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The Kelvin equation relates the equilibrium vapor pressure of a fluid to the curvature of the fluid-vapor
interface and predicts that vapor condensation will occur in pores or irregularities that are sufficiently small.
Past analyses of capillary condensation in porous systems with fractal structure have related the phenomenon
to the fractal dimension of the pore volume distribution. Recent work, however, suggests that porous systems
can exhibit distinct fractal dimensions that are characteristic of both their pore volume and the surfaces of the
pores themselves. We show that both fractal dimensions have an effect on the thermodynamics that governs
capillary condensation and that previous analyses can be obtained as limiting cases of a more general
formulation.
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INTRODUCTION

The Kelvin equation is broadly used to understand gas
adsorption to surfaces, the increased solubility of fine par-
ticles, phase change, and the topology of porous systems and
surfaces �e.g., �1,2��. The equation relates the equilibrium
vapor pressure of a fluid to the curvature of the fluid-vapor
interface and predicts that vapor condensation will occur in
pores or irregularities that are sufficiently small. The struc-
ture of the surface, or pore space, is particularly important in
this context and considerable work has been done using the
Kelvin equation to model adsorption and condensation pro-
cesses in systems that have fractal structure �e.g., �3,4��.

Past analyses of capillary condensation on surfaces, and
in porous media, have shown that the amount of fluid, N, that
absorbs onto a surface �or condenses into a pore space� is
given by

N � C�ln�P0/P��−�. �1�

Here C is a constant, P0 and P are the saturation and equi-
librium vapor pressures, and �=3−D where D is either the
surface fractal dimension of the substrate or the fractal di-
mension of the pore volume distribution of a medium
�2,3,5–7�. For a porous system D can also be interpreted as
the surface fractal dimension of the pore space. In fact, the
two interpretations are equivalent if the pore space is as-
sumed to be comprised of smooth pores of radius r whose
cumulative number Nr is given by Nr�r�R��r−D �8�. Ex-
perimental work, however, has shown that some porous sys-
tems can exhibit distinct fractal dimensions that are charac-
teristic of either their pore volume or the surfaces of the
pores themselves �e.g., �9–12��. This suggests that, in addi-
tion to a fractal pore size distribution, some porous systems
can have a pore network whose surfaces have a roughness
that is itself fractal. Recent work has also shown that both
pore surface and pore volume fractal dimensions would have
an effect on capillary pressures in porous media �13�, which
suggests that they should have an impact on the thermody-
namics that govern capillary condensation as well.

In the present paper we extend the thermodynamic formu-
lation of equilibrium capillary pressure �14� to the phenom-

ena of capillary condensation in a system with distinct pore
volume and pore surface fractal dimensions. The analysis
shows that �= �3−Dv� / �3−Ds�, with Ds being the pore sur-
face fractal dimension and Dv the pore volume fractal dimen-
sion. This result reduces to the standard formulation, �=3
−Dv, when Ds=2, where Dv is then the single fractal dimen-
sion that characterizes the topology of the pore space.

CAPILLARY CONDENSATION IN MULTIFRACTAL
POROUS MEDIA

We adopt the convention of Yin �2� that capillary conden-
sation in a porous medium results in the sequential filling of
pores from small size to large. The distribution of wetting
fluid in a porous system has two limiting regimes. When
capillary forces dominate, the wetting fluid will concentrate
in the most highly curved surface irregularities or pores.
When fluid-substrate forces dominate, the fluid is largely
found in a uniform film that covers the substrate �15�. How-
ever, in general both forces will have an effect on the distri-
bution of condensed fluid within a porous system and they
can be expressed in terms of the interfacial energy of the
fluid in contact with the respective surface �i.e., substrate or
nonwetting fluid�. For a situation such as this, it was previ-
ously shown that the pressure change across an interface be-
tween a wetting and a nonwetting fluid can be expressed
using an equation for the internal energy of a fluid element,
which, under equilibrium conditions, yields �14�

�P = − � �w,i��Aw,i/�Vw�U,S,T. �2�

Here �P is the pressure change across the capillary interface,
Aw,i �m2� is the interfacial area of wetting fluid in contact
with the ith nonwetting phase, �w,i �J /m2� is the respective
interfacial surface tension, Vw �m3� is the volume of the wet-
ting fluid, and the derivative is taken at constant internal
energy, entropy, and temperature.

In order to evaluate the derivatives in Eq. �2� a relation is
required that gives the fluid interfacial area as a function of
the fluid volume within the pores. For a system where the
pore surfaces exhibit fractal structure we use Mandelbrot’s
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relation between a self-similar fractal area and the volume
that it encloses �10,13� and p. 112 of �16�:

A � VDs/3. �3�

Here A is the surface area of a given pore, V is the volume
enclosed by that area, and Ds is the surface fractal dimension
of the pore with 2�Ds�3 �13�. We assume that fluid vol-
ume and pore volume are equal to within a negligible error
and that the interfacial areas Aw,i adhere to the proportional-
ity in Eq. �3�, which can be made direct using Aw,i
= fw,iV

Ds/3, where fw,i is a shape factor that is assumed to
remain constant across all scales. Using this relation, it was
previously shown that ��Aw,i /�Vw�= fw,i�Ds /3�V�1/3��Ds−3�,
where V is the volume of the largest pore filled �13�.

The fluid volume within the pore system can be written as
Vw=�V dN �17�. Here V is the volume of a single filled pore
of a given size, N is the number of those pores within a
representative elementary volume of the medium, and the
integral is over the applicable size range. It is experimentally
observed that a wide variety of porous systems have pore
spaces where the pore volumes follow a cumulative distribu-
tion function where the number of pores with radius greater
than L is given by

N1�I � L� = FL− Dv. �4�

Here L is taken to be the pore “radius” that corresponds to V,
F is a scaling constant, and Dv is the pore volume fractal
dimension. Equations �2�–�4� can be combined to give �13�

	s − 	 = C�1 − �Ps/P��� . �5�

Here 	 is the fluid content of the medium, 	s is the fluid
content when the medium is saturated, P is the capillary
pressure, Ps is the capillary pressure at fluid saturation, and
C is an experimentally determined constant that is a charac-
teristic of the medium and the fluid just as is the C that
appears in Eq. �1�. The exponent �= �3−Dv� / �3−Ds� �13�.

At constant temperature, and under equilibrium condi-
tions, one can write the change in free energy of a curved
surface as

�G = v�P , �6�

where G is the Gibbs potential, v is the fluid’s molar volume,
and �P is the change in pressure across the interface, which
here is the same as the capillary pressure P in Eq. �5�. The
difference in molar free energy above and below a curved
fluid surface is itself given by

�G = 
 − 
0 = RT ln�P/P0� , �7�

where 
 and 
0 are the chemical potentials of the curved and
planar fluids, respectively, and P and P0 are the vapor pres-

sures of the pure fluid in its curved and planar states. Comb-
ing Eqs. �5�–�7� we get

− vPs�1 − �	s − 	�/C�−1/� = RT ln�P/P0� , �8�

where the minus sign results from the fact that the curvature
of a wetting fluid within a capillary tube causes a well-
known decrease in the fluid’s vapor pressure.

Equation �8� can be rearranged to get

P = P0 exp�− �1 − �	s − 	�/C�−1/�vPs/RT	 . �9�

When C=	s Eq. �5� gives the Brooks and Corey relationship
between medium saturation and capillary pressure �18�, and
Eq. �9� reduces to

P = P0 exp�− vPs/RT�	/	s�−1/�� , �10�

which is similar to the previous formulation of capillary con-
densation in a porous medium but differs in the more general
form of the exponent �.

CONCLUSIONS

Equations �9� and �10� show that capillary condensation
in a porous system is dependent on the fractal character of
the pore space and the pore surfaces, as well as the interac-
tion of the fluid with the medium and the nonwetting fluid
phase. By considering a porous system with distinct pore
surface and pore volume fractal dimensions we have arrive at
a more general form of the exponent �= �3−Dv� / �3−Ds�.
When Ds=2, which corresponds to smooth pore surfaces, the
analysis reduces to the standard relationship for capillary
condensation, �= �3−Dv� in a porous system, as expected.
Here Dv is then the single fractal dimension that character-
izes the topology of the pore space and is usually just given
the symbol D. However, the result �= �3−Dv� / �3−Ds�
shows that for porous systems with distinct surface and pore
volume fractal dimensions, both are important to the capil-
lary condensation process. The exact relationship, if there is
one, between Dv and Ds in natural systems is still a matter of
conjecture. Equations �9� and �10� also give an explicit rela-
tionship between the condensed fluid content of the porous
system and the equilibrium vapor pressure of the uncon-
densed phase. However, the formulation for moisture content
ignores the effect that formation of a uniform multilayer of
fluid by adsorption on the substrate might have. For situa-
tions where this effect is significant, it would need to be
taken into consideration.
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