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Abstract

Background: Deidentified newborn screening bloodspot samples (NBS) represent a valuable potential resource for
genomic research if impediments to whole exome sequencing of NBS deoxyribonucleic acid (DNA), including the
small amount of genomic DNA in NBS material, can be overcome. For instance, genomic analysis of NBS could be
used to define allele frequencies of disease-associated variants in local populations, or to conduct prospective or
retrospective studies relating genomic variation to disease emergence in pediatric populations over time. In this
study, we compared the recovery of variant calls from exome sequences of amplified NBS genomic DNA to variant
calls from exome sequencing of non-amplified NBS DNA from the same individuals.

Results: Using a standard alignment-based Genome Analysis Toolkit (GATK), we find 62,000–76,000 additional
variants in amplified samples. After application of a unique kmer enumeration and variant detection method
(RUFUS), only 38,000–47,000 additional variants are observed in amplified gDNA. This result suggests that
roughly half of the amplification-introduced variants identified using GATK may be the result of mapping
errors and read misalignment.

Conclusions: Our results show that it is possible to obtain informative, high-quality data from exome analysis
of whole genome amplified NBS with the important caveat that different data generation and analysis methods can
affect variant detection accuracy, and the concordance of variant calls in whole-genome amplified and non-amplified
exomes.

Background
Since the release of the DNA sequence of the first hu-
man genome in 2000, which ushered in the shift from
Sanger sequencing to next-generation sequencing (NGS),
thousands of human genomes and exomes have now been
sequenced. The promise of human exome and genome
analysis is to generate sufficient information to enable cli-
nicians to provide patients with personalized medical care.
Yet, each human exome can contain as many as a million
single nucleotide variants (SNVs) when compared to the
human reference genome. In order to determine which
variants are most clinically relevant for an individual

patient, it may be necessary to determine the frequency of
minor alleles - not only in the general population, but in
the specific population to which each patient belongs.
Thus, deep sequencing of large numbers samples in highly
differentiated and admixed populations is critical. The
1000 Genomes Project (1000G) aims to provide genome
sequences for over 3000 individuals from several distinct
populations from across the globe [1]. The UK10K [2], is
another genome sequencing project with an objective to
sequence over 10,000 human genomes from different pop-
ulations across the United Kingdom. Similarly, the NHLBI
Exome Sequencing Project (ESP) [3] has generated exome
sequencing data from thousands of individuals with the
goal of identifying genes and variants that contribute to
heart, lung and blood disorders. The ESP and UK10K co-
horts contain individuals with disease and aim to define
the relationship between phenotype and genotype, and
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associate genomic variation with disease risk, therapeutic
safety, and efficacy and patient outcomes.
Yet despite great effort to sequence thousands of indi-

viduals, current data alone may not be sufficient to
allow clinicians to distinguish which variants are
informative in local patient populations. The 1000G
Project has chosen to sequence greater numbers of indi-
viduals at very low sequencing depth—but with the po-
tential risk that the data contains more sequencing
errors and therefore less accurate allele frequency infor-
mation. Meanwhile, the UK10G will generate greater
numbers of sequences at greater sequencing depth, but
the represented populations are limited to those more
prevalent in the UK. Similarly, the individuals in the
ESP are more limited in their populations of origin, and
are skewed towards individuals with a heart, lung or
blood disorder. For the physician interested in personalized
medicine, a more accurate metric would be a variant’s
frequency in the local population of a state, county or
city—the population in Lancaster County, PA, with large
Amish contributions, might have an allele frequency
spectrum substantially different than the local population
in Travis County, TX, where significant Mexican-American
and African-American populations are present.
One resource available for allele frequency determina-

tions in the local population is banked newborn bloodspot
samples routinely collected and used for Mendelian dis-
ease screening of neonates using metabolite profiling.
These de-identified blood samples could serve as a
source for the determination of variant frequencies in
a local area. Yet, these samples are less than ideal be-
cause of their age and limited amount of genomic
DNA they contain. Previous work has shown that
these samples can be indeed sequenced using whole
exome sequencing [4]. Here we assess the effects of
whole genome amplification on our ability to identify
real variation in exome sequence data as an applica-
tion for samples with limited material. Specifically, we
are interested in the number of single nucleotide vari-
ants (SNVs) that are attributed to the amplification
process compared to technical duplication. Addition-
ally, we have also examined the differences in variant
sets identified from the same sample when using two
different commercially available exome capture kits.
Our data should encourage more extensive utilization
of NBS specimen archived around the globe for a var-
iety of clinical and research applications.

Methods
The study was approved by the institutional review
boards of University of Texas at Austin (study#: 2010-10-
0110) and Texas A&M University (protocol#: 2005-
0413). We obtained written informed consent from those
participants who were ≥18 years of age at the time of

enrollment or their guardians. Gentra Puregene Blood
Kit (Qiagen) was used to extract genomic DNA from
3 ml whole blood following the manufacturer’s protocol.
A modified protocol was used for DNA extraction from
dry blood spots. Briefly, 15 ~ 20 punches of 3 mm disks
were digested overnight at 55 °C by 3 ul proteinase K so-
lution (25 mg/ml) in a 1.5 ml Eppendorf tube which con-
taining 600 ul cell lysis solution. After digestion, samples
were cool on ice for 10 min and 200 ul protein precipita-
tion solution was added and mixed by votexing for 20 s.
Mixed samples were incubated on ice for 30 min and
then centrifuged for 30 min at 14,000 rpm, 4 °C. Super-
natant was transfer in to a new tube containing 600 ul
isopropanol and 1 ul 20 mg/ml glycogen and mixed by
invert 10 times. After 48 h incubation at −20 °C, samples
were centrifuged at 4 °C, 14,000 rpm for 30 min, DNA
pellet was washed once in 600 ul 70 % ethanol and resus-
pended in 50 ul DNA hydration solution (10 mM Tris
buffer). DNA was quantified using a Qubit® dsDNA BR
Assay Kit (LifeTechnologies). The concentration for the
tested samples were as following: A:55 ng/ul; B:49 ng/ul;
C:47 ng/ul; 509:70 ng/ul; 527:61 ng/ul. 10 ng genomic
DNA was then amplified using the GenomiPhi DNA
Amplification kit (GE Healthcare) following the manu-
facturer’s standard protocol. Briefly, 1 ul of genomic
DNA (diluted to 10 ng/ul) was added to 9 ul sample buf-
fer and was heated to 95 °C for 3 min to denature the
template DNA. The sample was cooled and mixed with
9 ul reaction buffer and 1 ul Phi29 enzyme and incu-
bated at 30 °C for 16–18 h. After amplification, the
Phi29 DNA polymerase was heat-inactivated by a 10-min
incubation at 65 °C. The whole genome amplified
(WGA) product was then quantified using the Qubit®
dsDNA BR Assay Kit (LifeTechnologies), the concentra-
tion of the WGA products were as following: AW:300 ng/
ul, BW:235 ng/ul, CW:330 ng/ul.
Briefly, 1.5 ug of genomic DNA was sheared to an

average fragment size of 200 bp using the Covaris
E220. Fragments were purified using AMPureXP beads
(Beckman Coulter Inc, Brae, CA, USA) to remove
small products (<100 bp), yielding 1 ug of material
which was end-polished, A-tailed and adapter-ligated
according to the manufacturer’s protocol. The libraries
were subjected to minimal PCR cycling and quantified
using the Agilent High Sensitivity DNA assay. Libraries
were combined into pools for solution phase hybridi-
zation using the Illumina TruSeq™ (Illumina Inc) Ex-
ome Enrichment Kit. Captured libraries were assessed
for both quality and yield using the Agilent High Sensi-
tivity DNA assay and KAPA Library Quantification Kit.
Massively parallel sequencing was performed with six
samples per flow cell lane using the Illumina HiSeq2000
platform and SBS chemistry to generate 100 bp paired-
end reads (2x100PE). The sequencing resulted in about

Cantarel et al. BMC Genomics  (2015) 16:602 Page 2 of 6



20–30X coverage across the exome. Sequences were
aligned using BWA [5] to the human genome (B37).
Variants were predicted using GATK [6] (V2.4) using
default parameters and filtered using the GATK hard
filter.

RUFUS sequence filtering
RUFUS (http://bioinformatics.bc.edu/marthlab) is a ref-
erence independent method for identifying variants be-
tween next generation sequence data sets. It is based
on a kmer-based approach that identifies sequence
reads that contain unique DNA between two or more
sequence libraries. The elimination of reference map-
ping or whole genome assembly from variant detection
may reduce the rate of false positives caused by incor-
rect mapping without a reducing sensitivity. First, Jelly-
fish [7] produces kmer counts for each samples set of
FASTQ files independently. RUFUS uses these counts
to determine which kmers are unique to a sample. Fil-
tered FASTQ files are generated with reads with only
unique KMERs and thus reads containing a mutation
compared to the comparison sequence library. Filtered
FASTQ files where then used for alignment and variant
calling, using the same method as the unfiltered FASTQ
files.

Results and discussion
Technical replication
In order to determine the effect of whole genome amp-
lification (wgaDNA) on SNV detection, we first needed
to determine the concordance of SNVs in technical
replicates (gDNA); in this case exome sequences from
the same sample, using the same exome capture kits
and processed with the same analytical pipeline. Using
the classical method for SNVs determination with
alignment by BWA and variants detection and filtering
(hard filter) by GATK, we identified 185,985 SNVs in
the two runs from sample 509, and 190,426 SNVs in
the two runs from sample 527 (Fig. 1a). Consistent
with previous studies [8], roughly 85 % of the SNVs
are concordant between the technical replicates, with
greater than 10,000 SNVs in each replicate not identi-
fied in the other. When we apply strict filtering, com-
paring genotypes predicted from greater than 10X depth
in both samples, the rate of concordance increases to
98 %, with on average about 11 K SNVs per sample. Yet
this filter removes 41 % of positions examined.
We decided to apply a reference-free sequence com-

parison tool, RUFUS. Using this method, we observe a
dramatic improvement in technical replicate concord-
ance. RUFUS selects sequence reads that contain differ-
ential K-mers present in one replicate but missing from
the other. Variants were then called using only these
reads. This removes all reads that do not contain unique

sequence between the samples, thus removing reads
that do not represent variation between the sample but
may contribute false positives due to mapping errors.
This method identifies only two discordant SNVs from
the technical replicates of each sample, suggesting that
much of the discordant variant calling using BWA/
GATK may be introduced by mapping errors, particu-
larly in regions of low complexity [9].

Comparing variant calls from amplified NBS and native
genomic DNA
In order to determine the effect of genome amplifica-
tion, we generated sequencing libraries from the same
subject where one of the replicates was amplified by
whole genome amplification (wga) using Phi29 DNA
polymerase. For gDNA and using “map first” method for
SNV determination - comparing sequence reads to hu-
man reference genome build 37 (consisting of BWA for
alignment and GATK (with a hard filter) for variant call-
ing), we identified 920,151 SNVs in Subject A, 554,222
SNVs in Subject B and 542,537 SNVs in Subject C
(Fig. 1b). Using wgaDNA, BWA/GATK SNV calls re-
sulted in 84, 81, and 78 % concordance respectively, be-
tween variants called in the gDNA and wgaDNA from
the same subject. There are 69,424 (Subject A), 42,099
(Subject B) and 55,178 (Subject C) SNVs not detected in
wgaDNA, and an additional 76,367, 62,472 and 63,273
SNVs detected in wgaDNA, but not in gDNA (Fig. 1b).
Using a mapping first approach, these results suggest the
discordant rate of wgaDNA compared to gDNA is similar
to technical replicates, (8.3, 11.2, 9.9 %) compared to on
average 8.0 % in technical replicates.
To explore the filtering parameters that would de-

crease the number of false positives, we examined the
concordant rate at 1X, 10X, 20X and 30X (Additional
file 1: Figure S1), where a genotype is predicted with the
given depth in both samples. Without a hard filter, the
concordance rate increases from 79 to 93 %, and has
89 % of SNVs concordant for 10X, which would predict
on average 15 K additional SNVs in the wgaDNA com-
pared to gDNA. When a hard filter is imposed, the con-
cordant rate is 85, 91, 91 and 81 % for 1X, 10X, 20X and
30X respectively. However the total number of positions
meeting these depth requirements is greatly diminished,
with only 17 % retained in the 10X group and less than
1 % retained in the 30X group. Of the predicted SNVs,
the vast majority (96 %) are not novel in the 137 build of
dbSNP. Of the SNVs detected in wgaDNA and not
detected in gDNA, about 1/3 are novel for those with
depths > 10X.
Using RUFUS, we identified 47, 38 and 38 K discord-

ant SNVs when comparing the RUFUS variant calls
from the wgaDNA and gDNA libraries for Subjects A,
B and C, respectively. This result emphasizes that about
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half of discordance in calls results from the errors in
alignment.
Contrasting Kmer variant call discrepancy between

wgaDNA and gDNA exomes of the same subject to Kmer
calls between technical replicates, we observe greater
discordance between wgaDNA and gDNA than seen in
technical replicate exomes (38,000–47,000 vs. 2). Never-
theless, the discordance between wgaDNA and gDNA
when using a method where reads are filtered using K-
mer profiles is dramatically lower than the discordance of

SNVs from technical replicates when using a traditional
SNV detection method, where all reads are considered
(38,000–47,000 vs. 186,000–190,000). Even when using
the RUFUS to filter reads which reduces overall SNV dis-
cordance in samples from the same subject, biases re-
main, indicating that the amplification does introduce
spurious variation. Artifactual variation produced by wga
represents less than 7 % of the total variation in these
samples; however, the impact of this false-positive call
rate on the utility of the data may be substantial.

Fig. 1 Comparison of SNVs in biological replicates. a Comparison of technical replicates, where both sets of sequences data from each pair is
process for sequencing using the same method. b Comparison of biological replicates, the set labeled with the “W”, was subjected to whole
genome amplification prior to library construction and sequencing

Cantarel et al. BMC Genomics  (2015) 16:602 Page 4 of 6



Capture kit variant comparison
Additionally, we wanted to know the implications of
using different exome capture kits to create libraries.
Therefore, we generated libraries from four subjects
using the Agilent SureSelect and Illumina exome capture
kit in order to determine whether capture kits produce
the same variant profile. Of the SNVs predicted to be
present in any of the subjects, about 31 % of the total
SNVs predicted (1,012,377) were identified in samples
produced by both exome capture kits. Using the GATK
hard filter, only 28 % of the 353,076 filtered SNVs are
concordant between capture kits. High levels of non-
reproducible variant calls may therefore be obtained
when attempting to compare results from exome se-
quencing of the same subjects when alternative capture
probes/targets and their respective reagents are em-
ployed. Similar to previous findings [10], we found over
1500 regions of the genome, covered by only one of the
two capture kits (Fig. 2; grey and orange rings). In over-
lapping regions, there are still some differences in se-
quencing depth (center plot), leading to differences in
SNV density (Fig. 2; internal plot). These results suggest
that because there are few regions that are well covered

by both kits, sample preparation procedures could be
more important than informatics methods in generating
a list of complete SNVs. When comparing exomes in
populations, researchers must be mindful of these tech-
nical challenges. Its recommended to (i) only compare
SNVs detected in each dataset (i.e. samples generated
using the same methods), (ii) to match sample prepar-
ation for controls and cases in disease association studies
and (iii) validate with targeted resequencing.

Conclusion
In conclusion, despite these technical challenges, we do
believe that NBS are valuable resources for population
genetics. We are amidst an era of sequencing and sample
preparation innovation and are encouraged that newer
preparation kits promise to do more with less material,
which would make wga unnecessary. In the case of wga,
we believe that these errors are randomly distributed in
the exome (i.e. not shared between samples), therefore
each variant will be rare to a whole population. In large
case/control studies, the very rare variants found in one
sample are often filtered.

Fig. 2 Comparison of sequence coverage and depth in biological replicates. Circos generated plot, where the outer most ring represents the
chromosome of the human genome, followed by the regions of the genome with unique coverage in the Illumina capture kit (orange) and
Agilent capture kit (grey), followed by a histogram of sequencing depth of each kit and a histogram of SNV density
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Additional file

Additional file 1: Figure S1. Concordance Rates. Plot represents the
concordance rates between technical replicates and biological replicates
(wgaDNA vs gDNA), where positions are only considered, when
sequencing depth is greater than the Coverage (X-axis). Plus sign and
down triangle are additionally filtered by the GATK hard filter.

Abbreviations
NBS: Newborn bloodspot samples; DNA: Deoxyribonucleic acid;
GATK: Genome Analysis Toolkit; NGS: Next-generation sequencing;
SNVs: Single nucleotide variants; 1000G: 1000 Genomes Project; ESP: Exome
Sequencing Project.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
HZ conceived of the study and helped to draft the manuscript.
YL participated in study design and carried out the experiments. DW and
BLC performed data analysis and draft the manuscript. AF performed the
data and statistical analysis. GBM participated in data analysis. JR participated
in the sequence analysis and manuscript. RHF participated in study design
and helped to draft the manuscript. All authors read and approved the final
manuscript.

Acknowledgments
This work was supported by National Institute of Health (Grant No.
P01HD067244, NS076465, and R01ES021006) to RHF.

Author details
1Baylor Health, Baylor Institute for Immunology Research, 3434 Live Oak
Street, Dallas, TX 75204, USA. 2Department of Nutritional Sciences, Dell
Pediatric Research Institute, The University of Texas at Austin, 1400 Barbara
Jordan Blvd, Austin, TX 78723, USA. 3Genformatic, 6301 Highland Hills Drive,
Austin, TX 78731, USA. 4Present address: Asuragen Inc, 2150 Woodward Street
#100, Austin, TX 78744, USA. 5Department of Biology, Boston College, Boston,
MA 02467, USA.

Received: 2 January 2015 Accepted: 3 July 2015

References
1. The 1000 Genomes Project Consortium. An integrated map of genetic

variation. Nature. 2012;135:0–9.
2. Kaye J, Hurles M, Griffin H, Grewal J, Bobrow M, Timpson N, et al. Managing

clinically significant findings in research: the UK10K example. Eur J Hum
Genet. 2014;22(9):1100–4.

3. Dorschner MO, Amendola LM, Turner EH, Robertson PD, Shirts BH, Gallego
CJ, et al. Actionable, pathogenic incidental findings in 1,000 participants’
exomes. Am J Hum Genet. 2013;93:631–40.

4. Hollegaard MV, Grauholm J, Nielsen R, Grove J, Mandrup S, Hougaard DM.
Archived neonatal dried blood spot samples can be used for accurate
whole genome and exome-targeted next-generation sequencing. Mol
Genet Metab. 2013;110:65–72.

5. Li H, Durbin R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics. 2009;25:1754–60.

6. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al.
The Genome Analysis Toolkit: a MapReduce framework for analyzing
next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.

7. Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers. Bioinformatics. 2011;27:764–70.

8. Li H. Toward better understanding of artifacts in variant calling from
high-coverage samples. Bioinformatics. 2014;30(20):2843–51.

9. Bainbridge MN, Wang M, Burgess DL, Kovar C, Rodesch MJ, D’Ascenzo M, et
al. Whole exome capture in solution with 3 Gbp of data. Genome Biol.
2010;11:R62.

10. Meynert AM, Bicknell LS, Hurles ME, Jackson AP, Taylor MS. Quantifying
single nucleotide variant detection sensitivity in exome sequencing. BMC
Bioinformatics. 2013;14:195.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Cantarel et al. BMC Genomics  (2015) 16:602 Page 6 of 6

http://www.biomedcentral.com/content/supplementary/s12864-015-1747-2-s1.pdf

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	RUFUS sequence filtering

	Results and discussion
	Technical replication
	Comparing variant calls from amplified NBS and native genomic DNA
	Capture kit variant comparison

	Conclusion
	Additional file
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References



