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A study is made of the problem of metamaterial homogenization, which

is the attempt to represent an artificially fabricated inhomogeneous periodic

structure as a homogeneous medium with an electromagnetic response de-

scribed by a number of constitutive parameters (permittivity, permability,

etc.) In particular, the importance of spatial dispersion in metamaterials and

the need to characterize metamaterials with wavevector dependent constitutive

parameters is explained an examined. A brief survey of important previous

attempts at metamaterial homogenization is presented. This is followed by

a discussion of spatial dispersion in metamaterial crystals. The importance

of spatial dispersion in metamaterials is justified and some manifestations

of spatial dispersion described. In particular the little known phenomenon

of bianisotropy in centrosymmetric crystals due to spatial dispersion is ex-

plained. Also, the effects of spatial dispersion on physical quantities such as

energy flux and dissipation are identified. We then describe a new method
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for solving for the free eigenmodes of a metamaterial crystal with a complex

wavevector eigenvalue simulation. Next, two different theoretical attempts by

the author at metamaterial homogenization are described, both accompanied

by tests of the calculated constitutive parameters and critical examination of

the strengths and weaknesses of each approach. Finally, strong evidence of the

presence and importance of spatial dispersion in metamaterials is presented.

vii



Table of Contents

Acknowledgments v

Abstract vi

List of Figures x

Conventions and Notation xv

Chapter 1. A Survey of Metamaterial Homogenization Meth-
ods 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Pendry’s averaging method . . . . . . . . . . . . . . . . . . . . 5

1.3 S parameter retrieval . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Calculation of non-local permittivity . . . . . . . . . . . . . . . 15

1.5 Calculation of 36 non-local constitutive parameters . . . . . . 20

Chapter 2. Spatial Dispersion in Metamaterials 24

2.1 Nonlocal media . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Symmetry of Crystals and their Constitutive Parameters . . . 26

2.3 Energy Density and Poynting Flux . . . . . . . . . . . . . . . 33

Chapter 3. Complex Bloch Band Diagrams 42

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 The finite element eigenvalue problem . . . . . . . . . . . . . . 44

3.2.1 The field equation . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 The finite element model . . . . . . . . . . . . . . . . . 46

3.2.3 Solving for the Electric field . . . . . . . . . . . . . . . . 49

3.3 Photonic Crystal . . . . . . . . . . . . . . . . . . . . . . . . . 51

viii



Chapter 4. A First Attempt at Metamaterial Homogenization 57

4.1 A new homogenization method . . . . . . . . . . . . . . . . . . 57

4.2 Metamaterials driven with electric and magnetic charge/current 59

4.3 Field Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Ambiguity of Constitutive Parameters . . . . . . . . . . . . . . 66

4.5 Example: Split Pair One Film (SPOF) . . . . . . . . . . . . . 68

Chapter 5. A 1D Model of a Metamaterial 77

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Homogenization of 1D array of metasurfaces . . . . . . . . . . 79

5.2.1 Definition of the 1D model . . . . . . . . . . . . . . . . 79

5.2.2 Calculation of the constitutive matrix . . . . . . . . . . 83

5.2.3 Calculation of a surface polarizability from the S-matrix 85

5.2.4 Analytic solution to the 1D model . . . . . . . . . . . . 88

5.2.5 Properties of the constitutive parameters . . . . . . . . 92

5.3 1D Example: Split Ring Resonator . . . . . . . . . . . . . . . 95

5.3.1 Description of crystal unit cell and calculation of consti-
tutive parameters . . . . . . . . . . . . . . . . . . . . . 95

5.3.2 Test of Maxwell boundary conditions . . . . . . . . . . . 99

5.3.3 Effective constitutive parameters and comparison to S-
parameter retrieval . . . . . . . . . . . . . . . . . . . . . 103

5.3.4 Emission from a SRR metamaterial antenna . . . . . . . 106

5.4 1D Example: Split Pair One Film (SPOF) . . . . . . . . . . . 111

Chapter 6. Evidence of Spatial Dispersion 116

6.1 Anomalous boundary effects due to spatial dispersion . . . . . 116

6.2 Anti-resonances in metamaterials . . . . . . . . . . . . . . . . 126

Chapter 7. Conclusion 135

7.1 Characterizing metamaterials with spatial dispersion . . . . . . 135

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Bibliography 142

Vita 152

ix



List of Figures

1.1 An example from Ref. [50] of an inclusion with a magnetic re-
sponse. This split ring structure is made of two concentric cylin-
ders, each with a gap preventing current from traveling all the
way around the cylinder. . . . . . . . . . . . . . . . . . . . . . 6

1.2 A schematic of the S-parameter retrieval method. The scatter-
ing matrix is measured from a thin slab of the metamaterial
of interest (left) and the constitutive parameters ǫ and µ are
inferred for a thin slab of a homogeneous medium (right) which
is assumed to have the same scattering matrix. . . . . . . . . . 10

3.1 Complex k dispersion curves assuming k0 = 0 and k̂n = x̂. (a)
Re(kx(ω)) for a transversely polarized mode and a diagram of
the crystal unit cell. (b) Im(kx(ω)) for a transversely polarized
mode and a field profile for the ẑ polarized transverse mode.
(c) Re(kx(ω)) for two longitudinally polarized modes and a field
profile for the magnetic longitudinal mode. (d) Im(kx(ω)) for
two longitudinally polarized modes and a field profile for the
electric longitudinal mode. Dotted lines are the result of a ω(k)
eigenvalue simulation. For all field profiles ω = 2c/a, arrows
represent Dy and Dz and color represents Dx. . . . . . . . . . 52

3.2 Complex k dispersion curves assuming k0 = ω/c sin(π/6)ŷ and
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5.8 (a) Diagram of the SPOF unit cell. (b) Electric surface polar-
izability. (c) Magnetic surface polarizability. . . . . . . . . . . 112

xii



5.9 The constitutive parameters of the SPOF metamaterial calcu-
lated on the dispersion curve Ĉ = Ĉ(ω, kx(ω)). (a) Permittivity
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Conventions and Notation

Through out this dissertation we use the convention that a plane wave

with a complex valued amplitude changes in time and space with the expo-

nential factor

ei(ωt−k·x), (1)

where ω is the frequency and k is the wavevector of the plane wave. Among

other things, this implies that in a passive medium the imaginary parts of the

permittivity and permeability are less than or equal to zero or Im(ǫ) ≤ 0 and

Im(µ) ≤ 0.

We also use Heaviside-Lorentz units. These are similar to Gaussian

units except that the charge/current is redefined to absorb the 4π factor. The

Maxwell equations in Heaviside-Lorentz assuming the dependence on time

stated above are

∇ · D = ρ ∇× H − i
ω

c
D =

J

c
,

∇ · B = φ −∇× E − i
ω

c
B =

I

c
.

(2)

Here ρ and J are electric charge and current and φ and I are magnetic charge

and current.

xv



The main topic of this dissertation is the averaging of inhomogeneous

microscopic fields into homogeneous macroscopic fields. We differentiate be-

tween the two by modifying the case of the microscopic fields

e Microscopic electric field
h Microscopic magnetic field
d Microscopic electric displacement
b Microscopic magnetic flux density

(3)

vs. the macroscopic fields

E Macroscopic electric field
H Macroscopic magnetic field
D Macroscopic electric displacement
B Macroscopic magnetic flux density.

(4)

The microscopic fields have the constitutive relations

d = ǫe, b = µh, (5)

where ǫ and µ are the microscopic and inhomogeneous permittivity and per-

meability.

The macroscopic fields have the constitutive relation

(
D
B

)

=

(
ǫ̂ ξ̂

ζ̂ µ̂

)

·
(
E
H

)

, (6)

where ǫ̂ and µ̂ are 3 × 3 spatial tensors and ξ̂ and ζ̂ are 3 × 3 spatial pseu-

dotensors.
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Chapter 1

A Survey of Metamaterial Homogenization

Methods

1.1 Introduction

The primary assumption made in the field of metamaterial research is

that when analyzing a inhomogeneous material, if the length scale of the in-

homogeneity is small compared to the free space wavelength of light, then it

is possible to describe the inhomogeneous material with effective constitutive

parameters (ǫ, µ, etc.). It is assumed these effective parameters accurately

describe the electromagnetic response of the metamaterial as if it were in fact

a homogeneous medium. Given the intense interest in metamaterials that has

developed over the past decade, it is surprising that relatively little research has

been directed towards defining or measuring these effective constitutive param-

eters. Indeed, today metamaterial homogenization/characterization represents

a small niche in the larger and ever growing field of metamaterial research.

To appreciate the challenge of metamaterial homogenization, let us be-

gin by understanding how complicated a metamaterial can in principle be.

Most conventional materials have an electromagnetic response that can be de-

scribed with a single number known as the permittivity or ǫ. This includes

1



dielectrics, metals, most liquids and gases and to a good approximation plas-

mas. The permittivity describes the electric response of the material according

to the constitutive relations

D = ǫE, B = H, (1.1)

where E and H are the electric and magnetic fields and D and B are the

electric displacement and the magnetic flux density. However there are some

materials that have a magnetic response as well. In fact, much of the interest in

metamaterials is due to their potential to exhibit a magnetic response at high

(optical) frequencies. Most natural magnetic materials have a simple magnetic

response characterized by the permeability or µ according to the constitutive

relations

D = ǫE, B = µH, (1.2)

These two constitutive parameters are in general not constant, but actually

functions of the frequency ω or ǫ = ǫ(ω) and µ = µ(ω). This dependence of

the parameters on ω is known as temporal dispersion.

So far, we have only considered materials with an isotropic response

which can be described with two parameters. However, in practice most meta-

materials are anisotropic, which means they have an electromagnetic response

that depends on the polarization direction of the electric and magnetic fields.

These anisotropic materials have the constitutive relation

2



D = ǫ̂·E =





ǫxx ǫxy ǫxz

ǫyx ǫyy ǫyz

ǫzx ǫzy ǫzz



·E, B = µ̂·H =





µxx µxy µxz

µyx µyy µyz

µzx µzy µzz



·H. (1.3)

Here ǫ̂ and µ̂ are the permittivity and permeability tensors. Each as nine

components for a total of 18 parameters to describe an anisotropic material.

Each of these 18 parameters is in general a function of ω.

In addition to anisotropy, as we will describe in later chapters, in many

metamaterials there is a coupling between the electric and magnetic fields.

This phenomenon is known as bianisotropy. Bianisotropic materials obey the

constitutive relation

(
D
B

)

=

(
ǫ̂ ξ̂

ζ̂ µ̂

)

·
(
E
H

)

. (1.4)

Now in addition to the tensors ǫ̂ and µ̂ we also see the pseudotensors ξ̂ and

ζ̂ [32]. These pseudotensors characterize the coupling between the electric and

magnetic fields. Each of these pseudotensors contain nine components, for a

total of 36 constitutive parameters to characterize a general metamaterial.

Finally, perhaps the main theme of this dissertation is that in addition

to temporal dispersion (the dependence of the constitutive parameters on ω)

many metamaterials also exhibit strong spatial dispersion. This manifests

itself as a dependence of the constitutive parameters on the wavevector k of

the electromagnetic field or

3



ǫ̂ = ǫ̂(ω,k) ξ̂ = ξ̂(ω,k)

ζ̂ = ζ̂(ω,k) µ̂ = µ̂(ω,k)
(1.5)

So in general, we need as many as 36 constitutive parameters, all of which are

functions of ω and k, to describe the electromagnetic response of a metamate-

rial. Successfully calculating all of these parameters under general conditions

is a difficult task and one that will only be partially fullfilled in this disserta-

tion. But along the way important insights into the nature of metamaterials,

particularly with respect to spatial dispersion, will be discovered.

Before describing the author’s attempts at metamaterial homogeniza-

tion, it is useful to review a few other methods of characterizing metamaterials.

This is important to relate to the reader the current state of the art of meta-

material theory in the published literature and to weigh the relative strengths

and weaknesses of different methods. It is also important for comparing and

contrasting our attempts at metamaterial homogenization to these other meth-

ods. Therefore the remainder of this chapter is a survey of published methods

for numerically calculating the effective constitutive parameters. The list of

methods described is not exhaustive, but it represents the best of metamate-

rial homogenization theory that is currently available. It also helps put into

perspective the two homogenization methods described in Chapters 4 and 5.

The notations used in the original papers have been modified to be consistent

with the conventions used in this dissertation.
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1.2 Pendry’s averaging method

In 1999, a paper titled Magnetism from Conductors and Enhanced Non-

linear Phenomena by John Pendry et al. [50] began the field of research on

materials with exotic electromagnetic properties that would later be known as

metamaterials. This paper described how coiled rolls of metal could exhibit

a resonant magnetic response. In this initial metamaterial paper there was

proposed a simple method for averaging the microscopic fields inside an inho-

mogeneous material into macroscopic fields. The averaging method consists

of averaging the E and H fields over the edges of the crystal unit cell and

averaging the B and D fields over the faces of the unit cell. Consider two of

the Maxwell equations for microscopic fields in the absence of sources

−∇× e =
∂b

∂t
, ∇× h =

∂d

∂t
. (1.6)

A surface integral of these equations over an edge of the unit cell results in

−
∮

∂S

e · dl =
∂

∂t

∫

S

b · da
∮

∂S

h · dl =
∂

∂t

∫

S

d · da (1.7)

where S is a face of the unit cell and ∂S is the boundary of that face. The form

of these equations suggest a possible prescription for averaging the microscopic

fields, namely that the e and h fields should be averaged along the edges of

the unit cell

5



x̂

ŷ

ẑ

Figure 1.1: An example from Ref. [50] of an inclusion with a magnetic response.
This split ring structure is made of two concentric cylinders, each with a gap
preventing current from traveling all the way around the cylinder.

Ex =
1

ax

∫ ax
2

− ax
2

dx ex(x, y = −ay

2
, z = −az

2
),

Ey =
1

ay

∫ ay

2

−
ay

2

dy ey(x = −ax

2
, y, z = −az

2
),

Ez =
1

az

∫ az
2

− az
2

dz ez(x = −ax

2
, y = −ay

2
, z),

(1.8)

with similar formulas for averaging the h field. Here ax, ay and az are the

lattice constants of the crystal unit cell. Similarly the b is averaged over faces

of the unit cell
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Bx =
1

ayaz

∫ ay

2

−
ay

2

dy

∫ az
2

− az
2

dz bx(x = −ax/2, y, z)

By =
1

axaz

∫ ax
2

− ax
2

dx

∫ az
2

− az
2

dz by(x, y = −ay/2, z)

Bz =
1

axay

∫ ax
2

− ax
2

dx

∫ ay

2

−
ay

2

dy by(x, y, z = −az/2)

(1.9)

with similar formulas for averaging the d field.

This averaging procedure produced some of the first theoretical ev-

idence of unusual magnetic responses in composite materials including ap-

proximate analytic expressions for the magnetic permeability [50]. Still, there

was room for improvement in these equations. If this averaging procedure is

applied to a plane wave propagating through a homogeneous medium, say a

simple dielectric with an arbitrary unit cell, Eqs. (1.8,1.9) will not produce the

correct averaged field amplitude (which should be equal to the amplitude of

the microscopic plane wave). In Ref [62] this method was modified to correct

this. Two factors are multiplied to Eqs. (1.8,1.9). The first is a simple phase

factor adjusting for the fact that different field components are averaged in

different locations on the unit cell. The second factor is an effective volume

term. The new expressions for the E and B fields are
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Ex =
e−i(kyay/2+kzaz/2)

sx

∫ ax
2

− ax
2

dx ex(x, y = −ay

2
, z = −az

2
)

Ey =
e−i(kxax/2+kzaz/2)

sy

∫ ay

2

−
ay

2

dy ey(x = −ax

2
, y, z = −az

2
)

Ez =
e−i(kxax/2+kyay/2)

sz

∫ az
2

− az
2

dz ez(x = −ax

2
, y = −ay

2
, x)

(1.10)

and

Bx =
e−ikxax/2

sysz

∫ ay

2

−
ay

2

dy

∫ az
2

− az
2

dz bx(x = −ax/2, y, z)

By =
e−ikxax/2

sxsz

∫ ax
2

− ax
2

dx

∫ az
2

− az
2

dz by(x, y = −ay/2, z)

Bz =
e−ikxax/2

sxsy

∫ ax
2

− ax
2

dx

∫ ay

2

−
ay

2

dy by(x, y, z = −az/2)

(1.11)

The effective volumes sx, sy and sz are given by the formulas

sx =
sin kxax/2

ax/2
sy =

sin kyay/2

ay/2
sz =

sin kzaz/2

az/2
(1.12)

This modified averaging procedure has been used to characterize sim-

ple metamaterials by averaging the microscopic fields of Bloch eigenmodes of

the metamaterial crystals [60]. The homogenization procedure is partially suc-

cessful but it is limited in its applicability. Primarily, it can only be used on
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crystals with enough symmetry that the permittivity and permeability ten-

sors are diagonalizable and the bianisotropic tensors are zero. This method is

unable to characterize crystals with little or no symmetry. Finally, as we will

see later in this chapter, bianisotropy can occur in highly symmetric crystals

due to spatial dispersion. Because this homogenization procedure assumes no

bianisotropy it mistakenly excludes this possibility.

1.3 S parameter retrieval

Most of the averaging procedures described in this chapter are not

widely used by the metamaterial community. We are describing each of them

either because they represent important contributions to homogenization the-

ory or because they represent important advances in metamaterial knowledge

in general. The method described in this section is an exception. This is the

most widely used homogenization procedure in the metamaterial literature.

In 2002, Smith et al. published the paper Determination of effective

permittivity and permeability of metamaterials from reflection and transmis-

sion coefficients [61]. The concept of this procedure is simple. The scattering

matrix for a slab of a metamaterial crystal is calculated numerically. This

slab has a finite width, generally three to five lattice constants, and an infinite

length in the two remaining directions. The question is then asked: for a ho-

mogeneous slab, what constitutive parameters would be necessary for the slab

to produce the same scattering matrix as that measured from the metamaterial

slab.
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Figure 1.2: A schematic of the S-parameter retrieval method. The scattering
matrix is measured from a thin slab of the metamaterial of interest (left) and
the constitutive parameters ǫ and µ are inferred for a thin slab of a homoge-
neous medium (right) which is assumed to have the same scattering matrix.

To solve this inverse scattering problem several assumptions are made.

First, it is assumed that the metamaterial crystal of interest has reflection

symmetry in three orthogonal directions. This implies that the ǫ̂ and µ̂ tensors

are both diagonal in the same basis which is known as the principle axes.

This symmetry also implies that the bianisotropic tensors ξ̂ and ζ̂ are zero.

This assumption about the lack of bianisotropy is common for crystals with

inversions symmetry though we will see later that it is incorrect. The second

assumption is that light propagating though the crystal is propagating along

a principle axis and is polarized along another principle axis. This allows

us to consider only one component of ǫ̂ and one component of µ̂, which we

will simply refer to as ǫ and µ respectively. The assumption of propagation
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along a principle axis also implies that the interface between vacuum and the

metamaterial crystal is perpendicular to a principle axis and that the incident

beam is normal to this interface. The third assumption is that boundary

conditions at the interface are Maxwellian, meaning that the components of

the e and h fields tangential to the interface are continuous across the interface.

This seems like an obvious assumption, but it may not be true for materials

with string spatial dispersion. Finally, it is assumed that the metamaterial is

passive (only losses, no gain) and that it obeys Lorentz reciprocity [36, 2].

After stating all assumptions, the next step is to analytically calculate

the scattering matrix from a slab of a homogeneous medium. Since most

of the examples in this dissertation involve p polarized waves (waves with

the magnetic field perpendicular to the plane containing the wavevector) we

define our scattering matrix with the magnetic field amplitudes. The scattering

matrix is defined according to

(

hL
out

hR
out

)

=

(

SH
11 SH

12

SH
21 SH

22

)

︸ ︷︷ ︸

SH

(

hR
in

hL
in

)

. (1.13)

The two relevent constitutive parameters ǫ and µ define an index of refraction

n =
√

ǫµ which describes propagation through the slab according to the disper-

sion relation k = nω/c. The constitutive parameters also define an impedance

z =
√

µ/ǫ. With our assumption of Maxwellian boundary conditions at the

interface between the vacuum and the homogeneous slab, the impedance de-

termines reflection of an incident wave at the interface r = (1 − z)/(1 + z) as
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well as the transmission from the slab into vacuum t = 1 + r = 2/(1 + z).

The scattering matrix of the slab can be calculated from these param-

eters.

S11 = r +
rt2e−2inωd/c

1 − r2e−2inωd/c
=

(1 − z2)i sin(nωd/c)

(1 + z2)i sin(nωd) + 2z cos(nωd/c)
(1.14)

S21 =
t2e−inωd/c

1 − r2e−2inωd/c
=

2z

(1 + z2)i sin(nωd/c) + 2z cos(nωd/c)
(1.15)

Here ω is the angular frequency of the incident beam, d is the thickness of

the slab and c is the speed of light. Because we are only considering meta-

materials that are symmetric and that obey Lorentz reciprocity the reflection

and transmission amplitudes are equal regardless of the direction of incident

radiation implying S11 = S22 and S12 = S21. Eqs. (1.14,1.15) can be inverted

to solve for the index of refraction

cos(nωd/c) =
1 − S2

11 + S2
21

2S21
, (1.16)

There is some ambiguity in this expression. There are an infinite number of

solutions to Eq. (1.16) for the index of refraction. For any solution n, there

also exists the solution n + 2πm/d where m is an integer. The solution for n

should always be chosen so that the resulting wavenumber lies in the primary

Brillouin zone or −π/a ≤ Re(nω/c) ≤ π/a. Also, because of the assumption
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of the passivity of the metamaterial the sign of n should be chosen so that

Im(n) ≤ 0 indicating a wave that is decaying in the positive x̂ direction. Still,

since d ≥ a there could be several possible solutions to Eq. (1.16) that satisfy

these conditions. The authors of Ref. [61] suggest that to pick the correct index

one should perform the S parameter retrieval procedure on different slabs of

the metamaterial each with different thicknesses and pick the index that is

consistant with the different slabs thicknesses.

Eqs. (1.14,1.15) can also be inverted to solve for the impedance

z2 =
(1 − S11)

2 − S2
21

(1 + S11)2 − S2
21

. (1.17)

The sign of the impedance should be chosen so that Re(z) > 0.

Once the index of refraction and the impedance are known it is straight-

forward to calculate the permittivity and permeability

ǫ =

√
n

z
, µ =

√
nz. (1.18)

One limitation of this procedure is that it assumes reflection symmetry

in the direction of propagation, that is it assumes the crystal is symmetric

under a reflection transformation in the direction of the wavevector k. A more

general method was presented in Ref. [41] that allows for the extraction of

three constitutive parameters ǫ, µ and κ from a metamaterial with no reflection

symmetry in the propagation direction. Here κ is a bianisotropic parameter.

This method takes into account the fact the the intrinsic bianisotropy of an
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asymmetric metamaterial crystal causes the crystal to have two impedances,

one each for two waves moving in opposite directions. This causes the reflection

amplitudes of the scattering matrix to be unequal allowing for the extraction

of three constitutive parameters.

There are several limitations of both the symmetric and asymmetric

versions of the S parameter retrieval method. First, both the symmetric and

asymmetric methods assume that the metamaterial has reflection symmetry

in two orthogonal directions, allowing for the permittivity and permeability

tensors to be diagonalizable (for the asymmetric retrieval the bianisotropic

pseudotensors each have two off-diagonal elements). The retrieval methods

further assume that both the propagation wavevector and the polarization are

along principle axes of the crystal. As a result, the wave traveling through the

metamaterial slab is only affected by a small number of constitutive parame-

ters, one component of ǫ one component of µ and one bianisotropic parameter

κ. This simplification is essential for calculating the constitutive parameters

through an inverse scattering problem. By rotating the polarization of the

incident wave onto another principle axis three more parameters can also be

calculated in this way. Still this allows only 6 constitutive parameters to be cal-

culated out of a possible 36. The S parameter retrieval method only works on

highly symmetric metamaterial crystals and can only retrieve a small number

of parameters.

The second limitation of this method is that it assumes that the con-

stitutive parameters are all functions solely of ω. As we shall see as we look
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at some other proposed homogenization methods, this is not true in general.

The presence of spatial dispersion can cause the constitutive parameters to

depend on k as well as ω [3]. As we shall see in Chapter 2 spatial dispersion

is a common and important phenomenon in metamaterials. Among its other

effects, spatial dispersion can cause the boundary conditions between the in-

terface of a metamaterial and some other medium to be non-Maxwellian. This

brings us to the third drawback of the S parameter retrieval method, it assume

Maxwellian boundary conditions at the interfaces.

Despite the limitations of S parameter retrieval, it is the most com-

monly used method for characterizing metamaterial crystals and has played

an important role in the development of the field of metamaterial research.

1.4 Calculation of non-local permittivity

The two remaining homogenization procedures we discuss are not widely

used in metamaterial research. Nonetheless, they represent some of the best

recent attempts at a more general method of metamaterial homogenization.

Both have an important factor in common, they excite microscopic fields inside

a metamaterial crystal with external currents.

The first example of this comes from a paper by Mário G. Silveir-

inha [54]. As we with the first two homogenization procedures earlier in this

chapter, any metamaterial homogenization procedure that is based on aver-

aging the microscopic electromagnetic fields of eigenmodes of a metamaterial

crystal can only solve for a small number of constitutive parameters. The
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most novel aspect of Silveirinha’s approach is that instead of averaging the

electromagnetic fields of free eigenmodes of a metamaterial crystal, he drives

the metamaterial crystal with the external electric current

J = J0e
i(ωt−x·k). (1.19)

This current is harmonic both in time and in space. This external current

generates microscopic electromagnetic fields inside the metamaterial crystal

according to the Maxwell equations. These driven fields are also harmonic in

time with frequency ω but the field distribution in space is Bloch periodic [29,

52] with the Bloch wavevector being equal to the wavevector of the driving

current k.

The idea of driving electromagnetic fields inside a metamaterial crystal

is an important departure from previous homogenization procedures that an-

alyze eigenmode field distributions. In particular, driving the electromagnetic

fields with external currents helps solve the problem of calculating all of the

constitutive parameters.

Once a the driven electromagnetic fields are solved for numerically, they

can be averaged into macroscopic fields to solve for the constitutive param-

eters. The averaging procedure described by Silveirinha is as follows. The

macroscopic electric field is E = E0e
i(ωt−k·x) where the amplitude E0 is calcu-

lated from the integral
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E0 =

∫

Ω

d3x eeik·x (1.20)

where Ω is the crystal unit cell. Similarly, the macroscopic electric polarization

is P = P0e
i(ωt−k·x) where the amplitude P0 is calculated as

P0 =

∫

Ω

d3x (ǫ − 1)e (1.21)

The macroscopic electric displacement field is simply the sum of the macro-

scopic electric and polarization fields or D = E + P.

The macroscopic magnetic and magnetic flux fields are averaged in

a similar way. However, since Silveirinha only considers either metallic or

dielectric inclusions he assumes µ = 1 resulting in the fact that the macroscopic

magnetic and magnetic flux fields are identical

H0 =

∫

Ω

d3x h, B0 =

∫

Ω

d3x b =

∫

Ω

d3x h = H0. (1.22)

The result is that there is no macroscopic magnetization. The macroscopic

electromagnetic response is completely contained within the macroscopic elec-

tric polarization P.

Because the response of the metamaterial is determined by P the meta-

material can be described solely with an effective permittivity. This permit-

tivity is determined by performing three simulations, each driving the meta-

material crystal with a different electric current vector J0. The only condition
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on these three current vectors is that they must be linearly independent. The

three simulations return three sets of microscopic electromagnetic fields which

can then be averaged into three sets of linearly independent macroscopic elec-

tric and electric displacement fields

E =





E1
x E2

x E3
x

E1
y E2

y E3
y

E1
z E2

z E3
z



 , D =





D1
x D2

x D3
x

D1
y D2

y D3
y

D1
z D2

z D3
z



 . (1.23)

Here the superscript indicates that the macroscopic fields come from averaged

microscopic fields driven with the external currents J1
0, J2

0 and J3
0.

Once we have three sets of macroscopic E and D fields we can calculate

the permittivity tensor

ǫ̂nl(ω,k) ≡ DE−1 (1.24)

The subscript of ǫ̂nl indicates that this is a non-local permittivity. This means

that ǫ̂nl is a function of k as well as ω. This is the most interesting feature

of the calculated permittivity. Both of these parameters are determined by

the applied driving current. The dependence of ǫ̂ on k is due to spatial dis-

persion in the metamaterial crystal. As we shall see in Chapter 2, spatial

dispersion is a defining characteristic of metamaterials. Any general method

of describing metamaterials with effective constitutive parameters must take

spatial dispersion into account.
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At the same time, it is strange that the entire response of the metama-

terial is described by ǫ̂. This is a striking departure from most metamaterial

theory where a separate ǫ̂(ω) and µ̂(ω) are assigned to a metamaterial. Sil-

veirinha connects his nonlocal ǫ̂nl to the local constitutive parameters meta-

material researchers are familiar with by expanding ǫ̂nl in powers of k.

ǫ̂nl(ω,k) = ǫ̂l − ξ̂l · µ̂−1
l · ζ̂l +

(

ξ̂l · µ−1
l × k

ω/c
− k

ω/c
× µ̂−1

l · ζ̂l

)

+
k

ω/c
×
(
µ̂−1

l − 1
)
× k

ω/c
.

(1.25)

Here ǫ̂l(ω), µ̂l(ω), ξ̂l(ω) and ζ̂l(ω) are the local constitutive parameters nor-

mally used to describe the electromagnetic response of a metamaterial crystal.

Each of the local constitutive parameters are functions solely of ω. They can

be calculated by taking partial derivative of the nonlocal permittivity ǫ̂nl(ω,k)

with respect to k evaluated at k = 0.

There remain questions as to why only the permittivity is allowed to

be nonlocal. There are metamaterial models that in general allow all of the

36 constitutive parameters to be nonlocal and there are good reasons to insist

that ξ̂, ζ̂ and µ̂ should exhibit spatial dispersion. As we will see in Chapter 3

(Ref. [23]), in some crystals there exist magnetically polarized longitudinal

modes or magnetic bulk plasmons. If these modes are ever to be successfully

characterized with constitutive parameters, it will be by demonstrating that

they obey the dispersion relation k · µ̂ = 0, which for a real valued ω implies a
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dependence of µ̂ on k. Though Silveirinha’s procedure successfully reproduces

the dispersion relation for transverse modes, it clearly would be unable to do so

for a magnetic bulk plasmon. It is clear however, that if the microscopic elec-

tromagnetic fields excited in the metamaterial crystal are driven with electric

current, then one is limited to three linearly independent sets of electromag-

netic fields. This allows for the calculation of at most nine components of

a 3 × 3 constitutive matrix. Still, Silveirinha’s homogenization procedure is

an important contribution to metamaterial theory. Its most notable feature is

that it relies on microscopic fields driven by external currents. Because the ex-

ternal currents have an arbitrary ω and k the resulting constitutive parameters

that depend not only on ω but also on k. The dependence of the constitutive

parameters on k provides information about spatial dispersion in the metama-

terial crystal. This information is essential to any successful characterization

of metamaterials.

1.5 Calculation of 36 non-local constitutive parameters

Around the same time that Silveirinha suggested that metamaterials

could be characterized by driving them with external electric currents, a sec-

ond paper came to a similar but slightly different conclusion. In the paper

Non-local effective medium of metamaterial [40] Jensen Li and John Pendry

proposed a metamaterial homogenization procedure involving the driving of a

metamaterial crystal by external electric and magnetic fields Eext and Hext.

These external fields were said to be induced by external electric and magnetic
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polarization densities. Unlike the induced external fields in Silveirinha’s ho-

mogenization scheme these fields are not generated by electric current alone.

In addition to an external electric polarization density (essentially electric cur-

rent) these fields are also induced by an external magnetic polarization density

(which can be thought of as magnetic current). The result is that unlike Sil-

veirinha whose method calculates the nine components of the nonlocal permit-

tivity tensor, Li’s method produces six linearly independent electromagnetic

fields allowing him to calculate all 36 nonlocal constitutive parameters.

Li models a metamaterial crystal by representing the inclusions of a

unit cell as a collection of N electric and magnetic point dipoles. The moment

of each dipole is product of the local electromagnetic field and a polarizability

matrix

(
p(R + ri)
m(R + ri)

)

= α̂i ·
(
eloc(R + ri)
hloc(R + ri)

)

. (1.26)

Here pi(R+ ri) and mi(R+ ri) are the magnetic moments of the i’th particle

in the unit cell represented by the lattice vector R, αi is the polarizability of

the i’th particle and eloc(R+ri) and hloc(R+ri) are the local microscopic fields

at the location of the i’th particle in the R unit cell. As mentioned earlier,

the metamaterial crystal is driven with external currents that are harmonic in

time and space

Eext(r) = E0
exte

i(ωt−k·x),
Hext(r) = H0

exte
i(ωt−k·x).

(1.27)
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These externally imposed fields are in principle generated by external electric

and magnetic polarizations/currents. The dipole moments are related to the

external fields and are solved for using a Green’s function. The solution is

available in the original paper (Ref. [40]) but for the sake of brevity we will

not reprint it. The average polarization density is assumed to be

(
P(r)
M(r)

)

≡ e−ik·r

V

n∑

j

(
p(rj)
m(rj)

)

eik·rj (1.28)

This is the same field averaging method used by Silveirinha [54] for the elec-

trical polarization density though Li allows for the possibility of magnetic

inclusions being present in the unit cell and therefore a nonzero macroscopic

magnetic polarization density. The ratio between the macroscopic polariza-

tion density and the external driving fields is then related to the macroscopic

susceptibility χ̂ (we will do the same in Chapter 5), and the constitutive pa-

rameters are calculated as Ĉ = 1 + χ̂. Li’s method is the first that the author

is aware of that claims to calculate all 36 constitutive parameters of a meta-

material. Andrea Alu has a similar method for calculating the constitutive

parameters of arrays of interacting dipoles with similar results [6].

The limitation of these approaches is similar to the limitation of Silveir-

inha’s method (Sec 1.4). Primarily, if one considers only electric inclusions in

the unit cell then the entire response of the metamaterial is described by the

permittivity and the permeability is equal to 1. However, there is a very im-

portant discovery in Li’s paper. In the field of metamaterials it is conventional
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wisdom that crystals with inversion symmetry do not exhibit bianisotropy

(the coupling of electric and magnetic fields). Li’s paper is the first to claim

that bianisotropy can in fact exist in a metamaterial crystal with inversion

symmetry if spatial dispersion is present. This was later predicted by the au-

thor [20, 21] as well as by Alu [6]. We will explain this unexpected result in

Sec 2.2. This is still a relatively unknown phenomenon that has significant

implications for the field of metamaterial research.
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Chapter 2

Spatial Dispersion in Metamaterials

2.1 Nonlocal media

The electromagnetic interaction between light and matter is for most

conventional materials described only with an electric permeability ǫ. This

permeability is often a function of the frequency of light interacting with the

material or ǫ = ǫ(ω). We say that this dependence of the permeability on the

frequency indicates that the material is temporally dispersive. Metamaterials

often are very temporally dispersive but they often have a second dependence

that ordinary materials do not. Many metamaterials are also spatially dis-

persive (nonlocal). This means that the permittivity, and other constitutive

parameters, depend not just on the frequency ω but also the wavevector k.

Why do conventional materials not display spatial dispersion? Let’s

consider a typical crystalline material, say a crystal of SiO2, and imagine a

ray of red light propagating through the crystal. The lattice constant of SiO2

is about 0.734nm while the wavelength of the red light beam could be about

750nm Because the wavelength of light is so much longer than the lattice

constant of the crystal the dependence of the constitutive parameters on the

wavevector is small and we can say that spatial dispersion is negligible and can
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be ignored. In many metamaterials however, both the free space wavelength

and the effective wavelength (2π/|k|) of electromagnetic radiation propagating

through the metamaterial are comparable in size to the crystal lattice constant.

At best the free space wavelength might be ten times longer than the crystal

lattice constant, often it is only three or four times longer. In this regime, the

constitutive parameters become strongly dependent on the wavevector of the

electromagnetic radiation or

ǫ̂ = ǫ̂(ω,k) ξ̂ = ξ̂(ω,k)

ζ̂ = ζ̂(ω,k) µ̂ = µ̂(ω,k)
(2.1)

This dependence of the constitutive parameters on the wavevector is a phe-

nomenon often neglected by most methods of characterizing metamaterials.

For example, in S parameter retrieval (Sec. 1.3), the metamaterial is charac-

terized by analyzing the scattering of an wave incident upon the metamaterial

slab. Both the reflected and transmitted waves are coupled to a wave propagat-

ing through the metamaterial slab and reflecting off of the interior boundaries.

The constitutive parameters retrieved from the measurement are the constitu-

tive parameters at the frequency ω as well as the wavevector k of the internally

propagating wave. However, since the wave inside the metamaterial slab is a

freely propagating wave it is restricted by a dispersion relation that relates the

wavevector to the frequency or k = k(ω). Thus the constitutive parameters

returned by S parameter retrieval are actually functions of ω or ǫ = ǫ(ω,k(ω))

and µ = µ(ω,k(ω)).
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Ignoring the spatial dependence of the constitutive parameters has a

number of consequences. Much of the strange and apparently unphysical be-

havior of metamaterials can be traced to the fact that researchers often over-

look that metamaterials are spatially dispersive. The focus of this chapter is

to illuminate the effects of spatial dispersion in metamaterial crystals and look

at some of the ways that spatial dispersion manifests in metamaterials.

2.2 Symmetry of Crystals and their Constitutive Pa-
rameters

The symmetry of a crystal affects the symmetry of its constitutive ten-

sors and pseudotensors. For example, take a dielectric crystal whose permit-

tivity depends only on ω (we are ignoring spatial dispersion for the moment).

In general the permittivity of this temporally dispersive crystal is represented

by a 3 × 3 permittivity tensor

ǫ̂(ω) =





ǫxx ǫxy ǫxz

ǫyx ǫyy ǫyz

ǫzx ǫzy ǫzz



 (2.2)

If the crystal has a geometric symmetry, this will constrict the possible val-

ues of the permittivity tensor. We refer to ǫ̂ as a tensor because if we per-

form a simple coordinate transformation ǫ̂ will transform according to the rule

ǫ̂(ω)′ = Tǫ̂(ω)TT where T is a spatial transformation matrix that defines a

rotation or spatial reflection (here we limit ourselves to the simple transfor-

mations that make up the orthogonal group of transformations in three spatial
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dimensions or O(3)). Any geometric symmetry of the crystal will manifest

itself in the structure of the tensor. If the crystal remains invariant under a

certain transformation, then any tensor (pseudotensor) describing the crystal

should also remain invariant under that transformation. So if the crystal is

symmetric under a spatial reflection, say a reflection in the x̂ direction, this

implies that the permittivity must be invariant under that spatial reflection

or ǫ̂(ω) = T−x̂ǫ̂(ω)TT

−x̂. Here the spatial reflection transformation operator

is T−x̂ = diag(−1, 1, 1). For the individual components of the permittivity

tensor, this implies

ǫ̂ =





ǫxx ǫxy ǫxz

ǫyx ǫyy ǫyz

ǫzx ǫzy ǫzz



 =





ǫxx −ǫxy −ǫxz

−ǫyx ǫyy ǫyz

−ǫzx ǫzy ǫzz



 =





ǫxx 0 0
0 ǫyy ǫyz

0 ǫzy ǫzz



 (2.3)

Additional reflection symmetries will also constrain the structure of the per-

mittivity tensor. A symmetry under reflection in the ŷ direction implies

ǫ̂ =





ǫxx 0 0
0 ǫyy ǫyz

0 ǫzy ǫzz



 =





ǫxx 0 0
0 ǫyy −ǫyz

0 −ǫzy ǫzz



 =





ǫx 0 0
0 ǫy 0
0 0 ǫz



 (2.4)

If the crystal has more symmetries, then the permittivity tensor will be

constrained in other ways. If, for example, the crystal is symmetric under a

90◦ rotation around the ẑ axis then the permittivity tensor must be invariant

under the 90◦ rotation described by the transformation matrix
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T90◦ =





0 1 0
1 0 0
0 0 1



 . (2.5)

This implies that the permittivity tensor has the symmetry ǫ̂(ω) = T90◦ ǫ̂(ω)TT

90◦

or

ǫ̂ =





ǫx 0 0
0 ǫy 0
0 0 ǫz



 =





ǫy 0 0
0 ǫx 0
0 0 ǫz



 =





ǫ⊥ 0 0
0 ǫ⊥ 0
0 0 ǫz



 , (2.6)

giving us a so-called uniaxial permittivity tensor [32].

While ǫ̂ and µ̂ are tensors, the bianisotropic constitutive matrices ξ̂

and ζ̂ are pseudotensors. This means that when transforming under a sim-

ple O(3) transformation (spatial rotations and reflections) the pseudotensors

transform like ξ̂(ω)′ = det(T)Tξ̂(ω)TT where det(T) is the determinant of

the transformation matrix T. For a crystal that has inversion symmetry the

transformation matrix is Tinv = diag(−1,−1,−1) implying (ignoring spatial

dispersion) ξ̂(ω) = det(T)Tξ̂(ω)TT = −ξ̂(ω) = 0 as well as ζ(ω) = 0. Thus we

see that for a crystal with inversion symmetry and negligible spatial dispersion

there should be no bianisotropy.

The belief that metamaterial crystals with inversion symmetry cannot

manifest bianisotropy is widely held but is not correct. The argument we

just reviewed assumed that the constitutive parameters were only functions of

ω, but for metamaterial crystals where the free space wavelength is often of

comparable size to the crystal lattice constant, spatial dispersion becomes a
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strong and important effect. As a result, the constitutive parameters become

functions of both ω and k.

Let us review the above argument about the transformation of the bian-

isotropic pseudotensors while taking into consideration spatial dispersion. If

the metamaterial crystal is geometrically symmetric under a spatial inversion

then then this implies ξ̂(ω,k) = det(Tinv)Tinv ξ̂(ω, Tinvk)TT

inv = −ξ̂(ω,−k)

and similarly ζ̂(ω,k) = −ζ̂(ω,−k). So for a crystal with spatial dispersion,

inversion symmetry does not imply absence of bianisotropy but instead im-

plies a symmetry of the bianisotropic pseudotensor under the reversal of the

wavevector k. Thus, when spatial dispersion is present a crystal with inversion

symmetry can exhibit bianisotropy. We refer to this bianisotropy as extrinsic

bianisotropy as opposed to the intrinsic bianisotropy caused by a crystal’s

asymmetry. This was first suggested by Jensen Li [40] and later confirmed

by the author [20, 21] and Andrea Alu [6]. Another implication of this result

is that the bianisotropy has an odd dependence on k which also implies that

ξ̂(ω, 0) = 0 and ζ̂(ω, 0) = 0.

We now examine the argument earlier in this section about the symme-

try of the permittivity tensor ǫ̂ only now let us apply it to the pseudotensor ξ̂

while accounting for spatial dispersion. For a crystal with reflection symmetry

in the x̂ direction we must distinguish between wavevectors that are parallel

and perpendicular to the x̂ direction. If we assume that the wavevector is par-

allel to the x̂ direction or k = kxx̂, the result of reflection symmetry in the x̂

direction is ξ̂(ω, kxx̂) = det(T−x̂)T−x̂ξ̂(ω, T−x̂kxx̂)TT

−x̂ = −T−x̂ξ̂(ω,−kxx̂)TT

−x̂
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or

ξ̂(ω,k) =





ξxx(ω, kxx̂) ξxy(ω, kxx̂) ξxz(ω, kxx̂)
ξyx(ω, kxx̂) ξyy(ω, kxx̂) ξyz(ω, kxx̂)
ξzx(ω, kxx̂) ξzy(ω, kxx̂) ξzz(ω, kxx̂)





=





−ξxx(ω,−kxx̂) ξxy(ω,−kxx̂) ξxz(ω,−kxx̂)
ξyx(ω,−kxx̂) −ξyy(ω,−kxx̂) −ξyz(ω,−kxx̂)
ξzx(ω,−kxx̂) −ξzy(ω,−kxx̂) −ξzz(ω,−kxx̂)



 ,

(2.7)

If, as before, we assume additional reflection symmetries, symmetry of the

crystal under reflection in the ŷ direction implies ξ̂(ω, kxx̂) =

det(T−ŷ)T−ŷξ̂(ω, T−ŷkxx̂)TT

−ŷ = −T−ŷξ̂(ω, kxx̂)TT

−ŷ or

ξ̂(ω,k) =





ξxx(ω, kxx̂) ξxy(ω, kxx̂) ξxz(ω, kxx̂)
ξyx(ω, kxx̂) ξyy(ω, kxx̂) ξyz(ω, kxx̂)
ξzx(ω, kxx̂) ξzy(ω, kxx̂) ξzz(ω, kxx̂)





=





−ξxx(ω, kxx̂) ξxy(ω, kxx̂) −ξxz(ω, kxx̂)
ξyx(ω, kxx̂) −ξyy(ω, kxx̂) ξyz(ω, kxx̂)

−ξzx(ω, kxx̂) ξzy(ω, kxx̂) −ξzz(ω, kxx̂)





=





0 ξxy(ω, kxx̂) 0
ξyx(ω, kxx̂) 0 ξyz(ω, kxx̂)

0 ξzy(ω, kxx̂) 0



 ,

(2.8)

And similarly, an additional symmetry of the crystal under reflection in the ẑ

direction implies ξ̂(ω, kxx̂) = det(T−ẑ)T−ẑξ̂(ω, T−ẑkxx̂)TT

−ẑ =

− T−ẑξ̂(ω, kxx̂)TT

−ẑ or
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ξ̂(ω,k) =





0 ξxy(ω, kxx̂) 0
ξyx(ω, kxx̂) 0 ξyz(ω, kxx̂)

0 ξzy(ω, kxx̂) 0





=





0 −ξxy(ω, kxx̂) 0
−ξyx(ω, kxx̂) 0 ξyz(ω, kxx̂)

0 ξzy(ω, kxx̂) 0





=





0 0 0
0 0 ξyz(ω, kxx̂)
0 ξzy(ω, kxx̂) 0



 ,

(2.9)

Thus we see the reflection symmetry in the ŷ and ẑ directions force a number

of components of ξ̂ to zero, but because k = kxx̂, the wavevector breaks the

symmetry of the crystal in the x̂ direction and implies that the remaining

components ξyz and ξzy are odd in kx. The pseudotensor ζ̂ has the same

symmetry.

Though the main result of this section is that spatial dispersion can

cause bianisotropy to be present in crystals with inversion symmetry, spatial

dispersion does not just affect the bianisotropic constitutive parameters. Let us

take another look at the symmetry of the permittivity tensor ǫ̂ while accounting

for spatial dispersion. Once again we assume that the wavevector is parallel

to the x̂ direction. For a crystal with reflection symmetry in the x̂ direction

this implies
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ǫ̂(ω,k) =





ǫxx(ω, kxx̂) ǫxy(ω, kxx̂) ǫxz(ω, kxx̂)
ǫyx(ω, kxx̂) ǫyy(ω, kxx̂) ǫyz(ω, kxx̂)
ǫzx(ω, kxx̂) ǫzy(ω, kxx̂) ǫzz(ω, kxx̂)





=





ǫxx(ω,−kxx̂) −ǫxy(ω,−kxx̂) −ǫxz(ω,−kxx̂)
−ǫyx(ω,−kxx̂) ǫyy(ω,−kxx̂) ǫyz(ω,−kxx̂)
−ǫzx(ω,−kxx̂) ǫzy(ω,−kxx̂) ǫzz(ω,−kxx̂)



 ,

(2.10)

An additional symmetry of the crystal under reflection in the ŷ direction im-

plies

ǫ̂(ω,k) =





ǫxx(ω, kxx̂) ǫxy(ω, kxx̂) ǫxz(ω, kxx̂)
ǫyx(ω, kxx̂) ǫyy(ω, kxx̂) ǫyz(ω, kxx̂)
ǫzx(ω, kxx̂) ǫzy(ω, kxx̂) ǫzz(ω, kxx̂)





=





ǫxx(ω, kxx̂) −ǫxy(ω, kxx̂) ǫxz(ω, kxx̂)
−ǫyx(ω, kxx̂) ǫyy(ω, kxx̂) −ǫyz(ω, kxx̂)

ǫzx(ω, kxx̂) −ǫzy(ω, kxx̂) ǫzz(ω, kxx̂)





=





ǫxx(ω, kxx̂) 0 ǫxz(ω, kxx̂)
0 ǫyy(ω, kxx̂) 0

ǫzx(ω, kxx̂) 0 ǫzz(ω, kxx̂)



 ,

(2.11)

Again we seen that reflection symmetry in the ŷ direction restricts a number

of components of ǫ̂ to zero, but the wavevector k = kxx̂ breaks the symmetry

of the crystal in the x̂ direction forcing the components ǫxx, ǫyy and ǫzz to be

even with respect to kx and ǫxz and ǫzx to be odd with respect to kx. The

tensor µ has the same symmetry.

All of the symmetry properties we have derived depend on the partic-

ular symmetry of the crystal of interest. Different crystals will have different
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geometric symmetries and therefore different symmetries of their constitu-

tive parameters. However, one general conclusion can be drawn: for crystals

with spatial dispersion the wavevector k can break the preexisting symmetry

of a crystal, causing components of the constitutive parameters that would

normally be zero to have a nonzero value. This is true for both the tensor

parameters ǫ and µ as well as the pseudotensor parameters ξ and ζ .

2.3 Energy Density and Poynting Flux

It is well known that materials with strong temporal dispersion physi-

cally manifest this dispersion in a way that makes them different from nondis-

persive materials. A well known example is the energy density of an elec-

tromagnetic wave inside a medium. For a nondispersive material the energy

density is

U =
ǫ

2
E2 +

µ

2
H2. (2.12)

where ǫ and µ are the isotropic permittivity and permeability of the material.

However, in a material with strong temporal dispersion the energy density

is [26]

U =
1

2

∂(ωǫ)

∂ω
E2 +

1

2

∂(ωµ)

∂ω
H2. (2.13)

Here we have allowed for temporal dispersion in µ as well as ǫ. We see that

the dependence of ǫ and µ on the frequency ω has altered the expression for
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energy density. If ǫ and µ are approximately constant with respect to ω then

Eq.(2.13) reduces to Eq.(2.12).

It is less well known that spatial dispersion can also modify the standard

expressions for energy. Specifically, spatial dispersion affects the expression

for energy flux [4, 37, 30]. The standard treatment of the Poynting flux in a

material with spatial dispersion only considers spatial dispersion in ǫ. A more

general treatment for metamaterials that potentially have spatial dispersion

in the other constitutive parameters µ, ξ and ζ is required. Here we present a

general derivation of the energy density, Poynting flux and energy loss inside a

linear material characterized by 36 constitutive parameters with both temporal

and spatial dispersion. In doing so we will shed some light on an important

aspect of calculating loss inside a metamaterial.

The time averaged work done by electric current onto an electromag-

netic field in volume V of an effective medium is given by

W =
〈
−
∫

V
d3xE · J

〉

=

∫

V

d3x

〈

∇ · (cE × H) + E · ∂D

∂t
+ H · B

∂t

〉

.
(2.14)

Here the angled brackets indicate time averaging. In order to evaluate

the last two terms in Eq. (2.14) it is convenient to express the electromagnetic

fields as the 6 component vectors

F =

(
E
H

)

, G =

(
D
B

)

. (2.15)
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We are mostly interested in plane waves, or at least long wave packets that

can be approximated as plane waves. Thus, we can represent the F and G

fields as

F(t,x) =
F0(t,x)ei(ω0t−k0·x) + c.c.

2

G(t,x) =
G0(t,x)ei(ω0t−k0·x) + c.c.

2

(2.16)

where c.c. denotes the complex conjugate of the preceding term, ω0 and k0

are the real valued carrier frequency and wavevector of the approximately

monochromatic fields. Any change in the field amplitude including exponential

decay is included in the slowly varying field envelopes given by

F0(t,x) =

∫
dαd3q

(2π)4
F0(α,q)ei(αt−q·x),

G0(t,x) =

∫
dαd3q

(2π)4
C(ω0 + α,k0 + q) · F0(α,q)ei(αt−q·x).

(2.17)

We evaluate the partial derivative of G0e
i(ω0t−k0·x) with respect to time and

by expanding ωC as a Taylor series to first order in ω − ω0 and k− k0 we get
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∂

∂t

(
G0(t,x)ei(ω0t−k0·x)

)

≃
∣
∣
∣
∣
∣
iωC(ω,k) · F0+α

∂(ωC(ω,k))

∂ω
· F0 + qi

∂(ωC(ω,k))

∂ki

· F0

∣
∣
∣
∣
∣ω=ω0

k=k0

ei(ω0t−k0·x)

=

∣
∣
∣
∣
∣
iωC(ω,k) · F0+

∂(ωC(ω,k))

∂ω
· ∂F0

∂t
− ∂(ωC(ω,k))

∂ki

· ∂F0

∂xi

∣
∣
∣
∣
∣ω=ω0

k=k0

ei(ω0t−k0·x).

(2.18)

We emphasize that ωC and its partial derivatives are evaluated at ω = ω0

and k = k0 which are real valued. After time averaging the last two terms in

Eq. (2.14) we get the result

〈

E · ∂D

∂t
+ H · ∂G

∂t

〉

=

〈

F · ∂G

∂t

〉

=
1

2



−F†
0 ·
∣
∣
∣
∣
∣

ωC(ω,k)

2i
+ h.c.

∣
∣
∣
∣
∣ω=ω0

k=k0

· F0

+
1

2

∂

∂t



F†
0 ·

1

2

∣
∣
∣
∣
∣

∂(ωC(ω,k))

∂ω
+ h.c.

∣
∣
∣
∣
∣ω=ω0

k=k0

· F0





−1

2




∂F0

∂t

†

· 1

2

∣
∣
∣
∣
∣

∂(ωC(ω,k))

∂ω
− h.c.

∣
∣
∣
∣
∣ω=ω0

k=k0

· F0



+
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+
1

2



F†
0 ·

1

2

∣
∣
∣
∣
∣

∂(ωC(ω,k))

∂ω
− h.c.

∣
∣
∣
∣
∣ω=ω0

k=k0

· ∂F0

∂t





−1

2

∂

∂xk



F†
0 ·

1

2

∣
∣
∣
∣
∣

∂(ωC(ω,k))

∂kk
+ h.c.

∣
∣
∣
∣
∣ω=ω0

k=k0

· F0





+
1

2




∂F0

∂xk

†

· 1

2

∣
∣
∣
∣
∣

∂(ωC(ω,k))

∂kk

− h.c.

∣
∣
∣
∣
∣ω=ω0

k=k0

· F0





− 1

2



F†
0 ·

1

2

∣
∣
∣
∣
∣

∂(ωC(ω,k))

∂kk

− h.c.

∣
∣
∣
∣
∣ω=ω0

k=k0

· ∂F0

∂xk









= −1

2
F∗

0 · ML · F0 +
1

4

∂

∂t

(
F∗

0 · ME · F0

)
− 1

4

∂

∂xk

(
F∗

0 · MS
i · F0

)

+
i

2

[

−∂F0

∂t

†

· MA
ω · F0 + F†

0 · MA
ω · ∂F0

∂t

+
∂F0

∂xi

†

· MA
ki
· F0 − F†

0 · MA
ki
· ∂F0

∂xi

]

,

(2.19)

where h.c. denotes the hermitian conjugate of the preceding term and the

6 × 6 matrices ML, ME , MS
k , MA

ω and MA
ki

are given by
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ML =
1

2i

∣
∣
∣
∣
ωC(ω,k) − h.c.

∣
∣
∣
∣ω=ω0

k=k0

,

ME =
1

2

∣
∣
∣
∣

∂(ωC(ω,k))

∂ω
+ h.c.

∣
∣
∣
∣ω=ω0

k=k0

,

MS
i =

1

2

∣
∣
∣
∣

ω∂(C(ω,k))

∂ki
+ h.c.

∣
∣
∣
∣ω=ω0

k=k0

,

MA
ω =

1

2i

∣
∣
∣
∣

∂(ωC(ω,k))

∂ω
− h.c.

∣
∣
∣
∣ω=ω0

k=k0

,

MA
ki

=
1

2i

∣
∣
∣
∣

ω∂(C(ω,k))

∂ki
− h.c.

∣
∣
∣
∣ω=ω0

k=k0

.

(2.20)

When we combine Eq. (2.3) with Eq. (2.14) and group different terms depend-

ing on the partial derivatives operating on them, we see that terms entirely

differentiated with respect to time are identified as the change in energy den-

sity, terms entirely differentiated with respect to space are identified with

Poynting (energy) flux and terms with no derivatives represent energy loss.

There are also several anomalous terms that have no total partial derivatives.

When these terms are non-negligible, there is no simple way to divide the var-

ious terms into energy loss, Poynting flux or change in total energy [4]. When

the anomalous terms are negligible, we get an equation relating time averaged

work W , Poynting flux P and loss L to the change in the time averaged energy

density U
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W + P − L =
∂U

∂t
, (2.21)

where

P = −
∫

Ω
dn · S

Sk =
1

2

[

ǫijkc
EjH

∗
k + HkE

∗
j

2
− 1

2
F†

0 · MS
i · F0

]

L = −1

2

∫

Ω

d3xF†
0 · ML · F0

U =
1

4

∫

Ω

d3xF†
0 · ME · F0

(2.22)

A few points should be made about these expressions. First, due to the

presence of the bianisotropic constitutive parameters, there are now terms in

Eq. (2.22) that are proportional to both E and H. For example, the expression

for energy is now

U =
1

4

[

E† · 1

2

(

∂(ωǫ̂)

∂ω
+

∂(ωǫ̂)

∂ω

†
)

· E+E† · 1

2

(

∂(ωξ̂)

∂ω
+

∂(ωξ̂)

∂ω

†
)

· H

+H† · 1

2

(

∂(ωζ̂)

∂ω
+

∂(ωζ̂)

∂ω

†
)

· E + H† · 1

2

(

∂(ωµ̂)

∂ω
+

∂(ωµ̂)

∂ω

†
)

· H
]

(2.23)

Now both the fields and the constitutive parameters are complex valued and

the extra factor of 2 with respect to Eq. (2.12) is due to time averaging. Sec-

ond, the presence of spatial dispersion creates an additional term contributing
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to Poynting flux. This term is proportional to the hermitian part of first

derivative of the constitutive matrix with respect to the wavevector. Though

this additional term is not new for permittivity tensors with spatial disper-

sion [4, 37], we see that spatial dispersion in all of the constitutive parameters

contribute, not just the permittivity. Third, though this is a subtle point,

the matrices ML, ME and MS
i are all evaluated for real valued frequencies

and wavevectors. This is important in the field of metamaterials because of-

ten times constitutive parameters are calculated for waves freely propagating

through a metamaterial crystal. These waves often decay in space, either due

to losses or evanescence, and as a result the calculated constitutive param-

eters are evaluated for a complex valued wavevector. The misinterpretation

of these constitutive parameters evaluated at complex valued wavevectors has

resulted in the controversial phenomenon known as antiresonances. These will

be discussed in Chapter 6. Next, as already mentioned, the presence of the

anomalous terms in Eq. (2.3) prevents a simple division of energy changes

into dissipative loss, Poynting flux and change in energy density. For practical

purposes, these anomalous terms are usually negligible, but this is not always

true.

Finally, this derivation relied on expanding the matrix ωC as a Tay-

lor series to first order in ω − ω0 and k − k0. Implicitly, an assumption was

made that higher order terms were negligible. This assumption fails in situ-

ations of anomalous dispersion, often times near a material resonance. This

is important for metamaterials because metamaterial inclusions often rely on
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such resonances. When this assumption fails, higher order terms become non-

negligible, and the expressions in Eq. (2.22) fail.
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Chapter 3

Complex Bloch Band Diagrams

3.1 Introduction

Of all the possible field configurations inside a metamaterial crystal,

the ones most often of interest to researchers are eigenmodes: freely propa-

gating modes that are uncoupled to an external current. The conventional

method [29, 52] of numerically solving for crystal eigenmodes is to define the

geometry of the unit cell of the crystal of interest and the differential equation

that the fields must obey in this geometry and then impose Bloch periodic

boundary conditions. The partial differential equation problem is then dis-

cretized using one of the many standard methods (finite element, finite in-

tegral, finite difference, etc.) thereby turning it into an algebraic eigenvalue

problem with a finite number of degrees of freedom and the frequency ω as

the eigenvalue. This finite size eigenvalue problem is then solved numerically.

An important detail of this method is that the Bloch wavevector k is chosen

beforehand, and the frequency is then computed as a function of the wavevec-

tor, yielding the dispersion curves ω = ω(k). This is the most commonly

used method for calculating dispersion curves of the electromagnetic waves

propagating in photonic crystals or in closely related metamaterial crystals.

42



There are however, many instances where it is more convenient to spec-

ify the frequency ω and solve for the wavevector as a function of frequency:

k = k(ω). At least four such instances can be identified. First, metamate-

rials often contain dispersive materials such as metals, where the dielectric

function strongly depends on the frequency on the wave. In this case, the

eigenfrequency problem is a nonlinear eigenvalue problem and must be solved

iteratively [53]. In contrast, when solving for the wavevector as a function

of frequency, the resulting eigenvalue problem only needs to be solved once.

Second, it is often useful to solve for the wavevector as the eigenvalue because

of the information contained in the complex wavevector including the decay

lengths of the electromagnetic modes (either due to dissipative loss or because

of the evanescent nature of the mode) and the figure of merit [70] of negative

index modes. Third, in the majority of experiments the electromagnetic fields

inside metamaterial/photonic crystals are excited by external sources produc-

ing time harmonic fields with real valued frequencies. A complex wavevector

eigenvalue simulation provides the correct field distribution in the photonic

crystal relevant to such an experiment as opposed to the conventional ω = ω(k)

eigenvalue problem which returns a complex valued ω. Fourth, this approach

provides an alternative way of calculating the so-called isofrequency surfaces

corresponding to ω(k) = Constant, where ω is real. Isofrequency diagrams

are fundamentally important for predicting wave refraction at photonic crystal

interfaces [47].

There are several previously published methods on calculating k(ω)
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dispersion curves including variations of the plane wave expansion method [63,

25] and diagonalizing the crystal transfer matrix [68, 42]. A method of solving

for complex wavevector dispersion curves using the Finite Element Method

(FEM) has been proposed [14, 17] but only for 2D crystals. The benefits of

the complex wavevector 2D FEM are becoming better appreciated and use of

this method is becoming more common [72, 71, 21, 12, 22, 11]. Due to the

interest in the 2D complex wavevector FEM it is appropriate to generalize it

to 3D, which is in this chapter.

The FEM theory of solving for complex wavevector eigenvalue problems

is explained in Sec. 3.2. The underlying field equation and the boundary

conditions are discussed. In Sec. 3.3 we present a simple example of this

method applied to a 3D photonic crystal. We demonstrate solving this model

when the propagation direction is both parallel and oblique to the principal

axes. This work was previously published in Ref. [23].

3.2 The finite element eigenvalue problem

3.2.1 The field equation

In this section we present the FEM formulation for solving for the

magnetic field. Electromagnetic wave propagation is described by the Maxwell

equations which can be rearranged into a wave equation for either the electric

field E or the magnetic field H. The wave equation for the magnetic field is
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∇×
(

1

ǫ
∇× H

)

− µ
ω2

c2
H = 0. (3.1)

Here ǫ(x) and µ(x) are the microscopic permittivity and permeability of the

metamaterial/photonic crystal of interest. Due to the periodic nature of the

crystal both are are assumed to be scalar functions, periodic in the crystal

lattice. According to Bloch’s theorem [29, 52] the magnetic field can be rep-

resented as the product of a periodic function and an exponential factor,

H(x) = u(x)ei(ωt−k·x), (3.2)

where ω is the frequency of the wave and k is the wavevector of the Bloch-

Floquet wave. u(x) is a vector function which is periodic in the crystal lattice.

By inserting Eq. (3.2) into Eq. (3.1) we obtain an equivalent field equation for

u:

k2

ǫ
u−k

ǫ
(k · u)−ik×

(
1

ǫ
∇× u

)

−i∇×
(

1

ǫ
k × u

)

+∇×
(

1

ǫ
∇× u

)

−µ
ω2

c2
u = 0,

(3.3)

which can be solved as an eigenvalue problem with the Bloch wavevector k

as the eigenvalue. The spatial profile of the eigenmode u(x) is also recovered

providing the magnetic field profile according to Eq. (3.2) and the electric field

profile according to
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E(x) =
1

iǫω/c
∇× H =

1

iǫω/c
(−ik × u + ∇× u) ei(ωt−k·x) (3.4)

3.2.2 The finite element model

There are several commercial FEM software programs (COMSOL Mul-

tiphysics by COMSOL, HFSS by Ansys, Vector Fields Opera by Cobham

Technical Services, etc.) that are available for modeling metamaterial crys-

tals. These commercial software packages provide a convenient graphical user

interface for defining a crystal’s geometry, meshing the computational do-

main, and visualizing the electromagnetic fields. This allows for models to

be quickly developed and tested. Of the many commercial FEM codes avail-

able, the authors is only aware of one (COMSOL Multiphysics) that allows

the user to specify the field equation to be solved. The simulation examples

and results presented here were obtained using COMSOL. Several excellent

references [74, 28, 56] describing the FEM are available.

The FEM is based on setting the integral of a so-called weak expression

over the domain of interest to zero. Doing so ensures the field equation is satis-

fied and also creates boundary conditions. The weak expression corresponding

to Eq. (3.3) is
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FH(v,u) =
k2

ǫ
v · u − 1

ǫ
(k · v) (k · u) − i

1

ǫ
v · [k × (∇× u)]

−i (∇× v) · 1

ǫ
(k × u) + (∇× v) · 1

ǫ
(∇× u) − µ

ω2

c2
v · u,

(3.5)

where v(x) is a test function. When the integral of the weak expression over

the unit cell Ω of the crystal is set to zero, integrating by parts gives us two

separate integrals (Eq. (3.6)). The first integral enforces the field equation.

The second integral is over the boundary of the domain and represents a

natural boundary condition [74, 28],

0 =

∫

Ω

d3x FH(v,u)

=

∫

Ω

d3x v ·
[

−1

ǫ
k × (k × u) − i

1

ǫ
k × (∇× u) − i∇×

(
1

ǫ
k × u

)

+∇×
(

1

ǫ
∇× u

)

− µ
ω2

c2
u

]

+

∮

∂Ω

dA v ·
[

n̂ × 1

ǫ
(−ik × u + ∇× u)

]

,

(3.6)

where n̂ is the vector normal to the boundary. On an external boundary,

the natural boundary condition enforced by the integral in Eq. (3.6) over the

boundary ∂Ω forces the expression n̂ × (−ik × u + ∇× u) /ǫ to be equal to

zero. Recalling the definition of u from Eq. (3.2) we note that this simply
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enforces the boundary condition n̂ × E = 0. This is known as the perfect

electric conductor or PEC boundary condition. This natural boundary con-

dition is the default if no other boundary condition is enforced. On an inter-

nal boundary within the unit cell the surface integrals over each side of the

boundary must be equal to each other. The effect is that the tangential com-

ponents of the electric field must be continuous across the internal boundary

or n̂×E+ = n̂×E− where E+ and E− are the electric fields on opposite sides

of the internal boundary.

The periodicity of u is enforced by imposing periodic boundary condi-

tions on the exterior boundaries of the unit cell. In COMSOL, these periodic

boundary conditions override the natural boundary condition. However, if a

PEC boundary condition is desired inside the unit cell (e.g., on the surface of

a metal inclusion) this can be accomplished by removing the subdomain repre-

senting the metal inclusion. Now only the exterior side of the metal boundary

remains and the tangential electric fields are forced to zero at this boundary.

If a perfect magnetic conductor or PMC boundary condition (n̂ × H)

is desired while solving for the magnetic field this can be enforced with con-

straints [74] on the tangential magnetic field on the boundary.

To turn Eq. (3.6) into an eigenvalue problem, the three degrees of free-

dom that comprise the Bloch wavevector k must be reduced to one by restrict-

ing two degrees of freedom. This is accomplished by setting k = k0+λk̂n where

λ will be the eigenvalue solved for, k0 is an offset vector and k̂n is a normal

vector (k̂n · k̂n = 1) that defines the direction of the wavenumber eigenvalue λ.
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The FEM turns the weak form and accompanying boundary conditions into

an algebra problem, in this case a quadratic eigenvalue problem [64]

A~u + λB~u + λ2C~u = 0, (3.7)

where A, B and C are N × N matrices and ~u is an N × 1 solution vector. N

is the number of degrees of freedom of the discretized system. Terms in the

weak form (Eq. (3.5)) that are zero, first and second order in λ contribute to

the A, B and C matrices respectively. This quadratic eigenvalue problem can

be linearized exactly

(
A B
0 1

)(
~u
λ~u

)

= λ

(
0 −C
1 0

)(
~u
λ~u

)

, (3.8)

and solved as a generalized linear eigenvalue problem [1, 39, 45, 8, 51]. When

using COMSOL to solve the FEM problem, this linearization is performed

automatically during the solution phase.

3.2.3 Solving for the Electric field

The previous discussion focused on solving for the magnetic field H or

rather the periodic function u equal to the magnetic field with the exponential

Bloch factor removed. This is especially convenient when an inclusion requires

a PEC boundary condition since that is the natural boundary condition when

solving for H. However, solving for the electric field is very similar to solving
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for the magnetic field. The field equation for the electric field for a free wave

is

∇×
(

1

µ
∇× E

)

− ǫ
ω2

c2
E = 0. (3.9)

As before, we replace the electric field with a periodic vector field times an

exponential factor

E(x) = u(x)ei(ωt−k·x), (3.10)

producing the new field equation

k2

µ
u−k

µ
(k · u)−ik×

(
1

µ
∇× u

)

−i∇×
(

1

µ
k × u

)

+∇×
(

1

µ
∇× u

)

−ǫ
ω2

c2
u = 0.

(3.11)

The corresponding weak form for this field equation is

FE(v,u) =
k2

µ
v · u− 1

µ
(k · v) (k · u) − i

1

µ
v · [k × (∇× u)]

−i (∇× v) · 1

µ
(k × u) + (∇× v) · 1

µ
(∇× u) − ǫ

ω2

c2
v · u,

(3.12)

which is equivalent to Eq. (3.5) if ǫ and µ are interchanged. Integrating this

weak form over the crystal unit cell by parts and setting its value to zero again

produces two integrals, a volume integral enforcing the field equation and a
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surface integral enforcing the boundary condition n̂×H = 0. Thus the PMC

boundary condition is the natural boundary condition when solving for the

electric field.

3.3 Photonic Crystal

For a demonstration of this method of calculating complex k dispersion

curves we use a simple photonic crystal as an example. The unit cell, pictured

in Fig. 3.1, is a cube with a dielectric sphere at the center surrounded by

vacuum. The sphere has a radius of 0.3a, where a is the lattice constant of

the cubic array, and a permittivity of ǫ = 5 − i0.01.

As mentioned in Sec. 3.2.2, it is necessary to restrict two of the three

degrees of freedom of the Bloch wavevector k. There are many possible ways

to do this. The simplest dispersion curve we can solve is for eigenmodes that

are propagating along a principle axis of the crystal. To simulate this we set

k0 = 0 and k̂n = x̂. The results of this eigenvalue simulation for the frequency

range 1c/a ≤ ω ≤ 5.5c/a are plotted in Fig. 3.1 as ω vs. kx ≡ x̂ · k = λ.

There are an infinite number of eigenmodes of the photonic crystal so

for clarity we have only plotted a three eigenmodes that have the smallest

values of Im(kz). The three eigenmodes in Fig. 3.1 are described as either

transverse or longitudinal according to their polarization. The symmetry of

the dispersion curves is such that for every solution k(ω) there is also the

solution −k(ω) indicating that this is a reciprocal crystal. The transverse

mode dispersion curve plotted in Fig. 3.1 actually represents two polarization
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Figure 3.1: Complex k dispersion curves assuming k0 = 0 and k̂n = x̂. (a)
Re(kx(ω)) for a transversely polarized mode and a diagram of the crystal
unit cell. (b) Im(kx(ω)) for a transversely polarized mode and a field profile
for the ẑ polarized transverse mode. (c) Re(kx(ω)) for two longitudinally
polarized modes and a field profile for the magnetic longitudinal mode. (d)
Im(kx(ω)) for two longitudinally polarized modes and a field profile for the
electric longitudinal mode. Dotted lines are the result of a ω(k) eigenvalue
simulation. For all field profiles ω = 2c/a, arrows represent Dy and Dz and
color represents Dx.
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degenerate transverse modes. The longitudinal mode with the passband near

ω = 4.5c/a is magnetically polarized in the x̂ direction making it a magnetic

bulk plasmon. The longitudinal mode with the passband near ω = 5c/a is

electrically polarized in the x̂ direction and is an electric bulk plasmon. The

field profiles of both longitudinal modes indicate that the passbands correspond

to Mie’s resonances of the dielectric sphere [10].

The transverse mode dispersion curve has a band in the approximate

frequency range 4.6c/a < ω < 4.8c/a with a large value of Im(kx), indicating

it is an evanescent band, but a Re(kx) that is equal to neither 0 nor π/a as is

typical of ω(k) dispersion curves. As described in Refs. [64, 14] for a quadratic

eigenvalue problem with hermitian matrices (corresponding to a lossless crystal

eigenvalue problem) the eigenvalues must always be real or come in complex

conjugate pairs. The spherical photonic crystal is has very low loss so this

approximately holds true for the dispersion curve in Fig. 3.1. The transverse

band in the 4.6c/a < ω < 4.8c/a frequency band is also one half of a com-

plex conjugate pair, the other half is a transverse doubly degenerate mode not

shown here. At the frequency of ω ≈ 4.8c/a the two modes that make up this

complex conjugate pair both enter a passband and split, the plotted mode

going to the Γ point and the unplotted mode going to the band edge (this un-

plotted mode corresponds to the dotted lines from the ω(k) simulation). Note

that in this passband there are two pairs of propagating doubly polarization

degenerate modes or four propagating modes in total.

The transverse eigenmodes plotted in Fig. 3.1 can be excited at the
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interface between a bulk sample of the photonic crystal and vacuum if the

interface lies along the ŷ-ẑ plane and the incident radiation is normal to this

interface. The longitudinally polarized modes could not be excited by an wave

with normal incidence without the aid of a coupling device at the interface.

If the incident beam of light is not normal to the interface, if for example the

incident beam has a wavevector laying in the x̂-ŷ plane but at a 30◦ angle

from normal then a different set of eigenmodes will be excited at the interface.

To solve for these eigenmodes we set k0 = ω/c sin(π/6)ŷ and k̂n = x̂ and then

solve the resulting eigenvalue problem. The results are plotted in Fig. 3.2.

The eigenmodes in Fig. 3.2 are roughly split into transverse and lon-

gitudinal modes. The propagating modes are predominantly transverse, but

the finite ky has broken the degeneracy between the two polarizations as well

as caused the transverse modes to acquire a slight longitudinal polarization.

Both the transverse hybrid modes and longitudinal hybrid modes in Fig. 3.2

can been characterized by the polarization of the incident light necessary to

excite them. For a p polarized incident beam (electric field in the x̂-ŷ plane)

the p polarized eigenmode is excited (plotted in Fig. 3.2 as a solid line) and for

an s polarized incident beam (electric field in the ẑ direction) the s polarized

eigenmode is excited (plotted in Fig. 3.2 with dashed lines).

At the frequency ω ≈ 4c/a the transverse hybrid modes and the longi-

tudinal hybrids modes appear to cross in a propagating band. An expanded

view of this region in Fig. 3.2 plotting both transverse and longitudinal hybrid

modes shows that the apparent crossing actually occurs in a band gap. Viewed
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Figure 3.2: Complex k dispersion curves assuming k0 = ω/c sin(π/6)ŷ and
k̂n = x̂. Modes excited by p or s polarized incident light are plotted with solid
or dashed lines respectively. (a) Re(kx(ω)) for two transverse hybrid modes
and a expanded view of the avoided crossing in Re(kx) space. (b) Im(kx(ω))
for two transverse hybrid modes, an expanded view of the avoided crossing in
Im(kx) space, and a field profile for the Ez polarized transverse hybrid mode.
(c) Re(kx(ω)) for two longitudinal hybrid modes and a field profile for the
magnetic longitudinal hybrid mode. (d) Im(kx(ω)) for two longitudinal hybrid
modes and a field profile for the electric longitudinal hybrid mode. For all field
profiles ω = 2c/a, arrows represent Dy and Dz and color represents Dx.
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in complex kx space it is clear that this is actually an avoided crossing and in

the band gap the transverse and longitudinal hybrid modes form approximate

complex conjugate pairs [64, 14].

We see that even for a simple photonic crystal the k(ω) method of calcu-

lating the dispersion curve produces rich and complex results. In particular, it

is not possible to solve for evanescent eigenmodes using the conventional ω(k)

method for calculating dispersion curves. In addition, the ability to solve the

eigenmodes that are excited by an external laser beam by both allowing the

frequency to be real and matching ky = ω/c sin(θ) to the incident beam while

solving for kx as the eigenvalue is a unique capability of this method which is

essential for understanding refraction at the interface between vacuum and a

metamaterial/photonic crystal.

We will see in later chapters that the ability to solve complex k eigen-

value problems is crucial to understanding spatial dispersion in metamaterials.

In Chapters 4 and 5 this ability is essential for calculating constitutive param-

eters on the dispersion curve. Also, in Chapter 6, we find that a nonzero

Im(k) creates difficulties when we try to calculate energy flux in a metamate-

rial/photonic crystal.
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Chapter 4

A First Attempt at Metamaterial

Homogenization

4.1 A new homogenization method

Now that we have identified the pros and cons of previously reported

homogenization procedures we can try to develop a new procedure. This new

method will borrow the best aspects of the methods mentioned in Chapter 1

but hopefully avoid the pitfalls that those methods encountered. The method

outlined in this chapter is very ambitious and in the end we will discover several

problems with it. However, it is an important step in the right direction as it

develops some key ideas which will be essential to any future superior method

of metamaterial homogenization. The homogenization method described in

this chapter was previously published in Refs. [20, 21].

Before we begin let’s briefly review some of the shortcomings of the

methods described in the Chapter 1. The first two methods described were

only able to calculate a small number of constitutive parameters, often only

four, two for each polarization. Since their are at most 36 linear constitutive

parameters and since metamaterials tend to be much more complicated than

natural materials this is a significant limitation. A complete homogenization
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procedure should be able to calculate all 36 linear constitutive parameters.

Second, many of the methods described in Chapter 1 assumed a great deal of

symmetry in the crystal to be analyzed. This is necessary in all of the methods

that calculated small numbers of constitutive parameters. In general however,

complex metamaterials can be very asymmetric and/or non-reciprocal. Third,

several of the methods relied on freely propagating eigenmodes propagating

through the crystal of interest to characterize that crystal. These free waves

are not coupled to any source and have a relationship between their frequency

ω and k commonly known as the dispersion relation. These methods either ig-

nore or assume no direct relationship between the constitutive parameters and

the wavevector. They assume the constitutive parameters are only functions

of the frequency ω. However, as we saw with the homogenization methods

of Mário G. Silveirinha and Jenson Li, the constitutive parameters can be

functions of both ω and k, the dependence on k relating to spatial disper-

sion. As we saw in Chapter 1, spatial dispersion is an extremely important

effect in many metamaterials and must not be ignored. We can summarize

these requirements for an ideal metamaterial homogenization procedure in two

points.

1. The homogenization procedure must be solve for all 36 linear constitutive

parameters for an potentially asymmetric and non-reciprocal metamate-

rial crystal.

2. To accurately describe both temporal and spatial dispersion all 36 con-
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stitutive parameters must be functions of both ω and k.

Keeping these requirements in mind let’s consider a new metamaterial

homogenization procedure.

4.2 Metamaterials driven with electric and magnetic
charge/current

To solve for all 36 constitutive parameters of a metamaterial crystal we

must solve the equation

(
D
B

)

=

(
ǫ ξ
ζ µ

)(
E
H

)

, (4.1)

where the macroscopic field vectors D, B, E and H, are the known variables

and the constitutive parameters are the unknown variables. The matrix on

the right hand side of Eq. (4.1) is a 6x6 matrix known as the constitutive

matrix. Since there are 36 constitutive parameters we need 36 equations of

constraint. A single set of EM fields related through Eq. (4.1) provides six

equations of constraint. Therefore we need six sets of linearly independent EM

fields obeying Eq. (4.1) to solve for the constitutive parameters. Specifically,

we need six linearly independent sets of field vectors providing us with 36

equations of constraint that can be solved for 36 unknowns.

If we rely on eigenmodes supported by the medium free of source terms

then as we saw in Chapter. 1 for a general material only one set of linearly

independent fields is available for a particular set of ω(k) and k where ω = ω(k)
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is the dispersion relation. As we saw in Sec. 1.4 we can obtain three sets

of linearly independent fields by driving our crystal with electric charge and

current. However, this is still not enough. A solution to this problem comes

from the Maxwell equations when the addition of magnetic charge and current

is allowed.

∇ · D = ρ ∇× H − 1

c

∂D

∂t
=

J

c
,

∇ · B = φ −∇× E− 1

c

∂B

∂t
=

I

c
.

(4.2)

These are the Maxwell equations with the addition of magnetic charge

density φ and magnetic current density I [27, 46]. In a homogeneous medium

an electric current J = J0e
i(ωt−k·x) and magnetic current I = I0e

i(ωt−k·x) that

are harmonic in time and space will generate an electromagnetic wave E(t,x) =

E0e
i(ωt−k·x) and H(t,x) = H0e

i(ωt−k·x) according to Eq. (4.2), which can be

rearranged in ω and k space and combined with the constitutive matrices to

give us

(
ω/c ǫ−1(k × +ωξ/c)

−µ−1(k ×−ωζ/c) ω/c

)(
E0

H0

)

=
i

c

(
ǫ−1J0

µ−1I0

)

. (4.3)

Here the four terms in the matrix on the left hand side are all 3x3 matrices

and k× is a matrix cross product of the Bloch wavevector

k× =





0 −kz ky

kz 0 −kx

−ky kx 0



 . (4.4)
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.

If ω and k are not on the dispersion curve of the crystal then the matrix on the

left hand side of Eq. (4.3) is always invertible and we can solve for E0 and H0.

From this equation it is obvious that if we limit ourselves to electric current

only, we can obtain at most three linearly independent field vectors. Thus, we

would be unable to solve Eq. (4.1) for the constitutive parameters. However, if

we allow ourselves to drive our crystal with both electric and magnetic current

we can obtain six linearly independent field vectors and solve Eq. (4.1) for all

36 constitutive parameters. This is the same solution that was suggested by

Jensen Li et al. in the homogenization procedure described in Sec. 1.5, except

Li used electric and magnetic external polarization densities.

Once it is understood how to obtain six linearly independent field vec-

tors, it is straightforward to solve six electromagnetic simulations, each one

driving the metamaterial crystal with a different current polarization, then av-

erage the microscopic fields returned by the simulation into macroscopic fields

and solve Eq. (4.1) for the constitutive parameters. Thus to calculate all 36

constitutive parameters we define the following 6x6 matrices

D ≡
(

D(1),D(2), ... D(6)

B(1),B(2), ... B(6)

)

,

E ≡
(

E(1), E(2), ... E(6)

H(1),H(2), ... H(6)

)

,

J ≡
(

J(1),J(2), ...J(6)

I(1), I(2), ... I(6)

)

.

(4.5)
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Each column of the matrices in Eq. (4.5) is associated with a single electro-

magnetic simulation. For example, in the first simulation our driving current is

Ji1 = (1, 0, 0, 0, 0, 0), or J0 = ex and I0 = 0. That is, we drive our crystal with

electric current in the x̂ direction according to Eq. (4.2). We numerically solve

for the microscopic electromagnetic fields e, h, d and b. We then take the

microscopic fields solved for in our first simulation and average them into the

macroscopic fields Di1 = (D(1),B(1)) and Ei1 = (E(1),H(1)). In our second sim-

ulation the driving current is Ji2 = (0, 1, 0, 0, 0, 0). We average the microscopic

fields from the second simulation into the macroscopic fields Di2 = (D(2),B(2))

and Ei2 = (E(2),H(2)). We follow the same steps for the next four simulations,

each one driving the crystal with a different current polarization so that the

matrix J has a nonzero determinant and as a result D and E also have nonzero

determinants. Finally, with a full set of electromagnetic fields in the matrices

D and H which by definition are related by C according to Eq. (4.1) we are

able to solve for the constitutive parameters:

C ≡
(

ǫ ξ
ζ µ

)

= DE−1. (4.6)

Since the driving current in these simulations is harmonic in time with fre-

quency ω and in space with wavevector k, our calculated constitutive param-

eters are functions of ω and k, that is C = C(ω,k).

This method of driving our metamaterial crystal with electric and mag-

netic current is independent of the averaging procedure used, provided that the
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averaging procedure works on Bloch waves with arbitrary ω and k driven by

external electric and magnetic currents. We now present a new averaging pro-

cedure that predicts dispersion relations correctly and provides approximately

correct boundary conditions.

4.3 Field Averaging

Metamaterials by their nature are very inhomogeneous. The unit cell

of a metamaterial may consist of various arbitrarily shaped material inclusions

such as metals and/or dielectrics. The microscopic EM fields e, h, d and b

inside the unit cell are related with the microscopic Maxwell equations,

∇ · d = ρ, ∇× h − 1

c

∂d

∂t
=

J

c
,

∇ · b = φ, −∇× e − 1

c

∂b

∂t
=

I

c
.

(4.7)

Solving Maxwell’s Eqs. (4.2) for the microscopic fields inside a single unit cell

for a fixed frequency ω can be accomplished using a commercial finite ele-

ment software package. Microscopic EM fields are subject to Bloch periodic

boundary conditions determined by the potentially complex wavevector k.

Calculating the constitutive parameters of a metamaterial requires averaging

strongly inhomogeneous microscopic fields inside the unit cell into the macro-

scopic plane waves E = E0e
i(ωt−k·x), H = H0e

i(ωt−k·x) , D = D0e
i(ωt−k·x) and

B = B0e
i(ωt−k·x) in order to obtain the matrix of macroscopic fields in Eq. (4.5).

The constitutive parameters are then calculated according to Eqs. (4.5,4.6).
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If we integrate the microscopic Maxwell equations (Eq. (4.7)) over the

crystal unit cell volume Ω, the volume integrals of the left hand sides of

Eq. (4.7) become area integrals over the boundary of the unit cell ∂Ω. Our

prescription for averaging the microscopic fields is to force the boundary in-

tegrals over the macroscopic field to equal the boundary integrals over the

microscopic fields or

−ik ·
{

D0

B0

}

SV =
∫

Ω
d3x∇ ·

{
D
B

}

=
∫

Ω
d3x∇ ·

{
d
b

}

=
∮

∂Ω
dn ·

{
d
b

}

,

(4.8)

and

−ik ×
{

E0

H0

}

SV =
∫

Ω
d3x∇×

{
E
H

}

=
∫

Ω
d3x∇×

{
e
h

}

=

∮

∂Ω

dn×
{

e
h

}

(4.9)

Here dn is an infinitesimal integration area normal to the boundary ∂Ω point-

ing out of the unit cell, k is the Bloch wavevector. SV is an effective volume [62]

given by the equation

SV =
sin(kxax/2)

kx/2
· sin(kyay/2)

ky/2
· sin(kzaz/2)

kz/2
, (4.10)

where ax, ay and az are the lattice constants of the crystal unit cell. This

effective volume ensures we get the correct macroscopic field if we average

a plane wave in an already homogeneous medium. Eq. (4.8) only restricts

the longitudinal component of D0 (the D field parallel to k∗, where the ∗

64



indicates complex conjugation) and the transverse components of H0 (the

H field perpendicular to k). The remaining components of D0 and H0 are

determined from simple averages:

k∗ ×
{

D0

B0

}

SV =

∫

Ω

d3x

V
k∗ ×

{
d
b

}

(4.11)

and

k∗ ·
{

E0

H0

}

SV =

∫

Ω

d3x

V
k∗ ·

{
e
h

}

. (4.12)

The macroscopic field components E0, H0, D0 and B0 are then defined as the

method of least squares solution the the system of equations Eqs. (4.8,4.9) and

Eqs. (4.11,4.12).

It is essential that different field components are averaged in different

ways. For example, for a metamaterial with only metal or dielectric inclusions

where µ = 1 throughout the unit cell, without introducing different averaging

prescriptions for H and B, we could come to the conclusion that H = B. It

would not be possible to predict effective magnetic activity (ζ 6= 0 or µ 6= 1)

for metamaterials which do not contain any magnetic inclusions. Also, it

should be noted that if k is parallel to the principle axis of a crystal and if

the inclusions in the metamaterial are small then our averaging method for

the transverse components of E0 and H0 are equivalent to the transversely

averaged fields used in [58]. Also, this averaging procedure is similar to the

method of averaging over faces and edges of a unit cell published in Refs [50, 60]

and outlined in Sec. 1.2. That averaging procedure can be combined with the
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method of driving a crystal with both electric and magnetic current described

in Sec. 4.2 and when done so produces results very similar to this averaging

procedure. Finally, because of the nature of the definitions in Eqs. (4.8,4.9) and

Eqs. (4.11,4.12), we cannot rigorously compute the constitutive parameters at

the Γ point (k = 0). It is, however, possible to compute the constitutive

parameters for any finite wavevector.

4.4 Ambiguity of Constitutive Parameters

Examining the left hand side Eq. (4.3) we see the 3x3 matrix µ−1(k ×

−ωζ). Any experiment designed to test the extracted constitutive parameters

will be limited to using electric current only and no magnetic current. Without

magnetic current, Eq. (4.3) develops an ambiguity. We can transform between

the current driven constitutive parameters predicted by our theory to a second

”effective” set of parameters that obey the following equation.

µ−1
(

k ×−ω

c
ζ
)

= (µeff)−1
(

k ×−ω

c
ζeff

)

(4.13)

Eq. (4.3) predicts the fields generated by a source, but it is clear that this

ambiguity also exists for the dispersion relation of free waves. It is easy to see

that a transformation in spatial coordinates changes both sides of Eq. (4.13)

equally so that Eq. (4.13) is still true after the transformation. Andrea Alu

has shown that the difference between the true constitutive parameters and

the effective parameters in Eq. (4.13) help explain some of the apparently
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unphysical lineshapes associated with the constitutive parameters of metama-

terials [7]. We will see in Sec. 6 that using the true parameters instead of

the effective parameters is essential for calculating quantities such as Poynting

flux and dissipative loss.

This issue at once both illustrates the essential role that using magnetic

charge and current in our simulations plays in restricting the possible values

of the constitutive parameters and at the same time illuminates the prob-

lem of the experimental ambiguity of these parameters. In the next section

(Sec. 4.5) we’ll see that this ambiguity is important for comparing our pre-

dicted constitutive parameters to those predicted by simpler, more established

theories. Specifically, we’ll see that the parameters predicted by S-Parameter

retrieval [61] do not agree with our theory unless we perform a transformation

according to Eq. (4.13).

Finally, we note that if one is restricted is to experiments that do not

use electric charge and current then there is a similar ambiguity effecting ǫ

and ξ,

ǫ−1
(

k × +
ω

c
ξ
)

= (ǫeff )−1
(

k × +
ω

c
ξeff

)

, (4.14)

as can be seen from the upper right part of the matrix in eq 4.3.
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4.5 Example: Split Pair One Film (SPOF)

We now show results from a 2D metamaterial crystal known as a Strip

Pair-One Film or a SPOF [43]. A diagram of the SPOF is given in Fig. 4.1.

Our SPOF is a square crystal lattice with a thin Au film in the center of the

unit cell and two Au strips on both sides of the film. The permittivity of the

Au is ǫ = 1−ω2
p/(ω(ω− iΓ)) with ωp = 1.32 · 1016/s and Γ = 1.2 · 1014/s. The

rest of the SPOF is dielectric with permittivity ǫ = 1.562.
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Figure 4.1: (a) The unit cell of the SPOF. The two strips and center film
of the SPOF are Au with permittivity ǫ = 1 − ω2

p/(ω(ω − iΓ)) where ωp =
1.32 · 1016/s and Γ = 1.2 · 1014/s. The rest of the SPOF is made of dielectric
with permittivity ǫ = 1.562. (b) Real and (c) imaginary parts of kx vs. λ0

where k = kxx̂. Solid lines are dispersion curves for a p-polarized wave solved
by a finite element eigenvalue simulation [14]. Dotted lines are dispersion
curves calculated from Eq. (4.15) using current driven constitutive parameters
calculated from Eq. (4.6) by driving the SPOF at ω and k = kx(ω)x̂ for two
of the p-polarized eigenmodes. Note there is only one propagating mode.
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In Fig. 4.1 we plot two different dispersion curves. First we plot the

real and imaginary parts of the complex wavenumber for p-polarized (electric

field in the x̂-ŷ plane) eigenmodes propagating through the SPOF along the

x̂ direction calculated from an eigenvalue simulation [14] (solid lines). We

calculated the full set of constitutive parameters as functions of ω and k = k(ω)

for two of the eigenmodes as described in sections 4.2 and 4.3. It should be

noted that instead of driving the crystal on the dispersion curve, it is important

to drive the crystal close to but slightly off of the dispersion curve so as to

prevent the matrix in Eq. (4.3) from becoming singular. We used these current

driven constitutive parameters to calculate the real and imaginary parts of the

complex wavenumber for each eigenmode according to the dispersion relation

of the SPOF (dotted lines), which for a p-polarized wave propagating in the

x̂ direction is

(
kx − ωζzy/c

µzz

)(
kx − ωξyz/c

ǫyy

)

− ω2

c2
= 0. (4.15)

Fig. 4.1 clearly shows that calculate constitutive constitutive parmeters predict

the correct dispersion relation for two of the modes, one of which is radiative for

some frequencies and evanescent for others and the other mode being always

evanescent. Though not shown in Fig. 4.1, the current driven constitutive

parameters fail to predict the dispersion of the third mode (red line) which is

a longitudinally polarized electric bulk plasmon.

Testing the current driven constitutive parameters to see if they pro-

duce the correct dispersion relation is an important physical test but does
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Figure 4.2: (a) Real and imaginary parts of ǫyy. (b) Real and imaginary parts
of ζzy and µzz. All constitutive parameters are calculated on the dispersion
curve k = kx(ω)x̂ shown in Fig. 4.1 according to Eq. (4.6). Notice that µzz is
unity for all wavelengths. Also, all components of ξ (not shown) are uniformly
zero.

prove the accuracy of the parameters. Different averaging procedures can pass

this test while predicting slightly different constitutive parameters. For exam-

ple the averaging procedure in Smith [62] passes the dispersion relation test

but fails a test of the boundary conditions. This brings us to our next test of

our current driven constitutive parameters.

In Fig. 4.2 we plot the ǫyy, ζzy and µzz components of the SPOF ex-

tracted along the dispersion curve of the propagating (blue line) p-polarized

eigenmode in Fig. 4.1. Note that since the dispersion curve in Fig. 4.1 is

for a p-polarized wave propagating in the x direction and given the nonzero

structure of the constitutive matrices for propagation in the x̂ direction in a
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centrosymmetric crystal, only four of the total 36 constitutive parameters, ǫyy,

ζzy, µzz and ξyz effect the p-polarized wave. Also, though we do not show

ξyz in Fig. 4.2, the values of ξ calculated with the field averaging procedure

described in Sec. 4.3 turn out to be uniformly zero. The values of µzz are

uniformly 1. as can be seen in Fig. 4.2. This is the first indication of a serious

problem with the averaging procedure and will be discuss at the end of this

chapter.

The calculated constitutive parameters disagree with the parameters

return by the S-parameter retrieval (Ref. [61] and Sec. 1.3) method for the

SPOF structure. This discrepancy can be explained using with the experi-

mental ambiguity expressed in Eq. (4.13). For a pseudotensor ζ(ω,k = kxx)

describing a centrosymmetric crystal, the p-polarized part of Eq. (4.13) can

be rewritten as (kx − ωζzy/c)/µzz = (kx − ωζeff
zy /c)/µeff

zz . There is a second

part of Eq. (4.13) that involves ζyz but this only affects s-polarized waves so

we ignore it here. Since we have two unknown effective parameters µeff
zz and

ζeff
zy and one equation of constraint, we have one degree of freedom in our

effective parameters. Essential to symmetric version of S-parameter retrieval

is the assumption that ζ and ξ are zero, so we use our one degree of freedom

to set ζeff
zy = 0 giving us

µeff
zz =

µzz

1 − ωζzy

ckx

. (4.16)
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Figure 4.3: (a) Real and imaginary parts of constitutive parameters ǫyy (solid
lines) calculated with Eq. (4.6) and ǫS

yy (dotted lines) calculated with S-
parameter retrieval [61] for the SPOF. (b) Real and imaginary parts of µeff

zz

(solid lines) calculated from Eq. (4.16) using ζzy and µzz calculated with
Eq. (4.6) and µS

zz (dotted lines) calculated with S-parameter retrieval for the
SPOF.

Fig. 4.3 shows a comparison of the current driven ǫyy calculated from

Eq. (4.6) and effective µeff
zz calculated from Eq. (4.16) using current driven

ζzy and µzz vs. ǫS
yy and µS

zz determined with S-parameter retrieval of a SPOF

slab five unit cells thick. We see a good agreement between ǫyy and the S-

parameter retrieved ǫS
yy. We also see a good agreement between effective µeff

zz

and the S-parameter retrieved µS
zz. As mentioned in Sec. 1.3, S-parameter

retrieval calculates ǫ and µ from the the index of refraction n and impedance

z of the matematerial where n and z are inferred from reflection and transmis-

sion amplitudes through a metamaterial slab. The index is proportional to the
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Figure 4.4: Real (left plot) and imaginary (right plot) parts of the reflection
amplitude (r = Href

z /Hinc
z ) of a plane wave with incident angles 0◦, 45◦, 60◦

and 75◦ off of a SPOF (solid lines) and off of a homogeneous medium with the
current driven constitutive parameters of the SPOF (dotted line).

wavenumber, and as we’ve seen in Fig. 4.1 the calculated constitutive param-

eters predict the correct wavenumber very well. The impedance is related to

the boundary conditions at the interface between the slab and vacuum. This is

where the small error in Fig. 4.3 comes from. It is the Maxwell boundary con-

ditions (continuity of the tangential components of E and H and the normal

components of Dnorm and Bnorm) where disagreement in Fig. 4.3 originates.

We can see this in our next test of the constitutive parameters shown

in Fig. 4.4. The solid lines in Fig. 4.4 are reflection amplitudes (r = Hrefl
z /Hinc

z )

of p-polarized plane waves reflecting from the interface between semi-infinite

vacuum and a semi-infinite SPOF crystal and the dotted lines are the reflection
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amplitudes of p-polarized plane waves reflecting the interface of semi-infinite

vacuum and a semi-infinite homogeneous medium with the constitutive param-

eters of a SPOF metamaterial. Each point in Fig. 4.4 has a particular free-

space wavelength λ0 and incidence angle θ. There is a corresponding kx deter-

mined from an eigenvalue simulation [14] and ky = 2π/λ0 sin(θ). We calculate

the current driven constitutive parameters for ω = 2π/λ0 and k = kxx̂ + kyŷ

and use them to calculate the reflection off of a homogeneous medium.

r =
Hrefl

z

Hinc
z

=
cos(θ) − zyz

cos(θ) + zyz
. (4.17)

Here zyz = Etrans
y /Htrans

z and the transmitted fields Etrans
y and Htrans

z are given

by the null vector of the matrix in Eq. (4.3).

In Fig. 4.4 there are two bands 500nm < λ0 < 600nm and λ0 > 800nm

where we see very good agreement between the actual reflection off of the

SPOF (solid line) and the reflection off of a homogeneous medium with the

current driven constitutive parameters (dotted line) of the SPOF. There is less

agreement near the magnetic resonance around λ0 ≈ 680nm and also near the

electric resonance around λ0 ≈ 500nm. There is also quite good agreement

near the electric resonance near λ0 ≈ 900nm. Despite a small amount of error,

the calculate constitutive parameters successfully predict reflection from an

interface between vacuum and a SPOF crystal.

The constitutive parameters calculated using the method described in

Secs. 4.2 and 4.3 pass both the test of predicting the correct dispersion rela-
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tion and predicting the reflection amplitude of a plane wave from an interface

with a metamaterial. Still, there are serious problems with the constitutive

parameters returned by this method. The most obvious is the curious fact that

ζzy was nonzero while ξyz was uniformly zero. This clearly violates Lorentz

reciprocity. Also, the fact that all magnetic activity appeared in the quantity

ζzy while µzz was uniformly equal to 1. It should be noted that if Pendry’s

method of fields averaging (Refs [50, 60] and Sec. 1.2) is used with the prescrip-

tion of driving the metamaterial crystal with external electric and magnetic

current described in Sec. 4.2 one obtains constitutive parameters very similar

to those found above. Most notably, the curious result that ξ is always zero

and µ always unity with all magnetic activity appearing in ζ . In addition to

the lack of Lorentz reciprocity, the fact mentioned in Sec. 4.3 that the aver-

aging procedure can only be performed with a finite valued k has important

consequences. If one calculates the constitutive parameters for a crystal with

rotational symmetry (the SPOF does not have rotational symmetry and would

not be a good example in this case) in the limit k → 0 one finds that this limit

is not well defined and that the constitutive parameters converge to slightly

different values depending on the direction of k.

One might strongly suspect that the claim that bianisotropy can be

caused by spatial dispersion is itself unnecessary and wrong. For the case of

the SPOF the ambiguity in the constitutive parameters outlined in Sec. 4.4

allow us to hide ζzy inside µzz. However, the theoretical justification for spatial

dispersion causing bianisotropy presented in Sec. 2.2 in still valid and we will
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see in the next two chapters that this is a very real and important effect.

The shortcomings of the homogenization procedure described in this

chapter and the constitutive parameters that result from it are too great to be

ignored. Ultimately, this must be considered a ambitious but failed attempt

at metamaterial homogenization. Still, this effort is not a total loss. First, the

idea of driving a crystal with magnetic current in addition to electric current is

essential to solving for a significant number of constitutive parameters. Second,

though the constitutive parameters produced by this procedure are flawed,

they did lead the author to the theoretical argument outlined in Sec. 2.2 for the

presence of bianisotropy in highly symmetric crystals due to spatial dispersion.

This idea had been previously suggested by Li [40] and later by Alu [6] and is

a characteristic feature of metamaterials with spatial dispersion.
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Chapter 5

A 1D Model of a Metamaterial

5.1 Introduction

In the last chapter we presented an ambitious homogenization proce-

dure that could calculate 36 constitutive parameters of a metamaterial. How-

ever, the returned parameters had some serious shortcomings, not the least

of which was the lack of Lorentz reciprocity. In this chapter we will look at

a more modest plan for metamaterial homogenization. This method requires

some of the same assumptions of symmetry that we have criticized in the aver-

aging methods outlined in Secs. 1.2 and 1.3. The advantage of this procedure

is that even though it can only be used on crystals with a certain amount of

symmetry, like the method in Chapter 4 it does calculate constitutive param-

eters as a function of both ω and k. In addition, unlike the method of the last

chapter this new method obeys Lorentz reciprocity. Finally, now that we have

physically acceptable constitutive parameters, we will see in Chapter 6 that

the ability to calculate partial derivatives of the constitutive parameters with

respect to ω and k allow us to calculate important physical quantities related

to energy flux and dissipative loss. This new homogenization procedure was

originally published in Ref. [22].
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As explained in Sec. 5.2 the homogenization method described in this

chapter combines the idea of exciting a metamaterial with external electric

and magnetic currents [41, 21] (Secs. 1.5 and 4.2) with the idea of modeling

a metamaterial with thin surfaces of polarizable media [59] known as meta-

surfaces. This 1D array is excited with both electric and magnetic external

current densities that are harmonic in time and space. This external current

produces a response in the metamaterial that we quantify by calculating the

polarization of the metasurfaces, which is then used to define the polarization

density of the 1D array. The ratio of the polarization density of the array

to the external current is related to a linear susceptibility matrix χ̂, which is

then used to calculate the constitutive matrix Ĉ defined by Eq. (5.1). We also

derive a few simple properties of the calculated constitutive parameters. In

Sec. 5.2.3, we show how a real metamaterial with the appropriate symmetry

can be described with the 1D model by calculating the surface polarizabil-

ity of a thin layer of the metamaterial one unit cell thick. This is done by

relating the surface polarizability to the S-matrix of a metasurface for plane

waves of normal incidence. By inserting the surface polarizability of an actual

metamaterial layer into our simple 1D model we can calculate the constitutive

parameters of the metamaterial as a function of arbitrary frequency ω and

wavevector k.

In Sec. 5.3 we use the 1D model to calculate the constitutive parameters

for an almost lossless 2D metamaterial. We test the calculated constitutive

parameters for their ability to reproduce the correct dispersion relation, pro-
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vide correct boundary conditions, and predict the correct emission from a

metamaterial antenna.

5.2 Homogenization of 1D array of metasurfaces

5.2.1 Definition of the 1D model

Several authors have analyzed 3D models of interacting dipoles in a

cubic lattice [9, 58, 57]. As pointed out by Smith [59], for a wave whose

wavevector is along a principal axis of the crystal, the interaction between

adjacent planes of dipoles is largely mediated by a simple electromagnetic plane

wave. Near field evanescent waves do contribute to the coupling and perhaps

should be considered in more sophisticated models, but in this dissertation we

ignore all evanescent interactions. As in Ref. [59], we approximately model

a metamaterial crystal as a lattice of thin metasurfaces interacting through

plane waves.

As mentioned earlier, a certain degree of symmetry must be present in

the metamaterial crystal of interest in order to model it as a 1D array. We

will only consider 2D square arrays or 3D cubic array which are periodic in

all dimensions. Also, we only consider propagation along an lattice direction

of the crystal and we assume that the crystal has reflection symmetry in the

two lattice directions perpendicular to the wavevector k. This ensures that

the wavevector lies along a principle axis of the crystal (which we choose to be

the x̂ direction: k = kxx̂). We do not require that our crystal have reflection

symmetry in the x̂ direction since due to spatial dispersion the wavevector k =
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kxx̂ will break this symmetry regardless [40, 21]. Because of the symmetries

we have already assumed, the two possible polarizations are both linear and

independent and can be analyzed separately. Therefore, we only consider fields

with the polarization the polarization E = Eyŷ and H = Hzẑ. The analysis

for the orthogonal polarization is analogous. Due to these symmetries and the

fact that we only consider waves with a single polarization propagating in the

x̂ direction we can describe these waves with only four constitutive parameters

by defining the constitutive matrix

Ĉ(ω, kx) ≡
(
ǫyy(ω, kx) ξyz(ω, kx)
ζzy(ω, kx) µzz(ω, kx)

)

, (5.1)

yielding the following constitutive relationship for a wave with a single fre-

quency and wavevector

(
Dy

Bz

)

= Ĉ

(
Ey

Hz

)

. (5.2)

Eq. (5.2) relates the macroscopic electric displacement Dy and magnetic flux

density Bz fields to the macroscopic electric Ey and magnetic Hz fields. For

the purpose of homogenization, all macroscopic fields are plane waves that are

harmonic in time and space and obey the 1D Maxwell Equations

−kxEy +
ω

c
Bz = i

Iz
c

,

−kxHz +
ω

c
Dy = i

Jy

c
.

(5.3)
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Here Jy = J2e
i(ωt−kxx) and Iz = I3e

i(ωt−kxx) are electric and magnetic current

densities that are harmonic in time and space.

Our 1D metamaterial model consists of an infinite array of metasurfaces

that lie in the ŷ-ẑ plane. The metasurfaces are separated in the x̂ direction

by the lattice constant a. In between the metasurfaces the microscopic field

equations (Maxwell equations) for this 1D system are

−∂ey

∂x
− i

ω

c
µbhz =

Iz
c

,

−∂hz

∂x
− i

ω

c
ǫbey =

Jy

c
.

(5.4)

Once again, ey and hz are the microscopic electric and magnetic fields and ω

is the frequency. ǫb and µb are the background permittivity and permeability

of the material filling the space between the metasurfaces.

The coupling of the microscopic fields to the metasurfaces is described

by the boundary conditions of the fields across the metasurfaces. The meta-

surfaces have a polarization given by

(
py

mz

)

= α̂(ω)

(
Eloc

y

Hloc
z

)

=

(
αee

yy(ω) αem
yz (ω)

αme
zy (ω) αmm

zz (ω)

)(
Eloc

y

Hloc
z

)

. (5.5)

Here py and mz are the electric and magnetic polarization of a metasurface and

can be thought of a electric and magnetic dipole moment densities per unit area

of the metasurface. α̂(ω), which has units of length, is the surface polarizability

matrix and the quantities Eloc
y and Hloc

z are the local electric and magnetic
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fields at the location of the metasurface at x = 0. As mentioned below, the

microscopic electric and magnetic fields (ey and hz) are discontinuous across

the metasurface, so in Eq. (5.5) the local fields are defined as the average value

of the field on both sides of the metasurface,

(
Eloc

y

Hloc
z

)

=
1

2

(
ey(0

+) + ey(0
−)

hz(0
+) + hz(0

−)

)

. (5.6)

This is the same definition used in Ref. [35]. The boundary conditions of the

fields across the metasurface are given by

∆hz = hz(0
+) − hz(0

−) = −i
ω

c
py,

∆ey = ey(0
+) − ey(0

−) = −i
ω

c
mz.

(5.7)

Thus the quantities iωpy/c and iωmz/c should be interpreted as electric and

magnetic surface currents respectively.

Once the model has been defined it can be easily solved. To review,

the field equations given by Eq. (5.4) must be solved with the boundary con-

ditions across the metasurface given by Eqs. (5.5-5.7). Because the 1D array

is periodic, the field equations only need to be solved in a single cell of the

crystal with Bloch periodic boundary conditions on the outer boundaries of

the domain. In Sec. 5.2.4, we derive an analytic solution to the model which

can be evaluated numerically. We have also solved the 1D model using the

commercial finite element software COMSOL Multiphysics and confirmed that

the results agree with the analytic solution. Once the model is solved and the
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resulting polarization density of the metamaterial crystal is calculated, it is

possible to calculate the constitutive parameters.

5.2.2 Calculation of the constitutive matrix

After solving the 1D model, the solution can be used to calculate the

macroscopic constitutive parameters. We define the macroscopic polarization

density as

(
Py

Mz

)

=

(
py/a
mz/a

)

, (5.8)

where py and mz are the polarizations of the metasurface in the unit cell of the

1D model calculated according to Eqs. (5.5,5.6). We can relate the macroscopic

polarization density to the macroscopic Ey and Hz fields by the relation

(
Py

Mz

)

= χ̂

(
Ey

Hz

)

=

(
ǫyy − ǫb ξyz

ζzy µzz − µb

)(
Ey

Hz

)

(5.9)

Here we have defined the susceptibility χ̂ to be the constitutive matrix Ĉ with

the background permittivity ǫb and permeability µb subtracted off.

The macroscopic Maxwell equations in Eq. (5.3) can be rearranged to

yield

1

c

(
Jy

Iz

)

= −i

[
ω

c
χ̂ +

(
ǫbω/c −kx

−kx µbω/c

)

︸ ︷︷ ︸

K̂

](
Ey

Hz

)

. (5.10)

We now define the matrices
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Ĵ =
1

c

(
J1

y J2
y

I1z I2z

)

, P̂ =

(
P1

y P2
y

M1
z M2

z

)

. (5.11)

Similarly to Sec. 4.2, in order to solve for all four components of the constitutive

matrix it’s necessary to solve the 1D model twice, each time with different

amounts of electric and magnetic current. The electric currents J1
y and J2

y are

the external electric currents for the first and second solutions of the model

respectively. Likewise I1z and I2z are the external magnetic currents for the first

and second solutions of the model. The electric and magnetic external currents

must be chosen so that the vectors in Ĵ are linearly independent. Aside from

this condition, the external currents are completely arbitrary. Similarly, the

matrix P̂ contains the macroscopic polarizations densities calculated from the

two solutions. Using Eqs. (5.9,5.10) we can relate the susceptibility matrix χ̂

to the matrices Ĵ and P̂ with the equation

P̂ = i χ̂
(

1 + ω/cK̂−1χ̂
)−1

︸ ︷︷ ︸

Q̂

K̂−1Ĵ = iQ̂K̂−1Ĵ. (5.12)

Here we have defined Q̂ as the matrix relating the polarization to the external

current. Eq. (5.12) can be solved for χ̂ resulting in

χ̂ =
(

1 − ω/cQ̂K̂−1
)−1

Q̂. (5.13)

χ̂ is related to the constitutive matrix by Eq. (5.9) providing the relation
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Ĉ(ω,k) =

(
ǫb 0
0 µb

)

+ χ̂(ω,k) (5.14)

Since the 1D model is excited with external currents that are harmonic in

time and space (Jy = J2e
i(ωt−kxx) and Iz = I3e

i(ωt−kxx)), the excited macro-

scopic fields are also harmonic with frequency ω and wavenumber kx. As a

result, the constitutive parameters calculated for this 1D metamaterial crystal

are functions of frequency ω and wavenumber kx. These potentially complex ω

and kx are arbitrary and in general not related to each other by the dispersion

relation of eigenmodes of the metamaterial crystal. The constitutive param-

eters are also functions of the background permittivity ǫb and permeability

µb and the surface polarizability α̂. In order to use this model to describe

realistic metamaterials we need to connect an specific metamaterial crystal to

the parameters ǫb, µb and α̂.

5.2.3 Calculation of a surface polarizability from the S-matrix

In to homogenize specific metamaterial crystals with our 1D model it

is necessary to replace a plane of metamaterial inclusions with a metasurface.

We propose to calculate the surface polarizability of a single metasurface by

numerically measuring the S-matrix of scattering amplitudes for plane waves

incident from both sides of the metasurface at an incident angle normal to the

metasurface. We define our S-matrix as
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Figure 5.1: Calculation of the S-matrix SH of a single layer of metamaterial
for p-polarized waves. The S-matrix is defined as the ratio of the hz fields of
outgoing planes wave to the hz fields of incoming plane waves. The amplitudes
of the waves are evaluated at the center of the metamaterial layer as if the
scattering object had zero width.

(

hL
out

hR
out

)

=

(

SH
11 SH

12

SH
21 SH

22

)

︸ ︷︷ ︸

SH

(

hR
in

hL
in

)

. (5.15)

Here, hL
in and hR

in are the amplitudes of the magnetic fields of waves incident

onto the metasurface moving to the left (in the negative x̂ direction) and

moving to the right (in the positive x̂ direction) respectively. hL
out and hR

out are

the magnetic field amplitudes of waves moving outward from the metasurface

moving to the left and right respectively. By combining Eqs. (5.5,5.7) we find

an equation relating the discontinuity in the fields from the positive x side to

the negative x side of the metasurface to the local field defined in Eq. (5.6).

(
∆hz

∆ey

)

= −i
ω

c
α̂

(
Eloc

y

Hloc
z

)

(5.16)

The hz and ey fields on both sides of the metasurface can be constructed from
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the incoming and outgoing hz field amplitudes in Eq. (5.15). On the left side

of the metasurface we have hz = hR
in + hL

out and ey = zb(h
R
in − hL

out) where

zb =
√

µb/ǫb is the impedance of the background material. Similarly, on the

right side of the metasurface we have hz = hR
out + hL

in and ey = zb(h
R
out − hL

in).

By using the S-matrix SH to relate the outgoing fields to the incoming fields

(Eq. (5.15)) and by using the fact that this relation is true for all possible

incoming fields we find the relation

(

−SH
11 + SH

21 − 1 −SH
12 + SH

22 + 1

zb(S
H
11 + SH

21 − 1) zb(S
H
12 + SH

22 − 1)

)

= − iωα̂

2c

(

zb(−SH
11 + SH

21 + 1) zb(−SH
12 + SH

22 − 1)

SH
11 + SH

21 + 1 SH
12 + SH

22 + 1

)

,

(5.17)

which can be solved for α̂ to give

α̂ = − 2i

ω/c(1 + SH
12 + SH

21 − det(SH))
×

([
1 + det(SH) + (SH

11 + SH
22)
]
/zb (SH

12 − SH
21) + (SH

11 − SH
22)

(SH
12 − SH

21) − (SH
11 − SH

22)
[
1 + det(SH) − (SH

11 + SH
22)
]
zb

)

.

(5.18)

It can immediately be seen that for a reciprocal metamaterial layer with trans-

mission amplitudes that are equal regardless of which side the incoming beam

is incident upon (SH
12 = SH

21), the surface polarizability has the property

αem
yz = −αme

zy , (5.19)
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indicating that the metasurface is reciprocal.

Though we derived Eq. (5.18) for an infinitesimally thin surface, we can

use it to assign effective surface polarizabilities to thin layers of metamaterials

(Fig. 5.1). For a particular metamaterial inclusion, it is straightforward to

perform a numerical simulation that calculates the S-matrix by calculating

the reflection and transmission amplitudes of plane waves scattering off of

a single layer of metamaterial one unit cell thick. By using Eq. (5.18), we

can then use the S-matrix to assign an effective surface polarizability to the

metamaterial layer. Using this effective surface polarizability and the analytic

solution to the 1D model provided in Sec. 5.2.4, one can then calculate the

constitutive parameters of the metamaterial crystal using Eqs. (5.13,5.14).

5.2.4 Analytic solution to the 1D model

In this section we derive an analytic solution to the 1D model described

in Sec 5.2.1. To review, the model is a one dimensional system with all fields

harmonic in time with frequency ω. The spatial domain is separated into

unit cells of length a. In the center of each cell is a metasurface with surface

polarizability α̂ defined in Eq. (5.5). The space between each metasurface is

filled with a homogeneous material with a background permittivity ǫb, per-

meability µb and impedance zb =
√

µb/ǫb. Since we limit ourselves to the

polarization E = Eyŷ and H = Hzẑ, in between the metasurfaces the equa-

tions of motion that we solve are given in Eq. (5.4). The metasurfaces interact

with each other through free plane waves with frequency ω and wavenumber
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k0 =
√

ǫbµbω. Across each metasurface, the ey and hz fields are discontinuous

according to Eq. (5.16). The polarization of the metasurfaces which defines

the discontinuity is equal to the surface polarizability times the local field

strength. Since the fields are discontinuous across each metasurface the local

field strength at the each metasurface is defined in Eq. (5.6) as the average

value of the field from both sides of the metasurface. Finally, the entire system

is driven with external electric and magnetic current

Jy = J2e
i(ωt−kxx), Iz = I3e

i(ωt−kxx), (5.20)

where the current strengths J2 and I3 are chosen arbitrarily. The solution to

Eq. (5.4) with the external current in Eq. (5.20) is

(
ey

hz

)

=
ie−ikxx

ǫbµbω2/c2 − k2
x

(
µbω/c kx

kx ǫbω/c

)
1

c

(
J2

I3

)

+

(
zbane−ik0x − zbbneik0x

ane−ik0x + bneik0x

)

.

(5.21)

The coefficients ab and bn are the amplitudes of the right and left moving free

plane waves that mediate interactions between adjacent metasurfaces. The

subscript n specifies the particular metasurface that the plane waves interact

with. For example the n and n+1 metasurfaces interact with the right and left

moving plane waves with amplitudes an and bn respectively. These coefficients

are related to each other by the Bloch phase condition

(
an+1

bn+1

)

=

(
e−i(kx−k0)a 0

0 e−i(kx+k0)a

)(
an

bn

)

. (5.22)
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The coefficients are also determined by the boundary conditions across each

metasurface given by Eq. (5.16). The left hand side of Eq. (5.16) is related to

the coefficients by

(
∆hz

∆ey

)

=

(
1 1
zb −zb

)(
e−i(kx−k0)a − 1 0

0 e−i(kx+k0)a − 1

)

︸ ︷︷ ︸

Â

(
ab

bn

)

. (5.23)

The field strength on the right hand side of Eq. (5.5) is the sum of two solutions,

the inhomogeneous solution to Eq. (5.4) that does not obey the correct bound-

ary conditions and the homogeneous solutions to Eq. (5.4) which corresponds

to the free waves mediating interactions between adjacent metasurfaces. We

choose our coordinates so that x = 0 at the location of the nth metasurface.

The value of the inhomogeneous solution at the location of the nth metasurface

is

(
Eloc

y

Hloc
z

)

driven

= i
1

ǫbµbω2/c2 − k2
x

(
µbω/c kx

kx ǫbω/c

)

︸ ︷︷ ︸

K̂−1

1

c

(
J2

I3

)

, (5.24)

where the matrix K̂ was defined in Eq. (5.10). The value of the homogeneous

solution at the location of the nth metasurface is defined in Eq. (5.6) as the

average value from both sides of the metasurface and is given by

(
Eloc

y

Hloc
z

)

free

=

(
zb −zb

1 1

)
1

2

(
e−i(kx−k0)a + 1 0

0 e−i(kx+k0)a + 1

)

︸ ︷︷ ︸

B̂

(
an

bn

)

. (5.25)
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Combining Eq. (5.16) with Eqs. (5.23-5.25), we find an equation relating the

coefficients an and bn to the external current.

Â

(
an

bn

)

=
ω

c
α̂K̂−11

c

(
J2

I3

)

− i
ω

c
α̂B̂

(
an

bn

)

, (5.26)

which can be solved for the coefficients to give

(
an

bn

)

=
(

Â + i
ω

c
α̂B̂
)−1 ω

c
α̂K̂−1 1

c

(
J2

I3

)

. (5.27)

We can relate the coefficients to the polarization density with Eq. (5.5) yielding
(

Py

Mz

)

=
1

a

(
py

mz

)

= i
α̂

a
K̂−11

c

(
J2

I3

)

+
α̂

a
B̂

(
an

bn

)

= i
α̂

a

[

1 −
(ω

c
α̂ − iÂB̂−1

)−1 ω

c
α̂

]

︸ ︷︷ ︸

Q̂

K̂−11

c

(
J2

I3

)

(5.28)

Here we have identified the matrix Q̂, defined in Eq. (5.12) as the matrix relat-

ing the polarization and the external current. The matrix ÂB̂−1 is evaluated

to be

ÂB̂−1 =
2i

cos(kxa) + cos(k0a)

(
sin(k0a)/zb − sin(kxa)
− sin(kxa) zb sin(k0a)

)

. (5.29)

Putting this into Eq. (5.28) allows us to evaluate Q̂ which we can then use to

evaluate Ĉ using Eqs. (5.13,5.14).
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Finally, from Eq. (5.27) we see that we can derive a dispersion relation

for free eigenmodes traveling through the one dimensional crystal by setting

the determinant of ÂB̂−1 + iωα̂/c equal to zero, producing

(

1 +
ω2

c2

αee
yyα

mm
zz − αem

yz αme
zy

4

)

︸ ︷︷ ︸

M1

cos(kxa) +
ω

c

αme
zy + αem

yz

2
︸ ︷︷ ︸

M2

sin(kxa) =

(

1 − ω2

c2

αee
yyα

mm
zz − αem

yz αme
zy

4

)

cos(k0a) − ω

c

αee
yyzb + αmm

zz /zb

2
sin(k0a)

︸ ︷︷ ︸

M3

,

(5.30)

which in terms of M1, M2 and M3 can be solved for kx:

kx = ±1

a
arccos

[

M3
√

M2
1 + M2

2

]

+
1

ia
log

[

M1 + iM2
√

M2
1 + M2

2

]

. (5.31)

Notice that for a reciprocal metasurface (αem
yz = −αme

zy ) the quantity M2 van-

ishes and the solutions to Eq. (5.30) are even in kx, which is to be expected for a

reciprocal crystal. For a nonreciprocal metasurface the solutions to Eq. (5.30)

are not even in kx.

5.2.5 Properties of the constitutive parameters

Here we briefly outline several properties of the constitutive parameters

calculated according to the method just described. These properties are proven

directly from the analytic model derived in Sec. 5.2.4. First, as we have already
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seen in Sec. 5.2.3 the surface polarizability describing a reciprocal metasurface

has the property αem
yz = −αme

zy . If ω and kx are nonzero then from Eq. (5.28)

it can easily be shown that Q̂ has the properties

Q11(ω,−kx) = Q11(ω, kx),

Q22(ω,−kx) = Q22(ω, kx),

Q12(ω,−kx) = −Q21(ω, kx).

(5.32)

In general, Q̂ is not always invertable. For example, if α̂ contains only an

electric response in αee
yy and all other components of the surface polarizability

are zero, then it can be seen from Eq. (5.28) that Q11 is nonzero and all other

components of Q̂ are zero, therefore making Q̂ singular and not invertable. In

practice, real metamaterials have both an electric (αee
yy) and magnetic (αmm

zz )

response so Q̂ usually will be invertable. When this is the case, Eq. (5.13) can

be rewritten as

χ̂ =
(

Q̂−1 − ω/cK̂−1
)−1

. (5.33)

In this form it is easy to see that χ̂ has the same symmetry properties as Q̂ in

Eq. (5.32). As a result, the constitutive parameters have the properties

ǫyy(ω,−kx) = ǫyy(ω, kx),

µzz(ω,−kx) = µzz(ω, kx),

ξyz(ω,−kx) = −ζzy(ω, kx),

(5.34)
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which is to say that the constitutive parameters obey Lorentz reciprocity.

Though this is easy to prove only when Q̂ is invertable, numerical tests indicate

that this is true even when α̂ and Q̂ are not invertable.

Another property of the constitutive parameters exists relating to loss.

If ω, kx, ǫb and µb are real valued numbers then it is easy to see from Eqs. (5.10,5.29)

that the matrices K̂ and iÂB̂−1 are both hermitian. If α̂ is also hermitian,

indicating a lossless metasurface, then from the expression for Q̂ in Eq. (5.28)

it is easy to see that Q̂ will be hermitian. Combining this with Eqs. (5.13,5.14)

shows that Ĉ is hermitian as well

Ĉ = Ĉ†. (5.35)

We emphasize that this is no longer strictly true if ω or kx are complex.

Combining Eqs. (5.5,5.8,5.9) we see a relationship between the macro-

scopic field at the location of the thin metasurface and the local field

χ̂

(
Ey

Hz

)

=
α̂

a

(
Eloc

y

Hloc
z

)

(5.36)

Since in general χ̂ 6= α̂/a the immediate implication of this equation is that in

general the macroscopic electric and magnetic fields are nonlocal. However, it

can be seen from Eq. (5.29) that ÂB̂−1 has the property

lim
ωa/c→0
kxa→0

ÂB̂−1 = iK̂a. (5.37)

94



Inserting this into the expression for Q̂ in Eq. (5.28) yields

lim
ωa/c→0
kxa→0

Q̂ =
α̂

a
− α̂

a

(ω

c
α̂ + K̂a

)−1 ω

c
α̂. (5.38)

Putting this result into the expression for χ̂ in Eq. (5.13) produces

lim
ωa/c→0
kxa→0

χ̂ =
α̂

a
. (5.39)

Thus, we see that in the long wavelength limit, the constitutive matrix is

simply the background constitutive matrix plus α̂/a and the macroscopic field

is equal to the local field.

5.3 1D Example: Split Ring Resonator

5.3.1 Description of crystal unit cell and calculation of constitutive
parameters

We now describe a metamaterial crystal that we will use to test this

1D homogenization procedure. The metamaterial is an lowloss 2D split ring

resonator (SRR) embedded in vacuum [65]. A diagram of the SRR is shown in

Fig. 5.2. The lattice constant of the square unit cell is a while the length of the

square SRR is 0.7a. The metal is a perfect electric conductor with thickness

0.07a. The length of the capacitor is 0.45a and the capacitor gap is 0.07a and

is filled with a dielectric with permittivity ǫcap = 4 − i0.0001. All rounded

corners are circular with a radius of 0.04a. This 2D SRR has been shown to

support subwavelength (λ0 ≫ a) magnetic resonances [65].
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Figure 5.2: (a) The unit cell of the SRR. (b) αee
yy. (c) αmm

zz . (d) αem
yz . α̂

is calculated from the S-matrix of a single layer of SRR’s infinite in the ŷ
direction calculated using Eq. (5.18). Note that the real part of αem

yz and the
imaginary parts of αee

yy and αmm
zz are zero except near the resonance.

The surface polarizability of a single layer of SRR’s is also plotted in

Fig. 5.2. Since the SRR is reciprocal the transmission coefficients for waves

incident on either side of the SRR layer are equal (SH
12 = SH

21). According

to Eq. (5.18) this implies that αem
yz = −αme

zy , therefore only αem
yz is plotted in

Fig. 5.2. All components of the surface polarizability resonate at the same

frequency of ω ≃ 0.383. Since this SRR is mostly lossless (ǫcap = 4− i0.0001),

α̂ is approximately hermitian. We emphasize that α̂(ω) is only a function

of frequency as opposed to Ĉ(ω, kx) which is a function of frequency and

wavenumber.

Once we have calculated the surface polarizability α̂, we can use the
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procedure described in Sec. 5.2.2 to calculate Ĉ(ω, kx) for any frequency and

wavenumber. Since we are often interested in the constitutive parameters of

crystal eigenmodes, we will first calculate the parameters on the dispersion

curve or Ĉ = Ĉ(ω, kx(ω)). This will allow us to test Ĉ(ω, kx(ω)) by using it

to independently calculate kx(ω) of a homogeneous medium that corresponds

to the SRR crystal. In Fig. 5.3 we see the dispersion curve calculated from an

finite element eigenvalue simulation [14] (solid lines). Taking Eq. (5.10), we

can remove the source terms to obtain the generalized eigenvalue problem

ω

c
Ĉ

(
Ey

Hz

)

= kx

(
0 1
1 0

)(
Ey

Hz

)

. (5.40)

Superimposed on top of the numerically calculated dispersion curve in Fig. 5.3

is the solution to Eq. (5.40) (dotted lines) solved using the constitutive pa-

rameters calculated by exciting the crystal with a frequency and wavenumber

along the numerically calculated dispersion curve kx = kx(ω).

Fig. 5.3 shows that the dispersion curve calculated from the extracted

constitutive parameters agrees with the numerically exact dispersion curve

calculated from a finite element eigenvalue simulation [14] with only a small

disagreement near the resonance.

Because the SRR is reciprocal (see Sec. 5.2.5), the constitutive param-

eters obey the Lorentz reciprocity relations in Eq. (5.34). This is true despite

the fact that there is no reflection symmetry of the SRR crystal in the x̂

direction. Because of reciprocity we can write the constitutive parameters as
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Figure 5.3: Dispersion curve of a p-polarized (H = Hz(x, y)ẑ) wave propa-
gating through a 2D array of the SRR unit cell shown in Fig. 5.2. Real (a)
and imaginary (b) parts of kx(ω) vs. ω where k = kxx̂. Solid lines: disper-
sion curves for a p-polarized wave obtained from an eigenvalue simulation [14].
Dotted lines: dispersion curves calculated from the constitutive parameters in
Eq. (5.14) by solving the generalized eigenvalue problem in Eq. (5.40).

Ĉ =

(
ǫyy κo + κe

κo − κe µzz

)

. (5.41)

Here ǫyy, µzz and κe are even functions of kx but κo is an odd function of

kx. κe (κ even) describes intrinsic bianisotropy due to the asymmetry of the

SRR [44]. κo (κ odd) describes extrinsic bianisotropy due to spatial dispersion

in the SRR crystal [40, 20, 21]. This extrinsic bianisotropy would be present

even in a crystal with reflection symmetry in the x̂ direction. The calculated

constitutive parameters are shown in Fig. 5.4. Combining these constitutive

parameters with Eq. (5.40) produces the dispersion relation
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Figure 5.4: The constitutive parameters of the SRR crystal calculated on the
dispersion curve kx = kx(ω) plotted in Fig. 5.3. The SRR unit cell parameters
are the same as in Fig. 5.2.

(kx − ωκo/c)
2 =

(
ǫyyµzz + κ2

e

)
ω2/c2. (5.42)

5.3.2 Test of Maxwell boundary conditions

Since the constitutive parameters reproduce the correct dispersion curve

the next test is whether the constitutive parameters provide the correct bound-

ary conditions. To test this, the reflection of a plane wave at normal incidence

from the interface between semi-infinite vacuum and a semi-infinite SRR crys-

tal is calculated in two different ways. First, the reflection is calculated with
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a finite element simulation. We can compare this reflection coefficient to the

expected reflection of a plane wave from the interface between semi-infinite

vacuum and a semi-infinite homogeneous medium with the constitutive pa-

rameters of a SRR crystal. By taking the eigenvector of Eq. (5.40) that corre-

sponds to a right moving wave (Im(kx) < 0), we can define the impedance as

the ratio of the transmitted electric field and the transmitted magnetic field

z+ = Etrans
y /Htrans

z . The + superscript indicates that this impedance is for a

rightward moving wave. Due to the asymmetry of the SRR in the x̂ direction

there are two impedances [41]. One for a right moving wave z+ and one for a

left moving wave z−. Using the Maxwell equations we see that in terns of ω,

kx and the constitutive parameters the right and left moving impedances are

z± =
kx(ω) − ωκo/c ∓ ωκe/c

ωǫ/c
=

ωµ/c

kx(ω) − ωκo/c ± ωκe/c
. (5.43)

Here all constitutive parameters are calculated for a right moving wavenumber

kx that satisfies the dispersion relation in Eq. (5.42). Using the impedances

in Eq. (5.43) we can calculate the reflection from a semi-infinite homogeneous

medium defined as the amplitude of the magnetic field of the reflected wave

divided by the amplitude of the magnetic field of the incident wave. By ignor-

ing spatial dispersion and assuming Maxwell boundary conditions (continuity

of Ey and Hz) we find that the reflection amplitude of a plane wave incident

upon an interface between semi-infinite vacuum and a semi-infinite homoge-

neous medium with the constitutive parameters of a SRR array is
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Figure 5.5: (a) Absolute value of the reflection coefficient r+ for a rightward
moving normally incident wave as shown in the diagram. (b) Absolute value
of the reflection coefficient r− for a leftward moving normally incident wave
as shown in the diagram. (c) Phase of the reflection coefficients r+ (blue) and
r− (green). Solid lines are reflection coefficients from the interface of vacuum
and a semi-infinite SRR crystal. Dotted lines are reflection coefficients from
the interface of vacuum and a semi-infinite homogeneous medium with the
constitutive parameters calculated for a SRR crystal (dotted lines).

r± =
Hrefl

z

Hinc
z

=
1 − z±

1 + z±
, (5.44)

where r+ is the reflection coefficient from the vacuum-metamaterial interface

for a rightward moving incident beam in vacuum and r− is the reflection

coefficient from the interface for a leftward moving incident beam in vacuum.
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The two reflection coefficients are related due to the fact that the SRR

crystal is almost lossless. For the case of a completely lossless crystal and a real

valued frequency outside the bandgap of the SRR, kx for a freely propagating

wave will be real valued and the constitutive matrix will be hermitian. This

implies that ǫyy and µzz are real valued and ξyz = ζ∗
zy. This in turn implies

that z+ = (z−)∗ and r+ = (r−)∗. Thus we see that for a lossless crystal at

a real valued frequency in a propagating band the two reflection coefficients

will always have an absolute value that is equal |r+| = |r−| and a phase that

is equal and opposite arg(r+) = −arg(r−). These relations will not be valid

inside the bandgap due to kx being complex valued. However, the absolute

values of the two reflection coefficients will still be equal since they must both

be equal to unity for a real valued frequency inside the bandgap of a lossless

crystal.

Fig 5.5 shows both reflection coefficients. Both agree with each other

very well with a small error near the SRR resonance. The absolute values of the

two reflection coefficients are approximately equal both inside and outside the

bandgap and the phases of the reflection coefficients are approximately equal

and opposite outside the bandgap. One interesting feature in Fig. 5.5 is the

complex value of the reflection coefficients at frequencies outside the bandgap.

For light reflecting off of a lossless crystal without intrinsic bianisotropy at

a frequency outside the bandgap, the phase of the reflection coefficients will

always be either 0 or ±π. The complex values of the reflection coefficient are

entirely due to the asymmetry of the SRR crystal which results in the intrinsic
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bianisotropy characterized by κe.

5.3.3 Effective constitutive parameters and comparison to S-parameter
retrieval

In the last chapter, we compared the constitutive parameters calculated

using that chapter’s homogenization procedure to the parameters return by the

S-parameter retrieval method. The original S-parameter retrieval method [61]

assumes symmetry of the crystal in the direction of propagation, which is not

true for the SRR crystal. But as we mentioned in Sec. 1.3, a generalization of

the S-parameter retrieval method [41] allows it be be applied to crystals that

lack symmetry in the propagation direction. Since these S-parameter retrieval

methods calculate the effective permittivity and permeability of the metama-

terial from the index of refraction and impedance, which are associated with

the dispersion curve and boundary conditions respectively, we should expect

that these S-matrix constitutive parameters should reproduce the correct dis-

persion curve and boundary conditions. In fact, in the case of our SRR crystal

they do. However, these S-matrix constitutive parameters disagree with the

constitutive parameters we have calculated for the SRR crystal. Similar to the

situation in Sec. 4.5, there is a relationship between the constitutive parame-

ters calculated form the 1D model and those calculated using the asymmetric

S-parameter retrieval method. We can transform between the two sets of con-

stitutive parameters using the relations in Eqs. (4.13,4.14). For our highly

symmetric p-polarized system, these equations simplify to
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kx − ωξyz/c

ǫyy
=

kx − ωξeff
yz /c

ǫeff
yy

, (5.45)

kx − ωζyz/c

µyy
=

kx − ωζeff
yz /c

µeff
yy

. (5.46)

The asymmetric S-parameter retrieval method assumes the presence of in-

trinsic bianisotropy (κe), but no extrinsic bianisotropy (κo) due to spatial

dispersion. This means that the constitutive parameters take the form

ĈS(ω) =

(
ǫS
yy(ω) κS(ω)

−κS(ω) µS
zz(ω)

)

(5.47)

By taking Eqs. (5.45,5.46) and assuming that ξeff
yz = −ζeff

zy we can derive a

set of effective constitutive parameters

Ĉeff(ω, kx) =

(
ǫeff
yy (ω, kx) κeff (ω, kx)

−κeff (ω, kx) µeff
zz (ω, kx)

)

, (5.48)

where

ǫeff
yy =

ǫyy

1 − ωκo/(kxc)
, µeff

zz =
µzz

1 − ωκo/(kxc)
, κeff =

κe

1 − ωκo/(kxc)
.

(5.49)

It should be noted that these effective constitutive parameters leave the dis-

persion curve and impedances unchanged. By substituting the effective pa-

rameters into the dispersion relation in Eq. (5.42) it becomes

104



−10

−5

0

5

10

 

 

(a) Re(ǫeff
yy )

Im(ǫeff
yy )

Re(ǫS
yy)

Im(ǫS
yy)

−20

−10

0

10

20

 

 

(b) Re(µeff
zz )

Im(µeff
zz )

Re(µS
zz)

Im(µS
zz)

0.3 0.35 0.4 0.45 0.5 0.55
−20

−10

0

10

20

ω   (c/a)

 

 

(c) Re(κeff )
Im(κeff )
Re(κS)
Im(κS)

Figure 5.6: (a) ǫeff
yy and ǫS

yy. (b) µeff
zz and µS

zz. (c) κeff and κS. The effective
parameters are plotted with solind lines and the parameters returned by the
asymmetric S-parameter retrieval method are plotted with dotted lines.

k2
x =

[
ǫeff
yy µeff

zz + (κeff )2
]
ω2/c2, (5.50)

and the right and left moving impedances in Eq. (5.43) become

z± =
kx(ω) ∓ ωκeff/c

ωǫeff
yy /c

=
ωµeff

zz /c

kx(ω) ± ωκeff/c
. (5.51)

Since the impedances are unchanged, the reflection amplitudes calculated with

Eq. (5.44) are also unchanged.
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While the constitutive parameters obtained by the S-parameter re-

trieval method in Eq. (5.47) are functions of only ω the effective constitutive

parameters in Eq. (5.48) are functions of frequency and wavenumber. When

the effective parameters are calculated on the dispersion curve then the ef-

fective parameters correspond to the constitutive parameters obtained by S

parameter retrieval or ĈS(ω) ≈ Ĉeff(ω, kx(ω)).

Fig. 5.6 shows the effective constitutive parameters superimposed with

parameters calculated from the asymmetric S-parameter retrieval method [41].

The S-matrix used was numerically measured from a SRR slab five unit cells

thick. The effective constitutive parameters agree very well with the parame-

ters calculated from S parameter retrieval.

5.3.4 Emission from a SRR metamaterial antenna

So far all of the constitutive parameters presented and tested have been

calculated on the dispersion curve, meaning Ĉ = Ĉ(ω, kx(ω)). One significant

advantage of calculating the constitutive parameters of a metamaterial by ex-

citing it with external current is that one can excite fields that have a frequency

and wavenumber that do not lie on the dispersion curve and therefore calcu-

late constitutive parameters off of the dispersion curve. This is useful for a

number of reasons including the need to calculate partial derivatives of the

constitutive parameters with respect to frequency or wavenumber and evalu-

ating a Green’s function to calculate the electromagnetic field generated by an

external current. This latter ability is essential for analyzing a metamaterial
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antenna.

An important subfield of metamaterial research is the topic of meta-

material antennas [18, 69, 5, 67, 19]. It is hoped that by using the novel

electromagnetic properties of metamaterials it will be possible to improve the

performance of antennas. Most studies on metamaterial antennas hypothesize

the existence ideal metamaterials that are isotropic, local and broadband. To

analyze more realistic metamaterials it is necessary to be able to fully char-

acterize a metamaterial in a way that includes anisotropy, bianisotropy and

temporal and spatial dispersion.

Calculating the emission of a metamaterial antenna involves solving a

Green’s function problem for a current source inside the metamaterial. In a

3D bulk metamaterial the monochromatic electric field generated by the time

harmonic electric current source J(x)eiωt is

E(t,x) = eiωt

∫

d3x′Ĝ(ω,x − x′)J(x′)/c + Efree(t,x), (5.52)

where Ĝ(ω,x − x′) is a Green’s function given by

Ĝ(ω,x − x′) =

∫

d3k e−ik·(x−x′)iD̂3(ω,k)−1, (5.53)

calculated with the differential wave operator in ω and k space given by the

3x3 matrix
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D̂3(ω,k) =
(

k × +
ω

c
ξ̂
)

µ̂−1
(

k ×−ω

c
ζ̂
)

+
ω2

c2
ǫ̂. (5.54)

The free waves Efree in Eq. (5.52) are solutions to the homogeneous differential

equation (source free Maxwell equations) and satisfy the dispersion relation

D̂3(ω,k) · Efree(ω,k) = 0. The amplitudes of the free waves are chosen to

satisfy the boundary conditions of the problem. The constitutive parameters

ǫ̂, ξ̂, ζ̂ and µ̂ in the differential operator are functions of ω and k because they

include both temporal and spatial dispersion. In order to calculate the electric

field generated by the electric current source it is necessary to know how the

constitutive parameters vary as functions of ω and k.

We now demonstrate a simplified metamaterial antenna. This meta-

material antenna is a slab of 2D SRR crystal that is infinite in the ŷ and ẑ

directions but only five layers thick in the x̂ direction (see diagram in Fig. 5.7).

To make this slab a metamaterial antenna we add the electric current source

Jy(x)eiωt = J2e
i(ωt−kxx) inside the metamaterial slab. Outside the metamaterial

slab the electric current is zero.

Fig. 5.7 shows emission from two types of antenna slabs. The solid lines

plot emission from an actual slab made of SRR’s for three different frequencies

as a function of kx. The three frequencies were chosen so that one is below the

band gap (ω = 0.35 (c/a)), one is inside the band gap (ω = 0.45 (c/a)), and

one is above the band gap (ω = 0.55 (c/a)) as can be seen in Fig. 5.3. The

emission was calculated from an electromagnetic finite element simulation per-

formed with the software package COMSOL Multiphysics. The dotted lines
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plot emission from a slab of a homogeneous medium with the constitutive

parameters of the SRR crystal and the same thickness as the metamaterial

slab. The fields inside the homogeneous slab are a combination of the solution

to the inhomogeneous differential equation (Maxwell equations with source

terms) which we refer to as the driven wave and the solution to the homo-

geneous differential equation (source free Maxwell equations) which we refer

to as free waves. While the constitutive parameters for the free waves are

calculated on the dispersion curve, the constitutive parameters of the driven

wave are calculated with a ω and kx that in general do not lie on the disper-

sion curve providing us with a test of these off dispersion curve parameters.

The electric current generates electric and magnetic fields inside the homoge-

neous slab according to Eqs. (5.52-5.54) which for p-polarized waves excited

by current with a single wavenumber reduces to

Ey(t, x) = ei(ωt−kxx)iD1(ω, kx)
−1J2 + Efree

y (t, x), (5.55)

where the operator D1(ω, kx) is given by

D1(ω, kx) =

(

ǫyy +
κ2

e

µzz

)
ω2

c2
− 1

µzz

(

kx −
ω

c
κ0

)2

. (5.56)

The free waves Efree
y in Eq. (5.55) satisfy the dispersion relation D1(ω, kx) = 0

which is equivalent to Eq. (5.42). The boundary conditions for our system are

that the tangential electric and magnetic fields Ey and Hz are continuous across

the boundary between the homogeneous slab and vacuum and that the free
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Figure 5.7: (a) Diagram a emission from a SRR antenna. (b) Diagram of
emission from an antenna slab made from a homogeneous medium with the
constitutive parameters of the SRR array. In both cases the antennas emit
both to the left (negative x̂ direction) and the right (positive x̂ direction).
(c) Emission to the right (positive x̂ direction) from a SRR antenna (solid
lines) and a slab of a homogeneous medium (dotted lines). (d) Emission to
the left (negative x̂ direction) from a SRR antenna (solid lines) and a slab of
a homogeneous medium (dotted lines). Emission is plotted for three different
excitation frequencies as a function of kx. Both slabs have a thickness of 5a
in the x̂ direction and are infinite in extent in the ŷ and ẑ directions.

fields outside the slab are moving outwards from the slab. Because the driven

fields in Eq. (5.55) do not satisfy these boundary conditions it is necessary

to choose the amplitudes of the free waves so that the total fields do satisfy
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the boundary conditions. The free waves outside the homogeneous slab carry

energy away from the slab and this energy emission is plotted as the dotted

lines in Fig. 5.7.

Fig. 5.7 shows good agreement between the emission calculated for

a homogeneous medium with the constitutive parameters of a SRR crystal

and the actual emission from a slab of SRRs. The location of the emission

peaks for ω = 0.35 (c/a) and ω = 0.55 (c/a) approximately correspond to the

dispersion relation kx = kx(ω) as can be seen in Fig. 5.3. That the emission

profile is asymmetric with respect to leftward and rightward emission is due to

the asymmetry of the SRR. This asymmetry causes the intrinsic bianistropy

characterized by the constitutive parameter κe. Finally, for ω = 0.45 (c/a)

the emission seems to be suppressed due to the bandgap. The comparison of

emission from a SRR metamaterial antenna slab and a homogeneous antenna

slab provides a good test of the constitutive parameters for ω and kx off of the

dispersion curve.

5.4 1D Example: Split Pair One Film (SPOF)

In Chapter 4 we tested that chapter’s homogenization procedure only

on the Split Pair One Film (SPOF) metamaterial. In this chapter it was useful

to look at an asymmetric crystal which is why we tested this chapter’s homog-

enization procedure on the SRR metamaterial. Still, it will be instructive to

quickly check and see how this 1D model we use for homogenization applies to

the SPOF. In particular, when we use the constitutive parameters to calculate
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Figure 5.8: (a) Diagram of the SPOF unit cell. (b) Electric surface polariz-
ability. (c) Magnetic surface polarizability.

reflection from a vacuum-SPOF interface we will see some ambiguous results

that will lead us to the next chapter.

The surface polarizability for a single layer of the SPOF is plotted

in Fig. 5.8, along with a diagram of the SPOF unit cell. This is the same

SPOF unit cell and matrial parameters used in Chapter 4. We see in Fig. 5.8

an electric resonance near λ0 ≈ 830nm and a magnetic resonance at around

λ0 ≈ 690nm.

When we use put these surface polarizabilities into the 1D model of an

array of metasurfaces, for a λ0 and a kx determined by the dispersion curve of
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Figure 5.9: The constitutive parameters of the SPOF metamaterial calculated
on the dispersion curve Ĉ = Ĉ(ω, kx(ω)). (a) Permittivity ǫyy. (b) Permeabil-
ity µzz. (c) Extrinsic bianisotropic parameter κo. (d) Dispersion curve of the
SPOF crystal calculated from an eigenvalue simulation [14]) (solid lines) and
from the constitutive parameters according to Eq. (5.57).

the SPOF crystal (calculated from a finite element eigenvalue simulation [14]),

we get the constitutive parameters plotted in Fig. 5.9. Fig. 5.9 also plots the

dispersion curve of the SPOF metamaterial calculated from the eigenvalue

simulation (solid lines) and from the constitutive parameters of the SPOF

according to

(kx − ωκo/c)
2 = ǫyyµzzω

2/c2. (5.57)
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Figure 5.10: (a) Absolute value of reflection coefficients. (b) Argument of
reflection amplitudes. Solid lines plot reflection amplitudes calculated from a
finite element simulation. Dotted lines plot reflection amplitudes calculated
according to Eq. (5.58) from the constitutive parameters of the SPOF calcu-
lated on the dispersion curve.

Using these constitutive parameters we can calculate the reflection of

a plane wave from the interface between vacuum and a homogeneous medium

with the constitutive parameters of the SPOF with the equation

r =
1 − z

1 + z
z =

√
µzz

ǫyy
(5.58)

where r is the reflection amplitude and z is the impedance of the homoge-

neousmedium. Note that extrinsic bianisotropic parameter κo does not appear

in the impedance. This reflection amplitude can then be compared to the re-

flection of a plane wave from the interface between semi-infinite vacuum and a

semi-infinite SPOF crystal calculated from a finite element simulation. These

reflection amplitudes are plotted in Fig. 5.10.
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There is considerable error between the two reflection amplitudes plot-

ted in Fig. 5.10. Much more error than we saw when comparing reflection

amplitudes for the SRR. It turns out that the cause seems to be very strong

spatial dispersion. We will see this in the next chapter when we explore some

consequences of spatial dispersion.
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Chapter 6

Evidence of Spatial Dispersion

6.1 Anomalous boundary effects due to spatial disper-
sion

We saw in the last chapter that Maxwell boundary conditions combined

with the constitutive parameters calculated using our 1D metamaterial model,

correctly predict the reflection of a plane wave from the interface between vac-

uum and a SRR array (Fig. 5.5). We then saw that in the case of reflection

from the interface between vacuum and a SPOF array, the Maxwell boundary

conditions predicted slightly incorrect reflection amplitudes (Fig. 5.10). The

SPOF crystal is less subwavelength than the SRR crystal so we should expect

spatial dispersion to be stronger. From Chapter 2 we know that spatial disper-

sion can effect the Poynting flux in a medium and it seems reasonable that this

could modify the required boundary conditions at an interface. While modi-

fied boundary conditions are beyond the scope of this dissertation, a study of

the effect of spatial dispersion on energy flux, particularly at an interface, will

inform us about the importance of this effect. This study will also demonstrate

the importance of being able to calculate partial derivatives of the constitutive

parameters with respect to k.

To study the effect of spatial dispersion on energy flux we propose a
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Figure 6.1: Diagram of reflection model. Metamaterial is a semi-infinite 1D
array of metasurfaces. Each metasurface is separated by a medium with back-
ground permittivity ǫb and permeability µb and lattice constant a. Incident
waves excite a crystal eigenmode at the interface between vacuum and the
crystal. Reflected wave and crystal eigenmode carry energy away from the
interface.

simple model. In Chapter 5 we modeled a metamaterial as a one dimensional

array of metasurfaces. In this section we focus on the interface between vacuum

and this one dimensional metamaterial. A diagram of the model is shown in

Fig. 6.2. There is an interface between semi-infinite vacuum and a semi-

infinite crystal. The crystal is made up of an infinite number of metasurfaces

characterized by the surface polarizability α̂. The metasurfaces are separated

by length a by a medium with background permittivity ǫb and µb. The interface

between vacuum and the crystal is a distance a/2 from the first metasurface.

This model is similar to the one dimensional model in Sec. 5.2.4 except

their is no driving current and there is now an interface between the semi-

infinite crystal and vacuum. The one dimensional domain of the model is

divided in 3 subdomains: the semi-infinite vacuum, the domain between the
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Figure 6.2: Three subdomains of the reflection model. The first is vacuum
with ǫ = 1 and µ = 1. The second and third subdomains are filled with a
background medium with ǫ = ǫb and µ = µb. At each of the two internal
boundaries there are two boundary conditions. On the external boundaries
a3 and b3 are related to represent a rightward moving crystal eigenmode and
a1 = 1.

vacuum-crystal interface and the first metasurface, and the domain between

the first and second metasurfaces. The field inside each domain is described

by two coefficients, the amplitudes for rightward and leftward moving waves

in that domain. The magnetic and electric fields in any domain are

Hz = aie
−ikxx + bie

ikxx Ez = zaie
−ikxx − zbie

ikxx (6.1)

where ai is the amplitude of the rightward moving wave and bi is the amplitude

for the leftward moving wave in the ith subdomain, kx ≡ √
ǫbµbω/c is the

wavenumber of a wave propagating in the background medium and z ≡
√

µb/ǫb

is the impedance of the background medium. We have omitted the harmonic

time dependence eiωt where ω is the frequency. The coefficients (a1, b1) are

related to (a2, b2) by Maxwell boundary conditions at the interface between

the semi-infinite vacuum and the background medium, continuity of Hz and Ey.
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The coefficients (a2, b2) are related to (a3, b3) by Eqs. (5.5-5.7) which describe

the discontinuity of the electric and magnetic field across a metasurface. So

far we have imposed four boundary conditions on six degrees of freedom. In

the third domain the coefficients a3 and b3 should represent an eigenmode of

the crystal that is carrying energy away from the vacuum-crystal interface. As

mentioned in Sec. 5.2.4, a set of coefficients describing an eigenmode obey the

equation

(

ÂB̂−1 + iωα̂/c
)(a3

b3

)

= e−ka

(
a3

b3

)

(6.2)

where ÂB̂−1 is given by Eq. (5.29) and k is the Bloch wavenumber of the

eigenmode. The fifth boundary condition is that the ratio a3/b3 be equal to

the ratio between two coefficients representing a crystal eigenmode propagating

away from the interface (Im(k) < 0). The final boundary condition is set by

the amplitude of the incident wave which we normalize to unity (a1 = 1). We

now have six equations of constraint allowing us to solve for the six unknown

amplitudes.

Our original concern was that spatial dispersion modifies the energy flux

into the crystal at the vacuum crystal interface according to Eq. (2.22), and

that this causes the electromagnetic field to obey non-Maxwellian boundary

conditions at the interface. Let’s rewrite Eq. (2.22) for this simple 1D system

to remind ourselves of the role played by spatial dispersion. The simple 1D

medium interacts with p-polarized light according to four simple constitutive

parameters
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(
Dy

Bz

)

= Ĉ ·
(

Ey

Hz

)

Ĉ =

(
ǫyy ξyz

ζzy µzz

)

(6.3)

Here Dy, Bz, Ey and Hz are the complex valued macroscopic fields in the

homogenized metamaterial crystal. The energy flux due to these macroscopic

fields is given by

S = S0 + S1 S0 = c
Re(EyH

∗
z)

2
S1 = −1

4
Re

[(
Ey

Hz

)†

· ω ∂Ĉ

∂kx
·
(

Ey

Hz

)]

.

(6.4)

S0 is the standard expression for time averaged Poynting flux and S1 is the

first order correction to Poynting flux due to spatial dispersion.

After solving the 1D reflection model, we calculate the macroscopic

fields from our reflection model by measuring the polarization of the metasur-

face adjacent to the vacuum-crystal interface according to Eqs. (5.5,5.6). We

relate this polarization to the macroscopic fields according to Eqs. (5.8,5.9).

Since these fields are located at the position of the metasurface, we recover the

values of the fields at the vacuum-crystal interface by dividing by the factor

e−ikxa/2 where kx is the wavenumber of the crystal eigenmode. The macro-

scopic fields at the interface can then by used to calculate both S0 and S1 on

the crystal side of the vacuum-crystal interface.

As an example of this reflection model, we first examine a crystal made

of magnetic resonating metasurfaces. The polarizability tensor of this meta-

surface is
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α̂ =

(
3.5a 0
0 αmm

zz

)

,

αmm
zz

a
= − 0.5(c/a)2

ω2 − (0.5c/a)2 − i(0.1c/a)ω
− 2.5(c/a)2

ω2 − (2.5c/a)2 − i(0.05c/a)ω
.

(6.5)

The magnetic surface polarizability αmm
zz models a metasurface with two mag-

netic resonances ω = 0.5c/a and ω = 2.5c/a. Magnetic resonators are typi-

cally made of metal, and at low frequencies metsurfaces tend to have positive

nonzero electric polarizabilities represented by our choice of αee = 3.5a. This

model approximates a magnetic resonator imperfectly. The electric polariz-

ability will naturally have resonances even if the fundamental resonance is

magnetic. Also, metal inclusions tend to contribute to a negative magnetic

polarizability between −a and 0 at low frequencies. Still, this simple model of

a metasurface sufficiently captures the resonant behavior that we are interested

in.

The power flux at the vacuum-crystal interface for this model is plotted

in Fig. 6.3. Of particular interest is Fig. 6.3d which plots the macroscopic

Poynting flux terms S0 and S0 + S1 as well as the microscopic Poynting flux

averaged over the interface 〈s〉.

From Fig. 6.3 we see that the 0th order Poynting flux S0 often disagrees

with the true Poynting flux calculated from microscopic fields 〈s〉. We see bet-

ter agreement between 〈s〉 the sum of the 0th and 1st order Poynting terms

S0 + S1, but there are still frequencies where there is little agreement. By
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Figure 6.3: Poynting flux at the vacuum-crystal interface for a crystal array of
metasurfaces with surface polarizability given by Eq. (6.5). (a) Electric surface
polarizability αee. (b) kx vs. ω dispersion curve of the crystal eigenmode.
(c) Magnetic surface polarizability αmm. (d) Microscopic Poynting flux 〈s〉,
0th order macroscopic Poynting flux S0 and 0th plus 1st order macroscopic
Poynting flux S0 + S1. The S0 + S1 calculation of Poynting flux agrees with
the true Poynting flux 〈s〉 when Im(kx) is small.

comparing the Poynting fluxes (Fig. 6.3d) with the dispersion curve(Fig. 6.3b)

it is clear that the disagreement between S0 + S1 and 〈s〉 seems to occur when

Im(kxa) is large. Recalling the derivation of the modified Poynting flux in

Chapter 2 there are two possible reasons for this disagreement. The first

would be the anomalous terms in Eq. (2.3), however, for a wave that is simply

decaying in space according to the decay factor e−Im(kx)x the anomalous terms

should vanish. The second possibility is that higher order terms are necessary
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for correctly calculating the true energy flux into the crystal. This seems to

be the true cause of the disagreement between |s| and S0 + S1. This makes

sense if we recall that in the derivation in Chapter 2 the decay of the wave

is contained in the field envelope F0(t,x). For a monochromatic wave with

a small Im(kxa) the field envelope in ω and k space is approximately a delta

function or F0(α,q) ≈ δ4(α,q). When this is true the Taylor expansion of

ωĈ to first order is sufficient, because the spread of the field envelope F0(α,q)

is very narrow. For a wave with a large Im(kxa) the field envelope becomes

broader as a function of kx with a width of 2Im(kx). Now the Taylor expan-

sion of ωĈ to first order is insufficient. Unfortunately, to the best knowledge

of the author, there is no known way to calculate the relevant higher order

corrections.

Our motivation for this investigation of the modified Poynting flux was

the error encountered in Sec. 5.4 between the reflection at the interface between

vacuum and a SPOF crystal and the reflection at the interface between vacuum

and a homogeneous medium with the constitutive parameters of the SPOF.

Unfortunately, the modified Poynting flux provides only a partial answer to

this error. As we saw in Fig. 6.3, the modified expression for the Poynting

flux is only accurate when Im(kxa) is small. In Fig. 6.4 we have plotted the

reflection coefficient for reflection of a plane wave from the interface between

semi-infinite vacuum and a semi-infinite SPOF crystal (r), a semi-infinite array

of metasurfaces with the polarizability of a single layer of a SPOF crystal (rA)

and a semi-infinite homogeneous medium with the constitutive parameters of
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the SPOF crystal (rC). We have also replotted the dispersion curve of the

SPOF eigenmode along with the surface polarizability of the SPOF and the

various values for Poynting flux at the vacuum-SPOF interface. As we see from

the dispersion curve, for wavelengths of 500nm to 680nm Im(kxa) is small and

true energy flux 〈s〉 agrees very well with the modified Poynting flux S0 + S1.

However, for wavelengths above 680nm the SPOF crystal has a broad electric

bandgap causing the eigenmode to be evanescent and Im(kxa) to be large. In

this region there is considerable error between the true energy flux and the

modified Poynting flux.

There have been other attempts to quantify the contribution to the

Poynting flux in a metamaterial due to spatial dispersion [55, 13]. In particular,

in Ref. [13] Costa et al. plot curves similar to Fig. 6.4 comparing the averaged

microscopic Poynting Flux 〈s〉 to the nonlocal Poynting flux S0 + S1 where

S1 is calculated using Silveirinha’s homogenization procedure [54] described

in Sec. 1.4. Ref. [13] also shows good agreement between 〈s〉 and S0 + S1 for

crystal eigenmodes when Im(k) is small. However, they avoid comparing 〈s〉

and S0 + S1 when Im(k) is large. In Ref. [55] it is claimed that macroscopic

Poynting flux can only be calculated when Im(k) is small.

We conclude that though the 1st order correction to the Poynting flux

does play an important role in modifying the boundary conditions for meta-

materials with strong spatial dispersion, there are likely extra terms in the

expression for Poynting flux that also contribute significantly. Still, the par-

tial agreement between the true energy flux 〈s〉 and the modified Poynting flux
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Figure 6.4: (a) absolute value and (b) argument of the reflection coefficient
for a plane wave reflecting from the interface between vacuum and a semi-
infinite SPOF crystal (solid lines), array of metasurfaces (diamonds) and a
homogeneous medium (dotted lines). (c) Electric surface polarizability αee.
(d) kx vs. ω dispersion curve of the crystal eigenmode. (e) Magnetic surface
polarizability αmm. (f) Microscopic Poynting flux 〈s〉, 0th order macroscopic
Poynting flux S0 and 0th plus 1st order macroscopic Poynting flux S0 + S1.
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S0 + S1 when Im(kxa) is small does provide evidence that the partial deriva-

tives of the constitutive parameters used to calculate the 1st order Poynting

flux correction are physically significant and are correctly calculated using the

homogenization procedure from Chapter 5. This validates the simple one di-

mensional homogenization theory and also highlights the importance of spatial

dispersion in metamaterials.

6.2 Anti-resonances in metamaterials

Shortly after it was suggested by Smith et. al. that the constitutive

parameters of a metamaterial be inferred from the scattering matrix of a thin

metamaterial slab [61] it was discovered that this procedure also produces ef-

fective constitutive parameters with apparently unphysical lineshapes. This

phenomenon, dubbed antiresonance, typically involves constitutive parame-

ters with the wrong sign of the partial derivatives with respect to frequency

(∂(ωǫ)/∂ω and ∂(ωµ)/∂ω) and the wrong sign of the imaginary part of the pa-

rameters ǫ and µ. There is also usually a pairing between a resonance and an

unphysical appearing antiresonance so that when the permittivity of a meta-

material is resonant the permeability is anti-resonant and vice versa. There are

many examples of this behavior when constitutive parameters are calculated

from scattering matrices [49, 34, 73, 31, 66, 41], but there are also examples

of anti-resonances for other retrieval methods [49, 48, 60, 20]. An example of

effective constitutive parameters exhibiting a typical antiresonance is plotted

in Fig. 6.5
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Figure 6.5: Effective permittivity (a) and permeability (b) for a 2D crystal
array of magnetic resonators shown in Fig. 6.6. The effective parameters are
calculated according to Eq. (5.49) from the constitutive parameters resulting
from the 1D model presented in Sec. 5.2. Note that for a passive medium,
the imaginary parts of ǫ and µ should both be less than or equal to zero but
here the imaginary part of ǫeff is positive. Also, the derivative Re(dǫeff/dω)
is negative for frequencies far from the resonance. This mistakenly implies
negative energy density.

It has long been argued that antiresonances are caused by spatial dis-

persion [34]. However, since homogenization procedures such as S-parameter

retrieval cannot separate the dependence of constitutive parameters on ω and

k, there have been no quantitative arguments of the importance of spatial

dispersion to the antiresonance phenomenon. Serious questions remain about

the interpretation of the imaginary part of the constitutive parameters near

an anti-resonance. The imaginary parts of ǫ and µ are associated with loss (or

gain) in the medium. While the imaginary part of µeff in Fig. 6.5 implies the

medium is lossy the imaginary part of ǫeff implies that medium also has gain.
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For a discussion of this problem, please refer to the comments [15, 16] on the

original antiresonance paper by Koschny et. al. [34] as well as the reply to

these comments [33]. We will now briefly summarize the problem outlined in

the previous references.

The standard expression for heat generated by a monochromatic wave

in a passive isotropic medium is given by [26, 4, 38]

L(x) =

∫

Ω

d3x

[

Im[−ǫ(ω0)]
|E0|2

2
+ Im[−µ(ω0)]

|H0|2
2

]

, (6.6)

where E0(t,x) and H0(t,x) are complex valued fields. In Ref. [34], Koschny

et. al. argue that it is okay for either Im(ǫ) or Im(µ) to have the incorrect

sign as long as L(t,x) is positive. However, Depine et al. [15] and Efros [16]

both provide simple examples involving interfering plane waves where they

claim L(t,x) is negative antiresonance. All parties seem to agree that spatial

dispersion plays an important role in the constitutive parameters though it is

not clear how to quantify this since S-parameter retrieval doesn’t separate the

dependence of the constitutive parameters between ω and k. The ability to

calculate constitutive parameters as a function of both ω and k is essential to

resolving this issue.

There are two reasons why Im(ǫeff
yy ) is perceived to have the wrong sign

due to spatial dispersion. The first is that the effective parameters are not

the correct constitutive parameters but are related to the correct constitutive

parameters by Eq. (5.49). Specifically, the bianisotropy caused by spatial
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dispersion is ignored in S-parameter retrieval and many other homogenization

methods. When we allow for bianisotropy in a symmetric crystal, the question

of the sign of the imaginary parts of ǫ and µ becomes a question of the signs

of the eigenvalues of the antihermitian part of the constitutive matrix. Alu

has demonstrated that taking bianisotropy into account also helps resolve the

issue of the signs of ∂(ωǫ)/∂ω and ∂(ωµ)/∂ω [7], though we will not concern

ourselves with that here.

The second reason for the wrong sign is that the constitutive param-

eters are evaluated on the dispersion curve. As mentioned in Chapter 2 the

derivation for Eq. (6.6) assumes that any change in the strength of the fields is

slow and contained in the field envelopes E0 and H0. As a result, in Eq. (6.6)

the imaginary parts of the constitutive parameters are evaluated for real fre-

quencies and wavevectors. In other words, for a fields with a complex frequency

ω0 = ω′
0 + iω′′

0 and/or wavevector k0 = k′
0 + ik′′

0, the quantities Im[ǫ(ω′,k′
0)]

and Im[µ(ω′
0,k

′
0)] must be used in Eq. (6.6) when calculating loss. However,

the parameters returned by the S-parameter retrieval method, in addition to

ignoring bianisotropy due to spatial dispersion, are calculated from waves that

are propagating through a metamaterial slab. These free eigenmodes have

a real valued frequency, but they have a complex valued wavevector due to

the waves decaying as they propagate through the lossy metamaterial slab.

Therefore, the constitutive parameters returned by S-parameter retrieval for a

complex wavevector are ǫeff
yy (ω′

0,k
′
0 + ik′′

0) and µeff
yy (ω′

0,k
′
0 + ik′′

0). Because the

effective constitutive parameters are evaluated for a complex valued wavevec-
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Figure 6.6: (a) Diagram of a magnetic resonator. The metal (gold colored) is
Au with permittivity ǫAu = 1 − ω2

p/(ω(ω − iγ)) where ωp = 1.367 · 1016/s and
γ = 4·1013/s. The dielectric (blue colored) has the permittivity ǫd = 2.25. The
lattice constant of the crystal is a = 5µm. (b) Electric surface polarizability
of the magnetic resonator. (c) Magnetic surface polarizability of the magnetic
resonator.

tor they should not be used for calculating loss in a medium. It should be

noted that constitutive parameters calculated by field averaging eigenmodes

of a crystal [49, 60] have this same shortcoming.

We now demonstrate this on a simple 2D metamaterial. This is a

2D array of magnetic resonators pictured in Fig. 6.6. The resonator is a

symmetric split ring made of Au with permittivity ǫAu = 1 − ω2
p/(ω(ω − iγ))

where the plasma frequency is ωp = 1.367 · 1016/s and the damping frequency
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is γ = 4 · 1013/s. The capacitor gap is filled with a dielectric with permittivity

ǫd = 2.25. The lattice constant of the crystal is a = 5µm. We see from the

electric and magnetic surface polarizabilities plotted in Fig. 6.6 that there is

a magnetic resonance near ω = 0.85c/a. The constitutive parameters for this

crystal where calculated using the 1D model described in Chapter 5,

Ĉ =

(
ǫyy κo

−κo µzz

)

, (6.7)

and are plotted in Fig. 6.7 along with the dispersion curve for the eigenmode

of the crystal. The constitutive parameters were calculated on the dispersion

curve or Ĉ = Ĉ(ω,k(ω)).

We will now calculate dissipative loss for an eigenmode of the crystal.

There are three possible ways to calculate loss inside a unit cell of the crystal.

First loss can be calculated from microscopic fields and integrated over a unit

cell. Since µ = 1 inside the unit cell, microscopically all loss is electrical.

〈Lm〉 =
1

a2

∫

Ω

d2x

[

Im(−ǫ)
|e|2
2

]

. (6.8)

Here ǫ is the microscopic permittivity and e is the microscopic electric field.

This gives us the true loss which we can compare to other measures of loss.

The second option for calculating loss is the incorrect method of calcu-

lating loss from the imaginary parts of the effective constitutive parameters,

which of course appear to imply gain in the electric antiresonance.
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Figure 6.7: The constitutive parameters for an array of magnetic resonators
pictured in Fig. 6.6. All constitutive parameters are calculated on the disper-
sion curve Ĉ = Ĉ(ω,k(ω)). (a) ǫyy. (b) µzz. (c) κo. (d) Dispersion curve for
freely propagating eigenmodes of the 2D array of magnetic resonators.

〈Lanti〉 =
1

a

∫

Ω

dx

[

Im(−ǫeff )
|Ey0|2e−2k′′

xx

2
+ Im(−µeff)

|Hz0|2e−2k′′

xx

2

]

(6.9)

Here Ey = Ey0e
−ikxx and Hz = Hz0e

−ikxx are macroscopic planes waves whose

amplitude is determined from the polarization of the magnetic resonator meta-

surface according to Eqs. (5.5,5.6) and Eqs. (5.8,5.9). The local field is mea-

sured at the boundary of the unit cell.

The third way to calculate loss is to use the constitutive parameters cal-

culated from the 1D model described in Chapter 5. These parameters include
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Figure 6.8: (a) Eigenvalues of the matrix [(ωĈ)− (ωĈ)†]/2. Both eigenvalues
are negative implying a lossy medium. (b) Loss calculated using three differ-
ent methods. All values for loss are normalized to the incoming microscopic
Poynting flux divided by the lattic constant, therefore loss should always be
between 0 and 1.

the bianisotropic parameter κo which is due to spatial dispersion. In order

to calculate the loss correctly we must calculate these constitutive parameters

for a real valued wavevector or Ĉ = Ĉ(ω,k′(ω)). The correctly calculated

dissipative loss is

〈L〉 = −1

a

∫

Ω

dx

[(
Ey0

Hz0

)†

· (ωĈ) − (ωĈ)†

2i
·
(

Ey0

Hz0

)

e−2k′′

xx

]

= −
[(

Ey0

Hz0

)†

· (ωĈ) − (ωĈ)†

2i
·
(

Ey0

Hz0

)]

sinh(k′′
xa)

k′′
x

(6.10)

The results of these three methods for calculating loss are plotted in

Fig 6.8, along with the eigenvalues of the matrix [(ωĈ)−(ωĈ)†]/2. The values

133



for loss are all normalized to the microscopic Poynting Flux entering the unit

cell, therefore loss should always be between 0 and 1. Since loss is calculated

from a matrix in Eq (6.10) we cannot simply look at the imaginary parts of

the constitutive parameters, but must instead look at the eigenvalues of the

hermitian matrix [(ωĈ)−(ωĈ)†]/2. Both eigenvalue are negative for the entire

frequency range guaranteeing that we will only observe loss and no gain. We

also see in Fig. 6.8 that all three measures of loss agree with each other except

near the resonance. Near the resonance 〈Lanti〉 becomes larger than 1 implying

that there is more energy lost in the unit cell than there is energy entering

the unit cell. The correctly calculated loss 〈L〉 is less than 1 for almost the

entire frequency band, but it also disagrees with the true loss 〈Lm〉 near the

resonance. The inclusion of spatial dispersion is clearly necessary for correctly

calculating dissipative loss near a resonance.

We see that spatial dispersion is an important effect and must be ac-

counted for when calculating loss in a metamaterial. However, the correct

expression for calculating loss (Eq (6.10)) is only a modest improvement over

the incorrect method using effective constitutive parameters with complex val-

ued wavenumbers.
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Chapter 7

Conclusion

7.1 Characterizing metamaterials with spatial disper-
sion

Throughout our discussion of metamaterial homogenization, we have

emphasized the importance of understanding the effects of spatial dispersion

in metamaterials. This has been accomplished by providing examples of the

failures encountered when spatial dispersion is neglected as well as by study-

ing the advantages of including spatial dispersion in the characterization of

metamaterials. We briefly summarize the results of this dissertation and then

we will touch upon some general conclusions.

In Chapter 1 we introduced the concept of metamaterial homogeniza-

tion. We then described four important previous attempts by others at meta-

material homogenization. The first by John Pendry [50] marked the origin

of the field of metamaterial research. This method involves averaging micro-

scopic electromagnetic fields over the edges and faces of a crystal unit cell.

The second method, S-parameter retrieval, by David Smith et al. [61], has

become the workhorse of theoreticians working to characterize new potential

metamaterial designs. S-parameter retrieval is essentially an inverse scattering

problem where one infers the constitutive parameters of a thin sample of meta-
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material from that sample’s scattering matrix. The third and fourth methods

we reviewed are less well known, but they are both important because unlike

the first two methods they attempt to characterize spatial dispersion in meta-

materials. The first of the two methods by Mário G. Silveirinha [54] attempts

to describe a complex metamaterial with only a permittivity tensor. The sec-

ond of the two methods by Jenson Li et al. [40] attempts to calculate all 36

linear constitutive parameters. Both methods have similar field averaging pro-

cedures with the similar limitations. However, these attempts to characterize

spatial dispersion mark an important new direction for the field of metama-

terial homogenization. In addition, Jensen Li’s prediction of bianisotropy in

centrosymmetric crystals due to spatial dispersion seems to be correct and

essential for understanding most metamaterials.

In Chapter 2 we introduced the topic of spatial dispersion and justified

its importance in the field of metamaterials. We studied how the symmetry of

a crystal affects the symmetry of its constitutive tensors/pseudotensors and we

examined how this dependence changes in the presence of spatial dispersion.

We were able to justify and explain the result of Li that spatial dispersion

allows for bianisotropy in centrosymmetric crystals, a prediction which is new

and potentially controversial. We then looked at the effects of spatial dis-

persion on the calculation of Poynting flux and dissipative loss. In the case

of Poynting flux, we examined an extra term in the Poynting flux caused by

spatial dispersion and proportional to [∂(ωĈ)/∂k + (∂(ωĈ)/∂k)†]/2. In the

case of dissipative loss, we have shown that it is necessary to calculate loss
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using constitutive parameters evaluated for real valued ω and k. This is im-

portant because spatial dispersion causes the constitutive parameters to vary

as a function of k.

Next, in Chapter 3, we described a new method of calculating com-

plex k dispersion curves for 3D crystals using a finite element method sim-

ulation. This method is a generalization of a 2D eigenvalue finite element

simulation [14, 17]. Knowledge of the complex k dispersion curves of metama-

terial/photonic crystals is important for evaluating metamaterial experiments.

Because the frequency ω is real valued and the wavevector k is generally com-

plex valued in experiments is is important to evaluate the constitutive param-

eters on the correct k = k(ω) dispersion curve when using a current driven

homogenization procedure like those described in Secs. 1.4 and 1.5 and Chap-

ters 4 and 5.

In Chapter 4 we present an early attempt by the author at metama-

terial homogenization. This method attempts to calculate all 36 linear con-

stitutive parameters of a metamaterial crystal. It uses the concept of driving

a crystal with external electric and magnetic current (similar to Li [40] and

Silveirinha [54] though Silveirinha only uses electric current) and averages the

resulting microscopic fields with edge and volume integrals over the crystal

unit cell. The field averaging procedure is somewhat similar to Pendry’s av-

eraging prescription described in Sec. 1.2 and produces similar results when

Pendry’s method is combined with external driving currents. This method is

very ambitious, attempting to calculate all 36 constitutive parameters, and
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is somewhat successful. It reproduces correct dispersion curves and correctly

predicts reflection from a vacuum-SPOF crystal interface. Still, this method

has some serious shortcomings, not the least of which is the lack of Lorentz

reciprocity in the calculated constitutive parameters.

In Chapter 5 we presented a simpler homogenization procedure. This

method is based on modeling a metamaterial crystal as an 1D array of metasur-

faces. The metasurfaces serve as proxies for individual layers of a metamate-

rial crystal by responding to electromagnetic fields according to α̂, the surface

polarizability. This model assumes a certain degree of symmetry, similar to

the methods described in Secs. 1.2 and 1.3, making this method less general

than the method described in Chapter 4. Still, this simple homogenization

procedure has several advantages, the main one being that it obeys Lorentz

reciprocity. This method also exhibits bianisotropy in metamaterials due solely

to spatial dispersion and because of Lorentz reciprocity we saw how this ex-

trinsic bianisotropy can be separated from the intrinsic bianisotropy caused by

the asymmetry of a metamaterial crystal. This 1D model for homogenization

passes some basic tests of a homogenization procedure, including reproducing

the correct dispersion relation and the reflection from a vacuum-SRR crys-

tal interface. However, reflection from a vacuum-SPOF crystal interface was

less accurate. This implies a necessary modification of the Maxwell boundary

conditions due to spatial dispersion and leads us to the next chapter.

In Chapter 6 we examined the effects of spatial dispersion on the Poynt-

ing flux at the interface between vacuum and two different metamaterials.
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First we looked at a toy model of a metamaterial and saw that the additional

term for the Poynting flux predicts the correct energy flux as long as Im(kxa)

is small where kx is the wavenumber of the eigenmode propagating into the

metamaterial and a is the lattice constant. We then examined the Poynting

flux at a vacuum-SPOF crystal interface and saw a similar result. Whenever

Im(kxa) is small the agreement between the Poynting flux and the true en-

ergy flux is very good. When Im(kxa) is large the agreement breaks down.

This necessarily complicates the issue of modified boundary conditions due to

spatial dispersion. In Chapter 6 we also looked at the calculation of dissipa-

tive loss in a metamaterial, taking into account the role of spatial dispersion.

We saw that when we evaluate the matrix proportional to dissipative loss,

[(ωĈ) − (ωĈ)†]/2, this matrix is negative definite, guaranteeing that loss will

always be positive and that we should observe no gain near an antiresonance

of a metamaterial.

The main theme of this dissertation is that it is essential to consider spa-

tial dispersion when characterizing a typical metamaterial due to the fact that

most realistic metamaterials are not very subwavelength. We have provided

several examples of the manifestation of spatial dispersion including extrinsic

bianisotropy, modified Poynting flux and a resolution of the antiresonance con-

troversy. While we have made significant progress in justifying the importance

of spatial dispersion, our ability to characterize general metamaterials is not

complete.
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7.2 Future Work

The 1D homogenization model presented in Chapter 5 is a significant

advance in metamaterial homogenization theory, but it is limited in its appli-

cation. It assumes a great deal of symmetry in the crystal to be homogenized

which prevents it from being applied to a wide class of asymmetric metamateri-

als crystals. In addition, it requires that the wavevector k be perpendicular to

the metasurfaces that make up the model, preventing any study of constitutive

parameters for oblique angle wavevectors.

An obvious generalization of this method requires that the model incor-

porate longitudinal polarization (field polarization perpendicular to the meta-

surface) in addition to the current transverse polarization. This polarizability

should depend on the wavevector parallel to the metasurface in addition to ω.

Such a characterization of a metasurface has proven to be very difficult. At

the moment there is no general method for characterizing a metasurface with

longitudinal polarization though there is at least one published attempt [24]

that as an approximation assumes spatial dispersion in the direction parallel

to the metasurface is negligible.

While the 1D model is quite successful in characterizing simple highly

symmetric crystals, it may be that it is a dead end as a path to a more

general homogenization procedure. At the moment it is difficult to tell. A

more general method of metamaterial homogenization might require a new

insight that applies to a more general class of classical fields, possibly includ-

ing acoustic metamaterials. There are many similarities between the field of
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electromagnetic metamaterials and acoustic metamaterials but there are still

enough differences that studying both fields might provide an important clue

towards a future research direction.

There are a few things we can anticipate about a future homogeniza-

tion procedure. It should be general enough to calculate all of the necessary

constitutive parameters. And it must include the effects of spatial dispersion

through a dependence of the constitutive parameters on the wavevector k.
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