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We consider a centralized content delivery infrastructure where a large

number of storage-intensive files are replicated across several collocated servers.

To achieve scalable delays in file downloads under stochastic loads, we allow

multiple servers to work together as a pooled resource to meet individual

download requests. In such systems basic questions include: How and where

to replicate files? How significant are the gains of resource pooling over policies

which use single server per request? What are the tradeo↵s among conflicting

metrics such as delays, reliability and recovery costs, and power? How robust is

performance to heterogeneity and choice of fairness criterion? In this thesis we

provide a simple performance model for large systems towards addressing these

basic questions. For large systems where the overall system load is proportional

to the number of servers, we establish scaling laws among delays, system load,

number of file replicas, demand heterogeneity, power, and network capacity.
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Chapter 1

Introduction

Suppose one is to design a centralized content delivery infrastructure

with thousands of collocated servers with a goal to store and quickly deliver

large files such as software updates, scientific datasets, 3D videos, etc. Suppose

that these files are too large and diverse to be held in main memory and are

thus stored on disk. Further, the demands for these files are high and dynamic

so you replicate them across multiple servers at the cost of increasing storage

space. In delivering these files to users, which of the following approaches

would one rather choose?

(i) Single server allocation: Each file download request is served by a single

server, see Fig. 1.1a. For example, among the servers which store the file, the

request is routed to a server which is serving the least number of download

requests. Alternatively, one could centralize and defer routing decisions to

times when servers become idle.

(ii) Pooling of server resources: Each file download request is served by mul-

tiple servers in parallel thus pooling their resources, see Fig. 1.1b. In this

setting di↵erent chunks of the file may be downloaded concurrently from dif-

ferent servers. If the server pools for di↵erent file download requests overlap
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(a) Single server allocation (b) Pooling of server resources

Figure 1.1: An illustration of two di↵erent content delivery approaches.

then the requests share the server resources according to an appropriate fair-

ness criterion.

Intuitively, in an idealized situation where there is only one active re-

quest in the system and no network bottlenecks, resource pooling would pro-

vide much better download speed as compared to single server allocation.

However, in a more realistic setting where download requests arrive dynam-

ically and are served by overlapping pools of servers, the gains of resource

pooling over single server allocation are not directly clear.

In this dissertation we investigate the gains of resource pooling in such a

dynamic setting with a particular focus on a scaling regime where the system

size (total number of servers) and the overall system load scale proportion-

ally. In this setting, we show that resource pooling is indeed e↵ective and

outperforms single server allocation. This is not unexpected. However what is

interesting is how these performance gains scale in the size of server pools and

loads. For example, the delays in downloading files scale inversely with the
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size of the server pools. In addition, under appropriate load-balancing/fairness

criterion across classes of download jobs, the delays are robust to limited het-

erogeneity in file demands and system components, and are also less sensitive

to increases in overall system load. We also investigate the impact on delays

of resources such as power, memory, and certain network bottlenecks. The

overarching thesis for this dissertation is as follows:

Thesis Statement: Pooling of server resources in a large-scale centralized

content delivery systems can achieve scalable and robust performance in large

file downloads.

Below, we describe the key questions we explore in this dissertation and

give a brief summary of our results towards addressing them.

Key Questions and Summary of Contributions:

We ask a sequence of questions, starting from a basic one which assesses

relevance of pooling, and then gradually investigating more complex scenarios.

Each question is followed up by a brief summary of our contribution towards

addressing it.

Question 1. How significant are the gains of resource pooling as compared to

single server allocation? How do they fare when evaluated across conflicting

metrics such as delays, reliability and recovery costs, and power?

To address this question, we develop a simple performance model for

systems using resource pooling in Chapter 2. We start by providing a system

3



model which captures arbitrary static placement of files across servers, dy-

namic arrivals and service of file download requests, and a resource allocation

policy employing pooling of servers. We develop an exact expression for mean

delay for such a system. As one might expect, the expression is somewhat

complex. However it simplifies under symmetry, and, perhaps surprisingly, it

takes a clean and transparent form in an asymptotic regime where system size

and load scale proportionally. We use this asymptotic expression to compare

our policy with other known policies and to study system tradeo↵s. We show

that our resource allocation policy achieves blanket improvement over other

policies. A version of this work is to appear in [48].

The above mentioned results are based on a specific resource alloca-

tion/fairness criterion across server pools, namely balanced fairness, which is

amenable to mean delay analysis under stochastic loads. A natural question

thus arises: how important is the choice of fairness criterion? Another natural

question is: how robust are these results to symmetry assumptions? These are

important questions, not only for conclusions regarding resource pooling, but

also in practice. For example, achieving robustness to asymmetries in file de-

mands and heterogeneities in system components in large systems via resource

pooling implies a scalable approach towards addressing the delivery of popu-

lar content without requiring complex caching strategies. Also, for dynamic

systems/networks, the basic problem of linking fairness in resource allocation

to job delays has remained largely open in spite of significant research e↵orts.

Question 2. What is the impact of heterogeneity and fairness criterion for
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resource allocation on job delays in large scale content delivery systems?

We address this question in Chapter 3 where we provide new perfor-

mance comparison results for following fairness criteria: ↵-fair (including max-

min and proportional fair), Balanced fair, and Greedy. We also provide an

explicit mean delay bound for large systems with heterogeneous servers and

limited heterogeneity in file demands. Our results exhibit robustness of delays

to limited types of heterogeneity. In the process, we establish the asymptotic

symmetry of large randomly configured (random file placement) systems with

heterogeneous components in an appropriate asymptotic regime. A version of

this work appeared in [49].

Our next question pertains to the memory requirements per server.

Note that to be able to pool c servers to serve a file download request we re-

quired replication of the file across at least c servers. This seemingly implies a

tradeo↵ between job delays and memory requirement. However, one can per-

haps do better; in particular, there may be a replication strategy such that scal-

able delays are achieved without scaling memory requirements. Further, the

size of server pools may be constrained not only by the file-replication/memory

but also by a parallelism constraint which limits the maximum number of

servers one can use in parallel.

Question 3. Given a constraint on the maximum number of servers that can

serve a job in parallel, what are the tradeo↵s between memory and job delays?

We investigate this question in Chapter 4. Here we consider splitting
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server s
1

server s
2

server sm Users

Shared network link

Figure 1.2: A centralized content delivery system where collocated servers are
connected to users via a shared network link.

of a file into multiple blocks before replication. This allows us to reduce the

memory requirement while e↵ectively achieving larger server pools, but at

a loss of ability to download a given chunk from any server in the pool. We

provide a policy which mitigates the impact of this loss, thus achieving scalable

delays without scaling memory requirement.

The final question addressed in this thesis concerns the impact of power

capacity and network bottlenecks. Indeed the finite capacity of shared network

links or a cap on overall power draw at the infrastructure may constrain the

download speeds of jobs and potentially reduce the gains from server pooling.

We consider impact of finite download capacity on the user side, and also the

impact of a shared network link(s) on the content delivery system side, see

Fig 1.2.

Question 4. What is the impact on job delays of a network link and power
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capacity shared by the servers at the infrastructure? Also, how does the finite

download capacity on users’ end impact their performance?

We address these questions in Chapter 5. The answer to the former

question is perhaps surprising. For large scale systems, we show a concentra-

tion result in the number of active servers when the server pools are of limited

size. Using this result we show that if the capacity of the shared network link

is close to (and slightly larger than) the average tra�c demand, its impact on

user performance will be negligible as the system scales. Similarly, if the peak

power capacity is close to average power consumption, the risk of overload

with adverse impact on performance becomes low as system becomes large.

The impact of user’s download capacity is a bit subtle, in that, it de-

pends on overall system load. If the system is lightly loaded then the download

capacity may become a dominant bottleneck and may drive the user’s perfor-

mance. However, if the overall system load increases beyond a threshold then

the servers become a dominant bottleneck and the impact of download capac-

ity becomes negligible.

In summary this thesis is devoted to the analysis of performance of

a class of systems with resource pooling that might be suitable to meet fu-

ture demands for large files in high capacity networks. Chapter 6 presents

concluding remarks.
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Chapter 2

Performance Model under Resource Pooling

We consider a centralized infrastructure which stores and delivers large

files such that delay to serve a download request is scalable with tra�c loads.

Such centralized infrastructure could, for example, be part of a larger dis-

tributed content delivery network, where requests not currently available at

distributed sites are forwarded to the centralized infrastructure which in turn

delivers the files to the remote sites and/or users. Performance in such sys-

tems is the result of a complex interaction among requests that come and go

dynamically and the pools of resources that are able to serve them. As tra�c

loads increase, one can make the following design choices to meet performance

requirements: 1) dimensioning of system’s server and network resources; 2)

(possibly random) placement of data across servers; and 3) policy for rout-

ing/servicing requests. In this chapter we develop a robust large-scale perfor-

mance model to enable system-level optimization with respect to these design

choices.

We also aim to study tradeo↵s among conflicting goals in such systems,

1A version of this work is to appear as “High Performance Centralized Content Delivery
Infrastructure: Models and Asymptotics,” in IEEE/ACM Transactions on Networking. This
is a joint work with Prof. Gustavo de Veciana.
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e.g., 1) service capacity available to end users and the resulting perceived per-

formance; 2) reliability and recovery costs; and, 3) energy costs. For example,

by increasing the total number of active servers, or scaling the speed of indi-

vidual servers, one can tradeo↵ energy cost with performance. A more subtle

example, discussed further in the sequel, involves spreading multiple copies

of files across pools of servers so as to trade o↵ the cost in recovery from

large-scale server loss events, e.g., power outages [14], with performance.

Our contributions. The key challenge we tackle in this chapter is the

performance evaluation of large scale storage systems wherein multiple file

copies are placed across pools of servers and are subject to stochastic loads.

We consider a system model where arriving file-requests/download-jobs can

be collectively served by servers, i.e., di↵erent chunks of each file can be down-

loaded in parallel from servers currently storing the file – this is akin to peer-to-

peer systems. Since each server can store multiple files, which are themselves

replicated across sets of servers, the service capacities available to serve re-

quests for di↵erent files are dynamically coupled. Indeed, as explained in the

sequel, ongoing file requests can share server capacity subject to various pos-

sible ‘fairness’ objectives rendering performance evaluation quite challenging.

The main analytical contributions of this chapter can be summarized as

follows. Firstly, we propose a file-server model and show that the overall service

capacity set has polymatroid structure. We combine this structural result

of an achievable capacity region with dynamic balanced fair rate allocations

(described later) to develop an explicit expression for the mean file transfer
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delay experienced by file requests. Secondly, we prove a new asymptotic result

for symmetric large-scale systems wherein the distribution of the number of

waiting file requests concentrates at its mean. This result provides an easily

computable approximation for the mean delay which is used to quantify system

tradeo↵s.

Finally, these analytical results are used to develop and quantify three

key insights regarding large file-server systems:

a) We show how dynamic service capacity allocation across ongoing demands

is impacted by the structure of overlapping resource pools (file placement)

and quantify the substantial performance benefits over simpler load bal-

ancing strategies such as those assigning file requests at random or to least

loaded servers.

b) We show that performance gains resulting from the overlapping of server

pools, although significant, quickly saturate as one increases the overlap.

This enables engineering of such systems to realize close to optimal perfor-

mance while simultaneously achieving high reliability and thus low recovery

costs.

c) For a simple speed scaling policy where the processor runs at low speed

(or halts) when idle and a high but fixed speed when busy, we show that

dynamic service capacity allocation can achieve up to 70% energy saving

as compared to simpler policies.
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2.1 Related work

There are several large-scale performance models applicable to con-

tent delivery systems. For example, the super-market queueing model studied

in [12, 41, 43, 56] captures a policy where each arriving request is assigned to

the least loaded server among those able to serve it. It is known to have bet-

ter mean delay performance and tail decay for the distribution of the waiting

jobs as compared to the policy of routing requests randomly among the pos-

sible servers. Alternatively, one can make centralized scheduling decisions as

servers become available [37,60]. In [37] a greedy policy is shown to be optimal

over all scheduling disciplines in a heavy-tra�c regime. A centralized policy

is studied in [60] and is shown to have robustness properties with respect to

limited heterogeneity in loads across di↵erent file types. The key di↵erence

between these works and ours is that, rather than assigning a file request to a

single server, we allow it to be served by multiple servers simultaneously. In

the sequel, we evaluate the benefits of doing so.

Pooling of server resources is similar in spirit to multipath routing in

wireline networks, see e.g. [24, 25, 27, 31, 59]. A multipath TCP architecture

is proposed in [59] to achieve network wide resource pooling. Studies of the

benefits of multipath routing have been previously carried out, e.g., in [31] the

authors show the benefits of coordinating rate over multiple paths in terms

of the worst case rate achieved by users in a static setting. For networks

with stochastic loads, performance analysis under multipath transport is in

general hard; [25, 27] study role of resource pooling in such a setting and
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provide performance bounds/approximations. Resource pooling in networks

via multipath, and that in content delivery infrastructure via pooling of servers

may eventually complement each other to achieve scalable performance gains.

There has also been previous work considering file placement across

servers [33,34,45,65]. For example, [33] studies file placement across servers so

as to minimize ‘bandwidth ine�ciency’ when there is a fixed set of file transfer

requests. Further, [34,45] consider the problem of adaptive replication of files

for a loss network model where each server can serve one file request at a time,

thus avoiding queuing. The focus of these works is on caching popular files

via distributed content delivery networks. In turn, they rely on a centralized

infrastructure to handle cache misses and request denials arising when all

associated servers are busy. Another line of work has focused on online

packing/placement of dynamically arriving files/objects under constraints on

available resources, e.g., [50]. By contrast with these works, we assume file

placements across servers are fixed and we examine the performance impact

of this when the system is subject to stochastic loads with no loss.

There are several works in the literature studying energy-performance

tradeo↵s, see e.g., [22, 35] and citations therein. In [22], the authors provide

an approximation to the number of servers that should be active so as to op-

timize the energy-delay product. Similarly, [58] investigates speed scaling so

as to optimize a weighted average of energy and mean delay for a single server

system. In [35], the authors consider energy costs of switching servers on and

o↵ and provide an optimal online algorithm to optimize overall convex cost

12



functions that can include performance and energy costs. In these works a

server can handle any job request. By contrast in this chapter we are partic-

ularly interested in the situations where servers’ capabilities are constrained

(e.g., by the files they have available) and the coupling across server pools

critically impacts energy-performance tradeo↵s.

As will be discussed in more detail below this chapter draws on, and

extends, previous work on bandwidth sharing models; in particular “balanced

fair” allocations, see e.g., [6,7,11]. Such allocations are a useful device in that

they are amenable to analysis, are provably insensitive to job size distribution,

and yet serve to approximate various forms of ‘fair’ resource sharing policies

considered in the literature and in practice [5, 6, 39].

Organization of the chapter. In Section 2.2 we develop our system model

for file server systems under stochastic loads. In Section 2.3 provide an exact

analysis for mean delay in file transfers under balanced fair resource alloca-

tion. In Section 2.4 we consider large scale systems and provide an asymptotic

expression for the mean delay. In Section 2.5 we use our analysis to compare

the performance of our policy with other resource allocation policies. In Sec-

tion 2.6 we discuss system tradeo↵s involving mean delay, recovery costs and

energy consumption. Some of the proofs are provided in the Appendix.

2.2 System model

Consider a bipartite graph G = (F [ S;E) where F is a set of n files,

S is a set of m servers, and each edge e 2 E connecting a file i 2 F and server

13
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Figure 2.1: Graph G = (F [ S;E) modeling replication of n files across m
finite capacity servers in a content delivery infrastructure.

s 2 S implies that a copy of file i is replicated at server s, see Fig 5.1. For

each node s 2 S, let Ns denote the set of neighbors of server s, i.e., the set

of files it stores. Similarly, for each file i 2 F let Si denote the set of servers

that store file i. Further, for each A ⇢ F let S(A) = [i2ASi. Suppose that

each server s 2 S has a peak service capacity of µs bits per second. For each

A ⇢ F let

µ(A) =
X

s2S(A)

µs,

i.e., µ(A) is the sum rate at which requests for files in set A can be served.

Requests for file i 2 F arrive according to an independent Poisson

process with rate �i. We shall use the terms request and job interchangeably.

Similarly, we refer to each file i 2 F as a file or a job class interchangeably.

Service requirements for jobs in class i 2 F are i.i.d with mean ⌫i. Let ⇢ =

(⇢i : i 2 F ), where ⇢i = �i⌫i denotes the load associated with class i.

Jobs arrive to the system at total rate
P

i2F �i. Let qi(t) denote the

14



set of ongoing jobs of class i at time t, i.e., jobs which have arrived but have

not completed service, and q(t) = (qi(t) : i 2 F ). For each A ⇢ F , let

qF (t) = [i2F qi(t), i.e., the set of all active jobs in the system. Let x(t) =

(xi(t) : i 2 F ), where xi(t) , |qi(t)|, i.e., x(t) captures the number of ongoing

jobs in each class. Let X(t) correspond to the random vector describing the

state of the system at time t.

For any x(t), let A
x(t) denote the set of active classes, i.e., classes with

at least one ongoing job. Further, for each s 2 S, let Ys(t) = 1{s2S(A
X(t))}. If

Ys(t) is 1 we say that the server is active at time t.

For each v 2 qi(t) and s 2 S, let bv,s(t) be the rate at which server

s serves job v at time t. Let bv(t) be the total rate at which job v is served

at time t. If job v arrives at time tav and has service requirement ⌘v, then it

departs at time tdv such that ⌘v =
R td

v

ta
v

bv(t)dt.

Our service model is subject to the following assumption.

Assumption 1. Sharing of system service capacity among ongoing jobs is

such that:

1. A server s can concurrently serve multiple jobs as long as
P

v bv,s(t)  ⇠

for all t.

2. Multiple servers can concurrently serve a job v at time t giving a total

service rate bv(t) =
P

s bv,s(t).
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3. The service rate bv,s(t) allocated to a job v at server s at time t depends

only on its job’s class and the numbers of ongoing jobs x(t). Thus, for

each i, the jobs in qi(t) receive equal rate at time t which depends only

on x(t).

Allowing multiple servers to concurrently serve a job is reminiscent of

service model in P2P systems [61, 65] which consists of a set of users/peers

connected through the Internet, collectively sharing their files/resources. In

this thesis, however, our focus is on modeling a centralized infrastructure aimed

at quickly serving large files.

Let ri(x0) be the total rate at which class i jobs are served at time t

when x(t) = x0, i.e., at any time t, ri(x(t)) =
P

v2q
i

(t) bv(t). Let r(x) = (ri(x) :

i 2 F ). We call the vector function r(.) the resource allocation.

Under Assumption 1 we now show that the set of feasible service-rate

allocations across classes, i.e., the capacity region, is a polymatroid. We say a

polytope C̃ is a polymatroid if there exists a set function µ̃ on F such that

C̃ =

(

r � 0 :
X

i2A

ri  µ̃(A), 8A ⇢ F

)

,

and if µ̃ satisfies the following properties:

1) Normalized: µ̃(;) = 0.

2) Monotonic: if A ⇢ B, µ̃(A)  µ̃(B).

3) Submodular: for all A,B ⇢ F ,

µ̃(A) + µ̃(B) � µ̃(A [ B) + µ̃(A \ B).
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A function µ̃ satisfying the above properties is called a rank function. Polyma-

troids and submodular functions are well studied in the literature, see e.g., [46].

Each polymatroid C̃ has a special property that for any r 2 C̃, there exists

r0 � r such that r0 2 D̃ , {r 2 C̃ :
P

i2F ri = µ̃(F )} [21]. Also, as evident from

the definition, for any A ⇢ F the set {r 2 C̃ : ri = 0, 8i /2 A} is a polymatroid,

with a rank function which is the restriction of µ̃ to subsets of A. A proof of

the following theorem is provided in the Appendix.

Theorem 1. Consider a content delivery system defined by graph G = (F [

S,E) where each server s 2 S has a peak service capacity of µs. Let

C , {r � 0 :
X

i2A

ri  µ(A), 8A ⇢ F}.

Then, the following hold

1) µ is a rank function.

2) Under Assumption 1, C is the polymatroid capacity region associated with

the system.

We say that a polymatroid capacity region is symmetric if µ(A) =

h(|A|) for any A ⇢ F where h : Z
+

! R
+

is a non-decreasing function, i.e.,

µ(A) depends on A only through |A|. Conversely, it is easy to show that if

µ(A) = h(|A|) for some non-decreasing concave function h : R
+

! R
+

with

h(0) = 0, then the capacity region is a symmetric polymatroid.

We say a resource allocation r(.) is feasible if r(x) 2 C for each x.

Di↵erent feasible resource allocations may potentially lead to di↵erent user
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performance as we will see in the sequel. In next section we focus on a partic-

ular resource allocation to leverage its analytical tractability.

Further, we let

Ĉ ,
(

⇢0 � 0 :
X

i2A

⇢0i < µ(A), 8A ⇢ F

)

, (2.1)

and will see, Ĉ is a set of loads which are stabilizable for appropriate rate

allocation policies.

Notation for scaling: Consider sequences of numbers (fn : n 2 N) and

(gn : n 2 N). We say that fn = O(gn) if there exists a constant k > 0 and

an integer n
0

such that for each n � n
0

, we have fn  kgn. We say that

fn = ⌦(gn) if there exists a constant k > 0 and an integer n
0

such that for

each n � n
0

, we have fn � kgn.

We say that fn = o(gn) if limn!1
f
n

g
n

= 0. Similarly, we say that

fn = !(gn) if limn!1
g
n

f
n

= 0.

2.3 Mean delay analysis

In this section we provide an exact expression for mean delays of jobs

in each class under balanced fair resource allocation policy. The balanced fair

(BF) allocations were introduced in [7] to provide ‘insensitivity’ in bandwidth

sharing networks. By insensitivity we mean that performance depends on

service requirement distribution of each class only through its mean. BF is

also known to be structurally close to proportional fair resource allocation
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policy [6,7,39]; in fact, we will compare BF with proportional fair and certain

other resource allocation policies in Chapter 3 and develop a performance

bound for them by using BF performance analysis developed below.

Balanced fair rate allocation [7] for a polymatroid capacity region C

can be defined as the service rate allocation r(x), where for any x,

ri(x) =
�(x� ei)

�(x)
, 8i 2 F (2.2)

where function � is called a balance function and is defined recursively as

follows: �(0) = 1, and �(x) = 0 8x s.t. xi < 0 for some i, otherwise,

�(x) = max
A⇢F

⇢

P

i2A�(x� ei)

µ(A)

�

, (2.3)

where ei is a vector with 1 at ith position and 0 elsewhere. As shown in [7], (5.1)

ensures the important property of insensitivity, while (5.2) ensures that r(x)

for each x lies in the capacity region, i.e., the constraints
P

i2A ri(x)  µ(A)

are satisfied for each A. It also ensures that there exists a set B ⇢ A
x

for which
P

i2B ri(x) = µ(B). In fact the BF allocation is the unique policy satisfying

the above properties.

It was shown in [6, 7] that as long as the load vector ⇢ lies Ĉ, the

random process (X(t) : t 2 R) is stationary. Further, under this condition, its

stationary distribution is given by

⇡(x) =
�(x)

G(⇢)

Y

i2F

⇢xi

i where G(⇢) =
X

x

0

�(x0)
Y

i2F

⇢
x0
i

i .

A resource allocation is Pareto e�cient if for any state x, there does not

exist an r0 2 C such that r0i � ri(x), 8i 2 A
x

with a strict inequality for at least
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one i 2 A
x

. Pareto e�ciency is a desirable property since it implies that the

resource allocation is less wasteful. BF may not satisfy this property in general,

e.g., see triangle networks studied in [7]. However, Theorem 2 below shows

that BF is Pareto e�cient when the capacity region is a polymatroid. For

a polymatroid capacity C, showing Pareto e�ciency is equivalent to showing
P

i2A
x

ri(x) = µ(A
x

). A proof of the following theorem is provided in the

Appendix.

Theorem 2. For balanced fair rate allocations on polymatroid capacity regions

we have
P

i2A
x

ri(x) = µ(A
x

) for all x.

A similar result was proved in [11] for the special case of wireline net-

works with tree topology. Theorem 2 below serves as a basis to obtain a re-

cursive expression for the mean delays. In the expression below, GA(⇢)/G(⇢)

is the stationary probability that the set of active classes is A.

Theorem 3. Consider a system with polymatroid capacity region C, with load

⇢ and under balanced fair resource allocation. Let µ(.) be the rank function

function associated with the capacity region. The mean delay for requests/flows

of class i is given by

E [Di] =
⌫i

@
@⇢

i

G(⇢)

G(⇢)
= ⌫i

@

@⇢i
logG(⇢), (2.4)

where G(⇢) is given by,

G(⇢) =
X

A⇢F

GA(⇢), (2.5)
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and where G;(⇢) = 1 and GA(⇢) can be computed recursively as

GA(⇢) =

P

i2A ⇢iGA\{i}(⇢)

µ(A)�
P

j2A ⇢j
. (2.6)

Also, @
@⇢

i

G(⇢) can be recursively computed, without actually computing deriva-

tives, as follows:

@

@⇢i
G(⇢) =

X

A⇢F

@

@⇢i
GA(⇢), (2.7)

where @
@⇢

i

G;(⇢) = 0, and,

@

@⇢i
GA(⇢) =

GA(⇢) +GA\{i}(⇢) +
P

j2A ⇢j
@
@⇢

i

GA\{j}(⇢)

µ(A)�
P

j2A ⇢j
, (2.8)

if i 2 A and 0 otherwise.

Proof. By Little’s law, we have

E [Di] =

P

x

xi⇡(x)

�i

=
⌫i

@
@⇢

i

G(⇢)

G(⇢)
. (2.9)

Thus, to prove the result we only need to show (2.5). Equation (2.7)

follows by taking derivative of (2.5) w.r.t. ⇢i. From Theorem 2 and (5.2) we

have,

�(x) =

P

i2A
x

�(x� ei)

µ(A
x

)
. (2.10)

Since GA(⇢) =
P

x:A
x

=A�(x)
Q

i2F ⇢xi

i , we get , G(⇢) =
P

A⇢F GA(⇢) and

GA(⇢) =
X

x:A
x

=A

P

i2A�(x� ei)

µ(A)

Y

j2F

⇢
x
j

j ,
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=

P

i2A
P

x:A
x

=A�(x� ei)
Q

j2F ⇢
x
j

j

µ(A)
,

Rearranging terms, we get,

µ(A)GA(⇢) =
X

i2A

⇢i
X

x:A
x

=A\{i}

�(x)
Y

j2F

⇢
x
j

j +
X

i2A

⇢i
X

x:A
x

=A

�(x)
Y

j2F

⇢
x
j

j ,

=
X

i2A

⇢iGA\{i}(⇢) +GA(⇢)
X

i2A

⇢i,

further simplification of which gives the desired result.

While the mean delay for systems with polymatroid capacity can be

computed using (2.4) - (2.8), an exact computation has a complexity which

grows exponentially in the number of files n. If, however, the capacity region

is given by a symmetric polymatroid and the load vector ⇢ is homogenous, the

complexity is linear in n. The following corollary details this result.

Corollary 1. Consider a system with symmetric polymatroid capacity region

C with homogenous load ⇢ and under balanced fair resource allocation, i.e.,

for each A ⇢ F , the rank function µ(A) = h(|A|) for some non-decreasing

function h : Z
+

! R
+

and for all j 2 F ⇢j = ⇢ = �⌫. Then, the mean delay

to serve the requests/flows of class i is given by,

E [Di] =
⌫F̂ (⇢)

F (⇢)
, (2.11)

where, F (⇢) and F̂ (⇢) can be recursively obtained as follows:

F (⇢) =
n
X

k=0

Fk(⇢), (2.12)
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where, F
0

(⇢) = 1, and for k � 1,

Fk(⇢) =
(n� k + 1)⇢Fk�1

(⇢)

h(k)� k⇢
. (2.13)

Also,

F̂ (⇢) =
n
X

k=0

k

n
F̂k(⇢), (2.14)

where, F̂
0

(⇢) = 0, and for k � 1,

F̂k(⇢) =
Fk(⇢) +

n�k+1

k
Fk�1

(⇢) + (n�k+1)(k�1)

k
⇢F̂k�1

(⇢)

h(k)� k⇢
. (2.15)

Proof. From symmetry it follows that GA(⇢) depends on A only through |A|.

For each k � 0, let Hk(⇢) = GA(⇢) for A such that |A| = k. Similarly, let

Ĥk(⇢) =
@
@⇢

i

GA(⇢) for A such that |A| = k and i 2 A.

Thus, from (2.5), we get

Hk(⇢) =
k⇢Hk�1

(⇢)

h(k)� k⇢
.

Similarly, from (2.8), we get

Ĥk(⇢) =
Hk(⇢) +Hk�1

(⇢) + (k � 1)⇢Ĥk�1

(⇢)

h(k)� k⇢
.

Then, the result follows from Theorem 4 by letting Fk(⇢) =

✓

n
k

◆

Hk(⇢)

and F̂k(⇢) =

✓

n
k

◆

Ĥk(⇢) and appropriate simplifications.
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2.4 Performance asymptotics

In this section we consider asymptotics for large file-server systems

wherein the number of files n and the number of servers m become large. Our

focus is on systems where there is increased overall demand for increasingly

diverse content, and thus one must scale server resources. The number of files

in a content delivery infrastructure can be huge, e.g., a study in [64] estimated

that Youtube had 5 ⇥ 108 videos in 2011, and the number has been steadily

increasing since then.

Consider a system with a given m and n. Let each file be replicated

across c di↵erent servers chosen at random. Let graph G(m,n) = (F (n) [

S(m), E(m,n)) represent a realization of such random file-server system. Fur-

ther, let the µ(m,n)
s = ⇠ for each server s 2 S(m). Let the resulting capacity

region realization be C(m,n). Also, let the total request rate in the system be

m�, i.e., it grows linearly with m, resulting in a total tra�c load m⇢ = m�⌫

where ⌫ is the mean service requirement per request. For simplicity, let the

tra�c load across files be symmetric, and thus equal to ⇢(m,n)
i = m⇢/n for each

file i 2 F (n).

Further, we assume the number of files n to be orders of magnitude

larger than m. To model this, we first fix m, and consider a sequence of

systems wherein the number of files n increases to infinity. Then, to model the

fact that m itself can be large, we consider a sequence of such sequences where

m itself increases to infinity. This is a good model towards approximating

systems with say m ⇠ 103, but with n ⇠ 107 or greater. For a given m and
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n, we let the total load on the system be ⇢m, with a fixed load per server

⇢. Thus, for a given m, the load per file is equal to ⇢m
n
. As we will see in

the sequel, this asymptotic regime is similar in spirit to that considered in the

study of the super-market model [12, 43, 56].

For each realization, the service capacity is allocated dynamically ac-

cording to balanced fair allocations over the associated capacity region, see

Sec. 2.3. We shall refer to the file-server systems with resource allocation

as described above as one with Random Placement with Balanced Fairness

(RP-BF).

2.4.1 Performance asymptotics for symmetric ‘averaged’ capacity
region

For a given realization of the random file placement, the associated rank

function µ(m,n) need not be symmetric. Exact performance computations for

such a system would require computation of the associated capacity region and

evaluating the recursions developed in Sec. 2.3 both of which have exponential

complexity in n. However, a key insight we develop below is that realizations

of large RP-BF systems exhibit the same performance.

To that end consider the averaged RP-BF system having the “averaged

capacity region”. Let M (m,n)(.) denote the random rank function associated

with an (m,n) RP-BF file placement. Given a set of files A where |A| = k  n

one can show that

µ̄(m,n)(A) , E[M (m,n)(A)] = ⇠m(1� (1� c/m)k).
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Indeed the probability that none of the c copies of a file are stored on a given

server is (1 � c/m). Thus the probability that none of A’ s k files is stored

at the server is (1 � c/m)k. So m(1 � (1 � c/m)k) is the mean number of

servers that can serve at least one file in A, and the above is their associated

service capacity. The averaged capacity region is thus given by a symmetric

polymatroid with rank function µ̄(m,n)(A) = h(m,n)(|A|) where

h(m,n)(k) , ⇠m(1� (1� c/m)k) for k = 0, 1, . . . , n. (2.16)

Below we let ⇡(m,n)(x) denote the stationary distribution of the queue length

process for the averaged RP-BF system, i.e., using balanced fair allocations

over the average capacity region. Also, let E[D(m,n)] be the expected delay for a

typical request in this system. The following result gives a simple expression for

the expected delay in the asymptotic regime of interest. Its proof is provided

in the Appendix.

Theorem 4. Consider a sequence of (m,n) averaged RP-BF file-server sys-

tems with symmetric polymatroid capacity with the rank function µ̄(m,n)(·) given

above and symmetric tra�c load ⇢(m,n)
i = m⇢/n for each file i where ⇢ = �⌫ <

⇠. For given (m,n), let ⇡(m,n)
k =

P

x:|A
x

|=k ⇡
(m,n)(x) for k = 0, 1, 2, . . . , n, and

let

↵⇤ , 1

c
log

✓

1

1� ⇢/⇠

◆

. (2.17)

Then, for each ✏ > 0, we have:

lim
m!1

lim
n!1

b↵⇤m(1+✏)c
X

k=b↵⇤m(1�✏)c

⇡(m,n)
k = 1 (2.18)
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Also, under the same limits, the expected delay is given by

lim
m!1

lim
n!1

E[D(m,n)] =
↵⇤

�
=

1

�c
log

✓

1

1� ⇢/⇠

◆

. (2.19)

The intuition underlying this result is as follows. For large systems, the

probability measure ⇡(m,n)(x) concentrates on states x such that h(m,n)(|A
x

|) ⇡

⇢m. From (4.1), for any ↵ > 0, we have limm!1 limn!1
1

m
h(m,n)(↵m) =

⇠(1� e�c↵), which is equal to ⇢ for ↵ = ↵⇤.

Fig. 2.2 exhibits plots for mean delay as a function of load for averaged

RP-BF systems. The plot for the approximation for a finite (m,n) system was

computed using Corollary 1. The closeness of asymptotic expression to that

for finite (m,n) depends on the value of ⇢. Suppose n is orders of magnitude

larger than m. For ⇢ less than or equal to 0.8 the asymptotic expression

is remarkably close even for m as small as 30. Although not shown in the

figure, for ⇢ = 0.9 the expression is close for m equal to 60 or larger. In

next section we discuss why these expressions are good approximations for the

actual performance in RP-BF realizations.

2.4.2 Approximating the performance of RP-BF file-server system
via ‘averaged’ RP-BF.

In this subsection, we argue that the expression for mean delay given in

Theorem 4 based on the averaged RP-BF system can be used to approximate

the performance of realization of a large RP-BF file server system. In fact,

we conjecture that the mean delay expression given in Theorem 4 holds for

almost all sequences of RP-BF file placement realizations.
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Figure 2.2: Comparision of di↵erent resource allocation policies.
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Recall that M (m,n)(.) denotes random rank function for our (m,n) RP-

BF system, and µ̄(m,n)(.) its mean over all random file placements, and µ(m,n)(.)

denotes a (likely asymmetric) realization of M (m,n)(.). Our informal argument

involves two steps.

Step 1: For large set of files A such that |A| ⇡ ↵m (integer) we have

that
1

m
µ(m,n)(A) ⇡ 1

m
h(m,n)
avg

(|A|),

where

h(m,n)
avg

(|A|) ,
P

B:|B|=↵m µ(m,n)(B)
�

n
↵m

�

This results from a general concentration property for c-Lipschitz monotonic

submodular functions [54].

Step 2: With high probability, for most sets A such that |A| = ↵m, we

have
1

m
µ(m,n)(A) ⇡ 1

m
µ̄(m,n)(A) =

1

m
h(m,n)(↵m),

where h(m,n)(.) is given by (4.1). This can be shown as follows.

Recall thatM (m,n)(A) = ⇠
P

s2S(m) 1{s2S(m,n)
(A)}, where S

(m) and S(m,n)(A)

are respectively the set of m servers, and the (random) set of servers where

a copy of at least one of the files in A is stored. Suppose, for each (m,n), a

subset of files A(m,n)
↵ is selected uniformly at random from all A ⇢ F (n) such

that |A| = ↵m. Suppose S(m) = {s
1

, s
2

, . . . , sm}. Consider a random process

X(m,n) =
⇣

X(m,n)
1

, X(m,n)
2

, . . . , X(m,n)
m

⌘
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where

X(m,n)
i = 1n

s
i

2S(m,n)
⇣

A
(m,n)
↵

⌘o, 8i  m.

Then,

M (m,n)
�

A(m,n)
↵

�

= ⇠
m
X

i=1

X(m,n)
i .

We now study limm!1 limn!1
1

m
M (m,n)

⇣

A(m,n)
↵

⌘

.

It can be checked that for each n, X(m,n) is a process of m exchangeable

Bernoulli(1� (1� c/m)↵m) random variables, and so isX(m,1) , limn!1 X(m,n).

Also, for any fixed set of l servers, say {s
1

, s
2

, . . . , sl},X(m,1)

i for i 2 {1, 2, . . . , l}

can be shown to become independent in the limit as m ! 1. As was shown

in [1, 52], such asymptotic independence implies that a law of large numbers

would hold for a sequence of exchangeable random processes which for our case

implies that limm!1
1

m

Pm
i=1

X(m,1)

i = 1�e�↵c in probability. This shows that

for most realizations, 1

m
µ(m,n)

⇣

A(m,n)
↵

⌘

⇡ 1

m
h(m,n)(↵m) for almost all sets A of

size ↵m, thus showing the claim in Step 2.

Step 1 and Step 2 jointly imply that for each A such that |A| ⇡ ↵m,

1

m
µ(m,n)(A) ⇡ 1

m
h(m,n)
avg

(↵m) ⇡ 1

m
h(m,n)(↵m),

which further suggests that Theorem 4 holds for almost all file placement

realizations of RP-BF systems.

Note that, for a given realization, there might still be few sets A of

large enough size such that µ(m,n)(A) is not close to h(m,n)(|A|). For example,

consider set A of size m/c where each file in A is stored in disjoint set of
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Figure 2.3: Approximating performance of a file server system by using the
‘averaged’ polymatroid capacity: m = 4, n = 6, service rate µs = 1 for each
server s, ⇢i = m⇢/n and ⌫i = 1 for each class i.

servers. Here, µ(A) = m and is not close to h(m,n)(m/c). The above argument

only shows that such outliers are small in number. A more rigorous argument

is needed to show that the small number of outliers do not impact the overall

performance a lot. We defer such analysis to a possible future work.

Let us numerically check the goodness of the approximation using an

‘averaged’ polymatroid capacity for a file-server system with m = 4 servers

and n = 6 files, with each file stored on a distinct set of c = 2 servers. The

mean delay in such a system can be shown to be equivalent to a system with

m = 4 severs and number of files n ! 1, as follows. A system with m = 4

servers has
�

m
c

�

= 6 distinct server-pools. For a given set of servers, one may
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view the group of files stored on each of them a distinct file-class. Since the

files are distributed randomly, the load across these file-classes (equivalently

server-pools) becomes homogeneous asymptotically.

Note, however, the rank function µ(4,6)(.) is asymmetric. For exam-

ple, µ(4,6)(A) takes values 3 or 4 for di↵erent sets A of size 2, which is a

di↵erence of about 30%. We numerically compute µ(4,6)(A) for each of the

26 subsets A of F , as well as an ‘averaged’ capacity region with the associ-

ated ‘averaged’ rank function µ(4,6)
avg

(A) = h(4,6)
avg

(|A|) for each A ⇢ F , where

h(4,6)
avg

(k) =
P

A:|A|=k

µ(4,6)
(A)

(n
k

)
for k = 0, 1, . . . , 6. Fig. 2.3 exhibits the exact per-

formance for both capacity regions using Theorem 4 and Corollary 1. It can

be seen that the exact and the averaged systems are remarkably close.

2.5 Comparison with routing and scheduling policies

We now compare RP-BF with several other resource allocation policies.

For a given set of files and servers, the key components of a resource allocation

policy that impact user-performance are the following:

1) File placement: Options include: (a) partitioning the set of servers and

constraining each partition to store a distinct set of files, thus creating inde-

pendent ‘non-overlapping’ pools of servers; (here, by pools of servers we mean

the subsets of servers which can jointly serve file requests due to common

files they store); and (b) randomly storing files across the servers, resulting

into overlapping pools of servers. Option (a) was proposed in [14] as having

a desirable property of higher reliability against correlated failures. We will
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explore this further in Section 2.6.1 as well. Option (b), as we will see below,

opens opportunities to better balance the load across servers and improve per-

formance.

2) Service policy: A naive service policy is to route a file request randomly

upon arrival to one of the servers that stores the corresponding file. The re-

quests thus get queued at the servers and are served in, e.g., round-robin or

processor sharing fashion. A simple modification to this policy which makes

routing a function of the current load at servers, e.g., the number of queued re-

quests at the servers, can provide significant performance improvement [12,56].

An even better approach is that considered in [37, 53] where the requests are

queued centrally and their service is scheduled dynamically based upon the

availability of the servers. In each of these policies, a request is constrained to

be served by a single server. Our work departs from these approaches, in that

we allow each request to be served jointly by a pool of servers. As explained

in Section 2.2, we constrain service only through Assumption 1, or equiva-

lently through capacity region C(m,n). Under these constraints, we balance the

load across servers through a fairness based rate allocation as explained in

Section 2.3.

We now compare four di↵erent resource allocation policies with RP-

BF, each of which is characterized by a choice of file placement and of service

policy.

Randomized Placement with Random Routing (RP-RR): Files are

stored uniformly at random in c servers as with RP-BF. Upon arrival of a file
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request, it is randomly routed to one of the c servers that stores the corre-

sponding file. Each server serves its request in processor sharing fashion. As

n ! 1, the total load of ⇢m is eventually balanced across the m servers and

the system is equivalent to m independent M/GI/1 systems with load ⇢ and

service rate ⇠.

Random Placement with Least-loaded Routing (RP-LLR): Files are

stored uniformly at random. Upon arrival, requests are routed to a server with

least number of ongoing jobs among c servers which store the corresponding

file. Each server serves its request in a processor sharing fashion. In the

limit as n ! 1, this system is equivalent to the super-market model studied

in [12, 56]. Let pk be the fraction of servers having k waiting requests in

equilibrium. When the service-requirement distribution for each request is

exponential, it was shown in [56] that as the number of servers m ! 1, the

fraction pk is given by

pk = (⇢/⇠)
c

k�1
c�1 � (⇢/⇠)

c

k+1�1
c�1 ,

where ⇢ is the load per server. Thus, by Little’s law, the mean delay for a

typical request in the asymptotic regime of interest is given by,

E[D
RP-LLR

] =
1

�

1
X

k=1

kpk =
1

�

1
X

k=1

(⇢/⇠)
c

k�1
c�1 . (2.20)

Random Placement with Centralized Scheduling (RP-CS): Files are

stored uniformly at random. Unlike the previous policies each server serves

a maximum of one request at a time, and there is no service preemption.
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Upon arrival of a request, if there exist idle servers which store a copy of the

corresponding file, it is assigned and served by one of them at random, else,

it is queued at a central queue. Upon completion of service of a request at

a server, if there exists a waiting request which the server can serve, it gets

assigned to that server. If there exist multiple such requests, the choice is

made as follows. Among all the files which the available server stores, one

of the files with maximum number of waiting requests is chosen at random.

Among the waiting requests of the chosen file, a request is chosen at random

for service.

Non-overlapping Pools with Balanced Fairness (NP-BF): The m

servers are divided into m/c groups, each of size c. Each server group stores a

mutually exclusive subset with nc/m files. Within a group, each server stores

the same set of files. Each file is thus stored at c servers. Under balanced

fairness, each group behaves as an independent pool of servers which serves

its requests in processor sharing fashion. The system is equivalent to m/c

independent M/GI/1 queues with load ⇢c and service rate ⇠c, with mean

delay given by

E[D
NP-BF

] =
⌫

c⇠(1� ⇢/⇠)
. (2.21)

Contrast this with Theorem 4 where the mean delay increase is logarithmic in

1/(1� ⇢/⇠).

In Fig. 2.2, we compare the performance of these resource allocation

policies. RP-BF’s performance is plotted using the approximations described

in Section 2.4. The performance of RP-RR, RP-LLR and NP-BF is plotted
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using corresponding asymptotic expressions for mean delay described above.

For RP-CS, the service requirement distribution was assumed exponential and

we built a simulator for the underlying Markov Chain. For each point in the

plot, the average number of requests waiting in the queue or in service was

measured over a period of time of up to 106 events and the mean delay was

computed using Little’s law.

All the above policies are stable for any value of ⇢ less than 1. As

expected, RP-RR performs poorly as it does not exploit pooling or load de-

pendent routing. RP-CS outperforms RP-LLR at higher loads since requests

are queued centrally in the former and its service policy uses global state in-

formation. NP-BF outperforms both RP-CS and RP-LLR at lower loads since

pooling of servers works to its advantage. However, due to creation of inde-

pendent non-overlapping pools, its ability to balance the load across servers is

limited and it performs significantly worse at higher loads.

RP-BF outperforms all of the policies since it enjoys the best of both

worlds. At higher loads, one might expect that the gains of RP-BF over RP-

LLR and RP-CS due to pooling may be limited since load balancing of the

later policies would ensure that most of the servers are busy serving requests

most of the time and are utilized well. However, even for ⇢ = 0.9, the mean

delay for RP-LLR and RP-CS is over 2 and 1.6 times that of RP-BF for c = 3,

respectively.

For larger values of c, the improvements are even greater. For any

value of c, mean delay for RP-LLR and RP-CS is lower bounded by 1. How-
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ever, from Theorem 4, mean delay for RP-BF is inversely proportional to c.

The significant performance improvement by RP-BF shows that server pool-

ing and fairness based resource allocation is worthwhile towards optimizing

the performance of centralized content delivery systems.

2.6 Using model to study system tradeo↵s

2.6.1 Recovery costs on correlated failure v/s performance

We consider the cost of recovering files when there are large-scale cor-

related failures such as those occurring after power outages, see [14] for an

extensive discussion. It is not uncommon in datacenters that about 1% of

servers fail to reboot after a power outage. The system then needs to recover

data in these servers by retrieving copies from the servers that successfully

rebooted. However, there might be some files for which no copy exists in the

datacenter due to the failure of all servers in which it was stored. The prob-

ability of such an event occurring can be significant especially when the total

number of files in the system is large.

When this occurs the system needs to locate and recover the lost files

from ‘cold’ storage. Recovery of the files from cold storage may incur a high

fixed cost but may not be greatly a↵ected by the number of files lost. Thus

in practice (as argued in [14]) it is desirable that the probability that one or

more files are lost during power outage events be low. This can be achieved by

constraining randomness in how files are copied across servers. The intuition

from Section 2.5 suggests that randomly ‘spreading’ the files across the servers
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so that the server pools overlap improves the user perceived performance.

However, this may increase the probability of a file loss. To study how these

quantities are related, we consider a storage policy that divides m servers into

independent groups of smaller size and restricts the copies of each file to be

placed within a single group, as follows.

Fix an integer  such that c    m. Suppose, for now, that number

of servers m is divisible by  and that number of files n is divisible by m/.

Divide the set S of m servers into m/ number of groups each of size .

Similarly, divide the set F of n files into disjoint m/ groups of size n/m.

Associate each group of files with a distinct group of servers. Then, for each

file, independently store c copies by selecting c servers uniformly at random

from the corresponding group.

Suppose that upon a power outage, each server fails to reboot with

probability � independently. Then, for a group of size , the probability that

l servers fail is
�


l

�

�l(1 � �)�l, so the probability that one or more files are

lost can be given by

P
loss

= 1�
 

c�1

X

l=0

✓



l

◆

�l(1� �)�l+

X

l=c

✓



l

◆

�l(1� �)�l

 

1�
�

l
c

�

�


c

�

!n/m!m/

For the general case wherem is not divisible by  or n is not divisible by

m/, we can create non-uniform groups and compute the corresponding loss

probability. We use the above expression as a simpler approximation by using

bm/c and bn/mc appropriately. Also, the performance within each group
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Figure 2.4: Delay v/s reliability n = 2 ⇥ 106, m = 400, c = 3, � = 0.01,
⇢ = 0.7, and ⌫ = 1.

can be computed using the expression of Corollary 1 for symmetric capacity

systems, which gives a reasonable approximation as explained in Sec. 2.4.1.

Fig. 2.4 exhibits the mean delay and P
loss

for � = 0.01 for a system

with n = 2⇥ 106, m = 400, and c = 3 copies. The load per server is ⇢ = 0.7,

i.e., the total load on the system is m⇢ = 280 and is distributed uniformly

across files. Also, ⌫i = 1 for all i 2 F and µs = 1 for all s 2 S. As can be

seen, varying  trades o↵ performance with file loss probability. As  increases

mean delay decreases but quickly saturates at 0.57, which matches with the

asymptotic limit as given by Theorem 4. At  = 14, mean delay is 0.64 which

is about 12% greater than the asymptotic value, while P
loss

is less than 1%.

Decreasing  can further lower P
loss

but at the cost of a significant increase in

39



mean delay.

2.6.2 Energy-delay tradeo↵s

We now consider RP-BF systems where for each server s 2 S, we have

µs = ⇠. Energy consumption per unit time by a server is fixed when it is

busy and is denoted by eb. Similarly, even when a server is idle, its energy

consumption per unit time is fixed and denoted by ei. If the system is stable,

the sum of the fraction of time each server is busy is equal to
P

i2F

⇢
i

⇠
. Thus,

the mean energy spent by the system per unit time is given by

E = eb

P

i2F ⇢i
⇠

+ ei

✓

m�
P

i2F ⇢i
⇠

◆

.

Thus, one can trade of energy consumption for performance by varying m.

Fig. 2.5 exhibits the energy-delay curve for a system with 2⇥ 106 files

with a fixed total load of 280, eb = 1 units and ei = 0.5 units. Points in the plot

are obtained by varying m and computing the performance using Corollary 1.

The figure also exhibits tradeo↵ for the case when the total number of servers

are divided into smaller independent groups of size 10, as in Section 2.6.1. The

tradeo↵ curve worsens in this case. For example, to obtain a mean delay of 0.8,

it requires m = 370 servers while the former system that groups all the servers

together requires 320 servers; the corresponding mean energy consumption

being 325 units and 300 units, respectively. Thus, creating smaller independent

groups of size 10 increases the energy consumption by about 8%.

Next, we consider RP-BF systems where servers’ processing speed is
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Figure 2.5: Energy-delay tradeo↵ for system with n = 2⇥ 106 and varying m:
⌫ = 1, c = 3, ⇠ = 1, and total load ⇢m = 280.

a bottleneck. The processing speed can be improved by increasing clock fre-

quency and voltage supply, which in turn increases energy consumption. This

dependence is typically modeled through a polynomial relationship of power

with ⇠, i.e., when the service rate of a server is ⇠ the power consumption is

given by f(⇠) = ⇠↵/� per unit time where ↵ > 1 and � is a positive con-

stant [35]. In practice, even when ⇠ is set to 0, there is non-negligible leakage

power consumption. Since our focus is on dynamic power, we ignore leakage

power here. The choice of ⇠ trades o↵ performance for energy consumption.

Here, we consider a simple semi-static policy where each server operates at

a fixed rate ⇠ when busy and rate 0 when idle, thus consuming negligible

power when idle. For M/GI/1 queues, it was shown in [35] that such a simple

policy, with ⇠ chosen judiciously, is close to an optimal policy for minimiz-
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ing a weighted average of the mean delay and energy consumption across all

dynamic policies where ⇠ is allowed to vary with the queue state.

Fig. 2.6 compares the energy-performance tradeo↵ for NP-BF, RP-

LLR, and RP-BF where the plots are obtained by varying values of ⇠. For RP-

BF, Theorem 4 is used to compute dependence of performance on ⇠, whereas

for NP-BF and RP-LLR, (2.21) and (2.20), respectively, are used. Also, we

assume that the power consumption as a function of ⇠ is given by f(⇠) = ⇠2.

Since the fraction of time a server is busy in each system is ⇢/⇠, the mean

energy consumption is given by E = ⇢⇠. To obtain a mean delay of 0.5 for

⇢ = 0.8, the energy consumption for NP-BF and RP-LLR systems is 20% and
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70% more than that for RP-BF, respectively.

2.7 Appendix

2.7.1 Proof of Theorem 1

We first show that µ is a rank function. By definition it is clear that

µ(;) = 0 and that µ is monotonic. To show that µ(.) is submodular we use

the inclusion-exclusion principle to obtain

µ(A) =
X

s2S(A)

µs =
X

s2S(A\B)[S(A\B)

µs

=
X

s2S(A\B)

µs +
X

s2S(A\B)

µs �
X

s2S(A\B)\S(A\B)

µs.

Similarly,

µ(B) =
X

s2S(B\A)

µs +
X

s2S(B\A)

µs �
X

s2S(B\A)\S(B\A)

µs

Again using inclusion-exclusion principle, we further have,

µ(A [ B) =
X

s2S(A[B)

µs =
X

s2S(A\B)[S(A\B)[S(B\A)

µs

=
X

s2S(A\B)

µs +
X

s2S(A\B)

µs +
X

s2S(B\A)

µs

�
X

s2S(A\B)\S(A\B)

µs �
X

s2S(B\A)\S(B\A)

µs

�
X

s2S(A\B)\S(B\A)

µs +
X

s2S(B\A)\S(A\B)\S(B\A)

µs

Also, µ(A \B) =
P

s2S(A\B)

µs. Thus,

µ(A) + µ(B)� µ(A [B)� µ(A \B)
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=
X

s2S(A\B)\S(B\A)

µs �
X

s2S(B\A)\S(A\B)\S(B\A)

µs

� 0

which shows that µ is submodular.

We now show that C is the capacity region. We first show that if r is

feasible then r 2 C, and later show the converse.

Suppose r /2 C. Then, we show that r violates the capacity constraints

in Assumption 1 for any set of active flows q such that for all i, |qi| > 0 i↵

ri > 0. By definition of C, there exists A ⇢ F such that
P

i2A ri > µ(A). Now

suppose
P

v2q
i

,s2S
i

bv,s = ri for all i 2 F . Then, we get,
P

i2A
P

v2q
i

,s2S
i

bv,s >

µ(A) which further gives
P

s2S(A)

P

v2[
i2A

q
i

bv,s > µ(A). Thus, there exists s

such that
P

v2[
i2A

q
i

bv,s > µs. Thus, r is not feasible.

We now show the converse, i.e., r 2 C implies that r is feasible. Recall

that, for a polymatroid capacity C, for all r 2 C there exists r0 � r such that

r0 2 D, where D = {r 2 C :
P

i2F ri = µ(F )}. Thus, it is su�cient to show

that if r 2 D, then r is feasible. Let P be set of all permutations on F . For

each p 2 P , let r(p) = (r(p)i : i 2 F ) such that r(p)p(k) = µ({p(1), . . . , p(k)}) �

µ({p(1), . . . , p(k � 1)}), for all k 2 {1, 2, . . . , n}. It can be shown that {r(p) :

p 2 P} is the set of all extreme points of D, see [21]. Thus, it is su�cient to

show that r(p) for each p 2 P is feasible. Remaining points can be obtained

using time sharing over arbitrarily smaller time scale. For each s, find the

smallest k such that s 2 Sp(k) and set b
(v,s) = µs/|qp(k)| if v 2 qp(k) and 0

otherwise, thus satisfying Assumption 1. Then, for each k,
P

s2S
p(k)

b
(v,s) =
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µ({p(1), . . . , p(k)})� µ({p(1), . . . , p(k � 1)}) = r(p)p(k). Thus, r
(p) is feasible.

2.7.2 Proof of Theorem 2

We prove this by induction on |x| , P

i xi. Clearly, the result is true

when |x| = 1. Lets assume that the claim is true for all x0 such that |x0| < |x|

for a given x. We show that it holds for x as well.

By definition of balanced fairness, i.e., by (5.1) and (5.2), there exists

a B such that
P

i2B ri(x) = µ(B). Also, by monotonicity of µ(.), B ⇢ A
x

. If

B = A
x

, then we are done. Suppose this is not the case. Then, from (5.1) and

definition of B, we have

�(x) =

P

i2B �(x� ei)

µ(B)
. (2.22)

Since the capacity condition
P

i2B ri(x0)  µ(B) is satisfied for all

states, we have
P

i2B ri(x�ej)  µ(B) for all j 2 A
x

\B. Using this in (2.22),

we get

�(x) 
P

i2B �(x� ei)
P

i2B ri(x� ej)
, 8j 2 A

x

\B. (2.23)

We now use this bound to compute one on the sum of all rates as follows:

X

i2A
x

ri(x) =
X

i2B

ri(x) +
X

j2A
x

\B

rj(x),

= µ(B) +
X

j2A
x

\B

�(x� ej)

�(x)
,

� µ(B) +
X

j2A
x

\B

P

i2B ri(x� ej)�(x� ej)
P

i2B �(x� ei)
,
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= µ(B) +
X

j2A
x

\B

P

i2B �(x� ej � ei)
P

i2B �(x� ei)
,

= µ(B) +

P

i2B
P

j2A
x

\B �(x� ej � ei)
P

i2B �(x� ei)
,

� µ(B) +

P

j2A
x

\B �(x� ej � ei⇤)

�(x� ei⇤)
, (2.24)

where i⇤ = argmini2B

n

P

j2A

x

\B �(x�e

j

�e

i

)

�(x�e

i

)

o

. In the last inequality (2.24), we

have used the identity a+b
c+d

� a
c
if a

c
 b

d
. Thus, we get the following inequality.

X

i2A
x

ri(x) � µ(B) +
X

j2A
x

\B

rj(x� ei⇤). (2.25)

We now only need to show µ(B)+
P

j2A
x

\B rj(x�ei⇤) � µ(A
x

). The following

two cases are possible for the given x.

Case 1 xi⇤ = 1 : Then, in state x � ei⇤ , only classes in A
x

\{i⇤} are

active. Thus, we have,

X

j2A
x

\B

rj(x� ei⇤) + µ(B)

= µ(A
x

\{i⇤})�
X

k2B\{i⇤}

rk(x� ei⇤) + µ(B),

� µ(A
x

\{i⇤})� µ(B\{i⇤}) + µ(B),

� µ(A
x

),

where the equality follows from induction hypothesis, the first inequality fol-

lows from the capacity constraint on set B\{i⇤}, and the last inequality follows

from the submodularity of µ(.).
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Case 2 xi⇤ > 1 : Here, all the classes in A
x

are active in state x� ei⇤

as well, i.e., A
x

= A
x�e

i

⇤ . Thus, we have,

X

j2A
x

\B

rj(x� ei⇤) + µ(B) �
X

i2A
x

ri(x� ei⇤)

= µ(A
x

),

where the inequality follows from the capacity constraint on set B, and the

equality follows from induction hypothesis. Thus, the result holds for both the

cases.

2.7.3 Proof of Theorem 4

We prove (2.18) first and then (4.2).

Proof of (2.18): We first prove the following lemma by finding an ex-

plicit expression for ⇡(m,n)
k for each k for given m and n and then taking

the limit as n ! 1 for a fixed m. Let limn!1 ⇡(m,n)
k = ⇡(m,1)

k . Also let

h(m,1)(k) = ⇠m(1� (1� c/m)k) for k = 0, 1, 2, . . . ,1.

Lemma 1. For any fixed integers k
1

and k
2

such that k
1

> k
2

, we have

⇡(m,1)

k1

⇡(m,1)

k2

=
(m⇢)k1�k2

Qk1
l=k2+1

h(m,1)(l)
(2.26)

Proof. Fix m and n. From definition of Fk(.) in the proof of Corollary 1 one

can show that

⇡(m,n)
k =

Fk(m⇢/n)

F (m⇢/n)
for k = 1, . . . , n (2.27)
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where Fk(m⇢/n) and F (m⇢/n) are given by recursive expressions in the state-

ment of Corollary 1. Thus, from (2.13), we get ⇡(m,n)
0

= 1/F (m⇢/n) and

⇡(m,n)
k =

(n� k + 1)m⇢
n
⇡(m,n)
k�1

h(m,n)(k)� km⇢
n

, for k = 1, . . . , n.

Thus, for any k
1

> k
2

we get

⇡(m,n)
k1

⇡(m,n)
k2

=
(n� k

2

)!(m⇢
n
)k1�k2

(n� k
1

)!
Qk1

l=k2+1

(h(m,n)(l)� lm⇢
n
)

�!
n!1

(m⇢)k1�k2

Qk1
l=k2+1

h(m,1)(l)

Now let us study h(m,1) and ⇡(m,1)

k in the limit as m ! 1. For any

↵ > 0, we have

lim
m!1

1

m
h(b↵mc) = ⇠(1� e�↵c).

Let k(m) be the largest k such that h(m,1)(k)  m⇢. Thus, it is easy to show

that k(m)/m ! ↵⇤ as m ! 1 where ↵⇤ is given by (2.17).

Now for some large enough �, consider the following four cases: (1) 0 

k < (1�2✏)k(m), (2) (1�2✏)k(m)  k  (1+2✏)k(m), (3) (1�2✏)k(m) < k  �m,

and (4) k > �m. Our approach now onwards can be summarized as follows.

We first consider the case (4) and show that by choosing � large enough the

tail probability
P

l:l>�m ⇡(m,1)

l can be made arbitrarily small, independent of

m. For the remaining three cases, we then show that ⇡(m,1)

k concentrates on

the second case as m increases to 1.
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Lemma 2. For any � > 0, there exists a constant � such that

X

l:l>�m

⇡(m,1)

l  ⇡(m,1)

k(m) �

for all m.

Proof. Find the smallest ↵ such that ↵m is an integer and h(m,1)(↵m) �

m⇢(1 + ✏0) for some fixed ✏0 > 0. Since ↵m � k(m), we have ⇡(m,1)

↵m  ⇡(m,1)

k(m) .

Also, it is easy to check that ↵ is O(1), i.e., it does not scale with m. By

monotonicity of h, h(m,1)(k) � m⇢(1 + ✏0) for each k � ↵m. From (2.26), for

each k � ↵m, we get

⇡(m,1)

k  ⇡(m,1)

↵m (
1

1 + ✏0
)k�↵m.

Also, for each k > ↵m,

X

l:l�k

⇡(m,1)

l  ⇡(m,1)

k

1
X

l=1

✓

1

1 + ✏0

◆l

= ⇡(m,1)

k

1

1� 1/(1 + ✏0)

 ⇡↵m(
1

1 + ✏0
)k�↵

m

1

1� 1/(1 + ✏0)

 ⇡(m,1)

k(m) c0
✓

1

1 + ✏0

◆k�↵m

,

for some constant c0. Putting k = �m, we get,

X

l:l��m

⇡(m,1)

l  c0⇡(m,1)

k(m)

✓

1

1 + ✏0

◆

(��↵)m

Thus, for any � > 0, by choosing � large enough one can ensure that
P

l��m ⇡(m,1)

l 

⇡(m,1)

k(m) � for all m.
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We now prove the following lemma from which (2.18) follows since ✏

can be chosen arbitrarily and k(m)/m ! ↵⇤ as m ! 1.

Lemma 3. For any ✏ > 0, we have

lim
m!1

P1
k=0

⇡(m,1)

k
P

(1+2✏)k(m)

k=(1�2✏)k(m) ⇡
(m,1)

k

= 1

Proof. By monotonicity of h(m,1), h(m,1)(k)  h(m,1)((1�2✏)k(m)) for all k 

(1�2✏)k(m). Using (2.26) with k
1

= (1�✏)k(m) and with any k
2

 (1�2✏)k(m),

we get,

⇡(m,1)

(1�✏)k(m)

⇡(m,1)

k2

=
(m⇢)(1�✏)k(m)�k2

Q

(1�✏)k(m)

l=k2+1

h(m,1)(l)

�
✓

m⇢

h(m,1)((1� 2✏)k(m))

◆

(1�✏)k(m)�k2

�
✓

m⇢

h(m,1)((1� 2✏)k(m))

◆

(1�✏)k(m)�(1�2✏)k(m)

�
✓

m⇢

h(m,1)((1� 2✏)k(m))

◆✏k(m)

Similarly, h(m,1)(k) � h(m,1)((1 + 2✏)k(m)) for all k � (1 + 2✏)k(m).

Using (2.26) with any k
1

� (1 + 2✏)k(m) and with k
2

= (1 + ✏)k(m), we get,

⇡(m,1)

k1

⇡(m,1)

(1+✏)k(m)

=
(m⇢)k1�(1+✏)k(m)

Qk1
(1+✏)k(m) h(m,1)(l)


✓

m⇢

h(m,1)((1 + 2✏)k(m))

◆k1�(1+✏)k(m)


✓

m⇢

h(m,1)((1 + 2✏)k(m))

◆✏k(m)
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Thus, we get,

P1
k=0

⇡(m,1)

k
P

(1+2✏)k(m)

k=(1�2✏)k(m) ⇡
(m,1)

k

=

0

@

(1+2✏)k(m)
X

k=(1�2✏)k(m)

⇡(m,1)

k

1

A

�1

 

X

k<(1�2✏)k(m)

+
(1+2✏)k(m)
X

k=(1�2✏)k(m)

+
�m
X

k=(1+2✏)k(m)
+1

+
X

k>�m

!

⇡(m,1)

k


P

k<(1�2✏)k(m) ⇡
(m,1)

k

⇡(m,1)

(1�✏)k(m)

+ 1 +

P�m

k=(1+2✏)k(m)
+1

⇡(m,1)

k

⇡(m,1)

(1+✏)k(m)

+ �

(1� 2✏)k(m)

✓

h(m,1)((1� 2✏)k(m))

m⇢

◆✏k(m)

+ 1

+ (�m� (1 + 2✏)k(m))

✓

m⇢

h(m,1)((1 + 2✏)k(m))

◆✏k(m)

+ �

�!
m!1

0 + 1 + 0 + �

Where the last limit can be shown to hold as follows. Using k(m)/m !

↵⇤ as m ! 1, one can show that limm!1 h(m,1)((1� 2✏)k(m))/(⇢m) = ⇠(1�

e�(1�2✏)↵⇤c) < ⇠(1 � e�↵⇤c) = 1. Thus, there exists c
1

< 1 and m0 > 0 such

that the inequality h(m,1)
((1�2✏)k(m)

)

m⇢
< c

1

holds for all m > m0. Similarly, there

exists c
2

< 1 and m00 > 0 such that the inequality m⇢
h(m,1)

((1+2✏)k(m)
)

< c
2

holds

for allm > m0. Thus, terms
⇣

h(m,1)
((1�2✏)k(m)

)

m⇢

⌘✏k(m)

and
⇣

m⇢
h(m,1)

((1+2✏)k(m)
)

⌘✏k(m)

tend to 0 geometrically fast. Since ✏ > 0 and � > 0 where chosen arbitrarily,

the lemma holds.

Proof of (4.2): To find mean delay, we cannot use Little’s law just yet,

since we have shown concentration in ⇡(m,n)
k which is the probability measure

for number of active classes and not number of waiting requests. However,
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intuitively, by increasing n while keeping ⇢ fixed, we are thinning the arrival

process of each class so that the probability of having more than one waiting

job for any given class at any given point in time goes to 0. By taking the

limit as n ! 1, ⇡(m,n)
k then becomes a proxy for the number of waiting jobs.

To prove the result formally, we use expression for mean delay in Corollary 1.

Define

⌧ (m,n)
k =

F̂k(m⇢/n)

nF (m⇢/n)
.

Then, using (2.11) and (2.14) from Corollary 1 and using ⌫i = ⌫ for all i, the

mean delay for a given n and m is given by

E
⇥

D(m,n)
⇤

= ⌫
n
X

k=0

k⌧ (m,n)
k . (2.28)

Let limn!1 ⌧ (m,n)
k = ⌧ (m,1)

k . We now prove the following lemma by induction

on k.

Lemma 4.

⌧ (m,1)

k =
⇡(m,1)

k

m⇢
for k = 1, 2, . . .

Proof. For a given n, from (2.13), (2.14) and (2.27) we get

⌧ (m,n)
k =

1

n
⇡(m,n)
k + n�k+1

nk
⇡(m,n)
k�1

+ (n�k+1)(k�1)m⇢
nk

⌧ (m,n)
k�1

h(m,n)(k)� km⇢/n

for k = 1, 2, . . . , n and ⌧ (m,n)
0

= 0. By taking limits as n ! 1, we get

⌧ (m,1)

k =
1

k
⇡(m,1)

k�1

+ (k�1)m⇢
k

⌧ (m,1)

k�1

h(m,1)(k)
,
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for any k � 1, and ⌧ (m,1)

0

= 0 Now we prove the lemma by induction using

the above recursion. First, we prove the result for the base case of k = 1. By

direct substitution we get,

⌧ (m,1)

1

=
⇡(m,1)

0

+ 0

h(1)

=
⇡(m,1)

1

h(1)
m⇢

h(1)
,

where the last equality follows from (2.26). Thus, we get ⌧ (m,1)

1

= ⇡(m,1)

1

/(m⇢).

Now, assume the result is true for ⌧ (m,1)

k�1

. Thus we get,

⌧ (m,1)

k =
1

k
⇡(m,1)

k�1

+ (k�1)

k
⇡(m,1)

k�1

h(m,1)(k)

=
⇡(m,1)

k�1

h(m,1)(k)

=
⇡(m,1)

k

m⇢
,

where the last equality again follows from (2.26).

Thus from (2.28), we get,

lim
n!1

E
⇥

D(m,n)
⇤

=

P1
k=1

k⇡(m,1)

k

�m
.

Proofs of Lemma 2 and 3 show that the probability ⇡(m,1)

k for k < (1�2✏)k(m)

or k > (1+2✏)k(m) decreases to 0 geometrically fast with m. Thus, proceeding

along similar lines, one can show that

lim
m!1

lim
n!1

E
⇥

D(m,n)
⇤

2 ��1[↵⇤ � 2✏,↵⇤ + 2✏].

for any ✏ > 0. Hence, the result.
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Chapter 3

Impact of Fairness and Heterogeneity on
Delays

In many shared network systems service rate is allocated to ongoing

jobs based on a fairness criterion, e.g., ↵-fair (↵F) (including max-min and

proportional fair) as well as Balanced fair (BF), and other Greedy criteria [62].

When the network loads are stochastic a key open question is how the choice of

fairness and network design will impact user perceived performance, e.g., job

delays, as well as the sensitivity of performance to heterogeneity in network

resources and tra�c loads. Motivated by this challenge in this chapter we take

a step towards understanding these issues by investigating performance bounds

for an interesting class of stochastic networks with symmetric polymatroid

capacity under various fairness criteria.

The second question driving this chapter is whether large scale sys-

tems can be designed to be inherently robust to heterogeneity and at what

cost? Specifically we consider content delivery systems where a large collec-

tion servers deliver a proportionally large number of files. There has been

1A version of this work appeared as “Impact of Fairness and Heterogeneity on Delays in
Large-scale Content Delivery Networks,” in Proceedings of ACM Sigmetrics 2015 . This is
a joint work with Prof. Gustavo de Veciana.
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substantial recent interest in understanding basic design questions for these

systems including, see e.g. [34, 45, 53] and references therein: How should the

number of file copies scale with the demand? What kinds of hierarchical

caching policies are most suitable? How to best optimize storage/backhaul

costs for unpredictable time-varying demands? Our focus is on content deliv-

ery systems that permit parallel file downloads from multiple servers – akin

to peer-to-peer systems. In principle with an appropriate degree of storage

redundancy, one can achieve much better peak service rates, exploit diversity

in service paths, produce robustness to failures, and provide better sharing of

pooled server resources. Intuitively when such content delivery systems have

su�cient redundancy they will exhibit performance which is robust to lim-

ited heterogeneity in demands and server capacity, as well as to the fairness

criterion driving resource allocation. Such systems might also circumvent the

need for, and overheads (such as backhaul, state update, etc) associated with,

dynamic caching. If this is the case, content delivery systems enabling parallel

servicing of individual download requests could be more scalable and robust

to serving popular content.

3.0.4 Our Contributions and Organization

The contributions of this chapter are threefold, each of independent

interest, and collectively, providing a significant step forward over what is

known in the current literature.

a.) Performance bounds: In Sections 3.2-3.3. we consider a class of systems
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with symmetric polymatroid capacity for which we develop several re-

source allocation monotonicity properties which translate to performance

comparisons amongst fairness policies, and eventually give explicit bounds

on mean delays. Specifically we show that under homogeneous loads the

mean delay achieved by Greedy and ↵F resource allocations are bounded

by that of BF allocation which is computable. We then extend this upper

bound to the case when the load is heterogeneous but ‘majorized by a

symmetric load.’

b.) Uniform symmetry in large systems: In Section 3.4 we consider a bipartite

graph where nodes represent n job classes (files) and m servers with poten-

tially heterogenous service capacity. The graph edges capture the ability

of servers to serve the jobs in the given classes. If jobs can be concurrently

served by multiple servers the system’s service capacity region is polyma-

troid. We show that for appropriately scaled large system where the edge

set is chosen at random (random file placement) the capacity region is

uniformly close to a symmetric polymatroid.

c.) Performance robustness of large systems: Combining these two results, in

Section 3.5 we provide a simple performance bound for large-scale sys-

tems. The bound exhibits performance robustness in such systems with

respect to variations in total system load, heterogeneity in load across the

classes, heterogeneity in server capacities, for ↵-fair based resource alloca-

tion. Specifically it establishes a clear link between the degree of content
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replication and permissible demand heterogeneity while ensuring perfor-

mance scalability.

We have have deferred some technical results to the appendix.

3.1 Related work

There is a substantial amount of related work. Yet the link between fair-

ness in resource allocation and job delays in stochastic networks is poorly un-

derstood. The only fairness criterion for which explicit expressions or bounds

are known is the Balanced Fair resource allocation [7] which generalizes the

notion of ‘insensitivity’ of the processor sharing discipline in M/G/1 queuing

system. Under balanced fairness, an explicit expression for mean delay was

obtained in [10,11] for a class of wireline networks, namely, those with line and

tree topologies. Also, a performance bound for arbitrary polytope capacity re-

gion and arbitrary load was provided in [4]. Similarly [25] developed bounds

for stochastic networks where flows can be split over multiple paths. These

bounds and expressions are either too specific or too loose. Recently, [47] devel-

oped an expression for the mean delay for systems with polymatroid capacity

and arbitrary loads under Balanced Fair resource allocations. Unfortunately

the result has exponential computational complexity in general. However the

symmetric case has low complexity, a fact we use in the sequel.

Balanced fair resource allocation is defined recursively and is di�cult

to implement. ↵-fair resource allocations [32, 44] which are based on maxi-
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mizing a concave sum utility function over the system’s capacity region – this

includes proportional and max-min fair allocations, are more amenable to im-

plementation [30,36]. However, the only known explicit performance results for

stochastic networks under such fairness criteria are for systems where propor-

tional fair is equivalent to balanced fair [7,40]. In [6], performance relationship

under balanced and proportional fairness for several systems where they are

not equivalent was studied through numerical computations, and were found

to be relatively close in several scenarios.

In this chapter we focus on a class of stochastic networks that can be

characterized by a polymatroid capacity region. Such systems have also been

considered in [62]. For example, the work in [62] shows that when such systems

are symmetric with respect to load and capacity, a greedy resource allocation

is delay optimal. However, the result is brittle to asymmetries. aWe provide

more details on greedy and other resource allocations in Section 3.2.

In summary when it comes to fairness criteria and stochastic network

performance there is a gap between what is implementable and what is an-

alyzable. One of the goals of this chapter is to provide comparison results

which address this gap, with particular focus on addressing user-performance

in large-scale systems prevalent today.

In terms of robustness to heterogeneities, the work that is closest to this

chapter is [53,60], where it is shown that if the graph is chosen at random and

scaled appropriately then user-performance is robust to load heterogeneity.

In [60] a service model is considered where each request can be served by a
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single server – recall we consider systems allowing parallel downloads. The

resource pooling in our service model leads to a significantly improved mean

delay bound and the resulting robustness.

We assume the same service model as in previous chapter, but is di↵er-

ent in several respects. First, we focused on mean delay for CDNs only under

Balanced fair resource allocation whereas we directly study the impact of fair-

ness criteria on users delays. Second, the system was by design symmetric in

asymptotic regime in previous chapter whereas here we establish the asymp-

totic symmetry. Thirdly, in this chapter we establish new results on robustness

to limited heterogeneity in file demands, server capacity and ↵-fairness criteria

by providing a uniform bound on delays.

3.2 Resource allocation policies: a background

There are several possible resource allocation policies, each resulting

in potentially di↵erent user-perceived delays. In this chapter, we introduce

three di↵erent policies studied in literature, each with its own merits. In

comparing them, we will rely on notation for ordering and majorization which

we introduce below, some of which are borrowed from [38] and [62].

Notation for ordering and majorization:

Let I be a finite arbitrary index set. Consider an arbitrary vector

z = (zi : i 2 I). We let z
[1]

� z
[2]

� . . . , z
[|I|] denote the components of z in

decreasing order. We let |z| denote
P

i2I |zi|. We let ei denote a vector with
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1 at the ith coordinate and 0 elsewhere.

For vectors z and z0 such that zi  z0i for each i 2 I, we write z  z0

and say that z is dominated by z0.

Below we define majorization (�) which describes how ‘balanced’ a

vector is as compared to another vector. In words, by z � z0 we mean that z

is ‘more balanced’ than z0 but they have the same sum. By z �w z0 we mean

that z is ‘more balanced’ and has lower sum than z0. Similarly, by z �w z0 we

mean that z is ‘more balanced’ and has larger sum than z0.

Definition 1. For vectors z and z0 such that |z| = |z0| and
Pk

l=1

z
[l] 

Pk
l=1

z0
[l]

for each k 2 {1, 2, . . . , |I|}, we say z is majorized by z0, and denote this as

z � z0.

If we have
Pk

l=1

z
[l] 

Pk
l=1

z0
[l] for each k 2 {1, 2, . . . , |I|}, we say z is

weak-majorized from below by z0, and denote this as z �w z0.

Similarly, if we have
Pk

l=0

z
[|I|�l] �

Pk
l=1

z0
[|I|�l] for each k 2 {0, 1, . . . , |I|�

1}, we say z is weak-majorized from above by z0, and denote this as z �w z0.

The dominance and majorization have an associated stochastic version,

defined below.

Definition 2. Consider random vectors Z and Z0. If there exist random

vectors Z̃ and Z̃0 such that Z and Z̃ are identically distributed, Z0 and Z̃0

are identically distributed, and Z̃0  Z̃0 almost surely, then we say that Z is

stochastically dominated by Z0, and denote this as Z̃ st Z̃0.
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Instead, if Z̃0 �w Z̃0, then we say that Z stochastically weak-majorized

from below by Z0, and denote this as Z̃ �st
w Z̃0.

In the sequel, it will be useful to introduce following notation. Recall,

r(x) = (ri(x) : i 2 F ) is the vector of rates allocated to various classes. We

define r
(k)(.) for each k 2 {1, . . . , n} as follows: For a given state x, let ik be

the class corresponding to x
[k]. Then, r(k)(x) = ri

k

(x). In words, r
(k)(x) is the

rate allocated to the class with the kth largest number of ongoing jobs.

Below provide a brief description of the resource allocation policies

considered in this chapter.

1) Greedy resource allocation: Roughly, the Greedy resource allocation

policy on a polymatroid capacity region C assigns the maximum possible rate to

the largest queues subject to the capacity constraints. We denote the Greedy

resource allocation by rG(.) and define it as follows: for each state x, we let

rG
(k)(x) = µ ({[1], [2], . . . , [k]})� µ ({[1], [2], . . . , [k � 1])

if k 2 {1, 2, . . . , |A
x

|},

= 0 otherwise.

Equivalently, the sum rate assigned to the k largest queues, namely
Pk

l=1

rG
(l)(x),

is equal to µ ({[1], [2], . . . , [k]}). The Greedy resource allocation for symmet-

ric polymatroid capacity regions was first studied in [62] where the following

result was shown.
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Proposition 1. ([62]) Suppose the capacity region C is a symmetric polyma-

troid and the load ⇢ 2 Ĉ is homogeneous, i.e., ⇢i = ⇢ for each i 2 F . Further

suppose that service requirement of jobs for each class are exponential with

mean ⌫. Then the following statements hold:

1. Let (XG(t) : t � 0) and (X̃(t) : t � 0) be state processes under Greedy

and an arbitrary feasible resource allocation, respectively. If XG(0) �st
w

X̃(0) then XG(t) �st
w X̃(t) for each t � 0.

2. The mean job delay under Greedy resource allocation is less than or equal

to that under any feasible resource allocation.

Unfortunately, this optimality result for symmetric systems does not

provide any explicit performance characterization or bound. Further, the re-

sult is brittle to heterogeneity in load or capacity.

2) ↵-fair resource allocation: As introduced in [44], this policy allo-

cates rates based on maximizing a concave sum utility function subject to the

system’s capacity region. Formally, for a given ↵ > 0, the ↵-fair (↵F) resource

allocation r↵(.), can be defined as follows: for each state x, let

r↵(x) =

(

argmax
ˆ

r2C
P

i2F
x↵

i

r̂1�↵

i

1�↵
for ↵ 2 (0,1)\{1},

argmax
ˆ

r2C
P

i2F xi log(r̂i) for ↵ = 1.
(3.1)

This generalizes various notions of fairness across jobs, e.g., proportional fair

and max-min fair allocations are equivalent to the ↵-fair policy for ↵ = 1

and ↵ ! 1, respectively [44]. However, for polymatroid capacity regions we

establish the following result. For its proof, see 3.6.1
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Proposition 2. All ↵-fair resource allocations are equivalent for polymatroid

capacity regions.

This is a generalization of equivalence of ↵F policies for a single server

system where they reduce to equal share. Such an equivalence is also known

for tree networks [7] which form a special case to our system. Further, the

stability results in [17, 39] implies that the ↵F resource allocation results in

a stationary process (X(t) : t 2 R) when ⇢ 2 Ĉ. The ↵-fair resource alloca-

tion is attractive in that it is amenable to distributed implementation [30,36]

and satisfies natural axioms for fairness [32]. Unfortunately, little is known

regarding their performance under stochastic loads. What has been shown is

that for ↵-fair allocations, the performance is sensitive to the distribution of

service requirements [7]. Thus, it will be hard to make general claims. This

leads us to the Balanced fair resource allocation below.

3) Balanced fair resource allocation: We described balanced fairness in

Section 2.3. For completeness, we briefly reiterate its definition:

rBi (x) =
�(x� ei)

�(x)
, 8i 2 F (3.2)

where the function � is called a balance function and is defined recursively as

follows: �(0) = 1, and �(x) = 0 8x s.t. xi < 0 for some i, otherwise,

�(x) = max
A⇢F

⇢

P

i2A�(x� ei)

µ(A)

�

. (3.3)

It was shown in [6,7] that if ⇢ 2 Ĉ, the process (XB(t) : t 2 R) is asymptotically
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stationary. Further, its stationary distribution is given by

⇡(x) =
�(x)

G(⇢)

Y

i2A
x

⇢xi

i where G(⇢) =
X

x

0

�(x0)
Y

i2A
x

0

⇢
x0
i

i .

The existence of such an expression for stationary distribution makes balanced

fairness amenable for time-averaged performance analysis, a property we will

use extensively in the sequel. In Section 2.3, we used this distribution to

develop an exact expression for mean delays for system with polymatroid ca-

pacity region. In fact, Corollary 1 provides an easily computable expression

for mean delays, with complexity O(n), under symmetry in load and capacity

region.

Further, we use several other properties of these resource allocation

policies in the sequel, some of which are given in Section 3.6.2.

3.3 Performance comparison and bounds

In this section, we provide a comparison result for Greedy, ↵F, and

BF resource allocation policy and and develop explicit and easily computable

bounds on the mean delay of jobs in systems with Greedy or ↵F resource allo-

cation under potentially heterogeneous load ⇢ within a subset of the stability

region Ĉ. We will make the following assumption for the remainder of this

section.

Recall that for each resource allocation policy considered in Section 3.2,

namely Greedy, ↵F, and BF, the underlying state process is asymptotically

stationary if the load ⇢ 2 Ĉ. Thus the corresponding mean delays of the
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system’s jobs are finite. In this section, we assume that the capacity region

C is symmetric, and develop explicit and easily computable bounds on the

mean delay of jobs in systems with Greedy or ↵F resource allocation under

potentially heterogeneous load ⇢ within a subset of the stability region Ĉ.

Our goal here is to enable performance analysis for a general enough

class of systems so as to allow us to develop quantitative and qualitative in-

sights for large-scale systems prevalent today. For example, the bounds devel-

oped below will enable us to later characterize user-performance in download-

ing files from heterogeneous (in loads and service capacities) large-scale CDNs

supporting parallel servicing of downloads.

Below we develop performance bounds for the following three cases:

(i) Homogeneous loads: We provide an upper bound for mean delay for loads

⇢ 2 Ĉ which are homogeneous across classes with non-zero entries, i.e., if

A is the set of classes such that ⇢i > 0 for each i 2 A, then ⇢i = ⇢j for

each i, j 2 A.

(ii) Dominance bound: Consider loads ⇢,⇢0 2 Ĉ such that ⇢  ⇢0 and ⇢0 is

homogeneous across non-zero entries as described above. Then, we show

that the system with load ⇢ has lower mean delay than that with load ⇢0,

even if ⇢ is heterogeneous.

(iii) Majorization bound: Consider loads ⇢,⇢0 2 Ĉ such that ⇢ � ⇢0. Further,

suppose that ⇢0 is homogeneous across non-zero entries as described above.
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Then, we show that the system with load ⇢ has lower mean delay than

that with load ⇢0.

Throughout this section, we will assume that the mean service requirements

for jobs ⌫ is same for each system. Using the above majorization bound, we

can bound mean delay for a larger subset of heterogeneous loads as compared

to the dominance bound. For example, consider ⇢ = (⇢, 1
2

⇢, 1
2

⇢). Recall, for

symmetric rank functions we have µ(A) = h(|A|) for each A ⇢ F , where h(.) is

concave. Now, if 1

3

h(3) < ⇢ < 1

2

h(2), then ⇢0 = (⇢, ⇢, 0) is in Ĉ but ⇢00 = (⇢, ⇢, ⇢)

is not. Then the majorization bound holds for ⇢ but the dominance bound

does not. Further, even if ⇢00 is in Ĉ, the bound obtained through ⇢0 may be

tighter.

The bounds for each case will be obtained through coupling arguments

on the corresponding state processes, followed by an application of Little’s law.

3.3.1 Homogeneous Loads

Consider the following set of loads:

BH , {⇢ 2 Ĉ : 9A ⇢ F s.t. ⇢i = ⇢j 8i, j 2 A and ⇢i = 0 8i 2 F\A}.

Since by Proposition 1 the Greedy resource allocation is delay optimal for

homogeneous loads, for each ⇢ 2 BH one can immediately conclude that the

performance of BF as obtained in Corollary 1 is an upper bound for Greedy.

Below we show that this performance upper bound via BF also holds for ↵F

resource allocation.
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To that end we show a coupling result for systems under ↵F and BF

resource allocations. In the process, we prove and use the property that ↵F is

more greedy than BF in the following sense: if the state process corresponding

to ↵F is same as or more balanced than that of BF, then ↵F assigns larger rate

to bigger queues than BF. This in turn keeps the state process for ↵F more

balanced in the future. For a proof of the theorem below see Section 3.3.4.

Theorem 5. Consider a system with symmetric polymatroid capacity region

and load ⇢ 2 BH , i.e., ⇢ is homogeneous across classes with non-zero entries,

and that service requirement of jobs are exponentially distributed with mean ⌫.

Then the following statements hold:

1. Let (X↵(t) : t � 0) and (XB(t) : t � 0) be state processes under ↵F

and BF resource allocation. If X↵(0) �w XB(0) then we have X↵(t) �st
w

XB(t) for each t � 0.

2. The mean delays for systems with ↵F and BF resource allocation for

load ⇢ 2 BH satisfy the following:

E[D↵
⇢ ]  E[DB

⇢ ].

3.3.2 Dominance Bound

Consider the following resource allocation property. Recall, r
i

(x)

x
i

is the

rate allocated to each job in class i when the system is in state x.

Definition 3 (Per-job rate monotonicity). We say that a resource allocation

r(.) satisfies per-job rate monotonicity if the following holds for all states x
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and x0 such that x � x0: for each class i, we have r
i

(x)

x
i

 r
i

(x

0
)

x0
i

. In words,

adding jobs into the system only decreases the rate allocated to each job.

From the definition of ↵F, one can check that ↵F resource allocation

satisfies per-job rate monotonicity. This property was used in [9] to provide

a comparison result for systems where the resource allocation in one system

dominates that in another system for each state x. In contrast, we provide

below a comparison result for systems with same resource allocation policy and

capacity region, but with di↵erent loads. For such systems, we show that the

larger loads result into worse delays if the resource allocation satisfies per-job

rate monotonicity. For a proof of the theorem below see Section 3.3.4.

Theorem 6. Consider a system with symmetric polymatroid capacity region

C. Suppose that the resource allocation r(.) satisfies per-job rate monotonicity.

Let ⇢,⇢0 2 Ĉ (recall, Ĉ is stability region) be such that ⇢  ⇢0. Then the

following statements hold:

1. Let (X(t) : t � 0) and (X0(t) : t � 0) be state processes under loads ⇢

and ⇢0. If X(0)  X0(0), then we have X(t) st X0(t) for each t � 0.

2. For systems with loads ⇢ and ⇢0, the mean delays for jobs for each class

i 2 F satisfy the following:

E[D(⇢)
i ]  E[D(⇢0

)

i ]

The above result holds for ↵F since it satisfies per-job rate monotonic-

ity. However, one can check that the Greedy resource allocation does not
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satisfy per-job rate monotonicity in general. Thus, we get the following corol-

lary.

Corollary 2. Consider a system with symmetric polymatroid capacity region

and load ⇢ 2 BD. Let ⇢0 = maxi ⇢i. Let ⇢0 be such that for each i 2 F we have

⇢0i = ⇢0 if ⇢i > 0 and ⇢0i = 0 if ⇢i = 0. Then, mean delays for systems with ↵F

resource allocations for load ⇢ satisfy the following:

E[D↵
⇢ ]  E[DB

⇢0 ].

3.3.3 Majorization Bound

The theorem below generalizes the Dominance bound to provide a mean

delay bound for a system with load ⇢ such that there exists ⇢0 2 BH which

satisfies ⇢ � ⇢0.

Its proof is similar to that of Theorem 5, where instead of relative

greediness between resource allocations, we use the following balancing prop-

erty satisfied by both ↵F and Greedy: if state x is more balanced than state

x0, then the resource allocation r(.) would provide larger rates to longer queues

in state x as compared to x0, and thus balancing it even further. For a proof

of the theorem below see Section 3.3.4.

Theorem 7. Consider a system with symmetric polymatroid capacity region

C. The resource allocation r(.) is either ↵F or Greedy. Let ⇢,⇢0 2 Ĉ be such

that ⇢ � ⇢0 and ⇢0 2 BH , i.e., ⇢0 is homogeneous across classes with non-zero

entries. Then the following statements hold:
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1. Let (X(t) : t � 0) and (X0(t) : t � 0) be state processes under loads ⇢

and ⇢0. If X(0) �w X0(0), then we have X(t) �st
w X0(t) for each t � 0.

2. The mean delays for systems with loads ⇢ and ⇢0 satisfy the following:

E[D⇢]  E[D⇢0 ]

Theorem 7 above is stronger than Theorem 6 in the sense that it only

requires the condition ⇢ �w ⇢0 instead of ⇢  ⇢0. However, it is weaker in

the sense that it requires ⇢0 to be in BH and that it gives stochastic weak-

majorization of the corresponding state processes instead of stochastic domi-

nance.

For both rG(.) and r↵(.), Theorem 7, along with Theorem 5 and Propo-

sition 1, allows us to bound the mean delay for any load in the following region:

BM , {⇢ 2 Ĉ : 9⇢0 2 BH s.t. ⇢ � ⇢0},

or equivalently,

BM ,
⇢

⇢ 2 Ĉ : 9k  n s.t. max
i

⇢i <
h(k)

k
and |⇢| < h(k)

�

.

Theorem 7 implies that for ↵F and Greedy resource allocation, the mean delay

for each load ⇢ 2 BM can be bounded by that for a corresponding load ⇢0 2 BH ,

which in turn has an easily computable bound through Theorem 5. Thus, we

get the following corollary.

Corollary 3. Consider a system with symmetric polymatroid capacity region

and load ⇢ 2 BM . Let ⇢0 = maxi2F ⇢i. Let k = min{l : ⇢0  h(l)
l

and |⇢| 
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h(l)}. Let A be an arbitrary subset of F of size k and ⇢0 be such that ⇢0i =

⇢0 8i 2 A and ⇢0i = 0 otherwise. Then, the mean delays for systems with

Greedy and ↵F resource allocations for load ⇢ satisfy the following:

E[DG
⇢ ]  E[DB

⇢0 ], and E[D↵
⇢ ]  E[DB

⇢0 ].

It is easy to check that for each ⇢ 2 BM the computation of the mean

delay upper bound as given by Corollary 3 has complexity O(n) when com-

puted using Corollary 1.

3.3.4 Proofs of Coupling Results

Proof of Theorem 5: Consider the following lemma regarding relative

greediness of ↵F and BF.

Lemma 5. Consider states x and y such that x �w y. For each k such that
Pk

l=1

x
[l] =

Pk
l=1

y
[l], we have

Pk
l=1

r↵
(l)(x) �

Pk
l=1

rB
(l)(y).

Roughly, it asserts that if state x is same or more balanced than state

y, then the sum rate assigned to larger queues by ↵F to state x is greater than

that by BF to state y. Proof of this lemma is given in Section 3.6.2. Below,

we provide a detailed coupling argument showing stochastic weak-majorization

using this lemma.

Coupling Argument: Without loss of generality, assume ⌫ = 1. Suppose

X↵(0) �w XB(0). Below, we couple the arrivals and departures of processes

(X↵(t) : t � 0) and (XB(t) : t � 0) such that their marginal distributions

remain intact and X↵(t) �w XB(t) almost surely for each t � 0.
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Let ⇧a be a Poisson point process with rate
P

i2F �i, and let ⇧d be

Poisson point process with rate µ(F ). The points in these processes are the

times of ‘potential events’ in (XB(t) : t � 0) and (X↵(t) : t � 0). We use ⇧a to

couple arrivals and ⇧d to couple departures. For each time t0 when a potential

event occurs, let ✏t0 be a small enough number such that no potential event

occurred in the time interval of [t0 � ✏t0 , t0).

Coupling of arrivals: For each point t0 in ⇧a, do the following: Choose

a random variable Zt0 independently and uniformly from {1, . . . , n}. Let an

arrival occur in (X↵(t) : t � 0) at time t0 in the Zth

t0 largest queue ofX↵(t0�✏t0).

Ties are broken uniformly at random. Similarly, let an arrival occur in (X↵(t) :

t � 0) at time t0 in the Zth

t0 largest queue of X↵(t0� ✏t0). Again, ties are broken

uniformly at random.

Coupling of departures: For each point t0 of increment in ⇧d, do the

following: Choose a random variable Zt0 independently and uniformly from

interval (0, µ(F )]. For k such that

Zt0 2
 

k�1

X

l=1

r↵
(l)(X

↵(t0 � ✏t0)),
k
X

l=1

r↵
(l)(X

↵(t0 � ✏t0))

#

,

let a departure occur in (X↵(t) : t � 0) at time t0 in the kth largest queue of

X↵(t0 � ✏t0), with ties broken uniformly and independently at random.

Similarly, for k such that

Zt0 2
 

k�1

X

l=1

rB
(l)(X

B(t0 � ✏t0)),
k
X

l=1

rB
(l)(X

B(t0 � ✏t0))

#

,
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let a departure occur in (XB(t) : t � 0) at time t0 in the kth largest queue of

XB(t0 � ✏t0), with ties broken uniformly and independently at random. Note

that in both cases it is possible that no such k exists since some classes may

not be active and the total service rate may be less than µ(F ). In that case,

no departure occurs.

It can be checked that the marginal distributions of (X↵(t) : t � 0)

and (XB(t) : t � 0) remain intact. We now show that X↵(t) �w XB(t) almost

surely for each t.

It is easy to check that if an arrival occurred at time t0 and if X↵(t) �w

XB(t) for each t < t0, then X↵(t0) �w XB(t0) as well. We now show that the

same holds for points of ⇧d as well.

Suppose a potential departure occurred at t0, and X↵(t) �w XB(t) for

each t < t0. We show below that
Pk

l=1

X↵
[l](t

0) 
Pk

l=1

XB
[l](t

0) for each k. Here,

we use Lemma 5. Following two cases arise.

Case 1:
Pk

l=1

X↵
[l](t

0 � ✏t0) <
Pk

l=1

XB
[l](t

0 � ✏t0). Since a maximum of one

departure occurs at time t0 in either processes, we have
Pk

l=1

X↵
[l](t

0) 
Pk

l=1

XB
[l](t

0).

Case 2:
Pk

l=1

X↵
[l](t

0 � ✏t0) =
Pk

l=1

XB
[l](t

0 � ✏t0). By using X↵(t�✏t0) �w

XB(t � ✏t0) in Lemma 5 and from the definition of the coupling at time t0, it

can be shown that if a departure occurs from any of the k largest queues in

XB(t0 � ✏t0), then it also occurs in one of the k largest queues in X↵(t0 � ✏t0).

Thus,
Pk

l=1

X↵
[l](t

0) 
Pk

l=1

XB
[l](t

0).

Hence the first part of the theorem follows. Second part follows by
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application of Little’s law on (|X↵(t)| : t � 0) and (|XB(t)| : t � 0).

Proof of Theorem 6: Suppose X(0)  X0(0). Below, we couple the

arrivals and departures of jobs in (X(t) : t � 0) and (X0(t) : t � 0) such that

their marginal distributions remain intact and X(t)  X0(t) almost surely for

each t � 0.

Since mean service requirement of jobs ⌫ is same for both the systems,

the corresponding arrival rates satisfy �  �0. For each i let ⇧i and ⇧0
i be

the Poisson arrival processes for class i in the respective systems. Let ⇧i be

obtained by sampling ⇧0
i. For each class i, the arrivals in (X0(t) : t � 0) at the

sampled points, i.e., points in ⇧i, see the average delay which is equal to the

overall average delay of jobs in ⇧0
i for this system. Thus, the theorem follows if

we couple the departures of jobs in both the systems such that for each point

in ⇧i, the corresponding job departure in (X(t) : t � 0) is no later than that in

(X0(t) : t � 0). By using per-flow rate monotonicity property, one can couple

the service rate of these jobs at each time t so that if such a job departs from

(X0(t) : t � 0) than the corresponding job departs from (X(t) : t � 0) as well,

if it hasn’t already.

Proof of Theorem 7: The theorem can be proved in a fashion similar to

that of Theorem 5, except for the following changes. For notational conve-

nience, for each time t let �
(k)(t) and �0

(k)(t) be the arrival rates of kth largest

queues in X(t) and X0(t) respectively, with ties broken arbitrarily.
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1. Coupling of arrivals: For each point t0 in ⇧a, we choose a random variable

Zt0 independently and uniformly from interval (0, |�|]. For each k such

that

Zt0 2
 

k�1

X

l=1

�
(l)(t

0 � ✏t0),
k
X

l=1

�
(l)(t

0 � ✏t0)

#

,

let an arrival occur in (X(t) : t � 0) at time t0 in the kth largest queue

of X(t0 � ✏t0). Similarly, for each k such that

Zt0 2
 

k�1

X

l=1

�0
(l)(t

0 � ✏t0),
k
X

l=1

�0
(l)(t

0 � ✏t0)

#

,

let an arrival occur in (X0(t) : t � 0) at time t0 in the kth largest queue

of X0(t0 � ✏t0).

2. Coupling of departures: Similar to that of Theorem 5, except that instead

of Lemma 5 for a proof of weak-majorization upon a potential departure,

we use the following lemma which asserts that ↵F and Greedy provide

larger rate to longer queues in more balanced states.

Lemma 6. Consider states x and y such that x �w y. For each k

such that
Pk

l=1

x
[l] =

Pk
l=1

y
[l], we have

Pk
l=1

r↵
(l)(x) �

Pk
l=1

r↵
(l)(y), and

Pk
l=1

rG
(l)(x) �

Pk
l=1

rG
(l)(y).

For rG(.), is easy to check that the lemma holds. For r↵(.), it follows

from Lemma 15 in Section 3.6.2.

Hence the result.
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3.4 Asymptotic symmetry in large systems

Large content delivery systems, where servers can jointly serve file-

download requests, not only have polymatroid capacity but under appropriate

assumptions become approximately symmetric.

Consider a sequence of bipartite graphs G(n) = (F (n)[S(n);E(n)) where

F (n) is a set of n files, S(n) is a set of m = dbne servers for some constant b,

and each edge e 2 E(n) connecting a file i 2 F (n) and server s 2 S(n) implies

that a copy of file i is available at server s. For each node s 2 S(n), let N (n)
s

denote the set of neighbors of server s, i.e., the set of files it stores and can

serve. Henceforth, wherever possible, we will avoid the use of ceil and floor

notations to avoid clutter.

We associate each file in F (n) with a class of job arrivals each corre-

sponding to a file download request. The arrival processes and service re-

quirements are as described in Section 2.2, with �(n) and ⇢(n) representing the

corresponding arrival rates and loads. Further, we let the service capacity of

each server s 2 S(n) be µs bits per second.

We allow each server s 2 S(n) to concurrently serve the jobs with classes

N (n)
s as long as the total service rate does not exceed µs. The service rate for

each job is the sum of the rates it receives from di↵erent servers. For any

A ⇢ F (n), let µ(n)(A) be the maximum sum rate at which jobs with file-class

in A could be served, i.e.,

µ(n)(A) =
X

s2S(n)

1n

A\N(n)
s

6=;
oµs.
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Clearly any rate allocation r(.) for such a system must satisfy the fol-

lowing constraints for each state x: 8A ⇢ F (n),

X

i2A

ri(x)  µ(n)(A).

We showed in Section 2.2 that µ(n)(.) is submodular and that the cor-

responding polymatroid

C(n) =

(

r � 0 :
X

i2A

ri  µ(n)(A), 8A ⇢ F (n)

)

is indeed the capacity region for such a system, i.e., each r 2 C(n) is achievable.

Note that C(n) will in general be an asymmetric polymatroid depending

upon edges E(n) and service capacities µs for each s 2 S(n). However, we show

below that if copies of files are stored across servers at random and scaled

appropriately with n then, as n increases, a uniform law of large numbers hold

where C(n) gets uniformly close to a symmetric polymatroid, subject to the

following assumptions:

Assumption 2 (Heterogeneous server capacities). S(n) is partitioned into a

finite number of groups where each group has ⌦(n) number of servers. Within

each group, the server capacities are homogeneous. The server capacities

across groups may be heterogeneous such that average of service capacity across

servers

⇠ , 1

m

X

s2S(n)

µs

is independent of n.
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Assumption 3 (Randomized file placement). Let (cn : n 2 N) be a sequence

such that

cn = !(log n).

For each file i 2 F (n), store a copy in cn di↵erent servers chosen uniformly

and independently at random.

A randomized placement of file copies implies a random system con-

figuration, i.e., a random graph. Let E (n) denote the random set of edges

resulting Assumption 3. Similarly, for each s 2 S(n), let N (n)
s denote the ran-

dom set of neighbors of s, i.e., the random set of files stored in server s. Let

M (n)(.) denote the corresponding random rank function, and µ(n)(.) a possible

realization. Then, for each A ⇢ F (n), we have

M (n)(A) =
X

s2S(n)

1n

A\N (n)
s

6=;
oµs,

where 1n

A\N (n)
s

6=;
o is now a Bernoulli random variable indicating if a copy of

at least one of the files in A is placed in s. In fact, for each A ⇢ F (n) such that

|A| = k, the set

⇢

1n

A\N (n)
s

6=;
o : s 2 S(n)

�

is a set of m negatively associated

Bernoulli(p(n)k ) random variables [20] where p(n)k is the probability that a given

server is assigned at least one of the kcn copies of files in A and is given by

p(n)k , 1�
✓

1� 1

m

◆kc
n

8k = 0, 1, . . . , n.

By linearity of expectation, for each A ⇢ F (n), we have

µ̄(n)(A) , E[M (n)(A)] = ⇠mp(n)|A| .
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Note, µ̄(n)(A) depends on A only through |A| and is thus symmetric.

The theorem below shows that with high probability we can bound the random

rank function M (n)(.) uniformly over all A ⇢ F (n), from above as well as

from below, with a symmetric rank function which is close to µ̄(n)(A). See

Section 3.4.1 for a proof.

Theorem 8. Fix ✏ independent of n such that 0 < ✏ < 1. Consider a sequence

of systems with n files and m = dbne servers, where b > 0 is a constant. Under

Assumptions 2 and 3, let M (n)(.) be the corresponding random rank function.

Then, there exists a sequence (gn : n 2 N) such that gn = !(log n), and

P
�

9A ⇢ F (n) s.t. M (n)(A)  (1� ✏)µ̄(n)(A)
�

 e�g
n ,

and

P
�

9A ⇢ F (n) s.t. M (n)(A) � (1 + ✏)µ̄(n)(A)
�

 e�g
n .

This result gives us following corollary on the random capacity region

associated with M (n)(.) generated by random file placement. Recall, µ̄(n)(A) =

E[M (n)(A)] for all A ⇢ F (n), and let

C̄(n) ,
(

r � 0 :
X

i2A

ri  µ̄(n)(A), 8A ⇢ F (n)

)

.

Thus C̄(n) is the (symmetric) capacity region associated with the average rank

function µ̄(.). Then, the following holds:

Corollary 4. Fix ✏ independent of n such that 0 < ✏ < 1. Under Assump-

tions 2 and 3, the random capacity region associated with randomized file place-

ment is a subset of (1+✏)C̄(n) and a superset of (1�✏)C̄(n) with high probability.
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Further, under Assumption 2, there exists a deterministic file placement

where cn = !(log n) copies of each file are stored across servers such that the

corresponding capacity region C(n) is a subset of (1 + ✏)C̄(n) and a superset of

(1� ✏)C̄(n).

3.4.1 Proof of Theorem 8

Here, we will only show

P
�

9A ⇢ F (n) s.t. M (n)(A)  (1� ✏)µ̄(n)(A)
�

 e�g
n ,

The other bound follows in similar fashion.

For now, suppose µs = ⇠ for each s 2 S(n). We relax this assumption

later.

We first provide a bound for P
�

M (n)(A)  (1� ✏)µ̄(n)(A)
�

for each

A ⇢ F (n). Then, for each k = 1, 2, . . . , n, we use union bound to obtain a

uniform bound over all sets A ⇢ F (n) such that |A| = k. The bound we

provide for P
�

M (n)(A)  (1� ✏)µ̄(n)(A)
�

is small enough so that the above

union bound is small too. Then, yet another use of the union bound would

give us the uniform result over all sets A ⇢ F (n).

Now, if the random variables

⇢

1n

A\N (n)
s

6=;
o : s 2 S(n)

�

were indepen-

dent Bernoulli(p(n)k ), then the following two concentration results would hold [42]:

Fix k 2 {1, . . . , n}. For each set A ⇢ F (n) such that |A| = k, we have

P
�

M (n)(A)  (1� ✏)µ̄(n)(A)
�

 e�
✏

2

2 mp
(n)
k , (3.4)
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and,

P
�

M (n)(A)  (1� ✏)µ̄(n)(A)
�

 e
�mH

⇣

p
(n)
k

(1�✏)||p(n)
k

⌘

, (3.5)

where H(p||q) is the KL divergence between Bernoulli(p) and Bernoulli(q)

random variables, given by

H(p||q) = p log

✓

p

q

◆

+ (1� p) log

✓

1� p

1� q

◆

.

However, in reality, since

⇢

1n

A\N (n)
s

6=;
o : s 2 S(n)

�

are negatively as-

sociated Bernoulli(p(n)k ) random variables, the above Cherno↵ bounds still ap-

ply [20].

In the sequel, we will use the following two technical lemmas. Their

proofs are provided in the Section 3.6.4.

Lemma 7. Let a sequence (gn : n 2 N) be such that gn = o(cn). Let �1 be a

positive constant independent of n such that �
1

< 1. Then, for large enough

n, we have

p(n)k � �
1

gn
n

k 8k 2
⇢

0, 1, . . . ,

�

n

gn

⌫�

.

Lemma 8. There exists a positive constant � such that H
⇣

p(n)k (1� ✏)||p(n)k

⌘

�

�� + ✏kcn
m
.

Now, let (gn : n 2 N) be a sequence such that gn , (cn log n)1/2 for

each n. The following properties of gn can be easily checked:

gn = !(log n) and gn = o(cn). (3.6)
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We now provide a uniform bound over all sets A ⇢ F (n) such that |A| = k for

each k 2 {1, . . . , n}, under following two cases.

Case 1: 0  k  n
g
n

: From Lemma 7, for each k we have

p(n)k � �
1

kgn
n

,

for a suitably chosen positive constant �
1

independent of n. In the sequel, �i

for any i � 1 will be a suitably chosen positive constant independent of n.

Using the concentration result (3.4), for |A| = k we get

P
�

M (n)(A)  (1� ✏)µ̄(n)(A)
�

 e�
✏

2

2 �1bkgn ,

and using the union bound, we get

P
⇣

9A ⇢ F (n) s.t. |A| = k and M (n)(A)  (1� ✏)µ̄(n)(A)
⌘

 e�
✏

2

2 �1bkgn

✓

n

k

◆

 e�
✏

2

2 �1bkgn+k logn  e��2kgn .

Case 2: n
g
n

< k  n: In this case, we use the concentration result (3.5). From

Lemma 8, we get

P
�

M (n)(A)  (1� ✏)µ̄(n)(A)
�

 e(�6m�✏kc
n

).

Since gn = o(cn), for n large enough we get �
6

m  (✏/2)ncn
g
n

. Also,

for each k > n
g
n

, we have (✏/2)ncn
g
n

 (✏/2)kcn. Thus, for large enough n,

�
6

m� ✏kcn  �(✏/2)kcn for each k such that n
g
n

< k  n, and consequently,

P
�

M (n)(A)  (1� ✏)µ̄(n)(A)
�

 e��7kcn
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By using the union bound, for large enough n, we get

P
�

9A ⇢ F (n) s.t. |A| = k and M (n)(A)  (1� ✏)µ̄(n)(A)
�

 e��7kcn

✓

n

k

◆

 e��7kcn+k logn  e��8kcn .

Combining the above two cases, we can show that for large enough n there

exists a positive constant �
9

such that for each k 2 {1, . . . , n} we have

P
�

9A ⇢ F (n) s.t. |A| = k and M (n)(A)  (1� ✏)µ̄(n)(A)
�

 e��9gn .

Using the union bound again, we get

P
�

9A ⇢ F (n) s.t. M (n)(A)  (1� ✏)µ̄(n)(A)
�

 ne��9gn  e��9gn+logn  e��10gn .

Now, we relax the assumption µs = ⇠ for each s 2 S(n) with Assumption 2.

The above proof can then be used to show a similar concentration result for

individual groups. The overall result follows by linearity of expectation and

yet another use of the union bound.

3.5 Delay scaling and robustness

We now combine results from Section 3.3 and Section 3.4 to exhibit

performance robustness in large content delivery systems. In Section 3.4, we

showed that large content delivery systems support symmetric polymatroid

capacity regions. This allows us to apply the performance bounds developed

in Section 3.3 for symmetric polymatroid capacity regions.

However, there is one more hurdle to overcome before we can apply

our bounds from Section 3.3. Recall, from Corollary 4, under Assumptions 2
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and 3 the random capacity region for content delivery systems contain and are

contained by symmetric polymatroids with high probability. The realizations

of the random capacity region, themselves, may still not be symmetric. We

thus need to show that if the capacity region is bigger then the corresponding

mean delay is smaller when subject to the same load.

Intuitively, larger capacity regions may imply larger service rates for

each class, and may thus provide better performance. Although intuitively

obvious, such results are not always straightforward. We show below that

such a comparison result indeed holds under certain monotonicity conditions

for rate allocations. Consider the following monotonicity condition.

Definition 4 (Monotonicity w.r.t. capacity region). We say that a rate allo-

cation satisfies monotonicity w.r.t. capacity region if for any state x, the rate

allocation per class for a system with a larger capacity region dominates that

with a smaller one.

Further, recall per-job rate monotonicity defined in Section 3.3.2, where

the rate allocated to each job ( viz., r
i

(x)

x
i

for jobs in class i) only decreases

when an additional job is added into the system. The following lemma can be

shown to hold through a simple coupling argument across jobs for arbitrary

polymatroid capacity regions.

Lemma 9. Consider systems with arbitrary polymatroid capacity regions C

and C̃ such that C ⇢ C̃. Consider a rate allocation which satisfies monotonicity
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w.r.t. capacity region as well as per-job rate monotonicity. Then, the mean de-

lay for capacity region C under arbitrary load ⇢ upper bounds that for capacity

region C̃ under the same load.

It is easy to check that ↵-fair rate allocation satisfies per-job rate mono-

tonicity as well as monotonicity w.r.t. capacity region. Thus, Lemma 9 holds

for ↵-fair rate allocation. However, one can show that Greedy rate allocation

may not satisfy either property for arbitrary polymatroid capacity regions.

This further highlights the brittleness of Greedy rate allocation to asymme-

tries. Even for Balanced fair rate allocation it is not directly clear if the lemma

holds. Thus, henceforth we will only consider ↵-fair rate allocation.

Now we are indeed ready with all the tools required to exhibit robust-

ness in large scale systems.

Assumption 4 (Load Heterogeneity). We consider a sequence of systems

where load ⇢(n) for each n is allowed to be within a set B(n) defined as fol-

lows: Consider a sequence (✓n : n 2 N) such that ✓n = !(1), ✓n = o( n
logn

), and

✓n = o(cn). Also, fix a constant � < 1 independent of n. For each n:

B(n) ,
⇢

⇢ : max
i2F (n)

⇢i  ✓n and |⇢|  �⇠m

�

.

The condition |⇢|  �⇠m implies that we allow load to increase linearly

with system size. Also, since ✓n = !(1), the condition maxi ⇢i  ✓n implies that

we allow load across servers to be increasingly heterogeneous. The condition

✓n = o( n
logn

) limits the heterogeneity allowed in the system. Further, the
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condition ✓n = o(cn) would allow us to claim stability, and to show that the

mean delay of the system tends to 0 as n increases.

The following is the main result of this section.

Theorem 9. Consider a sequence of systems with n files F (n) and m = dbne

servers S(n), where b is a constant. For each n, let the total service capacity

of servers be ⇠m, where ⇠ is independent of n. S(n) is partitioned into a finite

number of heterogeneous groups, each with ⌦(n) servers and equal per-server

capacity. Let (cn : n 2 N) be a sequence such that cn = !(log n). We allow cn

copies of each file to be placed across the servers.

Let the service requirement of jobs be exponentially distributed with

mean ⌫, where ⌫ is independent of n. Let (✓n : n 2 N) be a sequence

such that ✓n = !(1), but o
⇣

min( n
logn

, cn)
⌘

. Fix a constant � < 1. Let

B(n) = {⇢ : maxi ⇢i  ✓n and |⇢|  �⇠m}. For each n, let load across file

classes be ⇢(n) 2 B(n).

Fix a constant � > 1. Then, there exists an integer n� such that for each

n � n� the following holds: there exists at least one file placement policy such

that the mean delay for file-download jobs with ↵-fair rate allocation satisfies

the following bound:

E[D(n)]  �
⌫✓n
⇠cn

1

�
log

✓

1

1� �

◆

.

Further, for each n � n�, if the cn copies of each file are stored uniformly at

random across servers, then the above bound holds with high probability.
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3.5.1 Proof of Theorem 9

We first show the existence of a file placement policy such that the

mean delay bound is satisfied. Without loss of generality, assume � < 1

�
.

From Corollary 4, and definitions of C̄(n) and µ̄(n)(.), for large enough

n there exists a file placement such that the corresponding capacity region

contains the following symmetric polymatroid:

C̃(n) ,
(

r � 0 :
X

i2A

ri  h(n)(|A|), 8A ⇢ F (n)

)

,

where

h(n)(k) , (1/�)⇠m
⇣

1� e�
kc

n

m

⌘

8k = 0, 1, . . . , n.

Thus, from Lemma 9, for ↵-fair rate allocations it is su�cient to consider

C̃(n). Further, since C̃(n) is monotonic in cn, it is su�cient to assume that

cn = o( n
logn

) since, if it is not, we can set cn to be equal to
q

n
logn

✓n and all

the assumptions still hold. Thus, henceforth we assume that

cn = o(
n

log n
).

Let ⇠0 , ⇠/�. Thus, we get

h(n)(k) = ⇠0m
⇣

1� e�
kc

n

m

⌘

8k = 0, 1, . . . , n.

Since �⇠m < ⇠0m and ✓n = o(cn), one can check that B(n) is a subset of C̃(n)

for large enough n, and we get stability.

Let tn ,
l

�⇠0m
✓
n

m

. Let A(n) be an arbitrary subset of F (n) such that

|A(n)| = tn. Let ⇢̂(n) = (⇢̂(n)i : i 2 F (n)) where ⇢̂(n)i = ✓n if i 2 A(n) and 0
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otherwise. Then, it is easy to show that for each n, we have

B(n) ⇢
n

⇢ : ⇢ �w ⇢̂(n)
o

.

Thus, from Theorem 7, it is su�cient to show that the bound on mean

delay holds for balanced fair rate allocation under load ⇢(n) = ⇢̂(n).

Henceforth, we assume BF rate allocation and let load ⇢(n) = ⇢̂(n). For

each n, we invoke Corollary 1 with ⇢ replaced by ✓n and n replaced by tn,

where for each k = 0, 1, . . . , tn we let1

⇡(n)
k , Fk(✓n)

F (✓n)
, and ⌧ (n)k , F̂k(✓n)

F (✓n)
.

Then, we have

E[D(n)] = ⌫
t
n

X

k=1

k

tn
⌧ (n)k . (3.7)

Also, we have ⌧ (n)
0

= 0, ⇡(n)
0

= 1/F (✓n), and for each k = 1, . . . , tn we have

⇡(n)
k =

(tn � k + 1)✓n
h(n)(k)� k✓n

⇡(n)
k�1

, (3.8)

and

⌧ (n)k =
⇡(n)
k + t

n

�k+1

k
⇡(n)
k�1

+ (t
n

�k+1)(k�1)

k
✓n⌧

(n)
k�1

h(n)(k)� k✓n
. (3.9)

First, we show the following result.

1If ⇡(n)(x) stationary distribution of the queue length process for the nth system, then

⇡(n)
k has the following interpretation: ⇡(n)

k =
P

x:|A
x

|=k ⇡
(n)(x) for k = 1, . . . , tn.
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Theorem 10. For any positive constants ✏ > 1 and ✏0 < 1 independent of n,

there exists a constant �0 < 1 such that for large enough n we have

✏b log( 1
1��

)

n

c

n

X

k=✏0b log( 1
1��

)

n

c

n

⇡(n)
k � 1� �0

m

c

n . (3.10)

Proof. Fix a constant �
11

independent of n such that 0 < �
11

< 1. Let

k(n)
# =

m

cn
log

✓

1

1� ��
11

◆

.

Then, we have h(n)(k#) = ��
11

⇠0m. In fact, we have h(n)(k)  ��
11

⇠0m, 8k 

k(n)
# . Using (3.8), for each k  k(n)

# , we have

⇡(n)
k � (tn � k + 1)✓n

��
11

⇠0m� k✓n
⇡(n)
k�1

�
tn✓n � (k(n)

# � 1)✓n

��
11

⇠0m
⇡(n)
k�1

=
�⇠0m� o(n)

��
11

⇠0m
⇡(n)
k�1

� 1

�
12

⇡(n)
k�1

,

for a positive constant �
12

such that �
11

< �
12

< 1, and large enough n.

Equivalently, ⇡(n)
k  �

12

⇡(n)
k+1

8k < k(n)
# . Fix a positive constant ✏

1

< 1. Then,

for all k < ✏
1

k(n)
# , we have

⇡(n)
k  �

(1�✏1)k
(n)
#

12

⇡(n)

k
(n)
#
.

Now, fix a constant �
13

independent of n such that � < �
13

< 1 and let

k(n)
" =

m

cn
log

✓

1

1� �/�
13

◆

.

Then, for all k � k(n)
" , we have h(n)(k) � �⇠0m/�

13

. Now, for large enough

n, �⇠0m/�
13

� �⇠0m + ✓n � (tn + 1)✓n. Thus, for large enough n, we have

h(n)(k)� k✓n � (tn � k + 1)✓n 8k � k(n)
" , or equivalently from (3.8),

⇡(n)
k  ⇡(n)

k�1

8k � k(n)
" . (3.11)
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In fact, for a fixed positive constant ✏
2

> 1, for all k such that k(n)
"  k  ✏

2

k(n)
"

we have

⇡(n)
k  (tn � k + 1)✓n

�⇠0m/�
13

� k✓n
⇡(n)
k�1

 tn✓n

�⇠0m/�
13

� ✏
2

k(n)
" ✓n

⇡(n)
k�1

 �⇠0m

�⇠0m/�
13

� o(n)
⇡(n)
k�1

 �
14

⇡(n)
k�1

,

for a positive constant �
14

such that �
13

< �
14

< 1, and large enough n. Thus,

⇡(n)

✏2k
(n)
"

 �
(✏2�1)k

(n)
"

14

⇡(n)

k
(n)
"

for large enough n. Further, using (3.11) we get

⇡(n)
k  �

(✏2�1)k
(n)
"

14

⇡(n)

k
(n)
"

8k > ✏
2

k(n)
"

Thus, we get

1 =
t
n

X

k=0

⇡(n)
k =

✏1k
(n)
# �1

X

k=0

⇡k +

✏2k
(n)
"

X

k=✏1k
(n)
#

⇡(n)
k +

t
n

X

✏2k
(n)
" +1

⇡(n)
k

 (✏
1

k(n)
# )�

(1�✏1)k
(n)
#

12

+

✏2k
(n)
"

X

k=✏1k
(n)
#

⇡(n)
k +

⇣

tn � ✏
2

k(n)
"

⌘

�
(✏2�1)k

(n)
"

14

 n�
(1�✏1)k

(n)
#

12

+ n�
(✏2�1)k

(n)
"

14

+

✏2k
(n)
"

X

k=✏1k
(n)
#

⇡(n)
k

= �
�15

m

c

n

�log

�12
n

12

+ �
�17

m

c

n

�log

�14
n

14

+

✏2k
(n)
"

X

k=✏1k
(n)
#

⇡(n)
k ,

for suitably chosen positive constants �
15

, and �
17

. Thus, the theorem follows

by noting that ✏
1

, ✏
2

, �
11

, and �
13

can be chosen arbitrarily close to 1.

We now use (3.9) to provide a slightly simpler bound on ⌧ (n)k .
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Lemma 10. For large enough n, we get,

⌧ (n)k  (tn � k + 1)✓n
h(n)(k)� k✓n

✓

1

k
⇡(n)
k�1

+
k � 1

k
⌧ (n)k�1

◆

,

for each k = 1, . . . , tn.

Proof. Using (3.8) in (3.9), we get

⌧ (n)k =

0

B

B

@

(tn � k + 1)✓n
h(n)(k)� k✓n

⇡(n)
k�1

+
tn � k + 1

k
⇡(n)
k�1

+
(tn � k + 1)(k � 1)

k
✓n⌧

(n)
k�1

1

C

C

A

h(n)(k)� k✓n

=
(tn � k + 1)✓n
h(n)(k)� k✓n

 

✓

1

h(n)(k)� k✓n
+

1

k✓n

◆

⇡(n)
k�1

+
k � 1

k
⌧ (n)k�1

!

.

Now, we have the lemma if we show that for large enough n the following

holds:
⇣

1

h(n)
(k)�k✓

n

+ 1

k✓
n

⌘

 1

k
for each k = 1, . . . , tn. This can be shown as

follows.

One can show that Lemma 7 holds even when p(n)k = 1� e�
kc

n

m . Using

gn = ✓
n

�⇠0b , we get h(n)(k) = ⇠0bnp(n)k � �20
�
k✓n for large enough n and some

constant �
20

such that � < �
20

< 1. Thus, (h(n)(k)� k✓n) � ( �20
�

� 1)k✓n. For

large enough n, ( �20
�
� 1)✓n � 2, and thus, (h(n)(k)� k✓n) � 2k. Similarly, for

large enough n, k✓n � 2k. Hence the lemma.

Following lemma provides an even simpler bound on ⌧ (n)k .

Lemma 11. For large enough n, we get,

⌧ (n)k  ⇡(n)
k
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for each k 2 {1, . . . , tn}.

Proof. Fix n large enough such that the bound in Lemma 10 holds. We prove

the result using induction on k. Consider the base case of k = 1. From

Lemma 10 and (3.8) we have

⌧ (n)
1

 (tn � 1 + 1)✓n
h(n)(1)� ✓n

⇡(n)
0

= ⇡(n)
1

.

Now, let us assume that the lemma holds for k = k0 � 1, i.e., ⌧ (n)k0�1

 ⇡(n)
k0�1

.

Using this, we show below that the lemma holds for k = k0 as well.

From Lemma 10 and induction hypothesis we have

⌧ (n)k0  (tn � k0 + 1)✓n
h(n)(k0)� k0✓n

✓

1

k0⇡
(n)
k0�1

+
k0 � 1

k0 ⇡(n)
k0�1

◆

= ⇡(n)
k0 ,

where the last equality follows from (3.8). Hence, the lemma.

Using above lemma and (3.7), we get

E[D(n)]  ⌫
t
n

X

k=1

k

tn
⇡(n)
k .

Or equivalently,

1

⌫
E[D(n)] =

✏b log( 1
1��

)

n

c

n

X

k=1

k

tn
⇡(n)
k +

t
n

X

k=✏0b log( 1
1��

)

n

c

n

+1

k

tn
⇡(n)
k .

We now use Theorem 10 to prove the main result. From Theorem 10, we have

1

⌫
E[D(n)] 

✏b log( 1
1��

)

n

c

n

X

k=1

k

tn
⇡(n)
k + �0

m

c

n
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 ✏b log

✓

1

1� �

◆

n

cntn

✏b log( 1
1��

)

n

c

n

X

k=1

⇡(n)
k + �0

m

c

n

 ✏ log

✓

1

1� �

◆

✓n
�⇠0cn

+ �0
m

c

n ,

where in last inequality we used definition of tn. The first part of the theorem

thus follows from definition of ⇠0, and the fact that ✏ and �0 where chosen

arbitrarily.

Further, from Corollary 4, upon randomly placing cn copies of each

file, the associated random capacity region contains C̃(n) with high probability.

Hence, the second part follows as well.

3.6 Appendix

3.6.1 Equivalence of ↵-fair resource allocation policies

Clearly, for any ↵, ↵-fair resource allocations r(x) are Pareto e�cient,

i.e., for any state x, there does not exist an r0 2 C such that r0i � ri(x), 8i 2 A
x

with a strict inequality for at least one i 2 A
x

. Due to the existence of

dominant face D = {r 2 C :
P

i2F ri = µ(F )}, ↵-fair resource allocation over

capacity region C is equivalent to that over region D.

We will show that ↵-fair resource allocations for any ↵ 2 (0,1)\{1}

are equivalent to Max-Min Fair (MMF) resource allocations. The result then

follows immediately for ↵ = 1 as well since it is equivalent to the limiting

↵-fair allocation as ↵ ! 1.

Fix an ↵ 2 (0,1)\{1}. Without loss of generality, consider a state x
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such that A
x

= F . Consider the corresponding set of flows qF . It is easy to

show that an ↵-fair resource allocation over D is equivalent to assigning rates

(bu : u 2 qF ) as given by the unique solution to the following optimization

problem:

maximize sign(1� ↵)
X

u2q
F

b̂1�↵
u

subject to
X

u2q
A

b̂u  µ(A), 8A ⇢ F

X

u2q
F

b̂u = µ(F )

b̂u � 0, 8u 2 qF

The objective function for the above problem is strictly concave, and

thus Schur-concave, in (b̂u : u 2 qF ) [32, 38].

Now, suppose (bu : u 2 qF ) is not max-min fair. Then, there exist flows

u and v and a constant ✏ > 0 such that bv � bu and by increasing the rate of

the flow u by ✏ and decreasing that of flow v by ✏ the feasibility for the above

problem is not lost. However, due to Schur-concavity, this operation only

increases the value of the objective function which contradicts with optimality

and uniqueness of (bu : u 2 qF ). Thus, (bu : u 2 qF ) is max-min fair, and

↵-fair policy is equivalent to MMF.
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3.6.2 Relative greediness and other resource allocation properties

Below, we provide a proof of Lemma 5 which asserts that ↵F is more

greedy than BF. Along the way, we develop several other properties of the

resource allocation policies.

Proof of Lemma 5 stems from the Properties (1) and (2) below on

per-job rate assignment for ↵F and BF.

1.) ↵F gives the most balanced per-job resource allocation: This prop-

erty follows from the fact that ↵F is equivalent to max-min fair resource allo-

cation, see Proposition 2. Formally,

Lemma 12. Let b↵ represent a vector of rates assigned to a set of flows

under ↵F resource allocation. Let b̃ be the rates assigned to the same set of

flows under any other feasible resource allocation. Then, b↵ �w b̃, i.e., weak

majorized from above.

Proof. Let the set of flows be qA
x

. It is easy to show that b↵ is the unique

solution to the following optimization problem:

maximize sign(1� ↵)
X

u2q
A

x

b̂1�↵
u

subject to
X

u2q
A

b̂u  µ(A), 8A ⇢ A
x

b̂u � 0, 8u 2 qF

Also, since b̃ is feasible, it satisfies the constraints of the above problem. The

result then follows by noting that the objective function of the above problem

is monotonic and Schur-Concave in (b̂u : u 2 qA
x

) [32, 38].
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2.) In ↵F and BF, longest queues have smallest per-job rates: For ↵F,

this property again follows from the fact that it is equivalent to max-min fair,

and that the capacity region is convex and symmetric. For BF, the proof for

this property is technical and we omit its discussion here for brevity. Formally,

Lemma 13. ↵F and BF resource allocations satisfy the following property

for any state x: if xi > xj then r
i

(x)

x
i

 r
j

(x)

x
j

.

Proof. Below, we prove the lemma for ↵F resource allocation. For a proof of

this lemma for BF resource allocation, see Section 3.6.3.

Let b↵ = (b↵u : u 2 qA
x

) represent the rates assigned to ongoing flows

under ↵F resource allocation in state x. Suppose xi > xj, but
r↵
i

(x)

x
i

>
r↵
j

(x)

x
j

.

Then, then for each u0 2 qi and v0 2 qj, we have b↵u0 > b↵v0 . Let b̃ = (b̃u :

u 2 qA
x

) where b̃u = b↵u for each u 2 qA
x

\{i,j} and b̃u =
r↵
i

(x)+r↵
j

(x)

x
i

+x
j

for each

u 2 q{i,j}. It can be checked that b̃u is feasible and that b̃ �w b↵. This

contradicts Lemma 12. Hence the result.

Now, let us study what the above properties imply for per-class re-

source allocation. Consider a state x. Lemma 13 above implies that the most

disadvantaged jobs are the ones which belong to longest queues for both, BF

and ↵F. This, along with Lemma 13, implies that ↵F provides larger rate to

longest queues. Thus we get the following property.

3.) ↵F provides larger rate to longest queues compared to BF: Formally,

this property can be stated as follows:
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Lemma 14. For any state x,
Pk

l=1

r↵
(l)(x) �

Pk
l=1

rB
(l)(x) for each k 2

{1, 2, . . . , n}.

Proof. Let u
1

, u
2

, . . . , ux[1]
be the flows in the class corresponding to x

[1]

. Sim-

ilarly, for each k 2 {2, . . . , n}, let uP

k�1
l=1 x[l]+1

, . . . , uP

k

l=1 x[l]
be the flows in the

class corresponding to x
[k]. From Lemma 13, under both BF and ↵F resource

allocation we have bu1  bu2  . . .  bu|x| . Thus, it is enough to show that

b↵ �w bB. However, this follows from Lemma 12.

Now, we focus on ↵F and study how it allocates rates across classes for

states x and y such that x � y. Intuitively, jobs in longer queues in state y are

more constrained than those in x. Again using the fact that ↵F is equivalent

to max-min fair, the most constrained jobs in state y have smaller rate than

those in state x. By monotonicity of ↵F, this holds even when x �w y. When

translated to per-class resource allocation in states x and y, this argument

leads us to the following property:

4.) ↵F provides larger rate to longer queues in more balanced states: For-

mally, this property can be stated as follows:

Lemma 15. Consider states x and y such that x �w y. For each k such

that
Pk

l=1

x
[l] =

Pk
l=1

y
[l], we have

Pk
l=1

r↵
(l)(x) �

Pk
l=1

r↵
(l)(y).

Proof. Due to monotonicity of r↵(y) with respect to components of y, it

is enough to show the result for the case where x � y. Assume, x � y.
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Let u
1

, u
2

, . . . , ux[1]
be the flows in the class corresponding to x

[1]

. Simi-

larly, let uP

k�1
l=1 x[l]+1

, . . . , uP

k

l=1 x[l]
be the flows in the class corresponding to

x
[k] for each k 2 {2, . . . , n}. Let the corresponding rates assigned to flows

under ↵F resource allocation be given by b(x). Using Lemma 13, we have

bu1  bu2  . . .  bu|x| . Similarly, let v
1

, v
2

, . . . , v|y| be the flows corresponding

to state y and construct the corresponding b(y).

One can check that b̃(x) = (b̃(x)u
k

: k 2 {1, 2, . . . , |x|), where b̃(x)u
k

= b(y)v
k

for each k  |x|, is feasible under state x as well. Thus, from Lemma 12, we

have b(x) �w b̃(x). From this, the result follows.

Finally, we are ready to study relative greediness of ↵F and BF.

5.) ↵F is more greedy than BF: We now prove Lemma 5. Consider

states x and y such that x �w y. From Lemma 15 we have
Pk

l=1

r↵
(l)(x) �

Pk
l=1

r↵
(l)(y), and from Lemma 14 we have

Pk
l=1

r↵
(l)(y) �

Pk
l=1

rB
(l)(y). Hence,

Lemma 5 holds.

3.6.3 In BF, longest queues have smallest per-job rates

Lemma 16. For any state x, if xi > xj then rB
i

(x)

x
i

 rB
j

(x)

x
j

.

Proof. Using definition of balanced fairness, we have rB
i

(x)

rB
j

(x)

= �(x�e

i

)

�(x�e

j

)

. Thus, we

need to show that �(x�e

i

)

�(x�e

j

)

 x
i

x
j

. It is thus su�cient to prove that �(x+e

i

)

�(x+e

j

)

� x
j

+1

x
i

+1

holds for each x since the result follows when x is replaced with x� ei � ej.

We show below that �(x+e

i

)

�(x+e

j

)

� x
j

+1

x
i

+1

holds for each x.
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Fix i, j 2 F . By symmetry of balanced fairness and the capacity region,

the result holds for each x such that xi = xj. We show that the result holds

for each x such that xi � xj using induction on |x|. We will use the following

recursive expression for �(.) which we get from definition of balanced fair and

Proposition 2: For each state x we have,

�(x) =

P

i02A
x

�(x� ei0)

µ(A
x

)
. (3.12)

The result clearly holds for the base case of |x| = 0. Assume that the result

holds for all states x0 such that |x0| < |x|. We prove that the result holds for

the state x under each of the following two possible cases for x:

Case 1 A
x+e

i

( A
x+e

j

: This case is possible only if xi > 0 and xj = 0. Thus,

µ(A
x+e

i

)  µ(A
x+e

j

). Using (3.12), we get

�(x+ ei)

�(x+ ej)
�

�(x) +
P

i02A
x

\{i}�(x+ ei � ei0)

�(x) + �(x+ ej � ei) +
P

i02A
x

\{i}�(x+ ej � ei0)
.

Using induction hypothesis, we have �(x+e

i

�e

i

0 )
�(x+e

j

�e

i

0 )
� x

j

+1

x
i

+1

for each i0 2 A
x

\{i}.

Thus, using the fact that a1+a2
b1+b2

� x
y
if a

k

b
k

� x
y
for each k 2 {1, 2}, the result

follows if we show that �(x)

�(x)+�(x+e

j

�e

i

)

� x
j

+1

x
i

+1

. This in turn follows since xj = 0

and �(x)

�(x+e

j

�e

i

)

� 1

x
i

holds by induction hypothesis.

Case 2 A
x+e

i

= A
x+e

j

: Again using (3.12), we get

�(x+ ei)

�(x+ ej)
=
�(x) + �(x+ ei � ej) +

P

i02A
x

\{i,j}�(x+ ei � ei0)

�(x) + �(x+ ej � ei) +
P

i02A
x

\{i,j}�(x+ ej � ei0)
.

Again, using induction hypothesis we �(x+e

i

�e

i

0 )
�(x+e

j

�e

i

0 )
� x

j

+1

x
i

+1

for each i0 2

A
x

\{i, j}. Thus, we only need to show that �(x)+�(x+e

i

�e

j

)

�(x)+�(x+e

j

�e

i

)

� x
j

+1

x
i

+1

. We show

this below.
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By induction hypothesis, we have �(x+e

i

�e

j

)

�(x)

� x
j

x
i

+1

and �(x)

�(x+e

j

�e

i

)

�
x
j

+1

x
i

. Thus, we get

�(x) + �(x+ ei � ej)

�(x) + �(x+ ej � ei)
=

1 + �(x+e

i

�e

j

)

�(x)

1 + �(x+e

j

�e

i

)

�(x)

�
1 + x

j

x
i

+1

1 + x
j

+1

x
i

=
xj + 1

xi + 1
.

Hence, the result.

3.6.4 Technical Lemmas for proof of Theorem 8

Lemma 7. Let a sequence (gn : n 2 N) be such that gn = o(cn). Let

�
1

be a positive constant independent of n such that �
1

< 1. Then, for large

enough n, we have

p(n)k � �
1

gn
n

k 8k 2
⇢

0, 1, . . . ,

�

n

gn

⌫�

.

Proof. Consider a sequence of functions
�

f (n)(.)
�

n�1

where for each n, f (n)(t) =

1� (1� 1/(bn))tcn for each t 2 R
+

. Then,

f (n) (n/gn) = 1� (1� 1/(bn))
nc

n

g

n

n!1�! 1.

Thus, there exists an integer n0 such that f (n) (n/gn) � �
1

for all n � n0.

Also, f (n)(0) = 0 for each n. Using concavity of f (n)(.), for each n � n0 we

have

f (n) (t) � f (n) (n/gn)

(n/gn)
t, 8t s.t. 0  t  n/gn.

Hence, the lemma.

100



Lemma 8. There exists a positive constant � such thatH
⇣

p(n)k (1� ✏)||p(n)k

⌘

�

�� + ✏kcn
m
.

Proof. From definition,

H
⇣

p(n)k (1� ✏)||p(n)k

⌘

= p(n)k (1�✏) log(1�✏)+(1�p(n)k (1�✏)) log

 

1� p(n)k (1� ✏)

1� p(n)k

!

Here, the term p(n)k (1�✏) log(1�✏), while negative, is greater than (1�✏) log(1�

✏), a constant. Similarly, the term (1 � p(n)k (1 � ✏)) log
⇣

1� p(n)k (1� ✏)
⌘

is

negative, but can be upper-bounded by a constant as follows:

(1�p(n)k (1�✏)) log
⇣

1� p(n)k (1� ✏)
⌘

� log
⇣

1� p(n)k (1� ✏)
⌘

� log(1�(1�✏)) = log ✏

Thus, we have

H
⇣

p(n)k (1� ✏)||p(n)k

⌘

� �� + (1� p(n)k (1� ✏)) log

 

1

1� p(n)k

!

� �� + (1� (1� ✏)) log

 

1

1� p(n)k

!

= �� + ✏ log

 

1

1� p(n)k

!

� �� + ✏
kcn
m

,

where in the last inequality we used the fact that 1� p(n)k  e�
kc

n

m .
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Chapter 4

Impact of Splitting Files and Parallelism
Constraints

In our previous chapters, we assumed the following: if c servers are

pooled to serve a file-download request, each of those c servers already has a

replica of the entire file. Thus, while delays scale as 1/c, the memory require-

ment scales linearly with c. Can one improve this tradeo↵? As we will see

below, it is indeed possible to consider increasingly larger server pools without

scaling memory requirement, but the maximum server pool size may be lim-

ited by system imposed parallelism constraints. This is achieved via splitting

files in smaller blocks before replicating them on di↵erent servers. The goal of

this chapter is to exposit the role of memory and parallelism constraints on

delays.

4.1 Related work

Splitting files before replication is a common technique used in dis-

tributed content delivery systems such as P2P networks [15, 23, 61, 65, 66].

In P2P systems users collectively share content via the Internet. As men-

tioned earlier, our focus is on a centralized infrastructure aimed at serving

102



large files very quickly. Unlike P2P networks, our system consists of dedicated

and collocated servers which operate at all times, thus files are always avail-

able. Further, while user arrivals and departures are dynamic in both systems,

the file-server association is static in our system. In this chapter we use split-

ting as an approach to reduce memory requirements over replication of whole

files, while still achieving resource pooling benefits in centralized systems.

4.2 Memory vs. performance tradeo↵

Let us first recall some of the key insights developed from performance

comparison results in Section 2.5. Using NP-BF resource allocation policy,

where non-overlapping server pools of size c where created, we observed that

the delays scale as 1/c. Then, by allowing server pools to overlap and using

an appropriate load balancing strategy, as in RP-BF policy, we observed that

the mean delay can be significantly reduced while maintaining the inverse

relationship of delays with respect to c.

For simplicity, let us first explore the tradeo↵ between memory and

delays for the simpler NP-BF policy. For completeness, let us summarize the

NP-BF policy considered in Section 2.5. The system consists of n files and m

servers, with peak service rate for each server being ⇠. We divide the server

set into m/c groups, each of size c. Each file is replicated across c servers

belonging to a single group, where each group stores nc/m number of files.

Thus, we create m/c independent server pools.

If arrival rates are symmetric (�i = �m/n for each class i) and so
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are mean service requirements (⌫i = ⌫ for each i), then the dynamics for

each server pool can be modeled as an independent M/GI/1 queue with load

⇢c = �⌫c and service capacity ⇠c. If the jobs per server pool are served

via processor sharing discipline (equivalently, Balanced Fairness for M/GI/1

queues), then the mean delay in serving a job is given as:

E[D] =
⌫

c⇠(1� ⇢/⇠)
.

Thus, delays scale as 1/c. Further, suppose that each file requires

one unit of storage at a server where it is replicated. Then, the memory

requirement per server is nc/m. Thus, memory requirement scales linearly

with c.

Now, consider the following modification to NP-BF:

NP-BF-Split: Split each file into c equal blocks. Each file is associated with

a single group of c servers as in NP-BF, but the file-placement is modified as

follows: each block of the file is stored on a unique server within the group.

Thus, each server stores 1/cth fraction of a file. The memory requirement

per server reduces to n/m. Further, since the server pools are independent,

processor sharing of jobs is feasible and the mean delay in serving a job is same

as that for NP-BF. Thus, job delays scale as 1/c but memory requirement is

independent of c.

Thus, when the servers pools are non-overlapping, one need not tradeo↵

memory for improvement in performance by increasing the size of resource

pools c. Note, however, some systems might impose a parallelism constraint
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which limits the maximum number of servers one can use in parallel. Thus,

one may not increase c arbitrarily.

The above tradeo↵ reflects the impact of splitting a file into multiple

blocks when the server pools are non-overlapping. In the next section we

explore the gains of splitting when server pools overlap.

4.3 Gains of splitting files under overlapping server pools

We have showed that for a system with non-overlapping server pools

the gains of splitting files before replication are significant, in that achieving

scalable delays does not require scaling of memory requirements. Further,

as we showed in Section 2.5 using the RP-BF policy and allowing the server

pools to overlap enables better load balancing across the server pools leading

to significantly lower mean delays. Can we simultaneously achieve the gains

of overlapping pools and of splitting files?

A challenge towards achieving this is following: the load balancing

associated with RP-BF required the flexibility that a chunk for a file may be

downloaded from an arbitrary server. However, splitting of files into blocks and

storing them on di↵erent servers in a pool reduces the flexibility in fetching a

file chunk, in that it may be downloaded from servers which store the associated

blocks.

Below, we provide a policy which accounts for this reduced flexibility

and yet achieves load-balancing gains.
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n Files m Servers

Group 1

Group 2

Group m/d

Figure 4.1: Creating server groups for block replication in RP-BF-Split

RP-BF-Split: Consider a system with n files and m servers, with

peak service rate for each server being ⇠. Split each file i 2 F (n) into d

blocks of equal size, namely, i(1), i(2), . . . , i(d). Divide the server set into m/d

groups, each of size d. For each 1  l  m/d, label servers in the lth group

by s(l,1), s(l,1), . . . , s(l,d). Replicate blocks of files across di↵erent servers as

follows (see Fig. 4.1). For each file i, choose c groups of servers at ran-

dom. If the groups chosen are l
1

, l
2

, . . . , lc then replicate block i(k) into servers

s(l1,k), s(l2,k), . . . , s(lc,k).

Thus, each group of server stores the same set of files. We shall co-

ordinate the service a job receives from a group as follows: a job u receives

equal service rate bu,s from each server in a group. Thus, each server group

essentially behaves like a single server with peak service rate d⇠. Thus, for a

given realization of random group selections, the capacity region is a (possibly

asymmetric) polymatroid.

Now let us study the delay vs. memory tradeo↵ achieved by RP-BF-
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Split. Suppose that each file requires one unit of storage. Since c copies of

each file are stored in the system, the memory requirement per server is nc/m.

Below we provide an asymptotic analysis to obtain mean delay scaling for such

a system.

To account for the random group selection, we shall use an approach

similar to that developed in Section 2.4.1 and study asymptotic performance

under the ‘averaged capacity region’ which is symmetric and hence simplifies

analysis. For a system with n files and m servers, the associated averaged rank

function is given by µ̄(m,n)(A) = h(m,n)(|A|) for each A ⇢ F (n) where

h(m,n)(k) = ⇠m(1� (1� cd/m)k) for k = 0, 1, . . . , n. (4.1)

This follows since the probability that none of A’s element files is stored at a

group is (1 � cd/m)k, so m
d
(1 � (1 � cd/m)k) is the mean number of groups

that can serve at least one file in A.

Note that, in the RP-BF-Split, resources of cd servers are pooled to

serve a job, which thus receives the maximum service rate equal to ⇠cd if no

other job exists in the system.

Along the lines of Theorem 4, one can show the following result:

Theorem 11. Consider a sequence of (m,n) averaged RP-BF-Split systems

with symmetric polymatroid capacity region with rank function as µ̄(m,n)(A) =

h(m,n)(|A|) for each A ⇢ F (n) where h(m,n)(k) = ⇠m(1� (1� cd/m)k) for k =

0, 1, . . . , n. Let the load across files be symmetric with ⇢(m,n)
i = m⇢/n for each
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file i where ⇢ = �⌫ < ⇠. Then, the expected delay satisfies:

lim
m!1

lim
n!1

E[D(m,n)] =
1

�cd
log

✓

1

1� ⇢/⇠

◆

. (4.2)

The above result shows that the mean delays scale as 1

cd
. Recall, mem-

ory requirement scales linearly in c and is independent of d. If the system is

subject to a constraint that server pools be no larger than �, what values of

c and d should be chosen? To gain maximum advantages of resource pooling

and load balancing while minimizing memory requirement, one may choose

cd to be equal (or as close as possible) to � while choosing c to be as low as

possible.

To be able to achieve load balancing gains under RP-BF-Split, one

needs to replicate the blocks of each file over at least 2 server groups for server

diversity. Thus, under parallelism constraints, memory vs. delay tradeo↵ is

optimized by choosing c = 2 and d = �/2.

Thus, in RP-BF-Split, each file has at least two replicas in the system.

Contrast this with NP-BF-Split where each file is replicated only once. A

question arises as to whether one can further reduce the memory requirement

under RP-BF-Split while still achieving load balancing gains. This is equiv-

alent to asking the following question: does one need server diversity of 2 in

order to achieve load balancing gains in systems employing resource pooling?

A recent paper [63] for a di↵erent setting in which load balancing is done

via a distributed routing policy suggests that one may only need a diversity

of value ‘slightly greater than one’ in order to achieve load balancing gains.
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To achieve such a fractional diversity for content delivery systems employing

pooling of servers, one needs a ‘fractional’ replication strategy. A fractional

replication strategy can be achieved via network coding for storage systems [18]

where d blocks of a file are converted into d0 > d number of encoded blocks

which are then stored across d0 di↵erent servers. The original file (or a block

from a file) can be recovered by accessing any d of the d0 encoded blocks.

Such codes have been used to improve reliability against server failures

[18]. Further, network coding has also been used to improve performance in

distributed content delivery systems such as P2P networks [23, 66]. However,

their role in achieving load balancing gains in centralized content delivery

systems via fractional diversity in server choices is an interesting open problem.
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Chapter 5

Concentration in Servers’ Activity and Impact
of Bottlenecks

An important problem in engineering large scale content delivery sys-

tems is the optimization and e�cient use of resource bottlenecks. The design

of such systems is made complex by the dynamic characteristics of service

demands, which include stochastic arrivals of user requests/jobs, diversity in

demand types, and random service requirements.

System designers often adopt a pessimistic approach towards resource

allocation, in that, they aim for acceptable user-performance under extreme or

even worst-case scenarios. However, such extreme scenarios may be unlikely

(or may be made unlikely) and a pessimistic design may result in overprovi-

sioning. A basic question in this setting is: For what system configurations

and demand characteristics can we be optimistic in provisioning resources?

This chapter has four key messages which we discuss below. The first

message: concentration in servers’ activity facilitates resource provisioning.

As systems become large and service types become more diverse such that

no single service dominates resource usage, the load across individual servers

becomes increasingly uncorrelated. This may in turn result in concentration
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of servers’ activity, i.e., the distribution of the number of active servers is

concentrated around its mean. Such a result enables one to provision for the

peak power capacity to be close to the average power requirement without a

significant risk of overload. Similarly, for content delivery applications where

activity of a server is connected to the rate at which bits are downloaded

from the server, such concentration results would allow one to provision for a

shared network link with capacity close to the average tra�c demand without

significantly a↵ecting user-performance.

Existence of such a concentration result depends on the extent to which

there is diversity and independence in the load spread across the servers. To

better understand how diversity in service types impacts servers’ activity, con-

sider a system with m servers, each with service capacity µ. Let the job arrival

rate be �m and mean service requirement of jobs be ⌫. For stability, assume

�⌫ < µ. As with previous chapters, we will consider systems that use resource

pooling, in that the capacity of multiple servers may be pooled together as

follows: if k servers are pooled together to serve a job, the job can be served

at a maximum rate of kµ. Note, however, these resources are shared among

jobs and the pools may overlap. In this setting, consider the following two

extreme cases:

Case 1: Single service type and complete resource pooling: Suppose that jobs

belong to a single service type, and that all m servers can be pooled

to serve each job. This system can be modeled as a G/G/1 queue
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with arrival rate �m and load ⇢ = �⌫/µ. For a work-conserving

service policy, either all m servers are active or idle at the same time

with probability ⇢ and 1� ⇢ respectively.

Case 2: Multiple service types and no resource pooling:Now, suppose that there

are m job classes. Each job class has a dedicated server. The arrivals

and service requirements of di↵erent classes are independent. Suppose

the arrival rate for each class is �, and mean service requirement for

jobs in each class is ⌫. This system can be modeled as consisting of

m independent G/G/1 queues, each with load ⇢ = �⌫/µ. For queues

with work conserving service policy, at any time t each server is active

with probability ⇢ and the activities of di↵erent servers are indepen-

dent. By Weak Law of Large Numbers, for any ✏ > 0 the stationary

probability that the number of active servers exceeds (1+ ✏)⇢m tends

to 0 as m ! 1.

In Case 2 the servers’ activity concentrate due to independence in load,

thus facilitating resource provisioning for the large scale system. By contrast,

in Case 1 the activities of di↵erent servers are correlated due to complete re-

source pooling and one may need to provision for the peak number of servers

being active. Thus, a question arises: do servers’ activity concentrate in sys-

tems where limited resource pooling is allowed? Such systems fall in between

the above two extreme cases, in that, there may be diverse service types and

a limited amount of resource pooling which correlates instantaneous server
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activities.

The second message: servers’ activity concentrate even if we allow lim-

ited resource pooling of servers. To better understand the impact of limited

resource pooling, in this chapter we consider multi-class multi-server systems

where for each job class the capacity of a unique subset of servers can be pooled

to jointly serve the class’s jobs. Furthermore the pools of servers serving dif-

ferent classes may overlap, which opens up an opportunity to dynamically

vary the allocation of service capacity across job classes. We consider the case

where the service rate allocated to each class depends on the numbers of jobs

across classes, and call the corresponding policy a resource allocation policy.

Such a system can model a centralized content delivery infrastructure

where each file is replicated across multiple servers so as to address high de-

mands and possible reliability issues. Systems which combine multipath trans-

port with server diversity can support parallel downloads from multiple servers,

where di↵erent chunks of a file can be downloaded in parallel from servers pos-

sibly via multiple paths. The resource allocation policy would thus model the

dynamically varying sum-rate a download job receives from its server pool.

To understand the role of overlapping pools on possible concentration

properties of such systems, we consider a sequence of systems where the num-

ber of servers m grows. We allow total system load and total server capacity

to scale linearly with m. For a given m we consider server pools of fixed size

c(m), which may scale with m but as o(m). We assume that the load across

di↵erent server pools (equivalently, job classes) is homogeneous. This may be
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achieved by, for example, grouping of several service types into a class so that

the overall load per group is roughly the same. For such a system, we show

that the joint stationary distribution of the activity of a fixed finite subset of

servers takes a product form as m ! 1, which in turn implies that a WLLN

holds for the servers’ activity. In summary, as long as resource pools are of

size o(m) one will see a concentration in server activity.

The above concentration result is ‘insensitive’, in that, the dependence

on the service requirement distribution for each class is only through its mean.

This follows from our adoption of insensitive balanced fair resource alloca-

tion [7]. This brings us to the third message: one’s optimism in resource

allocation due to concentration in servers’ activity is independent of service

requirement distribution, i.e., only depends on its mean. This is analogous

to insensitivity in symmetric queueing systems where the distribution of the

number of active jobs in a system is known to be insensitive to service-time

distributions [28], although our interest is mainly in the distribution of servers’

activity for large scale coupled systems.

The concentration result in turn allows us to show that the impact

of shared network link becomes negligible as the system scales, provided its

capacity is a fraction greater than the average tra�c demand. We also consider

in this chapter the impact of peak rate constraints on jobs’ service. For a

content delivery application, such constraints can model the impact of finite

download capacity at users end under a simplifying assumption that each user

requests a maximum of one job at a time. Peak rate constraints can also
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model end-to-end flow-control such as TCP transmission with finite window

size, where each flow corresponds to a file download job.

We incorporate peak rate constraints into our performance analysis via

balanced fairness. We show that even under arbitrary peak rate constraints

for each job the underlying polymatroid structure of the system’s capacity

region is preserved. This in turn allows us to extend our analysis in Section

2.3 to provide a modified expression for mean delays. However, the expression

is complex, and we thus resort to symmetry to gain insights. The insights

gleaned form our fourth message: If the overall load on the content delivery

system is low, peak rate constraints drive the user performance. However, as

the load increases their impact on performance reduces and eventually becomes

negligible.

5.1 Related work

Prior work which is closest in spirit to our concentration result in this

chapter is that studying the existence of a mean field regime for the super-

market queuing model [13, 43, 56]. In the super-market model the servers are

coupled through a routing policy, unlike our model where they are coupled

through a servicing policy. In the supermarket model, upon arrival of a job

a random subset of servers of size d is selected and the job is routed to the

server with the least number of jobs waiting for service. For a fixed value of

d, asymptotic independence in the number of waiting jobs for a fixed finite

subset of servers was shown in [13] for several classes of service distributions.
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A mean field result for the number of waiting jobs was also shown

for a symmetric loss network model [29, 57], where upon arrival of a job (or

a call in their terminology) it is allocated to a fixed w number of servers

at random. In this work, rather than routing to one of the w servers as in

supermarket model, each job ‘locks’ resources at w servers for a random time.

The maximum number of jobs that can lock resources at a given server at

any point in time is fixed. Again, w is assumed to be constant. Further, the

random locking time is assumed exponential.

In comparison, in this chapter we consider a setting where a job arrives

with a random service requirement, is served jointly by a subset of servers, and

leaves the system upon completion of its service. Sojourn times of jobs thus

depend on how server resources are shared across di↵erent job-types. We allow

the number of servers that can be pooled together for serving a job to scale

with m. We also let the distribution of the service requirement be arbitrary.

Under these assumptions, we are able to show the existence of a mean field

only for servers’ activity, and not for the number of waiting jobs.

Mean field results for queuing systems have been studied for several

other models and asymptotic regimes as well, e.g., [2, 51, 55]. Most of the

prior work show mean field existence by analyzing sample paths of the under-

lying stochastic processes. However, we could use the knowledge of stationary

distribution of waiting jobs under balanced fair resource allocation [7]. Since

its proposal in [7] as a bandwidth sharing policy for wireline network, it has

been a useful device towards analyzing user-performance in several kinds of
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network models [6, 8, 10, 47, 49].

Outline of the chapter: In Section 5.2 we provide our main result where

we show concentration in servers’ activity. In Section 5.3 we consider implica-

tions of this result on shared network link and power capacity. In Section 5.4

we study the impact of finite download capacity at the end user.

5.2 Asymptotic independence and concentration in servers’
activity

Consider a system with a set S(m) = {s
1

, s
2

, . . . , sm} of m servers.

Each server has service capacity ⇠ > 0. Jobs arrive into the system as an

independent Poisson process with rate �m. Job service requirements are i.i.d.

with mean ⌫. Let ⇢ = �⌫. We assume that ⇢ < ⇠ to ensure stability. Upon

arrival of a job, c(m) > 1 servers are chosen at random, and their capacity

pooled, to serve this job. Let F (m) represent the set of all possible pools of

size c(m). Let n(m) , |F (m)|. Thus, n(m) =
�

m
c(m)

�

.

We view the system as consisting of n(m) job classes, where arrivals for

each class occur as an independent Poisson process with rate �m/n(m). Let

⇢(m) = (⇢(m)

i : i 2 F (m)), where ⇢(m)

i = ⇢m/n(m) denotes the load associated

with class i.1 We view the association of classes with server pools via a bipartite

1This model may be generalized in the following ways without a↵ecting our results in
this section:
1) The service requirement distribution may be di↵erent for each class as long as the mean
service requirement is same for each class.
2) The arrival rate and mean service requirement may be di↵erent for each class as long as

their product (which equals to ⇢(m)
i ) is same for each class.
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Figure 5.1: Graph G(m) = (F (m)[S(m);E(m)) for m = 4 and c(m) = 2 modeling
availability of servers S(m) to serve jobs in classes F (m).

graph G(m) = (F (m) [ S(m);E(m)) where an edge e 2 E(m) exists if it connects

a class i 2 F (m) to a server s 2 S(m) associated with the server pool of i, see

Fig. 5.1. For each class i 2 F (m), let S(m)

i denote its neighbors, i.e., the set

of servers available to serve jobs in class i. Let the capacity of the associated

system be C(m) with rank function µ(m)(.). Further, the following holds for the

rank function µ(m)(.).

Proposition 3. For each k  n(m), we have

X

A⇢F (m)
:|A|=k

µ(m)(A) = ⇠m

✓✓

n(m)

k

◆

�
✓

n(m�1)

k

◆◆

.

The proof of this proposition is straightforward. Notice that the term
�

n(m)

k

�

�
�

n(m�1)

k

�

captures the number of subsets of F (m) of size k which are

served by a given server.
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System dynamics are as described in Section 2.2. We assume balance

fair resource allocation. Thus, when number of waiting jobs in each class is

given by vector x, the service-rate allocated to each class i 2 F (m) is given by:

r(m)

i (x) =
�(m)(x� ei)

�(m)(x)
, (5.1)

where the function �(m) is called a balance function and is defined recursively

as follows: �(m)(0) = 1, and �(m)(x) = 0 8x s.t. xi < 0 for some i, otherwise,

�(m)(x) = max
A⇢A

x

(

P

i2A�
(m)(x� ei)

µ(m)(A)

)

. (5.2)

Further, if ⇢ < ⇠, one can check that ⇢(m) lies in the interior of C(m).

Recall, this implies that the process (X(m)(t) : t 2 R) is stationary under

balanced fair resource allocation. Further, the stationary distribution is given

by

⇡(m)(x) =
�(m)(x)

G(m)(⇢(m))

Y

i2A
x

⇣

⇢(m)

i

⌘x
i

, (5.3)

where,

G(m)(⇢(m)) =
X

x

0

�(m)(x0)
Y

i2A
x

0

⇣

⇢(m)

i

⌘x0
i

.

Recall, ⇢(m)

i = ⇢m/n(m) for each i.

Proceeding along the lines of Theorem 4 , one can show the following

proposition.

Proposition 4 ([47]). For each m, the following holds under balanced fairness:

For each A ⇢ F (m), we have

Pr⇡(m) (A
X

(m) = A) =
G(m)

A (⇢(m))

G(m)(⇢(m))
,
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where G(m)

A (⇢(m)) can be computed recursively as follows. Let G(m)

; (⇢(m)) = 1.

Then,

G(m)

A (⇢(m)) =

P

i2A ⇢(m)

i G(m)

A\{i}(⇢)

µ(m)(A)�
P

j2A ⇢(m)

j

. (5.4)

Recall, for each s 2 S(m), Y (m)

s (t) = 1n

9i2A
X(t) s.t. s2S(m)

i

o. We say that

the server is active at time t if Y (m)

s (t) is 1. For a given m, for a stationary

system we have

E⇡(m)

⇥

µ(m)(A
X

(m))
⇤

= ⇢m, (5.5)

i.e., the average service rate must be equal to the system load. Further, by

Pareto optimality of the balanced fair resource allocation for our system, for

each s 2 S(m) we have

E⇡(m) [Y (m)

s ] = ⇢/⇠.

Indeed, showing concentration in
Pm

l=1

Y (m)

s
l

as m ! 1 is equivalent to

showing concentration in µ(m)(A
X

(m)) close to its mean. Further, for a given

m,
⇣

Y (m)

s1 , Y (m)

s2 , . . . , Y (m)

s
m

⌘

is an exchangeable vector of random variables. A

weak convergence result for a sequence of exchangeable vectors was shown

in [1, 26], which when applied to
⇣⇣

Y (m)

s1 , Y (m)

s2 , . . . , Y (m)

s
m

⌘

: m 2 N
⌘

implies

that
Pm

l=1

Y (m)

s
l

converges to a constant in probability if and only if the joint-

distribution of
⇣

Y (m)

s1 , Y (m)

s2 , . . . , Y (m)

s
k

⌘

for a finite k takes a product form as

m ! 1. The following theorem is the first main result in this paper.

Theorem 12. Consider a sequence of systems with an increasing number of

servers m. Suppose that the total arrival rate of jobs is �m for the mth system,
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and that the service capacity of each server is a constant ⇠. Let load per server

⇢ = �⌫ be a constant such that ⇢ < ⇠.

Upon arrival of a job, c(m) > 1 servers are selected at random for its

service (equivalently, its class is selected at random). Assume c(m) is o(m).

Jobs share the server resources according to the balanced fair resource alloca-

tion. For each m, the system is stationary. Under stationary distribution, let

Y (m)

s represent instantaneous activity of server s.

Then, the following equivalent statements hold:

(a) For any finite integer k, the random variables Y (m)

s1 , Y (m)

s2 , . . . , Y (m)

s
k

are

asymptotically i.i.d. as m ! 1.

(b) lim
m!1

Pm
l=1

Y (m)

s
l

m
= E

⇥

Y (m)

s1

⇤

in probability.

Proof: Equivalence of (a) and (b) thus follows from Proposition 7.20

in [1]. We prove (a) below for ⇠ = 1 without loss of generality. Again by

Proposition 7.20 in [1], it is su�cient to show that the result holds for k = 2.

For the proof below, to make the dependence on ⇢ of stationary distri-

bution ⇡(m) and random variable Y (m)

s explicit, we denote them as ⇡(m,⇢) and

Y (m,⇢)
s .

Let

T (m)

s,1 , {A ⇢ F (m) : s 2 [i2AS
(m)

i }

and similarly,

T (m)

s,0 , {A ⇢ F (m) : s /2 [i2AS
(m)

i }
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Recall the definitions of G(m)

A (⇢(m)) and G(m)(⇢(m)). Then, for b 2 {0, 1}, we

have

Pr
�

Y (m,⇢)
s = b

�

=
X

x s.t. A
x

2T (m)
s,b

⇡(m,⇢)(x)

=
X

A2T (m)
s,b

G(m)

A (⇢(m))

G(m)(⇢(m))

= (1� ⇢)1{b=0} + ⇢1{b=1}.

Further,

Pr
�

Y (m,⇢)
s1

= b
1

, Y (m,⇢)
s2

= 0
�

=
X

A2T (m)
s1,b1

\T (m)
s2,0

G(m)

A (⇢(m))

G(m)(⇢(m))

=

P

A2T (m)
s1,b1

\T (m)
s2,0

G(m)

A (⇢(m))
P

A2T (m)
s2,0

G(m)

A (⇢(m))

P

A2T (m)
s2,0

G(m)

A (⇢(m))

G(m)(⇢(m))

=

P

A2T (m)
s1,b1

\T (m)
s2,0

G(m)

A (⇢(m))
P

A2T (m)
s2,0

G(m)

A (⇢(m))
Pr

�

Y (m,⇢)
s2

= 0
�

=

P

A2T (m)
s1,b1

\T (m)
s2,0

G(m)

A (⇢(m))
P

A2T (m)
s2,0

G(m)

A (⇢(m))
(1� ⇢) (5.6)

Consider the denominator
P

A2T (m)
s2,0

G(m)

A (⇢(m)). By symmetry we have
P

A2T (m)
s2,0

G(m)

A (⇢(m)) =
P

A2T (m)
s

m

,0
G(m)

A (⇢(m)). Also for each A 2 T (m)

s
m

,0,

G(m)

A (⇢(m)) =
X

x:A
x

=A

�(m)(x)
⇣ m

n(m)

⇢
⌘|x|
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=
X

x:A
x

=A

�(m)(x)

✓

m� 1

n(m�1)

(m� c(m))⇢

m� 1

◆|x|

,

since m�1

n(m�1)
m�c(m)

m�1

= m
n(m) .

However, it is easy to check that T (m)

s
m

,0 is the power set of F
(m�1). Thus,

X

A2T (m)
s

m

,0

G(m)

A (⇢(m)) =
X

A⇢F (m�1)

X

x:A
x

=A

�(m�1)(x)

✓

m� 1

n(m�1)

(m� c(m))⇢

m� 1

◆|x|

=
X

A⇢F (m�1)

G(m�1)

A

⇣

⇢0(m�1)

⌘

,

where,

⇢0(m�1) ,
✓

⇢0(m�1)

i , m� 1

n(m�1)

(m� c(m))⇢

m� 1
: i 2 F (m�1)

◆

.

Thus, in turn,

X

A2T (m)
s2,0

G(m)

A (⇢(m)) =
X

A⇢F (m�1)

G(m�1)

A

⇣

⇢0(m�1)

⌘

= G(m�1)

⇣

⇢0(m�1)

⌘

Using similar arguments, one can show that

X

A2T (m)
s1,b1

\T (m)
s2,0

G(m)

A (⇢(m)) =
X

A2T (m�1)
s1,b1

G(m�1)

A

⇣

⇢0(m�1)

⌘

Combining above equalities, we get,

P

A2T (m)
s1,b1

\T (m)
s2,0

G(m)

A (⇢(m))
P

A2T (m)
s2,0

G(m)

A (⇢(m))
=

P

A2T (m�1)
s1,b1

G(m�1)

A

⇣

⇢0(m�1)

⌘

G(m�1)

�

⇢0(m�1)

�
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= Pr

 

Y
(m�1,

(m�c

(m))⇢
m�1 )

s1 = b
1

!

=

✓

1� (m� c(m))⇢

m� 1

◆

1{b1=0} +
(m� c(m))⇢

m� 1
1{b1=1}

By substituting this in (5.6), using law of total probability, and taking the

limit as m ! 1, we get,

Pr
�

Y (m,⇢)
s1

= b
1

, Y (m,⇢)
s2

= b
2

� m!1�!
2

Y

i=1

�

(1� ⇢)1{b
i

=0} + ⇢1{b
i

=1}
�

Thus, the theorem.

In next section, we consider engineering implications of this result.

5.3 Impact of a shared network link and power capacity

In previous section, we showed that the total number of active servers

concentrates close to its mean. In this section we study its implication for

provisioning of the peak power capacity and/or of a shared network link for

such large scale systems.

Several modern systems are designed so that the power usage of a server

is low when it is inactive [3, 35]. Thus, the total instantaneous power draw in

such systems is an increasing function of the total number of active servers.

Thus, a concentration in servers’ activity implies that the peak power draw

is unlikely to be significantly away from the mean power consumption. This

allows one to reduce infrastructure costs by provisioning for a peak power

capacity which is close to the average power requirement without a significant

risk of overload.
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Similarly, for centralized content delivery systems where the servers are

collocated and are connected to the users via a shared network link, see Fig. 1.2,

a concentration in servers’ activity facilitates provisioning of the network link.

In such systems, the total number of active servers is proportional to the overall

network tra�c volume. Intuitively, Theorem 12 implies that if the bandwidth

of the shared network link is greater than (1 + ✏)⇢m, the link may cease to

become a bottleneck as m becomes large. Below, we make this intuition more

precise.

Consider a content delivery system where the bandwidth the shared

network link is �(m). Thus, the maximum sum-rate at which bits may be

downloaded from the servers is �(m). In this section we assume that if upon

arrival of a job the service capacity µ(m) (A
ˆ

X

(m)(t)) exceeds �(m) then the job is

blocked, where X̂(m)(t) represents the number of jobs in the modified system.

Thus, X̂(m)(t) is restricted to remain within the following set:

A(m) ,
�

x : µ(m)(A
x

)  �(m)

 

.

For such a system, the stationary distribution X̂(m), namely ⇡̂(m)(.),

is a truncated version of ⇡(m)(.) (see (5.3) for definition of ⇡(m)(.)). Indeed

this follows since ⇡(m)(.) satisfies detailed balance conditions, see [28]. Thus,

⇡̂(m)(.) can be given as follows: for each x,

⇡̂(m)(x) =
⇡(m)(x)1{x2A(m)}
P

x2A(m) ⇡(m)(x)
. (5.7)
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A class i arrival gets blocked if it sees a state x in the following set:

Bi , {x 2 A(m) : x+ ei /2 A(m)}.

By PASTA, the probability that a class i arrival gets blocked is given by:

p(m)

i =
X

x2B
i

⇡̂(m)(x).

Let

B , {x 2 A(m) : µ(m)(A
x

) > �(m) � c(m)}

and note that for each i we have Bi ⇢ B. It follows that

p(m)

i 
X

x2B

⇡̂(m)(x).

Now, suppose that �(m) scales as (1 + ✏)⇢m for some ✏ > 0. Then,

from Theorem 12, the denominator in (5.7), namely
P

x2A(m) ⇡(m)(x), tends

to 1 as m ! 1. Thus, the impact of truncation by network capacity becomes

negligible as the system becomes large. More formally, the theorem below

follows by noting that c(m) is o(m).

Theorem 13. Consider a sequence of content delivery systems as in The-

orem 12. Further suppose that the servers are connected to the users via a

shared network link of bandwidth �(m) = (1 + ✏)⇢m for some ✏ > 0. Suppose

if upon arrival of a job the aggregate service capacity µ(m)(A
X

(m)) exceeds �(m)

then the job is blocked.

For each m, the system is stationary. Under stationary distribution, let

Ŷ (m)

s represent the instantaneous activity of server s. Let p(m)

i be the probability

that a class i job is blocked. Then, the following statements hold:
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(a) lim
m!1

sup
i

p(m)

i ! 0.

(b) lim
m!1

Pm
l=1

Ŷ (m)

s
l

m
= E

h

Ŷ (m)

s1

i

in probability.

5.4 Impact of peak rate constraints

In this section we incorporate peak rate constraints in our system model

and analysis to investigate how they impact user performance. Such con-

straints can model either finite download capacity at the end user or be a

result of end-to-end flow-control mechanism such as TCP transmission which

has a finite window size which limits a user’s peak rate.

Recall that we let qF denote the set of all jobs currently in the system.

Let b = (bu : u 2 qF ) where bu is the rate at which job u is being served. For

each job u in the system, let c(u) represent its class, and let c(U) = [u2Uc(u)

for any subset U ⇢ qF . Let �(u) denote the peak rate constraint on job u.

Clearly, the peak rate constraint on each job can a↵ect the rates at which other

jobs will be served. We say that a bandwidth allocation b is feasible if both

the server constraints (i.e., the sum-rate constraints)
P

u: s.t. c(u)2A bu  µ(A)

for each A 2 F and the peak rate constraints bu  �(u) for each u 2 qF are

satisfied.

We now characterize the capacity region, i.e., the set of all feasible

resource allocations b and show that it has a polymatroid structure. Here

we take an approach which is slightly di↵erent than that of Sec. 2.2 where

the capacity region C was defined as the set of feasible rates allocated to each
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class i 2 F , i.e., the set of feasible r = (ri : i 2 F ). Instead, since each

job u entering the system can potentially have its own peak rate constraint

bu  �(u), we first characterize the ‘per-job capacity region’ P as the set of all

feasible b, and then characterize the corresponding per-class capacity region.

The following result characterizes the the ‘per-job capacity region’ P .

Theorem 14. Consider a system where sum-rate constraints across the classes

are given by a rank function µ(.) and the peak constraints for jobs given by the

�(.). At time t suppose qF is the set of jobs in the system. Let

P =

(

b � 0 :
X

u2U

bu  ⌫(U), 8U 2 qF

)

,

where,

⌫(U) = min
A⇢c(U)

(

µ(A) +
X

u2U
s.t. c(u)/2A

�(u)

)

.

Then, 1.) ⌫(.) is a rank function, and 2.) P is a polymatroid and capacity

region associated with the jobs.

Proof. We first prove that ⌫ is submodular. From the definition it is clear

that ⌫(;) = 0 and that it is monotonic. Thus, we only need to check that ⌫

is submodular. Consider sets U, V ⇢ qF . From the definition of ⌫, there exist

sets A ⇢ c(U) and B ⇢ c(V ) such that

⌫(U) = µ(A) +
X

u2U s.t. c(u)/2A

�(u),

⌫(V ) = µ(B) +
X

u2V s.t. c(u)/2B

�(u)
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and

⌫(U \ V )  µ(A \ B) +
X

u2U\V s.t. c(u)/2A\B

�(u).

Thus,

⌫(U) + ⌫(V )� ⌫(U \ V ) � µ(A) + µ(B)� µ(A \ B)

+
X

u2U
s.t. c(u)/2A

�(u) +
X

u2V
s.t. c(u)/2B

�(u)�
X

u2U\V
s.t. c(u)/2A\B

�(u)

� µ(A [B) +
X

u2U\V
s.t. c(u)/2A

�(u) +
X

u2V \U
s.t. c(u)/2B

�(u)

+

 

X

u2U\V
s.t. c(u)/2A

�(u) +
X

u2V \U
s.t. c(u)/2B

�(u)�
X

u2U\V
s.t. c(u)/2A\B

�(u)

!

where the last inequality follows from the submodularity of µ and partitioning
P

u2U
s.t. c(u)/2A

�(u) and
P

u2V
s.t. c(u)/2B

�(u) into
P

u2U\V
s.t. c(u)/2A

�(u)+
P

u2U\V
s.t. c(u)/2A

�(u)

and
P

u2V \U
s.t. c(u)/2B

�(u) +
P

u2V \U
s.t. c(u)/2B

�(u), respectively. It can be checked that

the term inside parenthesis in the last inequality is equal to
P

u2U\V s.t. c(u)/2A[B �(u).

Thus,

⌫(U) + ⌫(V )� ⌫(U \ V ) � µ(A [ B) +
X

u2U\V
s.t. c(u)/2A[B

�(u) +
X

u2V \U
s.t. c(u)/2B[A

�(u)

+
X

u2U\V
s.t. c(u)/2A[B

�(u)

� µ(A [ B) +
X

u2U\V
s.t. c(u)/2A[B

�(u) +
X

u2V \U
s.t. c(u)/2B[A

�(u) +
X

u2U\V
s.t. c(u)/2A[B

�(u),

since {u 2 U\V : c(u) /2 A} = {u 2 U\V : c(u) /2 A [ B} as B ⇢ c(V ), and

similarly {u 2 V \U : c(u) /2 B} = {u 2 V \U : c(u) /2 B [ A}. Thus,
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⌫(U) + ⌫(V )� ⌫(U \ V ) = µ(A [B) +
X

u2U[V
s.t. c(u)/2A[B

�(u) � ⌫(U [ V )

Thus, ⌫ is submodular.

We now show that every point in P is achievable. By definition of ⌫,

⌫({u})  �(u) and ⌫({u 2 F : c(u) 2 A})  µ(A). Suppose b 2 P . Then, by

definition of P , bu  ⌫({u}) and
P

u2F s.t. c(u)2A bu  ⌫({u 2 F : c(u) 2 A})

which implies that the peak constraints as well as the sum-rate constraints are

satisfied. Hence, b is feasible.

Further, if b � 0 and b /2 P , then there exists U such that
P

u2U bu �

⌫(U). By definition of ⌫(U), there exist A ⇢ c(U) such that
P

u2U bu �

µ(A) +
P

u2U s.t. c(u)/2A �(u). Thus, we either have
P

u2U s.t. c(u)2A bu � µ(A)

or we have
P

u2U s.t. c(u)/2A bu �
P

u2U s.t. c(u)/2A �(u). So, either a capacity

constraint or a peak constraint is violated. Hence, the result.

Next, let us characterize the per-class capacity region. With some loss

of generality, suppose that for each job u 2 qF , �(u) = �i if c(u) = i. Now,

for a given x, the resource allocation r(x) is feasible if it satisfies the sum-

rate constrains
P

i2A ri(x) = µ(A) for all A ⇢ F as well as the peak rate

constraints ri(x)  �ixi. Now, since each job brings an additional constraint

into the system, the per-class capacity region itself is a function of x. To make

this fact explicit, we shall denote the capacity region by C̃(x) for the rest of
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this section, where C̃(x) can be given as:

C̃(x) =
(

r :
X

i2A

ri = µ(A), and ri  �ixi

)

.

One can check that

C̃(x) =

8

<

:

r : 9b 2 P s.t. xi = |{u : c(u) = i & bu > 0}| &
X

u:c(u)=i

bu = ri, 8i

9

=

;

.

We now study balanced fair resource allocation for such systems. Fol-

lowing analysis similar to that in Sec. 2.3, the balance function �̃(x) for any

x with peak rate constraints is recursively defined as �̃(0) = 1 and �̃(x) = 0

8x s.t. xi < 0 for some i, otherwise,

�̃(x) = sup
n

��1 : r = (��̃(x� ei) : i 2 F ) 2 C̃(x)
o

.

Or equivalently,

�̃(x) = max

(

max
A⇢F

(

P

i2A �̃(x� ei)

µ(A)

)

, max
i2F

s.t. x
i

>0

(

�̃(x� ei)

xi�i

))

.

In other words, we recursively choose the largest �̃(x) such that r(x) as given

by (5.1) is as large as possible while being feasible. We now exhibit how

balanced fairness allocates rates to the individual jobs u 2 qF . Recall that for

each u, bu = r
i

(x)

x
i

where i = c(u). Under balanced fairness one can think of bu

in the light of following lemma.

Lemma 17. Consider a set function  be such that  (;) = 1 and for each

set of jobs U

 (U) = max
V⇢U

P

u2V  (U\u)
⌫(V )

.
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Then, for any U , balanced fair resource allocation for each job u 2 U is given

by

bu =
 (U\u)
 (U)

, 8u 2 U.

Proof. We will first show that

 (U) = (⇧ixi!) �̃(x) where xi = |{u 2 U : c(u) = i}|, (5.8)

by using induction on |U |. Clearly, (5.8) holds for |U | = 1. Suppose it holds

for |U | = k � 1. Then, consider U such that |U | = k. Suppose xi = |{u 2 U :

c(u) = i}|. Then, from the first part of Theorem 14,

(⇧ixi!) �̃(x)

= (⇧ixi!) sup
n

��1 : r = (��̃(x� ei) : i 2 F ) is feasible
o

= (⇧ixi!) sup
n

��1 : (bu = ��̃(x� ec(u))/xc(u) : u 2 U) 2 P
o

= sup
n

��1 : (bu = � (⇧ixi!) �̃(x� ec(u))/xc(u) : u 2 U) 2 P
o

= sup
�

��1 : (bu = � (U\u) : u 2 U) 2 P
 

= max
V⇢U

P

u2V  (U\u)
⌫(V )

=  (U)

Thus, (5.8) holds for all U . Now, for a given set of ongoing jobs V , let xj =

|{u 2 V : c(u) = j} for each j 2 F . Then, for each u 2 V such that c(u) = i,

we have that

bu =
ri(x)

xi

=
�̃(x� ei)

xi�̃(x)
=
 (U\u)/((xi � 1)!⇧j 6=ixj!)

xi (U)/(⇧jxj!)
,

132



where the last equality follows from (5.8). The result thus follows directly

from the above expression.

Thus, one can equivalently think of the corresponding resource alloca-

tion for each job as balanced fair resource allocation on P . Further, since P is

a polymatroid, Theorem 2 implies Pareto optimality of balanced fair resource

allocation under peak rate constraints, so it follows that

 (U) =

P

u2U  (U\u)
⌫(U)

. (5.9)

Next we provide a recursive expression for the normalization constant

G̃(⇢) =
P

x

�̃(x)
Q

i2F ⇢xi

i along the lines of Theorem 4. An expression for

mean delay for each class i, follows since E[Di] =
⌫
i

@

@⇢

i

˜G(⇢)

˜G(⇢)
. To develop

recursions, the dependence of the normalization constant on the underlying

capacity region which results from ignoring peak rate constraints, namely,

C =
�

r :
P

i2A ri  µ(A), 8A ⇢ F
 

becomes important. Thus, from now on,

we represent normalization constant as G̃(C). Before we provide an explicit

expression for G̃(C) (see Theorem 15 below), we need some additional notation:

For capacity region C, let

⌦(C) =
(

x :
X

i2A

xi�i  µ(A), 8A ⇢ F

)

.

This can be viewed as state space of a loss system where a loss (blocking of

an arrival) happens if upon arrival the service rate
P

i2A xi�i allocated to a

subset of classes exceeds the capacity µ(A) associated with it. Let

G̃;(C) =
X

x2⌦(C)

Y

i

1

xi!

✓

⇢i
�i

◆x
i

,
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which can be interpreted as the normalization constant for the above men-

tioned loss system.

Further, let

CA = {r 2 C : ri = 0, 8i /2 A} .

C�A =

(

r :
X

i2B

ri  µ(A [ B)� µ(B), 8B ⇢ F\A
)

.

Intuitively, C�A can be viewed as follows: remove all the servers from the sys-

tem that serve classes in A. For each B ⇢ F\A, serve the corresponding jobs

with the remaining servers. The associated capacity region is denoted as C�A.

Also, let G̃;(CA) be the normalization constant associated with corresponding

loss system. Further, for B ⇢ A, we define

CA�B =

(

r 2 CA :
X

i2B0

ri  µ(B [B0)� µ(B0), 8B0 ⇢ A\B
)

.

Also, we shall let

C(i) = {r 2 C : r+ �iei /2 C} ,

or equivalently,

C(i) =

(

r :
X

j2A

rj  µ(A)� �i1{i2A}, 8A ⇢ F

)

.

Finally, let Li(C) be the probability of blocking a class i job in a loss

system associated with capacity region C due to violation of the constraint
P

i2F xi�i  µ(F ). This can be given as:

Li(C) = 1� G̃;(C(i))

G̃;(C)
�

X

A(F :i2A

G̃;(C�A)G̃;(CA)
G̃;(C)

Li(CA).
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The following expression for the normalization constant can be devel-

oped via a similar approach as that used for that for wireline networks with

tree topology in [11]. Recall, tree topology in networks exhibits a capacity

region which is a special case of polymatroids.

Theorem 15. The recursion for G̃(C) is given as follows:

G̃(C) =
X

A⇢F

G̃A(C),

where for each A ⇢ F , we have

G̃A(C) = G̃;(C�A)HA(CA),

where

HA(CA) =
P

B(A G̃B(CA)
P

i2F\A ⇢iLi(CA�B)

µ(A)�
P

i2A ⇢i
.

The above expression for normalization constant is complex; we thus

resort to symmetry and heuristics to gain insights on the impact of peak rate

constraints on mean delays.

5.4.1 Asymptotic analysis of symmetric peak rate constrained sys-
tems

In this section we study the asymptotic performance of systems with

peak rate constraints in a regime where overall system load and number of

servers increase proportionally. We assume symmetry in arrival rates across

classes, in mean service requirements, and in peak rate constants. Let the

overall arrival rate to the system be �m, thus arrival rate for each class is
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�i = �m/n. The mean service requirement for each class ⌫ is a constant.

Let the peak rate constraints for each class i be �i = �, i.e., they are ho-

mogeneous. Further, we assume that the capacity region associated with the

system when the peak rate constraints are relaxed, namely C, is symmetric.

Recall that when peak rate constraints are included, the associated capacity

region depends on x, and is denoted by C̃(x) which may not be symmetric.

As in Section 2.4.1, we consider a limiting regime where first the num-

ber of classes n increases to 1 for a fixed m, and then the number of servers

m increases to 1. For a finite system, the dependence on m and n is ex-

hibited via the superscript (m,n). The polymatroid capacity region C(m,n) is

also assumed to be same as that in Section 2.4.1, where it was obtained via

randomized replication of files across c servers and averaging of the resulting

random capacity region. Recall that the associated symmetric rank function

is given as µ̄(m,n)(A) = h(m,n)(|A|) where

h(m,n)(k) = ⇠m(1� (1� c/m)k) for k = 0, 1, . . . , n.

The main di↵erence between the asymptotic analysis in Section 2.4.1 and that

developed below is that we now include peak rate constraints for each job.

Note that if � � c⇠ then peak rate constraints are redundant since c⇠ is the

maximum service rate a job can get from the servers. Thus, we assume that

� < c⇠.

To aid our asymptotic analysis, let us first summarize the key insights

of our proof for Theorem 4 for a system without peak rate constraints:
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1. Due to thinning of the load per class while keeping the load per server

constant, the probability of having more than one active job in any given

class tends to zero asymptotically.

2. The dynamics for the total number of active jobs |x| can be approximated

by a birth-death process with birth rate �m and death rate 1

⌫
h(m,n)(|x|).

3. As the system size scales there is concentration in probability measure

of the birth-death process across states x such that h(m,n)(|A
x

|) ⇡ ⇢m.

We now use these insights to include the peak rate constraints into

the asymptotic analysis. Due to symmetry and Pareto optimality, with high

probability, all jobs are either bottlenecked by peak rate constraints or by

the capacity region C(m,n) depending on the value of |x|. In other words, the

dynamics for |x| can now be approximated by a birth-death process with birth

rate �m and death rate 1

⌫
min

�

�|x|, h(m,n)(|x|)
�

. Using the fact that h(m,n)(.)

is concave and that � < c⇠, one can show that there exists a threshold such

that for values of |x| below the threshold the system is bottlenecked by peak

rate constraints, and otherwise by server capacities.

For such a birth-death process, the following proposition can be proven

along the lines of the proof for Theorem 4.

Proposition 5. Consider a sequence of birth-death processes
�

B(m) : m 2 N
�

where B(m) has, in each state k, the birth rate equal to �m and death rate equal

to 1

⌫
min

�

�k, h(m,1)(k)
�

where h(m,1)(k) = ⇠m(1� (1� c/m)k), and �, c, and
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⇠ are positive constants such that c > 1 and � < c⇠. Let ⇢ = �⌫. Suppose that

⇢ < ⇠. Then B(m) is stationary for each m. Let ⇡(m)

k denote the stationary

probability for each state k.

Further, let

⌧ ⇤ =
⇠

�
+

1

c
W

✓

�c⇠

�
e�c⇠/�

◆

where W (.) is the principle branch of standard Lambert W function [16]. Also

let

↵⇤ = 1{⇢<⌧⇤}
⇢

�
+

1

c
log

✓

1

1� ⇢/⇠

◆

1{⇢�⌧⇤}.

Then, for each ✏ > 0, we have:

lim
m!1

b↵⇤m(1+✏)c
X

k=b↵⇤m(1�✏)c

⇡(m)

k = 1. (5.10)

The intuition behind this result is given in following three steps:

1. Notice that limm!1
1

m
h(m,1)(⌧m) = ⇠(1 � e�c⌧ ). Also, using definition

of the standard Lambert W function, one can show that ⌧ ⇤ is a solution

to the following transcendental equation:

�⌧ = ⇠(1� e�c⌧ ). (5.11)

Thus, intuitively, ⌧ ⇤m captures the threshold where the bottleneck tran-

sitions from peak rate constraints to server capacities.

2. For states k which are close to ↵⇤m, birth rate is approximately equal

to the death rate.
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3. There is concentration in ⇡(m)

k at states which are close to ↵⇤m.

With an application of Little’s law, the above proposition suggests fol-

lowing heuristic expression for mean delays for large symmetric systems with

peak rate constraints:

E[D] = 1{⇢<⌧⇤}
⇢

��
+

1

c�
log

✓

1

1� ⇢/⇠

◆

1{⇢�⌧⇤}.

Thus, for large systems, when the overall system load is low the peak

rate constraints drive the user-performance. However, as the load increases,

they cease to be a dominant bottleneck.

Notice the equilibrium condition (5.11) between the impact of peak rate

constraints and of server capacities. Similar equilibrium conditions appear in

certain problems of epidemics and giant components in random graphs [16,19].

It would be interesting to further explore connections of our model to these

problems.
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Chapter 6

Conclusions

Our main conclusions address both theoretical and practical aspects

associated with the design of content delivery systems aimed at serving large

files. Our results show that infrastructure which allows a user to download

in parallel from a pool of servers can achieve negligible download delays un-

der limited heterogeneity in file demands. Some elements of content delivery

infrastructure may see less pronounced heterogeneity in demands, e.g., a cen-

tralized back end used to deliver files that are not available at distributed

sites/caches. Our result suggests a scalable approach towards delivering con-

tent for such centralized systems without requiring complex caching strategies

internally.

On the theoretical side we have established: (i) basic new results link-

ing fairness in resource allocation to delays, (ii) the asymptotic symmetry of

randomly configured large-scale systems with heterogenous components, (iii)

a fundamental result linking concentration in servers’ activity to scaling in the

size of interacting server pools. Together these results suggest large systems

might eventually be robust to heterogeneity and even the fairness criterion.
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