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This dissertation is a study of special types of error correcting codes and their

applications. It consists of three parts.

First, we study Generalized Reed-Muller codes (over prime fields), aka low-

degree polynomials. Specifically, we show that these codes are locally testable.

Locally testable codes are a class of error-correcting codes with the property that

given (black-box access to) a word, it is possible to determine with high prob-

ability whether the given word is close to a codeword by querying randomly at a

sublinear number of places. Such codes are known to be useful for efficient construc-

tions of probabilistically checkable proofs. Our analysis also enables us to obtain

a self-corrector for the given function, in case the function is reasonably close to a
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codeword. Specifically, we show that the value of the function at any given point

may be obtained with good probability by querying the function on a few random

points. Utilizing pairwise-independence an even higher probability can be achieved

by querying the function on slightly more random points and using majority logic

decoding. Our result implies that if the acceptance probability is low, then the

function is far from low-degree polynomials. Is it possible to estimate the distance

even when the received word is far from low-degree polynomials? We could achieve

only a conditional result on this front. Specifically, we observe that under certain

condition the Gowers uniformity norm estimates the proximity of a function to a

low-degree polynomial.

Second, we study efficient constructions of optimal list decodable codes. List

decodable codes are error-correcting codes that can deal with highly noisy channels.

When a received word has too many errors, unambiguous decoding is no longer

possible. A plausible alternative in such a circumstance is to output a small list of

possible codewords, each having some minimum agreement with the received word.

This is known as the list decoding problem. It is known that good list decodable

codes exist. We construct a new family of error-correcting codes based on algebraic

curves over finite fields and present efficient list decoding algorithms for the family.

These codes extend the class of algebraic-geometric (AG) codes via a generalization

of the approach in the recent breakthrough work of Parvaresh and Vardy [PV05].

Third, we develop a new technique to lower-bound the minimum distance of

certain types of quasi-cyclic codes with large dimension by reducing the problem

to lower-bounding the minimum distance of a few significantly smaller dimensional

codes. Using this technique, we prove that a code similar to the SHA-1 (Secure

Hash Algorithms) message expansion code has minimum distance at least 82, and

that too in just the last 64 of the 80 expanded words. We use this new code to

propose an improvement upon the widely used cryptographic hash function SHA-1.
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This is particularly important in wake of the recent breakthrough result of Wang et

al. [WYY05c, WYY05a] that finds collisions in time much smaller than the naive

birthday attack. We expect our technique to be helpful in designing future practical

collision-resistant hash functions. We also use this technique to find the minimum

weight of the SHA-1 code (25 in last 60 words).
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Chapter 1

Introduction

Coding theory began in the late 1940’s with the works of Shannon [Sha48], Go-

lay [Gol49], and Hamming [Ham50]. The original motivation was to correct errors

transmitted through noisy communication channels. Since then coding theory has

evolved tremendously, benefitting from techniques developed in a wide variety of

classical disciplines including combinatorics, probability, algebra, geometry, number

theory and theoretical computer science, and has diverse applications in various

branches of mathematics, computer science and engineering.

1.0.1 Codes in Theoretical Computer Science

Error-correcting codes have lately become an indispensable tool in complexity the-

ory. In the late 1950’s von Neumann [vN56] introduced error-correcting codes to

study fault-tolerant computing, where the objective was to design a circuit to com-

pute a given function with high probability even if a fraction of gates in it were

faulty. This application was extremely natural considering the fact that codes are

designed with redundancies to allow recovery from errors. Later applications ex-

ploit specific properties of codes1. For example, Shamir’s [Sha79] secret sharing

scheme uses Reed-Solomon codes, a code well known for its maximum distance

separable property. Efficient constructions of k-wise independent (and almost k-

wise independent[AGHP92]) probability spaces also use maximum distance sepa-

rable codes (and codes with large minimum distance, respectively). The study

of pseudorandomness and probabilistically checkable proofs use more sophisticated

1Throughout this thesis we write code to mean error-correcting code.
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codes. The challenge here is not only combinatorial, but also algorithmic. The

key properties that have been used in these applications are local testability, lo-

cal self-correction, local decodability and list decodability. For example, the first

two of these properties, i.e., local testability and local correction, are instrumen-

tal in getting the remarkable alternate characterization of the complexity class NP

(i.e., PCP theorem) and various related hardness results. List decodability and

local list decodability have been used extensively in explicit constructions of extrac-

tors [Tre01, TZS01, SU01], and in improving worst-case to average-case hardness

results.

1.0.2 Overview of This Thesis

This thesis is a study of special types of error-correcting codes and their applications.

It consists of three parts. First, we study Generalized Reed-Muller codes (over prime

fields) aka low-degree polynomials. Specifically, we [JPRZ04] show that these codes

are locally testable. Locally testable codes are a class of error-correcting codes with

the property that given (black-box access to) a word, it is possible to determine

with high probability whether the given word is close to a codeword by querying

randomly at a sublinear number of places. Such codes are known to be useful for

efficient constructions of probabilistically checkable proofs. Our analysis also enables

us to obtain a self-corrector for the given function, in case the function is reasonably

close to a codeword. Specifically, we show that the value of the function at any

given point may be obtained with good probability by querying the function on

a few random points. Utilizing pairwise-independence an even higher probability

can be achieved by querying the function on slightly more random points and using

majority logic decoding.

Our local testability result implies that if the acceptance probability is low,

then the function is far from low-degree polynomials. Is it possible to estimate the

distance even when the received word is very far from low-degree polynomials? We

could achieve only a conditional result on this front. Specifically, we observe that

under certain condition the Gowers uniformity norm (to be defined later) estimates

the proximity of a function to low-degree polynomials. These [JPRZ04, JPR04,

Pat07] works are mostly done jointly with Charanjit S. Jutla, Atri Rudra and David

Zuckerman.
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Second, we study efficient constructions of optimal list decodable codes. List

decodable codes are error-correcting codes that can deal with highly noisy channels.

When a received word has too many errors, unambiguous decoding is no longer

possible. A plausible alternative in this circumstance is to output a small list of

possible codewords, each having some minimum agreement with the received word.

This is known as the list decoding problem. It is known that good list decodable

codes exist. We [GP07] define a new family of error-correcting codes based on

algebraic curves over finite fields, and develop efficient list decoding algorithms for

them. Our codes extend the class of algebraic-geometric codes (henceforth AG

codes) via a generalization of the approach in the recent breakthrough work of

Parvaresh and Vardy [PV05]. Our work shows that the PV framework applies to

fairly general settings by elucidating the key algebraic concepts underlying it. Also,

more importantly, AG codes of arbitrary block length exist over fixed alphabets,

thus enabling us to establish new trade-offs between the list decoding radius and

rate over a bounded alphabet size. This [GP07] work is done jointly with Venkatesan

Guruswami.

Third, we develop a new technique to lower bound the minimum distance

of certain types of quasi-cyclic codes with large dimension by reducing the problem

to lower bounding the minimum distance of a few significantly smaller dimensional

codes. Using this technique, we prove that a code which is similar to the SHA-1

(Secure Hash Algorithms) message expansion code has minimum distance at least

82, and that too in just the last 64 of the 80 expanded words. Further the minimum

weight in the last 60 words (last 48 words) is at least 75 (52 respectively). We use

this new code to propose an improvement upon the widely used cryptographic hash

function SHA-1. This is particularly important in wake of the recent breakthrough

result of Wang et al. [WYY05c, WYY05a] that finds collisions in time much smaller

than the naive birthday attack. We expect our technique to be helpful in designing

future practical collision-resistant hash functions. We also use this technique to find

the minimum weight of the SHA-1 code (25 in last 60 words), which was an open

problem. These [JP05b, JP05a, JP05c, JP06] works are done jointly with Charanjit

S. Jutla.

Considering the importance and plethora of applications of PCPs and pseu-

dorandomness in complexity theory and cryptography, we believe that a better un-

derstanding of locally testable codes and list decodable codes, and codes in general,
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will be extremely useful and give further impetus to the field. This thesis is a tiny

step in that direction.

1.1 Motivation and Contributions

1.1.1 Local Testability of Generalized Reed-Muller codes

To motivate we begin with a toy problem. The probability of a hard-drive crash is

known to be extremely low. Assume we are frequently interested to know whether a

given hard-drive is still good. A naive way to do this would be to search the entire

hard drive. However, hard drive contains enormous amount of data, and since it

crashes with very low probability, reading the whole disk frequently to see whether

the data is still valid sounds inefficient.

A more efficient approach would be the following: Assume that we are given a

code with the property that probing at random places (probably constantly many or

polylogarithmic many) we could determine whether a given word is a valid codeword

with high probability. Then we can encode the data in the hard drive using this

code. Now we can test efficiently by probing at a few random places to see whether

the hard drive is still active. This is the basic idea of local testability. Codes that

allow such tests are called locally testable codes.

The definition of local testing may sounds optimistic. Is it at all possible

to determine whether a given word is a codeword without looking at the whole

codeword? How many places do we need to probe? Can the test be done by

querying sublinearly or constantly many random places? Of course, there is no a

priori reason to believe that any non-trivial code admits such a test. It turns out

that there are codes that do admit local tests. The Hadamard code provides a nice

example of this class of codes. A codeword in the Hadamard code can be viewed as

a linear function. With this view then, a local test would be the following: Pick two

uniformly random points x and y and check whether f(x) + f(y) = f(x+ y) holds,

where f(x) denotes the value of the function at x. Declare f to be a codeword

if it holds. First note that it is indeed a local test. Further a thorough analysis

[BLR93, BCHS95, BGS98] can be carried out to prove that this test works. In fact,

to prove a code locally testable is often quite challenging.

Locally testable codes forms the core in the proof of MIP = NEXPTIME
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in [BFL91]. They also play a key role in the development of probabilistically

checkable proofs. A probabilistically checkable proof (henceforth PCP) is a ro-

bust proof that can be efficiently verified with high probability in a query-efficient

manner (a constant number of queries to the proof suffices) by tossing at most

logarithmically many coins. This new notion of proof checking yields an alter-

nate characterization of the complexity class NP. The PCP theorem has also

played a significant role in establishing various hardness of approximation results

([FGL+91, ALM+92]). Query complexity plays a significant role in obtaining hard-

ness of approximability results for various problems. For example, a query com-

plexity of 3 would translate into a hardness of approximation result for 3-SAT. Also

logarithmic many coin tosses implies that the penalty paid for such a super-fast

verification is no more than a polynomial factor blow up in the proof size. Due to

its connection with hardness results, a lot of attention has been paid to this problem

([BFL91, BFLS91, FGL+91, AS92, RS96, FS95, AKK+03]).

However with the sole exception of [AKK+03], all the above mentioned tests

(and their variants) require the degree to be less than the field size. This is because

the degree to be tested has to be smaller than the number of points on a line. Hence

that approach cannot be used when the degree is larger than the field size.

Alon et al. in [AKK+03] give a tester for the field F2 without any restriction

on the degree. Recall that the collection of polynomials in n variables of degree

at most k over F2 is the Reed-Muller code RM(k, n) with parameters k and n

(see [MS77]). Therefore they essentially prove that Reed-Muller codes are locally

testable. Their idea is to pick a random minimum-weight codeword from the dual

code and to check if it is orthogonal to the tested vector. It is important to note

that these minimum-weight codewords generate the Reed-Muller code.

Working collaboratively with Charanjit S. Jutla, Atri Rudra and David Zuck-

erman [JPRZ04], we are able to show that Generalized Reed-Muller (henceforth

abbreviated as GRM) codes over prime fields are locally-testable. We consider a

new basis of GRM code over prime fields that in general differs from the minimum

weight basis. This allows us to present a novel exact characterization of multivariate

polynomials of degree at most t over prime fields. We are also able to show that the

exact characterization can be made robust, (i.e., a probabilistic characterization as

needed for the local testability).

The tester of Alon et al. [AKK+03] can also be interpreted as the Gow-

5



ers norm of certain type. It has been conjectured that these norm defines a good

measure, in certain sense, on the distance of a function from low-degree polyno-

mials. Using tools from additive number theory, and the approach of Green and

Tao2[GT05], Samorodnitsky in [Sam07] proves that this is indeed the case for degree

one and degree two polynomials. We attempt to generalize his results. However, we

could achieve only a conditional result on this front. Specifically, we observe that

under certain condition (i.e., availability of certain low end tester for multilinear

polynomials) the Gowers uniformity norm estimates the proximity of a function to

low-degree polynomials.

1.1.2 List Decoding

Arguably the central question in coding theory is concerned with reliable data re-

covery. In order to be able to correct the errors, we must have enough information

in the uncorrupted region. This implies that redundant information must be added

to the data to allow for error recovery. However, with the addition of redundant

information, the effective rate of communication decreases. Thus the challenge here

is to a design an error-correcting code that allows efficient and reliable data recovery

without sacrificing the rate. The design depends on issues like what fraction and

what sort of errors can occur.

A received vector is said to have error ǫ fraction if it differs from the closest

codeword in at least ǫ fraction of places. It is long known that unique (or unambigu-

ous) decoding is applicable only when the errors are bounded by at most half the

distance of the code. In order to correct more errors, it is therefore necessary to al-

low a small list of possible codewords. This problem is commonly referred to the list

decoding problem and has been studied since late 1950’s (see [Eli57, Woz58, Eli91]).

Codes that allow list decoding are called list decodable codes. The study of

list decoding has two aspects: combinatorial and algorithmic. The combinatorial

aspect essentially deals with what explicit constructions one can hope for, whereas

the algorithmic aspects deals with constructions of efficient algorithms to realize the

combinatorial bounds.

As hinted previously the error-correction capability also depends on the types

of error considered. Shannon considered stochastic channels or equivalently binary

2Green and Tao prove the inverse theorem for prime fields with odd characteristics generalizing
the celebrated result of Gowers[Gow01].
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(and more generally, q-ary) symmetric channel. In this model a q-ary symbol is

transmitted without distortion with probability (1 − p) and with the remaining

probability the symbol is distorted by the channel to a uniform choice among the

other (q − 1) symbols. In this model Shannon showed that communication is pos-

sible with any rate arbitrarily close to 1 − Hq(p), the capacity of the underlying

communication channel, where

Hq(x)
def
= x logq(q − 1)− x logq x− (1− x) logq(1− x),

but not beyond that.

Here we consider the adversarial model. Suppose we encode messages with

RN symbols3 of information over an alphabet Σ into codewords of N symbols over

Σ (here R is the rate; we think of R as an absolute constant and let the block

length N → ∞). Clearly, to recover the RN message symbols, we need at least

RN correct symbols at the receiving end. Thus, the absolute information-theoretic

limit on fraction of correctable errors is 1−R. We remind the readers that unique

decoding can correct only up to half the fraction of this limit. Surprisingly, a notion

called list decoding offers the potential to approach this limit (called “capacity”).

Under list decoding up to a fraction p of errors, the decoder is required to output

a list of all codewords which differ from the received word in at most a fraction p

of symbols. The list size L needed for the list decoding is the maximum number of

codewords that are output in the worst-case. In the limit of L→∞, there exist list

decodable codes of rate R that can be decoded up to the information-theoretically

optimal 1−R fraction of errors.

The above, however, is a non-constructive result ( a combinatorial bound).

The codes achieving list decoding capacity were random codes with decoding al-

gorithms no better than exponential-time brute-force search (this is akin to the

codes in Shannon’s original work for stochastic channels). Though it is known that

most codes have this rate vs list-decoding radius trade-off, constructing an explicit

code with efficient list-decoding algorithm is not easy. The seminal paper of Su-

dan [Sud97] shows that Reed-Solomon codes can be efficiently list decoded up to

a fraction of 1 −
√

2R errors, where R denotes the rate of the code. Shakrollahi

and Wasserman [SW98] generalize Sudan’s result to algebraic geometric setting, ob-

3We use slightly non-standard symbol as we reserve n and k for different purpose.
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taining the same rate versus list-decoding radius trade off with reduced alphabet

size. Guruswami and Sudan improve both the results in [GS99]. They show that

Reed-Solomon and algebraic Goppa codes both can be efficiently list-decoded up to

a fraction of 1−
√
R.

In [CS03] Coppersmith and Sudan give a list-decoding algorithm that corrects

a fraction of error up to 1 − ǫ and achieves a rate of Ω(ǫα) (for any constant α >

1). However, their decoding algorithm is probabilistic and the probability that the

correction is achieved is larger than Ω(RM/(M+1))) assuming a Q-ary symmetric

channel.

Recently, building on a line of work in algebraic coding theory [Sud97, GS99,

PV05], explicit codes (called folded Reed-Solomon codes) that achieve list decoding

capacity with polynomial encoding/decoding complexity are given in by Guruswami

and Rudra [GR06].

The work of [GR06] thus meets the challenge of achieving capacity for worst-

case errors. However, it has some drawbacks relating to complexity. To correct a

fraction (1 − R − ǫ) of errors, the proven bound on the worst-case list size of the

algorithm in [GR06] is NΩ(1/ǫ) where N is the length of the code. In contrast, the

existential result gets within ǫ of capacity with list size O(1/ǫ). It is an important

goal to improve the list size to a constant independent of n. The dependence of the

list size on n in [GR06] arises because Reed-Solomon codes need an alphabet of size at

least N . This motivates one to generalize this approach to Algebraic-geometric codes

(or Goppa codes, henceforth abbreviated as AG-codes) which can have arbitrary

block lengths over fixed alphabets, and also have very nice algebraic properties. AG

codes are a natural extension of Reed-Solomon codes over algebraic function fields

first proposed by Goppa in 1981 [Gop81]. These codes can be viewed as evaluations

of regular (or smooth) functions at a set of points on a nice algebraic curve. AG-

codes are known to achieve bounds better than the probabilistic constructions over

alphabet size q ≥ 49 [TVZ82, GS95a, GS96b], a quite rare event in combinatorics

(also see [Sti91] for a comprehensive treatment). Recent advances have greatly

improved the efficiency and explicitness of constructions of AG codes [KAK+01],

making this a promising route to approach capacity with better list size and decoding

complexity.

The codes in [GR06] are defined over a large alphabet (of size 2O(1/ǫ4) to get

within ǫ of capacity). For codes over alphabet size q for a fixed bounded constant q
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(say q = 212), the best general trade-off for error-correction radius vs. rate remains

the (1 − 1/q)(1 −
√
R) bound obtained in [GS99, KV03] for AG codes. Improving

this state of affairs provides another motivation for extending the Parvaresh-Vardy

approach to AG codes.

We consider designing efficiently list-decodable codes for highly noisy adver-

sarial channels. Situations like this occur naturally in various applications. For

example, in complexity theory, list decoding is used in the construction of efficient

extractors, in improving average case hardness results [STV01], in obtaining hard-

core bits, etc.

We generalize the approach initiated in [PV05] to all AG codes, and define

the class of correlated AG codes, based on evaluations of correlated functions from a

suitable linear space at points on an algebraic curve. This highlights the generality

and promise of the Parvaresh-Vardy approach, and elucidates its salient features in

a general setting unencumbered by specifics of a particular code.

We now describe some of our trade-offs for list decoding. For q an even

power of a prime, and any integer m ≥ 1, we present codes with rate R and list

decoding radius approximately 1 − (mR + 3/
√
q)(m+1)/(m+2) over an alphabet of

size qm. (Here m is the number of correlated functions used for the encoding.) For

low rates R and large values of m, this gives an improvement over the trade-off

1− (R+ 1/
√
q)1/2 for the usual AG codes (the m = 1 case). In particular, for small

ǫ → 0, we can correct up to a fraction (1 − ǫ) of errors with rate Ω(ǫ/ log(1/ǫ))

and alphabet size 2O(log2(1/ǫ)). Contrast this with the existential result showing

that one can list decode to a radius of (1 − ǫ) with rate Ω(ǫ) and alphabet size

O(1/ǫ2). Our decoding algorithms run in polynomial time assuming a polynomial

sized preprocessed representation of the code.

Previously the only polynomial time constructions for decoding up to radius

(1 − ǫ) with alphabet size poly(1/ǫ) achieved rate Ω(ǫ2) (this follows from the list

decoding of AG codes in [GS99]). Our results give the first codes with rate better

than Ω(ǫ2), say Ω(ǫ1.1), over an alphabet of size polynomial in 1/ǫ. Thus, our result

does well simultaneously on both the alphabet size vs. list decoding radius and the

rate vs. list decoding radius trade-offs.

Our codes also have a nice list recovering property which can be used in con-

catenation schemes with suitable constant-sized inner codes to get the first uniformly

constructive binary codes of rate close to ǫ3 list-decodable up to radius (1/2 − ǫ)
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with list size depending only on ǫ and independent of N . (The construction in

[GR06] with a similar rate needed construction time of the form Nf(ǫ) instead of

the f(ǫ)NO(1) we achieve, and their list size also depends on N .)

1.1.3 Application to Cryptography

Hash functions are widely-used in cryptography, complexity, and pseudorandomness.

For example, the early constructions of extractors are based on hash functions. In

the typical cryptographic setting, a hash function is a mapping that maps arbitrary-

length strings to fixed length strings. Often we require the length of the output be

much smaller than the input. When employed in cryptography, the hash functions

are expected to satisfy certain properties. For example, it is one way (i.e., it is

easy to compute and computationally infeasible to invert), it is collision-resistant,

etc. A hash function is said to be weakly collision-resistant if given a string x, it is

computationally infeasible to find another string y that hashes to the same value.

It is said to be collision-resistant if it is computationally infeasible to find any two

messages that hashes to the same value. Perhaps the main role of a cryptographic

hash function is in the provision of message integrity checks and digital signature al-

gorithms. For example, in digital signatures a digital document is signed by hashing

the document to a small string using signer’s private key.

How can a code be used to construct a good hash function? What properties

of codes could be useful? We give some partial answers to these questions. We begin

with an analogy to the hardness results obtained from PCPs. Good codes are used to

get better PCPs which give better hardness results. For example, a 3-SAT instance

is a collection of constraints. By expecting a PCP, i.e., proof in a suitable coded

format, the hardness of the problem gets amplified. The basic philosophy is that

requiring the proof to be in a coded format, the non-linear constraint satisfaction

problem gets difficult. Similarly, a cipher can be viewed as a collection of constraints

(possibly non-linear). Here, we are trying to use codes to amplify the computational

difficulty. Of course, it is not clear what property of the code can be useful.

A more convincing argument follows from pseudorandomness. Codes are

frequently used in pseudorandom constructions and as previously observed crypto-

graphic hash functions seem to require properties similar to pseudorandom objects.

Thus it may sound natural to design hash function based on codes. Friedman [Fri86]
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used codes with good minimum distance to obtain a family of hash functions that

allowed him to construct O(n log n) size monotone formulae for threshold k = O(1).

Our design philosophy of a good hash function is also guided by construction of a

code with large distance. However, our motivation follows from differential crypt-

analysis. Since we work on improving a specific hash function, namely SHA-1, a

more comprehensive account will be given later after we introduce this family of

hash functions and mention its weaknesses.

Damg̊ard [Dam89] and Merkle [Mer89] have greatly influenced cryptographic

hash function design by defining a hash function in terms of a compression func-

tion. A compression function maps a large fixed length block of data to a much

shorter fixed length output. Given a large arbitrary large message, the message is

first padded, if necessary. It is then broken into an integral number of blocks. These

blocks are then processed sequentially to produce a much shorter hash value. Secure

Hash Algorithm (SHA) is one such widely used hashing scheme. The basic scheme

hashes 512-bit input to a 160 bit output. The SHA family of hash functions is de-

scribed in [Uni93]. These hash functions consist of two phases: a message expansion

phase and a state update transformation, where the state of a cipher is updated in

an iterative manner using the expanded messages. Both SHA-0 and SHA-1 have the

same state update transformation, but SHA-0 has a simpler message expansion.

In [CJ98] the first theoretical differential collision attack on SHA-0 is de-

scribed which provably beats the bound obtained from the naive birthday attack.

Thereafter several successful attacks have been made on SHA-0, most notably

in [CJ98, BC04b, BC04a, WYY05b]. The same strategy has also been effectively

used to attack SHA-1 and reduced variants of it, most notably in [BC04a, RO05,

MP05, WYY05c]. In the celebrated work [WYY05c], the authors describe a col-

lision attack on full SHA-1 with complexity close to 269 hash operations. This is

much smaller than the 280 hash operations that follows from the birthday attack.

Therefore it is vital that collision resistant hash functions should be made robust to

this line of attack, known as differential attack.

Differential collision attack is the most effective attack against these SHA

families of compression functions. In this type of attack, a cleverly designed differ-

ence in the messages leads to a zero difference in the output of the block cipher, thus

leading to a collision. Unfortunately, in SHA-0 and SHA-1, it is possible to start

with a message difference which leads to a small difference in the expanded words.
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This in turn allows for a manageable overall differential characteristic to cause a

collision.

All the attacks share the same underlying strategy. This basic strategy can

briefly be outlined as follows [CJ98]:

1. Approximate the state update transformation (i.e., the cipher) by a linear

function.

2. Characterize the kernel (also called differential patterns or disturbance vectors)

of the above linear map and show that the kernel has low weight vectors.

3. Show that the message expansion phase can generate these low-weight vectors.

Since the state update function in SHA family is non-linear, roughly the success

of the above attack depends on the probability that the non-linear components

behave in a linear fashion. This probability depends inverse-exponentially on the

weight of the disturbance vectors. To resist the differential attack, it is therefore

recommended that the message expansion code should have large minimum distance

and should avoid some pattern. In fact, following attacks described in [WYY05b,

WYY05c], it is further recommended that the weight of the last 64 words should be

large. The authors of [WYY05b, WYY05c] also observe that sometimes the effect

of the differential characteristic corresponding to steps 17 to 20 can be annulled

with probability 1. Therefore, it would be even better if the weight of the last

60 rounds can be shown to be large. We mention that codes with large distance

are known to exist. However, the challenge here is to get a code which is simple

and computationally efficient and requires minimal hardware, something similar to

SHA-0 or SHA-1 described later.

The authors in [BC04a, RO05, MP05] have been able to generate low-weight

differential patterns. These patterns are then used to create collisions or near-

collisions in reduced version of SHA-1 with complexity better than the birthday-

paradox bound. Extending this further Wang et al. [WYY05c] reports the first

attack on the full 80-step SHA-1 with complexity close to 269 hash operations.

In there, the authors critically observe that the code not only has small weight

codewords (≤ 44, [RO05, WYY05c]) but also that these small weight codewords are

even sparser in the last 60 words (for example, [WYY05c] reports a codeword with

weight 27 in the last 60 words; also see [JP05a] that proves a lower bound 25 on the
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minimum weight in that last 60 words). Wang, Yao and Yao [WYY05a] have further

brought the complexity of collision finding in SHA-1 down to 263 hash operations.

These linear codes, a natural generalization of cyclic codes, are known as

quasi-cyclic codes in the literature. Quasi-cyclic codes4 have been studied exten-

sively over the last 40 years. (See [TW67, Che92, Lal03, LS05] and the references

therein.)

In joint work with Charanjit S. Jutla, we propose a new hash function SHA1-

IME (IME stands for “Improved Message Expansion”). We use the same state

update transformation as in SHA-1 or SHA-0. However, we replace the SHA-1

message expansion code by an equally simple code. In [JP05b] we give a computer

assisted proof following an elementary linear algebraic argument to conclude that

our proposed code has minimum distance at least 82 in just the last 64 words.

Establishing a lower bound on the minimum distance of a quasi-cyclic code

is a hard problem and has drawn considerable attention (see [Che92, Lal03]). Un-

fortunately, when the index (that is, the minimum amount of rotation that leaves

the code invariant) is as large as 80 (or even 64), the presently known bound seems

computationally infeasible. In general, it is known that computing the minimum

weight of an arbitrary linear code is NP-hard (see [Var97]), and that approximating

within a constant factor is NP-hard under randomized reductions (see [DMS03]).

An interesting approach is taken in [RO05] where they restrict their search by keep-

ing most columns zero. This allows them to find a codeword with low weight for

SHA-1; however, they do not give a technique to lower bound the minimum weight

of such codes.

The strategy we use to prove lower bounds on such codes is to divide the

proof into two main cases. We argue that if there are no zero columns in a codeword

(a column in the codeword is the codeword projected on a particular bit position),

then on the average each column contributes enough to attain the lower bound.

If that is not the case, then starting from an all zero column, the first neighboring

non-zero column is actually a codeword in a good code, in the sense that it has large

minimum weight, and so on. This neighboring columns then gather enough weight

to attain the lower bound. We critically use the fact that the code is a quasi-cyclic

code and thus invariant under column shifts. The main challenge is of course to

4Interestingly it is known that asymptotically good binary quasi-cyclic exists, a fact which is
not yet settled for the cyclic codes.
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keep the search space restricted to make the exhaustive search feasible.

In [JP05c] we informally argue that the SHA1-IME is resistant to all colli-

sion search attacks. We formally argue that at least the present differential collision

attacks following [CJ98] local-collision based approach is ineffective as the weight of

the code is too large. In particular we prove that arbitrary construction of differen-

tial (or disturbance) vector is not possible.

In [JP05c] we show that the cipher can be expressed as a 4-CSP (constraint

satisfaction problem where each constraint involves at most 4-variables). The pred-

icates we use are majority and xor. It is known that there is an NP-complete

problem [GJ79] involving these predicates. At present all the general-purpose (ran-

domized) algorithms to solve 4-CSP takes 1.4n or more [Sch99, IT03] (Schoning’s

algorithm does better in the satisfiable instances, that is in our case of interest). This

therefore rules out possibility of collision attacks on SHA1-IME using a general

purpose algorithm.
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Chapter 2

Notation and Preliminaries

The aim of this chapter is to standardize notations which will be used throughout.

We also include a few basic facts.

2.1 Notations

For any positive integer l, we denote the set {1, · · · , l} by [l]. We will use Fp to

denote a finite field of cardinality p, where p is a prime. We will use Fq to denote a

finite field of size q where q = ps for some prime p and positive integer s. Sometimes

we will simply use F to denote a finite field, the size of which should be clear from

the context. We use F∗
q, or simply F∗, to denote the multiplicative group of the field

Fq. For more on finite fields, the readers are referred to [LN94].

2.1.1 Codes

Let FN
q be an N -dimensional vector space over Fq. An error correcting code1 C of

length N , dimension K, and alphabet Fq is a subset of Fn
q of cardinality2 qK . If the

subset C is a subspace of FN
q , then it is called a linear code. C can also be viewed

as a mapping from the message space FK
q to FN

q . Whenever the message space of

C is clear from the context, we use C(m) to denote the image of message m in FN
q .

By a subcode D of a code C, we mean a proper subset of C (i.e., D ⊆ C). On the

1The alphabet of an error correcting code need not be a finite field. However, in this thesis we
restrict ourselves to codes over finite fields.

2We use slightly non-standard notation to enhance readability.
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other hand, by a truncated code C′ we mean the same code C with a few coordinates

omitted (or truncated), or equivalently natural projection of C to a smaller vector

space. When the number of omitted coordinates is one, the truncated code is also

called a punctured code.

The rate of a code is defined as T (C) def
= K/N . We define the (Hamming)

distance of a code C as the quantity

d(C) def
= min

u 6=v∈C
|{i | ui 6= vi where u = u1 · · · uN , v = v1, · · · , vN}|.

We define the relative distance of the code as the normalized distance, i.e., δ(C) def
=

d(C)/N .

A linear code over an alphabet of size q of dimension K and block length N

will be denoted as [N,K]q. Further, if the distance D of the code is known, then

the code may also be denoted as [N,K,D]q . For vectors x, y ∈ FN , the dot (scalar)

product of x and y, denoted x · y, is defined to be
∑N

i=1 xiyi, where wi denotes the

ith co-ordinate of w.

Given an [N,K]q code C over a finite field Fq, its dual code C⊥ is the set of

vectors which are orthogonal to all codewords of C, i.e.,

C⊥ def
= {u | ∀v ∈ C, u · v = 0}.

Observe that C⊥ is a [N,N −K]q code and (C⊥)⊥ = C.
For a more comprehensive treatment on coding theory, the readers are re-

ferred to [MS77, vL98].

2.1.2 Low-degree Polynomials as Codes

For any t ∈ [n(q − 1)], let Pt denote the family of all functions over Fn
q which are

polynomials of total degree at most t (and individual degree at most q − 1) in n

variables. In particular f ∈ Pt if there exists coefficients a(e1,··· ,en) ∈ Fq, for every

i ∈ [n], ei ∈ {0, · · · , q − 1}, ∑n
i=1 ei ≤ t, such that

f(x) =
∑

(e1,··· ,en)∈{0,··· ,q−1}n

0≤
Pn

i=1
ei≤t

a(e1,··· ,en)

n∏

i=1

xei
i . (2.1)
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The codeword corresponding to a function will be the evaluation vector of f .

2.1.3 Finite Derivatives and Tensors

Given a boolean function f : Fn
2 → {−1, 1}, we define the first order “derivative” of

f along y to be the function fy as follows: fy(x) = f(x)f(x+ y). The higher order

derivatives are defined analogously and denoted fxy, fxyz etc. Note that x, y, z ∈ Fn
2

and that we do not define any multiplicative operation on them. Therefore, the

notation is unambiguous and will be employed instead of fx,y and fx,y,z etc. We

define the (normalized) distance between two functions to be the probability that

they disagree, i.e.,

dist(f, g)
def
= ‖f − g‖ def

= Prx∈F
n
2

[ f(x) 6= g(x) ] .

For two boolean functions f and g, we define their convolution as the following

function, denoted f ∗ g,

f ∗ g(x)
def
= Esf(s)g(x+ s).

We will use the Kronecker delta function, i.e., δµ
ν is 1 iff µ = ν, and 0 otherwise. For

convenience we set δν = δ0ν .3

If f(x) = (−1)φ(x) for some function φ : Fn
2 → F2, then we write  Lf(x) =

φ(x). A function f is said to be of degree at most d iff its corresponding φ is of

degree at most d.

Tensors are generalization of matrices in higher dimension. The rank of a

given tensor is the number of array indices required to describe such an entry. Thus,

a tensor of rank one is just a vector and that of rank two is simply a matrix. In

subsection 3.7.3, we use tensors of rank three (to deal with bilinear functions), a

three dimensional version of matrices. These may be seen as a family of matrices

indexed by some finite set [n]. For example, let D a n × n × n is a tensor of rank

three. Then view D = {Di}i∈[n] where each Di is an n×n matrix. We abuse notation

by letting D
t mean {(Di)

t}i∈[n], where Dt denotes the transpose of matrix D. For

y ∈ {0, 1}n and D a tensor of rank three, we define y · D =
∑

i yiDi.

3We will work over an underlying abelian groups, 0 will always mean the identity element in
that abelian group and should be clear from the context.
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Later in subsection 3.7.4, we use tensors of even higher rank, precisely rank

d, to deal with (d− 1)-ary linear functions. A tensor D of rank d over Fn
2 should be

viewed as a d dimensional generalization of a matrix, i.e., for all (i1, · · · , id) ∈ [n]d,

Di1,··· ,id ∈ F2.

2.1.4 Fourier Transform

For a function f : Fn
2 → R, we use f̂ : Fn

2 → R to denote its Fourier transform. We

will use fourier transform over the additive group of Fn
2 unless otherwise stated. We

will use standard facts from Fourier analysis, namely the following:

1. (Fourier transform) f̂(α) = Exf(x)χα(x).

2. (Fourier inversion) f(x) =
∑

α f̂(α)χα(x).

3. (Parseval/Plancharel equality)
∑

α f̂
2
α = 1.

4. (Orthogonality) Exχα(x)χβ(x) = δα
β .

18



Chapter 3

Local Testability of Reed-Muller

Codes

3.1 Introduction

The term locally-testable codes (LTC) has its origin in the seminal paper of Rubin-

feld and Sudan [RS96] (also in [FS95], and the same idea was present in Arora’s and

Spielman’s PhD thesis under different names). Informally a code is locally testable

(with one-sided error) iff given oracle (black box) access to a given purported code-

word w there is an efficient randomized algorithm that queries w in a small number

of places, accepts with probability one if w is a valid codeword, and rejects with

high probability if w is far from being a valid codeword. Formally,

Definition 3.1.1 A code C of block length n is said to be (r, δ, σ)-locally testable

if there exists an efficient randomized algorithm A, a polynomial p(·), a function

F : {0, 1}p(n) → [n]r with the property that

• For every w ∈ C ⊆ Fn
q , Prρ∈{0,1}p(n) [A({wi|i ∈ F (ρ)}) = 1 ] = 1.

• For every string y such that d(y, C) ≥ δ

Prρ∈{0,1}p(n) [A({wi|i ∈ F (ρ)}) = 1 ] ≤ σ

We quickly recall the definition of the Generalized (Primitive) Reed-Muller

code as described in [DGM70, AJK98, DK00].
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Definition 3.1.2 Let V = Fn
q be the vector space of n-tuples, for n ≥ 1, over the

field Fq. For any k such that 0 ≤ k ≤ n(q − 1), the kth order Generalized Reed-

Muller code GRMq(k, n) is the subspace of F
|V |
q (with the basis as the characteristic

functions of vectors in V ) of all n-variable polynomial functions (reduced modulo

xq
i − xi) of degree at most k.

The local testability of Generalized Reed-Muller codes (henceforth ab-

breviated as GRM) is better known as the low-degree testing problem. Informally,

the local testability of GRM codes can be stated as follows. Given a black box

function f : Fn
q → Fq, determine whether f is (sufficiently) close, in the Hamming

metric, to a low-degree (say, degree at most k) polynomial. In this chapter, we

present a low degree test for multivariate polynomials over any prime field Fp.

3.1.1 Background and Context

A low-degree tester is a probabilistic algorithm which, given a degree parameter t

and oracle access to a function f on n arguments (which take values from some

finite field F), has the following behavior. If f is the evaluation of a polynomial on

n variables with total degree at most t, then the low-degree tester must accept with

probability one. On the other hand, if f is “far” from being the evaluation of some

polynomial on n variables with degree at most t, then the tester must reject with

constant probability. The tester can query the function f to obtain the evaluation

of f at any point. However, the goal of a tester is to accomplish its task by using

as few probes as possible.

Low-degree testers play an important part in the construction of Probabilisti-

cally Checkable Proofs (or PCPs). In fact, different parameters of low degree testers

(for example, the number of probes and the amount of randomness used) directly

affect the parameters of the corresponding PCPs as well as various inapproximabil-

ity results obtained from such PCPs ([FGL+91, ALM+92]). Low-degree testers also

form the core of the proof of MIP = NEXPTIME in [BFL91].

3.1.2 Previous Low-degree Testers

The study of low degree testing (along with self-correction) dates back to the work

of Blum, Luby and Rubinfeld ([BLR93]), where an algorithm was required to test

whether a given function is linear. The approach in [BLR93] later naturally extended
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to yield testers for low-degree polynomials (but over fields larger than the total

degree). Roughly, the idea is to project the given function on to a random line and

then test if the projected univariate polynomial has low degree. Specifically, for a

purported degree t function f : Fn
q → Fq, the test works as follows. Pick vectors y

and b from Fn
q (uniformly at random), and distinct s1, · · · , st+1 from Fq arbitrarily.

Query the oracle representing f at the t + 1 points b + siy and extrapolate to a

degree t polynomial Pb,y in one variable s. Now test for a random s ∈ Fp whether

Pb,y(s) = f(b+ sy)

(for details see [RS96], [FS95]). Similar ideas are also employed to test whether

a given function is a low-degree polynomial in each of its variables (see [FGL+91,

BFLS91, AS92]). Note that this approach does not work when the field size is

smaller than the total degree, as xq = x in Fq.

Alon et al. give a tester over field F2 for any degree up to the number of

inputs to the function (i.e., for any non-trivial degree) [AKK+03]. In other words,

their work shows that Reed-Muller codes are locally testable. Under the coding

theoretic interpretation, their tester picks a random low-weight codeword from the

dual code and checks if it is orthogonal to the input vector.

Specifically their test works as follows: Given a function f : {0, 1}n → {0, 1},
to test if the given function f has degree at most t, pick (t+1)-vectors y1, · · · , yt+1 ∈
{0, 1}n and test if

∑

∅6=S⊆[t+1]

f

(∑

i∈S

yi

)
= 0.

As we show later, the test in [RS96] above can also be obtained by using this coding

theoretic interpretation.

3.1.3 Overview

It is easier to define our tester over F3. To test if f has degree at most t, set

k = ⌈ t+1
2 ⌉, and let i = (t + 1) (mod 2). Pick k-vectors y1, · · · , yk and b from Fn

3 ,
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and test if1

∑

c∈F
k
3 ;c=(c1,··· ,ck)

ci1f(b+
k∑

j=1

cjyj) = 0.

We prove that a polynomial of degree at most t always passes the test, whereas a

polynomial of degree greater than t gets caught with non-negligible probability α.

To obtain a constant rejection probability we repeat the test Θ(1/α) times.

As in [RS96] there are two main parts to the proof. The first step is com-

ing up with an exact characterization for functions that have low degree. Follow-

ing [AKK+03], it is best to view low degree polynomials over Fq as the GRM code.

As GRM is a linear code, a function is of low degree if and only if it is orthogonal to

every codeword in the dual of the corresponding GRM code. The second step of the

proof entails showing that the characterization is a robust characterization, that is,

the following natural tester is indeed a local tester. Pick one of the dual low-weight

codewords uniformly at random and check if it is orthogonal to the given function.

The analysis of our test follows a similar general structure developed in [RS96]

and borrows techniques from [RS96, AKK+03]. The presence of a doubly transitive

group suffices for the analysis given in [RS96]. Essentially we show that the presence

of a doubly transitive group acting on the coordinates of the dual code does indeed

allow us to localize the test. However, this gives a weaker result. We use techniques

developed in [AKK+03] for better results, although the adoption is not immediate.

Apart from the obvious difficulty of proving step two, the proof is further compli-

cated by the fact that to obtain a good tester (i.e., one which makes as few queries

as possible), we need a sub-collection of the dual GRM code in which each vector

has low weight (and it generates the dual code).

Since it is well known that the dual of a GRM code is a GRM code (with

different parameters), to obtain a collection of codewords (with low weight) that

generate the dual of a GRM code it is enough to do so for the GRM code itself.

We present a new basis of GRM codes over prime fields that in general differs from

the minimum weight basis obtained in [DK00]. Our basis has a clean geometric

structure in terms of flats [AJK98], and unions of parallel flats (but with different

weights assigned to different parallel flats)2. This equivalent polynomial and ge-

ometric representation plays a pivotal role in proving step two (and with almost

1For notational convenience we use 00 = 1.
2The natural basis given in [DGM70, DK00] assigns the same weight to each parallel flat.
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optimal query complexity). In Section 3.3 we present an exact characterization for

low-degree polynomials over prime fields. In Section 3.4 we extend the characteri-

zation over general fields and sketch an alternate proof to the theorem of Kaufman

and Ron[KR04]. In Section 3.5 we present a tester and prove its correctness. In

Section 3.6 we give a lower bound (essentially due to Alon, Krivelevich, Newman

and Szegedy [AKNS99]) on the number of queries to test Reed-Muller codes to

demonstrate that our result is very close to the optimal. In Section 3.7 we present

our observation on the inverse theorem for the Gowers norm.

3.2 Preliminaries

For any two functions f, g : Fn
q → Fq, the relative distance δ(f, g) ∈ [0, 1] between f

and g is defined as δ(f, g)
def
= Prx∈Fn

q
[ f(x) 6= g(x) ]. For a function g and a family

of functions F (defined over the same domain and range), we say g is ǫ-close to

F , for some 0 < ǫ < 1, if, there exists an f ∈ F , where δ(f, g) ≤ ǫ. Otherwise it is

ǫ-far from F .

Recall that a one sided testing algorithm (one-sided tester) for Pt is a

probabilistic algorithm that is given query access to a function f and a distance

parameter ǫ, 0 < ǫ < 1. If f ∈ Pt, then the tester should always accept f (perfect

completeness), and if f is ǫ-far from Pt, then with probability at least 1
2 the tester

should reject f (a two-sided tester may be defined analogously).

To motivate the next notation which we will use frequently, we give a defini-

tion.

Definition 3.2.1 A k-flat (k ≥ 0)3 in Fn
p is a k-dimensional affine subspace. Let

y1, · · · , yk ∈ Fn
p be linearly independent vectors and b ∈ Fn

p be a point. Then the

subset L = {∑k
i=1 ciyi + b | ∀i ∈ [k] ci ∈ Fp} is a k-dimensional flat. We will say

that L is generated by y1, · · · , yk at b. The incidence vector of the points in a given

k-flat will be referred to as the codeword corresponding to the given k-flat.

Given a function f : Fn
p → Fp, for y1, · · · , yl, b ∈ Fn

p we define

Tf (y1, · · · , yl, b)
def
=

∑

c=(c1,··· ,cl)∈Fl
p

f


b+

∑

i∈[l]

ciyi


 , (3.1)

3A zero-dimensional flat is just a point.
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which is the sum of the evaluations of function f over an l-flat generated by y1, · · · , yl

at b. Alternatively, this can also be interpreted as the dot product of the codeword

corresponding to the l-flat generated by y1, · · · , yl at b and that corresponding to

the function f (see Observation 3.3.5).

While k-flats are well-known, we define a new geometric object, called a

pseudoflat. A k-pseudoflat is a union of (p − 1) parallel (k − 1)-flats. Also, a k-

pseudoflat can have different exponents ranging from 1 to4 (p − 2). We stress that

the point set of a k-pseudoflat remains the same irrespective of its exponent. It is

the value assigned to a point that changes with the exponents.

Definition 3.2.2 Let L1, L2, · · · , Lp−1 be parallel (k − 1)-flats (k ≥ 1), such that

for some y ∈ Fn
p and all t ∈ [p − 2], Lt+1 = y + Lt.

5 We define the points of

k-pseudoflat L with any exponent r (1 ≤ r ≤ p − 2) to be the union of the set of

points L1 to Lp−1. Also, let Ij be the incidence vector of Lj for j ∈ [p − 1]. Then

the evaluation vector of this k-pseudoflat with exponent r is defined to be∑p−1
j=1 j

rIj. The evaluation vector of a k-pseudoflat with exponent r will be referred

as the codeword corresponding to the given k-pseudoflat with exponent r.

Let L be a k-pseudoflat with exponent r. Also, for j ∈ [p − 1], let Lj be the

(k − 1)-flat generated by y1, · · · , yk−1 at b + j · y, where y1, · · · , yk−1 are linearly

independent. Then we say that L, a k-pseudoflat with exponent r, is generated by

y, y1, · · · , yk−1 at b exponentiated along y.

Given a function f : Fn
p → Fp, for y1, · · · , yl, b ∈ Fn

p , for all i ∈ [p − 2], we similarly

define

T i
f (y1, · · · , yl, b)

def
=

∑

c=(c1,··· ,cl)∈Fl
p

ci1 · f


b+

∑

j∈[l]

cjyj


 . (3.2)

The above can also be interpreted similarly as the dot product of the codeword

corresponding to the l-pseudoflat with exponent i generated by y1, · · · , yl at b and

the codeword corresponding to the function f (see Observation 3.3.9). With a slight

abuse of notation6 we will use T 0
f (y1, · · · , yl, b) to denote Tf (y1, · · · , yl, b).

4With slight abuse, a k-pseudoflat with exponent zero corresponds to a flat.
5For a set S ⊆ Fn

p and y ∈ Fn
p , we define naturally y + S

def
= {x + y|x ∈ S}.

6We set 00 = 1, for notational convenience.
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3.2.1 Facts from Finite Fields

In this section we spell out some facts from finite fields which will be used later.

Recall that we denote the multiplicative group of Fq by F∗
q. We begin with a simple

lemma.

Lemma 3.2.3 For any t ∈ [q − 1],
∑

a∈Fq
at 6= 0 if and only if t = q − 1.

Proof : First note that
∑

a∈Fq
at =

∑
a∈F∗

q
at. Observing that for any a ∈ F∗

q, aq−1 =

1, it follows that
∑

a∈F∗
q
aq−1 =

∑
a∈F∗

q
1 = −1 6= 0.

Next we show that for all t 6= q−1,
∑

a∈F∗
q
at = 0. Let α be a generator of F∗

q.

The sum can be re-written as
∑q−2

i=0 α
it = αt(q−1)−1

αt−1 . The denominator is non-zero

for t 6= q− 1 and thus, the fraction is well defined. The proof is complete by noting

that αt(q−1) = 1.

This immediately implies the following lemma.

Lemma 3.2.4 Let t1, · · · , tl ∈ [q − 1]. Then

∑

(c1,··· ,cl)∈Fl
q

ct11 c
t2
2 · · · ctll 6= 0 if and only if t1 = t2 = · · · = tl = q − 1. (3.3)

Proof : Note that the left hand side can be rewritten as
∏

i∈[l]

(∑
ci∈Fq

ctii

)
.

We will need to transform products of variables to powers of linear functions

in those variables. With this motivation, we present the following identity.

Lemma 3.2.5 For each k, s.t. 0 < k ≤ (p− 1) there exists ck ∈ F∗
p such that

ck

k∏

i=1

xi =
k∑

i=1

(−1)k−iSi where Si =
∑

∅6=I⊆[k];|I|=i


∑

j∈I

xj




k

. (3.4)

Proof : Consider the right hand side of the Equation 3.4. Note that all the mono-

mials are of degree exactly k. Also note that
∏k

i=1 xi appears only in the Sk and

nowhere else. Now consider any other monomial of degree k that has a support of

size j, where 0 < j < k. Further note that the coefficient of any such monomial

in the expansion of (
∑

j∈I xj)
k is the same and non-zero. Therefore, summing up
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the number of times it appears (along with the (−1)k−i factor) in each Si is enough

which is just

1−
(

k − j
k − j − 1

)
+

(
k − j

k − j − 2

)
+ · · ·+ (−1)k−j

(
k − j

k − j − (k − j)

)
= (1− 1)k−j = 0.

Moreover, it is clear that ck = k! (mod p) and ck 6= 0 for the choice of k.

3.3 Characterization of Low-degree Polynomials over

Prime Fields

In this section we present an exact characterization for the family Pt over prime

fields. Specifically we prove the following:

Theorem 3.3.1 Let t = (p− 1) · k +R. (Note 0 ≤ R ≤ p− 2.) Let r = p− 2−R.

Then a function f belongs to Pt, if and only if for every y1, · · · , yk+1, b ∈ Fn
p , we

have

Tf (y1, · · · , yk+1, b) = 0 if r = 0; (3.5)

T r
f (y1, · · · , yk+1, b) = 0 otherwise. (3.6)

As mentioned previously, a characterization for the family Pt implies a characteri-

zation for GRMp(t, n) and vice versa. It turns out that it is easier to characterize

Pt when viewed as GRMp(t, n). Therefore our goal is to determine whether a given

word belongs to the GRM code. Since we deal with a linear code, a simple strategy

will then be to check whether the given word is orthogonal to all the codewords in

the dual code. Though this yields a characterization, this is computationally ineffi-

cient. Note however that the dot product is linear in its input. Therefore checking

orthogonality with a basis of the dual code suffices. To make it computationally

efficient, we look for a basis with small weights. The above theorem essentially is a

clever restatement of this idea.

We recall the following useful lemma that can be found in corollary 5.26 of

[AJK98].

Lemma 3.3.2 GRMq(k, n) is a linear code with block length qn and minimum dis-

tance (R+1)qQ where R is the remainder and Q the quotient resulting from dividing

(q − 1) · n− k by (q − 1). Further GRMq(k, n)⊥ = GRMq((q − 1) · n− k − 1, n).
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Proof : We only prove GRMq(k, n)⊥ = GRMq((q− 1)n− k− 1, n) for which we give

an easy proof. Denote C def
= GRMq(k, n) and D def

= GRMq((q − 1)n − k − 1, n). We

first prove D ⊆ C⊥. This is easy as given any codeword in u ∈ C and v ∈ D, the

total degree of u · v is at most (q − 1)n− 1. Hence by Lemma 3.2.4, u · v = 0.

Note that any function f : Fn
q → F can be represented by a poly of degree

at most n(q − 1). Now to prove that D is exactly the set of polynomials that are

orthogonal to GRMq(k, n), we show that any polynomial not in D is not orthogonal

to at least one polynomial in GRMq(k, n). Let u be any polynomial of degree

at least (q − 1)n − k. Let m be a monomial in u that has maximal degree, but

otherwise arbitrary. Denote m(x) =
∏

i x
ei
i . Then define g(x) =

∏
i x

q−1−ei
i . Clearly

degree(g) ≤ k. Therefore, by Lemma 3.2.4 and linearity of dot product, f · g 6= 0.

This completes the proof.

Since the dual of a GRM code is again a GRM (of appropriate order), we

therefore need the generators of GRM code (of arbitrary order). We first establish

that flats and pseudoflats (of suitable dimension and exponent) indeed generate the

Generalized Reed-Muller code (of desired order). We then end the section with a

proof of Theorem 3.3.1 and a few remarks.

We begin with few simple observations about flats. Note that an l-flat L is

the intersection of (n− l) hyperplanes in general position. Equivalently, it consists

of all points v that satisfy (n− l) linear equations over Fp (i.e., one equation for each

hyperplane): ∀i ∈ [n − l] ∑n
j=1 cijxj = bi where cij , bi defines the ith hyperplane

(i.e., v satisfies
∑n

j=1 cijvj = bi). General position means that the matrix {cij} has

rank (n− l). Note that then the incidence vector of L can be written as

n−l∏

i=1


1−




n∑

j=1

cijxj − bi




p−1
 =





1 if (v1, · · · , vl) ∈ L
0 otherwise

(3.7)

We record a lemma here that will be used later in this section. We leave the

proof as a straightforward exercise.

Lemma 3.3.3 For l ≥ k, the incidence vector of any l-flat is a linear sum of the

incidence vectors of k-flats.
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As mentioned previously, we give an explicit basis for GRMp(r, n). For the

special case of p = 3, our basis coincides with the min-weight basis given in [DK00].7

However, in general, our basis differs from the min-weight basis provided in [DK00].

The following Proposition shows that the incidence vectors of flats form a

basis for the Generalized Reed-Muller code of orders which are multiples of (p− 1).

Proposition 3.3.4 GRMp((p − 1)(n − l), n) is generated by the incidence vectors

of the l-flats.

Proof : We first show that the incidence vectors of the l-flats are in GRMp((p −
1)(n − l), n). Recall that L is the intersection of (n − l) independent hyperplanes.

Therefore using Equation 3.7, L can be represented by a polynomial of degree at

most (n − l)(p − 1) in x1, · · · , xn. Therefore the incidence vectors of l-flats are in

GRMp((p − 1)(n − l), n).

We prove that GRMp((p − 1)(n − l), n) is generated by l-flats by induction

on n− l. When n− l = 0, the code consists of constants, which is clearly generated

by n-flats, i.e., the whole space.

To prove for an arbitrary (n− l) > 0, we show that any monomial of total de-

gree d ≤ (p−1)(n−l) can be written as a linear sum of the incidence vectors of l-flats.

Let the monomial be xe1
1 · · · xet

t . Rewrite the monomials as x1 · · · x1︸ ︷︷ ︸
e1 times

· · · xt · · · xt︸ ︷︷ ︸
et times

.

Group into products of (p− 1) (not necessarily distinct) variable as much as possi-

ble. Rewrite each group using Equation 3.4 setting k = (p− 1). For any incomplete

group of size d′, use the same equation by setting the last (p−1−d′) variables to the

constant 1. After expansion, the monomial can be seen to be a sum of product of at

most (n− l) degree (p−1)th powered linear terms. We can add to it a polynomial of

degree at most (p−1)(n− l−1) so as to represent the resulting polynomial as a sum

of polynomials, each polynomial as in Equation 3.7. Each such non-zero polynomial

is generated by a t flat, t ≥ l. By induction, the polynomial we added is generated

by (l+ 1) flats. Thus, by Lemma 3.3.3 our given monomial is generated by l-flats.

This leads to the following observation:

7The equations of the hyperplanes are slightly different in our case; nonetheless, both of them
define the same basis generated by the min-weight codewords.
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Observation 3.3.5 Consider an l-flat generated by y1, · · · , yl at b. Denote the

incidence vector of this flat by I. Then the right hand side of Equation 3.1 may

be identified as I · f , where I and f denote the vector corresponding to respective

codewords and · is the dot (scalar) product.

To generate generalized Reed-Muller code of any arbitrary order, we need

pseudoflats. Note that the points in a k-pseudoflat may alternatively be viewed as

the space given by union of intersections of (n−k−1) hyperplanes, where the union

is parameterized by another hyperplane that does not take one particular value.

Concretely, it is the set of points v which satisfy the following constraints over Fp:

∀i ∈ [n− k − 1]

n∑

j=1

cijxj = bi; and

n∑

j=1

cn−k,jxj 6= bn−k.

Thus the values taken by the points of a k-pseudoflat with exponent r is given by

the polynomial

n−k−1∏

i=1


1−




n∑

j=1

cijxj − bi




(p−1)

 ·




n∑

j=1

cn−k,jxj − bn−k




r

(3.8)

Remark 3.3.6 Note the difference between Equation 3.8 and the basis polynomial

in [DK00] that (along with the action of the affine general linear group) yields the

min-weight codewords:

h(x1, · · · , xm) =

k−1∏

i=1

(
1− (xi − wi)

(p−1)
) r∏

j=1

(xk − uj),

where w1, · · · , wk−1, u1, · · · , ur ∈ Fp.

The next lemma shows that the code generated by the incidence vectors of l-flats

is a subcode of the code generated by the evaluation vectors of l-pseudoflats with

exponent r.

Claim 3.3.7 The evaluation vectors of l-pseudoflats (l ≥ 1) with exponent r (r ∈
[p− 2]) generate a code containing the incidence vectors of l-flats.
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Proof : Let W be the incidence vector of an l-flat generated by y1, · · · , yl at b.

Clearly W = 〈1, · · · , 1〉, where the ith (i ∈ [p − 1] ∪ {0}) coordinate denotes the

values taken by the characteristic functions of (l−1)-flats generated by y2, · · · , yl at

b+i·y1.8 Let this denote the standard basis. Let Lj be a pseudoflat with exponent r

generated by y1, · · · , yl exponentiated along y1 at b+j ·y1, for each j ∈ Fp, and let Vj

be the corresponding evaluation vector. By Definition 3.2.2, Vj assign a value ir to

the (l−1)-flat generated by y2, · · · , yl at b+(j+i)y. Rewriting them in the standard

basis yields that Vj = 〈(p− j)r, (p− j + 1)r, · · · , (p− j + i)r, · · · , (p− j − 1)r〉 ∈ Fp
p.

Let λj denote p variables for t = 0, 1, · · · , (p − 1), each taking values in Fp. Then a

solution to the following system of equations

∀i ∈ [p− 1] ∪ {0} 1 =
∑

j∈Fp

λj(i− j)r

implies that W =
∑p−1

j=0 λjVj , which suffices to establish the claim. Consider the

identity

1 = (−1)
∑

j∈Fp

(j + i)rjp−1−r

which may be verified by expanding and applying Lemma 3.2.3. Setting λj to

(−1)(−j)p−1−r establishes the claim.

The next Proposition complements Proposition 3.3.4. Together they say that

by choosing dimension and exponent appropriately, Generalized Reed-Muller code

of any given order can be generated. This gives an equivalent representation of

Generalized Reed-Muller code. An exact characterization then follows from this

alternate representation.

Proposition 3.3.8 For every r ∈ [p−2], the linear code generated by the evaluation

vectors of l-pseudoflats with exponent r is equivalent to GRMp((p− 1)(n− l) + r, n).

Proof : For the forward direction, consider an l-pseudoflat L with exponent r. Its

evaluation vector is given by an equation similar to Equation 3.8. Thus the codeword

corresponding to the evaluation vector of this flat can be represented by a polynomial

of degree at most (p − 1)(n − l) + r. This completes the forward direction.

8Recall that a l-pseudoflat (as well as a flat) assigns the same value to all points in the same
(l − 1)-flat.
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To prove the other direction, we restrict our attention to monomials of degree

at least (p − 1)(n − l) + 1 and show that these monomials are generated by l-

pseudoflats with exponent r. Since monomials of degree at most (p − 1)(n − l)

is generated by l-flats, Claim 3.3.7 will establish the Proposition. Now consider

any such monomial. Let the degree of the monomial be (p − 1)(n − l) + r′ (1 ≤
r′ ≤ r). Rewrite it as in Proposition 3.3.4. Since the degree of the monomial is

(p − 1)(n − l) + r′, we will be left with an incomplete group of degree r′. We make

any incomplete group complete by adding 1’s (as necessary) to the product. We then

use Lemma 3.2.5 to rewrite each (complete) group as a linear sum of rth powered

terms. After expansion, the monomial can be seen to be a sum of product of at

most (n − l) degree (p − 1)th powered linear terms and a rth powered linear terms.

Each such polynomial is generated either by an l-pseudoflat with exponent r or an

l-flat. Claim 3.3.7 completes the proof.

The following is analogous to Observation 3.3.5.

Observation 3.3.9 Consider an l-pseudoflat with exponent r, generated by y1, · · · , yl

at b exponentiated along y1. Let E be the evaluation vector of this pseudoflat with

exponent r. Then the right hand side of Equation 3.2 may be interpreted as E · f .

Now we prove the exact characterization.

Proof of Theorem 3.3.1: The proof directly follows from Lemma 3.3.2, Propo-

sition 3.3.4, Proposition 3.3.8 and Observation 3.3.5 and Observation 3.3.9. Indeed

by Observation 3.3.5 and Observation 3.3.9, Equations 3.5 and 3.6 are essentially

tests to determine whether the dot product of the function with every vector in the

dual space of GRM(t, n) evaluates to zero.

Remark 3.3.10 One can obtain an alternate characterization from Remark 3.3.6

which we state here without proof.

Let t = (p − 1) · k + R (note 0 < R ≤ (p − 2)). Let r = (p − 1) − R − 1.

Let W ⊆ Fp with |W | = r. Define the polynomial g(x)
def
=
∏

α∈W (x − α) if W is

non-empty; and g(x) = 1 otherwise. Then a function belong to Pt if and only if for

every y1, · · · , yk+1, b ∈ Fn
p , we have

∑

c1∈Fp\W
g(c1)

∑

(c2,··· ,ck+1)∈Fk
p

f

(
b+

k+1∑

i=1

ci · yi

)
= 0.
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Moreover, this characterization can also be extended to certain degrees for

more general fields, i.e., Fps (see the next remark).

Remark 3.3.11 The exact characterization of low degree polynomials as claimed

in [FS95] may be proved using duality. Note that their proof works as long as the

dual code has a min-weight basis (see [DK00]). Suppose that the polynomial has

degree d ≤ q − q/p − 1, then the dual of GRMq(d, n) is GRMq((q − 1)n − d− 1, n)

and therefore has a min-weight basis. Note that then the dual code has min-weight

(d+ 1). Therefore, assuming the minimum weight codewords constitute a basis, any

d+ 1 evaluations of the original polynomial on a line are dependent and vice-versa.

We leave the details as an exercise for the interested readers.

3.4 Characterization of Low-degree Polynomials over

General Finite Fields

In an attempt to generalize our result from previous section to more general fields,

we obtain an exact characterization of low-degree polynomials over general finite

fields9[JPR04]. This provides an alternate proof to the result of Kaufman and

Ron [KR04] mentioned earlier. Specifically the result says that a given polynomial

is of degree at most t if and only if the restriction of the polynomial to every affine

subspace of dimension ⌈ t+1
q−q/p⌉ (and higher) is of degree at most t.

The result of this section was first proved in [KR04]. Their proof generalizes

a proof presented in [FS95]. Here we present an alternative proof to their result,

which also extends our result presented in the previous section. In this subsection

we characterize low-degree polynomials over general field Fq of characteristic p. We

approach this problem the same way we do in the previous chapter. We set up a

characterization via the dual code. That is, a given function is of degree at most

t, if it is orthogonal to all the codewords in the dual code of GRMq(t, n). The

orthogonality test can also be seen as a weighted sum of the evaluation of the given

function on a small subset of points. We then show that each of these weighted sum

can be represented as a linear sum of the weighted sum of the evaluation of the given

function over objects which we call funny-flats. In other words, these funny-flats

9We mention here that this can further be extended to a robust characterization using techniques
we develop for prime fields.

32



generate the dual code of GRMq(t, n).

Denote d
def
= ⌈ t+1

q−q/p⌉. We show that

Theorem 3.4.1 A function f : Fn
q → Fq belongs to Pt if and only if for every

y1, · · · , yd, b ∈ Fn
q , every (q − 1) ≥ r1, · · · , rd ≥ 0 such that

∑d
i=1(q − 1− ri) > t, it

holds that
∑

a=〈a1,··· ,ad〉∈Fd
q

d∏

i=1

ari
i f


b+

d∑

j=1

ajyj


 = 0. (3.9)

Since the set of monomials given by {∏d
i=1 x

ri
i | for all i ∈ [d] ri ∈ Z/qZ and

∑d
i=1(q−

1−ri) > t} generate the code GRMq(d(q−1)−t−1, d), using duality (Lemma 3.3.2)

we immediately get the following theorem as a corollary which appears in [KR04].

Theorem 3.4.2 (Kaufman-Ron [KR04]) Let f : Fn
q → Fq. Then f belongs to Pt

iff the restriction of f to every affine subspace H of dimension d = ⌈ t+1
q−q/p⌉ is a

polynomial of degree at most t.

We start with a definition.

Definition 3.4.3 Given t and n ≥ d, a set of non-negative exponents r1, · · · , rn
(where each of them is at most q − 1) are said to be valid if

∑n
i=1(q − 1− ri) > t.

The rest of this section is devoted to proving Theorem 3.4.1. We will show

that a weighted sum, weighed by valid exponents, over an n dimensional space can

be written as a linear validly weighed sum over (n − 1) dimensional space as long

as (n− 1) ≥ d. We begin with a simple lemma.

Lemma 3.4.4 A function f : Fn
q → Fq belongs to Pt if and only if for every D,

(n ≥ D ≥ d) and every y1, · · · , yD, b ∈ Fn
q , and every valid set of exponents {ri}i∈[D],

it holds that
∑

a=〈a1,··· ,aD〉∈FD
q

D∏

i=1

ari
i f(b+

D∑

j=1

ajyj) = 0. (3.10)

Proof : If f ∈ Pt then Lemma 3.2.4 implies that for every choice of D, y1, · · · , yD, b

and every valid choice of r1, · · · , rD the left hand side of Equation 3.10 evaluates to

0.

For the other direction assume that for every choice of D, y1, · · · , yD, b and

every valid choice of r1, · · · , rD the function f satisfies Equation 3.10. Assume for
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contradiction that f /∈ Pt. Choose D = n. Let m be a monomial in f with nonzero

co-efficient and maximum total degree (which is at least t+1). Let m(x) =
∏n

i=1 x
ei
i .

For each i ∈ [n], choose ri = (q − 1− ei). Clearly
∑n

i=1(q − 1− ri) =
∑n

i=1 ei > t.

By Lemma 3.2.4 we have that

∑

a=〈a1,··· ,an〉∈Fn
q

n∏

i=1

ari
i m(b+

n∑

j=1

ajyj) 6= 0.

Also by the same lemma, any monomial m′ that produces a non-zero sum must sat-

isfy m′(x) = m(x)
∏

i∈I;∅6=I⊆[n] x
q−1
i . Clearly such an m′ cannot exist for our choice

of m. Therefore, every other monomial contributes a zero sum. This contradicts

the assumption that f satisfies Equation 3.10 for every choice of D, r1, · · · , rD.

Alternative Proof: Note that the evaluations of the monomials
∏D

i=1 a
ri
i

with
∑D

i=1(q−1−ri) > t forms GRMq(D(q−1)−t−1,D) code. Since the restriction

of a degree t polynomial is always a polynomial of degree at most t, the fact that

GRMq(t,D)⊥ = GRMq(D(q − 1)− t− 1,D) then completes the forward direction.

The duality of GRM(t,D) in the special case of D = n establishes the other

direction.

Note that the above lemma requires a test for all dimension d such that

d ≤ D ≤ n. However, we will prove that it is enough to restrict the test to only

subspaces of dimension D = d. We achieve this the following way.

Assume we have an affine n-dimensional space, given in some basis y1, · · · , yn at

point b. Assume that at each point 〈a1, · · · , an〉 in this affine co-ordinate system

(i.e., the point has absolute co-ordinate
∑n

i=1 aiyi + b) we assign a value10
∏n

i=1 a
ri
i ,

where {ri}i∈[n] is a valid set of exponent. Informally lets call these geometric objects

as funny-flats. Then Equation 3.9 can be interpreted as the dot product of the

function with this funny-flats. We show that an n-dimension funny-flat can be

written as linear combinations of (n−1)-dimensional funny flats provided n−1 ≥ d.

Therefore if the dot product of f with every d-dimensional funny-flats yield zero,

then for every n-dimensional funny-flats (n ≥ D) the sum will evaluate to zero. We

essentially employ this idea to prove Theorem 3.4.1.

10Here ri = 0 can give rise to a situation 00. When ri = 0 we simply assume that ai term does
not exist in the product, or equivalently we choose 00 = 1.
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We now give a definition.

Definition 3.4.5 We define δa(x)
def
= (1− (x− a)q−1). Note δa(x) is equal to one if

and only if x = a and zero otherwise. Also note that
∑

x∈Fq
δa(x)g(x) = g(a).

Consider the following identity which holds over any finite field Fq:

Fact 3.4.6 If 0 < i < q − 1, and 0 < j < q − 1 and i+ j < q − 1, then we have

zq−1−iyq−1−j =
∑

v∈F∗
q

(
1− (z − vy)q−1

)
· vq−1−iyq−1−i−j =

∑

v∈F∗
q

δvy(z)vq−1−iyq−1−i−j

(3.11)

Also, as a special case we have the following: for 0 < r < q,

zr =
∑

v∈F∗
q

(
1− (z − v)q−1

)
vr =

∑

v∈F∗
q

δv(z)vr (3.12)

If we call q − 1 − i to be a hole corresponding to a term yi, then Equation 3.11

essentially allows us to transfer the combined hole of y and z onto a hole of y. Also,

note that (1 − (z − vy)q−1) plays a role similar to that of delta function. Thus a

sum on z will vanish z all together from the right hand side. This will enable us to

go down a dimension. However, note that to apply the identity, one must have the

total degree in the left hand side be at least q.

Proof of Fact 3.4.6 We now establish the identity given by Equation 3.11.

The identity trivially holds when y = 0. Moreover if z = 0, then δvy(z) = 0 always

zero unless y = 0 and the identity holds. Therefore assume y, z 6= 0. Then the only

non-zero term in the right hand side corresponds to v = z/y. Substituting we get

back the left hand side. This establishes the identity.

We see that in order to apply Equation 3.11, we need the total degree be at

least q. The following identity will allow us to increase the degree of an individual

term in units of q/p, without affecting the total hole of terms featuring ais.

Fact 3.4.7 For n ≥ 2, for all i ∈ [n − 1], 0 ≤ ti < p,
∑n−1

i=1 ti
q
p + rn ≤ (q − 1), for
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all 〈u1, · · · , un−1〉 ∈ Fn
q , there exists cn ∈ F∗

p ⊆ F∗
q such11 that

n−1∏

i=1

a
ti

q
p

i arn
n = cn

∑

u=〈u1,··· ,un−1〉∈F
n−1
q

n−1∏

i=1

u
q−1−ti

q
p

i




n−1∑

j=1

ujaj + an




Pn−1
e=1 te

q
p
+rn

(3.13)

Before we prove the above identity, we quickly recall the following Lemma

from12 [FS95].

Lemma 3.4.8 ([FS95], Lemma 12) Let 0 < r ≤ n ≤ q − 1. If r = k q
p , then

(
n
r

)
is

not divisible by p.

Proof of Fact 3.4.7 We prove the identity given in Equation 3.13 by in-

duction on n. For the base case, n = 2, we expand the right hand side.

∑

u1∈Fq

u
q−1−t1

q
p

1 (u1a1 + a2)t1
q
p
+r2 =

∑

u1∈Fq

0≤j≤t1
q
p +r2

(
t1

q
p + r2

j

)
u

q−1−t1
q
p
+j

1 aj
1a

t1
q
p
+r2−j

2

=

(
t1

q
p + r2

t1
q
p

)
(−1)a

t1
q
p

1 ar2
2 (Lemma 3.2.4)

= c−1
2 a

t1
q
p

1 ar2
2

In the above we have used Lemma 3.2.3. Also, by Lemma 3.4.8 c−1
2 6= 0 if t1 6= 0

and clearly c2 = −1 if t1 = 0.

Assume the identity holds for n− 1. To prove it for n, we apply the identity

11Note cn may depend on tis.
12An alternative proof may be given using Lucas Theorem.
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twice with n being n− 1 and 2. Consider the L.H.S.

n−1∏

i=1

a
ti

q
p

i arn
n = a

t1
q
p

1 cn−1

∑

u=〈u2,··· ,un−1〉∈F
n−2
q

n−1∏

i=2

u
q−1−ti

q
p

i (

n−1∑

j=2

ujaj + an)
Pn−1

e=2 te
q
p
+rn

(I. H.)

= cn−1

∑

u=〈u2,··· ,un−1〉∈F
n−2
q

n−1∏

i=2

u
q−1−ti

q
p

i a
t1

q
p

1 (

n−1∑

j=2

ujaj + an)
Pn−1

e=2 te
q
p
+rn

= c2cn−1

∑

u=〈u1,··· ,un−1〉∈F
n−1
q

n−1∏

i=1

u
q−1−ti

q
p

i (

n−1∑

j=1

ujaj + an)
Pn−1

e=1 te
q
p
+rn

(With n = 2)

= cn
∑

u=〈u1,··· ,un−1〉∈F
n−1
q

n−1∏

i=1

u
q−1−ti

q
p

i (

n−1∑

j=1

ujaj + an)
Pn−1

e=1 te
q
p
+rn

where cn = c2cn−1 is a new constant. This completes the induction.

The following Proposition will imply Theorem 3.4.1 by an easy induction on

dimension D. We therefore prove the Proposition.

Proposition 3.4.9 A function f : Fn
q → Fq belongs to Pt if and only if for every

D, (n − 1 ≥ D ≥ d), every choice of y1, · · · , yD, b ∈ Fn
q , and every valid choice of

{ri}i∈[D], it holds that

∑

a=〈a1,··· ,aD〉∈FD
q

D∏

i=1

ari
i f(b+

D∑

j=1

ajyj) = 0. (3.14)

Proof : The forward direction follows from Lemma 3.4.4. We now prove the other

direction. To that purpose by Lemma 3.4.4, it suffices to show the following. Assume

for every choice of y1, · · · , yn−1, b and every valid choice of r1, · · · , rn−1, the function

f satisfies Equation 3.14. We show that for every choice of y′1, · · · , y′n, b′ and every

valid choice of r′1, · · · , r′n, it holds that

∑

a=〈a1,··· ,an〉∈Fn
q

n∏

i=1

a
r′i
i f(b′ +

n∑

j=1

ajy
′
j) = 0.

Without loss of any generality, we will assume r′is are ordered, i.e., 0 ≤ r′1 ≤
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· · · ≤ r′n. We break the proof into cases.

• Case 1: There exists a subset R ⊆ [n], where |R| = n− 1 and∑
i∈R(q − 1− r′i) > t.

By the imposed ordering, R = [n− 1] suffices. Then

∑

〈a1,··· ,an〉∈Fn
q

n∏

i=1

a
r′i
i f(b′ +

n∑

j=1

ajy
′
j) =

∑

an∈Fq

ar′n
n

∑

〈a1,··· ,an−1〉∈F
n−1
q

n−1∏

i=1

a
r′i
i f(b′ + any

′
n +

n−1∑

j=1

ajy
′
j) = 0 (3.15)

Note that line above Equation 3.15 is a linear sum of suitably-weighted sums

of f over (n− 1)-dimensional affine subspaces, and therefore, must be zero by

the assumption.

• Case 2: Suppose Case 1 does not hold. Then one may hope to apply

Equation 3.11 to get rid of a dimension. However, note that this requires

r′n−1 + r′n ≥ q. In general that may not necessarily hold13. However, con-

tinuing on this idea, we show how to reduce a dimension, in general. We

will try to push the exponent of the term containing an−1. In that way

we will either satisfy Case 1 or will be able to apply Equation 3.11. For

i ∈ [n − 2], let r′i = si
q
p + wi, 0 ≤ wi <

q
p . We claim that if case 1 cannot be

applied then,
∑n−1

i=1 si > 0. For contradiction assume that
∑n−1

i=1 si = 0.

Then
∑n−1

i=1 r
′
i ≤ (n − 1)(q/p − 1). Hence, since case 1 does not apply,

t ≥ ∑n−1
i=1 (q − 1 − r′i) ≥ (n − 1)(q − q/p). Thus d = ⌈ (t+1)

(q−q/p)⌉ ≥ n. That

contradicts the choice of n− 1. In particular this implies that r′n ≥ r′n−1 ≥ q
p .

For i = 1 to (n − 2), let 0 ≤ ti ≤ si be such that
∑n−2

i=1 ti is largest, and∑n−2
i=1 ti ≤ p−1− sn−1. Clearly such a set of {ti}i∈[n−1] exists (not necessarily

attaining the maximum). Now we show that we can push the exponent of the

term containing an−1 by an amount equal to
∑n−2

i=1 ti
q
p .

To that direction we apply the identity given in Equation 3.13. The following

claim proves the sufficient condition to invoke the identity.

13For the case p = 2, it follows that this always happens. We leave the details as an exercise for
interested readers.
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Claim 3.4.10
∑n−2

i=1 ti
q
p + r′n−1 ≤ q − q

p + wn < q.

Proof : Since
∑n−1

i=1 ti ≤ p− 1− sn, we have
∑n−1

i=1
q
p ti ≤ q − q/p − (r′n − wn).

Since wn−1 <
q
p , we are done.

Note if
∑n−2

i=1 ti = p− 1− sn−1 holds then

r′n+(r′n−1+
n−2∑

i=1

ti
q

p
) = r′n+r′n−1+(q−q

p
)−(r′n−1−wn−1) = q+(r′n−

q

p
)+wn−1 ≥ q,

and therefore we will be done by applying Equation 3.11. Consequently, if

(r′n−1+
∑n−2

i=1 ti
q
p)+r′n < q, then it must be the case that

∑n−2
i=1 ti < p−1−sn−1.

This implies that for i ∈ [n − 2] ti = si. In that case, instead of pushing∑n−2
i=1 ti

q
p to r′n−1, we push

∑n−1
i=1 si

q
p to r′n. Note in that case,

∑n−1
i=1 (q − 1−

(r′i−si
q
p)) > t must hold. For otherwise, we will have t ≥ (n−1)(q−q/p) that

implies d ≥ n, a contradiction. We therefore break the proof in two cases.

– Sub-case 2.1 : (r′n−1 +
∑n−2

i=1 ti
q
p) + r′n ≥ q holds.

Consider
∏n

i=1 a
r′i
i . We first rewrite this as follows

n∏

i=1

a
r′i
i = ar′n

n

n−2∏

i=1

a
r′i−ti

q
p

i ×
n−2∏

j=1

a
tj

q
p

j × ar′n−1

n−1︸ ︷︷ ︸
. (3.16)

Now we apply the identity as in Equation 3.13 to the terms inside the

under-brace to get

cna
r′n
n

n−2∏

i=1

a
r′i−ti

q
p

i

∑

v∈F
n−2
q




n−2∏

h=1

v
q−1−th

q
p

h · (
n−2∑

j=1

ajvj + an−1)
Pn−2

e=1 te
q
p
+r′n−1


 .

(3.17)

Note that by Claim 3.4.10, the last exponent in the above expression is

less than q.

Now, if
∑n−2

i=1 ti
q
p+r′n−1 = q−1, we replace (

∑n−2
i=1 aivi+an−1)

Pn−2
j=1 tj

q
p
+rn−1

by∑
vn−1∈F∗

q
δvn−1(

∑n−2
i=1 aivi +an−1) =

∑
vn−1∈F∗

q
δvn−1−

Pn−2
i=1 aivi

(an−1), fol-

lowing Equation 3.12 (with r set to q−1). Now we consider the following

sum:

39



∑

an−1∈Fq

δvn−1−
Pn−2

j=1 ajvj
(an−1)f(

n∑

j=1

ajy
′
j + b′)

= f(
n−2∑

j=1

ajy
′
j + any

′
n + (vn−1 −

n−2∑

j=1

ajvj)y
′
n−1 + b′)

= f(any
′
n+

n−2∑

j=1

aj(y
′
j−vjy

′
n−1)+(b′+vn−1y

′
n−1)) = f(

n−2∑

j=1

ajy
′′
j +any

′′
n+b′′)

(3.18)

We use Equations 3.16, 3.17 and 3.18 to write

∑

a=〈a1,··· ,an〉∈Fn
q

n∏

i=1

a
r′i
i f(b′+

n∑

j=1

ajy
′
j) =

∑

〈v1,··· ,vn−2〉∈F
n−2
q

∑

vn−1∈F∗
q

n−2∏

h=1

v
q−1−th

q
p

h ×


 ∑

a=〈a1,··· ,an−2,an〉∈F
n−1
q

ar′n
n

n−2∏

i=1

a
r′i−ti

q
p

i f(

n−2∑

j=1

ajy
′′
j + any

′′
n + b′′)


 .

The above equation tells that the suitably weighted sum of f over n

dimension can be written as a linear sum of of suitably weighted sum of

f over (n− 1) dimension. Since

n−2∑

i=1

(q−1−r′i + ti
q

p
)+(q−1−r′n) =

n−2∑

i=1

(q−1−r′i)+

n−2∑

i=1

ti
q

p
+(q−1−r′n)

=

n−2∑

i=1

(q − 1− r′i) + (q − 1− r′n−1) + (q − 1− r′n) =

n∑

i=1

(q − 1− r′i) > t

each liner sum is zero by the inductive hypothesis. Therefore,

∑

a=〈a1,··· ,an〉∈Fn
q

n∏

i=1

a
r′i
i f(b′ +

n∑

j=1

ajy
′
j) = 0.
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Assume therefore that
∑n−2

i=1 ti
q
p +r′n−1 < q−1. Since (r′n−1+

∑n−2
i=1 ti

q
p)+

r′n ≥ q holds, we apply Equation 3.11. Specifically we replace a
r′n
n ×

(
∑n−2

i=1 aivi + an−1)
Pn−2

e=1 te
q
p
+r′n−1 by

∑

vn−1∈F∗
q

δvn−1an(
n−2∑

i=1

aivi+an−1)v
r′n−1+

Pn−2
e=1 te

q
p

n−1 a
(r′n+r′n−1+(

Pn−2
i=1 (ti

q
p
)))−(q−1)

n .

We consider the following sum:

∑

vn−1∈F∗
q

v

Pn−2
i=1 ti

q
p
+r′n−1

n−1

∑

an−1∈Fq

δvn−1an(
n−2∑

j=1

ajvj + an−1)f(
n∑

h=1

ahy
′
h + b′) =

∑

vn−1∈F∗
q

v

Pn−2
i=1 ti

q
p
+r′n−1

n−1

∑

an−1∈Fq

δvn−1an−
Pn−2

j=1 ajvj
(an−1)f(

n∑

h=1

ahy
′
h + b′) =

∑

vn−1∈F∗
q

v

Pn−2
i=1 ti

q
p
+r′n−1

n−1 f(

n−2∑

j=1

ajy
′
j + any

′
n + (vn−1an −

n−2∑

h=1

ahvh)y′n−1 + b′) =

∑

vn−1∈F∗
q

v

Pn−2
i=1 ti

q
p
+r′n−1

n−1 f(

n−2∑

j=1

aj(y
′
j − vjy

′
n−1) + an(y′n + vn−1y

′
n−1) + b′) =

∑

vn−1∈F∗
q

v

Pn−2
i=1 ti

q
p
+r′n−1

n−1 f(

n−2∑

j=1

ajy
′′
j + any

′′
n + b′′)

(3.19)

We use Equations 3.16, 3.17 and 3.19 to write

∑

a=〈a1,··· ,an〉∈Fn
q

n∏

i=1

a
r′i
i f(b′ +

n∑

j=1

ajy
′
j)

=
∑

v=〈v1,··· ,vn−2〉∈F
n−2
q

∑

vn−1∈F∗
q

[
n−2∏

h=1

v
q−1−th

q
p

h v

Pn−2
e=1 te

q
p
+r′n−1

n−1




∑
a1,··· ,an−2,

an∈Fq

a
r′n+r′n−1+

Pn−2
i=1 ti

q
p
−(q−1)

n

n−2∏

i=1

a
r′i−ti

q
p

i f(
n−2∑

j=1

ajy
′′
j + any

′′
n + b′′)





 .
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The above equation tells that the suitably weighted sum of f over n

dimension can be written as a linear sum of of suitably weighted sum of

f over (n− 1) dimension. Now since

(q − 1− r′n − r′n−1 −
n−1∑

i=2

ti
q

p
+ (q − 1)) +

n−2∑

i=1

(q − 1− r′i + ti
q

p
) =

(q − 1− r′n) + (q − 1− r′n−1)−
n−2∑

i=1

ti
q

p
+

n−2∑

i=1

(q − 1− r′i) +
n−2∑

i=1

ti
q

p

=
n∑

i=1

(q − 1− r′i) > t,

hence each liner sum is zero by the inductive hypothesis. Therefore,

∑

a=〈a1,··· ,an〉∈Fn
q

n∏

i=1

a
r′i
i f(b′ +

n∑

j=1

ajy
′
j) = 0.

– Subcase 2.2: r′n + r′n−1 +
∑n−2

i=1 ti < q holds.

As mentioned previously, then it must be the case that
∑n−2

i=1 ti < p −
1 − sn−1 and hence, ti = si for all i ∈ [n − 2]. Set tn−1 = sn−1. Then

r′n +
∑n−1

i=1 ti
q
p < q. Also, note that for i ∈ [n − 1], r′i − ti q

p = wi < q/p.

Denote ρ =
∑n−1

i=1 ti
q
p + r′n. Note 0 < ρ < q.

Now consider
∏n

i=1 a
r′i
i . We first rewrite this as follows

n∏

i=1

a
r′i
i =

n−1∏

i=1

a
r′i−ti

q
p

i ×
n−1∏

j=1

a
tj

q
p

j × ar′n
n︸ ︷︷ ︸
. (3.20)

Now we apply the identity as in Equation 3.13 to the terms inside the

under-brace to get

cn

n−1∏

i=1

awi
i

∑

v=〈v1,··· ,vn−1〉∈F
n−1
q




n−1∏

h=1

v
q−1−th

q
p

h · (
n−1∑

j=1

ajvj + an)ρ


 . (3.21)

Since 0 < ρ < q, we replace (
∑n−1

i=1 aivi +an)ρ by
∑

vn∈F∗
q
δvn(

∑n−1
i=1 aivi +

an)vρ
n =

∑
vn∈F∗

q
δvn−

Pn−1
i=1 aivi

(an)vρ
n, following Equation 3.12. Now we
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consider the following sum:

∑

an∈Fq

δvn−
Pn−1

j=1 ajvj
(an)f(

n∑

h=1

ahy
′
h+b′) = f(

n−1∑

h=1

ahy
′
h+(vn−

n−1∑

j=1

ajvj)y
′
n+b′)

= f(
n−1∑

j=1

aj(y
′
j − vjy

′
n) + (b′ + vny

′
n)) = f(

n−1∑

j=1

ajy
′′
j + b′′) (3.22)

We use Equations 3.20, 3.21 and 3.22 to write

∑

a=〈a1,··· ,an〉∈Fn
q

n∏

i=1

a
r′i
i f(b′+

n∑

j=1

ajy
′
j) =

∑

〈v1,··· ,vn−1〉∈F
n−1
q

∑

vn∈F∗
q

n−1∏

s=1

v
q−1−ti

q
p

s vρ
n


 ∑

a∈F
n−1
q

n−1∏

i=1

awi
i f(

n−1∑

j=1

ajy
′′
j + b′′)


 .

The above equation tells that the suitably weighted sum of f over n

dimension can be written as a linear sum of of suitably weighted sum of

f over (n − 1) dimension. However, as argued previously, it holds that∑n−1
i=1 (q − 1− wi) > t. Therefore, by assumption

∑

a=〈a1,··· ,an〉∈Fn
q

n∏

i=1

a
r′i
i f(b′ +

n∑

j=1

ajy
′
j) = 0.

3.5 A Tester for Low-degree Polynomials over Prime

Fields

In this section we present and analyze a one-sided tester for Pt. The analysis of

the algorithm roughly follows the proof structure given in [RS96, AKK+03]. We

emphasize that the generalization from [AKK+03] to our case is not straightforward.

As in [RS96, AKK+03] we define a self-corrected version of the (possibly corrupted)

function being tested. The straightforward adoption of the analysis given in [RS96]

gives reasonable bounds. However, the better bound is achieved by following the
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techniques developed in [AKK+03]. In there, they show that the self-corrector

function can be interpolated with overwhelming probability. However their approach

appears to use special properties of F2 and it is not clear how to generalize their

technique for arbitrary prime fields. We give a clean formulation which relies on

the flats being represented through polynomials as described earlier. In particular,

Claims 3.5.7, 3.5.9 and their generalization appear to require our new polynomial

based view.

3.5.1 A Tester over Prime Fields

In this subsection we describe the algorithm when underlying field is Fp.

Algorithm Test-Pt in Fp

0. Let t = (p− 1) · k +R, 0 ≤ R < (p− 1). Denote r = p− 2−R.

1. Uniformly and independently at random select y1, · · · , yk+1, b ∈ Fn
p .

2. If T r
f (y1, · · · , yk+1, b) 6= 0, then reject, else accept.

Theorem 3.5.1 The algorithm Test-Pt in Fp is a one-sided tester for Pt with a

success probability at least min(Ω(pk+1ǫ), 1
2(k+7)pk+2 ).

Corollary 3.5.2 Repeating the algorithm Test-Pt in Fp Θ( 1
pk+1ǫ

+ kpk) times, the

probability of error can be reduced to less than 1/2.

We will provide a general proof framework. However, for the ease of exposi-

tion we prove the main technical lemmas for the case of F3. The proof idea in the

general case is similar and the details are omitted. Therefore we will essentially

prove the following.

Theorem 3.5.3 The algorithm Test-Pt in F3 is a one-sided tester for Pt with

success probability at least min(Ω(3k+1ǫ), 1
2(t+7)3t/2+1 ).

3.5.2 Analysis of Algorithm Test-Pt

In this subsection we analyze the algorithm described in Section 3.5.1. From Claim 3.3.1

it is clear that if f ∈ Pt, then the tester accepts. Thus, the bulk of the proof is to

show that if f is ǫ-far from Pt, then the tester rejects with significant probability.

Our proof structure follows that of the analysis of the test in [AKK+03]. In what
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follows, we will denote Tf (y1, · · · , yl, b) by T 0
f (y1, · · · , yl, b) for the ease of exposi-

tion. In particular, let f be the function to be tested for membership in Pt. Assume

we perform Test T i
f for an appropriate i as required by the algorithm described in

Section 3.5.1. For such an i, we define gi : Fn
p → Fp as follows: For y ∈ Fn

p , α ∈ Fp,

denote py,α = Pry1,··· ,yk+1
[f(y)− Tfi

(y − y1, y2, · · · , yk+1, y1) = α]. Define gi(y) = α

such that ∀β 6= α ∈ Fp, py,α ≥ py,β with ties broken arbitrarily. With this meaning

of plurality, for all i ∈ [p− 2] ∪ {0}, gi can be written as:

gi(y) = pluralityy1,··· ,yk+1

[
f(y)− T i

f (y − y1, y2, · · · , yk+1, y1)
]
. (3.23)

Further we define

ηi
def
= Pry1,··· ,yk+1,b[T

i
f (y1, · · · , yk+1, b) 6= 0] (3.24)

The next lemma follows from a Markov-type argument.

Lemma 3.5.4 For a fixed f : Fn
p → Fp, let gi, ηi be defined as above. Then,

δ(f, gi) ≤ 2ηi.

Proof : Consider the set of elements y such that Pry1,··· ,yk+1
[f(y) = f(y) − T i

f (y −
y1, y2, · · · , yk+1, y1)] < 1/2. If the fraction of such elements is more than 2ηi then

that contradicts the condition that

ηi = Pry1,··· ,yk+1,b[T
i
f (y1, · · · , yk+1, b) 6= 0]

= Pry1,y2,··· ,yk+1,b[T
i
f (y1 − b, y2, · · · , yk+1, b) 6= 0]

= Pry,y1,··· ,yk+1
[f(y) 6= f(y)− T i

f (y − y1, y2, · · · , yk+1, y1)].

Therefore, we obtain δ(f, gi) ≤ 2ηi.

Note that Pry1,··· ,yk+1
[gi(y) = f(y) − T i

f (y − y1, y2, · · · , yk+1, y1)] ≥ 1
p . We

now show that this probability is actually much higher. The next lemma gives

a weak bound in that direction following the analysis in [RS96]. For the sake of

completeness, we present a proof in the Appendix A.1.

Lemma 3.5.5 ∀y ∈ Fn
p , Pry1,··· ,yk+1∈Fn

p
[gi(y) = f(y)−T i

f (y−y1, y2, · · · , yk+1, y1)] ≥
1− 2pk+1ηi.
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However, when the degree being tested is larger than the field size, we can

improve the above lemma considerably. The following lemma strengthens Lemma

3.5.5 when t ≥ (p− 1) or equivalently k ≥ 1. We now focus on the F3 case.

Lemma 3.5.6 ∀y ∈ Fn
3 , Pry1,··· ,yk+1∈F

n
3
[gi(y) = f(y)−T i

f (y−y1, y2, · · · , yk+1, y1)] ≥
1− (4k + 14)ηi.

Observe that the goal of the lemma is to show that at any fixed point y, if gi

is interpolated out of a random hyperplane, then w.h.p. the interpolated value is

the most popular vote. To ensure this we show that if gi is interpolated on two

independently random hyperplanes, then the probability that these interpolated

values are same, that is the collision probability, is large. To estimate this collision

probability, we show that the difference of the interpolation values can be rewritten

as a sum of T i
f on small number of random hyperplanes. Thus if the test passes

often (that is, T i
f evaluates to zero w.h.p.), then this sum (by a simple union bound)

evaluates to zero often, which proves the high collision probability.

The improvement will arise because we will express differences involving

T i
f (· · · ) as a telescoping series to essentially reduce the number of events in the

union bound. To do this we will need the following claims. They can easily be ver-

ified by expanding the terms on both sides like the proof of Claim 4 in [AKK+03].

However, this does not give much insight into the general case, i.e., for Fp. We

provide an alternate proof that can be generalized to get similar claims and has a

much cleaner structure based on the underlying geometric structure, i.e., flats or

pseudoflats.

Claim 3.5.7 For every l ∈ {2, · · · , k + 1}, for every y(= y1), z, w, b, y2, · · · , yl−1,

yl+1, · · · , yk+1 ∈ Fn
3 , let

Sf (y, z)
def
= Tf (y, y2, · · · , yl−1, z, yl+1, · · · , yk+1, b).

Then14 the following holds:

Sf (y,w)− Sf (y, z) = Sf (y + w, z) + Sf (y − w, z) − Sf (y + z,w) − Sf (y − z,w).

14 Note that Tf (·) is a symmetric function in all but its last input. Therefore to enhance read-
ability, we omit the reference to index i.
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Proof : Assume y, z, w are independent15. We claim that it is enough to prove the

result for k = 1 and b = 0. A linear transform (or renaming the co-ordinate system

appropriately) reduces the case of k = 1 and b 6= 0 to the case of k = 1 and b = 0.

We now show how to “reduce” the case of k > 1 to the k = 1 case. Fix some values

c2, · · · , cl−1, cl+1, · · · , ck+1 and note that one can write c1y+c2y2+· · · cl−1yl−1+clw+

cl+1yl+1 + ck+1yk+1 + b as c1y+ clw+ b′, where b′ =
∑

j∈{2,··· ,l−1,l+1,··· ,k+1} cjyj + b.

Thus, Sf (y,w) =
∑k−1

(c2,··· ,cl−1,cl+1,··· ,ck+1)∈F3

∑
(c1,cl)∈F

2
3
f(c1y + clw + b′), where b′ is

as defined earlier. One can rewrite the other Sf (·) terms similarly. Note that for a

fixed vector (c2, · · · , cl−1, cl+1, · · · , ck+1), the value of b′ is the same. Finally note

that the equality (in the k > 1 case) is satisfied if 3k−1 similar equalities hold (in

the k = 1 case).

Now consider the space H generated by y, z and w at 0. Note that Sf (y,w)

(with b = 0) is just f · 1L, where 1L is the incidence vector of the flat given by the

equation z = 0. Therefore 1L is equivalent to the polynomial (1 − z2). Similarly

Sf (y, z) = f · 1L′ where L′ is given by the equation (1 − w2). We use the following

polynomial identity (in F3)

w2 − z2 = [1− (y − w)2 + 1− (y + w)2]− [1− (y + z)2 + 1− (y − z)2].

Now observe that the equation (1 − (y − w)2) is the incidence vector of the flat

generated by y + w and z. Similar observations hold for other terms. Therefore,

interpreting the above equation in terms of incidence vectors of flats, we complete

the proof with Observation 3.3.5.

We have the following analogue16 of Claim 3.5.7 in Fp:

Claim 3.5.8 For every l ∈ {2, · · · , k + 1}, for every y(= y1), z, w, b, y2, · · · , yl−1,

15If not then both sides are equal to 0 and hence the equality is trivially satisfied. To see
why this claim is true for the left hand side, recall the definition of Tf (·) and note that the sets
of points in the flat generated by y, y2, · · · , yl−1, w, yl+1, · · · , yk+1 at b and the flat generated by
y, y2, · · · , yl−1, z, yl+1, · · · , yk+1 at b are the same. A similar argument works for the expression on
the right hand side of the equality.

16This claim can be extended to Fq in a straightforward manner. We mention here that this
lemma over Fq allows one to prove a similar version of Lemma 3.5.6 over Fq. That lemma along
with versions of Lemma 3.5.15 and Lemma 3.5.20 can be used to get a robust characterization as
is done in [KR04].
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yl+1, · · · , yk+1 ∈ Fn
p , with notation used from the previous lemma, it holds that

Sf (y,w) − Sf (y, z) =
∑

e∈F∗
p

[Sf (y + ew, z) − Sf (y + ez,w)] .

Proof : (Sketch) Consider the following identity

w(p−1) − z(p−1) =
∑

e∈F∗
p

[
[1− (ew + y)(p−1)]− [1− (ez + y)(p−1)]

]
(3.25)

then we can prove the claim along the same lines as the alternate proof of Claim 3.5.7.

We complete the proof by proving Equation 3.25. Consider the sum:
∑

e∈F∗
p
(ew +

y)(p−1). Expanding the terms and rearranging the sums we get

(p−1)∑

j=0

(
(p− 1)

j

)
w(p−1)−jyj

∑

e∈F∗
p

ep−1−j .

By Lemma 3.2.3 the sum evaluates to (−w(p−1) − y(p−1)). Similarly,
∑

e∈F∗
p
(ez +

y)(p−1) = (−z(p−1) − y(p−1)) which proves Equation 3.25.

Claim 3.5.9 For every l ∈ {2, · · · , k + 1}, for every y(= y1), z, w, b, y2, · · · , yl−1,

yl+1, · · · , yk+1 ∈ Fn
3 , denote

S1
f (y,w)

def
= T 1

f (y, y2, · · · , yl−1, w, yl+1, · · · , yk+1, b).

Then17 the following holds:

S1
f (y,w)− S1

f (y, z) = S1
f (y + z,w) + S1

f (y − z,w) − S1
f (y +w, z) − S1

f (y − w, z).

Proof : Note here that the defining equation of S1
f (y, z) is y(1−w2). Now consider

the following identity in F3:

y(z2 − w2) = (y +w)[1 − (y −w)2] + (y − w)[1 − (y + w)2]

−(y + z)[1 − (y − z)2]− (y − z)[1− (y + z)2

17 Note that T i
f (·) is a symmetric function in its all but last and first input. Therefore to enhance

readability, we omit the reference to index l.
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for variables y, z, w ∈ F3. Rest of the proof is similar to the proof of Claim 3.5.7

(the proof replaces flats by pseudoflats) and is omitted.

We now prove the following analogue in Fp:

Claim 3.5.10 For every i ∈ {1, · · · , p − 2}, for every l ∈ {2, · · · , k + 1} and for

every

y(= y1), z, w, b, y2, · · · , yl−1, yl+1, · · · , yk+1 ∈ Fn
p , denote

Si
f (y,w)

def
= T i

f (y, y2, · · · , yl−1, w, yl+1, · · · , yk+1, b).

Then there exists ci such that

Si
f (y,w) − Si

f (y, z) = ci
∑

e∈F∗
p

[
Si

f (y + ew, z) − Si
f (y + ez,w)

]
.

Proof : Observe that T i
f (y, z) = f · ELi , where ELi denotes the evaluation vector

of the pseudoflat L with exponent i, generated by y, z at b exponentiated along

y. Note that the polynomial defining ELi is just yi(w(p−1) − 1). We now give an

identity similar to that of Equation 3.25 that completes the proof. We claim that

the following identity holds

yi(wp−1 − zp−1) = ci
∑

e∈F∗
p

[
(y + ew)i[1− (y − ew)p−1]− (y + ez)i[1− (y − ez)p−1]

]
.

(3.26)

where ci = 2i. Before we prove the identity, note that (−1)j
(p−1

j

)
= 1 in Fp. This

is because for 1 ≤ m ≤ j, m = (−1)(p − m). Therefore j! = (−1)j (p−1)!
(p−j−1)! holds

in Fp. Substitution yields the desired result. Also note that
∑

e∈F∗
p
(y + ew)i = −yi
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(expand and apply Lemma 3.2.3). Now consider the sum

∑

e∈F∗
p

(y + ew)i(y − ew)(p−1) =

∑

e∈F∗
p

∑

0≤j≤i
0≤m≤(p−1)

(−1)m

(
i

j

)(
p− 1

m

)
y(p−1)+i−j−mwj+mej+m

=
∑

0≤j≤i
0≤m≤(p−1)

(−1)m

(
i

j

)(
p− 1

m

)
y(p−1)+i−j−mwj+m

∑

e∈F∗
p

ej+m

= (−1)[y(p−1)+i + (−1)(p−1)
i∑

j=0

(
i

j

)(
p− 1

p− 1− j

)
(−1)j

︸ ︷︷ ︸
=1

yiw(p−1)]

= (−1)[yi + yiw(p−1)2i] (3.27)

Similarly one has
∑

e∈F∗
p
(y + ez)i(y − ez)(p−1) = (−1)[yi + yiz(p−1)2i]. Substituting

and simplifying one gets Equation 3.26.

We will also need the following claims.

Claim 3.5.11 For every l ∈ {2, · · · , k + 1}, y(= yl), z, w, b, y2, · · · , yl−1,

yl+1, · · · , yk+1 ∈ Fn
3 , with notation used in previous claim, it holds that

S1
f (w, y)−S1

f (z, y) = S1
f (z+w, y−z)−S1

f (z+w, y−w)+S1
f (y+z,w)+S1

f (y−z,w)

−S1
f (y + w, z)− S1

f (y − w, z).

Proof : The above follows from the identity

w(1 − z2)− z(1− w2) = (z + w)[1− (z + y)2 − 1 + (y + w)2] + y(w2 − z2)

Also we can expand y(w2 − z2) as in the proof of Claim 3.5.9.

We have the following analogue in Fp.

Claim 3.5.12 For every i ∈ {1, · · · , p − 2}, for every l ∈ {2, · · · , l + 1} and for

every
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y(= yl), z, w, b, y2, · · · , yl−1, yl+1, · · · , yk+1 ∈ Fn
p , there exists ci ∈ F∗

p such that

Si
f (w, y) − Si

f (z, y) =
∑

e∈F∗
p

[
Si

f (y + ew, y − ew) − Si
f (w + ey,w − ey)

+Si
f (z + ey, z − ey)− Si

f (y + ez, y − ez) + ci
[
Si

f (y + ew, z) − Si
f (y + ez,w)

]]

Proof : The above follows from the identity

wi(1−zp−1)−zi(1−wp−1) = (wi−yi)(1−zp−1)−(zi−yi)(1−wp−1)+yi(wp−1−zp−1).

We also use that
∑

e∈F∗
p
(w + ey)i = −wi and Claim 3.5.10 to expand the last term.

Note that ci = 2i as before.

Proof of Lemma 3.5.6: We first prove the lemma for g0(y). We fix y ∈ Fn
3 and

let γ
def
= Pry1,··· ,yk+1∈Fn

3
[g0(y) = f(y) − Tf (y − y1, y2, · · · , yk+1, y1)]. Recall that we

want to lower bound γ by 1 − (4k + 14)η0. In that direction, we bound a slightly

different but related probability. Let

µ
def
= Pr y1,··· ,yk+1,

z1,··· ,zk+1∈Fn
3

[Tf (y − y1, y2, · · · , yk+1, y1) = Tf (y − z1, z2, · · · , zk+1, z1)]

Denote Y = 〈y1, · · · , yk+1〉 and similarly Z. Then by the definitions18 of µ and γ

we have, γ ≥ µ.

We have µ = Pry1,··· ,yk+1,z1,··· ,zk+1∈Fn
3
[Tf (y − y1, y2, · · · , yk+1, y1) − Tf (y −

z1, z2, · · · , zk+1, z1) = 0].

Now, for any choice of y1, · · · , yk+1 and z1, · · · , yk+1:

18Note for a probability vector v ∈ [0, 1]n,
v

∞
= Maxi∈[n]{vi} ≥ Maxi∈[n]{vi} · (

Pn
i=1 vi) =Pn

i=1 vi · Maxi∈[n]{vi} ≥
Pn

i=1 v2
i =

v2

2
.
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Tf (y − y1, y2, · · · , yk+1, y1) − Tf (y − z1, z2, · · · , zk+1, z1) =

Tf (y − y1, y2, · · · , yk+1, y1) − Tf (y − y1, y2, · · · , yk, zk+1, y1) +

Tf (y − y1, y2, · · · , yk, zk+1, y1) − Tf (y − y1, y2, · · · , yk−1, zk, zk+1, y1) +

Tf (y − y1, y2, · · · , yk−1, zk, zk+1, y1) − Tf (y − y1, y2, · · · , yk−2, zk−1, zk, zk+1, y1) +
...

Tf (y − y1, z2, z3, · · · , zk+1, y1) − Tf (y − z1, z2, · · · , zk+1, y1) +

Tf (y − z1, z2, z3, · · · , zk+1, y1) − Tf (y − y1, z2, · · · , zk+1, z1) +

Tf (y − y1, z2, z3, · · · , zk+1, z1) − Tf (y − z1, z2, · · · , zk+1, z1)

Consider any pair

Tf (y − y1, y2, · · · , yl, zl+1, · · · , zk+1, y1)− Tf (y − y1, y2, · · · , yl−1, zl, · · · , zk+1, y1)

that appears in the first k “rows” in the sum above. Note that

Tf (y − y1, y2, · · · , yl, zl+1, · · · , zk+1, y1) and Tf (y − y1, y2, · · · , yl−1, zl, · · · , zk+1, y1)

differ only in a single parameter. We apply Claim 3.5.7 and obtain:

Tf (y−y1, y2, · · · , yl, zl+1, · · · , zk+1, y1)−Tf (y−y1, y2, · · · , yl−1, zl, · · · , zk+1, y1) =

Tf (y−y1+yl, y2, · · · , yl−1, zl, · · · , zk+1, y1)+Tf (y−y1−yl, y2, · · · , yl−1, zl, · · · , zk+1, y1)

−Tf (y−y1+zl, y2, · · · , yl, zl+1, · · · , zk+1, y1)−Tf (y−yl−zl, y2, · · · , yl, zl+1, · · · , zk+1, y1).

Recall that y is fixed and y2, · · · , yk+1, z2, · · · , zk+1 ∈ Fn
3 are chosen uni-

formly at random, so all the parameters on the right hand side of the equation are

independent and uniformly distributed. Similarly one can expand the pairs Tf (y −
y1, z2, z3, · · · , zk+1, y1)−Tf (y−z1, z2, · · · , zk+1, y1) and Tf (y−y1, z2, z3, · · · , zk+1, z1)−
Tf (y − z1, z2, · · · , zk+1, z1) into four Tf with all parameters being independent and

uniformly distributed19. Finally notice that the parameters in both

Tf (y − z1, z2, z3, · · · , zk+1, y1) and Tf (y − z1, z2, · · · , zk+1, y1) are independent and

uniformly distributed. Further recall that by the definition of η0,

Prr1,··· ,rk+1
[Tf (r1, · · · , rk+1) 6= 0] ≤ η0 for independent and uniformly distributed

19Since Tf (·) is symmetric.
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ris. Thus, by the union bound, we have:

Pr y1,··· ,yk+1,

z1,··· ,zk+1∈Fn
3

[Tf (y1, · · · , yk+1)−Tf (z1, · · · , zk+1) 6= 0] ≤ (4k+ 10)η0 ≤ (4k+ 14)η0.

(3.28)

Therefore γ ≥ µ ≥ 1 − (4k + 14)η0. A similar argument20 proves the Lemma for

g1(y).

Remark 3.5.13 Analogously, in the case Fp we have: for every y ∈ Fn
p ,

Pry1,y2,··· ,yk+1∈Fn
p
[gi(y) = f(y)−T i

f (y−y1, y2, · · · , yk+1, y1)+f(y)] ≥ 1−2((p−1)k+

6(p − 1) + 1)ηi.

The proof is similar to that of Lemma 3.5.6 where it can be shown µi ≥ 1− 2((p −
1)k + 6(p − 1) + 1)ηi, for each µi defined for gi(y).

Remark 3.5.14 Using Lemma 3.5.6, we can get a slightly stronger version of

Lemma 3.5.4 following the proof of Lemma 2 in [AKK+03]. For a fixed func-

tion f : Fn
p → Fp, let gi, ηi be defined as in Equations 3.23 and 3.24. Then,

δ(f, gi) ≤ min(2ηi,
ηi

1−2((p−1)k+6(p−1)+1)ηi
).

The next lemma shows that sufficiently small ηi implies that gi is the self-

corrected version of the function f .

Lemma 3.5.15 Over F3, if ηi <
1

2(2k+7)3k+1 , then the function gi belongs to Pt

(assuming k ≥ 1).

Proof : From Theorem 3.3.1, it suffices to prove that if ηi <
1

2(2k+7)3k+1 then

T i
gi

(y1, · · · , yk+1, b) = 0 for every y1, · · · , yk+1, b ∈ Fn
3 . Fix the choice of y1, · · · , yk+1, b.

Define Y = 〈y1, · · · , yk+1〉. We will express T i
gi

(Y, b) as the sum of T i
f (·) with ran-

dom arguments. We uniformly select (k + 1)2 random variables zi,j over Fn
3 for

1 ≤ i ≤ k + 1, and 1 ≤ j ≤ k + 1. Define Zi = 〈zi,1, · · · , zi,k+1〉. We also select

uniformly (k + 1) random variables ri over Fn
3 for 1 ≤ i ≤ k + 1. We use zi,j and

ri’s to set up the random arguments. Now by Lemma 3.5.6, for every I ∈ Fk+1
3

(i.e. think of I as an ordered (k + 1)-tuple over {0, 1, 2}), with probability at least

20Tf1
(.) is not symmetric and needs some work. We use another identity as given in Lemma 3.5.11

to resolve the issue and get four extra terms than in the case of g0. The proof for g1(y) is same as
the proof for g0(y) except it also needs Lemma 3.5.11.
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1− 2(2k + 7)ηi over the choice of zi,j and ri,

gi(I ·Y +b) = f(I ·Y+b)−T i
f (I ·Y +b−I ·Z1−r1, I ·Z2+r2, · · · , I ·Zk+1+rk+1, I ·Z1+r1),

(3.29)

where for vectors X,Y ∈ Fk+1
3 , Y ·X =

∑k+1
i=1 YiXi, holds.

Let E1 be the event that Equation 3.29 holds for all I ∈ Fk+1
3 . By the union

bound:

Pr[E1] ≥ 1− 3k+1 · 2(2k + 7)ηi. (3.30)

Assume that E1 holds. We now need the following claims. Let J = 〈J1, · · · , Jk+1〉
be a (k + 1) dimensional vector over F3, and denote J ′ = 〈J2, · · · , Jk+1〉.

Claim 3.5.16 If Equation 3.29 holds for all I ∈ Fk+1
3 , then

T 0
g0

(Y, b) =
∑

06=J ′∈Fk
3

[
−Tf (y1 +

k+1∑

t=2

Jtzt,1, · · · , yk+1 +

k+1∑

t=2

Jtzt,(k+1), b+

k+1∑

t=2

Jtrt)

]

+
∑

J ′∈Fk
3

[
−Tf (2y1 − z1,1 +

k+1∑

t=2

Jtzt,1, · · · , 2yk+1 − z1,(k+1) +

k+1∑

t=2

Jtzt,(k+1),

2b− r1 +

k+1∑

t=2

Jtrt) + Tf (z1,1 +

k+1∑

t=2

Jtzt,1, · · · , z1,k+1 +

k+1∑

t=2

Jtzt,(k+1),

r1 +

k+1∑

t=2

Jtrt)

]
(3.31)

Claim 3.5.17 If Equation 3.29 holds for all I ∈ Fk+1
3 , then

T 1
g1

(Y, b) =
∑

06=J ′∈F
k
3

[
−T 1

f (y1 +
k+1∑

t=2

Jtzt,1, · · · , yk+1 +
k+1∑

t=2

Jtzt,(k+1), b+
k+1∑

t=2

Jtrt)

]

+
∑

J ′∈F
k
3

[
T 1

f (2y1 − z1,1 +
k+1∑

t=2

Jtzt,1, · · · , 2yk+1 − z1,(k+1) +
k+1∑

t=2

Jtzt,(k+1),

2b− r1 +
k+1∑

t=2

Jtrt)

]
.

(3.32)
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To maintain the flow of the proof, the proofs of Claim 3.5.16 and Claim 3.5.17

are deferred to the appendix A.1. Let E2 be the event that for every J ′ ∈ Fk
3, T

i
f (y1+∑

t Jtzt,1, · · · , yk+1 +
∑

t Jtzt,(k+1), b+
∑

t=2 k + 1Jtrt) = 0,

T i
f (2y1−z1,1+

∑k+1
t=2 Jtzt,1, · · · , 2yk+1−z1,k+1+

∑k+1
t=2 Jtzt,(k+1), 2b−r1+

∑k+1
t=2 Jtrt) =

0, and Tf (z1,1 +
∑k+1

t=2 Jtzt,1, · · · , z1,k+1 +
∑k+1

t=2 Jtzt,k+1, r1 +
∑k+1

t=2 Jtrt) = 0. By

the definition of ηi and the union bound, we have:

Pr[E2] ≥ 1− 3k+1ηi. (3.33)

Suppose that ηi ≤ 1
2(2k+7)3k+1 holds. Then by Equations 3.30 and 3.33, the

probability that E1 and E2 hold is strictly positive. In other words, there exists a

choice of the zi,j ’s and ri’s for which all summands in either Claim 3.5.16 or in Claim

3.5.17, whichever is appropriate, is 0. This implies that T i
gi

(y1, · · · , yk+1, b) = 0. In

other words, if ηi ≤ 1
2(2k+7)3k+1 , then gi belongs to Pt.

Remark 3.5.18 Over Fp we have: if ηi <
1

2((p−1)k+6(p−1)+1)pk+1 , then gi belongs to

Pt (if k ≥ 1).

In case of Fp, we can generalize Equation 3.29 in a straightforward manner.

Let E′
1 denote the event that all such events holds. We can similarly obtain

Pr[E′
1] ≥ 1− pk+1 · 2((p − 1)k + 6(p − 1) + 1)ηi. (3.34)
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Claim 3.5.19 Assume equivalent of Equation 3.29 holds for all I ∈ Fk+1
p , then21

T i
gi

(Y, b) =
∑

06=J ′∈Fk
p

[
−T i

f (y1 +

k+1∑

t=2

Jtzt,1, · · · , yk+1 +

k+1∑

t=2

Jtzt,(k+1), b+

k+1∑

t=2

Jtrt)

]

+
∑

J ′∈Fk
p


 ∑

J1∈Fp;J1 6=1

J i
1

[
−T i

f (J1y1 − (J1 − 1)z1,1 +
k+1∑

t=2

Jtzt,1, · · · ,

J1yk+1 − (J1 − 1)z1,(k+1)

+

k+1∑

t=2

Jtzt,(k+1), J1b− (J1 − 1)r1 +

k+1∑

t=2

Jtrt)

]]

(3.35)

Let E′
2 be the event analogous to the event E2 in Claim 3.5.17. Then by the definition

of ηi and the union bound, we have

Pr[E′
2] ≥ 1− 2pk+1ηi. (3.36)

Then if we are given that ηi <
1

2((p−1)k+6(p−1)+1)pk+1 , then the probability that E′
1

and E′
2 hold is strictly positive. Therefore, this implies T i

gi
(y1, · · · , yk+1, b) = 0.

By combining Lemma 3.5.4 and Lemma 3.5.15 we obtain that if f is Ω(1/(k3k))-

far from Pt then ηi = Ω(1/(k3k)). We next consider the case in which ηi is small.

By Lemma 3.5.4, in this case, the distance δ = δ(f, g) is small. The next lemma

shows that in this case the test rejects f with probability that is close to 3k+1δ.

This follows from the fact that in this case, the probability over the selection of

y1, · · · , yk+1, b, that among the 3k+1 points
∑

i ciyi + b, the functions f and g differ

in precisely one point, is close to 3k+1 · δ. Observe that if they do, then the test

rejects.

Lemma 3.5.20 Suppose 0 ≤ ηi ≤ 1
2(2k+7)3k+1 . Let δ denote the relative distance

between f and g, ℓ = 3k+1, and Q
def
= (1−ℓδ

1+ℓδ ) · ℓδ. Then, when y1, · · · , yk+1, b are

chosen randomly, the probability that for exactly one point v among the ℓ points∑
iCiyi + b, f(v) 6= g(v) is at least Q.

21Recall that we are using the convention 00 = 1.
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Observe that ηi = Ω(Q) = Ω(3k+1δ).

Proof of Lemma 3.5.20: For each C ∈ Fk+1
3 , let XC be the indicator random

variable whose value is 1 if and only if f(C · Y + b) 6= g(C · Y + b). Clearly,

Pr[XC = 1] = δ for every C. It follows that the random variable X =
∑

C XC

which counts the number of points v of the required form in which f(v) 6= g(v)

has expectation E[X] = 3k+1δ = ℓ · δ. It is not difficult to check that the random

variables XC are pairwise independent, since for any two distinct C1 and C2, the

sums
∑k+1

i=1 C1,i + b and
∑k+1

i=1 C2,i + b attain each pair of distinct values in Fn
3 with

equal probability when the vectors are chosen randomly and independently. Since

XC ’s are pairwise independent, Var[X] =
∑

C Var[XC ]. Since XC ’s are boolean

random variables, we note

Var[XC ] = E[X2
C ]− (E[XC ])2 = E[XC ]− (E[XC ])2 ≤ E[XC ].

Thus we obtain Var[X] ≤ E[X], so E[X2] ≤ E[X]2+E[X]. Next we use the following

inequality from [AKK+03] which holds for a random variable X taking nonnegative,

integer values,

Pr[X > 0] ≥ (E[X])2

E[X2]
.

In our case, this implies

Pr[X > 0] ≥ (E[X])2

E[X2]
≥ (E[X])2

E[X] + (E[X])2
=

E[X]

1 + E[X]
.

Therefore,

E[X] ≥ Pr[X = 1] + 2Pr[X ≥ 2] = Pr[X = 1] + 2

(
E[X]

1 + E[X]
− Pr[X = 1]

)

=
2E[X]

1 + E[X]
− Pr[X = 1].

After simplification we obtain,

Pr[X = 1] ≥ 1− E[X]

1 + E[X]
· E[X].

The proof is complete by recalling that E[X] = ℓ · δ.
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Proof of Theorem 3.5.3: Clearly if f belongs to Pt, then by Claim 3.3.1 the

tester accepts f with probability 1.

Therefore let δ(f,Pt) ≥ ǫ. Let d = δ(f, gr), where r is as in algorithm

Test-Pt. If η < 1
2(2k+7)3k+1 then by Lemma 3.5.15 gr ∈ Pt and, by Lemma 3.5.20,

ηi = Ω(3k+1 · d) = Ω(3k+1ǫ). Hence ηi ≥ min
(

Ω(3k+1ǫ), 1
2(2k+7)3k+1

)
.

Remark 3.5.21 Theorem 3.5.1 follows from a similar argument.

A basis of GRM consisting of minimum-weight codewords was considered

in [DGM70, DK00]. We extend their result to obtain a different exact characteriza-

tion for low-degree polynomials. Furthermore, it seems that their exact characteri-

zation can be turned into a robust characterization following analysis similar to our

robust characterization, though we have not worked out the details. However, our

basis is cleaner and yields a simpler analysis.

We point out that for degree smaller than the field size, the exact character-

ization obtained from [DGM70, DK00] coincides with [BLR93, RS96, FS95]. This

provides an alternate proof to the exact characterization of [FS95] (for more details,

see Remark 3.3.11 later and [FS95]).

Independently, Kaufman and Ron, generalizing a characterization result of [FS95],

gave a tester for low degree polynomials over general finite fields (see [KR04]). They

show that a given polynomial is of degree at most t if and only if the restriction of

the polynomial to every affine subspace of suitable dimension is of degree at most

t. Following this idea, their tester chooses a random affine subspace of a suitable

dimension, computes the polynomial restricted to this subspace, and verifies that

the coefficients of the higher degree terms are zero22. To obtain constant soundness,

the test is repeated many times. An advantage of our approach is that in one round

of the test (over the prime field) we test only one linear constraint, whereas their

approach needs to test multiple linear constraints. We next explore local testability

of Reed-Muller codes over general finite fields.

22Since the coefficients can be written as linear sums of the evaluations of the polynomial, this is
equivalent to check several linear constraints
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3.6 A Lower Bound and Improved Self-correction

3.6.1 A Lower Bound

The next theorem is a simple modification of a theorem in [AKK+03] and essentially

implies that our result (over prime fields) is almost optimal. We restrict ourselves to

prime fields, though the theorem and the proof can easily be extended over general

finite fields.

Proposition 3.6.1 Let F be any family of functions f : Fn
p → Fp that corresponds

to a linear code C. Let d denote the minimum distance of the code C and let d⊥

denote the minimum distance of the dual code of C.
Every one-sided testing algorithm for the family F must perform Ω(d⊥) queries, and

if the distance parameter ǫ is at most d/pn+1, then Ω(1/ǫ) is also a lower bound for

the necessary number of queries.

Lemma 3.3.2 and Proposition 3.6.1 gives us the following corollary.

Corollary 3.6.2 Every one-sided tester for testing Pt with distance parameter ǫ

must perform Ω(max(1
ǫ , (1 + ((t + 1) mod (p− 1)))p

t+1
p−1 )) queries.

For completeness, we include a brief proof of Theorem 3.6.1.

Proof of Theorem 3.6.1: The proof here is essentially from [AKNS99]. It is

clear that Ω(d⊥) queries are necessary (see [MS77], Chapter 5, Theorem 8). Next

consider the case when ǫ < d/pn+1. In this case, the lower bound follows from an

application of Yao’s principle. We define two distributions, one of positive instances,

and the other of negative instances. We then argue that in order to distinguish

those distributions any algorithm must perform Ω(1/ǫ) queries to achieve a success

probability at least 2/3. Let the positive distributions have all its mass at the

zero vector ~0 = 〈0, · · · , 0〉. For the negative distribution, we partition the set of

all coordinates into t = 1/ǫ nearly equal parts I1, · · · , It and give a weight 1/t to

each of the characteristic vectors wi of Ii, i = 1, · · · , t. Notice ~0 ∈ C and that

dist(wi, C) = ǫ due to the assumption on the minimum distance on C. Finally,

a random instances is generated by first choosing one of the distributions with

probability 1/2 and then generating a vector according to the chosen distribution.

Assume that the hypothetical algorithm checks s bits. Since hypothetical algorithm

is one-way, it accepts ~0. Since it tests only s bits, it surely accepts at least (t − s)
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negative instances. Therefore, it gives an incorrect answer with probability at least

(t− s)/2t < 1/3. Therefore s = Ω(1/ǫ).

3.6.2 Improved Self-correction

From Lemmas 3.5.4, 3.5.6 and 3.5.15 the following corollary is immediate:

Corollary 3.6.3 Consider a function f : Fn
3 → F3 that is ǫ-close to a degree-t

polynomial g : Fn
3 → F3, where ǫ < 1

2(2k+7)3k+1 . (Assume k ≥ 1.) Then the function

f can be self-corrected. That is, for any given x ∈ Fn
3 , it is possible to obtain the

value g(x) with probability at least 1− 3k+1ǫ by querying f on 3k+1 points on Fn
3 .

An analogous result may be obtained for the general case. We, however,

improve the above corollary slightly. The above corrector does not allow any error

in the 3k+1 points it queries. We obtain a stronger result by querying on a slightly

larger flat H, but allowing some errors. Errors are handled by decoding the induced

Generalized Reed-Muller code on H.

Proposition 3.6.4 Consider a function f : Fn
p → Fp that is ǫ-close to a degree-t

polynomial g : Fn
p → Fp. Then the function f can be self-corrected. That is, assume

K > (k + 1), then for any given x ∈ Fn
p , the value of g(x) can be obtained with

probability at least 1− ǫ
(1−ǫ·pk+1)2

· p−(K−2k−3) with pK queries to f .

Proof : Our goal is to correct the GRMp(t, n) at the point x. Assume t = (p −
1) · k + R, where 0 ≤ R ≤ (p − 2). Then the relative distance of the code δ is

(1 − R/p)p−k. Note that 2p−k−1 ≤ δ ≤ p−k. Recall that the local testability test

requires a (k+1)-flat, i.e., it tests
∑

c1,··· ,ck+1∈Fp
cp−2−R
1 f(y0+

∑k+1
i=1 ciyi) = 0, where

yi ∈ Fn
p .

We choose a slightly larger flat, i.e., a K-flat with K > (k + 1) to be chosen

later. We consider the code restricted to this K-flat with point x being the origin.

We query f on this K-flat. It is known that a majority logic decoding algorithm

exists that can decode Generalized Reed-Muller code up to half the minimum dis-

tance for any choice of parameters (see [Sud01]). Thus if the number of error is

small we can recover g(x).

Let the relative distance of f from the code be ǫ and let S be the set of

points where it disagrees with the closest codeword. Let the random K-flat be

H = {x+
∑K

i=1 tiui|ti ∈ F, ui ∈R Fn
p}.
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Let the random variable Y〈t1,··· ,tK〉 take the value 1 if x+
∑K

i=1 uiti ∈ S and 0 other-

wise. Let D = FK \ {0} and U = 〈u1, · · · , uK〉. Define Y =
∑

〈t1,··· ,tK〉∈D Y〈t1,··· ,tK〉
and ℓ = (pK − 1). We would like to bound the probability

PrU [|Y − ǫℓ| ≥ (δ/2 − ǫ)ℓ].

Since PrU [Yt1,··· ,tK = 1] = ǫ, by linearity we get EU [Y ] = ǫℓ. Let T =

〈t1, · · · , tK〉. Now

V ar[Y ] =
∑

T∈FK−{0}
V ar[YT ] +

∑

T 6=T ′

Cov[YT , YT ′ ] = ℓ(ǫ− ǫ2) +
∑

T 6=λT ′

Cov[YT , YT ′ ]

+
∑

T=λT ′;16=λ∈F∗

Cov[YT , YT ′ ] ≤ ℓ(ǫ− ǫ2) + ℓ · (p− 2)(ǫ− ǫ2) = ℓ(ǫ− ǫ2)(p − 1).

The above follows from the fact that when T 6= λT ′ then the corresponding

events YT and YT ′ are independent and therefore Cov[YT , YT ′ ] = 0. Also, when YT

and YT ′ are dependent then Cov[YT , YT ′ ] = EU [YTYT ′ ]− EU [YT ]EU [YT ′ ] ≤ ǫ− ǫ2.

Therefore, by Chebyshev’s inequality we have (assuming ǫ < p−(k+1))

PrU [|Y − ǫℓ| ≥ (δ/2 − ǫ)ℓ] ≤ ℓǫ(1− ǫ)(p− 1)

(δ/2 − ǫ)2ℓ2

Now note (δ/2 − ǫ) ≥ (p−k−1 − ǫ) = (1− ǫ · pk+1)p−k−1. We thus have

PrU [|Y − ǫℓ| ≥ (δ/2 − ǫ)ℓ] ≤ ǫ(1− ǫ)(p− 1)

(1− ǫ · pk+1)2p−2k−2ℓ

≤ ǫp

(1− ǫ · pk+1)2p−2k−2(ℓ+ 1)
=

ǫ

(1− ǫ · pk+1)2
·p−(K−2k−3).

3.7 Testing at a Large Distance

We prove a conditional inverse theorem for the fourth Gowers uniformity norm of

boolean functions. That is, we show that if the fourth Gowers norm of a function

is bounded away from zero, then the function has nontrivial correlation with a

polynomial of degree at most three, on condition that a proposed bilinear testing

can be extended to the low-end setting. In brief, we make the following assumption.

If a function passes a certain bilinearity test restricted to some set A with constant
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probability, then there exists a refinement A′ of A (i.e., A′ ⊆ A and size of A′ is at

least a constant fraction of A), and a bilinear function such that the function agrees

with the bilinear function everywhere on A′.

More generally, we show that if the (d + 1)th Gowers uniformity norm of

a boolean function is bounded away from zero, then the function has non-trivial

correlation with a degree d polynomial, on condition to the availability of a certain

low-end tester for multilinear functions.

3.7.1 Introduction

We have mentioned previously that Blum, Luby, and Rubinfeld designed the first

algorithm to test whether a given function is linear [BLR93]. Given a truly linear

function, it is easy to show that their algorithm always accepts. The non-trivial

part is to show that whenever the algorithm accepts a function with high probability,

then the function has large correlation with a linear function. Later Fourier theoretic

analysis of their algorithm by Aumann et al. [AHRS99] produced a tighter and sharp

result. In particular, they were able to correlate the soundness of the test to the

largest Fourier coefficient of the function given.

As mentioned previously, Alon et al. [AKK+03] have described an algo-

rithm to test whether a given (multivariate) function over F2 has low degree (alse

see [JPRZ04]). Their test can be interpreted in the framework of Gowers uniformity

norm [Gow01]. In what follows, we restrict ourselves to F2 and write the additive

group of F2 multiplicatively. In other words, we will identify 0 7→ 1 and 1 7→ (−1).

We begin with defining Gowers norm23.

Definition 3.7.1 For a function f : Fn
2 → R, the dth order Gowers uniformity

norm is defined to be the quantity

‖f‖Ud
def
=


Ex,x1,··· ,xd


 ∏

J⊆{1,··· ,d}
f

(
x+

∑

i∈J

xi

)




1/2d

,

where x, y1, · · · , yn are chosen uniformly and independently.

23For notational convenience, we restrict ourselves to the real domain.
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Recall that the algorithm of Alon et al. [AKK+03] estimates the expectation

Ex,x1,··· ,xd


 ∑

J⊆{1,··· ,d}
f

(
x+

∑

i∈J

xi

)


Denote this expectation by p, that is with probability p over the choice of x, y1, · · · , yd,

function f fails the test and succeeds with probability (1− p). Clearly then

‖f‖2d

Ud = (−1) · p+ 1 · (1− p) = 1− 2p =⇒ p =
1− ‖f‖2d

Ud

2
.

Rephrasing in these terms, the result of Alon et al. essentially says that if

the dth Gowers uniformity norm is close to 1, roughly at least
(
1−O(d−12−d)

)1/2d

,

then the function is very close to a (d− 1) degree polynomial.

When d = 1, i.e., for linear functions (or homomorphisms), Fourier analysis

yields that if the corresponding test accepts some given function with probability

1/2 + ǫ, then the function has non-trivial correlation with a linear function. Specif-

ically it is easy to prove the following Proposition24.

Proposition 3.7.2 (Inverse theorem for U2(·) norm) Let f : Fn
2 → R be a bounded

function. Then

sup |f̂α| ≤ ‖f‖U2 ≤ sup |f̂α|1/2.

Green and Tao [GT05] prove an inverse theorem for quadratic functions for vector

spaces over prime fields with odd characteristics. Samorodintsky [Sam07] establishes

an inverse theorem for the third Gowers uniformity norm for the boolean functions.

We prove conditional inverse theorems for Gowers uniformity norm of order O(1)

in the boolean domain. In all these works, the key role is played by a quantitative

version of the Balog-Szemeredi theorem proved in [Gow98, Gow01]. It also requires

an analogue of Frienman’s theorem over a finite field, a result due to Rusza.

In [Sam07], the inverse theorem is used to provide a tighter analysis for

testing polynomials of degree at most two. In [ST06], Gowers uniformity norm is

used to construct better PCPs (see [ALM+98, AS98]). In [VW07] Gowers norm is

used to give a new xor lemma.

In [Gow01], Gowers introduces the uniformity norm and provides a very weak

24The proposition holds even for an arbitrary abelian group.
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converse that suffices to obtain an alternate proof of the Szemeridi’s theorem. In

there, it is (implicitly) conjectured that a function having a large (d+ 1)th Gowers

uniformity norm should be correlated with a degree d polynomial.

Call a function f : Fn
2 × Fn

2 → Fn
2 bilinear if it holds that f(x, y) + f(x, z) =

f(x, y+z) and f(y, x)+f(z, x) = f(y+z, x) for all x, y, z ∈ Fn
2 . Suppose we are given

a function f : Fn
2 ×Fn

2 → Fn
2 . How can we test whether the function is a bilinear? A

plausible approach would be to generalize the BLR test in the following way. Define

f,z(u, v)
def
= f(u, v+ z) + f(u, v) and similarly, fz,(u, v)

def
= f(u+ z, v) + f(u, v). Then

it is easy to see that a function is bilinear iff fx,y(u, v) = f(x, y). (Recall that in

this notation, BLR can be stated as testing fx(y) = f(x).) A slight generalization,

as observed by Gowers [Gow01], would be to test whether

f(w, h) = f(x, y) + f(x, y + h) + f(x+w, z) + f(x+ w, z + h)

holds for all x, y, z, w, h ∈ Fn
2 . Following an analysis similar to [BOCLR04] the test

can be made robust. That is, if a function is accepted with probability higher than

23/25, then the function can be shown to be very close to a bilinear function.

In [Sam07] it is shown that a function passing the BLR test with probability

Ω(1) has non-trivial correlation with a linear function. (In fact, his result is even

more general and works even over any Abelian p-group.) The central idea in his

work follows from a theorem due to Gowers [Gow01]. It roughly says (qualitatively)

the following: Let A be an arbitrary subset of an abelian group such that A+A has

Ω(|A|2) many collisions, that is, distinct solution to the linear equation x+y = z+w.

Then there exists a subset A′ ⊂ A of size Ω(|A|) which is approximately closed

additively, meaning |A′ + A′| = O(|A′|). If a function f passes the BLR tests with

non-negligible probability, then it can be shown that there exists a large set A, such

that (A, f(A)) produces many collisions. Following Gowers, this then implies a large

set (A′, f(A′)) which is approximately-closed additively. Finally, a generalization of

Friemans’s theorem due to Rusza allows him to roughly correlate the function with

an affine function on a constant fraction of the point on A′.

Here we establish a connection between testing multilinearity and testing

degree d polynomials. We show that the approach in [Sam07] can be generalized

provided a multilinearity test can be extended to the lower-end.

64



3.7.2 A Characterization of Low-degree Polynomials over Prime

Fields

A natural question that arises is why one would expect Gowers norm to play any

role in determining whether a polynomial is of low degree. To see this, observe that

the Gowers norm (raised to appropriate the power) of order d can be viewed as a

dth order “discrete derivative” of the function. We outline the following (perhaps

folklore) proposition.

Proposition 3.7.3 Let F = Fp for some prime p. Let f ∈ F[x1, · · · , xn]/(xp
1 −

x1, · · · , xp
n−xn) (that is each individual degree is at most p−1). Then degree(f) ≤ d

iff for all x, y1, ..., yk ∈ Fn, k = d+ 1,

∑

S⊆[k]

(−1)|S|f


x+

∑

j∈S

yj


 = 0.

This is indeed a characterization and follows from the following simple lemma

(and induction).

Lemma 3.7.4 Let f ∈ F[x1, · · · , xn]/(xp
1 − x1, · · · , xp

n − xn) of degree exactly d.

Then there is a choice of y ∈ Fn such that f(x+ y)− f(x) is exactly a degree d− 1

polynomial in xs, and for all choices of y, the degree of f(x+ y)− f(x) is at most

d− 1.

Proof : Denote fy(x)
def
= f(x+ y)− f(x). It is clear that the degree of fy(x) can be

at most d− 1 for all choices of y. Therefore, it suffices to prove the existence of an

y that makes the degree of fy(x) exactly d− 1. Let

f(x) =
∑

I=〈I1,··· ,In〉
cI
∏

j

x
Ij

j .

Then,

fy(x) =
∑

I=〈I1,··· ,In〉
cI


∏

j

(xj + yj)
Ij −

∏

j

x
Ij

j


 .
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Treat fy(x) as a formal polynomial. Since F is a prime field, observe that no binomial

coefficients vanishes. Collect all the terms linear in y which is

∑

j

yj


∑

I

cIIjx
Ij−1
j

∏

k 6=j

xIk
k




︸ ︷︷ ︸
Xj

.

Observe that for each yj, Xj is a non-zero polynomial if and only if f depends

on xj. In particular, there exists at least one j, say j∗, for which Xj∗ is a non-

zero polynomial of degree exactly (d − 1). Choosing y with yj∗ = 1, and for all

j 6= j∗, yj = 0 completes the proof.

3.7.3 A Conditional Inverse Theorem for the Gowers Norm of Or-

der Four

Unless otherwise stated, we work over25 F2. We use notation introduced in Chapter 2

(cf. Section 2.1.3). Matrices are very useful to define linear functions. Here, we deal

with bilinear (and multilinear) functions. To handle these functions, we use tensors

throughout.

We mention a simple fact, observed in [Sam07].

Fact 3.7.5 For a boolean function f , it holds fx ∗ fx(s) = fs ∗ fs(x).

Proof :

fx ∗ fx(s) = Eyfx(y)fx(y + s) = Eyf(x+ y)f(y)f(x+ y + s)f(y + s)

= Eyfs(x+ y)fs(y) = fs ∗ fs(x).

Theorem 3.7.6 Let f : {0, 1}n → {−1, 1} be a function such that ‖f‖U4 ≥ ǫ.

Assuming Conjecture 3.7.11 holds, there exists a cubic polynomial g such that the

distance between f and g is at most 1
2 − ǫ′, where ǫ′ = poly

(
ǫ, ξ(ǫO(1))

)
.

25We will mostly use the additive abelian group. For notational convenience, we may sometime
write this group multiplicatively.
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In what follows, whenever we use ǫ (or ǫ′ etc.), we mean ǫ = Ω(1).

To prove Theorem 3.7.6, we closely follow the approach developed by Samorod-

nitsky [Sam07]. As in there, we break the proof into two parts. First we show (the

easier part) that if a certain expectation involving the second order derivative of f

is large, then f is actually close to a cubic function. Later, we establish (the difficult

part) that if the Gowers fourth norm is indeed large, then that certain expectation

is large.

Let us begin with a cubic function f . Then observe that f can be written so

that

 Lf(x) =
∑

i

xi〈x,Mix〉 def
= 〈x, x ·Mx〉,

where M = {Mi}i∈[n], for some binary matrices Mi. Now consider the first derivative

of the f

 Lfy(x) = 〈y, x ·Mx〉+〈x, y ·Mx〉+〈x, x ·My〉+〈y, y ·Mx〉+〈y, x ·My〉+〈x, y ·My〉+ay,

where ay is a constant (depending upon M and y). Define Njki
def
= Mijk. With this

definition

〈y, x ·Mx〉 =
∑

ijk

xiyjMijkxk =
∑

ijk

yjxkNjkixj = 〈x, y · Nx〉

Similarly defining Lkij
def
= Mijk, we get 〈x, x ·My〉 = 〈x, y · Lx〉. Thus setting P

def
=

M + N + L, we get

 Lfy(x) = 〈x, y · Px〉+ 〈y, y · Px〉+ ay =
∑

i

yi [〈x,Pix〉+ 〈y,Pix〉] + ay

Note that

Pijk = Mijk + Nijk + Lijk = Mijk + Mkij + Mjki = Pjki = Pkij.

Similarly Pikj = Pjik = Pkji. Define Γi = Pi + P
t
i. Observe that Γ is invariant

under the action of group Sym3, where the group acts by permuting the indices of

Γ. Further observe that Γijj = 0.
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We now consider the second derivative of f . Clearly

 Lfyu(x) =
∑

i

yi〈x,Γiu〉+ ayu = 〈x, y · Γu〉+ ayu,

where ayu = 〈u+ y, y · Pu〉.
Ignoring the phase for the moment (or equivalently changing the signs if

necessary), it is clear that if f is a degree at most three polynomial then f̂2(y·Γu) = 1

for some Γ with nice properties.

This gives the motivation for the first part. We now show that a somewhat

converse to the above actually holds.

Lemma 3.7.7 Let Γ be a tensor of rank three and that it is invariant under the

action of Sym3 group. Further assume Γijj = 0 for all i, j ∈ [n]. If

Euyf̂
2
uy(y · Γu) ≥ ǫ1,

Then there exists a cubic polynomial h such that

‖f − h‖ ≤ 1

2
− ǫ′.

Proof : First from Γ, recover M, i.e., for each i, j, k ∈ [n] (such that k 6= i 6= j 6= k),

set

Mijk + Mikj + Mjik + Mjki + Mkij + Mkji = Γijk,

and set Mijj = Mjij = Mjji = 0 (for all i, j). Then define g(x) = (−1)〈x,x·Mx〉. Then

clearly gyu(x) = (−1)〈x,y·Γu〉, up to a phase. Therefore,

Euy [ Ez fyu(z)gyu(z) ]2 = Euyf̂
2
uy(y · Γu) ≥ ǫ1

However, Lemma A.2.9 shows that

Euy [ Ez fyu(z)gyu(z) ]2 =
∑

α

f̂ g
4

α ≤ max
α

f̂ g
2

α. (3.37)

Let β be a vector such that |f̂ gβ| ≥
√
ǫ1. This then implies that there is a choice of
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c ∈ {0, 1} such that for a cubic polynomial h(x)
def
= (−1)〈x,x·Mx〉+〈x,β〉+c it holds that

‖f−h‖ ≤ 1

2
−ǫ′.

Therefor to prove Theorem 3.7.6, it suffice to show that ‖f‖U4 ≥ ǫ =⇒ ∃Γ
with nice properties such that Eyuf̂

2
uy(y · Γu) ≥ ǫ1.

Lemma 3.7.8 It holds that

‖f‖16U4 = Euy

∑

α

f̂4
uy(α)

Proof :

‖f‖16U4 = Exyzuwf(x) · · · f(x+ y + z + w + u) = EuExyzwfu(x) · · · fu(x+ y + z + w)

= Eu‖fu‖8U3 = Euy

∑

α

f̂4
uy(α),

where we used Lemma A.2.1.

Claim 3.7.9 If ‖f‖U4 ≥ ǫ, then Euy
∑

α f̂
6
uy(α) ≥ ǫ32.

Proof : Follows from Holder’s inequality, i.e., using (
∑

a a
4) ≤ (

∑
a a

2)1/2(
∑

a a
6)1/2.

Define a product distribution on (symmetric) functions φ : {0, 1}n×{0, 1}n →
{0, 1}n by defining Pr[φ(y, u) = α] = f̂2

yu(α). (Note that φ(u, y) = φ(y, u) holds for

all (u, y).) Further the choices for distinct pairs of u and y are independent. Let

ρ = Ω(1) be chosen later.

By a vertical parallelogram P of height h and width w, we mean {(x, y), (x, y+

h), (x + w, z), (x + w, z + h)}. We also extend our function φ to be defined on a

parallelogram P :

φ(P )
def
= φ(x, y) + φ(x, y + h) + φ(x+ w, z) + φ(x+ w, z + h).

For a vertical parallelogram P , we define its width w(P ) and height by h(P ). We

use P xyz
hw to denote parallelogram {(x, y), (x, y + h), (x + w, z), (x + w, z + h)} of

width w and height h.
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Then define the random variable L on this probability space as follows:

L(φ)
def
= Prh,w,x,y,z [ φ(w, h) = φ(x, y) + φ(x, y + h) + φ(x+ w, z) + φ(x+ w, z + h);

f̂2
wh(φ(w, h)) ≥ ρ; · · · ; f̂2

(x+w)(z+h)(φ(x+ w, z + h)) ≥ ρ
]
.

Lemma 3.7.10

EφL(φ) ≥ ǫ2

Proof :

Eφ(L(φ)) = EhwxyzPrφ [φ(w, h) = φ(x, y) + φ(x, y + h) + φ(x+ w, z) + φ(x+ w, z + h);

f̂2
wh(φ(h,w)) ≥ ρ; · · · ; f̂2

(x+w)(z+h)(φ(x+ w, z + h)) ≥ ρ
]

= Ehwxyz

∑

f̂2
wh

(α+β+γ+λ)≥ρ;··· ;

f̂2
(x+w)(z+h)

(γ)≥ρ,α,β,γ,λ

f̂2
hw(α+β+γ+λ)f̂2

xy(α)f̂2
x(y+h)(β)f̂2

(x+w)z(γ)f̂2
(x+w)(z+h)(λ)

≥ Ehwxyz

∑

αβγλ

f̂2
hw(α+ β + γ + λ)f̂2

xy(α)f̂2
x(y+h)(β)f̂2

(x+w)z(γ)f̂2
(x+w)(z+h)(λ)− 5ρ

(3.38)

= Ewhxyz

∑

αβγλ

Eu1,··· ,u5,s1··· ,s5

(
f̂xy(u1)f̂xy(u1 + s1)χα(s1)f̂x(y+h)(u2)f̂x(y+h)(u2 + s2)χβ(s2)

f̂(x+w)z(u3)f̂(x+w)z(u3 + s3)χγ(s3)f̂(x+w)(z+h)(u4)f̂(x+w)(z+h)(u4 + s4)χλ(s4)

f̂hw(u5)f̂hw(u5 + s5)χα+β+γ+λ(s5)
)
− 5ρ

= Ewhxyzsfxy∗fxy(s)fx(y+h)∗fx(y+h)(s)f(x+w)z∗f(x+w)z(s)f(x+w)(z+h)∗f(x+w)(z+h)(s)fwh∗fwh(s)−5ρ

= Ewhxyzsfxs∗fxs(y)fxs∗fxs(y+h)f(x+w)s∗f(x+w)s(z)f(x+w)s∗f(x+w)s(z+h)fws∗fws(h)−5ρ

= Ewhxyzs

∑

αβγλµ

f̂2
xs(α)χα(y)f̂2

xs(β)χβ(y+h)f̂2
(x+w)s(γ)χγ(z)f̂2

(x+w)s(λ)χλ(z+h)f̂2
ws(µ)χµ(h)−5ρ

=
∑

αβγλµ

Ewxsf̂
2
sx(α)f̂2

sx(β)f̂2
s(x+w)(γ)f̂2

s(x+w)(λ)f̂2
sw(µ)Eyχy(α+β)Ezχz(γ+λ)Ehχh(β+λ+µ)−5ρ

=
∑

αβγλµ

Ewxsf̂
2
sx(α)f̂2

sx(β)f̂2
s(x+w)(γ)f̂2

s(x+w)(λ)f̂2
sw(µ)δα

β δ
γ
λδ

β
λ+µ − 5ρ
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= Esxy

∑

αβ

f̂4
sx(α)f̂4

sy(β)f̂2
s(x+y)(α+ β)− 5ρ (3.39)

Denote ǫ3 = ǫ32. However, we are given

Esxy

∑

αβ

f̂2
sx(α)f̂2

sy(β)f̂2
s(x+y)(α+ β) = Euy

∑

α

f̂6
uy(α) ≥ ǫ3

where we use Corollary A.2.3 (Lemma A.2.2). By averaging argument

Prsxy


∑

αβ

f̂2
sx(α)f̂2

sy(β)f̂2
s(x+y)(α+ β) ≥ ǫ3/2


 ≥ ǫ3

2
.

Applying Lemma A.2.6 and setting ρ
def
=

ǫ63
20×65 , we get

Eφ(L(φ)) ≥ Esxy

∑

αβ

f̂4
sx(α)f̂4

sy(β)f̂2
s(x+y)(α+ β)− 5ρ ≥ ǫ63

4 · 65
. (3.40)

Set ǫ2 =
ǫ63

4·65 = Ω(ǫ192).

Let fix a φ for which L(φ) ≥ ǫ2. For this function we now define

A
def
= {(y, u) | f̂2

uy(φ(u, y)) ≥ ρ}.

Clearly |A| ≥
√

ǫ2
2 · 22n = Ω

(
22n
)

holds for our choice of φ, since otherwise

L(φ) ≤
∑

{(w,h)}∪P xyz
wh ∈A 1

∑
{w,h}∪P xyz

wh ∈(Fn
2 )2 1

≤ Prwhxyz [ (w, h), (x, y) ∈ A ] <
ǫ2
2
.

Conjecture 3.7.11 Let ψ : Fn
2 × Fn

2 → Fn
2 be a function and, A ⊆ Fn

2 × Fn
2 be a

set such that |A| = Ω(22n). Let P xyz
hw denote parallelogram {(x, y), (x, y + h), (x +

w, z), (x + w, z + h)}. It is given that

Pr wh
xyz

[
ψ(w, h) = ψ(P xyz

hw ) | {(w, h)} ∪ P xyz
wh ⊆ A

]
≥ ǫ.

Then26 there exists a refinement A′ of A, i.e., A′ ⊆ A and |A′| = Ω(|A|), and a

26If the error is smaller than 2/25, then such a result can be shown to exist. See Appendix A.2.1.
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bilinear function θ : Fn
2 × Fn

2 → Fn
2 such that ψ|A′ = θ|A′, i.e., for all (x, y) ∈ A′,

ψ(x, y) = θ(x, y). We set |A′| = ξ(ǫ)|A|.

We apply the above conjecture to our function φ and set A. Let θ be the

ensured bilinear function and A′ be its ensured refinement of size ξ(ǫ2)|A|. Moreover,

it is easy to see that θ is symmetric since φ (and hence, A) is symmetric. We write

θ(y, u) = y · Du, where θ(ei, ej) = Dij, i.e., jth column of the ith matrix. D is a

tensor of rank three over F2. Combining all these observation, we get

Eyuf̂
2
yu(y · Du) ≥

√
ǫ2
2
· ξ (ǫ2) · ρ def

= ǫ4,

and that y · Du = u · Dy.

We first establish the following useful lemma.

Lemma 3.7.12 f̂uy(z) = 0 for any u, y, z with 〈u+ y, z〉 = 1.

Proof :

f̂uy(z) = Exfuy(x)χz(x) = Exf(x)f(x+u)f(x+y)f(x+u+y)χz(x)

= Evf(v)f(v + y)f(u+ v)f(u+ v + y)χz(u+ v + y) =

χz(u+ y)Evf(v)f(v + y)f(u+ v)f(u+ v + y)χz(v) = −f̂uy(z)

We now define the following set of functions, one for each fixed y: gy(u)
def
=

(−1)〈y+u,y·Du〉. Note that

gy ∗ gy(u) = Esg
y(s)gy(s+ u) = gy(u)Esχs(y · Du)χs(y · Dtu) = gy(u)δy·Du

y·Dtu.

Now Lemma 3.7.12 yields the following equality.

∀y Eug
y(u)f̂2

uy(y · Du) = Euf̂
2
uy(y · Du).

On the other hand, letting F y(x)
def
= f̂2

yx(y · Dx) and using Claim A.2.4 we get

∀y Eug
y(u)f̂2

yu(y·Du) = Eug
y(u)F y(u) =

∑

z

ĝy(z)F̂ y(z) =
∑

z

ĝy(z)Euf̂
2
yu(y·Dtu+z).

Since λz = Euf̂
2
yu(y · Dtu+ z) are nonnegative and adds up to one, applying
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Jensen’s inequality (i.e., E[X2] ≥ (E[X])2) we get

∀y
∑

z

ĝy2
(z)Euf̂

2
yu(y · Dtu+ z) ≥

(
Eug

y(u)f̂2
yu(y · Du)

)2

=⇒ Ey

∑

z

ĝy2
(z)Euf̂

2
yu(y · Dtu+ z) ≥ Ey

[
Eug

y(u)f̂2
yu(y · Du)

]2

≥
(
Eyug

y(u)f̂2
yu(y · Du)

)2
≥ ǫ24

However, it holds that

∑

z

ĝy2
(z)
(

Euf̂
2
yu(y · Dtu+ z)

)
= Eu(gy∗gy)(u)f̂2

yu(y·Du) = Euδ
y·Du
y·Dtugy(u)f̂2

yu(y·Du).

Thus taking expectation over y and simplifying

Eyuδ
y·Du
y·Dtugy(u)f̂2

yu(y · Du) = Eyu δ
y·Du
y·Dtu f̂

2
yu(y · Du) ≥ ǫ24.

Now for y ∈ {0, 1}n define Sy = {u | y · Du = y · Dtu}. Set S
def
= ∪y{y} × Sy. Note

that (y, u) ∈ S =⇒ (u, y) ∈ S. Indeed observe that S is actually a symmetric

subset of Fn
2 × Fn

2 , and each Sy is a subspace of Fn
2 . Now define Λ following way :

First define Λ on S by setting y · Λu def
= y ·Du on S. Next extend Λ bilinearly to the

whole space.

Now observe that ∀x, y, u and for any permutation σ : {x, y, u} → {x, y, u}
it holds that 〈x, y · Λu〉 = 〈σ(x), σ(y) · Λσ(u)〉. This ensures that we have

Eyuf̂
2
yu(y · Λu) ≥ ǫ5 def

= ǫ24,

where Λ is invariant under the action of Sym3 (see Claim A.2.7).

Therefore all we need to show is that Λijj = 0. This requires some work.

First define a set of functions, one for each y, hy(x)
def
= (−1)〈x,x·Λy〉. Let T be the

matrix Tij
def
= Λijj. Then we observe that

 Lhy(x) = 〈x, x · Λy〉 = 〈x, Ty〉.

We need the corollary of the following lemma from [Sam07].
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Lemma 3.7.13 ([Sam07]) Let f be a boolean function. If 〈x, y〉 = 1, then f̂y(x) =

0.

Corollary 3.7.14 Let f be a boolean function. For all u, 〈x, z〉 = 1 =⇒ f̂ux(z) =

0.

By the above corollary, we have

Exyh
y(x)f̂2

xy(x · Λy) = Exyf̂
2
xy(x · Λy).

Therefore, we have

ǫ5 ≤ Exyh
y(x)f̂2

yx(x · Λy) = Exy(−1)〈x,Ty〉f̂2
yx(x · Λy) ≤ Ey2−n

∑

x⊥Ty

f̂2
yx(x · Λy)

Note that 〈x+ y, x · Λy〉 = 〈x, Ty〉+ 〈y, Tx〉. With this observation, an application

of Lemma 3.7.12 yields

2−2n
∑

x,y,x⊥Ty
〈x+y,x·Λy〉

f̂2
yx(x · Λy) ≥ ǫ5

Let S
def
= {(x, y) | 〈x, Ty〉 = 〈y, Tx〉 = 0}. Further denote Yx = {y|(x, y) ∈

S}. Clearly Yx is a linear space. Let {(ei, ej) | i, j ∈ [n]} ⊆ Fn
2 × Fn

2 be a basis.

Define Γ on the basis point as follows. For any (ei, ej) set ei · Γej def
= Γ(ei, ej) where

Γ(ei, ej)
def
=





0 if ei = ej .

ei · Λej if (ei, ej) ∈ S
z s. t. 〈z, ei〉 = 〈z, ej〉 = 0 and 〈z, ek〉 = 〈ek, ei · Λej〉 ∀k ∈ [n] \ {i, j}, ow

Now extend Γ bilinearly everywhere in Fn
2 × Fn

2 . Clearly Γ is symmetric. Moreover,

for all x, y, it holds that 〈x, x · Γy〉 = 0 = 〈y, x · Γy〉. To see this observe

〈x, x ·Γy〉 =
∑

i,j,k

xixjxk〈ei, ej ·Γek〉 =
∑

k

∑

i6=j

xixjxk (〈ei, ej · Γek〉+ 〈ej , ei · Γek〉) = 0

Furthermore observe that S = ∪x{x} × Yx = ∪xYx × {x}. Therefore, for all
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(x, y) ∈ S it holds that x · Γy = x · Λy and hence,

Eyuf̂
2
yu(y · Γu) ≥ ǫ5.

Proposition 3.7.15 Γ is invariant under the action of Sym3 and also, Γijj = 0.

Further it holds that

Exyf̂
2
xy(x · Γy) ≥ ǫ5.

Proof : First note that if for all x, y 〈x, x · Γy〉 = 0, then Γijj = 0. We already know

x · Γy = y · Γx. Moreover, we know Γ is bilinear. It follows then that 〈x, y · Γz〉 =

〈y, x · Γz〉 (i.e., Γ is invariant under the action of Sym3). This is because

0 = 〈x+y, (x+y)·Γz〉 = 〈x, y·Γz〉+〈y, x·Γz〉 =⇒ 〈x, y·Γz〉 = 〈y, x·Γz〉

This completes the proof of the theorem with the setting of ǫ1 = ǫ5. Substi-

tuting, we see that ǫ′ = O(ǫ556ξ(ǫ192)2). (End of Proof of Theorem 3.7.6)

3.7.4 Extensions to Higher Order Norms

In this section, we show how to generalize the work from the previous section. Here

we work with tensors of higher rank, mostly d and (d+1). Suppose f : Fn
2 → {−1, 1}

is a degree d+ 1 function. Given Y = 〈y1, · · · , yd+1〉 ∈ (Fn
2 )d+1, by Γ · Y (or Y · Γ)

we will mean

Γ · Y def
=

∑

(i1,··· ,id+1)∈[n]d+1

Γi1,··· ,id+1

∏

j∈[d+1]

yj,ij .

Moreover note that for Y = 〈y1, · · · , yd〉 ∈ (Fn
2 )d, Y · Γ (or Γ · Y ) is well defined and

denotes a vector. Define X
def
= 〈x1, · · · , xd〉 ∈ (Fn

2 )d. We use EX f̂
2
X(X · Γ) to denote

Ex1,··· ,xd
f̂2

x1···xd
(X ·Γ). If f is a degree (d+ 1) polynomial, then it can be shown that

there exists a tensor Γ of rank d+ 1 such that

EX f̂
2
X(X · Γ) = 1,

with Γ is invariant under the action of symmetric group Symd+1, where the group

acts by permuting the indices of Γ. Moreover, it holds that for all i1, · · · , id ∈ [n],

Γi1,i1,i2,··· ,id = 0.
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We now show a somewhat converse to the above.

Lemma 3.7.16 Let Γ be a tensor of rank d + 1 and that it is invariant under the

action of Symd+1 group. Further assume Γi1,i1,i2,··· ,id = 0 for all i1, · · · , id ∈ [n]. If

EX f̂
2
X(X · Γ) ≥ ǫ1,

Then there exists a d-degree polynomial h such that

‖f − h‖ ≤ 1

2
− ǫ′.

Proof : As in the proof of Lemma 3.7.7, we first construct M in an analogous manner

i.e., ∀(i1, · · · , id+1) such that ij = ik =⇒ j = k, we set

∑

σ∈Symd+1

σ(Mi1,··· ,id+1
) = Γi1,··· ,id+1

,

and Γi1,i1,i2,··· ,id = σ(Γi1,i1,i2,··· ,id) = 0 for all i1, · · · , id ∈ [n] and all σ ∈ Symd+1.

Denote X ′ = 〈x, · · · , x︸ ︷︷ ︸
d+1

〉. Then define g(x) so that  Lg(x) = M · X ′. Clearly then

 LgX(x) = 〈x,Γ ·X〉, up to a phase. Therefore,

EX [ Ez fX(z)gX (z) ]2 = EX f̂
2
X(X · Γ) ≥ ǫ1

However, Lemma A.2.9 yields

EX [ Ez fX(z)gX (z) ]2 =
∑

α

f̂ g
4

α ≤ max
α

f̂ g
2

α

Let β be a vector such that |f̂ gβ| ≥
√
ǫ1. This then implies that there is a choice of

c ∈ {0, 1} such that for a degree (d + 1) polynomial  Lh(x) = X ′ ·M + 〈x, β〉 + c it

holds that

‖f−h‖ ≤ 1

2
−ǫ′.

Therefore, it suffices to show that ‖f‖Ud+2 ≥ ǫ =⇒ ∃Γ of rank d + 1 with

nice properties such that EX f̂
2
X(Γ ·X) ≥ ǫ1.

We now generalize the definition of vertical parallelogram to arbitrary di-
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mension. We give a recursive definition.

Definition 3.7.17 In Fn
2 , call a pair of elements {y, y + h} a parallelogram of di-

mension 1 of size h at y. Given parallelograms P1, P2 of dimension d (d ≥ 1) of size

(h2, · · · , hd+1) at (x2, · · · , xd+1) and at (x′2, · · · , x′d+1), we define a parallelogram

of dimension d + 1 of size (h1, · · · , hd+1) at (x1, · · · , xd+1) to be the set of points

{x1} × P1 ∪ {x1 + h1} × P2. Henceforth, P will denote the set of all parallelograms

of dimension d.

Definition 3.7.18 A function f : (Fn
2 )d → Fn

2 , is said to be d-linear if ∀i ∈
[d],∀(x1, · · · , xd) ∈ (Fn

2 )d, yi ∈ Fn
2 it holds that

f(x1, · · · , xd)+f(x1, · · · , xi−1, yi, xi+1, · · · , xd) = f(x1, · · · , xi−1, xi+yi, xi+1, · · · , xd).

Given a function f : (Fn
2 )d → Fn

2 , we extend it on the set of parallelograms of

dimension d in the natural way, i.e., if P is a parallelogram then f(P )
def
=
∑

pi∈P f(pi).

Lemma 3.7.19 (Exact Characterization) A function f : (Fn
2 )d → Fn

2 is d-linear iff

∀P ∈ P it holds that f(h1, · · · , hd) = f(P ), where P is of size (h1, · · · , hd).

Proof : Easy.

Conjecture 3.7.20 For d ≥ 3, let ψ : (Fn
2 )d → Fn

2 be a function and, A ⊆
(Fn

2 )d be a set such that |A| = Ω(2dn). Let Ph1,··· ,hd
denote parallelogram of length

(h1, · · · , hd). It is given that

Pr(h1,··· ,hd),Ph1,··· ,hd
[ψ(h1, · · · , hd) = ψ(Ph1,··· ,hd

) | {(h1, · · · , h2)} ∪ Ph1,··· ,hd
⊆ A] ≥ ǫ.

Then there exists a refinement A′ of A, i.e., A′ ⊆ A and |A′| = Ω(|A|), and a d-

linear function θ : (Fn
2 )d → Fn

2 such that ψ|A′ = θ|A′ i.e., for all p ∈ A′, ψ(p) = θ(p).

We set |A′| = ξ(ǫ)|A|.

We now generalize Theorem 3.7.6.

Theorem 3.7.21 Let f : {0, 1}n → {−1, 1} be a function such that ‖f‖Ud+2
≥ ǫ.

Assuming Conjecture 3.7.20 holds, there exists a d+1 degree polynomial g such that

the distance between f and g is at most 1
2 − ǫ′, where ǫ′ = poly

(
ǫ2

O(d)
, ξ
(
ǫ2

O(d)
))

.
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We now define a product distribution on (symmetric) functions φ : (Fn
2 )d →

Fn
2 by defining Pr[φ(x1, · · · , xd) = α] = f̂2

x1···xd
(α). (Note that φ(x1, · · · , xd) =

φ(xσ(1), · · · , xσ(d)) holds for all σ ∈ Symd.) Further the choices for distinct d-tuples

are independent. Let ρ = Ω(1) be chosen later. For a point p = (x1, · · · , xd), we

write fp(·) to mean fx1···xd
(·) (and same as fX(·)).

Then define the random variable L on this probability space as follows:

L(φ)
def
= Pr(h1,··· ,hd)∈[n]d,P∈P

[
φ(h1, · · · , hd) = φ(P ); f̂2

h1···hd
(φ(h1, · · · , hd)) ≥ ρ;

∀p ∈ P f̂2
p (φ(p)) ≥ ρ

]
.

Lemma 3.7.22 If ‖f‖Ud+2 ≥ ǫ, then

Eφ(L(φ)) ≥ ǫ5

Proof : For a point p = (x1, · · · , xd) ∈ P , we write fp(x) to denote fx1···xd
(x). Also

we naturally (implicitly) associate a mapping from the set of points of P to [2d].

Given P a parallelogram in dimension d of length (h1, · · · , hd), one can view it as

a collection of 1-dimensional parallelograms {zi, zi + hd} of length hd indexed by a

(d− 1)-dimensional parallelogram Q of length (h1, · · · , hd−1).

Eφ(L(φ)) = Eh1···hd,P

∑

α1,··· ,α
2d ;f̂2

p (αp)≥ρ;f̂2
h1···hd

(
P

i αi)≥ρ

f̂2
h1···hd

(
∑

i

αi) ·
∏

p∈P

f̂2
p (αp)

≥ Eh1···hd,P

∑

α1,··· ,α
2d

f̂2
h1···hd

(
∑

i

αi) ·
∏

p∈P

f̂2
p (αp) − (2d + 1)ρ

= Eh1···hd,P,s fh1···hd
∗ fh1···hd

(s) ·
∏

p∈P

fp ∗ fp(s) − (2d + 1)ρ

= Eh1···hd,s,Q,z1,··· ,z
2d−1

fh1···hd−1s∗fh1···hd−1s(hd)·
∏

p∈Q

fps∗fps(zi)fps∗fps(zi+hd) − (2d+1)ρ

= Eh1···hd,s,Q,z1,··· ,z
2d−1

∑

{αp,1,αp,2}p∈Q,β

f̂2
h1···hd−1s(β)χβ(hd)

∏

p∈Q

f̂2
ps(αp,1)χαp,1(zi)f̂

2
ps(αp,2)χαp,2(zi+hd)

= Eh1···hd−1,s,Q

∑

{αp,1,αp,2}p∈Q,β

∏

p∈Q

δ
αp,1
αp,2 δ

P
p αp,1+αp,2

β f̂2
h1···hd−1s(β)·

∏

p∈Q

f̂2
ps(αp,1)f̂2

ps(αp,2)
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= Eh1···hd−1,s,Q

∑

{αp}p∈Q

f̂2
h1···hd−1s(

∑

p

αp) ·
∏

p∈Q

f̂4
sp(αp)

Observe that

‖f‖2d+2

Ud+2 = Eu‖fu‖2
d+1

Ud+1 .

Denote ǫ2 = ǫ2
d+2

2 and ǫ3 = ǫ
1

2d+1

2 . Since ‖f‖Ud+2 ≥ ǫ, we get by averaging

Pru [ ‖fu‖Ud+1 ≥ ǫ3 ] ≥ ǫ2.

Call a u good if ‖fu‖Ud+1 ≥ ǫ3. Let F = {fu | u is good}. Recall Equations 3.38, 3.39, 3.40.

Following that we use induction to conclude that for any g ∈ F , we have

Eh1···hd−1,Q

∑

{αp}p∈Q

∏

p∈Q

ĝ2
p(αp) · ĝ2

h1···hd−1
(
∑

p

αp) ≥ ǫ2
O(d)

3

2O(d)
.

This implies

Eh1···hd−1,s,Q

∑

{αp}p∈Q

∏

p∈Q

f̂2
sp(αp) · f̂2

sh1···hd−1
(
∑

p

αp) ≥ ǫ4 def
= ǫ2 ·

ǫ2
O(d)

3

2O(d)
.

Lemma A.2.8 and some averaging argument now yields

Eφ(L(φ)) ≥ ǫ5 def
=

ǫ4
2
·
( ǫ4

2d+2

)2d+1+1
.

Fix φ such that L(φ) ≥ ǫ5. For this function, define set

A
def
= {X = (x1, · · · , xd)|f̂2

X(φ(X)) ≥ ρ}.

Clearly |A| ≥
√

ǫ5
2 .

An application of Conjecture 3.7.20 yields that there exists a tensor D of

rank (d+ 1), appropriately defined, such that

EX f̂
2
X(D ·X) ≥ ξ(ǫ5) · ρ ·

√
ǫ5
2

def
= ǫ6

Further note that D is symmetric, i.e., for all σ ∈ Symd, D ·X = D · σ(X). Denote

D
def
= D(x1, · · · , xd−1). Note that D is a matrix.
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We now define a set of functions, one for each (d−1)-tuples X ′ def
= 〈x1, · · · , xd−1〉 ∈

(Fn
2 )d−1, gX′

(xd)
def
= (−1)〈

P
i∈[d] xi,Dxd〉 i.e.,  LgX′

= 〈∑i xi,D · X〉. Then note that

following Lemma A.2.10 we have

∀x1 · · · xd−1 Exd
gX′

(xd)f̂2
X(D ·X) = Exd

f̂2
X(D ·X).

Moreover, defining FX′
(y) = f̂2

X′y(Dy), and using Claim A.2.4 we get

∀X ′ Exd
gX′

(xd)f̂2
X(D ·X) = Exd

gX′
(xd)FX′

(xd)

=
∑

z

ĝX′(z)F̂X′(z) =
∑

z

ĝX′(z)Exd
f̂2

X(D ·X + z).

Arguing as in the preceding section, it can be shown that

EX δDxd

Dtxd
f̂X(D ·X) ≥ ǫ26.

Now for X ′ ∈ {0, 1}n(d−1) define SX′ = {u|Du = Dtu}. Set S = ∪X′{X ′} ×
SX′ . Note that (x1, · · · , xd−1, u) ∈ S implies (x1, · · · , xd−2, u, xd−1) ∈ S (and all its

Symd permutations). So we define Λ by first defining on the S by letting Λ·X def
= D·X.

This can further be extended to the whole space maintaining this property.

Observe that ∀x1, · · · , xd+1 and for any permutation σ ∈ Symd+1 it holds

that 〈xd+1,X · Λ〉 = 〈xσ(d+1), σ(X) · Λ〉. Thus we obtain

EX f̂
2
X(Λ ·X) ≥ ǫ7 def

= ǫ26,

where Λ is invariant under the action of Symd+1. Thus all we need to show that

∀i, i1, · · · , id−1, Λi,i,i1,··· ,id−1
= 0. First define a set of functions, one for each X ′ ∈

{0, 1}n(d−1), hX′
(y)

def
= (−1)〈y,X′·Λy〉. Let T be the tensor of rank d defined27 〈y,T ·

X ′〉 = 〈y,X ′ · Λy〉. Define the following set of functions, one for each X ′, hX′
(y)

def
=

(−1)〈y,X′·Λy〉. Thus

 LhX′
(y) = 〈y,X ′ · T〉.

We record the following corollary of Lemma 3.7.13.

Corollary 3.7.23 Let f be a boolean function. For all x1, · · · , xd−1, 〈y, z〉 = 1 =⇒
27Even simply Ti1···id

= Λi1i1···id
.
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f̂x1···xdy(z) = 0.

Denote Xi def
= {x1, · · · , xd} \ {xi} for i ∈ [d]. Then we have

EX

∏

i∈[d]

hXi
(xi)f̂

2
X(X · Λ) = EX f̂

2
X(X · Λ).

Therefore, we have

ǫ7 ≤ EX

∏

i∈[d]

hXi
(xi)f̂

2
X(X · Λ) = 2−nd

∑

X,∀i 〈xi,T·Xi〉=0

f̂2
X(X · Λ)

Let S
def
= {X | 〈xi,T · Xi〉 = 0}. Further denote YXi = {xi|(Xi, xi) ∈ S}

(with the ordering enforced). Clearly YXi is a linear space. Let

{(ei1 , · · · , eid) | i1, · · · , id ∈ [n]} ⊆ (Fn
2 )d be a basis. Define Γ on the basis point as

follows. For any E
def
= (ei1 , · · · , eid) set E · Γ def

= Γ(ei1 , · · · , eid) where

Γ ·E def
=





0 if ∃j1 6= j2 such that ij1 = ij2.

E · Λ if E ∈ S

z such that 〈z, ei1〉 = · · · = 〈z, eid〉 = 0 and

〈z, ek〉 = 〈ek, E · Λ〉 ∀k ∈ [n] \ {i1, · · · , id}, otherwise

Now extend Γ d-linearly everywhere in (Fn
2 )d. Clearly Γ is symmetric. More-

over, for all X, it holds that 〈xi,X · Γ〉 = 0. To see this observe

〈xi,X · Γ〉 =
∑

j1,··· ,jd+1

xi,j1

∏

k∈[d]

xk,jk+1
〈ej1 , (ej2 , · · · , ejd+1

) · Γ〉

=
∑

j1,··· ,jd+1;j1 6=ji+1

xi,j1

∏

k∈[d]

xk,jk+1

(
〈ej1 , (ej2 , · · · , ejd+1

) · Γ〉

+〈eji+1, (ej2 , · · · , eji , ej1 , eji+2, · · · , ejd+1
) · Γ〉

)
= 0.

Furthermore observe that for each i, S = ∪xi{Xi} × YXi . Therefore, for all
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X ∈ S it holds that X · Γ = X · Λ and hence,

EX f̂
2
X(X · Γ) ≥ ǫ7.

Proposition 3.7.24 Γ is invariant under the action of Symd+1 and also, Γi1,i1,··· ,id =

0. Further it holds that

EX f̂
2
X(X · Γ) ≥ ǫ7.

Proof : Similar to the proof of Proposition 3.7.15.

This completes the proof of the theorem with the setting of ǫ1 = ǫ7. Substi-

tuting, we see that ǫ′ = O

(
ǫ2

O(d)
ξ
(
ǫ2

O(d)
)2
)

. (End of Proof of Theorem 3.7.6)

3.8 Conclusion

We resolved the question posed in [AKK+03] for all prime fields. Independently

in [KR04] the question has been resolved for all fields. The lower bound in Corol-

lary 3.6.2 implies that our upper bound is almost tight.

In spite of long line of research in this area [RS96, FS95, BSSVW03, BSS03,

BSHR03, EGH+04, Din06, Gol05], many questions still remain unanswered. We

mention a few open problems.

• Characterization of LTCs : It is still not clear whether a given code is LTC.

In that direction the lower bound given in [AKNS99] implies that if the dual

distance is not constant, then the code is not locally testable with a constant

number of queries.

In Alon et. al. [AKK+03] the following conjecture has been proposed.

Conjecture 3.8.1 Any code with small (constant) dual distance, having a

doubly transitive group acting on the coordinates of the codewords mapping

the dual code to itself, is locally testable.

Interestingly several proofs demonstrating various natural codes28 to be LTCs

(eg., [RS96, FS95, AKK+03, JPRZ04, KR04]) ([KL05] being the notable ex-

ception) follow the self-correction based approach introduced in [RS96]. This

28We exclude here codes arising from PCPs.
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approach critically uses the presence of the doubly transitive group to make

the tests robust. Kaufman and Litsyn take a different approach, more com-

binatorial in nature, in [KL05]. Using the weight-distribution of the BCH

code, they show that the dual of the BCH codes with designed distance 2t+ 1

can be tested with O(t/ǫ) queries. They also give a sufficient condition for

a code to be locally testable. The condition roughly says that if the number

of fixed length codewords in the dual to the union of the code and its ǫ-far

coset is suitably smaller than the same in the dual of the code, then the code

is locally testable. Their argument is more combinatorial in nature and needs

the knowledge of weight-distribution of the code and thus differs from the

self-correction approach. This therefore does not allow (local) self-correction

which is desired in many applications. They further define a notion of regular

locally testable codes (which are testable by sampling constant weight code-

words from its dual) that covers most known locally testable codes. Moreover

they show that regular local testability of a linear code implies that the dual

code is spanned by low-weight words, and therefore the dual has small (con-

stant) distance. Interestingly, constant dual distance alone is known to be not

sufficient for local testability (see [BSHR03]).

• In [GS02, BSSVW03], initiated by [GS02], the existence of good LTCs (i.e.,

almost constant rate and linearly growing distance) has been studied. In

[BSS03], it has been shown that good cyclic locally testable codes do not

exist. In [BSS05] an explicit LTC of rate nearly linear (inverse polylog) is

given with polylog query complexity. Later in [Din06] the query complexity

has been improved to a constant. Both of these constructions are based on

PCPs of proximity. Is there a natural code that achieves this parameter? Also

in [Gol05] it has been conjectured that no LTCs with constant rate exists.

It will be of tremendous interest to establish inverse theorems uncondition-

ally, as this will enhance our understanding of low-degree polynomials considerably.

An even more daunting task would be to generalize the results to (bounded) func-

tions from finite Abelian groups to fields. Also, it is not clear for order d, what is

the best ξ(·) that one can hope for.
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Chapter 4

List Decoding over Bounded

Alphabets

We define a new family of error-correcting codes based on algebraic curves over finite

fields, and develop efficient list decoding algorithms for them. Our codes extend the

class of algebraic-geometric (AG) codes via a generalization of the approach in the

recent breakthrough work of Parvaresh and Vardy [PV05]. We begin with a formal

definition of list-decoding.

Definition 4.0.2 A code C ⊆ FN
q is said to be (ρ, L) (combinatorially) list decodable

if for any vector v ∈ FN
q , the number of codewords that are within ρ-distance is at

most L. Further, if there exists an efficient list-decoding algorithm that outputs such

a list when given any word of length N , the code is said to have a (ρ, L) efficient

list-decoding algorithm.

Our main interest lies in the case when L is at most poly(N). The trade-off

between the rate R and the error-correction radius p is a central one governing list

decoding. We remind the readers that traditional “unique decoding” algorithms can

achieve an error-correction radius only (1−R)/2.

4.0.1 Previous Work on List Decoding

A simple probabilistic argument shows that (1 − ǫ,O(1/ǫ)) list-decodable codes of

rate Ω(ǫ) exist. Moreover a counting argument also shows that Ω(ǫ) is the best

84



rate possible for such codes (see [Gur01]). An explicit construction of efficiently

decodable optimal family of list-decodable codes is still open.

The seminal paper of Sudan [Sud97] and later improved by Guruswami and

Sudan [GS99] show that Reed-Solomon codes (and algebraic geometry codes, also

see [SW98]) with rate ǫ2 are efficiently list decodable, up to an error radius of 1− ǫ.
In [CS03] a list-decoding algorithm is given that corrects a fraction of error 1 − ǫ
and achieves a rate of Ω(ǫα) (for any constant α > 1). However the error model

considered in that paper is probabilistic (and synchronous) and the probability that

the correction is achieved is at least Ω(RM/(M+1))), where the probability is over

the random choices of error assuming a Q-ary symmetric channel .

Recently Parvaresh and Vardy in [PV05] constructed a code which is a variant

of RS codes and can be list decoded beyond the 1−
√
R radius for rates R ≤ 1/16.

Thus the PV-code achieves a rate Ω(ǫ/(log(1/ǫ))) to correct errors up to 1−ǫ fraction

in the highly noise setting.

Further building on the work of Parvaresh and Vardy, Guruswami and Rudra [GR06]

have constructed explicit codes (called folded Reed-Solomon codes) that achieve list

decoding capacity with polynomial encoding/decoding complexity.

4.0.2 Algebraic-Geometric Codes : A Brief Introduction

Most of the notation and terminology we use is standard in the study of algebraic-

geometric codes, and can be found in Stichtenoth’s book [Sti93]. We briefly recap

some key facts concerning algebraic function fields and algebraic-geometric codes

that we need for our description. For the purpose of exposition, we do not attempt

to be technically correct for things that we would not need. We follow [vL98, Sti93].

Let F be a function field over Fq, denoted F/Fq, i.e., a finite algebraic ex-

tension of the field Fq(x) of rational functions over Fq. Viewed differently, let I be

a prime ideal in Fq[x, y]. Then the set Υ of zeros of I is called an affine variety1.

The ring Fq[x, y]/I is called the coordinate ring of the variety Υ. Observe that

the coordinate ring is an integral domain. The quotient field of Fq[x, y]/I, denote

F (Υ), is the function field associated with variety Υ. For example, consider the

ideal Υ1 : y2 − x = 0 in Fq[x, y]. Then the coordinate ring corresponding to Υ1

is expressions of the form α + βy where α, β ∈ Fq[x] and y satisfies the equation

1We avoid technicalities here.
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y2 = x. That is, the function field of Υ1 is an algebraic extension of Fq(x) of degree

two.

We now define discrete valuation.

Definition 4.0.3 A discrete valuation of F/Fq is a function v : F → Z∪{∞} with

the following properties:

• v(x) =∞⇐⇒ x = 0.

• v(xy) = v(x) + v(y)

• v(x+ y) ≥ min{v(x), v(y)} for any x, y ∈ F .

• There exists an element z ∈ F with v(z) = 1.

• v(α) = 0 for any α ∈ F∗
q.

A subring R of F is said to be a valuation ring if for every z ∈ F , either z ∈ R or

z−1 ∈ R. Each valuation ring is a local ring, i.e., it has a unique maximal ideal.

A place (prime divisor) P of the function field F/Fq is the maximal ideal of some

valuation ring. If O is a valuation ring of F/Fq and P its maximal ideal, then O is

uniquely determined by P , namely

O = {z|z−1 /∈ P}.

The elements in O/P are known as units. To each place P there is a unique valua-

tion, denoted by vP : F → Z∪{∞}. A uniformizer (or a local parameter) of a place

P is a function f ∈ F such that vP (f) = 1.

To give an example, we consider the rational function field, Fq(x). Roughly,

this can be seen as the function field corresponding to curve x = y. (Actually, it is

a function field corresponding to the projective line, (x : y), i.e., not both x, y are

zero.) Consider a point P1 = (1 : 1). We observe that

OP1 = {p(x, y)

q(x, y)
| p(x, y), q(x, y) ∈ Fq[x, y], gcd(p(x, y), q(x, y)) = 1, q(P1) 6= 0}

is a local ring. Now consider the function f = y−x
x . Observe that f(P1) = 0. Further

observe that f vanishes at P1 with order one2. Therefore, f is a uniformizer of the

2Though we have not defined the order explicitly which requires an explicit valuation, informally
it has the same meaning as in analysis.
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place P1. In fact, the unique maximal ideal of OP1 is (f), i.e., the ideal generated by

f . Observe that each function in Fq[x, y] can be written as u·fn where n is an integer

and u is an unit, i.e., u ∈ OP1/(f). For example, consider the function (x2− y2)/y2.

Observe that (x2 − y2)/y2 = − (y−x)
x · (y+x)x

y2 = u1 · f where u1 = −x(x+ y)/y2 is a

unit.

The set of places of F will be denoted PF . Geometrically, this corresponds

to the set of all non-singular3 points on the algebraic curve corresponding to F .

The picture here is that on a non-singular point P , we can define a local ring in the

manner stated in the above example which comprises of rational functions that do

not have a pole at P , i.e., either vanishes at P or is a unit. The maximal ideal at P

consists of functions that vanishes at P . (See for details [Har77].)

The valuation ring corresponding to a place P is called the ring of regular

functions at P and is denoted OP . Associated with a place P is a valuation vP :

F → Z, that measures the order of zeroes or poles of a function at P (with the

convention vP (0) = ∞). In terms of vP , we have OP = {x ∈ F | vP (x) ≥ 0} and

P = {x ∈ F | vP (x) > 0}. The quotient OP /P is a field since P is a maximal ideal

– it is called the residue field at P . The residue field OP /P is a finite extension

field of Fq; the degree of this extension is called the degree of P , and is denoted

deg(P ). Informally, observe that a point is said to belong to a curve whenever the

coordinates of the point satisfy certain equation. Now, it is totally possible that the

coordinates of a point may lie on an extension field of Fq. Loosely speaking, the

order of this extension field is the degree of the point.

For every place P , we have an evaluation map evP : OP → OP /P defined

by evP (z) = z + P ; this map is Fq-linear. We will think of evP as a map into

Fqdeg(P ) using an isomorphism of the residue field to Fqdeg(P ) . Alternatively, elements

of F can be viewed as functions on PF (hence the name function field for F ): The

evaluation of z ∈ F and P ∈ PF , denoted z(P ) = evP (Z), is either ∞ (if z /∈ OP ),

or belongs to Fqdeg(P ) .

Example 4.0.4 Consider F = Fq(x), a rational function field. It is known4 that

3We do not define them here as we only consider curves that are smooth, i.e., do not have
non-singular points. Interested readers can see [Har77].

4See [Sti93], Section 1.2
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the places corresponding to F are

PF = {p(x) | p is a monic irreducible poly } ∪ {1

x
}.

What happens to other functions, say eg., (x−2)(x−3)? Observe that this function

behaves as a uniformizer at 2 where the (x − 3) part behaves as a unit, and as a

uniformizer at 3 where the (x − 2) part behaves as a unit. Therefore, one cannot

define a local ring at (x− 3)(x− 2) as neither (x− 2)/(x− 3) nor its inverse can be

included in the local ring.

We will denote P∞ = (1/x). Also, it is known that if p ∈ PF , then deg(p) =

degree(p), i.e., the traditional degree of the polynomial p. For example, deg(x−α) =

1 for some α ∈ F. Also, deg(P∞) = 1. Let p(x) = t(x)/r(x) be a rational polynomial

with r(x) not identically zero. To compute vP∞(p), observe that if degree (r) >

degree (t), then p(x) vanishes at P∞ of order exactly degree (r)− degree(t). On the

other hand, if degree (r) <degree(t), then p(x) has a pole at P∞ of order exactly

degree (t)− degree(r).

With this observation, then note that

L(KP∞) = {p(x)|vP∞(p) ≥ −K, , i.e., degree(p) ≤ K}.

The set of divisors DF of a function field F/Fq is the (additively written) free

abelian group generated by the places PF . For a divisor D =
∑

P∈PF
nPP where

all but finitely many nP are 0, its degree, denoted deg(D), is defined as deg(D) =∑
P∈PF

nP deg(P ) (note that this is a finite sum). For a divisor D =
∑

P nPP , we

define the set of functions

L(D)
def
= {z ∈ F | ∀P ∈ PF vP (z) ≥ −nP};

this forms a vector space over Fq. To illustrate, we give an example.

We will not attempt to define the genus, which we denote by g, here. It is

known to be always a non-negative integer and an intrinsic quantity of an algebraic

curve. The readers should accept it as a by-product of the Riemann-Roch theorem

(see [Sti93]). Further, it is known that curves with arbitrary high genus exist and can

be efficiently constructed. For our purpose, we need a weaker version of Riemann-

Roch which we state now.
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Theorem 4.0.5 (Weak Riemann-Roch) If D ∈ DF is a divisor of F/Fq of suffi-

ciently large degree (i.e., at least 2g − 1), then dim(L(D)) = deg(D)− g + 1.

For a divisor D =
∑

P nPP , define

supp(G)
def
= {P | nP 6= 0}.

An algebraic-geometric code over Fq is obtained by evaluating a carefully chosen

subset of elements of F at distinct places of degree one, say P1, · · · , PN (these places

can be treated as points on a curve), a divisor G such that supp(G)∩{P1, · · · , PN} =

∅. The geometric Goppa code CL(D,G) associated with the divisors D and G is

defined by

CL(D,G)
def
= {〈x(P1), · · · , x(PN )〉 | x ∈ L(G)}.

Notice the necessity of having supp(G) ∩ {P1, · · · , PN} = ∅. This implies that no

function in L(G) has a pole at the places P1, · · · , PN , and hence, the code is well-

defined.

Example 4.0.6 (Reed-Solomon code) Let F = Fq and5 F = F(x). For each α ∈ Fq,

define the place Pα = (x − α). Further define P∞ = (1/x). Let F be a positive

integer and set G = (K − 1)P∞. Observe that the set L((K − 1)P∞) consists of all

those z ∈ F for which z has no poles at places other than P∞, and has less than K

poles at P∞. Using Theorem 4.0.5 we deduce that dim(L(G)) = K − 1 + 0 + 1 = K,

which it should be. As said before,

L(G) = {p| degree(p) ≤ K − 1},

and hence, the code

CL(D,G) = {〈p(x−α1), · · · , p(x−αN )〉 = 〈p(α1), · · · , p(αN )〉 | degree (p) ≤ K−1}.

Also, note that the minimum distance is at least N−K+1 since a nonzero function

in L(G) can have at most K − 1 zeroes. (Since the sum of the order of zeros and

order of poles of a function should sum to zero.)

If G = KP∞ for some positive integer K, then the code is also known as a

5The genus of a rational function field is 0.
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one point code. There exist efficient implementations for these types of code which

have made these codes the most sought after.

4.1 Construction of Correlated AG Codes

4.1.1 Overview

As mentioned above, in this work we propose a generalization of the Parvaresh-Vardy

coding scheme to AG codes. While fairly natural in hindsight, the generalization to

AG codes is not immediate, since, as we describe below, the special structure of RS

codes and the rational function field Fq(X) are used in a more than superficial way

in [PV05].

The ability to view a low-degree polynomial over Fq (i.e., the function being

evaluated) also as a field element from a larger field F, and operating on it in the

field F to get another related polynomial is crucial to the PV construction. Indeed,

the decoding is performed by solving a system of polynomial equations over the field

F whose solutions contain all possible codewords that must be output. For Reed-

Solomon codes, there is a natural way to view polynomials as field elements, since

polynomials of degree < K are in one-to-one correspondence with elements of the

extension field Fq[X]/(E(X)) ≈ FqK (where E(X) is an irreducible polynomial of

degree K over Fq). In order to generalize this framework to AG codes, we need an

injective homomorphism from the elements of the function field F that are evaluated

to give the AG-encoding (i.e., the analog of low-degree polynomials for the RS case)

to a suitable field F. We achieve this by associating with an element f of the

function field, the field element in an extension field FP
def
= OP/P of Fq which is the

evaluation f(P) of f at a fixed place P of large enough degree. This evaluation is

then used to obtain, from the message function f , a correlated function h such that

h(P) is a carefully chosen function of f(P). For function fields of larger genus this

evaluation map restricted to the message functions can be made bijective; however

it could be expensive. We do not know how to efficiently compute the necessary

information needed for this bijection. We overcome this in [GP07] by noticing that

an injection actually suffices. That is, we show that a correlated function h with

the desired evaluation h(P) always exists in a slightly larger space compared to the

message space to which f belongs.
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The decoding algorithm follows the “interpolation and find roots” idea that

is common to [Sud97, GS99, PV05]. However, another technical complication arises

in the phase when the interpolated polynomial, say Q, is mapped into a polynomial

T with coefficients from FP by evaluating each of its coefficients at the place P.

Following [PV05], we seek to find roots in FP of N , and using the above-mentioned

injection from messages into FP , map these roots back to obtain the list of mes-

sages. It is crucial that in this step T is a nonzero polynomial when Q is. For the

Reed-Solomon case, this is easy to achieve, since the coefficients of Q, which are

polynomials over Fq in one variable, come from a principal ideal domain (PID), i.e.,

a ring all of whose ideals are generated by a single element. Therefore, the only

way T can be zero when Q is nonzero, is if all coefficients of Q are divisible by

the generator of the ideal T (i.e., by a univariate polynomial E(X)). In this case

we can divide Q by the appropriate power of E(X) to get a lower-degree nonzero

polynomial Q̃ which is not divisible by E(X), and then work with it instead.

However, for general function fields, the ring O containing the coefficients of

Q typically is not a PID. Therefore, even if all coefficients of Q vanish at T , they

may not share a common factor in O and the above approach for RS codes cannot

be applied. In [GP07], we circumvent this issue in two ways, giving two different

algorithms. Here we outline only the second of them.

In this approach, we do not impose additional restrictions on the coefficients

of Q beyond the usual interpolation based algorithms. Instead, if all coefficients of

Q vanish at P, we multiply each of the coefficients of Q by a function νc where ν

is a function with a pole of order 1 at P and no poles elsewhere (such a function

must exist if the degree of P is large), and c ≥ 1 is the minimum of the zero orders

at P of the coefficients of Q. We then reduce the resulting polynomial Q′ = νcQ
modulo P to get a nonzero polynomial T with coefficients in FP and then proceed

as in [PV05].

Several challenges arise in implementing this idea. In [GP07], we handle

them as follows. First, we need a way to represent ν and a way to compute c. Also,

the coefficients of Q′ are no longer in the ring O, making it difficult to represent and

evaluate them efficiently. Nevertheless, we prove that the coefficients of Q′ belong

to a linear space of functions with bounded number of poles at P. We use this to

compute c as well as a representation of the coefficients of Q′ that lets us evaluate

them at P (assuming some extra preprocessed information). Here we assume that
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the function ν is given explicitly and that c can be computed by multiplying proper

powers of ν and checking whether the product vanishes.

The advantage of this approach is that we can use large multiplicities in

the interpolation phase and as a result there is no degradation in error-correction

radius compared to the results of Parvaresh-Vardy (for example, using two correlated

functions already suffices to go beyond regular AG codes). The drawback is that

the decoding algorithm needs more complicated, albeit still a polynomial amount

of preprocessed information, and we do not know how to perform the preprocessing

in polynomial time (but given the preprocessed information, the algorithm runs in

polynomial time).

4.1.2 An Encoding Scheme

We now describe a correlated AG code construction where we use a pair of functions

in the evaluation. The extension of the code, decoding algorithm, and analysis for

the case when more than two correlated functions are evaluated as part of encoding,

follows in a natural way, and will be discussed only briefly.

We now describe our construction of the code. Let F be a function field

over Fq corresponding to a smooth, irreducible curve. Let g be the genus of F .

Suppose F has at least N + 1 places of degree one, say x0, x1, . . . , xN . Let K ≥ g

be arbitrary (this assumption is mainly for convenience). We will describe a code C

of block length N over alphabet Fq2 with qK codewords. The rate of the code will

thus be R(C) = K/(2N). The code will not be linear.

The messages of C will be identified with the vector space FK
q . We specify

the code by specifying its encoding function, E, which will be an injective map

E : FK
q →

(
Fq2

)N
.

For our construction we need to carefully pick the divisor G. We now state

what we need for our construction. Let P be a prime divisor not in the support of

G and such that

deg(P) = dim(L(G)).

Assume x0, x1, · · · , xn are disjoint from G and P. The next lemma due to

Felipe Voloch shows that we can choose G,P and x0, x1, · · · , xn as conditioned.

Lemma 4.1.1 Let F/Fq be a function field of genus g ≥ 2 with N1 > 2g − 2 places

of degree one. Given a > 2g − 2, a ≤ N1, there exists a divisor G of degree a, a
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prime divisor P of degree a+ 1− g and rational places {xi}ni=0, with n = N1− a− 1

such that xi and P are not in the support of G and dimL(G− P) = 0.

Proof : Since N1 ≥ 2g − 1 ≥ g + 1 we can apply ([BLB05], Proposition 4 (2)) to

get a divisor D of F of degree g − 1 satisfying dimL(D) = 0. Choose any place

P of degree a − g + 1. Further let G be a positive divisor linearly equivalent to

P + D, which exists since deg(P + D) = a > 2g − 2. Therefore, G − P is linearly

equivalent to D. This implies dimL(G − P) = 0. Furthermore since G > 0, G has

at most degG = a places of degree one in its support. Therefore there are at least

n + 1 = N1 − a places of degree one not in the support of G. This completes the

proof.

Though the above lemma proves the existence, we do not know how to com-

pute G and P efficiently. From now on, we fix x0, x1, · · · , xn, G,P as ensured by

Lemma 4.1.1. Denote the discrete valuation ring of P by OP and the residue field

of P by FP
def
= OP/P. Now consider the natural map θ : L(G)→ FP induced by the

inclusion L(G) ⊂ OP (or equivalently, L(G) ∋ f 7→ f(P)). Thus the condition that

θ is a bijection is equivalent to it being an injection, which is clearly equivalent to

dim(L(G− P)) = 0.

Moreover, since OP → OP/P is a homomorphism of rings, we have for all

f, g ∈ L(G), that

θ(f · g) = θ(f) · θ(g). (4.1)

Note that the the product on the left is in the function field F , whereas the product

on the right is in FP .

Let d be a constant to be chosen appropriately later. We define the following

map from Γ : L(G)→ L(G) that factors as

L(G)
θ−→ OP/P d−→ OP/P θ−1

−→ L(G),

where the map d is defined as follows: d : u 7→ ud. Clearly Γ is a bijection. Γ(f)

should be seen as a correlated copy of the function f .

Let Fq2 = Fq[β]. Then consider the following map E : L(G) → Fn
q2 by the

map

L(G) ∋ f 7→ 〈f(xi) + βΓ(f)(xi)〉ni=1

This code can clearly be seen as a generalization of Parvaresh-Vardy code ([PV05])
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where the underlying Reed-Solomon code has been replaced by an algebraic geom-

etry code.

For later use we mention the following fact.

Fact 4.1.2 Let P be a rational point on F , i.e., a place of degree one. Then For

every f, h ∈ F with vP (f) = vP (h) then there exists α, γ ∈ F∗
q such that

vP (αf + γh) > max{vP (f), vP (h)}.

Proof : Note vP (f) = −vP (f−1) where f−1 ∈ F is the inverse of f . Note therefore

that vP (f · f−1) = vP (h · f−1) = 0. Therefore f · f−1 = α ∈ κ∗P = F∗
q and h · f−1 =

γ ∈ κ∗P = F∗
q. Therefore α−1f · f−1 − γ−1g · f−1 = 0, i.e., f−1(α−1f − γ−1g) = 0.

Denote f∗ = (α−1f − γ−1g). Then

0 < vP (f−1f∗) = −vP (f) + vP (f∗) =⇒ vP (f∗) > vP (f).

Renaming appropriately then yields the result.

We also need the following theorem (see [Sti91]) which is essentially a a

variant of Chinese Remainder Theorem.

Theorem 4.1.3 (Weak Approximation Theorem) Let F/Fq be a function field, P1, · · · , PN

pairwise distinct places of F/Fq, f1, · · · , fN ∈ F and n1, · · · , nN ∈ Z. Then there

exists an element f ∈ F such that

∀i ∈ [N ] vPi(f − fi) = ni.

Next we outline the list-decoding algorithm.

4.2 A Decoding Algorithm

We use techniques from [SW98, GS99, PV05] to analyze the correctness of our

list-decoding algorithm. Given a vector 〈v1, · · · , vN 〉 ∈ FN
q2, we view each vi as

〈yi, zi〉 where yi, zi ∈ Fq. Define b
def
= ℓ − g + 1, where ℓ is a parameter to be

chosen appropriately later. We then try to fit the data points {(xi, yi, zi)}Ni=1 by a

polynomial Q[y, z] ∈ F [y, z]. We want that for each (xi, yi, zi),

1. We get Q[yi, zi](xi) = 0 with multiplicity r which will be fixed later.
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2. We also make sure that the Q has a small pole sum (over the support of G

and x0) ℓ, for any substitution of y, z with functions in L(G). Note that any

function f in L(G) satisfies
∑

x∈supp(G) vx(f) ≥ −a. We then want

∑

x∈supp(G)∪{x0}
vx (Q [y ← L(G), z ← L(G)]) ≥ −ℓ.

We will assume that we have been explicitly given functions ψ1, · · · , ψb, where

b
def
= ℓ− g + 1, such that

• ∀j ∈ [b] vx0(ψj) ≥ 1− g − j and

• ∀j ∈ [b− 1] vx0(ψj) > vx0(ψj+1).

Clearly ψ′
bs are linearly independent. We mention here that any set of {ψi}bi=1

satisfying the above will suffice for our case. We choose the set as follows. Let

b∗ be the smallest integer such that ∀j ∈ [b], ψj ∈ L(b∗x0).6 Since ψ1, · · · , ψb are

independent and belongs to L(b∗x0), they form a basis of the vector space L(b∗x0).

We then define a divisor H
def
= b∗x0 + G. Note that by choice of x0, G, we have

supp(H) ∩ {x1, · · · , xN} = ∅. Also clearly L(G) ⊆ L(H) and L(b∗x0) ⊆ L(H).

We set s
def
= ⌊ ℓ−g

a ⌋. We then try to interpolate the following polynomial

Q[y, z] =
∑

j2+j3≤s; j2,j3≥0

b−a(j2+j3)∑

j1=1

qj1,j2,j3ψj1y
j2zj3.

Note that

∑

x∈supp(H)

vx(Q[y ← L(G), z ← L(G)]) ≥

∑

x∈supp(H)

(vx(ψj1) + j2vx(y ← L(G)) + j3vx(z ← L(G))) ≥

vx0(ψj1) +
∑

x∈supp(G)

(j2 · vx(y ← L(G)) + j3 · vx(z ← L(G))) ≥

1− g − j1 − aj2 − aj3 ≥ 1− g − (b− aj2 − aj3)− aj2 − aj3 = 1− g − b ≥ −ℓ,
6 Essentially b∗ = ℓ since we will later see b > 2g. However we do not need this fact.
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this then automatically satisfies condition (2). (Since vxi(·) is an non-Archimedean

valuation, it holds that vxi(µf +νg) ≥ min (vxi(f), vxi(g)), see Definition 4.0.3.) To

get constraint (1) above, we shift our basis. We now recall a lemma from [GS99].

For completeness we reproduce the proof here. It basically proves the existence of

a linear transform on the functional space over Fq.

Lemma 4.2.1 Given functions ψ1, · · · , ψσ ∈ L(b∗x0) of distinct orders at x0 satis-

fying vx0(ψj) ≥ 1− g − j and a rational point xi 6= x0, there exists φ1, · · · , φσ ∈ F ∗

with vxi(φj) ≥ j − 1 and such that there exists γxi,j,h ∈ Fq where 1 ≤ j, h ≤ σ such

that

ψj =
σ∑

h=1

γxi,j,hφh. (4.2)

Proof : As in [GS99], we prove a stronger statement by induction on σ: If ψ1, · · · , ψσ

are linearly independent (over Fq) functions such that vxi(ψj) ≥ m for all j ∈ [σ],

then there are functions φ1, · · · , φσ such that vxi(φj) ≥ m+ j − 1 that generate the

ψjs over Fq. Note that this then establishes the lemma.

W.l.o.g. assume the ψ1 is a function with lowest order at xi, by assumption

vxi(ψ1) ≥ m. We then set φ1 = ψ1. For 2 ≤ j ≤ σ, we set ψ′
j = ψj if vxi(ψj) >

vxi(ψ1). If vxi(ψj) = vxi(ψ1), then by Fact 4.1.2, ∃αj , γj ∈ F∗
q such that the function

ψ′
j = αjψ1 + γjψj satisfies vxi(ψ

′
j) > vxi(ψ1) ≥ m. In this case, ψj = γ−1

j ψ′
j −

αjγ
−1
j ψ1. This implies that 2 ≤ j ≤ σ, φ1 = ψ1 and ψ′

j generates ψj . Since

ψ′
2, · · · , ψ′

σ are linearly independent and vxi(ψ
′
j) ≥ m + 1, by inductive hypothesis

this yields φ1, · · · , φσ .

With the above we can now express condition (1) on (xi, yi, zi) being a zero

of order at least r as satisfying a set of linear constraints. Note that shifting along

xi then yields

Q[y, z] =
∑

j2+j3≤s;
j2,j3≥0

b−a(j2+j3)∑

j1=1

b∑

h=1

qj1,j2,j3γxi,j1,hφhy
j2zj3 . (4.3)

The shifting to yi, zi is achieved by defining Q(i)[y, z](x)
def
= Q[y+yi, z+zi](x). Note

that the terms in Q(i)[y, z](x) that are divisible by yuzv contribute (u+ v) towards

the multiplicity of (xi, 0, 0) as a zero of Q(i), or equivalently, the multiplicity of
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(xi, yi, zi) as a zero of Q. Then

Q(i)[y, z](x) =
∑

j4+j5≤s
j4,j5≥0

b∑

h=1

wh,j4,j5φhy
j4zj5 , (4.4)

where

wh,j4,j5
def
=

j2+j3≤s∑

j2=j4;j3=j5

b−a(j2+j3)∑

j1=1

(
j2
j4

)(
j3
j5

)
yj2−j4

i zj3−j5
i qj1,j2,j3γxi,j1,h. (4.5)

Since vxi(φj) ≥ j − 1, we achieve condition (2) on (xi, yi, zi) being a zero of

multiplicity r by imposing the following constraint

wh,j4,j5 = 0 for all h ≥ 1; j4, j5 ≥ 0 such that j4 + j5 + (h− 1) ≤ r − 1. (4.6)

Therefore total number of constraints is N ·r(r+1)(r+2)/6. On the other hand the

number of unknowns are U ≥ as(s+ 1)(s+ 2)/6. In order to ensure that a non-zero

Q[Y,Z] exists, we set

U =
as(s+ 1)(s + 2)

6
≥ N · r(r + 1)(r + 2)

6
+ 1. (4.7)

Among the non-zero solutions of Q[Y,Z], we choose the Q with the smallest

vP(Q).

Lemma 4.2.2 For i ∈ [N ], if h ∈ F satisfies h(xi) = yi and Γ(h)(xi) = zi, then

vxi(Q[h,Γ(h)]) ≥ r.

Proof : For such an i, Q[h,Γ(h)](x) = Q(i)[h(x) − h(xi),Γ(h)(x) − Γ(h)(xi)], i.e.,

localizing at xi, and therefore,

Q[h,Γ(h)](x) =
∑

j4+j5≤s
j4,j5≥0

b∑

h=1

wh,j4,j5φh(h(x) − h(xi))
j4(Γ(h)(x) − Γ(h)(xi))

j5 .

Since wh,j4,j5 = 0 for j4+j5+(h−1) < r, vxi(φh) ≥ (h−1), and vxi(h(x)−h(xi))
j4 ≥

j4 and vxi(Γ(h)(x) − Γ(h)(xi))
j5 ≥ j5, we obtain

vxi(Q[h,Γ(h)]) ≥ r.
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Lemma 4.2.3 If h ∈ L(G) is such that h(xi) = yi and Γ(h)(xi) = zi for at least t

values of i ∈ [N ], and rt > ℓ, then Q[h,Γ(h)] ≡ 0.

Proof : By property 2 of the interpolated polynomialQ,
∑

x∈supp(H) vx (Q[h,Γ(h)]) ≥
−ℓ. Moreover clearly Q[h,Γ(h)] ∈ L(H). However, at least on t points it holds that

h(xi) = yi and Γ(h)(xi) = zi. Therefore

N∑

i=1

vxi(Q[h,Γ(h)]) ≥ r · t > ℓ.

Hence Q[h,Γ(h)] must be identically zero.

We next consider the image of Q[Y,Z] in FP [Y,Z] by evaluating at P. We

set T [Y,Z] = Q[Y,Z](P). We show below that T [Y,Z] is not everywhere zero poly-

nomial. Following this, we set H(Y )
def
= T [Y,Z ← Y d] and find all the roots of H(Y ).

For each root ρ of H(Y ), we output θ−1(ρ).

We now prove that T [Y,Z] is not everywhere zero polynomial. Assume for

contradiction that Q[Y,Z](P) is an everywhere zero polynomial. In the following

lemma we then prove that there exists Q′[Y,Z] satisfying the interpolating condi-

tions and the constraints such that when evaluated at P yields a non-zero poly-

nomial. Furthermore, vP(Q′[Y,Z]) < vP(Q[Y,Z]). This contradicts our choice of

Q[Y,Z], i.e., that vP(Q[Y,Z]) is minimal.

Observer that

T [Y,Z] = Q[Y,Z](P) =
∑

j2+j3≤s;
j2,j3≥0

b−a(j2+j3)∑

j1=1

qj1,j2,j3ψj1(P)yj2zj3

is well defined since ∀j ∈ [b] vP(ψj) ≥ 0.

Lemma 4.2.4 If Q[Y,Z] is not identically zero, then there always exists an Q′[Y,Z]

such that it satisfies the conditions of being an interpolated polynomial and also

satisfies all the linear constraints and Lemma 4.2.2 and Lemma 4.2.3, such that

T [Y,Z]
def
= Q′[Y,Z] is not identically zero. Moreover it holds that vP(Q′[Y,Z]) <

vP(Q[Y,Z]).

Proof : Assume Q[Y,Z] ∈ F [Y,Z] is not identically zero. If Q[Y,Z](P) is not all-

zero polynomial in FP [Y,Z] then we are done. Otherwise consider the image of
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Q[Y,Z] in OP [Y,Z]. Then clearly for any coefficient η ∈ F of Q[Y,Z], vP(η) ≥ 1.

Let

ν = min{vP (ηij) | Q[Y,Z] =
∑

i,j

ηijY
iZj, ηij ∈ F}.

Clearly ν > 0, otherwise Q[Y,Z](P) would not be identically zero polynomial. Now

consider the function f such that

vP(f) = 1 and ∀i ∈ {0, 1, · · · , N} vxi(f) = 0 and ∀P ∈ supp(G) vP (f) = 0.

By weak approximation theorem (Theorem 4.1.3) we know that such an f exists.

Clearly f is a uniformizing parameter at P.

Then consider Q′[Y,Z]
def
= f−ν · Q[Y,Z], or equivalently, starting interpola-

tion assuming a basis f−ν · ψ1, · · · , f−ν · ψb. First of all note that T [Y,Z](P)
def
=

Q′[Y,Z](P) is not all-zero polynomial. Also, it is clear that vP(Q′[Y,Z]) < vP(Q[Y,Z]).

We need to show that Q′ satisfies the condition as well as all the constraints.

Since f does not have any zero or pole at {xi}Ni=1, first condition is easily

satisfied. Furthermore since f does not have zero or pole anywhere in the support

of G and x0, hence condition two is also satisfied.

Now we show that Q′[Y,Z] satisfies all the constraints. Note that Equa-

tion 4.2 can be reformulated as

f−ν · ψj =

σ∑

h=1

γxi,j,hf
−ν · φh. (4.8)

Hence Equation 4.3 now can be written as

Q′(i)[y, z](x) =
∑

j4+j5≤s;j4,j5≥0

b∑

h=1

wh,j4,j5f
−ν · φhy

j4zj5 , (4.9)

where w as in Equation 4.5. Also, recall vxi(f) = 0 for all i = 1, · · · , N . Therefore

Lemma 4.2.2 holds that is ∀i ∈ [N ]vxi(Q′[h,Γ(h)]) ≥ r. Moreover since Q′[Y,Z] =

f−ν · Q[Y,Z], we get Q′[h,Γ(h)] = 0.

This completes the proof of the lemma.

W.l.o.g. the polynomial as ensured by Lemma 4.2.4 will be denoted by

Q[Y,Z]. Further we set T [Y,Z] = Q[Y,Z](P). Note that T [Y,Z] is well-defined
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and not everywhere zero polynomial. We now assume that d ≥ s+ 1, where s is as

defined earlier.

Lemma 4.2.5 If h ∈ L(G) has agreement at least t, then T [θ(h), (θ(h))d] = 0.

Proof : As mentioned before θ is an homomorphism, i.e., θ(f ·g) = θ(f)·θ(g). Denote

h′ = Γ(h). In that case note that Q[h, h′] ≡ 0. Now,

Q[h, h′] =
∑

j2+j3≤s; j2,j3≥0

b−a(j2+j3)∑

j1=1

qj1,j2,j3ψj1h
j2h′j3 =

∑

j2+j3≤s;
j2,j3≥0




b−a(j2+j3)∑

j1=1

qj1,j2,j3ψj1


hj2h′j3

Therefore,

∑

j2+j3≤s; j2,j3≥0




b−a(j2+j3)∑

j1=1

qj1,j2,j3ψj1(P)


 hj2h′j3 = 0

Note that for all the non-zero qj1,j2,j3, ψj1(P) is well defined. Now applying θ, we

get

∑

j2+j3≤s; j2,j3≥0




b−a(j2+j3)∑

j1=1

qj1,j2,j3ψj1(P)


 (θ(h))j2(θ(h′))j3 = 0

However, note that θ(h′) = θ(Γ(h)) = (θ(h))d. Thus we get

∑

j2+j3≤s; j2,j3≥0




b−a(j2+j3)∑

j1=1

qj1,j2,j3ψj1(P)


 (θ(h))j2(θ(h))dj3 = 0

However, note that above is nothing but T [θ(h), (θ(h))d].

Following the choice of d and an argument similar to [PV05] the next lemma

is immediate (or see the proof of Lemma 4.2.10)

Lemma 4.2.6 H(Y ) = T [Y,Z ← Y d] is not identically zero.
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Therefore following Lemma 4.2.5 and Lemma 4.2.6, it is clear that whenever a

codeword CL(D,G)(h) has agreement at least t with the received word, then θ(h)

appears as a root of H(Y ). This completes the proof of correctness of the algorithm.

4.2.1 Choice of Parameters

Observe that so far what we have described holds true for any function field. For

the best performance, we use the the function fields with the best possible ratio of

g/n. Specifically, for q a square, we use a sequence of function fields with increasing

genus for which g/n is at least 1√
q−1 [TVZ82, GS95b].

Below we outline the parameters for this specific AG curves. We assume

t >
3
√
na2.

1. g ≥ 2 be the genus of F/Fq.

2. R def
= K/(2N) = (a− g + 1)/(2N) ≈ a/(2N)

3. s = ⌊ ℓ−g
a ⌋

4. b = ℓ− g + 1 ≥ as+ 1

5. d ≥ s+ 1

6. In order to ensure Equation 4.7 and rt > ℓ, we set

r
def
= ⌊g + 1 + 2

3
√
Na2

t− 3
√
Na2

⌋,

ℓ
def
= rt− 1

7. Note that the list size could be at most the degree of H, i.e.,

L ≤ degree(H) ≤ sd = s(s+ 1) = Θ(s2).

8. Letting ǫ = (a/N)3/2, we get

R+
g

2N
=
a+ 1

2N
≈ ǫ3/2 + 1

2
.

Since our curve has g/N ≥ 1/(
√
q − 1), we get q = Ω(1/ǫ3).
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Therefore this corrects up to 1 − t/N ≈ (1 − 3

√
Na2

N3 ) = (1 − (4R)2/3). We

sum up everything in the following theorem.

Theorem 4.2.7 For the choice of d = s + 1, the decoding algorithm described in

Section 4.2 correctly finds all the codewords c = 〈c1, · · · , cN 〉 of E which satisfy

ci = yi + βzi for at least t values of i ∈ [N ], for t > 3
√
N(K + g − 1)2. Moreover,

for some c > 1, if t ≥ c 3
√
N(K + g − 1)2, then the list output by the algorithm has

size at most O(( c
c−1)2(N/K)2/3). Further, there is a polynomial sized representation

of the codes given which encoding and list decoding up to this radius can be performed

in polynomial time.

4.2.2 Extension to Multivariate case

We let G,P,H and x0, x1, · · · , xN as before (as given in Lemma 4.1.1). Let Q = qM ,

where M is an integer ≥ 2 and FQ = Fq[β]. Also let {di}M−1
i=1 are positive integers

to be specified later. Corresponding to each di we consider a map Γi : L(G)→ L(G)

as follows:

L(G)
θ−→ OP/P di−→ OP/P θ−1

−→ L(G),

where the map di is defined as di : u 7→ udi and the map θ : L(G)→ FP is as before.

We set7

d0
def
= 1 and di

def
= di−1s+ 1.

Then consider the following map E : L(G)→ FN
Q by the map

L(G) ∋ f 7→ 〈f(xi) +

M−1∑

j=1

βjΓj(f)(xi)〉Ni=1

This map is a natural generalization of the code considered in [PV05].

4.2.3 Multivariate Decoding

Given a vector 〈v1, · · · , vN 〉 ∈ Fn
Q, we view each vi as 〈z0,i, zM−1,i〉 where zj,i ∈ Fq

for all j = 0, · · · ,M−1. We then try to fit the data points {(xi, z0,i, · · · , zM−1,i)}Ni=1

by a polynomial Q[z0, · · · , zM−1] ∈ F [z0, · · · , zM−1]. For convenience we write

7For ease of exposition, we will omit the fact that di needs to be co-prime to the order of κ∗
P .
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z = 〈z0, · · · , zM−1〉. We interpolate the following polynomial with the following

condition:

1. We get Q[z0, · · · , zM−1](xi) = 0 with multiplicity r, that will be fixed later.

2. We also make sure that the Q has a small pole sum (over the support of H) ℓ,

which will be fixed later, for any substitution of y, z with a function in L(G).

Note that any function f in L(G) satisfies
∑

x∈supp(G) vx(f) ≥ −a. We want

∑

x∈supp(G)∪{x0}
vx (Q [∀i ∈ {0, · · · ,M − 1}zi ← L(G)]) ≥ −ℓ.

With the definition of s, b, ψi from the Section 4.2, we then interpolate the

following polynomial

Q[z0, · · · , zM−1] =
∑

j0+j1+···+jM−1≤s;

j0,··· ,jM−1≥0

b−a(j0+j1+···+jM−1)∑

j=1

qj,j0,j1,··· ,jM−1
ψjz

j0
0 · · · z

jM−1

M−1 .

It is easy to see that condition 2 holds immediately. Also, by a similar argument as

in Section 4.2 the condition 1 can be shown to hold provided we satisfy a few linear

constraints as before. By a similar argument as in Section 4.2, we now estimate the

number of variables in this system. We need the following claim:

Claim 4.2.8 Let r and M be positive integers. Then it holds that

r∑

t=1

t(t+ 1) · · · (t+M)

(M + 1)!
=

r∑

t=1

(
M + t

t− 1

)
=

(
M + r + 1

r − 1

)

=
r(r + 1) · · · (r +M)(r +M + 1)

(M + 2)!

Proof : Use induction on r.
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We now estimate the number of variables. Let U denote the total number of

unknowns. Then clearly

U =
∑

j0+···+jM−1≤s,ji≥0

b−a(j0+···+jM−1)∑

j=1

1

=
s∑

j′=0

∑

j0+···+jM−1=j′

b−aj′∑

j=1

1

=

s∑

j′=0

∑

j0+···+jM−1=j′

(b− aj′)

=

s∑

j′=0

(b− aj′)
(
M + j′ − 1

j′

)

=
1

(M − 1)!

s∑

j′=0

(b− aj′)(j′ + 1)(j′ + 2) · · · (j′ +M − 1)

≥ 1

(M − 1)!
a

s∑

j′=0

(s − j′)(j′ + 1)(j′ + 2) · · · (j′ +M − 1)

= as

s∑

j′=0

(j′ + 1) · · · (j′ +M − 1)

(M − 1)!
− a

s∑

j′=0

j′(j′ + 1)(j′ + 2) · · · (j′ +M − 1)

(M − 1)!

= as

s+1∑

j′=1

j′(j′ + 1) · · · (j′ +M − 2)

(M − 1)!
− a

s∑

j′=1

j′(j′ + 1)(j′ + 2) · · · (j′ +M − 1)

(M − 1)!

= a
s(s+ 1) · · · (s+M)

M !
− aM s(s+ 1) · · · (s+M)

(M + 1)!

= a
s(s+ 1) · · · (s+M)

(M + 1)!

Similarly we estimate the number of constraints which can be shown to be

the N -times the number of distinct tuples such that

wh,j′0,··· ,j′M−1
= 0 for all h ≥ 1; j′0, · · · , j′M−1 ≥ 0 such that j′0+· · ·+j′M−1+(h−1) ≤ r−1.
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Lemma 4.2.9 The number of distinct tuples such that

wh,j′0,··· ,j′M−1
= 0 for all h ≥ 1; j′0, · · · , j′M−1 ≥ 0 such that j′0+· · ·+j′M−1+(h−1) ≤ r−1,

is r(r+1)···(r+M)
(M+1)! .

Proof : We induct on M . Clearly it holds for M = 0. Assume it holds for M . We

now do the induction. Then number of tuples such that
∑M

i=0 ji + (h− 1) ≤ (r− 1)

is clearly

r−1∑

jM=0

#

(
M−1∑

i=0

ji + (h− 1) ≤ (r − 1− jM )

)
=

r−1∑

jM=0

(r − jM ) · · · (r − jM +M)

(M + 1)!

=

r∑

jM=1

jM · · · (jM +M)

(M + 1)!

=
r · · · (r +M + 1)

(M + 2)!

This completes the induction.

Thus the total number of constraints is

N · r(r + 1) · · · (r +M)

(M + 1)!

Therefore in order to have a non-zero interpolating polynomial we require

a
s(s+ 1) · · · (s+M)

(M + 1)!
> N · r(r + 1) · · · (r +M)

(M + 1)!
(4.10)

Denote Z = 〈z0, · · · , zM−1〉. Among the non-zero solutions of Q[Z], we

choose the Q with the smallest vP(Q). To list-decode we do as before. We consider

the image of Q[Z] in FP [Z] by evaluating at P, i.e., we set

T [Z]
def
= Q[Z](P).

Next we set H(Y ) = T [∀i ∈ {0, · · · ,M − 1} zi ← Y di ] and factor H(Y ). For each

root ρ of H(Y ) we count the agreement of the codeword E(θ−1(ρ)) with the received

word. If the agreement is at least t, then we output θ−1(ρ).
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Following an argument similar to Lemma 4.2.4, it can be shown that T [Z]

is not identically zero. Further an argument similar to Lemma 4.2.5, it can be

established that if there is a codeword in E corresponding to h ∈ L(G) that has

agreement at least t with the received word, then

T [z0 ← h, z1 ← Γ1(h), · · · , zM−1 ← ΓM−1(h)] = 0.

To prove that H(Y ) = T [∀i ∈ {0, · · · ,M − 1} zi ← Y di ] is not identically

zero. We argue as in [PV05].

Lemma 4.2.10 H(Y ) = T [∀i ∈ {0, · · · ,M − 1} zi ← Y di ] is not identically zero.

Proof : We consider the following M polynomials defined as follows:

Hi(Y, zi+1, · · · , zM−1)
def
= Hi−1(Y, Y di , zi+1, · · · , zM−1),

with H0(Y, z1, · · · , zM−1). Clearly HM−1(Y ) = H(Y ). We prove by induction that

none of the polynomials Hi is the all-zero polynomial. By our choice of d1 and a sim-

ilar argument as in Lemma 4.2.6, H1(Y, z2, · · · , zM−1) = H0(Y, Y d1 , z2, · · · , zM−1)

is non-zero. Assume as induction hypothesis that Hi is non-zero for some i ≥ 1. We

prove that Hi+1 is non-zero as well.

Hi+1 is a all-zero polynomial iff zi − Y di is a factor of Hi. However from

the definition of T , Q and Hi(·), it is clear that the no monomial in Hi has Y -

degree larger than s ·max{d0, d1, · · · , di−1}. Thus the choice of di ensures that the

polynomial Hi+1 is not the all-zero polynomial.

4.2.4 Parameters

Below we give the parameters. We assume t >
M+1
√
NaM .

1. g ≥ 2.

2. R def
= K/(MN) = (a− g + 1)/(MN) ≈ a/(MN)

3. Note that the alphabet size is Q = qM .

4. s = ⌊ ℓ−g
a ⌋

5. b = ℓ− g + 1 ≥ as+ 1
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6. d0
def
= 1 and di

def
= di−1s+ 1.

7. In order to ensure Equation 4.10 and rt > ℓ, we set

r
def
= ⌊g + 1 +M

M+1
√
NaM

t− M+1
√
NaM

⌋,

ℓ
def
= rt− 1.

8. Note that the list size could be at most the degree of H i.e.,

L ≤ degree(H) ≤ smax{d0, · · · , dM−1} ≤ (s+ 1)M = Θ(sM ).

9. Q = qM .

Theorem 4.2.11 For small enough ǫ > 0 and all integers m ≥ 2, there is a fam-

ily of Q-ary codes with Q = O
(
(1/mǫ)2(m+1)

)
which has rate Ω( 1

m(mǫ)(m+1)/m)

and which is (1− ǫ,O(mǫ(m)2m/(m+1)))-list decodable. Furthermore, the codes have

a representation, computable in expected polynomial time, that permits polynomial

time encoding and polynomial time list decoding up to radius (1− ǫ) with polynomial

sized preprocessed information.

For decoding up to a fraction (1−ǫ) of errors, with the choice m = Θ(log(1/ǫ))

in the above theorem, we get the following.

Corollary 4.2.12 For all ǫ > 0, there is a family of Q-ary codes with Q = (1/ǫ)O(log(1/ǫ))

which has rate Ω(ǫ/log(1/ǫ)) and which is (1 − ǫ, (1/ǫ)O(log log(1/ǫ)))-list decodable.

Furthermore, the codes have a polynomial sized representation that permits encoding

and list decoding up to radius (1− ǫ) in polynomial time.

4.2.5 Complexity of Encoding/Decoding

We assume that we have precomputed G,P which we do not know how to compute

efficiently. Further we do not know how to efficiently compute the function ensured

by the weak approximation theorem. However, we can assume that this is given

to us as a polynomial sized advice. The basis {ψj}bj=1 can be efficiently computed.

Therefore all we need to do is to set up the linear system and solve for the roots of

a polynomial in FP .
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We can avoid computing the divisor G by changing the code slightly (without

changing the asymptotic performance of the code) as done in [GP07] (essentially due

to Venkatesan Guruswami). The idea is that we do no longer insist on a bijection.

Instead, we can embed L(G) in slightly larger space as such embedding can be shown

to exist even when G is chosen to be simple, i.e., supported on a rational place.

In [GP07] one can find a randomized algorithm to compute the high degree

place P for the specific “optimal” AG codes based on a tower of function fields due

to Garcia and Stichtenoth [GS95b, GS96a]. The algorithm is due to Venkatesan Gu-

ruswami and runs in expected polynomial time (i.e., Las Vegas). Though not explicit

in the sense of deterministic polynomial time constructibility, the representation is

guaranteed to be correct and constructing it (a one time job) takes polynomial

time with overwhelming probability. This level of explicitness should thus suffice

for using the code. We remark that even for the algorithm of Guruswami and Su-

dan [GS99, GS01] (that achieved a decoding radius of at most 1−
√
R), it was not

known how to compute the required representation efficiently.

4.3 Extension to List Recovering and Binary Codes

4.3.1 List Recoverable Codes

Definition 4.3.1 A code C ⊆ ΣN is (γ, l, L)-list recoverable if for every sequence

of sets S1, S2, . . . , SN , where each Si ⊆ Σ has at most l elements, the number of

codewords c ∈ C which satisfy ci ∈ Si for at least γN values of i ∈ {1, 2, . . . , N} is

at most L.

Note a code being (ρ, L)-list decodable is the same thing as it being (1 − ρ, 1, L)-

list recoverable, so the above notion is more general than list decoding. The name

list recovering was coined in [GI01] and this notion has played a crucial role in

new constructions of list-decodable codes since. List recovering was first explicitly

studied in work on extractor codes [TZ04]; the name was coined in [GI01], and

it has played a crucial role in combinatorial constructions of list decodable codes,

including those with linear complexity algorithms [GI03].

We now make the following observation. The algorithm in Section 4.2 can be

trivially generalized to handle the case when there is a set Si consisting of possibly

more than one triple (yi, zi1, zi2) for each location i. We simply need to add a
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constraint for each such triple in the interpolation of Step 2, so that the total

number of constraints will now be the total number of triples N (or in other words

the total size of all the Si’s). It immediately follows that we get an algorithm for

list recovering that works with agreement t with N replacing the block length n. Of

course, a similar generalization also holds for the m-variate decoding algorithm and

the agreement bound of.

Theorem 4.3.2 For all integers l ≥ 2, for all γ > 0 and all integers m ≥ 2, there

is a family of Q-ary codes for Q = O((ml1/m/γ)2(m+1)2/m) which has rate Ω(γ/m2 ·
(γ/l)1/m) and which is (γ, l, L)-list recoverable for L = O(m2 ·m! · (l/γ)(m+1)/m).

Moreover, the codes have a natural representation that permits polynomial time en-

coding as well as polynomial time (γ, l, L)-list recovering with poly-sized pre-processed

information.

Corollary 4.3.3 For all integers l ≥ 2 and all γ > 0, there is a family of Q-ary

codes for Q = lO(log log(l/γ)) · (1/γ)O(log(1/γ)) which has rate Ω(γ/ log(l/γ)) and which

is (γ, l, L)-list recoverable for L = (l/γ)O(log log(l/γ)). Moreover, the codes have a

natural representation, that permits polynomial time encoding as well as polynomial

time (γ, l, L)-list recovering with poly-sized pre-processed information.

4.3.2 Binary Codes for List Decoding up to Radius (1/2− ǫ)

We now consider the problem of constructing binary codes for list decoding up to

radius (1/2−ǫ), for small ǫ > 0. Using our codes as the outer code in a concatenation

scheme with a constant-sized binary inner code with Q codewords and rate Ω(ǫ2)

and that is (1/2 − ǫ/2, l)-list decodable, we can show the following.

Theorem 4.3.4 For every ǫ > 0, there is a family of binary codes of rate Ω(ǫ3/ log(1/ǫ))

that is (1/2− ǫ, (1/ǫ)O(log log(1/ǫ)))-list-decodable. The codes can be encoded and list-

decoded in polynomial time for radius (1/2−ǫ) assuming a pre-processed information

of polynomial size.

We remark that the recent construction of [GR06] achieves a rate of Ω(ǫ3) for

(1/2− ǫ, L)-list-decodable codes, but their construction time as well as list size L is

NΩ(1/ǫ3). In contrast, our codes are uniformly constructive, i.e., can be constructed

and decoded in time f(ǫ)NO(1) with exponent of n independent of ǫ, and achieve a

list size independent of the block length.
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4.4 Conclusion

Guruswami and Rudra have recently proposed an explicit list-decodable code that

achieve the list decoding capacity. Their code is essentially a folded Reed-Solomon

codes which is essentially Reed-Solomon code, but packed in a very clever way so that

it looks like a PV-code. Informally, the key idea is that viewed appropriately, certain

automorphisms of a rational function fields induce low degree map on bounded-

degree polynomials. Formally, they prove the following theorem in [GR06].

Theorem 4.4.1 ([GR06], Theorem 2) Let p be a prime, b > a ≥ 1 be two integers

that are coprime to p, and m be an arbitrary integer. Further let t ≥ m2 −m be an

integer that is not a multiple of p, and even if p > 2. Let q be a power of p such

that q ≡ 1 (mod t · a · b). Let γ be a generator of F∗
q. Define k = a(q − 1)/b and

e = (qa−1)b
a(q−1) . Then the following statements are true:

1. The polynomial E(x) = xk − γ is irreducible over F.

2. For any polynomial f(x) ∈ F[x] of degree at most k − 1 and ℓ ≥ 1,

(f(x))qaℓ

(mod E(x)) = f(γeℓx).

Moreover, if 1 ≤ ℓ < m2 −m then the above map is non-trivial, i.e., γeℓ 6= 1.

An open question is to generalize the above theorem over general function

field. We strongly believe such generalization can yield even better list decodable

codes than [GR06], that is achieving capacity over smaller alphabet and with much

smaller list size (independent of n) and complexity.

Binary code with list decoding radius 1 − ǫ and rate Ω(ǫ2) is known to be

optimal. The explicit construction of this optimal family of polynomial time list

decodable binary code is still open.
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Chapter 5

Applications to Cryptography

In this Chapter, we present technique to lower bound the minimum distance of

certain types of quasi-cyclic codes with large dimension by reducing the problem

to lower bounding the minimum distance of a few significantly smaller dimensional

codes. This analysis enables us to strengthen SHA-1 by changing the underlying

code.

5.1 Overview

We start recalling the SHA-1 message expansion code, which is a binary linear code

of dimension 512. The 512 information bits are viewed as sixteen 32-bit words

〈W0, · · · ,W15〉, and 64 additional words are generated by the recurrence:

Wi = (Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) <<< 1 for i = 16, · · · , 79, (5.1)

where the notation “<<<” denotes left rotation by one bit. The 80 words 〈W0, · · · ,W79〉
can be seen as constituting a code-word in a linear code over F2 with the above par-

ity check equations. Unfortunately, this code has a minimum distance or weight of

no more than 44. Further, the weight restricted to the last 60 words is only 25.

This has been exploited in [WYY05c] to give a differential attack on SHA-1 with

complexity 269 hash operations. Recently, the complexity has further been improved

to 263 hash operations [WYY05a].

The code for SHA-0, which is the same as Equation 5.1 but without the rota-

tion, has an even worse minimum weight. The small minimum weight of these codes
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is an integral part of the attack strategies on these hash functions (see [Wan97a,

Wan97b, CJ98, BC04b, BC04a, WYY05b, WYY05c]). The question naturally arises

as to why codes with better minimum weight were not employed, even though the

coding theory literature [vL98] is rife with codes with proven good minimum weight.

The reason is that none of them comes close to being as efficient to implement in

software as the code in Equation 5.1 above. One is then led to ask if codes more

complex than above, but still easy to implement, could be shown to have a better

minimum distance. Surprisingly, it was not even known how to lower bound the

minimum weight of the above SHA-1 code, even though it is related to codes such

as the Hadamard code [vL98] (we elaborate on this later).

The purpose of our work is three-fold. First, we introduce a new technique for

lower bounding efficient-to-implement codes such as given by Equation 5.1. Second,

we use this technique to lower bound this particular code (which was an open prob-

lem). Third, we show how one can design efficient-to-implement codes with a much

better minimum distance, and to actually give such a code. We expect our technique

to be helpful in designing future practical collision-resistant hash functions.

We recall the definition of quasicyclic codes which are natural generalization

of cyclic codes. For more on quasicyclic codes, see [TW67, Che92, Lal03, LS05].

Definition 5.1.1 An [n, k] linear code C over Fq is a quasicyclic code if C is closed

under cyclic shifts by ℓ places, for some 1 ≤ ℓ < n = ℓ · n′, i.e.,

C ∋ 〈c1, · · · , cn′ℓ〉 =⇒ 〈cℓ+1, · · · , cn′ℓ, c1, · · · , cℓ〉 ∈ C.

The smallest such ℓ is called the index of C. Quasicyclic codes with index one, i.e.,

ℓ = 1 are also known as cyclic codes in the literature.

We now elaborate on our technique. To do that, let us examine the specific

code we analyze, as this specific example will help in understanding the complexity

of the problem and the intricacy of the technique. The code we consider is an 80×32

length binary code of dimension 16× 32, given by the following recurrence relation
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(or parity check equations):

Wi =





Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16 ⊕ ((Wi−1 ⊕Wi−2 ⊕Wi−15) <<< 1)

if 16 ≤ i < 36

Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16 ⊕ ((Wi−1 ⊕Wi−2 ⊕Wi−15 ⊕Wi−20) <<< 1)

if 36 ≤ i ≤ 79

(5.2)

We will show that this code has minimum distance 82, and that moreover in just

the last 64 words (contrast this with SHA-1 which has minimum weight at most

30 [WYY05c], and 192 for the highly inefficient Reed Solomon code described in

Section 5.2). Of course, since the dimension of this code is 16 × 32, a brute force

search of 216×32 is infeasible. We will give a way to do a feasible search for this

type of codes. Further, it is known that computing minimum weight of an arbitrary

linear code is NP-hard (see [Var97]), and that approximating within a constant

factor is NP-hard under randomized reduction (see [DMS03]). Observe that the

code is a quasicyclic code with index 80. One can then hope to use the lower bound

given in [Lal03], but that requires computing over F2ℓ where ℓ denotes the index of

the quasicyclic code. In our cases the index turns out to be quite large and such

estimates are no longer computationally feasible.

We now briefly explain the main idea of our technique, using the above

example code given by Equation 5.12. See that any codeword is represented as a

80 × 32 matrix. In the following, we prefer to call the rows as words. Now observe

that either (a) there are no all-zero columns in the codeword, in which case we

would like to show that on average there are a few (three, e.g.) non-zero bits in

each column, or (b) there is a zero column in the codeword, in which case we would

like to show that the code projected on a few columns, say m << n, has a large

minimum distance.

Unfortunately, there are two major hurdles in this plan, related to case (b).

Consider the first non-zero column next to a zero column (either to the left or the

right). It turns out that the code projected on that column is not expected to be any

better than the code for SHA-0, and hence we do not expect a minimum weight of

more than 15-20 for that column. Thus, we would need m to be about five to get a

minimum weight of 75, in which case the dimension of the projected code is still too
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large, i.e., 16 × 5. Further, there are pathological cases (which cannot be avoided)

where the code projected on a column yields a minimum weight as low as 1. Thus,

we may be forced to consider m much larger than five. The novelty of our approach

lies in tackling these two major hurdles. We show that the minimum weight of the

sub-code in case (b) can be lower bounded by a function of the minimum weight of

a few codes (some of which are subspaces), each of dimension at most 16 × 3. A

“lazy” brute force search with early-stopping then yields a lower bound of 82.

5.2 Limitations of Purely Algebraic Techniques

We first investigate the SHA-0 code restricted to a single column, which is a length

80 binary code of dimension 16, given by the binary parity check equations:

ai = ai−3 ⊕ ai−8 ⊕ ai−14 ⊕ ai−16 for i = 16, · · · , 79 (5.3)

The above parity check equation can be associated with the the polynomial h(X) =

X16 + X13 + X8 + X2 + 1 over F2, which is known to be a primitive polynomial.

Therefore, the smallest n such that h(X) divides Xn − 1 is 216 − 1. Hence, if the

above code was extended up to length 216−1, it would be the dual code of the cyclic

code generated by the ideal h(X). The following theorem of [KLP68] (Theorem 1)

proves that the SHA-0 code is a truncated Hadamard code. Recall that the binary

Hadamard code is the same as the (Generalized) Reed-Muller code of order one.

Theorem 5.2.1 ([KLP68]) Let Gν denote the νth order punctured1 GRM code over

Fq. The dual code Cd of Gν is cyclic and αr is a root of the generator polynomial

gd(X) if and only if the weight of r is at least ν, where the weight of r is

W (r) =
m−1∑

i=0

δi and r =
m−1∑

i=0

δiq
i,

i.e., the expansion in radix-q form.

Note that the roots of the polynomial h(X) in F216 are α,α2, α4, · · · , α215
. Hence,

by the above theorem, h(X) has the same roots and degree as that of the generator

1See subsection 2.1.1 for the definition.
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of the dual code of the punctured first order GRM. This proves that SHA-0 is a

truncated Hadamard code.

Punctured Hadamard codes have an extremely good minimum distance of

215 − 1, or fractional distance 1/2. Unfortunately, we do now know of anything

useful which can be said about this code truncated to just the first 80 bits, based

purely on known algebraic methods. In fact, any such code (i.e., using any degree

16 primitive polynomial) has a minimum weight of at most 26, i.e., a fractional

distance of less than 1/3 (as can be checked by a computer).

The lack of purely algebraic techniques to lower bound even this single col-

umn code emphasizes the difficulty of analyzing the more complex codes such as

SHA-1 and that given by Equation (5.2). Of course, if h(X) above was not primi-

tive, and divided X80 − 1, then we would get a cyclic code of length 80. Such codes

can be analyzed much more easily, and it is not too difficult to see that the best

cyclic code gives a minimum distance of only 8. However, there are non-cyclic linear

codes known of minimum distance 31, though they are really difficult to encode.

One could also consider cyclic codes of length 85, which have a much better mini-

mum distance and then truncate them. However, the analysis does not extend to

codes which do column mixing like SHA-1.

Instead of quasi-cyclic codes as SHA-1 or Equation 5.2, one could consider

cyclic codes of length 80×32, or of an appropriate length. First note that a random

code will give minimum distance roughly 475 for a code with rate 1/4 and length

64×32 (follows from the Gilbert-Varshamov bound). Of course, finding such a code

is infeasible. Alternatively, one can try a Reed Solomon code over F28 of length

28 − 1 (bytes), and dimension 64 (bytes). Such a code has distance 256− 64 = 192

(over bytes). However, the encoder for this code requires multiplication by various

elements in F28, and is not at all suitable for software implementations. A binary

cyclic code of dimension 16×32 would also be extremely cumbersome to implement.

Similar considerations rule out known good quasi-cyclic codes.

5.3 Intuition behind the Code

Let us start by examining why the message expansion code in SHA-1 given by

Equation (5.1) is not satisfactory (observed independently in [RO05] and [MP05]).
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We can rewrite Equation (5.1) as follows:

∀i, 0 ≤ i ≤ 63, Wi = Wi+2 ⊕Wi+8 ⊕Wi+13 ⊕ (Wi+16 >>> 1), (5.4)

where “>>> 1” denotes a one bit rotation to the right. The above clearly shows

that a difference created in the last 16 words propagates to only up to 4 different bit

positions. To see this, assume the 79th word is all zero except at the zeroth position.

Further assume that all the fifteen words starting from 64th words till 78th words

are zero. We can do this as we can choose any consecutive 16 words as the message.

Then observe that 79th word can influence only 63rd words setting its 1st column to

1. Now observe that 63rd words can influence 61st words, but it can only influence

its 1st column. It can only cause a disturbance on the 2nd column only at the word

47th. Therefore, we can for sure say that columns 5th onwards will be entirely zero.

One way to remedy this situation is to let Wi = (Wi+2 >>> 1) ⊕Wi+8 ⊕
Wi+13 ⊕ (Wi+16 >>> 1). Now Equation (5.1) becomes Wi = (Wi−3 ⊕ Wi−8 ⊕
Wi−16) <<< 1⊕Wi−14. Thus, whether one considers the evaluation in the forward

direction or in the reverse direction, the spread of differences to the neighboring

columns (i.e., neighboring bits) is more frequent. However, it is not enough to just

have a good intuition about the code, but one also needs to prove a good lower

bound on the minimum weight of such codes.

The strategy we use to prove lower bounds on such codes is to divide the

proof into two main cases. We argue that either there are no zero columns in a

codeword and ensures a minimum average weight per column or starting from an

all zero column, the first few neighboring non-zero columns are actually codewords

in some good codes, in the sense that each of them has good minimum distance.

Elaborating on the first case, i.e., when there are no zero columns, if every

column has weight at least three, we are done as the weight is then at least 96. So,

assume that there is some non-zero column which has weight at most two. Thus,

there are (64 × 63)/2 + 64 choices for picking these bits in the column. Having

picked these bits, the neighboring column is completely specified by at most 16 bits

in that column (follows from the code equation). Now the two columns together

have either weight 6, in which case we are maintaining an average of 3 per column,

or the weight of these two columns is at most 5. Thus, as promised before our

search is quite restricted. We continue in this fashion, noting that the code has to
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be designed carefully so as to satisfy a property as in Claim 5.4.6.

As for the second case, we consider a contiguous band of zero columns, bor-

dered on both sides with non-zero columns (we prove that they cannot be same; in

fact we prove by a rank argument that there must be at least four consecutive non-

zero columns). We have to assure that when a column is zero, and the neighboring

column is non-zero (whether to the right or left), the resulting code for the neigh-

boring column is a good code, i.e., with a good minimum weight. Note that this is

important since we may possibly have at most 5-6 non-zero columns. Therefore it

is desired that the disturbance propagates fast across columns. Unfortunately, this

is impossible for the codes we are considering so far.

Consider a SHA-1 like code, with dimension 16× 32, and which is invariant

under column rotations. Moreover, suppose that the code is of the form

Wi =
16∑

t=1

atWi−t +

((
16∑

t=1

btWi−t

)
<<< 1

)
, (5.5)

where a1, · · · , a16, b1, · · · , b16 are boolean. If a16 and b16 are equal, then there is a

codeword which is zero everywhere, except for W0 which is the all one 32-bit word.

Thus for the sake of the argument, assume that b16 = 0 and a16 = 1. However in

this case, suppose t′ < 16 is the largest t such that bt′ is non-zero. First note that if

a column, say Cj, is zero, then in the column to its right, say Cj−1, Cj−1
k (for k = 0

to 15 − t′ ) can take any value (i.e., are free variables), and the rest of the column

Cj−1 can be all zero. Further, the propagation to columns Cj−2, Cj−3 etc. can be

rather weak. Similar pathological examples can be cooked up for other values of

ai, bis.

A similar situation arises when the code is evaluated in the backward direc-

tion. The trick is to keep the above free variables few in number, so that the subspace

of such pathological cases is of a relatively small dimension. This small dimension

is absolutely necessary to keep the exhaustive search over this space tractable. One

way to get rid of these pathological free variables is to include a term like Wi−20,

as we do in our code. This in fact gets rid of all the pathological variables in the

forward direction and thereby yields a fast expansion. In the backward direction at

least one pathological free variable per column remains, and we must search over

such subspaces.
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5.4 A Lower Bound on the Minimum Distance

In this section we will prove a lower bound on the code described in the introduction,

and given by Equation (5.2). We remark that this is a general technique for reducing

the problem to smaller dimensional codes. However, if the reduction is to codes with

dimensions too large, then a brute force search may not be feasible. On the other

hand, if the reduction is to codes which have really low minimum weight, then we

will not obtain a good bound.

We will see in Claim 5.4.3 and Claim 5.4.4 that if the polynomials describing

the parity check equations (5.5) have a certain algebraic property, namely that the

polynomial corresponding to coefficients at is irreducible, and does not divide the

polynomial corresponding to coefficients bt, then some key reduced codes have low

dimensions. Although these are not necessary conditions, they make a good choice.

Similarly, if the coefficients b1 and b15 are both one, then the number of pathological

variables per column is small.

We will prove a lower bound on the minimum weight of the code given by

Equation (5.2), but projected on the last 64 words. Clearly, the same bound holds

for the full 80 words. The reason we focus on the last 64 words is because the recent

attacks on hash functions have shown that the weight of the code in early words (the

information words, and a few following words) is mostly immaterial (see “message

modification technique” in [WYY05c]), and hence the weight in the latter words

decides the complexity of the attack. Later, we will lower bound the code in the last

60 and 48 words. Note that because of the change in the parity equations at index

36, the codewords restricted to the last 48 words cannot be described as easily as

Equation (5.2).

Since we will be arguing about the weight of this code in the last 64 words,

we instead consider the following code C64 : Let W0, · · · ,W15 be the message blocks.
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Then

C64 :

for i = 16 to 63

Wi =





Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16 ⊕ ((Wi−1 ⊕Wi−2 ⊕Wi−15) <<< 1)

if 16 ≤ i < 20

Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16 ⊕ ((Wi−1 ⊕Wi−2 ⊕Wi−15 ⊕Wi−20) <<< 1)

if 20 ≤ i ≤ 63

(5.6)

We first prove that this is indeed sufficient. Let C be the code defined by Equa-

tion (5.2).

Lemma 5.4.1 If the code C64 described above has minimum weight at least 82,

then C has minimum weight at least 82 in its last 64 words.

Proof : Consider any nonzero codeword in C, say U = 〈U0, · · · , U79〉. Denote X =

〈U0, · · · , U15〉 and Y = 〈U16 · · · , U31〉 and Z = 〈U32 · · · , U79〉. Therefore U =

〈X,Y,Z〉. From Equation (5.2) observe that the code C is completely determined

by specifying any consecutive 16 word block provided the block starts anywhere in

0 to 20, since the rest can then be obtained by solving the recurrence relation. We

therefore choose to specify Y = 〈U16, · · · , U31〉. That is, we treat Y as the mes-

sage symbols. Note that a fixed choice of Y also fixes X and Z. Following this

observation it is now clear that 〈Y,Z〉 is a codeword in C64 .

Assume that the minimum weight of C64 is d. Then we need to show that

any non-zero codeword in C, has weight at least d in its last 64 words. This follows

provided X being non-zero implies Y is non-zero. However, Y being zero implies X

is zero, as X is a linear function of Y .

Therefore the minimum weight of C64 is exactly the minimum weight of code C in

its last 64 words.

Theorem 5.4.2 The code C64 as defined by Equation (5.6) has minimum distance

at least 82.

Proof : Let dmin stand for the minimum weight of the code C64 , and since the code

is a linear code it suffices to prove that dmin ≥ 82. From now onwards, we view

the codewords of C64 as a matrix that has 32 columns where each column is 64-bit
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long. It is easy to see that the code is invariant under column rotations, i.e., moving

the column i to (i+1) yields a (possibly new) codeword. Unless otherwise specified,

the arithmetic in the superscript will be modulo 32.

Now consider any non-zero codeword. We break down the proof into two

main cases depending upon whether or not a codeword has zero columns.

1. (All Columns Non-Zero Case:) Consider any such codeword. Also, con-

sider any non-zero column, w.l.o.g., let it be C0. Denote the columns, to the

left of it by C1, C2, · · · , C31. Note that all Ci’s are non-zero. In this case, let

d1 denote the minimum weight of this sub-code (that is the set of codewords

that do not have a zero column).

Suppose for any column Cj, there exists an l, such that the combined weight

of the columns Cj, Cj+1, · · · , Cj+l−1 is at least µ · l, then we show that d1 is

at least (32− (ℓ−1)) ·µ+(ℓ−1) = 33 ·µ−ℓ(µ−1)−1. To see this, we create a

partition of the 32 columns into several groups. We pick a non-zero column Cj.

Now by assumption there exists ℓ-columns such that the average weight of each

column is at least µ. Consider the smallest ℓ′ ≤ ℓ that achieves this. Then put

these ℓ′ columns Cj, Cj+1, · · · , Cj+ℓ′−1 into a group. Call these columns good

columns and the group a good group. We then choose Cj+ℓ′ and form another

group. We continue like this till no more good groups can be created. The

remaining columns are then grouped together. Call this group a bad group.

Note that the bad group has average weight at least 1. Now let e be the size

of this bad group. Then we have (32− e) good columns. Also by assumption,

e could be at most ℓ−1. Therefore the total weight of the codeword is at least

d1 ≥ µ · (32− e) + e ≥ (32− (ℓ− 1)) ·µ+ (ℓ− 1) = 33 ·µ− ℓ(µ− 1)− 1. Later,

we

2. (At Least One Column Zero Case:) Assume that there is at least one

zero column. Let d2 stand for the minimum weight of any such codewords or

equivalently, minimum weight of this subcode where the subcode consists of

codewords that has at least one zero column. W.l.o.g. we can assume that

C0 is a zero column. Further, w.l.o.g. let C0 be a zero column such that

the column to the left of it is non-zero (note that such a column always exists

since we are considering a non-zero codeword and counting is done modulo
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32). Denote the columns to the left of C0 as C1, C2, · · · (see figure).

Also, going towards the right of C0, denote

the first non-zero column by E1 and thereafter

E2, E3, · · · . Denote the column to the left of

E1 by E0. (Note that it may be possible that

C0 and E0 are the same column.) We argue

that a few columns to the left and right of a

band of zero columns must contribute a total

weight of at least dmin.
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Also note that w.l.o.g. we can assume that there exists exactly one zero band

i.e., a contiguous segment of zero columns. To see this observe that if there

is more than one distinct zero band, it is always possible to set the non-zero

entries between two zero bands to zero (i.e., consider the parity check matrix,

if the entries between a zero band is set to zero, it still satisfies the parity

check equation). This can only reduce the minimum weight of the codeword.

Therefore we can safely assume that there is exactly one zero band.

Next consider C1, C2, · · · . How soon can the sequence yield a zero column,

i.e., what is the smallest value of j such that Cj = E0? In order to answer this

question, first note that since C0 is everywhere zero, C1 is essentially generated

by the code whose parity check equations over F2 are given as follows: Denote

C1 = 〈y0, · · · , y63〉. Then

∀i, 16 ≤ i ≤ 63, 0 = yi + yi−3 + yi−8 + yi−14 + yi−16. (5.7)

Similarly for a fixed C1, the column C2 is generated by the code whose parity

check equations over F2 are given as follows: Denote C2 = 〈x0, · · · , x63〉.
Denote ui = yi−1 + yi−2 + yi−15. Then

0 =




xi + xi−3 + xi−8 + xi−14 + xi−16 + ui for 16 ≤ i ≤ 19

xi + xi−3 + xi−8 + xi−14 + xi−16 + ui + yi−20 for 20 ≤ i ≤ 63
(5.8)

On the other hand E1 is generated by the code whose parity check equations
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over F2 are given as follows: Denote E1 = 〈w0, · · · , w63〉. Then

0 =




wi−1 + wi−2 + wi−15 for 16 ≤ i ≤ 19

wi−1 + wi−2 + wi−15 + wi−20 for 20 ≤ i ≤ 63
(5.9)

Similarly for a fixed E1, the column E2 is generated by the code whose parity

check equations over F2 are given as follows: Denote E2 = 〈z0, · · · , z63〉 and

vi = zi−1 + zi−2 + zi−15. Then

0 =




wi + wi−3 + wi−8 + wi−14 + wi−16 + vi for 16 ≤ i ≤ 19

wi + wi−3 + wi−8 + wi−14 + wi−16 + vi + zi−20 for 20 ≤ i ≤ 63

(5.10)

We first establish the follow claim.

Claim 5.4.3 If C0 is zero, and C1 is non-zero, then C2 is non-zero.

Proof : Assume otherwise, i.e., that C2 is zero. Consider the 48 × 64 dimen-

sional parity check matrices H1 and H2 (essentially Equation 5.7 and 5.9) over

F2.




1010000010000100100000 · · · 000000000000000000

0101000001000010010000 · · · 000000000000000000
. . . · · · . . .

0000000000000000000000 · · · 010100000100001001




H1




0100000000000011000000 · · · 000000000000000000000

0010000000000001100000 · · · 000000000000000000000

0001000000000000110000 · · · 000000000000000000000

0000100000000000011000 · · · 000000000000000000000

1000010000000000001100 · · · 000000000000000000000

0100001000000000000110 · · · 000000000000000000000
. . . · · · . . .

0000000000000000000000 · · · 100001000000000000110




H2
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Then we need to show that H =

(
H1

H2

)
has full rank. To do that it is

enough to show that there are 64 linearly independent rows. We consider the

48 rows of H1 and 16 additional rows, namely the 5th through 20th rows of H2.

We reduce the problem to showing that a certain equation over polynomial ring

F2[x] does not have solutions in a restricted set of polynomials. We associate

with the vector c = 〈c0, · · · , c63〉 in F64
2 the polynomial c(x) =

∑63
i=0 cix

i in

F2[x]. Then the following polynomials can be associated with the 1st and 5th

rows of matrices H1 and H2, respectively:

p(x)
def
= x16 + x13 + x8 + x2 + 1,

r(x)
def
= x19 + x18 + x5 + 1.

Further note that the ith (note 1 ≤ i ≤ 48) row of H1 then gets associated

with xi−1p(x). Similarly the jth (note we restrict ourselves to 5 ≤ j ≤ 20) row

of H2 then gets associated with xj−5r(x). Therefore, observe that if the 80

rows that we are considering were dependent then we can translate that to a

non-zero solution of the following polynomial equation:

p(x)α(x) + β(x)r(x) = 0,

with additional constraints that degree(α) ≤ 47 and degree(β) ≤ 15. However,

it is well known that p(x) is irreducible. Therefore, if such a equation holds

then it must be the case that p(x) divides r(x). However, it is easy to check

that p(x) does not divide r(x), thus leading to a contradiction.

Therefore H has full rank.

We now strengthen the claim slightly.

Claim 5.4.4 If C0 is zero, and C1 is non-zero, then C2, C3 are non-zero.

Proof : Consider the following polynomials :

p(x)
def
= x16 + x13 + x8 + x2 + 1,

q(x)
def
= x15 + x14 + x,
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r(x)
def
= x19 + x18 + x5 + 1 = x4 · q(x) + 1.

Let H1 and H2 be as above.

First of all note that H2 has full rank. (This is clear from the matrix. Other-

wise, note that we could have an identity

q(x) · a(x) + r(x) · b(x) = 0

with degree(a) ≤ 3 and degree(b) ≤ 43. Since degree(q · a) < degree(r), this

cannot happen.) Now we will show that the rank of the matrix




H2 0

H1 H2

0 H1




is at least 128. Since H1 has full rank, observe that

(
H1 H2

0 H1

)

has rank at least 96. So consider the following 92 independent rows from the

above matrix, namely 5th row onwards. We also argue that another additional

5th through 40th rows of the top H2 are also independent. If not, then they

would satisfy the following polynomial equations

α(x)p(x) + β(x)r(x) = 0 (5.11)

x4β(x)p(x) + γ(x)r(x) = 0 (5.12)

with restrictions

degree(α) ≤ 47,

degree(β) ≤ 43, and

degree(γ) ≤ 35.

Since p(x) is an irreducible polynomial, and p(x) ∤ r(x), observe from Equa-

tion (5.11) that p(x)|β(x). Hence, set β(x) = µ(x)p(x). Substituting in Equa-

tion (5.12) we get

x4p(x)2µ(x) + γ(x)r(x) = 0.

Since p(x) is irreducible, and p(x) ∤ r(x), and x ∤ r(x), it must hold that

x4p(x)2|γ(x). But that is impossible, since degree(γ) ≤ 35 < 36 =

degree (x4p(x)2).
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The above proof also highlights that for the rank to be full the recurrence

relation must satisfy nice properties. In fact, the following claim strengthens

it further.

Claim 5.4.5 If C0 is everywhere zero, and C1 is non-zero, then so is C2, C3

and C4.

Proof : This claim is proven by checking that the system of equations involved

have a full rank, which can be checked by a computer. An algebraic proof of

this proof will be of interesting.

In fact the above lemma can further be generalized as follows: Consider the

subcode (i.e., set of codewords) where there are at most s (5 ≥ s ≥ 4) con-

secutive non-zero fixed columns and the rest are filled with zero, then this

subcode has dimension exactly 16 · s− 48. This can be verified by a computer

just as for Claim 5.4.5. Then we choose an s1 so that a search in a space of

dimension 16 · s1 − 48 is feasible. Thus, we choose s1 = 5. Let d21 denote

the minimum weight in this subcode, i.e the sub-code which has at most s1

consecutive non-zero columns (and the rest are all zero).

Now we restrict our attention to the cases where there are at least s2
def
= s1 + 1

consecutive non-zero columns.

(a) At least s2 consecutive columns: Let sf = ⌈s2
2 ⌉ and consider columns

C1, C2, · · · , Csf . Let df be the minimum of the combined weight of these

columns. (We would like df = 82/2 + ǫ.) In particular, we also need to

make sure that the dimension of this space (which is at most 16× sf ) is

small.

Once we do this, we next consider sb = ⌊s2
2 ⌋ columns E1, · · · , Esb . Notice

that the dimension of this space is small (16 × sb ≤ 16 × sf ) and hence

searchable. However, it turns out that the minimum weight can be ex-

tremely small. Fortunately, all these bad cases can be characterized into

what we call pathological cases. Recall Equation (5.9), the constraints

induced on E1. A quick observation reveals that its free variables are

the first 15 bits and the very last bit. If the values taken by E1s first

15 bits are zero, then we call it a pathological case, and non-pathological

otherwise.
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i. (Non-Pathological Case: i.e., Not all of the first 15 bits of E1

are zero.) Assuming E1 to be non-pathological, and let db be the

minimum of the combined weight of the columns E1, · · · , Esb . (We

would like db = 82/2 − ǫ.) Also, note that by the assumption the

columns C1, · · · , Csf and E1, · · · , Esb are all distinct. Thus in the

non-pathological case we see any codeword must have weight at least

d3 = df + db.

ii. (Pathological Case:) Therefore only the pathological cases re-

mains. This is the most subtle and difficult case. Going back to

Equation (5.9), we note that in this case it must hold that w63 = 1

and for all 0 ≤ i ≤ 62, wi = 0. We call such w pathological. Now

consider Equation (5.10). We can have two cases here.

In the first case, assume that the first 15 variables of z are zero. In

that case, it must hold that z62 = 1. (Plugging in i = 16 to 62 in

Equation (5.10) will yield zj = 0 for all 15 ≤ j ≤ 61 since wi = 0

for these values.) Also note that z63 is free. In this case, we also

call z pathological. In fact this may continue along the diagonal i.e.,

E3, E4, · · · may be pathological. If that happens then it is easy to

show that the first non-zero bits of E3 will be its 61st bit, that of E4

will be 60th bit and so on. Also each column will have a free variable

in its 63rd bit.

In the second case, we assume that not all of its first 15 variables are

zero. We call such z’s to be non-pathological.

Now in this pathological case we need to consider more columns.

Firstly note that it can never be the case that only pathological

columns are the non-zero columns. (Otherwise C1 will be patho-

logical, a contradiction.) In fact it can be argued that there has

to be at least 4 non-pathological columns (similar to Claim 5.4.5).

Thus this sets an upper bound, say pmax, on the number of patho-

logical columns. Thus if we assume there are p pathological columns

E1, E2, · · · , Ep and then n non-pathological columnsEp+1, · · · , Ep+n.

Now note that two cases can arise. Either all columns C1, · · · , Csf

and E1, E2, · · · , Ep+n are distinct or Csf = Ep+n′
for some n′ ≤ n.

Case A: In the first case, note that the dimension of the search space
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is 16×n+ p. The main idea here is to choose n and p appropriately

so that the space remains searchable, that is if we increase p by too

many (say 16) then we should decrease n (say by 1). If the minimum

of the combined weight of the p many pathological and n many non-

pathological columns is dbp (we would like it to be 82/2−ǫ), then the

combined minimum weight in this subcode is at least dpA = df +dbp.

In general, we can consider p1, p2, · · · , pl = pmax many pathological

columns with ni = sb − γi for i = 1, c · · · , l, many non pathological

columns, where γis are proportionately small (so that search space

remains tractable), and if the minimum of the combined weight of

these columns is dbpAi (we would like it to be 82/2 − ǫ), then the

minimum of the combined weight of the corresponding subcode is at

least dpAi = df + dbpAi.

Case B: In the second case, define n be the smallest n′ such that

Csf = Ep+n′
. Now consider the subcode where exactly C1, C2, · · · ,

Csf = Ep+n, Ep+n−1, · · · , E1 columns are non-zero (i.e., fix a set of

columns). Then (see Appendix A.3 Claim A.3.1) the nullity of the

system can be shown to be

p+ 64× (sf + n− 1)− 48× (sf + n) = p+ 16 · sf + 16 · n− 64.

We employ similar idea as in the previous case. We consider p1, p2, · · · ,
pl = pmax many pathological columns along with corresponding ni =

(sf + sb − 1) − γi for i = 1, · · · , l many non pathological columns

(note that C1, C2 and C3 are non pathological and included in this

calculation), and let the minimum of the combined weight of these

columns be dpBi. (We would like dpBi ≥ 82 for each i = 1, · · · , pmax.)

Note that this exhausts all possibilities. Thus d2 ≥ min{d21, d3, dpAi, dpBi|i ∈
{1, · · · , l}}, and dmin ≥ min{d1, d2}.

We choose the parameters carefully and do an exhaustive search. We record

the following claim.

Claim 5.4.6 For any non-zero column Cj, there exists k, 0 ≤ k ≤ 7 such that the

combined weight of columns Cj, Cj+1, · · · , Cj+k is at least 3 · (k + 1).
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Proof : This is easily verified by a computer program. We mention that for k ≤ 6,

an average of 3 cannot be assured.

Example 5.4.7 We cite below an example where over 7 columns an average of 3

does not hold. Below we only give 8 columns and the columns are placed horizontally.

Note that the 8 columns yield 29, whereas the first 7 columns yield only 14.

0000000000000000000000000000000000000000000000000000000001000000

0000000000000000000000000000000000000000000000000000000000110110

0000000000000000000000000000000000000000000000000000000000010100

0000000000000000000000000000000000000000000000000000000000001110

0000000000000000000000000000000000000000000000000000000000000100

0000000000000000000000000000000000000000000000000000000000000011

0000000000000000000000000000000000000000000000000000000000000001

1000101010000000001001000010000010000100101100000010001000010000

With this we see that with ℓ = 8 and µ = 3 we get d1 = 82.

We set s1 = 5 and get d21 = 90 by an exhaustive search. Note that it is

important to choose s1 small so as to keep the space searchable.

Thus sf = 3 = sb and by an exhaustive search, we get df = 42 (i.e., ǫ = 1)

and db = 40. This implies d3 ≥ 82. Recall that this is the non-pathological case,

and hence reasonable expansion can be expected.

For pathological cases, we first choose p = 8 and n = 3. We get dbp1 ≥ 40.

Similarly, setting p = 16 and n = 2, we get dbp2 ≥ 40 and setting p = 28 and n = 1

we get dbp3 ≥ 40. Note in these cases the columns Ep+n and C3 are distinct.

Similarly, for the second subcase of pathological cases, setting p = 8, n = 3

we get d5 = d5,1 ≥ 82; setting p = 16, n = 2 we get d5,2 ≥ 82, and setting p = 28,

n = 1 we get d5,3 ≥ 82. Note that in this case ∃n′ s.t. Ep+n′
= C3. Also note that
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choosing n = n′ is sufficient. This completes the proof.
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non-pathological, df ≥ 42, db ≥ 40

O

}}}

1E

<

R

E

Z

O

C

C

C

2

> 42

....
E2

3

1

8#

> 40

Z
E

R

}

Case 2(a)(ii)(A)(I)

O

8<#<16
} }}

E1

R

E

Z

O

C

C

C

2

> 42 }

3

1

> 40

    ..E2

Z
E

R

Case 2(a)(ii)(A)(II)

O

}}

E1

R

E

Z

O

C

C2

> 42 }

    ..E2

3

C1

<16 #<28

> 40

Z
E

R

}

Case 2(a)(ii)(A)(III)

O

}}

3C

E1 O

R

E

Z

<

C1
C2

    ..E2

CC 45

O

R

E

Z

  8#

8> 2

Z
E

R

}

Case 2(a)(ii)(B)(I)

129



O

} }

3C

E1 O

R

E

Z

8<#<16

C1
C2

    ..E2

C4

O

R

E

Z

8> 2

Z
E

R

}

Case 2(a)(ii)(B)(II)

O

} }

E1
O

R

E

Z

3C

    ..E2

<16 #<28

C1
C2

8> 2

O

R

E

Z Z

R
E

}

Case 2(a)(ii)(B)(III)

Various Cases in the proof of Theorem 5.4.2

(weights referred to the combined weights of the columns)

We remark that the minimum weight of this code can at most be 82 and

therefore our result is tight.

Example 5.4.8 Below is a codeword in the code defined by Equation (5.6) with

optimal minimum weight. We found the following codeword while searching for

Case 2(b)(ii)(A)(II). Below we only give eight columns that includes six non-zero

and two zero columns. The rests are all zero columns. Below the columns are placed

horizontally.

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0011110010011110 1000000001101001 1101001001010110 0000110010010000

1011000101000100 0010111101001000 1011100010101100 1101000000101111

1010101000111011 0010100100110010 1000000101001000 0110011000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000100

0000000000000000 0000000000000000 0000000000000000 0000000000000011

0000000000000000 0000000000000000 0000000000000000 0000000000000001

0000000000000000 0000000000000000 0000000000000000 0000000000000000

5.5 Further Truncation

In this section, extending our approach we prove that the minimum weight of the

code C in the last 60 words is at least 75 and that in the last 48 words is at least

52, respectively.
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Theorem 5.5.1 The code C64 , as defined by Equation (5.6), has minimum weight

at least 75 (and at least 52) in its last 60 words (and in its last 48 words, respectively).

In general, our proof strategy is robust, i.e., it can in principle be adapted

to estimate the minimum weight of this code in the last 4 ·n (where n is an integer)

number of steps, though the dimension of the search space increases by an additive

factor of (64− 4 · n) and may make it computationally infeasible. On the other

hand, when n gets smaller, say n ≤ 12, we may only need to show an average

2 per column viz a viz Claim 5.4.6. Since most of our search is conducted using

early-stopping, the large dimension is not expected to be a problem.

Next, observe that the minimum weight of the code C64 in the last 60

words yields a lower bound on the minimum weight of the code C in the last 60

words. Reviewing the proof of Theorem 5.4.2, it may be observed that in case

2 (i.e., At Least One Column Zero Case) we either consider a codeword (case

2(b)(ii)(A)(II), case 2(b)(ii)(B)(II) and case 2(b)(ii)(C)(II)) or consider few columns

(in the remaining cases) which can always be extended to get a valid codeword.

Therefore in these cases just counting the weight of the last 60 words gives a lower

bound on the minimum weight of the code in the last 60 words. However, the same

is not true for case 1 (i.e., All Columns Non-zero Case). We handle this case

carefully. This then allows us to prove the following theorem.

5.5.1 The Last Sixty Words

Theorem 5.5.2 The code C64 , as defined by Equation (5.6), has minimum weight

at least 75 in its last 60 words.

Proof : Consider any column of length 64 bits. A column restricted to its bottom

most 60 bits will henceforth be referred to as a reduced column (see figure).
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Unless otherwise mentioned, we will use the same name, eg.,

C0, to denote a column and its reduced column. We divide

the proof into three main cases.
0

o
l
u
m
n

c
o
l
u
m
n

rdcd.

4 bits

C

c

A Reduced Column

1. (All Columns Are Non-zero But Reduced Column Can Be Zero

Case): Consider any such codeword. Also consider any non-zero column,

w.l.o.g., let it be C0. Denote the columns, to the left of C0 by C1, C2, · · · , C31.

Note that by assumption all columns are non-zero.
Then observe that due to this assumption no

two consecutive reduced columns can be zero

everywhere. To see this let C0 and C1 be the

columns such that their reduced columns are

everywhere zero. Let C1 be the column left to

C0. Denote C0 by x = 〈x0, x1, · · · , x63〉 and

C1 by y = 〈y0, y1, · · · , y63〉. Note that by the

assumption xi = yi = 0 for all i = 4, · · · , 63.

Now consider the parity check equations of

C64 and set i = 20.

0

4bits

60 bits

0

0

We get

y20 + y17 + y12 + y6 + y4 + x19 + x18 + x5 + x0 = 0,

which implies x0 = 0. Similarly by setting i = 21, 22, 23, it can be seen that x

is everywhere zero.

We can therefore safely assume that no two consecutive reduced columns are

zero. Then, the following can be easily verified by a computer program.
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Claim 5.5.3 For any non-zero column Ci, there exists k, 0 ≤ k ≤ 7 such

that the combined weight of the reduced columns Ci, Ci+1, · · · , Ci+k is at least

3 · (k + 1).

Note that although we restrict ourselves to at most 2 bits ON in reduced C0,

we must consider all 16 possibilities for the first 4 bits of C0 to be able to

define reduced column C1 (from 16 bits in reduced column in C1 and all the

bits in C0). Despite this the search is easily conducted.

Then, following the same line of argument as in Case 1 (All Columns Non-

Zero Case) of Theorem 5.4.2, it can be shown that the total weight of the

reduced columns is at least 78. This is because 25 columns yield at least 75 and

the remaining seven columns yield at least 3 (since two consecutive reduced

columns contribute at least 1).

2. (At Least One Column Zero Case): This case can be handled as the

Zero Case in the proof of theorem 5.4.2. We consider the same number of

cases and we count only the last 60 bits in a column. We skip the details and

summarize below the results we obtain.

(a) Number Of Consecutive Non-Zero Columns Is At Most Five:

The combined weight of the 5 non-zero col-

umn is then at least 78.

8

C

O

R

E

Z

O

R

E

Z

}}

C1
C2

CC 45

> 7

3

Case 3(a)

(b) Number Of Consecutive Non-Zero Columns Is At Least Six:

The combined weight of three reduced columns to the left of a zero band

is at least 38.

i. (Non-Pathological Case) The combined weight of three reduced

columns to the right of a zero band is at least 38.
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Therefore the combined weight of

three reduced columns to the left of a

zero column and that of three reduced

columns to the right of a zero column

yields (assuming they are distinct) at

least 75.

7

C

C

C

2

3

1

0C

2E

E0

1E

E3Z
E
R
O

} }> >38 3

Case 3(b)(i)
ii. (Pathological Case)

A. # of Pathological columns ≤ 8

(I). 6th and earlier non-pathological columns are non-zero :

The combined weight of the pathological reduced columns and

the first three non-pathological reduced columns to the right of

the pathological columns is at least 37.

(II). 6th or earlier non-pathological column is zero: The com-

bined minimum weight of these reduced columns is at least 75.

B. 8 < # of Pathological columns ≤ 16

(I). 5th and earlier non-pathological columns are non-zero :

The combined weight of the pathological reduced columns and

the first two non-pathological reduced columns to the right of the

pathological columns is at least 37.

(II). 5th or earlier non-pathological column is zero: The com-

bined minimum weight of these reduced columns is at least 75.

C. 16 < # of Pathological columns ≤ 28

(I). 4th and earlier non-pathological columns are non-zero :

The combined weight of the pathological reduced columns and

the first non-pathological reduced columns to the right of the

pathological columns is at least 37.

(II). 4th or earlier non-pathological column is zero: The com-

bined minimum weight of these reduced columns is at least 75.

Therefore, in all these cases the combined weight of the reduced column is at least

75. This establishes the theorem.
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Case 2(b)(ii)(C)(II)

Various Cases in the proof of Theorem 5.5.2

(weights referred to the combined weights of the reduced columns)

Note that our result is tight. The codeword we cite in the previous section

achieves this bound.
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5.5.2 The Last Forty-eight Words

In this subsection, we prove that the code C64 has minimum weight at least 52 in

its last 48 words. As mentioned previously, this proof is more computation intensive

as the dimension of the search space increases by an additive factor of 16. The good

thing is that we need to show an average 2 per column, viz a viz Claim 5.4.6. This

makes our search, conducted using early-stopping, feasible in spite of the apparent

large dimension.

It is easy to observe that the minimum weight of the code C64 in the last

48 words yields a lower bound on the minimum weight of the code C in the last 48

words. The proof uses the same technique as in the proof of Theorem 5.5.2. Recall

that in that proof (that is the proof of Theorem 5.5.2) there are cases where we

either consider a codeword or consider few columns which can always be extended

to get a valid codeword. In those cases, just counting the weight of the last 48

words suffices to give a lower bound on the minimum weight of the code in the last

48 words. In the remaining case, mimicking the proof of Theorem 5.5.2, we consider

reduced columns (here restricted to last 48 entries). We then can verify that under

the assumption that all columns are non-zero, the reduced columns cannot be too

sparse. This then allows us to prove the following theorem.

Theorem 5.5.4 The code C64 as defined by Equation (5.6) has minimum weight

at least 52 in its last 48 words.

Proof : Consider any column of length 64 bits. Here a column restricted to its

bottom most 48 bits will henceforth be referred as a reduced column.

Unless otherwise mentioned, we will use the same name, eg., C0, to denote a column

and its reduced column. We divide the proof into two main cases, depending on the

existence of a zero column.

1. (All Columns Are Non-Zero But Reduced Column Can Be Zero

Case ): Consider any such codeword. Also consider any non-zero reduced

column, w.l.o.g., let it be C0. Denote the reduced columns, to the left of C0

by C1, C2, · · · , C31. Note that if five consecutive reduced columns are zero,

then the first column must be everywhere zero.
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This is easily obtained by setting i

suitably in the parity check equations

of the code C64 (see figure). We

handle that case latter. Therefore

we can safely assume that no five

consecutive reduced columns are zero.

48 bits

4bits

00000

0
0
0
0

0
0
0

0
0

0

Then the following is easily verified by a computer program.

Claim 5.5.5 For any non-zero column Ci, there exists k, 0 ≤ k ≤ 6 such

that the combined weight of the reduced columns Ci, Ci+1, · · · , Ci+k is at least

(k + 1). Furthermore, there exists ℓ, 0 ≤ ℓ ≤ 8 such that the combined weight

of the reduced columns Ci, Ci+1, · · · , Ci+ℓ is at least 2 · (ℓ+ 1).

Note that although we restrict ourselves to at most 1 bit ON in reduced C0,

we must consider all 216 possibilities for the first 16 bits of C0 to be able to

define reduced column C1 (from 16 bits in reduced column in C1 and all the

bits in C0). Since we rely heavily on early stopping, these bits must be guessed

in a lazy fashion to make the search feasible. Then following the same line of

argument as in Case 1 (All Columns Non-Zero Case) of Theorem 5.5.2, it

can be shown that the total weight of the reduced columns is at least 53 (since

24 columns yield at least 48 and the remaining eight columns yield at least 8,

or 25 columns yield at least 50 and the remaining 7 yields 7, or 26 columns

yield 52 and remaining 6 at least 1).

2. At Least One Column Zero Case: In this case the first column must be

everywhere zero. This case can then be handled as the Zero Case in the

proof of theorem 5.4.2. We consider the same number of cases and we count

only the last 48 bits in a column. We remark that in each such cases, it can be

shown that the weight in the last 48 rounds is at least 52. We skip the details.
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5.6 Lower Bound for the SHA-1 Code

We now demonstrate that a simple variants of the above technique can be used

to give a lower bound on the minimum weight of SHA-1. Specifically we have the

following theorem.

Theorem 5.6.1 SHA-1 message expansion code has minimum weight 25 in the last

60 words.

Proof : First observe that it suffices to consider the code of length 60 given by the

recurrence relation

for i = 16 to 59 Wi = (Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) <<< 1.

We view each codeword as a matrix consisting of 32 columns, each of length 60.

Note that the code is invariant under column rotations.

Now if a codeword has all columns non-zero, we are done, as that gives

minimum weight at least 32. So, assume that the codeword has one or more zero

columns and at least one non-zero column.

Let the column C1 be the first non-zero column to the right of a band of zero

columns. Let the column C1 be represented by the vector 〈xi〉59i=0. Then x satisfies

for i = 16 to 59 xi−3 ⊕ xi−8 ⊕ xi−14 ⊕ xi−16 = 0,

which can be rewritten as :

for i = 13 to 56 xi ⊕ xi−5 ⊕ xi−11 ⊕ xi−13 = 0. (5.13)

Thus for any choice of the first 13 bits of x (i.e., i = 0 to 12), the bits from i = 13 to 56

are determined by the above recurrence. The bits x57, x58 and x59 are independent,

and can be chosen independently.

Similarly, let C2 be the column to the right of C1, and let the column be

denoted by vector y. Then,

for i = 16 to 59 yi−3 ⊕ yi−8 ⊕ yi−14 ⊕ yi−16 = xi,
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which can be rewritten as

for i = 13 to 56 yi ⊕ yi−5 ⊕ yi−11 ⊕ yi−13 = xi+3. (5.14)

Again, given the full vector x, and the first 13 bits of y, the remaining bits of

y are given by this relation (except the last three bits, which remain independent).

We continue like this to the next column C3, with z denoting the vector. We mention

that if the first 13 bits of x are non zero, then the code expands fast, that is the

individual weight of x and y are reasonably good.

So, ideally, we would like to show that no matter how one chooses those bits

in x, and in y, and in z, the total weight in the three columns is at least 25. (Of

course, we stop early, if just two columns sufficed.) However this is not always true,

as C1 which is required to be the first non-zero column could be pathological in the

sense that its first 13 bits can be all zero, and hence the bits from i = 13 to 56 can

also be all zero, and the only non-zero entries come from x57, x58 or x59. We call

such a column pathological. Similarly, given that C1 is pathological, C2 can also be

pathological, with non-zero entries in only its last 6 entries this time, and so on.

We now break the proof into two cases based on the values taken by the first 13 bits

of C1 (recall C1 is the first non-zero column to the right of a band of zero columns).

1. (Non-pathological Case): Assume C1 is non-pathological, that is not all of

its first 13 bits are zero. Then by a computer program it can easily be verified

that the combined weight of Columns C1, C2 and C3 is at least 25.

Proof

At least one column zero

and one column non-zero

Non-Pathological Case

(3 Columns enough)

Pathological

Case

Pathological columns ≤ 10

(and 2 more non-pathological columns)

Pathological Columns ≥ 11

All Columns

Non-Zero (Trivial)
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2. (Pathological Case): Assume C1 is pathological i.e., each of its first 13 bits

is zero. We now make the following easy claim.

Claim 5.6.2 If C1 = 〈xi〉59i=0 is pathological, then x0 = x1 = · · · = x56 = 0.

Proof : Since x0 = x1 = · · · = x12 = 0 (by definition), setting i = 13 in

Equation (5.13) yields x13 = 0. Similarly setting i = 14, · · · , 56 gives x14 =

x15 = · · · = x56 = 0.

Note that a pathological column does not contribute much to the weight of

the codeword. Now denote the columns to the right of C2 by C3, C4 and so

on. Next consider C2. Assume for the moment that it is pathological. Then

by the same argument as in Claim 5.6.2 (and Equation (5.14)), it holds that

y0 = y1 · · · = y53 = 0 (set i = 13, · · · , 56 and note that xi = 0 for these values).

In general, in a sequence of pathological columns (assume for the moment that

this sequence has less than 12 columns) the ith pathological column has the

first 60− 3 · i entries zero.

Assume Cm+1 is the first non-pathological column (if any). So, if there are

exactly m (for the moment assume m ≤ 12) pathological columns, then the

column Cm+1 (note that Cm+1 cannot be all zero column by Equation (5.14))

must have a nonzero entry in the first 60−3·(m+1) entries. This is equivalent

to it having a nonzero entry in the first 13 bits. Since otherwise an argument

similar to Claim 5.6.2 can be used to show that all the initial 60−3(m+1) bits

are zero. The good thing is that a non-pathological column has a reasonably

good weight. We now divide the remaining proof into two cases based on the

number of consecutive pathological columns.

(a) (Number of consecutive pathological columns is at most 10):

In this case, we restrict ourselves to the case where there are 10 or less

pathological columns. In this case, the combined weight of the patho-

logical columns and at most two following non-pathological columns can

be verified by a computer program to be at least 25.

(b) (Number of consecutive pathological columns is at least 11):

If there are a sequence of 11 or more pathological columns, then they

already contribute more than 25 as verified by a computer search.

140



Hence 25 is the lower bound on the last 60 words of the SHA-1 message expansion

code.

For completeness, we outline below the (combined) search pseudo-code for

the Case 1 and Case 2(a).

1. Choose the number m of pathological columns (0 ≤ m ≤ 10). For each

pathological column choose the last three bits of that column. The other bits

are determined by these bits recalling that in the ith column, the first 60−3 · i
bits are zero.

2. Now choose the first 13 bits of the first non-pathological column (and also

choose its last three bits). From these bits all its remaining bits can be de-

termined. If the total count is ≥ 25, then go to the next choice in Step (1);

otherwise do Step (3).

3. Choose the first 13 bits of the next column (and its last three bits), from which

all its other bits can be determined. If the count is ≥ 25, then go to the next

choice in Step (1); otherwise do Step (4).

4. Choose the first 13 bits of the next column (and its last three bits), from

which all its other bits can be determined. If the count is < 25, output FAIL;

otherwise goto the next choice in Step (1).

5.7 SHA1-IME: A modified SHA proposal with a prov-

ably good code

In joint work with Charanjit S. Jutla, we propose a new hash function SHA1-IME

(IME stands for “Improved Message Expansion”). We use the same state update

transformation as in SHA-1 or SHA-0. However, we replace the SHA-1 message

expansion code by an equally simple code that has minimum distance provably at

least 82, and that moreover in the last 64 words. The code, denoted by C, can be

described as follows: Let M0, · · · ,M15 be the input message blocks.
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Define Ui = (Wi−1 ⊕Wi−2 ⊕Wi−15). Then

SHA1-IME :

for i = 0, 1, · · · , 15, Wi = Mi and

for i = 16 to 79

Wi =




Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16 ⊕ (Ui <<< 13) if 16 ≤ i < 36

Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16 ⊕ ((Ui ⊕Wi−20) <<< 13) if 36 ≤ i ≤ 79

(5.15)

We now briefly describe the state update function used in SHA-1 (for details

see [Uni95]). It comprises 80 steps divided into four rounds. Five 32-bits registers,

conveniently denoted as A,B,C,D and E, are used. Their initial state is fixed

and we denote it by 〈A0, B0, C0,D0, E0〉 (and in general, 〈Ai, Bi, Ci,Di, Ei〉 after i

steps). At step i, Wi is used to alter the state of these registers. Each step uses a

fixed constant Ki and a bit-wise boolean function fi that depends on the specific

round. Formally,

for i = 0 to 79,
Ai+1 = Wi + (Ai <<< 5)

+fi(Bi, Ci,Di) + Ei +Ki,

Bi+1 = Ai,

Ci+1 = Bi <<< 30,

Di+1 = Ci,

Ei+1 = Di,

Round Step(i) fi(X,Y,Z)

1 0-19 XY ∨XZ
2 20-39 X ⊕ Y ⊕ Z
3 40-59 XY ⊕XZ ⊕ Y Z
4 60-79 X ⊕ Y ⊕ Z

where ‘+′ denotes binary addition modulo 232.

Observe that the code C in SHA1-IME uses a left rotation by 13 bits.

However, it is easy to see that as long as the amount of rotation is relatively prime

to 32, the code remains the same up to a permutation of its columns. In particular,

its minimum weight does not change if the left rotation by 13 is replaced by a left

rotation by 1. We further restrict the code to the last 64 words.

In [JP05c] we informally argue that the SHA1-IME is resistant to all colli-

sion search attacks. We formally argue that at least the present differential collision
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attacks following [CJ98] local-collision based approach is ineffective as the weight of

the code is too large. In particular we prove that construction of a differential (or

disturbance) vector is not feasible.

In [JP05c] we show that the cipher can be expressed as a 4-CSP (constraint

satisfaction problem where each constraint involves at most 4-variables). The predi-

cates we use are majority and xor. It is known that there is an NP-complete problem

[GJ79] involving these predicates. At present all the general-purpose (randomized)

algorithms to solve 4-CSP takes the 1.4n or more [Sch99, IT03] (Schoning’s algo-

rithm does better in the satisfiable instances which is our case of interest). This

therefore rules out possibility of collision attacks on SHA1-IME using a general

purpose algorithm.

5.8 Conclusion

We have shown how lower bounds on the minimum weight of quasicyclic linear codes

of dimension m× n given by parity equations of the form

Wi =

i∑

t=1

aitWi−t +

((
i∑

t=1

bitWi−t

)
<<< 1

)
for i ≥ n,

can be obtained by reducing the problem to the minimum weight of significantly

smaller dimensional codes. Note that this equation is more general than Equa-

tion 5.5, and Equation 5.2 is of this form rather than the simpler Equation 5.5. In

some cases, we obtain the exact minimum weight, including the example codes we

considered. An obvious generalization is to consider three or more column mixing

(the equation above has only two column mixing), which could lead to codes with

even better minimum distance.

A common paradigm for designing hash functions, including MD5[Riv92],

SHA-0, SHA-1 and SHA-2[Uni02] is the following: the 512-bit message is first ex-

panded into N words, and then the N words are used as step keys (sometimes known

as round keys) in N steps of a (non-linear) block cipher invoked on an initial vector.

The output of the block cipher is the output of the compression function. As pointed

out in the Introduction, one of the key ingredients of the recent differential attacks

on MD5, SHA-0, and SHA-1 has been their poor message expansion (in terms of
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minimum weight) into the N words. Also, it is not known how to lower bound the

SHA-2 message expansion. Thus, we consider our technique to be an important

advance in the design of collision-resistant hash functions.
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Appendix

A.1 Omitted Proofs from Section 3.5

Proof of Lemma 3.5.5: We will use I, J, I ′, J ′ to denote (k + 1) dimensional

vectors over Fp. Now note that

gi(y) = Pluralityy1,··· ,yk+1∈Fn
p
[−

∑

I∈F
k+1
p ;I 6=〈1,0,··· ,0〉

Ii
1f(I1(y − y1) +

k+1∑

t=2

Ityt + y1)]

= Pluralityy−y1,y2,··· ,yk+1∈Fn
p
[−

∑

I∈F
k+1
p ;I 6=〈0,··· ,0〉

(I1 + 1)if(I1(y − y1) +
k+1∑

t=2

Ityt + y)]

= Pluralityy1,··· ,yk+1∈Fn
p
[−

∑

I∈F
k+1
p ;I 6=〈0,··· ,0〉

(I1 + 1)if(
k+1∑

t=1

Ityt + y)] (A.1)

Let Y = 〈y1, · · · , yk+1〉 and Y ′ = 〈y′1, · · · , y′k+1〉. Now note that

1− ηi ≤ Pry1,··· ,yk+1,b[T
i
f (y1, · · · , yk+1, b) = 0] = Pry1,··· ,yk+1,b[

∑

I∈F
k+1
p

Ii
1f(b+ I · Y ) = 0]

= Pry1,··· ,yk+1,b[f(b+ y1) +
∑

I∈F
k+1
p ;I 6=〈1,0,··· ,0〉

Ii
1f(b+ I · Y ) = 0]

= Pry1,··· ,yk+1,y[f(y) +
∑

I∈F
k+1
p ;I 6=〈1,0,··· ,0〉

Ii
1f(y − y1 + I · Y ) = 0]

(A.2)
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= Pry1,··· ,yk+1,y[f(y) +
∑

I∈F
k+1
p ;I 6=〈0,··· ,0〉

(I1 + 1)if(y + I · Y ) = 0]

Denote 〈0, · · · , 0〉 by ~0. Then for any given I 6= ~0 we have the following:

PrY,Y ′ [f(y + I · Y ) =
∑

J∈F
k+1
p ;J 6=~0

−(J1 + 1)if(y + I · Y + J · Y ′)] ≥ 1− ηi

and for any given J 6= ~0,

PrY,Y ′ [f(y + J · Y ′) =
∑

I∈F
k+1
p ;I 6=~0

−(I1 + 1)if(y + I · Y + J · Y ′)] ≥ 1− ηi.

Combining the above two and using the union bound we get,

PrY,Y ′ [
∑

I∈F
k+1
p ;I 6=~0

(I1 + 1)if(y + I · Y ) =

∑

I∈F
k+1
p ;I 6=~0

∑

J∈F
k+1
p ;J 6=~0

−(I1 + 1)i(J1 + 1)if(y + I · Y + J · Y ′) =

∑

J∈F
k+1
p ;J 6=~0

(J1 + 1)if(y + J · Y ′)] ≥

1− 2(pk+1 − 1)η ≥ 1− 2pk+1ηi (A.3)

The lemma now follows from the observation that the probability that the

same object is drawn from a set in two independent trials lower bounds the proba-

bility of drawing the most likely object in one trial: Suppose the objects are ordered

so that pi is the probability of drawing object i, and p1 ≥ p2 ≥ · · · . Then the

probability of drawing the same object twice is
∑

i p
2
i ≤

∑
i p1pi ≤ p1.
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Proof of Claim 3.5.16:

Tg(Y, b) =
∑

I∈F
k+1
3

g(I · Y + b)

=
∑

I∈F
k+1
3

[−Tf (I · Y + b− I · Z1 − r1, I · Z2 + r2, · · · , I · Zk+1 + rk+1,

I · Z1 + r1) + f(I · Y + b)]

= −
∑

I∈F
k+1
3




 ∑

∅6=J ′∈F
k
3

f(I · Y + b+

k+1∑

t=2

JtI · Zt +

k+1∑

t=2

Jtrt)




+


 ∑

J ′∈F k
3

(
f(2I · Y + 2b− I · Z1 − r1 +

k+1∑

t=2

JtI · Zt +
k+1∑

t=2

Jtrt)

+f(I · Z1 + r1 +
k+1∑

t=2

JtI · Zt +
k+1∑

t=2

Jtrt)

)]]

= −
∑

06=J ′∈F
k
3



∑

I∈F
k+1
3

f(I · Y + b+
k+1∑

t=2

Jtrt +
k+1∑

t=2

JtI · Zt)




−
∑

J ′∈F
k
3






∑

I∈F
k+1
3

f(2I · Y + 2b− I · Z1 − r1 +
k+1∑

t=2

JtI · Zt +
k+1∑

t=2

Jtrt)




+



∑

I∈F
k+1
3

f(I · Z1 + r1 +
k+1∑

t=2

JtI · Zt +
k+1∑

t=2

Jtrt)







=
∑

06=J ′∈F
k
3

[
−Tf (y1 +

k+1∑

t=2

Jtzt,1, · · · , yk+1 +

k+1∑

t=2

Jtzt,(k+1), b+

k+1∑

t=2

Jtrt)

]

+
∑

J ′∈F
k
3

[
−Tf (2y1 − z1,1 +

k+1∑

t=2

Jtzt,1, · · · , 2yk+1 − z1,(k+1) +

k+1∑

t=2

Jtzt,(k+1),

2b− r1 +
k+1∑

t=2

Jtrt) + Tf (z1,1 +
k+1∑

t=2

Jtzt,1, · · · , z1,k+1 +
k+1∑

t=2

Jtzt,(k+1),

r1 +

k+1∑

t=2

Jtrt)

]
(A.4)
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Proof of Claim 3.5.17:

T 1
g1

(Y, b) =
∑

I∈F
k+1
3

I1g1(I · Y + b)

=
∑

I∈F
k+1
3

I1
[
−T 1

f (I · Y + b− I · Z1 − r1, I · Z2 + r2, · · · , I · Zk+1 + rk+1,

I · Z1 + r1) + f(I · Y + b)]

= −
∑

I∈F
k+1
3

I1




 ∑

∅6=J ′∈F
k
3

f(I · Y + b+

k+1∑

t=2

JtI · Zt +

k+1∑

t=2

Jtrt)




+


 ∑

J ′∈F k
3

f(2I · Y + 2b− I · Z1 − r1 +
k+1∑

t=2

JtI · Zt +
k+1∑

t=2

Jtrt)






= −
∑

06=J ′∈F
k
3



∑

I∈F
k+1
3

I1f(I · Y + b+

k+1∑

t=2

Jtrt +

k+1∑

t=2

JtI · Zt)




−
∑

J ′∈F
k
3



∑

I∈F
k+1
3

I1f(2I · Y + 2b− I · Z1 − r1 +

k+1∑

t=2

JtI · Zt +

k+1∑

t=2

Jtrt)




=
∑

06=J ′∈F
k
3

[
−T 1

f (y1 +
k+1∑

t=2

Jtzt,1, · · · , yk+1 +
k+1∑

t=2

Jtzt,(k+1), b+
k+1∑

t=2

Jtrt)

]

+
∑

J ′∈F
k
3

[
T 1

f (2y1 − z1,1 +
k+1∑

t=2

Jtzt,1, · · · , 2yk+1 − z1,(k+1) +
k+1∑

t=2

Jtzt,(k+1),

2b− r1 +
k+1∑

t=2

Jtrt)

]

(A.5)
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Proof of Claim 3.5.19:

T i
gi

(Y, b) =
∑

I∈F
k+1
p

Ii
1gi(I · Y + b)

=
∑

I∈F
k+1
p

Ii
1

[
−T i

f (I · Y + b− I · Z1 − r1, I · Z2 + r2, · · · , I · Zk+1 + rk+1,

I · Z1 + r1) + f(I · Y + b)]

= −
∑

I∈F
k+1
p

Ii
1




 ∑

∅6=J ′∈Fk
p

f(I · Y + b+

k+1∑

t=2

JtI · Zt +

k+1∑

t=2

Jtrt)




+


 ∑

J1∈Fp,J1 6=1

J i
1


 ∑

J ′∈Fk
p

f(J1I · Y + J1b− (J1 − 1)I · Z1 − (J1 − 1)r1+

k+1∑

t=2

JtI · Zt +

k+1∑

t=2

Jtrt)

]]

= −
∑

06=J ′∈Fk
p


 ∑

I∈F
k+1
p

Ii
1f(I · Y + b+

k+1∑

t=2

Jtrt +
k+1∑

t=2

JtI · Zt)




−
∑

J ′∈Fk
p


 ∑

J1∈Fp;J1 6=1

J i
1


 ∑

I∈F
k+1
p

Ii
1f(J1I · Y + J1b− (J1 − 1)I · Z1 − (J1 − 1)r1

+

k+1∑

t=2

JtI · Zt +

k+1∑

t=2

Jtrt)

]]

=
∑

06=J ′∈Fk
p

[
−T i

f (y1 +

k+1∑

t=2

Jtzt,1, · · · , yk+1 +

k+1∑

t=2

Jtzt,(k+1), b+

k+1∑

t=2

Jtrt)

]

+
∑

J ′∈Fk
p


 ∑

J1∈Fp;J1 6=1

J i
1

[
−T i

f (J1y1 − (J1 − 1)z1,1 +
k+1∑

t=2

Jtzt,1, · · · ,

J1yk+1 − (J1 − 1)z1,(k+1)

+

k+1∑

t=2

Jtzt,(k+1), J1b− (J1 − 1)r1 +

k+1∑

t=2

Jtrt)

]]
(A.6)
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A.2 Omitted Proofs from Section 3.7

Lemma A.2.1 ([Sam07]) For a function f : {0, 1}n → R it holds ‖f‖8U3
= Ey

∑
α f̂

4
y (α).

Lemma A.2.2 ([Sam07])

Exy

∑

αβ

f̂2
x(α)f̂2

y (β)f̂2
x+y(α+ β) = Ey

∑

α

f̂6
y (α).

Proof : By simply expanding it can be verified that (fx ∗ fx)(s) = (fs ∗ fs)(x). Now

we consider the expression

Exy

∑

αβ

f̂2
x(α)f̂2

y (β)f̂2
x+y(α + β)

= Exy

∑

αβ

Euu′vv′zz′fx(u)fx(u′)χα(u+u′)fy(v)fy(v′)χβ(v+v′)fx+y(z)fx+y(z′)χ(α+β)(z+z
′)

= Exystruvz

∑

αβ

fx(u)fx(u+ s)χα(s)fy(v)fy(v + t)χβ(t)fx+y(z)fx+y(z + r)χ(α+β)(r)

= Exystruvzfx(u)fx(u+ s)fy(v)fy(v + t)fx+y(z)fx+y(z + r)δs
rδ

t
r

= Exysuvzfx(u)fx(u+s)fy(v)fy(v+s)fx+y(z)fx+y(z+s) = Exys(fx∗fx)(s)(fy∗fy)(s)(fx+y∗fx+y)(s)

= Exys(fs ∗ fs)(x)(fs ∗ fs)(y)(fs ∗ fs)(x+ y) = Es

∑

α

f̂s ∗ fs

3
(α) = Ex

∑

α

f̂6
x(α)

With the above the following corollary is immediate.

Corollary A.2.3

Euyz

∑

αβ

f̂2
uy(α)f̂2

uz(β)f̂2
u(y+z)(α+ β) = Euy

∑

α

f̂6
uy(α).

Claim A.2.4 ([Sam07]) Define a function F : {0, 1}n → R by F (x) = ĝ2
x(Dx),

where g is an arbitrary boolean function and D : {0, 1}n → {0, 1}n is an arbitrary

linear map. Then F̂ (v) = Es ĝ
2
s(Dts+ v)

Proof of the Claim:

F̂ (v) = Ez F (z)χv(z) = Ez ĝ
2
z(Dz)χv(z) = EzEyw gz(y)gz(w)χDz(y + w)χv(z)
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= Ezys gz(y)gz(y+s)χDz(s)χv(z) = Ezs gz∗gz(s)χDz(s)χv(z) = Ezs gs∗gs(z)χDz(s)χv(z)

= Ezs

∑

y

ĝ2
s(y)χy(z)χDts(z)χv(z) = Es

∑

y

δy
Dts+v ĝ2

s (y) = Es ĝ
2
s(Dts+v).

Claim A.2.5 If Γi = Γ
t
i and y ·Γu is invariant under transformation y 7→ u, u 7→ y,

then Γ is invariant under the action of Sym3.

Proof : Define Λijk
def
= Γkji. Then

(y · Γu)j =
∑

ijk

yiΓijkuk =
∑

ijk

yiΛkjiuk = (u · Λy)j = (y · Λu)j.

Since this holds for any arbitrary u, y, it must be the case that Λ = Γ i.e., Γkji =

Λijk = Γijk. Since Γijk = Γikj, we get

Γijk = Γikj = Γkji = Γkij = Γjik = Γjki,

ie., Γ is invariant under the action of Sym3. (Equivalently, for any bijection σ :

{u, x, y} → {u, x, y}, 〈x, yΓu〉 = 〈σ(x), σ(y)Γσ(u)〉.)

Lemma A.2.6 Let ∑

αβ

f̂2(α)ĝ2(β)ĥ2(α+ β) ≥ ρ,

then ∑

αβ

f̂4(α)ĝ4(β)ĥ2(α+ β) ≥ Ω(ρ5).

Proof : Denote

Fn
2 × Fn

2 ⊃ S
def
= {(α, β) | min{|f̂(α)|, |ĝ(β)|, |ĥ(α+ β)|} < ǫ}.

Further define

S ⊃ S1
def
= {(α, β) | |f̂(α)| = min{|f̂(α)|, |ĝ(β)|, |ĥ(α+ β)|} < ǫ},

S ⊃ S2
def
= {(α, β) | |ĝ(β)| = min{|f̂(α)|, |ĝ(β)|, |ĥ(α+ β)|} < ǫ},

S ⊃ S3
def
= {(α, β) | |ĥ(α+ β)| = min{|f̂(α)|, |ĝ(β)|, |ĥ(α+ β)|} < ǫ}.
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Denote S = Fn
2 × Fn

2 − S. Then

ρ ≤
∑

αβ

f̂2(α)ĝ2(β)ĥ2(α + β) ≤
3∑

i=1

∑

(α,β)∈Si

f̂2(α)ĝ2(β)ĥ2(α+ β)+

∑

(α,β)∈S

f̂2(α)ĝ2(β)ĥ2(α+ β) < 3ǫ2 +
∑

(α,β)∈S

f̂2(α)ĝ2(β)ĥ2(α+ β).

We set ǫ
def
=
√
ρ/3− o(ρ). This implies S 6= ∅. Therefore,

∑

αβ

f̂4(α)ĝ4(β)ĥ2(α+ β) ≥
∑

(α,β)∈S

f̂4(α)ĝ4(β)ĥ2(α+ β) ≥ ǫ10 = Ω(ρ5).

Claim A.2.7 Suppose it holds that for all x, y, z and all bijection σ : {x, y, z} →
{x, y, z}, it is true that 〈x, y · Γz〉 = 〈σx, σy · Γσz〉, then Γ is invariant under the

action of Sym3.

Proof : Note that since for all x, y, z it holds that
∑

ijk xiyjzk(Γijk + Γikj) = 0, it

must hold Γijk = Γikj. Similarly the other cases.

Lemma A.2.8 Let Q be a d dimensional parallelogram. Further let {fp}p∈Q be a

family of boolean functions. Moreover let g be another function. Let

∑

{αp}p∈Q

∏

p∈Q

f̂p
2
(αp) · ĝ2(

∑

p

αp) ≥ ρ,

then
∑

{αp}p∈Q

∏

p∈Q

f̂p
4
(αp) · ĝ2(

∑

p

αp) ≥
(

ρ

2d + 1

)2d+1+1

.

Proof : Analogous to Lemma A.2.6.

Lemma A.2.9 If f and g are boolean functions i.e., f, g : {0, 1}n → {−1, 1}, then

for all d ≥ 1,

Ex1···xd
[ Ez fx1···xd

(z)gx1···xd
(z) ]2 =

∑

α

f̂ g
4

α.
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Proof : Denote h(z)
def
= fg(z)

def
= f(z)g(z) and F (z)

def
= fx1(z), G(z)

def
= gx1(z) and

H(z)
def
= FG(z) = F (z)G(z). Note that h is a boolean function too. By [Sam07],

the above holds for d = 1 (and also above, we show that it holds for d = 2). Assume

it holds for d. Now denote e
def
= d+ 1.

Ex1···xe [ Ez fx1···xe(z)gx1···xe(z) ]2 = Ex1Ex2···xe [ EzFx2···xe(z)Gx2···xe(z)]2 = Ex1

∑

α

Ĥ4
α

Now note that

Ĥα =
∑

y

H(y)χα(y) =
∑

y

χα(y)h(y)h(x1 + y) =
∑

yβγ

ĥβĥγχβ(y)χγ(x1 + y)χα(y)

=
∑

βγ

ĥβĥγδ
α+γ
β χγ(x1) =

∑

β

ĥβĥα+βχβ(x1).

Using the above, we deduce

Ex1···xe [ Ezfx1···xe(z)gx1···xe(z) ]2 = Ex1

∑

α

Ĥ4
α = Ex

∑

α


∑

β

ĥβĥα+βχβ(x)




4

= Ex

∑

α′


∑

β

ĥβ ĥα′χβ(x)




4

= Ex

∑

α′


ĥα′

∑

β

ĥβχβ(x)




4

= Ex

∑

α

(
ĥαh(x)

)4

=
∑

α

f̂ g
4

α.

Lemma A.2.10 f̂x1···xd
(z) = 0 for any x1, · · · , xd with 〈∑i∈[d] xi, z〉 = 1.

Proof :

f̂x1···xd
(z) = Exfx1···xd

(x)χz(x) = Ex

∏

J⊆[d]

f(x+
∑

j∈J

xj)χz(x)

= Ey

∏

J⊆[d]

f(y +
∑

j∈J

xj)χz(y +
∑

i∈[d]

xi) = χz(
∑

i∈[d]

xi) Ey

∏

J⊆[d]

f(y +
∑

j∈J

xj)χz(y)

= −f̂x1···xd
(z)
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A.2.1 A Robust Characterization of Bilinearity

A function f : Fn
2 × Fn

2 → Fm
2 is said to be bilinear if it satisfies

∀u, x, y,∈ Fn
2 (i)f(x, u)+f(y, u) = f(x+y, u) and (ii)f(u, x)+f(u, y) = f(u, x+y).

It can be shown that then f(x, y) =
∑

ij aijxiyj , where aij ∈ Fm
2 .

Define f,z(u, v)
def
= f(u, v+ z) +f(u, v) and similarly, fz,(u, v)

def
= f(u+ z, v) +

f(u, v).

Lemma A.2.11 (Exact Characterization A) A function is bilinear iff fx,y(u, v) =

f(x, y).

Proof : Setting x = y = 0, we obtain f(0, 0) = 0. Setting x = u and y = v, we

obtain f(0, v) = f(u, 0). Setting x = u and y = 0, we obtain f(u, 0) = 0. Hence

f(v, 0) = 0. Now setting u = 0 yields f(x, y) + f(x, v) = f(x, v + y). Similarly,

setting v = 0 yields f(x, y) + f(u, y) = f(x+ u, y). Thus f is bilinear.

We first do a Rubinfeld-Sudan [RS96] type of analysis. Define

g(x, y)
def
= Pluralityu,v∈F

n
2
{fx,y(u, v)}

= Pluralityu,v∈F
n
2
{f(u+ x, v + y) + f(u+ x, v) + f(u, v + y) + f(u, v)}

Further define η = Pru,v,x,y [ fx,y(u, v) + f(x, y) 6= 0 ]. Define the distance between

two functions to be the probability that they disagree i.e.,

dist(f, g)
def
= Pr(x,y)∈(Fn

2 )2 [ f(x, y) 6= g(x, y) ]

Lemma A.2.12 Then dist(f, g) ≤ 2η.

Proof : By a simple averaging argument.

Lemma A.2.13 For all x, y,Pru,v [ g(x, y) = fx,y(u, v) ] ≥ 1− 8η.

Proof : Note that

Pru,u′,v,v′
[
f(u+ x, v + y) = fu+x,v+y(u′, v′)

]
≥ 1− η,
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Pru,u′,v,v′
[
f(u+ x, v) = fu+x,v(u′, v′)

]
≥ 1− η,

Pru,u′,v,v′
[
f(u, v + y) = fu,v+y(u′, v′)

]
≥ 1− η,

Pru,u′,v,v′
[
f(u, v) = fu,v(u′, v′)

]
≥ 1− η,

and similar things for f(u′, v′) etc. Therefore,

Pru,u′,v,v′
[
fx,y(u, v) = fx,y(u′, v′)

]
≥ 1− 8η.

Since the collision probability of a distribution gives a lower bound to the maximum

probability of the distribution, this proves the lemma.

Lemma A.2.14 If η < 1
40 , then g is a bilinear function.

Proof : Fix x, y, u, v. Now observe that each of the following events hold with prob-

ability (when u′, v′ are chosen uniformly at random) at least 1− 8η :

E1 : g(x, y) = fx,y(u′ + u, v′ + v); E2 : g(u, v) = fu,v(u′, v′);

E3 : g(u+ x, v) = fu+x,v(u′, v′); E4 : g(u, v + y) = fu,v+y(u′, v′);

E5 : g(u+ x, v + y) = fu+x,v+y(u′, v′).

Thus with probability at least 1 − 40η, all of them happen, and in that case it is

easy to verify that

g(x, y) = g(u, v) + g(u+ x, v) + g(u, v + y) + g(u, v).

In particular, if η < 1/40, then g(x, y) = gx,y(u, v) for all x, y, u, v, i.e., g is bilinear.

Following BLR (and BCLR) analysis, the above lemma can be improved

slightly (see, [BLR93, BOCLR04]).

Lemma A.2.15 For (x, y) ∈ (Fn
2 )2, define ǫxy = Pru,v [ g(x, y) 6= fx,y(u, v) ] and

define ǫ = maxxy ǫxy. Then if η < 1
25 , then ǫ ≤ α where α is the smallest root of

X2 −X + 4η = 0.

Proof : As in [BOCLR04, BLR93], for any given (x, y) ∈ (Fn
2 )2 it can be shown that

155



(provided η is small enough as given)

1− 8η ≤ (1− ǫxy)2 + ǫ2xy i.e., 4η ≥ ǫxy − ǫ2xy.

Furthermore, as ǫxy < 1/2 for all (x, y), we get that ǫxy ≤ α, where α is the smallest

root of X2 −X + 4η = 0. In particular, this implies that ǫ ≤ α.

Lemma A.2.16 If η < 1
25 , and hence, ǫ < 1

5 , then g is bilinear.

Proof : From Lemma A.2.15, it is clear that if η < 1
25 , then ǫ < 1

5 . Then as in

Lemma A.2.14, for any fixed x, y, u, v, with probability (over the choices of u′, v′) at

least 1−5ǫ (and hence, with positive probability) all the events E1, · · · , E5 happen.

This then implies that g is bilinear.

Lemma A.2.17 It holds dist(f, g) ≤ η + ǫ. Therefore, dist(f, g) ≤ min{2η, η + ǫ}.

We modify the exact characterization slightly.

Lemma A.2.18 (Exact Characterization B) A function is bilinear iff ∀w, h, x, y, z
it holds that f(w, h) = f(x, y) + f(x, y + h) + f(x+ w, z) + f(x+ w, z + h).

Proof : Easy.

With this we redefine

g(w, h)
def
= Pluralityx,y,z∈F

n
2
{f(x, y) + f(x, y + h) + f(x+ w, z) + f(x+ w, z + h)}.

Further redefine

η = Prh,w,x,y,z [ f(w, h) + f(x, y) + f(x, y + h) + f(x+ w, z) + f(x+ w, z + h) 6= 0 ] .

With the above exact characterization, we can prove

Lemma A.2.19 For all w, h,

Prx,y,z [ g(w, h) = f(x, y) + f(x, y + h) + f(x+w, z) + f(x+ w, z + h) ] ≥ 1− 4η.

Proof : Observe that when x, x′, y, y′, z, z′ are chosen uniformly randomly, then each

of the following events happens with probability at least 1− η :

E1 : f(x+ x′, y + y′ + z + z′) = f(x, y) + f(x, y′ + z + z′) + f(x′, y′) + f(x′, z + z′ + y),
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E2 : f(x+ x′, y + y′ + z′ + z + h) = f(x, y + h) + f(x, y′ + z′ + z) + f(x′, y′ + h)

+ + f(x′, y + z′ + z),

E3 : f(x+ x′, y + y′ + z + z′) = f(x+ w, z) + f(x+ w, z′ + y + y′) + f(x′ + w, z′)

+f(x′ + w, y + y′ + z),

E4 : f(x+ x′, y + y′ + z + z′ + h) = f(x+ w, z + h) + f(x+ w, z′ + y + y′)

+f(x′ + w, z′ + h) + f(x′ + w, y + y′ + z).

By union bound, the probability that all of them happen is at least 1−4η. However,

when all of them happen, then we get

f(x, y) + f(x, y + h) + f(x+ w, z) + f(x+ w, z + h) =

f(x′, y′) + f(x′, y′ + h) + f(x′ + w, z′) + f(x′ + w, z′ + h),

i.e., a collision. Since collision probability lower bounds the quantity we want, this

completes the proof.

Remark A.2.20 The lemma above can be extended easily over abelian groups as

follows.

E1 : f(−x+ x′,−(y + y′ + z + z′)) = f(x, y)−

f(x,−(y′ + z + z′))− f(x′, y′) + f(x′,−(z + z′ + y)),

E2 : f(−x+ x′,−(y + y′ + z′ + z + h)) = f(x, y + h)− f(x,−(y′ + z′ + z))

−f(x′, y′ + h) + f(x′,−(y + z′ + z)),

E3 : f(−x+ x′,−(y + y′ + z + z′)) = f(x+ w, z) − f(x+ w,−(z′ + y + y′))

−f(x′ + w, z′) + f(x′ + w,−(y + y′ + z)),

E4 : f(x+ x′,−(y + y′ + z + z′ + h)) = f(x+ w, z + h)− f(x+ w,−(z′ + y + y′))

−f(x′ + w,−(z′ + h)) + f(x′ + w,−(y + y′ + z)).

Further note that if the maps 2 : G1 → G1 and 2 : G2 → G2, where 2(x) = x + x,

induce isomorphisms, then one can replace the above by BLR’s extension (i.e., one

can take y = z).
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The above lemma can easily be seen to imply the next lemma.

Lemma A.2.21 If η < 2
25 , and hence, ǫ < 1

5 , then g is bilinear.

Proof : Firstly observe that we can slightly improve Lemma A.2.15 as follows (with

the same definition of ǫxy and ǫ as in there): If η < 2
25 , then ǫ ≤ α where α is the

smallest root of X2 −X + 2η = 0. This follows as we can now show

1− 4η ≤ (1− ǫxy)2 + ǫ2xy.

The rest is similar to Lemma A.2.16.

A.3 A Rank Proof

Recall that we used E0 to denote a column that is zero everywhere. Also, recall

that the columns left to E0 are denoted E1, E2 and so on. In the following claim,

we will assume 3 ≤ n.

Claim A.3.1 Let E1, E2, · · · , Ep be p pathological columns. Also, let Ep+1, Ep+2, · · · ,
Ep+n be n non-pathological columns. Further assume that Ep+n+1 = C0 is every-

where zero. If the nullity of the parity check equations resulting from these columns

with p = 0 is 16 ·n− 48, then the nullity of the parity check equations resulting from

these columns with any p ≤ 28 is

p+ 16 · n− 48.

Proof : Let Ni,j, (1 ≤ i ≤ n, 0 ≤ j ≤ 63) denote the entries in the non-pathological

columns. Also let Pi,j, (1 ≤ i ≤ p, for each i, 64 − i ≥ j ≤ 63) be the pathological

variables. We will denote Ni = 〈Ni,0, · · · , Ni,63〉 and Pi = 〈Pi,64−i, · · · , Pi,63〉. Let

H1|i denote the matrix H1 restricted to the last i columns. (Note that only the

last i rows will be non-zero.) Also let H2|i denote the matrix H2 restricted to the

last i columns. (Note that only the last i − 1 rows will be non-zero.) Note that
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〈P1, · · · , Pp, N1, · · · , Nn〉 must belong to the null space of the following matrix:

H =




H1|1 H2|2
H1|2 H2|3

. . .
. . .

H1|p−1 H2|p
H1|p H2

H1 H2

. . .
. . .

H1 H2

H1




Note that when we restrict H1 or H2 to the last few columns, the top rows in that

restricted entries may become zero row. We remove such rows if the entire row in

the above matrix H becomes everywhere zero. Note that with this modification, the

following sub-matrix is already in the echelon form:

H1 =




H1|1 H2|2
H1|2 H2|3

. . .
. . .

H1|p−1 H2|p








(p − 1) blocks

(Observe that first block corresponding to (H1|1 H2|2) reduces to (1 10), and that

corresponding to (H1|2 H2|3) reduces to

(
10 100

01 110

)
.)

Furthermore, since by assumption the following sub-matrix has full rank:

H2 =




H2

H1 H2

. . .
. . .

H1 H2

H1








(n + 1) blocks

the matrix H has full rank. Note here that in the top 48− p rows, H1|p is entirely

zero. However these rows in H are independent since H2 has full rank. In the
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remaining rows H1|p is in echelon form and hence independent. Note that it has

number of rows i.e., constraints:

48× (n+ 1) +

p−1∑

i=1

i = 48(n + 1) +
p(p− 1)

2
.

Also, note the number of variables i.e., columns is

64× n+

p∑

i=1

i = 64 · n+
p(p+ 1)

2
.

Thus the nullity of the system is

64 · n+
p(p+ 1)

2
−
(

48(n + 1) +
p(p− 1)

2

)
= p+ 16 · n− 48.

This completes the proof.
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