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 A Game Theoretic Approach to Nuclear Safeguards Selection and 

Optimization 

 

Rebecca Morgan Ward, Ph.D. 

The University of Texas at Austin, 2013 

 

Supervisor:  Erich Schneider 

 

This work presents a computational tool that calculates optimally efficient 

safeguarding strategies at and across nuclear fuel cycle facilities for a cost-constrained 

inspector seeking to detect a state-facilitated diversion or misuse. The tool employs a 

novel methodology coupling a game theoretic solver with a probabilistic simulation 

model of a gas centrifuge enrichment plant and an aqueous reprocessing facility. The 

simulation model features a suite of defender options at both facilities, based on current 

IAEA practices, and an analogous menu of attacker proliferation pathway options. The 

simulation model informs the game theoretic solver by calculating the detection 

probability for a given inspector-proliferator strategy pair and weighting the detection 

probability by the quantity and quality of material obtained to generate a scenario payoff. 

Using a modified fictitious play algorithm, the game iteratively calls the simulation 

model until the equilibrium is reached and outputs the optimal inspection strategy, 

proliferation strategy, and the equilibrium scenario payoff. Two types of attackers are 

modeled: a breakout-willing attacker, whose behavior is driven by desire for high value 

material; and a risk-averse attacker, who desires high-value material but will not pursue a 

breakout strategy that leads to certain detection. Results are presented demonstrating the 

sensitivity of defender strategy to budget and attacker characteristics, for an attacker 
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known to be targeting the enrichment or reprocessing facility alone, as well as an attacker 

who might target either facility. The model results indicate that the optimal defender 

resource allocation strategy across multiple facilities hardens both facilities equitably, 

such that both facilities are equally unattractive targets to the attacker.  
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 BACKGROUND 

Chapter 1: Introduction 

The threat posed by the illicit production of nuclear weapons worldwide has gained 

increased attention in recent years, in part due to a number of incidents where stolen nuclear 

material was recovered and in part due to the discovery of clandestine weapons programs in 

sensitive nations.  In April 2009, President Obama raised this threat as a security priority, noting 

that, “The technology to build a bomb has spread… Our efforts to contain these dangers are 

centered in a global non-proliferation regime, but as more people and nations break the rules, we 

could reach the point when the center cannot hold. This matters to all people, everywhere.” [1]  

Concern over nuclear proliferation has elevated in concert with increased global interest in 

civilian nuclear power and a divergence in commercial fuel cycle technologies.  This confluence 

of factors has placed heavy demands on International Atomic Energy Agency (IAEA), the 

organization tasked with verification of peaceful nuclear activities.  

 While the IAEA’s workload continues to grow, the resources available to it remain 

relatively stagnant.  The IAEA operated on a zero-growth budget from the mid 1980’s into the 

early 2000’s, finally receiving a substantive budget increase in 2003 [2]. Even against an 

increased threat backdrop, the IAEA’s verification budget rose from approximately $145 million 

in 2007 to $160 million in 2010, a rate only marginally higher than inflation [3].  Traditionally 

IAEA safeguards are applied in a prescriptive manner at declared nuclear facilities, with the 

application of safeguards varying little from state to state regardless of perceived threat or size of 

the nuclear program. The safeguarding implementation is largely transparent to the states except 

for random on-site inspections.  The regime thus places high demand on physical inspections, 

which are costly and inefficient. 

  Budget constraints have spurred efforts to increase IAEA efficiency through the 

development of tools to aid in resource allocation decision-making.  Many such tools focus on 

diversion pathway analysis and are based on probabilistic techniques.  While probabilistic 

techniques are valuable for describing fundamentally random events, like natural disasters, their 

use has received criticism recently for application to adversarial problems.   A 2010 National 



 2 
 

Research Council report questions the use of probabilistic techniques for adversarial risk 

analysis, noting that data in this area is too scarce to characterize adequately the threat or 

consequences of an attack. Further the study suggests that probabilistic techniques may not fully 

capture the behavior of intentional actors, like a malevolent state or terrorist [4].  Intentional 

actors represent a special class of threat, as they possess the ability to observe defenses and 

adjust their actions accordingly.  Cox voices similar skepticism in his work, criticizing especially 

the use of chance nodes in fault tree analysis to model adversary decisions, arguing that these 

decisions are chosen based on adversary judgment, not governed by chance [5]. Cox’s paper and 

the NRC report alike suggest that a game theoretic approach to intelligent risk analysis may be 

more appropriate. 

 To address the aforementioned shortcomings in current nonproliferation analysis tools, 

this work develops a game theoretic approach to safeguards strategy selection and resource 

allocation.  A state or state-supported insider group is treated as an intelligent adversary seeking 

to achieve his most desirable outcome through diversion strategy selection.  The interaction 

between the IAEA inspector (defender) and the proliferator (attacker) is modeled as a two-

person, zero-sum, simultaneous play game, where the defender is the maximizing player seeking 

to maximize the payoff, and the attacker is the minimizing player seeking to minimize the 

payoff.  Both players select their strategies to optimize their own outcomes in the worst-case 

scenario.   

One of the common criticisms of game theoretic risk analysis approaches is that current 

models do not contain enough realistic complexity to be useful for real decision-making [4].  

This problem derives largely from lack of experimental or historical data with which to populate 

a game theoretic model.  Cox suggests the use of probabilistic techniques to support game 

theoretic models in this manner, providing uncertain values as input to payoff matrices [5].  

Consistent with Cox’s recommendation, this work employs the use of a simulation model to 

inform the game model with payoff values for different strategy pairs.  Representative overall 

detection probabilities for a diversion scenario will be factored into payoffs, along with material 

attractiveness and quantity.  The game model will serve as an optimization tool and repeatedly 

call the simulation, searching the strategy space for the strategy that maximizes the defender’s 

payoff, given that the attacker also selects his optimal strategy.   



 3 
 

The value of game theory for adversarial analyses lies in this prescient optimization; a 

real adversary is intelligent and will choose strategies to optimize his payoff or to minimize the 

defender’s payoff, and the defender should choose her strategy accordingly.  Many probabilistic 

analysis techniques fail to capture motivated adversary behavior and do not optimize the 

defender’s strategy in the context of its probable effect on adversary behavior.  Such an approach 

to adversarial analysis is particularly germane to IAEA strategy analysis given that budget 

constraints are pushing the IAEA away from traditional, prescriptive safeguards toward 

information-driven safeguards (IDS).  The IDS approach dictates that the Agency use any 

information available to it to advise resource allocation, thus ensuring that safeguarding 

resources are being applied where the need is greatest [6].  The game theoretic methodology 

presented here provides a framework for guiding IDS and informed resource allocation decision-

making. 

To replicate the challenges facing the IAEA, the defender is cost-constrained and must 

select the best strategy available given her budget.  The simulation model features a gas-

centrifuge enrichment plant and an aqueous reprocessing facility under IAEA safeguards.  The 

defender has a menu of safeguarding options to choose from for each facility, based on current 

IAEA practices at that type of facility.  Likewise the attacker has a set of diversion and misuse 

options from which to use, again based on plausible diversion and misuse scenarios at the 

respective facilities.  The model investigates optimal safeguarding and diversion strategies across 

the two facilities by allowing the defender to distribute resources across both facilities.   

 Taking a game theoretic approach to safeguards selection is not in itself new, and a rich 

body of literature exists on the use of game theory for inspection games and resource allocation 

problems.  The novelty of the work presented here lies in the coupling of a game theoretic model 

to a full-scale simulation model, thus demonstrating a platform for informing the game with 

meaningful detection probabilities.  Most game theoretic inspection models are largely 

theoretical and are of limited complexity to allow for analytical solutions.  The use of a simulator 

to provide numerical values to the game theoretic model enables increased fidelity and richness 

of diversion scenarios, enhancing the scope and realism of the output.  In addition to producing 

meaningful values for a real facility, this work investigates optimal safeguarding strategies 

across two facilities.  Current proliferation and safeguarding analyses generally focus on only 
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one facility and evaluate safeguards systems within that facility.  A 2009 National Academy of 

Science study recommended the use of a “systems approach” to assessing safeguards architecture 

[7].  This work demonstrates a proof-of-concept systems approach to optimization across the fuel 

cycle by optimizing diversion and safeguarding strategies across two facilities, an enrichment 

plant and reprocessing facility.  Like the coupling of the simulation and game model, this 

optimization across fuel cycle facilities represents a new contribution to this area. 

 This document is structured into three major sections: background, methodology, and 

results and conclusions. Chapter 2 supplements the information provided in the introductory 

chapter by providing a detailed survey of the literature. The next major section describes the 

methodology employed in this work; specifically the development of the computational tool. In 

this section, Chapter 3 presents a description of the game model and an overview of the coupling 

of the simulation models and game models, while Chapter 4 and Chapter 5 provide detailed 

descriptions of the enrichment and reprocessing simulation models, respectively. Both simulation 

chapters present detailed information about the reference facilities modeled, the attacker and 

defender options, analytical expressions used to calculate detection probabilities for different 

defender-attacker strategy pairs, payoff calculation inputs, and budget calculations. The final 

major section is results and conclusions, which is broken down into three chapters: Chapter 6 

provides the results for both single-facility models, Chapter 7 gives the results of the integrated 

model (system of enrichment and reprocessing facilities), and Chapter 8 offers general 

conclusions and policy implications, as well as remarks on the intellectual value and novelty of 

the work. 
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Chapter 2: Literature Review 

2.1 SIMULATION 
Simulation tools have been used extensively to explore diversion pathways and 

safeguarding strategies, particularly to evaluate system effectiveness of a physical protection 

system (PPS). One of the earliest applications of this type is the Insider Safeguards Effectiveness 

Model (ISEM), developed at Sandia National Laboratories [8]. This tool is designed to evaluate a 

facility’s PPS against an insider attack, though it also has a module for overt attack.  The user 

inputs information about facility layout, facility safeguards, and security features, as well as 

information about adversary path through the facility.  The model is written in the FORTRAN-

based GASP IV simulation language and simulates an attack in a discrete-state continuous-time 

stochastic process [9].  Because the model stochastically simulates one theft pathway per run, it 

is run using a Monte Carlo method to estimate overall PPS effectiveness against the specified 

attack.  The model estimates the adversary’s success probability.  This tool represents an early 

application of computer simulation to diversion pathway analysis at a nuclear facility. 

ISEM is the predecessor to more sophisticated tools developed at Sandia.  The Systematic 

Analysis of Vulnerability Intrusion (SAVI) also assesses the vulnerability of a facility’s PPS to 

attack, though SAVI is designed for forceful, outsider attacks [10]. This tool allows the user to 

input facility specific information in an adversary sequence diagram, including different areas at 

the facility, protection elements contained in each area, and performance data for each protection 

element.  SAVI employs the Critical Detection Point (CDP) methodology. The CDP is the last 

point in time at which an adversary can be detected with sufficient time to interrupt the attack. 

This methodology assumes that an attacker seeks to minimize his detection up to the CDP, after 

which he seeks to minimize his delay. SAVI determines the ten most vulnerable pathways 

through the facility, as well as suggestions for improvements to the PPS. The suggestions offered 

are generally elements that could be added to increase detection before the CDP or increase 

delay after it.  ATLAS and ASSESS are PPS effectiveness evaluation tools that followed SAVI 

[11], [12].  Both employ the use of adversary sequence diagrams and the CDP methodology. 

Like ISEM, ASSESS contains an insider module for insider threat analysis, while ATLAS is 
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designed for overt threat analysis only.  These tools perform optimization through direct 

enumeration. 

In an extension of the probabilistic pathway analysis codes described above, Durán 

integrates material control and accounting (MC&A) activities into the PPS system for insider 

theft analysis [13].  The MC&A activities are used to provide additional detection opportunities 

against the insider, as PPS systems may not be effective against this type of adversary.  The work 

also presents a probabilistic framework for incorporating MC&A detection opportunities into the 

current PPS pathway analysis methodology.  This framework characterizes insider theft as a 

“race” between the insider and the MC&A activities to detect the theft and employs an Excel-

based simulator to calculate daily and cumulative theft DPs. To create a higher fidelity model of 

MC&A DPs, human reliability analysis is incorporated to model human performance.  The 

research presented in this document draws on Durán’s insider theft methodology and implements 

a similar human performance-based MC&A structure in the simulation model for certain 

safeguarding activities. 

Systems dynamics models have also been used to evaluate the effectiveness of 

safeguarding systems.  Dayem, formerly with Los Alamos National Lab, used the GASP IV 

simulation language to model a dynamic process and measurement system, the Materials 

Measurement and Accounting System (MMAS), intended to deliver near real-time accounting at 

nuclear facilities [14].  The flow of material through a reference facility is simulated, as is the 

system response.  A set of coupled differential equations describes the material and SNM flow 

through the facility, with the user specifying initial parameters. A Monte Carlo method is used to 

simulate the measurements at key measurement points, and inventory differences are tracked 

across the plant. This work specifically focuses on the sensitivity of the MMAS system at a real 

plant and identifying measurement control problems. Though no diversion scenarios were run, 

this paper represented an early attempt at making a quantitative assessment of safeguards system 

effectiveness using simulation techniques. 

A more extensive material accounting model has been developed in recent years at 

Sandia.  The Separation and Safeguards Performance Model (SSPM) is a Simulink-based 

dynamic process model of a hypothetical aqueous reprocessing facility [15]. Like Dayem’s 

model, the SSPM uses a set of coupled differential equations to describe the flow of SNM and 
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material through the facility and stochastically simulates mass and volume measurements of that 

material at key points, at which inventory differences are calculated. Process monitoring and 

material control and accounting (MC&A) alarms are simulated when inventory differences are 

statistically significant, as calculated using the Page’s test. Diversion scenarios are modeled 

explicitly in the SSPM, with the user specifying the adversary’s pathway through the facility. In 

addition to process monitoring and accounting alarms, physical protection and administrative 

procedures are also integrated into the SSPM [16].  This integration represents a novel approach 

to facility safeguards analysis, as information from these systems is traditionally not integrated at 

real facilities. While the sophistication of the model makes it attractive for obtaining a 

comprehensive picture of facility operations and safeguarding measures, it also proves somewhat 

computationally burdensome. Like many of the models discussed above, the SSPM 

stochastically generates detection probability for a given diversion scenario.  Consequently, 

Monte Carlo methods are necessary to produce a reliable estimate of detection probability 

against a specific threat.  Major drawbacks of the SSPM are that the user must specify the 

diversion scenario and no safeguarding optimization occurs. 

The LLNL Integrated Safeguards System Analysis Tool (LISSAT), developed at 

Lawrence Livermore National Laboratory, is another continuous-time model for evaluating 

safeguards system effectiveness at fuel cycle facilities [17], [18].  This model uses a digraph 

fault tree structure to examine possible points of safeguards system failure for different diversion 

scenarios.  The user inputs information about the process at the facility and the safeguards 

system.  The process is modeled as a continuous, natural flow, and the safeguards system is 

modeled as lists possible removal nodes. Diversion scenarios are designed for each removal 

node, and a digraph is constructed for each diversion scenario.  A fault tree is then constructed 

for each digraph, with safeguards system failure serving as the top event. The system outputs the 

probability that the diversion pathway is successful, as well as the quantity and value of the 

material removed. Using this information, fault tree analyses for a series of diversion scenarios 

can be compared, and the most attractive scenarios are sent through an Extend simulation model.  

The simulation model shows how the range of various safeguard systems parameters varies from 

the base-case for a diversion scenario, thus establishing a signature for different diversion 

scenarios. 
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A Markov-model based proliferation assessment tool was developed at Brookhaven 

National Laboratory [19].  This work simulates operations at a hypothetical Experimental 

Sodium Fast Reactor.  The model features both intrinsic and extrinsic barriers to proliferation, 

including a suite of IAEA safeguards options.  It also considers false alarm probabilities and 

human performance.  The model outputs several metrics, including minimum time to and cost of 

proliferation, as well as the detection probability and technical difficulty.  While this model 

represents a more sophisticated optimization scheme than the direct enumeration used in many 

pathway analyses, diverter strategy is still an input, meaning the proliferator’s intelligence is not 

fully captured. 

While the two studies above both examine vulnerable proliferation pathways at a single 

facility, other work has been done characterizing proliferation resistance across a fuel cycle 

system. A Proliferation Resistance & Physical Protection (PR & PP) evaluation methodology has 

been developed by an expert group of the Generation VI International Forum [20]. In an effort to 

aid policy decision making regarding future nuclear energy systems, this methodology focuses 

on evaluating the proliferation resistance of a nuclear energy system as a whole relative to other 

nuclear energy systems. The methodology encompasses three major steps: (1) defining the threat, 

which includes state and non-state actors with various capabilities and strategies, and identifying 

proliferation pathways; (2) determining system response; and (3) evaluating the outcomes. The 

outcome is evaluated using several metrics, including detection probability, proliferation time, 

and “safeguardability”. The second step, in which calculations are performed to determine 

system response, relies on probabilistic techniques. While the ability of this methodology to be 

applied across a fuel cycle system distinguishes it from many of the other methodologies 

presented here, the underlying computational techniques employed are not themselves new or 

appreciably different from many of the other previous techniques. Further this methodology does 

not perform any optimization and relies heavily on analyst input. These shortcomings mean that 

while the PR&PP may be a useful tool for its intended purpose to assessing the relative 

proliferation resistance of fuel cycle systems, it is not an ideal tool for guiding safeguarding 

resource allocation decisions. 
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2.2 GAME THEORY 
 Game theory is a popular technique for modeling adversarial situations because of its 

ability to capture and systematically model human cognition and behavior. In fact, a 

comprehensive body of work devoted to game theoretic treatment of safeguarding strategy and 

analysis exists [21].  Avenhaus presents a comprehensive game theoretic treatment of data and 

material accountancy verification at nuclear facilities [22].  An analysis of attribute sampling 

across multiple strata is considered, and the mathematical formulation for optimal inspector 

strategy is given.  This formulation is consistent with the current IAEA attribute sampling 

paradigm.  Random, interim inspections are also treated, and the frequency with which they must 

be conducted to ensure timely detection of illegal behavior is derived.  The tradeoff between 

timely detection and sensitivity is explored, and it is shown that an inspector cannot 

simultaneously optimize his safeguard accountancy system with respect to both criteria.  

Defensive resource allocation across multiple facilities is examined, and optimal inspector and 

inspectee strategies are given for a scenario with a small number of facilities.   

Bier et al. also investigate defensive strategies across multiple assets.  Their work 

presents a two-person non-zero sum sequential-play game in which a cost-constrained defender 

must defend two assets, of which the attacker will attack only one [23].  The defender plays first, 

allocating her resources between the two sites, and the attacker observes this allocation before 

committing to his strategy.  Bier describes the effect of decentralizing defenses and provides 

results in support of centralized defenses.  The work also examines the effect on defense strategy 

as the number of assets to protect becomes large, and concludes that the optimal strategy 

collapses.   

Kilgour and Avenhaus use game theory and decision theory to examine the cost-

effectiveness of IAEA inspections and recommend strategies to improve efficiency [24].  The 

work proves that an inspection program deters violations only if it sufficiently effective.  It also 

shows that a state’s motivation to violate depends on political parameters—the penalty the state 

perceives for detected illegal behavior and the reward the state perceives for undetected illegal 

behavior—as well as a technical parameter, inspection effectiveness.  A calculation of how 

effective one inspection must be to deter two states from illegal behavior is made.  
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All of the work presented above represents a significant contribution to safeguarding 

and/or adversarial analysis; however, all the work is theoretical in construct, presenting the 

mathematical formulation for strategies and detection probabilities with little or no attempt made 

to assign meaningful values to the input parameters.  Further the complex nature of the game 

formulation requires that the model be sufficiently limited in scope to allow for the calculation of 

Nash equilibrium.  While these studies provide valuable insights into concepts underlying 

defensive resource allocation, the need remains for work that is more applied and quantitative in 

nature. 

Brown et al. present a more applied two-stage Stackelberg game representing an 

interdictor trying to maximally delay a proliferator who is trying to produce a first batch of fissile 

material [25].  A max-min game is formulated between an interdictor attempting to maximize 

delay time and a proliferator attempting to minimize delay time.  The model assumes that the 

proliferator observes the interdictor’s defense strategy and adjusts his strategy accordingly.  

Model output includes optimal interdictor and proliferator strategy.  The incorporation of a 

detailed project management sub-model to generate scenario data which is coupled with the 

game model for optimization allows for far more realistic complexity than is found in many 

purely theoretical game models. This idea of relying on a sub-model to generate scenario data is 

used in an adapted form in the research presented here. 

2.3 RISK ASSESSMENT AND DEFENSIVE INVESTMENTS 

Previous work on risk assessment and defensive investment in the field of nuclear 

security has been conducted by Wyss et al. at Sandia National Laboratories. To assess the risk 

posed by a given attack scenario, standard risk assessment approaches rely on triplets containing 

scenario description, probability of scenario, and consequence of scenario. In their updated 

framework for risk-based cost-benefit analysis, Wyss et al. propose replacing the highly 

uncertain ‘probability of scenario’ value with a quantitative metric to describe ‘adversary 

difficulty’ [26], [27]. The resulting analysis is a target and scenario specific risk assessment. The 

framework also draws on the game theoretic principle of utility functions to present the notion of 

undominated attack scenarios, or scenarios that are higher consequence and lower difficulty than 

all other scenarios. The work indicates that these scenarios will be most attractive to adversaries, 
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and suggests that such an analysis can be used to prioritize investment decisions. Though the 

work presented in this dissertation considers defensive investments for nuclear safeguards, and 

not nuclear security, similar conclusions are drawn about defensive investment prioritization 

across multiple facilities. 

2.4 HUMAN RELIABILITY ANALYSIS 
Many safeguarding activities rely heavily on activities performed by humans, making 

human error a major factor in the effectiveness of these safeguards. Human reliability analysis 

(HRA) describes a collection of techniques used to quantify human error probability [28]. In the 

context of safeguarding a nuclear facility, human error can have a detrimental effect on the 

detection capability of the safeguards system. One technique used to quantify such error is the 

modeling of a dependency relationship among activities in which human involvement is critical 

to success.  This dependency relationship describes the following behavioral characteristic: when 

a human performs a checking task, such as an inspection, and fails to detect an anomaly, she 

becomes less likely to detect the anomaly for each successive inspection at the same location.  

The extent to which this degradation of per-inspection DP occurs for subsequent inspections is 

characterized by the dependency among inspections.  Durán employs this HRA methodology in 

her work, modeling six dependency levels: zero, low, moderate, high, and complete, with 

increasing dependencies corresponding to greater reduction in per-inspection DP [13].  In this 

sense dependency is a proxy for manpower, as more unique inspectors performing a task lower 

dependency, implying that the per-inspection DP remains higher when ‘fresh eyes’ are brought 

in to conduct successive inspections.  The mathematical relationship between DPs for successive 

inspections is given in Equation 2.1. Figure 2-1 shows this relationship graphically, plotting daily 

DP for different dependencies in the case of daily inspection with initial DP of 0.02. 

 𝑃 𝐹! 𝐹!!! =
1+ 𝑎𝑃!!!
𝑎 + 1  (2.1) 

where 𝑃 𝐹! 𝐹!!!   is the conditional probability that anomaly M is not detected, given that 

anomaly M-1 was not detected, and 𝑃! is the unconditional probability that anomaly M is not 

detected.  The parameter a is related to dependency with a = 19, 6, 1, and 0 for low, moderate, 

high, and complete dependency, respectively. 
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Figure 2-1. Daily DPs for different dependency levels for a daily inspection with initial DP = 
0.02
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 METHODOLOGY 

Chapter 3: Game Model and Model Coupling 

 
This chapter presents a novel coupling of a simulation model and game theoretic solver to 

generate optimal strategies for strategic, cost-constrained decision-making. The game theoretic 

solver performs the optimization, calling the simulator as necessary to generate payoff values for 

a given defender-attacker pairs.  The payoff values populate the game’s payoff matrix.  Solving 

the game using standard methods, the entire payoff matrix would be populated upfront, and the 

equilibrium value and strategies would be calculated by formulating and solving a linear or 

mixed-integer programming problem. Instead here the game is solved using fictitious play, a 

myopic iterative algorithm that can be executed without pre-populating the entire payoff matrix.  

Section 3.1 describes the general logic for the game, simulation, and the coupling of the two and 

Section 3.2 outlines the fictitious play algorithm. 

3.1. MODEL LOGIC 
Before the fictitious play algorithm commences, a comprehensive enumeration of 

attacker and defender strategies is generated and stored.  A defender strategy is a unique 

permutation of safeguards where any number of safeguards can be active, and the parameters 

characterizing each safeguard above can take on a number of values from a discrete set of 

options. For an attacker strategy, only one attacker option is active, and this option is 

characterized by a set of parameters that can take on a discrete set of values.  

The game modeled is a two-person zero-sum simultaneous play game. A two-person 

zero-sum game is used to model the interaction between two players with diametrically opposing 

goals—in this case, the attacker seeks to minimize the payoff and the defender seeks to 

maximize the payoff. In a simultaneous play game, both players have full knowledge of the 

strategy options available to the other player, but each player must commit to his strategy before 

observing what strategy the other player commits to. Note that this assumption about perfect 

knowledge represents a modeling idealization and simplification; in reality, it is unlikely that an 
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adversary would have perfect knowledge of the options available to the defender and their 

associated detection probabilities. While an over-simplification, this assumption is more realistic 

for insider adversaries, like a proliferant state, than for outsider adversaries because of their 

increased knowledge of security measures and operational procedures. Further, this assumption 

is, in most cases, a conservative one, as it finds the optimal defender strategies against a more 

informed and thus more capable adversary. 

Figure 3-1 depicts a flowchart of the game model and its interaction with the simulator. 

Defender and attacker strategies are indexed by i and j, respectively, where 𝑖 ∈ [0, 𝐼] and 

𝑗 ∈ [0, 𝐽]. Pure attacker and defender strategies are denoted by yj and xi, respectively. The payoff 

for defender strategy xi and attacker strategy yj is vij. x is an I-element vector that holds the 

defender’s mixed strategy history; the ith element of x is incremented when the defender plays 

pure strategy xi, and the values in the vector are re-normalized such that the I elements in x sum 

to 1. y is the analogous attacker mixed strategy history. The strategies are generated and stored, 

and the fictitious play (FP) algorithm is then initiated by the attacker randomly choosing and 

playing pure strategy, yj. The simulator is called and solves for the payoffs vij for all defender 

strategies xi, given the attacker’s strategy y, and these values are stored in the payoff matrix.  

Knowing the payoffs for all defender strategies that can be played in response to yj, the defender 

then chooses the pure strategy response, xi, that will maximize her payoff in the next round. After 

selecting the best response, the cost of the strategy is checked to see if the strategy is under 

budget. If so, the strategy is played and the defender’s mixed strategy is updated. If not, the 

defender then picks her next best pure strategy response. The defender continues to pick her next 

best pure strategy response until she chooses one that she can afford.  Once the defender has 

played a pure strategy within her budget, the variable vlow is set equal the value of vij, the payoff 

for the strategy pair.  The game scans the payoff matrix to see if payoffs for the pure defender 

strategy have already been calculated. If not, the simulator is called and payoffs vij are calculated 

for all attacker strategies yj.  The attacker than chooses his best pure strategy response, vij, given 

the defender’s current strategy history, x.  The variable vlow is set equal to this payoff value. The 

attacker plays his pure strategy best response and his mixed strategy is updated accordingly.  

This constitutes one fictitious play loop; here the game checks to see if the number of iterations 

completed equals a user-defined maximum number of iterations or if convergence between vlow 
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and vup has been achieved, signifying the approach to Nash equilibrium.1 For this model, 

convergence is considered achieved when (vup-vlow)/vup < 0.001. Then the mixed strategies x and 

y are the equilibrium defender and attacker strategies, respectively, and vup = vlow = v, the 

equilibrium value of the game. If convergence is not yet achieved, control is returned to the FP 

loop. 

Figure 3-2 details the logic flow for the simulation model. When calling the simulation, 

the game passes defender and attacker strategy information to the game. The simulation uses 

these inputs to create schedules of defender and attacker events for the course of the simulation 

period. The length of the simulation period is determined by the attacker strategy. It is assumed 

that the attacker always begins his malevolence on day 1 in simulation time, and he specifies the 

duration of the attack (unless the attack is a discrete, in which case it proceeds for only one day). 

The simulation period extends for a user-defined period of time after the end of the attack, 

providing the defender time to detect missing material and place the facility in an “alert state” 

[13]. For the results presented here, the extra detection time was set to thirty days to correspond 

to the IAEA timeliness goals for the detection of a significant quantity of HEU [30]. 

The first simulation day then begins by selecting the first safeguards and checking to see 

if that safeguard is active on day t=1, which is dictated by the defender strategy. If the safeguard 

is not active, control is returned to the safeguards loop and the next safeguard is checked. This 

continues until a safeguard that is active on day t is found, or until every safeguard has been 

determined to be inactive. Once an active safeguard is selected, a check is conducted to see if 

that safeguard is effective against the active attacker strategy. This information is stored in an 

array that contains information about which safeguards are effective against which attacker 

options. If the safeguard k is effective against attacker strategy yj, the detection probability is 

calculated for the pair. Here k indexes across all safeguards, where 𝑘 ∈ [0,𝐾]. The algorithm 

used to calculate DP varies for each safeguard-attacker option pair; these algorithms are 

presented below in Section 4.4.  Once the DP has been calculated, the payoff is calculated by 

weighting the DP by material quantity and attractiveness, as described in Section 4.7.  This value 

is stored and control is returned to the safeguards loop for the next safeguard- attacker option 

                                                
1 Fictitious play converges to Nash equilibrium for all TPZSG [29] 
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payoff to be calculated. After the payoffs for all active safeguards on a given day have been 

calculated, this process is repeated for the next day and every subsequent day, until the 

simulation time has been exhausted. The cumulative DP for each day is the multiplicative sum of 

the DP from each safeguard. An overall scenario DP is calculated by combining the daily DPs, 

and scenario payoff is calculated by weighting the scenario DP by material quality and quantity. 

A detailed description of payoff functions used for calculation is given in Section 4.7.2. The 

scenario payoff value is returned to the game. 
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Figure 3-1. Fictitious play logic and interaction with simulator 
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Figure 3-2. Simulation logic
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3.2 FICTITIOUS PLAY 
As mentioned above, the fictitious play algorithm was used to solve the game because of the 

computational benefits it offers over the linear programming approach. This section describes the 

theory behind fictitious play and the convergence to equilibrium. 

3.2.1 Description 
 Fictitious play is a myopic learning algorithm first introduced by Brown for finding the 

value of a two-person zero-sum game (TPZSG) [31].  Fictitious play is an alternative to the 

Simplex method first introduced by von Neuman, and can be advantageous for large linear 

systems [32]. In the fictitious play (FP) process, each player assumes her opponent is playing a 

stationary strategy, and the two players engage in an iterative finite game.  In each round a player 

chooses her myopic best response to the distribution of strategies played by her opponent up to 

that point; that is, she selects the response that will maximize her expected payoff in the next 

round of play. The process is said to converge to equilibrium as the payoff values approach the 

Nash equilibrium value of the game.  Julia Robinson showed that all TPZSGs converge to the 

equilibrium value as the number of iterations approach infinity [29].  

 Take an TPZSG, (xi,yj)mxn, with a maximizing row player and a minimizing column 

player.2 In the first round, k = 1, the column player randomly selects a column, yj
1, to play and 

the row player selects her pure best response, xi
1.3  Let Vk be an m-dimensional vector and Uk an 

n-dimensional vector. Define 𝑉!(𝑖) = 𝑎!,!! to be the payoff to the row player for strategy xi at k 

= 1. Similarly define 𝑈!(𝑗) = 𝑎!!,! to be the payoff to the column player for strategy yj at k = 1 

in response to the row strategy xi
1. At iteration k = 2, the column player will act myopically and 

play pure strategy yj
2, such that it minimizes his payoff in this round, based on his opponent’s 

current history.  

 𝑦!! ∈ 𝑎𝑟𝑔𝑚𝑖𝑛!𝑈!(𝑗), (3.1) 
The column player’s cumulative payoff vector, U, should thus be updated as follows 
                                                
2 Mathematical description adapted from [33]. 
3 Brown’s original description of the FP process provided that the two players played in turn.  Subsequent work 
often assumes the two players choose strategies simultaneously. In this work Brown’s original formulation is 
assumed. 
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 𝑈!(𝑗) = 𝑈!(𝑗)+ 𝑎!!,!. (3.2) 
The row player will then seek to maximize her payoff against the column player’s current history 

and will play pure strategy xi
2, such that 

 𝑥!! ∈ 𝑎𝑟𝑔𝑚𝑎𝑥!   𝑉!(𝑖). (3.3) 
and update her payoff vector 

 𝑉! 𝑥! = 𝑉! 𝑖 + 𝑎!,!! . (3.4) 
More generally, the row player and column player will continue to play strategies xi

k and yj
k, 

respectively, such that 

 
𝑥!! ∈ 𝑎𝑟𝑔𝑚𝑎𝑥!𝑉!!! 

𝑦!! ∈ 𝑎𝑟𝑔𝑚𝑖𝑛!𝑈!!!, (3.5) 

and the payoff vectors will be updated 

 
𝑉!(𝑖) = 𝑉!!!(𝑖)+ 𝑎!,!! 

𝑈! 𝑗 = 𝑈!!! 𝑗 + 𝑎!!,! . 
(3.6) 

At any iteration k, the upper bound on the value of the game is given by the largest entry in the V 

payoff vector divided by the number of iterations, which gives a current average payoff to the 

row player. 

 𝑣!" = 𝑚𝑎𝑥!
𝑉!(𝑖)
𝑘  (3.7) 

Similarly, the lower bound on the game at iteration k is the smallest value in the U payoff matrix 

divided by the number of iterations. 

 𝑣!"# = 𝑚𝑖𝑛!
𝑈!(𝑗)
𝑘  (3.8) 

 

The empirical mixed strategy for the row player at iteration k, denoted xk, and by column player 

at iteration k, denoted yk, are given by 

 𝑥! =
1
𝑘 𝑒!!
!!!

 (3.9) 
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𝑦! =
1
𝑘 𝑒!!
!!!

 

where τ is some iteration, and iτ is the row strategy played at iteration τ.  Here ei represents a pure 

strategy played in round τ and is a vector whose only non-zero element is the ith element, which 

is 1. This mixed strategy represents a weighted average of all the pure strategies played over k 

iterations. 

 Julia Robinson proved that for TPZSGs, the upper and lower bounds on the value of the 

game given above converge to equilibrium as the number of iterations approach infinity, and that 

equilibrium value is the Nash equilibrium value for the game [29]. She showed that 

 lim
!→!

max
𝑉!

𝑘 =    lim
!→!

min
𝑈!

𝑘 = 𝑣 (3.10) 

where v is the value of the game.  In the infinite limit, the empirical mixed strategies also 

approach the Nash equilibrium strategies for the game [33]. 

3.2.2 Convergence 
 The FP process for TPZSGs will converge to equilibrium, but the rate of convergence is 

slow [32]. Shapiro showed that for an mxn game the convergence order is at worst O(k-1/(m+n-2)), 

and Szép and Forgó have conjectured that the actual convergence rate is O(k-1/2), where k again 

represents the number of iterations [34], [35]. While these expressions describe the rate of 

convergence for a given number of iterations, more information is needed about the relationship 

between the accuracy of the approximation and number of iterations to enable the comparison of 

the computational speed of the FP algorithm and the simplex algorithm for a given game. For the 

game described above, define a residual, 𝜖, by 

 max
𝑉!

𝑘 −min
𝑈!

𝑘 ≤ 𝜖 (3.11) 

The residual is effectively the difference between the upper and lower bound values as they 

converge to the equilibrium value. For 𝜖 > 0, it can be shown that (𝑥! ,𝑦!) is an 𝜖-approximate 

Nash equilibrium to the game, if the following condition on k is met [33]: 
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 𝑘 ≥
𝑅!"#
𝜖

!(!!!)

 (3.12) 

Where 𝑅!"# is the largest entry in the payoff matrix, 𝑅!"# = 𝑚𝑎𝑥!,! 𝑅!" , and m and n are the 

rows and columns of the payoff matrix, respectively. The big omega appearing in the exponent 

indicates that the exponent is bounded from below by the sum of the payoff matrix dimensions. 

This condition on k relates the accuracy of the approximation to the number of iterations, which 

is meaningful in the context of comparing the computational speed of the fictitious play 

algorithm to the Simplex algorithm.  

Note that in this work, the convergence criterion used, denoted by 𝜖, is related to but not 

the same as the residual introduce in Equation 3.11. The convergence criterion is calculated 

using Equation 3.13. Because of this non-trivial difference in definition, the 𝜖 value used for 

computation throughout this work cannot be substituted directly into Equation 3.12 to relate the 

accuracy of the approximation and the number of iterations required to achieve said accuracy. 

 
max !

!

!
−min !

!

!

max !
!

!

≤ 𝜖 (3.13) 

For the purposes of this work, the fictitious play algorithm offered a significant 

computational advantage over the Simplex method because of how the algorithm was 

implemented. The explanation of the FP algorithm provided above assumes the existence of a 

populated payoff matrix A comprised of payoff entries 𝑎!,!, with 𝑖 ∈ 𝑚 and 𝑗 ∈ 𝑛. Instead, in this 

work the payoff matrix was populated as needed by the algorithm. For example, if a the row 

player played strategy xi, the payoffs ai,j for all j would then be calculated. Populating the matrix 

as rows and columns were played in the FP algorithm, rather than pre-populating the entire 

matrix, resulted in far fewer rows and columns being populated overall, as the players generally 

only played a very small fraction of the strategies available to them, which saved significant 

computation time because the calculation of each payoff value required a simulation call.4 More 

                                                
4 The players in the reprocessing model played the largest percentage of the strategies available to them, with the 
attacker generally playing around 2-5% of his strategy options, and the defender playing less than 1% of her options. 
For both the enrichment and integrated models, the defender played at most 0.003% of her available options.  
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details on the practical implications and empirical results of this modified fictitious play 

algorithm are presented in Section 6.1.5. 
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Chapter 4: Enrichment Simulation 

The game model serves as the optimizer in this model, but it relies on input from the simulator to 

populate the payoff matrix. This section details specific information about the enrichment 

simulation model, including defender and attacker options, how the detection probabilities and 

payoffs are calculated, and how budget resources are allocated. 

4.1 MODEL GCEP FACILITY 
A gas-centrifuge enrichment plant (GCEP) with an annual capacity of 465,000 kg-SWU 

is modeled.  The plant uses natural uranium feed with 235U enrichment of 0.711%, and enriches 

product to 4.5% 235U, producing tails with 0.22% enrichment.  Annual material throughput under 

normal operating conditions is shown in Table 4-I. The required number of IAEA samples based 

on current IAEA sampling algorithm is given in Table 4-II for reference purposes only; the 

number of NDA and DA samples performed by the defender in this model is determined by the 

strategy the defender selects. The third column of Table 4-I gives the number of each type of 

cylinder assumed to be in storage at any given time. It is assumed that approximately 84 days 

worth of feed is kept on site at all times, and that the operator is required to hold all product 

cylinders for a period of 28 days (at least one inspection cycle).5 

Table 4-I. Annual throughput for 465,000 kg-SWU GCEP6 

Material Mass UF6 
(kgU) Cylinders 

Cylinders in 
Storage in 

Model 
Feed 552 500 65 13 

Product 63 390 41 3 
Tails 489 200 57 --- 

 

                                                
5 It is standard to keep 75 days worth of feed on-site; 84 is used here to simplify calculations (exactly 3 inspection 
cycles) [36] 
6 Calculated directly; calculations validated against enrichment calculator at uxc.com 
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Table 4-II. IAEA Sampling Plan7 

Measurement # of Samples 

NDA & Weight 

Feed 19 
Product 12 

Tails 18 
Total 48 

DA & Weight 

Feed 6 
Product 2 

Tails 15 
Total 22 

4.2 ATTACKER OPTIONS 
This section provides a qualitative description of each attacker option. These options fall into 

three major categories: (1) diversion of LEU; (2) enriching above declared levels; (3) undeclared 

LEU production. 

Diversion of LEU: 
1. Diversion of cylinder from storage: 

The adversary diverts feed or product cylinders from storage in an abrupt, one-time 

diversion. The attacker selects the number of cylinders [1, 2, 3 cylinders], and whether to steal 

from the feed or product area. The type of material the attacker obtains depends on the area from 

which he steals—natural uranium from feed storage and LEU product storage. 

2. Diversion of some feed/product from cylinder in storage: 
The adversary removes a portion of the material from a feed or product cylinder, with no 

attempt to conceal the missing mass. The cylinder may be either sealed or unsealed, based on 

defender decision to apply a seal. This is a continuous diversion that can occur up to once a day. 

The attacker selects the frequency of attack [1 days-1, 7 days-1, 30 days-1] and the duration of the 

attack [7 days, 30 days, 360 days], with the constraint that the attack duration must be equal to or 

greater than the frequency (e.g. the attacker cannot attack with a frequency of 30 days over a 7-

day period).  The attacker chooses the total material to divert over the course of the attack [40 kg, 

110 kg, 775 kg], and the number of cylinders from which to take the material [1, 2, 3 cylinders]. 

                                                
7 Number of samples calculated based on ratios presented in [37] 
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The goal material quantities were chosen such that the largest possible quantity aligns with IAEA 

significant quantity (SQ) goals: 775 kg of low-enriched UF6 is a sufficient quantity such that if 

the attacker diverted it to a clandestine enrichment facility, it could be used to produce 25 kg of 

HEU. The 40 kg and 110 kg material goals were chosen to represent an attacker who wishes to 

employ a conservative, protracted strategy that may extend beyond the one-year time frame used 

in this model. 

3. Diversion of some feed/product from cascade: 
The adversary removes some gas that is in process into a 5A cylinder. The mass that is 

missing because of this diversion is distributed evenly among all the product cylinders in storage, 

such that each of the three cylinders is missing one-third of the total missing mass. This is a 

continuous diversion scenario that can occur up to once a day. The attacker selects the frequency 

[1 days-1, 7 days-1, 30 days-1] and duration of the attack [7 days, 30 days, 360 days], as well as 

the number of cascades to attack [1, 6, 30 cascades], and the mass to remove from each cascade  

[0.010 kg, 0.100 kg].  As with the material theft from a cylinder, the cascades may or may not be 

sealed, based on the defender strategy. 

Enriching above declared levels: 
4. Cascade re-piping: 

The adversary reconnects the cascade pipes to alter process flow and produce uranium 

enriched above declared levels. The re-piping is an abrupt, one-time event, but the misuse is 

continuous and is assumed to occur daily. The attacker selects the fraction of the cascades that 

are dedicated to the misuse [0.0167, 0.10, 0.50, corresponding to 1, 6, and 30 cascades, 

respectively] and the duration of the misuse [7 days, 30 days, 360 days].  The attacker also 

chooses the desired product enrichment [0.197, 0.50, 0.90]. It is assumed that declared feed 

material with enrichment 0.711% 235U is used.  The attacker stores over-enriched product in 

declared product storage and attempts to conceal it in plain site by adding lead shot to the 

cylinder, such that the cylinder’s weight matches the weight of a full declared product cylinder. 

It is assumed that the lead shot does not line the entire interior surface of the cylinder, so the 

inspector is still able to obtain gamma spectroscopy information from the cylinder. 
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5. Recycling through cascade: 
The adversary takes declared LEU product and recycles it though the cascade to produce 

enrichments higher than declared. This is a continuous misuse. As with cascade re-piping, the 

attacker selects the size of the misuse [1, 6, 30 cascades] and the duration of the misuse [7 days, 

30 days, 360 days].  For this scenario the attacker also specifies the frequency of attack [1 days-1, 

7 days-1, 30 days-1], and the desired product enrichment [0.197, 0.50, 0.90].  It is assumed that 

the feed material is the declared product with an enrichment of 4.5% 235U. As with re-piping the 

cascades, the attacker conceals the over-enriched product in plain site by using lead shot to 

falsify the weight of the product cylinder. The attack uses this same method to conceal the 

missing product mass that has been used as feed material for cascade recycle. Thus in this 

scenario, there are three cylinders in product storage, as explained in Section 4.1 and all three 

cylinders have masses consistent with a nominal full product cylinder: one is a full, declared 

product cylinder; one contains over-enriched product and lead shot; and one is a cylinder of 

declared product material and lead shot. 

Undeclared LEU Production: 
6. Introduction of undeclared feed for production of undeclared product: 

The attacker introduces undeclared feed into the cascade to produce undeclared product 

material with declared product enrichment. This is a continuous diversion that can happen up to 

once per day. The attacker selects the frequency [1 days-1, 7 days-1, 30 days-1] and duration [7 

days, 30 days, 360 days] of the attack, the number of the cascades dedicated to the misuse [1, 6, 

30 cascades]. It is assumed that the undeclared product material is stored in a secret location, 

possibly off-site, that is not inspected during basic or special inspections. 

4.3 DEFENDER OPTIONS 
This section provides information about the implementation of defender options in the 

enrichment model. For a more detailed description of how the safeguards are implemented by the 

IAEA, see Appendix A: IAEA Gas-Centrifuge Enrichment Plant Safeguards. The detection 

probability calculation algorithms presented in this section and in Section 4.4 are notional, albeit 

representative. An effort was made to accurately capture the relative effect of different defender 
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and attacker parameters on DP (i.e. stealing larger quantities of material is more likely to be 

detected than stealing smaller quantities of material); however, the values are not necessarily 

accurate in an absolute sense. 

Detector-Type Safeguards 
 Several of the safeguards for the enrichment and reprocessing facilities employ detectors 

to check for anomalies.  These safeguards are modeled as “detector-type” safeguards, meaning 

the readings are assumed to follow a Gaussian distribution with standard deviation 𝑠! about 

some mean n. The detection probability for these safeguards is modeled using a standard 

receiver-operator curve (ROC), which characterizes the relationship between the probability of 

registering a true positive result (detection probability) and the probability of registering a false 

positive result (false alarm probability). For each detector-type safeguard, there is some threshold 

reading t above or below which the detector will alarm.  The detector alarms above this value in 

situations like NDA at an enrichment facility, where counts above the threshold might indicate 

higher-than-declared enrichment, and it alarms below the threshold for safeguards like mass 

balance, where a lower reading indicates missing material. The threshold value is calculated 

using Equation 4.1. 

 𝑡 = 𝑛 + √2 ∙ 𝑠!erf!!(1− 2𝐹𝐴𝑃) (4.1) 
 
Where t is the threshold weight, n is the nominal reading, sn is the standard deviation of the 

nominal reading, and FAP is the false alarm probability, which is selected by the defender in 

some cases and held constant in other cases.  The detection probability for a mass reading is 

found by integrating the cumulative distribution function for the Gaussian distribution from the 

threshold to positive infinity, resulting in Equation 4.2.  A thorough derivation of Equations 4.1 

and 4.2 is given in [38]. 

 𝐷𝑃 = 1− 1 2 1+ erf
𝑡 − 𝑠
2 ∙ 𝑠!

 (4.2) 

 
Where s is the observed signal and ss is the standard deviation of that reading. Note that these 

equations are for situations where the detector alarms for readings above threshold; for situations 



29 

 

where readings below threshold trigger an alarm the equations take the same form with a sign 

difference. For many of the detector-type safeguards, the error in the reading is due to sources of 

systematic and random uncertainty, which are generally expressed as relative uncertainties 

(relative to the mean reading). The total uncertainty is thus calculated using Equation 4.3. 

 𝑠!!"# = 𝑠!!"!! + 𝑠!!"#! (4.3) 

 
Where 𝑠!!"! is the systematic uncertainty and 𝑠!!"# is the random uncertainty. The standard 

deviation is then calculating by multiplying the total relative uncertainty by the reading, as 

shown in Equation 4.4. 

 𝑠! = 𝑠!!"# ∙ 𝑠 (4.4) 
 
Certain safeguards that detect radiation are treated as a special sub-class of the detector-type 

safeguard. Because radioactive decay is a Poisson process, a Poisson distribution is assumed for 

counts in these detector-type safeguards, meaning the variance of the signal equals the mean, as 

shown in Equation 4.5. This assumption is used for radiation-based detectors for which 

uncertainties information is not available, such as CEMO. 

 𝑠!! = 𝑛 (4.5) 

Cumulative Sum Calculation  

For some of the defender options, like seals, the defender inspects multiple items and 

there is a non-zero probability of detecting a violation for each item. In other instances, like 

taking physical inventory, the inspector has some probability of detecting a violation at each 

inspection. In both cases, these discrete detection probabilities can be combined into an overall 

detection probability using a cumulative sum calculation. Equation 4.6 gives the formula for the 

cumulative sum, where 𝐷𝑃! is an individual event DP or item DP, and N is the total number of 

individual DPs. 

 𝐷𝑃!"# = 1− 𝐷𝑃!

!

!!!

 (4.6) 
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A. Inspection 
A general inspection is comprised of three components: physical inventory- item 

counting, mass balance verification, and examination of logged video surveillance images. 

Additional safeguarding measures can be added on to the general inspection—namely passive 

seal verification, non-destructive assay samples, and destructive assay samples. These additional 

verification activities can be done as frequently as or less frequently than random inspections, 

but cannot be done more frequently. Details of the three staple inspection activities are presented 

below. 

 
Physical Inventory- Item Counting 

Because physical inventory is a checking operation conducted by humans, it is 

susceptible to human error. In their human reliability analysis work, Swain and Guttman seek to 

mathematically model this behavior [39]. A key concept from their analysis is dependency, a 

term coined to describe the following phenomenon: if a person conducts a checking operation on 

day t with probability P of detecting an anomaly, and the person fails to detect the anomaly, the 

probability that said anomaly will be detected on day t+1 is less than P, and the amount by 

which the probability decreases depends on the dependency, that is the extent to which 

subsequent checking operations are dependent on previous results. For a detailed description of 

dependency and related human reliability concepts, see Section 2.4. 

The detection probability developed in this work for a person or team of persons 

conducting physical inventory draws on the human reliability concept described above and a 

model from the financial auditing sector.  In their work on allocating audit resources to detect 

fraud in the business sector, Newman et al. present a model for the detection probability in the 

case of fraud or theft.8 The model takes the form of Equation 4.7, given below, with the DP 

varying exponentially with the size of the theft and the audit resources dedicated to detecting the 

theft [40].  In the case of diverting product cylinders from storage, the size of the theft is the 

                                                
8 The paper addresses the case of fraud, but notes that the difference between a theft detection and fraud detection 
model is that the former is described by simultaneous play, while the latter is described by sequential play. Thus the 
detection probability relationship presented for fraud detection is used here for theft detection. 
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number of cylinders diverted (n), and the resources dedicated to detecting theft is the size of the 

team conducting the inventory (characterized by the team factor- Fteam).  The constant in the 

exponent in Equation 4.7was calculated empirically such that for the theft of one cylinder and a 

medium-sized detection team, the detection probability equals 0.99.  This value is taken from 

Swain and Guttman’s work on baseline human error probabilities (BHEP), in which they 

establish the BHEP for inventory auditing as 0.01, making the detection probability 0.99 [39].  

Thus the constant in Equation 4.7 was chosen such that in the base scenario, the DP is 0.99, and 

the DP increases with inspection effort (larger inspection team) and the number of cylinders 

stolen. 

 𝐷𝑃 = 1− 𝑒𝑥𝑝 −0.65 ∗ 𝐹!"#$ + 1 ∗ 𝑛  (4.7) 
 
where Fteam is the team factor and n is the number of cylinders. Fteam takes a value of 1 for a 

small team and a value of 19 for a large team.  Note the team factor is a mathematical 

construction and is related to the size of the team, but does not equal the size of the team (i.e. 

Fteam of 19 does not imply a 19-person team, but a large team). 

Equation 4.8 gives the degradation of the detection probability for inspection event i, 

given that the anomaly was not detected at inspection event i-1. 

 𝐷𝑃! 𝑁𝐷!!! =1−
1+ 𝐹!"#$ ∙ 𝑁𝐷!!!

𝐹!"#$ + 1  (4.8) 

Mass Balance Verification 
 During routine visits inspectors do a mass balance verification to verify material flow. 

Cylinder masses are obtained using the load cell based weighing system (LCBS).  The masses 

and dimensions of the two relevant cylinder types—30B (product) and 48Y (feed/tails) are given 

in Table 4-III.  Figures from different sources are compiled in the table, and the values vary 

slightly.  The empty cylinder weights from Areva and max UF6 weights from Eccleston were 

used for calculations.  Readings from the LCBS have less than 1% error [41].  
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Table 4-III. Enrichment cylinder specifications 

Cylinder Purpose 
Empty 
Weight 
(lbs)a 

Max UF6 
Weight 
(lbs)c 

Max UF6 
Weight 
(kg)b 

Max 
Weight 
(kgU)b 

Diamete
r (cm) 

Wall 
thicknes
s (cm) 

30B Product 6 420 5 020 2 270 1 540 76 1.27 

48Y Feed/ 
Tails 32 761 27 560 12 500 8 450 122  

a [42] 
b  [43] 
c all data not explicitly cited from [44] 
 

The LCBS is modeled as a detector-type safeguard, as described above, with a systematic 

uncertainty of 0.05% and a random uncertainty of 0.05% [45].  Combining these uncertainties 

using Equation 4.3 gives a total relative uncertainty of 0.07%. If that attacker removes some 

mass, ∆𝑚, from a full cylinder, the detection probability is given by: 

 𝐷𝑃 = 1− 1 2 1− erf
𝑡 − (𝑛 − ∆𝑚)

2 ∙ 0.0007 ∙ (𝑛 − ∆𝑚)
 (4.9) 

Video Surveillance- logged images 
 

Distributed video surveillance systems are used for security applications in a number of 

sectors, including transportation. Sacchi and Regazzoni describe the use of a distributed video 

surveillance system to identify abandoned objects in a waiting room at an unattended railways 

station [46].  This situation is analogous to a storage yard at a GCEP, where very little change in 

background is expected.  Sacchi and Regazzoni present experimental data for the probability that 

the video surveillance system will correctly locate and classify an abandoned object or person.  

The paper reports this probability as 0.86 for a person [46].  The value for a person was used in 

this work, as a person moving into or out of a storage yard without proper authorization would 

trigger alarm at a GCEP.   

Detecting an incident by video surveillance actually includes two actions: sensing and 

assessment [47].  Sensing is the technical ability of the video equipment to react to a stimulus 

and register an alarm, while assessment is the determination by a human as to whether the alarm 
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is due to an attack or a nuisance alarm [47].  Probability of sensing and probability of assessment 

are related to DP as shown in Equation 4.10.   

 𝐷𝑃 = 𝑃! ∙ 𝑃! (4.10) 
Based on the information described above, a sensing probability of 0.85 was assigned for 

material diversion from a storage yard under surveillance.  An assessment probability of 0.50 

was assumed for logged image that must be manually checked by an inspector during an 

inspection. This value was invented to reflect the large space for human error in such an 

operation, and is meant to have value relative to the higher assessment probability assigned to 

transmitted video.  Inserting values provided above into Equation 4.10, a detection probability of 

0.43 is used for logged video. 

B. Passive Seals 
Two types of seals used by the IAEA are considered in this model: CAPS and VACOSS.  

CAPS are passive metallic seals that are used to seal material containers. They are removed by 

inspectors during inspections and sent to headquarters for post-mortem analysis to verify their 

integrity. Inspectors then apply new seals. These seals are one-time use items, are relatively 

inexpensive, and can be attached and detached quickly by inspectors during inspections [41].   

The Vulnerability Assessment Team (VAT) at Los Alamos National Laboratory has 

conducted numerous tests on both active and passive seals, attempting to defeat the seals [48]-

[50].  Defeat is defined as breaking the seal to gain access to the asset it protects, and then 

replacing or duplicating the seal such that evidence of tampering cannot be detected.  The VAT 

was consistently able to defeat 100% of the seals it tested, categorizing defeat into four 

categories: 1) tampering will not be detected with usual inspection process, but will be detected 

if unusual efforts are made (i.e. seal is disassembled and examined); 2a) tampering will not be 

detected if the inspector follows usual protocol and visually inspects the exterior of the seal in 

detail; 2b) tampering will not be detected if the inspector follows usual protocol and if the 

inspector disassembles the seal and examines it in meticulous detail and 3) tampering will not be 

detected by even advanced post-mortem analysis.  The tests indicate that the sophistication and 

cost of the seal do not correlate well with difficulty of defeat or time required to defeat the seal; 
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in fact, Roger Johnston, the lead author, notes that in many cases sophisticated, active seals are 

actually easier to defeat because they must transmit information from the seal itself to some 

information center [49].  In a 2002 study, the VAT tested 198 seals—192 passive seals and 6 

active seals—and defeated the seals with 289 attacks, defeating each seal at least once.  The 

results of this test indicated that of the attacks perpetrated against the seals, 15% are type 3 

defeats and approximately 45% were type 2b defeats [49].   

Because material cylinders are sealed with CAPS, which are verified using post-mortem 

analysis, only type 3 defeats are considered successful in the context of material theft from a 

cylinder.  Thus the detection probability for passive seals is 0.85. 

C. Non-Destructive Assay 
 Non-destructive assay is done on feed and product cylinders to verify the assay of the 

contents.  In this work, only NDA measurements on product cylinders are considered. Typical 

NDA measurements are taken at the surface of the cylinder using a handheld gamma ray 

spectrometer to count the 186-keV peak.  Standard count times range from 300-1000 seconds 

[51]. The error associated with these measurements is given in Table 4-IV [45]. The last column 

of Table 4-IV gives the total relative error, as calculated using Equation 4.3. 

Table 4-IV. Errors associated with NDA measurements 

Material Type Random Error Systematic Error Relative Error 
NU (Feed) 0.10 0.08 0.13 

LEU (Product) 0.04 0.02 0.04 

The approximate count rate at the surface of a uranium cylinder can be calculated using Equation 

4.11 [52]. Table 4-V defines each variable and provides the value used in the calculation, as well 

as references and notes for the values, when necessary. The values shown are for a product 

cylinder; the enrichment and count rate differ for a feed cylinder. 

 𝑅 = 𝐸!
𝜖𝑆𝐴
𝜇!

exp  (−𝜇!𝜌!𝑡!) (4.11) 
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Table 4-V. Variable definitions and values for NDA count rate calculation  

Variable Definition Nominal Value Note 
R [counts/s] count rate 25  

xp [weight fct 235U] enrichment 0.045  
𝝐 [counts/gamma] detector efficiency at 186 keV 0.10 1 

S [gamma/s-g] specific intensity 4.3 x 104 2 
A [cm2] collimator area 0.56 3 
𝝁𝒖 [cm2/g] uranium mass attenuation coefficient 1.06 4 

𝝁𝒄 [cm2/g] steel container mass attenuation 
coefficient 0.144 2 

𝝆𝒄 steel container density 7.8 2 
tc  [cm] container thickness 1.27 2 

1- [53] 
2- [52] 
3- The collimator slit is 56 mm; a slit thickness of 1 mm was assumed, resulting in a slit area of 56 mm2 [54] 
4- The mean free path for solid UF6 is 0.20 cm, and the density of solid UF6 is 4.7 g/cm3. The mean free path is 
equal to 1 𝜇𝜌. From this information, 𝜇! was calculated for solid UF6 [52]. The value for solid UF6 is valid for 
NDA on feed cylinders, as they contain solid material, but may or may not be a good approximation for product 
cylinders, based on the state of the material. 
 

Based on this calculation, the average count rate due to 235U at the surface of a cylinder is 

25 cps for a product cylinder.  In addition to counts from 235U gamma emission, there are also 

counts in the 186-keV energy region from Compton scattering of higher energy photons. The 

higher energy photons are emitted by 238U and by 238U daughter products, whose abundances 

vary based on the age of the cylinder, as some material adheres to the cylinder walls and then 

decays over time.  The peak-to-background ratio in this region is about 0.2 to 0.5 cps [55].  Thus 

the average total count rate in the 186-keV region is 88 cps for a product cylinder. 

The detection probability for NDA on product cylinders is similar conceptually to the DP 

for mass balance. The standard deviation for the nominal product signal is related to the relative 

uncertainties displayed in Table IV and is given in Equation 4.12.  Equation 4.13 gives the DP. 

 𝑠!!"# = 0.04 ∙ 𝑛!"# (4.12) 
 

 𝐷𝑃 = 1− 1 2 1− erf
𝑡 − !!

!.!
∙ 𝑛!"#

2 ∙ 0.04 ∙ !!
!.!
∙ 𝑛!"#

 

 

(4.13) 
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D. Destructive Assay 
Destructive analysis is performed on select samples using highly sensitive mass 

spectrometry techniques to obtain a detailed and accurate analysis of the material composition.  

Because this analysis is performed over an extended period of time at an off-site location with 

highly sensitive tools, it is assumed that it will positively identify the true isotopics of a material 

with a probability of one.  Destructive analysis is thus a form of attribute sampling. Avenhaus 

and Canty liken attribute sampling to “distinguishing between lads and lasses”; that is, if the 

inspector takes a DA sample from a cylinder that the attacker has filled with material enriched 

above declared levels, she will know for certain [22].  

The probability that the inspector will select a “falsified” cylinder for DA sampling 

depends on the number of cylinders in storage, the number of cylinders sampled, and the number 

of falsified cylinders. Because it is assumed that once the inspector takes a sample from a 

cylinder, she will not sample from that same cylinder a second time during that inspection, this 

situation can be modeled by the hypergeometric distribution, which describes sampling without 

replacement.  

Here this safeguard is only applicable to attacker strategies where the attacker is 

enriching to above declared levels.  The DP approach assumes that the illicit product is stored in 

one cylinder among N total cylinders in the storage area. Equation 4.14 gives the detection 

probability for DA sampling. The number of cylinders in storage, N, is 3 under normal operating 

conditions, as stated in Section 4.1. 

 𝐷𝑃 = 1−
!!!
!
!
!

 (4.14) 

where 
N = number of cylinders in storage 
n = 1, number of cylinders falsified  
k = number of cylinders sampled 

E. Video Surveillance- remote transmission 
As in the case with logged surveillance images, the probability of sensing using video 

surveillance is 0.85; however, unlike in the previous scenario, the probability of assessment is 
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higher, due to the automatic transmission of the image when an anomaly is observed.  Assuming 

large amounts of data are transmitted daily to the assessors at headquarters, such that analyzing 

all data in great detail is a cumbersome task for a human, an assessment probability of 0.75 was 

assigned.  Thus by Equation 4.10, the baseline DP for a cylinder diversion from a storage yard is 

0.64. 

F. Active Seals 
VACOSS seals are active fiber optic and electronic seals used to secure valves and piping 

at enrichment facilities. These seals are looped around the item they secure, and a light pulse is 

sent through the loop every 250 ms. Information about any opening or closing of the loop is 

stored in the seal.  VACOSS seals can be verified in situ by inspectors or can be used for remote 

monitoring to transmit information about a tampering incident to the IAEA [41].  In contrast to 

the passive seals described above, these active seals are relatively expensive, but can be used 

multiple times.  The batteries must be replaced every two years. 

VACOSS seals are used to seal pipes and valves, and can be used to detect cascade re-

piping or altering a valve setting to remove material directly from the cascade.  It is assumed that 

the seals transmit information about tampering to an off-site assessment team in real time. The 

seals can be defeated by a type 2b or type 3 attack (described in Section 4.3).  Thus the total 

defeat probability is 0.60, resulting in a baseline DP of 0.40 for detecting material theft from the 

cascade or cascade re-piping with an active seal. It is further assumed that active seals have only 

one opportunity to detect tampering with the pipes. If a seal is broken and detection does not 

occur, the defender does not replace the seal because she does not know it has been tampered 

with, so no further detection opportunities exist. 

G. Continuous Enrichment Monitor (CEMO) 
Currently CEMO monitors are designed to be attached to the low-pressure portion of the 

feeder pipe, with pressures under 10 torr.  The count rate in the detector is directly proportional 

to the enrichment and pressure of the material flowing through the pipes.  Table 4-VI gives 

experimental data collected using the CHEM system, which should have count rates very similar 

to the CEMO system, except that the detector was attached to the high-pressure portion of the 
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pipe [56]. Using this data and accounting for the over five-fold difference in pressure, the 

nominal count rate for 186-keV gammas entering the NaI detector of a CEMO unit can be 

estimated at around 8 cps (at 10 torr).  Because the pressure is actually lower than 10 torr on the 

low-pressure side of the pipe, a count rate of 5 cps was used in calculations.  The standard 

counting time for CEMO is 2.5 hours [56]. 

Table 4-VI. CHEM Experimental Data 

Enrichment Pressure Counts 
3.3% 50 torr 28 cps 
4.5% 50 torr 38 cps 

 
If the gas in the pipes is enriched to levels above the declared level, there will be a greater 

concentration of 235U, meaning there will be stronger emission of the 186-keV gamma (relative 

to standard operating conditions).  CEMO is modeled as a detector-type safeguard that will alarm 

if the reading is above the threshold (too much 235U).  However, an important characteristic of 

the CEMO operating system is that it is a go/no-go measure, meaning it is designed only to 

confirm the absence of material enriched above 20%. Thus the DP for material enriched to levels 

above the declared level but below 20% is zero. The DP for material enriched above 20% can be 

calculated using Equations 4.17 and (4.18, with the values for n and s, given in Equations 4.15 

and 4.16 respectively. CEMO is modeled as a radiation-based detector-type safeguard, as 

described in Section 4.3, with the variance equaling the mean. 

 𝑛 = 𝑟! ∙ 𝑡! (4.15) 
 𝑠 =

𝑥!
4.5 ∙ 𝑛 (4.16) 

 
 𝑡 = 𝑟! ∙ 𝑡! + √2 ∙ 𝑠!erf!!(2𝐹𝐴𝑃 − 1) (4.17) 

 

 𝐷𝑃 = 1− 1 2 1− erf
𝑡 − !!

!.!
∙ 𝑛

2 ∙ !!
!.!
∙ 𝑛

 (4.18) 
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Where rn is the 186-keV count rate in the detection under normal conditions (5 cps), tC [s] is the 

count time, and xp [%235U] is the product enrichment under anomalous conditions. 

H. Visual Inspection 
During special inspections, inspectors do a visual inspection of the facility to detect 

anomalies, including examining inside cascade halls and performing design information 

verification to ensure that the settings on valves and pipes match design specifications. 

Inspectors are given access to the cascade hall only during special inspections, not during regular 

inspections, making this type of inspection intrusive and disruptive from the operator’s 

perspective. Accordingly special inspections are performed less frequently than regular 

inspections. For this activity, the detection probability depends on the ability of a person to 

search a visual field and pick out a specific, anomalous feature. An analogous activity is 

inspecting ships for fractures before they go to sea, a topic that has been studied in the literature. 

In his work on visual inspection of ships, Demsetz conducts in situ experiments to determine an 

experienced inspector’s ability to detect both critical and non-critical fractures.  He concludes 

that the average detection probability for a critical fracture is about 0.60, while the average 

detection probability for a non-critical fracture is 0.29 [57].  Based on this work, a value of 0.60 

is used here as the DP for major anomalies, like those that may exist during a misuse scenario in 

the cascade hall.  A DP of 0.29 is used for minor indicators, like those that might exist from 

repeated material diversion from a cylinder in storage. Visual inspections are capable of 

detecting a diversion or misuse only if the diversion or misuse is ongoing at the time of the 

inspection. It is assumed that once a diversion has concluded, the attacker carefully conceals any 

signs that such a diversion occurred. For this reason visual inspection is not effective against 

cylinder theft, because cylinder theft is a one-time event that occurs on the first day of the 

simulation. 

I. Environmental Sampling (ES) 
The analysis procedure for environmental sampling is identical to that of destructive 

analysis; the key difference between these two techniques is the sampling procedure.  

Environmental samples are taken on small cotton swipes, so the amount of detectable material is 
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often lower than for a DA sample.  Additionally ES is only undertaken during special 

inspections, and the swipes are taken inside the cascade hall, offering a wealth of information 

about plant processes. Here it is assumed that if the inspector swipes around one of the cascades 

that is being used for illicit material production after the misuse has begun, the detection 

probability is 1.9 As with DA, the hypergeometric distribution is used to calculate the DP. The 

hypergeometric distribution is given in Equation 4.14, where here N is the total number of 

cascades [60], n is the number of cascades dedicated to misuse [1, 6, 30 cascades], and k is the 

number of swipes taken [6, 12 swipes]. 

4.4 Detection Probability Calculations 
The specific formulations used to calculate DPs for each defender/attacker option are 

presented below, along with payoff information. Table 4-VII provides an overview of which 

safeguards are effective against which attacker strategies. The numbers correspond to the 

attacker strategy numbers presented in Section 4.2 Attacker Options and the letters correspond to 

defender options in Section 4.3 Defender Options. The yellow shading for safeguards H (visual 

inspection) and I (ES) serves as a reminder that these safeguards occur only during special 

inspections, not continuously or during routine inspections like all other safeguards. A 

description of each attacker pair is provided along with a derivation of the algorithm used to 

calculate the DP for the pair. The information for each pair is compiled in summary tables 

beneath the descriptions to serve as a clear, comprehensive reference for each strategy pair. The 

Figure of Merit (FOM) used to quantify the attractiveness of material obtained in the scenario is 

provided under the heading “Payoff” in the summary tables. 

 

 

 
                                                
9 In reality ES can theoretically detect misuse anywhere in the facility, but this ability depends on the effort the 
proliferators dedicate to concealing UF6 gas emissions. The stated assumption above serves as a proxy for modest 
proliferator efforts to contain gas emissions. 
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Table 4-VII. Defender-attacker strategy pair summary table for enrichment facility 

Defender 
Options Attacker Options 

Activity 1 2 3 4 5 6 
A A1 A2 A3   A6 
B  B2     
C    C4 C5  
D    D4 D5  
E E1 E2     
F   F3 F4   
G    G4 G5  
H   H3 H4 H5 H6 
I    I5 I6  

 
Defender Options: 
 
A. Inspection 
B. Passive seals 
C. Non-destructive analysis (NDA) 
D. Destructive analysis (DA) 
E. Video surveillance- remote transmission 
F. Active seals 
G. Continuous Enrichment Monitoring (CEMO) 
H. Visual inspection 
I.  Environmental Sampling (ES) 
 
Attacker Options: 
 
1. Diversion of cylinder from storage 
2. Diversion of some material from cylinder in storage 
3. Diversion of some material from cascade 
4. Cascade re-piping 
5. Cascade recycling 
6. Undeclared production from undeclared feed 

4.4.1 Inspection DP Calculations 

A1.  Cylinder diversion from storage detected by inspection  
Inventory 
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The inspector can detect cylinders during any inspection over the course of the residence 

period. Once the residency period has expired, it is assumed that new cylinders are brought into 

the storage area and the inspector no longer has the opportunity to detect missing cylinders. The 

initial DP is determined by the number of cylinders diverted, as described in Equation 4.7 in 

Section 4.3, and the per-inspection DP is calculated using human reliability techniques described 

in Equation 4.8. The extent to which the DP decreases per inspection is determined by the size of 

the inspection team. 

Mass Balance Verification 
Mass balance verification is not an effective means to detect the diversion of a cylinder from 

storage; thus the DPmb = 0. 

Video Surveillance- logged images 

The inspector can detect an attack using logged video only in the first inspection after the 

attack has occurred, because it is assumed that at each inspection she watches only video from 

the previous period. Because cylinder diversion is a discrete, one-time act, the defender thus has 

only one opportunity to detect the attack. The DPvl is 0.43. 

Total Inspection Probability 
The total inspection probability on each day is the cumulative sum of DPinv, DPmb, and 

DPvl. This probability can be calculated using Equation 4.19. 

 𝐷𝑃!"#$ = 1− 1− 𝐷𝑃!"# ∗ 1− 𝐷𝑃!" ∗ (1− 𝐷𝑃!") (4.19) 
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DPinsp 

𝐷𝑃!"#,!!! = 1− 𝑒𝑥𝑝 −0.65 ∗ 𝐹!"#$ + 1 ∗ 𝑛  

𝐷𝑃!"#,! 𝑁𝐷!!! =1−
1+ 𝐹!"#$ ∙ 𝑁𝐷!!!

𝐹!"#$ + 1  

𝐷𝑃!" = 0.43 
𝐷𝑃!"#$ = 1− 1− 𝐷𝑃!"# ∗ 1− 𝐷𝑃!" ∗ (1− 𝐷𝑃!") 

per inspection 
event 

Defender Parameters 
Fteam size of inspection team, Fteam = {1,19} 

f inspection frequency, f = {7 days-1, 28 days-1} 
Attacker Parameters 

n number of cylinders stolen, n = {1,2} 
Payoff 

NU 0.033 
LEU 0.1 

A2. Diversion of some material from cylinder detected by inspection 
Inventory 
Inventory is not effective against this type of diversion, as no items are missing, so DPinv = 0. 

Mass Balance Verification  

Based on the model enrichment plant specifications (see Section 4.1 Model GCEP 

Facility for more details), under normal operating conditions the facility should use 65 feed 

cylinders annually and produce 41 product cylinders annually. For this work, it is assumed that 

there are always 13 feed cylinders and three product cylinders present in storage.  The 13 feed 

cylinders contain enough material to operate the facility for 84 days, and a product residency 

time of 28 days was assumed to calculate the number of product cylinders in storage. It is 

assumed that the three cylinders live in product storage for the entire residence period specified, 

and then are replaced by new, full cylinders after that period. If the attacker attacks multiple 

times during the 28-day periods, he removes materials from the same cylinders, and the missing 

mass is cumulative. It is further assumed that the mass balance periods coincide with the 

residence periods, so after 28 days, the books reset and any previous mass discrepancy is 

forgotten.  The inspector weighs every product and feed cylinder at every inspection. The 

amount of material taken per cylinder per attack event, j, is given by Equation 4.20. 

 ∆𝑚!"#,! =
Δm

𝑡𝑜𝑡𝑒𝑣𝑒𝑛𝑡𝑠 ∙ 𝑛 (4.20) 
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Where ∆𝑚!"#,! is the mass missing per cylinder per inspection, Δm is the total mass taken during 

course of entire attack scenario, 𝑡𝑜𝑡𝑒𝑣𝑒𝑛𝑡𝑠 is the total number of attacker events during course 

of entire scenario, and n is the number of cylinders from which material is taken. The total 

number of events over the course of the entire simulation is calculated using Equation 4.21, 

where T is attack duration and fattack is attack frequency. 

 𝑡𝑜𝑡𝑒𝑣𝑒𝑛𝑡𝑠 =
𝑇

𝑓!""!#$
 (4.21) 

 
The mass missing from a cylinder at the ith inspection during a residence period is given in 

Equation 4.22. The i-index and events reset after each 84 or 28-day residence period concludes. 

 ∆𝑚!"#,! = ∆𝑚!"#,! ∙ 𝑒𝑣𝑒𝑛𝑡𝑠 (4.22) 
Where ∆𝑚!"!#$,! is the mass missing from each cylinder at the ith inspection in a residence 

period and 𝑒𝑣𝑒𝑛𝑡𝑠 is the attacker events to date during current residence period. 

The detection probability for each cylinder attacked is given below in the summary table 

as DPcyl. The DPs for each cylinder from which mass has been removed are assumed to be 

independent. The total probability for each inspection event is given by DPinsp. This probability is 

calculated as the cumulative sum of the individual cylinder DPs, using a formula analogous to 

Equation 4.19. When the attacker opts to attack only one cylinder, the cylinder DP and 

inspection DP are equal. When he attacks two or three cylinders, the inspection DP is greater 

than the cylinder DP. 

Values for the weight of full 48Y feed cylinders and 30B product cylinders are given in 

Table 4-VIII. These values are used to calculate the threshold weights in the DP calculation. 

Note that these weights include the mass of material and the mass for the cylinders themselves. 

The threshold weights given below are for a FAP = 0.01. 
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Table 4-VIII. Nominal weights and alarm thresholds for uranium cylinders	
  

Cylinder 
Type Cylinder Nominal weight, 

nom (kg) 
Threshold weight, t 

(kg) 
Feed 48Y 27 360 27 315 

Product 30B 5 180 5 172 
 
Video Surveillance- logged images 

To steal some material from a cylinder in storage, the adversary must enter the storage 

yard, which is under video surveillance. The DP for detecting a diversion from logged video 

surveillance decreases over the course of the simulation due to human reliability factors, as 

described previously. The DP for detecting one attack event at inspection i, DPi, is given by 

Equation 4.8, where the initial DP is 0.43.  However, this scenario is a continuous diversion, 

meaning the attacker will repeatedly enter the storage yard with some frequency of his choosing.  

Depending on the attack and inspection frequency, multiple attacks may occur between 

inspections, meaning the inspector has multiple detection opportunities at a single inspection 

when viewing the surveillance log.  The total DP at inspection i, DPinsp,i, is the cumulative sum 

of DPi over all of the attack events that have occurred since inspection i-1.  This calculation is 

shown in Equation 4.23. 

 𝐷𝑃!"#$!!",! = 1− (1− 𝐷𝑃!)!"#$#%"& (4.23) 

where 𝑏𝑡𝑒𝑣𝑒𝑛𝑡𝑠 is the number of events since the last inspection.  Note that the  

degradation in DP that occurs due to human reliability analysis is performed on the per-event 

DP, DPi, not the total DP. 

Total Inspection Probability 
The total inspection detection probability is given by Equation 4.19. 
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A3. Diversion of some material from cascade detected by inspection 

Inventory 
Inventory is not effective against this type of diversion, as no items are missing, so DPinv = 0. 

Mass Balance Verification 
As with the diversion of some material from a cylinder, it is assumed that the mass 

balance period over which mass balance verification is conducted is the residence period for the 

cylinders, such that any missing material accumulates over the course of the mass balance 

period, but not beyond. For this scenario it is assumed that product is withdrawn directly from 

the cascade, so the inspector has the opportunity to detect that this material is missing from a 

product cylinder.  It is assumed that the attacker is clever and distributes missing mass among all 

DP 

𝑡 = 𝑛 + √2 ∙ 𝑠!erf!!(2𝐹𝐴𝑃 − 1) 

𝐷𝑃!"# = 1− 1 2 1− erf
𝑡 − (𝑛𝑜𝑚 − ∆𝑚!"#,!)

2 ∙ 0.0007 ∙ (𝑛𝑜𝑚 − ∆𝑚!"#,!)
 

𝐷𝑃!"#$!!" = 1− (1− 𝐷𝑃!"#)! 
𝐷𝑃!"!!!! = 0.43 

𝐷𝑃!"#$!!",! = 1−
1+ 𝐹!"#$ ∙ 𝑁𝐷!!!

𝐹!"#$ + 1

!"#$#%"&

 

𝐷𝑃!"#$ = 1− 1− 𝐷𝑃!"# ∗ 1− 𝐷𝑃!" ∗ (1− 𝐷𝑃!") 

 
per 

inspection 
event per 
cylinder 

 
 

per 
inspection 

event 

Defender Parameters 
FAP false alarm probability, FAP = {0.01,0.001} 
Fteam team factor, Fteam = {1,19} 

f frequency, f = {7 days-1, 30 days-1} 
Attacker Parameters 

T attack duration, T = {7 days, 30 days, 360 days} 
f frequency, f = {1 days-1, 7 days-1, 30 days-1} 
∆𝑚 total mass removed over entire attack scenario, ∆𝑚 = {40, 110, 775 kg} 
n number of cylinders from which some material is removed, n = {1,2,3}  

area storage area from which cylinder is taken, area = {feed, product} 
Payoff 

NU 0.033 
LEU 0.1 
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three product cylinders; that is, all three cylinders are missing one-third of the total missing 

material. The total mass missing at the ith inspection of a residence period is the product of the 

mass taken per attack event per cascade, the number of cascades attacked, and the total number 

of attack events to date, as shown in Equation 4.24. The mass missing from each cylinder is 

given in Equation 4.25. 

 ∆𝑚!"!,! = ∆𝑚 ∙ 𝑛 ∙ 𝑡𝑜𝑡𝑒𝑣𝑒𝑛𝑡𝑠 (4.24) 
 ∆𝑚!"#,! =

∆𝑚!"!,!
3 (4.25) 

Using the mass diverted from each cylinder, the per cylinder DP, DPcyl, can be calculated 

using Equation 4.9, where n is the nominal product cylinder mass under normal operating 

conditions, sn is the standard deviation of this reading, t is the threshold mass below which the 

balance “alarms”, and ∆𝑚!"#,! is the missing mass from each cylinder, as described above. The 

total DP for each inspection, DPinsp, is the cumulative sum of the DPs for all three cylinders that 

are missing some material. 

Video Surveillance- logged images 
Surveillance is not conducted inside the cascade hall, so this safeguard is not effective against 

this type of attack. DPvl = 0. 

Total Inspection Probability 

The total inspection probability equals the mass balance DP, because that is the only inspection 

activity that is effective against this kind of attack. 

 

 

 

 

 

 

 

 



48 

 

DP 

𝐷𝑃!"#$ = 𝐷𝑃!" 
𝑡 = 𝑛 + √2 ∙ 𝑠!erf!!(2𝐹𝐴𝑃 − 1) 

 

𝐷𝑃!"# = 1− 1 2 1− erf
𝑡 − 𝑛 − ∆𝑚

2 ∙ 0.0007 ∙ 𝑛 − ∆𝑚
 

𝐷𝑃!"#$!!" = 1− (1− 𝐷𝑃!"#)! 

 
per inspection event 

per cylinder 
 

per inspection 

Defender Parameters 
FAP false alarm probability, FAP = {0.01,0.001} 

Attacker Parameters 
T attack duration, T = {7 days, 30 days, 360 days} 
f frequency, f = {1 days-1, 7 days-1, 30 days-1} 
∆𝑚 mass removed from cascade, ∆𝑚 = {0.010 kg, 0.100 kg} 
n number of cascades attacked, n = {1, 6, 30}  

Payoff 
NU 0.033 
LEU 0.1 

A6. Undeclared feed detected by inspection 
Inventory 

Inventory is not effective against this type of diversion, as no items are missing, so DPinv = 0. 

Mass Balance Verification 
Mass balance verification is not effective against this type of diversion, as no declared material 

missing, so DPmb = 0. 

Video Surveillance- Logged Images 
Video surveillance does not occur inside the cascade halls, but it is assumed here that the 

surveillance surrounding the cascade halls would detect some anomalous activity, like the 

unexplained movement of undeclared feed and product cylinders, or movement of cylinders 

during non-operational hours. Unlike the situations described above, where image recording is 

triggered by movement in a low-activity area (like storage), and the inspectors have a limited 

number of images to review, the detection of this activity by video surveillance would require the 

inspector to watch hours of footage in search of anomaly. One can imagine this type of 

comprehensive video surveillance review might occur if other anomalies were uncovered by 

inspectors, and they wished to investigate further. Because detection in this case depends on a 
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detailed, time-consuming review of video surveillance by inspectors, the assessment probability 

for this safeguard against this attack strategy is assumed to be 0.25, half of the value assumed 

against other attacks. Using the 0.85 sensing probability described above, a DP of 0.22 is 

assumed for detecting undeclared feed using logged video images. For scenarios with multiple 

inspections, human reliability analysis techniques are applied in the regular manner. 

4.4.2 Passive Seals DP Calculation 

B2. Diversion of some material from cylinder detected by passive seals 
Passive seal verification can occur as frequently as or less frequently than general 

inspections.  Using this safeguard, it is assumed that an attack can be detected at only the first 

inspection (where passive seal verification is performed) after an attack.  In other words, if the 

attacker has attacked since the last inspection, a detection opportunity exists. A post-mortem 

analysis time of ten days is assumed to complete analysis on seals that have been sent to the 

laboratory for verification. As such, the detection opportunity for passive seals actually occurs 

ten days after the inspection at which the verification was performed.  

The defender has the option to verify all passive seals or to verify half of the passive 

seals. Recall from above that the baseline DP for a passive seal, DPpseals, is 0.85. If the defender 

verifies all of the seals, the per-inspection DP, DPi, is simply the cumulative sum of the DP for 

each seal broken, as shown in Equation 4.6. If only half of the seals are verified, the DP depends 

DP 

𝐷𝑃!!! = 0.22 

𝐷𝑃!"#$,! = 1−
1+ 𝐹!"#$ ∙ 𝑁𝐷!!!

𝐹!"#$ + 1

!"#$#%"&

 

 

per inspection 

Defender Parameters 
Fteam team factor, Fteam = {1,19} 

f frequency, f = {7 days-1, 28 days-1} 
Attacker Parameters 

T attack duration, T = {7 days, 30 days, 360 days} 
f frequency, f = {1 days-1, 7 days-1, 30 days-1} 

Payoff 
LEU 0.1 
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not only on the probability of detecting an event given that a seal is verified, but also the 

probability that an attacked seal is chosen for verification. As described above for DA, the 

hypergeometric distribution is used to calculate the probability that at least one attacked seal is 

selected for verification, Psel. The overall DP for the inspection is then the product of Psel and the 

conditional probability that detection occurs, given that one or more attacked seals are selected. 

This scenario is described by Equation 4.26. 

 𝐷𝑃!"#$,! = 1−
!!!
!
!
!

∙ 𝐷𝑃!"#$%" (4.26) 

Where, 
N = number of cylinders in storage 
n = number of cylinders falsified 
k = number of cylinders sampled 

 
4.4.3 Non-Destructive Assay DP Calculations 

C4/C5. Cascade re-piping or recycle detected by non-destructive assay 
Non-destructive assays samples can be taken as frequently as or less frequently than 

general inspections occur. In this model, only the assay of the product cylinders is considered. It 

DP 

DPpseals = 0.85 
if frac = 1.00 

𝐷𝑃!"#$,! = 1− (1− 𝐷𝑃!"#$%")! 
if frac = 0.50 

𝐷𝑃!"#$,! = 1−
!!!
!
!
!

∙ 𝐷𝑃!"#$! 

 

 
 

per inspection 
 
 

per inspection 

Defender Parameters 
frac fraction seals verified, frac = {0.50,1.00} 

f inspection frequency, f = {7 days-1, 30 days-1} 
Attacker Parameters 

n number of seals attacked, n = {1,2} 
T durations, T = {7 days, 30 days, 360 days} 
f attack frequency, f = {1 days-1, 7 days-1, 30 days-1} 

Payoff 
NU 0.033 
LEU 0.1 
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is assumed that the inspector assays all of the product cylinders. The DP is related to the FAP 

probability chosen by the defender and the product enrichment chosen by the attacker.   

 

DP 

𝑡 = 𝑛 + √2 ∙ 𝑠!erf!!(2𝐹𝐴𝑃 − 1) 

𝐷𝑃 = 1− 1 2 1− erf
𝑡 − !!

!.!
∙ 𝑛!"#

2 ∙ 0.04 ∙ !!
!.!
∙ 𝑛!"#

 

 

per inspection 

Defender Parameters 
FAP false alarm probability,  FAP = {0.01, 0.001}  

f inspection frequency, f = {7 days-1, 30 days-1} 
Attacker Parameters 

𝑥! product enrichment, xp = {19.7%, 50%, 90%}  
Payoff 

LEU 0.991 
HEU 1.69, 2.15 

4.4.4 Destructive Analysis DP Calculations 

D4/D5. Cascade re-piping or recycle detected by destructive analysis 
As is the case for passive seal verification, destructive analysis requires an extended 

analysis time after the inspection event.  The post-mortem analysis time used in this model is 14 

days, which is an optimistic estimate.  It is assumed that a new DA sample is not analyzed until 

results from the previous one have been processed. Thus the frequency of DA sampling is the 

regular inspection frequency, but the inspection opportunity does not occur until 14 days after 

the inspection. The per-inspection DP for this scenario is given in Equation 4.14. 
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DP 𝐷𝑃 = 1−
!!!
!
!
!

 per inspection 

Defender Parameters 
𝑘 number of cylinders sampled, k = {1,4} 
f inspection frequency, f = {7 days-1, 30 days-1} 

Attacker Parameters 
𝑛 number of cylinders falsified, n = {1}  

Payoff 
LEU 0.991 
HEU 1.69, 2.15 

4.4.5 Transmitted Video DP Calculations 

E1. Cylinder diverted from storage detected by transmitted video images 
Inspectors have the ability to detect a diversion using transmitted video images only on 

the day that the diversion occurs. In this case, because cylinder theft is a one-time event, the 

inspector has one chance to observe the diversion. As described above, because of the relatively 

high assessment probability, the DP for this event is 0.64. 

 
DP 0.64 per scenario 

Defender Parameters 
 none 

Attacker Parameters 
 none 

Payoff 
NU 0.033 
LEU 0.1 

 

E2. Diversion of some material from cylinder detected by transmitted video images 
When the attacker enters the storage yard to divert material from a cylinder, a video 

image should automatically be transmitted to the information center for analysis, meaning every 

attack event is followed immediately by a detection opportunity. As mentioned above, the DP 

each attack event, DPvt = 0.64. The overall DP depends on the number of attack events. Because 

analysis and assessment are being conducted by humans who are charged with processing high 

volumes of data, HRA techniques are applied to this safeguard. 
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4.4.6 Active Seals DP Calculations 

F3. Diversion of some material from cascade by active seals 
If a cascade is sealed with an active seal, and the attacker wishes to attack that cascade, 

he must break the seal. The first time the attacker attacks the cascade and breaks the seal, 

information that the seal has been broken is transmitted to the data center. A detection 

opportunity occurs only the first the attacker breaks the seal. As described above, the DP for an 

active seal, DPaseals, is 0.40. 

The defender can choose to seal all or half of the cascades. If the defender seals half the 

cascades (frac = 0.50), the DP = 0, because this is a transparent defense. The attacker can see the 

active seals and thus simply chooses to attack the cascades that are not sealed. If the defender 

seals all of the cascades (frac = 1.00), the DP is the cumulative sum of the per-seal DP over the 

number of seals broken. 

 

 

 

 

 

 

DP 

𝐷𝑃!" = 0.64 
 

𝐷𝑃! = 1−
1+ 𝐹!"#$ ∙ 𝑁𝐷!!!

𝐹!"#$ + 1  
per inspection event 

Defender Parameters 
Fteam team factor, Fteam = {1,19} 

Attacker Parameters 
T duration, T = {7 days, 30 days, 360 days} 
f frequency, f = {1 days-1, 7 days-1, 30 days-1} 

Payoff 
NU 0.033 
LEU 0.1 
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F4. Cascade re-piping detected by active seals 
The detection probability for this scenario is identical to the DP for detection diversion of 

some material from a cascade using active seals (F3). 

4.4.7 CEMO DP Calculations 

G4. Cascade re-piping detected by CEMO 
CEMO is an active safeguard, so if the defender selects it, it is active every day for the 

duration of the simulation. Recall also that if that attacker chooses to re-pipe, it is assumed that 

he perpetrates an attack daily for the duration he selects. The DP on any given day due to CEMO 

DP 

DPaseals = 0.40 
if frac = 0.50,  

 DPinsp = 0 
if frac = 1.00,  

𝐷𝑃!"#$ = 1− (1− 𝐷𝑃!"#!$")! 
  

 
per inspection 

 

Defender Parameters 
frac fraction seals verified, frac = {0.50,1.00} 

Attacker Parameters 
n number of cascades attacked, n = {1, 6, 30}  

Payoff 
NU 0.033 
LEU 0.1 

DP 

DPaseals = 0.40 
if frac = 0.50,  

DPinsp = 0 
if frac = 1.00,  

𝐷𝑃!"#$ = 1− (1− 𝐷𝑃!"#!$")! 

 
per inspection 

Defender Parameters 
frac fraction of cascades sealed, frac = {0.50,1.00} 

Attacker Parameters 
n number of cascades attacked, n = {1, 6, 30}  

Payoff 
LEU 0.991 
HEU 1.69, 2.15 
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is determined by the product enrichment the attacker chooses.  This daily DP is given in 

Equation 4.18. As mentioned above, CEMO is a go-no go measure, so the DP is 0 for any 

product enrichment less than 20%. 

 

DP 

𝑡 = 𝑟! ∙ 𝑡! + √2 ∙ 𝑠!erf!!(2𝐹𝐴𝑃 − 1) 
 
if xp < 0.20, DPCEMO = 0 
if xp ≥ 0.20, 

𝐷𝑃!"#$ = 1− 1 2 1− erf
!!

!!
!.!∙!

!∙
!!
!.!∙!

 

 

per day 

Defender Parameters 
FAP false alarm probability, FAP = {0.01, 0.001} 

tC count time, tC = {300 s, 3600 sec} 
Attacker Parameters 

T attack duration, T = {7 days, 30 days, 360 days} 
𝑥! product enrichment, 𝑥! = {0.197, 0.50, 0.90} 

Payoff 
LEU 0.991 
HEU 1.69, 2.15 

G5. Cascade recycle detected by CEMO 
The DP for CEMO against cascade recycle differs from the DP against re-piping because 

the attacker does not have to recycle material every day. Accordingly, despite the fact that 

CEMO is active every day, a detection opportunity only occurs on days that the attacker 

perpetrates an attack. 
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DP 

𝑡 = 𝑟! ∙ 𝑡! + √2 ∙ 𝑠!erf!!(2𝐹𝐴𝑃 − 1) 
 
if xp < 0.20, DPCEMO = 0 
if xp ≥ 0.20, 

𝐷𝑃!"#$ = 1− 1 2 1− erf
!!

!!
!.!∙!

!∙
!!
!.!∙!

 

 

per attack event 

Defender Parameters 
FAP false alarm probability, FAP = {0.01, 0.001} 

tC count time, tC = {300 s, 3600 sec} 
Attacker Parameters 

T attack duration, T = {7 days, 30 days, 360 days} 
f attack frequency, f = {1 days-1, 7 days-1, 30 days-1} 
𝑥! product enrichment, 𝑥! = {0.197, 0.50, 0.90} 

Payoff 
LEU 0.991 
HEU 1.69, 2.15 

4.4.8 Visual Inspection DP Calculations 

H2/H3/H5. Some material diverted from a cylinder/cascade or cascade recycle detected by 
visual inspection 

Because these are continuous diversions, visual indicators of malevolent behavior may be 

present, like misplaced equipment used to remove material from the cylinders or cascades. Based 

on the presence of these minor anomalies, the DP is 0.29 for this attacker scenario while the 

attack scenario is ongoing. Once the attack has concluded, it is assumed that the attacker will 

carefully remove any indicators that a diversion occurred, and the DP = 0. 

DP for 𝑡 ≤ 𝑡!"#,  𝐷𝑃 = 0.29 
for 𝑡 > 𝑡!"#,  𝐷𝑃 = 0 per inspection event 

Defender Parameters 
f inspection frequency, f = {30 days-1, 90 days-1} 

Attacker Parameters 
tend last day of diversion, tend = {0,30,360} 

Payoff 
NU 0.033 
LEU 0.1 
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H4. Cascade re-piping detected by visual inspection 
When visual inspection is conducted on special inspections, design information 

verification is performed inside the cascade hall. This means that an inspection team compares 

the valve and pipe settings of the cascades to the design specifications. Additionally there will be 

other visual indicators of anomalous operating conditions, like portable feed/withdrawal 

equipment or extra cylinders in the cascade hall area [58]. For this reason, the DP for detecting 

re-piping using visual inspection is higher than the DP for other attack scenarios. The DP for this 

scenario depends on the size of the misuse. If the attacker dedicates 1 cascade or 6 cascades to 

the misuse (frac = 0.0167, 0.10), this constitutes a minor anomaly and a DP of 0.29 is assumed. 

If the attacker dedicates 30 cascades to the misuse (frac = 0.50), this constitutes a major 

anomaly, and a DP of 0.60 is assumed. As with previous attacker strategies, visual inspection is 

only affective if the attacker strategy is ongoing. 

H6. Undeclared feed detected by visual inspection 
Some of the indicators of HEU production may also be indicators of undeclared feed, like 

portable feed/withdrawal stations and extraneous uranium cylinders in the cascade hall. These 

visual indicators can easily be obscured or removed by the attacker, so the DP for minor 

anomalies is used for this scenario.  

 

DP 

for 𝑡 ≤ 𝑡!"#,  
       if 𝑛 ∈ {1,6}, 𝐷𝑃 = 0.29 
       if 𝑛 = 30, 𝐷𝑃 = 0.60 
for 𝑡 > 𝑡!"#,  
      𝐷𝑃 = 0 
 

per inspection 

Defender Parameters 
f inspection frequency, f = {30 days-1, 90 days-1} 

Attacker Parameters 
n number of cascades dedicated to misuse, n = {1, 6, 30}  

Payoff 
LEU 0.991 
HEU 1.69, 2.15 



58 

 

4.4.9 Environmental Sampling DP Calculations 

I4/I5. Cascade re-piping or recycle detected by environmental sampling 
As is the case destructive analysis, environmental sampling requires an extended analysis 

time after the inspection event.  The post-mortem analysis time used in this model is 10 days, 

which represents an expedited turnaround versus DA.  This shorter analysis period is used 

because environmental sampling is conducted only on special inspections, and it is thus assumed 

that analysis of these samples is high priority, reducing the time required to process them. The 

per-inspection DP for this scenario is given in Equation 4.14. 

 

DP 𝐷𝑃 = 1−
!!!
!
!
!

 per inspection 

Defender Parameters 
𝑘 number of swipes taken, k = {6,12} 
f special inspection frequency, f = {30 days-1, 90 days-1} 

Attacker Parameters 
𝑛 number of cascades dedicated to misuse, n = {1, 6, 30}  

Payoff 
LEU 0.991 
HEU 1.69, 2.15 

4.4.10 Detection Probability Calculations Sources Summary 

As described in detail above, the detection probability calculation algorithms have been 

developed by drawing on a variety of sources, including safeguards literature, analogous 

DP 
for 𝑡 ≤ 𝑡!"#,  𝐷𝑃 = 0.29 
for 𝑡 > 𝑡!"#,  𝐷𝑃 = 0 
 

per inspection  

Defender Parameters 
f inspection frequency, f = {30 days-1, 90 days-1} 

Attacker Parameters 
tend last day of diversion, tend = {0, 30, 360} 

Payoff 
LEU 0.1 
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literature in other fields, and first principle calculations. Table 4-IX summarizes the principle or 

reference on which each DP calculation algorithm is based. 

Table 4-IX. Source for enrichment DP calculations 

Defender Option Source 
Inventory Financial auditing literature [40] 

Mass balance Physical principles- CDF of Gaussian 
Video surveillance Railway station surveillance [46] 
Seal verification Seal vulnerability analysis literature [48]-[50] 

Non-destructive assay Physical principles- CDF of Gaussian 
Destructive assay Attribute sampling as described in [22] 

Continuous Enrichment Monitoring Physical principles- CDF of Gaussian 
Visual inspection Visual inspection of ship fractures [57] 

Environmental sampling Attribute sampling as described in [22] 

4.5 EXOGENOUS DETECTION PROBABILITIES 
 In addition to the safeguards described above, exogenous sources of detection capability 

are incorporated into the model using a background DP. Background DP serves as a proxy for all 

other safeguards and sources of detection probability not explicitly considered, including the 

increased detection capability that intelligence information offers, generally at no cost to the 

inspector. The background DP is a daily probability and is attacker strategy-specific, in that the 

value is non-uniform across different attacker strategies. This implementation is intended to 

represent the reality that intelligence is better suited to detect certain diversion/misuse scenarios.  

4.6 ENRICHMENT SAFEGUARDS COSTS 
A budget assignment scheme was formulated to allocate relative costs to each safeguard. 

These costs are estimates based on available information about the necessary technology or 

manpower needs in analogous fields.  The cost values used in the model, referred to as 

“simulation dollars” (s$), are the based upon the estimated real values of selected safeguards 

divided by 100. For example, a piece of equipment that costs $1000 costs 10 simulation dollars. 

This paradigm is used for convenience and to emphasize that the costs here retain meaning in a 

relative sense, but are not claimed to be faithful to the actual absolute costs.  The cost associated 

with each safeguard has two components: capital and operations and maintenance (O&M). 
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Capital costs are amortized over the serviceable lifetime of the equipment. These are one-

time costs incurred for large pieces of equipment, such as a mass spectrometer. O&M costs fall 

into two categories: fixed and variable.  Fixed O&M costs are associated with the upkeep of the 

equipment, and are incurred whether the equipment is used regularly or not. Variable O&M costs 

are costs that the defender pays when he uses the service, such as analyzing a sample, assessing 

surveillance feed, or inspecting a facility. The per-item cost of certain safeguards is also 

considered a variable O&M cost, such as the cost of a seal. The total cost for a safeguard is the 

sum the annual equipment, fixed, and variable O&M costs, as shown in Equation 4.27. 

 𝐶!"! = 𝐶!"#$% + 𝐶!! + 𝐶!! (4.27) 
 
Where, 
Ctot =total cost [s$/yr] 
Cequip = equipment costs, including per item costs [s$/yr] 
𝐶!! = fixed maintenance costs [s$/yr] 
𝐶!! = variable maintenance costs, including manpower [s$/yr] 

4.6.1 General Cost Information 

 Capital Costs 
Estimated capital costs are divided by the estimated lifetime of the equipment, giving an 

undiscounted annual equipment investment cost. Table 4-X gives the capital costs for each 

safeguard. The basis for each of these values is presented below in the safeguard-specific section.  

Table 4-X. Annual capital costs 

Safeguard Annual Capital Cost 
(sim dollars/yr) 

Mass balance 12 
Video-logged 16.5 

NDA 3.6 
DA 8.93 

Video-transmitted 32.5 
CEMO 18 

ES 8.93 
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Operations and Maintenance Costs- Fixed 
The annual fixed O&M cost for each safeguard was considered to be low, medium, or 

high. Fixed O&M cost assessments were made based on maintenance estimates, factoring in 

man-days of maintenance and equipment requirements annually. A safeguard also incurs high 

O&M when it requires a medium number of maintenance days, but maintenance is arduous due 

to the location of the equipment (e.g. CEMO). Fixed O&M costs are calculated as a percentage 

of the capital cost: low maintenance costs 2% of the annual capital cost, medium maintenance 

costs 6%, and high maintenance cost 10%.10 Fixed O&M costs are given in Table 4-XI. 

Table 4-XI. Fixed O&M costs 

Safeguard Annual Fixed O&M Annual Fixed O&M 
Cost (sim dollars/yr) 

Mass balance low 0.24 
Video-logged high 1.65 

NDA low 0.07 
DA low 0.18 

Video-transmitted high 3.25 
CEMO high 1.80 

ES low 0.18 

Operation and Maintenance Costs- Variable 
Variable O&M costs are the manpower costs associated with implementing each 

safeguard, and the per-item cost of select safeguards. Four major types of manpower costs are 

considered: inspection, special inspection,11 analysis, and assessment. Inspection costs occur 

when inspectors physically visit a facility and perform a set of tasks. The cost of inspection time 

considers not only the inspectors’ time, but also the cost of traveling to the facility.  The cost for 

additional inspection activities is assumed to be a fraction of the cost of inspection time, as the 

inspector is already at the facility conducting an inspection. Special inspections occur less 

frequently and on short notice, and give the inspector access to the cascade hall, making them 

more expensive financially and politically. Analysis costs are used when a safeguard requires 
                                                
10 Percentages were formulated using the standard 6% O&M costs for a reactor as a median value. Assignments for 
each safeguard were made based on expert judgment. 
11 Recall that LFUA activities are grouped as “special inspection” activities in the model 
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post-mortem analysis of an element, and the analysis is not conducted in the field, as is the case 

with passive seal verification and destructive analysis samples. The final type of manpower cost 

is assessment cost, which is incurred when a person must remotely monitor a signal coming from 

the enrichment facility, as is the case for remotely transmitted video images and active seals.  

One IAEA inspection day costs $3000-5000 [59]. Assuming this price includes three 

inspectors, inspection costs are estimated at $1000/person/day, giving a cost of 10 simulation 

dollars. Each additional inspection activity performed is assumed to cost the defender an 

additional 20% of the inspection cost, or 2 s$. The defender must purchase a given inspector 

strategy for the entire year, despite the length of the simulation. 

Because of the short-notice and intrusive nature of special inspections, they have a higher 

monetary cost and a much higher political cost than normal inspections. Here both of those 

expenses are rolled together and represented by the simulation dollar cost. Thus special 

inspections are assumed to be three times more costly than regular inspections at 30 s$ per day. 

As with regular inspections, additional activities at special inspections cost an extra 20%, or 6 s$. 

The IAEA does some analysis on safeguards samples in-house at the Safeguards 

Analytical Laboratories, and also send samples to laboratories in the Network of Analytical 

Laboratories (NWAL) for further evaluation and independent verification [60]. A standard rate 

charged for mass spectroscopy and similar analytical services is $250/hr, so 2.5 s$ is used as the 

base cost per batch of samples. This cost assumes that each time a material’s isotopic 

composition needs to be verified, multiple samples are actually taken and analyzed—one at the 

Safeguards Analytical Labs, and another at an NWAL laboratory for independent verification.   

Assessment costs differs from inspection and analysis costs in that it does not strictly 

depend on how often the safeguard is used.  Assessment time is required for the remote, active 

safeguards, such as active seals, transmitted video images and CEMO, and so this cost is 

incurred every day for which the safeguard is active, whether any sort of diversion activity 

occurs or not. It was assumed that an employee performing assessment costs $30/hr,12 and that 

roughly a quarter of his time is dedicated to assessment for the relevant safeguard. Thus the 
                                                
12 According to the U.S. Bureau of Labor Statistics, the mean salary for an employee in a protective service 
occupation is $20.54/hr and an employee making $21.08 per hour costs the employer $30.23/hr [61]. 
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employee’s time costs $60/day, making the assessment cost 0.60 s$ per day. The total 

assessment cost for a defender strategy is the base assessment cost times the number of 

assessment days that occur over the course of a simulation year. 

Table 4-XII gives the base cost for each type of manpower.  For each defender-attacker 

strategy pair, the cost of the defender strategy is calculated based on the number of inspection 

days, analysis events, or assessment days that would occur annually. 

Table 4-XII. Manpower costs 

Type of Manpower Cost Cost in Simulation Dollars 
Inspection 10 per small team per insp 

Additional inspection activities 2 per additional activity per insp 
Special inspection 30 per inspection 

Analysis 2.5 per sample 
Assessment 0.60 per day 

 
In addition to variable O&M costs associated with manpower (i.e. inspector time or 

analysis time), variable costs arise from safeguards that incur a per-item equipment cost, namely 

passive and active seals. The variable equipment cost for these safeguards is the per-item cost 

times the number of items that would be required annually to maintain the selected defender 

strategy. These costs are given in Table 4-XIII. 

Table 4-XIII. Per item equipment costs 

Safeguard Per Item Cost 
Passive seal 0.01 
Active seal 0.50 

4.6.2 Safeguard-Specific Cost Information 

A. Inspection 
Inspection costs are governed by the inspection manpower costs shown above. In 

addition, the cost of an inspection depends on the size of the team used, as described by the Fteam 

variable (see Section 4.3 for more detail).  The 10 dollar base price assumes a small team, Fteam = 

1. If a large team is used, Fteam = 19, it is assumed that additional personnel cause each inspection 
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to cost three times as much, making the price 30 dollars per inspection. The total inspection for a 

defender strategy is the per-inspection cost times the number of inspections required to maintain 

that strategy for a year. 

Note that when the defender plays an inspection strategy, she must purchase inventory, 

mass balance verification, and reviewing logged video images together, even if any of these three 

safeguards is not effective against the attacker strategy. These three activities constitute a basic 

inspection. Additional inspection activities can be added to this basic inspection (i.e. passive seal 

verification, NDA, or DA), but the defender only pays the base inspection cost once, and then 

pays 2 s$ per activity for each additional inspection activity. 

Inventory 

The costs associated with inventory are only the manpower costs given in Table 4-XII. 

Mass Balance Verification 
Mass balance verification has an associated false alarm probability. In this case, false 

alarms are inexpensive, because they occur when the inspector is physically present at the 

facility, meaning resolving the false alarm can be done relatively quickly and without additional 

travel.  The low false alarm probability, 0.001, comes at no cost to the inspector. The higher false 

alarm probability, 0.01, is assumed to make the inspectors’ time cost 1.1 times the base price.  

This reflects a 10% increase in the number of man-hours spent on the inspection as the inspectors 

are called upon to resolve additional false alarms.  

To calculate the equipment costs associated with mass balance verification, the cost of a 

load-cell based scale (LCBS) had to be used.  The cost of the LCBS was estimated at $24,000, 

and it was assumed that a scale is operational for 20 years [62].  The scale is calibrated annually 

by the IAEA, making its fixed maintenance low. The annual equipment cost for mass balance is 

thus $1200/year for the scale and $24/year for maintenance, giving a total cost of 12.24 s$.  This 

value is added to the total inspection cost. 

Logged Video Images 
It is assumed that a 30-camera, wired video surveillance system is used at the enrichment 

facility for this safeguard. The size of the system was invented based on the layout of a model 
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GCEP facility [63]. The equipment costs are estimated at $16,500, which is based on the scaling 

up of a commercially available six-camera system [64].  The system is assumed operable for ten 

years, and requires high maintenance ($165/year), making the total estimated annual cost 

$1815/year, or 18.15 s$. 

Total inspection costs are the sum of the yearly manpower costs, mass balance 

verification equipment costs, and logged video equipment costs. 

B. Passive Seals 
Passive seals require inspectors to install and collect the seals, as well as analysis of the 

seals at an off-site laboratory. Thus the manpower costs associated with passive seals include a 

base cost per inspection plus 2.5 s$ per batch of passive seals collected. The defender has the 

option to verify only half of the seals deployed in the field; if the defender chooses this option, 

she incurs an analysis cost of 1.25 s$, or half the per-batch cost of analysis. Additionally, there is 

a per-seal cost for the seals themselves, but this cost is very low at 0.01 s$ per seal. The defender 

must purchase enough seals to use for an entire year of her selected strategy. 

C. Non-Destructive Assay 
General inspection costs are associated with non-destructive assay, as well as capital 

costs. As mentioned under the mass balance section, a higher false alarm probability increases 

the cost of the inspector’s time.  In terms of equipment, one large, ruggedized NaI gamma 

detector costs about $9,000 [65].13 It is assumed that two detectors are used for NDA, so that 

both can be used simultaneously to expedite the survey or so that if one is out of commission for 

maintenance, the other can be used. It is also assumed that these detectors service only this 

facility, and are locked in a tamper-indicating storage cabinet between inspections.  This results 

in a total cost of 18 s$. If the detectors are operable for five years, the-per year cost is 3.6 s$. 

This cost is in addition to the annual 0.07 s$ fixed O&M cost.  

                                                
13 Based on price for GAMMA-RAD5 
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D. Destructive Assay 
Destructive assay occurs during inspections, incurring general inspection costs.  

Additionally, there is a high equipment cost associated with this safeguard. A thermal ionization 

mass spectrometer (TIMS), one of the primary pieces of equipment used for isotopic analysis, 

costs about $750,000 [66]. Assuming a serviceable life of ten years, the amortized capital cost is 

$75,000 per year. It is estimated that this piece of equipment is used at the Safeguards Analytical 

Labs by at least 84 front-end fuel cycle facilities worldwide and analyzes an average of 600 

samples per year total [60], [67]. Capital costs are estimated by dividing the $75,000 capital cost 

by the 84 facilities using the TIMS, assuming each facility shares an equal burden, giving a per-

facility capital cost of just under $893, or 8.93 s$. The fixed O&M cost is $18 per year, or 0.18 

s$. 

Each sample must also be analyzed, requiring analysis manpower. As mentioned 

previously, a $250/batch analysis rate is assumed for DA samples. The defender has the option to 

sample either half or one-eighth of the cylinders in product storage. If she samples half of the 

cylinders, she is charged the full $250 (2.5 s$); if she samples one-eighth of the cylinders, she 

charged only half that rate (1.25 s$).   

E. Transmitted Video 
Viewing transmitted video images to detect anomalous activity is an assessment activity, 

if the defender plays this safeguard, she must buy assessment time every day for the duration of 

the simulation. Additionally, the defender can choose a small or large assessment team, and as 

with general inspections, using a large time costs three times more than using a small team. As 

was the case for logged video images, the capital cost assumes a 30-camera system, only in this 

case a wireless system is assumed.  The cost of the wireless video surveillance system is 

estimated at $32,500, again scaled up from a six-camera wireless system [64]. Again this system 

is assumed serviceable for ten years, giving an annual cost of $3,250 per year, in addition to a 

high annual maintenance cost of $325 per year. Thus the total annual equipment costs are $3,575 

per year, or 35.75 s$. 
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F. Active Seals 
Active seals require paying for assessment time on each day of the simulation, and 

paying a per-seal cost for each active seal installed. Based on the prices of commercially 

available active RFID seals used for high-value assets, the cost of one active seal was estimated 

at $100, or 1 s$ [68]. Active seals remain in use in the field for multiple years; here it is assumed 

they can be used for two years, giving an annual, per-item cost of 0.50 s$.  It is also assumed that 

the defender must purchase two seals annually for every one seal that she deploys, such that a 

duplicate is available for replacing a seal that has failed or been tampered with. 

G. CEMO 
As with the previous two active safeguards, CEMO requires assessment costs every day.  

In this case, if the defender chooses the high false alarm probability, the manpower costs are 

assumed to be doubled, as resolving this type of false alarm requires inspectors to travel to the 

facility. An equipment cost of $18,000 was assumed for a CEMO unit. Little information was 

available about the cost of CEMO units, so this value was calculated simply by doubling the cost 

of the handheld gamma detectors used for non-destructive assay.  It is assumed that a CEMO 

detector can be used for ten years, yielding an annual equipment cost of $1,800, plus a high 

annual fixed O&M cost of $180.  Thus the total cost for CEMO is 19.8 s$, plus assessment time. 

H. Visual Inspection 
 Visual inspection occurs inside and around the cascade halls during special inspections. 

Because this activity requires no equipment, there are no costs aside from manpower associated 

with it. Thus the total cost of visual inspection is 30 s$ per inspection. 

I. Environmental Sampling 
 Environmental sampling is an additional activity that can occur during a special 

inspection. As such it costs 6 s$ per inspection. The analysis performed for environmental 

sampling closely resembles that of destructive analysis, so the annual equipment cost is the same 

for both safeguards at 8.93 s$, with low fixed O&M of 0.18 s$ per year. There are two 

assumptions made about analysis for ES: 1) Because this is a special inspection, analysis is 



68 

 

expedited and results are produced on a shorter timeline than a normal DA sample, and 2) Either 

six or 12 samples are processed for each inspection. Due to these two assumptions, analyzing a 

batch of ES swipes is assumed to cost twice as much as analyzing a batch of DA samples, 

making the cost 5 s$ per batch of swipes. Here a batch is 6 samples; if the defender chooses to 

take 12 swipes, the analysis cost is 10 s$. 

Table 4-XIVsummarizes the capital, O&M, manpower, and total cost for each enrichment 

safeguard, and Table 4-XV demonstrates a sample cost assessment for a sample defender 

strategy where the defender has purchased each safeguard, but has chosen to play each one in the 

least expensive way possible. Parameters for this strategy are specified in Table 4-XVI. The table 

provides a breakdown of each type of cost for each safeguard and gives a total strategy cost in 

the bottom row.  

Table 4-XIV. Enrichment safeguards cost summary 

Safeguard 
Capital 

Cost 
(s$/year) 

Fixed 
O&M 

(s$/year) 

Variable O&M 
(s$/year) 

Total 
Fixed Cost 
(s$/year) 

Insp- Inventory 
Insp- Mass balance 
Insp- Video logged 

  Manpower Other  
0 0 10/insp 0 0 
12 0.24 0 0 12.24 

16.50 1.65 0 0 18.15 

Passive seals 0 0 2/insp 
2.50/batch 0.01/seal 0 

NDA 3.6 0.07 2/insp 0 3.67 

DA 8.93 0.18 2/insp 
2.50/batch 0 9.11 

Video transmitted 32.50 3.25 0.60/day 0 35.75 
Active seals 0 0 0.60/day 0.50/seal 0 

CEMO 18 1.80 0.60/day 0 19.80 
Visual inspection 0 0 30/insp 0 0 

ES 8.93 0.18 6/insp 
5/batch 0 9.11 
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Table 4-XV. Sample strategy cost demonstration 

Safeguard 
Capital 

Cost 
(s$/year) 

Fixed 
O&M 

(s$/year) 

Variable O&M 
(s$/year) 

Total Cost 
(s$/year) 

Insp- Inventory 
Insp- Mass balance 
Insp- Video logged 

  Manpower Other  
0 0 120 0 120 
12 0.24 0 0 12.24 

16.50 1.65 0 0 18.15 

Passive seals 0 0 22 
13.75 2.52 38.27 

NDA 3.60 0.07 22 0 25.67 

DA 8.93 0.18 22 
13.75 0 44.86 

Video transmitted 32.50 3.25 216 0 251.75 
Active seals 0 0 216 15 231 

CEMO 18 1.80 216 0 235.80 
Visual inspection 0 0 120 0 120 

ES 8.93 0.18 24 
20 0 53.11 

Total 91.53 7.19 861.50 17.52 742.94 

Table 4-XVI. Parameters for sample strategy used in cost demonstration 

Parameter Value 
Inspection frequency 30 days-1 

Fteam 1 
FAP 0.001 

Fraction seals verified 0.50 
Fraction cascades sealed 0.50 

DA samples per inspection 1 
Special inspection frequency 90 days-1 

ES swipes per inspection 6 

4.7 PAYOFFS 
The payoff to the defender and attacker for a given strategy pair is the detection 

probability weighted by the quantity and attractiveness of the material obtained.  The material 

attractiveness is valued using Bathke’s Figure of Merit (FOM) method [69], described in greater 
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detail below. Because the payoff function is subjective and potential adversaries’ motives may 

not be identical, two different functions were used for analysis and the results from each are 

presented. These functions are described in detail below. 

4.7.1 Figure of Merit Calculation 
 

The FOM method assigns a value up to three to fissile material, based on the bare critical 

mass, the heat rate and the dose rate.  Material valued between 0-1 is impractical for weapons 

use, material from 1-2 is attractive, and material with a FOM greater than 2 is preferred. For an 

advanced proliferant state or a sub-national group unconcerned with yield, the FOM is calculated 

using Equation 4.28.  A second FOM formula can be used for less advanced proliferant nations 

who are concerned with pre-initiation, for whom spontaneous fission may be a substantial 

obstacle to weapons development. 
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where: 
 
M = bare critical mass (kg) 
h = heat content in unpurified metal form (W/kg) 
D = dose rate of 0.2�M at 1 m (rad/h) 

Bare critical mass and heat rate 
The FOM was calculated for all material available to the attacker in the enrichment 

simulation: natural uranium, and 4.5%, 19.7%, 50% and 90% 235U enriched uranium.  For each 

material type, bare critical mass, heat content and dose rate need to be calculated as inputs to 

Equation 4.28.  Bare critical mass and heat rate were calculated using an Excel-based tool. The 

tool does a one-group diffusion calculation to determine the bare critical mass, and uses specific 

decay power values from the Origen2.2 data libraries to calculate heat content.  Note that the tool 

has low fidelity for enrichments below 10% 235U, so values are not reported for natural or 4.5% 

enriched uranium. The value for each of the enriched materials is given below in Table 4-XVII. 
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Table 4-XVII. Calculated metrics used in FOM calculation 

Material M (kg) h (10-5 W/kg) 
19.7% enr. U 817 1.96 
50% enr. U 163 3.40 
90% enr. U 57 5.30 

Dose rate for 0.2∙M at 1 m 
MCNPX was used to calculate the dose rate of 20% of the critical mass at 1 m.  A 

spherical volume source was modeled, and the radius of the sphere was calculated from the 

density of uranium and the mass.  Two separate runs were done—one with the spontaneous 

fission (SF) card and one with the spontaneous photon (SP) card.  The DF card was used to 

modify the tally and produce dose in rem/hr as an output.  Because the input to the FOM 

equation must be in rad/hr, the neutron tally results were binned into six groups: thermal, up to 

0.01 MeV, up to 0.1 MeV, up to 2 MeV, up to 20 MeV, and greater than 20 MeV.  The dose in 

rem/hr in each of these bins was then divided by the appropriate radiation weighting factor to 

obtain the dose in rad/hr.  The dose rates in each bin were summed, along with the gamma dose 

rate, to give the total dose rate.  The runs done with the SF and SP cards gave very similar 

results, so only the results from the spontaneous fission run are considered.  The dose rates for 

each material type are given in Table 4-XVIII. 

Table 4-XVIII. Dose rate or 0.2*M at 1 m 

Enrichment Dose rate (10-6 rad/hr) 
19.7% 0.105 
50% 0.0185 
90% 0.00184 

 
Using the inputs presented above, the FOM for 19.7%, 50%, and 90% enriched uranium were 

calculated. FOM for natural and 4.5% enriched uranium could not be calculated; however, values 

were assigned to characterize the attractiveness of these materials relative to the other enriched 

uranium products. These values are given in Table 4-XIX. 
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Table 4-XIX. FOM values for enrichment facility 

Enrichment FOM 
0.711% 0.03314 
4.5% 0.1 
19.7% 0.991 
50% 1.69 
90% 2.15 

4.7.2 Payoff Functions 
The FOM value is combined with the material quantity and DP using a payoff function.  

Two different functions, given in Equations 4.29 and 4.30, respectively, were used to model the 

breakout-willing attacker and the risk-averse attacker. Here 𝛼 is a weighting factor that describes 

the degree to which the attacker is motivated by high-value material.  Recall that the attacker is 

the minimizing player, meaning he desires the lowest payoff possible. The payoff function given 

in Equation 4.29 describes an attacker who minimizes his payoff by seeking to avoid detection if 

possible, but ultimately by obtaining large quantities of high value material at any cost, even at 

the expense of being detected for certain. Thus this function is used to model a breakout-willing 

attacker who is willing to accept that he will be detected and nonetheless pursues a breakout 

strategy—an aggressive strategy to produce or divert large quantities of high-value material.  

Payoff 1 continues to decrease as the denominator increases, so that this attacker will find large 

amounts of high-FOM material an attractive target even if the DP associated with obtaining it 

approaches unity. Conversely Payoff 2 asymptotes to a large value as the DP approaches unity, 

which is highly undesirable for the attacker. Thus Payoff 2 gives the payoff function for a risk-

averse attacker who is still incentivized by high-value material, but unlike the breakout-willing 

attacker, will reject any strategy that results in certain detection, if alternatives are available.  

 𝑝𝑎𝑦𝑜𝑓𝑓1 =
𝐷𝑃

(𝐹𝑂𝑀 ∙ 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦)! (4.29) 

                                                
14 A FOM-like value of 0.1 was assigned to 4.5% enriched material, and the value of 0.033 for natural uranium was 
assigned one-third of that value based on the fact that enriching 1 kg of NU to 90% requires approximately three 
times the enrichment capacity as enriching 4.5% enriched material to 90%. 
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𝑝𝑎𝑦𝑜𝑓𝑓2 =

𝐷𝑃
(𝐹𝑂𝑀 ∙ 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦)! ∙

1
(1+ 𝑒 − 𝐷𝑃) (4.30) 

Where m is the mass of material obtained [kg], 𝛼 is the material weighting parameter, 

and e is 0.001, a small non-zero value used to ensure that as the DP approaches unity, the payoff 

approaches infinity. The value for 𝛼 is a value varied from 0 to 0.7 to simulate an attacker with 

different levels of material motivation. Note that the alpha = 0 case is not a realistic scenario, 

because all adversaries would prefer better material to worse material and more material to less 

material; however, alpha = 0 serves as the limiting case of an extremely conservative attacker. 

Alpha values were varied only up to 0.7 because at this value the attacker has already committed 

to a single attack strategy that is dominated by his desire for high-value material. Note that for 

the breakout-willing attacker, the strategy to which he commits is the breakout strategy, and for 

the risk-averse attacker, the strategy is the one that obtains the maximum possible amount of 

material while still keeping evading certain detection (DP < 1). The breakout strategy is the 

strategy in which the attacker seeks the maximum quantity of high-value material, even though 

he knows he faces certain detection. Figure 4-1 shows both payoffs as a function of DP for alpha 

= 0 and alpha = 0.2. 
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Figure 4-1. Payoff functions as a function of DP 

 Figure 4-2 shows payoff 2 as a function of DP for two different material utilities at alpha 

= 0.1, where material utility is defined as 𝐹𝑂𝑀 ∙ 𝑄, or the FOM times the quantity of TRU 

obtained. (𝐹𝑂𝑀 ∙ 𝑄)! takes a value of 0.016, corresponding to the material utility in attacker 

strategy A33, the strategy generally chosen by the attacker at the reprocessing facility at alpha 

equals zero when he seeks to avoid detection. (𝐹𝑂𝑀 ∙ 𝑄)! takes a value of 576, corresponding to 

attacker strategy A47, the breakout strategy in the reprocessing model. It is clear that for any 

alpha value greater than zero, the attacker prefers (𝐹𝑂𝑀 ∙ 𝑄)! to (𝐹𝑂𝑀 ∙ 𝑄)!.  

 Inherent in the attacker’s strategy selection is a trade-off between maximizing material 

utility and evading detection. The horizontal black line on Figure 4-2 intersects both curves at a 

payoff value of 2. The attacker is indifferent between these two strategies at this alpha value 

because both strategies yield a payoff of 2. As the alpha value is decreased, and the attacker’s 

behavior is less influenced by material utility, the attacker will select the strategy that yields 

(𝐹𝑂𝑀 ∙ 𝑄)!, because this strategy results in a lower DP. Here the payoffs for both strategies 

asymptote towards positive infinity as the DP approaches one, so the attacker is incentivized to 
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pursue lower value material to keep his DP lower. Conversely, for the breakout-willing attacker, 

shown in Figure 4-3, the attacker is not indifferent between the two strategies, as demonstrated 

by the black line. In this case, the attacker minimizes his payoff by selecting the breakout 

strategy ((𝐹𝑂𝑀 ∙ 𝑄)!), even though the DP for this strategy is 1. This point occurs when the 

payoff is around 0.5. Beyond this payoff value, no additional defender investment makes a 

difference in the attacker’s behavior, because he has already been pushed to the breakout 

strategy. 

 

Figure 4-2. Payoff 2 as a function of DP for two material utilities (alpha = 0.1) 
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Figure 4-3. Payoff 1 as a function of DP for two material utilities (alpha = 0.1) 

Additionally, a ‘normalized payoff’ is calculated for both payoff 1 and 2. This normalizes 

the payoff value by the maximum possible material value available to the attacker. This payoff 

ranges from zero to one, and takes the value 1.0 when the two conditions defining the breakout 

scenario are met: (1) the attacker obtains the best possible material, and (2) the scenario DP is 

one. This payoff eliminates the artificial drop in payoff value with increasing alpha that is seen 

for both payoff 1 and 2. The normalized payoff was calculated using Equation 4.31 for 

normalized payoff 1, and Equation 4.32 for normalized payoff 2. The notation (𝐹𝑂𝑀!! ∙

𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦!!) indicates the maximum possible material utility for the attacker. 

 𝑝𝑎𝑦𝑜𝑓𝑓1′ =
𝐷𝑃

(𝐹𝑂𝑀 ∙ 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦)!
∙ (𝐹𝑂𝑀!! ∙ 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦!!)! (4.31) 

 𝑝𝑎𝑦𝑜𝑓𝑓2′ =
𝐷𝑃

(𝐹𝑂𝑀 ∙ 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦)!
∙

1
(1 + 𝑒 − 𝐷𝑃)

∙ 𝑒 ∙ (𝐹𝑂𝑀!! ∙ 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦!!)! (4.32) 
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Chapter 5: Reprocessing Simulation 

This section presents the reprocessing simulation model. The first sub-section describes the 

reference reprocessing facility that the model is based on. The second section provides 

qualitative information about defender and attacker options, and the third section expands on this 

information with quantitative DP calculation algorithms. The fourth and fifth sections are 

analogous to Sections 4.6 and 4.7, providing cost and payoff information for the reprocessing 

model. 

5.1. REFERENCE REPROCESSING FACILITY 
A UREX+ aqueous reprocessing facility with an annual capacity of 200 MTHM is 

modeled.15 The facility can process spent LWR fuel from approximately ten reactors annually, 

separating about 2000-kg of TRU oxide product.16 It is assumed that the facility operates 

continuously 24 hours per day, 240 days per year [72]. Based on this assumption, the facility 

produces an average of slightly greater than one significant quantity (8 kg) of plutonium per day. 

A 10-year cooling time between reactor discharge and reprocessing is assumed. Figure 1 gives 

an overview of the major steps in the UREX+1a aqueous reprocessing process. Fuel is received 

in spent fuel bundles from a reactor. Fuel attributes are measured using non-destructive assay 

techniques (NDA) and operator declarations are compared to inspector burnup calculations and 

NDA measurements. The fuel is then stored until it is ready to be processed. The storage is under 

constant containment and surveillance (C/S), including cameras and directional radiation 

detectors [72]. 

5.1.1 Process flow 
The spent fuel enters front-end operations and is first mechanically chopped and sheared. 

The spent fuel pellets are then dissolved in nitric acid. Undissolved material, including cladding 

and undissolved fuel, are removed from the process stream (“hulls”).  The raffinate then enters a 

                                                
15 This facility size was chosen by scaling the model facility in the SSPM model down by an order of magnitude 
[70]. 
16 Based on fact that U.S. produces approximately 2100 MTHM/yr spent fuel total at 104 reactor facilities [71]. 
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series of centrifugal contactors or mixer settlers that comprise the UREX extraction step. In this 

step, uranium and technetium are co-extracted from the solution using TBP as a solvent.  The 

uranium and technetium are then partitioned to be stored separately. 

After the uranium is extracted from solution, the remaining solution contains TRU 

products (Pu, Np, Am, Cm), fission products, and lanthanides. CCD-PEG solvent is used to 

extract Cs and Sr from solution, which pose a large repository burden due to their short half-lives 

and high heat generation rates.  The solution is then sent to the TRUEX process, where non-rare 

earth fission products are extracted to be stabilized and stored.  Finally in the TALSPEAK 

process phase, the rare earth fission products are separated out [73]. The plutonium and minor 

actinides (MA) solution is solidified, and the Pu + MA product is stored on-site until shipment. 

5.1.2 Material flow and characteristics 
It is assumed that output batches from the TRU product tank are withdrawn once every 

24 hours. Based on the 240 days in an operational year, the plant produces 240 TRU product 

batches per year, meaning each batch contains approximately 8 kg of TRU product. The initial 

composition of plutonium in used LWR fuel is approximately 0.9%, while minor actinides 

comprise approximately 0.1% [71]. Assuming this ratio is maintained to the first approximation 

during reprocessing, there is about 7.2 kg of plutonium in the 8 kg of TRU product. Based on 

this estimation, each TRU product batch is produced from approximately 800 kg of spent fuel 

(excluding cladding). It is assumed that each chemical process takes 24 hours to complete except 

for the TALSPEAK process,17 meaning it takes the material 24 hours to move from the chopper 

to the front-end accountability tank, 24 hours to move from the accountability tank to the UREX 

contactors, 24 hours to move from the UREX contactors to the TRUEX contactors, 24 hours to 

move from the TRUEX contactors to the TALSPEAK contactors, and 24 hours to move from the 

TALSPEAK contactors to the TRU product tank.  

The nominal volume in front-end accountability tank is 2,880 liters with a plutonium 

concentration of 2.5 g/L, and the nominal volume in the TRU product tank is 31 L with a 

                                                
17 Based on Cipiti, who notes that it takes 27 hours for material to move from the dissolution to the UREX 
contactors [16] 
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plutonium concentration of 0.25 kg/L.18 The nominal density of the tanks is estimated based on 

the mass of solute and the volume. In the front-end accountability tank, it is assumed that all 800 

kg of spent fuel are dissolved in solution. Note that in reality this is not strictly true as some mass 

would be lost either by design, as is the case with volatile fission products that are driven off, or 

due to process loss, such as hold-up in the pipes or material remaining undissolved and moving 

with the hulls to a waste stream. This assumption is made here to simplify calculations while 

retaining accuracy to a first approximation. Using these assumptions, the density in the front-end 

accountability tank is approximately 300 g/L.19 The density of the TRU product tank is the mass 

of TRU product, 8 kg, divided by the volume of the tank, also resulting in a density of 300 g/L. 

 One of the material characteristics that makes spent fuel relatively easy to detect and 

difficult to handle is that it is highly radioactive. In this work, only the material’s neutron 

emission rate is considered, because it assumed that non-destructive assay is done using neutron 

counting, though in reality spent fuel also has a high gamma emission rate. Two major 

mechanisms contribute to the high neutron emission rate of spent fuel: spontaneous fission and 

(𝛼,𝑛) reactions. At the time of discharge, (𝛼,𝑛) reactions account for about 7% of all neutrons 

emitted from spent fuel, but this percentages decreases over time [75]. As stated previously, it is 

assumed that material is cooled for ten years before reprocessing. Ten year after discharge, the 

neutron rate is totally dominated by spontaneous fission of Cm-244, so much so in fact that the 

total neutron emission rate is effectively the spontaneous fission rate for this isotope [75]. For a 

standard boiling water reactor (BWR) fuel assembly with fresh fuel enrichment of 4.4% and a 

burnup of 40 MWd/kgU, the Cm-244 neutron emission rate at discharge is 4.39 x 107 

n/s/assembly. The count rate after the ten year decay period can be calculated using Equation 5.1, 

where TC is the cooling time [seconds], Sp
0 is the primary Cm-244 source at time T = 0 

(discharge) [n/s/assembly], and 𝜆 is the decay constant for Cm-244 (1.2135 x 10-9 s-1). 

 𝑆! 𝑇! = 𝑆!!𝑒!!!! (5.1) 
Inserting the proper values into Equation 5.1, the neutron emission rate for Cm-244 ten 

years after discharge is 2.99 x 107 n/s/assembly. An average BWR assembly contains about 210 

                                                
18 Pu concentration was taken from [74], 15-volume tank example. The volume is calculated from product mass and 
Pu concentration. 
19 Note that only one significant figure is used due to the approximate nature of the solute mass value 
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kg of material, making the neutron rate approximately 1.4 x 105 n/s/kgSF (neutron per second 

per kg of spent fuel) [76]. This Cm-244 source term is assumed equal to the total neutron 

emission rate for both the spent fuel and the TRU product. No further decay-correction is made 

for the TRU product to account for time in process due to the insignificance in the neutron 

emission reduction over this short time. The total neutron source term for a batch of spent fuel 

(800 kg) is 1 x 108 n/s, and this is also the neutron source term for the TRU product tank, 

because the UREX+ process co-extracts MA and Pu, so all Cm-244 remains in the product. 

Table 5-I  summarizes the nominal operating and material parameters described in this 

section. These values are referenced below in the DP calculations for different defender-attacker 

pairs. 

Table 5-I. Reprocessing process characteristics under normal operating conditions 

 Front-end Accountancy Tank TRU Product Tank 
Material mass (kg) 800 8 

Pu mass (% total mass) 0.9 90 
MA mass (% total mass) 0.1 10 

Volume (L) 2,880 31 
Pu concentration (g/L) 2.5 250 

Density (g/L) 300 300 
Neutron source term (n/s) 1 x 108 1 x 108 
 

5.1.3 Diversion points 

Figure 5-1 provides an overview of the UREX process. The red boxes indicate some 

potential points of diversion. The possible points of diversion depicted are: diverting spent fuel 

from storage, diverting TRU into the hulls, diverting material from any of the solvent extraction 

steps, or diverting TRU product from storage. Diversion of solution into hulls or from the 

extraction steps can be done with or without replacement with nitric acid to maintain mass and 

volume levels. The diagram also indicates key safeguards measurements points, where either 

NDA or DA samples are taken by an automatic sampling system and analyzed in an on-site 

laboratory. 

 The diversion points pictured are a subset of the possible diversions at an aqueous 

reprocessing facility and should not be considered an exhaustive list. The number of attacker 
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options considered in this model was limited to keep the scope of work manageable. To that end, 

the attacker options modeled in this work are indicated by the red dots and the “AO” labels. 

These options are: (1) diverting chopped fuel pieces from a hot cell before dissolution, and (2) 

diverting TRU solution from the TRU product tank. Figure 5-2 and Figure 5-3, adapted from 

[16], show the front and back-end process steps in greater detail. Here the specific process steps 

from which the attacker can divert material are shaded in red.  

 

 
 
 

Figure 5-1. UREX+ process overview and points of diversion 

 

 
 

Figure 5-2. Front-end of UREX+ process with diversion location shaded in red  
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Figure 5-3. Back-end of UREX+ process with diversion location shaded in red 



 83 

5.2 ATTACKER OPTIONS  

1. Diversion of chopped spent fuel pieces before dissolution 
In this diversion scenario, the attacker diverts chopped spent fuel pieces from a hot cell to 

an undisclosed location for additional processing. The attacker can select the frequency of the 

attack, the duration of the attack, and the mass stolen per attack. It is assumed that the attacker 

has authorized access to the material without creating any additional penetrations or forcing his 

way into the hot cell. Note that this diversion can be detected by four safeguards: C/S, the 

SMMS, DA sampling, and DIV. Of these safeguards, two of them (C/S and DIV) are applied at 

the Hardware Removal and Chopper process step, and two are applied downstream at the front-

end accountability tank (SMMS and DA), which results in a slight delay in detection. As 

mentioned above, it is assumed that it takes material 24 hours to move from the Hardware 

Removal and Chopper process step to the front-end accountability tank.20 

2. Diversion of TRU solution from TRU product tank 
 In this diversion scenario, that attacker diverts TRU solution from the TRU product tank 

to an undisclosed location for additional processing. The attacker selects the frequency and 

duration of attack, as well as the quantity of material diverted. It is assumed that the tank is at 

static volume when the attacker diverts material; that is, a batch of material has filled the tank to 

a specified volume and the tank is now in “wait” mode, waiting to send the material on to the 

next process step. It is further assumed that the attacker diverts the material through an 

undeclared pipe to an undeclared tank [74]. As described above, it is assumed that each chemical 

separation step takes 24 hours to complete, so it takes the material 120 hours, or five simulation 

days, to get from the front-end accountability tank to the TRU product tank.  

5.3 DEFENDER OPTIONS 

A. Dual Containment and Surveillance and NDA(cameras and directional radiation detectors) 
Containment and surveillance is installed around the facility to ensure the proper, 

undisturbed flow of materials. C/S is also of particular utility in storage areas, where little 

                                                
20 This time is estimated based on the 27 simulated hours that is required for dissolver solution to reach contactor 
bank in solvent extraction unit in SSPM 
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movement or change in scenery is expected.  Dual C/S is comprised of both cameras and 

directional radiation detectors. Here C/S and NDA are considered together, with the directional 

radiation detectors serving as a non-destructive technique for verifying the presence of the 

appropriate quantity of TRU material. Modeling of the video portion of this safeguard is 

identical to that of logged video images from the enrichment facility. It is assumed that 

anomalous motion at the facility (i.e. human activity in a hot cell where human presence is rarely 

or never expected) can trigger the video system to record images, and that the inspector reviews 

these images during every inspection.  

The directional radiation detectors (DRD) are modeled as a small network of gross 

neutron counters that measure static volume vessels to estimate the TRU inventory. The 

detectors register an anomalous reading if a suppressed neutron count is detected, indicating the 

possible diversion of TRU material. This safeguard is modeled after the Plutonium Inventory 

Measurement System at the Rokkasho facility, which uses a network of 142 3He detectors to 

continuously measure plutonium hold-up in glove boxes and pipes. Cipiti asserts that tanks that 

contain large plutonium inventories, such as the TRU product tank, require high-certainty 

sampling for accountancy measures, but for tanks with small plutonium inventories, less 

sensitive non-destructive counting techniques with errors as high as 20% are sufficient [16]. In 

this model, it is assumed that DA sampling is performed on tanks with large Pu inventories, 

specifically the front-end accountancy tank and the TRU product tank, to detect bias defects, like 

alterations to process conditions, but this type of sampling is unable to detect the diversion of 

homogenized TRU product solution. Thus it is assumed that directional radiation detectors are 

employed as a complementary measure to detect gross defects, such as the diversion of a large 

quantity of solution or chopped spent fuel pieces. A total measurement uncertainty of 10% is 

assumed [77].  

The operational characteristics ascribed to DRD are similar to those of the video 

surveillance; an anomalous reading is recorded and must be reviewed by an inspector during an 

inspector in order for detection to occur. The defender chooses the frequency with which she 

inspects (and reviews the C/S records) and the size of the inspection team. 
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B. Design information verification 
During design information verification, inspectors ensure that physical features of the 

facility are consistent with declared design specifications.  A 3-Dimensional Laser Range Finder 

Detector (3DLRFD) is used to help inspectors find anomalous plant features, such as undeclared 

pipes, or features that have changed since the last inspection, such as valve settings.  Figure 5-4 

shows actual scans from the 3DLRFD— (a) is the initial scan of an area, (b) is a second scan, 

and (c) shows detected differences in red. The instrument itself detects and highlights the 

differences. Design information verification is performed during on-site inspections, and the 

defender chooses the frequency with which it is performed.  

Use of the 3DLRFD is a time-intensive process. Building a 3D image of one cell requires 

six scans, which takes two hours [77]. The defender also chooses whether design information for 

the front-end or back-end of the facility is verified on each visit. 

 

Figure 5-4. Scans taken using 3DLRFD: (a) initial scan, (b) second scan, (c) detected differences 
shown in red [77] 

C. Solution Measurement and Monitoring System 
 The SMMS is a process monitoring system in use at Rokkasho to provide continuous 

monitoring of the chemical portion of operations. At Rokkasho, both the Input Accountability 

Vessel (analogous to the front-end accountability tank in this model) and the Pu Product Output 

Accountability Vessel (analogous to the TRU product tank in this model) are equipped with 

instruments to measure absolute pressure directly. Additionally the Input Accountability Vessel 

is equipped with six probes that together can determine the solution density in the vessel [78]. 
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While twelve “strategic” vessels are monitored by IAEA equipment, other vessels at Rokkasho 

are monitored by the operator’s equipment, and signals from this equipment are split off and 

shared with the IAEA for increased continuity of knowledge. In this model, it is assumed that the 

SMMS provides volume, pressure, density, and temperature information at the front-end 

accountancy tank and the TRU product tank, and from this information can be used to calculate 

the mass of solute.  

At a real reprocessing facility, such as Rokkasho, the sampling frequency is on the order 

of seconds or minutes for many of the online safeguards, like the SMMS. A large number of 

samples can be collected over an extended period, such as a day, and these samples can be 

analyzed using alarm algorithms to check for trends in data. For example, if there is a single low 

reading that is within the measurement uncertainty for the instrument, an alarm may not be 

triggered, but a series of low readings within measurement errors may trigger an alarm. In an 

effort to differentiate trends in data from random uncertainty, statistical tests, like the Page’s test, 

are used to determine whether the readings constitute a trend. Such alarm algorithms are not 

modeled in this work for simplicity; instead, a single measurement is used as a proxy for a series 

of measurements. It is assumed for the purposes of this work that over a similar period of time, a 

single long measurement replicates the information generated by applying Page’s test to a series 

of many much shorter measurements. 

It is assumed that SMMS measurements are performed automatically and continuously, 

without inspector intervention, and alerts are sent to the defender remotely. The defender 

chooses the false alarm probability for this safeguard, where a larger false alarm probability 

increases DP but represents a nuisance to facility operators and inspectors and incurs extra costs. 

D. Destructive Analysis sampling 
 Samples are taken from front-end accountability tank and TRU product tank for 

destructive analysis to determine the isotopic actinide concentrations. As with the NDA 

measurements, it is assumed that DA samples are taken automatically at specified interval and 

sent to an on-site laboratory for processing, but that detection cannot occur until the next 

inspection when the inspector reviews the records. This automatic sampling procedure is 

modeled after operations at the Rokkasho reprocessing facility [79]. A systematic and random 
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error of 0.2% are assumed for this process, for a total uncertainty of  0.3% [16]. As with NDA, 

the defender chooses the sample + analysis frequency. 

5.4 DETECTION PROBABILITY CALCULATIONS 
Table 5-II shows the defender and attacker options for the model reprocessing facility 

and defines the defender options that are applicable to each attacker option. Of these options, 

only two attacker options and five defender options are modeled in detail. The options that are 

not explicitly modeled are shown in grey in the table. As mentioned previously, this work 

focuses on a small subset of defender-attacker pairs to keep the scope manageable while still 

demonstrating investment decision making across multiple facilities; a more comprehensive 

treatment of defender-attacker options is a subject for future work. The defender options 

modeled in this work are based on two sources: (1) safeguards in place at the Rokkasho 

Reprocessing Plant in Japan; and (2) safeguards modeled in the Separations and Safeguards 

Performance Model [16]. Defender options A and B, shaded in green, are activities that occur 

during an inspection. These are containment/surveillance (C/S) and design information 

verification (DIV).  Reviewing records from C/S activities is considered a routine inspection 

activity, and it occurs at every inspection the defender purchases. Design inventory verification 

is also considered a routine inspection activity, and it is conducted as frequently as C/S at no 

additional manpower cost to the defender. Destructive assay (DA) is an online monitoring 

system that can be operated essentially continuously (daily) or less frequently (every few days), 

depending on defender strategy. Though this system operates autonomously, inspector presence 

is required to review alerts raised by the DA sampling system, as these alerts are not transmitted 

remotely to an off-site assessor. Conversely, the Solution Measurement & Monitoring System 

(SMMS) is an online monitoring safeguard that operates continuously and sends alerts to 

inspectors remotely if an anomaly is detected. As noted for the enrichment facility, the detection 

probability calculation algorithms presented in this section are notional values with relative 

meaning, and as such they are not intended to be interpreted in an absolute sense. 

It should be noted that at Rokkasho, inspectors use a “continuous inspection approach”, 

which means that inspectors are present on-site at all times and additional inspectors are brought 

on-site for monthly and annual inventories. The IAEA conducts routine safeguards inspections at 
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two reprocessing facilities, the Tokai Reprocessing Plant and the Rokkasho Reprocessing Plant, 

and these inspections account for 20% of the IAEA’s total inspection budget [80]. The range of 

defender options modeled here is intended to present the defender with the option of selecting a 

manpower-intensive safeguarding strategy, like the one employed at Rokkasho, but also leave 

space for the defender to select less manpower-intensive strategies, if the latter is in fact optimal. 

Table 5-II. Defender-attacker strategy pair summary for reprocessing facility	
  

Defender 
Options Attacker Options 

Activity 1 2 3 4a 4b 4c 4d 5 6 
A A1 A2 A3 A4a A4b A4c A4d A5  
B E1 E2  E4a E4b E4c E4d E5  
C B1 B2 B3 B4a B4b B4c B4d B5 B6 
D D1  D3      D6 
E C1 C2 C3 C4a C4b C4c C4d C5 C6 
F F1       F5  
G         G6 
H H1 H2  H4a H4b H4c H4d H5  

 
Defender Options: 
 
A. Dual containment and surveillance (C/S) 
B. Design Information Verification (DIV) 
C. Solution Measurement & Monitoring System (SMMS) 
D. Destructive Assay sampling 
E. Non-Destructive Assay (PIMS) 
F. Hybrid K-Edge Densitometer [81] 
G. Lead Slowing-Down Spectroscopy [82] 
H. UV-Vis spectroscopy and flow rate measurements 
 
Attacker Options: 
 
1. Diversion of chopped spent fuel pieces before dissolution 
2. Diversion of TRU solution from TRU product tank 
3. Diversion of spent fuel rod 
4. Diversion of solution from process tanks 
 a. UREX process tank 
 b. CCD/PEG process tank 
 c. Purex process tank 
 d. TALSPEAK process tank 
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5. Diversion of TRU-bearing solution into hulls 
6. Falsification of spent fuel specifications 
 

5.4.1 Dual C/S DP Calculations 

A1. Diversion of chopped spent fuel pieces detected by C/S 
Containment and surveillance around the front-end hot cell containing the chopped spent 

fuel pieces is comprised of video surveillance and directional radiation detectors. As such, the 

detection probability for this safeguard is a function of both of these sensors.  

Video surveillance 

The DP for video surveillance is modeled identically to logged video images as a 

reprocessing facility. Thus the DP for the first inspection where video images are reviewed, 

DPi=1, is 0.43. Because reviewing surveillance video is a human operation and prone to human 

error, human reliability analysis techniques are applied to degrade the DP for subsequent 

inspections. The defender selects the size of the team as part of her strategy, and the size of the 

team determines the extent to which the detection probability is degraded. A large team sees only 

small decrease in the DP for multiples subsequent inspections because there are multiple sets of 

eyes viewing the video, while a small team sees a more marked decrease in DP. The detection 

probability for this safeguard is calculated using Equation 4.8. 

Directional radiation detectors 

The directional radiation detectors are designed to verify the presence of a source and 

determine if the count rate from the source is lower than the nominal value, thus indicating that 

some material might be missing. If material is removed without proper authorization, the 

network of detectors records an alert in the C/S system, which is reviewed by inspectors at the 

next inspection. Unlike the review of video surveillance logs, this activity is not subject to 

human reliability analysis techniques because detection does not require study of images by 

humans. It is assumed that there are four neutron detectors arranged in a square at the corners of 

the base of the hot cell. It is further assumed that the four detectors work independently, and an 

alarm will be raised if any of the detectors registers a reading above the threshold value. An 

alternative paradigm for a network of detectors would be to apply data fusion methods to define 
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an alarm condition if any of the detectors raises an alarm or if the average reading for the 

detectors is above some other threshold. Data fusion is particularly useful for detecting the 

presence of a weak source against a relatively high background, particularly when the source is 

located along the edges of the detector arrangement [83]. In this work the network of detectors is 

used to confirm the presence of a high source term with the expected count rate, which is why 

data fusion can be neglected with little penalty.  

Each neutron detector is modeled as a radiation-based detector-type system, as described 

in Section 4.3. The detection probability for the four-detector network with no data fusion is 

given in Equation 5.2. 

 𝐷𝑃 = 1− 𝐺!(𝑡)! (5.2) 
 

Where 𝐺!(𝑡) is the cumulative Poisson distribution with mean n and threshold t. It is assumed 

that the four detectors are independent and 𝐺!(𝑡) returns the non-detection probability for a 

single detector. The neutron source term is 1 x 108 n/s, as shown in Table 5-I, and an efficiency 

of 4% is assumed for each detector.21,22 Assuming a count time of 60 seconds, the nominal 

counts in the detector n is 2 x 108 n. A constant false alarm probability of 0.01 is also assumed 

for the directional radiation detectors. An alarm is triggered if the observed neutron count rate is 

below the threshold level.  

If the attacker diverts some mass Δ𝑚 [kgSF] from the total mass m in solution (800 kg), 

then the neutron emission rate post-diversion 𝑆!!  can be calculated using Equation 5.3.  

 𝑆!! = (𝑚 − Δ𝑚) ∙ 𝑆!!" (5.3) 
Where 𝑆!!" is the spontaneous fission emission rate per kg SF (1.4 x 105 n/s-kgSF). The signal 

observed in each detector is s is: 

 𝑠 = 𝜖 ∙ 𝑡! ∙ 𝑆!!  (5.4) 

Where 𝜖 is efficiency (0.04) and 𝑡! is count time (60 sec).   

                                                
21 PIMS neutron detector efficiency is 0.9%/detector, with 4-6 detectors around each glove box [84] 
22 It is assumed that this efficiency value accounts for intrinsic efficiency and geometric configuration; thus 
geometric attenuation is not taken into account when calculating the counts in the detector from the source term. 
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The total detection probability for C/S against diversion of spent fuel pieces at inspection 

i, DPitot, is the cumulative DP for both video surveillance and radiation detectors. For both the 

video images and radiation detectors, the equipment has the opportunity to sense and record an 

attacker event at each attacker event; however, detection does not occur until the defender 

reviews and assesses the records. Thus at each inspection when the inspector reviews records, 

she may view multiply recorded attacks. Her detection probability in this case is the cumulative 

sum of each individual recorded attack event. For example, if video images of two attack events 

have been recorded by the first inspection, the defender has an independent probability of 0.43 of 

detecting each event, or a total DP of 0.68. When HRA is applied to the review of video 

surveillance records, it is applied to the per-event DP (0.43 in the previous example), not to the 

total DP (0.68 in the previous example). 

DP 

𝐷𝑃!",!!! = 0.43 

𝐷𝑃! 𝑁𝐷!!! =1−
1+ 𝐹!"#$ ∙ 𝑁𝐷!!!

𝐹!"#$ + 1  

𝐷𝑃!"! = 1− 𝐺!(𝑡)! 

𝐺! 𝑡 = 1− 1 2 1− erf
𝑡 − 𝑠
2 ∙ 𝑠!

 

𝐷𝑃!!"! = 1− (1− 𝐷𝑃!") ∙ (1− 𝐷𝑃!"!) 

per inspection 

Defender Parameters 
f inspection frequency, f = {1 day-1, 3 days-1} 

Attacker Parameters 
T attack duration, T = {7 days, 30 days, 360 days} 
f frequency, f = {1 days-1, 7 days-1, 30 days-1} 

Payoff 
SF 0.50 

A2. Diversion of TRU solution detected by C/S 
 C/S is less effective against TRU solution diversion because the attacker does not 

physically enter the hot cell to remove material; thus, the cameras are unable to detect such a 

diversion. The DP for directional radiation detectors is modeled in the same manner as for the 

diversion of chopped spent fuel pieces, except that in this diversion scenario the attacker is 

diverting some mass Δ𝑚!"# of TRU solution, not a mass of spent fuel. In order to calculate the 

signal in the detector for this scenario, it is first necessary to calculate the mass of spent fuel 
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from which Δ𝑚!"# was extracted, referred to here as the equivalent mass of spent fuel. This 

value is calculated by dividing Δ𝑚!"# by the mass fraction of TRU in spent fuel, as shown in 

Equation 5.5.  

 Δ𝑚~!" =
Δ𝑚!"# 𝑥!"# (5.5) 

 

Where 𝑥!"# is the mass fraction of TRU in spent fuel (0.01) and Δ𝑚~!" is the equivalent mass 

of spent fuel. Note that the tilde is used in the subscript as a reminder that the adversary is not 

actually diverting this mass of material, but is diverting a smaller mass of TRU material that is 

extracted from this mass of spent fuel. Once the equivalent mass of spent fuel has been 

determined, the DP can be calculated using Equations 5.3 and 5.4, as described for defender-

attacker pair A1. 

DP 
𝐷𝑃!"! = 1− 𝐺!(𝑡)! 

𝐺! 𝑡 = 1− 1 2 1− erf
𝑡 − 𝑠
2 ∙ 𝑠!

 per inspection 

Defender Parameters 
f inspection frequency, f = {1 day-1, 3 days-1} 

Attacker Parameters 
T attack duration, T = {7 days, 30 days, 360 days} 
f frequency, f = {1 days-1, 7 days-1, 30 days-1} 

Payoff 
TRU 1.85 

5.4.2 DIV DP Calculations 

B1. Diversion of chopped spent fuel pieces detected by DIV 
 Design information verification is one of the core activities performed during a visual 

inspection at an enrichment facility, as described in Section 4.3. As such, the basis for design 

information verification detection probabilities for reprocessing is analogous to the DP for visual 

inspection at enrichment facility, though the DP is increased if the defender elects to use the 

3DLRFD at the reprocessing facilities, because this equipment increases the probability of 

detecting a small visual anomaly.  

 In this diversion scenario, the attacker is diverting solid pieces of chopped spent fuel 

from a hot cell, and he is entering and exiting the hot cell through authorized access points. As 
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such, there will be fewer visual indicators of unauthorized activity than for the back-end 

scenario, which requires that the adversary install equipment to perpetrate the diversion. It is 

assumed for the front-end diversion that there may be some small visual indicators that an attack 

is ongoing, such as a piece of equipment in the hot cell having been moved or extraneous 

equipment, like equipment needed to handle the hot spent fuel pieces, being left in the hot cell. 

Recall from the enrichment facility that detection probability for minor indicators such as these is 

0.29. This DP is assigned to this diversion scenario if the defender does not purchase the 

3DLRFD. If the defender does purchase this additional equipment, it is assumed that the non-

detection probability is decreased by 50% to give a DP of 0.65. Note that DIV will only detect 

the diversion of chopped spent fuel pieces if the diversion is ongoing, as it is assumed that once 

the diversion has concluded the attacker takes care to conceal any signs that a diversion has 

occurred. The defender also decides in which area to perform DIV if he purchases the safeguard 

(front-end or back-end), and the DP for this scenario is 0 if the defender chooses to verify the 

back-end. 

B2. Diversion of TRU solution detected by DIV 
 Unlike the diversion of spent fuel pieces from the hot cell, the diversion of TRU solution 

requires the installation of an unauthorized pipe to remove material. Thus design information 

DP 

if area = 0 
for 𝑡 > 𝑡!"#,  𝐷𝑃 = 0 
for 𝑡 ≤ 𝑡!"# 

if 3DLRFD = 0 
𝐷𝑃 = 0.29 

if 3DLRFD = 1 
𝐷𝑃 = 0.65 

 

per inspection 

Defender Parameters 
f inspection frequency, f = {1 days-1, 2 days-1} 

area area defender chooses to verify, area = {0, 1} where 0 is front-end 
3DLRFD defender chooses whether or not to purchase equipment, 3DLRFD = {0, 1} 

Attacker Parameters 
tend last day of diversion, tend = {0, 30, 360} 

Payoff 
SF 0.50 



 94 

verification around the TRU product tank should uncover major visual indicators of a diversion. 

As described in the enrichment section, the DP for a major anomaly such as this is 0.60. If the 

defender elects to purchase the 3DLRFD, the DP is increased to 0.80. As described for the 

previous diversion scenario, this safeguard only has a chance of detecting a diversion if it 

performed in the correct area (in this case, the back-end) while the diversion is ongoing. 

5.4.3 SMMS DP Calculations 

C1. Diversion of chopped spent fuel pieces detected by the SMMS 
 If chopped spent fuel is diverted before dissolution, the solution in the front-end 

accountability tank will be missing mass, relative to the mass expected based on operator spent 

fuel declarations. Thus the density will be lower than the nominal front-end density, and the 

Solution Measurement & Monitoring System might detect this suppressed density. The SMMS is 

modeled as a detector-type safeguard with nominal density reading of 300 g/L and random and 

systematic errors of 0.2% [74]. Using Equation 4.3, the total uncertainty is 0.3%. The FAP is 

selected by the defender and can take values of 0.01 or 0.05. 

 𝑛 = 300 (5.6) 
 𝑠! = 0.003 ∙ 𝑛 (5.7) 

The total nominal mass in the accountability take is given by the product of volume and density. 

If the attacker diverts some mass, ∆𝑚 [g], the actual mass in the tank is the nominal amount less 

DP 

if area = 1 
for 𝑡 > 𝑡!"#,  𝐷𝑃 = 0 
for 𝑡 ≤ 𝑡!"# 
if 3DLRFD = 0 
𝐷𝑃 = 0.60 
if 3DLRFD = 1 

𝐷𝑃 = 0.80 

per inspection 

Defender Parameters 
f inspection frequency, f = {1 days-1, 2 days-1} 

area area defender chooses to verify, area = {0, 1} where 0 is front-end 
3DLRFD defender chooses whether or not to purchase equipment, 3DLRFD = {0, 1} 

Attacker Parameters 
tend last day of diversion, tend = {0, 30, 360} 

Payoff 
TRU 1.85 
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∆𝑚. Dividing the actual mass by the total tank volume (which is assumed to be unaffected by 

diverted mass) gives the new density of the solution after the diversion. Equation 5.8 gives the 

post-diversion density reading, 𝑑′ [g/L]. 

 𝑑′ =
𝑉 ∙ 𝑑 − ∆𝑚

𝑉  (5.8) 

Where V and d are the nominal volume [L] and density [g/L], respectively. The new density 

reading is the detector signal, s, and is assumed to have a standard deviation of 0.3% relative, as 

described above. The probability of detecting this below-nominal density reading can be 

calculated using Equation 4.2. 

DP 

𝑡 = 𝑛 + √2 ∙ 𝑠!erf!!(2𝐹𝐴𝑃 − 1) 

𝑠 =
𝑉 ∙ 𝑑 − ∆𝑚

𝑉  

𝐷𝑃 = 1− 1 2 1− erf
𝑡 − 𝑠
2 ∙ 𝑠!

 

per day 

Defender Parameters 
FAP false alarm probability, FAP = {0.01,0.05} 

Attacker Parameters 
T attack duration, T = {7 days, 30 days, 360 days} 
f frequency, f = {1 days-1, 7 days-1, 30 days-1} 
∆𝑚 mass of material removed per attack, ∆𝑚 = {800, 8000, 80000 g} 

Payoff 
SF 0.50 

C2. Diversion of TRU solution detected by the SMMS 
 Diversion of TRU solution from the TRU product tank does not change the density of the 

material, because it is assumed that the material is homogenized at the time of theft. It does, 

however, change the volume level in the tank if the tank was initially at full static volume. As 

mentioned above, the nominal volume of the TRU product tank is 31 L. The density in this tank 

is 300 g/L, and it is assumed that all solute at this point is TRU. If that attacker diverts some 

mass of TRU solution that contains TRU mass ∆𝑚 [g], then the new volume 𝑉′ [L] is given by 

Equation 5.9: 

 𝑉′ =
𝑉 ∙ 𝑑 − ∆𝑚

𝑑  (5.9) 
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As described for defender-attacker pair B1, the SMMS is a detector-type safeguard, in this case 

with a nominal reading n of 31 L, a standard deviation of 0.3% relative, and a signal given by 

Equation 5.7. The threshold below which an alarm will occur is given by Equation 4.1. The DP 

for the SMMS detecting diversion of TRU solution is given by Equation 4.2, using the 

specifications for n and s detailed here. 

DP 

𝑡 = 𝑛 + √2 ∙ 𝑠!erf!!(2𝐹𝐴𝑃 − 1) 

𝑠 =
𝑉 ∙ 𝑑 − ∆𝑚

𝑑  

𝐷𝑃 = 1− 1 2 1− erf
𝑡 − 𝑠
2 ∙ 𝑠!

 

per day 

Defender Parameters 
FAP false alarm probability, FAP = {0.01,0.05} 

Attacker Parameters 
T attack duration, T = {7 days, 30 days, 360 days} 
f frequency, f = {1 days-1, 7 days-1, 30 days-1} 
∆𝑚 mass of TRU removed per attack, ∆𝑚 = {8, 80, 800 g} 

Payoff 
TRU 1.85 

5.4.4 DA DP Calculations 

D1. Diversion of chopped spent fuel pieces detected by DA 
 As detailed in the section describing enrichment safeguards, destructive analysis is a 

sensitive and accurate technique. As such, it is assumed in this model to have a detection 

probability of 1 if a sample is taken from a batch that has been tampered with. If the attacker 

chooses to divert chopped spent fuel pieces, the solution in the front-end accountancy tank with 

have a lower TRU and uranium content than it should. This will be detected by sampling if the 

defender samples and analyzed the batch from which the attacker has diverted. Recall that it is 

assumed to take 24 hours for material from the fuel chopper to reach the front-end accountancy 

tank. Thus if the defender samples the day after an attack has occurred, the detection probability 

is 1. If the defender samples the day the attack occurs or more than one day after the attack has 

occurred, the DP is 0. 
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5.4.5 Detection Probability Calculations Sources Summary 
Table 5-III summarizes the principles or literature sources on which DP calculations were 

based for the reprocessing defender options. 

Table 5-III. Sources for reprocessing DP calculations 

Defender Option Source 

Dual containment/ surveillance 
Video: Railway station surveillance [46] 

DRD: Physical principles- CDF of Gaussian 
and [83] 

Design Information Verification Visual inspection of ship fractures [57] 
Solution Measurement and Monitoring 

System Physical principles- CDF of Gaussian 

Destructive assay Attribute sampling as described in [22] 

5.5 REPROCESSING SAFEGUARDS COSTS 
Reprocessing safeguards costs are assigned based on the scheme presented in Section 4.6 for 

CGEP costs. As with GCEP costs, the total cost for a safeguard is the sum of the amortized 

annual capital cost, the annual fixed O&M cost, and the annual variable O&M cost. The general 

cost information section presents costs in sim dollars for each safeguard, and the safeguard-

specific cost information section provides details about the basis for these cost assignments. 

DP 

if 𝑡 = 𝑡!"# + 1 
DP = 1 
if   𝑡 ≠ 𝑡!"# + 1 
𝐷𝑃 = 0 
 

per inspection event 

Defender Parameters 
f inspection frequency, f = {1 days-1, 3 days-1} 

Attacker Parameters 
tdiv day on which diversion occurs 

Payoff 
SF 0.50 
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5.5.1 General Cost Information 

Capital costs 
The capital costs for each safeguard are given in Table 5-IV. Details about each cost can 

be found in the safeguard-specific cost information section. Capital costs for DIV are only 

incurred if the 3DLRFD is employed. 

Table 5-IV. Capital costs for reprocessing facility 

Safeguard Annual Capital Cost (s$) 
C/S 125.9 

SMMS 437.5 
DA 750 
DIV (150) 

Operations and Maintenance Costs- Fixed 
 Fixed O&M costs are incurred annually whether equipment is used or not. These costs 

are a percentage of the capital cost, as described in Section 4.6.1. Safeguards are characterized as 

requiring low (2% capital), medium (6% capital), or high (10%) capital fixed O&M costs, based 

on expert judgment. Table 5-V gives the fixed O&M costs. 

Table 5-V. Fixed O&M costs for reprocessing facility 

Safeguard Annual Fixed O&M Annual Fixed O&M 
Cost (sim dollars/yr) 

C/S video- high 
drd- low 

2.09 
2.10 

SMMS high 43.75 
DA low 15 
DIV low 3 

Operations and Maintenance Costs- Variable 
 As for the enrichment facility, variable O&M costs are manpower costs associated with 

inspection, assessment, and analysis. Inspection costs are incurred when inspectors are present at 

the facility performing a task, such as reviewing C/S and DA records, or performing DIV with 

the 3DLRFD. Assessment costs are incurred when a person is tasked with processing and 
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evaluating incoming data from a system, as is the case with the SMMS. Analysis costs are 

incurred when a person performs material or chemical analysis, as is the case for DA. 

 It was noted in the enrichment section that inspector costs are estimated at $1,000 per 

inspector per day, or 10 s$. It is assumed that as the frequency of inspections increases, the per-

inspection cost decreases, due to a decrease in certain costs associated with travel between the 

facility and headquarters and a decrease in certain per-trip costs, like obtaining a visa.  A linearly 

decreasing relationship is assumed between inspection frequency and per-inspection cost. Table 

5-VI lists the cost per inspection for each frequency option available to the defender. Additional 

inspection activities that are performed to supplement routine inspection activities (such as NDA, 

DA, and DIV) are assumed to cost 20% of the base inspection cost, because the inspector is 

already at the facility, so the addition of activities incurs a minor increase in cost. Note that the 

defender must pay for an entire year of inspections at her desired frequency, irrespective of the 

length of the simulation.  

 As for the GCEP, assessment time is estimated based on an employee who costs the 

defender $30/hr, and it is assumed that roughly 25% of the employee’s time is dedicated to a 

given assessment task. Based on these assumptions, assessment time is assigned a cost of 

$60/day, or 0.6 s$. As with inspections, the defender must purchase an entire year of the 

assessment time at the frequency designated by her strategy. 

 Analysis time is assumed to cost 20% less at the reprocessing facility than at the 

enrichment facility. This reduction is made to account for the fact that samples do not have to be 

shipped, because they are analyzed in an on-site laboratory. The cost analysis is $200/batch of 

samples, or 2 s$. Table 5-VI summarizes the variable O&M costs. 

Table 5-VI. Variable O&M costs for reprocessing facility 

Type of Manpower Cost Cost in Simulation Dollars 

Inspection Daily 5 per small team per insp. 
7 days-1 6.03 per small team per insp. 

Add. Insp. 
activities 

Daily 1 per add. act. per insp. 
7 days-1 1.21 per add. act. per insp. 

Analysis 2 per batch 
Assessment 0.6 per day 
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5.5.2 Safeguard-Specific Cost Information 

A. Containment/Surveillance 
 Review of C/S records is part of a base inspection at the reprocessing facility. This 

activity requires the review of records from two different systems: video surveillance and 

directional radiation detectors. The total cost for this safeguard is the sum of the fixed costs from 

these two systems and manpower costs. Note that the review of records from both video 

surveillance and dual C/S are assumed to be one inspection activity. 

Logged Video Images 

 It was assumed that the facility uses a 38-camera video surveillance system. This 

assumption is made based on the video surveillance system at Rokkasho, which uses a 38-

camera system for surveillance in the process areas [84]. The cost of this system is estimated at 

$20,900, based on scaling up a commercially available six-camera system [64]. The system is 

assumed to be operable for ten years, with high fixed O&M costs ($290/year), incurring an 

annual cost of $2,299, or 22.99 s$ per year.  

Directional Radiation Detectors 

Based on the number of radiation detectors dedicated to C/S at Rokkasho, it is estimated 

that there are 14 directional radiation detectors at the model reprocessing facility [84]. Each 

detector is assumed to be a single-tube 3He neutron detector. The cost for a four-tube neutron 

detector for radiation portal monitoring applications is approximately $30,000, so the cost for a 

smaller, one-tube detector was estimated at $7,500 [85]. The detectors in the C/S system are 

assumed to have a serviceable life of ten years, requiring low maintenance ($210/year), thus 

incurring a total annual cost of $10,710, or 107.1 s$. 

 The total cost for C/S is 130.09 s$ per year, plus 5 s$ per inspection day (for the total 

number of inspections per year). 

B. Design Information Verification 
 Design information verification occurs as part of a basic inspection, and thus necessarily 

occurs at the same frequency as dual C/S review. Because it is part of basic inspection, there is 

no additional manpower cost to the defender once a basic inspection has been purchased. The 
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defender does have the option of purchasing the 3DLRFD, which is assumed to cost $150,000, 

and to have a lifetime of 10 years [86]. The 3DLRFD requires low maintenance ($300/year), 

incurring a total cost of $15,300/year or 153 s$/year. 

C. Solution Measurement and Monitoring System 
 The SMMS is assumed to monitor 12 critical tank and vessels, as it does at Rokkasho 

[84]. The system uses sensitive dip-tube pneumatic pressure gauges and temperature gauges to 

monitor pressure, volume, and temperature, and to derive density. The cost of the hardware for 

the IAEA-installed 12-critical-vessel system at Rokkasho was approximately 2 million dollars, 

with an integrated software cost of approximately 1.5 million dollars [86]. To estimate a cost for 

the SMMS at the reprocessing facility modeled in this work, the combined Rokkasho SMMS 

cost of 3.5 million was scaled down according to annual throughput. This scaling assumes that 

the for a smaller facility, like the facility modeled here, there are fewer process vessels, meaning 

less measurement hardware (i.e. gauges and wiring) is required for the system. Further, because 

there are fewer processes vessels and fewer instruments, less data will be collected, thus 

requiring less data processing capability and storage. Because Rokkasho has a nominal annual 

throughput about four times larger than the facility modeled here, it was assumed that the system 

incurs a capital cost around $875,000, and the system is assumed operable for 20 years, incurring 

an annual capital cost of $43,750. This system is assumed to require high maintenance 

($4,375/year), making the total annual cost $48,125, or 481.25 s$. Because this system transmits 

information continuously and remotely, inspection time is not required for this safeguard; 

however, the attacker does need to purchase assessment time, at 0.6 s$ per day. 

D. Destructive Analysis 
 As noted in the GCEP cost section, the estimated cost for a thermal ionization mass 

spectrometer (TIMS) is approximately $750,000. Unlike for the enrichment facility, however, 

where this machine is used by many front-end fuel cycle facility, this piece of equipment is 

located in an on-site laboratory at the reprocessing facility, meaning it is used solely by the 

reprocessing facility. The equipment is assumed to have a serviceable life of 10 years, incurring 

an annual cost of $75,000. Low maintenance is assumed ($1500/year) for a total annual cost of 

$76,500 or 765 s$. 
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 DA is an additional inspection activity, which costs the defender 20% of the base 

inspection cost per day (recall that base inspection cost varies depending on inspection 

frequency). DA also requires analysis, which costs the defender 2 s$ per batch of samples. Table 

5-VII summarizes all costs for all safeguards, while Table 5-VIII illustrates the cost assessment 

for a sample defender strategy where the defender has purchased each safeguard, but has chosen 

to play the most basic version of each safeguard. Parameters for this strategy are given in Table 

5-IX. 

Table 5-VII. Summary of reprocessing safeguards costs 

Safeguard Capital Cost 
(s$/year) 

Fixed O&M 
(s$/year) 

Variable O&M 
(s$/year) 

Total Fixed Cost 
(s$/year) 

Base 
Insp. 

C/S-
video 20.9 2.09 5/insp 

6.03/insp 22.99 

C/S- drd 105 2.10 0 107.1 

DIV 9 0.18 0 3 
(150) 

SMMS 437.5 43.75 0.60/day 481.25 

DA 750 15 
1/insp 

1.21/insp 
2/batch 

765 

Table 5-VIII. Sample safeguarding strategy cost at reprocessing facility	
  

Safeguard Capital Cost 
(s$/year) 

Fixed O&M 
(s$/year) 

Variable O&M 
(s$/year) 

Total Cost 
(s$/year) 

Base 
Insp. 

C/S-video 20.9 2.09 307.53 330.52 
C/S- drd 105 2.10 0 107.10 

DIV 0 3 0 3 

SMMS 437.5 43.75 216 697.25 

DA 750 15 61.51 
102 928.51 

Total 1313.4 65.94 687.04 2066.38 
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Table 5-IX. Parameters for sample reprocessing strategy	
  

Parameter Value 
Basic insp. freq. 7 days-1 

Basic insp. team size small 
FAP- drd 0.05 
3DLRFD? NO 

FAP- SMMS 0.05 
DA freq. 7 days-1 

5.6 PAYOFFS 

The general method for calculating payoffs for a given defender-attacker strategy pair is 

presented in Section 4.7 Payoffs. Calculations for the FOM values for the two materials at the 

reprocessing facility are described below. 

5.6.1 FOM Calculation- Chopped spent fuel pieces 
 A FOM value cannot be calculated for chopped spent fuel (SF) pieces, as spent fuel has 

an infinite bare-sphere critical mass [87]. A value of 0.50 was assigned to SF pieces for the 

purposes of this work. Implicit in the use of this value is the assumption that SF is more 

attractive to an adversary than natural uranium but less attractive than separated TRU. In practice 

the value of spent fuel to an attacker depends on the attacker’s capability. Thus in future work 

two sets of analyses will be performed: one with the FOM of SF equal to 0.50, to simulate an 

adversary with little to no clandestine reprocessing capability; and one with the FOM of SF equal 

to the FOM of TRU, to simulate an adversary with ample clandestine reprocessing capability for 

whom the additional processing of spent fuel is a trivial barrier to weaponization. For the 

purposes of this work, the former adversary is assumed and a FOM of 0.50 is used for chopped 

spent fuel pieces. 

5.6.2 FOM Calculation- TRU solution 
The spent fuel vector used to estimate the FOM of the TRU solution is given in Table 

5-X [88]. The relative abundance is the weight fraction of TRU solution each isotope comprises. 

This information was obtained from an ORIGEN run that generated weight fractions for each 

isotope of interest after a ten-year cooling period. The fresh fuel modeled was an 8x8 BWR 
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assembly with 4.4% enrichment and 40 MWd/kg burnup. Table IV also provides the density of 

each isotope used in the calculations. These densities are for the solid allotrope of the isotope at 

room temperature, which is the form the isotopes would be in in solution at the reprocessing 

facility. 

Table 5-X. Spent fuel characteristics used to estimate TRU FOM 

Isotope Relative Abundance Density (g/cc) at r.t. 
Np-237 0.0806 20.5 
Pu-238 0.0301 19.8 
Pu-239 0.477 19.8 
Pu-240 0.126 19.8 
Pu-241 0.147 19.8 
Pu-242 0.0695 19.8 
Am-241 0.0467 12 

Am-242m 0.0003 12 
Am-243 0.0178 12 
Cm-243 0 13.5 
Cm-244 0.0052 13.5 

 

Based on the spent fuel characteristics given above, the bare-sphere critical mass 

(BSCM) and decay power of the TRU were calculated using the metrics calculator spreadsheet 

described in Section 4.7.1. These values are given in Table 5-XI. The dose rate of TRU material 

(𝐷!"#) is estimated based on the activity in Ci/kg for the TRU material (𝐴!"#) and the ratio of 

dose rate to activity for 90% enriched HEU, as shown in Equation 5.10. Recall that the dose rate 

for HEU was determined using MCNP calculations. The activity, dose rate, and activity: dose 

rate ratio for both HEU and TRU are given in Table 5-XII. The dose rate for TRU is in italics to 

indicate that the quantity is derived from the others in the table according to Equation 5.10. 

 
𝑫𝑯𝑬𝑼

𝑨𝑯𝑬𝑼
=
𝐷!"#
𝑨𝑻𝑹𝑼

 (5.10) 

Where: 

𝐷!"#- dose rate of HEU for 0.2M at 1 m [rad/hr] 
𝐴!"#- activity of HEU [Ci/kg] 
𝐷!"#- dose rate of TRU for 0.2M at 1 m [rad/hr] 
𝐴!"#- activity of TRU [Ci/kg] 
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Table 5-XI. Inputs used to calculate TRU FOM 

Characteristic Value 
BSCM (kg) 16.3 

Decay power (W/kg) 33.5 
Dose rate (rad/hr) 0.0155 

Table 5-XII. Values used to determine dose rate of TRU material 

Material Activity (Ci/kg) Dose Rate (rad/h 
of 0.2M at 1 m) 

Ratio 
(Activity: Dose rate) 

HEU 1.96 x 10-3 1.84 x 10-9 9.39x10-7 
TRU 1.65 x 104 0.0155 9.39x10-7 

 

Inserting the values given in Table 5-XI into Equation 4.28, the FOM for TRU is 

calculated as 1.85. This value agrees well with the literature value. Error! Reference source not 

found. shows the FOM as a function of burn-up for several types of material, including TRU, ten 

years after reactor discharge [69]. Based on the figure, the FOM for TRU solution can be 

estimated at approximately 1.9. Thus the calculated value of 1.85 used in this model agrees to 

two significant figures with the literature value.23 

 

Figure 5-5. FOM as a function of burn-up 10 years after reactor discharge (red lines added) 

                                                
23 A value of 1.8 was used for reprocessing model results, but the value was updated to 1.85 for the integrated model 
and results 
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 RESULTS 

Chapter 6: Single Facility Results 

 
This section presents the results for the stand-alone enrichment and reprocessing facilities. The 

chapter is divided into two major sections: enrichment results and reprocessing results. The 

results from the enrichment model are further subdivided into alpha sensitivity, budget 

sensitivity, background DP sensitivity and convergence. The reprocessing section presents the 

results of the alpha sensitivity analysis and the budget sensitivity analysis. 

 6.1 ENRICHMENT MODEL RESULTS 
In order to validate the detection probabilities and payoffs generated by the simulation model, 

results for each defender-attacker strategy pair were compared against results produced from 

hand calculations. Validation was done in two rounds—the first round was a comprehensive 

validation that checked to ensure the simulation was working properly by testing every 

permutation of each individual safeguard against every permutation of each attacker option. The 

second round tested the cumulative detection probability calculations by testing defender 

strategies with multiple active safeguards. Edits were made to code as needed to ensure that 

model calculations produced the expected results. 

6.1.1 Validation 
 Initial validation was performed to verify that the simulation model generated detection 

probabilities as intended. Each safeguard was tested independently against each attacker option, 

including every permutation of each safeguard against every permutation of each attacker option. 

Table 6-I shows the total number of safeguards, attacker options, and permutations of each in the 

model when the validation was conducted. Not all safeguards are effective against all attacker 

strategies, thus eliminating the number of safeguard-attacker option pairs that needed to be 

tested. Considering only viable safeguard-attacker options pairs, a total of 2,214 simulation 

results were generated and validated against hand calculations. Hand calculations were 

performed as evaluations in a separate Excel spreadsheet. Edits were made as needed if 

discrepancies arose, and the end result was that in all cases, the hand calculations and the values 
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generated by the simulation model produced the same DP value. This exercise confirmed that the 

simulation model performs detection probability calculations as expected. 

Table 6-I. Scope of validation 

Safeguard Permutations Attack Option Permutations 
Inspection 8 Cylinder theft 4 

Passive seals 4 Some material from a 
cylinder 40 

NDA 4 Some material from a 
cascade 30 

DA 4 Cascade re-piping 27 
Video- transmitted 2 Cascade recycle 45 

Active seals 2   
CEMO 4   

 

While the exhaustive initial validation tested to ensure that the simulation model worked 

properly for a single safeguard active against a single attacker option, the secondary validation 

was conducted to ensure that the simulation model combined DPs correctly for defender 

strategies where multiple safeguard are active. To perform this check, five defender strategies 

comprised of multiple active safeguards were tested against each attacker option. Note that each 

defender and attacker strategy is assigned a strategy number; these numbers are used to uniquely 

identify each defender and attacker strategy in the model and have no physical meaning. Table 

6-II provides parameter descriptions for each of the five defender strategies used in the 

validation. Because many of the safeguards require that the defender purchase inspections before 

purchasing said safeguard (e.g. the defender cannot purchase NDA without first purchasing 

inspections), inspections were active in all five defender strategies. All of the safeguards were 

active in at least one of the strategies, and the last strategy tested featured all nine safeguards. 

The attacker strategies against which the defender strategies were validated are given in 

Table 6-III.The duration and frequency of the attacker options was intentionally varied to test 

over a range of scenarios. As before, the simulation output was compared to hand calculations 

performed in a separate Excel spreadsheet for each defender-attacker strategy pair. The 

simulation model and calculated payoff results were equal for all strategy pairs shown.   
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Table 6-II. Defender strategy descriptions—validation  

Strategy Active safeguards FAP Numbera Count time 
(s) 

Frequency 
(days-1) 

Team 
size 

D202905 Inspection 0.01 --- --- 7 small 

D206550 Inspection 
Passive seals 

0.01 
--- 

--- 
0.5 

--- 
--- 

7 
7 

small 
--- 

D208170 

Inspection 
Passive seals 
NDA 
DA 

0.01 
--- 
0.01 
--- 

--- 
0.5 
--- 
0.33 

--- 
--- 
--- 
--- 

7 
7 
28 
28 

small 
--- 
--- 
--- 

D203139 

Inspection 
Video-transmitted 
Active seals 
CEMO 

--- 
--- 
--- 
0.01 

0.33 
--- 
1.00 
--- 

--- 
--- 
--- 
300 

7 
--- 
--- 
--- 

small 
small 
--- 
--- 

D202908 
Inspection 
Visual inspection 
ES 

--- 
--- 
--- 

0.33 
--- 
6 

--- 
--- 
--- 

7 
30 
90 

small 
--- 
--- 

D208407 

Inspection 
Passive seals 
NDA 
DA 
Video-transmitted 
Active seals 
CEMO 
Visual inspection 
ES 

0.01 
--- 
0.01 
--- 
--- 
--- 
0.01 
--- 
--- 

--- 
0.5 
--- 
0.33 
--- 
1.00 
--- 
--- 
6 

--- 
--- 
--- 
--- 
--- 
--- 
300 
--- 
--- 

7 
7 
28 
28 
--- 
--- 
--- 
30 
90 

small 
--- 
--- 
--- 
small 
--- 
--- 
--- 
--- 

Table 6-III. Attacker strategy descriptions—validation 	
  

Strategy Attacker option Duration 
(days) 

Frequency 
(days-1) Items Area Mass 

(kg) xp 

A2 Cylinder theft --- --- 2 feed --- --- 
A76 Material theft- cylinder 30 7 2 feed 110 --- 
A196 Material theft- cascade 360 30 0.5 product 0.010 --- 
A210 Re-piping 30 1 0.1 --- --- 0.197 
A260 Recycle 30 7 0.5 --- --- 0.90 
A317 Undeclared feed 360 7 0.5 --- --- --- 
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6.1.2 Defender strategy cost distribution 
The cost of defender strategies ranges from 0 to 5900 s$. Figure 6-1 is a density function 

of defender strategy cost, showing how many of the 246,645 defender strategies fall in each 100 

s$ increment. This figure was used to guide selection of defender budgets for model runs.  

 

Figure 6-1. Defender strategy cost distribution 

6.1.3 Alpha sensitivity 
As described in Section 4.7.2, the equilibrium payoff is the scenario detection probability 

weighted by material quantity and attractiveness, where Figure of Merit metric is used to 

represent material attractiveness . Both a breakout-willing attacker and risk-averse attacker are 

modeled. Figure 6-2 shows the variation in the equilibrium payoff value as a function of alpha 

for three different budgets for the breakout-willing adversary. Additionally, plotted along the 

secondary axis is the ‘normalized payoff’, which normalizes the payoff value by the breakout 

scenario. This payoff ranges from zero to one, and takes the value one only when the attacker 

obtains the best possible material and the scenario DP is one. There are two distinct regions in 

the figure: (1) the region where alpha is greater than or equal to 0.3, and the payoff values are the 
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material as possible even at the expense of certain detection, which drives him to play highly 

visible strategies with long durations. In each of these trials, the attacker chooses to dedicate 

50% of the facility’s enrichment capacity to recycle material through the cascade, and he 

perpetrates this attack daily for an entire year. For all three defender budgets shown in Figure 

6-2, the DP against this attacker strategy is 1; thus, the equilibrium payoff is the same for all 

defender budgets. 

In the low-alpha region, particularly when alpha = 0, it is clear that the defender is able to 

buy additional detection capability with a higher budget. For the case where alpha equals zero, 

the payoff is the overall scenario detection probability. Here the attacker plays a very 

conservative strategy, seeking only to minimize detection, without regard for the quantity or 

quality of material obtained. As alpha increase from zero to 0.2, the attacker shifts towards 

strategies that are easier to detect but provide a better material payoff, and the defender adapts 

her strategy accordingly. The difference in payoff between the three budgets decreases as alpha 

increases because as the attacker becomes less risk averse, the ability to buy extra detection 

becomes less consequential. Based on the results of this analysis, alpha was assigned a value of 

0.19 for the remainder of the model runs and analyses. 

Figure 6-3 is the same plot as Figure 6-2, but shows the results for a risk-averse 

adversary.  This figure displays the same general trend as alpha increases, but it does not show 

the same stark contrast between low-alpha and high-alpha values as for the risk-preferring 

adversary, because in this case the adversary does not switch to an aggressive breakout-type 

strategy at high alpha values. The risk-averse adversary does switch to a more aggressive 

strategy of longer duration, but he still avoids strategies that will result in a DP of 1. Thus even 

when the attacker values quantity and quality of material, he still selects strategies with low 

enough overall detection probabilities that the defender’s budget does affect the payoff. It is 

apparent from the figure that as alpha increases, the difference in payoff between the different 

budgets decreases, which occurs because as alpha increases, the attacker selects strategies 

designed to target higher value material, and these strategies are generally easier to detect and 

thus less sensitive to defender investment choices. This is particularly true at alpha = 0.30, where 

the payoff for 1500 s$ is only about 3% higher than the payoff for 200 s$. This is a result of the 



 111 

game theoretic nature of the model—as the defender’s budget increases and she is able to 

purchase more safeguards to detect material theft from the cascade, the attacker also changes his 

strategy from a mixed strategy comprised of material theft from the cascade and undeclared feed 

to a pure strategy of undeclared feed. The net result is only a small increase in overall payoff, 

despite the defender playing a much better strategy. 

The hollow markers in both plots describe the normalized payoff to the attacker, or the 

share of his maximum possible utility. It can be seen that in the first plot there is a sharp rise in 

the attacker’s utility from alpha = 0 to alpha = 0.1 as the attacker switches from a strategy that 

focuses solely on avoiding detection to a strategy that is incentivized by material value. As with 

the non-normalized payoff, for alpha ≥0.3, the attacker’s utility is approximately constant 

because he is playing the same strategy against the same defender strategy each time. For the 

scenario with the risk-averse adversary shown in the second plot, the trend is nearly the opposite. 

For low alpha values all of the attacker strategies have similar utilities, though there is a slight 

increase as alpha increases, because the attacker prioritizes avoiding detection.  

 

Figure 6-2. Payoff as a function of alpha for the breakout-willing attacker 
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Figure 6-3. Payoff as a function of alpha for the risk-averse attacker 
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Similarly the attacker plays a mixed equilibrium strategy, which is best interpreted in the 

context of multiple attacks or ongoing attacks in which the attacker may shift between strategies. 

Over the course of an extended period, 39% of the time the attacker will feed undeclared feed 

through the cascade, and the other 63% of the time he will divert material directly from the 

cascade.  

In both cases he selects these strategies for low alpha values because they are one-time 

attacks with low detection probabilities. The defender uses active seals to counter material theft 

from the cascades, and purchases an inspection to detect undeclared feed. As alpha increases 

from 0 to 0.1, the attacker increases the frequency with which he attacks the cascades and 

increases the fraction of the cascades dedicated to undeclared production, because both of these 

changes result in additional material production.  At alpha = 0.3, the attacker commits to a pure 

strategy of recycling material through the cascade in a frequent and lengthy misuse. Likewise the 

defender commits to the inspection + NDA strategy because NDA is effective in detecting the 

overly enriched material produced in the attacker’s strategy. The strategies for B = 1500, B = 

3000, and B = 6000 demonstrate similar trends, with the attacker transitioning from undeclared 

product in the low-alpha region to recycling in the high-alpha region. As in this example, neither 

the defender nor attacker strategies show any variation from alpha = 0.3 to alpha = 0.8. 

Figure 6-5 and Figure 6-7 are the analogous plots for the risk-averse adversary.  The 

general trends shown in these plots mirror those of the risk-preferring adversary, though there are 

some notable differences. At low alpha values for both the attacker and defender strategies, 

material attractiveness and quantity do not strongly affect the payoff, so the risk-averse adversary 

chooses the same relatively low DP-strategy options as the risk-preferring adversary, but plays a 

different fraction of the strategies. Notably the risk-averse adversary plays a smaller fraction of 

material theft from the cascade, because this strategy is more easily detected than undeclared 

feed. The risk-averse attacker also continues to play mixed strategies at higher alpha values 

before switching to a pure strategy. While the risk-preferring attacker switches to an aggressive 

pure recycle strategy at for alpha = 0.3, the risk-averse attacker continues to play mixed 

strategies until alpha = 0.40, at which point he shifts to a more aggressive undeclared feed 

strategy that still has a non-zero evasion probability. The pure strategy played at high alpha 
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values for the risk-averse attacker, A320, has a DP of around 0.443, while the strategy played by 

the risk-preferring attacker, A276, has a DP of 1. This result is consistent with the preferences of 

both types of attackers as characterized by the payoff function. 

The defender strategies played do not change based on the attacker’s risk preference, 

though the fraction of each strategy played does. The defender plays a larger fraction of 

D204120 (inspection + NDA) against the risk-averse attacker, because this strategy is effective 

against undeclared feed, of which the attacker is plays more. The defender also does not shift to a 

pure strategy against the risk-averse attacker until alpha > 0.50, which mirrors the attacker’s 

behavior. 

Table 6-IV. Attacker strategy descriptions—enrichment  

Strategy Parameter 1 Parameter 2 Parameter 3 Parameter 4 

A300- udfeed dur = 7 days freq = 7 days-1 fraction = 
0.0167  

A156- matcasc dur = 7 days freq = 7 days-1 fraction = 
0.0167 mass = 0.010 g 

A302- udfeed dur = 7 days freq = 1 days-1 fraction = 0.50  

A151- matcasc dur = 7 days freq = 1 days-1 fraction = 
0.0167 mass = 0.100 g 

A276- recycle dur = 360 days freq = 1 days-1 fraction = 0.50 xp = 0.197 
A320- udfeed dur = 360 days freq = 30 days-1 fraction = 0.50  
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Figure 6-4. Attacker strategy as a function of alpha for breakout attacker (B =200) 

 

Figure 6-5. Attacker strategy as a function of alpha for risk-averse attacker (B =200) 
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Figure 6-6. Defender strategy as a function of alpha for breakout attacker (B = 200) 

 

Figure 6-7. Defender strategy as a function of alpha for risk-averse attacker (B = 200) 
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breakout-willing adversary. These value are shown for B = 3000. Table 6-V enumerates the 

payoffs and defender/attacker strategies for each alpha value. For example, for B = 3000, 

defender strategy D225991 is optimal at alpha = 0.1. Figure 6-8 shows how the payoff for this 

strategy compares to the payoff for other strategies in different alpha region. For each data point, 

the payoff is for the strategy pair comprised of the indicated defender strategy and the optimal 

attacker strategy in that region (i.e. the D225991 point at alpha = 0.2 is for the D225991-A276 

strategy pair, because A276 is the dominant attacker strategy in that alpha region). Table 6-VII 

provides details for the defender strategies listed in Table 6-VI. As in Figure 6-2, at alpha greater 

than or equal to 0.2, all of the defender strategies result in the same payoff value, because the 

payoff is being dominated by the aggressive attacker strategy. At lower alpha values, it is clear 

that defender strategy D102870 is suboptimal. This strategy features weekly inspections with a 

large team and weekly DA sampling. While this strategy is highly effective for high alpha 

values, where the attacker recycles material through the cascade to produce highly enriched 

material over an extended period of time, subjecting himself to many inspections, it is relatively 

ineffective against the one-time production of undeclared product from undeclared feed, 

especially owing to the long analysis time requires, which delays detection by 14 days. 

Undeclared production can be detected using only two safeguards: review logged video images 

during inspection and special inspections inside the cascade hall. Consequently any strategy that 

does not employ visual inspection is of limited utility against undeclared production. Further, the 

size of the inspection team only affects DP by reducing the human reliability effect described in 

Section 2.4 Human Reliability Analysis; that is, subsequent inspections are more effective for 

large inspections teams. Thus for attacker strategies of short duration, where the defender only 

conducts one or two inspections over the course of the simulation, the size of the team does not 

affect the payoff significantly. Combined these two factors make D102870 a suboptimal 

defender strategy when played against attacker strategies A300 or A302. 

 The value lost plot reveals a surprising result, namely that defender strategies D1846 and 

D225991 appear to be equally effective for alpha = 0 and alpha = 0.1, but the defender plays a 

pure strategy of D1846 for alpha = 0 and a pure strategy of D225991 for alpha = 0.1. Table 

6-VIII shows the first five defender and attacker moves for both the alpha = 0 and alpha = 1 
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trials. The table shows that the first two defender and attacker moves are identical for the two 

trials, but in the second round, the pure strategy the attacker plays differs, because for the alpha = 

0 trial the attacker seeks only to minimize detection, and in the alpha = 0.1 trial the attacker 

wishes to obtain more material. Recall that the strategy the defender plays in the third round is 

the pure strategy that will optimize her payoff in the next round against the attacker’s mixed 

strategy history. Thus for alpha = 0, the defender is playing against an attacker who plays 

strategy A3 one-third of the time (cylinder theft from storage), strategy A198 one-third of the 

time (re-piping), and strategy A156 one-third of the time (material theft from cascade). Her best 

myopic response is to play D1846, which contains a suite of safeguards, including DA to counter 

the re-piping strategy and active seals to counter the material theft from the cascade. For the case 

of alpha = 0.1, the defender is playing against an attacker who plays strategy 3 one-third of the 

time, strategy A198 one-third of the time, and strategy A302 one-third of the time. In this case 

the defender does not need to purchase active seals, but can instead spend more money on a 

larger inspection team, which will help detect the cylinder theft and undeclared feed.  Thus both 

the defender and attacker select strategies to optimize their utilities against the other players’ 

mixed strategy histories. 

 Figure 6-9 shows the value lost plot for defender strategies at 3000 s$ against the risk-

averse attacker. The plot shows that for a given alpha values, all of the defender strategies are 

equally effective against the optimal attacker strategy. Table 6-VI shows the defender and 

attacker strategies for each alpha value, and Table 6-VII gives details about the three defender 

strategies shown in Figure 6-9. Because payoff 2 incentivizes the attacker to prioritize avoiding 

detection, he chooses strategies that are difficult to detect, which gives the defender a limited 

range of effective strategies to play in response. All three defender strategies played have the 

same parameter specifications for inspection and visual inspection, which are the only two 

safeguards effective against undeclared feed, which is why both strategies yield the same 

detection probability for a given alpha.  

While all three defender strategies result in the same payoff against the pure equilibrium 

strategy shown below, the defender switches between the strategies to deter the attacker from 

employing better strategies. The strategies shown in Table 6-VI are pure equilibrium strategies, 
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but in fact the attacker plays a very small fraction of other strategies for each alpha value. For 

alpha = 0.1-0.5, the attacker plays very small fractions of strategies A231 and A256, both of 

which are recycle strategies with a large fraction of the cascade dedicate to the misuse. In 

response to this, the defender plays strategy D499, because this strategy includes environmental 

sampling, which is an effective method to detect overly enriched product when a large fraction of 

the cascades are used (recall that the DP depends on the number of samples taken and the 

number of cascades dedicated). At alpha = 0.6, the attacker plays a small percentage of A225, 

which is a recycle strategy that only uses one cascade. In response to this attack strategy, the 

defender switches to strategy D1711, which includes DA to detect overly enriched product. 

Finally at alpha = 0.8, the attacker plays strategy A0, which is cylinder theft. This causes the 

defender to switch to strategy D1846, which contains transmitted video, which is capable of 

detecting cylinder theft.  This result suggests that the optimal defender strategies are not strongly 

sensitive to alpha, which is consistent with an attacker who prioritizes avoiding detection over 

obtaining high value material. 

Table 6-V. Equilibrium strategies and payoffs for the breakout attacker (B = 3000) 

Alpha Defender Strategy Attacker Strategy Payoff 
0 D1846 A300 0.4425 

0.1 D225991 A302 0.3560 
0.2 D102870 A276 0.1336 
0.3 D102870 A276 0.04887 
0.4 D102870 A276 0.01787 
0.5 D102870 A276 0.006531 
0.6 D102870 A276 0.002388 
0.7 D102870 A276 0.000873 
0.8 D102870 A276 0.000320 
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Table 6-VI. Equilibrium strategies and payoffs for the risk-averse attacker (B = 3000) 

Alpha Defender Strategy Attacker Strategy Payoff 
0 D1711 A300 0.4425 

0.1 D499 A302 0.3560 
0.2 D499 A302 0.1336 
0.3 D499 A302 0.04887 
0.4 D499 A302 0.01787 
0.5 D499 A302 0.006531 
0.6 D1711 A302 0.002388 
0.7 D1711 A302 0.000873 
0.8 D1846 A302 0.000320 

Table 6-VII. Defender strategy descriptions 

Strategy Active SGs Parameter 1 Parameter 2 Parameter 3 

D1846 

Inspection freq = 7 days-1 team size = small FAP = 0.01 
DA freq = 7 days-1 cyl. sampled = 3  

Video- trans. team size = small   

Active seals frac. sealed = 1.00   
Visual insp. freq = 7 days-1   

D225991 

Inspection freq = 28 days-1 team size = large FAP = 0.01 

NDA freq = 28 days-1 FAP = 0.01  

Visual insp. freq = 7 days-1   

D102870 
Inspection freq = 7 days-1 team size = large FAP = 0.01 

DA freq = 7 days-1 cyl. sampled = 3  

D1711 

Inspection freq = 7 days-1 team size = small FAP = 0.01 
DA freq = 7 days-1 cyl. sampled = 3  

Active seals frac. sealed = 1.00   

Visual insp. freq = 7 days-1   

D499 

Inspection freq = 7 days-1 team size = small FAP = 0.01 
Active seals frac. sealed = 1.00   

Visual insp. freq = 7 days-1   

ES freq = 7 days-1   
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Table 6-VIII. Defender and attacker strategy histories 

 Alpha = 0 Alpha = 0.1 
Round Defender play Attacker play Defender play Attacker play 

0  3  3 
1 101655 198 101655 198 
2 102870 156 102870 302 
3 1846 300 225991 302 
4 1846 300 225991 302 
5 1846 300 225991 302 

 
 

 

Figure 6-8. Value lose plot for breakout attacker (B = 3000) 
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Figure 6-9. Value lost plot for risk-averse attacker 

6.1.4 Budget Sensitivity 
Figure 6-10 displays the efficient frontier, the optimal defender and attacker strategy for 

each budget. Two sets of results are pictured: alpha = 0.19 and alpha = 0, where the payoff 
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maximize his utility by obtaining large quantities of high value material,25 even at the expense of 

adapting an easily detectable strategy. Thus for budgets over 1530 s$, the DP is effectively 1, 

and no change in defender strategy can affect the equilibrium payoff. 

The curve for alpha = 0 is plotted on the right-hand vertical axis. These values are higher 

because they are not divided by a factor related to material quantity and FOM. The general shape 

of this curve mirrors that of the weighted payoff curve—there is an increase in payoff at 500 s$, 

and again for B > 2000, at which point the payoff reaches its maximum value. The alpha = 0 

curve does have an additional feature, however, which is an additional increase in payoff from 

1530 s$ to 2000 s$. This feature is not present in the alpha = 0.19 curve because for alpha = 0.19, 

at 1530 s$ the attacker switches to an aggressive, easily detected strategy. For both alpha values, 

budgets between 1520 and 1530 s$ were tested in one dollar increments to see if any additional, 

small steps existed, and the results indicated that they do not. The payoff remains constant from 

500 s$ to 1530 s$, and then a discreet jump occurs at this budget. It should be noted in the 

regions of constant payoff from 500-1530 s$ and >2000 s$, the defender strategies do change.  

As shown in Figure 6-1, most of the defender strategies cost between 1500 and 4000 s$. 

Because so many different strategies exist at this price point, even small increases in budget 

allow the defender to purchase additional capability to bolster the DP. The maximum DP is 

reached at B = 2000, because there are no additional safeguards the defender can buy that will 

are effective against this type of attacker strategy. The attacker strategy played in this case, 

production of undeclared product from undeclared feed, is a strategy to which the defender is 

quite vulnerable because it is difficult to detect; however, the strategy does not yield very high 

value material, which is why the attacker switches away as the material quality plays a more 

significant role in determining the payoff (as alpha increases from 0). 

Figure 6-11 shows the efficient frontier against a risk-averse attacker. The similar shapes 

of the alpha = 0 and alpha = 0.25 curves follow from increases in payoff at the same budgets, as 

the defender chooses broadly the same safeguards sets at these two alpha values. In general the 

magnitude of the increase in payoffs at a given budget is the same, as well, with the exception of 

                                                
25 In this context, maximizing the attacker utility actually means achieving the lowest possible payoff, as the 
attacker is the minimizing player. 
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the increase in payoff that occurs at 500 s$.  At this budget there is a sizable increase in payoff 

for alpha = 0, but only a very small increase for alpha = 0.25. The increase for alpha = 0.25 is 

small because there is little change in the attacker’s strategy from 200 s$ to 500 s$. The attacker 

goes from playing 302 about 90% of the time to playing it 100% of the time. Likewise the 

defender shifts from playing mostly D204120 (inspection + NDA) to playing D204210 

(inspection + NDA + active seals). The defender switches to this strategy to force the attacker 

away from stealing material from the cascade (A151), which yields more material from the 

attacker, but can be detected with a high probability by active seals. While this change in 

defender strategy force the attacker away from strategy A151, it does not increase the defender’s 

ability to detect undeclared feed. Thus the small increase in detection probability seen at 200 s$ 

is from the change in the defender’s membership in these strategies—at 200 s$, she plays 

D204120 about 95% of the time, and at 500 s$, she always plays D204210. 

  

 

Figure 6-10. Efficient frontier for breakout-willing attacker 
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Figure 6-11. Efficient frontier for risk-averse attacker 

Table 6-IX. Equilibrium strategies for risk-preferring attacker 

Node Budget Defender Strategy Attacker Strategy Payoff 

1 200 90- 0.315 
204120- 0.684 

156- 0.368 
300- 0.632 0.1470 

2 500 205560 300 0.2150 

3 1530 
1- 0.730 

226080- 0.09 
226215- 0.159 

0- 0.069 
300- 0.928 0.2697 

4 2000 225991 300 0.4425 

5 200 96- 0.102 
204120- 0.898 

151- 0.179 
302- 0.817 0.1280 

6 500 205560 302 0.1422 

7 1530 1- 0.175 276 0.1480 1851- 0.824 
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Table 6-X. Equilibrium strategies for risk-averse adversary 

Node Budget Defender Strategy Attacker Strategy Payoff 

1 200 90- 0.053 
204120- 0.947 

151- 0.106 
302- 0.894 0.1508 

2 500 204210 302 0.1594 

3 1550 1- 0.941 
226086- 0.059 

299- 0.049 
302- 0.951 0.2326 

4 2000 204211 302 0.4608 

5 200 96- 0.268 
204120- 0.732 

151- 0.304 
302- 0.696 0.2013 

6 500 1710 300 0.2753 

7 1550 1- 0.993 300 0.4064 226215- 0.011 

8 2000 204211 300 0.7939 

 

 Figure 6-12 and Figure 6-13 plot the consequence and difficulty of twenty attacker 

strategies for a risk-averse attacker, where consequence is defined as the product of FOM and 

quantity of uranium, and scenario difficulty is the detection probability for a given scenario. In 

both plots, the hollow markers indicate the attack scenarios against a defender with a lower 

budget, and the purple markers illustrate attack scenarios against a defender with a higher 

budget. The attacker’s ultimate objective is to obtain the most high value material possible with 

the lowest detection probability possible; that is, to choose the highest consequence, lowest 

difficulty attack. The attacks to which the defender is most vulnerable are circled in red on both 

plots. 

 It is clear from the plot that increasing the defender’s budget greatly increases the 

scenario difficultly for all attacker strategies, though it does not increase the difficulty uniformly. 

This is because based on available safeguards options, some attack scenarios, like introduction of 

undeclared feed to produce undeclared product, remain easy to evade, even when the defender 

has unlimited resources. Fortunately for the defender, many of these scenarios yield very little 

consequence, as the attacker obtains low-enriched product. Note that in both plots the injection 

of extra money allows the defender to increase the scenario difficulty for the most attractive 

attack options. Thus with sufficient resources, the defender can make all of the attacker’s options 

unattractive. 
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Figure 6-12. Consequence vs. difficulty for select attack scenarios (B = 300, 1500 s$) 

 

 

Figure 6-13. Consequence vs. difficulty for select attack scenarios (B=1500, 4000 s$) 
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6.1.5 Exogenous DP sensitivity 
As mentioned in the methodology section, a daily background detection probability can 

be applied in the simulation model to serve as a proxy for exogenous detection means not 

explicitly modeled, including intelligence, which offers additional detection to the defender. If 

provided by a third party, intelligence information can be cost-free to the defender. Intelligence 

has a non-uniform probability of detecting different types of attacks; thus, the background DP is 

applied non-uniformly across the attacker options. To test the sensitivity of the equilibrium 

strategies to the background DP, the background DP against undeclared production was 

systematically varied from 0.001 to 0.1, and changes in payoff and defender and attacker strategy 

were recorded. Payoff function 1 was used for this analysis. The background DP for all other 

strategies was held at zero and alpha is set to zero for these trials, meaning the payoff equals the 

scenario DP. This trial was designed to mimic the real-world situation where intelligence 

collection may be able to detect unusual cylinder traffic into and out of a facility, as would be 

necessary for producing undeclared product from undeclared feed, even with no knowledge of 

operations inside the facility. Figure 6-14 displays the change in payoff for three different 

budgets as a function of background DP, and Figure 6-15 and Figure 6-16 show the changes in 

defender and attacker strategy as a function of background DP for B = 200. 

Figure 6-14 shows that an increase in background DP results in a significant increase in 

the equilibrium payoff for value of DP less than or equal to 0.01. When the background DP is 

increased from 0.01 to 0.05 there is little incremental increase in the overall DP, because at this 

point the attacker has already shifted strategies to a different option that is unaffected by 

background DP. For background DP values less than 0.01, the attacker’s best option is still 

undeclared product, despite the increase in DP due to the background DP.  

The slopes of the regressions indicate that the incremental increase in payoff per unit 

background DP is greatest for B = 1500. At high budgets, like B = 4000, the defender is able to 

buy significantly more DP, so the baseline DP is much higher than for the B = 1500 case. Thus 

the relative difference made by the injection of additional DP is smaller for B = 4000 than for B 

= 1500. Conversely for B = 200, the baseline DP is so low that it is very easy for the attacker to 

pick an effective strategy that minimizes the equilibrium payoff to the defender. Thus even with 
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the additional DP provided by the background DP, the incremental increase in payoff is not as 

great because the attacker has a suite of attractive options from which to pick. 

While the incremental increase in payoff is not as large for the low budget as it is for the 

intermediate budget, the sensitivity of strategy selection is much greater in the low budget case. 

Figure 6-15 and Figure 6-16 show the equilibrium defender and attacker strategies as a function 

of background DP. Figure 6-15 shows that even a 0.1% daily background DP changes the 

fraction of the pure strategies played in the equilibrium mixed strategy, and a daily background 

DP of 0.5% changes the strategies that comprised the equilibrium mixed strategy. This change in 

defender strategy occurs in response to anticipated changes in attacker strategy, displayed in 

Figure 6-16. With the introduction of any background DP, the attacker begins to shift away from 

undeclared production, because this is the only attacker option to which the background DP 

applies and by 1% daily background DP, the attacker moves away from undeclared production 

entirely. This result has big implications for the selection of inspection strategies at low budgets; 

namely that the optimally efficient inspection strategy in the absence of intelligence information 

is not necessarily the optimally efficient inspection strategy if intelligence information is 

available. Thus a cost-constrained must consider available reliable exogenous sources of 

detection in order to employ an optimally efficient strategy. 
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Figure 6-14. Payoff as a function of background DP 

 

 

Figure 6-15. Defender strategy as a function of background DP for B = 200 
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Figure 6-16. Attacker strategy as a function of background DP for B = 200 
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Table 6-XI. Convergence results for B = 200, 1550, 3000 

B m+n 𝜖 Iterations Time (s) Sim. Calls 

200 334 

0.1 84 3.344 266 828 
0.01 733 9.225 266 828 
0.001 7 057 66.58 266 828 
0.0001 30 872 283.8 266 828 
0.00001 37 206 342.8 266 828 

  

1550 26 789 

0.1 123 36.84 971 980 
0.01 1408 49.13 971 980 
0.001 14 425 168.0 971 980 
0.0001 41 903 421.9 971 980 
0.00001 46 804 467.1 971 980 

  

3000 123 601 

0.1 71 49.57 987 401 
0.01 755 54.51 987 401 
0.001 7 602 117.2 987 401 
0.0001 21 576 247.1 987 401 
0.00001 24 292 272.1 987 401 

 

The data show that for all runs, the number of calls to the simulator remains constant as 

the convergence criterion becomes more stringent, indicating that no new payoff values are being 

calculated. Instead, the needed payoff values are calculated upfront and then used repeatedly to 

calculate the membership of each strategy component in the 𝜖-approximate equilibrium.  This 

characteristic of the FP algorithm proves advantageous as the simulation call becomes more 

computationally expensively, as achieving great accuracy requires more iteration through the FP 

process, but not more calls to the simulator. At B = 6000, where the defender can choose from 

the entire set of defender strategies, and 𝜖 = 0.001, the value used in most of the analyses, a 

simulation call takes an average of 6.480 x 10-5 seconds to complete. Because the payoff matrix 

is comprised of 246,645 defender strategies and 321 attacker strategies, a total of 79.2 million 

simulation calls would be required to pre-populate the matrix and solve the game using 
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conventional linear programming methods. The pre-population of the payoff matrix would thus 

take just over 5,130 seconds, or a little over 85 minutes per run (excluding trivial time required 

to initialize defender and attacker strategies and solve the linear programming problem). As the 

data in Table 6-XI shows, the time required for a run using the FP algorithm is on the order of 

100 seconds, making this method approximately 50 times faster than the traditional approach. 

A second result is the lack of dependence of number of iterations on the dimensions of 

the payoff matrix, as shown in Figure 6-17. Here budget is used as proxy for the size of the 

payoff matrix, as the defender has more viable strategies at higher budgets. Brown conjectured 

that the order of convergence for the FP algorithm should be independent of the dimensions of 

the payoff matrix, and thus the computation time should scale linearly with dimensionality of the 

matrix, and the data in Table 6-XI and Figure 6-17 support this conjecture [31]. The data show 

that while more iterations are required to solve the game for B = 1550 versus B = 200, B = 3000 

requires the fewest iterations of all the trials. This suggests that the number of iterations needed 

is not a function of dimensionality, but of the number of attractive strategies available to the 

defender at a given budget. At B = 1550 the defender has not only many strategies to choose 

from, but many strategies that are comparable, but slightly different, in effectiveness. At B = 200 

the defender has significantly fewer strategies to choose from, and at B = 3000 many of the less 

expensive defender strategies are deeply suboptimal, so the number of iterations required to 

determine the ideal strategy is limited. Note that while the number of iterations does not change 

as the dimensionality increases, the computation time and number of simulation calls do, simply 

because more payoff values must be calculated due to the increased number of defender options.  

Figure 6-17 shows that the number of iterations required is initially inversely proportional 

to the convergence tolerance, 𝜖. This relationship no longer holds true for 𝜖 < 0.001, which 

occurs because the convergence is not strictly asymptotic and upper and lower bound on the 

equilibrium value approach at different rates. 

A goal of this analysis was to verify that the convergence rate of the FP algorithm used is 

consistent with the rate reported in the literature, specifically the condition on k in Equation 3.12. 

Figure 6-18 shows a plot of iterations vs. 1/  𝜖 for B = 200, 1550, and 3000.  Also shown on the 

graph is a power law fit to all three sets of data. The fits show that the curves have the correct 
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general shape. The exponent value is nearly independent of 𝜖 for smaller 𝜖 values, but decreases 

as m+n increases (increasing budget), which is consistent with this exponent being bounded from 

below by m+n, as dictated by Equation 3.12. 

 

Figure 6-17. Iterations as a function of dimensionality 
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Figure 6-18. Iterations as a function of 1/ ϵ 
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Figure 6-19. Defender strategy cost distribution 
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material, even at the expense of selecting a risky strategy with a high detection probability.  

Risk-Preferring Attacker 
 Figure 6-20 shows the change in payoff as alpha is varied from 0 to 0.7 for the breakout-

willing attacker.  The payoff is plotted at three different budgets: 1000 s$, 2000 s$, and 4000 s$. 

Also plotted is the normalized payoff. Recall that the defender seeks to maximize payoff, while 

the attacker seeks to minimize it. Recall also that the normalization rescales the payoff function 
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to take the value of 1.0 at any alpha for ‘breakout’ outcome where the adversary seeks to attain 

the most high-quality material at the expense of certainly being detected. At alpha equals zero 

the attacker places no value on material attractiveness, so the payoff equals the detection 

probability. Thus at higher budgets the payoff is higher, because the defender is able to purchase 

better safeguards to increase the DP. For all alpha values above zero, however, the normalized 

payoff is the same for all three budget levels. The reason for this is easily understood from the 

normalized payoffs. For any alpha level above zero, it can be seen that the normalized payoff 

levels off at one, which means the attacker is obtaining the best possible material, the DP is one, 

and the ‘breakout’ scenario mentioned above is reached. Thus increases in defender budget do 

not affect the payoff, because the DP is already one, so the defender is not able to purchase 

anything additional to further increase the payoff. This occurs because the payoff function used 

for the risk-preferring adversary encourages him to seek high-value material irrespective of the 

DP this strategy incurs. Defender investments only serve to ensure that the adversary is forced 

into the ‘breakout’ scenario where he must accept certain detection. 

This effect is seen clearly in Figure 6-21, which plots attacker strategy as a function of 

alpha at B = 2000 s$. Figure 6-22 shows the defender strategy as a function of alpha for the same 

budget. As described above, Figure 6-21 shows that the attacker chooses very conservative 

strategies with low detection probability for alpha equals zero when he values all target materials 

equally, and then immediately shifts to the most aggressive strategy when higher alpha values 

encourage him to obtain higher-quality material. At alpha equals zero, the attacker plays a mixed 

strategy of diverting chopped spent fuel from the front-end accountancy tank and diverting TRU 

solution from the TRU product tank. In both diversion scenarios, he chooses the minimum 

possible diversion period (7 days) with the least frequent possible diversions (every 7 days), such 

that there is only one diversion event that occurs for both strategies. The attacker prefers a single 

diversion event where a small amount of material is removed over a series of diversions because 

this reduces his likelihood of being detected. Likewise the defender also plays a mixed strategy, 

employing dual C/S, design information verification, and the SMMS system. The strategy uses 

the 3DLRFD to bolster the DIV DP, but randomizes the location in which DIV is conducted 
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between the front-end and the back-end to optimize the probability of detecting either a front-end 

or back-end diversion.  

At non-zero alpha values, the attacker switches to diverting a large quantity of TRU 

material in daily diversions over a year. Because the attacker is playing such an aggressive 

strategy, the payoff is not sensitive to the defender’s strategy. The defender is able to choose 

from a host of strategies options, all of which yield the same DP of 1. Above alpha equals 0.3, 

the defender chooses a strategy well below budget that features only one safeguard, but still 

results in a scenario DP of 1. This transpires because there are no strategies available to the 

attacker that would allow him to obtain desirable material with a sub-unity DP. Therefore, faced 

with the choice of diverting material of low value while remaining undetected and obtaining 

useful material while certainly being detected, the attacker now values the material sufficiently to 

prefer the latter ‘breakout’ scenario. Table 6-XII gives the parameter details for the defender 

strategies played at B = 2000. 

 

 

Figure 6-20. Payoff as a function of alpha for the breakout-willing attacker 
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Figure 6-21. Attacker strategy as a function of alpha for breakout-willing attacker 

 

Figure 6-22. Defender strategy as a function of alpha for the breakout-willing attacker. See Table 
I for explanation of strategies. 
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Table 6-XII. Defender strategies played at B = 4000 

Strategy Active SGs Parameter 1 Parameter 2 Parameter 3 

D209 Dual C/S freq = 7 days-1 team size = small FAP = 0.05 

 DIV area = back-end 3DLRFD  

 SMMS freq = 1 days-1 FAP = 0.05  

D197 

Dual C/S freq = 7 days-1 team size = small FAP = 0.05 

DIV area = front-end 3DLRFD  

SMMS freq = 1 days-1 FAP = 0.05  

D75 
 

Dual C/S freq = 1 days-1 team size = small FAP = 0.01 

DIV area = back-end no 3DLRFD  

D1 SMMS freq = 1 days-1 FAP = 0.05  

Risk-Averse Attacker 
 Figure 6-23. Payoff as a function of alpha for the risk-averse attacker shows the payoff as 

a function of alpha for the risk-averse attacker, and Figure 6-24 shows the normalized payoffs as 

a function of alpha. As for the risk-preferring attacker, the payoff is shown at three budgets: 1000 

s$, 2000 s$, and 4000 s$. Figure 6-24 shows attacker behavior that differs from that of the risk-

preferring adversary; namely, the attacker does not immediately switch to the breakout scenario 

for B = 1000 or 2000 s$.  Instead, the figure shows a trend of increasing normalized payoff as 

alpha increases. The normalized payoff increases with increasing alpha because as alpha 

increases, the attacker is incentivized to pursue strategies that yield more high-value material, 

and these strategies are inherently easier to detect, resulting in a higher DP. 

 The normalized payoffs for B = 4000 resemble those seen for the risk-preferring 

adversary. For any value of alpha greater than zero, the attacker switches to the most aggressive 

‘breakout’ strategy. This occurs because the defender’s high budget allows her to purchase 

highly effective strategies, so for any attacker strategy, save the most conservative one, the DP 

equals one. Consequently, if the attacker cares at all about the value of the material he obtains, he 

will have no chance of evading detection. Because he has no chance of evading detection, even 
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the risk-averse attacker will be forced into ‘breakout’ where he chooses to maximizes his 

material utility while accepting the inevitability of detection. 

 Figure 6-25 shows the risk-averse attacker’s behavior as a function of alpha for B = 2000 

s$. Note than unlike the risk-preferring attacker, the risk-averse attacker does not switch to a 

breakout strategy until alpha = 0.6, because he is much more concerned with evading detecting 

than the risk-preferring attacker. At very low alpha values (alpha = [0,0.2]), the attacker plays a 

mixed strategy comprised of the two most conservative possible pure strategies. The mixed 

strategy diverts material from both the front-end and the back-end, and in both cases the minimal 

amount of period is diverted in a one-time attack. For intermediate values of alpha (alpha = 

[0.3,0.5]), the attacker switches to a mixed strategy comprised of two different pure strategies, 

A30 and A34, both of which involve the diversion of TRU solution. The attacker shifts from a 

mixed strategy where both SF pieces and TRU are stolen to one where only TRU is stolen 

because the higher alpha values incentivize the attacker to seek higher-value material. The mixed 

strategy played at intermediate alpha values is less conservative than the ones played at low 

alpha values—the attacker randomizes between stealing the minimal amount of material more 

frequently and stealing a larger amount of material as infrequently as possible. For high alpha 

values (alpha = [0.6,0.7]), the attacker’s behavior is dominated by desire for high-value material, 

and the risk-averse attacker behaves in the same manner as the risk-preferring attacker, which is 

to shift to a breakout strategy of divert large quantities of TRU solution daily over the course of a 

year. 

 Figure 6-26 shows the defender’s strategy against a risk-averse attacker as a function of 

alpha at B= 2000 s$. As she did against the risk-preferring attacker, the defender initially plays a 

mixed strategy that randomizes between front-end and back-end DIV, which is intended to 

counter the attacker’s randomization between front-end and back-end attacks. As alpha increases 

and the attacker becomes increasingly motivated by material value, the fraction of strategy A57 

played by the defender decreases, because this strategy is most effective for detecting front-end 

attackers, and the attacker is increasingly unlikely to launch a front-end attack to obtain SF 

pieces as he becomes more driven by material value. At high alpha values, the attacker switches 

to the breakout scenario, as described above, and attacker switches to a pure strategy comprised 
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of dual C/S, DIV, and SMMS. Interestingly, for the breakout scenario the defender decreases the 

frequency with which she inspects, and instead buys the SMMS. The SMMS has a probability of 

alarming in response to a back-end diversion on any day where a diversion occurs. Thus this 

safeguard is quite effective against a daily attacks with a long duration, because even if the per-

attack DP is relatively low, the cumulative DP over the course of the scenario is one. 

 

Figure 6-23. Payoff as a function of alpha for the risk-averse attacker 
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Figure 6-24. Normalized payoff as a function of alpha for the risk-averse attacker 

 

Figure 6-25. Attacker strategy as a function of alpha for the risk-averse attacker 
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Figure 6-26. Defender strategy as a function of alpha for the risk-averse attacker 
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the largest number of strategies available to the defender. Thus the significant increase in payoff 

occurs because the defender is able to afford some new safeguard or safeguarding parameter that 

significantly increases her detection probability. For example, payoff 1 increases from 0.424 to 

0.657 from 500 s$ to 1500 s$. At 500 s$, the defender plays a pure strategy of routine 

inspections with a frequency of every seven days, and without purchasing the 3DLRFD. At 1500 

s$, the defender plays a mixed strategy of two different routine inspections, one that performs 

DIV on the front-end of the facility with a 3DLRFD, and other that performs DIV on the back-

end of the facility with a 3DLRFD. AT 1500 s$ the defender is also able to purchase the SMMS 

system as part of her mixed strategy. By comparison the increase in payoff between 1500 s$ and 

2000 s$ is relatively small, because in this case the defender is not able to play a new strategy; 

instead she plays different fractions of the same two pure strategy to constitute her mixed 

strategy. 

The same result is seen for the risk-averse attacker on the interval from 2000 s$ to 3500 

s$, where two major step increases in payoff are seen (from 2000 to 2500 and from 2500 to 3500 

s$). The increase from 2000 to 2500 s$ occurs because the defender is able to purchase the 

3DLRFD and accept a higher false alarm probability (which increases detection probability but 

costs more), and the increase from 2500 to 3500 s$ occurs because the defender can afford to 

purchase DA sampling and the SMMS system at the higher budget. The small increase in payoff 

between 3500 and 4000 s$ occurs because the defender is able to purchase a new pure strategy 

that includes both DA sampling and the SMMS system. Note that at 3500 s$, the defender plays 

a mixed strategy comprised of two pure strategies, one of which has a DA component and one of 

which has an SMMS component. The ability to play a pure strategy with both of these 

components does increase the defender’s DP, but not drastically, suggesting that randomizing 

between DA sampling and the SMMS system, in concert with routine inspections, is nearly as 

effective as doing both on a regular schedule. 
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Figure 6-27. Payoff 1 and  2 as a function of budget at alpha = 0 

 Figure 6-28 shows normalized payoffs 1 and 2 as a function of budget at alpha = 0.2.  

Recall from previous discussion that the normalized payoff takes a value of 1 if two conditions 

are met: (1) the DP is 1, and (2) the attacker obtains the maximum quantity of highest value 

material. Note that Figure 6-28 gives the log of the normalized payoff along the y-axis.  For the 

risk-preferring attacker, the payoff is always 1, irrespective of the budget. This is because at 

alpha = 0.2, the risk-preferring attacker is sufficiently incentivized to pursue the breakout 

strategy—the scenario in which he seeks the maximum amount of high-value material despite 

facing certain detection. Because this strategy is so overt, the DP is 1, even at very low budgets, 

resulting in a normalized payoff of 1. Conversely, the risk-averse attacker pursues more 

conservative strategies up to a defender budget of 2500 s$, because the risk-averse attacker 

wishes to avoid certain detection if possible. Above a budget of 2500 s$, however, the defender’s 

resources are sufficient to detect even the attacker’s more conservative strategies with a 

probability of 1; thus the attacker resigns himself to the certainty of detection. Faced with certain 

detection and obtaining a small amount of material, or certain detection and obtaining a large 

0 

100 

200 

300 

400 

500 

600 

700 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 1000 2000 3000 4000 5000 6000 7000 

Pa
yo

ff
 2

 

Pa
yo

ff
 1

 

Budget (s$) 

Payoff 1 

Payoff 2 



 147 

amount of high-value material, the attacker chooses the latter and switches to the breakout 

strategy. 

 

Figure 6-28. Normalized payoff 1 and 2 as a function of budget for alpha = 0.2
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Chapter 7: Integrated Facility Model Results 

This chapter provides results for the integrated, two-facility model. In this model the attacker has 

the option of attacking either the enrichment or reprocessing facility. As with the single-facility 

models, the defender’s strategy options include every allowable permutation of safeguards, 

ranging from only enrichment or reprocessing safeguards to full suites of safeguards at both 

facilities. Minor changes were made to enrichment and reprocessing simulations when 

implementing them in the integrated model; details about these changes can be found in 

Appendix B: Implementation. The results of this section provide insight into the optimal resource 

allocation strategy across multiple facilities, and how this strategy is affected by adversary 

characteristics. 

There are a total of 1,668,924 unique defender strategies available in the integrated 

facility model, along with 375 attack strategies. Note that while the defender can allocate 

safeguarding resources across both facilities, the attacker can still only attack one of the two 

facilities, though the attacker can play a mixed strategy with membership in both facilities. The 

defender strategies range in cost from 0- 1400 s$. Figure 7-1 shows the defender strategy cost 

distribution for the integrated model.  
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Figure 7-1. Defender strategy cost distribution for integrated model 
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knowing he will be detected for certain; once defender investment in safeguards suffices to push 

him into breakout, further defender investment ceases to change the attacker’s behavior. The 

largest difference in normalized payoff between the three budgets occurs at alpha = 0.1, because 

at this budget the attacker begins to be motivated by material utility, and plays a more risky 

strategy than at alpha = 0, where he sought only to evade detection, but he has not yet resorted to 

the breakout strategy. Thus for this somewhat material-motivated attacker, the defender’s budget 

has the greatest impact on the normalized payoff because the attacker still behaves evasively, 

responding to expected defender safeguards investments by switching to lower-risk strategies at 

the expense of material utility. 

 

 

Figure 7-2. Payoff as a function of alpha for the breakout-willing attacker 
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indifferent to the type of material he obtains and seeks only to evade detection. Thus at alpha = 0, 

the attacker plays a mixed strategy comprised of three pure strategies, all of which have low DPs. 

The three strategies he may choose are the production of undeclared feed at the enrichment 

facility, the diversion of chopped spent fuel pieces from the front-end of the reprocessing facility, 

and the diversion of TRU solution from the back-end of the reprocessing facility. In all three 

cases, he perpetrates a one-day attack, diverting or producing the smallest possible quantity of 

material, in order to minimize his DP. Note that in this case the attacker plays a mixed strategy 

that randomizes between attacking the enrichment facility and the reprocessing facility. This 

strategy is consistent with the paradigm that the attacker can attack only one facility; the mixed 

strategy means that he will either attack the enrichment facility or the reprocessing facility, and 

his likelihood of choosing to attack either facility is described by the membership of that pure 

strategy in the mixed strategy. In this case, the attacker may choose produce undeclared feed 

(74% chance), divert chopped spent fuel pieces (17% chance), or divert TRU solution (9% 

chance).  

As alpha increases from 0 to 0.1 and the attacker begins to place some value on material 

type and quantity, he shifts to a more aggressive mixed strategy that continues to include targets 

in both the enrichment facility and the reprocessing facility. It is important to note that the 

presence of both facilities in the attacker’s strategy list is an expected, and desirable, outcome of 

the game.  As the budget is increased, the defender is allocating investments in such a way as to 

make all potential targets within both facilities equally (un)desirable to the attacker.  Therefore, 

the defender will invest in the more vulnerable facility until its vulnerability drops to equal that 

of the easiest-to-attack target in the other facility.  As budget continues to increase from that 

point, the defender will divide his resources between the two facilities to maintain parity between 

potential targets across the facilities.   
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Returning to the alpha = 0.1 case, the attacker plays an aggressive strategy of diverting 

TRU solution daily for a year at the reprocessing facility, but he plays this strategy only about a 

quarter of the time, and plays a more conservative undeclared feed production strategy the 

remain three-quarters of the time. The undeclared production strategy employed at alpha = 0.1 is 

more aggressive than the limited one-time attack that occurs at alpha = 0, though still a one-time 

attack with a relatively low DP. At alpha = 0.2 and above, the attacker switches to the breakout 

strategy, which is to recycle material through the cascade at the enrichment facility to produce 

HEU. This strategy produces the highest material utility of any of the strategies at both facilities, 

as it produces the largest quantity of high-value material. This makes it the most attractive option 

to a breakout-willing attacker once the facilities are sufficiently well safeguarded to make his 

detection likely. 

Defender strategy as a function of alpha at B = 2000 is shown in Figure 7-4. A detailed 

description of each of the defender strategies played is given in Table 7-I. At alpha = 0, the 

defender counters the attacker’s mixed strategy by playing a mixed strategy that is comprised of 

three pure strategies. Two of the pure strategies played feature five safeguards spread across the 

two facilities—inspection and NDA at the enrichment facility, and dual C/S, DIV, and SMMS at 

the reprocessing facility. The only difference between these two pure strategies that are part of 

the mixed strategy is the area in which design information verification is conducted at the 

reprocessing facility. Just as the attacker may choose to divert chopped spent fuel pieces from the 

front-end (17%) or TRU solution from the back-end (9%), the defender randomizes between 

conducting DIV in the front-end (8%) and conducting DIV in the back-end (42%). In practice, 

this would mean that upon each inspection, the defender would sometimes (8%) choose to 

conduct front-end DIV but more often (42%) in the back-end.  The attacker knows is aware of 

this defender behavior, but does not know which option will actually be chosen in advance of 

each inspection. Here the defender focuses his resources in the back-end because the TRU 
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diversion is more difficult to detect with dual C/S than the chopped SF piece diversion, so DIV 

adds a needed additional detection measure.  

The third pure strategy that has membership in the defender’s mixed equilibrium strategy 

at B = 2000 is a suite of enrichment safeguards. This strategy features, among other safeguards, 

inspection and visual inspection, which are effective in detecting undeclared production using 

undeclared feed. The defender plays this strategy with a membership of 50% in order to counter 

the attacker’s preferred strategy, undeclared production, which the attacker plays a large 

percentage of the time due to the difficultly in detecting it. The fact that the defender’s mixed 

strategy is comprised in part of this enrichment-only strategy represents a shortcoming of the 

simultaneous play game model for this application. In reality, an inspectorate like the IAEA 

could not safeguard only one facility without the attacker being able to observe this behavior and 

change his strategy accordingly, because in reality certain elements of the defender’s strategy are 

transparent to the attacker, such as the installation of equipment. Section 8.2 Future Work 

discusses a method for addressing this shortcoming by incorporating a hybrid Cournot-

Stackelberg game. For the purposes of this work, this mixed strategy result should be interpreted 

as the defender playing a combination of the component pure strategies, not strictly randomizing 

between the pure strategies. 

At alpha = 0.1, the defender continues to play a mixed strategy, randomizing between an 

enrichment-only safeguarding strategy and a strategy that allocates resources across both 

facilities. The defender reduces the frequency with which she inspects the enrichment facility, 

because the attacker is playing slightly more aggressive strategies that are easier to detect, so less 

frequent inspection is still effective. Additionally the defender shifts to performing DIV on only 

the back-end of the reprocessing facility, because once the attacker differentiates between 

different material qualities chopped spent fuel pieces are far less attractive to him. At alpha = 

0.2, the defender plays a pure strategy with two safeguards at each facility. She employs 
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inspection and NDA monthly at the enrichment facility, both of which are effective against HEU 

production, and she plays dual C/S and DA sampling at the reprocessing facility. The investment 

made in reprocessing safeguards is just sufficient to deter the attacker from perpetrating an attack 

at the reprocessing facility. Against the breakout-willing attacker, the defender chooses a 

relatively limited suite of safeguards at high alpha values, because the attacker switches to the 

breakout strategy, which is highly visible and easy to detect. Similarly for a fixed alpha value, 

the suite of safeguards selected by the defender does not change with additional investments 

above B = 4000 s$, because at and above this investment level the attacker commits to a single 

strategy. 

 

 

Figure 7-3. Breakout-willing attacker strategy as a function of alpha 
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Figure 7-4. Defender strategy as a function of alpha against breakout-willing attacker 

Table 7-I. Integrated model defender strategy descriptions 

Strategy Active SGs Parameter 1 Parameter 2 Parameter 3 

D245627 

Inspection freq = 7 days-1 team size = small FAP = 0.01 
NDA freq = 28 days-1 FAP = 0.01  

Dual C/S freq = 7 days-1 team size = small FAP = 0.05 

DIV 3DLRFD = yes area = front-end  
SMMS freq = 1 days-1 FAP = 0.05  

D245639 

Inspection freq = 7 days-1 team size = small FAP = 0.01 

NDA freq = 28 days-1 FAP = 0.01  

Dual C/S freq = 7 days-1 team size = small FAP = 0.05 
DIV 3DLRFD = yes area = back-end  

SMMS freq = 1 days-1 FAP = 0.05  

D1306536 
Inspection freq = 28 days-1 team size = small FAP = 0.01 

NDA freq = 28 days-1 FAP = 0.01  

 Active seals frac. sealed = 1.00   

D245627 

D245639 

D1306536 
  SG0: inspection 
  SG1: nda   
  SG4: aseals  
  SG6: visinsp  

D1521875 
  SG0: inspection  
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Visual insp. freq = 7 days-1   

D1521875 

Inspection freq = 28 days-1 team size = large FAP = 0.01 

NDA freq = 28 days-1 FAP  = 0.01  

Dual C/S freq = 7 days-1 team size = small FAP = 0.05 

DIV 3DLRFD = yes area = back-end  
SMMS freq = 1 days-1 FAP = 0.05  

D1521969 

Inspection freq = 28 days-1 team size = large FAP = 0.01 

NDA freq = 28 days-1 FAP  = 0.01  
Visual insp. freq = 7 days-1   

D1521850 

Inspection freq = 28 days-1 team size = large FAP = 0.01 

NDA freq = 28 days-1 FAP  = 0.01  

Dual C/S freq = 7 days-1 team size = small FAP = 0.05 
DA- repr. freq = 7 days-1   

7.1.2 Risk-Averse Attacker 

The results presented above for the breakout-willing attacker indicate that the normalized 

payoff for the game is 1 at alpha ≥ 0.2, where even a minimal defender budget is sufficient to 

drive the attacker to accept certain detection by choosing the breakout strategy. Figure 7-5, 

which shows the normalized payoff as a function of alpha for the risk-averse attacker, highlights 

his very different behavior. It can be seen in Figure 7-5, even at alpha = 0.5, the normalized 

payoff only reaches a maximum value of 0.39, because the risk-averse attacker does not resort to 

the breakout strategy. It is also apparent that as alpha increases, the difference in normalized 

payoff between B = 2000 and B = 2500 decreases. This occurs because as alpha increases, the 

attacker’s strategy becomes increasingly aggressive as he becomes more material-motivated. He 

shifts towards strategies that are easier to detect, although never to the extent of the breakout-

willing attacker; the risk-averse attacker will never accept a breakout scenario where his 

detection is certain. As the attacker’s preferred strategies become more aggressive, the difference 

in the amount of detection that can be bought at 2500 s$ and 2000 s$ decreases. 
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Figure 7-5. Normalized payoff as a function of alpha for the risk-averse attacker 

Figure 7-6 shows the attacker strategy as a function of alpha. As expected, at alpha = 0 

the attacker plays a mixed strategy similar to the one played by the breakout-willing attacker, 

because at this alpha value his only consideration is minimizing DP. As alpha increases, the 

attacker shifts towards playing various mixed strategies, all of which are dominated by strategy 

A302, the one-time production of undeclared product from undeclared feed. While short in 

duration, this strategy does commit half of the cascades to the misuse, meaning it makes a 

relatively large quantity of material and is relatively visible. It is interesting to note that at alpha 

= 0.5, the attacker plays a small fraction of a very aggressive TRU solution diversion strategy at 

the reprocessing facility. This strategy selection can best be understood by looking at the attacker 

strategy in concert with the defender strategy. Figure 7-7 shows the defender strategy as a 

function of alpha. Note that between alpha = 0.1 and alpha = 0.4, the defender dedicates an 

increasing fraction of her resources to strategy D1521969. As shown in Table 7-I, this strategy is 
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comprised exclusively of enrichment safeguards, including inspection and visual inspection. 

Accordingly, this strategy is designed to detect the production of undeclared material from 

undeclared feed, which is why the defender increasingly relies upon it as the attacker plays this 

strategy a larger fraction of the time.  

The results do show, however, that if the defender commits too many of his resources to 

one facility, it leaves the other facility vulnerable to attack. This explains the defender and 

attacker behavior seen at alpha = 0.5, where the attacker plays a small share of an aggressive 

attack at an enrichment facility, and the defender counters by diverting additional resources from 

the enrichment-only strategy to strategies that include safeguards at both facilities. 

 

Figure 7-6. Risk-averse attacker strategy as a function of alpha 
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Figure 7-7. Defender strategy as a function of alpha against risk-averse attacker 

7.2 OPTIMAL RESOURCE ALLOCATION ACROSS SYSTEM OF FACILITIES 

One of the valuable outputs generated by this model is the optimal allocation of defender 

resources across two facilities. This section presents the efficient frontier for the integrated 

model and compares it to the efficient frontiers for the stand-alone enrichment and reprocessing 

models. Additionally, it presents results verifying that the investment portfolios output by the 

integrated model are optimally distributed between the two facilities. 

7.2.1 Efficient Frontier 

Figure 7-8 features the efficient frontier for the integrated, two-facility model alongside 

the efficient frontiers for the enrichment and reprocessing stand-alone models.  

The values plotted are the normalized payoff for the risk-averse attacker with some material 

motivation (alpha = 0.1). The figure shows that at the enrichment facility, only an investment 

increase from 1000 to 2000 s$ results in an increased payoff for the defender, because of the 
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undeclared feed, which is a strategy against which relatively few safeguards are effective. As 

such, even if the defender has a large number of resources to invest detection of this strategy is 

not certain. Conversely, at the reprocessing facility, the strategies available to the attacker are 

generally easier to detect, so the payoff is far more sensitive to the defender’s budget. Even the 

risk-averse attacker with minimal material motivation resorts to the breakout strategy at the 

reprocessing facility, because beyond a certain defender investment level he is unable to evade 

detection, no matter the attacker strategy he selects.  

The efficient frontier for the integrated facility model shares features with both of the 

stand-alone facility efficient frontier plots. Each increase in payoff in the integrated facility 

efficient frontier corresponds to a similar increase in an individual facility payoff increase. The 

increase in payoff between 1000 and 2000 s$ corresponds well with the increase in payoff seen 

at the enrichment facility over this interval, and the small increase seen from 2000 to 2500 s$ 

dollars can be attributed to the large increase in the reprocessing facility payoffs over this 

interval. It is clear from the figure that the efficient frontier for the integrated model is dominated 

by the enrichment facility strategies upon which the attacker focuses. This occurs because the 

defender primarily allocates her resources defending the enrichment facility, as the reprocessing 

facility is in fact easier to safeguard given a moderate total budget. Then the attacker 

preferentially attacks the enrichment facility, as is explained in detail in Section 7.7.2.  

The figure also shows that the payoff for the integrated facility is always as low as, or 

lower than, the payoff for either of the single facilities. This is because for a given budget level, 

the defender must defend two facilities in the integrated model, versus only one in a single 

facility model. Further, in the integrated model, the attacker is able to determine which facility is 

more vulnerable and attack that facility. Thus the system is as vulnerable as the most vulnerable 

facility, which is why the defender invests her resources in a manner such that both facilities are 

equally unattractive targets. Note that in this case that is not possible, even at high defender 
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budgets, because of modeling assumptions made about the detectability of attacks at the 

enrichment and reprocessing facilities. In this case, even if the defender has unlimited resources, 

the risk-averse attacker is still able to perpetrate an attack at the enrichment facility with DP < 1, 

which is why the payoff is lower at the enrichment facility than the reprocessing facility. 

 

 

Figure 7-8. Efficient frontiers for enrichment, reprocessing, and integrated facility models 

7.2.2 Optimality of Investment Distribution 
To investigate the allocation of resources between the two facilities, a sensitivity analysis 

was performed by sweeping across a range of resource splits and comparing the results to those 

output by the integrated model. The integrated model was run with a defender budget of 2500 s$, 

and at this budget, the defender plays pure strategy D1522158, which is comprised of inspection, 

NDA, visual inspection, dual C/S, and DIV. 

 Table 7-II describes strategy D1522158 in detail and also provides a cost-breakdown for 
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the table, the defender allocates about 1986 s$, or approximately 81% of the investment, to 

defending the enrichment facility, 472 s$ to the reprocessing facility, and has 42 s$ left over. 

Any allocation other than this 1986-472 split should be sub-optimal and result in a lower payoff 

to the defender. Note that though the defender has a total budget of 2500 s$, she only invests 

2458 s$ in her defense strategy. In practice the defender rarely uses the entire budget allocated to 

her, because her investment options are discrete in nature, so she allocates resource until there is 

no slack in her budget; that is, until the purchase of an additional useful safeguard would exceed 

her budget. Note that this analysis was conducted to demonstrate the ability of the model to 

allocate across multiple facilities, and the results should not be interpreted as a global statement 

about the relative vulnerability of enrichment facilities versus reprocessing facilities. This point 

is discussed in greater detail below. 

 

Table 7-II. Defender strategy selection at B = 2500 s$ 

Strategy Active SGs Parameter 1 Parameter 2 Parameter 3 Cost 

D1522158 

Inspection freq = 28 days-1 team size = large FAP = 0.01 426.39 

NDA freq = 28 days-1 FAP = 0.01  30.07 
Vis. Insp. freq = 7 days-1   1530.00 

Dual C/S freq = 7 days-1 team size = small FAP = 0.05 468.62 

DIV 3DLRFD = no area = front-end  3.00 

In order to show that this cost split is optimal, the stand-alone enrichment and 

reprocessing models were run with the defender budgets set to their respective shares of the total 

budget. For the 1986-472 split described above, the reprocessing model was run with B = 472, 

and the enrichment model was allocated the balance of the total budget, or B = 2028. Each model 

generated an equilibrium payoff, and the lower of the two payoffs was recorded. The lower 

payoff was used because it represents the more vulnerable point in the two-facility system. Runs 

were conducted varying the percentage of the total budget invested in the reprocessing facility 

from 0 to 100%. Figure 7-9 shows the results of this test. Along the x-axis, the reprocessing 

investment varies from 0 s$ (0% of total budget) to 2500 s$ (100% of total budget). The y-axis 
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shows the payoff at the more vulnerable of the two facilities. These data were collected for the 

risk-averse attacker who is somewhat motivated by material utility (alpha = 0.1). 

Because the attacker is an intelligent adversary, it is assumed that he can preferentially 

attack the more vulnerable of the two facilities, meaning the system defense is only as effective 

as its least effective element. Thus the defender makes defense investments with the goal of 

making both facilities equally unattractive targets for the attacker. It is clear from Figure 7-9 that 

if the defender over-invests in one facility, like investing 2050 s$ at the enrichment facility and 

the remaining 450 s$ at the reprocessing facility, the system payoff is quite low, because the 

defender leaves one facility very vulnerable (in this case, the reprocessing facility).  Figure 7-9 

also illustrates the optimal resource allocation output by the integrated facility model. The red 

circle shows the payoff for a reprocessing budget of 472 s$, which was the amount of money 

allocated to defending the reprocessing facility in the equilibrium strategy output by the 

integrated model. It can be seen from the figure that if the defender invests even one dollar less 

in the reprocessing facility, the system payoff drops appreciably. It is apparent from the figure 

that there is a small cluster of data points, ranging from 472 s$-500 s$, for which the system 

payoff is optimal. These budgets are effectively equivalent due to the discretized nature of the 

budget discussed previously. The figure clearly shows, however, that any cost split between 

facilities besides the 1986-472 split output by the integrated facility model results in a lower 

system payoff, and is thus suboptimal. 
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Figure 7-9. Payoff at more vulnerable facility as cost share across facilities is varied 

The results presented above indicated that the defender should allocate approximately 

80% of her resources to the enrichment facility and the remaining 20% to the reprocessing 

facility. This basic finding—that the defender should be investing more heavily in defending the 

enrichment facility—is seen for both types of attackers and over a range of material motivations 

(over a range of alpha values). It should be noted that this result is specific to this model because 

of the different level of detail with which the two facilities were modeled. The enrichment 

facility was modeled in much greater detail, and thus included a menu of varied attacker options 

which resulted in some attacks with high DPs and others with low DPs. The reprocessing facility 

model is underdeveloped relative to the enrichment facility, particularly the attacker options at 

the reprocessing facility. The result of this small set of available attacker options at a small 

facility is that detection probabilities at the reprocessing facility are artificially high, making the 

reprocessing facility appear unrealistically vulnerable in comparison to the enrichment facility. 
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The breakout strategy, wherein the attacker seeks to obtain the maximum quantity of high 

value material, even knowing he will certainly be detected, occurs in this model at the 

enrichment facility. If that attacker chooses to recycle material through the cascade daily for an 

entire year, dedicating half of the plant’s cascades to the misuse, the attacker achieves a material 

utility (𝐹𝑂𝑀 ∙ 𝑄) of 24,446. By comparison, the attacker strategy at the reprocessing facility that 

yields that largest quantity of high value material has a material utility of only 518. For the 

system of the two facilities, a breakout attacker will thus target the enrichment facility simply 

because he can obtain higher-quality material more quickly there. If the size of the reprocessing 

facility were scaled up, or it were producing Pu rather than TRU, the breakout might instead take 

place there. The attacker’s choice of the enrichment facility for breakout is a result of model and 

scenario assumptions. 

A similar inclination towards the enrichment facility can be seen for the risk-averse 

attacker with little to no material motivation. Across the two facilities, the attacker strategy with 

the lowest DP occurs at the enrichment facility, with a one-time attack producing undeclared 

product from undeclared feed using only cascade. Accordingly, in this model, both a highly 

aggressive breakout attacker and highly risk-averse attacker preferentially attack the enrichment 

facility, as do attackers possessing intermediate characteristics. As a result, the defender invests 

the majority of her resources in defending the enrichment facility, in particular because this 

optimizes her payoff against the risk-averse attacker seeking to evade detecting by perpetrating a 

very limited attack at the enrichment facility. 

These system-level resource allocation results are best not interpreted in a literal, 

immediately real-world relevant sense, but instead should be analyzed for their underlying 

implications. Specifically, these results suggest that the defender should allocate resources in 

such a manner so as to make all facilities equally unattractive to an adversary. Further, in order 

to achieve this objective, the defender must consider adversary-specific characteristics, such as 
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risk-preference and material motivation. The defender gains more by investing in the facility that 

would otherwise be more attractive to the risk-averse attacker, because this attacker can 

theoretically be deterred and his strategy can be influenced by additional detection capability. 

Against a breakout-willing attacker, conversely, the defender does best to allocate only the 

minimal resources required to detect an aggressive attack, as this type of attacker’s behavior is 

dominated by desire for high-value material and cannot be significantly influenced by defender 

strategy. The best outcome for the defender is to force such an adversary into a breakout strategy.
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 CONCLUSIONS AND FUTURE WORK 

Chapter 8: Conclusions and Future Work 

8.1 CONCLUSIONS 

This work presents a computational model that employs a novel methodology to find 

optimal inspector and proliferation strategies at and across nuclear fuel cycle facilities. The 

methodology couples a game theoretic solver with a probabilistic simulation model of a gas 

centrifuge enrichment plant and an aqueous reprocessing facility. The game calls the simulation 

model to generate payoff values for given inspector-proliferator pairs, and the simulation model 

calculates the payoffs by weighting the detection probability for the pair by the quantity and 

quality of material obtained in the scenario. These payoff values are returned to the game and 

used to populate the payoff matrix. The game is solved using the fictitious play algorithm, and 

the model outputs the equilibrium defender and attacker strategies as well as the equilibrium 

value. This document describes the methodology in detail, including the theoretical 

underpinnings of the game theoretic optimization, the mechanics of the simulation model, and 

specific inputs to the simulation model. Additionally this work presents results obtained using 

the model, namely the optimal inspector and proliferator strategies at a GCEP, a reprocessing 

facility, and across the system of the two facilities. The numerical values presented here are 

notional and intended to illustrate the methodology, and as such should not be interpreted 

literally; however, the methodology has been developed such that a user could input facility-

specific assumptions and detection probability algorithms to generate realistic results.  

One of the more compelling results presented here is the visual representation of scenario 

payoff as a function of budget, presented as a so-called “efficient frontier”. The efficient frontier 

traces the optimally efficient strategy at any budget, such that a rational actor should never select 

a strategy off of this frontier. Further because of the game theoretic framework used, this 
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analysis anticipates and accounts for changes in attacker strategy based on defender budget level, 

and calculates optimal defense strategies given changing adversary behavior. For both stand-

alone facility models and the integrated facility model, the efficient frontier plots show large 

increases in payoff at certain budgets, and show regions of plateau in other budget intervals. This 

plot conveys information about when additional investment provides diminishing returns, as is 

the case in the plateau regions where additional investment does not result in increased payoff, 

and when additional investment can elevate the defender above a cost threshold and allow her to 

purchase some advantageous symbiotic safeguards combination that will result in increased 

detection capability. Understanding where on the efficient frontier the defender is operating can 

serve as a guide for rational decision making by providing information about whether additional 

resource investment should be expected to increase payoff, and at what level additional resources 

need to be invested in order to affect the payoff. 

While the efficient frontier illustrates the optimal strategy for a defender at a given 

budget level, this result is highly sensitive to the type of attacker against which the defender is 

defending. This sensitivity is particular to the game theoretic approach and requires that 

assumptions be made about attacker capability and motivation, which is a potential weakness of 

this methodology. In order to determine the robustness of the results for a range of attacker 

capabilities and motivations, the model could be run stochastically with a distribution placed on 

attacker capability. Note also that because of the zero-sum nature of the game, changing 

assumptions about payoff for the attacker also changes these payoffs for the defender. This too is 

a limitation of this model, because though different attackers may value material differently, 

presumably defender valuation of material is immutable. In this work a single attacker risk 

preference and material motivation was assumed for each run, with attacker material motivation 

serving as a proxy for state capability. A state that has clandestine enrichment or reprocessing 

capability may be able to use material with lower intrinsic material attractiveness to achieve its 
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objectives than a state with no clandestine facilities, which needs to obtain directly weapons 

useable material. The relationship between state risk preference and optimal defense strategy is 

examined here by modeling two different types of attackers—a breakout-willing attacker and a 

risk-averse attacker. The results indicate that even a risk-averse attacker who is highly motivated 

by material can be contained and prevented from pursuing the breakout strategy. Conversely, a 

breakout-willing attacker with relatively low material drive will resort to the breakout strategy 

even at low defender budgets, at which point he will be detected for certain even with very 

limited defense strategies. Thus additional defense investments against this type of attacker are 

wasteful, because they do not buy any additional detection. 

In addition to being highly sensitive to attacker risk preference and material motivation, 

defender strategies are sensitive to exogenous sources of detection probability, particularly at 

low budgets. The results presented in this work show that at low defender budgets at the 

enrichment facility, even a daily exogenous DP of 0.1% for detecting the production of 

undeclared feed altered the defender’s optimal strategy at the facility. This result suggests that 

inspectorates like the IAEA, which is estimated to receive approximately 10% of its information 

from third-party intelligence,26 should consider what types of attacks intelligence and other 

exogenous sources of DP are capable of detecting and how much additional detection capability 

exogenous sources provide. The inspection strategy that is optimal in the absence of exogenous 

detection sources may not be optimal in the presence of such sources, particularly at low 

defender budgets or if the exogenous sources provide DP against the most vulnerable 

proliferation pathways. 

The model also outputs the optimal defense resource allocation strategy across multiple 

facilities. The results of this work confirm the intuitive notion that the attacker does at least as 

well, if not better, when he can choose between attacking either of two facilities. For a given 

                                                
26 Remarks made by high-level IAEA official in an off the record session 
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budget, the defender is better able to defend one facility than two, because he can invest all his 

resource at the single facility rather than allocate them across the two facilities. Thus the 

attacker’s evasion probability is slightly higher in the case of the integrated facility model than it 

is for even the more vulnerable of the two stand-alone facilities. Because the attacker is always 

able to attack the more vulnerable facility in the two-facility system, the defender’s investment 

strategy seeks to make both facilities equally unattractive targets for the attacker. As the model 

results show, if the defender over-invests in either facility, the intelligent adversary is able to 

take advantage of vulnerabilities at the under-defended facility. The results from this work also 

verify that the defense investment distribution across the two facilities output by the model is 

optimal, and venturing away from this distribution to any other cost-sharing paradigm results in a 

lower overall system payoff for the defender. 

The ability of this model to find optimal defender strategies across multiple facilities 

represents a novel contribution. While traditional proliferation pathway analyses and 

safeguarding analyses find optimal inspector and proliferator strategies at an enrichment facility 

or a reprocessing facility, these analyses have limited meaning in real-world situations where an 

adversary can shift his strategies between facilities and the defender needs to allocate resources 

efficiently across facilities. The ability of this model to view states’ fuel cycles from a systems 

level and to optimize accordingly make is a useful tool for guiding and supporting the IAEA’s 

emphasis on the state-level approach and information-driven safeguards. This tool can provide a 

systematic basis for allocating safeguarding resources across multiple facilities in a state, which 

is of particular utility to the IAEA due to the cost constraints under which it operates, requiring 

that its strategy become increasingly efficient without compromising effectiveness. 

While the results generated by this model represent a new, multi-facility approach to 

safeguards analysis, the true novelty of the tool lies in the methodology itself. Many proliferation 

pathways analysis tools use probabilistic risk assessment techniques to analyze vulnerable 
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proliferation pathways and calculate detection or success probabilities. While PRA-type 

techniques have utility for many types of analyses, such as safety analyses, techniques of this 

type may not be as useful for adversarial situations, where the attacker’s behavior is governed by 

rational decision making, rather than chance. For strategic interactions, like those between the 

IAEA and a state, game theory offers the advantage of more faithfully capturing the behavior of 

an intelligent adversary who is able to optimize his strategy in the context of the defender’s 

strategy options and resources. The coupling of a game theoretic solver to a probabilistic 

simulator brings to bear in this model the strengths of both types of techniques. The game 

theoretic solver performs the prescient optimization required for adversarial decision-making, 

and the simulation model informs the game with realistic payoff values without placing 

burdensome restrictions on the complexity of the model. The result of this coupling is a tool 

capable of generating meaningful output with real-world applicability. 

8.2 FUTURE WORK 

A significant potential application for the model developed in this work is for marginal 

cost analysis, particularly in the arena of safeguards investment decision making. This model 

could be used to perform cost sensitivity analysis for a new type of safeguard tool or technique, 

by determining cost above which the defender no longer selects it because the detection 

probability to cost ratio is too low. In order to do cost sensitivity analysis with this tool, the 

model would be populated with the estimated detection capability of a novel safeguarding tool or 

a tool under consideration, and the cost at which the defender selects the safeguards could then 

be calculated and compared to the projected cost for development or deployment of the tool. In 

this way, the model can be used to guide safeguards R&D investment decision making. In a 

similar vein, the model could also provide an estimate for the “value” of intelligence in a specific 

threat environment, a piece of information that has the potential to affect policy decision making. 
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One of the more pressing policy questions surrounding states that may or may not have 

proliferant aims is whether the state can be deterred from proliferating, and if so, at what cost. 

The model presented in this work can be used to draw a quantitative relationship between 

attacker characteristics and “deterrence budget”, or the investment level required by the defender 

to deter a state from perpetrating an attack. While the model currently does not feature a “no 

action” option for the attacker, such an option could easily be incorporated. A risk tolerance 

could be assumed for an attacker by establishing some DP above which he chooses the “no 

action” option, because he would rather do nothing than accept that risk of detection.  A 

functional relationship between the attacker’s risk tolerance the budget required to force him to 

the no action option could then be determined. Such an analysis would provide policy makers 

unique insight into how safeguards investments do or do not affect the decision made by a state 

to pursue an illicit weapons program. 

 While the methodology presented here allows for the generation of realistic and policy-

relevant results, like those discussed above, it does have some shortcomings that limit its direct 

applicability to real-world situations. Specifically, the use of a Cournot game limits the fidelity 

with which some safeguarding strategies can be modeled. A Cournot game was used because it 

more faithfully captures the impact of random inspections, which are one of the foundational 

elements of IAEA safeguarding strategies; however, a sequential play game is a better 

approximation for certain types of safeguards, like CEMO or seals, where the attacker has a 

priori knowledge that the defender is playing a certain strategy or strategy element, because he 

can observe it once it is installed. In order to accommodate both sequential and simultaneous 

elements into the model, a hybrid Cournot-Stackelberg game could be modeled. In such a model, 

the defender would play certain elements that are transparent to the attacker, like routine 

inspections or the installation of a large piece of equipment, and then having observed those 

elements, the attacker would commit to a strategy and the defender would simultaneously 
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commit the remainder of her resources. Adapting the methodology to feature a hybrid game 

would make the output more realistic and physically meaningful in cases where some of the 

defense strategy has mixed Cournot and Stackelberg elements, such as a strategy that features 

both random inspections and the installation of permanent equipment. 
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Appendix A: IAEA Gas-Centrifuge Enrichment Plant Safeguards 

Physical Inventory 
Physical inventories are conducted to count and verify feed and product cylinders in 

storage yards, connected to cascades, and in process vessels.  

Mass Balance Verification- Load-Cell Based Weighing System 
During inventory, the mass balance of both uranium and 235U are verified, and missing 

mass is calculated using Equation A.1. Any non-zero mass difference (i.e. !"
!"
≠ 0) is cause for 

further investigation [45].  

 
𝑑𝑚
𝑑𝑡 = 𝑚!""# − (𝑚!"#$% +𝑚!"#$%&') = 0 A.1 

 

The load-cell based scale used for this safeguard operates in two load ranges: up to 5000 kg and 

up to 20,000 kg.  It determines the gross weight of bulky, massive objects like UF6 shipping 

cylinders. Gross weights can be determined with an accuracy of better than 1% [41].  

The inspector and operator agree to a specified “residence time,” during which feed and 

product cylinders must remain in storage and cannot be introduced into the cascade or shipped to 

customers.  After the residence time the operator may move or ship the cylinder, whether the 

IAEA has verified the material or not. Around fifteen days is a standard residence time for 

product cylinders [89]. 

Video surveillance- reviewing logged images 
Optical surveillance is used in storage areas where human presence and activities are 

relatively rare events. Multiple cameras are used to ensure that the entire area falls under the 

field of view.  Image recording can either be done periodically, with the period less than the 

minimum time needed to remove material, or can be triggered by motion or scene change.  Two 

images should be recorded in rapid succession, so that the direction of motion can be determined.  

Images can either be logged for examination by inspectors at a later date, or transmitted remotely 

to the IAEA. Data encryption and authentication are done to prevent tampering with the 

transmitted signal. 
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Seals 
Seals are attached to single items to ensure that material is not introduced or removed. 

IAEA equipment that is left at the facility is also sealed to prevent tampering. Seals can be either 

single-used items, which are replaced each time they are checked, or seals that are verifiable in 

situ. All seals are uniquely identifiable. Passive single-use seals (CAPS) are identifiable by a 

unique pattern of random scratches on the inside surface of the metal cap. During seal 

verification, CAPS are detached and sent to IAEA Headquarters for verification, where the 

integrity of the seal is checked and pattern of scratches is checked against the original pattern to 

ensure that the attacker has not replaced the seal [41].   

Unlike passive seals, active seals can be verified in situ during inspections, and can also 

transmit a signal if they have been tampered with. Active seals can be fiber optic, ultrasonic, or 

electronic [41]. These seals are re-useable and can be used for multiple years if they are not 

tampered with, though the batteries generally need to be replaced every two-four years [90].  

Non-Destructive Assay (NDA) 
NDA determines enrichment at the gross and partial- defects level.27 A germanium 

detector coupled with a multi-channel analyzer is generally used to determine the enrichment of 

a UF6 shipping cylinder. The thickness of the cylinder is first determined using an ultrasonic 

thickness gauge, in order to account for gamma attenuation in the cylinder walls. Results can 

have an accuracy of 1-2%, provided that the steel wall is less than 10 mm thick [41]. An NaI 

detector is generally used for NU feed and DU tails, with errors between 10-20% for NU and 25-

50% for DU [30].   

Destructive Analysis (DA) 
Destructive analysis is used to determine enrichment at the bias-defects level [91].28 In 

order to perform DA, the inspector takes independent samples at the facility and conditions them 

on-site to ensure that they are in a chemical form suitable for transport.  The samples are then 
                                                
27 The 2001 IAEA Safeguards Glossary defines a gross defect as “an item or batch that has been falsified to the 
maximum extent possible so that all or most of the declared material is missing.” A partial defect is “an item or 
batch that has been falsified to such an extent that some fraction of the declared amount of material is actually 
present.”  
28 A bias defect refers to “an item or batch that has been slightly falsified so that only a small fraction of the 
declared amount of material is missing”. 
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packaged and sealed and shipped to the IAEA Safeguards Analytical Laboratory (SAL). The 

samples are either analyzed at SAL or a laboratory in the Network of Analytical Laboratories 

(NWAL) using a variety of analytical techniques.   

To determine isotopic uranium concentrations in UF6 samples, two primary techniques 

are used: Thermal Ionization Mass Spectrometry (TIMS) and high-resolution gamma 

spectrometry. TIMS is performed with total sample evaporation on a filament, which results in a 

relative error of 0.05% for isotope ratios of 0.05-20.  Gamma ray spectrometry with an NaI 

detector is used as a complementary quantification measure. For this technique, the UF6 sample 

is dissolved and the gamma emission from the 186 keV peak counted. The sample is compared 

against five standard uranium solutions with known uranium concentrations. Errors for this 

technique range from 0.5% for natural uranium to 0.2% for enriched uranium [41].  

CEMO 
The continuous enrichment monitor (CEMO) is mounted to the low-pressure end of a header 

pipe and sealed.  The unit is attached to the aluminum pipe walls, which are about 5 mm thick 

[92]. Pressure at this point is around or less than 10 torr [54], [93], [94]. Eight NaI detectors 

measure the intensity of the 186-keV 235U gamma peak to determine the total mass of 235U. A 
109Cd source is used to determine process gas pressure (through absorption of Ag K-alpha x-

rays). Using the two measurements, gas enrichment is measured. Two operating parameters must 

be met in order or CEMO to operate effectively: 

(1) D * P > 30 cm.torr 
(2) D * E * P > 10 cm.%.torr 

 

Where D [cm] is the pipe inner diameter, E [% 235U] is enrichment, and P [torr] is pressure. 

CEMO is designed to give a “go-no go” message confirming that the enrichment of the 

gas is below 20%. It is checked during inspections and gives a data summary to the inspector 

with information about any anomalies, as well as enrichment and pressure trends since the last 

inspection.  The CEMO also send status updates to the IAEA. A daily message is sent to the 

IAEA about the state of health of the machine and indicating that no safeguard situation has 

arisen requiring inspector presence [95].  If there are two consecutive enrichment readings above 

20%, a message is sent to the IAEA: “Inspector presence necessary” [92].   
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Limited Frequency Unannounced Access (LFUA) Visits 
Inspectors perform limited inspections annually to inspect cascade halls. These 

inspections are performed on a random basis, and access must be provided to the inspectors 

within two hours of the request. LFUA visits occur 4-12 times/year. Activities during an LFUA 

visit include visual observation, NDA measurements on header pipes, DA on UF6 samples from 

the cascade (rare event) and environmental sampling (ES) [30]. 

Visual Observation 
During special inspections, inspectors visually inspect the cascade halls. They look for 

the presence of unreported feed/withdraw (F/W) equipment or any extraneous cylinders in the 

area, like small 5A cylinders that can be used to remove small product quantities. Inspectors also 

compare cascade piping connections and valve settings with design specifications to detect any 

cascade re-piping [58], [63]. 

Environmental Sampling 
Environmental sampling gives information about past and current activities at a facility. 

This technique is used in cascade halls during a special inspection. Inspectors take swipes on 

10x10 cm cotton swipes prepared in an ultra-clean lab and send them to Vienna for analysis [96]. 

Low-level gamma spectrometry with a germanium detector and X-ray fluorescence spectrometry 

are used as preliminary screening tests. Both of these techniques can identify the presence of U 

or Pu in a sample and can give information about the activity of the sample. The gamma 

counting takes a total of 15 hours (1 hr for each of 15 samples) and the x-ray fluorescence takes 

4-5 hours.  After initial screening, samples are distributed to NWAL laboratories for further 

analysis.  Isotopic analysis is done using TIMS, as described for destructive analysis; however, 

for ES much greater sensitivity is needed, in the 10-9 and 10-12 g ranges.  A Scanning Electron 

Microscope is used to obtain information about the size and morphology of U and Pu particles, 

which gives information about the process that created the particles [41].IAEA inspectors take 

six ES samples from various places at the facility when they perform this safeguard [97].
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Appendix B: Implementation 

B.1 STRATEGY GENERATION AND STORAGE 

The defender strategies are stored using a data structure named “safeguards”, which holds 

parameter information about each safeguarding option, including, name, whether the safeguard is 

active (meaning it has been purchased by the defender), the false alarm probability, the number 

of items to which it applies, count time, frequency and dependency. Note that all of these 

parameters do not apply to each safeguard, in which case the parameter specification is set to a 

designated “EMPTY” value. 

Defender strategies are stored in a separate “dstrategy” structure that holds a unique ID 

for each strategy, as well as the array of safeguards that characterizes that strategy.  The 

enumeration of defender options is stored in an array holding all of the “dstrategy” structures. 

Analogous structures are used to store attacker strategy information. The analogue to the 

“safeguards” structure is the “aoptions” structure, which stores the name of the option, whether it 

is active, the duration, the frequency, the number of items attacked, the area (feed or product 

storage), the amount of material taken in each attack, the product assay and the feed assay 

Each attacker strategy is stored in an “astrategy” structure; however, this structure differs 

in that each strategy does not hold an array of “aoptions”, as only one attacker option is active in 

each attacker strategy.  The universe of attacker strategies is again stored in an array of 

“astrategy” structures. 

B.2 INTEGRATED MODEL IMPLEMENTATION 

Minor adaptations were made to the enrichment and reprocessing simulations models in 

the integrated model. These changes include: 
• Passive seals and environmental samplings were eliminated from the menu of 

defender options at the GCEP 
• All inspection strategies include a GCEP inspection 
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• The FAP for GCEP inspections was fixed at 0.01 
• The count rate for CEMO was fixed at 300 s
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