where the factor of (2) comes from the two
contact junctions that each have AE; = AEnN11 = AEy,.

When the array has charged disorder, the bottleneck can occur at junctions
other than the contact junctions. Fig. 4.3(a) shows three symmetrically biased

arrays with the same length and spacing that each have a different configuration
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Figure 4.2: IV and 0I/0V curves of ordered arrays with long range Coulomb inter-
actions. In Fig. 4.2(a), decreasing N and increasing d/r**! decreases the slope of the
IV curves in the region close to the threshold. In Fig. 4.2(b), increasing the biasing
asymmetry (increasing |a — 1/2|) increases the slope in the low voltage regime with
the exception of the perfectly symmetric case which has the largest slope because
the symmetry between two bottlenecks doubles the current and its slope in this case.

of disorder, {®%*}. The different values of the slope for these three cases illustrate
how different configurations of disorder can position the bottlenecks across different
junctions in arrays.

Changing the biasing asymmetry factor, «, changes the slope of the IV curves
of disordered arrays. The slope changes because Ay, varies with respect to «. In
addition, the slope can change if the bottleneck switches to a different junction.
Unlike arrays without disorder, the slope of the bottleneck current does not always
increase as the voltage becomes more asymmetric (increasing |a —1/2|) because the
position of the bottleneck is not fixed. Fig. 4.3(b) gives an example of a disordered
array whose slope does not respond to variations in « in a consistent way due to

changes in the position of the bottleneck.
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Figure 4.3: IV and 0I/0V curves of disordered arrays with long range Coulomb
interactions. Fig. 4.3(a) shows how varying the charged disorder configuration,
{®%s} changes the slopes and TV curves of 50-island arrays with spacing, d/r*s! =
0.5. Near the threshold voltage, changing {®%°} changes the slope by changing
the position of the bottleneck. Fig. 4.3(b) shows how varying only the biasing
asymmetry («) affects a disordered array. Increasing the biasing asymmetry does
not always increase the slope of the low voltage regime because changing a can
change the position of the bottleneck.
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4.2.2 Bottleneck regime for arrays with onsite interactions

For arrays with onsite interactions, the finite-valued slopes of the IV curves at
voltages close to thresholds with and without disorder are determined by the voltage
drops across either or both of the contact junctions. Regions of the I'V curves with
zero slope can occur when the average time to transfer a net charge between the
leads is dominated by processes that occur at bulk junctions. These flat IV regions
are too small to define a scaling regime because they are interrupted regularly by
sharp rises in the current that occur at voltages that allow the average amount of
charge residing at the contact islands to increase.

In the absence of disorder, we found that the slopes of the IV curves of
symmetrically biased arrays depend on whether the arrays have even or odd numbers

of islands. When Ry = e = 1, the slopes are given by

o1 | @A =1  when N is odd
oV (1)]A%"? =1/2 when N is even

This dependence is shown for a few arrays in Fig. 4.4(a). Due to the symmetry
between the contact junctions, the average time spent hopping across one of the
contact junctions is given by 73, = (3; Ts)~! = (2|AE;|)~!. When N is odd, only
one hop across a bottleneck must occur in a sequence of hops that transfer one net
charge between the leads. In this case, the bottleneck current approximately equals
I « (7py)~! = 2|AFE;| which leads to the slope above. When N is even, two hops
must occur across bottlenecks in each sequence of hops that transfer one charge
between the leads because two injected charges must meet in the middle of array
in order to overcome all the barriers to current flow. In this case, the bottleneck
current is given by I o (274,)~! = |AE;| which leads to the smaller slope for arrays
with even N.

When the arrays are disordered and symmetrically biased, potentials due
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to disorder at the edges of the arrays remove the symmetry between the energies
to inject charges at both contact junctions. In this case, the bottleneck occurs at
either one junction and the average bottleneck time is given by 7y, = (3; 1) ! =
(|AEp,|)~! when e = Ry, = 1. AE,, equals AE; (AEy,1) when the bottle-
neck occurs at the source (drain) contact junction. Each sequence of hops that
transfer charge between the leads has only one hop across a bottleneck so the
current approximately equals I o< (73,)”" = |AFE},| which always has the slope,
|A1] = |[An+1] = 1/2, when the array is symmetrically biased. Fig. 4.5(b) shows
how the slope of symmetrically biased disordered arrays is unaffected by N and by
different disorder configurations, {®%*}.

Increasing the asymmetry between the potentials at the source and drain
leads (increasing |@ — 1/2|) does not always increase the slope because as « is the
varied, the bottleneck currents are alternately determined by the contact junction
closest to the source and to the drain. The slopes equal A; = a and Ayy1 =
1 — a when the bottleneck occurs at the contact closest to the source and drain
respectively. The factors of 2 that appeared in the slopes of symmetrically biased
arrays without disorder do not affect the slopes when « # 1/2 because differences
between Ay and Axy1 remove the symmetry between the energy costs of injecting
charges through either contact junction. Fig. 4.4(b) and Fig. 4.5(b) show how
the slopes near threshold vary for ordered and disordered arrays in response to
changing «. Both figures show how the slope changes gradually over ranges of «
that correspond to only one contact junction and change abruptly between values of
a that switch the position of the bottleneck from one contact junction to the other

contact junction.
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Figure 4.4: IV and 0I/0V curves for arrays without disorder in the limit of onsite
interactions. In Fig. 4.4(a), the slope of the IV curves of symmetrically biased
arrays near their thresholds equals |[A;| = 1/2 when N is even and 2|A;| = 1 when
N is odd. The slope is halved when N is even because charges need to cross two
bottlenecks (instead of one) before a net charge can be transferred between the leads
at these small voltages. Fig. 4.4(b) shows how the slope near the threshold varies
both smoothly and abruptly as the biasing asymmetry factor « is varied. The slope
varies smoothly with @ when modifying a only changes the potential drop across a
bottleneck whose position is fixed at either one of the contact junctions. The slope
varies abruptly when changing o changes the position of the bottleneck from one
contact junction to the other contact junction.
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Figure 4.5: IV and 01/0V curves of disordered arrays in the onsite limit. Fig. 4.5(a)
shows the I'V and 0I/9V curves of several symmetrically biased arrays:two 5-island
arrays with different disorder configurations and a 50-island array. Comparing their
slopes near the thresholds shows the independence of the slope on N and {<I>;ﬁ5}
when arrays are disordered and symmetrically biased. Fig. 4.5(b) shows how vary-
ing the biasing asymmetry («) alone affects a disordered array. Just as in arrays
without disorder, Fig. 4.4(b), the slopes vary smoothly and abruptly with a be-
cause varying a can modify the potential drops across the bottleneck(s) and also
change the position of the bottleneck from one contact junction to the other contact
junction.
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4.3 Linear Resistance regime

At large enough voltages, we found that the IV curves of 1-D nanoparticle arrays
are linear and the slope of the curves is determined by the total series resistance of
the array junctions, 0I/0V = (Ry)~'. In this limit, the energy to hop across each
array junction, AF;, is proportional to the resistance across each junction, R;. We
observed how interaction strengths and the resistances affect the transition to the
linear resistance regime by plotting how the currents, I(V'), and the distributions
of tunneling energies, P(AE;(V)), evolve with increasing voltage for arrays with
different interaction strengths and with two different types of resistance configura-
tions. We compared the characteristics of arrays with resistances that are all equal
to arrays with resistances that are all equal except for one large resistance in the
middle of the array. Both cases have the same total resistance, Ryt = (N + 1) Ry,

and have resistances equal to
R; = [a + (5i,k (R — a)]Ro (4.4)

where a = W and R = 1 when all the resistances are equal and R = 30 for
the arrays with the large resistor. The two cases are easy to compare and the
difference between them is an idealization of resistance fluctuations that occur in
experimentally realized arrays that have the same gap width between the leads but
have slight differences in the spacings between particles. This section discusses the
form of the IV curves in the linear resistance regime and the shapes of the P(AE;)
distributions in this regime for these two cases. The following section discusses the
transition to this regime.

At very large applied voltages, the energy to hop across each junction, AE;,
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is approximately given by 2
AE; = B+ @, ~ EE" 4 07 4 ot (4.5)

and the tunneling rate, I'; is approximately given by 3

|AE;]
I, ~ .
' e2R;

Although AFE; does not depend directly on R;, the dependence of the tunneling
rates, I';, on R; enable the resistances to determine the time-averaged values of
the hopping energies. The resistances can only affect the contributions to AE; due
to the excess charges on the array, <I>fh, because this is the only term that varies
with time when the applied bias voltage is fixed. Due to charge conservation, the

time-averaged current through each junction equals the average array current, I:
<Ii>=e<Iy;>=1. (4.6)

Because the array is voltage-biased, the potentials at the leads, Vy - Vy41 =V, are

related by

M=

Vo + <<I>fh + @f0l> = Vnn

-
Il
—

M-

-
Il
—

((I)Zgh + (I);;)ol) = Wwu—-VW=-V. (4.7)

We can solve for a set of array hopping energies AF; with tunneling rates that

2 At large voltages, disorder can be ignored because &% « ®¢* + <I>f°l.
3The orthodox tunneling rate approximately reduces to the zero temperature expression, Eq. 4.3,
when the voltages make the magnitudes of the tunneling energies fairly large compared to the

thermal energy, |AE;| > kT.
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satisfy current conservation, Eq. 4.6,

AE;| @i - BT
<I';>= = t =T". 4.8
€ ¢ 6Ri 6RZ' ( )

Solving Eq. 4.8 and Eq. 4.7 simultaneously for ®;, and substituting these values into
AE; leads to the following values for AE; and I°:

AE; = —I°R; (4.9)
where
_ 10
I’ = % (4.10)
Yt R;
and
N+1
e—h
vO=>3 E". (4.11)
i=1

V0 is called the offset voltage. The offset voltage is the voltage at which I° = 0
and it is almost always greater than the threshold voltage. * At large voltages, the
IV curves approach the linear resistance form, Eq. 4.10, and the average hopping
energies are given by Eq. 4.9.

The only part of the linear resistance current, I°, that depends on the ca-
pacitances of the junctions is the offset voltage, V°. The dependence of I° on the
capacitances can be removed by normalizing the current and the voltage by the
offset voltage:

0 v—1

_ . (4.12)
SR,

where i = I1°/V0 and v = V/VP. Fig. 4.6 shows the normalized i — v curves for

arrays with onsite interactions and with long range interactions (d/r*! = 10 and

d/rst = 0.5) with resistances given by Eq. 3.14 with R = 1 and R = 30. At large

“The only case when VO = Vr is when interactions are onsite and there is no disorder. In this
case, all the junctions are up-steps (®¢** = 0) and Vr = Ziv:tl ETh =0
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Figure 4.6: Normalized i — v curves of 50-island arrays. The resistances of the junctions
are described by Eq. 3.14. At large voltages, the ¢ — v curves of arrays with onsite and
long range (d/r**! = 10 and d/r**! = 0.5) interactions are the same and approach the linear
resistance form for the current (i°). The curves due to arrays with different interactions are
not distinguished by color or line style because they overlap.

voltages, the normalized ¢ — v curves for the arrays in Fig. 4.6 all overlap because
they share the same total resistance. Inserting a large resistance in the middle of
the arrays causes the i — v curves to approach the linear resistance current i® at
larger voltages than the arrays with equal resistance junctions.

Fig. 4.7 shows P(AE;) at applied voltages that are multiples of the offset
voltage, VO, for arrays that all have equal junction resistances, R; = Ry, and different
ranges of interactions. All the arrays reached the limit described by Eq. 4.9 by
V =~ 2V, When the arrays reach this limit, the distributions of tunneling energies
are centered at AE = I°R because all the array junctions have the same resistance.
Due to the dependence of V? on the excitonic energies, Ef*h, arrays with stronger
isl)

interactions (smaller spacing d/r**") reach the linear resistance regime at smaller

applied voltages. See Fig. 4.9, Fig. 4.10 and Fig. 4.11.
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Figure 4.7: Probabibility distribution of bulk junction hopping energies for 50-island arrays
with equal junction resistances R; = Ry. The top, bottom and middle panels correspond to
arrays with onsite interactions and with long range interactions and spacings, d/r®! = 10
and d/r®! = 0.5, respectively. The applied voltages for P(AE;) in all the panels from left
to right equal (8, 4, 2, 1, 0.5)V°. VO equals 100.04E!, 91.73E!, and 55.94E! in the top,
middle, and bottom arrays. When the distributions are centered at the guidelines, drawn
for each voltage at AE; = I°R;, the arrays are in the linear resistance regime. The x-axes

are labeled in units of Eis! = 1/2C, and in units of Ee~" = "N ge=h /(N 4 1).

Fig. 4.8 shows how the tunneling energies, P(AE;), evolve with voltage for
arrays with one large resistor in the middle of the array. In the linear resistance
regime, these distributions have two peaks that correspond to the two resistance
values, Eq. 4.4, in these arrays, located at AE = I%(a) = 0.42Ry and AE =
I°(R—a) = (30—0.42) Ry. The distributions approached the linear resistance values
of AE; at larger voltages than the equal resistance arrays, V ~ 8V°. Fluctuations
in the junction resistances can prolong the transition to the linear resistance regime.

This transition is discussed in the next section.
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Figure 4.8: Probability distribution of bulk junction hopping energies for 50-island arrays
with unequal junction resistances (Eq. 3.14 with R = 30). The top, bottom and middle
panel correspond to arrays with onsite interactions and with long range interactions and
spacings, d/r®*! = 10 and d/r?*! = 0.5, respectively. The applied voltages for P(AE;) in
all the panels from right to left equal (8,4,2,1)V%. V0 equals 100.04E!! 91.73E¥! and
55.94E%! in the top, middle, and bottom panels. The left and right panels focus on the
part of P(AE;) due to the junction with large resistances and the junctions with small
resistances respectively. When the distributions are centered at the guidelines, drawn for
each voltage at AE; = I°R;, the arrays are in the linear resistance regime.
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Figure 4.9: IV curves for 50-island arrays with onsite interactions interactions and equal
and unequal junction resistances. The arrays with thin (thick) lines have junction junction
resistances described by Eq. 3.14 with R =1 (R = 30). The dashed line is a guideline that
shows the form of the IV curves in the linear resistance regime (see Eq. 4.8).

4.4 Intermediate regime

At voltages in between the two linear regimes at high and low voltages, the cur-
rent depends on the applied voltage in two different ways. At voltages close to the
threshold, the current has a step-like dependence on the applied voltage. At larger
voltages, the current depends more smoothly on V' and approaches the linear resis-
tance current I° from above (I > I°). The following section compares how arrays
with equal resistances and arrays with all equal resistances except for one large
resistance in the middle of the arrays transition between the two linear regimes.
At voltages larger than yet extremely close to the threshold, the current is
dominated by one or two processes (bottlenecks). Sec. 4.2 discussed how this leads to
linear IV scaling behavior. Above the bottleneck regime, the current is dominated

by multiple processes that are slow in the sense that the energies of these processes
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Figure 4.10: IV curves for 50-island arrays with long range interactions (d/r*' =10) and
equal and unequal junction resistances. The arrays with thin (thick) lines have junction
junction resistances described by Eq. 3.14 with R = 1 (R = 30). The dashed line is a
guideline that shows the form of the IV curves in the linear resistance regime (see Eq. 4.8).

have values associated with small tunneling rates, —§ < AF; < 0 where § is a small
number. When the current is dominated by slow steps the slope of the IV curves
is a time-weighted average of the set of A;/R; that correspond to the slow steps.
A = @ ol /V is the fraction of the total applied voltage V' that drops across the
i-th junction. A;/R; is the voltage derivative of the hopping energy of a junction,
OAE;/0V, when the potential gradient of the junction due to charges on the array
are only weakly dependent on the applied voltage, 6<I>fh /OV = 0.

Arrays with onsite interactions have well-defined steps because A; = 0 across
the bulk junctions. In the bottleneck regime, there is still linear scaling for arrays
with onsite interactions because the polarization potential gradient is finite across
the contact junctions, A; # 0 and Ayy1 # 0. At voltages above the bottleneck
regime, processes that move charge over the bulk junctions begin to dominate current

flow. As a result, the IV curves have flat regions (regions with 0I/0V = 0) that
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Figure 4.11: IV curves for 50-island arrays with long range interactions (d/r**' = 0.5) and
equal and unequal junction resistances. The arrays with thin (thick) lines have junction
junction resistances described by Eq. 3.14 with R = 1 (R = 30). The dashed line is a
guideline that shows the form of the IV curves in the linear resistance regime (see Eq. 4.8).

are broken up by regularly spaced jumps in current that are spaced 2E!! apart.
See inset of Fig. 4.9. The current rises abruptly at voltages that allow the average
charge that resides on the contact islands to increase by one (sometimes two if the
array is symmetrically biased). Increasing the numbers of charges at the edges of
the arrays increases the sizes of the charge gradients across the bulk junctions that
create potential drops that drive current through the bulk junctions.

When interactions are long range, the current can have step-like features at
voltages immediately above the threshold. See insets of Fig. 4.10 and Fig. 4.11.
These features are not as well defined and regular as they are in the onsite case,
but they can be understood in terms of the onsite case. The slopes of the flatter
regions of the IV curves do not equal 0 when there are long range interactions
because ®P £ ( across all junctions. The slope can be depressed when the current

is dominated by slow steps that occur across junctions with small &7 o The edges of
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the steps are not as well defined as they are in the onsite case because increasing the
applied voltage always increases the sizes of the potential drops across all junctions
because ®F °! is finite across all junctions.

Fig. 4.7 shows how the tunneling energies of arrays with onsite and long
range interactions evolve at voltages above the bottleneck regime. At the small-
est displayed voltages, V = 0.5V, the tunneling energy probability distributions,
P(AE;), have shoulders that just extend into the region of energies that allow tun-
neling events, AE; < 0. The probabilities embedded in this distribution are time-
averaged when charges are not stationary. See Sec. 6.3. This means that regions
of energy that are both negative and have large P(AE;) values contribute most to
the average tunneling rates across junctions. When the distributions have shoulders
that just lean into small negative values of AE;, then the current is dominated by
processes with small tunneling rates (slow steps). At the next displayed voltages,
V = VO, the shoulders disappear. The distributions have large probabilities as-
sociated with a larger range of energies with finite tunneling rates. These shapes
indicate that slow steps no longer dominate current flow. As result, the step-like
features in the IV curves are absent at these voltages. See Fig. 4.9, Fig. 4.10, and
Fig. 4.11.

Introducing a large resistor in the middle of the array while holding the total
resistance constant increases the current because the slow steps occurs across the
junctions with smaller resistance, a = 0.42Ry < Ry. Although the current is larger,
the step-like features are more defined and persist over a wider range of voltages
than the arrays without the large resistor. The slow step region is prolonged because
the uneven set of resistances favor tunneling events that create an uneven set of
voltage drops (uneven @fh) across the array junctions. Most of the applied voltage
drops across the junction with the large resistance. The slow steps occur across the

remaining junctions that have much smaller voltage drops. It takes larger applied
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voltages to drive the tunneling energies across all junctions to levels that support
large tunneling rates. Fig. 4.8 shows how the tunneling energies across the junctions
with the smaller resistance cluster around energies associated with smaller rates. At
voltages as large as V = V0 all the distributions still have shoulders near AE; = 0
that indicate that slow steps still continue to strongly influence the current.

At larger voltages, the current varies smoothly with applied voltage and has
a slope that approaches the linear resistance slope, 0I/0V = (Ry)~!. The current
in this region is always greater than the linear resistance current, I°, because of
fluctuations in the tunneling energies due to moving charges. Recall that the total

voltage drop is distributed over the junctions in the following way,

N+1

> (@ + @) =V - Vo=V

i=1
at all instances. When the voltage is fixed, ° does not vary in time. However
each time charges move, @fh changes across individual junctions and redistributes
the total applied voltage across junctions in ways that allow current to flow. The
contributions of excess charges to the potential gradients enable the threshold volt-
ages to occur at values smaller than the offset voltages. These contributions also
create the large spreads in the energy values shown in the P(AE;) distributions.
Due to current conservation, the P(AE;) distributions tend to peak at values for
the energy that lead to equal current values through all junctions, AE; = I°R;. The

actual average current, [ is related to the distributions by,
0
I=e(ly) o — / AE;P(AE)d(AE;) .
—0oQ

The actual mean of the energies in P(AE;) is close to AE; = —I°R; at nearly all
voltages. However the mean of the energies that contribute to the current, Eq. 4.4,

is smaller than mean of the entire distribution and this leads to larger currents,
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Figure 4.12: Ewvolution of P(AE;) at intermediate voltages for a 50-island array with
spacing d/r**' = 0.5. The applied voltages of the distributions from left to right are
(4, 2, 1)V° where V0 ~ 55.94E%!. The solid guidelines show the predicted mean
for AFE; in the linear resistance regime. The dashed guidelines show the effective
tunneling energy, Eq. 4.4 associated with the actual current flow through the arrays.

I > I°. At large enough applied voltages, the two means are nearly equal and the
array current equals the linear resistance current. Fig. 4.12 shows how these two
means approach each other as the applied voltage increases for an array with equal
junction resistances.

When one of the resistances in the bulk of the array is much larger than the
others, the current approaches the linear resistance current, 19, at larger voltages.
The average energy of the probability distributions associated with the junctions
with smaller resistance AE;.; = 0.42Rq are still well described by AE; = —T OR;
when V > V0 (Fig. 4.8). The peaks of the distribution due to the large resistance
junction R, = 30R; occur at values smaller than AE, = —I°Ry, and they approach
these values when V is very large. Again, the actual current is larger than I° until
the current approaches I because of fluctuations in the tunneling energies due to
moving charges on the array. The junctions whose potentials are most affected by
these fluctuations are the junctions with small resistance because the voltage drops
across these junctions tend to be smaller than the voltage drops across junctions
with larger resistances. At voltages less than 8V, the average energy associated

with finite tunneling rates, (AE; < 0), tends to be smaller than the average over
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Range (Vry/EST | 2VO/ESY 8VY/ES! | vpin1 Umin,2
onsite 49.84 200.08 80032 | ~3 ~15
d/r*t =10 | 42.96 183.46 733.84 ~3 ~16
d/rst =0.5 |  19.78 111.88 447.52 ~5  ~22

Table 4.3: Approzimate minimum voltages for the linear resistance regimes of 50-
island arrays with varied interaction strengths. vpin1 and v, 2 are the reduced
voltages, v = (V —Vr)/Vr, associated with 2V? and 8V°. These values approximate
the minimum voltages required to reach the linear resistance regime for arrays with
equal resistances and for arrays with equal resistances except for one large resistance
in the middle of the array.

all tunneling energies (AE;) ~ —I°R; because a large part of the distributions
correspond to tunneling energies that forbid hops (AE; > 0). At very large voltages
(V = 8V70), the fraction of P(AE;) due to positive energies becomes small enough
that the array current can approach I°. As the array current approaches I°, the peak
in P(AE;) due to the junction with large resistance approaches its linear resistance

value.

4.5 Conclusions

We have numerically measured two linear scaling regimes that occur at very small
and very large voltages. The voltage ranges for these two regimes do not coin-
cide with the voltage ranges typically used to characterize the I'V characteristics of
experimentally realized arrays.

The linear scaling of the low voltage regime is due to the current-voltage
characteristics of a single junction, the bottleneck, that dominates current flow at
these voltages. The slope of the bottleneck current is set by the resistance and the
polarization potential gradient across the bottleneck junction, 31/0V = Ay, /Rpy-
The slope of the IV curve is unrelated to the series resistance of the 1-D system
because the threshold voltage and the bottleneck regime is primarily an electrostatic

effect. Coulomb blockade suppresses the motion of charges enough that the time-
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averaged potential gradients across the array junctions nearly equal the electrostatic
potential gradients due to the leads and the static configuration of charges prior to
a hop across the bottleneck. The bottleneck approximation is valid at voltages
very close to the thresholds of both 1-D and 2-D arrays. In the latter case, the
approximation is valid when charges move along a single 1-D path that spans the
2-D arrays. We found that the voltages at which this approximation breaks down
are close enough to the threshold that this regime may be experimentally irrelevant.
For all the arrays we modeled, the linear scaling vanishes at voltage values, Table 4.2,
too small to lie within the ranges of reduced voltages typically used to measure the
scaling of the IV curves of arrays in experiments, Table 4.1.

At very large voltages, the IV curves are linear and described by

SNIUR;
where the offset voltage is given by
N+1 N+l o4
VO = Z Ef_h = Z (5(01_11 + Oi_—11,i—1) - 01_21—1> :

Eqg. 5.1.3 arises from current conservation among the currents through each junction
and the average current through the entire array. The offset voltage sets the scale of
voltages large enough for the linear resistance regime to be valid at small tempera-
tures. We found that arrays with uniform resistances reach this regime at V' > 270
and arrays with uniform resistances except for one larger resistance in the middle
of the array did not reach this regime until V' > 8V9. This suggests that as the
length of the array increases and fluctuations in the junction resistance increases,
the voltages required to reach this regime increase. For arrays with 50 islands, we
found that the linear resistance regime began at reduced voltage values, Table 4.3,

larger than the typical reduced voltages used to measure I'V scaling exponents in
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experiments, Table 4.1.

We found that the range of reduced voltages used to measure the scaling
exponents of IV curves in experiments coincides with an intermediate regime in
between the linear bottleneck and the linear resistance regimes. The features of
this regime include a step-like dependence of the current on small voltages followed
by a smooth transition down to the currents described by the linear resistance
1V relationship, Eq. 5.1.3. The size of this transitional regime decreases as the
range of interactions increase and increases as the resistances become less homo-
geneous. The delay in reaching the standard form for the IV curves is caused by
large variations in the potential gradients caused by excess charges moving among
the nanoparticles. It is possible that the wide variations in the measured scaling
exponents are due to the particulars of arrays transitioning between regimes where
the current is controlled by Coulomb blockade to currents that are controlled by

dynamic effects.
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Chapter 5

Summary and Outlook

5.1 Summary

5.1.1 Models of Nanoparticle Arrays

We developed a realistic model for the interactions among charges residing on a
1-D array of nanoparticles sandwiched between two voltage-biased leads. We wrote
the free energy of this system of charges using an inverse capacitance matrix that
includes the nanoparticles and the leads and treating the leads as real (not ideal)
voltage sources. We defined a new time scale in order to separate the work done by
the battery from the work done by charges in our system.

We wrote the tunneling energies to hop across junctions in terms of potential
gradients that separate the contributions due to the applied voltage values, V, and
V41, and the contributions due to the charges on the array, {Q;}. The polarization
potential gradient, ®¥ Ol, only depends on the applied voltage values and describes
the polarization of the junctions by the leads biased at V; and Vy_; in the absence
of excess charges on the nanoparticles, Eq. 2.4. The charged potential gradient,
<I>Z¢h includes all the potential gradients across junctions due to excess charges on

the nanoparticles, Eq. 2.2.1. Terms that describe the fluctuations in the potentials
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at the source and drain leads are included in ®¢". The inclusion of these terms
leads to a renormalization of the interactions among the charges on the array that
describes how these interactions are changed by induced charges on the leads. Mod-
eling the potential gradients in this way enabled us to study how the voltage drops
across junctions without making any simplifying assumptions about how the applied
voltage distributes itself across junctions.

We modeled charged disorder by simulating the annealing of the system to
a global electrostatic equilibrium state while both leads were grounded. We used
the charges associated with this equilibrium state to define the potentials at each
nanoparticle due to random charged background disorder, ¢§“5. The properties of
the global equilibrium state set natural limits on the disorder potentials, ¢&**, and
on the disorder potential gradients, ®%. See Eq. 2.7 and Eq. 2.8. Our description
of the Coulomb interactions among the annealing charges led to correlations among

the disorder potentials.

5.1.2 Thresholds of Nanoparticle Arrays

We have determined the threshold dependence on array length in number of nanopar-
ticles, IV, and on the biasing asymmetry, «, for arrays with long range interactions
and onsite interactions in the presence and absence of disorder.

We found that the average threshold of disordered arrays (averaged over
many configurations of disorder) scales linearly with array length, N, for arrays
with onsite interactions and with long range interactions. Our average threshold
results for the onsite case agree with Middleton and Wingreen’s (MW) results. We
used an analogy to the onsite threshold to derive an upper limit for the threshold

in the long range case:

(Vi) = (Bf ") (Nup) = (Bf~")(N/2)
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where Ez-e_h is given by Eq. 2.2.1. Eq. 5.1.2 reduces to MW’s equation, Eq. 3.1.1,
when interactions are extremely short range [35]. When interactions are long range,
this expression describes how the slope, 9(V't) /0N, decreases as interaction strength
increases due to decreasing the spacing between nanoparticles. Eq. 5.1.2 more closely
approaches the thresholds we determined numerically than other analytical predic-
tions for the thresholds of arrays with long range iteractions. See Table 3.2. By
studying how distributions of tunneling energies, P(AEFE;), evolve as voltages ap-
proach the threshold, we were able to verify that Eq. 5.1.2 overestimates the thresh-
old because it is based on a conservative assumption for how newly injected charges
modify the potential gradients across array junctions. The assumption is that only
one newly injected charge resting on an island on one side of a junction modifies
the potential gradient across any given junction. In reality, long range interactions
allow multiple charges at multiple locations on the array to modify the potential
gradients across junctions.

Our numerical results for (V(N)) at spacings that are comparable to spac-
ings in real experiments (d/r*! = 0.5) are in reasonable agreement with experi-
mental measurements of the threshold on 1-D arrays. Our numerical results over-
estimate the thresholds of quasi-1-D arrays. It is possible for the thresholds of
quasi-1-D arrays to be smaller than the thresholds of 1-D arrays because charges
can access pathways in these arrays that are absent in the 1-D case that enable
them to avoid some barriers to current flow. See Fig. 3.9.

In the absence of disorder, we found that the threshold has a step-like depen-
dence on array length (Fig. 3.3) in the limit of onsite interactions due to two ways
to initiate current through arrays with onsite interactions. In one way, current is
initiated by the injection of a single charge across one of the contact junctions. The
other way requires two charges of opposite sign to be injected through the two op-

posing contact junctions. These two ways for initiating current cause the thresholds
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of individual arrays with onsite interactions to fluctuate continuously between two
limiting values that are separated by AV = 2E%! in response to changing a biasing
asymmetry factor, a, which describes how the applied voltage, V', is distributed

between the source and drain leads,

Vo = oV

Vepr = 1—a)V. (5.1)

See Fig. 3.2. At zero temperature and in the limit of onsite interactions, the thresh-
olds of arrays without disorder are greater than the thresholds of arrays with disorder
because charge gradients must build up across all bulk junctions (junctions between
neighboring islands) in the clean case instead of just the bulk junctions with up-steps
(junctions with ®%¢ > () in the disordered case.

Arrays without disorder and with long range interactions have the smallest
thresholds because this threshold corresponds to the minimum voltage that allows a
charge to hop across a contact junction into an array with no excess charges. As long
as interactions among the leads are not too strong, this threshold increases as the
array length increases and also increases as the spacing between islands decreases
because these changes decrease the fraction of the applied voltage that drops across
the contact junctions (Fig. 3.4). In the limit of very large arrays, this threshold
saturates to a value that increases as the spacing between nanoparticles decreases.
This is in qualititative agreement with the soliton threshold proposed by Likharev,
et al. (Eq. 3.1.1); however our results do not quantitatively agree because we do not
use the soliton model to derive our inverse capacitance matrices. See Table 3.1.
Increasing the biasing asymmetry factor (increasing o —1/2| in Eq. 5.1) causes the
thresholds of clean arrays with long range interactions to decrease smoothly because
these changes cause more of the applied potential to drop across the contact junction

that sets the threshold.
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When the arrays include disorder, varying « causes the thresholds to fluctu-
ate with less regularity than disordered arrays with onsite interactions because the
long range interactions allow any junction (instead of just the contact junctions) to
house the first tunneling event that initiates the first sequence of hops that transfer
charge between the leads. Increasing the range of interactions (by decreasing the
spacing between nanoparticles) decreases the dependence of the threshold on the
biasing asymmetry factor a.

Finally we examined how temperature affects the thresholds of disordered
arrays. As long as the temperature is not too large, k7' < 0.1E%, we can define a
threshold using a peak in the second derivative of the IV curves. In the temperature
range where we are able to define a threshold, our results are in good agreement
with Elteto, et al.’s model for the finite temperature threshold [17]. See Fig. 3.18.

Arrays with onsite interactions can not be described by this model because
of the way temperature affects the local thresholds of these arrays. At zero tem-
perature, charge gradients, d@QQ; = —1, must build across any bulk junctions with
up-steps (®%* > 0) in order to create potential gradients that facilitate current flow
that the applied potentials can not directly supply because these potentials drop
completely across the contact junctions. Finite temperatures allow charges to hop
across the bulk junctions in the absence of these charge gradients. As a result, steps
appear in the IV curves at voltages below the zero temperature threshold. See
Fig. 3.19. The steps occur at voltages that allow the time-averaged charge at the
contacts to increase by one. The flat regions in between the steps are due to current
flow that is dominated by the times spent hopping across the bulk junctions; these
times are independent of the applied voltage because the applied voltage does not

directly drop across the bulk junctions in the onsite limit.
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5.1.3 Dynamics of Nanoparticle Arrays

We have numerically measured two linear scaling regimes that occur at very small
and very large voltages. The voltage ranges for these two regimes do not coin-
cide with the voltage ranges typically used to characterize the IV characteristics of
experimentally realized arrays.

The linear scaling of the low voltage regime is due to the current-voltage
characteristics of a single junction, the bottleneck, that dominates current flow at
these voltages. The slope of the bottleneck current is set by the resistance and the
polarization potential gradient across the bottleneck junction, I/0V = |Ay,|/Ren
where Ay, = @gzl /V. The slope of the IV curve is unrelated to the series resistance
of the 1-D system because the threshold voltage and the bottleneck regime is pri-
marily an electrostatic effect. Coulomb blockade suppresses the motion of charges
enough that the time-averaged potential gradients across the array junctions nearly
equal the electrostatic potential gradients due to the leads and the static configura-
tion of charges prior to a hop across the bottleneck. The bottleneck approximation
is valid at voltages very close to the thresholds of both 1-D and 2-D arrays. In the
latter case, the approximation is valid when charges move along a single 1-D path
that spans the 2-D arrays. We found that the voltages at which this approximation
breaks down are close enough to the threshold that this regime may be experimen-
tally irrelevant. For all the arrays we modeled, the linear scaling vanishes at voltage
values, Table 4.2, too small to lie within the ranges of reduced voltages typically
used to measure the scaling of the IV curves of arrays in experiments, Table 4.1.

At very large voltages, the IV curves are linear and described by

o_ V-V

= SN+l
St R,
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where the offset voltage is given by

N+1 N+1 1
V=S B =% (5(051 +Ch ) — 0;.1_1) :
i=1 i=1

Eqg. 5.1.3 arises from current conservation among the currents through each junction
and the average current through the entire array. The offset voltage sets the scale of
voltages large enough for the linear resistance regime to be valid at small tempera-
tures. We found that arrays with uniform resistances reach this regime at V> 2V°
and arrays with uniform resistances except for one larger resistance in the middle
of the array did not reach this regime until V' > 8V9. This suggests that as the
length of the array increases and fluctuations in the junction resistance increases,
the voltages required to reach this regime increase. For arrays with 50 islands, we
found that the linear resistance regime began at reduced voltage values, Table 4.3,
larger than the typical reduced voltages used to measure IV scaling exponents in
experiments, Table 4.1.

We found that the range of reduced voltages used to measure the scaling
exponents of IV curves in experiments [18, 39, 4, 2, 42] coincides with an interme-
diate regime in between the linear bottleneck and the linear resistance regimes. The
features of this regime include a step-like dependence of the current on small volt-
ages followed by a smooth transition down to the currents described by the linear
resistance IV relationship, Eq. 5.1.3. The size of this transitional regime decreases
as the range of interactions increase and increases as the resistances become less ho-
mogeneous. The delay in reaching the standard form for the IV curves is caused by
large variations in the potential gradients caused by excess charges moving among
the nanoparticles. It is possible that the wide variations in the measured scaling
exponents are due to the particulars of arrays transitioning between regimes where
the current is controlled by Coulomb blockade to currents that are controlled by

dynamic effects.
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5.2 Future Work

Our research does not address the dimensionality of many nanoparticle systems
(e. g. quasi-1-D and 2-D systems) and it does not include all the types of disorder
seen in experiments. More types of structural disorder can be included by including
more variations in the junction resistances and by expanding the inverse capacitance
calculations to include spheres arranged in quasi-1-D and 2-D arrangements. In
principle, the inverse capacitance matrices of these higher-dimension systems can
be used to rewrite the potential gradients in our model due to the applied voltages,
@f Ol, due the charges on the array, @fh, and due to charged disorder,q)g“s. Separating
the potential gradients using these expressions may help to untangle the effects due
to applied voltages, accumulated charge gradients, and charged disorder in these
systems.

This work focused primarily on the zero temperature behavior of 1-D arrays.
Finite temperatures wash out Coulomb blockade effects at low voltages. We began
to characterize these effects by studying the peaks in the IV curves at small finite
temperatures. These peaks are quickly washed out at small temperatures. The finite
temperature low voltage characteristics of these systems can be further studied by
studying the temperature dependence of the zero-bias conductance, Go(T). Study-
ing this quantity can teach us if long range interactions and sequential tunneling can
lead to effects that are similar to variable range hopping effects. Kaplan,et al. (2003)
studied the density of states and the zero bias conductance of 1-D systems [26]
using numerical simulations of sequential tunneling through systems with interac-
tions described by the soliton model with very large screening lengths. They found
a Coulomb gap in the density of states, a feature shared by the Efros-Schlovskii
model for variable range hopping. However, they did not find the Efros Schlovski
dependence in the conductance, Go(T) o exp(—(Ty/T)"/?; instead they found an
Arrhenius dependence, Go(T) o exp(—Uy/(ksT)).
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This work included structural disorder in a very simple way. We compared
the behavior of systems with homogeneous resistances to systems with homogeneous
resistances except for one large resistance in the middle of the array. We were able
to see that this change had no effect on the zero temperature threshold because
this is an electrostatic effect. This work can be extended by studying how introduc-
ing fluctuations in the resistance affect the finite temperature thresholds. Cordan
et al. (2000) [9] studied how the dependence of the threshold on temperature is af-
fected by variations in the spacings between nanoparticles, but they did not include
charged disorder in their model. It would be interesting to check how structural
disorder and charged disorder affect this relationship because both types of disorder
affect the thresholds of arrays in experiments.

Finally, it would be interesting to see how including a more realistic model
of structural disorder would affect the scaling relationships of the IV curves. When
we introduced a single large resistance in the middle of the arrays, we found that
this increased the voltage at which arrays reached the linear resistance regime. In
actual experiments, large fluctuations in the junction resistances are unavoidable
because the tunneling resistance is exponentially related to the distance between
nanoparticles. It would be interesting to check how varying the tunneling resistances
in this way affects the size of the transition regime between the linear regimes at
low and high voltages. It is possible that this regime is large enough to explain why
arrays in experiments [18, 39, 4, 2] sometimes do not reach the linear IV behavior
that is the expected relationship at large voltages because it is a consequence of

current conservation.
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Chapter 6
Appendix

6.1 Monte Carlo Simulations of Transport in Nanopar-

ticle Arrays

This section outlines the numerical algorithm we used to model the motion of charges
through 1-D nanoparticle arrays. We conducted Monte Carlo simulations driven by

the orthodox tunneling rate expression,

+
rf = 21 AEii : (6.1)
e*Rr 1 — exp(AE;" [kpT)

where AE’Z-i is the energy for a charge to hop to the right (left) between neighboring

conductors indexed 7 and ¢ — 1,
+ _ pe—h ! h di
AEF = E;7" £ 0" + &5 £+ o |

Eq. 6.1 is discussed in detail in Sec. 2.2.
We numerically determined the time evolution of the state of an array of
nanoparticles sandwiched between two large metallic leads biased at potentials, Vj

and Vy,,. The state of an array consists of the set of charges {Q;} that occupy the

123



array islands and the leads. The array island charges, indexed 1 =1,2,..., N, take
on integer values because the charges are localized on the dots and can only change
in integer increments of the charge of an electron, e. The charge of the islands is
modified when an electron or a hole tunnels between two adjacent sites. The charges
of the source and drain leads, @y and Qn+1, take on any real value because they
are modified discretely via the tunneling of charges or continuously via the charging
of the leads by a battery. The charges that maintain the applied potentials, V; and

Vng1, at the source and drain leads are given by

N
QO = ngen [C;il,N+1% - 0;41-1,0VN+1 - Z Qz (C;-il-l,N+1 z'_ol - CJ;}-LOC;\}-((@)%)

i=1

N
Qv = Cl, [Oo,olvNH—ONL,OVO—ZQi (Coo' Cintyr — ;11,00501)] (6.3)
=1

with

1 —1

c, = [C&)l NNt — Kf+1,0)2]
The derivation of these expresssion was discussed in Sec. 2.2.

To determine the evolution of the system of charges, {Q;}, and to calculate
all quantities that depend on {Q;}, we performed N, iterations to equilibrate the
system. Ngg is a number much greater than one. We performed these iterations to
remove the sensitivity of calculated quantities to initial condictions. Following these
iterations, we performed N, iterations while keeping track of the evolution of our
state as a function of time {Q;(¢)}. Neyo is a number much greater than N,. The

major steps of each iteration are as follows:
1. Rank all possible tunneling events.
2. Select a tunneling event and let the system evolve in time.

3. Reset the charge on the leads.
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Step 1: Rank all possible tunneling events.

We calculated the tunneling rate for every possible tunneling event using Eq. 6.1.
The set of possible tunneling events includes right- and leftward hops across all

N + 1 junctions in the array. We ranked each process using its relative tunneling

probability,
+,rel Pid
rore = % 6.4
i T (6.4)
where
N+1
Tt = > Iy . (6.5)
i=0

We recorded the rankings on a number line between 0 and 1, divided into intervals

with widths equal to the relative tunneling probabilities, {TF""%}.

Step 2: Select a tunneling event and let the system evolve in time.

We choose a tunneling event by using a random number generator (RNG) to select
one bin from the number line generated in the previous step that corresponds to a
specific tunneling processs. We let the the charge state evolve to reflect the process
selected in this step, {Q;} — {Q;}'. We calculate the time step, At, associated with
this change by using the RNG to select a probability between 0 and 1, Pyqy, and
1

the following expression,

(6.6)

When the numerical run is in equilibration mode, we only record the new state
{Q;}'. When the numerical run is in calculation mode, we update the time that has
elapsed from the beginning of the simulation by adding At to a total time, t45:. In
addition, we track the evolution of the charge state, {Q;}, and update the number

of charges that have arrived at the drain, Qgrqin, if the selected process results in a

'Eq. 6.6 comes from the probability for a state to remained uncharged in a time, At: Pyssqy =
exp (—FtotAt).
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charge hopping on to or off of the drain lead. After N,y iterations, we use Qgrqin

and t;,; to calculate the average current ? ,

[ = Qarain (6.7)
tiot

Step 3: Reset the leads.

The potentials at the source and drain leads fluctuate away from their applied values,
Vi and Vx4, every time the charge state of the array changes. Prior to the next hop,
we model the restoration of these potentials to their applied values by a battery by

resetting the charges on the source and drain using Eq. 6.2 and Eq. 6.3.

6.2 Methods to Calculate the Inverse Capacitance Ma-
trix
6.2.1 Image Charges Method

The method of images is based on the relation between charges and potentials in
capacitively coupled conductors. The charge (), induced on a conductor in the

presence of N equipotentials at potentials Vj is given by the capacitance matrix

Cap

N
Qa =Y CopVjs (6.8)

J=B
The inverse capacitance matrix which enters the free energy, Eq. 2.2.1, is the inverse
of the capacitance matrix C,g. We have calculated the capacitance matrix using

some properties of spheres and the fact that the charge in a conductor a produced by

a unity potential in a conductor 3 is equal to the capacitance matrix element C,g.

*We check the current values by calculating the currents through multiple junctions. We calcu-
late these currents by tracking the net charges that pass through junctions other than the contact
junction closest to the drain and dividing this net charge by t:o¢-
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We have obtained C ﬂl inverting C,3. The method of images [46] is the placement of
imaginary charges inside the spheres at positions that make the potential everywhere
on the surface of the conductor equal a constant.

To determine the positions of the image charges, we exploit two properties of
spheres. First, the center of the sphere is equidistant from all points on the surface
of the sphere. Using this property, the surface of a sphere of radius R can be set
to a potential V by placing an image at the center of the sphere of charge ¢ = VR.
Second, for every point outside a sphere there is a point inside the sphere for which
the ratio of the distances between these two points and any point on the surface of
the sphere is a constant. From here it follows that if a charge qr is located at the
outside point, at a distance d. from the center, an image charge q; placed at the

inside a distance R?/d, from the center on the radial line, with charge

R
a1 = —4qr (6.9)

C

will set the potential to zero everywhere on the surface of the sphere. We determine
the (N +2) x (N +2) capacitance matrix, column by column, by determining the set
of image charges that sets the potentials of the spheres to V,, = d,4. The capacitance
matrix elements C, [ are given by the sum of all the charges in sphere a. To set the
potential of the 8 sphere, with radius Rg to one, we place a charge with magnitude
Rg at the center of this sphere 5. The remaining spheres are grounded by placing

images inside each sphere with charges

R old
=T (6.10)
|$(Iold - :C,,|
at positions
R2
Tg, =Ty + ———— . (6.11)
Lgold — Tv

Here ¢°¢ and Zgq,,, are the value and the position of the charge which creates the
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inhomogeneous potential that we want to compensate and R, and z, are the radius
and position of the center of the sphere to which we add the image charge ¢,. These
image charges are added to all the spheres except the one in which g,y is placed.
The charges that have been added generate new inhomogeneous potentials at the
rest of the spheres and have to be compensated following the same method. This
process repeats iteratively for all the charges added to all the spheres. During each
iteration n, the number of new images required to compensate the potential of the

n

other spheres approximately equals (N + 1)". We eliminate some of the images
by discarding images with a magnitude that is smaller than a suitable cutoff value,
Geutof f- We required geytof ¢ to be small enough that the relative diffferences between
the matrix elements generated with the cutoff value gcys0rs and by a larger cutoff
value ¢, ., = 10gcutos are less than one percent.

The method of images can be used to determine the capacitance matrix
for any geometric configuration of spheres. Although the algorithm for generating
images is straightforward, the number of images required to calculate a column C,g
makes the numerical implementation of this technique nontrivial. While computer

memory problems can be solved, the computation time is too large to tackle those

cases with very large arrays and electrodes and small distance between conductors.
6.2.2 High-order multipoles method
Following Wehrli, et al. [49], the energy of the system, given by

1 N+l

F= ) Z QaC(;/}Q/J” (6.12)

a,B=0
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can be rewritten in terms of the higher-order multipolar charges induced by the

charges on the conductors as

F=< Y QG Q- (6.13)

a,B,lL,m,l" m’
Here Greek indices denote the conductors, [ and I’ denote the order of the multipole,
and m = —I[,...,l and m' = —I',...,l denote the azimuthal number. This matrix
G is hermitian with respect to the exchange of o, I, m and 3,1',m'. Using the linear
response form for the induced multipoles, the higher-order multipolar charges, Qlofm,
can be expressed in terms of the (monopolar) charges on the conductors Q, = Q{,

as

Q=D TimQy - (6.14)

v
Substituting (6.14) into (6.13) and comparing it with (6.12), the inverse capacitance
matrix can be expressed as

= Y G¥ Pffgjrﬂ". (6.15)

I,m,l,m’ m’
l!mil’ 7m’ 5a7ﬂ

The induced multipolar charge is found by minimizing the free energy. Separating
the monopolar contribution (I,m = 0) in the expression of the free energy, and

minimizing the latter with respect to Qf:m, we obtain
Qa = -G715GB0Qo - (6.16)

Here A =1,m and [ # 0, correspondingly B, and the equation is written in vectorial
and matrix notation. Once this expression is substituted into the free energy, the

inverse capacitance can be written in terms of the G matrices
C1 = Goo — GoaG15G o (6.17)
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The order of approximation in this method is the number of the highest multipoles
1,1" included. Matrix G‘OO has dimension Ny x N with N the total number of conduc-
tors. Matrices Goa and G 49 are N X (NsNiotaimuiti) and (Ns Niotarmuiti) X Ns respec-
tively, and matrix Gap has dimension (NyNiotaimaiti) X (NsNiotatmatti)- Niotatmuiti

is the maximum number of multipolar terms considered. Formally it is

Niotatmuiti = Z (2l + 1) (618)

I=1lmax

with [,,4, is the order of the maximum multipole included in the approximation.
However the symmetries of the problem can help us to reduce it as the G 4 elements
corresponding to certain m; can be seen to vanish by symmetry. In particular in the
case of azimuthal symmetry, considered in the text, only m = 0 gives non-zero values
and the number of terms included can be reduced to Nyotarmuiti = lmaz- Depending
on the geometry of the conductors it can be convenient to use different numbers of
Imaz for different conductors. In particular in the case of an array of small islands
sandwiched by two large electrodes, it is better to use a larger number of multipoles
at the electrodes.

The expression for Glo;g follows from the decomposition of 1/|]a—b—R/|, with

a, b and R three points in space and depends on the geometry of the conductors.

For a # 8

GOl/J’ _ (I1 + 1o = m1 — ma)l(l1 + l2 — my + my)! 1/2
fmilama = | m ) (I — ma)l(ls 4+ ma)!(ls — my)!
(—1)2T™2 0yt —ms (Tp — Ta) (6.19)

where I ,,, are the irregular solid spherical harmonics

1 | 4«
Ilm(r):m mYlm(Q) (6.20)
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The sign of Gi'?nl 1ym, depends not only on Iy and mo, but also on the order af or
Ba through the dependence of I}, 11, {m; —m. (28 — Za)-
For the case of a sphere a with radius Ra, G\%,,, 1,m, 18 given by

201+1
aa 1

limilama — 5m1m25l1l2_
1 16212 Ra

(6.21)

The case of spheres on a row is especially simple. In this case we have azimuthal
symmetry what means that all terms involving m # 0 should vanish. Thus at order
lmaz We have just Niotaimuiti = lmaz- This allows us to go to reasonably high orders.
We can eliminate the indexes m1,mo from the matrix G. Together with the diagonal

terms G*® calculated above, and using

[ 4w
)/l() = M_PI(COSQ) (622)

and Pj(1) = 1 and P(—1) = (—1)! the equations are greatly simplified. Thus,

(h+b)!,

af l .
Gty = I115! s rh;lu-l’ if 25 > 24
a
ap (L +1)! ! 1 )
Gll,lz - 115! (- )2’1“l1§_w’ if g < To (6.23)
a

for a # 3. Here rqp is the distance between the centers of the spheres a and 3. The

diagonal of G4 and G 4¢ are zero and Gg‘fl = Gﬁao. Note that

1
w— 6.24
0 =7 (6.24)
and
1
G = — . (6.25)
Taf

The zero-order aproximation recovers our expectation for the case of far-apart
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spheres. As spheres come closer, higher order terms become more and more im-
portant. This is reasonable taking into account that the interaction between two
multipolar charges Qf,, and Qli m, decays as Tlalg' 241 The correction to the inverse

capacitance due to the higher order multipoles is given by -Gy AG;‘}BG BO-

6.3 Methods for Calculating Probability Distributions

When the charges on the array are static, the configuration-averaged probability
distribution of the tunneling energies is the same as the time-averaged distributions
of the tunneling energies. In this case, the probability distribution can be determined

numerically using the following formulas
P(AE; —0/2 < AE < AE; +§/2) =p; /6

where

. N;
) — 11m .
P S N SN,

p; is the probability that a tunneling energy lies within an energy interval AF =
AE;+6/2. Njis the number of times an energy value falls within this interval. When
energy values of arrays are static with respect to time, Eq. 6.3 and Eq. 6.3 can be used
to find the probability distributions of energies due to multiple configurations (due
to disorder) of arrays with multiple junctions. In this case, 35 N; = Njync X Neonj-

When the charges on the array move, the energies of the junctions vary in
time. In this case, we can still use Eq. 6.3 and Eq. 6.3 except that N; is redefined

as:
Nconf

Ni= > P
j=1

where

. t;
P, = lim .
I Eti—)oo th
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P is the fraction of time that the energies of junctions lies within the energy interval,
AFE = AFE; £ §/2. t; is the total time that junctions have energy values within the
energy interval. When the arrays are stationary, Eq. 6.3 and Eq. 6.3 reduce to the
stationary definition of N; because P; equals 1 or 0 and N; is the number of times

that the set of energies falls within the interval AE = AE; +§/2.
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