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This dissertation focuses on improving the division-by-convergence al-

gorithm. While the division by convergence algorithm has many advantages, it

has some drawbacks, such as a need for extra bits in the multiplier and a large

ROM table for the initial approximation. To mitigate these problems, two

new methods are proposed here. In addition, the research scope is extended

to seek an efficient architecture for implementing a divider with Quantum-dot

Cellular Automata (QCA), an emerging technology.

For the first proposed approach, a new rounding method to reduce the

required precision of the multiplier for division by convergence is presented.

It allows twice the error tolerance of conventional methods and inclusive er-

ror bounds. The proposed method further reduces the required precision of

the multiplier by considering the asymmetric error bounds of Goldschmidt

dividers.
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The second proposed approach is a method to increase the speed of

convergence for Goldschmidt division using simple logic circuits. The proposed

method achieves nearly cubic convergence. It reduces the logic complexity and

delay by using an approximate squarer with a simple logic implementation and

a redundant binary Booth recoder.

Finally, a new architecture for division-by-convergence in QCA is pro-

posed. State machines for QCA often have synchronization problems due to

the long wire delays. To resolve this problem, a data tag method is proposed.

It also increases the throughput significantly since multiple division computa-

tions can be performed in a time skewed manner using one iterative divider.
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Chapter 1

Introduction

1.1 Background and Motivation

Division is a basic operation in many scientific and engineering ap-

plications, and two categories of division algorithms have been developed by

researchers. Although division is typically an infrequent operation compared

to addition and multiplication, it has been shown that if division is ignored,

many applications will experience performance degradation [1]. Division algo-

rithms can be categorized into two kinds: digit recurrent division and division

by convergence. While these two kinds of algorithms have their own advan-

tages [2], division by convergence has several advantages, such as quadratic

convergence, a pipeline friendly algorithm, and a small size if the system in-

cludes a multiplier [3]. Goldschmidt division [2, 4] is a representative algorithm

for the hardware implementations of division by convergence.

While division by convergence algorithms have some advantages, such

as quadratic convergence and small size if the system includes a multiplier [3],

they have several drawbacks. First, they do not provide an exact remainder

that is necessary for correct rounding. In addition, they require extra bits in

the multiplier for a correctly rounded quotient and the mitigation of the trun-
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cation errors. Due to these extra bits, the precision of the multiplier should

be larger than the required target precision. Second, the computation time of

division by convergence heavily depends on the precision of the initial approx-

imation to the reciprocal of denominator. Typically, the initial approximation

is computed using a table look-up method, and the accuracy of the initial ap-

proximation determines the number of iterations to obtain a target precision.

Although a high precision initial reciprocal table can reduce the number of

iterations, it requires a large silicon area. If these drawbacks can be mitigated,

the performance of the division by convergence algorithms will be improved.

In addition to improving algorithms for division by convergence in

CMOS technology, a new architecture for a promising emerging nanotech-

nology also needs to be explored. The continued scale down of transistors

confronts many challenges, such as leakage current caused by quantum me-

chanical tunneling of electrons. Quantum-dot Cellular Automata (QCA) [5, 6]

is one of the promising emerging nanotechnologies, which may solve the prob-

lems due to the shrink of transistors. QCA has many advantages, such as

low power consumption, high density, ultra fast computing, and an inherent

pipeline structure by implicit D flip-flops. Due to the unique characteristics

of the QCA technology, many arithmetic circuits, such as adders and mul-

tipliers, show interesting performance characteristics in the QCA technology

[7, 8]. It means that an arithmetic algorithm that shows the best performance

in the CMOS technology may not be the best in the QCA technology. There-

fore, new arithmetic algorithms specialized for the QCA technology need to

2



be developed.

1.2 Research Direction

Although division by convergence has many advantages, it requires ex-

tra bits for a multiplier (more than the target precision) and a large silicon

area for a high precision initial reciprocal approximation. In addition, a new

architecture for an emerging nanotechnology, quantum-dot cellular automata,

needs to be developed. To improve the division by convergence algorithm,

three approaches are proposed in this dissertation.

The approximate quotients have to be computed with extra precision

due to both truncation errors during iterations and IEEE-754 compliant round-

ing operations. The truncation error occurs on every iteration since multipli-

cation results are rounded to the precision of the multiplier. The final ap-

proximate quotient always has a bounded small error due to these truncation

errors. Another reason for the extra precision requirement is IEEE-754 com-

pliant rounding. The conventional rounding method [3, 9–11] requires that the

total error of the final approximate quotient should be less than 1
4
ulp. In other

words, the number of extra bits in the multiplier has to be large enough so

that the total error of the final approximate quotient is less than 1
4
ulp. In

order to reduce the required extra precision for the approximate quotient, a

new rounding method for division by convergence is proposed. The proposed

rounding method applies special truncation methods at the final iteration step.

This requires a minor modification to the rounding constants of the multiplier.

3



It allows twice the error tolerance of conventional methods and inclusive error

bounds. The proposed method further reduces the required precision of the

multiplier by considering the asymmetric error bounds of Goldschmidt dividers

where the factors are computed using a one’s complement operations.

Since the accuracy of the initial reciprocal approximation determines

the number of iterations in division by convergence, an efficient reciprocal ap-

proximation method is crucial to reduce the computation time. Although a

reciprocal ROM table with large precision reduces the number of iterations, it

also requires a large silicon area. Therefore, many researchers have focused on

implementations of efficient reciprocal approximation methods. In contrast, if

the rate of convergence becomes higher than quadratic in division by conver-

gence, the accuracy requirement for an initial reciprocal approximation can be

mitigated. In other words, the target precision of a final approximate quotient

can be computed from a less accurate reciprocal approximation if the speed of

convergence is faster. In order to reduce the silicon area for the ROM table,

a new method to speed the convergence rate using near cubic convergence is

proposed. Although division with cubic convergence, the simplest higher or-

der convergence, has been regarded as impractical due to its complexity, the

new method reduces the logic complexity and delay by using an approximate

squarer with a simple logic implementation and a redundant binary Booth

recoder.

Although Quantum-dot Cellular Automata (QCA) [5, 6] has many ad-

vantages, there is a problem in implementing conventional sequential circuits

4



based on state machines. Wires in QCA have a long delay since they are im-

plemented by QCA cells like those used to construct gates. Therefore, state

machines for QCA often have synchronization problems due to the long delays

between the state machines and the units (i.e., the computational circuits) to

be controlled. Due to this difficulty in designing sequential circuits, it appears

that a division circuit has not been researched yet while many adders and mul-

tipliers have been designed in QCA [7, 8, 12–15]. To resolve this problem, an

architecture for division by convergence using a data tag method is proposed.

In the new architecture for QCA, data tags are used instead of state machines,

and they are associated with the data and local tag decoders generate control

signals. Since each datum has a tag in the new architecture, it is possible

to issue a new division command at any iteration stage of a previous issued

operation, which increases the throughput of division significantly.

1.3 Dissertation Organization

The proposed research focuses on improving the division by conver-

gence algorithms. The rest of this dissertation is organized as a total of five

chapters. In Chapter 2, the conventional algorithm for division by conver-

gence is explained with its detailed operation. In addition, the previous works

to mitigate the drawbacks of division by convergence are summarized. As the

first approach, a new rounding method to reduce the required multiplier pre-

cision for division by convergence is presented in Chapter 3. In Chapter 4, an

approach to increase the speed of convergence for Goldschmidt division using

5



simple logic circuits is presented. In Chapter 5, an architecture for division by

convergence in QCA is presented Finally, the summary of the research work

in this dissertation and suggestions for the future research are provided in

Chapter 6.
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Chapter 2

Division by Convergence

The concept of division by convergence and its previous researches are

shown in this chapter. In Section 2.1, the concept of Goldschmidt division

is explained. Goldschmidt division is a representative division-by-convergence

algorithm that is usually used for hardware implementations. In the other

sections, previous researches to solve the problems shown in Section 1.2 are

reviewed.

2.1 Goldschmidt Division

In this section, the concept of Goldschmidt division and its implemen-

tation are explained. The division-by-convergence algorithms explored in this

dissertation are various forms of Goldschmidt division, sometimes called a se-

ries expansion method [10]. Goldschmidt dividers compute the approximate

quotient by parallel multiplications. Division can be written as

Q =
N

D

where Q is the quotient, N is the numerator, and D is the denominator. Before

the first iteration of the Goldschmidt division, both N and D are multiplied

by F0 (the approximate reciprocal of D) to make the denominator close to

7



1. Since F0 is produced by a reciprocal table with a limited precision, the

resulting denominator has an error, ǫ. Therefore, the normalized quotient, Q0,

is

Q0 =
N × F0

D × F0
=

N0

D0
=

N0

1 − ǫ
.

At the first Goldschmidt iteration, N0 and D0 are multiplied by F1. While F0

is usually computed by a table look-up, the approximation for the reciprocal of

D0, F1, is computed by an addition. This simple arithmetic computation for

the approximate reciprocal is one of the advantages of Goldschmidt division.

In this case, F1 and Q1 are computed as follows:

F1 = (2 − D0) = 1 + ǫ

Q1 =
N1

D1
=

N0 × F1

D0 × F1

=
N0(1 + ǫ)

(1 − ǫ)(1 + ǫ)
=

N0(1 + ǫ)

(1 − ǫ2)

At the i-th iteration, Fi and Qi are computed as follows:

Fi = (2 − Di−1) = 1 + ǫ2i−1

for i > 0 (2.1)

Qi =
Ni

Di

=
Ni−1 × Fi

Di−1 × Fi

=
Ni−1(1 + ǫ2i−1

)

(1 − ǫ2i)
(2.2)

As the iteration continues, Ni will converge toward Q with ever-greater preci-

sion. Since the error decreases by ǫ2i

as shown in Equation (2.2), the conver-

gence order of the Goldschmidt division is quadratic. A less than 8-bit recipro-

cal table [16] can make the initial error ǫ accurate enough for double precision

floating-point division to be computed in three Goldschmidt iterations. In

addition, the Goldschmidt division is attractive for hardware implementation

8



since the independent parallel multiplications can be implemented efficiently

in a pipelined multiplier.

Fi for quadratic convergence is usually computed using simple logic

without a real addition. If the two’s complement operation used to compute

Fi in Equation (2.1), it requires a carry propagating adder, which introduces

a long delay. Therefore, Fi is usually computed by one’s complement [3, 17] to

reduce the delay although one’s complement introduces a small error, 2−lsb, as

D

2-D

MUX

Table
FF

MUX
MUX

Multiplier

N

FF

Exponent

Round

Unpack

Pack

Rounding 
constatnts 

& N

Round & Normalization

QT,R

Figure 2.1: Block diagram of a typical Goldschmidt divider.
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follows:

Fi = 2 − Di−1 = comp2(Di−1)

= comp1(Di−1) + 2−lsb

≈ comp1(Di−1) (2.3)

Since Fi can be computed by one’s complement, many Goldschmidt division

applications have adopted the quadratic convergence algorithm. A typical

floating point Goldschmidt divider consists of a multiplier, a reciprocal table,

a computation unit for Fi, and rounding unit as shown in Figure 2.1.

2.2 Previous Works

2.2.1 Rounding Methods for Division by Convergence

Since a correction stage to compute the exact remainder is required

for correct rounding in division-by-convergence, several efficient methods have

been suggested for the IEEE-754 compliant rounding. The first approach is

to use more than twice the precision for intermediate computation [18]. A

method using a double precision accumulator was suggested to compute cor-

rectly rounded results of the Newton-Raphson iterations in the IBM RS/6000

processor [19], but the method has two drawbacks. One is that the accumu-

lator for a multiply-and-add instruction requires twice the precision of other

methods. The other is that the method needs one additional regular iteration

step before the final rounding stage although the result has already reached the

target precision. However, the method is very efficient for the fused multiply-

10



and-add architecture, and it utilizes the floating-point pipeline architecture

successfully without any conditional branches for the rounding stage.

Another approach is to compute the direction of the remainder in lieu

of an explicit calculation. Because this method requires only the direction of

the remainder for the rounding operation, more efficient rounding circuits can

be implemented. A method that computes the sign of the difference between

the dividend and the product of an approximate quotient and the divisor was

implemented in the TI-8847 processor [2, 20]. In this processor, quotients are

computed with extra bits of precision. An enhanced method that removes

the necessity of comparing the remainder in some cases using one additional

correct bit [9] was developed. Furthermore, it has been shown that a reduction

in the frequency of remainder comparisons is possible if several additional bits

are computed [10, 21].

Although there have been improvements in the frequency of the re-

mainder comparisons, the error tolerance of inputs to the rounding stage has

not improved. Truncation of the numerator and denominator in division by

convergence introduces a small amount of error at each iteration step. In the

Goldschmidt division algorithm [4], this kind of error accumulates, and the

total error for the approximate quotient is proportional to the number of iter-

ations. For correct operation at the rounding stage, the absolute value of the

total error has to be less than ±1
4
ulp in current rounding methods. If this error

tolerance can be increased, the intermediate precision required for iterations

can be relaxed, or an iteration algorithm can be implemented with more error

11



margin.

2.2.2 Reduction of the Required Multiplier Precision

Goldschmidt division requires a high precision multiplier due to the

extra bits required for correct rounding. To reduce the multiplier precision,

several approaches have been suggested. One approach is to determine the

required minimum extra bits of the multiplier by error analysis. For the AMD

K-7 microprocessor, 7 extra bits were used for a 2-iteration 68-bit division after

a conservative error analysis [3]. Tighter error analyses show that the required

number of extra bits can be reduced further [22, 23]. Another recent approach

to reduce the required multiplier precision is a method using a rectangular

m× n multiplier [11], which uses a property of Goldschmidt division that the

multiplicative factors are close to 1.

2.2.3 Computation Time Reduction of Division by Convergence

Many researchers have tried to reduce the computation time of division

by convergence, and the most prevalent approach is to reduce the number

of iterations by increasing the precision of the initial approximation to the

reciprocal. It is used to compute the initial quotient value in Goldschmidt

division. The number of iterations and the computation time are heavily

dependent on the accuracy of the initial reciprocal approximation. Although

a high precision initial reciprocal table can reduce the number of iterations, it

requires a large silicon area.
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Several methods have been suggested to increase the accuracy of the re-

ciprocal approximation. The efficient implementation of the reciprocal approx-

imation is crucial for the performance of division by convergence. Although

the minimum size of the reciprocal ROM table with a certain error margin can

be determined [16], a naive implementation still requires a large silicon area.

One approach to reduce the area for the reciprocal table is the faithful bipar-

tite ROM reciprocal table method [24, 25], which employs two independent

parallel table look-ups and then adds the output values of the two tables to

compute the final value. Since the addition can be computed at the Booth re-

coding part of a multiplier without a real addition, the bipartite table method

has been effective and practical enough to be adopted in many division-by-

convergence applications including the AMD-K7 microprocessor [3]. On the

other hand, linear function approximation methods based on small piecewise-

constant tables have been suggested [26, 27]. The precision of this reciprocal

approximation method is high enough for a double-precision floating-point di-

vision to be computed in only one Goldschmidt iteration [28]. Although linear

function approximation methods can be implemented efficiently, the compu-

tation still requires heavy use of arithmetic operations, such as multiplication,

addition, and squaring.

While reciprocal approximation methods play an important role at the

first stage of division by convergence, a method for removing the last iteration

step has been suggested [29]. In this method, the step before the last iteration

includes the amount of error reduction of the last iteration step by a table

13



look-up. Although this requires a table look-up and an addition, it reduces

the total computation time.

While Newton-Raphson division methods typically have quadratic con-

vergence, a cubic convergence algorithm [30] has been suggested to reduce

the number of instructions. This algorithm shows that a combination of

quadratic convergence and cubic convergence gives better performance than

only quadratic convergence in a processor that includes a fused multiply-and-

add (FMA) instruction. This algorithm is based on an assumption that the

cubic convergence requires three FMA instructions and the quadratic conver-

gence requires two instructions, which is not valid for a pipelined hardware

architecture. Therefore, it is difficult to apply this algorithm to hardware im-

plementations although the algorithm is an effective acceleration method for

a system with a FMA instruction.
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Chapter 3

A New Rounding Method with Improved

Error Tolerance

3.1 Overview

While division-by-convergence algorithms have some advantages, such

as quadratic convergence and small size if the system includes a multiplier

[3], they have some drawbacks. One of the drawbacks is that they do not

provide the exact remainder that is necessary for correct rounding. Therefore,

a correction stage using extra bits is required for correct rounding. In order to

achieve correct rounding in division-by-convergence, several efficient methods

have been suggested as shown in Section 2.2.1. Another drawback is that the

division by convergence algorithms require a large precision multiplier due to

both the extra bits required for correct rounding and the truncation errors

in the multiplier. To reduce the multiplier precision, several approaches have

been suggested as shown in Section 2.2.2.

A rounding method to enlarge the allowable error tolerance is another

approach to reduce the required precision of the multiplier. The truncation

of the numerator and denominator in Goldschmidt division introduces a small

amount of error at each iteration step. This kind of error accumulates, and
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the total error of the approximate quotient is proportional to the number

of iterations. For correct operation at the rounding stage with conventional

rounding methods, the absolute value of the total error has to be less than 1
4

of

a unit in the last place (1
4
ulp) in [3, 9–11]. Although a rounding method with

a larger error tolerance than the conventional method has been proposed [31],

it does not consider the asymmetric error bounds that arise when the factors

are computed using one’s complements.

The dissertation focuses on a rounding method that reduces the re-

quired precision of the multiplier. The scheme, which allows a larger error

tolerance than conventional rounding methods, is implemented by applying

individual special rounding constants to the final iteration stage for a rounded

approximate quotient. The proposed method is further optimized based on an

error analysis of the Goldschmidt divider.

The conventional rounding method is presented in Section 3.2. In Sec-

tion 3.3, the new rounding method is presented. Section 3.4 shows an error

analysis of a Goldschmidt divider and shows how the new rounding method

can be optimized by the error analysis result. Finally, the verification method-

ology and the implementation are explained in Section 3.5.

3.2 Current Rounding Method

The maximum allowable error of the conventional rounding methods for

the Goldschmidt division algorithm is ±1
4
ulp [3, 9–11]. This rounding method

is based on a remainder comparison using one correct additional bit, and the
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error tolerance is bounded by

−2−(n+2) < Q − QA < +2−(n+2) (3.1)

where Q is the infinitely precise quotient and QA is the approximate quotient

computed by iterations. Before defining n, it is necessary to mention some

assumptions and definitions used in this dissertation. First, it is assumed that

the intermediate numbers are not normalized to [1, 2), which does not cause

loss of generality. Second, the number of bits in a bit string is defined as the

number of digits below the binary point. Third, n is the number of bits in a

machine representable number, so a unit in the last place (ulp) is 2−n. For

the double precision IEEE-754 floating-point format, n is 53 since a guard bit

is included. Finally, the internal precision is k-bits. k is larger than n since

the intermediate numbers require extra precision to satisfy the error tolerance

bounds.

The relationships between QA and the range of its corresponding Q are

shown in Figure 3.1. QA within a 1-ulp range is divided into four groups that

can follow different rounding rules, and these rounding rules are repeated at

every ulp. 0 and 1 on the axis in Figure 3.1 mean digits at the (n+1)-th bit,

and X, Y, and Z are the digits at the n-th bit, ulp.

Three rounding modes (RNE, RI, and RZ) are implemented as shown

in Table 3.1 because the four IEEE rounding modes (RNE, RPI, RMI, and RZ)

can be realized using the 3 rounding modes [32]. QT is an (n+1)-bit number

used for computation of the correctly rounded quotient and the remainder
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Figure 3.1: QA, Q, and QT in the conventional rounding method.

direction. The 1
2
ulp bit in Table 3.1 is the (n+1)-th bit of QT . Trunc, Inc,

and Dec in Table 3.1 mean the truncation of QT to n-bits, the increment by

1ulp of the truncated QT , and the decrement by 1ulp of the truncated QT . The

QT corresponding to each QA span is indicated by an × mark in Figure 3.1,

and is computed as follows:

QR = QA + 2−(n+2)

QT = truncation of QR to (n + 1)-bits

The relationship between Q and QT is

−2−(n+1) < Q − QT < +2−(n+1) .
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Table 3.1: Conventional method rounding rule details

1
2
ulp bit Remainder RNE RI RZ

0 > 0 Trunc. Inc. Trunc.

0 = 0 Trunc. Trunc. Trunc.

0 < 0 Trunc. Trunc. Dec.

1 > 0 Inc. Inc. Trunc.

1 = 0 - - -

1 < 0 Trunc. Inc. * Trunc.

The remainder in Table 3.1 is computed using QT by

R = N − QT × D

where R = remainder, N = numerator, and D = denominator. An exact

halfway quotient, at which the (n+1)-th bit is 1 and the remainder is 0, is not

considered in Table 3.1 because the case cannot occur if N and D are n-bits

wide [9]. Since the sign of R is required for the rounding operations, only the

n-th bit and the sticky bit of R are examined.

3.3 New Rounding Method

3.3.1 Inclusive Error Bounds

In the conventional rounding method introduced in Section 3.2, both

endpoints of the error tolerance interval are exclusive and cannot be inclusive

[9] as shown in Inequality (3.1). If both endpoints of the (Q − QA) interval

become inclusive, the lower endpoints of Q in Figure 3.1 will change from ex-
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clusive to inclusive, but the upper endpoints of Q are still exclusive. Therefore,

the relationship between QT and Q will be as follows:

−2−(n+1) ≤ Q − QT < +2−(n+1)

In this slightly extended (Q − QA) range, the case of the RI mode

that is marked by * in Table 3.1 operates incorrectly. For example, if the

lower endpoint of the 4-th Q (Y0 < Q < Y1 + 2−(n+2)) in Figure 3.1 becomes

inclusive and Q is exactly Y0, the correctly rounded quotient for the RI mode

should be Y0. However, the rounded quotient computed by Table 3.1 is Z0,

which is incorrect.

For correct rounding at the above case, a new rounding algorithm using

Q

QA

Q

QA

Q

QA

Q

QA

Machine representable numbers

Y0 Y1X1 Z0

Figure 3.2: RI rounding mode with inclusive error bounds.
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a different rounding constant for the RI mode is proposed. The inclusive

lower endpoint of Q becomes exclusive, and the exclusive upper endpoint of

Q becomes inclusive as shown in Figure 3.2. Since Q cannot be in the 4-th

Q range like the problem case, the problem when Q = Y0 is solved. This

new rounding algorithm is implemented by slight modification of the rounding

constant for RI mode as follows:

Q
′

R =

{
QA + 2−(n+2) − 2−k for RI
QA + 2−(n+2) for RNE & RZ

Q
′

T = truncation of Q
′

R to (n+1)-bits

where k is the least significant bit of the internal precision. Due to extra bits

to satisfy the error tolerance bounds, the internal precision, k-bits, is larger

than n-bits. The remainder is computed using Q
′

T , and the correctly rounded

Q is determined by the rounding rules in Table 3.1.

As a result, the error tolerance for this improved rounding mode will

be

−2−(n+2) ≤ Q − QA ≤ +2−(n+2) .

3.3.2 Twice the Error Bounds with Inclusive Endpoints

The rounding algorithm proposed in Section 3.3.1 can be expanded

to accommodate a larger allowable error tolerance of (Q − QA). The error

tolerance of the conventional rounding method is limited by the RI mode in

the first place. Since the first limitation on the error tolerance is removed

by the algorithm in Section 3.3.1, it is possible to expand the allowable error

range of (Q − QA) beyond ±1
4
ulp.
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Figure 3.3: Q, QA, and Q
′′

T in the new rounding method. (a) RNE mode, (b)
RI mode, (c) RZ mode.
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Table 3.2: New rounding rules

Remainder RNE RI RZ

> 0 Inc. Inc. Trunc.

= 0 Trunc. Trunc. Trunc.

< 0 Trunc. Trunc. Dec.

The new rounding algorithm for the expanded error bounds requires

new rounding rules based on a new remainder computation. QA is converted

into Q
′′

T differently according to each rounding mode as shown in Figure 3.3.

The Q
′′

T corresponding to each QA span is indicated by an × mark in Figure 3.3.

Using Q
′′

T , the remainder R
′′

is computed as R
′′

= N − Q
′′

T × D. The new

range of Q
′′

T for each rounding mode is as follows:

−2−n ≤ Q − Q
′′

T < +2−n for RNE & RZ modes
−2−n < Q − Q

′′

T ≤ +2−n for RI mode

Finally, the correctly rounded Q is determined using the rounding rules in

Table 3.2 based on Q
′′

T and the sign of the remainder R
′′

. The rounding

rule table is simpler than the conventional method in Table 3.1 because each

different truncation method to compute Q
′′

T has already been applied according

to the rounding mode. As a result, the new error tolerance is

−2−(n+1) ≤ Q − QA ≤ +2−(n+1) .

3.3.3 Extension for Asymmetric Error Bounds

If the approximate quotient QA has asymmetric error bounds, the max-

imum absolute error can be reduced by shifting QA by adding a constant value.
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In Goldschmidt dividers, asymmetric error bounds may be caused by comput-

ing the factor using a one’s complement operation instead of a two’s com-

plement operation. Although the error bounds Q − QA were used to clearly

understand the rounding mode diagrams in the previous sections, the error of

the approximate quotient is the inverse, specifically E = QA −Q. If the error

bounds are asymmetric as

−B − Bbias ≤ E ≤ +B − Bbias (3.2)

where B > 0, the maximum absolute error of QA is B + |Bbias|. However, if

QA is shifted into Q
′′

A by adding Bbias, the effective error bounds for the new

rounding algorithm will be

−B ≤ Q
′′

A − Q ≤ +B (3.3)

where Q
′′

A = QA + Bbias.

Since only the error bounds of QA are shifted by Bbias for the rounding

algorithm in order to reduce the maximum absolute error, the other procedures

for rounding are the same as those of Section 3.3.2 except for applying Q
′′

A

instead of QA.

If the error of an approximate quotient is unidirectional as an instance

of asymmetric error bounds, the error tolerance is

0 ≤ Q − QA ≤ +2−(n) . (3.4)

In this case, QA should be converted into Q
′′

T as shown in Figure 3.4 according

to each rounding mode. Since the error bounds of the unidirectional errors in
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Figure 3.4: Q, QA, and Q
′′

T in the new rounding method for unidirectional
errors. (a) RNE mode, (b) RI mode, (c) RZ mode.
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Inequality (3.4) is

−2B ≤ QA − Q ≤ 0 ,

the rounding method in Figure 3.4 can be accomplished effectively by setting

Bbias in Inequality (3.2) as B.

3.3.4 Details of the New Rounding Method

The new rounding method for the expanded error tolerance with asym-

metric bounds is computed through two steps: the conversion from QA to Q
′′

T

and the rounding rules based on both Q
′′

T and the sign of the remainder.

In the first step, QA that may have an error biased by Bbias is converted

into Q
′′

T as shown in Figure 3.3. The conversion from QA to Q
′′

T requires a

different rounding constant and truncation for each rounding mode as shown

in Table 3.3. Since Bbias to compute Q
′′

A in Inequality (3.3) is merged into the

rounding constants, there is no additional computation load for processing the

Table 3.3: Conversion from QA to Q
′′

T

Type Truncation method for Q
′′

T

RNE 1 QR = QA + Bbias

2 QR is truncated to n-bits

3 Q
′′

T = QR | 2−(n+1)

RI 1 QR = QA + (2−(n+1) − 2−k + Bbias)

2 Q
′′

T = truncation of QR to n-bits

RZ 1 QR = QA + (2−(n+1) + Bbias)

2 Q
′′

T = truncation of QR to n-bits
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asymmetric error bounds. In addition, the rounding constants are likely to be

(k − n) bits long since Bbias is within an order of 2−k, which will be shown in

Section 3.4.2.

In the second step, Q
′′

T is converted into the correctly rounded Q using

rounding rules based on the sign of the remainder R
′′

in Table 3.2. The

remainder in Table 3.2 is computed using Q
′′

T as

R
′′

= N − Q
′′

T × D .

Although Q
′′

T is truncated to n-bits for the RI mode and the RZ mode, Q
′′

T

is an (n + 1)-bit string, so a zero is concatenated to the end of the string in

the two modes. If Q
′′

T is greater than or equal to 1.0, Q
′′

T is an n-bit string for

floating-point normalization.

3.4 Approximation Error Bounds of Goldschmidt Di-

viders

3.4.1 Goldschmidt Divider

For the verification of the proposed rounding method, the 3-iteration

double precision floating-point Goldschmidt divider is implemented in this

dissertation. Before the iteration steps of the Goldschmidt division, both N

and D are multiplied by F0. Since F0 is looked up from a 7-bit ROM table,

so the maximum approximation error of F0, max(ǫ), is 2−7.4 [16, 29]. After
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normalizing the denominator to 1 using the ROM table, N0 and D0 are

N0 = N × F0

D0 = D × F0 = 1 − ǫ .

At the i-th step, Ni and Di are multiplied by Fi. Fi (i>0) is computed using

the one’s complement method in order to reduce the delay [3, 17]. In this case,

Fi, Ni, and Di are as follows:

Fi = (2 − Di−1) = 1 + ǫ2i−1

Ni = Ni−1 × Fi = Ni−1(1 + ǫ2i−1

)

Di = Di−1 × Fi = (1 − ǫ2i

)

As the iteration continues, the truncation errors in the multiplier during com-

puting Ni and Di are accumulated. In addition to the truncation errors, the

final error of the approximate quotient is affected by the error due to one’s

complement operations in Equation (2.3).

3.4.2 Error Bounds for the Goldschmidt Divider

The maximum error bounds of QA are required for determining two

parameters: the number of the extra bits (k − n) and the Bbias in Inequality

(3.2). The maximum error bounds of the approximate quotients are analyzed

by the maximum error scenario.

The maximum error scenario for the approximate quotients includes

two cases: the maximum positive error bound (Emax+) and the maximum
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negative error bound (Emax−). The errors are caused by rounding Ni and Di

to the internal precision of the multiplier, k (k > n). The maximum positive

error occurs when Ni is maximized and Di is minimized by rounding (round

to nearest) at each iteration step. Conversely, the maximum negative error

occurs when Ni is minimized and Di is maximized.

The maximum positive error bound, Emax+, occurs when Ni is maxi-

mized and Di is minimized at each iteration step. The maximum N0 and the

minimum D0 that occurs due to truncation errors, elsbn0 and elsbd0, are

N0max = N0 + 0.5elsbn0

D0min = (1 − ǫ) − 0.5elsbd0

where elsbn0 = elsbd0 = 2−k. k is the last bit position of the internal precision

including the extra bits. F1 is computed by

F1 = 2 − D0min − 2−k = 1 + ǫ +
1

2
elsbd0 − 2−k (3.5)

where elsbd0 = 2−k. Since F1 is computed using a one’s complement operation,

the term 2−k is subtracted in Equation (3.5). By using N0max, D0min and F1,

N1max and D1min are estimated as

N1max
∼= N0(1 + ǫ) + 0.5(1 − N0)2

−k + 0.5elsbn1

D1min
∼= 1 − ǫ2 − 2−k − 0.5elsbd1

where elsbn1 = elsbd1 = 2−k. In the same manner, N2max and D2min are esti-
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mated as

N2max
∼= N0(1 + ǫ)(1 + ǫ2) + 2−k + 0.5elsbn2

D2min
∼= 1 − ǫ4 − 2−k − 0.5elsbd2

where elsbn2 = elsbd2 = 2−k. At the final iteration, N3max and D3min are

estimated as

N3max
∼= N3 + 0.5(3 + N2)2

−k + 0.5elsbn3

D3min
∼= 1 − ǫ8 − 2−k − 0.5elsbd3

where elsbn3 = elsbd3 = 2−k. Since max(QA) is N3max, the maximum positive

error bound is as follows:

Emax+ = max(QA) − Q ∼= N3max − N3(1 + ǫ8)

= N3 + (
1

2
N2 + 2)2−k − N3(1 + ǫ8)

= (
1

2
N2 + 2)2−k − N3ǫ

8

min(QA), which is required to determine Emax−, is also estimated as shown

Table 3.4: Maximum error bounds of the approximate quotient for the Gold-
schmidt divider as implemented

Bounds Error (E = QA − Q) Q < 1 Q ≥ 1

Emax+ (1
2
N2 + 2)2−k − N3ǫ

8 2.5 · 2−k 3 · 2−k

Emax− −(5
2
N2 + 2)2−k − N3ǫ

8 −4.5 · 2−k − ǫ8
0 −7 · 2−k − 2ǫ8

0
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in Table 3.4 using the same procedure. The errors in Table 3.4 are simplified

by assuming that ǫ0 is max(|ǫ|) and N2 is less than or equal to Q.

If the correctly rounded Q is greater than or equal to 1, then QA is

normalized and the (n − 1)-th bit is a ulp instead of the n-th bit. Thus, the

n-th bit serves as an additional bit. This extra bit reduces the error by half.

For example, although Emax− for Q ≥ 1 is −7 · 2−k − 2ǫ8 in Table 3.4, the

maximum negative error after normalization is −7
2
· 2−k − ǫ8. Since ǫ8 is less

than 2−k practically, the maximum error bounds for Q < 1 in Table 3.4 are

the main concern.

If the factor Fi is computed using a two’s complement operation, the

maximum positive error bound and the maximum negative error bound are

calculated by removing the term 2−k in Equation (3.5). As a result, the two

error bounds can be estimated using the same procedure as shown in Table

3.5.

Table 3.5: Maximum error bounds of the approximate quotient when Fi is
computed by a two’s complement operation

Bounds Error (E = QA − Q) Q < 1 Q ≥ 1

E2max+ (3
2
N2 + 2)2−k − N3ǫ

8 3.5 · 2−k 5 · 2−k

E2max− −(3
2
N2 + 2)2−k − N3ǫ

8 −3.5 · 2−k − ǫ8
0 −5 · 2−k − 2ǫ8

0
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3.4.3 Error Bounds Comparison by the Fi Computation Methods

Before applying the new rounding method, the maximum error bounds

in Section 3.4.2 are evaluated with 109 random double precision floating-point

divisions. The approximation errors, E, are computed by modifying the re-

mainder equation as follows:

E = QA − Q =
QA × D − N

D

The error histogram in Figure 3.5 shows the error distributions of four cases:

C2Q0 (2’s complement for Fi, Q < 1), C2Q1 (2’s complement for Fi, Q ≥ 1),

C1Q0 (1’s complement for Fi, Q < 1), and C1Q1 (1’s complement for Fi,

Q ≥ 1).
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Figure 3.5: Histogram of E for 109 random divisions.
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The results show the same trends that were predicted by the maximum

error analyses in Section 3.4.2. As in the error analyses, the two’s complement

cases show symmetrical error distributions. On the other hand, the one’s com-

plement cases show asymmetrical error distributions. The error distribution

of the one’s complement case for Q < 1 are shifted left by 2−k compared to

the two’s complement case.

3.4.4 Parameters for the New Rounding Method

Using the error analysis result in Section 3.4.2, the two parameters,

Bbias and k, required to implement the new rounding method and the multiplier

are determined. Since the maximum positive error bound (Emax+) is 2.5 · 2−k

and the maximum negative error bound (Emax−) is −4.5 · 2−k − ǫ8 as shown

in Table 3.4, Bbias in Inequality (3.2) is

Bbias = +2−k +
1

2
ǫ8
0
∼= +2−k (3.6)

where ǫ0 = max(|ǫ|). Since the quantization step size for Bbias has to be 2−k

for hardware implementation, the term 1
2
ǫ8
0 in Equation (3.6) is removed. In

addition, the maximum error bound B in Inequality (3.3) becomes 3.5·2−k+ǫ8
0.

The number of extra bits for the multiplier is determined to insure that

the maximum absolute error of Q
′′

A is less than or equal to 1
2
ulp. Since QA is

shifted by Bbias to Q
′′

A, the maximum absolute error of Q
′′

A is

|E
′′

max| = max(|Q
′′

A − Q|) = B
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where Q
′′

A = QA + Bbias. Since the new rounding method requires that |E
′′

max|

is less than or equal to 1
2
ulp, the number of the extra bits for correct rounding

should satisfy the following conditions:

|E
′′

max| = (3.5) · 2−k + ǫ8
0 = 2−k+1.81 + ǫ8

0

|E
′′

max| ≤
1

2
· 2−n = 2−n−1

Since ǫ8
0 for the 7-bit ROM table is 2−59.2 [16, 29] and n is 53, the number of

the extra bits for 3-iteration double precision Goldschmidt divider is 3 bits

(k ≥ n + 3).

As a result, the multiplier precision for the 3-iteration double precision

floating-point Goldschmidt divider should be at least 57 bits (k = 56), which

consists of a 53-bit significand, a 1-bit guard, and 3 extra bits. In this case,

the maximum absolute error of Q
′′

A for Q < 1 is as follows:

|E
′′

max| = max(|Q
′′

A − Q|) = (3.61) · 2−k (3.7)

3.4.5 Comparison with Other Methods

The proposed rounding method implements 3-iteration double precision

floating-point Goldschmidt divider with 3 extra bits. The number of the extra

bits of other rounding methods for the same condition is either 5 or 4 bits as

shown in Table 3.6.
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Table 3.6: Required extra bits for each rounding method

Current method K. & S. Proposed

[3, 9–11, 22] [31] method

Extra bits 5 bits 4 bits 3 bits

3.5 Verification and Simulation Results

3.5.1 Implementation and Verification

The Goldschmidt divider with the proposed rounding method has been

implemented and verified using SystemC 2.2.0 as shown in Figure 3.6. The

new rounding method is implemented by applying individual special trun-

cation methods to the final iteration stage in order to compute the rounded
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Figure 3.6: Goldschmidt divider and verification environment.

35



approximate quotient (Q
′′

T ). It requires a minor modification to a conventional

Goldschmidt divider because it injects proper rounding constants into the carry

save adder (CSA) tree of the multiplier. Since 3 extra bits are required for

IEEE-754 compliant rounding as shown in Section 3.4.4, the multiplier preci-

sion for the double precision floating-point Goldschmidt divider should be at

least 57 bits, which consists of a 53-bit significand, a 1-bit guard, and 3 extra

bits. Since Bbias is 2−k, the rounding constants in Table 3.3 become simpler

than those used in [31].

The verification of the new rounding method consists of two parts.

First, the final results of the four IEEE rounding modes were checked by

performing 1010 divisions with random double precision floating-point inputs.

Second, the final results were also checked by exhaustive 17-bit precision fixed-

point numbers (a total of 232 test vectors) to insure that no special cases were

missed by the random test vectors. Since exhaustive verification using double

precision floating-point vectors is not feasible, the exhaustive 17-bit precision

test is a practical alternative. To support this verification, the Goldschmidt

divider model is designed to support variable precision. In addition, a digit

recurrent divider model computes reference quotients in parallel because the

X87 FPU does not support 17-bit precision division. During the two verifica-

tion steps, all the errors are less than the maximum absolute error derived in

Section 3.4.4.
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3.5.2 Simulation Results

The validity of the maximum error bounds is checked via a simulation

for both the two verifications steps in Section 3.5.1. The approximation error

E
′′

is computed by modifying the remainder equation as follows:

E
′′

= Q
′′

A − Q =
Q

′′

A × D − N

D

E
′′

should be less than or equal to 4 · 2−k (1
2
ulp) for the correct rounding

operation of the proposed method.

The error histogram using the 1010 random double precision floating-

point test vectors in Figure 3.7 shows that Bbias is effective to reduce the
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Figure 3.7: Histogram of E
′′

by 1010 random input vectors.
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Table 3.7: Maximum error bounds of E
′′

during the simulation

Bounds
1010 random numbers Exhaustive test vectors

Q < 1 Q ≥ 1 Q < 1 Q ≥ 1

E
′′

max+ 3 · 2−k 3 · 2−k ∗ 3 · 2−k 3 · 2−k ∗

E
′′

max− −3 · 2−k −5 · 2−k ∗ −2 · 2−k −3 · 2−k ∗

∗The effective errors are halved after floating-point normalization.

maximum absolute error of QA. Since the quantization step size of E
′′

is 2−k,

the error histogram shows that all the errors of Q
′′

A are bounded inside ±4 ·2−k

(1
2
ulp) as expected.

The maximum approximation errors have been checked during all the

verification steps as shown in Table 3.7. All the approximation errors of Q
′′

A

are bounded by the maximum absolute error in Equation (3.7).

3.6 Summary

A new rounding method for division by convergence, which allows a

larger error tolerance compared to the conventional rounding method, has

been presented. Due to the improved error tolerance, iteration algorithms

may have more error margin with the same internal precision. In this disserta-

tion, the proposed rounding method reduces the required multiplier precision

effectively. In addition to the large error tolerance of the proposed rounding

method, it fully utilizes the characteristics of the approximation error bounds
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to reduce the required precision of the multiplier. It can be implemented by

minor modifications of the rounding constants in the multiplier. It enables

a 3-iteration double precision floating-point Goldschmidt divider to be imple-

mented using only 3 extra bits even though the factors during the iterations

are computed using one’s complement operation. It has been verified using

a SystemC model of the Goldschmidt divider. The maximum error span was

checked both by analysis and via simulation. Verifications were performed

using both 1010 random double precision floating-point test vectors and an

exhaustive suite of 17-bit precision test vectors.
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Chapter 4

Division with Faster than Quadratic

Convergence

4.1 Overview

The most prevalent approach to reduce the computation time of divi-

sion by convergence has been to reduce the number of iterations by increasing

the precision of the initial approximation to the reciprocal. Since an accurate

initial approximation requires a large silicon area, many approaches for the

efficient implementation of the initial approximation have been suggested as

shown in Section 2.2.3. In addition to reducing the silicon area for the ini-

tial approximation, another approach to remove the last iteration by a table

look-up and an addition has also proposed [29]. In this dissertation, another

new approach to reduce the computation time of division by convergence is

proposed.

If Goldschmidt division can be implemented with faster than quadratic

convergence, then either the size of the reciprocal table or the number of itera-

tions can be reduced. However, if the cubic convergence algorithm requires ad-

ditional complex arithmetic computations like sequential multiplications, two

consecutive quadratic convergence iterations may be a better choice. Pipelined
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multiplier architectures allow one quadratic convergence step to be computed

for almost the same amount of time as for a single multiplication. Therefore,

cubic convergence algorithms that require complex arithmetic computations

have not been practical.

The research focuses on improving the convergence rate of Goldschmidt

division without using complex arithmetic. The problem is that the realization

of cubic convergence seems to require additional complex arithmetic opera-

tions. In this research, a method that solves this problem and achieves near

cubic convergence is proposed. The DFQC method (Division with Faster than

Quadratic Convergence) is implemented with simple logic circuits to minimize

the logic delay. Before presenting the new method, the conventional division-

by-convergence algorithms with quadratic convergence algorithm and higher

order convergence are presented in Section 4.2. In Section 4.3, the proposed

method is explained. In Section 4.4, the detailed implementation of the pro-

posed method is explained. Finally, the simulation results and the effectiveness

of the method are summarized in Section 4.5.

4.2 Division with Faster Convergence

Before explaining the new DFQC method, the quadratic convergence

algorithm and a faster convergence algorithm for Goldschmidt division are

presented.
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4.2.1 Quadratic Convergence

The division algorithms explored in the proposed method are various

forms of Goldschmidt division. Division can be written as Q = N/D where Q

is the quotient, N is the numerator, and D is the denominator. As shown in

Section 2.1, the factor Fi and Qi at the (i + 1)-th iteration are computed as

follows:

Fi = (2 − Di−1) = 1 + ǫ2i−1

0 for i > 0 (4.1)

Qi =
Ni

Di

=
Ni−1Fi

Di−1Fi

=
Ni−1(1 + ǫ2i−1

0 )

(1 − ǫ2i

0 )
(4.2)

As the iteration continues, Ni will converge toward Q with ever-greater preci-

sion. Since the error decreases by ǫ2i

0 quadratically as shown in Equation (4.2),

the convergence order of the Goldschmidt division is quadratic.

4.2.2 Division with Faster Convergence

Since the convergence order is determined by Fi in Equation (4.1),

faster convergence can be realized by manipulating Fi. As a generalized faster

convergence for the Goldschmidt division, Fi with convergence order q is sug-

gested as follows:

Fi =

q−1
∑

j=0

(

ǫqi−1

0

)j

for i > 0, q ≥ 2 (4.3)

where ǫ0 = (1 − D0). If q is 2, Fi in Equation (4.3) becomes the equation for

quadratic convergence as shown in Equation (4.1). Di for the faster conver-
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gence is computed using Fi as follows:

Di = Di−1 × Fi

= (1 − ǫqi−1

0 )(1 + ǫ1·qi−1

0 + · · · + ǫ
(q−1)·qi−1

0 )

= 1 − ǫq·qi−1

0 = 1 − ǫqi

0 (4.4)

Since the error in Di decreases by ǫqi

0 as shown in Equation (4.4), the conver-

gence order for this Goldschmidt division is q. For example, evaluate Equation

(4.4) with q = 4 and i = 1. This clearly shows that D1 converges with order

4 as follows:

F1 = 1 + ǫ0 + ǫ2
0 + ǫ3

0

D1 = D0 × F1

= (1 − ǫ0)(1 + ǫ0 + ǫ2
0 + ǫ3

0) = 1 − ǫ4
0

The Goldschmidt division with faster convergence requires additional

complex computations, which is a primary problem for the implementation.

Fi in Equation (4.3) can be rewritten as follows:

Fi = 1 + ǫi−1
︸ ︷︷ ︸

quadratic

+

q−1
∑

j=2

(ǫi−1)
j

︸ ︷︷ ︸

additional

(4.5)

where ǫi−1 = ǫqi−1

0 , i ≥ 1, q ≥ 3

The additional computations in Equation (4.5) require powerings and addi-

tions. Although the powerings can be implemented more efficiently than con-

secutive multiplications [33], they are still complex arithmetic operations. If Fi
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for higher order convergence can be computed simply, the faster convergence

algorithm may become practical.

Cubic convergence, which is the simplest form of faster convergence,

requires both a squaring and an addition. The Fi for cubic convergence is

expressed by evaluating Equation (4.5) with q = 3 as follows:

Fi = 1 + ǫi−1 + (ǫi−1)
2 (4.6)

where ǫi−1 = ǫ3i−1

0 , i ≥ 1

Since Fi for quadratic convergence can be computed simply by one’s com-

plement as shown in Equation (2.3), the computation load is negligible. In

contrast, the computation load for cubic convergence is much higher than

quadratic convergence since it requires a squaring and an addition. If the

squaring is computed by a full multiplication, the cubic convergence algo-

rithm will require two dependent multiplications. On the other hand, two

consecutive iterations with quadratic convergence require only 12.5% longer

time if the pipelined multiplier comprises 4 stages. In other words, the cubic

convergence case requires a similar computation time to that of two cycles of

the quadratic convergence algorithm. This explains why cubic convergence

in Goldschmidt division has not been regarded as practical. Although cubic

convergence can reduce the number of iterations or the size of the reciprocal

table, the problem of the heavy computation load has to be mitigated.
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4.3 The DFQC Method

As a practical alternative to avoid complex computations, a new di-

vision method to implement faster than quadratic convergence is proposed.

The first requirement for the new method is that it should be computed by

simple logic. The new method uses a rough square approximation for this

requirement, so its error analysis is presented in Section 4.3.2.

4.3.1 Division Method with Faster than Quadratic Convergence

The proposed new method, named the DFQC method, implements

Goldschmidt division with near cubic convergence by introducing a new Fi

computation method as shown in Figure 4.1. The basic operation is the same

with the conventional Goldschmidt divider except for the squaring units. The

major difference between the proposed method and the conventional quadratic

convergence method is that the output of each squaring unit is added when

Fi is computed in the new method. While there are two squaring units in

Figure 4.1, the number of the squaring units is determined based on the number

of iterations and the area cost of the DFQC method.

By adopting an approximate squaring and carry-save representation,

the DFQC method avoids the complex computations of “true” cubic conver-

gence and achieves faster than quadratic convergence. Although many efficient

squaring methods have been suggested, they still require a heavy computa-

tion. In contrast, the DFQC method adopts a simple approximate squaring

computation. Although approximate squaring does not provide the full cubic
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Figure 4.1: A floating-point Goldschmidt divider implemented using the
DFQC method with two squaring units.

convergence, the convergence speed is faster than quadratic. In addition to

the approximate squaring, the addition is converted into carry-save represen-

tation and is merged into the redundant binary Booth recoders (RBBR) [34]

of the multiplier. Therefore, the addition in the DFQC method requires no

real adder. RB and NB in Figure 4.1 stand for RBBR and NBBR (normal

binary Booth recoders). As shown in Figure 4.1, RBBRs are used only where

the squaring units are interfaced to in order to save the area.

The detail algorithm of the DFQC method, which computes an approx-

imation F
′

i to Fi through a one’s complement, an approximate squarer, and

a redundant binary Booth recoder, is shown in Figure 4.2. In Figure 4.2 and

the rest of this chapter, F
′

i , N
′

i , D
′

i and ǫ
′

i means the variables computed by
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Figure 4.2: F
′

i computation using m×m squaring for near cubic convergence.

the DFQC method, which correspond to Fi, Ni, Di and ǫi for the conventional

Goldschmidt division. pi−1 is defined as the minimum number of consecutive

zeros/ones following the binary point in (1+ǫ
′

i−1). The initial p0 is determined

by the accuracy of the reciprocal table for F
′

0, and the other pi−1 is determined

by the performance analysis result in Section 4.3.2. Since each pi−1 is deter-

mined in advance, a leading zero/one detector unit and a left shifter are not

required. m is the precision of the approximate squarer input.
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In the DFQC method, N
′

i and D
′

i is also computed using F
′

i via it-

erations as the conventional method. D
′

i−1 in Figure 4.2 is (1 − ǫ
′

i−1), which

comes from the previous iteration. (1 + ǫ
′

i−1) is computed by forming the one’s

complement. The input of the squarer is defined as ǫ̂′i−1, which is an m-bit

string from (pi−1 + 1)-th bit to (pi−1 + m)-th bit of (1 + ǫ
′

i−1) in Figure 4.2. If

ǫ
′

i−1 is negative, the m-bit string is inverted before squaring in order to input

|ǫ
′

i−1| to the squarer. Since the rough approximate value of (ǫ′i−1)
2 is computed

using ǫ̂′i−1, the output, ǫ̂′2i−1, is a 2m-bit string.

The output of the squaring unit (ǫ̂′2i−1) and (1 + ǫ
′

i−1) form F
′

i through

the Booth recoding for carry-save representation as follows:

F
′

i = (1 + ǫ
′

i−1) + ǫ̂′2i−1 for i > 0 (4.7)

Since the two numbers are interpreted as a carry-save representation, the re-

dundant binary Booth recoder adds the carry-save representation with no ex-

plicit addition. The msb bit of the squarer output is located at the (2pi−1 + 1)-

th bit of (1 + ǫ
′

i−1) in the redundant Booth binary recoder. The detailed im-

plementation is presented in Section 4.4.

4.3.2 Performance Analysis of the DFQC Method

The performance of the DFQC method is evaluated by determining

the deviation from the true quotient (i.e., the error) at each iteration step.

It is a result of (a) the approximate squaring and (b) the truncation to a

limited multiplier precision. The approximate squaring determines the speed
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of the convergence in the DFQC method. On the other hand, the truncation

error due to the limited multiplier precision is too small compared to the error

of the approximate squaring since the maximum effective pi−1 is around a

quarter of the multiplier precision in the DFQC method. In addition, this

truncation error will be ignored by increasing the required multiplier precision

by several extra bits [23], which is determined in Section 4.5.2. Therefore, the

truncation error due to the limited multiplier precision is not considered in the

performance analysis.

The relative error term ei [22] is used as the performance metric to eval-

uate the speed of the convergence for the DFQC method. Since the truncation

error due to a limited multiplier precision can be ignored for this performance

evaluation, it is assumed that Q = N/D = N
′

i/D
′

i. Since the approximate

quotient is N
′

i , the absolute error |N
′

i − Q| and the relative error term ei of

the approximate quotient after the i-th iteration are as follows:

|N
′

i − Q| =

∣
∣
∣
∣
N

′

i −
N

D

∣
∣
∣
∣
=

∣
∣
∣
∣
N

′

i −
N

′

i

D
′

i

∣
∣
∣
∣

=

∣
∣
∣
∣

N
′

i (D
′

i − 1)

D
′

i

∣
∣
∣
∣

= |Q · (D
′

i − 1)|

ei =
|N

′

i − Q|

Q
= |D

′

i − 1|

Due to the floating-point normalization process, the maximum errors for both

Q ranges, 0.5 ≤ Q < 1 and 1 ≤ Q < 2, are required. Since the analyzed max-

imum ei is independent of Q, it can be converted easily into the maximum
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absolute error by multiplying it by Q. In contrast, the analyzed maximum

absolute error is inconvenient for this purpose. In addition, the relative er-

ror definition is also used for quadratic convergence [22] since it shows that

ei+1 = e2
i . Accordingly, the relative error term ei is adopted as the performance

metric to evaluate the DFQC method here.

The performance of the DFQC method is evaluated by a maximum

relative error analysis considering the approximate squarer. Before evaluating

ei, the error of the approximate squaring is determined. p̃i−1 is defined as a

real value that satisfies

2−p̃i−1 = max|D
′

i−1 − 1| = max|ǫ
′

i−1| .

pi−1 can be also defined as ⌊p̃i−1⌋. Therefore, ǫ
′

0 is guaranteed to be less than

2−p0. pi−1 and p̃i−1 are expressed as p and p̃ to simplify the equations. Since

the maximum error due to truncation at the input to the m-bit squaring in

Figure 4.2 is −2−(p+m), the maximum squaring output error (Esq max) is

Esq max = ǫ′2i−1 − min(|ǫ̂
′

i−1|
2)

= ǫ′2i−1 − (|ǫ
′

i−1| − 2−(p+m))(|ǫ
′

i−1| − 2−(p+m))

= 2−(p+m−1) · |ǫ
′

i−1| − 2−2(p+m)

= 2−p−p̃−m+1 − 2−2(p+m) .

If ǫ
′

i−1 is assumed to be positive, the maximum relative error of the quotient
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(ei max) due to Esq max is

ei max = max|D
′

i − 1|

= |(1 − ǫ
′

i−1)(1 + ǫ
′

i−1 + ǫ′2i−1 − Esq max) − 1|

= |(1 − ǫ
′

i−1)(1 + ǫ
′

i−1 + ǫ′2i−1 − 2−p−p̃−m+1 + 2−2p−2m) − 1|

= |ǫ′3i−1 + (1 − ǫ
′

i−1)(2
−p−p̃−m+1 − 2−2p−2m)| .

Since max(ǫ
′

i−1) is 2−p̃, the maximum relative error of the quotient at the i-th

iteration is

ei max = |2−3p̃ + (1 − 2−p̃)(2−p−p̃−m+1 − 2−2p−2m)|

< |2−p−p̃−m+1 − 2−2p−2m + 2−3p̃|

< |2−p−p̃−m+1 + 2−3p̃| (4.8)

where i > 0. Even if ǫ
′

i−1 is negative, the maximum error in Equation (4.8) is

still correct. If m is larger than p+1, the error will not be dominated by m as

shown in Equation (4.8). Therefore, it is reasonable to assume that m ≤ p+1.

The errors of the quotient for the conventional quadratic convergence

and the DFQC method are compared using a 5-bit-in 5-bit-out reciprocal

ROM table as shown in Table 4.1. In order to evaluate the errors, p̃0 has to

be determined. Since 0.5 ≤ D < 1, the error of an optimized reciprocal table

[16] corresponding to input x is

2−k(
1

4x2
+

1

2g+1
) (4.9)

where 0.5 ≤ x < 1, k is the number of input index bits, and k + g is the

bit width of the table output. Since ǫ
′

0 is dependent on only the error of the

51



reciprocal ROM table, ǫ
′

0 is computed using Equation (4.9) as follows:

ǫ
′

0 = ǫ0 = (1 +
1

2g+1
)2−(k+1) (4.10)

Since ǫ
′

0 is computed as 2−5.4 in a 5-bit-in 5-bit-out reciprocal ROM table

case, p̃0 before the first iteration is 5.4. For the DFQC method, ei max is

calculated by evaluating Equation (4.8) with p̃0 = 5.4 as shown in Table 4.1.

If 2pi−1 is beyond the multiplier precision, F
′

i cannot be compensated using

the multiplier. Since double precision floating-point division is assumed in

Table 4.1, the first two iteration steps are computed by the DFQC method,

but the third step is computed by the conventional quadratic convergence

algorithm.

The performance of the DFQC method can also be evaluated by the

speed of the convergence, which is expected to be faster than quadratic. If

−2−3p̃ in Equation (4.8) is ignored, the error at each iteration step can be

formulated simply. Since m is less than p0 in many practical cases, this as-

sumption is reasonable. As a result, ei max in Equation (4.8) can be expressed

Table 4.1: Maximum errors of the conventional and the DFQC method
(p̃0 = 5.4, m = 4)

Method i = 0 i = 1 i = 2 i = 3

Quadratic |Di − 1| 2−5.4 2−10.8 2−21.6 2−43.2

DFQC |D
′

i − 1| 2−5.4 2−13.2 2−29.2 2−58.4
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simply as follows:

ei max = max|D
′

i − 1| ≈ 2−(2i·(p0+m−1)−m+1) (4.11)

On the other hand, max|Di − 1| for the current quadratic convergence algo-

rithm is 2−2i·p0. By comparing these two errors, it is clear that the DFQC

method has faster than quadratic convergence.

4.4 Implementation Details of the DFQC Method

The key elements of the DFQC method are the efficient hardware im-

plementation for the combination of approximate squarers and Booth recoders

for carry-save representation. In this section, the detailed implementation of

each unit is explained at the gate level.

4.4.1 Squarer

An m-bit squarer can be implemented with simple logic by optimizing

a parallel multiplier algorithm if m is small. To reduce the logic delay, both

the carry save adder tree and the final stage adder are merged into one logic

circuit. Although a large squarer would speed the convergence, the delay and

the complexity increase significantly, so a 4-bit squarer is used for the DFQC

method. Assume that X[i : j] represents a bit string from i-th bit to j-th bit of

X, and the i-th bit is associated with 2−i. Since the input of the 4-bit squarer

is

sin = a·2−p−1 + b·2−p−2 + c·2−p−3 + d·2−p−4 ,
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the squarer after the optimization is implemented as follows:

sout[2p + 1 : 2p + 8] = {ab, a(b̄ + c), abd + c(a ⊕ b),

bc̄d̄ + d(a ⊕ b), d(b ⊕ c), cd̄, 0, d}

If a squarer output is not used for an iteration or the multiplier is operating

for general use, the outputs of the squarer are turned off by the multiplexers

with enable pins in Figure 4.3. While a 3-input multiplexer where one input

is always 0 can be used, a 2-input multiplexer with an enable pin is more

efficient.

4.4.2 Limitation of the DFQC Method in Radix-4 Multiplier

The DFQC method is very effective when division is implemented using

a radix-8 multiplier, which may already exist for multiplication in the system.

Since the computation of the squarer and the RBBR for the DFQC method

is performed in parallel with the 3X adder in a radix-8 multiplier, the DFQC

method may not be on the critical timing path of the multiplier. However, if

the system has a radix-4 multiplier, the DFQC method may increase the clock

cycle due to the delay of the DFQC method since the squarer and the radix-4

RBBRs may be on the critical timing path. In this case, the iteration step

using the DFQC method needs one additional clock, and the other steps can

be computed using NBBRs. If one additional clock is allowed, it is possible

that the speed of the convergence becomes faster by increasing the size of the

squarer, m. Although the DFQC method has drawbacks in a system that has
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a radix-4 multiplier, it still speeds the convergence and reduces the required

precision of the initial approximation.

Radix-8 multipliers are used mostly for many floating-point units in

spite of their complexity [3, 35, 36] because radix-8 Booth recoders are effective

to reduce the delay due to wire congestion in deep submicron VLSI technology.

In addition, the radix-4 RBBRs can be implemented using a similar architec-

ture. Therefore, this research focuses on the DFQC method with a radix-8

multiplier.

4.4.3 Radix-8 Redundant Binary Booth Recoder for Carry-Save

Representation

The squarer output, ǫ̂2, and (1 + ǫ) are added without a real adder in-

side the Booth recoding part of a multiplier. The two binary numbers form

a carry-save representation, and then the carry-save representation is con-

verted into radix-8 Booth recoded digits by a redundant binary Booth recoder

(RBBR) [34]. Inside the RBBR, the carry-save representation is converted into

a signed digit [37] representation (sign bits and magnitude bits). This signed

digit representation is divided into small groups that do not generate group

carry values that are greater than 1. The output signals of the Booth recoder

are comprised of a sign bit and signals for 0, ±1, ±2, ±3, and ±4. These five

output signals are suitable for the current multiplier hardware architectures

to reduce the wire congestion.

The radix-8 RBBR circuit implemented in this dissertation is modified
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Figure 4.3: Modified radix-8 carry-save Booth recoder. The M1/M3 selection
logic is added as shown in the dotted box.

slightly from the original radix-8 RBBR circuit [34] as shown in Figure 4.3

in order to operate with carry-save encoded inputs. If the radix-8 RBBR for

carry-save input is implemented with the preprocessing scheme from [34], the

M1 and M3 output signals may be driven incorrectly. The problem occurs

if a carry-save encoded input makes an intermediate signed digit combination

like ×11̄. Here this problem is resolved by adding M1/M3 selection logic.

In addition, a minor typographical error on a wire connection in the original

circuit diagram has been corrected. For further optimization, negative logic

is used, and the inverters in the RBBR have been reallocated for speed and

area.
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4.4.4 Special RBBRs to interface with NBBRs

The 4-bit squarer outputs are connected to either four or three radix-8

RBBRs as shown in Figure 4.4. The most significant RBBR that is labeled as

RBBRm0 in Figure 4.4(a) is a special RBBR that does not generate an explicit
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Figure 4.4: 4-bit squarer and radix-8 redundant binary Booth recoders. (a)
Four RBBR case, (b) Three RBBR case.
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carry out signal, so a NBBR can be connected to the left side of the RBBRm0.

Instead, an output S3
′ from the RBBRm0 is connected to the next NBBR. The

output S3
′ is implemented as follows:

S3
′ = S3 + S1S2(S0 + C0)

Since C3 and C2 of the RBBRm0 are always zero, S3
′ takes the role of a carry

out signal. In this case, the 4-bit squarer requires three normal RBBRs and a

special RBBR. Due to the special RBBR, the normal binary Booth recoders

are used where a squarer is not connected, and the number of RBBRs can be

minimized.

If only the msb bit of the squarer outputs is connected to the RBBR

as shown in Figure 4.4(b), another special RBBR that is labeled as RBBRm1

can be used to reduce the number of RBBRs. In this case, S3
′ of the RBBRm1

is implemented as follows:

S3
′ = S3 + S2S1C1 + S2(S1 + C1)(S0 + C0)

Since the delay of an NBBR is shorter than that of an RBBR, the delay of S3
′

does not create a critical timing path. In addition to the RBBRm1, the lsb bit

of the squarer outputs is connected to the NBBR through an XOR gate. The

msb input of the NBBR is:

S3 = S3in ⊕ C3in

where S3in is from (1 + ǫ
′

i−1), and C3in is the lsb bit of the squarer outputs. In

this case, the lsb bit of the squarer outputs is connected to the NBBR instead

58



of the RBBR, so the 4-bit squarer requires an RBBRm1, two normal RBBRs,

and an XOR gate.

4.5 Simulation and Results

4.5.1 Simulation Environment

An example double precision floating-point Goldschmidt divider as de-

scribed here has been developed using SystemC 2.2.0 and Verilog HDL. A

SystemC model was developed to check the validity of the DFQC method and

the exhaustive verification. Although a high-level SystemC model is very use-

ful for algorithm verification due to its fast simulation speed, it is not adequate

for the evaluation of the delay and area costs. Therefore, a Verilog model based

on the SystemC model has been also developed to evaluate the delay and area

of the DFQC method. The Verilog model has been synthesized using Synop-

sys design compiler (A-2007.12-SP4) and the 0.18µm OSU-stdcells-TSMC018

library.

4.5.2 Implementation of an Example Goldschmidt Divider

The example Goldschmidt divider uses a 59 × 59-bit multiplier, a 5-

bit-in 5-bit-out reciprocal table, and a 4-bit squarer. It also supports the four

IEEE-754 rounding modes by computing the sign of the remainder [3, 9, 10],

and it performs 3 iterations after the normalization of the denominator.

If the four IEEE rounding modes and an additional guard bit for the

normalization process are considered, the final quotient error must be less than
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1
4
· 2−53 [9]. The quotient error at the final iteration step is due to the finite

number of iterations and the limited multiplier precision. The error due to the

finite iterations, e3 max, can be reduced by enlarging the reciprocal ROM table.

Therefore, it is assumed that an appropriate reciprocal ROM table guarantees

e3 max less than 2−lsb, the lsb bit of a multiplier. The other cause of the error,

limited multiplier precision, can be reduced by increasing the precision of the

multiplier. Since F
′

i is computed partially by a one’s complement operation,

the maximum absolute error in the final quotient [31] is

max|E| = max|N
′

i − Q|

=

∣
∣
∣
∣
−(

5

2
N

′

2max + 2) · 2−lsb − N
′

3max · e3 max

∣
∣
∣
∣

≃ | − 4.5 · 2−lsb − 1 · 2−lsb|

≃ 5.5 · 2−lsb < 6 · 2−lsb (4.12)

where Q < 1. When Q ≥ 1, the effective error is halved due to the floating-

point normalization, so the worst case error occurs when Q < 1. As a result,

6 · 2−lsb must be less than 1
4
· 2−53, and the width of the multiplier has to be

at least 59-bits.

The reciprocal ROM table data have to be optimized tightly in order

to limit the reciprocal error as shown in Equation (4.10). Since the range

of D is 0.5 ≤ D < 1.0, D[0 : 1] is always 01, and the input of the table

is D[2 : (2 + k − 1)]. F0[0] on the table output is always 1 even if D = 0.5.

Since each reciprocal value in the table must produce the minimum error in

an interval, [x, x + 2−(k+1)), the k-bit-in (k + g)-bit-out reciprocal ROM table
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is computed using mid-point values as follows:

r(x) =
1/x + 1/(x + 2−(k+1))

2
+ 2−(k+g+1)

for F0(x) = r(x)[0, k + g], x = D[0, k + 1]

4.5.3 Simulation for the DFQC Performance Analysis

To confirm correct operation of the DFQC method and to validate the

error analysis, 109 random double precision floating-point test vectors were

used in a simulation using a SystemC model. The simulations were performed

for two cases. One is the DFQC method with a 5-bit-in 5-bit-out reciprocal

table (p
′

= 5.4) and a 4-bit squarer, and the other is for the standard quadratic

convergence algorithm with the same conditions. The error histograms of ei

after the 1st iteration and the 2nd iteration are shown in Figure 4.5. The

histograms show the distribution of ⌈log2(ei)⌉ after each iteration step.

The error histograms in Figure 4.5 show the effectiveness of the DFQC

method. The iteration errors are bounded as predicted by the performance

analysis in Section 4.3.2. The maximum errors of the DFQC method are much

smaller than those of the quadratic convergence. The first non-zero value for

the first iteration in Figure 4.5(a) starts at −13, which means that e1 max of

the DFQC method is smaller than 2−13 as expected from the error analysis.

Figure 4.5(b) shows that e2 max for the DFQC method is smaller than 2−29.
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Figure 4.5: Error histograms of the DFQC method and the quadratic conver-
gence (p

′

= 5.4, m = 4). (a) After the 1st iteration, (b) After the 2nd iteration.
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4.5.4 Verification of Division by the DFQC Method

In addition to checking the intermediate results during the division as

shown in Section 4.5.3, the final results of the double precision floating-point

division are also checked for all four IEEE rounding modes.

The verification of the Goldschmidt division with the DFQC method

consists of two parts. First, the final division results of the four IEEE rounding

modes were checked by performing 109 divisions using random double preci-

sion floating-point numbers. Second, the final results were also checked by

performing divisions with all possible 17-bit precision fixed-point numerators

and denominators (a total of 232 test vectors) to insure that no special cases

were missed by the random test vectors. Since exhaustive verification using

double precision floating-point vectors was not feasible, the exhaustive 17-bit

precision test was a practical alternative. For the 17-bit significand simula-

tion, a 23 × 23-bit multiplier, a 4-bit-in 4-bit-out reciprocal table, and a 3-bit

squarer were implemented, and 2 iterations were performed. Since the X87

FPU does not support 17-bit precision division, a digit recurrent divider was

also implemented as a reference to verify the results.

Also the maximum absolute errors in the final quotient have been

checked via simulation. The absolute error of the final quotient in the simula-

tion (QA) is computed using the remainder equation as follows:

E = QA − Q =
QA × D − N

D
(4.13)

Table 4.2 shows the maximum absolute errors during the simulation, which
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Table 4.2: Maximum approximation errors of the final quotients during the
simulation

Error 109 random numbers exhaustive test vectors

type Q < 1 Q ≥ 1 Q < 1 Q ≥ 1

Emax+ 2 · 2−58 2 · 2−58 2 · 2−22 1 · 2−22

Emax− −4 · 2−58 −6 · 2−58 −4 · 2−22 −6 · 2−22

include margins to compensate for the truncation error in Equation (4.13). All

the errors are bounded inside the maximum allowable error [9], 1
4
· 2−n where

n = 53 or 17.

If Q is greater than 1 in Table 4.2, the effective error is halved. In the

case Q > 1, QA is normalized, and the (n−1)-th bit becomes a ulp instead of

the n-th bit. Thus, the n-th bit serves as an additional bit, which further re-

duces the error. For example, although Emax− for Q > 1 is shown as −6 · 2−lsb

in Table 4.2, the effective error after normalization is −3 · 2−lsb.

4.5.5 Delay for the DFQC Method

The delay of the DFQC method at the first pipeline stage of a 59×59-

bit multiplier was evaluated using Synopsys design compiler (A-2007.12-SP4)

with the 0.18µm OSU-stdcells-TSMC018 library. It is known that the 3X

adder is on the critical path in a radix-8 multiplier [38]. The 4-bit squarer and

the redundant binary Booth recoder (RBBR) can compute in parallel with

the 3X adder. If the squarer and RBBRs compute during the 59-bit 3X adder
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Table 4.3: Critical path delays for the DFQC method and a 3X adder

Functional block Delay (ns)

DFQC: 4-bit squarer with 1’s comp., RBBR 1.59

- MUX & 4-bit squarer with 1’s comp. 0.75

- Radix-8 redundant binary Booth recoder 0.84

Quadratic: 3X adder 1.65

computation, the squarer and RBBRs will not affect the total pipeline cycle

time. The simulation shows that the 3X adder is on the critical timing path in

the example double precision floating-point Goldschmidt divider. The delays

of the squarer, the RBBR [34], and a 3X adder [38] are shown in Table 4.3.

The 3X adder has a bit more delay than the squarer and RBBR. In addition,

there are relatively long interconnects inside the 59-bit 3X adder in contrast

to the squarer and the RBBR. Therefore, the delay of the squarer and RBBR

are expected to be less than that of the 3X adder after the interconnect capac-

itances are considered. On the other hand, if the Booth multiplexers move to

the second stage due to the large number of flip-flips as in the S/390 processor

[39], neither the delay of the squarer and RBBR nor the delay of the 3X adder

will be on the critical path. In conclusion, this critical timing path analysis

shows the feasibility of the DFQC method from a delay perspective.
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4.5.6 Area of the DFQC Method

The table specifications required for the double precision floating-point

division are determined by ei max of the last iteration. Since ei max of the last

iteration has to be less than 2−58 to implement the double precision floating-

point division with IEEE rounding, the dimensions of reciprocal ROM tables

can be calculated using Equation (4.8) and Equation (4.10) as shown in Ta-

ble 4.4. For example, the DFQC method for double precision floating-point

division requires a 13-bit-in 13-bit-out table for 2 iterations.

Since the DFQC method requires additional logic to reduce the required

table size, an analysis of the area of the new method is necessary. The DFQC

method reduces the table size as shown in Table 4.4. The additional logic

area is estimated based on the synthesis result using the design compiler and

the 0.18µm OSU-stdcells-TSMC018 library as shown in Table 4.5. The ROM

table area estimation is based on an experimental result [28] that an area for a

ROM table with 7–11 inputs corresponds to 35 full adders/Kbit and the area

of a full adder is 9 NAND gates.

Table 4.4: Initial errors and the required table sizes for double precision
floating-point

Method
3 iterations A 3 iterations B∗ 2 iterations

ǫ0 table ǫ0 table ǫ0 table

Quadratic 2−7.4 27 × 7 2−7.4 27 × 7 2−14.6 214 × 15

DFQC 2−5.4 25 × 5 2−6.4 26 × 6 2−13.4 213 × 13
∗The DFQC is applied only at the first iteration.
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Table 4.5: Area costs of the DFQC method and the quadratic method (OSU-
stdcells-TSMC018)

Method ROM Mux & RBBR Total

Squarer overhead (µm2)

Quad. / 2 itr. 196,560 a - - 196,560

DFQC/ 2 itr. 143,640 a 763 2,320 b 146,723

Quad. / 3 itr. 6,615 - - 6,615

DFQC/ 3 itr. A 1,181 1,526 4,640 b 7,347

DFQC/ 3 itr. B 2,835 763 1,836 b 5,434
a Areas using the bipartite ROM table[24].
b NBBR:609, RBBR:1,233, RBBRm0:1,057, RBBRm1:1,141

In the 2-iteration Goldschmidt division, the DFQC method reduces

the effective table area by 25.4% (i.e., from 196,560µm2 to 146,723µm2) after

considering the increased logic. The DFQC method requires a 4-bit squarer,

three radix-8 RBBRs, and an RBBRm0. Since a large ROM table is typically

implemented by the bipartite ROM table method, it is assumed that a 214 × 15

ROM table is implemented using a 210 × 17 table and a 210 × 9 table, and a

213 × 13 ROM table is implemented using a 210 × 15 table and a 29 × 8 table.

In the 3-iteration Goldschmidt division, the DFQC method reduces the

effective table area by 17.9% (i.e., from 6,615µm2 to 5,434µm2) as shown in

the 3 iterations B case in Table 4.5. In this case, the DFQC method is used

only for the first iteration, and it requires a 4-bit squarer, two radix-8 RBBRs,

an RBBRm1, and an XOR gate. On the other hand, if the DFQC method
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is used for both the first and second iterations, the logic increase due to the

DFQC method is larger than the amount of the table reduction as shown

in the 3 iterations A case in Table 4.5. The analysis result shows that it is

effective to apply the DFQC method only at the first iteration in the case of the

3-iteration double precision floating-point Goldschmidt division. Unlike the 2-

iteration case, the bipartite ROM table method [24] is not adopted because it

has a similar logic complexity as the DFQC method when the ROM is small.

In conclusion, the results show that the DFQC method is an effective

method to reduce the size of the reciprocal ROM table in Goldschmidt division.

4.6 Summary

A new method for Goldschmidt division that implements faster than

quadratic convergence has been presented. The main contribution of this re-

search is its presentation of methods that realize the near cubic convergence

with simple logic circuits and that minimize the logic delay and the area.

Although division with cubic convergence has been regarded as impractical,

this research shows that the proposed method using modified redundant bi-

nary Booth recoders (RBBR) and simple approximate squarers can speed the

convergence effectively. The DFQC method can be implemented by minor

modifications of the Booth recoders of a multiplier and a simple approximate

squarer. Especially, since the special RBBRs with a single carry signal can

be interfaced to a NBBR, the number of RBBRs can be minimized, which

mitigates the area increase due to the DFQC method. A 4-bit squarer is

68



adopted for the DFQC method implementation. Due to the redundant binary

Booth recoder, the squarer output is merged into the multiplier without a real

addition.

The performance analysis and the simulation results in SystemC show

that even a 4-bit squarer can speed the convergence effectively. The simu-

lation result using the Verilog implementation also shows that the delay due

to the DFQC method does not reduce the feasibility of the new method if

a system already has a radix-8 multiplier. The area analysis shows that the

effective area for the reciprocal ROM table can be reduced by 25% for the

2-iteration double precision floating-point Goldschmidt division. For the 3-

iteration Goldschmidt division, the effective area of the ROM can be reduced

by 17%. Due to the increased logic, the DFQC method is more effective in

Goldschmidt dividers that have large reciprocal ROM tables. The validity

of the DFQC method has been verified through error analysis and extensive

simulation. The verifications of the division through the DFQC method have

been performed for all 4 IEEE-754 rounding modes using both 109 random

double precision floating-point test vectors and an exhaustive suite of 17-bit

precision test vectors. In conclusion, the DFQC method can be an effective

approach to reduce the area of the ROM table for Goldschmidt divisions.
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Chapter 5

Goldschmidt Iterative Divider for

Quantum-dot Cellular Automata

5.1 Overview

Quantum-dot cellular automata (QCA) [5, 6] is a promising emerging

nanotechnology that may mitigate the problems due to the continued scaling

of semiconductor feature sizes. Since QCAs operate according to different

principles from CMOS technology, they require different design methods.

Iterative computational circuit designs for QCA are difficult to build

with conventional sequential circuit design methods that are based on state

machines. State machines for QCA have problems due to long delays between

the state machine and the units to be controlled. Even a simple 4-bit micro-

processor that has been implemented with QCA [40] was done without using a

state machine. Due to the difficulty of designing sequential circuits, there has

been little research into using QCA to realize iterative computational units,

such as dividers. Most previous research has concerned simpler arithmetic unit

designs, such as adders and multipliers.

In this chapter, a Goldschmidt iterative divider is designed using a new

architecture to solve the difficulty in designing iterative computation units. In
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Section 5.2, quantum-dot cellular automata and its operations as logic com-

ponents are explained, and problems of conventional Goldschmidt division ar-

chitectures in QCA is presented. In Section 5.3, the proposed method to avoid

the problems in the conventional architecture is presented. In Section 5.4, an

implementation of the Goldschmidt divider using the proposed method is re-

viewed in detail. Finally, the simulation result of the design and the summary

are presented in Section 5.5 and 5.6.

5.2 Quantum-dot Cellular Automata

5.2.1 QCA Cell

A QCA cell [6] has four quantum dots and two electrons that are

trapped inside the dots as shown in Figure 5.1. Binary information is en-

coded by the positions of the electrons, and a QCA cell allows two available

polarizations, P = ±1. Since the quantum dots are coupled by tunnel barriers,

QCA cell Electron

P = +1

(Binary 1)

P = -1

(Binary 0)

Quantum-dot

(a)

P = +1
(Binary 1)

P = -1
(Binary 0)

(b)

Figure 5.1: Basic QCA cells with two possible polarizations. (a) Regular cells,
(b) 45◦ rotated cells.
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the two electrons can change their positions freely by controlling the poten-

tial barriers using a clocking mechanism. The computation is performed by

interactions based on Coulombic forces between neighboring QCA cells. Since

the basic principle of operation is very different from CMOS, QCA has many

unique characteristics [41–43].

5.2.2 Logic Gates in QCA

The basic circuit elements in QCA are inverters and majority gates. All

the other logic gates, such as AND gates and OR gates, can be realized using

these basic elements. A conventional QCA inverter and its symbol are shown

in Figure 5.2. Since the conventional inverter is as large as a majority gate,

several variations of the inverter have been developed as shown in 5.3. All the

inverter variations in 5.3 are used for the implementations of this dissertation

since their different relative positions of the input cells and the output cells

are very useful for circuit optimization.

The majority gate in QCA is configured as shown in Figure 5.4 and is

Input Output

1 0

Figure 5.2: Layout and schematic symbol of a conventional inverter in QCA.
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Figure 5.3: Layout of various inverters in QCA.

expressed using the following logic equation:

M(A, B, C) = A · B + B · C + C · A

AND gates and OR gates are implemented by fixing one input of the majority

gate as follows:

A · B = M(A, B, 0)

A + B = M(A, B, 1)

While the logic optimization methods for CMOS can be used for QCA

circuits, majority logic reduction methods specialized for QCA [12, 44] make

available further optimization especially for circuits using XOR gates. For

example, a full adder circuit can be implemented using only three majority

gates and several inverters.
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Figure 5.4: Layout and schematic symbol of a majority gate in QCA.

5.2.3 Clock Zones

All the QCA cells pertain to one of four clock zones, and the compu-

tations are performed sequentially in the same order as that of clock zones.

Each clock zone has a different clock signal as shown in Figure 5.5. When

the clock signal is high, the potential barriers between the quantum dots are

low and the polarization is 0. When the clock signal is low, the electrons in

a QCA cell are localized and the polarization will be held as ±1. Using this

90◦ phase shifted signals, each clock zone has one of four phase states among

Switch, Hold, Release, and Relax. A QCA cell begins computing during the

Switch state and holds the polarization during the Hold state. The QCA cell

prepares for the next computing during the Release state and the Relax state.

QCA Wire transfers information using clock zones as shown in Figure 5.6.
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Clock zone 0

Clock zone 1

Clock zone 2

Clock zone 3

Figure 5.5: QCA clock signals for four clock zones.

Clock zone 0 Clock zone 1 Clock zone 2 Clock zone 3

Input Output

Information Flow

Figure 5.6: QCA wire with clock zones.

5.2.4 Coplanar Wire Crossing

There are two kinds of wire crossovers in QCA: coplanar wire crossovers

and multi-layer crossovers. The coplanar wire crossovers [45] are implemented

using regular cells and 45◦ rotated cells as shown in Figure 5.7. Signal A and

Signal B can be transferred independently using only one layer. In contrast, the

multi-layer crossovers require at least three layers for wire crossovers and via

interconnections. Although the coplanar wire crossing has an advantage that
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1
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Figure 5.7: Layout of an example for coplanar wire crossovers.

it requires only one layer, they are susceptible to sneak noise from neighbor

cells. To avoid problems due to the sneak noise, careful implementation based

on design guidelines for robust operation is required. In conclusion, since the

coplanar wire crossing seems more feasible for implementation, the divider in

this dissertation is implemented using only the coplanar wire crossovers.

5.2.5 Conventional Goldschmidt Divider Architecture in QCA

A block diagram of a Goldschmidt divider for realization with CMOS

technology is shown in Figure 5.8. It uses multiplexers and flip-flops that are

controlled by a state machine during the iterations. This architecture poses a

problem for QCA in synchronization due to the long delays between the state

machine and the multiplexers. Also it does not take advantage of the inherent

deep pipeline stages that are available in QCA. Thus a new architecture is

required.
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Figure 5.8: Goldschmidt divider block diagram for CMOS.

5.3 Data Tag Method for Iterative Computation

5.3.1 Problems in Using State Machines for QCA

Conventional iterative computation units using state machines as shown

in Figure 5.9 are difficult to implement due to the long wire delays in QCA.

Since wires are implemented by QCA cells like those used to construct gates,

they have a delay that is similar to that of the gates. In addition, delays from

a state machine to the units to be controlled vary according to the length of

the wires. Due to this irregular wire delay, it is difficult to synchronize the

inputs to units that are at a long distance from the state machine.

5.3.2 Data Tag Method

To resolve the problem of state machines for QCA, a data tag method

is introduced as shown in Figure 5.10. In this method, data tags are associated
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Figure 5.9: Computation unit implementations using a state machine.
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Figure 5.10: Computation unit implementations using the data tag method.
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with the data, and local tag decoders generate control signals for the units (i.e.,

the computational circuits). The tags are transferred with the data through

QCA pipeline stages, and they let the local tag decoders generate control

signals appropriate to each datum. Since the tags travel together with the

data and local tag decoders output appropriate control signals for the units,

the synchronization issues that are a problem in state machines are eliminated.

The data tag method is very efficient for QCA since flip-flops are generated

inherently between gates and wires.

Another advantage of the data tag architecture is that each datum on

a data path can be processed differently according to the tag information. For

example, in typical Goldschmidt dividers for CMOS, a new division cannot

be started until the previous division is completed. There are many pipeline

stages in QCA, and most stages may be idle during iterations. With the data

tag method, each datum on a data path can be processed by the operation that

is required for that stage. Since divisions at different stages are processed in

a time-skewed manner, a new division can be started while previous divisions

are in progress if the initial pipeline stage of the data path is free. As a result,

the throughput can be significantly increased.

5.3.3 Goldschmidt Divider with the Data Tag Method

A Goldschmidt divider has been designed using the data tag method as

shown in Figure 5.11. To start a new division, the tag generator issues a new

tag for the data. The local tag decoders control the multiplexers according
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Figure 5.11: Block diagram of the Goldschmidt divider with the data tag
method.

to the tags associated with the data. Each division is processed in its own

iteration stage while other divisions are being performed. As a result, the

throughput of the Goldschmidt divider is maximized. The throughput of the

data tag method for a three iteration case is shown in Table 5.1.

Table 5.1: Throughput of the divider using the data tag method
(1 iteration = N clocks, 2 data (D0, N0) per division)

Conventional method Data tag method

Latency 3N 3N

Throughput 1/(3N) 1/6
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5.4 Details of Implementation

5.4.1 Design Guidelines for Robust QCA Circuits

In order to design a robust circuit, the Goldschmidt divider has been

designed using coplanar wire crossovers with the design guidelines suggested

in [46, 47]. Coplanar wire crossovers are used for this dissertation since a

physical implementation of multilayer crossovers has not been demonstrated

yet. If multilayer crossovers are available for a design, the design can be

implemented more efficiently. The design guidelines in [46] are kept except for

a limitation on majority gate outputs. Robust operation of majority gates is

attained by limiting the maximum cells that are driven by the output, which

is verified using the coherence vector method. The maximum cell number for

each circuit component in a clock zone is determined by simulations with sneak

noise sources. For example, the maximum cell number for a simple wire is 14,

and the minimum is 2.

5.4.2 Implementation of Goldschmidt Divider

The Goldschmidt iterative divider with the data tag method is imple-

mented using a 12-bit array multiplier and a 3-bit ROM. D and N are input

sequentially into the divider. The CMD signal is asserted together with D,

and a new tag is generated from the tag generator. The tag decoders control

the multiplexers and the latches using this tag. During the first iteration to

normalize the denominator close to 1, the multiplexers are controlled in order

that D and N are multiplied sequentially by F0 from the reciprocal ROM. Af-
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ter the first denominator normalization step is completed, the tag is changed

for the next iteration through the tag generator. During the other iterations,

the multiplexers select {Di, Ni} from the outputs of the multiplier and Fi that

is computed using one’s complement. After three iterations, the final quotient

is computed, and the tag generator eliminates the tag.

5.4.2.1 Tag Generator

The tag generator creates a new tag and changes the tag. The tag

generator has been implemented efficiently using majority logic reduction [44,

48] as shown in Figure 5.12. A new tag (TAG[1:0]=01) is generated when

the CMD signal is asserted. In order to differentiate between Di and Ni, the

data tag is associated with only Di, the first datum of a {Di, Ni} data set. Ni

may be associated with a dummy data tag since QCA wires for the data tags

cannot be reset during start-up. Therefore, the dummy data tag is eliminated

by two AND gates as shown in Figure 5.12(a). On the other hand, if a tag

arrives at the tag generator after an iteration step, the tag number is increased

for the next iteration. After a division is completed, the data tag is eliminated

(TAG[1:0]=00).

5.4.2.2 Tag Decoder and Multiplexers for {Di, Ni}

The tag decoder and the multiplexers for {Di, Ni} are implemented as

shown in Figure 5.13. When TAG[1:0] is 01, the multiplexers select {D, N}

from the input data port. Since the multiplexers have to pass N one clock
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Figure 5.12: Tag generator. (a) Schematic, (b) Layout.
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after D is issued, the multiplexer selection signal in the tag decoder is held

for two clocks as shown in Figure 5.13(a). Since the multiplexers for the

less significant data have to be enabled earlier than other multiplexers for

the pipelined operation of the multiplier, the tag decoder is located near the

multiplexer for B[0], and the control signals for the multiplxers are in the

reverse direction of the data flow.

5.4.2.3 Multiplexers for Fi

The multiplexers for Fi require latches in order to hold Fi for two clocks.

During the two clocks, Di and Ni are multiplied respectively by the value of

Fi that was held by the latches. The latch is implemented by a SR latch using

a majority gate [13] as shown in Figure 5.14(a). They are triggered when

TAG[1:0] is not 00.

5.4.2.4 23 × 3-bit ROM Table

The 23 × 3-bit reciprocal ROM consists of a 3-bit decoder and an 8× 3

ROM array as shown in Figure 5.15. All the ROM cells have the same access

time, 7 clocks. The data are programmed by setting one input of the OR gate

inside each ROM cell. Since the range of Di[0 : 11] is 0.5 ≤ D < 1.0 for the

Goldschmidt division, Di[0 : 1] is always 01, the input of the 3-bit ROM is

Di[2 : 4]. On the other hand, the output is F0[1 : 3] since F0[0] is always 1.
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Figure 5.15: Layout of the 3-bit reciprocal ROM.
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5.4.2.5 12-bit Array Multiplier

A 12-bit array multiplier is implemented for the Goldschmidt divider

since array multipliers show the best performance in QCA [8, 49]. The mul-

tiplier cell is designed as shown in Figure 5.16 using a full adder with three

majority gates [12, 44]. The schematic for 4 × 4-bit multiplier using the mul-

tiplier cell is shown in Figure 5.17. The cell layout is designed using coplanar

crossovers, and it has signal delays of 1 clock for the carry output, 2 clocks for

the sum, and an area of 20 × 29 cells. The 12-bit multiplier has two inputs,

A[11:0] and B[11:0], and an output, M[11:0]. The unused SOUT signals of the

A

B

COUT

SOUT

-1.00

SIN

CIN

Figure 5.16: Layout of a cell for the array multiplier.

88



A0A1A2A3

M4M5M6M7

FA FA FA FA

FA FA FA FA

FA FA FA FA

FA FA FA FA

B0

B1

B2

B3

M0

M1

M2

M3

Figure 5.17: Schematic of a 4×4-bit multiplier using the multiplier cell.

rightmost vertical cells of the array multiplier should not be left unconnected

since that violates the design guidelines in Section 5.4.1. Additional cells are

attached to the unused SOUT outputs for robust transfers of the A[0] signal.

5.5 Simulation Results

The Goldschmidt divider has been implemented and simulated using

QCADesigner v2.0.3 [50]. Most default parameters for bistable approximation

in QCADesigner v2.0.3 are used except two parameters: the number of samples

and the clock amplitude factor. Since the recommended number of samples is

1000 times the number of clocks in a test vector [50], the number of samples
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Figure 5.18: Layout of the Goldschmidt divider with a 12-bit multiplier.
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(a)

(b)

Figure 5.19: Simulation results. (a) Input vectors for four consecutive divi-
sions, (b) The output waveforms for the four quotients.

is determined to be 226000. Since adiabatic switching is effective to prevent a

QCA system from relaxing to a wrong ground state [41], the clock amplitude

factor is adjusted to 1.0 for more adiabatic switching. Other major parameters

are as follows: size of QCA cell = 18nm × 18nm, center-to-center distance =

20nm, radius of effect = 65nm, and relative permittivity = 12.9.
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Table 5.2: Delays of the functional units in the Goldschmidt divider

Functional unit Delay (clock)

Tag generator 3

Multiplexer & Tag decoder 19

12-bit multiplier 46

Data bus for interconnects 5

The area for the Goldschmidt divider is 89.6µm2 (8818nm × 10158nm),

and the total number of the QCA cells is 55,562. The latency for a division is

219 clocks. The delays of the functional units are shown in Table 5.2.

The Goldschmidt divider is tested using bottom-up verification since a

full simulation for a case takes about 7 hours. Each unit block is verified ex-

haustively, and then the full integration is tested. A full simulation result using

a test vector for four consecutive divisions is shown in Figure 5.19. The in-

put vectors are {655h, 5aah, 6aah, 555h, 5aah, 6aah, 755h, 655h}. In

the waveforms, four correct quotients (N2) start to come out from the 219-th

clock, and four D2s, which start from the 218-th clock, are shown correctly as

7ffh.

5.6 Summary

A Goldschmidt divider (an iterative computational circuit) for quantum-

dot cellular automata is implemented efficiently in a new architecture using

data tags. The proposed data tag method avoids the synchronization prob-
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lems that arise with conventional state machines in QCA due to the long

delays between the state machines and the units to be controlled. In the

proposed architecture, it is possible to issue a new division command at any

iteration stage of a previous issued operation. Thus the throughput is signif-

icantly increased since multiple division computations can be performed in a

time-skewed manner using one iterative divider. Using the data tag method,

the fixed-point Goldschmidt divider using a 12-bit multiplier is implemented

without synchronization problems.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This dissertation presents the algorithms and hardware designs for di-

vision by convergence. To reduce the required precision of the multiplier for

Goldschmidt division, a rounding method with twice the error tolerance is

proposed. To reduce the silicon area for the initial approximation table, a new

approach that speeds the convergence compared to the standard quadratic

convergence with a simple logic is suggested. To solve the difficulty in design-

ing sequential circuits in QCA, a new architecture using a data tag method is

proposed.

The proposed rounding method, which allows a larger error tolerance

compared to the conventional rounding method, reduces the required preci-

sion of the multiplier for Goldschmidt division. Since the error tolerance of

the new rounding method is twice that of the conventional method, iteration

algorithms may have more error margin. It is implemented through a minor

modification to the rounding constants of the multiplier. It also allows inclu-

sive error bounds. The proposed method further reduces the required precision

of the multiplier by considering the asymmetric error bounds of Goldschmidt
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dividers where the factors are computed using a one’s complement operation.

In addition, it minimizes the maximum absolute error by shifting an asym-

metric error span by a constant that is determined via an error analysis for

a Goldschmidt divider. As a result, the proposed rounding method allows

the multiplier of a 3-iteration Goldschmidt divider to be implemented using

only three extra bits even though the factors are computed by one’s comple-

ment operation. The proposed method has been verified for all four IEEE-754

rounding modes using a SystemC hardware model of the divider.

The required multiplier precision for Goldschmidt division is reduced

using the DFQC method using that speeds the convergence compared to the

standard quadratic convergence. Although division with cubic convergence

has been regarded as impractical due to its complexity, the proposed method

achieves nearly cubic convergence. It avoids the complex computations of

true cubic convergence and achieves fast than quadratic convergence using the

modified redundant binary Booth recoder and a simple approximate squaring

computation. Due to the faster convergence, the size of the reciprocal ROM

table can be reduced by 25% for the 2-iteration double precision floating-point

Goldschmidt division. For 3-iteration double precision division, the table area

can be reduced by 17%.

The new divider architecture for QCA using a data tag method shows

that sequential circuits in QCA can be built efficiently without state machines.

Since state machines for QCA often have synchronization problems due to the

long delays between the state machines and the units to be controlled, the
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proposed method may be a good solution for other iterative computations be-

sides division. Since it is possible to issue a new division command at any

iteration stage of a previous issued operation in the new division architecture,

the throughput is significantly increased. Multiple division computations can

be performed in a time skewed manner using the large number of inherent

pipeline stages in QCA circuits. Although coplanar wire crossovers are very

susceptible to noise, the design guidelines for robust QCA circuits produced a

Goldschmidt divider circuit with more than 55000 QCA cells, which is simu-

lated flawlessly during all the iteration cycles.

6.2 Published Results

This research has resulted in conference papers [31] and [51]. Journal

papers [52] and [53] have been submitted. A revision was requested for [52]

which has been submitted. Patents [54] and [55] have been disclosed and are

expected to be filed.

6.3 Future Work

The proposed methods in this dissertation mitigate the two drawbacks

of division by convergence. Future work should consider how to provide the

exact remainder that is required to support IEEE-754 compliant rounding

modes. Although the current correction step has the same complexity to the

regular iteration, only the sign of the remainder is used for the final round-

ing. Since the output of the correction step is simple, it might be possible
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to compute the correction without the complexity of a full iteration. As the

conversion to normal binary in SRT division is avoided using an on-the-fly

conversion and rounding methods [56], the correction stage for exact remain-

der may be efficiently implemented by a new method. If the correction step

for the exact remainder were computed efficiently without a full iteration, the

performance of division by convergence would be improved dramatically.

Although the data tag method provides an efficient architecture for

Goldschmidt divider in QCA, the implemented divider can be further im-

proved in the area and the latency. First, it can be modified to allow the

use of a smaller serial parallel multiplier [7] since the current array multiplier

accounts for about half of the area of the divider. Second, the latency of a

division operation can be reduced since the early iteration steps do not re-

quire a full precision multiplication. If all the multiplications are computed

using rectangular multipliers (m×n multipliers), the latency of each multipli-

cation will be reduced, and the total latency is expected to be less than the

current implementation. In this case, the new architecture should trade off

between the increased amount of the area and the decreased amount of the

latency. Also division algorithms other than division by convergence need to

be analyzed in order to find the most efficient division architecture for QCA.

Although division is a topic that has a long research history, there is still a lot

of work to be done.
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