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Abstract: Some microalgae are particularly attractive as a renewable feedstock for 

biodiesel production due to their rapid growth, high content of triacylglycerols, and ability 

to be grown on non-arable land. Unfortunately, obtaining oil from algae is currently cost 

prohibitive in part due to the need to pump and process large volumes of dilute algal 

suspensions. In an effort to circumvent this problem, we have explored the use of anion 

exchange resins for simplifying the processing of algae to biofuel. Anion exchange resins 

can bind and accumulate the algal cells out of suspension to form a dewatered concentrate. 

Treatment of the resin-bound algae with sulfuric acid/methanol elutes the algae and 

regenerates the resin while converting algal lipids to biodiesel. Hydrophobic polymers can 

remove biodiesel from the sulfuric acid/methanol, allowing the transesterification reagent 

to be reused. We show that in situ transesterification of algal lipids can efficiently convert 

algal lipids to fatty acid methyl esters while allowing the resin and transesterification 

reagent to be recycled numerous times without loss of effectiveness. 

Keywords: algae; biodiesel; biofuels; concentration; dewatering; direct transesterification; 
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1. Introduction 

Some strains of algae show promise as a sustainable source of biofuel due to their rapid growth, 

ability to grow on non-arable land, and high triacylglycerol (TAG) content. TAGs can be easily 

converted to biodiesel, which is compatible with current fuel infrastructure [1]. Biodiesel has a higher 

energy density than ethanol, yet it is relatively non-toxic, biodegradable, and produces lower exhaust 

emissions than petroleum-based fuels, making it is one of the most attractive forms of alternative 

energy [2,3]. Additionally, when derived from plant sources such as algae, biodiesel has the potential 

of a near-neutral carbon footprint [4], though considerable work must be done in order to realize this 

goal in an economically and environmentally-feasible manner [5].  

While algae are promising, there are technical challenges that currently make it prohibitively 

expensive as a source of fuel. Algae grow at dilute concentrations, generally less than 1 g/L [6], so it 

must be concentrated before it can be processed. Most concentration processes require pumping the 

dilute algal suspension and may involve other energy intensive steps such as centrifugation [7], 

compressors for dissolved air flotation, or else treatment of large volumes of water with chemicals 

(flocculation). Centrifugation, for example, could account for 30% of processing costs [8].  

Once algae have been harvested, there are additional processing steps that often include lysis and 

drying of the algae followed by extraction with organic solvents to obtain the neutral lipids, primarily 

TAGs, that can then be converted to biodiesel [3]. Drying can be expensive but it facilitates the 

interaction between solvent and algae to improve extraction efficiency. However, the extraction 

solvent must be removed and recovered prior to conversion of lipids to biodiesel and there are 

attending questions about pollution of the air and contamination of the biomass with solvents. This is 

also considered a large part of the cost in processing algae [5].  

Once the lipids have been isolated, they can be converted to biodiesel by either acid- or  

base-catalyzed transesterification, typically with methanol, to yield fatty acid methyl esters (FAMEs) 

and glycerol [9]. The transesterification reaction is sensitive to water [10–14] but this is not normally a 

problem since oils, such as would be obtained by hexane extraction, normally contain little water. 

When the entire processes is analyzed for cost and energy expenditure, some current projections 

suggest that the energy spent in the cultivation, harvest, and extraction of oil from algae could be 

greater than that gained from the product [5] along with the possibility of significant environmental 

impact [15]. It is generally agreed that for algae to be economically feasible, improvements in 

technology will be needed.  

Efforts to reduce cost and simplify processing of algal biomass to biofuel have led to studies of 

direct conversion of dry or even wet algal biomass to biodiesel. Previous studies have shown that algal 

lipids can be transesterified in situ by adding reagents to a dried sample of algae [11,16–19]. One study 

examined a two-step procedure where the acyl groups of component lipids were hydrolyzed with base 

and then re-esterified in excess sulfuric acid/methanol [20]. This procedure gave greater amounts 

FAME than obtained by lipid extraction followed by transesterification. Another study showed that 

direct acid-catalyzed transesterification of wet biomass can produce FAME yields similar to that of 

dried biomass, although FAME compositions differed [11].  

In this study we show that anion exchange resins such as Amberlite can concentrate and dewater 

algae (i.e., harvest algae) and then be eluted with 5% sulfuric acid/methanol reagent. The eluted algae 
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appear to dissolve in the sulfuric acid reagent and esterified fatty acids are converted to FAMEs 

(biodiesel). This one step harvesting and transesterification process can potentially eliminate many of 

the costly steps of processing algae to biofuel.  

2. Results and Discussion 

2.1. Algae Are Harvested and Concentrated onto Amberlite Anion Exchange Resin 

Amberlite CG-400, a divinylbenzene-based resin containing quaternary ammonium groups  

(3.8 mmol/g [21]), has been previously shown to bind and concentrate two different species of green 

algae for removal from the water supply [22]. Here, we used Amberlite to concentrate and dewater 

biomass from two potentially high oil-producing green algal species, Neochloris oleoabundans [23] 

and KAS 603 [24]. For routine comparisons, algal suspension was passed through the column until 

saturation was achieved. Algae appeared to bind on contact, initially accumulating as a band at the top 

of the resin bed. As more algae were added, the upper green layer progressively expanded down to the 

bottom of the resin bed. Prior to the resin bed becoming solid green, the flow-through was clear and 

colorless. Once the resin bed became solid green, color quickly began to appear in the effluent and this 

was taken as the saturation point.  

To determine the binding capacity of the resin for Neochloris and KAS 603, the OD680 of the algal 

suspension was measured before and after passing the algae through an Amberlite column. The 

concentration of algae in the initial suspension and the in flow-through were determined from algal 

OD680 absorbance versus dry cell weight (DCW) calibration curves generated for both types of algae 

(Supplementary Figure S1). The flow-through included the solution from the algae algal suspension 

that went through the resin and the subsequent wash to remove unbound algae. The total amount of 

algae bound to the resin was then determined by subtracting the amount of algae in the flow-through 

from the total that was added to the column.  

For all the experiments algal binding to the resin was tested at pH 7, although there was no 

significant difference in binding over the pH range of 6–9 (Supplementary Figure S2). Since for 

Amberlite, algal binding decreases with increasing ionic strength, binding studies for both algae were 

tested under freshwater conditions (salinity 5 psu). The algal suspensions were used at 0.4 g/L, the 

value that we typically obtain in our simple airlift photobioreactors. When more dilute algal 

suspensions were tested, saturation of the resin was still achieved but, as would be expected, the 

volume of algal suspension and time required to achieve saturation increased. Since algae can be 

entrained in the resin beads, our protocol included a washing step between binding and elution to 

ensure only algae that were actually bound to the resin were counted.  

Figure 1(a) gives a schematic for resin-binding and elution experiments shown in Figures 1–3. 

Algal binding capacity was determined for each cycle of algal binding. Reusability of the resin was 

assessed in terms of loss of binding capacity over multiple cycles of algal binding and elution.  

These experiments were carried out either using only fresh sulfuric acid/methanol reagent to elute the  

algae (Series A, “fresh”) or using sulfuric acid/methanol that was recycled after the first use  

(Series B, “used”).  
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Although the flow through approach in Figure 1(a) gave repeatable values for saturation and was 

used for all experiments except that shown in Figure 4, we later found that longer contact times, which 

involved stirring excess algae with resin for up to 15 min, gave somewhat larger binding capacities 

than those obtained using the flow through method. However, while the binding capacity numbers 

would be improved with longer contact times, the patterns remain the same.  

Figure 1. Algal binding capacity of Amberlite and resin reuse. (a) Experiment series for 

determining binding capacity and reusability of resin and transesterification reagent.  

(b) Binding capacities of Amberlite (mg algal dry weight / gram resin) were determined for 

Neochloris and KAS 603. (c) Neochloris or (d) KAS 603 were loaded onto resin columns 

and eluted with 100 mL of 5% sulfuric acid/methanol reagent. After washing the column 

with distilled water, the operation was repeated for three more cycles, eluting with either 

fresh methanol sulfuric acid reagent (fresh) or reusing the previously used reagent (used). 

The binding capacity of the resin was determined for each cycle of algal loading onto  

the resin.  
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Figure 2. FAME yield and characterization by resin-bound transesterification. (a) FAMEs 

from normal or stressed (nitrogen-starved) Neochloris and KAS 603 were generated either 

by elution of resin-bound algae with 5% sulfuric acid/methanol reagent or by subjecting 

dry algal pellets subjected to sequential base hydrolysis followed by treatment with sulfuric 

acid in methanol to esterify free fatty acids. The FAME yields were expressed as percent of 

dry cell weight. The weight of a crude lipid extract from parallel batches of algae and the 

TAG content those extracts (determined by HPLC) are given for comparison. The FAME 

prepared from resin-bound algae were analyzed by HPLC/MS to determine the abundance 

of (b) saturated C16:0, C18:0, and C20:0 and (c) unsaturated C18:3 and C21:4 acyl 

constituents relative to total FAME derived.  
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Figure 3. Efficiency of FAME production using recycled reagent, and FAME removal.  

(a) Algal were loaded onto Amberlite and eluted with 5% sulfuric acid/methanol four times 

in succession using either fresh reagent or reusing the old reagent after the initial elution. 

Twelve h after each elution the FAME was extracted with hexane, solvent was removed 

and the amount of FAME determined as a percentage of algal dry cell weight;  

(b) The sulfuric acid/methanol reagent containing algal FAME was either extracted with 

hexane or, for comparison, passed over a hydrophobic resin column composed of 80% 

EGDMA and 20% HMA; (c) FAME relative to total dry algal weight obtained by hexane 

extraction or after eluting FAME bound to the hydrophobic column.  
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Figure 4. Functionalized resins for improved binding of KAS603. The relative binding 

capacity of Amberlite for KAS 603 is compared to anion exchange resins composed of 

either (a) EGDMA-IM-DEG (60:30:10) or (b) DVB-DMA (60:40); (c) The results show 

that the binding capacity of Amberlite is low compared to the other resins; (d) In addition 

to binding more algae, subsequent elution of either Amberlite or DVB-DMA shows that 

greater amounts of FAME are produced from the DVB:DMA resin.  

 

 

The results showed that the binding capacity for Neochloris was 37.0 mg/g resin whereas that for 

KAS 603 was 12.8 mg/g resin [Figure 1(b)]. In terms of efficiency of removal of algae from 1 L of  

0.4 g/L suspension, 10 g of Amberlite will sequester 93% of the Neochloris, whereas 30 g of 

Amberlite will sequester 96% of the KAS603 during a single pass through the column.  

Although the difference in binding capacity could possibly be attributed to differences in surface 

charge density, studies to be detailed elsewhere show that the nature of the resin backbone, especially 

its hydrophobicity has a large impact on binding capacity [25]. In resins based on a methacrylate 

backbone, both Neochloris and KAS 603 showed similar binding capacities. Furthermore, binding 

capacity was greatly increased with the inclusion of glycol groups, which do not alter the charge 

characteristics of the resin but make it more hydrophilic. 
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After binding, algae were eluted with 100 mL of 5% sulfuric acid in methanol. This treatment 

visibly removed algae from the resin and regenerated the resin. It appears that most of the algae was 

dissolved by the sulfuric acid/methanol reagent as shown by filtering an eluate of Neochloris through a 

pre-weighed PTFE filter (Millipore Omnipore, pore size 0.1 μm). Only 6.1% of the original DCW was 

recovered on the filter.  

In order to determine how completely the resin was regenerated, resin columns were loaded with 

Neochloris [Figure 1(c) “fresh”] or KAS 603 [Figure 1(d) “fresh”] and eluted with fresh portions of 

sulfuric acid/methanol four times in succession. For comparison, parallel experiments were carried out 

where, after the initial binding and elution using fresh sulfuric acid/methanol solution, the reagent was 

then recycled for the three remaining cycles of algal binding and elution for both Neochloris  

[Figure 1(c) “used”] and KAS 603 [Figure 1(d) “used”]. With each cycle, the amount of algae bound to 

the resin was determined based on the OD680 as described above. Using fresh reagent, Neochloris after 

the initial binding and elution, binding capacity dropped to 97% of its initial value and remained 

constant thereafter. Using fresh reagent with KAS 603, binding dropped to 39% of its initial value after 

the first cycle but remained constant thereafter. When the experiments were carried out using the same 

sulfuric acid/methanol reagent for each cycle, the results were comparable to those obtained using the 

fresh reagent [Figures 1(c) and 1(d) “used”).  

The results show that the sulfuric acid/methanol reagent can be used for multiple cycles before it is 

consumed or rendered ineffective. Eventually methanol will be consumed while products such as 

glycerol, FAME, and other molecules will build up in the recycled sulfuric acid/methanol reagent. 

Unused methanol, being quite volatile would be easy to remove from the mixture. FAME, as we detail 

below, can also be easily removed. It will be interesting to see if the recycled reagent can be further 

fractionated and if potentially high value compounds might also be isolated from the mixture.  

The drop in binding capacity of Amberlite for KAS 603 is not understood. It is not due to the action 

of the sulfuric acid/methanol reagent alone since pretreatment of the resin with sulfuric acid/methanol 

prior to initial binding of algae does not lower the binding capacity. A similar drop in binding capacity 

is not seen with the high capacity anion exchange resins based on a more polar methacrylate  

backbone [25]. Perhaps then the best explanation relates to the hydrophobicity of the divinylbenzene 

that interacts with hydrophobic components in the algae thereby either masking some of the charges on 

the resin or sterically interfering with binding.  

2.2. Conversion of Algal Lipids to FAME 

Since algae were eluted off the resin by 5% sulfuric acid in methanol, a reagent that catalyzes the 

transesterification of esterified fatty acid to FAMEs, tests were carried out to measure conversion of 

lipids in the eluate to FAME. To quantify FAME and other lipids, normal-phase HPLC was used in 

conjunction with an evaporative light scattering detector and mass spectrometry (HPLC-ELSD/MS; 

Supplementary Figure S3) [24]. The advantage here is that one can rapidly measure the amount of 

FAME generated, its fatty acid composition, and the amount of residual triacylglycerol starting 

material present in the reaction product as well as in crude total lipid extracts (Supplementary 

Figure S4). In the reaction product, the presence of residual TAG is an indicator that the 

transesterification reaction did not reach completion. Preliminary tests carried out by extracting the 
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sulfuric acid methanol eluate with hexane to obtain the products at various times after elution showed 

that 12 h at room temperature was sufficient to consume all the TAG. What remains in the extract are 

mainly saturated hydrocarbons, which have been characterized in more detail elsewhere [24], and 

FAME (Supplementary Figure S4a). 

As a reference, algal lipids were converted to FAME by a two step procedure that entailed treatment 

of dry algal pellets with base to hydrolyze fatty acid esters followed by re-esterification of free fatty 

acids in sulfuric acid and methanol [26]. The results showed 21.7%, 20.9%, and 35.2% of dry weights 

were recovered as FAME for healthy Neochloris, stressed Neochloris, and KAS 603 respectively 

[Figure 2(a)]. Acid-catalyzed transesterification of resin-bound algae resulted in 13.6%, 6.9%, and 

37.6% of dry weight recovered as FAME for healthy Neochloris, stressed Neochloris, and KAS 603 

respectively. For comparison, FAME synthesis yields are shown alongside total lipid extract amounts 

[Figure 2(a)]. Crude lipid extract constituted 31.4% of total dry weight for healthy Neochloris, 35.4% 

for stressed Neochloris, and 41.3% for KAS 603. HPLC analysis of the crude lipid extract showed that 

TAG constituted 0.4%, 8.6%, and 11.7% of dry weight for healthy Neochloris, stressed Neochloris, 

and KAS 603, respectively. 

For KAS 603 comparable yields of FAME were obtained using either method and the total FAME 

was close to the weight of total lipid. For Neochloris, both methods generated substantially less FAME 

than total lipid and the resin-bound algae yielded only 60% of the FAME generated from the dried 

pellet. Clearly, substantially more FAME can be generated by direct transesterification than can be 

accounted for by TAG alone. For healthy Neochloris, there was hardly any TAG present in the extracts 

yet 15%–20% of the DCW could be recovered as FAME. For KAS 603, 10% of the DCW was present 

as TAG but nearly 40% of the DCW was recovered as FAME. These data suggest that much of the 

FAME is derived from polar lipids such as glycolipids and phospholipids. 

One of the surprising results of this study is the finding that Neochloris accumulates high amounts 

of TAG when subjected to nitrogen deprivation [23], yet with only a modest increase in total lipid. 

While TAG increased nearly ten-fold, total lipid still constituted approximately 20% of dry weight, 

and FAME yield from dried biomass was comparable between healthy and stressed Neochloris. The 

most notable difference between FAME generated from healthy and stressed Neochloris was found in 

the fatty acid composition. This can be seen by analyzing positive mode APCI mass spectra of the 

various FAME reactions. Mass signatures were determined based on the fragmentation behavior of 

FAME standards (Supplementary Figure S5). Fatty acyl groups in FAME were identified and 

quantified by positive mode APCI-MS, as shown in Supplementary Figure S6 and Supplementary 

Table S1. Figures 2(b) and 2(c) indicate a trend towards a higher degree of fatty acid saturation with 

increased TAG content. For example, healthy Neochloris, having little TAG content, yielded more 

C18:3 and C21:4 species and less C16:0, C18:0, and C20:0 than the other two algal groups.  

In contrast, stressed Neochloris and KAS 603, having a higher TAG content, yielded more C16:0, 

C18:0, and C20:0, and less C18:3 and C21:4 than healthy Neochloris. This shift in TAG fatty acid 

composition from unsaturated to saturated species with nitrogen starvation has been reported 

previously [21]. 
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2.3. Acid versus Base Elution and Transesterification 

Synthesis of FAMEs can be catalyzed by either base or acid. The base-catalyzed reaction is faster 

but can also generate soaps [4]. The sulfuric acid-catalyzed reaction, while slower, is also better at 

esterifying free fatty acids by dehydration [27]. Heat can speed up the acid-catalyzed reaction but there 

is a tradeoff between speed and the cost of heating. The previous results showed that 5% sulfuric acid 

in methanol could both elute algae from the resin and convert lipids to FAME. To test how well a 

base-catalyzed transesterification reagent would work, algae bound to Amberlite was eluted with  

either potassium hydroxide/methanol or sodium methoxide/methanol. We found that FAME yields  

from the sodium hydroxide/methanol reaction were undetectable and yields from the sodium 

methoxide/methanol reagent were 4% lower than using the sulfuric acid/methanol reagent. The 

reduced levels of FAME may be due to residual water, as shown by Griffiths [20], or to binding and 

depletion of the hydroxide or methoxide ions from solution by the anion exchange resin. For  

acid-catalyzed transesterification, we found that ethanol could be substituted for methanol with 

essentially identical results (Supplementary Figure S7). Because of its low cost and wide availability, 

methanol is often used for biodiesel synthesis [4]. However, ethanol cost may decrease in the future as 

advances in bioethanol productions lead to increases in supply.  

2.4. Recovery of FAME from Transesterification Reagent using Hydrophobic Resin 

The results from Figure 1 showed that the sulfuric acid/methanol transesterification reagent could 

be reused multiple times for eluting algae from resin. We next tested whether recycling the sulfuric 

acid/methanol reagent led to a progressive decrease in FAME synthesis in comparison to fresh sulfuric 

acid/methanol [Figure 3(a)]. For the recycled sulfuric acid/methanol solution, each eluate was 

extracted with hexane and analyzed for FAME content before it was reused. The results showed that 

both fresh and recycled sulfuric acid/methanol solutions gave comparable amounts of FAME during 

four successive cycles of algal loading and elution.  

Reuse of the sulfuric acid/methanol solution would minimize chemical costs, and removal of the 

FAME with each cycle should promote product formation. Hexane extraction of FAME is a relatively 

cumbersome and time consuming process leading us to explore a simple hydrophobic resin-based 

method to collect the FAME generated during each cycle. For comparison, the sulfuric acid/methanol 

eluate was either directly extracted with hexane or passed over a hydrophobic ethylene glycol 

dimethacylate:hexyl methacrylate (EGDMA:HMA) resin [Figure 3(b)] which was then eluted with 

hexane in a separate recovery step. The results show that FAME recovery from the resin (11.0% of 

DCW) was comparable to that obtained by direct hexane extraction [11.8% of DCW; Figure 3(c)]. 

While the hydrophobic column was effective at collecting FAME on the lab bench scale,  

we suspect that other methods, such as a hollow fiber membrane extractor [28] would be more  

useful commercially.  

2.5. Resins with Higher Algal Binding Capacity for Direct Transesterification  

While these studies were initiated and largely carried through using Amberlite, it became apparent 

through efforts to develop better resins that the binding capacity of Amberlite for algae is generally 
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quite low [25]. It is particularly low for KAS603, which gave the highest yields of FAME relative to 

its dried weight. A comparison of Amberlite to other functionalized resins we have generated shows 

that EGDMA-IM-DEG [Figure 4(a)] and DVB-DMA [Figure 4(b)] resins showed equilibrium binding 

of 2.6 and 3.4 times more KAS603 than Amberlite, respectively [Figure 4(c)]. Currently we have 

obtained binding capacities up to 150 mg algae per g resin. While these resins can be eluted cleanly 

with the sulfuric acid/methanol reagent so as to generate FAME [Figure 4(d)], they were not designed 

for this purpose and are potentially susceptible to attack by the strong acid. Future resin designs will 

need to address the need for chemical stability under harsh conditions. 

2.6. Evaluation 

While we are not equipped to do a formal life cycle analysis and feel it would be premature given 

the improvements needed in resin technology, nevertheless a comparison of the proposed resin-based 

processing to current approaches seems in order. Figure 5 presents a general schematic for current 

algal processing schemes derived on published evaluations [5,29]. For the most part, the cost of 

growing algae would be the same. The use of resins could impact growth in terms of the need for 

nitrogen starvation or growth of monocultures as discussed below. Primarily, our one-step harvest to 

biodiesel approach would impact the most expensive steps in processing algae to biofuel, namely the 

harvesting and extraction steps.  

Currently harvesting typically requires both pumping the algal suspension and some treatment such 

as centrifugation, flocculation or dissolved air flotation. Centrifugation and dissolved air flotation both 

have relatively large capital costs and substantial electricity. Where resins could make a difference is 

by eliminating the need for pumping water. While we have used resin beads for comparisons, we do 

not feel this is the best way to deploy them for harvesting. Resin beads are porous with a large internal 

volume that can trap water. The pores are typically 10–30 nm in diameter whereas the algae are on the 

order of 2–3 μm in diameter so they cannot enter the resin. Our measurements show that after the bulk 

water is removed, about 100 mg of water/gram resin is retained either inside the resin or entrained 

between the beads. A better alternative is to use thin films of resin where the internal volume is low 

compared to the surface area. We have proposed elsewhere a belt harvester type approach where a belt 

moves from the pond, where it picks up the algae to a vat which, in this case would contain sulfuric 

acid/methanol [25]. In that study we estimated that a bristled belt 1 m wide × 7.5 m long could collect 

3 kg algae per one complete turn of the belt. Other modes are possible such as mesh bags containing 

nonporous resin-coated particles that float or are semisubmerged. 

Once the algae is harvested and eluted, the conversion to biodiesel is direct. There is no need for 

lysing, further drying and solvent extraction, steps that are considered quite expensive [5]. Hexane 

extraction requires recovery of the hexane and a certain amount will be lost to the environment. 

Furthermore, hexane only recovers the neutral lipids (mainly TAG). Our experience at measuring TAG 

in pond-grown algae is that TAG levels rarely surpass 5% DCW and we have never seen them greater 

than 12% DCW. One of the advantages of this approach is that FAME is generated from both polar 

and neutral lipids thereby increasing the yield from the algae. Our data suggest improvements of up to 

4-fold were possible with an alga (KAS 603) that made 10% TAG. 
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Figure 5. Sequence of steps to obtain fuel from algae. (a) A conventional sequence of 

steps is given for the obtaining biodiesel from algae. (b) A sequence of processing steps 

using a resin-based approach. Both sequences are essentially the same in terms of growth. 

Conventional harvesting involves pumping of algal suspension and some other treatment 

such as centrifugation, dissolved air flotation or flocculation with chemicals. For the  

resin-based approach the resin will collect algae leaving most of the water behind. One 

possible mechanism is to use a belt harvester employing a resin- coated belt. For the 

conventional approach a possible lysis step between harvest and extraction has been 

included since it can improve extraction efficiency. For solvent extraction it is usually 

necessary to dry the algae. In the resin-based approach drying and conventional solvent 

extraction is eliminated. In this scenario, biodiesel would be produced on site so the cost of 

transportation of the extracted oil to a biodiesel plant would also be eliminated. Since 

biodiesel is generated with or without employing resins, the cost of that step would be 

similar in either scenario.  

 

The improved yield could affect several aspects of the algal growth process. Firstly, our data 

suggested that there was not so much to be gained by nitrogen starvation. Both starved and unstarved 

algae contained similar amounts of total lipid. Admittedly, the spectrum of fatty acids was different 

and this might be a factor. Secondly, resin-based conversion of total lipid to biodiesel might make it 

less important for growers to maintain a monoculture of high TAG-producing algae. Of course, high 

TAG production is a benefit but it is difficult to maintain monocultures in open ponds or in potentially 

other attractive scenarios where algae are grown in conjunction with wastewater treatment plants.  

Finally production of biodiesel onsite eliminates the transportation cost of moving algal oil to a 

biodiesel plant. While the biodiesel must be recovered from the sulfuric acid methanol, we believe this 

can be done using a low solvent or even solventless hollow fiber extraction system. In commercial 

biodiesel plants, the glycerol separates from the biodiesel layer and the separation is facilitated by 

water. This may be possible as well but more study is needed to determine how best to fractionate the 

spent sulfuric acid/ methanol mixture. There will be many cellular components in the final sulfuric 

acid/methanol solution, some of which may be valuable as side products.  
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2.7. Future Directions 

Despite the potential advantages, more work is needed to optimize the resin approach. The use of 

resin beads is convenient for comparing properties such as binding capacity and fouling for both 

commercial and our own laboratory-synthesized resins. Here we used a commercially available strong 

cation exchange resin where sulfuric acid/methanol is used to elute the resin. It is entirely feasible to 

use a weakly basic anion exchange resin where raising the pH releases the algae from the resin [25].  

At lower pH (7–8) these resins are positively charged and effectively bind algae. Raising the pH to 

~pH 10 or above deprotonates the resin rendering it uncharged such that algae are released. Sodium 

methoxide in methanol, a strongly basic commercial transesterification reagent, would raise the pH, 

thereby releasing the algae and catalyzing the transesterification reaction. Here also, it would be 

critical to use a nonporous resin that did not entrain water. 

Future directions are aimed at determining which approach, using strong or weak anion exchange 

resins is more effective in terms of binding capacity, fouling, and FAME yields. It will also be 

important to develop new modes for use of the resins such as thin film coatings or resin coated 

particles that do not entrain water. Finally, more studies of the transesterification reaction are in order 

since, as shown with Neochloris, the one step conversion to FAME was not quite complete and was 

further affected by the nitrogen starvation.  

3. Experimental Section  

Chloroform, ethanol, ethyl acetate, hexane, isopropanol, isooctane, methanol, and 2-ethoxyethanol 

(2-EE; Acros, Bridgewater, NJ, USA) were obtained from Fisher (Waltham, MA, USA) and were 

either HPLC or ACS reagent grade. Sulfuric acid and potassium hydroxide were reagent grade 

(Fisher). Sodium methoxide in methanol (0.5M), methyl oleate, methyl palmitate, di(ethylene glycol) 

vinyl ether (DEG), 2-dimethylamino methacrylate (DMA), divinylbenzene (DVB), ethylene glycol 

dimethacrylate (EGDMA), hexyl methacrylate (HMA), vinyl imidazole (IM), and azobisisobutyronitrile 

(AIBN) were obtained from Sigma-Aldrich (St. Louis, MO, USA). Triolein was obtained from Nuchek 

Prep (Elysian, MN, USA) and mineral oil (Squibb) was purchased locally.  

All HPLC solvents were degassed and filtered through 0.5 micron PTFE filters (Ominpore, Waters 

Corp, Milford, MA, USA) prior to use. Isooctane was dried by storing over calcium hydride and 

filtered before use. Amberlite® ion exchange resin CG-400 (100–200 mesh, chromatographic grade; 

Mallinckrodt, St. Louis, MO, USA) was prepared by washing and settling in distilled water in order to 

remove fines, then dried at 55 °C. 

3.1. Algal Cultivation and Harvest 

Neochloris oleoabundans (UTEX LB 1185) was obtained from the University of Texas at Austin 

Algal Culture Collection and KAS 603, a saltwater species of Chlorella, was provided by Kuehnle 

Agro Systems. Neochloris was cultivated in freshwater Bold 3N (B3N) medium [30] using an airlift 

bioreactor illuminated with cool white fluorescent lights on a 12:12 light:dark cycle and aerated with 

ambient air using an oil-free diaphragm pump. KAS 603 was cultivated in the same way using f/2 

saltwater medium [31]. For nitrogen starvation experiments, Neochloris was grown for 14 days in B3N 
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media, harvested by centrifugation, resuspended in sodium nitrate-free B3N, and cultured for an 

additional 21 days. For resin binding and FAME synthesis, algae were harvested by centrifugation and 

resuspended in distilled water to concentration of 0.4 g/L. 

3.2. Algal Mass Quantification 

Routine determination of algal dry cell weight (DCW) was obtained by measuring the optical 

density of chlorophyll at 680 nm (OD680) using a spectrophotometer (Shimadzu UV-265). The 

conversion of OD680 to DCW was accomplished by generating a dilution series for each species, 

recording the OD680, and then collecting samples onto pre-weighed cellulose acetate membranes (Pall 

Co., Port Washington, NY, USA), which were then dried in a vacuum oven (15 in. Hg., 60 C) for 12 h 

before obtaining the final weights. To avoid optical filtering effects, samples were diluted, if need be, 

such that the OD680 was always less than 1.8. 

3.3. Algal Binding and FAME Generation 

For algae binding and FAME conversion studies, 10 mL polypropylene columns were loaded with  

2 g of Amberlite resin and then washed with 1M hydrochloric acid followed by distilled water. To load 

the resin, 200 mL algal suspension containing 80 mg algae (a slight excess; based on the OD680 of the 

algae suspension) was passed through the resin. The OD680 of the flow through was then measured to 

determine the DCW of algae bound to the resin.  

For transesterification and elution of algae from the resin, excess water was removed from column 

by vacuum, followed by the addition of 100 mL of transesterification reagent. For elution of algae and 

transesterification, reagents tested included 5% w/v sulfuric acid in either methanol or ethanol, 5% w/v 

potassium hydroxide in methanol, or 0.1 M sodium methoxide in methanol. The eluate was collected 

and the transesterification reaction continued at room temperature for 12 h. FAME was extracted 

sequentially with two 20 mL portions of hexane. The combined hexane extracts were then dried by 

rotary evaporation and resuspended in 1 mL hexane:isopropanol (3:1, v/v) for HPLC analysis. 

For comparison, FAME was generated directly from dried algal biomass, based on the method 

described by O’Fallon et al. [26]. Algal pellets containing approximately 30 mg algae in preweighed 

tubes were dried using a SpeedVac concentrator (Savant) for 12 h at 10−1 Torr with heat. Final tube 

weight was then measured to obtain an accurate algal DCW. The dried algal pellet was suspended in 

methanol and transferred to a glass centrifuge tube where methanol was added to a final volume of  

5.3 mL. Lipids were then saponified by adding 0.7 mL of 10 N potassium hydroxide and heating at  

55 °C for 1.5 h. Once the samples cooled, lipids were re-esterified by adding 0.6 mL of concentrated 

sulfuric acid to the same methanol suspension and heating again at 55 °C for 1.5 h. After cooling, 

FAME was extracted with 2 mL of hexane using a centrifuge to force the separation of the mixture 

into two layers. The upper hexane layer was then transferred to a vial for HPLC analysis. 

3.4. Total Lipid Extraction from Algae 

Total lipid was determined as described by Jones et al. [24] in order to assess the oil available for 

biodiesel synthesis for both algal species. Briefly, dried algal pellets (approximately 30 mg) were 
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extracted with 20 mL of 2-EE for 30 min at 60 °C with continuous stirring. The solution was then 

filtered through 0.47 μm PTFE membrane (Millipore) and the residual biomass was extracted with a 

second 20 mL portion of 2-EE. After filtration, the two filtrates were combined, dried under vacuum, 

and weighed.  

3.5. Hydrophobic Resin Synthesis and FAME Recovery 

Hydrophobic resins used in this study were synthesized in bulk by combining 8 g of EGDMA and  

2 g of HMA with 10 mL of toluene as the porogen. Resin synthesis was carried out in a round bottom 

flask fitted with an argon bubbler and heated to 60 C with constant stirring. Polymerization was 

initiated by addition of 1 mol percent AIBN and continued until the mixture formed a brittle solid.  

The polymer was then dried at 55 C for 12 h, scraped from the flask and ground by mortar and pestle. 

The crushed resin was then sized between #35 and #170 meshes to obtain beads of approximately  

100–500 μm diameter. 

As an alternative to solvent extraction, FAME generated by sulfuric acid/methanol transesterification 

was collected by passing the reaction mixture over a hydrophobic resin bed. Here, the 100 mL of 

sulfuric acid/methanol used to elute algae off the Amberlite resin was passed through a 10 mL 

polypropylene column containing 2 g of EDGMA-HMA resin. The resin was then eluted with 50 mL 

of hexane-ethyl acetate (3:1, v/v) solvent that was subsequently removed by rotary evaporation and the 

residue resuspended in 1 mL hexane-isopropanol (3:1, v/v) for HPLC analysis. For comparison, 

parallel samples of algae bound to Amberlite were eluted with 100 mL sulfuric acid/methanol and 

extracted with two 20 mL portions of hexane. After mixing and phase separation, the upper organic 

phase was recovered, dried by rotary evaporation, and the residue resuspended in 1 mL  

hexane-isopropanol (3:1, v/v) for HPLC analysis. 

3.6. Functionalized Resin Synthesis and Comparison with Amberlite 

Functionalized weak anion exchange resins used in this study were synthesized in the manner stated 

above, using 6 g of EGDMA, 3 g of IM, and 1 g of DEG (EGDMA:IM:DEG), or 6 g of DVB and 4 g 

of DMA (DVB:DMA), with a solution of 5 mL of toluene (porogen) and 5 mL 3% acetic acid 

(dispersing agent). 

Steady-state binding capacity was determined by agitating 2 g of resin in a 500 mL flask containing 

100 mL of KAS603 at 0.4 g/L concentration for 15 min. The suspension containing unbound algae was 

filtered off and resin transferred into columns. FAME was directly transesterified from the resin as 

stated previously using 100 mL of 5% sulfuric acid-methanol. For comparison, algae was bound and 

eluted from a parallel set of Amberlite resin. Because of the higher binding capacity of resin, columns 

were eluted for 3 consecutive cycles using the same transesterification reagent to ensure complete 

removal. After reaction for 12 h as room temperature, FAME was recovered by extracting twice with 

20 mL of hexane. The recovered organic phase was dried by rotary evaporation, and the residue 

resuspended in 1 mL hexane:isopropanol (3:1, v/v) for HPLC analysis. 
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3.7. Quantification and Characterization by HPLC-ELSD/MS 

Lipid composition and FAME content were analyzed as previously described [24], using an HPLC 

(Surveyor LC Pump and Autosampler Plus, Thermo Finnegan, USA) coupled to both ELSD (Sedere 

Sedex 75) and quadrupole mass spectrometer (Thermo Finnigan MSQ) using a 10:1 line splitter 

(Analytical Instruments, USA). Xcalibur software controlled operation of the autosampler, pump, and 

mass spectrometer. ELSD analog data was acquired through an A/D data acquisition box (Agilent 

Technologies, SS420X) and RS232 PCI data acquisition card (Sea Level Systems, 7406S).  

Lipid standards and extracts were resolved using a YMC Pack PVA-Sil-NP column  

(250 mm × 4.6 mm I.D., 5 μm bead size) protected by a Waters Guard Pak guard column containing 

Nova-Pak silica inserts. The solvent program is given in Table 1. ELSD was run at 30 °C at gain 

setting 8. Mass spectrometer was run in APCI positive mode with probe temperature of 400 °C. 

Table 1. Resolution of algal lipid classes using normal-phase HPLC. Normal-phase HPLC 

mobile phase gradient method using a three-solvent system of iso-octane (A), ethyl acetate 

(B), and isopropanol:methanol:water (3:3:1, v/v/v) + 0.1% acetic acid (C). 

time (min) flow rate (mL/min) A (%) B (%) C (%) 

0 1.5 100 0 0 
5 1.5 98 2 0 
15 1.5 75 25 0 
19 1.5 20 80 0 
24 1.5 0 100 0 
32 1.3 0 50 50 
38 1.0 0 15 85 
43 1.0 0 0 100 
52 1.0 0 100 0 
54 1.0 0 100 0 
60 1.5 90 10 0 
64 1.5 100 0 0 
74 1.5 100 0 0 

4. Conclusions  

Anion exchange resins can be used as a simple and inexpensive support for one-step algal harvest 

and biodiesel generation. The yields of FAME are greatly improved over methods that first isolate the 

TAG fraction since polar lipids also contribute to the FAME pool. Both the resin and the 

transesterification reagent can be reused for numerous cycles with the resultant FAME collected during 

each cycle. Although the basic principles have been demonstrated there is much room for improvement, 

especially in the design of resins. Although resins bind to algae based on surface charge, there are 

clearly additional issues that impact binding capacity, fouling and FAME conversion that are specific 

to different species of algae.  
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