
Copyright

by

Praveen Yalagandula

2005



The Dissertation Committee for Praveen Yalagandula

certifies that this is the approved version of the following dissertation:

A Scalable Information Management Middleware for

Large Distributed Systems

Committee:

Michael Dahlin, Supervisor

Lorenzo Alvisi

James C. Browne

C. Greg Plaxton

Robbert van Renesse

Harrick M. Vin



A Scalable Information Management Middleware for

Large Distributed Systems

by

Praveen Yalagandula, B.Tech.; M.S.E.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2005



Dedicated to my wife and my parents



Acknowledgments

I deem myself to be very fortunate to have Mike Dahlin as my advisor. I am really

impressed by Mike’s intuition, thoughtfulness, and quick comprehension capability.

I am really obliged to Mike for guiding me in picking a very interesting and fruitful

research direction. He was never demanding yet always encouraging natural growth.

I greatly cherished his advice on research, coding, writing, reviewing, and time

management and I drew a great inspiration and learned a lot from articles that he

occasionally distributed to all his students like Turing award lectures, on career and

general advice, and on programming standards.

I am thankful to Harrick Vin, Mike Dahlin, and Lorenzo Alvisi for creating

a really collaborative and very inspiring environment by founding LASR lab. Their

COPE seminar class made it easy for me to switch from hardware verification field to

systems area. I also enjoyed several chats with Lorenzo Alvisi and learned a lot from

his views on research ethics and discussions on interviewing faculty candidate’s and

visitor’s lectures. I will never forget Lorenzo’s Distributed Systems class lectures;

they were both very entertaining and informative.

I am thankful to Greg Plaxton, James C. Browne, and Robbert van Renessee

for serving on my dissertation committee. I greatly enjoyed several discussions with

Greg on exploring the theoretical side of dynamic adaptation. I am impressed by

Dr. Browne’s extensive research experience in systems area and enjoyed working on

range queries problem with him. I am thankful to Robbert for carefully studying

v



my entire thesis and for his extensive comments.

I really savored all my five years in the LASR lab, thanks to very intelligent

and friendly colleagues. I have enjoyed my collaborations with Ravi Kokku, Arun

Venkatarami, Sadia Sharif, Amit Garg, Mitul Tiwari, and Navendu Jain. I am

also thankful to Suat Jain, Jayaram Mudigonda, Rama Krishna Rao Kotla, JP

Martin, Amol Nayate, Taylor Riche, Jasleen Kaur Sahni, Sergey Gorinski, Taroon

Mandhana, and Puneet Chopra for discussions on several ideas and for their help

on fine tuning my presentations.

I would like to thank Adnan Aziz for arranging a teaching assistantship

which enabled me to come to UT Austin for my graduate studies. I have thoroughly

enjoyed several discussions with Adnan during my Masters in Computer engineering

department. I immensely enjoyed discussions on research, food, and puzzles with

Padmini Gopalakrishnan, Malay Ganai, Amit Prakash, Gaurav Rastogi, Tameen

Khan, Shashank Gupta, and Rashmi Tripathi.

I am thankful to Palicherla Navin Reddy, Shailja Pathania, Anand Ra-

machandran (Randy), Vivekananda Vedula (Nandu), Mudanai P Sivakumar (MP),

Madhukar Korupolu, Gauri Karve, and Sreekanth Samavedam (Freaky) for includ-

ing me in a lot of entertaining activities. Colorado rockies trip with them was a

very memorable experience for me.

I am thankful to my B.Tech. friends Debasis Mishra, Dhruba Chandra,

Shailendra Jha, Vinit Srivastava, Mukul Khandelia, Vivek Gulati (gullu), Ranadeb

Chaudhuri (rolly), Sunil Saini, Bibhudatta Sahoo, and Chandrasekhar Puthilathe

(lathe) for keeping in touch with me and for their encouragement.

My parents have provided their constant support and encouragement through-

out my life.

Finally, without the love and care of Tanjeet Juneja, my wife, this dissertation

might not have been completed yet. Her constant encouragement and patience got

vi



me through the low periods of my graduate life.

Praveen Yalagandula

The University of Texas at Austin

August 2005

vii



A Scalable Information Management Middleware for

Large Distributed Systems

Publication No.

Praveen Yalagandula, Ph.D.

The University of Texas at Austin, 2005

Supervisor: Michael Dahlin

Information management is one of the key tasks of any large-scale distributed

application. The goal of this dissertation is to design and build a general and

scalable information management middleware for large distributed systems that will

facilitate design, development, and deployment of distributed applications and that

will enable application developers to explore the tradeoffs between communication

cost, response latency, and consistency.

In this dissertation, we present a Scalable Distributed Information Man-

agement System (SDIMS) that aggregates information about large-scale networked

systems and that can serve as a basic building block for a broad range of large-scale

viii



distributed applications by providing detailed views of nearby information and sum-

mary views of global information. To serve as a basic building block, an SDIMS

should have four properties: scalability to many machines and data items, flexibility

to accommodate a broad range of applications, administrative isolation for security

and availability, and robustness to node and network failures.

We design, implement, and evaluate an SDIMS that (1) leverages Distributed

Hash Tables (DHT) to create scalable aggregation trees, (2) provides flexibility

through a simple API that lets applications control propagation of reads and writes

and through a self-tuning mechanism that adapts the propagation to observed load

in the system, (3) provides administrative isolation through a novel Autonomous

DHT algorithm, and (4) achieves robustness to node and network reconfigurations

through lazy reaggregation, on-demand reaggregation, and tunable spatial replica-

tion.

Through extensive simulations and micro-benchmark experiments on several

real testbeds, we observe that our system is an order of magnitude more scalable

than existing approaches, provides a wide range of choices for applications to control

the propagation of data to tradeoff the bandwidth cost with the response latency,

achieves administrative isolation properties at a cost of modestly increased read

latency in comparison to flat DHTs, and gracefully handles failures. We implement

several applications on top of SDIMS including a file location system and a multicast

system. We also use SDIMS in two other research efforts in our lab — as a controller

for a distributed file replication system and as an information gathering plane in a

distributed network monitoring system.

ix



Contents

Acknowledgments v

Abstract viii

List of Tables xiv

List of Figures xvi

Chapter 1 Introduction 1

1.1 Motivation and Challenges . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Aggregation Abstraction 8

Chapter 3 Flexibility 11

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Aggregation API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.2 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.3 Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Dynamic Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

x



Chapter 4 Scalability 20

4.1 Motivation and Challenges . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Building Aggregation Trees . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.1 Scalability with Attributes . . . . . . . . . . . . . . . . . . . 28

4.4 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4.1 Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 An Open Issue: Handling Composite Queries . . . . . . . . . . . . . 32

Chapter 5 Administrative Isolation 34

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.1 Motivation and Challenges . . . . . . . . . . . . . . . . . . . 35

5.1.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Background: Pastry . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3.1 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.2 Routing in ADHT . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.3 Join Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.4 Maintaining Consistent Leafsets . . . . . . . . . . . . . . . . 51

5.3.5 Extracting Aggregation Trees from ADHT . . . . . . . . . . . 56

5.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5.1 Zippering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xi



Chapter 6 Robustness 67

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Reaggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2.1 Reaggregation Procedure . . . . . . . . . . . . . . . . . . . . 69

6.2.2 Reaggregation Costs . . . . . . . . . . . . . . . . . . . . . . . 73

6.2.3 Lazy Reaggregation . . . . . . . . . . . . . . . . . . . . . . . 77

6.3 Masking Temporary Reconfigurations . . . . . . . . . . . . . . . . . 79

6.3.1 Exploiting Flexible API . . . . . . . . . . . . . . . . . . . . . 81

6.3.2 K-way Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3.3 Supernodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4 Analytic Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4.1 Cost analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4.2 Robustness analysis . . . . . . . . . . . . . . . . . . . . . . . 87

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Chapter 7 Shruti: Dynamic Adaptation 91

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2.1 Leases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2.2 Leasing Policy . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2.3 Default Lease State . . . . . . . . . . . . . . . . . . . . . . . 101

7.2.4 Reconfigurations . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Chapter 8 Prototype 120

8.1 DHT-AML Interface Layer . . . . . . . . . . . . . . . . . . . . . . . 123

xii



8.2 Aggregation Management Layer . . . . . . . . . . . . . . . . . . . . . 124

8.2.1 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.3 API Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.3.1 Install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.3.2 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.3.3 Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.4 Testbed Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Chapter 9 Applications and Case Studies 133

9.1 System Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9.1.1 File Location System . . . . . . . . . . . . . . . . . . . . . . . 134

9.1.2 Multicast Tree Construction . . . . . . . . . . . . . . . . . . . 136

9.2 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.2.1 Distributed file system control . . . . . . . . . . . . . . . . . 139

9.2.2 Distributed heavy hitter problem . . . . . . . . . . . . . . . . 143

Chapter 10 Related Work 145

10.1 Aggregation Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . 145

10.2 Different Types of Queries . . . . . . . . . . . . . . . . . . . . . . . . 147

10.2.1 Composite Queries . . . . . . . . . . . . . . . . . . . . . . . . 147

10.2.2 Arbitrary Range Queries . . . . . . . . . . . . . . . . . . . . . 147

10.2.3 Stream Processing Queries . . . . . . . . . . . . . . . . . . . 148

Chapter 11 Conclusions 149

Bibliography 152

Vita 166

xiii



List of Tables

3.1 Arguments for the install operation . . . . . . . . . . . . . . . . . . . 15

3.2 Arguments for the update operation . . . . . . . . . . . . . . . . . . 16

3.3 Arguments for the probe operation . . . . . . . . . . . . . . . . . . . 17

4.1 Example pointer table for a DHT comprising of 8 nodes and addresses

drawn from a 3-bit ID space . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Example pointer table for a DHT comprising of six nodes and ad-

dresses drawn from a 3-bit ID space (missing nodes with IDs 111 and

110 compared to the DHT shown in Table 4.1) . . . . . . . . . . . . 26

6.1 Example pointer table for a DHT comprising of six nodes and ad-

dresses drawn from a 3-bit ID space . . . . . . . . . . . . . . . . . . 69

6.2 Pointer table for the DHT shown in Table 6.1 after a node with ID

111 joins the DHT. The changed entries are highlighted in boxes. . . 70

6.3 Pointer table for the DHT shown in Table 6.1 after the node with ID

101 leaves the DHT. The changed entries are highlighted in boxes. . 70

6.4 Message costs for ADHT maintenance and for update and probe op-

erations during normal operation in different techniques. . . . . . . 87

6.5 Performance in terms of probe failure probability and probe latency

during normal operation for different techniques. . . . . . . . . . . . 88

xiv



6.6 Performance in terms of probe latency during failures. The latency

refers to latencies for only successful probes. In the Supernode ap-

proach, Tswitch corresponds to the timeout that is used to detect when

a replica is down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xv



List of Figures

1.1 Administrative hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Flexible API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Spatial heterogeneity - On update, send the aggregate value to only

interested nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 The name distribution in utexas.edu domain . . . . . . . . . . . . . 22

4.2 The DHT tree corresponding to ID 111 (DHTtree111) and the corre-

sponding aggregation tree. . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 The DHT tree corresponding to ID 000 (DHTtree000) and the corre-

sponding aggregation tree. . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 The DHT tree corresponding to ID 111 (DHTtree111) in a six node

network corresponding to the case shown in Table 4.2. . . . . . . . . 27

4.5 The disconnected incorrect aggregation tree corresponding to DHTtree111

shown in Figure 4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.6 The correct aggregation tree corresponding to DHTtree111 shown in

Figure 4.4 with an extra virtual node. . . . . . . . . . . . . . . . . . 27

4.7 Average fraction of attributes which a node stores and on which it

performs aggregations in a million node network . . . . . . . . . . . 29

xvi



4.8 Flexibility of our approach. With different UP and DOWN values in a

network of 4096 nodes for different read-write ratios. . . . . . . . . . 30

4.9 Max node stress for a gossiping approach vs. DHT based SDIMS

approach for different number of nodes with increasing number of

sparse attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Example aggregation trees for a system with three nodes. Machines

univ1.edu and univ2.edu are in one administrative domain and ma-

chine ind1.com is in a different administrative domain (a) An aggre-

gation tree that does not satisfy the administrative isolation property

(b) An aggregation tree that satisfies the isolation property. . . . . . 35

5.2 Example for the domain-scoped queries . . . . . . . . . . . . . . . . 37

5.3 Example shows how isolation property is violated in the original Pas-

try. We also show the corresponding aggregation tree. . . . . . . . . 39

5.4 Multiple leafsets maintained by the node begonia.cs.utexas.edu.

We assume a leafset size of four in this example. . . . . . . . . . . . 42

5.5 Key space assignment to nodes in Pastry and ADHT. The split shown

on the outer side of the logical ring correspond to assignment in Pastry

and the inner side corresponds to the assignment in ADHT. . . . . . 45

5.6 An example illustrating the leafsets that a joining node receives in

response to its join request in a three level deep domain hierarchy.

The dark arrows denote the path taken by the join request. . . . . . 48

5.7 Concurrent joins leading to path convergence property violations.

Nodes A and B in cs.utexas.edu join concurrently using nodes in

utexas.edu domain as bootstrap nodes. Observe the incorrect leafset

tables at node A and B corresponding to cs.utexas.edu domain. . 52

xvii



5.8 Zippering steps: Node A in a partition discovers node B and starts the

zippering procedure. (a) Node A with ID IDA starts a join procedure

using node B as the bootstrap node. Node B routes that request

towards node D which is the current root for IDA in B’s partition.

(b) Node A and Node D detect the partitions and exchange their

leafsets. (c) Node A and Node D propagate the information about

partitions during their periodic leafset exchanges with neighbors in

their leafsets. (d) Finally, the partition information spreads around

the whole ID space and the partitions are merged together. . . . . . 54

5.9 Autonomous DHT satisfying the isolation property. Also the corre-

sponding aggregation tree is shown. . . . . . . . . . . . . . . . . . . . 57

5.10 Average path length to root in Pastry versus ADHT for different

branching factors. All Pastry lines overlap as the branching factor

does not effect the Pastry routing procedure. . . . . . . . . . . . . . 60

5.11 Percentage of probe pairs whose paths to the root did not conform

to the path convergence property in Pastry. We do not show lines for

ADHT as paths of all probe pairs conform to the path convergence

property in ADHT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.12 Performance of ADHT in merging two equal sized partitions in two

cases — when only one node of a partition discovers a node in an-

other partition and when 1% of nodes in a partition discover a node

in another partition. We compare performance in case of both fast

and slow zippering mechanisms described in Section 5.3.4. (a) Time

taken (in terms of number of simulation time steps) to achieve leafset

consistency. (b) Communication cost incurred for leafset consistency. 63

6.1 DHT tree for key=111 based on the pointer table in Table 6.1. We

also show the corresponding aggregation tree. . . . . . . . . . . . . . 69

xviii



6.2 DHT tree for key=111 after a node with ID 111 joins the system.

We also show the corresponding aggregation tree. The dotted arrows

denote the edges in the DHT tree and the aggregation tree that change

when the new node joins the system. . . . . . . . . . . . . . . . . . . 70

6.3 DHT tree for key=111 after the node with ID 101 leaves the system.

We also show the corresponding aggregation tree. The dotted arrows

denote the edges in the DHT tree and the aggregation tree that change

when the new node joins the system. . . . . . . . . . . . . . . . . . . 71

6.4 We consider a simple summation operation as aggregation function.

Here we show the aggregation tree for an attribute with key=111 be-

fore and after the node with ID 101 leaves the system for the example

in Table 6.1. We show the aggregate values next to each node that

are computed before the node 101 leaves the system. The values in

boxes next to nodes A and R are the aggregate values after node 101

leaves the system and after the aggregation tree structure changes. . 72

6.5 Best case example for changes in an aggregation tree on a node join.

Here we show the aggregation tree for key 111 before and after node

111 joins. Note that adding node 111 did not change the aggregation

tree for key 111 before node 111 joins. . . . . . . . . . . . . . . . . . 74

6.6 Worst case example for changes in an aggregation tree on a node join.

Here we show the aggregation tree for key 111 before and after node

111 joins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xix



6.7 Using SDIMS flexible API: For an attribute with UP=all and DOWN=1

set at install time, the global aggregate and all intermediate aggre-

gates are propagated down by one level. In the figure, we only show

the propagation of global aggregate values. When node B fails tak-

ing down all virtual nodes it is hosting (shown in ellipse), response

latency of probes at nodes E, F, G, and H is not affected as the

global aggregate value is replicated on node H. The responses might

be stale depending on the aggregation function and the values for

those attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.8 K-way hashing: Aggregate an attribute along multiple aggregation

trees corresponding to different keys for robustness in the face of re-

configurations. Note that virtual nodes of different aggregation trees

are hosted on different machines in the system improving robustness

to machine failures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.9 Supernodes: Example with each virtual node replicated on two phys-

ical machines. The dotted virtual nodes replicate the corresponding

virtual nodes shown in solid circles connected by dotted lines. . . . . 85

6.10 The probability of a probe getting affected by failure of nodes in

the system for three different replication in space strategies. These

graphs are based on analytic models shown in Equations 6.2, 6.4,

and 6.5 for k=4 and log N=13. DOWN=2 causes replicating a virtual

node’s aggregate value at about 4 other virtual nodes. . . . . . . . . 89

7.1 An example illustrating propagation of aggregate values in a part of

an aggregation tree for the SDIMS static strategy UP=all, DOWN=2. . 94

7.2 An example lease state in an aggregation tree. Thick arrows represent

the leases and the corresponding lease levels are shown in parenthesis

next to the arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xx



7.3 Invariant violation on reconfiguration - machine Q joins the system.

The dotted arrows represents the leases assumed by default for newly

created nodes in the aggregation tree. Note that the Invariant 1 is

violated at node A, which has a lease granted to its parent while it

does not have a lease from one its children B. . . . . . . . . . . . . . 103

7.4 Invariant violation on reconfiguration - machine Q joins the system.

Note that Invariant 2 is violated at node A, which granted a lease for

level 2 to its child while it does not have a lease for level 2 from its

parent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.5 Average message cost per operation in Shruti compared to different

static up and down settings in SDIMS for a wide range of read-to-

write ratios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.6 Average latency per operation in Shruti compared to different static

up and down settings in SDIMS for a wide range of read-to-write

ratios. All overlay links have one unit latency. . . . . . . . . . . . . . 108

7.7 Average probe response latency in Shruti compared to different static

up and down settings in SDIMS for a wide range of read-to-write

ratios. All overlay links have one unit latency. . . . . . . . . . . . . . 109

7.8 Average message cost per operation in Shruti for different values of

k and m for a wide range of read-to-write ratios. . . . . . . . . . . . 110

7.9 Average read latency in Shruti for different values of k and m for a

wide range of read-to-write ratios. . . . . . . . . . . . . . . . . . . . 111

7.10 Average message cost per operation in Shruti with different UP and

DOWN parameters for a wide range of read-to-write ratios. . . . . . 112

7.11 Average read latency in Shruti with different UP and DOWN param-

eters for a wide range of read-to-write ratios. . . . . . . . . . . . . . 113

xxi



7.12 Average messages per operation and read latency observed with Shruti

(k=5, m=2) and a set of SDIMS static up and down strategies. These

metrics are computed across 100 different attributes where reads fol-

low a Zipf-like distribution with α = 1.3. . . . . . . . . . . . . . . . . 114

7.13 Spatial heterogeneity: Average number of messages per operation in

Shruti compared to a set of SDIMS strategies for a single attribute

where the operation rates across nodes follow a Zipf-like distribution

with α = 1.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.14 Spatial heterogeneity: Average operation latency in Shruti compared

to a set of SDIMS strategies for a single attribute where the operation

rates across nodes follow a Zipf-like distribution with α = 1.3. . . . . 116

7.15 Temporal heterogeneity: The number of messages incurred on read

and write operations in Shruti compared to a SDIMS strategy of

UP=all and DOWN=0. We change the read-to-write ratio from 0.01 to

100 after 20000 operations and revert back to the same ratio after

another 20000 operations . . . . . . . . . . . . . . . . . . . . . . . . 117

7.16 Shruti in the face of reconfigurations: The number of simulation

rounds taken for each read operation. After sixty read operations,

we kill the root node of the aggregation tree. . . . . . . . . . . . . . 118

8.1 Layered SDIMS prototype design and interfaces. . . . . . . . . . . . 121

8.2 Aggregation trees for key 000 (a) and for key 111(b). Note that the

virtual node at level 1 on node with ID 010 has a different parent in

those aggregation trees corresponding to the second bit in the key. . 121

8.3 Example illustrating the data structures and the organization of them

at a node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xxii



8.4 Latency of probes for aggregate at global root level with three dif-

ferent modes of aggregate propagation on (a) department machines,

(b) PlanetLab machines, and (c) Emulab setup. We also show the

maximum and minimum latency observed in each experiment. . . . . 129

8.5 Micro-benchmark on department network showing the behavior of

the probes from a single node when failures are happening at some

other nodes. All 283 nodes assign a value of 10 to the attribute. . . . 130

8.6 Probe performance during failures on 69 machines of the PlanetLab

testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.7 Probe performance during failures on 256 nodes in Emulab testbed . 132

9.1 The aggregation tree for attribute (fileLocation, foo) along with the

aggregate values. We denote the IP addresses of individual machines

with capital alphabets and the aggregate value for this attribute at

individual nodes is shown in a box next to a node. Absence of the

aggregate value at a node indicates a NULL value for the aggregate

at that node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.2 Aggregation tree and aggregate values for (multicast, sessOne) at-

tribute. We denote the IP addresses of individual machines with

capital letters and the aggregate value at individual nodes is shown

in a box next to a node. Absence of the aggregate value at a node

indicates a NULL value. . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.3 The resulting spanning tree for session sessOne built based on SDIMS

aggregation shown in Figure 9.2. We alse show that parent and child

set computed at each interested node obtained by probing the SDIMS.138

9.4 Efficacy of PRACTI with SDIMS controller in a grid micro-benchmark

compared to four other controllers. . . . . . . . . . . . . . . . . . . . 142

xxiii



Chapter 1

Introduction

1.1 Motivation and Challenges

The goal of this dissertation is to design and build a Scalable Distributed Informa-

tion Management System (SDIMS) that aggregates information about large-scale

networked systems and that can serve as a basic building block for a broad range of

large-scale distributed applications. Monitoring, querying, and reacting to changes

in the state of a distributed system are core components of applications such as

system management [21, 41, 84, 95, 99, 105], resource discovery [8, 30, 36], service

placement [40, 108], data sharing and caching [47, 66, 80, 86, 94, 97, 118], sen-

sor monitoring and control [50, 61], multicast tree formation [24, 25, 90, 101, 119],

publish-subscribe systems [87, 102], and naming and request routing [26, 29]. We

therefore speculate that an SDIMS in a networked system would provide a “dis-

tributed operating systems backbone” and facilitate the development and deploy-

ment of new distributed services.

For a large scale information system, hierarchical aggregation is a funda-

mental abstraction for scalability. Rather than expose all information to all nodes,

hierarchical aggregation allows a node to access detailed views of nearby informa-

1



tion and summary views of global information. In an SDIMS based on hierarchical

aggregation, different nodes can therefore receive different answers to the query

“find a [nearby] node with at least 1 GB of free memory” or “find a [nearby] copy

of file foo.” A hierarchical system that aggregates information through reduction

trees [61, 101] allows nodes to access information they care about while maintaining

system scalability.

To be used as a basic building block, an SDIMS should have four proper-

ties. First, the system should be scalable: it should accommodate large numbers of

participating nodes, and it should allow applications to install and monitor large

numbers of data attributes. Enterprise and global scale systems today might have

tens of thousands to millions of nodes, and these numbers will increase over time.

Similarly, we hope to support many applications, and each application may track

several attributes (e.g., the load and free memory of a system’s machines) or millions

of attributes (e.g., which files are stored on which machines).

Second, the system should have flexibility to accommodate a broad range

of applications and attributes. For example, read-dominated attributes like numC-

PUs rarely change in value, whereas write-dominated attributes like numProcesses

change quite often. An approach tuned for read-dominated attributes will con-

sume high bandwidth when applied to write-dominated attributes. Conversely, an

approach tuned for write-dominated attributes will suffer from unnecessary query

latency or imprecision for read-dominated attributes. Therefore, an SDIMS should

provide mechanisms to handle different types of attributes and either leave the pol-

icy decision of tuning replication to the applications or dynamically adapt between

aggregation mechanisms by tracking the workload patterns.

Third, an SDIMS should provide administrative isolation. In a large system,

it is natural to arrange nodes in an organizational or an administrative hierarchy

(e.g., Figure 1.1). An SDIMS should support administrative isolation in which

2



....

ee math

........

........

univ1 ........

........

cs

ROOT

univ2 univ3 univ4

pc1 pc2 pc3 pc4

........

com

edu

pc5 pc6

Figure 1.1: Administrative hierarchy

queries about an administrative domain’s information can be satisfied within the

domain for availability (e.g., so that the system can operate during disconnections

from other domains), for security (e.g., so that an external observer cannot monitor

or affect intra-domain queries), and for efficiency (e.g., to support domain-scoped

queries efficiently).

Fourth, the system must be robust to node failures and disconnections. Re-

configurations in large distributed systems is a norm and an SDIMS should adapt

to reconfigurations in a timely fashion and should also provide mechanisms so that

applications can tradeoff the cost of adaptation with the consistency level in the

aggregated results when reconfigurations occur.

We draw inspiration from two previous works: Astrolabe [101] and Distributed

Hash Tables (DHTs).

Astrolabe [101] is a robust information management system. Astrolabe pro-

vides the abstraction of a single logical aggregation tree that mirrors a system’s

administrative hierarchy. It provides a general interface for installing new aggrega-

tion functions and provides eventual consistency on its data. Astrolabe is robust

due to its use of an unstructured gossip protocol for disseminating information and

its strategy of replicating all aggregated attribute values for a subtree to all nodes

in the subtree. This combination allows any communication pattern to yield even-

3



tual consistency and allows any node to answer any query using local information.

This high degree of replication, however, may limit the system’s ability to accom-

modate large numbers of attributes. Also, although the approach works well for

read-dominated attributes, an update at one node can eventually affect the state

at all nodes, which may limit the system’s flexibility to support write-dominated

attributes or even balanced read-write attributes.

Recent research in peer-to-peer structured networks resulted in Distributed

Hash Tables (DHTs) [6, 45, 47, 52, 59, 63, 64, 77, 80, 83, 86, 94, 118]—a data

structure that scales with the number of nodes and that distributes the read-write

load for different queries among the participating nodes. It is interesting to note

that although these systems export a global hash table abstraction, many of them

internally make use of what can be viewed as a scalable system of aggregation trees

to, for example, route a request for a given key to the right DHT node. Indeed,

rather than export a general DHT interface, Plaxton et al.’s [77] original application

makes use of hierarchical aggregation to allow nodes to locate nearby copies of

objects. It seems appealing to develop an SDIMS abstraction that exposes this

internal functionality in a general way so that scalable trees for aggregation can be

a basic system building block alongside the DHTs.

At a first glance, it might appear to be obvious that simply fusing DHTs

with Astrolabe’s aggregation abstraction will result in an SDIMS. However, meeting

the SDIMS requirements forces a design to address four questions: (1) How to

scalably map different attributes to different aggregation trees in a DHT mesh? (2)

How to provide flexibility in the aggregation to accommodate different application

requirements? (3) How to adapt a global, flat DHT mesh to attain administrative

isolation property? and (4) How to provide robustness without unstructured gossip

and total replication?

This dissertation answers the above questions by defining a new aggregation

4



abstraction that enable SDIMS scalably map different attributes to different aggre-

gation trees, by exposing a flexible API that provide several aggregation mechanisms,

by designing a novel Autonomous DHT (ADHT) algorithm that ensures administra-

tive isolation, and by reaggregating data in the face of reconfigurations. We evaluate

a prototype of SDIMS with a large number of simulation and testbed microbench-

mark experiments. As case studies, we use SDIMS for building a controller for a

distributed file replication system and for building a network monitoring system.

1.2 Contributions

The key contributions of this dissertation that form the foundation of our SDIMS

design are as follows.

1. We define a new aggregation abstraction that specifies both attribute type and

attribute name and that associates an aggregation function with a particular

attribute type. This abstraction paves the way for utilizing the DHT system’s

internal trees for aggregation and for achieving scalability with both nodes and

attributes.

2. We provide a flexible API that lets applications control the propagation of

reads and writes and thus tradeoff update cost, read latency, replication, and

staleness. We also build Shruti, a sub-system in SDIMS, that tracks reads

and writes in SDIMS and dynamically adapts the propagation to optimize

communication costs.

3. We propose and build a novel DHT, autonomous DHT (ADHT), that aug-

ments an existing DHT algorithm to ensure path convergence and path locality

properties in order to achieve administrative isolation requirement.

4. We provide robustness to node and network reconfigurations by (a) provid-

ing temporal replication through lazy reaggregation that guarantees eventual

5



consistency and (b) ensuring that our flexible API allows demanding appli-

cations achieve additional robustness by using tunable spatial replication of

data aggregates or by performing fast on-demand reaggregation to augment

the underlying lazy reaggregation or by exploiting both approaches.

We have built a prototype of SDIMS in Java using the FreePastry [39] frame-

work. Through simulations and micro-benchmark experiments on a number of de-

partment machines, Emulab [107] nodes, and PlanetLab [76] nodes, we observe that

the prototype achieves scalability with respect to both nodes and attributes through

use of its flexible API, inflicts an order of magnitude lower maximum node stress

than unstructured gossiping schemes, achieves administrative isolation properties at

a cost of modestly increased read latencies compared to flat DHTs, and gracefully

handles node failures.

This dissertation discusses key aspects of an ongoing system building effort,

but it does not address all issues in building an SDIMS. For example, we believe

that our strategies for providing robustness will mesh well with techniques such as

supernodes [62] and other ongoing efforts to improve DHTs [81] for further improv-

ing robustness. Also, although splitting aggregation among many trees improves

scalability for simple queries, this approach may make complex and multi-attribute

queries more expensive compared to a single tree. Additional work is needed to

understand the significance of this limitation for real workloads and, if necessary, to

adapt query planning techniques from DHT abstractions [43, 49] to scalable aggre-

gation tree abstractions.

1.3 Thesis Roadmap

In Chapter 2, we explain the hierarchical aggregation abstraction that SDIMS pro-

vides to applications. In Chapters 3, 4, and 5, we describe the design of our system

for achieving the flexibility, scalability, and administrative isolation requirements of

6



an SDIMS. Chapter 6 addresses the issue of adaptation to the topological recon-

figurations. In Chapter 7, we describe Shruti, a subsystem of SDIMS, that tracks

workload patterns for an attribute and dynamically adapts aggregation strategy for

that attribute. In Chapter 8, we detail the implementation of our prototype system

and present the evaluation of our system through microbenchmarks on three real

testbeds. We present couple of case studies using SDIMS for building the controller

for a distributed file system and for a network monitoring system in Chapter 9.

Chapter 10 details the related work, and Chapter 11 summarizes this dissertation.

7



Chapter 2

Aggregation Abstraction

Aggregation is a natural abstraction for a large-scale distributed information system

because aggregation provides scalability by allowing a node to view detailed infor-

mation about the state near it and progressively coarser-grained summaries about

progressively larger subsets of a system’s data [101].

Our aggregation abstraction is defined across a tree spanning all nodes in

the system. Each physical node in the system is a leaf and each subtree represents

a logical group of nodes. Note that logical groups can correspond to administrative

domains (e.g., department or university) or groups of nodes within a domain (e.g.,

10 workstations on a LAN in CS department). An internal non-leaf node, which

we call virtual node, is simulated by one or more physical nodes at the leaves of the

subtree for which the virtual node is the root. We describe how to form such trees

in Chapter 4.

Each physical leaf node has local data stored as a set of tuples in the following

form:

(attributeType, attributeName, value).

Examples for such tuples are (configuration, numCPUs, 16), (mcast membership,

session foo, yes), and (file stored, foo, myIPaddress). The system associates an ag-

8



gregation function ftype with each attribute type, and for each level-i subtree Ti in the

system, the system defines an aggregate value Vi,type,name for each (attributeType,

attributeName) pair as follows. For a (physical) leaf node T0 at level 0, V0,type,name

is the locally stored value for the attribute type and name or NULL if no matching

tuple exists. Then the aggregate value for a level-i subtree Ti is the aggregation

function for the type, ftype computed across the aggregate values of each of Ti’s k

children:

Vi,type,name = ftype(V 0
i−1,type,name, V

1
i−1,type,name, . . . , V

k−1
i−1,type,name).

Although SDIMS allows arbitrary aggregation functions, it is often desirable

that these functions satisfy the hierarchical computation property [61]:

f(v1, ..., vn) = f(f(v1, ..., vs1), f(vs1+1, ..., vs2), ..., f(vsk+1, ..., vn)),

where vi is the value of an attribute at node i. For example, the average operation,

defined as

avg(v1, ..., vn) = 1/n.
n∑

i=0

vi,

does not satisfy the property. Instead, if an attribute stores values as tuples of form

(sum, count), and defines the aggregation function as

avg(v1, ..., vn) = (
n∑

i=0

vi.sum,
n∑

i=0

vi.count),

the attribute satisfies the hierarchical computation property while allowing applica-

tions to compute the average from the aggregate sum and count values.

Finally, note that for a large-scale system, it is difficult or impossible to insist

that the aggregation value returned by a probe corresponds to the function computed

over the current values at the leaves at the instant of the probe. Therefore our system

9



provides only weak consistency guarantees — specifically eventual consistency as

defined in [101].

10



Chapter 3

Flexibility

For SDIMS to support a wide range of distributed applications, it should be flexible

enough to allow applications to decide how data is aggregated in the system. In this

chapter, we show how the aggregation abstraction we have defined in the previous

chapter allows our system to provide a wide range of aggregation strategies and

present the interfaces that SDIMS exposes to applications that applications can use

specify their aggregation policy.

3.1 Motivation

The definition of the aggregation abstraction presented in Chapter 2 allows con-

siderable flexibility in how, when, and where aggregate values are computed and

propagated. Whereas previous systems [41, 80, 86, 94, 101, 118] implement a sin-

gle static strategy, we argue that a SDIMS should provide flexible computation and

propagation to efficiently support a wide variety of applications with diverse re-

quirements. In order to provide this flexibility, we develop a simple interface that

decomposes the aggregation abstraction into three pieces of functionality: install,

update, and probe.

11



Update Strategy On Update On Probe for
Global Aggregate Level-1 Aggregate

Update-Local

Update-Up

Update-All

Figure 3.1: Flexible API

The definition of the aggregation abstraction allows our system to provide a

continuous spectrum of strategies ranging from lazy aggregate computation and

propagation on reads to aggressive immediate computation and propagation on

12



writes. In Figure 3.1, we illustrate both extreme strategies and an intermediate

strategy. Under the lazy Update-Local computation and propagation strategy, an

update (or write) only affects local state. Then, a probe (or read) that reads a

level-i aggregate value is sent up the tree to the issuing node’s level-i ancestor and

then down the tree to the leaves. The system then computes the desired aggregate

value at each layer up the tree until the level-i ancestor that holds the desired value.

Finally, the level-i ancestor sends the result down the tree to the issuing node. In

the other extreme case of the aggressive Update-All strategy [101], when an update

occurs, changes are aggregated up the tree, and each new aggregate value is flooded

to all of a node’s descendants. In this case, each level-i node not only maintains the

aggregate values for the level-i subtree but also receives and locally stores copies of

all of its ancestors’s level-j (j > i) aggregation values. Also, a leaf satisfies a probe

for a level-i aggregate using purely local data. In an intermediate Update-Up strat-

egy, the root of each subtree maintains the subtree’s current aggregate value, and

when an update occurs, the leaf node updates its local state and passes the update

to its parent, and then each successive enclosing subtree updates its aggregate value

and passes the new value to its parent. This strategy satisfies a leaf’s probe for a

level-i aggregate value by sending the probe up to the level-i ancestor of the leaf

and then sending the aggregate value down to the leaf. Finally, notice that other

strategies exist. For example, an Update-UpRoot-Down1 strategy (not shown) would

aggregate updates up to the root of a subtree and send a subtree’s aggregate values

to only the children of the root of the subtree. In general, an Update-Upk-Downj

strategy aggregates up to the kth level and propagates the aggregate values of a

node at level l (s.t. l ≤ k) downward for j levels.

A SDIMS must provide a wide range of flexible computation and propaga-

tion strategies to applications for it to be a general abstraction. Depending on its

read-to-write ratio, an application should be able to use a particular mechanism

13



Figure 3.2: Spatial heterogeneity - On update, send the aggregate value to only
interested nodes

to reduce the bandwidth consumption while attaining the required responsiveness

and precision. Note that the read-to-write ratios of the attributes that applica-

tions install vary extensively. For example, a read-dominated attribute like num-

CPUs rarely changes in value, whereas a write-dominated attribute like numPro-

cesses changes quite often. An aggregation strategy like Update-All works well for

read-dominated attributes but suffers high bandwidth consumption when applied

for write-dominated attributes. Conversely, an approach like Update-Local works

well for write-dominated attributes but suffers from unnecessary query latency or

imprecision for read-dominated attributes.

SDIMS should also allow non-uniform propagation across the aggregation

tree with different up and down parameters in different subtrees so that applica-

tions can adapt with the spatial and temporal heterogeneity of read and write oper-

ations. With respect to spatial heterogeneity, access patterns may differ for different

parts of the tree, requiring different propagation strategies for different parts of the

tree. An example case is shown in Figure 3.2, where only two nodes are interested

in an attribute. Upon any updates, the changed aggregate values in this case are

propagated to only those interested nodes. Similarly with respect to temporal het-

erogeneity, access patterns may change over time requiring different strategies over

time.

14



parameter description optional

attrType Attribute Type No
aggrfunc Aggregation Function No
attrName Attribute Name Yes
UP How far upward each update is

sent (default: all)
Yes

DOWN How far downward each aggre-
gate is sent (default: none)

Yes

domain Domain restriction (default:
none)

Yes

expTime Expiry Time No

Table 3.1: Arguments for the install operation

3.2 Aggregation API

A major innovation of our work is enabling flexible aggregate computation and

propagation. We provide the flexibility described in the previous section by splitting

the aggregation API into three functions: Install() installs an aggregation function

that defines an operation on an attribute type and specifies the update strategy

that the function will use, Update() inserts or modifies a node’s local value for an

attribute, and Probe() obtains an aggregate value for a specified subtree. The install

interface allows applications to specify the k and j parameters of the Update-Upk-

Downj strategy along with the aggregation function. The update interface invokes

the aggregation of an attribute on the tree according to corresponding aggregation

function’s aggregation strategy. The probe interface not only allows applications to

obtain the aggregated value for a specified tree but also allows a probing node to

continuously fetch the values for a specified time, thus enabling an application to

adapt to spatial and temporal heterogeneity. The rest of the section describes these

three interfaces in detail.

15



parameter description optional

attrType Attribute Type No
attrName Attribute Name No
val Value No

Table 3.2: Arguments for the update operation

3.2.1 Install

The Install operation installs an aggregation function in the system. The arguments

for this operation are listed in Table 3.1. The attrType argument denotes the type

of attributes on which this aggregation function is invoked. Installed functions are

soft state that must be periodically renewed or they will be garbage collected at

expTime.

The arguments up and down specify the aggregate computation and propaga-

tion strategy Update-Upk-Downj. The domain argument, if present, indicates that

the aggregation function should be installed on all nodes in the specified domain;

otherwise the function is installed on all nodes in the system.

3.2.2 Update

The Update operation takes three arguments attrType, attrName, and value and

creates a new (attrType, attrName, value) tuple or updates the value of an old

tuple with matching attrType and attrName at a leaf node. The arguments for the

update operation are shown in Table 3.2.

The update interface meshes with the installed aggregate computation and

propagation strategy to provide flexibility. In particular, as outlined above and

described in detail in Chapter 8, after a leaf applies an update locally, the update

may trigger re-computation of aggregate values up the tree and may also trigger

propagation of changed aggregate values down the tree. Notice that our abstraction

associates an installed aggregation function with only an attrType but lets updates

16



parameter description optional

attrType Attribute Type No
attrName Attribute Name No
mode Continuous or One-shot (de-

fault: one-shot)
Yes

level Level at which aggregate is
sought (default: global root
level)

Yes

domain Domain restrictions (default:
none)

Yes

UP How far up to go and re-fetch
the value (default: none)

Yes

DOWN How far down to go and re-
aggregate (default: none)

Yes

expTime Expiry Time No

Table 3.3: Arguments for the probe operation

specify an attrName along with the attrType. This technique helps achieve scalability

with respect to nodes and attributes as described in Chapter 4.

3.2.3 Probe

The Probe operation returns the value of an attribute to an application. The com-

plete argument set for the probe operation is shown in Table 3.3. Along with the

attrName and the attrType arguments, a level argument specifies the level at which

the answers are required for an attribute. In our implementation we choose to return

results at all levels k < l for a level-l probe because (i) it is inexpensive as the nodes

traversed for level-l probe also contain level k aggregates for k < l and as we expect

the network cost of transmitting the additional information to be small for the small

aggregates on which we focus and (ii) it is useful as applications can efficiently get

several aggregates with a single probe (e.g., for domain-scoped queries as explained

in Chapter 5).

Probes with mode set to continuous and with finite expTime enable applica-

tions to handle spatial and temporal heterogeneity. When node A issues a continu-

ous probe at level l for an attribute, then regardless of the UP and DOWN parameters

17



specified in the install, updates for the attribute at any node in A’s level-l ancestor’s

subtree are aggregated up to level l and the aggregated value is propagated down

along the path from the ancestor to A. Note that continuous mode enables SDIMS

to support a distributed sensor-actuator mechanism where a sensor monitors a level-

i aggregate with a continuous mode probe and triggers an actuator upon receiving

new values for the probe.

Similar to the domain argument in the install API, the domain argument in

probes allows applications to restrict the probe to an administrative boundary in the

aggregation tree. This argument facilitates the applications that need aggregates

at different levels of administrative domain hierarchy. Without this argument, the

applications need to know the exact level numbers that correspond to such domain

boundaries in the aggregation trees.

The UP and DOWN arguments enable applications to perform on-demand fast

re-aggregation during reconfigurations, where a forced re-aggregation is done for

the corresponding levels even if the aggregated value is available, as we discuss in

Chapter 6. When specified, the UP and DOWN arguments are interpreted as described

in the install operation.

3.3 Dynamic Adaptation

At the API level, the UP and DOWN arguments in install API can be regarded as

hints, since they suggest a computation strategy but do not affect the semantics

of an aggregation function. An SDIMS implementation can dynamically adjust the

up/down strategies for an attribute based on the measured read/write frequency

for that attribute. But a virtual intermediate node needs to know the current UP

and DOWN propagation values to decide if the local aggregate is fresh in order to

answer a probe. This is the key reason why UP and DOWN need to be statically

defined at the install time and can not be specified in the update operation. This

18



in turn requires applications to know the read and write access patterns a priori to

choose an appropriate strategy. We build Shruti, a system for dynamically adapting

aggregation strategy based on the observed read and write rates for an attribute.

We describe Shruti in detail in Chapter 7.

19



Chapter 4

Scalability

Our system accommodates a large number of participating nodes, and it allows appli-

cations to install and monitor a large number of data attributes. Our design achieves

such scalability through (1) leveraging Distributed Hash Tables (DHT) to construct

multiple aggregation trees for aggregating different attributes, (2) exploiting the fact

that not all nodes are interested in all attributes and by providing flexible API that

enables applications to control the propagation of attributes, (3) specifying attribute

type and name and associating an aggregation function with type instead of just

specifying attribute name and associating a function with name, and (4) designing

and building novel Autonomous DHTs to conform to the required administrative

isolation properties.

4.1 Motivation and Challenges

One of the key requirements of an SDIMS system is that it should be able to scale

with both the number of nodes and the number of attributes. Enterprise and global

scale systems today might have tens of thousands to millions of nodes and these

numbers will increase as desktop machines give way to larger numbers of smaller

20



devices. Similarly, we hope to support many applications and each application may

track several attributes (e.g., the load and free memory of a system’s machines) or

millions of attributes (e.g., which files are stored on which machines).

A natural way to build an aggregation tree is based on the fully qualified

domain names (FQDN) of the machines [101]. Figure 1.1 depicts such an hierarchy.

Such hierarchy construction scheme suffers from inherent skew present in the domain

name allocation at various levels of the DNS system; machines hosting intermediate

virtual nodes corresponding to domains with large number of machines will have a

large number of children and hence incur high communication costs. For example,

we plot the name distribution within the utexas.edu domain in Figure 4.1. Observe

that there are a significant number of domains with large numbers of participants

and a large number of domain with one or very few participants. Even though a

well balanced aggregation tree might scale with the number of nodes, a single tree

might not scale with the number of attributes as the machines hosting the root node

would incur a storage cost linear with the number of attributes and perform a large

number of aggregations linear with the number of attributes.

4.2 Our approach

Our design achieves scalability with respect to both nodes and attributes through

following four key ideas.

First, whereas previous distributed information management systems like As-

trolabe [101] and Ganglia [41] choose to aggregate on a single aggregation hierarchy

achieving scalability with nodes, we leverage Distributed Hash Tables to construct

multiple aggregation trees for aggregating different attributes on different trees to

achieve scalability with both nodes and attributes. A single tree is unscalable with

attributes as the number of aggregations that the root has to perform grows linearly

with the number of attributes. By aggregating different attributes along different

21



 1

 10

 100

 1000

 10000

 1  10  100  1000

N
um

be
r 

of
 n

am
es

 in
 th

e 
do

m
ai

n

Rank

Distribution of names in utexas.edu domain

Figure 4.1: The name distribution in utexas.edu domain

trees, the load of aggregation is split across multiple nodes and hence the scalability.

Second, our system exploits the fact that not all nodes are interested in all

attributes and provides flexible API that allows applications to control propagation

of aggregation values to only those few nodes (possibly using some few other nodes).

Typically, the attribute set will consist of a small percentage of dense attributes that

are of interest to all nodes at all times and a large percentage of sparse attributes

in which a small number of nodes are interested at any time. For example, a file

location application with one attribute per file name will create a large number of

sparse attributes. The attributes corresponding to system monitoring parameters

like cpuLoad, memoryAvailable, etc., that are periodically updated by all nodes in

the system are examples of dense attributes. While Astrolabe, with single static

Update-All strategy, propagates the aggregate values for all attributes to all nodes,

our flexible API allows applications to control the propagation of updates to only

few nodes by setting appropriate propagation strategy and hence achieves scalability

22



with the number of attributes.

Third, in contrast to previous systems [12, 41, 101, 102, 116], we define a

new aggregation abstraction that specifies both an attribute type and attribute

name and associates an aggregation function with a type rather than just specify-

ing an attribute name and associating a function with a name. Installing a single

function that can operate on many different named attributes matching a specific

type enables our system to efficiently handle applications that install a large num-

ber of attributes with same aggregation function. For example, to construct a file

location service, our interface allows us to install a single function that computes

an aggregate value for any named file (e.g., the aggregate value for the (function,

file) pair for a subtree would be the ID of one node in the subtree that stores the

named file). Conversely, Astrolabe copes with such attributes by congregating them

into a single set and having aggregation functions compute on such sets; and also

suggests that the scalability can be improved by representing such sets with Bloom

filters [17]. Exposing names within a type provides at least two advantages. First,

when the value associated with a name is updated, only the state associated with

that name need be updated and (potentially) propagated to other nodes. Second,

splitting values associated with different names into different aggregation values al-

lows our system to leverage Distributed Hash Tables(DHT) to map different names

to different trees.

Fourth, our system employs a novel Autonomous DHT (ADHT) to ensure

the required administrative isolation properties. Though existing DHTs offer solu-

tion for scalability with the nodes and attributes, they do not guarantee that the

administrative isolation is preserved in the aggregation trees. We will discuss this

aspect in detail in Chapter 5.

In the following section, we describe how DHTs are used to build multiple

aggregation trees.

23



4.3 Building Aggregation Trees

We exploit the Distributed Hash Tables (DHT) to form multiple aggregation trees.

Existing DHTs can be viewed as a mesh of several trees. DHT systems assign an

identity to each node (a nodeId) that is drawn randomly from a large space. Keys

are also drawn from the same space and each key is assigned to a live node in the

system that is closest to the key. Each node maintains a routing table with nodeIds

and IP addresses of some other nodes. The DHT protocols use these routing tables

to route the packets for a key k towards the node responsible for that key. Suppose

the node responsible for a key k is rootk. The paths from all nodes for a key k form

a tree rooted at the node rootk — say DHTtreek.

It is straightforward to make use of this internal structure for building ag-

gregation trees. Remember that aggregation trees have physical machines as the

leaves of the tree and each intermediate virtual node corresponds to a grouping of

machines in the system (refer to Chapter 2). A DHTtreek can be viewed as an

aggregation tree as follows — A physical machine A with ID IDA hosts m virtual

levels where m is the number of common prefix bits between IDA and the key k.

The i-th level virtual node in the aggregation tree has the following children — local

(i−1)-th level virtual node and all other machines in the DHT with IDs that match

k in (i−1) prefix bits and use node A to correct i-th bit. Below, we present a simple

example to illustrate this process.

Example The pointers maintained at nodes in a 8-node DHT with 3-bit address

space are tabulated in Table 4.1. The DHT trees for key IDs 111 and 000 are

shown in Figures 4.2 and 4.3 respectively along with the corresponding aggregation

tree they represent. The figures also illustrate which physical nodes host the which

virtual nodes in the aggregation trees. Note how different sets of nodes simulate the

virtual nodes in different trees.

24



Node Pointers
000 (1XX, 100), (01X, 010), (001, 001)
001 (1XX, 101), (01X, 011), (000, 000)
010 (1XX, 110), (00X, 000), (011, 011)
011 (1XX, 111), (00X, 001), (010, 010)
100 (0XX, 000), (11X, 110), (101, 101)
101 (0XX, 001), (11X, 111), (100, 100)
110 (0XX, 010), (10X, 100), (111, 111)
111 (0XX, 011), (10X, 101), (110, 110)

Table 4.1: Example pointer table for a DHT comprising of 8 nodes and addresses
drawn from a 3-bit ID space

110

000 010 011 001

101

111

L0

L3

L2

L1

100 000 110 010 111 011 101 001

100

Figure 4.2: The DHT tree corresponding to ID 111 (DHTtree111) and the corre-
sponding aggregation tree.

L0

L3

L2

L1

000

001

011010

100 110 111 101 100 000 110 010 111 011 101 001

Figure 4.3: The DHT tree corresponding to ID 000 (DHTtree000) and the corre-
sponding aggregation tree.

25



Node Pointers
000 (1XX, 100), (01X, 010), (001, 001)
001 (1XX, 101), (01X, 011), (000, 000)
010 (1XX, 100), (00X, 000), (011, 011)
011 (1XX, 101), (00X, 001), (010, 010)
100 (0XX, 000), (11X, -), (101, 101)
101 (0XX, 001), (11X, -), (100, 100)

Table 4.2: Example pointer table for a DHT comprising of six nodes and addresses
drawn from a 3-bit ID space (missing nodes with IDs 111 and 110 compared to the
DHT shown in Table 4.1)

In the simple example above, on all paths for a key, each step corrects at

least one bit of the key. But in practical scenarios this may not happen. Consider

a similar scenario as in the above example but suppose nodes with IDs 110 and 111

are missing. A DHT pointer table for this six node network is shown in table 4.2.

The DHTtree for key k=111 is shown in Figure 4.4. Since node with ID 101 is the

closest to key k=111, that node is chosen as the root for that ID. But the aggregation

tree defined as in the previous paragraphs would yield a disconnected aggregation

tree in this case (shown in Figure 4.5). To handle such case, we introduce an extra

virtual node at machines that has same level children. The aggregation tree with

such an extra virtual node is shown in Figure 4.6. Note that this extra virtual node

is considered to be at the same level as the machine’s maximum matching bits with

key in consideration. We will later explain how installs, updates, and probes handle

these extra virtual nodes in Chapter 8 on prototype implementation.

By aggregating an attribute along the aggregation tree corresponding to a

DHTtreek for k =hash(attribute type, attribute name), different attributes will be

aggregated along different trees. In comparison to a scheme where all attributes are

aggregated along a single tree, the DHT based aggregation along multiple trees in-

curs lower maximum node stress: where as in a single aggregation tree approach, the

root and the intermediate nodes pass around more messages than the leaf nodes, in

26



000 010011 001

100
101

Figure 4.4: The DHT tree corresponding to ID 111 (DHTtree111) in a six node
network corresponding to the case shown in Table 4.2.

011 001 101 000 100 010
L0

L2

L1

Figure 4.5: The disconnected incorrect aggregation tree corresponding to
DHTtree111 shown in Figure 4.4.

��
��
��

��
��
��

001 101 000 100 010
L0

L1

L2

011

Extra Virtual Node

Figure 4.6: The correct aggregation tree corresponding to DHTtree111 shown in
Figure 4.4 with an extra virtual node.

a DHT-based multi-tree, each node acts as intermediate aggregation point for some

attributes and as leaf node for other attributes. Hence, this approach distributes

the onus of aggregation across all nodes.

27



4.3.1 Scalability with Attributes

In case of sparse attributes, DHTs provide scalability as each node in the system

just needs to know about and perform aggregation on only few attributes. Here,

we estimate the average number of attributes for which a node has to perform

aggregations. In our DHT based aggregation tree building approach, each node is

assigned to act as the root for an average m/N fraction of attributes, where m

is the number of attributes in the system of N nodes. But each node acts as an

intermediate point of aggregation for many other attributes. Here we estimate the

fraction of attributes for which a node has to perform aggregation assuming that

the correction is done bit-by-bit in DHT routing.

Let the density factor of the attributes be d (0 <= d <= 1) i.e., each node

is interested in a fraction d of all the attributes in the system. In a well formed

DHT, a node will have O(log2(N)) in-degree: a small constant (about 1) number of

other nodes that route to this node for each prefix of its node ID to correct the last

bit of the prefix. For a machine A, let ci be the number of machines from which

the routes for keys starting with i length prefix of machine A’s ID reach node A

after correcting i bits. These will be the set of leafnodes in the subtree rooted at

level-i virtual node on node A in the aggregation tree corresponding to a key that

matches ID of node A in at least the first i bits. The average fraction of attributes

that children at level i sends to node A is dependent on the number of nodes in the

subtree rooted at level i, which will be 1−(1−d)ci

2i . Hence, the average fraction of all

attributes f for which node A has to perform aggregation is given by the following

equation:

f =


1−

i=#bits∏

i=0

(
1− 1− (1− d)ci

2i

)
 (4.1)

For small values of d, (1 − d)ci can be approximated to 1 − (ci ∗ d). Hence

the fraction f simplifies to

28



 1e-04

 0.001

 0.01

 0.1

 1

 1e-05  1e-04  0.001  0.01  0.1  1

F
ra

ct
io

n 
of

 a
ttr

ib
ut

es
 a

 n
od

e 
ha

nd
le

s

density factor (d)

million nodes
d*log_2(N) = 20d

Figure 4.7: Average fraction of attributes which a node stores and on which it
performs aggregations in a million node network

f =


1−

i=#bits∏

i=0

(
1− cid

2i

)
 (4.2)

Further approximating the value of ci to 2i and the number of bits to

O(log2(N)), the equation reduces to

f =


1−

i=#bits∏

i=0

(d)


 = O(d log2(N)) (4.3)

We plot the Equation 4.1 for a million node network (#bits = 20) and with

approximation of ci = 2i in Figure 4.7 along with the approximation O(d log2(N)).

At low density factors, the fraction of attributes for which a node performs aggre-

gation will be quite small. Hence, the scalability in SDIMS with the number of

attributes.

29



 0.1

 1

 10

 100

 1000

 10000

 0.0001  0.01  1  100  10000

A
vg

. n
um

be
r 

of
 m

es
sa

ge
s 

pe
r 

op
er

at
io

n

Read to Write ratio

Update-All

Up=ALL, Down=9

Up=ALL, Down=6

Update-Up

Update-Local

Up=2, Down=0

Up=5, Down=0

Figure 4.8: Flexibility of our approach. With different UP and DOWN values in a
network of 4096 nodes for different read-write ratios.

4.4 Simulation Experiments

We have implemented an SDIMS system in Java using the FreePastry framework [86]

and performed large-scale simulation experiments. Our evaluation here supports two

main conclusions. First, our flexible API provides different propagation strategies

that minimize communication resources at different read-to-write ratios. For ex-

ample, in our simulation we observe Update-Local to be efficient for read-to-write

ratios below 0.0001, Update-Up around 1, and Update-All above 50000. Second,

our system is scalable with respect to both nodes and attributes. In particular, we

find that the maximum node stress in our system is an order smaller than observed

with an Update-All, gossiping approach.

30



4.4.1 Flexibility

A major innovation of our system is its ability to provide flexible computation and

propagation of aggregates. In Figure 4.8, we demonstrate the flexibility exposed by

the aggregation API explained in Section 3. We simulate a system with 4096 nodes

and install several attributes with different UP and DOWN parameters. We plot the

average number of messages per operation incurred for a wide range of read-to-write

ratios of the operations for different attributes. This graph clearly demonstrates

the benefit of supporting a wide range of computation and propagation strategies.

Although having a small UP value is efficient for attributes with low read-to-write

ratios (write dominated applications), the probe latency, when reads do occur, may

be high since the probe needs to aggregate the data from all the nodes that did

not send their aggregate up. Conversely, applications that wish to improve probe

overheads or latencies can increase their UP and DOWN propagation at a potential

cost of increase in write overheads.

4.4.2 Scalability

Compared to an existing Update-all single aggregation tree approach [101], scala-

bility in SDIMS comes from (1) leveraging DHTs to form multiple aggregation trees

that split the load across nodes and (2) flexible propagation that avoids propagation

of all updates to all nodes. Figure 4.9 demonstrates the SDIMS’s scalability with

nodes and attributes. For this experiment, we build a simulator to simulate both

Astrolabe [101] (a gossiping, Update-All approach) and our system for an increas-

ing number of sparse attributes. Each attribute corresponds to the membership in

a multicast session with a small number of participants. For this experiment, the

session size is set to 8, the propagation mode for SDIMS is Update-Up, and the

participant nodes perform continuous probes for the global aggregate value. We

plot the maximum node stress (in terms of messages) observed in both schemes for

31



 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1  10  100  1000  10000  100000

M
ax

im
um

 N
od

e 
S

tr
es

s

Number of attributes installed

Gossip 256

Gossip 4096

Gossip 65536

DHT 256

DHT 4096

DHT 65536

Figure 4.9: Max node stress for a gossiping approach vs. DHT based SDIMS ap-
proach for different number of nodes with increasing number of sparse attributes.

different sized networks with increasing number of sessions when the participant of

each session performs an update operation. Clearly, the DHT based scheme is more

scalable with respect to attributes than an Update-all gossiping scheme. Observe

that at some constant number of attributes, the maximum node stress increases in

the gossiping approach as the number of nodes increase in the system; but, in our

approach, it decreases because the load of aggregation is spread across more nodes.

Simulations with other session sizes (4 and 16) yield similar results.

4.5 An Open Issue: Handling Composite Queries

Though aggregating different attributes along different trees provides scalability

with respect to attributes, solving composite queries involving two or more attributes

32



becomes hard. For example a probe like find a nearest machine with load less than

20 percent and has more than 2 GB of memory. If query compositions are known in

advance, then attributes can be grouped and can be aggregated along one tree. For

example, load and memory of machines can be aggregated along one tree if queries

as in the above example are very common. But by grouping extensively, we lose

the property of load balancing. This tradeoff presents a fundamental limitation of

distributing attributes across trees. Ongoing efforts by other researchers to provide

the relational database abstraction on DHTs — PIER [49] and Gribble et al. [43]

— will ease solving such composite queries.

Handling ad-hoc composite queries, whose compositions are unknown in ad-

vance, is more complicated. Here we propose solutions for handling the queries with

OR and AND operations: (1) a OR b: Walk along trees corresponding to both

attributes a and b. (2) a AND b: Guess the smaller of the trees corresponding to a

and b, and compute the predicate along the tree. Two approaches can be used to

determine the size of the trees: (a) Along with the computation of the aggregation

function for an attribute, maintain a count of the number of contributing nodes or

(b) Use statistical sampling techniques — randomly choose a small percentage of

nodes and evaluate the attributes. For handling general logical expressions, convert

the logical expressions to their Disjunctive Normal Forms (DNF) and use above

AND operation for each conjunctive term. Further investigation is necessary to

evaluate the feasibility and performance of these different strategies.

33



Chapter 5

Administrative Isolation

5.1 Introduction

Though DHTs offer solution for scalability with the nodes and attributes, they

do not guarantee that administrative isolation is preserved in the aggregation trees.

Having aggregation trees that conform to the administrative hierarchy helps SDIMS

provide important autonomy, security, and isolation properties [101]. Security and

autonomy are important in that a system administrator must be able to control

what information flows out of her machines and what queries may be installed on

them. The isolation property ensures that a malicious node in one administrative

domain1 cannot observe or affect system behavior in another domain for computa-

tions relating only to the second domain.

We present two properties — Path Locality and Path Convergence — that a

DHT routing layer should satisfy to guarantee that the aggregation trees exposed by

the DHT routing conforms to the administrative isolation requirement. We present

a novel Autonomous DHT (ADHT) that builds upon an existing DHT algorithm,
1Domain in our system is defined as a set of machines either administered by a common authority

or a logical group with in such sets such set of machines sharing a switch. Note that these domains
does not necessarily correspond to the DNS domain hierarchy even though we use a similar notation.

34



ind1.comuniv2.eduuniv1.edu ind1.comuniv2.eduuniv1.edu
(a) (b)

Figure 5.1: Example aggregation trees for a system with three nodes. Machines
univ1.edu and univ2.edu are in one administrative domain and machine ind1.com
is in a different administrative domain (a) An aggregation tree that does not sat-
isfy the administrative isolation property (b) An aggregation tree that satisfies the
isolation property.

Pastry, and guarantees these properties.

5.1.1 Motivation and Challenges

Administrative isolation requirement is important in SDIMS for three reasons: (i)

for security — so that updates and probes flowing in a domain are inaccessible

outside the domain, (ii) for availability — so that queries for values in a domain

are unaffected by failures of nodes in other domains or by network disconnections

of a domain from other domains, and (iii) for efficiency — so that domain-scoped

queries can be simple and efficient.

To satisfy the administrative isolation requirement, an aggregation tree should

satisfy the following property.

Property 1 For each administrative domain, the virtual node in the aggregation

tree at the root of the smallest subtree containing all nodes of the domain is hosted

on a node in that domain.

Consider the two aggregation trees in Figure 5.1. The aggregation tree in

Figure 5.1(a) does not satisfy the above property — the virtual node that is at

35



the root of the smallest subtree corresponding to nodes in domain edu is hosted

on a machine outside that domain. The second aggregation tree in Figure 5.1(b)

satisfies the isolation requirement. In the following paragraphs, we further explain

why satisfying the Property 1 in the aggregation tree is important for security,

availability, and efficiency.

Security Security is an important issue for an aggregation system particularly in

a large distributed system consisting of multiple administrative domains. Consider

the example of using an aggregation framework to run a file location system in an

enterprise. The file location information from cluster of machines belonging to the

board of directors should be invisible to machines outside that cluster. Even though

particular file names can be masked by using encoded names instead of plain names,

the system should not expose even update and probe patterns outside that cluster

as those patterns can reveal information about files on those machines or behavior

of individuals. Such security can only be assured if the common aggregation point

is within the domain of machines corresponding to the board of directors.

Availability Another key reason to have the common aggregation point for a

domain to be hosted on a machine in that same domain is to ensure high availability.

Note that a domain in our system corresponds to set of machines under a single

administrative authority or corresponds to logical grouping of nodes with in such

administrative domains like nodes sharing a switch, etc. Such domain are prone

to domain disconnections when the connecting router fails or the subnetwork fails

due to ISP failure, etc. Also a node in a domain can behave maliciously either

by responding lazily for messages from nodes outside the domain or by dropping

messages from nodes outside the domain. For a domain, such domain disconnections

or malicious behavior of a node in another domain can potentially decrease the

availability for operations within the domain. For example, since node ind1.com

36



(univ2.edu, 1))
(edu, 2),

((.,2),

((.,1),
(edu, 1),
(univ2.edu, 1))

univ1.edu

((.,1),
(edu., 1),
(univ1.edu., 1))

((., 3),
(com, 1),
(ind1.com, 1))

((., 1),
(com, 1),
(ind1.com, 1))

((., 1),
(com, 1),
(ind1.com, 1))

ind1.comuniv2.edu

Figure 5.2: Example for the domain-scoped queries

hosts the common aggregation point for nodes in .edu domain in Figure 5.1(a), it can

decrease the availability for nodes in .edu domain even for operations corresponding

to aggregate values for .edu domain.

Efficiency Aggregation trees that provide administrative isolation also enable the

definition of simple and efficient domain-scoped aggregation functions to support

queries like “what is the average load on machines in domain X?” For example,

consider an aggregation function to count the number of machines in our running

example system with three machines illustrated in Figure 5.2. Each leaf node l up-

dates attribute NumMachines with a value vl containing a set of tuples of form

(Domain, Count) for each domain of which the node is a part. In the exam-

ple, the node univ1 with name univ1.edu performs an update with the value

((univ1.edu.,1),(edu.,1),(.,1)). An aggregation function at an internal virtual

node hosted on node N with child set C computes the aggregate as a set of tuples:

for each domain D that N is part of, form a tuple (D,
∑

c∈C(count|(D, count) ∈
vc)). This computation is illustrated in the Figure 5.2. Now a query for NumMa-

chines with level set to MAX will return the aggregate values at each intermedi-

ate virtual node on the path to the root as a set of tuples (tree level, aggregated

value) from which it is easy to extract the count of machines at each enclosing

37



domain. For example, univ1 would receive ((2, ((ind1.com.,1),(com.,1),(.,3))), (1,

((univ2.edu.,1),(edu.,2),(.,2))), (0, ((univ1.edu.,1),(edu.,1),(.,1)))).

Note that it is possible to support domain-scoped queries even if the aggre-

gation trees does not satisfy the Property 1. But supporting such queries would

be less efficient and less convenient when aggregation trees do not conform to the

property. It would be less efficient because each intermediate virtual node would

have to maintain a list of all values at the leaves in its subtree along with their

names and it would be less convenient as applications that need an aggregate for a

domain would have to pick values of nodes in the domain from the list returned by

a probe and invoke aggregation function on those values.

5.1.2 Our Approach

We achieve administrative isolation in SDIMS through the following two ideas. First,

we allow applications to specify restrictions on visibility of attributes to a particular

administrative domain. In the install and probe API (shown in Tables 3.1 and 3.3 in

Chapter 3), we allow applications to specify a domain parameter that SDIMS uses

to restrict the propagation of updates and probes to a specified domain. Second, we

build aggregation trees ensuring that they satisfy administrative domain boundaries.

These two ideas in combination allow applications to perform updates and probes

in a domain while not exposing any information about those operations to nodes

outside the domain.

Note that we extract aggregation trees from the DHT routing infrastructure.

To ensure that such aggregation trees conform to administrative isolation require-

ment, the DHT routing should satisfy two properties:

1. Path Locality: Routing paths should always be contained in the smallest pos-

sible domain.

2. Path Convergence: Routing paths for a key from two different nodes in a

38



110XX

010XX
011XX

100XX

101XX

univ

dep1 dep2

key = 111XX

011XX 100XX 101XX 110XX 010XX

L1

L0

L2

Figure 5.3: Example shows how isolation property is violated in the original Pastry.
We also show the corresponding aggregation tree.

domain should converge at a node in the same domain.

Existing DHTs either already support path locality [47] or can support easily

by setting the domain nearness as the distance metric [23, 44]. But they do not

guarantee path convergence as those systems try to optimize the path length to the

root to reduce response latency.

In the following section we explain how an existing DHT, Pastry [86], does

not satisfy path convergence. Then we describe the design of our ADHT algo-

rithm that builds upon the Pastry algorithm in Section 5.3. We choose Pastry for

convenience—the availability of a public domain implementation. We believe that

similar simple modifications could be applied to many existing DHT implementa-

tions to support path locality and path convergence properties. In Section 5.4, we

discuss the correctness and performance properties of ADHT. We present some ex-

perimental results quantifying the usefulness of ADHT algorithm in Section 5.5. In

Section 5.6, we detail the related work and summarize the chapter in Section 5.7.

39



5.2 Background: Pastry

In Pastry [86], each node maintains a leaf set and a routing table. The leaf set

contains the L immediate clockwise and counter-clockwise neighboring nodes in a

circular nodeId space (ring). The routing table supports prefix routing: each node’s

routing table contains one row per hexadecimal digit in the nodeId space and the ith

row contains a list of nodes whose nodeIds differ from the current node’s nodeId in

the ith digit with one entry for each possible digit value. Notice that for a given row

and entry (viz. digit and value) a node n can choose the entry from many different

alternative destination nodes, especially for small i where a destination node needs

to match n’s ID in only a few digits to be a candidate for inclusion in n’s routing

table. A system can choose any policy for selecting among the alternative nodes.

A common policy is to choose a nearby node according to a proximity metric [77]

to minimize the network distance for routing a key. Under this policy, the nodes in

a routing table sharing a short prefix will tend to be nearby since there are many

such nodes spread roughly evenly throughout the system due to random nodeId

assignment. Pastry is self-organizing—nodes come and go at will. To maintain

Pastry’s locality properties, a new node must join with one that is nearby according

to the proximity metric. Pastry provides a seed discovery protocol that finds such

a node given an arbitrary starting point.

Given a routing topology, to route to an arbitrary destination key, a node

in Pastry forwards a packet to the node with a nodeId prefix matching the key

in at least one more digit than the current node. If such a node is unknown, the

node forwards the packet to a node with an identical prefix but that is numerically

closer to the destination key in the nodeId space. This process continues until the

destination node appears in the leaf set, after which it is delivered directly. The

expected number of routing steps is log N , where N is the number of nodes.

Unfortunately, as illustrated in Figure 5.3, Pastry does not satisfy the ad-

40



ministrative isolation property because (i) if two nodes with nodeIds match a key

in same number of bits, both of them can route to a third node outside the domain

when routing for that key and (ii) if the network proximity does not match the

domain proximity, then routing paths might not satisfy the required path locality

and convergence properties. The second problem can be addressed by using domain-

nearness as the proximity metric — any two nodes that match in i levels of domain

hierarchy are considered closer than two nodes that match in fewer than i levels.

However, this solution does not eliminate the first problem.

5.3 Our Approach

To ensure isolation properties in aggregation trees, a DHT must provide a single

exit point in each domain for a key. Also the DHT routing protocol should route

keys along intra-domain paths before routing them along inter-domain paths.

We build a novel DHT called Autonomous DHT (ADHT) that builds upon

the Pastry algorithm in the following ways.

1. Data structures: Instead of one leafset in the Pastry algorithm, nodes in ADHT

maintain a separate leafset for each administrative hierarchy domain to which

a node belongs. We specify a node’s position in the administrative hierarchy

using similar notation as the Domain Name Service (DNS) [68].

2. Routing algorithm: ADHT uses a novel routing algorithm that ensures that

the routing path for a key reaches the root node in a domain before it jumps out

of the domain; thus, achieving path convergence and path locality properties.

ADHT also uses a novel key space assignment to nodes so that routing paths

do not visit a node twice during routing for any key — a property required

so that we can extract aggregation trees from the routing structure. We also

introduce a two level locality model that incorporates both administrative

41



���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

logical ID ring

leafset at
cs.utexas.edu level

leafset at
utexas.edu level

leafset at
edu level

Nodes in 
cs.utexas.edu

Nodes in
utexas.edu

Nodes in
edu

begonia.cs.utexas.edu

Figure 5.4: Multiple leafsets maintained by the node begonia.cs.utexas.edu. We
assume a leafset size of four in this example.

membership of nodes and network distances between nodes.

3. Join algorithm: To correctly fill multiple leafsets at a joining node, ADHT

uses a join algorithm similar to Pastry’s join algorithm but uses an appropriate

bootstrap node — a node already in the system that is closest to the joining

node in terms of domain-nearness.

4. Zippering2 to maintain leafsets: ADHT employs a zippering mechanism to

maintain consistent leafsets at all domain levels at all nodes.

In the following sections, we describe our ADHT algorithm in detail, mainly

focusing on the four points mentioned above. At the end of this section, we present

how we extract aggregation trees that satisfy Property 1 from the ADHT routing

infrastructure.
2Terminology from [102]

42



5.3.1 Data Structures

Similar to Pastry and other DHT algorithms, each node in ADHT has a routing

table to maintain pointers to other nodes that correct prefix bits of that node’s

nodeId. In contrast to Pastry where each node maintains a single leafset, each node

in ADHT maintains a separate leaf set for each domain to which the node belongs.

In Figure 5.4, we illustrate leafsets maintained by a node begonia.cs.utexas.edu

in the ADHT algorithm. Note that the Pastry algorithm maintains just one leafset

corresponding to the top domain level. For the example in figure, Pastry maintains

only the leafset corresponding to edu level. Maintaining a different leafset for each

level increases the number of neighbors that each node tracks to (2b) ∗ lgb n + c.l in

ADHT compared to (2b) ∗ lgb n + c in unmodified Pastry, where b is the number of

bits in a digit, n is the number of nodes, c is the leafset size, and l is the number

of domain levels. But these extra leafsets ensure path locality and convergence

properties during routing.

5.3.2 Routing in ADHT

The algorithm for populating the routing table is quite similar to Pastry but with the

following key difference: ADHT uses hierarchical domain proximity as the primary

proximity metric (two nodes that match in i levels of domain hierarchy are more

proximate than two nodes that match in fewer than i levels in domain hierarchy)

and network distance as the secondary proximity metric (if two pairs of nodes match

in the same number of domain levels, then the pair whose separation by network

distance is smaller is considered more proximate).

43



Key space assignment to nodes

In Pastry, a key k is assigned to a node A that is closest to the key on the logical

ID ring. The distance on the logical ring between IDA and the key k is defined as

MIN(|k − IDA|, 2b − |k − IDA|),

where b is the number of bits used for IDs and keys. For example, the key space

split is shown on the outer side of the ring in Figure 5.5 with dark lines for split

among four nodes A, B, C and D.

In ADHT, a key k is assigned to a node A such that IDA matches more

prefix bits of k than any other node’s ID. If IDs of multiple nodes match key k

in the same number of prefix bits, then we pick a node B from that set such that

|k − IDB| is smaller than difference between key k and any other node’s ID. The

key space split shown on the inner side of the ring in Figure 5.5 with dotted lines is

the split among four nodes A, B, C, and D in case of the ADHT.

We will later describe in this section on how this different key space assign-

ment allows us to construct aggregation trees that satisfy Property 1.

Routing Algorithm

The routing algorithm we use in routing for a key at node with nodeId is shown in

Algorithm 1. To route a key k, a node A with ID IDA first checks its routing table

for another node that matches the key in more digits than this node. We call such bit

correcting neighbor a flipNeighbor. If no such node exists, then we consider leafsets

starting from the smallest domain. If a flipNeighbor exists and is in the node’s lowest

domain, then we route the key to the flipNeighbor. If a flipNeighbor exists and is not

in the same domain as the node, then we consider leafsets corresponding to the levels

below the common domain between the flipNeighbor and this node, starting from

44



0

C

D

B (011XX)

(101XX)

(111XX)

A (010XX)

Figure 5.5: Key space assignment to nodes in Pastry and ADHT. The split shown
on the outer side of the logical ring correspond to assignment in Pastry and the
inner side corresponds to the assignment in ADHT.

the lowest domain leafset. For example, if a node begonia.cs.utexas.edu finds

a flipNeighbor linux1.cs.cmu.edu, then the node considers the leafsets at levels

cs.utexas.edu and utexas.edu in that order. If the node finds another node in

its leafset that is closer to the key than the node, then it forwards the key to that

node closer to the key. If no such node is found in a leafset at a level, then this node

is considered the root node for key k in that domain. If a node has no flipNeighbor

for a key k and has no neighbor in any leafset at any level that is closer to the key

k than it is, then such node is the global root for key k. Note that by routing at

the lowest possible domain until the root of that domain is reached, we ensure that

all routing paths starting in a domain converge within that domain, thus achieving

the Path Convergence property.

Discussion

The difference in key space assignment between Pastry and ADHT allows us to

construct aggregation trees that satisfy administrative isolation requirements. This

45



Algorithm 1 ADHTroute(key)
1: flipNeigh ← checkRoutingTable(key) ;
2: l ← numDomainLevels ; /* number of levels in this node’s hierarchical name.

For example, node begonia.cs.utexas.edu is 3 levels down in the domain
hierarchy */

3: while (l >= 0) do
4: /* commonLevels returns number of common levels between flipNeighbor and

this node; if flipNeighbor is null, it returns -1 */
5: if (commonLevels(flipNeigh, nodeName) == l) then
6: send the key to flipNeigh ;
7: return
8: else
9: leafNeigh ← an entry in leafset[l] closer to key than nodeId ;

10: if (leafNeigh ! = null) then
11: send the key to leafNeigh ;
12: return
13: else
14: /* this node is the root for this key in this domain */
15: end if
16: end if
17: l← l − 1; /* move to next higher domain */
18: end while
19: /* this node is the global root for this key */

difference ensures that no node is visited twice during routing. If we use the Pastry

key assignment, then the routing paths using the ADHT routing algorithm might

touch a node more than once. For example, consider routing for a key 1000XX in a

domain comprising only two nodes with IDs 0111XX and 1110XX. In this domain,

node with ID 0111XX is considered as the root for that domain. But, when routing

in the next domain level from node 0111XX, the next hop goes to node 1110XX as

it is the nearest bit-correcting node. Thus node 1110XX will be visited twice. Note

that we can not form hierarchical aggregation trees from such an overlay routing

algorithm where the path for a key routes to a node, leaves the node and routes

back to the node. With ADHT key assignment, node 1110XX is assigned as the

root in the lower domain and hence that node is not touched more than once.

46



5.3.3 Join Algorithm

Like any peer-to-peer algorithm, a node joins an existing ADHT by contacting one

or more user supplied nodes. The join algorithm in ADHT differs from Pastry join

algorithm primarily in choosing an appropriate bootstrap node and filling leafset

table entries. Note that, in contrast to nodes in Pastry that have a single leafset

table, nodes in ADHT maintain several leafset tables. In the following section, we

first briefly explain the join algorithm used in Pastry [86] and then we present an

ADHT join algorithm.

Pastry Join Algorithm Suppose node A with ID IDA is joining using a boot-

strap node B with ID IDB. Node A asks node B to route a special join message

with the key equal to IDA. Like any message, Pastry routes the join message to the

existing node R whose id IDR is numerically closest to IDA. In response to receiv-

ing the join request, nodes A, R, and all nodes encountered on the path from A to R

send their routing tables to A. Also, node R sends its leafset table to node A which

node A uses as its own leafset table. The new node A inspects this information and

initializes its own routing tables. Finally, node A informs all nodes that need to be

aware of its arrival by sending its routing or leafset table entries. This procedure

ensures that node A initializes its state with appropriate values, and that the state

in all other affected nodes is updated.

ADHT Join Algorithm Similar to Pastry’s join algorithm, a node A wishing to

join ADHT routes a special join message with target key set to IDA from a given

bootstrap node B. We modify the Pastry’s join algorithm in the following ways so

that the joining node in ADHT can fill its multiple leafsets. First, given a random

contact node, the joining node searches for an appropriate bootstrap node B that is

a closer node to the joining node in terms of the domain-nearness metric (explained

in detail in the following section) than any other node in the system. Second, each

47



joining node

cs.utexas.edu

utexas.edu

edu

Figure 5.6: An example illustrating the leafsets that a joining node receives in
response to its join request in a three level deep domain hierarchy. The dark arrows
denote the path taken by the join request.

intermediate node C, on the routing path from node B to the current root node for

IDA, sends its leafsets for each common domain between C and A and for which

node C is the root node in that domain for key IDA (also implies that the next node

on the routing path for IDA from C does not belong to the domain). Figure 5.6

illustrates the leafsets that a joining node receives in response to its join request in

a three level deep domain hierarchy case.

Finding a bootstrap node

A node that wishes to join an existing ADHT needs to find a node already in the

ADHT that is closer to the joining node in terms of domain-nearness. For example,

node begonia.cs.utexas.edu that wishes to join a ADHT searches for some other

node in cs.utexas.edu domain. If no such node exists, then it looks for a node

in utexas.edu domain, and so on. The joining node uses such a near node as its

bootstrap node for joining the ADHT.

In the following, we present different ways in which a joining node searches

48



for an appropriate bootstrap node.

• Manual: A simple solution is to provide such a bootstrap node manually. An

administrator installing ADHT on her set of machines can manually specify

the bootstrap nodes. Though this approach is often reasonable in an enterprise

type setting where system administration is done through an IT department, it

might be infeasible in a university type setting where individual departments

have their own system administrators. In the latter case, different depart-

ment administrators need to coordinate when setting up the first machine in

their respective domains. Otherwise, if the first machines in all departments

simultaneously join the system and use a node outside the university, then

partitions can occur among the machines in the university.

• Using DHT put and get operations: Joining nodes can use the already

existing DHT to locate appropriate bootstrap nodes. Each node after joining

the DHT will store information about the domains to which it belongs in

the DHT. A joining node then uses DHT to search for nodes starting from

the lowest domain to which it belongs. Below, we describe this procedure in

detail.

Joining nodes are provided with information about some arbitrary nodes in

the system, which we call contact nodes. Each node after joining the DHT

will perform a put operation for keys corresponding to different domains

to which this node belongs. For example, a node begonia.cs.utexas.edu

will perform three put operations for keys corresponding cs.utexas.edu,

utexas.edu, and edu with its own IP address as the value. Now, a new node,

say linux1.ece.utexas.edu that wishes to join the DHT will use a supplied

contact node to perform a sequence of get operations starting from the lowest

domain ece.utexas.edu up to the highest domain edu until it finds another

49



node. If no node is found, then it considers itself to be the first node in the

edu domain and uses a user-specified contact node as the bootstrap node.

Note that, by default, the DHT put(key, value) operation appends the

value to other existing values stored for that key. This approach might be

unscalable as the node responsible for the key corresponding to a large domain

has to store a large number of values. For this particular case, we do not need

the get(key) operation to return all values stored for that key but any or few

values will suffice. So, instead of storing all values for a key, we store only a

few values for each key and use a FIFO policy to purge the value list as the

new values are inserted.

Though the DHT-based technique described above provides a way for locating

an appropriate bootstrap node, concurrent joins of many nodes in a domain

can become very slow as all nodes might use one or a few bootstrap nodes.

• Using SDIMS: Though the DHT-based technique provides a way for locating

an appropriate bootstrap node, concurrent joins of many nodes in a domain

can incur high load on one or a few bootstrap nodes. Here we propose a

technique based on the SDIMS aggregation mechanism that alleviates this

problem by forming a tree among concurrently joining nodes in a domain.

The tree is rooted at an existing node closer to the joining nodes in terms of

domain-nearness. Each node in the tree uses their parent as the bootstrap.

Note that a node’s parent might not have completed joining the DHT when

the node contacts it. The parent in this case sends a retry message to the node

to inform that it has not yet joined the DHT. The joining node in this case

retries after a short timeout period. Below we describe how we use SDIMS to

locate bootstrap nodes and build such trees.

Suppose node A initially knows some contact node B in the system. As-

sume that node B has already joined the system and is already running

50



SDIMS. Node A with name begonia.cs.utexas.edu performs three updates

on Node B for attributes (DOMAIN-NODES, cs.utexas.edu), (DOMAIN-NODES,

utexas.edu), and (DOMAIN-NODES, edu) with the same value of (IPADDRA,

WILL JOIN). After the node completes joining the SDIMS, it will update those

three attributes with a new value (IPADDRA, ALREADY JOINED). SDIMS will

be pre-installed with an aggregation function for attribute type DOMAIN-NODES

that picks a few representatives, given a set of tuples, prefering values with

ALREADY JOINED over values with WILL JOIN. In case of a tie, it chooses a

value with lower IP address. The joining node A, after performing updates on

node B, performs probe operations for global aggregates for those attributes

to locate a node that is closer in terms of domain-nearness metric. So in the

example, Node A will perform probe operation on node B requesting to locate

other nodes in the cs.utexas.edu domain. If that probe returns any non-null

IP address vector, then node A uses one of the nodes in that vector as a boot-

strapping node. If null value is returned, then node A continues probing for

nodes in higher domains — in this case for nodes in the utexas.edu domain

and then in the edu domain.

5.3.4 Maintaining Consistent Leafsets

Note that although mechanisms described in the previous section provide one way

for rendezvous between nodes in same domain, they do not guarantee that a new

joining node always finds other nodes in its domain. For example, if nodes in a new

domain concurrently join an existing ADHT, they might not find each other during

the join phase and might use some node outside their domain as the bootstrap

node. Even though using the SDIMS-based technique reduces the chances of such a

scenario, this can happen when reconfigurations happen in the system and SDIMS is

in the state of repairing aggregation trees and aggregate values at different levels in

51



d c f g

− −

B

c

d e

f g

h
− −

g h e d
A

Leafsets at B

A B : nodes in cs.utexas.edu
c d e f g h : nodes in utexas.edu

Leafsets at A

utexas.edu domain

cs.utexas.edu domain

Figure 5.7: Concurrent joins leading to path convergence property violations. Nodes
A and B in cs.utexas.edu join concurrently using nodes in utexas.edu domain as
bootstrap nodes. Observe the incorrect leafset tables at node A and B corresponding
to cs.utexas.edu domain.

the aggregation trees (explained in detail in Chapter 6). This scenario where nodes

in a single domain use nodes outside their domain as bootstrap nodes can lead to

incorrect leafset tables at those nodes. For example, we show a case in Figure 5.7(a)

where two nodes A and B in domain cs.utexas.edu in join simultaneously and use

some nodes outside cs.utexas.edu as bootstrap nodes. Hence, the lowest domain

leafset tables for node A and node B end up in an incorrect state in this case which

leads to the violation of path convergence and locality properties. In our system, we

ensure path convergence and path locality properties are met by using the following

mechanism — each node periodically searches for other nodes in all domains that

it is part of using DHT-based or SDIMS-based methods, contacts those nodes, and

corrects any incorrect entries in its routing table or leafset tables. In the following,

we first describe the Zippering mechanism that is useful for any DHT to handle

partitions and then describe how we use this to achieve leafset consistency in ADHT.

Zippering for Mending Partitions Several DHT systems, like SkipNet [48]

and Willow [102], provide a way to merge partitioned components. In Pastry, nodes

periodically perform a leafset maintenance task where each node checks for the live-

52



ness of its leafset table entries and broadcasts its current leafset to members of that

leafset if it finds any dead entries. Though this maintenance protocol is appropriate

to mend machine crash failures, it fails during network partitions, leading to pos-

sible partitions in the DHT. Even after the network heals, Pastry does not have a

mechanism where these different partitions can merge back together.

To mend partitions in a DHT, we need a way to rendezvous between nodes

in those partitions and a way to merge a partition with another after a node in a

partition discovers a node in the second partition. In ADHT, nodes keep a log of

dead nodes and occasionally ping them to check if they became alive. The entries

in the log expire after a certain timeout period. This mechanism will ensure the

rendezvous between nodes in different partitions for network failures lasting shorter

than the above mentioned timeout period. For handling longer network failures, we

provide an interface for an administrator to initiate the rendezvous. This interface

also allows administrators to merge two separately formed DHTs into a single DHT.

After a node, say node A, discovers another node B in a different partition,

node A routes a join message from node B for target key IDA, similar to the join

algorithm, using node B as the bootstrap node. Node A then receives leafset and

routing information from nodes on the routing paths. Note that if the route for IDA

from node B does reach the node A, then it implies that node B indeed belongs to

the same partition as node A. In case of a partitioned DHT, the final node on the

path will be unaware of node A. Node A then exchanges its leafset with that final

root node and both nodes correct their leafsets. Note that nodes in ADHT perform

periodic leafset exchange with their neighbors in the leafsets. This periodic leafset

exchange ensures that the information about nodes in one partition reaches nodes

in the other partition thus integrating two partitions into one.

We illustrate the zippering mechanism in Figure 5.8. We show the partitions

as two different circles corresponding to the logical ID space and show nodes in

53



B

R

A
1

2

3

B

R

A

4

(a) (b)

B

R

A 5

5

B

R

A

(c) (d)

Figure 5.8: Zippering steps: Node A in a partition discovers node B and starts
the zippering procedure. (a) Node A with ID IDA starts a join procedure using
node B as the bootstrap node. Node B routes that request towards node D which
is the current root for IDA in B’s partition. (b) Node A and Node D detect the
partitions and exchange their leafsets. (c) Node A and Node D propagate the
information about partitions during their periodic leafset exchanges with neighbors
in their leafsets. (d) Finally, the partition information spreads around the whole ID
space and the partitions are merged together.

54



different partitions on those two different circles. In this figure, node A with say

IDA initially discovers node B and starts a join procedure using node B as the

bootstrap node (message 1 in the figure). Node B forwards the message using

ADHT routing towards the root for key IDA, which is routed to node D that is

currently responsible for key IDA in the ring to which node B belongs. This join

message routing is depicted as messages 2 and 3 in the figure and will take O(log N)

hops in a partition with N nodes. When node D returns an answer to node A, node

A then knows that D is in a different partition. Node A and node D exchange their

leafsets so that both of them now are in the same partition. Thus the logical ID

space near node A and node D is mended (depicted in the figure as node A and

node D participating in both rings). As node A and node D perform their periodic

leafset exchanges with other nodes in their leafsets, the mending of logical ID space

spreads around the ring (shown in Figure 5.8(c)) and finally the partitions are

zippered together when the mending is done at all nodes in the partitions (depicted

in the Figure 5.8(d)).

Fast Zippering The method for zippering in the last few paragraphs can take

O(N) time steps before two partitions with N nodes are merged together. Note

that the healing of the partitions is spread around the ID ring linearly in time.

To hasten the zippering process, we propose the following scheme. Upon detecting

partitions and mending leafsets, a node picks a constant number of random nodes in

its current partition (from its previous leafsets and routing table) and informs them

about the nodes in the other partition (new entries in the leafset). These nodes

then start zippering procedure to mend their leafsets. With each node informing a

constant number of other nodes after it completes zippering, all nodes will get to

know of partitions in O(log N) such rounds with high probability. Overall, all nodes

will complete performing zippering step by O(log2 N) time steps. This procedure

will incur O(N log N) messages as each node might perform the zippering step in

55



contrast to O(N) messages in slow zippering procedure described previously.

Leafset Maintenance using Zippering In ADHT, we also use the above zip-

pering mechanism to correctly maintain leafsets at different levels. Periodically each

node looks for other nodes in each domain it is part of using the DHT-based method

or the SDIMS-based method described in the previous section. Once it finds such

nodes, it uses the zippering mechanism to mend any possible partitions. Note that

in the description of the zippering mechanism, we described that a node only con-

siders the final root in the routing path. To maintain correct leafsets at all levels, a

node in ADHT looks at leafsets it receives from other nodes on the path (root nodes

for subdomains) to fill and correct its leafset tables.

An important issue that needs to be addressed in the above approach is

how to decide the frequency with which a node performs the probing step. If all

nodes frequently perform such operation, then one or few nodes that are chosen as

representatives for a large domain will be inundated with a large number of join

requests. To avoid such hot spots in the system, each node chooses the frequency

of such checks to be proportional to the estimated number of nodes in the domain.

The number of nodes in a domain can be estimated from the leafset for that domain

at a node leveraging approaches used in Viceroy [63] and Symphony [64]: If Xs

denote the sum of segment lengths (length of logical ID space) managed by any set

of s nodes, then s
Xs

is an unbiased estimator for the number of nodes.

5.3.5 Extracting Aggregation Trees from ADHT

Extracting aggregation trees in ADHT is similar to the process presented in Chap-

ter 4. In Figure 5.3, we present an example showing how extracting aggregation

trees from the routing structure of Pastry violates the administrative isolation re-

quirement. For the same example, the ADHT routing tree and the corresponding

aggregation tree we build in SDIMS are shown in Figure 5.9. Since the ADHT

56



110XX

010XX
011XX

100XX

101XX

univ

dep1 dep2

key = 111XX

X

011XX 100XX 101XX 110XX 010XX

L0

L1

L2

A B C D E

Figure 5.9: Autonomous DHT satisfying the isolation property. Also the corre-
sponding aggregation tree is shown.

algorithm routes to reach a domain root node before jumping out of the domain,

the routing path does not necessarily correct any bits during intermediate routing

steps. In the original Pastry, such case happens only on the last few steps of the

routing. As explained in Chapter 4, we insert extra virtual nodes to handle those

cases.

5.4 Properties

In this section, we discuss the correctness and performance properties of the ADHT

algorithm.

5.4.1 Correctness

We discuss correctness of ADHT from the perspective of three properties — (1)

Consistent Routing [22]: A lookup operation for a key always ends at the current

root node responsible for the key in the system, (2) Path Convergence, and (3) Path

Locality.

Lemma 1 Consistent leafsets at all nodes guarantee consistent routing, path con-

vergence, and path locality.

57



Note that the key assignment we use in ADHT always ensures that each key

is assigned to either the nearest node on the left or the nearest node on the right

side on the logical ID ring. This implies that to achieve consistent routing we just

need to ensure that each node correctly knows its current left and right neighbor on

the logical ID ring corresponding to the global domain. Hence, consistent leafsets

at all nodes guarantee the consistent routing property.

The ADHT routing procedure shown in Algorithm 1 works from the lowest

domain level of a node and gives preference to a node found in the leafset at a

lower domain level that is closer to the key over a node found in the routing table

in a higher domain. Effectively, the routing table entries are used as shortcuts but

the leafset entries are used to ensure that a node closest to the key in a domain is

reached before the route jump outs of a domain. Hence, with correct leafsets at all

nodes, path convergence and path locality properties are satisfied.

In the context of the aggregation framework, we mainly care about eventual

path convergence guarantees in the DHT routing layer. Note that disconnected

components do not violate administrative isolation — domain restriction option in

the install and the probe API allows users and applications to restrict the propa-

gation of queries and updates to desired domains. But during the time when path

convergence guarantee is not met, nodes in a domain may not be able to aggregate

information about all nodes in that domain. But once the property is met in a

domain, the aggregate will reflect the values at all nodes in the domain.

Lemma 2 If the global leafset at all nodes is consistent and after the system becomes

stable (no further node and network failures), eventually all leafsets at different

domain levels at all nodes become consistent.

Even when global leafset is consistent, other domain level leafsets can be

inconsistent due to partitions in the domain (example in Figure 5.7. But in ADHT,

each node looks for other nodes in the same domain periodically and performs a

58



zippering step. When the global leafset is consistent and the system is stable, if we

have a partition in nodes of a domain, then at least one node in one of the partitions

will discover a node in another partition. The zippering step following such discovery

attaches those two partitions into one and the periodic leafset exchange procedure

ensures that the leafset corresponding to this domain on all nodes in those both

partitions become consistent.

Lemma 3 If all network partitions and node failures are of duration less than

TdeadNodePurge (the timeout period after which a dead node is removed from the

list of dead nodes at a node in ADHT) and after the system becomes stable, the

global leafset becomes consistent eventually.

In ADHT, nodes keep track of recently failed nodes and ping them period-

ically to check their liveness. If found to be alive, they perform zippering step to

include those nodes in the DHT. Hence, when all network partitions and node fail-

ures are of a finite duration less than the timeout period used for purging a node

from the dead node list on each node, TdeadNodePurge, and after the system becomes

stable, we will have a correct global leafset table in a finite time.

Theorem 1 If all network partitions and node failures are of duration less than

TdeadNodePurge and after the system is stable, eventually consistent routing, path

convergence, and path locality properties are met.

5.4.2 Performance

Increased Path Length in ADHT In contrast to Pastry routing, ADHT routes

to a domain root node before jumping out of the domain to ensure path convergence.

In Pastry routing, when an entry is found in teh routing table that is closer to the key

than the current node, then the request is forwarded to that node. In ADHT, entries

in a domain leafset are given priority over a routing table entry when the routing

59



0

1

2

3

4

5

6

7

10 100 1000 10000 100000

P
at

h 
Le

ng
th

Number of Nodes

ADHT bf=4
ADHT bf=16
ADHT bf=64

PASTRY bf=4
PASTRY bf=16
PASTRY bf=64

Figure 5.10: Average path length to root in Pastry versus ADHT for different
branching factors. All Pastry lines overlap as the branching factor does not effect
the Pastry routing procedure.

table entry corresponds to a node outside the domain. This routing procedure leads

to an increase in the hop count for reaching a root node for a key from any node

in the system. This path length increases to O(log N + l) from O(log N) in Pastry,

where N is the number of nodes in the system and l is the number of levels in the

administrative hierarchy, which in practice will grow no faster than log N .

5.5 Experimental Evaluation

Though the routing protocol of ADHT might lead to an increased number of hops to

reach the root for a key as compared to the original Pastry, the algorithm conforms

to the path convergence and locality properties and thus provides administrative

60



0

2

4

6

8

10

12

14

16

10 100 1000 10000 100000

P
er

ce
nt

ag
e 

of
 v

io
la

tio
ns

Number of Nodes

bf=4
bf=16
bf=64

Figure 5.11: Percentage of probe pairs whose paths to the root did not conform to
the path convergence property in Pastry. We do not show lines for ADHT as paths
of all probe pairs conform to the path convergence property in ADHT.

isolation. In Figure 5.10, we quantify the increased path length by comparisons

with unmodified Pastry for different sized networks with different branching factors

of the administrative hierarchy. The branching factor denote the maximum degree

of each internal node in the hierarchy. Note that the number of levels in the admin-

istrative hierarchy for an N node system with a branching factor b is logbN . All lines

corresponding to the Pastry overlap as the branching factor does not affect the per-

formance of the original Pastry. Observe that the difference between average path

length in ADHT compared to the path length in Pastry increases with decreasing

branching factor because the depth of the administrative hierarchy increases with

decreasing branching factor.

To quantify the performance of Pastry and ADHT with respect to the path

61



convergence property, we perform simulations with a large number of probe pairs

— each pair probing for a random key starting from two randomly chosen nodes. In

Figure 5.11, we plot the percentage of probe pairs that did not conform to the path

convergence property. When the branching factor is low, the domain hierarchy tree

is deeper and hence a large difference between Pastry and ADHT in the average

path length; but it is at these small domain sizes that the path convergence fails

more often with the original Pastry.

5.5.1 Zippering

For demonstrating the performance of ADHT Zippering, we build a DHT ensuring

that nodes in the DHT get partitioned into two equal sized partitions. Then we

inform some nodes of a partition about a node in the second partition (simulating the

node discovery mechanism mentioned in Section 5.3.4), which starts the zippering

activity. In Figure 5.12, we plot performance results for fast zippering described in

Section 5.3.4 and compare it with slow linear zippering. We measure performance

as time taken in terms of simulation steps and number of messages incurred during

zippering. We plot for two cases where in one case only one node discovers a node

in the other partition and in another case where randomly chosen 1% nodes in a

partition discover a node in the other partition. As described earlier, fast zippering

mends partitions in O(log2 N) steps in contrast to slow zippering which can take

O(N) steps; in terms of the number of messages, fast zippering incurs O(N log N)

messages in contrast to O(N) messages in slow zippering. Note that in ADHT, all

nodes actively search for nodes in other partitions. Hence, more than one node might

discover the partition and start the mending process. In the same figure, we also

plot the metrics comparing fast and slow zippering when the mending is initiated by

one percent of the nodes in the system. Note that when an f fraction of nodes start

the zippering process, then mending of partitions takes O(1/f) simulation steps in

62



 10

 100

 1000

 10000

 10  100  1000  10000  100000

N
um

be
r 

of
 r

ou
nd

s

Number of nodes

fast
linear

 10

 100

 1000

 10  100  1000  10000  100000

N
um

be
r 

of
 r

ou
nd

s

Number of nodes

fast
linear

(a)

 100

 1000

 10000

 100000

 1e+06

 10  100  1000  10000  100000

N
um

be
r 

of
 m

es
sa

ge
s

Number of nodes

fast
linear

 100

 1000

 10000

 100000

 1e+06

 10  100  1000  10000  100000

N
um

be
r 

of
 m

es
sa

ge
s

Number of nodes

fast
linear

(b)

Figure 5.12: Performance of ADHT in merging two equal sized partitions in two
cases — when only one node of a partition discovers a node in another partition
and when 1% of nodes in a partition discover a node in another partition. We
compare performance in case of both fast and slow zippering mechanisms described
in Section 5.3.4. (a) Time taken (in terms of number of simulation time steps) to
achieve leafset consistency. (b) Communication cost incurred for leafset consistency.

slow zippering and O(log2(1/f)) in fast zippering.

5.6 Related Work

Internal DHT trees typically do not satisfy domain locality properties required in

our system. Castro et al. [23] and Gummadi et al. [44] point out the importance

of path convergence from the perspective of achieving efficiency and investigate the

63



performance of Pastry and other DHT algorithms, respectively. In the later study,

domains of size 256 or more nodes are considered and their studies show that path

convergence is satisfied with high probability. In SDIMS, we expect the size of

administrative domains at lower levels to be much less than 256 and it is at these

small sizes that the path convergence fails more often (Refer to Graph 5.11 — smaller

branching factors incur higher percentage of violations).

SkipNet [47] provides domain restricted routing where a key search can be

limited to a specified domain. This interface can be used to ensure path convergence

by searching in the lowest domain and moving up to the next domain when the

search reaches the root in the current domain. Although this strategy guarantees

path convergence, it loses the aggregation tree abstraction property of DHTs as

the domain constrained routing might touch a node more than once (as it searches

forward and then backward to stay within a domain). Also the search can be quite

inefficient as it searches linearly through the nodes in a domain once the search

reaches a node in the required domain.

Mislove et al. build multiple rings [67] to provide administrative control and

autonomy in structured peer-to-peer networks. Nodes in a administrative domain

form a ring and few nodes of a domain act as gateways for that domain and par-

ticipate in a ring corresponding to the next higher domain. Each ring is assigned

an ID and lookups involve both a key and a ring ID. To enable locating a gateway

responsible for a ring ID, gateways of a ring advertise the corresponding ring ID

in higher level rings using standard DHT put interface. In contrast to ADHT, this

requires that a node, say acting as gateway at all levels, participate in O(l) separate

DHTs implying a maintenance overhead of O(l. log N), where l is the number of

levels in the administrative hierarchy and N is the number of nodes in the system.

An extension of Chord considers multiple virtual rings [53] focusing on ef-

ficiently supporting multiple subgroups using an existing Chord ring. Their ideas

64



might be applicable to achieve administrative isolation for a two-level administrative

hierarchy but it might be inefficient for multi-level hierarchy.

Coral [37, 38] is a peer-to-peer content distribution network which uses a

decentralized hierarchical clustering algorithm by which nodes can find each other

and form clusters of varying network diameters. Coral then builds different DHTs

at each level in the hierarchical clustering tree. In contrast to ADHT’s focus on

supporting administrative isolation, Coral focuses on finding a nearby node in terms

of network locality. They consider shallow hierarchies (three-level hierarchy) and

mainly focus on automatically building such hierarchies based on observed round-

trip times between nodes.

Similar mechanisms to Zippering are proposed for handling organizational

disconnects in SkipNet [48] and for merging two separately formed DHTs in Wil-

low [102].

5.7 Summary

Administrative isolation is an important requirement to satisfy in an information

management system for security, availability, efficiency. We present two proper-

ties — Path Locality and Path Convergence — that a DHT should satisfy so that

the aggregation trees extracted from such DHT satisfy the administrative isolation

property. Current DHT algorithms can achieve path locality but do not guarantee

path convergence. In this chapter, we have described a novel Autonomous DHT

(ADHT) that satisfies both path convergence and path locality.

ADHT builds upon and augments an existing DHT, Pastry, to achieve ad-

ministrative isolation through the following four key ideas: (i) Each node in ADHT

has multiple leafsets corresponding to levels of administrative hierarchy in which

that node participates, (ii) ADHT employs a novel key space assignment and a

novel routing algorithm that ensure search paths from nodes in a domain for key

65



converge at a node within that domain, (iii) A node joining ADHT locates a nearest

node in terms of domain nearness and uses that node as the bootstrap node to join

ADHT, and (iv) Each node in ADHT periodically tests for partitions in each domain

it participates and uses a Zippering mechanism to mend partitions.

We evaluate the performance of ADHT through simulation experiments. We

observe that whereas ADHT satisfies path convergence property, Pastry can incur

up to 16% violations in probe pairs. In terms of path length to the root, note that

ADHT path lengths are O(log N + l) compared to Pastry’s O(log N) where N is the

number of nodes in the network and l is the number of levels in the administrative

hierarchy. In simulations we observe that the path lengths in ADHT are modestly

higher than in Pastry and they are higher when the depth of administrative hierarchy

is deeper and this is precisely the case where Pastry incurs more path convergence

property violations.

66



Chapter 6

Robustness

6.1 Introduction

In large scale distributed systems, reconfigurations are a norm [13, 14, 82, 111].

Reconfigurations lead to changes in the DHT routing layer which in turn implies

changes in aggregation trees for different attributes. In SDIMS, aggregate values are

recomputed at the virtual nodes that are affected by changes in an aggregation tree.

Also the aggregate values are then propagated according to the install time UP and

DOWN parameters. Though this reaggregation mechanism is a safe default action, it

can incur high communication costs when reconfigurations happen at a high rate

(e.g., O(m log N) messages when a new node joins or an existing node leaves a

system with N machines and m attributes installed with Update-Up strategy). Also

probes that are being evaluated during reconfigurations might be delayed, fail, or

return incorrect results. In this chapter, we propose three techniques for masking

many failures — flexible API based, K-way hashing, and supernodes. We also

evaluate these three methods analytically and compare them to the basic strategy

of reaggregation on failures.

67



6.2 Reaggregation

In large scale distributed systems, reconfigurations are a norm [13, 14, 82, 111].

Even though individual machine failure rates might be very small, the rate of fail-

ures in the whole system can be quite high. For example, in a system with ten

thousand machines, if a machine’s average life time is three years, then the system

will experience a reconfiguration once in every three days. But individual machines

also experience transient failures during their lifetime due to network failures, hard-

ware failures, or simply due to an user shutting down her machines during night.

If individual machines experience transient failures at an average rate of once in a

week then we will observe reconfigurations in the whole system at an average rate

of one machine reconfiguration per minute.

Each reconfiguration in the system affects the aggregation trees in an SDIMS.

In the underlying Autonomous DHT, each node periodically checks the liveness

of the nodes in its routing table and the nodes in its leafsets. Also each node

periodically exchanges its leafsets and routing table information with its neighbors

in the leafsets. Each node maintains several backup nodes for each slot in the routing

table to replace the primary when it goes down or moves away from this node in

terms of network distance. Also when a node observes that a neighbor in one of its

leafsets is discovered failed, it removes the neighbor from the leafset. Thus, the next

hop for different keys might change over time due to reconfigurations in the system,

which in turn cause changes in the aggregation trees in the SDIMS.

Here we present an example to illustrate the effect of reconfigurations in the

system on the aggregation trees. Consider an ADHT with the next hop pointers for

each node shown in Table 6.1. For a key 111, the DHT tree and the aggregation

tree for this example are shown in Figure 6.1. Now consider a reconfiguration where

a node with ID 111 joins the system. We show the resulting pointer table after

node with ID 111 joins in Table 6.2. Note that the next hop pointers for some of

68



Node Pointers
000 (1XX, 100), (01X, 010), (001, 001)
001 (1XX, 101), (01X, 010), (000, 000)
010 (1XX, 110), (00X, 000), (011, -)
100 (0XX, 000), (11X, 110), (101, 101)
101 (0XX, 001), (11X, 110), (100, 100)
110 (0XX, 010), (10X, 100), (111, -)

Table 6.1: Example pointer table for a DHT comprising of six nodes and addresses
drawn from a 3-bit ID space

000 100 010 110 001101

L2

L1

L0

001010

101100

110

000

Figure 6.1: DHT tree for key=111 based on the pointer table in Table 6.1. We also
show the corresponding aggregation tree.

the nodes in the system change. This affects DHT trees and the aggregation trees.

The changes to the DHT tree and the aggregation tree corresponding to key 111 are

shown in Figure 6.2. Similarly, a reconfiguration involving a node leaving the system

affects the DHT trees and the aggregation trees. The pointer table when the node

with ID 101 leaves the system is shown in Table 6.3 and the corresponding changes

in the DHT tree and the aggregation tree for key 111 are shown in Figure 6.3.

6.2.1 Reaggregation Procedure

When an aggregation tree topology changes, the aggregate values at virtual nodes

might not correspond to the correct values. Note that aggregate value at a node is

computed by performing aggregation function across values at child nodes. When a

69



Node Pointers
000 (1XX, 100), (01X, 010), (001, 001)
001 (1XX, 111), (01X, 010), (000, 000)
010 (1XX, 110), (00X, 000), (011, -)
100 (0XX, 000), (11X, 110), (101, 101)
101 (0XX, 001), (11X, 111), (100, 100)

110 (0XX, 010), (10X, 100), (111, 111)

111 (0XX, 010), (10X, 101), (110, 110)

Table 6.2: Pointer table for the DHT shown in Table 6.1 after a node with ID 111
joins the DHT. The changed entries are highlighted in boxes.

000 100 010 110 001101
L0

L1

L2

L2

111001010

100

000

110

101

111

Figure 6.2: DHT tree for key=111 after a node with ID 111 joins the system. We
also show the corresponding aggregation tree. The dotted arrows denote the edges
in the DHT tree and the aggregation tree that change when the new node joins the
system.

Node Pointers
000 (1XX, 100), (01X, 010), (001, 001)
001 (1XX, 110) , (01X, 010), (000, 000)
010 (1XX, 110), (00X, 000), (011, -)
100 (0XX, 000), (11X, 110), (101, -)
101 (0XX, 001), (11X, 110), (100, 100)
110 (0XX, 010), (10X, 100), (111, -)

Table 6.3: Pointer table for the DHT shown in Table 6.1 after the node with ID 101
leaves the DHT. The changed entries are highlighted in boxes.

70



000 100 010 110 001101

L2

L1

L0X
001010

101100

110

000

X

Figure 6.3: DHT tree for key=111 after the node with ID 101 leaves the system. We
also show the corresponding aggregation tree. The dotted arrows denote the edges
in the DHT tree and the aggregation tree that change when the new node joins the
system.

level-l virtual node gets a new child, the child will forward its level-(l−1) aggregate

value to the virtual node if the attribute type is installed with UP> (l − 1). So the

virtual node needs to recompute its level-l aggregate value. Also if the virtual node

loses an existing child, then also it needs to recompute aggregate value. Similarly,

when a level-l virtual node gets a new parent, it needs to send its level-l aggregate

value to the new parent UP> l so that the parent can compute its aggregate value.

For example, consider the aggregation tree for key 111 in the DHT corresponding to

the pointer table presented in Table 6.1. We show the aggregation tree for this key

before and after the node with ID 101 leaves the system in Figure 6.4. Consider an

aggregation function that computes summation of given integer values and suppose it

is installed with Update-Up strategy. The values for the attributes at the individual

machines (leaf nodes) in the aggregation tree are shown next to those nodes and the

aggregate values next to the virtual nodes correspond to the aggregate values before

the node with ID 101 leaves the system. The values in boxes next to virtual nodes

A and R show the correct aggregate values that those nodes should have after the

node 101 leaves the system. Note that the node A obtained a new child in this case,

the root virtual node R lost a child, and the node with ID 001 got a new parent.

71



000 100 010 110 001101

L2

L1

L0X

A
105

18
R

3

12

7

6 41 4 2 1

Figure 6.4: We consider a simple summation operation as aggregation function.
Here we show the aggregation tree for an attribute with key=111 before and after
the node with ID 101 leaves the system for the example in Table 6.1. We show the
aggregate values next to each node that are computed before the node 101 leaves
the system. The values in boxes next to nodes A and R are the aggregate values
after node 101 leaves the system and after the aggregation tree structure changes.

Algorithm 2 onNewParent(parent)
1: probeSet ← probes waiting for response from previous parent
2: if probeSet 6= ∅ then
3: send probeSet to the new parent
4: end if
5: Forward the aggregation function along with install parameters
6: if UP > myLevel then
7: Send local aggregate value to the new parent
8: end if

The pseudo-code for the actions of a virtual node in an aggregation tree

upon reconfigurations is shown in Algorithms 2, 3, and 4 — onNewParent(parent) is

invoked when a virtual node obtains a new parent, onFailedChild(child) is invoked

when a virtual node loses an existing child, and onNewChild is invoked when a

virtual node gets a new child.

72



Algorithm 3 onFailedChild(child)
1: Remove child from the children set
2: probeSet ← probes waiting for response from child
3: if probeSet 6= ∅ then
4: re-evaluate probes
5: end if
6: Recompute the local aggregate value
7: if local aggregate value changed then
8: if UP > myLevel AND parent exists then
9: Send local aggregate value to the parent

10: end if
11: if DOWN > 1 then
12: Send local aggregate value to all children
13: end if
14: end if

Algorithm 4 onNewChild(child)
1: Add child to the children set
2: Forward the aggregation function along with install parameters
3: for all level-l′ aggregate values this node has do
4: if DOWN > l′ − l then
5: Send level-l′ aggregate value to the child
6: end if
7: end for

6.2.2 Reaggregation Costs

Reaggregation of data is performed when reconfigurations happen in the system

leading to changes in the aggregation trees. Reaggregations can be expensive in

terms of communication costs depending on how extensively the system is recon-

figured. Also probes that are outstanding when reconfigurations happen can be

affected — they may fail or be delayed as aggregation trees are reconfiguring. In

the following, we analyze reaggregation costs both in terms of message cost and in

terms of probe success probability during reconfigurations.

Consider m attributes and N nodes in a system. Suppose all attributes have

the same aggregation strategy of Update-Up. We consider a reconfiguration event

73



000 100 010 110 001101
L0

L1

L2

L2

111

Figure 6.5: Best case example for changes in an aggregation tree on a node join.
Here we show the aggregation tree for key 111 before and after node 111 joins. Note
that adding node 111 did not change the aggregation tree for key 111 before node
111 joins.

with a single node join. We present best case, worst case, and average case message

costs for this reconfiguration event.

Best case: When a machine A with ID IDA joins, it is chosen as the next hop

by only one node that was previously for key IDA and no other node in the system

uses A as the next hop for any bit correction. In this case, each virtual node hosted

on this new node has only one child, a lower level virtual node hosted on the same

machine. Figure 6.5 illustrates an aggregation tree for an attribute with key 111

before and after a node with ID 111 joins. The number of messages that machine A

sends to other machines is (m − m
N ) (machine A will host the root for aggregation

trees corresponding to m
N attributes). Machine A will send m

2 messages to its first

bit correcting neighbor in the DHT. Each of these messages can further cause up to

log N messages as this message causes recomputation and further propagation of the

aggregate value at the parent virtual node. Machine A will also send m
4 messages

to its second bit correcting neighbor and each of those messages can further cause

(log N − 1) messages, send m
8 to the third bit correcting neighbor which can further

74



000 100 010 110 001101
L0

L1

L2

L2

111

Figure 6.6: Worst case example for changes in an aggregation tree on a node join.
Here we show the aggregation tree for key 111 before and after node 111 joins.

cause (log N − 2) messages, and so on. Also the previous root for IDA in the DHT

will send about m
N messages to machine A as A will host the new root for the

aggregation trees corresponding to about m
N attributes. Thus the total number of

messages in the system due to this node’s join can be

m

2
log N +

m

4
(log N − 1) + · · ·+ m

N
= O(m log N)

Worst case: In the best case, only one node chooses machine A as the next hop.

In the worst case, machine A can be chosen as first bit correcting neighbor by about
N
2 machines, as second bit correcting neighbor by about N

4 machines, and so on.

An example aggregation tree change in a worst case is depicted in Figure 6.6. Note

that the machines that chose A as the first bit correcting neighbor will send about
m
2 messages each of which causes recomputation of aggregate value at level-1 virtual

node hosted on machine A and propagation of the aggregate value upwards till root

causing about log N messages. Thus the total number of messages due to this node’s

join can be

75



(
N

2

) (
m

2

)
log N +

(
N

4

) (
m

4

)
(log N − 1) + · · ·+

(
m

N

)
= O(Nm log N)

Average case: In an average case, a new machine A is chosen as an ith bit

correcting neighbor by a small number of other machines. Suppose the number of

such machine be a small constant c for each position of the ID. Reasoning similarly

to the analysis in the previous cases, the total number of messages due to this

reconfiguration event can be

c

(
m

2

)
log N + c

(
m

4

)
(log N − 1) + · · ·+

(
m

N

)
= O(cm log N)

Message Cost with Churn: Consider a system with ten thousand machines

and ten thousand attributes. With reconfigurations happening at a rate of one in

a minute, the reaggregation will incur about 260000 msgs/min (with c=2, cm log N

= 2× 10000× 13). Assuming a message size of 256 bytes, this will cause on average

about 4 Mbps traffic in the system. Note that if we did perform reaggregations only

when machines really left the system or joined the system (which happens much

rarely), then the cost will be significantly smaller. For reconfigurations happening

at a rate of one in three years, reaggregation will incur an average of only 1Kbps

traffic.

Probe failure probability Reconfigurations in the system not only incur com-

munication costs for repairing the system but also affect the probes happening in

the system. Here we compute the probability of a probe failure due to reconfigura-

tions. Assume p be the probability of a single node failure in an aggregation. We

assume independence in the failures of the individual nodes1. We consider a probe
1Note that multiple virtual nodes can be hosted on a single machine. Hence there is a correlation

in the failure of the nodes in an aggregation tree. To simplify the analysis, we ignore this correlation.

76



to be failed if any node on the path from the probing leaf node to the nodes in an

aggregation tree from which data is collected is affected by the reconfiguration. For

example, in case of Update-Up, we consider a probe to be failed if any node on the

path from the probing leaf node to the root node in an aggregation tree is affected

by the reconfiguration. Hence the probability of a probe failure, PUpdate−Up, is

PUpdate−Up = 1− all nodes on the path do not fail

= (1− (1− p)log N ) (6.1)

If the attribute is installed with UP=all and DOWN=d with d > 0, then the

probability of failure will be lesser than in the case of Update-Up. The probability

of probe failure, PDOWN , in this case is

PDOWN = 1− initial (log N − d) nodes on path do not fail

= (1− (1− p)(log N−d)) (6.2)

If the attribute is installed with UP=u with u < maxLevel and DOWN=0,

then the probe failure probability increases as the probe has to access more nodes

to obtain the global aggregate value. With UP=u, a probe has to access u+2(log N−u)

nodes in the system. Hence the probability of probe failure, PUP , is

PUP = (1− (1− p)u+2(log N−u)
) (6.3)

6.2.3 Lazy Reaggregation

Reaggregation of data can be expensive in terms of the communication cost as

analyzed in the previous section. Moreover, a single reconfiguration event in the

system can lead to multiple reconfigurations of an aggregation tree. During such

reconfigurations, the system can cause high traffic in the network possibly disrupting

77



current updates and probes happening in the SDIMS and disrupting other flows in

the system. To circumvent this, we perform lazy reaggregation where aggregate

values computed in response to reconfigurations at a virtual node are propagated to

its parent and/or children lazily in the background. Also for applications to tradeoff

communication costs with consistency in the responses for probes, in our flexible

API we allow applications to perform fast reaggregation.

A single reconfiguration event in the system can cause multiple reconfigura-

tions in an aggregation tree. In the previous examples, we show all aggregation tree

changes as if happening in one step. In reality, a node in a DHT loses an entry in

its routing table and it might take some time for that node to discover another node

to fill that entry. Losing an entry cause changes in some aggregation trees and fill-

ing with a new entry causes further changes. For example, in Figure 6.3, when 101

leaves, it might happen that node 001 have an empty entry for its first bit correcting

pointer (1XX entry). In this case node 001 will route to node 010, its immediate

neighbor on the ring, for key 111. But once the routing entry correcting the first

bit is filled with a pointer to node 110, then the aggregation tree structure changes

once more and is connected now. Note that the reaggregation procedure described

above starts reaggregation as soon as any changes are observed in the aggregation

tree and hence might perform multiple reaggregations on an aggregation tree for a

single reconfiguration event.

Reaggregating data immediately upon observing reconfigurations in an ag-

gregation tree, as described in the previous sections, can cause considerable traffic

in the system. This is further exacerbated as a single reconfiguration event in the

system can cause multiple reconfigurations of an aggregation tree. To alleviate this

problem, the virtual nodes of an aggregation tree in SDIMS do not propagate reag-

gregated values as soon as they detect changes to the aggregation tree. Instead the

messages are sent lazily over time. For example, on detecting a new parent for a

78



prefix, say 1XXX, a node with ID 0XXX has to resend all attributes whose keys

start with 1 and installed with Update-Up strategy to the new parent, which can

be about half of the attributes at that node. Instead of sending all aggregate values

for all those attributes at available bandwidth, the node will send them lazily as a

background flow.

The lazy aggregation scheme propagates the aggregates in the system in a

lazy fashion. Until the time the lazy reaggregation is in progress, probes in SDIMS

might return inconsistent values. To allow applications to tradeoff communication

costs with better consistency in the probe results, SDIMS provides UP and DOWN

knobs in the Probe API (refer to Table 3.3) that applications can use to force fast

re-aggregation of aggregate values. This is particularly useful when applications can

detect that the answers returned by the SDIMS are stale. For example, consider a

file location application built on the SDIMS. Suppose a probe for a file foo returns a

machine A as the answer. Now, when contacted, if that machine A informs that it

does not host file foo any more, then we know that the SDIMS aggregate values are

currently inconsistent. If an application detects or suspects the answer for a probe

as stale, then it can re-issue the probe setting UP and DOWN parameters to force fast

reaggregation of the data.

6.3 Masking Temporary Reconfigurations

The reaggregation procedure described in the previous section is a necessary basic

mechanism for handling reconfigurations in SDIMS. But in practice, many recon-

figurations are transient that happen due to network failures like a router outage

taking down connectivity to a set of machines or high loads on a machine filling

network buffers and slowing down the machine [18, 54, 111]. For example, in the

PlanetLab testbed [76] that does not have any dedicated administrative support, we

observe that 50% of the network failures span less than an hour and 70% of network

79



failures span less than six hours [111]. Also most of these temporary reconfigura-

tions do not affect the state of the SDIMS at the machines. Hence, reaggregating

data for every reconfiguration might be unnecessary and expensive. We refer to

temporary reconfigurations as ups/downs in contrast to joins/leaves which require

reaggregation of data in SDIMS.

Reaggregation cost on transient reconfigurations can be avoided by not re-

pairing aggregation trees on ups/downs but repair only on joins/leaves. This can be

achieved by controlling the timeout used to detect a machine failure. In the underly-

ing ADHT, each machine periodically exchanges keepAlive messages with O(log N)

other nodes that are in its routing table or in the leafsets to check the liveliness of

those machines. A machine is considered failed when that machine fails to respond

to a keepAlive message within a specified timeout value. Thus, by choosing a large

timeout value, unnecessary short failures of machines can be masked.

Though increasing the failure timeout reduces the number of reconfigurations

and hence the cost for reaggregations, some probes in the system might fail or incur

a long response latency. In SDIMS, nodes re-evaluate probes when they detect the

failure of the node to which they have forwarded a probe. If we mask the recovery

actions for temporary failures by increasing the timeout for failure detection, then

the outstanding probes will either wait until the aggregation tree is reconfigured,

which can be long, or timeout quickly and respond with a probeFailure message.

Thus, with longer failure timeout periods, more probes will be affected. Also note

that many nodes on a probe path simply help in forwarding probe and probe re-

sponses. For example, with Update-Up strategy, a probe from a node traverses

O(log N) nodes to reach the root virtual node hosting the global aggregate value.

Failure of any node on the path will result in failure of the probe.

In SDIMS, we propose three techniques that replicate either the aggregate

values at all levels or the whole virtual nodes to reduce the effect of long failure

80



L0

L3

L2

L1

100 000 110 010 111 011 101 001
A GB C D E F H

Figure 6.7: Using SDIMS flexible API: For an attribute with UP=all and DOWN=1 set
at install time, the global aggregate and all intermediate aggregates are propagated
down by one level. In the figure, we only show the propagation of global aggregate
values. When node B fails taking down all virtual nodes it is hosting (shown in
ellipse), response latency of probes at nodes E, F, G, and H is not affected as
the global aggregate value is replicated on node H. The responses might be stale
depending on the aggregation function and the values for those attributes.

timeout on probes — (1) By exploiting the flexible API, (2) K-way hashing, and (3)

Supernodes. We detail these techniques in the following sections and analyze and

compare their robustness and performance properties in Section 6.4.

6.3.1 Exploiting Flexible API

In our system, applications can control replication of aggregate values at different

levels using UP and DOWN knobs in the Install API; with large UP and DOWN values,

aggregates at the intermediate virtual nodes in an aggregation tree are propagated

to more nodes in the system. By reducing the number of nodes that have to be

accessed to answer a probe, applications can reduce the probability of incorrect

results occurring due to the failure of nodes that do not contribute to the aggregate.

For example, in a file location application, using a non-zero positive DOWN parameter

in install ensures that a file’s global aggregate is replicated on nodes other than the

81



000 100 010 110 001 101 011 111

L3

L2

L1

L0

corresponding to key 000
Aggregation tree

Aggregation tree
corresponding to key 111

Figure 6.8: K-way hashing: Aggregate an attribute along multiple aggregation trees
corresponding to different keys for robustness in the face of reconfigurations. Note
that virtual nodes of different aggregation trees are hosted on different machines in
the system improving robustness to machine failures.

root. Probes for the file location can then be answered without accessing the root;

hence they are not affected by the failure of the root. In Figure 6.7, we present

an example illustrating the usefulness of the DOWN parameter in SDIMS install API.

Note that even when node B fails taking down all virtual nodes it is hosting (shown

in ellipse), response latency of probes at nodes E, F, G, and H is not affected as the

global aggregate value is replicated on node H. However, note that this technique is

not appropriate in some cases. An aggregate value in file location system is valid as

long as the node hosting the file is active irrespective of the status of other nodes

in the system, but an application that counts the number of machines in a system

may receive incorrect results irrespective of replication. If reconfigurations are only

transient (like a node temporarily not responding due to a burst of load or short

network failures), the replicated aggregate closely or correctly resembles the current

state.

82



6.3.2 K-way Hashing

In k-way hashing, each attribute key is aggregated along k different aggregation

trees corresponding to keys generated from using k different hash functions, chosen

a priori, on the attribute key. In SDIMS, an attribute is aggregated along an ag-

gregation tree corresponding to key = hash(attribute) and the intermediate virtual

nodes of different aggregation trees are hosted on different physical machines in the

system. For example, we show the aggregation trees corresponding to keys 111 and

000 in a eight node system in Figure 6.8. Observe that different nodes host virtual

nodes of the aggregation trees and hence the failure of a node might drastically

affect one aggregation tree but will not affect the other aggregation tree.

In K-way hashing, we exploit the load balancing property of SDIMS for

robustness. Instead of aggregating an attribute along one aggregation tree, we ag-

gregate an attribute along multiple aggregation trees. For example, when an update

is performed for an attribute (attrType, attrName), we perform K updates at the

leaf node for attributes (attrType, attrNamePAD1), (attrType, attrNamePAD2), ...,

(attrType, attrNamePADK) with same value. Similarly, when a probe for aggregate

of that attribute is performed, we probe along all K trees for the requested aggregate

value and return all probe responses to the application. The application will have

different options to interpret those return values — compute a simple majority, a

median, etc., Also, instead of waiting for all the answers to arrive, SDIMS returns

the responses as they arrive to reduce probe latency effectively.

Reconfigurations in the system still affect the K-way hashing strategy. Indi-

vidual trees need to be repaired when a machine joins or leaves the system. But the

frequency with which such repairs are done is reduced by choosing a large timeout

value for failure detection. When reconfiguration is indeed detected, the tree and

the aggregate values are repaired as described in the reaggregation section.

K-way hashing masks unavailability for probes at all stages of the reconstruc-

83



tion in the face of reconfigurations as the probes can respond without needing to

wait for repairs to be completed. Note that responses for the probe might or might

not be consistent during reconfigurations depending on whether those reconfigura-

tions affected the consistency of previously aggregated value (as discussed in the

previous section).

6.3.3 Supernodes

Instead of hosting a virtual node on a single physical machine, the Supernode ap-

proach is to replicate each virtual node in an aggregation tree on multiple physical

nodes using either the state machine replication approach [55, 89] or the primary-

backup protocols [20], two fundamental paradigms for implementing fault-tolerant

distributed systems. The state machine replication approach would further involve

delivering update and probe operations that access or modify the state of the vir-

tual node to all replicas in the same order, which can be achieved by employing the

Paxos algorithm of Lamport [56, 57]. Whereas K-way hashing is a simple scheme

for replicating aggregate values in space without requiring any changes to SDIMS

or underlying ADHT algorithms, the Supernode approach involves replicating all

virtual nodes and thus need changes in SDIMS and ADHT algorithms. But Supern-

odes have better robustness properties (refer to Section 6.4) than K-way hashing

while both incur similar communication costs for achieving the same amount of

replication. In Figure 6.9, we illustrate an example where each virtual node in an

aggregation tree is replicated on two physical machines.

Previously, several researchers have proposed node replication approaches for

achieving robustness in structured peer-to-peer networks, like Super-Peer [112], su-

per nodes [62], and Brocade [117]. In all these proposals, a DHT node is replicated at

multiple physical machines which differs from our approach where virtual nodes are

replicated on different machines. A key advantage in our approach is the flexibility

84



000 100 010 110 001 101 011 111

L3

L2

L1

L0

Figure 6.9: Supernodes: Example with each virtual node replicated on two physical
machines. The dotted virtual nodes replicate the corresponding virtual nodes shown
in solid circles connected by dotted lines.

in choosing replicas. Note that a virtual node that corrects a few bits of a key (near

leaves in an aggregation tree) aggregates information about nearby nodes and hence

it is efficient to replicate such virtual nodes on nearby nodes; a virtual node that

is higher up in an aggregation tree aggregates information about a large number of

nodes in the system and hence should be replicated on machines distributed widely

to handle correlation in failures like subnetwork disconnections. Simply replicating

a full DHT node restricts these options on how machines are chosen to host replicas.

Astrolabe [101] employs a similar technique as Supernodes to achieve robustness to

reconfigurations in the system. In Astrolabe, a single aggregation tree is used to

aggregate all attributes and this aggregation tree is isomorphic to the administrative

hierarchy. A virtual node in this aggregation tree corresponds to aggregating values

from nodes in a domain. Each such virtual node is replicated on all machines in

that domain and nodes use gossiping to maintain the replicas.

Based on the information at a virtual node that is replicated, we have two

variants of Supernode approach: (A) replicate only the aggregate tree structure:

In this variant, only the aggregation tree structure is replicated but the local state

85



of a virtual node (local aggregate values, cached child and ancestor values) is not

replicated. Since the structure is maintained even on failures, queries can be an-

swered by re-aggregating data on the structure. (B) replicate both structure and

local state of a virtual node: this is full behavioral replication at both the ADHT

layer and the local state of a virtual node and hence applications do not perceive

any difference during a node failure. Though approach A masks DHT repair time,

data still needs to be reaggregated - but data reaggregation can be performed on

demand only for attributes that are probed and this needs to be done only for failed

virtual nodes and reaggregation will not affect the whole path from the failed node

to the root in an aggregation tree (that happens in case of non-node replication

approaches). Approach B masks even those reaggregation costs but at the expense

of extra communication cost for data replication during normal operation.

6.4 Analytic Comparison

In this section, we analyze message costs for different techniques proposed in the

previous section to handle reconfiguration in an SDIMS during normal operation

when there are no failures. We also analyze robustness of these approaches in terms

of probability of a probe failure.

6.4.1 Cost analysis

We analyze the number of messages incurred by different approaches described in

previous sections and present communication costs for the underlying ADHT, aver-

age number of messages per update operation, and average number of messages per

probe operation.

Techniques that simply use the flexible API by varying UP and DOWN param-

eters in the install interface and K-way hashing do not incur any extra cost at the

ADHT layer as they do not change the way ADHT works. The ADHT cost in these

86



Strategy ADHT Cost Update Cost Probe Cost
Update-Up O(log N) O(log N) O(log N)
DOWN=d O(log N) O(2d log N) O(log N − log d)

K-way hashing O(log N) O(k log N) O(k log N)
Supernode O(k2 log N) O(k log N) O(log N)

Table 6.4: Message costs for ADHT maintenance and for update and probe opera-
tions during normal operation in different techniques.

cases remain O(log N) cost per node that each node incurs to track liveliness of

nodes in its routing table and its leafsets. Supernode approaches incur extra cost

at the ADHT layer as each virtual node is replicated on multiple machines. For

k-way replication, ADHT on each node will track O(k2 log N) nodes. Note that

each node in ADHT in the Supernodes case hosts about O(k log N) virtual nodes

— at each level l, it will replicate level-l virtual node of about k other nodes. Since

each virtual node itself is hosted on k machines, each machine in total will track

O(k2 log N) other machines. We tabulate ADHT costs and the average cost for

update and probe operations for different techniques in Table 6.4.

6.4.2 Robustness analysis

Let p be the probability for failure of any node and suppose we have N nodes

in the system. Thus the average path length from a leaf node to the root in an

aggregation tree is log N . Here also, to simplify the analysis, we assume that failures

are independent.

The probability of an access failure at a leaf node in the case of k-way hashing,

Phash, is

Phash = all k paths to root fail

= (one path fails)k

= (1 - (all nodes on a path are good))k

87



Strategy Probe failure Probe latency(normal)
Update-Up (1− (1− p)log N ) O(log N)
DOWN=d (1− (1− p)(log N−log d)) O(log N − log d)

K-way hashing (1− (1− p)log N )k O(log N)
Supernode 1− (1− pk)log N O(log N)

Table 6.5: Performance in terms of probe failure probability and probe latency
during normal operation for different techniques.

= (1− (1− p)log N )k (6.4)

In case of Supernodes with k replicas, probability of access failure, Psupernode, is

Psupernode = 1− Prob. of successful access

= 1− (at least one replica good at all levels)

= 1− (at least one replica is good out of k replicas)log N

= 1− (1− pk)log N (6.5)

These functions are compared in Figure 6.10 for a network with 213 = 8192

machines and with a replication factor k = 4. Clearly, the Supernode approach is

more robust than either K-way hashing or using DOWN=2 (DOWN=2 setting achieves

a similar amount of replication as k=4).

The probe failure probabilities in different techniques are tabulated in Ta-

ble 6.5. We also present probe latencies during normal operation in that table. We

tabulate probe latencies for the successful probes during reconfiguration events in

Table 6.6. Observe that the probe latencies during failures in case of the Supernode

approach can be higher as it depends on the timeout, Tswicth, used for detecting

when a replica is down. Though the probe latency might be higher, the number of

probes that fail in the Supernode approach is smaller than the other techniques.

88



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
ro

ba
bi

lit
y 

of
 a

n 
ac

ce
ss

 fa
ilu

re

Probability of a node failure

DOWN=2
4-way hashing

Supernode with k=4

Figure 6.10: The probability of a probe getting affected by failure of nodes in the
system for three different replication in space strategies. These graphs are based
on analytic models shown in Equations 6.2, 6.4, and 6.5 for k=4 and log N=13.
DOWN=2 causes replicating a virtual node’s aggregate value at about 4 other virtual
nodes.

Strategy Probe Latency (failures)
Update-Up O(log N)
DOWN=d O(log N − log d)

K-way hashing O(log N)
Supernode O(Tswitch log N)

Table 6.6: Performance in terms of probe latency during failures. The latency
refers to latencies for only successful probes. In the Supernode approach, Tswitch

corresponds to the timeout that is used to detect when a replica is down.

6.5 Discussion

Though K-way hashing and flexible API approaches are simpler than the Supern-

ode approach, the probability of an access failure is greater than in the Supernode

approach for a same replication factor. DHT maintenance overheads in the k-way

89



hashing and the flexible API approach during normal operation are lower than the

Supernode approach because in the Supernode approach each node needs to track

liveness of neighbors of k other nodes. A key advantage of k-way hashing and DOWN

based approach is that applications can decide the individual replication factor for

attributes they care about. But, the replication in the Supernode approach is done

for all attributes, irrespective of the fault-tolerance required for an attriute; hence,

this approach might incur higher overheads. Though the flexible API approach has

higher probability of probe access failure compared to the K-way hashing, it incurs

lower probe response latency during normal failure-free operation as the probes need

to traverse fewer nodes in an aggregation tree.

The prototype currently supports DOWN parameter-based replication in space

and the K-way hashing. Further investigation is underway to design and evaluate

the Supernode approach for robustness in SDIMS.

90



Chapter 7

Shruti: Dynamic Adaptation

7.1 Introduction

Most existing aggregation systems use a static aggregation strategy that can perform

well for some workloads but poorly for others, which prevents any system from be-

ing a truly general solution. For example, read-dominated attributes like numCPUs

rarely change in value, whereas write-dominated attributes like numProcesses change

quite often. An aggregation approach tuned for read-dominated attributes will con-

sume high bandwidth when applied to write-dominated attributes. Conversely, an

approach tuned for write-dominated attributes will suffer from unnecessary query

latency or imprecision for read-dominated attributes. Also, the read-write access

patterns may differ for different sets of nodes (spatial heterogeneity) and may change

over time (temporal heterogeneity) requiring different aggregation strategies at dif-

ferent times and at different parts of the system [19, 91, 106].

Most aggregation systems have a single fixed aggregation mechanism. In

Astrolabe [101], aggregation is performed at all levels in the aggregation tree and

the aggregated values at each level are propagated to all nodes in the subtree on

writes. Such strategy might incur high communication overheads when aggregating

91



attributes that change often. To limit the communication cost, Astrolabe throttles

the rate at which information is propagated around in the system which might lead

to unnecessary inconsistency in probe responses for attributes that rarely change.

In Ganglia [41] and DHT based systems, aggregation is performed up to root on

writes. In MDS-2 [36], no aggregation is performed on writes but the information

is aggregated on reads.

SDIMS is the first aggregation framework that allows applications to control

the aggregation aggressiveness in the system. SDIMS provides two knobs UP and

DOWN that applications set at an aggregation function install time to denote how far

up aggregation is performed in an aggregation tree and how far down the aggregate

values at a level are propagated, respectively. SDIMS also allows applications to

perform continuous probes to handle spatial and temporal heterogeneity. Though

SDIMS exposes such flexibility to applications, it requires applications to know the

read and write access patterns a priori to choose an appropriate strategy.

In this chapter, we present Shruti, a system built on SDIMS, that tracks reads

and writes at different levels in an aggregation tree and dynamically decides for how

many levels aggregation is performed and how far aggregate values are propagated

downwards on writes. Shruti adapts the aggregation aggressiveness based on the

observed read and write patterns aiming to optimize the overall communication costs

(the sum of read and write message costs). We propose a lease-based mechanism in

which a node grants a lease for an aggregate value to its parent or a child to inform

that it will forward any changes to that aggregate value.

Our simulation results show that at any static globally uniform read-write

operation ratio in the system, Shruti incurs similar cost as an optimal static UP

and DOWN strategy. Also, in comparison to a single strategy across attributes of

same type, Shruti through adapting to different strategies for different attributes

achieves half-an-order magnitude lower average messages per operation. Our results

92



show that Shruti outperforms static aggregation strategies at almost all read-write

ratios when there is a spatial heterogeneity in the access patterns. Finally we also

show that Shruti efficiently adapts to temporal heterogeneity in the read and write

patterns.

We describe the architecture of Shruti in Section 7.2, and then present our

initial simulation results comparing Shruti to SDIMS static strategies in Section 7.3.

Section 7.4 details related work and we summarize this chapter in Section 7.5.

7.2 Architecture

Shruti dynamically alters the propagation of aggregate values on writes in the sys-

tem so that overall communication cost — number of messages incurred on probes

and updates — is minimized. Shruti tracks updates and probes happening at all

nodes in an aggregation tree and chooses an appropriate aggregation strategy based

on that information. Shruti runs on each node (all intermediate and leaf nodes)

in the aggregation tree and decides when that node will send any updates in the

aggregate value to the node’s parent and node’s children. We propose a lease-based

architecture where a node conveys its intention to keep forwarding any updates for

an aggregate to another node through granting a lease for that aggregate. In the

following sections, we present more details about the lease architecture, data struc-

tures that Shruti maintains to track updates and probes, how Shruti makes leasing

decisions, and how Shruti handles reconfigurations.

7.2.1 Leases

In SDIMS, applications set UP and DOWN values at the install time of an aggregation

function for an attribute type letting all nodes in the aggregation tree know how far

to propagate the aggregate values on writes. All nodes need to know this information

so that when a node gets a probe it can decide whether its local state includes the

93



A

P

Q

C

Level−l

Level−(l+1)

Level−(l+2)

Level−(l−1)

Figure 7.1: An example illustrating propagation of aggregate values in a part of an
aggregation tree for the SDIMS static strategy UP=all, DOWN=2.

aggregate value needed for answering the probe. For example, consider an attribute

with UP=all and DOWN=2. We illustrate how aggregates are propagated for a part of

an aggregation tree in Figure 7.1. Since UP is set to all, the level-l node A knows that

it has to propagate any updates to the level-l aggregate to its parent. Since DOWN

is two, it propagates the level-l aggregate and also any updates it receives from its

parent for the level-(l+1) aggregate to its children. Similarly, this node’s parent will

propagate down any changes to either the level-(l + 1) aggregate or the level-(l + 2)

aggregate. Now, if this node receives a probe for the level-(l + 2) aggregate, then it

can respond without needing to further probe its parent. By knowing UP and DOWN

a priori for an attribute, each node knows the rendezvous points between updates

and probes for that attribute.

If we want to dynamically adapt the aggregation aggressiveness based on the

94



workload for an attribute, then nodes in the tree need to have enough information

for responding to probes. Shruti employs a lease-based scheme to control the level

of aggregation upon updates and to let each node know how to respond to probes.

A node at level l that has leases from all its children can respond to probes for the

level l aggregate without needing to probe its children. If it also has the lease from

the parent for a level l′ > l aggregate, then it can respond to the probes for the

level-l′ aggregate without needing to send a probe to its parent. In Shruti, after a

node A grants a lease for level l aggregate to another node B, then node A will send

any changes to the level-l aggregate value until node B relinquishes that lease or

node A revokes the lease.

Shruti does not exclusively work with leases to decide the propagation of

aggregate values in an aggregation tree. Shruti also respects any application spec-

ified install time UP and DOWN parameters for an attribute type. Shruti uses the

lease-based technique to extend the propagation of aggregate values in an aggrega-

tion tree beyond the amount of propagation an SDIMS static strategy allows. For

example, if UP=all and DOWN=0 setting is chosen at install time of an attribute type,

Shruti will always at least propagate changes in aggregate values up to the root of

an aggregation tree. Shruti might further propagate aggregates down the tree to

optimize communication bandwidth.

Invariants To respond correctly to probes, the leases that Shruti sets need to

satisfy certain invariants. Consider the state of leases for an attribute in the Fig-

ure 7.2. We assume that the corresponding type is installed with UP=0 and DOWN=0.

We show leases with thick arrows and denote the levels corresponding to leases in

parenthesis next to the arrows. Note that in this state, node A cannot lease the

level-1 aggregate to its parent as it does not have a level-0 lease from one of its

children B. Consider a situation where node A indeed issued a lease for level-1 to

its parent P. Since updates to the level-0 aggregate at node B are not propagated

95



B C ED

(0)

Level 0

Level 2

Level 1
A

P

(0) (0)

(1)

F

Figure 7.2: An example lease state in an aggregation tree. Thick arrows represent
the leases and the corresponding lease levels are shown in parenthesis next to the
arrows.

to node A, updates to the level-1 aggregate that node A propagates to its parent P

will be incorrect. Any probe initiated at machines in the subtrees rooted at siblings

of A (e.g., machine D) will receive an incorrect probe response. Another point to

observe in Figure 7.2 is that node F cannot grant a lease for the level-2 aggregate

to its children as it does not have a lease for the level-2 aggregate from its parent.

In the following, we present two invariants that Shruti maintains during

setting up and tearing down leases to ensure correct rendezvous between probes and

updates.

Invariant 1 A node at level l can lease level l to either parent or a child only if it

has leases for level (l−1) from all its children or if UP for the corresponding attribute

type is ≥ l.

Invariant 2 A node at level l can lease level l′ > l to a child only if it has the lease

for level l′ from its parent, if it has no parent, or if UP ≥ l′ and DOWN ≥ (l′− l) holds.

The above invariants also imply the following two conditions regarding when

a node can relinquish a lease it has obtained from a neighbor of that node.

96



1. A node can relinquish a lease for a level l′ aggregate received from its parent

only if the level l′ aggregate is not leased down to any child.

2. A node at level l can relinquish a lease acquired from child only if the level l

aggregate is not leased to the parent or to any child.

7.2.2 Leasing Policy

Shruti keeps track of the updates and probes at each node and dynamically sets

up and tears down leases between nodes to optimize overall communication costs

(sum of read and write costs). Briefly, it is useful for a node A to grant a lease for

a level l aggregate to another node B only if the number of messages that A and

B exchange on probes when the lease is not granted is greater than the number of

update messages that A has to forward to B after granting the lease. Note that

each probe causes exchange of two messages between A and B — one for the query

and one for a response; whereas each update causes only one message between two

nodes. So a lease can be granted if we expect the number of probes to be even half

of the number of updates. When the number of updates a node receives when a

lease is set goes beyond two times the number of probes, then it is better to remove

the lease.

We exploit dynamic adaptation of the aggregation strategies not only to

optimize overall communication costs but also to trade-off bandwidth with probe

response latencies. For example, if leases are set aggressively (say even when we ex-

pect probes to be far less than the half of the number of updates) but removed lazily

(say remove only when the number of updates is four times more than the number

of probes), then the average probe response times will be smaller but at the cost

of increased communication costs. Shruti provides two knobs for the applications

to control the lease aggressiveness - one knob to decide how leases are granted and

another to decide how they are removed. Overall, Shruti supports and extends the

97



flexibility provided by the static UP and DOWN SDIMS strategies.

In the following, we first describe the data structures that Shruti maintains

on each node, and then describe the knobs that Shruti exposes to the applications

to set a leasing policy.

Data Structures Shruti on each node maintains several logs for tracking updates

and probes happening at that node. On a level-l node in an aggregation tree, Shruti

maintains the following logs with timestamps:

• LocalHistory On each node, Shruti maintains timestamps of the most recent

probe and update for each level from either its parent or any of its children.

On a level l node, the updates and probes for level l′ ≥ l are accounted for

the respective level l′. But updates received from the node’s children for level

(l−1) aggregate are accounted as updates for level l, since those updates affect

the level-l aggregate.

• NeighborHistory This data structure on a node is used to track all probes

and updates for all levels from each neighbor of a node (parent and children).

A node maintains neighbor history for a level l′ aggregate with respect to

another node B (aka history of updates and probes from node B for level l′)

only if node A can grant the level-l lease or has received the level-l′ lease from

node B.

• LeasesGranted and LeasesReceived We maintain the leases a node ac-

quired from and leases granted to either its parent or its children in these data

structures. These data structures are indexed on the neighbor.

Granting and Relinquishing leases Shruti at a node uses the history of updates

and probes from another node to predict the future update-probe patterns from that

node. We assume that the patterns observed in the near past reflect the near future

98



Algorithm 5 OnProbe(fromNode, level)
1: timestamp ← current time
2: Add (probe, timestamp) to LocalHistory[level]
3: /* Check if invariants allow us to grant a lease for this level to any node */
4: if canLease(level) then
5: Add (probe, timestamp) to NeighborHistory[fromNode][level]
6: lastUpdateTime ← timestamp of the most recent update from LocalHis-

tory[level]
7: numProbes ← numProbes in NeighborHistory[fromNode][level] with times-

tamp > lastUpdateTime
8: if numProbes >= m then
9: Grant lease for level aggregate to fromNode

10: end if
11: else
12: clear all probes from NeighborHistory[fromNode][level]
13: end if

Algorithm 6 canLease(level)
1: myLevel ← this node’s level
2: if level > myLevel then
3: if UP ≥ level AND DOWN ≥ (level−myLevel) then
4: return true
5: else if level ∈ LeasesReceived(parent) then
6: return true
7: else
8: return false
9: end if

10: else
11: if UP ≥ myLevel then
12: return true
13: else
14: for each child C ∈ children do
15: if (level−1) /∈ LeasesReceived(C) then
16: return false
17: end if
18: end for
19: return true
20: end if
21: end if

99



Algorithm 7 OnUpdate(fromNode, level)
1: timestamp ← current time
2: Add (update, timestamp) to LocalHistory[level]
3: /* Check if invariants allow us to relinquish a lease for this level. */
4: if level ∈ LeasedFrom(fromNode) AND canRelinquish(level) then
5: Add (update, timestamp) to NeighborHistory[fromNode][level]
6: checkLevel leftarrow (level < myLevel)?myLevel:level
7: /* Note that children of a node at level l send updates for their level (l − 1)

and those updates affect level l aggregate */
8: lastProbeTime ← timestamp of the recent most probe from LocalHis-

tory[checkLevel]
9: numUpdates ← number of updates in NeighborHistory[fromNode][level] with

timestamp > lastProbeTime
10: if numUpdates >= k then
11: Relinquish lease for level aggregate to fromNode
12: end if
13: else
14: clear all updates from NeighborHistory[fromNode][level]
15: end if

Algorithm 8 canRelinquish(level)
1: myLevel ← this node’s level
2: if level < myLevel then
3: level ← myLevel
4: end if
5: if level ∈ LeasesGranted(parent) then
6: return false
7: end if
8: for each child C ∈ children do
9: if level ∈ LeasesGranted(C) then

10: return false
11: end if
12: end for
13: return true

behavior. When invariants for granting a lease for a level l aggregate are satisfied at

a node A, we use the following general rule to decide whether to grant a level-l lease

to a node B or not — grant the lease if m probes are received from node B while no

updates happen to the level-l aggregate. In Algorithm 5, we present pseudo-code

100



for the actions performed by Shruti on receiving a probe from another node. The

pseudo-code for checking whether granting a lease violates any invariant is shown

in Algorithm 6.

Similar to the rule for setting a lease, we use the following rule for relin-

quishing a level-l′ lease granted by a parent P to node A — relinquish the lease if k

updates are received from the parent P while no probes are received for the level-l′

aggregate. Similarly a level-(l − 1) lease granted by a child C is relinquished if k

updates are received from the child C while no probes are received for the level-l

aggregate. Note that updates for level-(l−1) from a node’s children affect the value

of level-l aggregate at the node. The pseudo-code for Shruti’s actions on receiv-

ing an update is shown in Algorithm 7. We present pseudo-code checking whether

relinquishing a lease violates any invariant in Algorithm 8.

Consider an example with k=2 and m=1. A node A that can grant a level-l

lease to node B grants that lease to B as soon as it gets a probe from B. And node

B relinquishes that lease if it gets two updates from node A for that aggregate while

not receiving any probes for that aggregate from any other node.

The two knobs k and m control how aggressively leases are set and how

aggressively they are removed. A setting where k is about twice the value of m

performs optimally in terms of number of messages. A large value for k and a small

value for m cause leases to be set aggressively but to be removed lazily leading to

better probe response times but at increased bandwidth.

7.2.3 Default Lease State

To be efficient and be scalable with sparse attributes, Shruti on each node at level-l

for an attribute starts with a state where it assumes that it has level-(l − 1) leases

from all its children and has granted a lease for the level-l aggregate to its parent.

Sparse attributes are attributes that are of interest to only few nodes in

101



the system and only those nodes perform write or read accesses to that attribute.

In most practical systems with a large number of attributes, all nodes will likely

not be interested in all attributes. For example, reads and writes to an attribute

corresponding to a multicast session with small membership will generally be done

only by its members.

If Shruti starts in a state where no leases are granted for an attribute, the

first read operation will incur 2.N messages in an N node network, as the read has

to collect information from all nodes in the system. Thus, even for sparse attributes

that are of interest to only a handful of nodes, all nodes in the system are touched

by the first few reads for that attribute till leases are set. Once leases are set those

uninterested nodes do not receive any more messages regarding the attribute. But

explicitly setting leases implies that all nodes have to maintain some information

about all attributes whether they are interested in that attribute or not. Hence the

default initial state undermines the scalability of the SDIMS to large numbers of

attributes.

Instead, by starting in a lease state in which Shruti on each node for all

attributes assumes that it has leases granted from all its children and has granted a

lease for the local aggregate to its parent, the unnecessary leasing information need

not be explicitly maintained. Hence only nodes that are interested in an attribute

and nodes helping these interested nodes in aggregation of the attribute will ever

maintain any explicit information about the leases (when leases are relinquished or

when leases are further granted down to children), thus achieving scalability with

sparse attributes.

7.2.4 Reconfigurations

Reconfigurations will be a norm in any large distributed system and in the face of

reconfigurations, the invariants for leases might not continue to hold at one or more

102



Level 2

Level 0

Level 1

Level 3

(0) (0) (0)(0)

(1)

Machine Q
joins the system(0)

A

(0) (0)

F

(1)

P

B C D E Q B C D E

A

P’

(2) (2)

P

(1)

F
(1)

Figure 7.3: Invariant violation on reconfiguration - machine Q joins the system. The
dotted arrows represents the leases assumed by default for newly created nodes in
the aggregation tree. Note that the Invariant 1 is violated at node A, which has a
lease granted to its parent while it does not have a lease from one its children B.

nodes in the system. Invariant 1 is violated when a node at level l in an aggregation

tree acquires a new parent when it does not have a lease for level (l − 1) from one

of its children. For example, consider an aggregation tree in a four machine system

shown on the left in Figure 7.3. In this aggregation tree, all invariants are satisfied.

Suppose machine Q joined this system and the aggregation tree is modified as shown

on the right in the figure. As discussed in the previous section, new nodes start with

a lease state where each node at level l assumes that it has leases for level (l−1) from

all its children. The dotted arrows show the default leases assumed when machine

Q joins the system. At node A, Invariant 1 is violated. The parent of node A, node

P’, has lease for level 1 from node A while node A does not have a lease for level 0

from one of its children.

Similar to violation of Invariant 1, Invariant 2 might be violated during

reconfigurations. We show an example case where such violation occurs in Figure 7.4.

Note that node A before reconfiguration has a lease for level 2 from its parent P

which it granted further down to one of its children B. When it acquired a new

parent P’, node A no longer has a level-2 from its parent but has an outstanding

103



Level 2

Level 0

Level 1

Level 3

(0) (0) (0)(0)

(1)

Machine Q
joins the system(0) (0) (0)

F

(1)

P

B C D E Q B C D E

A

P’

(2) (2)

P

(1)

F
(1)

(0)

A

(2)

(1, 2)

(1)

(1, 2)

(0)

Figure 7.4: Invariant violation on reconfiguration - machine Q joins the system.
Note that Invariant 2 is violated at node A, which granted a lease for level 2 to its
child while it does not have a lease for level 2 from its parent.

level-2 lease to its child, violating Invariant 2.

In the face of reconfigurations, the goal of Shruti is to revert to a state

conforming to all invariants. Observe that invariant violations occur only when a

node gets a new parent. Acquiring a new child or losing an existing child does

not affect the consistency of leases at a node. At each node where an invariant

violation occurs due to a new parent, Shruti revokes leases that violate invariants.

For example, when Invariant 1 is violated at a node due to acquiring a new parent,

that node revokes the lease to its parent. In the example shown in Figure 7.3,

node A revokes the level-1 lease to its new parent P’. Similarly, when Invariant 2 is

violated at a node due to getting a new parent, that node revokes leases it granted

to its children that violate invariants. For example, node A in Figure 7.4 revokes its

level-2 lease to node B after it gets new parent P’.

A node that receives revocation of a lease from its parent or one of its children

might have to further revoke some leases that this node granted to other nodes. For

instance, when a node receives revocation of a level-l lease from its parent, it has

to further revoke any level-l leases it has granted to its children. Also, when a node

at level-l receives revocation of level-(l − 1) lease from one of its children, then it

104



should revoke any level-l leases it has granted to its parent or its children.

Note that while lease revocal is in progress, some of the probes might receive

incorrect responses. But once the system becomes stable (no machine or network

failure events or no new machine join events), Shruti on each node attains a state

satisfying invariants through revoking zero or more leases it has granted to other

nodes. Once invariants are satisfied in the lease state, all probes receive correct

responses.

7.3 Evaluation

We present our experimental results on Shruti comparing its performance to static

up and down strategies in SDIMS for a wide range of read-to-write ratios and with

spatial and temporal heterogeneity in the access patterns. We measure two metrics

— communication cost and operation latency. Our initial evaluation shows that

Shruti (i) adapts to the access patterns and approximates the optimal SDIMS static

strategy for a static and globally uniform read-write ratio, (ii) adapts to hetero-

geneity in the access patterns across nodes to outperform any single SDIMS static

strategy (spatial heterogeneity), and (iii) quickly adapts to changing access patterns

(temporal heterogeneity).

Due to the limitation of memory on our simulating machines, in all of the

following experiments, we use a 512-node system. We compensate the small num-

ber of nodes by using 1-bit correction in each routing hop instead of default 4-bit

correction in FreePastry; thus increasing the depth of the DHT. We simulate 50000

operations for each strategy in each experiment. For Shruti experiments, where not

specified, we use UP=0 and DOWN=0.

In all of the following experiments, we use a simple summation operation

as the aggregation function. An update at a node for an attribute increments the

previous value for the attribute at that node. We initially update each attribute at

105



 0.1

 1

 10

 100

 1000

 10000

 1e-04  0.001  0.01  0.1  1  10  100  1000

A
vg

 M
es

sa
ge

 C
ou

nt

Read-Write Ratio

Update-All
UP=All,DOWN=5

Update-Up
UP=3,DOWN=0

Update-Local
Shruti(k=5,m=2)

Figure 7.5: Average message cost per operation in Shruti compared to different
static up and down settings in SDIMS for a wide range of read-to-write ratios.

each node with a value of one. All probes are for the global aggregate value. Note

that SDIMS static strategies with UP=all and DOWN> 0 propagates down aggregate

values at all levels to DOWN number of levels. But Shruti adapting to probes will

propagate only the global aggregate values. So to be fair to the SDIMS static

strategies, we do not count messages corresponding to the downward propagation

of intermediate aggregate values.

Single attribute, uniform read-write ratios across nodes In this first set

of experiments, we consider a single attribute and uniform read-write ratios across

all nodes. In Figure 7.5, we plot the measured average message cost per operation

in Shruti compared to different static up and down strategies in SDIMS for a wide

range of read-write ratios. We use values of 5 and 2 for k and m (recall that k and

106



m determine the aggressiveness with which leases are set and removed as explained

in Section 7.2.2, respectively, in Shruti. Note that at any read-write ratio, Shruti

approximates the behavior of an optimal up-down SDIMS strategy at that ratio.

In Figure 7.6, we plot the average latency per operation (both reads and

writes considered) in Shruti and in SDIMS with static up-down strategies. Note

that whereas any static strategy that behaves well at some read-to-write ratios

incurs a high latency at other read-to-write ratios, Shruti performs well at all read-

to-write ratios. For example, although the Update-all strategy performs optimally

in terms of operation latency for read-to-write ratios greater than one, it incurs

a high communication cost for read-write ratios less than one when compared to

Shruti (Figure 7.5).

In Figure 7.7, we plot the average probe response latencies with different read-

to-write ratios for static up-down strategies and Shruti. We assume that each overlay

hop has unit latency. Note that Shruti adapts to reduce overall communication

bandwidth and hence incurs different latencies at different read-write ratios. All

static strategies have fixed average probe response latencies.

Varying k and m in Shruti In Figure 7.8, we plot the average message cost

observed for different values of k and m in Shruti while varying the read-to-write

ratios. As expected, for large values of k and small values of m, the system adapts

quickly to probes but slowly to writes; hence, they perform better at large read-write

ratios but suffer at small read-write ratios. In Figure 7.9, we compare the average

read latency for these different strategies. Observe that the read-favoring higher

k compared to m strategies result in smaller read latencies. We conclude two key

points from these set of results: (1) k=5 and m=2 or k=5 and m=3 is a good default

value set for k and m as Shruti performs better with these values than any other

set of values for k and m and (2) Applications that intend to reduce the response

latency at the cost of higher bandwidth can use a more aggressive leasing policy by

107



 0

 5

 10

 15

 20

 25

 30

 1e-04  0.001  0.01  0.1  1  10  100  1000

A
vg

 O
pe

ra
tio

n 
La

te
nc

y

Read-Write Ratio

Update-All
UP=All,DOWN=5

Update-Up
UP=3,DOWN=0

Update-Local
Shruti(k=5,m=2)

Figure 7.6: Average latency per operation in Shruti compared to different static up
and down settings in SDIMS for a wide range of read-to-write ratios. All overlay
links have one unit latency.

setting a high value for k and a small value for m.

Shruti in tandem with an application specified static strategy As ex-

plained in Section 7.2, Shruti abides by the install time application specified UP

and DOWN parameters. By default, we assume that those parameters are set to zero.

When specified, Shruti performs aggregate value propagation at least as much speci-

fied according to those parameters but might propagate more to decrease the overall

communication costs. In Figures 7.10 and 7.11, we plot the performance of Shruti

with difference UP and DOWN parameters. This hybrid approach allows applications

to specify a required latency guarantees and allows Shruti to minimize communica-

tion costs while satisfying those response latency guarantees. Shruti with UP=0 and

108



 0

 5

 10

 15

 20

 25

 30

 1e-04  0.001  0.01  0.1  1  10  100  1000

R
ea

d 
La

te
nc

y

Read-Write Ratio

Update-All
UP=All,DOWN=5

Update-Up
UP=3,DOWN=0

Update-Local
Shruti(k=5,m=2)

Figure 7.7: Average probe response latency in Shruti compared to different static
up and down settings in SDIMS for a wide range of read-to-write ratios. All overlay
links have one unit latency.

DOWN=0 incurs lower or similar communication cost compared to any static SDIMS

strategy (Figure 7.5); but it incurs a higher read latency at small read-to-write ra-

tios when compared to static SDIMS strategies with UP> 0. But Shruti with same

UP and DOWN values specified as a static SDIMS strategy performs better or similar

both in terms of probe latency and communication costs.

Multiple attributes, Zipf-like distribution in reads Studies have shown that

web accesses and P2P queries follow Zipf-like distribution [19, 91] with respect to

the objects. Here, we study the performance of Shruti when reads to attributes

follow Zipf-like distributions [19] (the ith popular attribute gets C/αi fraction of

reads) with α = 1.3. The write operations are assigned to different attributes in a

109



 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1e-04  0.001  0.01  0.1  1  10  100  1000

A
vg

 M
es

sa
ge

 C
ou

nt

Read-Write Ratio

k=10, m=1
k=5, m=1
k=5, m=2
k=5, m=3
k=1, m=1

Figure 7.8: Average message cost per operation in Shruti for different values of k
and m for a wide range of read-to-write ratios.

uniform way. We simulate 100 attributes of the same type and a global average read-

to-write ratio of 100. In Figure 7.12, we present the average number of messages

per operation and average read latency incurred by Shruti compared to a set of

SDIMS strategies with different static same up and down values across all attributes.

Clearly, Shruti achieves both least communication cost and the smallest average

read response time through adapting aggregation aggressiveness separately for each

individual attribute.

Spatial heterogeneity The distribution of reads and writes for an attribute will

not be uniform across nodes in a real system. For example, for an attribute cor-

responding to a multicast session, typically only members of that multicast session

perform most read and write operations. We simulate a single attribute opera-

110



 0

 5

 10

 15

 20

 25

 30

 1e-04  0.001  0.01  0.1  1  10  100  1000

R
ea

d 
La

te
nc

y

Read-Write Ratio

k=10, m=1
k=5, m=1
k=5, m=2
k=5, m=3
k=1, m=1

Figure 7.9: Average read latency in Shruti for different values of k and m for a wide
range of read-to-write ratios.

tion rates at nodes following a Zipf-like distribution with α = 1.3. In Figures 7.13

and 7.14, we plot the average number of messages per operation and average oper-

ation latency incurred in Shruti in comparison to that incurred by a set of SDIMS

strategies for different read-to-write ratios. Note that Shruti achieves lower com-

munication costs compared to the first set of results in Figure 7.5 as it exploits the

spatial heterogeneity to set leases such that updates and probes are propagated to

only nodes interested in that attribute.

Temporal heterogeneity The read-write ratio for attributes change over time

as attributes become popular and then as popularity fades. In this experiment, we

change the read-write ratio every 20000 operations and measure the performance

of Shruti and a SDIMS Update-UP (UP=all and DOWN=0) strategy. In Figure 7.15,

111



 0

 1

 2

 3

 4

 5

 6

 7

 8

 1e-04  0.001  0.01  0.1  1  10  100  1000

A
vg

 M
es

sa
ge

 C
ou

nt

Read-Write Ratio

UP=all,DOWN=0
UP=5,DOWN=0
UP=3,DOWN=0
UP=0,DOWN=0

Figure 7.10: Average message cost per operation in Shruti with different UP and
DOWN parameters for a wide range of read-to-write ratios.

we show the average number of messages incurred per read and write for these two

mechanisms. We change the read-to-write ratio from 0.01 to 100 after first 20000

operations and then revert back to 0.01 after another 20000 operations. Note that

whereas the SDIMS static scheme incurs a similar number of messages on every

operation irrespective of the read-write-ratio, Shruti adapts to the observed read-

write ratios to incur lower communication costs. In this test, SDIMS Update-Up

incurs average message cost per operation of 4.6 during the first and third phases and

a cost of 9.1 during the second phase; Shruti incurs an average message cost of 2.8

during the first and third phase and a cost of 3.8 during the second phase. Overall,

the average message cost per operation is 6.11 in case of the SDIMS Update-Up

strategy compared to a cost of 3.23 in case of Shruti.

112



 0

 5

 10

 15

 20

 25

 30

 1e-04  0.001  0.01  0.1  1  10  100  1000

R
ea

d 
La

te
nc

y

Read-Write Ratio

UP=all,DOWN=0
UP=5,DOWN=0
UP=3,DOWN=0
UP=0,DOWN=0

Figure 7.11: Average read latency in Shruti with different UP and DOWN param-
eters for a wide range of read-to-write ratios.

Reconfigurations As described in Section 7.2.4, when a virtual node in an aggre-

gation tree loses its parent or obtains a new parent during a reconfiguration event,

then the virtual node might revoke some of the leases it has granted to other nodes so

that invariants are satisfied in the aggregation tree. As leases are revoked due to the

reconfiguration events, reads might experience increased latency. We demonstrate

this effect on reads due to reconfigurations in the following simulation experiment.

With Shruti running on 1024 nodes, we first perform several write operations for an

attribute at all nodes so that all leases that are set by default (refer to Section 7.2.3)

are removed. We then perform several read operations from a single machine so that

leases are set from all nodes till the root for that aggregation tree and from the root

towards the probing leaf node. Then we kill the root node so that leases are revoked

and again we perform several reads from the chosen leaf node. In Figure 7.16, we

113



Shr
ut

i

U=0
 D

=0

U=3
 D

=0

U=A
ll D

=0

U=A
ll D

=3

U=A
ll D

=A
ll

1

10

100

1000
A

vg
 M

sg
s/

O
pe

ra
tio

n Avg. msgs/op

Shr
ut

i

U=0
 D

=0

U=3
 D

=0

U=A
ll D

=0

U=A
ll D

=3

U=A
ll D

=A
ll

0

10

20

30
R

ead Latency

Read Latency

Figure 7.12: Average messages per operation and read latency observed with Shruti
(k=5, m=2) and a set of SDIMS static up and down strategies. These metrics are
computed across 100 different attributes where reads follow a Zipf-like distribution
with α = 1.3.

plot the number of simulation rounds (denoting the latency) of each probe opera-

tion. After sixty read operations, we kill the root node in the aggregation tree for

this attribute. This event revokes all downward leases from the root node to the

probing node. Hence the following reads suffer from higher latency.

7.4 Related Work

Existing aggregation systems use a static aggregation strategy that can perform well

for some workloads but might perform poorly for others. Astrolabe [101] employs

an Update-All type aggregation mechanism, DHTs and DHT based systems [66, 77,

80, 86, 94, 118] use an Update-Up mechanism, and MDS in Globus tool kit [30] uses

an Update-None mechanism.

114



 0.1

 1

 10

 100

 1000

 10000

 1e-04  0.001  0.01  0.1  1  10  100  1000

A
vg

 M
es

sa
ge

 C
ou

nt

Read-Write Ratio

Update-All
UP=All,DOWN=5

Update-Up
UP=3,DOWN=0

Update-Local
Shruti(k=5,m=2)

Figure 7.13: Spatial heterogeneity: Average number of messages per operation in
Shruti compared to a set of SDIMS strategies for a single attribute where the oper-
ation rates across nodes follow a Zipf-like distribution with α = 1.3.

The Controlled Update Propagation (CUP) protocol by Roussopoulos et

al. [85] and Overlook [98], a name service system, are closely related to Shruti.

CUP addresses a similar problem in the context of updating cached results of get

operations in DHTs and Overlook replicates name service content along a tree to

reduce lookup latency of DNS resolve queries. Though CUP, Overlook, and Shruti

share the idea of using lease-based techniques, they differ in the design choices

leading to different tradeoffs. First, CUP and Overlook only consider replicating

the root content at other nodes; they build upon the DHT architecture and hence

assume that aggregation is performed up to the root on writes. So they dynamically

control the propagation of updates only downwards where as Shruti controls update

propagation even towards the root. For Overlook, which is a naming service where

115



 0

 5

 10

 15

 20

 25

 30

 1e-04  0.001  0.01  0.1  1  10  100  1000

A
vg

 O
pe

ra
tio

n 
La

te
nc

y

Read-Write Ratio

Update-All
UP=All,DOWN=5

Update-Up
UP=3,DOWN=0

Update-Local
Shruti(k=5,m=2)

Figure 7.14: Spatial heterogeneity: Average operation latency in Shruti compared
to a set of SDIMS strategies for a single attribute where the operation rates across
nodes follow a Zipf-like distribution with α = 1.3.

the number of updates will be far less than the number of probes for any entry,

such downward only propagation control is appropriate. In SDIMS, we consider

different attributes with different behaviors. For an attribute that is updated by

only a single node and no other node probes for that attribute, it is inefficient to even

aggregate the data up to the root in the corresponding aggregation tree. Second, the

maintenance overheads are different in these three systems. In CUP, each replicated

object at a node expires unless refreshed by the parent for that object. So, the

maintenance overhead is on the order of the number of objects. In Overlook and

Shruti, a replicated object at a node expires if the parent that gave the lease fails.

So, lease maintenance overhead involves tracking liveness of the parents of a node;

hence an overhead in the order of the number of parents a node has. Whereas a

116



 1

 10

 100

 1000

 0  10000  20000  30000  40000  50000  60000

N
um

be
r 

of
 M

es
sa

ge
s

Operations

Reads (Shruti)

Writes (Shruti)

Reads (Upall)

Writes (Upall)

Reads (Shruti)

Writes (Shruti)

Reads (Upall)

Reads (Shruti)

Writes (Shruti)

Reads (Upall)

Figure 7.15: Temporal heterogeneity: The number of messages incurred on read and
write operations in Shruti compared to a SDIMS strategy of UP=all and DOWN=0.
We change the read-to-write ratio from 0.01 to 100 after 20000 operations and revert
back to the same ratio after another 20000 operations

node might have O(N) parents in the worst case in Overlook, each node in Shruti

has to track only O(log N) other nodes, where N is the number of nodes in the

system.

Other closely related projects are Beehive by Rama et al. [79] and SCAN

by Chen et al [27]. In Beehive, no updates are considered and the goal is to place

a minimum number of replicas such that all queries are satisfied with a constant

communication cost, assuming queries follow a Zipf distribution. Chen et al. solve

a similar problem of placing a minimum number of replicas while satisfying client

QoS requirements and server constraints. Cohen et al. study replication strategies

in unstructured P2P networks [28].

117



 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  20  40  60  80  100  120

N
um

be
r 

of
 R

ou
nd

s

Reads

Root Node Killed

Figure 7.16: Shruti in the face of reconfigurations: The number of simulation rounds
taken for each read operation. After sixty read operations, we kill the root node of
the aggregation tree.

Lease-based techniques are employed in many distributed systems like repli-

cated file systems [42] and web caching and replication [60, 33, 70, 114, 113]. All web

replication research consider the case where updates to objects happen at a single

server. Yin et al. propose volume leases [114, 113] where a server issues a volume

lease with a short timeout period and object leases with a long timeout period. This

helps in reducing the communication from the server to the replicas while ensuring

strong consistency guarantees. In Shruti, each node pings its neighbors frequently

to check their liveness (similar to short volume lease timeout) and consider all leases

that a neighbor issued to be valid as long as the neighbor is alive or the lease is

either relinquished or revoked (similar to long object lease timeout).

118



7.5 Summary

Though SDIMS exposes a wide-range of aggregation strategies, it requires that ap-

plications have knowledge of the read/write load patterns a priori. In this chapter,

we have presented Shruti, a subsystem in SDIMS, that tracks reads and writes at

individual nodes in an aggregation tree and adjusts the aggregation strategy to

minimize the communication costs. Shruti uses a lease-based mechanism in which

a node grants a lease for an aggregate value to its parent or a child to inform that

it will forward any changes to that aggregate value. We have also presented the in-

variants that Shruti maintains in setting and removing leases that guarantee correct

responses for probes. On reconfigurations, Shruti might revoke leases that violate

the invariants to reach a state satisfying all invariants.

Through extensive simulations, we show that at any static globally uniform

read-write operation ratio in the system, Shruti incurs similar cost as an optimal

static UP and DOWN strategy. Also, in comparison to a single strategy across attributes

of the same type, Shruti, through adapting to different strategies for different at-

tributes, achieves half an order magnitude lower average messages per operation.

Our results show that Shruti outperforms static aggregation strategies at almost all

read-write ratios when there is a spatial heterogeneity in the access patterns. Finally

we also show that Shruti efficiently adapts to temporal heterogeneity in read and

write patterns.

119



Chapter 8

Prototype

The design of our SDIMS system comprises of three layers, as shown in Figure 8.1.

The Autonomous DHT (ADHT) layer implements ADHT algorithms described in

Chapter 5. The Aggregation Management Layer (AML) supports the flexible API

described in Chapter 3. The AML maintains attribute tuples, performs aggrega-

tions, stores and propagates aggregate values on aggregation trees. The DHT-AML

Interface layer is the glue between the DHT and the AML layer that obtains infor-

mation about state of the overlay from the ADHT layer and uses that information

to maintain aggregation trees as described in Chapter 4. In the present chapter, we

briefly describe the DHT-AML Interface layer and then describe the internal state

and operation of the AML layer in the system.

We refer to a store of (attribute type, attribute name, value) tuples as a Man-

agement Information Base or MIB, following the terminology from Astrolabe [101]

and SNMP [92]. We refer to an (attribute type, attribute name) tuple as an attribute

key.

In Figure 8.2, we show aggregation trees corresponding to keys 000 and 111

for an eight node system example from Table 4.1 in Chapter 4. Note that level-l

virtual nodes corresponding to different aggregation trees hosted on a same machine

120



API

API

API

update
install
probe

Applications

Aggregation Management Layer (AML)

failedChild
newChild 
newParent

DHT−AML Interface

ADHT
update
local−lookup

Figure 8.1: Layered SDIMS prototype design and interfaces.

000 100 010 110 001 101 011 111

L3

L2

L1

L0

(a)

000 100 010 110 001 101 011 111

L3

L2

L1

L0

(b)

Figure 8.2: Aggregation trees for key 000 (a) and for key 111(b). Note that the
virtual node at level 1 on node with ID 010 has a different parent in those aggregation
trees corresponding to the second bit in the key.

might have different parents. In the example, the level 1 virtual node on the machine

with ID 010 has a level 2 parent on the machine with ID 000 in the aggregation

121



local
 MIB

MIBs
ancestor

reduction MIB
(level 1)MIBs

ancestor

MIB from
child 0X...

MIB from
child 0X...

Level 2

Level 1

Level 3

Level 0

1XXX...

10XX...

100X...

From parents0X..

To parent 0X...

−− aggregation functions

From parents

To parent 10XX...

1X..
1X..

1X..

To parent 11XX...

Node Id:  (1001XXX)

1001X..

100X..

10X..

1X..

Virtual Node

Figure 8.3: Example illustrating the data structures and the organization of them
at a node.

tree corresponding to key 000 and a level 2 parent on the same machine in the

aggregation tree corresponding to key 010. In the AML implementation, we merge

virtual nodes at the same level from different aggregation trees hosted on a single

machine into a single virtual node. Depending on the bit of an attribute key a

virtual node is correcting, it will have a different parent.

Figure 8.3 illustrates the internal structure of the AML layer on each machine

in SDIMS. Each physical node in the system acts as several virtual nodes in the

AML: a node acts as leaf for all attribute keys, as a level-1 subtree root for keys

whose hash matches the node’s ID in b prefix bits (where b is the number of bits

corrected in each step of the ADHT’s routing scheme, b = 1 in the above example),

as a level-i subtree root for attribute keys whose hash matches the node’s ID in

122



the initial i ∗ b bits, and as the system’s global root for attribute keys whose hash

matches the node’s ID in more prefix bits than any other node (in case of a tie, we

use the key assignment policy described in Chapter 5 to break ties). Each virtual

node has 2b parents corresponding to b-bit correction of attribute keys and one of

those parents will be hosted on the same machine.

8.1 DHT-AML Interface Layer

This layer is the glue between the underlying DHT system and the Aggregation

Management Layer — it interfaces with the DHT layer to track the state of the

overlay and based on that information maintains the aggregation tree parent/child

relationships in the AML layer. The DHT common API [31] only provides informa-

tion about the next hop for any given key and information about any changes to

the local leafset (neighboring nodes on the logical ID space). The parent informa-

tion for individual virtual nodes hosted on a machine can be extracted from using

those interfaces. But to maintain aggregation trees, the AML layer at a node needs

information about other nodes that use this node as the next hop for any key (i.e.,

children for that key) and also need to know whenever such nodes fail so that it can

repair the aggregation trees. Below we describe how this interface layer gathers and

maintains information about children for virtual nodes hosted on a machine.

For a level m virtual node on a machine with ID i1i2i3...id where d is the

number of digits in the machine’s ID (= n/b where n is the number of bits in ID

and b is the digit length in bits), for each key of the form —

i1i2i3...imjz1z2...zd−m−1 where j ∈ [0, 2b] \ im and ∀jzj = 0,

the DHT-AML Interface layer uses the DHT API local lookup(key) [31] to deter-

mine the next hop neighbor in the ADHT. These next hop neighbors will be parents

123



for that virtual node. After determining a parent for such a key, the DHT-AML

Interface Layer sends an IAmYourChild message to the parent node informing about

this parent-child relationship. When the DHT-AML Interface Layer on a machine

receives such a message, it exposes that information to the corresponding virtual

node in the AML and also starts monitoring liveness of the sending node.

8.2 Aggregation Management Layer

8.2.1 Data Structures

To support hierarchical aggregation, each virtual node at the root of a level-i subtree

maintains several MIBs that store (1) child MIBs containing raw aggregate values

gathered from children, (2) a reduction MIB containing locally aggregated values

across this raw information, and (3) an ancestor MIB containing aggregate values

scattered down from ancestors. This basic strategy of maintaining child, reduction,

and ancestor MIBs is based on Astrolabe [101], but our structured propagation

strategy channels information that flows up according to its attribute key and our

flexible propagation strategy only sends child updates up and ancestor aggregate

results down as far as specified by the attribute key’s aggregation function. Note that

in the discussion below, for ease of explanation, we assume that the routing protocol

is correcting single bit at a time (b = 1). Our system, built upon Pastry, handles

multi-bit correction (b = 4) and is a simple extension to the scheme described here.

For a given virtual node ni at level i, each child MIB contains the subset

of a child’s reduction MIB that contains tuples that match ni’s node ID in i bits

and whose up aggregation function attribute is at least i. These local copies make

it easy for a node to recompute a level-i aggregate value when one child’s input

changes. Nodes maintain their child MIBs in stable storage and use a simplified

version of the Bayou log exchange protocol (sans conflict detection and resolution)

124



for synchronization after disconnections [75].

Virtual node ni at level i maintains a reduction MIB of tuples with a tuple for

each key present in any child MIB containing the attribute type, attribute name, and

output of the attribute type’s aggregate functions applied to the children’s tuples.

A virtual node ni at level i also maintains an ancestor MIB to store the tuples

containing attribute key and a list of aggregate values at different levels scattered

down from ancestors. Note that the list for a key might contain multiple aggregate

values for a same level but aggregated at different nodes (see Figure 5.9). So, the

aggregate values are tagged not only with level information, but are also tagged

with the ID of the node that performed the aggregation.

Level-0 differs slightly from other levels. Each level-0 leaf node maintains

a local MIB rather than maintaining child MIBs and a reduction MIB. This local

MIB stores information about the local node’s state inserted by local applications

via update() calls. We envision various “sensor” programs and applications inserting

data into local the MIB. For example, one program might monitor local configuration

and perform updates with information such as total memory, free memory, etc., A

distributed file system might perform updates for each file stored on the local node.

Along with these MIBs, a virtual node maintains two other tables: an ag-

gregation function table and an outstanding probes table. An aggregation function

table contains the aggregation function and installation arguments (see Table 3.1)

associated with an attribute type or an attribute type and name. Each aggregation

function is installed on all nodes in a domain’s subtree, so the aggregation function

table can be thought of as a special case of the ancestor MIB with domain func-

tions always installed up to a root within a specified domain and down to all nodes

within the domain. The outstanding probes table maintains temporary information

regarding in-progress probes.

125



8.3 API Support

Given these data structures, it is simple to support the three API functions described

in Section 3.2.

8.3.1 Install

The Install operation (see Table 3.1) installs on a domain an aggregation function

that acts on a specified attribute type. Execution of an install operation for function

aggrFunc on attribute type attrType proceeds in two phases: first the install request

is passed up the ADHT tree with the attribute key (attrType, null) until it reaches

the root for that key within the specified domain. Then, the request is flooded down

the tree and installed on all intermediate and leaf nodes.

8.3.2 Update

When a level i virtual node receives an update for an attribute from a child below:

it first recomputes the level-i aggregate value for the specified key, stores that value

in its reduction MIB and then, subject to the function’s UP and domain parameters,

passes the updated value to the appropriate parent based on the attribute key. Also,

the level-i (i ≥ 1) virtual node sends the updated level-i aggregate to all its children

if the function’s DOWN parameter exceeds zero. Upon receipt of a level-i aggregate

from a parent, a level k virtual node stores the value in its ancestor MIB and, if

k ≥ i− DOWN, forwards this aggregate to its children.

8.3.3 Probe

A Probe collects and returns the aggregate value for a specified attribute key for

a specified level of the tree. As Figure 3.1 illustrates, the system satisfies a probe

for a level-i aggregate value using a four-phase protocol that may be short-circuited

when updates have previously propagated either results or partial results up or

126



down the tree. In phase 1, the route probe phase, the system routes the probe

up the attribute key’s tree to either the root of the level-i subtree or to a node

that stores the requested value in its ancestor MIB. In the former case, the system

proceeds to phase 2 and in the latter it skips to phase 4. In phase 2, the probe scatter

phase, each node that receives a probe request sends it to all of its children unless

the node’s reduction MIB already has a value that matches the probe’s attribute

key, in which case the node initiates phase 3 on behalf of its subtree. In phase 3,

the probe aggregation phase, when a node receives values for the specified key from

each of its children, it executes the aggregation function on these values and either

(a) forwards the result to its parent (if its level is less than i) or (b) initiates phase

4 (if it is at level i). Finally, in phase 4, the aggregate routing phase the aggregate

value is routed down to the node that requested it. Note that in the extreme case

of a function installed with UP = DOWN = 0, a level-i probe can touch all nodes in

a level-i subtree whereas in the opposite extreme case of a function installed with

UP = DOWN = ALL, a probe is a completely local operation at a leaf.

For probes that include phases 2 (probe scatter) and 3 (probe aggregation),

an issue is how to decide when a node should stop waiting for its children to respond

and send up its current aggregate value. A node stops waiting for its children when

one of three conditions occurs: (1) all children have responded, (2) the ADHT layer

signals one or more reconfiguration events that mark all children that have not yet

responded as unreachable, or (3) a watchdog timer for the request fires. The last

case accounts for nodes that participate in the ADHT protocol but that fail at the

AML level.

At a virtual node, continuous probes are handled similarly as one-shot probes

except that such probes are stored in the outstanding probe table for a time period

of expTime specified in the probe. Thus each update for an attribute triggers re-

evaluation of continuous probes for that attribute.

127



In our prototype, a probe for a level l aggregate at a leaf node returns aggre-

gate values at all levels on the path from the leaf node to the l virtual node. Thus

a probe response consists of a set of tuples of the form (level, aggrValue).

Our current prototype does not implement access control on install, update,

and probe operations but we plan to implement Astrolabe’s [101] certificate-based

restrictions. Also our current prototype does not restrict the resource consumption

in executing the aggregation functions; but, techniques from research on resource

management in server systems and operating systems [7, 10] can be applied here.

8.4 Testbed Experiments

We run our prototype on 180 department machines (some machines ran multiple

node instances, so this configuration has a total of 283 SDIMS nodes), on 69 ma-

chines of the PlanetLab [76] testbed, and on 256 nodes in the Emulab testbed [107].

We measure the performance of our system with two micro-benchmarks. In the first

micro-benchmark, we install three aggregation functions of types Update-Local,

Update-Up, and Update-All, perform update operation on all nodes for all three

aggregation functions, and measure the latencies incurred by probes for the global

aggregate from all nodes in the system. Figure 8.4 shows the observed latencies

for all three testbeds. Notice that the latency in Update-Local is high compared

to the Update-UP policy. This is because latency in Update-Local is affected by

the presence of even a single slow machine or a single machine with a high latency

network connection.

In the second benchmark, we examine robustness. We install one aggregation

function of type Update-Up that performs the sum operation on an integer valued

attribute. Each node updates the attribute with the value 10. Then we monitor the

latencies and results returned on the probe operation for the global aggregate on one

chosen node, as we kill a node after every few probes. Figure 8.5 shows the results

128



Upd
at

e-
All

Upd
at

e-
Up

Upd
at

e-
Lo

ca
l0

200

400

600

800

La
te

nc
y 

(in
 m

s)

Average Latency

(a) CS Department

Upd
at

e-
All

Upd
at

e-
Up

Upd
at

e-
Lo

ca
l0

1000

2000

3000

La
te

nc
y 

(in
 m

s) Average Latency

(b) Planetlab testbed

Upd
at

e-
All

Upd
at

e-
Up

Upd
at

e-
Lo

ca
l0

2000

4000

6000

La
te

nc
y 

(in
 m

s)

Average Latency

(c) Emulab testbed

Figure 8.4: Latency of probes for aggregate at global root level with three different
modes of aggregate propagation on (a) department machines, (b) PlanetLab ma-
chines, and (c) Emulab setup. We also show the maximum and minimum latency
observed in each experiment. 129



 0

 20

 40

 60

 80

 100

 120

 140

 0  5  10  15  20  25
 2700

 2720

 2740

 2760

 2780

 2800

 2820

 2840
La

te
nc

y 
(in

 m
s)

V
al

ue
s 

O
bs

er
ve

d

Time(in sec)

Values
latency

Node Killed

Figure 8.5: Micro-benchmark on department network showing the behavior of the
probes from a single node when failures are happening at some other nodes. All 283
nodes assign a value of 10 to the attribute.

on the departmental testbed. Due to the nature of the testbed (machines in a de-

partment), there is little change in the latencies even in the face of reconfigurations.

In Figure 8.6, we present the results of the experiment on the PlanetLab testbed.

The root node of the aggregation tree is terminated after about 275 seconds. There

is a 5X increase in the latencies after the death of the initial root node as a more

distant node becomes the root node after repairs. Figure 8.7 shows the results on

the Emulab testbed. In all testbeds, the values returned on probes start reflecting

the correct situation within a short time after the failures.

From the above testbed benchmark experiments and the simulation experi-

ments on flexibility and scalability (Chapter 4), administrative isolation (Chapter 5),

we conclude that (1) the flexibility provided by SDIMS allows applications to trade-

130



10

100

1000

10000

100000

0 50 100 150 200 250 300 350 400 450 500
500

550

600

650

700

La
te

nc
y 

(in
 m

s)

V
al

ue
s 

O
bs

er
ve

d

Time(in sec)

Values
latency

Node Killed

Figure 8.6: Probe performance during failures on 69 machines of the PlanetLab
testbed

off read-write overheads (Figure 4.8), read latency, and sensitivity to slow machines

(Figure 8.4), (2) a good default aggregation strategy is Update-Up which has mod-

erate overheads on both reads and writes (Figure 4.8), has moderate read latencies

(Figure 8.4), and is scalable with respect to both nodes and attributes (Figure 4.9),

and (3) small domain sizes are the cases where DHT algorithms fail to provide path

convergence more often and SDIMS ensures path convergence with only a moderate

increase in path lengths (Figure 5.11).

131



 0

 2000

 4000

 6000

 8000

 10000

 0  50  100  150  200  250  300  350  400
 2400

 2450

 2500

 2550

 2600

La
te

nc
y 

(in
 m

s)

V
al

ue
s 

O
bs

er
ve

d

Time(in sec)

Values
latency

Node Killed

Figure 8.7: Probe performance during failures on 256 nodes in Emulab testbed

132



Chapter 9

Applications and Case Studies

The goal of this dissertation is to build a scalable information management middle-

ware for large distributed systems that is useful for a wide range of applications.

In this chapter, we first present examples of building large scale applications using

SDIMS — a file location system and a multicast system — to illustrate how ap-

plications can exploit the SDIMS flexible API and scalability features. Then, we

present case studies on how SDIMS is being used in two other research works —

to build a controller for a distributed file replication system and to build a network

monitoring system.

9.1 System Usage

In this section, we describe the usage of our SDIMS system through two example

large distributed applications — a file location system and a multicast system. These

applications illustrate advantages of the aggregation abstraction and the flexible API

exposed by SDIMS.

133



Algorithm 9 ffileLocation(childValueSet)
1: if childValueSet 6= ∅ then
2: return randomlyChoose(childValueSet)
3: else
4: return NULL
5: end if

9.1.1 File Location System

The goal of a file location system is to track files located on machines in a system and

provide that information to users and other applications. On a machine with network

address IPaddr, for each file foo, we update an SDIMS attribute (fileLocation,

foo) with a value IPaddr denoting that the file foo is available at machine with IP

address IPaddr. Before the updates, we also install in SDIMS an aggregation func-

tion ffileLocation associating it with attribute type fileLocation and with Update-

Up aggregation strategy (UP=all and DOWN=0). For attribute (fileLocation, foo),

aggregation is done along the aggregation tree corresponding to the attribute key

hash(fileLocation, foo). The aggregate value at a virtual node in that aggregation

tree is computed by evaluating function ffileLocation with a set of non-null values for

the attribute from the virtual node’s children. Note that the aggregation function

in this case simply picks one of the non-null values from children as the aggregate

value. On a machine, an user or application locates file foo by performing a series

of probes for the aggregate value starting at level 0 and increasing the level number

until a non-null aggregate value is found or the maximum level in the system is

reached. Another way to perform this location is to probe for the maximum level

directly which will return aggregate values at all intermediate virtual nodes and

then pick a non-null lowest level aggregate value.

In Figure 9.1, we illustrate the aggregation tree for attribute (fileLocation,

foo) along with aggregate values at individual nodes in an eight node system. Sup-

pose node G wishes to locate file foo. When it performs probe for the root level

134



A

A

A

A

HGFEDCBA
L0

L1

L2

L3

B
D F

D F

F

Figure 9.1: The aggregation tree for attribute (fileLocation, foo) along with the
aggregate values. We denote the IP addresses of individual machines with capital
alphabets and the aggregate value for this attribute at individual nodes is shown in
a box next to a node. Absence of the aggregate value at a node indicates a NULL
value for the aggregate at that node.

aggregate of the attribute (fileLocation, foo), it gets the following response: ((0,

NULL), (1, NULL), (2, F), (3, A)). It uses machine F as the answer as that is the

lowest level non-NULL aggregate value, and contacts machine F to obtain the file.

Note that different machines will obtain different answers for their probes. Choosing

lowest level non-NULL value ensures that nodes access different machines that host

a file.

Note that the aggregation function ffileLocation randomly picks one of the

non-null child values as the aggregate value at a virtual node. In some case, it might

be preferable to choose a machine on the basis of different metrics like computing

capacity of the machine, upload bandwidth available at a machine, etc. An aggrega-

tion function that considers the upload bandwidth is shown in Algorithm 10. In this

case, a machine that hosts file foo performs update for attribute (fileLocationBW,

foo) with a tuple 〈IPaddr, BW〉 as value, where BW is the upload bandwidth avail-

able at the node. The aggregation function at an intermediate virtual node chooses

a tuple with maximum BW field. A machine wishing to locate a file can then

choose either lowest level non-null aggregate or an aggregate with a required upload

135



Algorithm 10 ffileLocationBW(childValueSet)
1: maxBW ← 0
2: maxBWValue ← NULL
3: for all 〈IPAddr,BW 〉 ∈ childValueSet do
4: if BW > maxBW then
5: maxBW ← BW
6: maxBWValue ← 〈IPAddr,BW 〉
7: end if
8: end for
9: return maxBWValue

bandwidth and contact the machine by connecting to the IPaddr specified in the

aggregate value. Similar techniques can be used for building a more general resource

or service location applications.

For fault-tolerance, the file location aggregation function can also be installed

with UP=all and DOWN=j with j set to a small value greater than zero. The set of

files stored at a node typically does not change that often and hence such strategy

provides robustness to the application.

9.1.2 Multicast Tree Construction

The goal of a multicast system is to construct a spanning tree between interested

machines to propagate messages from a source machine to all interested machines.

Each machine that is interested in a multicast session, say sessOne, updates the

attribute (multicast, sessOne) with a tuple 〈IPAddr, { IPAddr }〉, where IPAddr

is the IP address of the machine. The format of an aggregate value tuple at a node

in the aggregation tree is 〈repAddr, set of reps at children〉 where repAddr is the

IP address of a machine that is chosen as representative for the subtree rooted at

this node. The second field contains all representatives chosen at the children. An

intermediate virtual node computes its aggregate value using the function shown in

Algorithm 11 installed for attribute type multicast with the Update-Up aggregation

strategy. At a virtual node, given a set of aggregate values at the children of this

136



Algorithm 11 fmulticast(childValueSet)
1: childRepList ← Φ
2: for all 〈rep, childrepset〉 ∈ childValueSet do
3: childRepList ← childRepList

⋃ {rep}
4: end for
5: if childRepList = Φ then
6: return NULL
7: else
8: rep ⇐ chooseRep(childRepList)
9: return 〈rep, childRepList〉

10: end if

node, the aggregation function picks one of the representatives chosen by children

to act as the representative at this level (first field in the aggregate value tuple) and

also forms a set of representatives chosen by children (second field in the aggregate

value tuple).

A machine interested in session sessOne, say machine A with IP Address

IPAddrA, performs a series of probes for attribute (multicast, sessOne) starting

from level zero and increasing the level number until it finds an aggregate value, say

at level l, where the chosen representative’s IP address, say IPAddrB, is not same

as this machine’s IP address. Machine A then deems the machine with IP address

IPAddrB as the parent in the spanning tree for this multicast session. Also machine

A can extract the IP addresses of machines that will be this node’s children in the

spanning tree by taking union of the second field in the aggregate value tuples for

all level l′ < l. To get updates whenever any changes happen to the structure of

the spanning tree, a machine performs continuous probes instead of one-shot probes

when retrieving aggregate values at different levels in the aggregation tree. We show

the aggregate values for session sessOne with four interested nodes in Figure 9.2 and

we also show the resulting spanning tree in Figure 9.3.

A node wishing to send a multicast message invokes the multicastRoutine

shown in Algorithm 12 locally (with the node’s IP address, localIPAddr, passed for

137



HGFEDCBA
A, {A}

B, {A,B}

E, {B,E}

E, {E,H}

H, {H}

E, {E}

E, {E}

H, {H}

B, {B}

B, {B}
L0

L1

L2

L3

Figure 9.2: Aggregation tree and aggregate values for (multicast, sessOne) at-
tribute. We denote the IP addresses of individual machines with capital letters and
the aggregate value at individual nodes is shown in a box next to a node. Absence
of the aggregate value at a node indicates a NULL value.

B

E

H

A

Children: {B,A}
Parent: E

Children: {A}

Children: {H}
Parent: E

Parent: NULL
Children: {B,E,H}

Parent: B

Figure 9.3: The resulting spanning tree for session sessOne built based on SDIMS
aggregation shown in Figure 9.2. We alse show that parent and child set computed
at each interested node obtained by probing the SDIMS.

fromIPAddr argument). The multicast application on any node executes the same

routine upon receiving a multicast message. This routine ensures that only nodes

subscribed to a multicast session are involved in the forwarding process of a message

for the multicast session. Thus this multicast algorithm uses SDIMS as a control

plane to maintain a spanning tree and forms a separate data plane which incurs

communication cost on only nodes interested in that session.

138



Algorithm 12 multicastRoutine(sessName, message, fromIPAddr)
1: parent ← currentParent(sessName)
2: childSet ← currentChildSet(sessName)
3: neighs ← childSet

⋃ { parent}
4: for all peer ∈ neighs do
5: if peer 6= fromIPAddr then
6: Forward message to peer
7: end if
8: end for

In Algorithm 11, a representative is chosen from the childRepList by invok-

ing the chooseRep routine. Similar to enhanced ffileLocationBW shown in the Algo-

rithm 10, nodes can provide the locally available upload and/or download bandwidth

in the values and let chooseRep routine pick a representative with the highest band-

width available from the childRepList.

9.2 Case Studies

SDIMS is designed as a general distributed monitoring and control infrastructure

for a broad range of applications. Above, we discussed a couple of large distributed

applications — building a file location system and a multicast membership service.

Van Renesse et al. [101, 100] provide detailed examples of how such a service can

be used for a peer-to-peer caching directory, a data-diffusion service, a publish-

subscribe system, barrier synchronization, and voting. Additionally, we have initial

experience using SDIMS to construct two significant applications: a control plane

for a large-scale distributed file system [32] and a network monitor for identifying

“heavy hitters” that consume excess resources.

9.2.1 Distributed file system control

The PRACTI (Partial Replication, Arbitrary Consistency, Topology Independence)

replication system [32] provides a set of mechanisms for data replication over which

139



arbitrary control policies can be layered. We use SDIMS to provide several key

functions in order to create a file system over the low-level PRACTI mechanisms.

First, nodes use SDIMS as a directory to handle read misses. We can use

SDIMS similar to the file location application example explained in Section 9.1.1.

But in practice, a single file might be accessed within a short period or almost

concurrently by a large number of machines (e.g., the slashdot effect [2, 46], a wide-

area distributed system experiment downloading executables and input files, etc.)

If a file is located on one or a few nodes in the system, then file access latencies

will be severely affected during such high load. Below we detail how we handle such

flash crowds in PRACTI using SDIMS.

When a node n receives an object o, it updates the (ReadDir, o) attribute

with the value 〈n, RECEIVED〉; when n discards o from its local store, it resets (Read-

Dir, o) to NULL. Upon a read miss at a node m for object o, it updates the

(ReadDir, o) attribute with the value 〈n, WILLGET〉 denoted that it will soon fetch

and cache the file. At each virtual node, the ReadDir aggregation function selects

a random non-null child value with RECEIVED status. If no such child value exists,

then it selects a random non-null child value with WILLGET status. In the absence of

even such values, the aggregate value is simply set to NULL. We use the Update-Up

policy for propagating updates. To locate a nearby copy of an object o, a node

n1 issues a series of probe requests for the (ReadDir, o) attribute, starting with

level = 1 and increasing the level value with each repeated probe request until a

non-null tuple 〈n2, status〉 is returned. Node n1 then sends a demand read request

to n2, and n2 sends the data if it has it. If n2 is waiting to fetch the file, it will

send a waitingToFetch message to node n1 and n1 retries after a small time period.

Conversely, if n2 cannot serve the file (incorrect SDIMS state), it sends a nack to n1,

and n1 issues a retry probe with the DOWN parameter in probe set to a value larger

than used in the previous probe in order to force on-demand re-aggregation, which

140



will yield a fresher value for the retry. Note that this strategy effectively forms a

tree among machines simultaneously accessing a file and hence effeciently transfers

files with low response latencies.

Second, nodes subscribe to invalidations and updates to interest sets of files,

and nodes use SDIMS to set up and maintain a per-interest-set network-topology-

sensitive spanning trees for propagating this information. To subscribe to invali-

dations for interest set i, a node n1 first updates the (Inval, i) attribute with its

identity n1, and the aggregation function at each virtual node selects one non-null

child value. Finally, n1 probes increasing levels of the (Inval, i) attribute until it

finds the first node n2 6= n1; n1 then uses n2 as its parent in the spanning tree. n1

also issues a continuous probe for this attribute at this level so that it is notified

of any change to its spanning tree parent. Spanning trees for streams of pushed

updates are maintained in a similar manner. Note that this tree construction is

similar to the multicast application example in Section 9.1.2 but differs in the fol-

lowing aspect: intermediate virtual nodes do not maintain set of child representative

sets. Hence each node in this case only gets to know about their parent. But a node

A obtains its children information as the children connect to the node after learning

that node A is their parent.

In the future, we plan to use SDIMS for at least two additional services within

this replication system. First, we plan to use SDIMS to track the read and write

rates to different objects; prefetch algorithms will use this information to prioritize

replication [103, 104]. Second, we plan to track the ranges of invalidation sequence

numbers seen by each node for each interest set in order to augment the spanning

trees described above with additional “hole filling” to allow nodes to locate specific

invalidations they have missed.

Grid Microbenchmark We examine a 3-phase benchmark that represents run-

ning an experiment on a multi-machine cluster: in phase 1 Disseminate, each node

141



 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

NFS COOP BAYOU Manual SDIMS 

T
im

e(
s)

Disseminate
 Process

 Post-process

  24.4838 
  31.0439 

  222.405 

  44.3541 

  70.8326 

Figure 9.4: Efficacy of PRACTI with SDIMS controller in a grid micro-benchmark
compared to four other controllers.

fetches 10MB of new executables and input data from the user’s home node; in phase

2 Process, each node writes 10 files each of 100KB and then reads 10 files from ran-

domly selected peers; in phase 3, Post-process, each node writes a 1MB output file

and the home node reads all of these output files. We compare several different

controllers with SDIMS-based controller built on PRACTI low level mechanisms

— a controller similar to SDIMS-based controller but that is manually configured

instead of using SDIMS for location or multicast tree construction for propagating

invalidations and updates, a client-server system (e.g., NFS [74]), client-server with

cooperative caching of read-only data (e.g., a Shark-like system [5]), and server-

replication (e.g., a Bayou-like system [75]). All these five systems are compared

142



for grid microbenchmark in Figure 9.4. The SDIMS-based controller outperforms

all other controllers — it outperforms the client-server system type controller, the

cooperative caching based controller, and the server replication type controller as

it uses PRACTI low level mechanism efficiently for the type of application, and it

outperforms manually configured controller as it creates a different multicast tree for

each file during initial dissemination and during update and invalidate propagation

where as the manual controller follows a simple approach of using a single tree for

multicast and a single tree in the initial dissemination phase.

Overall, our initial experience with using SDIMS for the PRACTII replica-

tion system suggests that (1) the general aggregation interface provided by SDIMS

simplifies the construction of distributed applications—given the low-level PRACTI

mechanisms, we were able to construct a basic file system that uses SDIMS for

several distinct control tasks in under two weeks and (2) the weak consistency guar-

antees provided by SDIMS meet the requirements of this application—each node’s

controller effectively treats information from SDIMS as hints, and if a contacted

node does not have the needed data, the controller retries, using SDIMS on-demand

re-aggregation to obtain a fresher hint.

9.2.2 Distributed heavy hitter problem

The goal of the heavy hitter problem is to identify network sources, destinations,

or protocols that account for significant or unusual amounts of traffic. As noted

by Estan et al. [35], this information is useful for a variety of applications such as

intrusion detection (e.g., port scanning), denial of service detection, worm detec-

tion and tracking, fair network allocation, and network maintenance. Significant

work has been done on developing high-performance stream-processing algorithms

for identifying heavy hitters at one router, but this is just a first step; ideally these

applications would like not just one router’s views of the heavy hitters but an ag-

143



gregate view.

We use SDIMS to allow local information about heavy hitters to be pooled

into a view of global heavy hitters. For each destination IP address IPx, a node

updates the attribute (DestBW, IPx) with the number of bytes sent to IPx in

the last time window. The aggregation function for attribute type DestBW is

installed with the Update-UP strategy and simply adds the values from child nodes.

Nodes perform continuous probe for global aggregate of the attribute and raise an

alarm when the global aggregate value goes above a specified limit. Note that only

nodes sending data to a particular IP address perform probes for the corresponding

attribute. Also note that techniques from [71] can be extended to the hierarchical

case to tradeoff precision for communication bandwidth.

144



Chapter 10

Related Work

10.1 Aggregation Frameworks

The aggregation abstraction we use in our work is heavily influenced by the As-

trolabe [101] project. Astrolabe adopts a Propagate-All and unstructured gossip-

ing techniques to attain robustness [16]. However, any gossiping scheme requires

aggressive replication of the aggregates. While such aggressive replication is effi-

cient for read-dominated attributes, it incurs high message cost for attributes with a

small read-to-write ratio. Our approach provides a flexible API for applications to

set propagation rules according to their read-to-write ratios. Other closely related

projects include Willow [102], Cone [12], DASIS [3], and SOMO [116]. Willow, DA-

SIS and SOMO build a single tree for aggregation. Cone builds a tree per attribute

and requires a total ordering on the attribute values.

Several academic [41, 73, 61, 105] and commercial [99] distributed monitoring

systems have been designed to monitor the status of large networked systems. Some

of them are centralized where all the monitoring data is collected and analyzed

at a central host. Ganglia [41, 65] uses a hierarchical system where the attributes

are replicated within clusters using multicast and then cluster aggregates are further

145



aggregated along a single tree. SWORD [73, 72] is a resource discovery tool deployed

on PlanetLab [76]. SWORD collects reports about available resources on nodes,

and answers queries from users requesting nodes matching user-defined criteria.

Sophia [105] is a distributed monitoring system designed with a declarative logic

programming model where the location of query execution is both explicit in the

language and can be calculated during evaluation. This research is complementary

to our work. TAG [61] collects information from a large number of sensors along a

single tree.

The observation that DHTs internally provide a scalable forest of reduction

trees is not new. Plaxton et al.’s [77] original paper describes not a DHT, but a

system for hierarchically aggregating and querying object location data in order

to route requests to nearby copies of objects. Many systems—building upon both

Plaxton’s bit-correcting strategy [86, 118] and upon other strategies [66, 80, 94]—

have chosen to hide this power and export a simple and general distributed hash table

abstraction as a useful building block for a broad range of distributed applications.

Some of these systems internally make use of the reduction forest not only for

routing but also for caching [86], but for simplicity, these systems do not generally

export this powerful functionality in their external interface. Our goal is to develop

and expose the internal reduction forest of DHTs as a similarly general and useful

abstraction. Dabek et al [31] propose common APIs (KBR) for structured peer-

to-peer overlays that facilitate the application development to be independent from

the underlying overlay. While KBR facilitates the deployment of our abstraction

on any DHT implementation that supports the KBR API, it does not provide any

interface to access the list of children for different prefixes.

Although object location is a predominant target application for DHTs, sev-

eral other applications like multicast [24, 25, 90, 119] and DNS [29] are also built

using DHTs. All these systems implicitly perform aggregation on some attribute,

146



and each one of them must be designed to handle any reconfigurations in the un-

derlying DHT. With the aggregation abstraction provided by our system, designing

and building of such applications becomes easier.

10.2 Different Types of Queries

10.2.1 Composite Queries

There are some ongoing efforts to provide the relational database abstraction on

DHTs: PIER [49] and Gribble et al. [43]. These works mainly focus on supporting

“Join” operation for database tables stored on the nodes in a network. We consider

this research to be complementary to our work; the approaches can be used in our

system to handle composite queries – e.g., find a nearest machine with file “foo” and

has more than 2 GB of memory. PeerDB [69] is another peer-to-peer data sharing

system that supports content-based searches, allows users to share data without any

shared global schema, and employs mobile agents to assist in query processing.

10.2.2 Arbitrary Range Queries

Arbitrary range queries are common in some distributed applications like sensor

network monitoring systems [58], grid resource monitoring and management sys-

tems [4, 11, 72, 88], and distributed multi-player games [15]. In SDIMS, applications

install an aggregation function to aggregate data from machines in the system and

they can only probe for aggregate values computed at different levels in an aggre-

gation tree. One simple way SDIMS can support arbitrary range queries is through

maintaining all values in each intermediate aggregate. Range queries can then be

resolved by probing for the global aggregate which will return a vector of values for

all nodes in the system and pick values that satisfy the query. Though this scheme

is simple, it might incur high bandwidth costs as size of the update messages in

147



the system can become quite large. Recently, several researchers proposed DHT

based schemes for handling range queries [78, 15, 88, 110] and techniques from this

research can be exploited in SDIMS to support arbitrary range queries in a more

efficient way.

10.2.3 Stream Processing Queries

Stream processing applications, an emerging new class of applications, process data

that is generated in a distributed environment and is pushed asynchronously to

servers for processing. Recently, several systems like STREAM [93], AURORA [115],

TELEGRAPH [96], and Borealis [1, 9, 109] are proposed for handling stream pro-

cessing. These systems model the bulk of the processing required in these scenarios

in terms of standard well-defined streaming operators, such as filters, windowed ag-

gregates, windowed joins, etc. Most of this research focuses on defining appropriate

language to express the stream processing queries. The Medusa and Borealis [1, 115]

projects focus on achieving high availability and load management issues in stream-

processing environments. While the design of SDIMS does not focus on efficiently

supporting stream-processing queries, we are currently exploring to use SDIMS in

building INSIGHT [51], a distributed network monitoring system that tracks streams

of network flows data from a large number of routers.

148



Chapter 11

Conclusions

Information management is one of the key tasks of any large-scale distributed ap-

plication. The goal of this dissertation is to design and build a general and scalable

information management middleware for large distributed systems that will facil-

itate designing, developing, and deploying new distributed applications, and that

will assist application developers in exploring the design space and tradeoffs in com-

munication costs, response latencies, and consistency. This dissertation presents

a Scalable Distributed Information Management System (SDIMS) that aggregates

information in large-scale networked systems and that can serve as a basic build-

ing block for a broad range of applications. For large scale systems, hierarchical

aggregation is a fundamental abstraction for scalability.

We design SDIMS by extending ideas from Astrolabe and DHTs to achieve

(i) scalability with respect to both nodes and attributes through a new aggregation

abstraction that helps leverage DHT’s internal trees for aggregation, (ii) flexibility

through a simple API that lets applications control propagation of reads and writes

and through providing a mechanism that dynamically adapts the propagation based

on observed read and write load in the system, (iii) administrative isolation through

designing a novel Autonomous DHT (ADHT) that guarantees path convergence and

149



path locality properties, and (iv) robustness to node and network reconfigurations

through reaggregation mechanisms and application tunable spatial replication.

We have built a prototype of SDIMS in Java using FreePastry [39] frame-

work. Through extensive simulation experiments and micro-benchmarks on several

real testbeds, we observe that SDIMS incurs an order of magnitude less node stress

than Astrolabe, exposes several data propagation mechanisms and allows applica-

tions to decide a policy, incurs no administrative isolation violations whereas flat

DHTs incur violations in up to 14% of pairs of paths, and is robust to failures by

reconfiguring and reaggregating data in a timely manner. We have designed and

built several applications on SDIMS including a file location system and a multicast

tree construction system. We have also used SDIMS in two other research projects

in our lab — as a controller for a distributed file replication system PRACTI and

for a network monitoring system.

Our current work on SDIMS is a first step towards achieving a general and

scalable information management middleware that will be a distributed operating

systems backbone. Our experience in using SDIMS for designing and developing

several applications has been quite promising. Our work also opens up many research

issues in different fronts that need to be solved. Below we discuss some of these future

research directions.

Handling Composite Queries As discussed in Chapter 4, different attributes

in SDIMS are aggregated along different aggregation trees. Whereas this technique

allows SDIMS to scale to a large number of attributes, queries involving multiple

attributes poses a challenge. We have outlined some of the directions in Section 4.5.

Error Bounds In any large distributed systems, where reconfigurations are a

norm, it is hard to guarantee that an aggregate value returned on a probe corre-

sponds to the current state of the system. A more appropriate solution is to an

150



aggregate value along with some error bounds that will denote some form of con-

fidence in the aggregate value. For example, consider computing the average CPU

load in a system of thousand machines. Suppose probes return the average along

with the total number of machines used in computing it. If a probe returns an

answer denoting that only a hundred machines are used for computing the answer,

then an user or application can deem that value to be incorrect and reissue a new

probe.

Resource Management and Security One of the important aspects that SDIMS

does not address is how many resources should be allocated for an attribute — like

memory for computing the aggregation function, amount of time an aggregation

function is allowed to run, storage space for an aggregate value, etc. Also another

important issue is what other data on a machine should an aggregation function

be allowed to access. Techniques for authentication from Astrolabe [101] and tech-

niques for resource management in operating system research [7, 10, 34] can be

employed in SDIMS too.

151



Bibliography

[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Centintemel, M. Cherniack, J.-H.

Hwang, W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,

and S. Zdonik. The Design of the Borealis Stream Processing Engine. In

Second Biennial Conference on Innovative Data Systems Research, Asilomar,

California, January 2005.

[2] S. Adler. The Slashdot Effect: An Analysis of Three Internet Publications.

http://ssadler.phy.bnl.gov/adler/SDE/SlashDotEffect.html, 1999.

[3] K. Albrecht, R. Arnold, M. Gahwiler, and R. Wattenhofer. Join and Leave

in Peer-to-Peer Systems: The DASIS approach. Technical report, CS, ETH

Zurich, 2003.

[4] A. Andrzejak and Z. Xu. Scalable, Efficient Range Queries for Grid Infor-

mation Services. In Proceedings of the Second International Conference on

Peer-to-Peer Computing, page 33, Washington, DC, USA, 2002. IEEE Com-

puter Society.

[5] S. Annapureddy, M. Freedman, and D. Mazires. Shark: Scaling file servers

via cooperative caching. In Proceedings of the Second USENIX Symposium on

Networked Systems Design and Implementation, May 2005.

152



[6] J. Aspnes and G. Shah. Skip Graphs. In Proceedings of the 14th ACM-SIAM

Symposium on Discrete Algorithms, January 2003.

[7] G. Back, W. H. Hsieh, and J. Lepreau. Processes in KaffeOS: Isolation, Re-

source Management, and Sharing in Java. In Proceedings of the Fourth Sym-

posium on Operating Systems Design and Implementation, Oct 2000.

[8] M. Balazinska, H. Balakrishnan, and D. Karger. INS/Twine: A Scalable

Peer-to-Peer Architect ure for Intentional Resource Discovery. In Pervasive

2002 - International Conference on Pervasive Computing, Zurich, Switzerland,

August 2002.

[9] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker. Fault-

Tolerance in the Borealis Distributed Stream Processing System. In SIGMOD,

2005.

[10] G. Banga, P. Druschel, and J. Mogul. Resource Containers: A New Facility

for Resource Management in Server Systems. In OSDI99, Feb. 1999.

[11] S. Basu, S. Banerjee, P. Sharma, and S.-J. Lee. NodeWiz: Peer-to-Peer Re-

source Discovery for Grids. In Fifth International Workshop on Global and

Peer-to-Peer Computing (GP2PC), May 2005.

[12] R. Bhagwan, P. Mahadevan, G. Varghese, and G. M. Voelker. Cone: A

Distributed Heap-Based Approach to Resource Selection. Technical Report

CS2004-0784, UCSD, 2004.

[13] R. Bhagwan, S. Savage, and G. M. Voelker. Understanding availability. In

The Second International Workshop on Peer-to-peer systems, February 2003.

[14] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. M. Voelker. TotalRecall:

System Support for Automated Availability Management. In ACM/USENIX

Symposium on Networked Systems Design and Implementation, 2004.

153



[15] A. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting Scalable

Multi-Attribute Range Queries. In SIGCOMM, Portland, OR, August 2004.

[16] K. P. Birman. The Surprising Power of Epidemic Communication. In Pro-

ceedings of FuDiCo, 2003.

[17] B. Bloom. Space/time tradeoffs in hash coding with allowable errors. Comm.

of the ACM, 13(7):422–425, 1970.

[18] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Feasibility of a

Serverless Distributed File System Deployed on an Existing Set of Desktop

PCs. In Conference on Measurement and Modeling of Computer Systems

(SIGMETRICS), Santa Clara, USA, June 200.

[19] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and

zipf-like distributions: Evidence and implications. In Proceedings of IEEE

Infocom, 1999.

[20] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg. Primary-backup

Protocols: Lower Bounds and Optimal Implementations. In Proceedings of the

Third IFIP Conference on Dependable Computing for Critical Applications,

1992.

[21] R. Buyya. PARMON: a portable and scalable monitoring system for clusters.

Software — Practice and Experience, 30(7):723–739, 2000.

[22] M. Castro, M. Costa, and A. Rowstron. Performance and Dependability

of structured peer-to-peer overlays. Technical Report MSR-TR-2003-94, Mi-

crosoft Research Cambridge, UK, December 2003.

[23] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Exploiting Network

Proximity in Peer-to-Peer Overlay Networks. Technical Report MSR-TR-

2002-82, MSR.

154



[24] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and

A. Singh. SplitStream: High-bandwidth Multicast in a Cooperative Envi-

ronment. In SOSP, 2003.

[25] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. SCRIBE:

A Large-scale and Decentralised Application-level Multicast Infrastructure.

IEEE JSAC (Special issue on Network Support for Multicast Communica-

tions), 2002.

[26] J. Challenger, P. Dantzig, and A. Iyengar. A scalable and highly available

system for serving dynamic data at frequently accessed web sites. In In Pro-

ceedings of ACM/IEEE, Supercomputing ’98 (SC98), Nov. 1998.

[27] Y. Chen, R. H. Katz, and J. D. Kubiatowicz. SCAN: a Dynamic Scalable

and Efficient Content Distribution Network. In First Intl. Conf. on Pervasive

Computing, Aug 2002.

[28] E. Cohen and S. Shenker. Replication strategies in unstructured peer-to-peer

networks. In Proceedings of the 2002 conference on Applications, technologies,

architectures, and protocols for computer communications (SIGCOMM), 2002.

[29] R. Cox, A. Muthitacharoen, and R. T. Morris. Serving DNS using a Peer-to-

Peer Lookup Service. In IPTPS, 2002.

[30] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid informa-

tion services for distributed resource sharing. In Proceedings of the Tenth

IEEE International Symposium on High-Performance Distributed Computing

(HPDC-10), Aug 2001.

[31] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards

a Common API for Structured Peer-to-Peer Overlays. In IPTPS, February

2003.

155



[32] M. Dahlin, L. Gao, A. Nayate, A. Venkataramani, P. Yalagandula, and

J. Zheng. PRACTI replication for large-scale systems. Technical Report TR-

04-28, The University of Texas at Austin, 2004.

[33] V. Duvvuri, P. Shenoy, and R. Tewari. Adaptive leases: A strong consistency

mechanism for the world wide web. In Proceedings of IEEE Infocom, Mar.

2000.

[34] D. Engler, M. Kaashoek, and J. O’Toole. Exokernel: An Operating System

Architecture for Application-Level Resource Management. In Proceedings of

the Fifteenth ACMSymposium on Operating Systems Principles, Dec. 1995.

[35] C. Estan, G. Varghese, and M. Fisk. Bitmap algorithms for counting active

flows on high speed links. In Internet Measurement Conference 2003, 2003.

[36] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy. A dis-

tributed resource management architecture that supports advance reservations

and co-allocation. In Intl Workshop on Quality of Service, 1999.

[37] M. J. Freedman, E. Freudenthal, and D. Mazires. Democratizing Content

Publication with Coral. In First USENIX/ACM Symposium on Networked

Systems Design and Implementation, San Francisco, CA, March 2004.

[38] M. J. Freedman and D. Mazires. Sloppy Hashing and Self-Organizing Clusters.

In 2nd Intl. Workshop on Peer-to-Peer Systems, Berkeley, CA, February 2003.

[39] FreePastry. http://freepastry.rice.edu.

[40] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. SHARP: An architecture

for secure resource peering. In Proceedings of the 19th ACM Symposium on

Operating Systems Principles, Oct. 2003.

156



[41] Ganglia: Distributed Monitoring and Execution System.

http://ganglia.sourceforge.net.

[42] C. Gray and D. Cheriton. Leases: An Efficient Fault-Tolerant Mechanism

for Distributed File Cache Consistency. In Proceedings of the Twelfth ACM

Symposium on Operating Systems Principles, pages 202–210, 1989.

[43] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu. What Can Peer-

to-Peer Do for Databases, and Vice Versa? In Proceedings of the WebDB,

2001.

[44] K. Gummadi, R. Gummadi, S. D. Gribble, S. Ratnasamy, S. Shenker, and

I. Stoica. The Impact of DHT Routing Geometry on Resilience and Proximity.

In SIGCOMM, 2003.

[45] I. Gupta, K. Birman, P. Linga, A. Demers, and R. van Renesse. Kelips:

Building an Efficient and Stable P2P DHT through Increased Memory and

Background Overhead. In Proceedings of the 2nd International Workshop on

Peer To Peer Systems (IPTPS), 2003.

[46] A. M. C. Halavais. The Slashdot Effect: Analysis of a Large-Scale Public

Conversation on the World Wide Web. PhD thesis, University of Washington-

Seattle, 2003. http://alex.halavais.net/research/diss.pdf.

[47] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. SkipNet:

A Scalable Overlay Network with Practical Locality Properties. In USITS,

March 2003.

[48] N. J. A. Harvey, M. B. Jones, M. Theimer, and A. Wolman. Efficient Re-

covery From Organizational Disconnect in SkipNet. In Proceeding of the 2nd

International Workshop on Peer-to-Peer Systems (IPTPS), February 2003.

157



[49] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Stoica.

Querying the Internet with PIER. In Proceedings of the VLDB Conference,

May 2003.

[50] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable

and robust communication paradigm for sensor networks. In MobiCom, 2000.

[51] N. Jain, P. Yalagandula, M. Dahlin, and Y. Zhang. INSIGHT: A Distributed

Monitoring System for Tracking Continuous Queries. In Work-in-Progress

Session at ACM SOSP, Brighton, UK, October.

[52] F. Kaashoek and D. R. Karger. Koorde: A Simple Degree-Optimal Hash

Table. In Proceedings of the 2nd International Workshop on Peer To Peer

Systems (IPTPS), 2003.

[53] D. R. Karger and M. Ruhl. Diminished Chord: A Protocol for Heteroge-

neous Subgroup Formation in Peer-to-Peer Networks. In Third International

Workshop on Peer-to-Peer Systems, San Diego, CA, February 2004.

[54] C. Labovitz, A. Ahuja, and F. Jahanian. Experimental Study of Internet

Stability and Backbone Failures. In FTCS99, June 1999.

[55] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7), July 1978.

[56] L. Lamport. Part time parliament. ACM Transactions on Computer Systems,

16(2), May 1998.

[57] L. Lamport. Paxos made simple. ACM SIGACT News Distributed Computing

Column, 32(4), Dec. 2001.

[58] X. Li, Y. J. Kim, R. Govindan, and W. Hong. Multi-dimensional range queries

158



in sensor networks. In Proceedings of the 1st international conference on Em-

bedded networked sensor systems, pages 63–75. ACM Press, 2003.

[59] X. Li and C. G. Plaxton. On Name Resolution in Peer-to-Peer Networks. In

Proceedings of the POMC, October 2002.

[60] C. Liu and P. Cao. Maintaining Strong Cache Consistency in the World-

Wide Web. In Proceedings of the Seventeenth International Conference on

Distributed Computing Systems, May 1997.

[61] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: a Tiny

AGgregation Service for Ad-Hoc Sensor Networks. In OSDI, 2002.

[62] D. Malkhi. Dynamic Lookup Networks. In FuDiCo, 2002.

[63] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A Scalable and Dynamic

Emulation of the Butterfly. In Proceedings of the 21st ACM Symposium on

Principles of Distributed Computing (PODC), 2002.

[64] G. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed Hashing in a

Small World. In Proceedings of the USITS conference, 2003.

[65] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia distributed moni-

toring system: Design, implementation, and experience. In submission.

[66] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-peer Information

System Based on the XOR Metric. In Proceesings of the IPTPS, March 2002.

[67] A. Mislove and P. Druschel. Providing Administrative Control and Autonomy

in Peer-to-Peer Overlays. In Third International Workshop on Peer-to-Peer

Systems, San Diego, CA, February 2004.

[68] P. Mockapetris and K. Dunlap. Development of the Domain Name System.

Computer Communications Review, 18(4):123–133, Aug. 1988.

159



[69] W. S. Ng, B. C. Ooi, K. L. Tan, and A. Zhou. PeerDB: A P2P-based System for

Distributed Data Sharing. In Proceedings of the 19th International Conference

on Data Engineering.

[70] A. Ninan, P. Kulkarni, P. Shenoy, K. Ramamrithem, and R. Tewari. Coopera-

tive leases: Scalable consistency maintenance in content distribution networks.

In International World Wide Web Conference, May 2002.

[71] C. Olston and J. Widom. Offering a precision-performance tradeoff for aggre-

gation queries over replicated data. In Twenty-Sixth International Conference

on Very Large Data Bases, pages 144–155, Sept. 2000.

[72] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. Distributed re-

source discovery on PlanetLab with SWORD. In Proceedings of the First

Workshop on Real, Large Distributed Systems (WORLDS), Dec. 2004.

[73] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. Design and Imple-

mentation Tradeoffs for Wide-Area Resource Discovery. In Proceedings of the

14th IEEE Symposium on High Performance Distributed Computing (HPDC-

14), July 2005.

[74] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel, and D. Hitz.

NFS Version 3 Design and Implementation. In Proceedings of the Summer

1994 USENIX Conference, June 1994.

[75] K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and A. Demers. Flexible

Update Propagation for Weakly Consistent Replication. In Proceedings of the

Sixteenth ACM Symposium on Operating Systems Principles, Oct. 1997.

[76] Planetlab. http://www.planet-lab.org.

[77] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing Nearby Copies of

Replicated Objects in a Distributed Environment. In ACM SPAA, 1997.

160



[78] S. Ramabhadran, S. Ratnasamy, J. M. Hellerstein, and S. Shenker. Brief

Announcement: Prefix Hash Tree. In Proceedings of ACM PODC, July 2004.

[79] V. Ramasubramanian and E. G. Sirer. ”beehive: O(1) lookup performance

for power-law query distributions in peer-to-peer overlays”. In NSDI, March

2004.

[80] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable

Content Addressable Network. In Proceedings of ACM SIGCOMM, 2001.

[81] S. Ratnasamy, S. Shenker, and I. Stoica. Routing Algorithms for DHTs: Some

Open Questions. In IPTPS, March 2002.

[82] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling Churn in a DHT.

In USENIX Annual Technical Conference, June 2004.

[83] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,

I. Stoica, , and H. Yu. OpenDHT: A Public DHT Service and Its Uses. In

ACM SIGCOMM, August 2005.

[84] T. Roscoe, R. Mortier, P. Jardetzky, and S. Hand. InfoSpect: Using a Logic

Language for System Health Monitoring in Distributed Systems. In Proceed-

ings of the SIGOPS European Workshop, 2002.

[85] M. Roussopoulos and M. Baker. CUP: Controlled Update Propagation in

Peer-to-Peer Networks. In Proceedings of the USENIX Annual Technical Con-

ference, June 2003.

[86] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Object Location

and Routing for Large-scale Peer-to-peer Systems. In Middleware, 2001.

[87] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel. Scribe: The

design of a large-scale event notification infrastructure. In J. Crowcroft and

161



M. Hofmann, editors, Networked Group Communication, Third International

COST264 Workshop (NGC’2001), volume 2233 of Lecture Notes in Computer

Science, pages 30–43, Nov. 2001.

[88] C. Schmidt and M. Parashar. Flexible Information Discovery in Decentralized

Distributed Systems. In Proceedings of the 12th IEEE International Sympo-

sium on High Performance Distributed Computing, 2003.

[89] F. Schneider. Implementing Fault-tolerant Services Using the State Machine

Approach: A tutorial. Computing Surveys, 22(3):299–319, Sept. 1990.

[90] S.Ratnasamy, M.Handley, R.Karp, and S.Shenker. Application-level Multicast

using Content-addressable Networks. In Proceedings of the NGC, November

2001.

[91] K. Sripanidkulchai. The popularity of gnutella queries and its implications on

scalability, 2001.

[92] W. Stallings. SNMP, SNMPv2, and CMIP. Addison-Wesley, 1993.

[93] Stanford Stream Data Manager Group (STREAM).

http://www-db.stanford.edu/stream/index.html.

[94] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord:

A scalable Peer-To-Peer lookup service for internet applications. In ACM

SIGCOMM, 2001.

[95] Supermon: High speed cluster monitoring.

http://www.acl.lanl.gov/supermon/.

[96] The telegraph project at uc berkeley. http://telegraph.cs.berkeley.edu/.

162



[97] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Design Considerations for Dis-

tributed Caching on the Internet. In Proceedings of the Nineteenth Interna-

tional Conference on Distributed Computing Systems, May 1999.

[98] M. Theimer and M. B. Jones. Overlook: Scalable Name Service on an Overlay

Network. In Proceedings of the 22nd International Conference on Distributed

Computing Systems (ICDCS), Vienna, Austria, July 2002.

[99] IBM Tivoli Monitoring.

www.ibm.com/software/tivoli/products/monitor.

[100] R. van Renesse. The importance of aggregation. In A. Schiper, A. A. Shvarts-

man, H. Weatherspoon, and B. Y. Zhao, editors, Future Directions in Dis-

tributed Computing, volume 2584 of Springer-Verlag Lecture Notes in Com-

puter Science, Heidelberg, Germany, April 2003. Springer-Verlag.

[101] R. VanRenesse, K. P. Birman, and W. Vogels. Astrolabe: A Robust and

Scalable Technology for Distributed System Monitoring, Management, and

Data Mining. TOCS, 2003.

[102] R. VanRenesse and A. Bozdog. Willow: DHT, Aggregation, and Pub-

lish/Subscribe in One Protocol. In IPTPS, 2004.

[103] A. Venkataramani, P. Weidmann, and M. Dahlin. Bandwidth constrained

placement in a wan. In Proceedings of the 20th Symposium on the Principles

of Distributed Computing, Aug. 2001.

[104] A. Venkataramani, P. Yalagandula, R. Kokku, S. Sharif, and M. Dahlin. Po-

tential costs and benefits of long-term prefetching for content-distribution.

Elsevier Computer Communications, 25(4):367–375, Mar. 2002.

[105] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An Information Plane

for Networked Systems. In HotNets-II, 2003.

163



[106] M. Welsh, D. Culler, and E. Brewer. SEDA: An Architecture for Well-

Conditioned, Scalable Internet Services. In Eighteenth Symposium on Op-

erating Systems Principles (SOSP-18), Banff, Canada, October 2001.

[107] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hi-

bler, C. Barb, and A. Joglekar. An integrated experimental environment for

distributed systems and networks. In Proceedings of the Fifth Symposium on

Operating Systems Design and Implementation, pages 255–270, Dec. 2002.

[108] R. Wolski, N. Spring, and J. Hayes. The network weather service: A dis-

tributed resource performance forecasting service for metacomputing. Journal

of Future Generation Computing Systems, 15(5-6):757–768, Oct 1999.

[109] Y. Xing, S. Zdonik, and J.-H. Hwang. Dynamic Load Distribution in the

Borealis Stream Processor. In The 21st International Conference on Data

Engineering, 2005.

[110] P. Yalagandula and J. C. Browne. Solving Range Queries in a Distributed

System. Technical Report TR-04-18, Department of Computer Science, The

University of Texas at Austin, 2004.

[111] P. Yalagandula, S. Nath, H. Yu, P. B. Gibbons, and S. Seshan. Beyond Avail-

ability: Towards a Deeper Understanding of Machine Failure Characteristics

in Real Large Distributed Systems. In First Workshop on Real Large Dis-

tributed Systems (WORLDS), December 2004.

[112] B. Yang and H. Garcia-Molina. Designing a Super-peer Network. In Proceed-

ings of the 19th International Conference on Data Engineering (ICDE).

[113] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Hierarchical Cache Consistency

in a WAN. In Proceedings of the Second USENIX Symposium on Internet

Technologies and Systems, Oct. 1999.

164



[114] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Volume Leases to Support Consis-

tency in Large-Scale Systems. IEEE Transactions on Knowledge and Data

Engineering, Feb. 1999.

[115] S. Zdonik, M. Stonebraker, M. Cherniack, U. Centintemel, M. Balazinska, and

H. Balakrishnan. The Aurora and Medusa Projects. In Bulletin of the Tech-

nical Committe on Data Engineering, pages 3–10. IEEE Computer Society,

March 2003.

[116] Z. Zhang, S.-M. Shi, and J. Zhu. SOMO: Self-Organized Metadata Overlay

for Resource Management in P2P DHT. In IPTPS, 2003.

[117] B. Y. Zhao, Y. Duan, L. Huang, A. Joseph, and J. Kubiatowicz. ”brocade:

Landmark routing on overlay networks”. In Proceedings of the 1st Interna-

tional Workshop on Peer-to-Peer Systems (IPTPS ’02), March 2002.

[118] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An Infrastruc-

ture for Fault-tolerant Wide-area Location and Routing. Technical Report

UCB/CSD-01-1141, UC Berkeley, Apr. 2001.

[119] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz. Bayeux: An

Architecture for Scalable and Fault-tolerant Wide-Area Data Dissemination.

In NOSSDAV, 2001.

165



Vita

Praveen Yalagandula was born in Khammam, India on April 14, 1977, the son

of Seetha Rama Rao Yalagandula and Premalatha Yalagandula. After completing

high school at Jawahar Navodaya Vidhyalaya, Paleru, Khammam, India in 1994,

he studied at the Indian Institute of Technology, Kharagpur where he received a

Bachelor of Technology degree in Computer Science & Engineering in May 1998.

Praveen earned Master of Science in Engineering degree from the Electrical and

Computer Engineering department at the University of Texas at Austin in August

2000. He then joined the Ph.D. program in the Department of Computer Sciences at

the University of Texas at Austin. During his graduate studies, Praveen did summer

internships at Cadence Berkeley Labs in summer 1999, at HRL in summer 2001, and

at Intel Research in Pittsburgh in summer 2004. In Spring 2005, Praveen received

James C. Browne Graduate Fellowship from the Computer Sciences Department

awarded every year to outstanding graduate students.

Permanent Address: 6805 Wood Hollow Dr Apt 233

Austin, TX 78731

166



This dissertation was typeset with LATEX2ε
1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, and Ayman El-Khashab.

167


