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Regularization in Econometrics and Finance

David Walker Puelz

The University of Texas at Austin, 2018

Supervisor: Carlos Carvalho

This dissertation develops regularization methods for use in finance

and econometrics problems. The key methodology introduced is utility-based

selection (UBS) – a procedure for inducing sparsity in statistical models and

practical problems requiring the need for simple and parsimonious decisions.

The introduction section describes statistical model selection in light

of the “big data hype” and desire to fit rich and complex models. Key em-

phasis is placed on the fundamental bias-variance tradeoff in statistics. The

remaining portions of the introduction tie these notions into the components

and procedure of UBS. This latter half frames model selection as a decision

and develops the procedure using decision-theoretic principles.

The second chapter applies UBS to portfolio optimization. A dynamic

portfolio construction framework is presented, and the asset returns are mod-

eled using a Bayesian dynamic linear model. The focus here is constructing

simple, or sparse, portfolios of passive funds. We consider a set of the most

liquid exchange traded funds for our empirical analysis.
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The third chapter discusses variable selection in seemingly unrelated

regression models (SURs). UBS is applied in this context where an analyst

wants to find, among p available predictors, what subset are most relevant for

describing variation in q different responses. The selection procedure takes

into account uncertainty in both the responses and predictors. It is applied

to a popular problem in asset pricing – discovering which factors (predictors)

are relevant for pricing the cross section of asset returns (responses). We also

discuss future work in monotonic function estimation and how UBS is applied

in this context.

The fourth chapter considers regularization in treatment effect estima-

tion using linear regression. It introduces “regularization-induced confound-

ing” (RIC), a pitfall of employing naive regularization techniques for estimat-

ing a treatment effect from observational data. A new model parameterization

is presented that mitigates RIC. Additionally, we discuss recent work that con-

siders uncertainty characterization when model errors may vary by clusters of

data. These developments employ empirical-Bayes and bootstrapping tech-

niques.
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Chapter 1

Introduction

You can either have maximum
explainability or maximum
predictability.

Paraphrase of Leo Breiman

Information is accumulating rapidly and at an increasing rate. In tan-

dem, statistical models are gaining complexity as theory advances and com-

putational power becomes cheaper. The ability to store more data and fit rich

models will only get easier with time, and statistical methods need to keep

pace with this progress. The developments advocated for in this thesis cut

across the obvious need for statistical model complexity and richness. With-

out a doubt, there is an important place for advanced and nuanced modeling

techniques to describe complex data, and we have seen an explosion of these

methods from deep learning and ensemble methods in statistical learning to

hierarchical modeling in Bayesian analysis. However, there exists a simulta-

neous need for simplicity and parsimony in statistical inference to make big

data and complex models digestible for decision makers. Developing novel ap-

proaches for parsimonious modeling while taking statistical uncertainty of all

forms into account will be the goal of this dissertation.

1



Beyond the call for simplicity in the age of “big data,” dealing with

fewer variables or predictors in a data set or a manifestly simpler model is

intuitively valuable. Humans work well when thinking about a small number

of objects. Information can be understood and processed at a deeper level,

and higher quality decisions based on a small set of variables or objects can

be made. In this data reduction setting, bigger is actually not better! A

key feature of this dissertation is the focus on applied problems in finance

and econometrics that require some notion of simplicity in order to be solved.

Analysis of three questions comprise the subsequent chapters.

1. Among many possible funds for investment, which are the best to hold

in a portfolio and in what proportions?

2. Which tradable factors represent fundamental dimensions of the financial

market?

3. Can we harness the power of regularization in a high dimensional causal

inference setting? If so, how does it affect estimation and how can we

alleviate bias?

Each of the three questions spanning finance, asset pricing, and econo-

metrics shares the common theme of requiring some notion of parsimony or

selection of a subset of objects from a potentially massive set objects. In in-

vesting, the objects are investable assets or funds. In asset pricing, the objects

are tradable factors proposed by theoreticians in finance that are long-short

2



portfolios of stocks. In causal inference with observational data, the objects

are measured covariates (of which there may be many) that represent charac-

teristics of observations that may need to be controlled for in a regression.

Achieving parsimony in modeling is viewed through the lens of statisti-

cal regularization. In its most simple form, regularization is a way to navigate

the bias-variance tradeoff of an estimator, or equivalently, a tradeoff between

estimator complexity and predictive accuracy. An estimator is any rule or

function used to estimate a quantity of interest based on observed data. As

a simple example, we can think of an estimator as describing how a response

variable Y is generated probabilistically given a set of observed covariates X.

Examples of estimators in this setting may be a general nonparametric function

f that maps X to the conditional expectation of the response E[Y | X] = f(X)

or the coefficients β in a linear regression which parameterizes the conditional

expectation as a linear function of the covariates: E[Y | X] = Xβ. In both

nonparametric and parametric modeling scenarios the notion is the same –

a complex estimator will be difficult to interpret by a data analyst and may

not predict well as new data is brought into the fold; a problem known as

overfitting. A simple estimator may be easily digestible for a data analyst

but will similarly fail to predict well “out-of-sample” because it is too biased

toward simple predictions. Statistical regularization helps build an estimator

that interpolates between these two extremes of complexity. The best estima-

tor will often be located somewhere in the middle of the simplest and the most

complex.

3



The quote from Leo Breiman – You can either have maximum explain-

ability or maximum predictability – narrowly describes bias’ relationship to

predictive accuracy. What if we abstracted away from bias, variance, and its

relation to predictive accuracy? Are there models where bias improves inter-

pretability and little is lost in how well the model explains future data? How

can we formally study that relationship? This thesis offers answers to these

questions by developing a new framework for model comparison. We are inter-

ested in scrutinizing bias’ influence on general and customizable functions of

future data where uncertainty naturally arises from the predictive distribution.

1.1 Preliminaries

The following section presents an overview of foundational ideas perti-

nent to the work in this dissertation. The first part discusses model selection

and the bias-variance tradeoff, the second comments on generalizing these no-

tions and incorporating decision theory into model selection, and the third

outlines a general “utility-based” selection procedure applied in the second

and third chapters.

1.1.1 The bias-variance decomposition

The tradeoff between the bias and variance of a statistical estimator

can be most clearly seen by considering the formula for the mean squared pre-

diction error (MSE). Suppose our task is to estimate a function f(x) evaluated

4



at a point x. Define f̂(x) to be our noisy estimate. The MSE is:

MSE(f̂ , f) = E
[(
f(x)− f̂(x)

)2
]
.

Routine calculation shows that it may be written as:

MSE(f̂ , f) = b2 + v,

where b = E[f̂(x)]−f(x) and v = var[f̂(x)], hence the breakdown of a squared

“bias” term given by b2 and “variance” term given by v.

We can see this in action by considering a data set of 500 (x, y) pairs.

These are shown by the gray dots plotted in both figures in (1.1). Our task

is to estimate a function f that will describe the relationship between x and

y and will hopefully work well at describing the relationship as new data is

observed. An estimate of y at a particular x may be written at ŷ = f̂(x),

where f̂ is the function estimate we aim to infer.

Figure (1.1) shows two extremes of potential estimates for f in black.

The left estimate is the most “simple” – we estimate all y’s as exactly the

same regardless of the value of x. The estimate for f in this case is taken to

be a constant function that is the mean of y over all observed x values. The

right is a more flexible and thus more “complicated” estimate for f . Instead

of taking one grand average over all observed x’s, this estimate takes a local

average over the five nearest data points to x. Specifically, the estimate is

f̂(x) =
∑

j∈N yj/5 where N are the collection of five observations that are

nearest to x in the domain.

5



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
● ●

●

●

●
●

●
●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●
● ●

●
●

●●● ●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●●● ●●

● ●

●
●

● ●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

● ●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
● ●●

● ●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0 10 20 30 40

10
20

30
40

50

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
● ●

●

●

●
●

●
●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●
● ●

●
●

●●● ●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●●● ●●

● ●

●
●

● ●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

● ●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
● ●●

● ●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0 10 20 30 40

10
20

30
40

50

x
y

Figure 1.1: The left graph shows the estimated f̂(x) as a constant function
shown in black, and the right graph shows an estimated f̂(x) by taking an
average of the five nearest data points around x, also shown in black.

The tradeoff between simplicity and complexity is clear. The constant

function is simple and easily digestible – it says to predict everything as a

single number! The locally averaged function based on nearest neighbor data

is more complex. It relies on x information in a surrounding neighborhood of

the function evaluation. One can also see “bias” and “variance” in these two

estimates. The constant function is severely biased, and its predictions have

zero variance by definition. Conversely, the observable “wiggles” in the locally

averaged function correspond to variance in its predictions. Since it also uses

local information, its predictions are less biased.

Figure (1.2) expresses this tradeoff by evaluating the mean squared pre-

diction error for a variety of models spanning from the constant model (far
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left) to locally averaged models whose neighborhood shrinks to include only

a couple of data points (far right). We consider a local averaging procedure

called “k nearest neighbors.” The constant function corresponds to k = 500

(averaging over all data points for each prediction). Progressively complex,

higher variance estimates correspond to smaller values of k. Complexity in-

creases from the left to right in the figure where smaller k correspond to higher

variance estimates. The “u-shape” of this figure demonstrates the empirical

tradeoff between bias and variance. High bias, low variance estimates (left)

and low bias, high variance estimates (right) will perform poorly at prediction

– the sweet spot where the MSE is minimized exists somewhere in the middle.
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Figure 1.2: Mean squared error (calculated on testing data) versus model
complexity. In the nearest neighbor sense, model complexity is related to the
inverse of the number of data points we choose to include in the local average.

7



1.1.2 Beyond the bias-variance decomposition and toward model
selection and decision theory

The tradeoff presented in the previous section is a foundational start-

ing point for the work in this dissertation. It relates model complexity to a

clear objective of the statistical analyst: Prediction. Over the past several

decades, there have been many related selection approaches in Bayesian and

classical statistics (shrinkage priors as a part of model specification, stochastic

search algorithms, forward and backward stepwise selection, penalized like-

lihood methods, etc.) that extend the notion of selection based on other

objectives; whether it be a likelihood-based fit (AIC and BIC), or maximiz-

ing a penalized objective function (the “LASSO” as described in Tibshirani

[1996]). Which selection approach is best? What if I am uncertain about the

observed variables in my data set, how they were collected, or how accurately

they represent the true covariates? Is there a way to generalize these selection

procedures while taking all forms of statistical uncertainty, including param-

eter and predictor uncertainty, into account? These questions will guide the

methodological developments to follow.

This dissertation will frame model selection as a decision process and

apply it to problems in finance and econometrics. Since the analyst is choosing

among many possible models of ranging complexity and performance based on

their objective – we view this as a decision making procedure that should be

formalized. The originating question for the ideas presented in this dissertation

is:
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Can we design a decision-theoretic framework for model selection where the

objective is a utility function?

The utility function is the first important piece of our framework. It

is a function defined over the choice set of models and future data, and using

it, we cast the original tradeoff as one between complexity and utility. Since

future data is an input of the utility function – it is itself a random variable!

The complexity-utility tradeoff can then be viewed in the backdrop of uncer-

tainty in future data and model parameters. This is where the second key

feature, statistical uncertainty characterization, comes into play. We will rely

on Bayesian methods of inference for uncertainty characterization. This step

involves learning about the joint distribution of the future data Ỹ and model

parameters Θ conditioned on past data Y:

p(Ỹ ,Θ | Y).

In a traditional Bayesian setting, inference and model selection are

intertwined; with carefully designed shrinkage priors, inference is not viewed

as a “step” in a selection procedure but rather the procedure. Bayesians focus

on understanding the parameter margin of this distribution: p(Θ | Y), known

as the posterior distribution and proportional to the data likelihood and prior

distribution: p(Θ | Y) ∝ p(Y | Θ)p(Θ). A selection procedure will infer the

posterior distribution of the parameters under shrinkage priors p(Θ) that bias

estimates of Θ towards interpretable quantities (such as the zero vector if Θ is a

regression coefficient). Since the parameters Θ serve in defining a map between
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variables and responses in a statistical model, inferring sparsified estimates of

Θ tell the analyst which variables may be important to which responses; see

Liang et al. [2008a] and Bayarri et al. [2012a] for recent surveys of the field.

This is where a Bayesian selection procedure concludes.

In contrast, we attempt to disentangle inference and selection. The

decision-theoretic methodology presented here utilizes Bayesian inference as a

means for uncertainty characterization, but it is only one piece of the selection

methodology. The utility function assumes the role of encoding the analyst’s

desire for sparsity, and it is used in tandem with uncertainty characterization

to provide a complete analysis of the model space. Hahn and Carvalho [2015]

present these ideas in the context of linear regression models. Their paper in-

troduces a decoupling of shrinkage (uncertainty characterization) and selection

(utility specification and optimization) in regression models, but nonetheless

stresses that both components are necessary for a selection procedure. In

the following section, we will describe our precise procedure which is closely

related; either called “utility-based selection” or “utility-based posterior sum-

marization.”

1.1.3 Utility-based selection

The outline of the procedure is presented in this section. Let d be a

model decision (often a vector or matrix and synonymous with our descrip-

tion of an estimator), Θ be a vector of model parameters, λ be a complexity

parameter governing the degree to which complexity is present in the utility
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function, and Ỹ be future data. The components of the procedure are:

1. Loss function L(d, Ỹ ) – measures utility of decision d.

2. Complexity function Φ(λ, d) – measures sparsity of decision d.

3. Statistical model Ỹ ∼ Π(Θ) – characterizes uncertainty.

Since we have a utility and probability measure, we are able to undertake an

expected utility exercise. Specifically, we optimize the expected utility (cal-

culated by integrating over the probability measure) for a range of penalty

parameters λ. We then view these optimal decisions in light of the statistical

uncertainty from the joint predictive distribution of future data and parame-

ters (Ỹ ,Θ). The steps of the procedure spelled out are:

• Optimize E
[
L(d, Ỹ ) + Φ(λ, d)

]
, where the expectation is taken over

p(Ỹ ,Θ | Y).

• Extract optimal decisions d∗λ from the expected loss minimization, and

calculate loss at each decision L(d∗λ, Ỹ ).

• Analyze the loss distributions L(d∗λ, Ỹ ) for use in the final model selec-

tion.

The first step is the familiar decision-theoretic approach – optimize expected

loss. The complexity enters into the objective additively, and its role is to

encourage optimal decisions d that are sparse, or simple. In this way, it can be
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thought of as a penalty function whose influence in the objective is controlled

by the scalar λ. For example, if Φ(λ, d) = λ ‖d‖1, a very large λ would result

in a d∗λ that is sparse because the penalty becomes the “dominate component”

in the objective function. Conversely, a small λ would result in a dense d∗λ

because the penalty vanishes from the objective. This method may also be

called utility-based posterior summarization because the set of optimal sparse

decisions {d∗λ} can be thought of as point summaries of a potentially complex

posterior distribution. The “summarization mechanism” is the utility function,

and the posterior is filtered through the preferences set out by the statistical

analyst during the integration.

The second and third steps revolve around a key quantity – the loss

evaluated at optimal decision d∗λ given by L(d∗λ, Ỹ ). Crucially, this loss is a

random variable whose uncertainty is induced by the distribution of future

data Ỹ ! The posterior reappears here by defining the posterior predictive

distribution

p(Ỹ | Y) =

∫
p(Ỹ | Θ,Y)p(Θ | Y)dΘ.

Examination of the random variables {L(d∗λ, Ỹ )} for a range of λ’s constitutes

the final step of the procedure. While d∗λ provides the optimal point summary,

the loss reintroduces uncertainty in the proper way by considering the analyst’s

utility function.

There is flexibility in this final step. One approach we use to analyze

the loss random variables is to consider benchmarking versus a target decision:
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d∗target. In this case, we consider a new random variable ρ that is defined as:

ρ(d∗λ, d
∗
target, Ỹ ) = L(d∗λ, Ỹ )− L(d∗target, Ỹ ).

This is the difference in loss between the sparse and target decisions. By

definition, a large ρ corresponds to a large sparse loss relative to the target loss;

so we refer to ρ as the “regret random variable.” Interestingly, its distribution

may be quite different from the loss distributions on their own. With ρ in

hand, we can, for example, integrate to find the amount of probability mass

below zero. This value represents the chance that regret is less than zero,

i.e.: The chance that we are satisfied with the sparse decision relative to the

target decision. Thresholding this quantity provides a natural way to select a

sparse decision from all possibilities indexed by λ. The target decision may be

chosen as an unattainable “dense” decision that includes all variables or any

other decision the analyst wants to benchmark against. We consider several

target decisions in the applied problems presented below.

1.1.4 A final comment on bias and prediction

This document frequently uses the terms bias and prediction. Both are

venerable concepts in statistics. In a frequentist context, bias has a negative

connotation. If an estimator’s sampling distribution is not centered on the

true value, this is perceived as undesirable. Utility-based selection not only

produces biased estimators, but they are often inconsistent as well. As we will

argue in the chapters to follow, this thesis strongly differentiates itself from
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the negative aspects of bias and inconsistency. Bias is embraced for its ability

to encourage simplicity in estimators since model interpretability is a key goal.

Secondly, although utility-based selection is packaged as distinct from

methods solely based on predictive ability (like the MSE), it does not render

prediction irrelevant. In fact, prediction is central to the methodol-

ogy. Without careful construction of the predictive distribution, we would be

unable to understand the predictive uncertainty in the sparse estimators (de-

cisions) we are choosing between. Prediction is not bypassed in our selection

procedure. Instead, it is a central component through careful characterization

of p(Ỹ | Y).

Lastly, machine learning researchers may initially be underwhelmed

with the choice of models in our applications because they are more struc-

tured than methods involving deep learning, manifold learning, and nonlinear

dimensionality reduction. However, the structure we impose is imperative to

answer our applied questions in econometrics and finance. We will see that

“low signal high noise” is the default environment in these problems. Thus,

structured models are necessary and may even outperform more complex non-

linear techniques in prediction. Although beyond the scope of this thesis,

future work will involve considering more complex ML techniques and embed-

ding them within our new utility-based methodology.

The remaining section discusses the layout of the dissertation.
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1.2 Structure of the thesis

This dissertation is a compilation of work during my time at the Uni-

versity of Texas. The second and third chapters apply utility-based selection

procedure to two problems in finance and econometrics and represent the bulk

of the dissertation. The fourth chapter discusses statistical regularization in

treatment effect estimation and future work. Literature reviews related to the

problem at hand are presented in each chapter.

The content of this thesis closely follows several papers:

• David Puelz, P. Richard Hahn, and Carlos M. Carvalho. Regret-based

selection for sparse dynamic portfolios. 2018.

• David Puelz, P. Richard Hahn, and Carlos M. Carvalho. Variable selec-

tion in seemingly unrelated regressions with random predictors. Bayesian

Analysis, 12(4):969–989, 2017.

• P. Richard Hahn, Carlos M. Carvalho, David Puelz, and Jingyu He.

Regularization and confounding in linear regression for treatment effect

estimation. Bayesian Analysis, 13(1):163–182, 2018a.

• David Puelz, P. Richard Hahn, and Carlos M. Carvalho. Optimal ETF

selection for passive investing. 2016.

• Carlos M. Carvalho, Jared D. Fisher, and David Puelz. Monotonic effects

of characteristics on returns. preprint, 2018.

We clearly indicate where content from these papers appear in the following

chapters.
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Chapter 2

Sparse Portfolio Construction

Analysis and text in this chapter closely follows Puelz et al. [2016] and

Puelz et al. [2018].

2.1 Introduction

Practical investing requires balancing portfolio optimality and simplic-

ity. In other words, investors desire well-performing portfolios that are easy

to manage, and this preference is driven by many factors. Managing large

asset positions and transacting frequently is expensive and time-consuming,

and these complications arise from both trading costs and number of assets

available for investment. For the individual investor, these challenges are strik-

ingly amplified. Their choice set for investment opportunities is massive and

includes exchange-traded funds (ETFs), mutual funds, and thousands of indi-

vidual stocks. This raises the question: How does one invest optimally while

keeping the simplicity (sparsity) of a portfolio in mind? Further challenges

arise when sparse portfolio selection is placed in a dynamic setting. The in-

vestor will want to update her portfolio over time as future asset returns are

realized while maintaining her desire for simplicity.
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The focus of this chapter are loss functions that balance utility and

sparsity myopically for each time t:

Lλt(wt, R̃t) = L(wt, R̃t) + Φ(λt, wt), (2.1)

where R̃t is a vector of future asset returns, L is the negative utility of an

investor, wt is a vector of portfolio weights, Φ is a function that encourages

sparsity in wt, and λt is a penalty parameter (or more generally, a penalty

vector of equal length as wt) governing the degree to which the complexity

function Φ is influential in the overall loss function. Special attention must

be paid to λt, the parameter that governs the utility-sparsity tradeoff. If it is

known a priori, the investor’s optimal portfolio may be found for each time

by routine minimization of the expectation of (2.1). By contrast, this chapter

considers the more challenging case where this parameter is unknown and may

be thought of as part of the investor’s decision.

The interplay between dynamics, utility and portfolio simplicity in the

investor’s portfolio decision are viewed through the lens of regret. Assuming

the existence of a desirable target portfolio, we define regret as the difference

in loss (or negative utility) between the simple portfolio and the target; our

investor would like to hold a simple portfolio that is “almost as good as” a

target. This chapter distills a potentially intractable dynamic selection proce-

dure into one which requires specification of only a single threshold of regret.

At the outset, the investor need only answer the question: With what degree

of certainty do I want my simple portfolio to be no worse than the target port-
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folio? Put differently: What maximum probability of regretting my portfolio

decision am I comfortable with?

Once the regret threshold is specified, the investor’s preference for port-

folio simplicity will automatically adjust over time to accommodate this thresh-

old. In other words, the penalty parameter λt continuously adjusts to satisfy

the investor’s regret tolerance. In one period, her portfolio may only need to be

invested in a small number of assets to satisfy her regret threshold. However,

that same portfolio may be far off from the target in the next period, requiring

her to invest in more assets to accommodate the same level of regret. This

thought experiment illustrates that our procedure, although requiring a static

regret tolerance to be specified at the outset, results in investor preferences for

sparsity that are dynamic.

The regret-based selection approach presented in this chapter is re-

lated to the decoupling shrinkage and selection (DSS) procedure from Hahn

and Carvalho [2015] and Puelz et al. [2017]. In both papers, loss functions

with explicit penalties for sparsity are used to summarize complex posterior

distributions. Posterior uncertainty is then used as a guide for variable selec-

tion in static settings. This chapter expands on these notions by developing a

regret-based metric for selection and placing it within a dynamic framework.

The important innovations presented herein are (i) The use of investor’s re-

gret for selection and (ii) The development of a principled way to choose a

dynamic penalty parameter λt (and thus select a portfolio) for a time-varying

investment problem.

18



A key finding of this chapter is that sparse portfolios and their more

complex (or dense) counterparts are often very similar from an ex ante regret

perspective. More surprisingly, this similarity often persists ex post. This gives

credence to a common piece of investing advice: “Don’t worry about investing

in a variety of funds; just buy the market.”

2.1.1 Previous research

The seminal work of Markowitz [1952] provides the foundation of utility

design for portfolio optimization related to this chapter. One area of relevant

research highlighting Bayesian approaches to this problem may be found in

Zhou et al. [2014]. In this paper, the authors consider portfolio construction

with sparse dynamic latent factor models for asset returns. They show that

dynamic sparsity improves forecasting and portfolio performance. However,

sparsity in their context is induced at the factor loading level, not the portfolio

decision. In contrast, our methodology seeks to sparsify the portfolio decision

directly for any generic dynamic model.

Additional areas of research focus on the portfolio selection problem,

particularly in stock investing and index tracking. Polson and Tew [1999]

consider the S&P 500 index and develop a Bayesian approach for large-scale

stock selection and portfolio optimization from the index’s constituents. Other

insightful Bayesian approaches to optimal portfolio choice include Johannes

et al. [2014], Irie and West [2016], Zhao et al. [2016], Gron et al. [2012], Jacquier

and Polson [2010b], Puelz et al. [2015] and Pettenuzzo and Ravazzolo [2015].
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Methodological papers exploring high dimensional dynamic models relevant to

this work are Carvalho et al. [2007] and Wang et al. [2011b].

2.1.2 Regularized portfolio optimization and the obsession with
OOS Sharpe ratio

There is a sprawling literature in management science and operations

research that focuses on portfolio construction and out of sample (OOS) per-

formance. This performance is typically measured by the out of sample Sharpe

ratio, which is defined as the ratio of OOS portfolio return and standard de-

viation of returns over a specified “testing” interval, i.e. 12 months. Mean-

variance portfolio optimization is a cornerstone idea in this academic contin-

gent as well [Markowitz, 1952]. Since this procedure relies on estimates of the

first two moments of return, the optimal weights depend heavily on the mod-

eling choice for these moments. It is well documented that sample estimates

for the mean and variance produce portfolios with extreme weights that per-

form poorly out of sample [Jobson and Korkie, 1980], [Best and Grauer, 1991],

[Broadie, 1993], [Britten-Jones, 1999], [DeMiguel et al., 2009b], [Frankfurter

et al., 1971], [Dickinson, 1974], and [Frost and Savarino, 1988]. Estimation er-

rors are the culprit, and it is widely acknowledged that errors in the expected

return are much larger than errors in the covariance matrix, see for example

Merton [1980]. As a result, researchers have focused on ways to stabilize,

through regularization, the entire optimization process.

Regularization methods for portfolio optimization follow two schools of
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thought. The first attacks estimation errors directly by attempting to regular-

ize statistical estimates. This is often done in a Bayesian context by shrinking

the mean estimates to a “grand mean” [James and Stein, 1961]. Similar ap-

plications of shrinkage used for regularization include Jorion [1985] and Jorion

[1986] who set the mean return of the minimum variance portfolio to be the

grand mean. In addition to the mean, others have focused on shrinking the co-

variance matrix in the portfolio selection problem, including Ledoit and Wolf

[2003b], Ledoit and Wolf [2003a], and Garlappi et al. [2007]. In Garlappi et al.

[2007], they consider parameter and model uncertainty to improve portfolio

selection and out of sample Sharpe ratio. The second stream of literature fo-

cuses on regularizing the portfolio weights directly. This literature is distinct

in that regularization is delegated to the portfolio optimization step in con-

trast to inference of the optimization inputs. This is a popular approach since

mean-variance optimization can be formulated in terms of a Least Absolute

Shrinkage and Selection Operator (LASSO) objective function from Tibshi-

rani [1996] with fast computation of the optimal solution. In this setting, the

weights in the objective function are penalized with an l-1 norm. Among the

first to investigate weight regularization in the context of portfolio optimization

is Brodie et al. [2009]. They document improved out of sample performance

as measured by the Sharpe ratio and consistently beat a naive strategy of in-

vesting an equal amount in each asset. DeMiguel et al. [2009a] is a separate

study showing similar results. These more recent studies have clarified and

expanded on earlier work by Jagannathan and Ma [2002] who showed that
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constraining the weights is equivalent to shrinking sample estimation of the

covariance matrix. Fan et al. [2012] show that l-1 regularization limits gross

portfolio exposure, leads to no accumulation of estimation errors, and results

in outperformance compared to standard mean-variance portfolios. Recent

work on regularization for portfolio selection includes Yen [2013], Yen and Yen

[2014], Carrasco and Noumon [2011], Fernandes et al. [2012], Fastrich et al.

[2013b] with applications to index tracking in Fastrich et al. [2014], Takeda

et al. [2013], Wu and Yang [2014], and Wu et al. [2014].

There are many overlapping issues in this literature, and the rational

for parameter shrinkage and weight regularization varies widely. Some moti-

vate it statistically for overcoming estimation error and overfitting while others

simply acknowledge that certain forms of regularization improve out of sam-

ple performance. The operations research approach to portfolio optimization

faces a dilemma by straddling multiple fields. Careful statistical modeling of

optimization inputs is very important; a bad model will yield bad decisions.

As they often say in the computer science field when discussing appropriately

designing an algorithm that takes inputs and gives an output: “garbage in,

garbage out.” Equal care must be given to utility design and optimization.

Inaccurate representation of investor preferences will result in unreasonable

optimal weight vectors and portfolio strategies. In general, the operations

research approach to portfolio selection provides uninspiring and dated solu-

tions to both modeling and optimization. Even worse, their metric for success

(the out of sample Sharpe ratio – OOS SR) is an obsession that has led the
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papers discussed above to undertake horserace comparisons at the expense of

thoughtful research. In light of considering a decision-theoretic approach to

portfolio selection, this obsession begs the question: If the OOS SR is what we

ultimately care about, why not make that the utility and optimize it directly?

This chapter seeks to strongly differentiate itself from the operations research

approach to portfolio selection.

Under a new decision-theoretic lens, this chapter frames weight regu-

larization in a simple portfolio selection methodology where we view it as a

necessary part of the investor’s utility. Our loss function regularizes dynamic

weights to mirror the investor’s joint preference for portfolio simplicity and

high risk-adjusted return. Also, while previous studies conflate regularization

and statistical uncertainty, our approach adapting the work of Hahn and Car-

valho [2015] explicitly defines uncertainty’s role in portfolio selection. We use

well known Bayesian dynamic linear models to estimate time varying mean

and variance and choose the amount of regularization using the predictive un-

certainty in the investor’s utility. By following the DSS procedure from Hahn

and Carvalho [2015], we decouple (and deemphasize) modeling the mean and

variance from the key problem of optimal portfolio choice. Our contribution

to the literature is an approach that clearly separates challenging inference

from the investor’s preference for simplicity.
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2.2 Overview

The focus will be loss functions of the following form:

Lλt(wt, R̃t) = L(wt, R̃t) + Φ(λt, wt) (2.2)

where L is the negative utility of an investor, R̃t is a vector of N future as-

set returns, wt is a vector of portfolio weights, and λt is a penalty parameter

governing the degree to which the complexity function Φ is influential in the

overall loss function. Let the future asset returns be generated from a model

parameterized by Θt so that R̃t ∼ Π(Θt) and Π is a general probability distri-

bution.

The time-varying preferences in (2.2) take into account an investor’s

negative utility as well as her desire for portfolio simplicity. Optimization

of (2.2) in practice poses an interesting challenge since there is uncertainty in

model parameters Θt and future asset returns R̃t. Also, the penalty parameter

λt is not known by the investor a priori, making her risk preferences ambiguous

in portfolio complexity. A further obvious complication is that all of these

unknowns are varying in time.

We propose a three-step approach to constructing a sequence of sparse

dynamic portfolios. This procedure will be based on an investor’s regret from

investing in an alternative (target) portfolio defined by w∗t . The three general

steps are:

1. Model specification: Model the future asset returns R̃t ∼ Π(Θt).
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2. Loss specification: Specify L and Φ in Loss (2.2). Then, the expected

loss given by Lλt(wt) = E[Lλt(wt, R̃t)] may be minimized for a sequence

of λt ∀t. Define the collection of optimal portfolios in the cross-section

as {w∗λt}.

3. Regret-based summarization: Compare regret-based summaries of the

optimal portfolios versus a target portfolio w∗t by thresholding quantiles

of a regret probability distribution, where regret as a random quantity

is given by ρ(w∗λt , w
∗
t , R̃t). This random variable is a function of a sparse

portfolio decision w∗λt , the target portfolio w∗t , and future asset returns.

The expectation and probability are both taken over the joint distribution of

unknowns (R̃t,Θt | Rt−1) where Rt−1 is observed asset return data. Flexibly,

the regret function ρ(w∗λt , w
∗
t , R̃t) can be any metric that is a function of the

portfolio weights and unknowns and may be constructed using any target

portfolio w∗t . In this chapter, we consider the difference in loss between the

sparse portfolio decision and the target portfolio ρ(w∗λt , w
∗
t , R̃t) = L(w∗λt , R̃t)−

L(w∗t , R̃t) as our measure of regret in keeping with the usual decision theoretic

definition.

We can now see how portfolio sparsity appears in the dynamic setting.

The dynamic model given by R̃t ∼ Π(Θt) interacts with the portfolio decision

wt via the expected loss minimization in step 2. Iterating step 3 over time gives

a sequence of sparse portfolio summaries {w∗λ∗t } where λ∗t provides an index

for the selected sparse decision. Ultimately, these sparse portfolio summaries
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select which subsets of assets are relevant for our “simple portfolio”.

The details of this procedure will be fleshed out in the following sub-

section.

2.2.1 Details of Regret-based summarization

In following section, we discuss the specifics of the regret-based summa-

rization procedure. We focus on expanding on step 3 of the methodology which

represents the main innovation of this chapter. Model specification and fitting

as well as loss specification comprising steps 1 and 2 are only highlighted; a

detailed formulation of these first two steps is presented in the Application

section.

Suppose that we have inferred a model for future asset returns given

observed data Rt−1 that is parameterized by the vector Θt: R̃t ∼ Π(Θt | Rt−1).

Let the resulting posterior distribution of parameters and future asset re-

turns be p(Θt, R̃t | Rt−1). For example, Π may be parameterized by dynamic

mean and variance parameters Θt = (µt,Σt). Further, suppose we have spec-

ified the utility and complexity components of the investor’s loss function:

Lλt(wt, R̃t) = L(wt, R̃t) + Φ(λt, wt).

For each investing period t, we obtain a sequence of portfolio decisions

indexed by λt by optimizing the expected loss function E[Lλt(wt, R̃t)]. Regret-

based summarization is an approach to select the appropriate optimal decision

from the collection (i.e., select λt) for each time t, and this choice may be

visualized by using sparsity-regret tradeoff plots.
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Revisiting the regret, samples of the R̃t margin from posterior distri-

bution (R̃t,Θt | Rt−1) define the distribution for the regret random variable

ρ(w∗λt , w
∗
t , R̃t) given by a difference in loss:

ρ(w∗λt , w
∗
t , R̃t) = L(w∗λt , R̃t)− L(w∗t , R̃t), (2.3)

where w∗λt are the optimal sparse portfolio weights for penalty parameter λt

and w∗t are the weights for a target portfolio – any portfolio decision the

investor desires to benchmark against. Regret (2.3) is a random variable whose

uncertainty is induced from the joint posterior distribution (R̃t,Θt | Rt−1) from

step 1 of the procedure.

We use the regret random variable as a tool for sparse portfolio selec-

tion. Each portfolio decision indexed by λt is assigned a number:

πλt = P[ρ(w∗λt , w
∗
t , R̃t) < 0] (2.4)

which is the probability that the sparse portfolio is no worse than the dense

(target) portfolio. In other words, πλt is the probability that I will not “regret”

investing in the sparse λt-portfolio over the target portfolio. This may also be

called the satisfaction probability for the sparse λt portfolio decision.

In Figure (2.1), we provide an illustration of the connection bewteen the

loss and regret random variables. This figure is constructed using returns on

25 passive indices and a next period “log cumulative wealth” utility function.

This is done for a snapshot in time with a focus on one sparse decision that

is invested in 4 out of the 25 indices. The investor is considering this decision
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Loss

D
en

si
ty

sparse decision
target

−0.05 0.00 0.05

Regret (difference in loss)

πsparse decision

−0.04 0.00 0.02 0.04 0.06 0.08 0.10

Figure 2.1: Loss (left) and regret (right) for an example using returns on 25
passive indices. The loss is defined by the log cumulative wealth. The sparse
decision is a portfolio invested in 4 indices and is represented by the light
shaded gray region. The target decision is a portfolio optimized over all 25
indices and is represented by the shaded black region. The regret distributions
shown on the right represent the random variables constructed by subtracting
the sparse decision loss from the target loss. Additionally, the black shaded
region on the right shows πsparse decision: The probability that the sparse decision
is no worse than the target decision.

versus her target – a portfolio optimized over all 25 indices. The left figure

displays the loss distributions of the sparse decision and target. The proba-

bility mass of the sparse loss is gathered at larger values compared with the

target loss. It is “more costly” (higher loss potential) to neglect diversification

benefits and invest in fewer assets.

The right plot in Figure (2.1) displays the regret distribution for the

sparse decision. This is constructed by taking the difference between the sparse
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and target losses, as given in Equation (2.3), defining the regret random vari-

able. With the regret distribution in hand, we can compute the probability

that the sparse decision is no worse than the target portfolio given by Equation

(2.4) – this may be referred to as the “satisfaction probability” for the sparse

decision. This is shown by the black shaded area on the right in Figure (2.1).

The larger this probability, the “closer” the sparse decision’s loss is to the tar-

get loss. By making a decision that satisfies a lower bound on this probability

called κ, we are able to control our chance of being the same or better than

a target portfolio. A lower bound (κ) on the probability of satisfaction (no

regret) implies an upper bound (1− κ) on the probability of regret.

The investor’s portfolio decision boils down to answering the question

first posed in the introduction: With what degree of certainty do I want my

simple portfolio to be no worse than the target portfolio? As the investor

moves through time, the loss and regret distributions will evolve and so will the

probability associated with the sparse λt portfolio decisions. A dynamic sparse

portfolio decision extends this probability thresholding approach to a time

varying framework. The investor chooses the a portfolio decision satisfying

πλt > κ ∀t, ensuring she holds a portfolio that satisfies her regret tolerance

in every investing period.

In Figure (2.2), we show an example sequence of regret distributions

(right vertical axis and gray bars) indexed by λt as well as the satisfaction

probability πλt (left vertical axis and open circles). Specifically, we show the

regret distributions for 300 sparse decisions under the log cumulative wealth
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λt−decisions ordered by increasing satisfaction probability

R
eg

re
t (

di
ffe

re
nc

e 
in

 lo
ss

)

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●●

●

●

●
●

●
●

●

●

●●●
●

●

●
●●

●

●●

●
●●

●

●

●
●●

●

●●●●●●

●

●●
●●

●●●

●

●

●

●

●

●
●

●●

●

●●

●

●●

●

●●

●●●●
●●

●
●
●

●

●
●

●
●
●

●

●

●
●

●

●●●

●

●
●●

●
●
●
●
●
●

●●

●
●
●
●●

●
●

●
●
●

●

●
●●●●●

●

●●●●

●

●●
●●

●

●

●

●●
●
●

●

●

●
●
●

●●●●

●

●●
●

●

●

●
●●●●

●●
●
●
●●●●●●

●●●●
●
●
●
●
●
●

●
●●●

●
●
●●

●

●
●
●
●

●
●
●●●

●
●●

●●●
●●

●
●

●
●●●●●●

●
●
●●●

●
●●

●

●
●

●

●

●
●●

●
●
●●●●●●●

●●
●●●

●

●

●
●●

●●●
●●●

●●●
●●

●●
●●●●

●●●●
●●●

●●●
●●●●

●●●
●●●●

●●●●●
●●●●

●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●

●●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●

●●
●●

●●
●●●

●●●
●●

●●
●●

●●
●●●

●●
●●

●●●●
●●●

●●
●●●

●●
●●

●●●
●●

●●
●
●●

●●
●

●

●

●
●●

●●
●●

●●●●
●●

●●
●●●

●●●●
●●●●

●●
●●●●

●●●
●●●●

●●●●●
●●●●

●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●

●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●
●●●●●

●●●●
●●●●

●●●●●
●●●●

●●●●
●●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●
●●

●●
●●●

●●●
●●

●●
●●

●●
●●●

●●
●●

●●●●
●●●

●●
●●●

●●
●●

●●●
●●

●●
●
●●

●●
●

●

0.
40

0.
45

0.
50

0.
55

pr
ob

ab
ili

ty

●

●

E[Regret]
πλt

Figure 2.2: Regret distributions (left vertical axis) and πλt (right vertical axis)
for increasing πλt values from left to right on the horizontal axis. Displayed are
300 sparse portfolio decisions indexed by λt. As the satisfaction probability
(πλt) increases, the mean regret represented by the gray dots will will typi-
cally trend downwards. Gray bands represent 20% centered posterior credible
intervals for the regret.

utility and versus a target portfolio optimized over all available assets. The

highest regret decisions (by satisfaction probability) are on the left, and they

become less regretful as one moves to the right on the horizontal axis. These

sparse portfolio decision are all fairly close in terms of loss to the target deci-

sion. Therefore, the corresponding regret distributions hover around zero, and

the πλt ’s hover around 0.5. Exploratory plots like Figure (2.2) aid in choosing

a proper value for the κ threshold. In this case πλt > 0.5 is quite high.

Once the time invariant threshold κ is specified, a dynamic selection

strategy is easily implementable. At each time t, we are presented with a
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set of decisions such as those displayed in Figure (2.2) and choose the sparse

portfolio decision such that its πλt > κ. If there are several sparse decisions

satisfying the threshold, we may choose the one whose πλt is closest to κ.

Of course, there is flexibility in the final step of selecting among admissible

sparse decisions. For example, one may select a sparse decision at time t that

is “close” (in terms of a norm or assets held) to the previous sparse decision

at time t − 1 to reduce transaction costs related to the buying and selling of

assets. These features will be discussed in the Application section.

2.3 Application

This section is divided into three parts. First, we describe a dynamic

linear model used to infer time-varying moments of asset returns and fulfill step

1 of the methodology. Second, we specify loss and resulting regret functions

used for selection (steps 2 and 3). Third, we demonstrate the methodology

using a set of 25 passive funds. In the demonstration sections, we consider a

simple example and a more practical case study.

2.3.1 Model specification and data

The general model we infer parameterizes the distribution of future

asset returns with a mean and covariance indexed by time: R̃t ∼ Π(µt,Σt).

An important feature of our proposed methodology is that any model providing

estimations of these time varying moments may be used.

To demonstrate our methodology, we estimate a dynamic linear model
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(DLM) motivated by Fama and French [2015] who detail five “risk factors”

with future returns R̃F
t as relevant to asset pricing. Specifically, we model the

joint distribution of future asset returns and factor returns p(R̃t, R̃
F
t ) compo-

sitionally by modeling p(R̃t | R̃F
t ) and p(R̃F

t ). Following the dynamic linear

model setup from Harrison and West [1999], the future return of asset i is a

linear combination of future factor returns (R̃i
t | R̃F

t ):

R̃i
t = (βit)

T R̃F
t + εit, εit ∼ N(0, 1/φit),

βit = βit−1 + wit, wit ∼ Tnit−1
(0,W i

t ),

βi0 | D0 ∼ Tni0
(mi

0, C
i
0),

φi0 | D0 ∼ Ga(ni0/2, d
i
0/2),

βit | Dt−1 ∼ Tnit−1
(mi

t−1, R
i
t), Ri

t = Ci
t−1/δβ,

φit | Dt−1 ∼ Ga(δεn
i
t−1/2, δεd

i
t−1/2),

(2.5)

where W i
t =

1−δβ
δβ

Ci
t−1 and Dt is all information up to time t. This model per-

mits the coefficients on the factors as well as the observation and state level

variances to vary in time. Pre-specified discount factors δε and δβ ∈ (0.8, 1)

accomplish this goal for the observation and state level variances, respectively.

Also, note that Ci
t (the posterior variance of the state equation for βit) is

updated through moments of the prior βit | Dt−1 and the one-step ahead

forecast distribution R̃i
t | Dt−1. Theorem 4.1 in Harrison and West [1999]

provides the general updating equations for the univariate DLM. Table 10.4 in
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the book summarizes the recurrence relationships in the special case of vari-

ance discounting, providing the moments of the posteriors of the parameters

{mi
t, C

i
t , n

i
t, d

i
t} for all t and each asset i.

We model the five factor future returns R̃F
t with a full residual covari-

ance matrix using the following matrix normal dynamic linear model:

R̃F
t = µFt + νt νt ∼ N(0,ΣF

t ),

µFt = µFt−1 + Ωt Ωt ∼ N(0,Wt,Σ
F
t ),

(µF0 ,Σ
F
0 | D0) ∼ NW−1

n0
(m0, C0, S0),

(µFt ,Σ
F
t | Dt−1) ∼ NW−1

δFnt−1
(mt−1, Rt, St−1),

Rt = Ct−1/δc,

(2.6)

where Wt = 1−δc
δc
Ct−1. Analogous to Model (2.5), the discount factors δF and

δc in Model (2.6) serve the same purpose of permitting time variation in the

observation and state level variances, respectively. An added benefit of (2.6)

is that ΣF
t is a full residual covariance matrix.

Elaborating on the intuition behind Models (2.5) and (2.6) and guided

by Harrison and West [1999], the purpose of variance discounting is to provide

a natural way to evolve the variance from the posterior to the prior while

maintaining conjugacy for sequential updating. For example, consider the

posterior of the precision in Model (2.5):

φit−1 | Dt−1 ∼ Ga(nit−1/2, d
i
t−1/2). (2.7)
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To construct p(φit | Dt−1), we wish to maintain a Gamma form so it is conju-

gate with the likelihood function for R̃i
t given by the one-step ahead forecast

distribution. One reasonable approach is to preserve the mean of Distribution

(2.7), but inflate the variance by discounting the degrees of freedom parameter

nt−1 → δεnt−1. The prior distribution then becomes:

φit | Dt−1 ∼ Ga(δεn
i
t−1/2, δεd

i
t−1/2). (2.8)

Moving from Distribution (2.7) to (2.8) increases the dispersion of the prior

to represent a “loss of information” characteristic of moving forward to time t

with a lack of complete information in Dt−1. The remaining discount factors

δβ, δC , and δF in Models (2.5) and (2.6) serve the analogous purpose of variance

inflation for their respective stochastic processes.

The limiting behavior of variance-discounted learning corresponds to

exponentially weighting historical data with decreasingly smaller weights given

to values further in the past (see sections 10.8.2-3 in Harrison and West [1999]).

Larger discount factors correspond to slower decaying weights and suggest

the time series of parameters is slower-fluctuating. Smaller discount factors

intrinsically mean we have less data with which to estimate the parameters

because the sequence is believed to be more rapidly fluctuating. Thus, the

choice of discount factors amounts to choosing decaying weights for previous

data that are relevant for predicting the parameters today.

Models (2.5) and (2.6) together constitute a time-varying model for

the joint distribution of future asset and factor returns: p(R̃t, R̃
F
t ) = p(R̃t |
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R̃F
t )p(R̃F

t ). As detailed in Harrison and West [1999], they are Bayesian mod-

els that have closed form posterior distributions of all parameters at each

time t, and the absence of MCMC is convenient for fast updating and uncer-

tainty characterization – a necessary ingredient for our regret-based portfolio

selection procedure. Under these models, we obtain the following mean and

covariance structure:

µt = βTt µ
F
t ,

Σt = βtΣ
F
t β

T
t + Ψt,

(2.9)

where column i of βt are the coefficients on the factors for asset i, βit . Also, Ψt is

a diagonal matrix with ith element Ψtii = 1/φit. The parameters Θt = (µt,Σt)

are inputs to step 2 of the procedure.

2.3.1.1 Data and choice of discount factors

We use data on the 25 most highly traded (i.e., most liquid) equity

funds from ETFdb.com as our investable assets. This is monthly data from

the Center for Research in Security Prices (CRSP) database from February

1992 through May 2016 [CRSP, 1992-2016].

The fund names, tickers, and sample statistics are displayed in Table

(2.1). The returns on the Fama-French five factors are obtained from the

publicly available data library on Ken French’s website.1 We start with 10

years of data to train the model and begin forming portfolios in February

2002.

1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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Fund name Ticker Return (%) St. Dev. (%)
SPDR Dow Jones Industrial Average DIA 8.06 14.15
SPDR S&P 500 ETF SPY 7.46 14.34
SPDR Industrial Select Sector XLI 9.19 16.49
Guggenheim S&P 500 Equal Weight ETF RSP 9.37 15.92
iShares MSCI Emerging Markets EEM 6.06 22.78
iShares MSCI EAFE EFA 3.94 16.43
iShares MSCI Germany EWG 6.82 22.23
iShares MSCI Japan EWJ 0.22 19.28
iShares MSCI United Kingdom EWU 4.63 15.88
iShares MSCI South Korea Capped EWY 9.46 36.78
iShares MSCI Eurozone EZU 6.00 19.85
iShares S&P 500 Value IVE 7.36 14.95
iShares Core S&P 500 IVV 7.48 14.34
iShares Russell 1000 IWB 8.22 14.00
iShares Russell 1000 Value IWD 8.10 14.26
iShares Russell 1000 Growth IWF 7.63 14.56
iShares Russell 2000 IWM 8.00 18.76
iShares Russell 2000 Value IWN 7.78 18.67
iShares Russell 2000 Growth IWO 6.63 22.14
iShares Russell Mid-Cap Growth IWP 8.52 19.98
iShares Russell Mid-Cap IWR 9.52 15.96
iShares Russell 3000 IWV 7.52 14.61
iShares US Real Estate IYR 9.32 19.12
iShares US Technology IYW 11.64 26.09
iShares S&P 100 OEF 7.32 14.61

Table 2.1: List of exchange-traded funds (ETFs) used for the empirical study.
Also displayed are the ticker symbols and realized return and standard devia-
tion (annualized) over their sample period.

Step 1 in our procedure is specifying and inferring a model for asset

returns. For our empirical analysis, we use Models (2.5) and (2.6). The dis-

count factors for the factor coefficient and factor mean processes are set to

δc = δβ = 0.9925, and we consider time varying residual variances δF = δε =

0.97. Evidence of time varying residual variance is well-documented in the

finance literature [Ng, 1991]. The discount factors are chosen to incorporate
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an adequate amount of data in the exponentially weighted moving window.

When δ = 0.9925 (0.97), data eight (three) years in the past receives half the

weight of data today. We require slower decay for the factor coefficients and

mean processes because more data is needed to learn these parameters than

residual volatility.

2.3.2 Loss and regret specification

We consider a loss function defined by the negative log cumulative

return of a portfolio decision for N assets. Recalling general form of the loss

function: Lλt(wt, R̃t) = L(wt, R̃t) + Φ(λt, wt), define:

L(wt, R̃t) = − log

(
1 +

N∑
k=1

wkt R̃
k
t

)
, (2.10)

The utility in Loss (2.10) may be viewed as a version of the Kelly portfolio

criterion [Kelly Jr, 1956] where the investor’s preferences involve the portfolio

growth rate. The complexity function Φ(λt, wt) is separately specified in each

of the two examples to follow.

Portfolio decisions wt may now be evaluated using the negative log

cumulative return preferences given by L(wt, R̃t). However, in order to find

these portfolio decisions, we must first optimize the expectation of Loss (2.10).

We do this in two steps: First, we approximate the loss using a second order

Taylor expansion, and second, we take the expectation over all unknowns and

optimize for each λt.

Following the work of Rising and Wyner [2012], we consider a conve-
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nient second order Taylor approximation L(wt, R̃t) ≈ L̊(wt, R̃t) of the original

Loss (2.10) expanded about w0 = ~0:

L̊(wt, R̃t) =
1

2

N∑
k=1

N∑
j=1

wktw
j
t R̃

k
t R̃

j
t −

N∑
k=1

wkt R̃
k
t , (2.11)

where we write the approximate loss including the penalty function as L̊λt(wt, R̃t) =

L̊(wt, R̃t) + Φ(λt, wt). The approximate expected loss E[L̊λt(wt, R̃t)] is written

as:

E[L̊λt(wt, R̃t)] = E

[
1

2

N∑
k=1

N∑
j=1

wktw
j
t R̃

k
t R̃

j
t −

N∑
k=1

wkt R̃
k
t + Φ(λt, wt)

]
. (2.12)

With the posterior distribution (Θt, R̃t | Rt−1) in hand from step 1,

we can take the expectation. We integrate over (R̃t | Θt,Rt−1) followed by

(Θt | Rt−1) to obtain the integrated approximate loss function:

L̊λt(wt) = E[L̊λt(wt, R̃t)] = EΘt

[
ER̃t|Θt

[
L̊λt(wt, R̃t)

]]
= EΘt

[
1

2
wTt Σnc

t wt − wTt µt + Φ(λt, wt)

]
=

1

2
wTt Σ

nc

t wt − wTt µt + Φ(λt, wt),

(2.13)

where the overlines denote posterior means of the mean µt and non-central

second moment Σnc
t . The non-central second moment is calculated from the

variance as Σnc
t = Σt + µtµ

T
t . Loss function (2.13) may be minimized for a

range of λt values at each time t.

In the subsections to follow, we will present two analyses using this

model and data. First, we discuss a simple unsupervised example to demon-

strate the regret-based selection procedure. Second, we present an in depth

practical case study.
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2.3.3 Example: Portfolio decisions with limited gross exposure

In this section, we present a simple example demonstrating the main

components of regret-based selection. We complete Loss function (2.2) by spec-

ifying the complexity function as the `1 norm of the weight vector: Φ(λt, wt) =

λt ‖wt‖1. The complexity function measures gross exposure of a decision by

summing the absolute value of each position: ‖wt‖1 = Σi|wit|. Decisions with

larger absolute value components will evaluate to larger `1 norms. The penalty

parameter λt corresponds directly to a single portfolio decision by amplifying

the penalty in the loss function.

The approximate Loss function (2.13) is now convex and may be written

as:

L̊λt(wt) =
1

2
wTt Σ

nc

t wt − wTt µt + λt ‖wt‖1 . (2.14)

Loss function (2.14) is readily optimized by a variety of software packages –

please see the Appendix for details. Given its computational convenience, it

possesses a couple important features worth noting.

First, Loss (2.14) requires no enumeration of decisions; it can be mini-

mized quickly for a range of λt. In this way, it is an “unsupervised” approach

to the sparse portfolio selection problem. Second, λt now has explicit meaning

beyond indexing the decisions. Since it is multiplying the complexity func-

tion, larger (smaller) λt will generally correspond to sparser (denser) portfolio

decisions. Conveniently, this displays the regret-based procedure’s usefulness
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in selecting tuning parameters in penalized optimization problems with time-

varying inputs. The dynamic nature of asset return data renders traditional

cross validation approaches using i.i.d. sampled testing and training splits

inappropriate.

λt−decisions ordered by increasing satisfaction probability − March 2002
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Figure 2.3: Regret distributions (left vertical axis) and πλt (right vertical axis)
for increasing πλt values from left to right on the horizontal axis. Displayed
are 300 of the sparse portfolio decisions indexed by λt for March 2002. As
the satisfaction probability (πλt) increases, the mean regret represented by
the gray dots will will typically trend downwards. Gray bands represent 20%
centered posterior credible intervals for the regret.

We optimize Loss function (2.14) for a range of λt and for each time

t. Specifically, we consider 500 λt values spanning the sparsest “one asset

decision” to the λt = 0 decision. The latter decision is referred to as the

unpenalized Kelly optimal portfolio and puts nonzero weight in all available

assets. This is used as the target decision since there is no limit on gross
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exposure and will also be called the dense portfolio. We also normalize all

decisions to sum to one, and allow long and short positions in assets. We

normalize all decisions so that the investor is neither borrowing nor investing in

the risk free (cash) rate. Instead, she is fully invested in a risky asset portfolio.

In other words, denoting wcash and wrisky as the percentage of wealth in cash

and risky assets (the ETFs) respectively, wcash + wrisky = 1 will always hold,

we consider the case when wrisky = 1.

At each point in time, the investor would like to choose among the

500 sparse decisions indexed by λt. This may be done by first computing the

corresponding satisfaction probabilities πλt for each of the 500 decisions under

consideration and then choosing one that satisfies and a pre-specified threshold

κ. Recall that πλt is defined in (2.4) as the probability that the regret (versus

the dense target) is less than zero. The utility, as specified in Equation (2.10),

is the next period log cumulative wealth.

Figure (2.3) displays the cross-sectional regret distributions (left verti-

cal axis) and satisfaction probabilities πλt (right vertical axis) for 300 of the

sparse decisions in March 2002. As prescribed by the regret-based procedure,

the investor uses this information to select a portfolio. The satisfaction prob-

abilities span 0.4 to 0.5 indicating that the decisions in this investing period

are all quite similar. Guided by this figure, we choose a κ = 42.5% threshold

to construct an example sequence of selected portfolios.

Once the static threshold is selected, we can iterate the selection pro-

cedure through time. At each time t, the investor is confronted with ex ante
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regret information provided by a cross-sectional plot like Figure (2.3) and se-

lects a portfolio that satisfies the threshold κ. Once the sequence of decisions

is constructed, we can look at how the regret distribution varies over time.

Figure (2.4) shows precisely how the regret of the selected decisions

evolve over time. This example demonstrates how both the mean (black line)

and variance (surrounding shaded black regions) of regret can vary substan-

tially. Notice that the regret is close to zero with small variance for most

periods of time. However, surrounding the financial crisis in 2009, the mean

increases and then drops below zero and the variance increases. When regret

is negative, the utility of sparse portfolio decision exceeds that of the dense

portfolio. During crisis periods shortly into 2009, sparse portfolio decisions

appear to be preferred (as measured by ex ante investor utility) to the dense

portfolio. Nonetheless, this drop in mean is accompanied by increased variance

which informs the investor to be wary of the precision of her regret assessment.

2.3.4 Case study: Selection among a large set of sparse decisions

The purpose of the following case study is to demonstrate regret-based

portfolio selection for a layman investor. We assume our investor would like

to hold a broad market fund (SPY) and a couple more diversifying positions

in other funds. Additionally, we consider a scenario where the investor cannot

hold negative positions in funds; i.e., short selling is prohibited. Therefore, we

consider decisions of only positive weights: wt ≥ 0 ∀t. We construct a set of

portfolio decisions for a layman investor using the following rules for a sparse
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Figure 2.4: The evolution of the ex ante regret distributions for the sparse
long/short portfolio decision given by a kappa = 42.5% threshold and ver-
sus the unpenalized Kelly optimal target. The mean regret is shown by the
lines and the surrounding areas represent the evolving centered 60% posterior
credible intervals.

portfolio with q < N funds:

1. ≥ 25% of the portfolio is invested in SPY, a broad market fund tracking

an index comprised of the 500 largest US companies by market capital-

ization.

2. ≥ 25% of the portfolio is diversified across the q − 1 non-market funds

in the following way: The q − 1 non-market funds each have weights

≥ 25
q−1

%.
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We consider portfolios of two, three, four, and five funds, all of which include

SPY. Each of these sparse portfolios are optimized using the unpenalized Kelly

optimal loss as the objective (Loss (2.13) without the complexity function) and

constraints defined as above. Since our data has 24 funds excluding SPY, enu-

meration of decisions in this way results in Σ4
i=1

(
24
i

)
= 12, 950 sparse portfolios

to select among. Enumeration of sparse decisions implies a complexity func-

tion that measures the cardinality or number of funds included in a portfolio.

Since the complexity function is now implicit in the sparse enumeration, λt

may be thought of as a convenient indexing of each possible portfolio decision.

As presented in the initial example, we must specify a target decision

which then defines the regret random variable defined in Equation (2.3). We

consider two targets at opposite ends of the sparsity spectrum for the empirical

analysis.

1. Dense target: The unpenalized Kelly optimal decision; a portfolio op-

timized over all available assets. Define the Kelly optimal decision as

w∗t = arg minwt≥0 L̊(wt) where L̊(wt) = E[L̊(wt, R̃t)] = 1
2
wTt Σ

nc

t wt−wTt µt;

the optimal decision in absence of the penalty function. This is the same

target used in the “`1 penalty” example presented above, now with a

positivity constraint on the weights.

2. Sparse target: The market ; a portfolio composed of one asset repre-

senting broad exposure to the financial market. We choose SPY as the

market fund.
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The choice of each target will give an investor vastly different perspec-

tives on sparse portfolio selection. In the dense target case, the investor desires

a sparse portfolio decision that is close (in terms of regret) to a potentially

unattainable decision involving all possible funds. The sparse target turns this

approach on its head. In this case, the sparse target approach will inform the

investor of the added benefit (if any) in diversifying away from a broad market

fund.

Each of the 12,950 sparse decisions has a probability of satisfaction

versus a target (πλt) which can be readily calculated via simulation at each

point in time using Equations (2.3) and (2.4) and the distribution of future

returns given by Models (2.5) and (2.6). In Figure (2.5), we show histograms of

the satisfaction probabilities for March 2002 across all 12,950 sparse decisions.

It is related to Figure (2.2) in that the satisfaction probabilities corresponding

to the right vertical axis are shown in histogram form, now for various targets.

The probabilities versus the dense (SPY) target are shown in black (gray). The

dense target is the dense portfolio optimized over all 25 funds. Satisfaction

versus this dense portfolio decision are gathered at smaller probabilities when

compared with the SPY portfolio decision. Of course, the satisfaction rate

versus a diversified dense portfolio will intuitively be lower than versus a sparse

portfolio of a single fund.

Figure (2.5) aids in the proper choice of the regret threshold κ. When

evaluated under the next period cumulative wealth utility, all long only port-

folio decisions are somewhat similar. Thus, the regret (difference in loss) will
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Figure 2.5: Histograms of the satisfaction probabilities (πλt) for two target
decisions: The dense portfolio (black) and SPY (i.e., sparse target, in gray).
These are shown for the March 2002 investing period and are distributions
across all 12,950 enumerated sparse decisions.

generally be gathered around values close to zero, and the satisfaction prob-

abilities will be gathered around value close to 0.5. As a next step, we select

a κ and present the resulting dynamic portfolio decision for the dense target

and SPY target.

We show the selected sparse decisions with the κ = 45% threshold for

the dense (portfolio optimized over all funds in white columns) and sparse

(portfolio of only SPY in gray columns) target decisions in Table (2.2). Each

of these decisions possesses the property that, at each point in time, the sat-

isfaction probability of investing in this decision versus the respective target

is at least 45%. The portfolios are updated on a monthly basis; the table
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displays annual weights for brevity. There are many decisions that will satisfy

this threshold for each of the target (see for example the probability mass

above 0.45 in Figure (2.5)). In this case, we have added flexibility in which

sparse decision to choose. We construct the sparse decisions so that at most

one fund is selected or removed from month to month. For example, if the

current portfolio at time t has SPY, OEF, and IVV, two admissible portfolios

at t + 1 could include the funds be SPY, OEF, IVV, and EWG or SPY and

OEF assuming they both also satisfy the κ threshold.
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Dates SPY EZU EWU EWY EWG EWJ OEF IVV IVE EFA IWP
2003 25 75 - - 58 - - - - - - - - 8.3 - - - - - - - 8.3
2004 25 75 - - 43 - - - - - 20 - - - 6.2 - - - - - - -
2005 25 75 - - 25 - - - 6.2 - 13 - - 8.3 - - - - - - - -
2006 62 75 - - - - - - 6.2 - 19 - - 12 - - - - - - - -
2007 75 75 - - - - 25 - - 8.3 - - - - - - - - - - - 8.3
2008 44 75 - - - - - 12 8.3 13 21 - - - - - - - 26 - - -
2009 30 45 - - - - 6.2 - - - 41 - - - - 34 - - 17 21 6.3 -
2010 75 55 - - - - 8.3 - - - - - - - - 26 - - - 11 8.3 -
2011 58 57 - - 25 - - - - - - - - - - 26 - - - - 8.3 -
2012 29 25 8.3 - - - - - - - 54 - - 56 - 6.2 - - - - - -
2013 34 25 - - - - - 6.2 - 6.2 49 - - 56 - - - - - - 8.3 -
2014 25 75 - - - - - - - - 37 - 26 - - - - - 6.2 - - -
2015 45 25 - - - - - - - - 39 36 - 27 - - 8.3 - - 6.2 8.3 -
2016 35 75 - - - - - - - - 40 - - - 17 - - 8.3 - 8.3 8.3 8.3

Dates IWR IWF IWN IWM IYW IYR RSP EEM IWO IWV
2003 - - - - 8.3 - - - - 8.3 - - 8.3 - - - - - - -
2004 - - - 12 - - - - - 12 - - 6.2 - - - - - - -
2005 - - - 8.3 - - - - - 8.3 30 - - - - - - - - -
2006 - - 6.3 - - - 6.2 - - 12 - - - - - - - - - -
2007 - - - - - - - - - 8.3 - - - - - - - - - -
2008 - - - - - - - - - - - - - - - - - - - -
2009 - - - - - - - - - - - - - - - - - - - -
2010 - - - - - - - - 8.3 8.3 - - - - - - - - - -
2011 - - - - - - - - 8.3 8.3 - - - - - - - - - 8.3
2012 - - - 6.2 - - - - 8.3 - - - - - - - - - - 6.3
2013 - - - - - - - - 8.3 - - - - - - 6.3 - - - -
2014 6.2 - - - - - - - - - - - - - - 12 - 12 - -
2015 - - - - - - - - - 6.2 - - - - - - - - - -
2016 - - - - - - - - - - - - - - - - - - - -

Table 2.2: Sparse portfolio decisions (in percent) for DLMs (2.5) and (2.6)
with δF = δε = 0.97 and δc = δβ = 0.9925. Shown are the selected portfo-
lio decisions for the two targets: dense portfolio (left column in white) and
SPY (right column in gray). Note that annual weights are shown for brevity
although portfolios are updated monthly. In this dynamic portfolio selection,
the regret threshold is κ = 45% for both targets.

In Table (2.2), the sparse decision for the SPY target has larger al-

locations to SPY over the trading period compared with the sparse decision
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for the dense portfolio target. Also, it possesses a consistent allocation to the

US technology sector fund IYW. In contrast, the sparse decision for the dense

target often possesses a significant allocation to the Japanese equity specific

fund EWJ.

Figure (2.6) displays the evolution of the regret distributions for the

sparse decisions shown in Table (2.2). The lines are the expected regret, and

the surrounding areas correspond to the centered 60% posterior credible in-

tervals. The expected regret for both decisions remains close to zero and for

most investing periods is slightly above zero; this is by construction since we

choose the sparse decision that satisfies the κ = 45% threshold at each point

in time. Overall, these decisions do not result in much regret. Indeed, many of

the enumerated long only decisions appear similar in terms of the next period

log wealth utility.

The variance of the regret distributions in Figure (2.6) changes substan-

tially over the investing period. The range of log cumulative wealth difference

for the “dense portfolio as target” at the beginning is large (∼ 0.98 to 1.02

on the cumulative wealth scale). The sparse decision for the dense target col-

lapses in variance around 2005 exactly when the sparse decision is very close

to the dense portfolio. Notice also that the variance of regret for the sparse

decision with SPY as the target is, in general, smaller than the dense target

decision. Since all of the enumerated decisions have at least 25% of the port-

folio allocated to SPY (the target itself) with other diversifying positions, it

is intuitive that the uncertainty in regret should be smaller.
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Figure 2.6: The evolution of the ex ante regret distributions for the sparse
decisions in Table (2.2) versus the two targets: dense portfolio (black) and
SPY (gray). The mean regret is shown by the lines and the surrounding areas
represent the evolving centered 60% posterior credible intervals.

The evolution of regret for the sparse decision with SPY as the target

sheds light on another question: Are there diversification benefits of allocating

to other funds in consideration? Selecting among the 12,950 sparse decisions

including up to four non-SPY funds, the expected regret appears to be essen-

tially zero (see the gray line in Figure (2.6)). This analysis suggests that under

the log cumulative wealth utility and considering the large set of enumerated

decisions defined at the beginning of this section, the best sparse decision from

an ex ante perspective may be SPY itself!

The ex ante evolution of other metrics, such as the portfolio Sharpe

ratio, may be studied for the sparse decisions displayed in Table (2.2). The
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Sharpe ratio is not a utility since it is not a function of future returns R̃t. How-

ever, it is a function of our model parameters whose uncertainty is character-

ized by the posterior distribution. Specifically, define the predictive portfolio

Sharpe ratio:

SR(wt,Θt) = wTt µt/(w
T
t Σtwt)

1/2,

ρSR(w∗λt , w
∗
t ,Θt) = SR(w∗t ,Θt)− SR(w∗λt ,Θt),

(2.15)

where ρSR(·) is predictive in the sense that future returns R̃t conditional on the

model parameters are integrated out. This portfolio metric differs from the

Kelly criterion loss in that it focuses on a ratio of the portfolio expected return

and variance. It may be used as an exploratory tool to accompany selection

from regret-based portfolio selection.

We utilize this “difference in Sharpe ratio” distribution in an exploratory

fashion in Figure (2.7) shown on an annualized scale. The evolution of the dif-

ference in Sharpe ratio is similar to the regret in Figure (2.6). In this case,

a larger positive difference in Sharpe ratio means the selected sparse decision

possesses a smaller return-risk tradeoff compared to the target decision. The

sparse decision for the dense target is larger variance and trends around larger

positive values compared with the sparse decision for the SPY target. The

rationale for these features is similar: The enumerated sparse decisions are

constructed to contain SPY, so the Sharpe ratios (like the loss) of the sparse

decision and the SPY target decision will often be close. Following the finan-

cial crisis around 2009, the difference in Sharpe ratio stabilizes at lower values

for both sparse decisions.
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Figure 2.7: The evolution of the ex ante “Difference in annualized Sharpe ra-
tio” distributions for the sparse decisions in Table (2.2) versus the two targets:
dense portfolio (black) and SPY (gray). The mean regret is shown by the
lines and the surrounding areas represent the evolving centered 60% posterior
credible intervals.

2.3.4.1 What happens when κ is varied?

The selection of dynamic portfolio decisions will change based on the

regret threshold κ. In Figure (2.8), we show how expected regret and difference

in Sharpe ratio (on an annualized scale) change for selected sparse decisions

using the SPY target. The evolution of these metrics is shown for sparse

decisions constructed using three κ thresholds: κ = 45% (black), 50% (dark

gray), and 55% (light gray). The black lines in both figures correspond to the

“SPY as target” paths in Figures (2.6) and (2.7), now compared to other κ

choices.
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Since κ is a lower bound on the satisfaction probability, increasing this

lower bound should lead to dynamic sparse decisions with generally smaller

regret. In other words, if the investor would like to be satisfied with higher

probability, a “lower regret”-sequence of sparse decisions should be selected.

Figure (2.8) demonstrates this when SPY is the target. Larger κ generally lead

to smaller expected regret and difference in Sharpe ratio paths. The κ = 55%

sparse decision leads to expected regret and difference in Sharpe ratio that

are mostly negative from 2002 through 2016, indicating that portfolios with

SPY and diversifying funds may be preferred to just SPY alone at this high

satisfaction threshold. However, these differences in expectation are still close

to zero and small, especially for the evolution of expected regret.

2.3.4.2 Enumerated decisions without using the utility

The enumerated decisions considered up to this point are constructed

by optimizing the integrated approximate loss. An investor might prefer to

construct decisions without any consideration for utility and statistical model.

An equal-weighted portfolio (where each of the N assets is given weight 1/N) is

one such example of a “utility agnostic” decision. Financial practitioners often

advocate for this decision because of its out of sample performance and purity

in not involving errors in the statistical model and optimization procedure

[DeMiguel et al., 2007]. The regret-based procedure can readily accommodate

a set of decisions with these characteristics as well.

In the following analysis we consider the set of sparse enumerated equal-
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Figure 2.8: Expected regret (left) and expected difference in Sharpe ratio
(right) for sparse decisions with SPY as the target. These metrics are shown
for three regret thresholds (the lower bound on probability of satisfaction):
κ = 45% (black), 50% (dark gray), and 55% (light gray). Note that as the
lower bound on the probability of satisfaction increases, both the expected
regret and difference in Sharpe ratio tend to decrease for the selected sparse
decisions.

weighted portfolios with up to four funds. This amounts to Σ4
i=1

(
25
i

)
= 15, 275

decisions to choose among at each point in time. We choose the “dense 1/N”

portfolio as the target decision. This target has 4% invested in each of the 25

funds. To remain consistent with the previous analysis, we consider selection

when κ = 45%.

The weights for the selected portfolio decision are shown in Table (2.3).

At the κ = 45% threshold, all portfolios have either three or four funds in-

cluded, and the portfolio decisions have sustained exposures to EWJ (Japanese

equity) and IYW (technology) throughout the investing period.
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Dates SPY DIA EZU EWU EWY EWJ OEF EEM IVE EFA IWP IWR IWF IWO IWM IYW XLI
2003 - - - - - - - - - 25 25 - - - 25 25 -
2004 - - - - 33 33 - - - - - - - - - 33 -
2005 - - - - 25 - 25 - - - - - - - - 25 25
2006 - - - 33 - - - - - - - 33 - - - 33 -
2007 - - - 33 - - - - - - 33 - 33 - - - -
2008 - - 25 - - - 25 - - - 25 - 25 - - - -
2009 - 33 - - - 33 - - - - - - - - - 33 -
2010 - - - - - 33 - 33 - - - - - - - 33 -
2011 - - - - - - - 33 - 33 33 - - - - - -
2012 - - - 33 33 - 33 - - - - - - - - - -
2013 - - - - - - 33 - 33 - - - - 33 - - -
2014 33 - - - - - - - - 33 - - - 33 - - -
2015 - - 25 - - 25 - - 25 - - - - - 25 - -
2016 - - - 33 - 33 - - 33 - - - - - - - -

Table 2.3: Sparse portfolio decision (in rounded percent) for DLMs (2.5) and
(2.6) with δF = δε = 0.97 and δc = δβ = 0.9925. Each point in time repre-
sents an equal-weighted portfolio and corresponding λt such that the decision
satisfies the κ = 45% threshold. The target decision is the equal-weighted
portfolio of all 25 funds – also known as the dense 1/N portfolio. Note that
annual weights are shown for brevity although portfolios are updated monthly.

This approach to equal-weighted portfolio selection possesses innovative

and important features that should be highlighted. While traditional “1/N”

approaches avoid the investor’s utility and model for future asset returns al-

together, the regret-based procedure still accounts for both. The decisions

themselves may be constructed without a utility or model in mind, but the

characterization of regret must involve the utility and model. Regret is com-

puted by the difference in utility between the target and sparse decisions, and

it is a random variable that may be simulated using the model for future as-

set returns. Regardless of the set of decisions considered by the investor, the

utility and model will always play a crucial role in a regret-based selection
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procedure.

2.3.4.3 Ex post decision analysis

In this section, we consider the realized performance of the three sparse

portfolio decisions presented in Tables (2.2) and (2.3) relative to their target

decisions. We present out of sample statistics for the six decisions in Table

(2.4). Shown is the annualized Sharpe ratio, standard deviation of return, and

mean return.

The sparse enumerated decision for the dense target performs similarly

to the dense target. This is comforting – this sparse decision is a dynamic

portfolio that is allocated to the market (SPY) and at most four other diversi-

fying positions, and its out of sample performance is comparable to the dense

portfolio optimized over all 25 funds at each time.

out of sample statistics

Sharpe
ratio

s.d.
mean
return

sparse enumerated - dense as target 0.40 14.98 6.02
dense 0.45 14.41 6.47

sparse enumerated - SPY as target 0.43 14.65 6.28
SPY 0.43 14.63 6.28

sparse EW enumerated - dense 1/N as target 0.49 16.71 8.15
dense 1/N 0.44 16.47 7.32

Table 2.4: Comparison of out of sample statistics for the six portfolio strategies
considered over the investing period February 2002 to May 2016. The three
solid lines correspond to the sparse portfolio decisions presented in Tables
(2.2) and (2.3). The three dotted lines correspond to the target decisions used
for the regret-based selection procedure. All statistics are presented on an
annualized scale. “EW” refers to the equal-weighted portfolio decision.
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The sparse enumerated decision for the SPY target is equally inter-

esting. Since the SPY target is a sparse decision itself, comparison of it with

selected sparse decisions provides insight into whether or not one should diver-

sify away from investing in just the Market. The out of sample performance

shown in rows three and four of Table (2.4) display similar performance of

the sparse enumerated decision and SPY. Even after considering 12,950 sparse

decisions containing up to four funds other than SPY – the diversification

benefits of exposure beyond SPY are negligible. The decisions that are ex

ante better than SPY with 45% probability turn out to help out little ex post.

Note that this conclusion is with respect to the next period cumulative wealth

utility. Future work will involve consideration of other utilities and compare

how their selection and ex ante/post analyses differ.

While the sparse optimal strategies both underperform their targets,

the sparse equal-weighted strategy slightly outperforms its dense 1/N target.

This is shown in rows five and six of Table (2.4). Interestingly, its out of sample

performance even exceeds its sparse optimal counterparts shown in rows one

and three in the Table.

2.4 Discussion

This chapter presents a new approach to portfolio selection based on

an investor-specified regret tolerance. A loss function defined by the expected

portfolio growth rate is used in tandem with a new procedure that separates

statistical inference from selection of a sparse dynamic portfolio. We illustrate
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the procedure using a set of exchange-traded funds. After analyzing two target

decisions: (i) A dense portfolio of all available assets, and (ii) A portfolio

comprised of a single market fund, we find that selected sparse decisions differ

little from their targets in terms of utility; especially after taking into account

uncertainty. This finding persists ex post, and a variety of sparse decisions

perform similarly to their target decisions on a risk adjusted return (or Sharpe

ratio) basis.

The procedure offers a fresh approach to portfolio selection. While

traditional approaches typically focus on either the careful modeling of pa-

rameters or the optimization procedure used to calculate portfolio weights,

regret-based selection combines both through analysis of the regret random

variable. Portfolio decisions that are parsimonious in nature are then evalu-

ated in a framework that incorporates uncertainty in the investor’s utility.

Areas of future research include alternative utility specifications. Two

relevant examples are: (i) incorporation of fees and (ii) minimization of trans-

action costs. In each case, a variant of Loss function (2.10) may be considered.

Fees of the funds can be incorporated directly into the vector of future returns.

For example, suppose a vector of expense ratios (percentage fee charged of to-

tal assets managed) of all funds were given by τ . The vector of future returns

within the loss function may be adjusted by τ to reflect an investor’s sensitivity

to fees:

L(wt, R̃t) = − log

(
1 +

N∑
k=1

wkt (R̃
k
t − τk)

)
, (2.16)
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where R̃k
t − τk is the net return on investment in for fund k.

Sensitivity to transaction costs can be similarly accounted for by mod-

ifying the complexity (penalty) function Φ. This can be accomplished by pe-

nalizing the difference in consecutive weight vectors through time, wt − wt−1.

An example penalty function would look like:

Φ(λ1
t , λ

2
t , wt) = λ1

t ‖wt‖1 + λ2
t ‖wt − wt−1‖1 . (2.17)

This penalty is designed to encourage sparsity as well as slow movement in

portfolio positions over time so as to avoid frequent buying and selling of

assets. It poses an interesting challenge since there are two penalty parameters

(λ1
t and λ2

t ) that must be chosen. This is precisely where the regret-based

framework has merit. Portfolio decisions indexed by these two penalties can

be mapped to a digestible single probability of regret. Then, selection of an

appropriate {λ1
t , λ

2
t} pair can be done in this intuitive “regret space”.

The remainder of this section takes a step back and discusses the modu-

larity and important features of regret-based portfolio selection. The method-

ology is intended to be general – the particular loss, model and dataset used for

the empirical analysis are only chosen to demonstrate how the procedure works

in practice. The primitive components are: (i) a utility function characteriz-

ing investor preferences, (ii) a complexity function measuring how “simple”

a portfolio decision is, (iii) a statistical model, and (iv) the investor’s regret

tolerance; where regret is defined as a difference in utility. The regret tolerance

stitches together the first two primitives by answering the question: How does
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the investor view the tradeoff between her utility and portfolio complexity?

Using the utility and posterior distribution defined by the statistical model

(primitive three), one can construct a mapping between a set of penalty pa-

rameters {λt} and probabilities of regret (as displayed by the right vertical

axis in Figure (2.2)). However, this is not enough. The collection of portfolio

decisions indexed by λt must be distilled down to one. The fourth primitive

accomplishes this by placing an upper bound on the probability of regret;

a portfolio that satisfies this upper bound is selected. By incorporating the

four primitives, the main (and surprising) feature of this methodology is that

a static regret threshold produces a sequence of dynamic portfolio decisions,

one for each investing period.
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Chapter 3

Regularization in Asset Return Models:

Seemingly Unrelated Regressions and

Monotonic Function Estimation

Analysis and text in this chapter closely follows Puelz et al. [2017].

The first part develop a variable selection approach from seemingly unrelated

regression models and applies it to factor selection in asset pricing. The second

part considers asset return prediction and monotonic function estimation.

3.1 Introduction and overview

This chapter develops a method for parsimoniously summarizing the

shared dependence of many individual response variables upon a common set

of predictor variables drawn at random. The focus is on multivariate Gaussian

linear models where an analyst wants to find, among p available predictors X,

a subset which work well for predicting q > 1 response variables Y . The

multivariate normal linear model assumes that a set of responses {Yj}qj=1 are

linearly related to a shared set of covariates {Xi}pi=1 via

Yj = βj1X1 + · · ·+ βjpXp + εj, ε ∼ N(0,Ψ), (3.1)

where Ψ is a non-diagonal covariance matrix.
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Bayesian variable selection in (single-response) linear models is the sub-

ject of a vast literature, from prior specification on parameters [Bayarri et al.,

2012a] and models [Scott and Berger, 2006] to efficient search strategies over

the model space [George and McCulloch, 1993, Hans et al., 2007]. For a more

complete set of references, we refer the reader to the reviews of Clyde and

George [2004] and Hahn and Carvalho [2015]. By comparison, variable se-

lection has not been widely studied in concurrent regression models, perhaps

because it is natural simply to apply existing variable selection methods to each

univariate regression individually. Indeed, such joint regression models go by

the name “seemingly unrelated regressions” (SUR) in the Bayesian economet-

rics literature, reflecting the fact that the regression coefficients from each of

the separate regressions can be obtained in isolation from one another (i.e.,

conducting estimation as if Ψ were diagonal). However, allowing non-diagonal

Ψ can lead to more efficient estimation [Zellner, 1962] and can similarly impact

variable selection [Brown et al., 1998, Wang, 2010].

This chapter differs from Brown et al. [1998] and Wang [2010] in that

we focus on the case where all or some of the predictor variables (the regres-

sors, or covariates) are treated as random as opposed to fixed. Our goal will be

to summarize codependence among multiple responses in subsequent periods,

making the uncertainty in future realizations highly central to our selection

objective. This approach is natural in many contexts (e.g., macroeconomic

models) where the purpose of selection is inherently forward-looking. Mea-

surement errors in the predictors may also contribute to randomness, so this
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approach is naturally applicable in an “errors-in-variables” context. To our

knowledge, no existing variable selection methods are suitable in this context.

The new approach is based on the sparse summary perspective outlined in

Hahn and Carvalho [2015], which applies Bayesian decision theory to summa-

rize complex posterior distributions. By using a utility function that explicitly

rewards sparse summaries, a high dimensional posterior distribution is col-

lapsed into a more interpretable sequence of sparse point summaries.

A related approach to variable selection in multivariate Gaussian mod-

els is the Gaussian graphical model framework [Jones et al., 2005b, Dobra

et al., 2004, Wang and West, 2009]. In that approach, the full conditional

distributions are represented in terms of a sparse (p + q)-by-(p + q) precision

matrix. By contrast, we partition the model into response and predictor vari-

able blocks, leading to a distinct selection criterion that narrowly considers

the p-by-q covariance between Y to X.

This chapter is structured as follows. Section 2 describes the methodol-

ogy. A methods overview is presented followed by three subsections discussing

the details of the approach. Section 3 presents a simulation study utilizing the

methodology with comparisons to alternative approaches. Section 4 demon-

strates how the methodology works in practice by considering an application

in asset pricing. Section 5 concludes.
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3.2 Posterior summary variable selection

3.2.1 Methods overview

Posterior summary variable selection consists of three phases: model

specification and fitting, utility specification, and graphical summary. Each of

these steps is outlined below. Additional details of the implementation are

described in Appendices (1.1) and (1.2).

Step 1: Model specification and fitting

The statistical model may be described compositionally as p(Y,X) =

p(Y |X)p(X). For (Y,X) ∼ N(µ,Σ), the regression model (3.1) implies Σ has

the following block structure:

Σ =

[
βTΣxβ + Ψ (Σxβ)T

Σxβ Σx

]
. (3.2)

We denote the unknown parameters for the full joint model as Θ = {µx, µy,Σx,β,Ψ}

where µ = (µTy , µ
T
x )T and Σx = cov(X).

For a given prior choice p(Θ), posterior samples of all model parameters

are computed by routine Monte Carlo methods, primarily Gibbs sampling. De-

tails of the specific modeling choices and associated posterior sampling strate-

gies are described in Appendix (1.1).

A notable feature of our approach is that steps 2 (and 3) will be un-

affected by modeling choices made in step 1 except insofar as they lead to
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different posterior distributions. In short, step 1 is “obtain a posterior distri-

bution”; posterior samples then become inputs to step 2.

Step 2: Utility specification

For our utility function we use the log-density of the regression p(Y |X)

above. It is convenient to work in terms of negative utility, or loss:

L(Ỹ , X̃,Θ,γ) =
1

2
(Ỹ − γX̃)TΩ(Ỹ − γX̃),

where Ω = Ψ−1. Note that this log-density is being used in a descriptive

capacity, not an inferential one; that is, all posterior inferences are based

on the posterior distribution from step 1. The “action” γ is regarded as a

point estimate of the regression parameters β, which would be a good fit to

future data (Ỹ , X̃) drawn from the same model as the observed data given by

Y ∈ RN×q and X ∈ RN×p.

Taking expectations over the posterior distribution of all unknowns,

p(Ỹ , X̃,Θ|Y,X) = p(Ỹ |X̃,Θ)p(X̃|Θ)p(Θ|Y,X),

yields expected loss

L(γ) ≡ E[L(Ỹ , X̃,Θ,γ)] = tr[MγSγT ]− 2tr[AγT ] + constant,

where A = E[ΩỸ X̃T ], S = E[X̃X̃T ] = Σx, and M = Ω, the overlines denote

posterior means, and the final term is a constant with respect to γ.
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Finally, we add an explicit penalty, reflecting our preference for sparse

summaries:

Lλ(γ) ≡ tr[MγSγT ]− 2tr[AγT ] + λ ‖vec(γ)‖1 , (3.3)

where ‖vec(γ)‖1 sums the absolute values of components in vec(γ). In prac-

tice, it is well known that the `1 penalty selects relevant components by shrink-

ing irrelevant ones to zero.

Step 3: Graphical summary

Traditional applications of Bayesian decision theory derive point-estimates

by minimizing expected loss for certain loss functions. The present goal is not

an estimator per se, but a parsimonious summary of information contained

in a complicated, high dimensional posterior distribution. This distinction is

worth emphasizing because we have not one, but rather a continuum of loss

functions, indexed by the penalty parameter λ. This class of loss functions

can be used to summarize the posterior distribution as follows.

Using available convex optimization techniques, expression (3.3) can be

optimized efficiently for a range of λ values simultaneously. Posterior graphical

summaries consist of two components. First, graphs depicting which response

variables have non-zero γ∗λ coefficients on which predictor variables can be

produced for any given λ. Second, posterior distributions of the quantity

∆λ = L(Ỹ , X̃,Θ,γ∗λ)− L(Ỹ , X̃,Θ,γ∗)
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can be used to gauge the impact λ has on the descriptive capacity of γ∗λ.

Here, γ∗ = γ∗λ=0 is the unpenalized optimal solution to the minimization of

loss (3.3). Note that these graphs defined by γ∗λ provide appropriate variable

selection for SUR models – different sets of predictors are connected to each

of the responses.

The statistical model is given in equations (3.1) and (4.6); prior spec-

ification and model fitting details can be found in Appendix (1.1). To briefly

summarize, we use a multivariate version of the priors presented in George and

McCulloch [1993] and similar to Brown et al. [1998] and Wang [2010] for the

exercises in this chapter. We choose the g-prior parameter using an empirical

Bayes procedure, and the marginal distribution of the predictors is modeled

via a Gaussian linear latent factor model. In the following three subsections,

we flesh out the details of steps 2 and 3, which represent the main contributions

of this chapter.

3.2.2 Deriving the sparsifying expected utility function

Define the optimal posterior summary as the γ∗ minimizing some ex-

pected loss Lλ(γ) = E[Lλ(Ỹ , X̃,Θ,γ)]. Here, the expectation is taken over

the joint posterior predictive and posterior distribution: p(Ỹ , X̃,Θ | Y,X).

As described in the previous section, our loss takes the form of a pe-

nalized log conditional distribution:

Lλ(Ỹ , X̃,Θ,γ) ≡ 1

2
(Ỹ − γX̃)TΩ(Ỹ − γX̃) + λ ‖vec(γ)‖1 , (3.4)
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where Ω = Ψ−1, ‖vec(γ)‖1 =
∑

j |vec(γ)j|, and vec(γ) is the vectorization of

the action matrix γ. The first term of this loss measures the distance (weighted

by the precision Ω) between the linear predictor γX̃ and a future response Ỹ .

The second term promotes a sparse optimal summary, γ. The penalty parame-

ter λ determines the relative importance of these two components. Expanding

the quadratic form gives:

Lλ(Ỹ , X̃,Θ,γ) =
1

2

(
Ỹ TΩỸ − 2X̃TγTΩỸ + X̃TγTΩγX̃

)
+ λ ‖vec(γ)‖1

=
(
X̃TγTΩγX̃ − 2X̃TγTΩỸ

)
+ λ ‖vec(γ)‖1 + constant.

Integrating over (Ỹ , X̃,Θ | Y,X) (and dropping the constant) gives:

Lλ(γ) = E[Lλ(Ỹ , X̃,Θ,γ)]

= E
[
tr[γTΩγX̃X̃T ]

]
− 2E

[
tr[γTΩỸ X̃T ]

]
+ λ ‖vec(γ)‖1 ,

= E
[
tr[γTΩγS]

]
− 2tr[AγT ] + λ ‖vec(γ)‖1 ,

= tr[MγSγT ]− 2tr[AγT ] + λ ‖vec(γ)‖1 ,

(3.5)

where:

A ≡ E[ΩỸ X̃T ],

S ≡ E[X̃X̃T ] = Σx,

M ≡ Ω,

(3.6)

and the overlines denote posterior means. Define the Cholesky decompositions

M = LLT and S = QQT . Expression (3.5) can be formulated in the form of a

standard penalized regression problem:

Lλ(γ) =
∥∥[QT ⊗ LT

]
vec(γ)− vec(L−1AQ−T )

∥∥2

2
+ λ ‖vec(γ)‖1 , (3.7)
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with “covariates” QT⊗LT , “data” L−1AQ−T , and regression coefficients γ (see

Appendix 1.2 for details). Accordingly, (3.7) can be optimized using existing

software such as the lars R package of Efron et al. [2004a] and still yield

sparse solutions.

The lars formulation of the utility function provides fast computation

as well as flexibility. For example, suppose we wish to always include certain

(potentially different) predictors in each SUR equation. This can be easily

achieved by removing the `1 penalty on the relevant components of vec(γ)

(since γ represents the dependence structure between the responses and pre-

dictors) by zeroing the appropriate penalty parameters λ.

3.2.2.1 What if only a subset of predictors are random?

Building on the previous derivation, we consider a scenario where some

predictors are known, or fixed, and the remainder are random. This may occur

when one would like to condition on a particular value of a predictor at some

fixed future value. In this case, an expected utility function can be derived in

a similar manner to the random predictors case.

Let the covariates X be divided into two pieces, those that are consid-

ered random: Xr ∈ Rpr , and those that are considered fixed: Xf ∈ Rpf , so

that the column vector X = [XT
r X

T
f ]T ∈ Rp and p = pr+pf . So, future values

of the covariates are given by X̃ = [X̃T
r X

T
f ]T .

Conditioning on the fixed covariates, the distribution of unknowns is:

p(Ỹ , X̃r,Θ|Xf ) where Θ is a vector of parameters from a specified model. If
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we assume conditional independence, then we can write:

p(Ỹ , X̃r,Θ|Xf ) = p(Ỹ |X̃r, Xf ,Θ)p(X̃r|Xf ,Θ)p(Θ|Xf ).

where, as before, p(Θ|Xf ) is the posterior distribution of model parameters

conditional on the fixed covariates. Following step 1 of the methodology, any

models may be chosen for the conditional Y |Xr, Xf and the marginal Xr|Xf .

For example, in the case of X following a multivariate normal distribution

implied by a latent factor regression model, we automatically know the condi-

tionals including Xr|Xf .

Define the following block structure for the action, γ:

γ =
[
γr γf

]
,

so that γr ∈ Rq×pr and γf ∈ Rq×pf . We expand out (3.4) and drop terms that

don’t involve the action γ:

Lλ(Ỹ , X̃,Θ,γ) =
1

2

(
X̃T
r γ

T
r ΩγrX̃r +XT

f γ
T
f ΩγfXf − 2X̃T

r γ
T
r ΩỸ − 2XT

f γ
T
f ΩỸ

)
+ λ ‖vec(γ)‖1 + constant.

Taking expectations over p(Ỹ , X̃r,Θ|Xf ) and dropping the one-half and con-

stant, we obtain the integrated loss function:

Lλ(γ) =E
[
tr[γTr ΩγrX̃rX̃

T
r ]
]
− 2E

[
tr[γTr ΩỸ X̃T

r ]
]

+ E
[
tr[γTf ΩγfXfX

T
f ]
]

− 2E
[
tr[γTf ΩỸ XT

f ]
]

+ λ ‖vec(γ)‖1 .
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We simplify the expectations in a similar way to our derivation of the original

loss function presented at the beginning of Section (3.2.2).

Lλ(γ) =tr[MγrSrγ
T
r ]− 2tr[Arγ

T
r ] + tr[MγfSfγ

T
f ]− 2tr[Afγ

T
f ]

+ λ ‖vec(γ)‖1 ,

where:

Ar ≡ E[ΩỸ X̃T
r ], Af ≡ E[ΩỸ X̃T

f ]

Sr ≡ E[X̃rX̃
T
r ], Sf = XfX

T
f

M ≡ Ω

Combining the matrix traces, we simplify the loss function as follows:

Lλ(γ) = tr[MγṠγT ]− 2tr[ȦγT ] + λ ‖vec(γ)‖1 ,

where:

Ṡ ≡
[
Sr 0
0 Sf

]
, Ȧ ≡

[
Ar
Af

]
.

This form is analogous to the loss function derived when all predictors are

assumed random, now for a case when fixed and random predictors are present.

This can similarly be formulated into a penalized regression problem. The full

derivation of the lasso form of this problem is presented in Appendix (1.2).
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The effect on step 3 of assuming only a subset of predictors are random

is intuitive. Less statistical uncertainty will propagate into the ∆λ metric, and

the algorithm will favor denser graphs. This will be shown in the results section

where we study two extremes: all random predictors and all fixed predictors.

3.2.3 Sparsity-utility trade-off plots

Rather than attempting to determine an “optimal” value of λ, we advo-

cate displaying plots that reflect the utility attenuation due to λ-induced spar-

sification. We define the “loss gap” between a λ-sparse solution, L(Ỹ , X̃,Θ,γ∗λ),

and the optimal unpenalized (non-sparse, λ = 0) summary, L(Ỹ , X̃,Θ,γ∗) as

∆λ = L(Ỹ , X̃,Θ,γ∗λ)− L(Ỹ , X̃,Θ,γ∗).

As a function of (Ỹ , X̃,Θ), ∆λ is itself a random variable which we can sample

by obtaining posterior draws from p(Ỹ , X̃,Θ | Y,X). The posterior distri-

bution(s) of ∆λ (for various λ) therefore reflects the deterioration in utility

attributable to “sparsification”. Plotting these distributions as a function of

λ allows one to visualize this trade-off. Specifically, πλ ≡ Pr(∆λ < 0 | Y,X)

is the (posterior) probability that the λ-sparse summary is no worse than the

non-sparse summary. Using this framework, a useful heuristic for obtaining

a single sparse summary is to report the sparsest model (associated with the

highest λ) such that πλ is higher than some pre-determined threshold, κ; we

adopt this approach in our application section.

We propose summarizing the posterior distribution of ∆λ via two types

of plots. First, one can examine posterior means and credible intervals of ∆λ
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for a sequence of models indexed by λ. Similarly, one can plot πλ across the

same sequence of models. Also, for a fixed value of λ, one can produce graphs

where nodes represent predictor variables and response variables and an edge

is drawn between nodes whenever the corresponding element of γ∗λ is non-zero.

All three types of plots are exhibited in Section (3.4).

3.2.4 Relation to previous methods

Loss function (3.7) is similar in form to the univariate DSS (decoupled

shrinkage and selection) strategy developed by Hahn and Carvalho [2015]. Our

approach generalizes Hahn and Carvalho [2015] by optimizing over the matrix

γ ∈ Rqxp rather than a single vector of regression coefficients, extending the

sparse summary utility approach to seemingly unrelated regression models

[Brown et al., 1998, Wang, 2010]. Additionally, the present method considers

random predictors, X̃, whereas Hahn and Carvalho [2015] considered only a

matrix of fixed design points. The impact of accounting for random predictors

on the posterior summary variable selection procedure is examined in more

detail in the application section.

To the best of our knowledge, the most comparable method for analyz-

ing sparse linear covariance structures are the SUR models described in Wang

[2010], which utilize independent point-mass priors for each element of β. Our

method differs from this approach for the following reasons. A sparse SUR

model provides posterior draws of the coefficient matrix β, but as in the sim-

pler linear regression case described in Hahn and Carvalho [2015], obtaining
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a sparse summary is non-trivial. Two common approaches for extracting a

summary from posterior draws of a sparse SUR model are either to report a

maximum a posteriori estimate (MAP) or to hard-threshold posterior inclusion

probabilities of matrix components of β describing the model sparsity pattern.

Neither approach is fully satisfactory; the MAP estimate is not well-motivated

if the goal is future prediction and approaches based on thresholding the edge

inclusion probabilities fail to take into account co-dependence between individ-

ual edges coming in and out of the model together. By contrast, our method

begins with a principled loss function; by focusing on the expected log-density

of future predictions, our approach synthesizes information from all model

parameters simultaneously in gauging how important they are for prediction.

A comprehensive simulation comparing inclusion probability thresholding and

our approach is presented in Section (3.3).

3.3 Simulation study

In this section, we present a simulation study to compare our posterior

model selection summary to that of the median (posterior) probability model

(using the model of Wang [2010]) for a fixed data generating process (DGP).

This comparison is not meant to demonstrate the superiority of one method

over the other, but rather to highlight that the two methods can give quite

distinct summaries. More specifically, we observe that the median probability

model (MPM) can differ substantially from our penalized utility summary

when the predictor variables are highly correlated.
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The data generating process is the following two equation seemingly

unrelated regression model:

X ∼ N(0,Σsim

x ),

Y |X ∼ N(βTsimX,Ψ
sim),

(3.8)

where:

Σsim

x =


1 0 0.9 0 0
0 1 0 0.8 −0.3

0.9 0 1 0 0
0 0.8 0 1 0
0 −0.3 0 0 1

 , βsim =


1 1
1 0
0 1
0 1
0 0

 , Ψsim =

[
1 0.5

0.5 1

]

Figure (3.1) graphically depicts the association structure encoded by

βsim. In words, Y1 is related to {X1, X2} and Y2 is related to {X1, X3, X4}.

Estimation of βsim is complicated by the large positive correlation between

{X1, X3} and {X2, X4} and negative correlation between {X2, X5}, as well as

the non-diagonality of the residual variance Ψsim. We simulate 500 data sets,

each with 50 samples of (Y,X).
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Figure 3.1: Graphical representation of the true graph defined by the coeffi-
cient matrix βsim.

As outlined in Section (3.2), the first step of our analysis consists of

fitting a Bayesian model. We fit model (3.1) using a multivariate version of

the priors presented in George and McCulloch [1993] and similar to Brown

et al. [1998] and Wang [2010]. Specifically, we use conjugate normal g-priors

on the regression coefficients and choose the g parameter by an empirical

Bayes procedure. The marginal distribution of the predictors is modeled via a

Gaussian latent factor model. Details for all models and fitting algorithms are

given in Appendix 1.1. Note that this is one of many such priors a researcher

may choose.

Figures (3.2) displays an example solution path for one of the data sets
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that selected the true model. The left axis is on the utility scale and shows

the ∆λ metric for decreasing penalty parameters λ. The right axis show the

probability that the sparsified model is no worse than the saturated model πλ.

Posterior summary variable selection correctly identified the true model in 258

out of 500 simulated data sets at a 20% posterior uncertainty interval. Notice

that the true model has a considerable jump in utility and πλ on the left plot

in Figures (3.2). In addition, the true model is contained in 400 out of the

500 posterior summary variable solution paths. This implies that our utility

chooses the true model as the best 5-edge graph out of all possible graphs of

equal size in 90% of the simulated data sets.
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Figures 3.2: (left) Example of evaluation of ∆λ and πλ along the solution path
for one of the simulated data sets where the true graph was correctly selected.
Uncertainty bands are 20% posterior intervals on the ∆λ metric. The large
black dot and associated dashed line represent the graph selected and shown
on the right. (right) The most selected graph for simulated data. This is the
true graph given by βsim and was selected for 258 out of the 500 simulated data
sets and is present in 400 out of 500 posterior summary solution paths. The
responses and predictors are colored in gray and white, respectively. Edges
represent nonzero components of the optimal action, γ.

Next, we compare these results to a related method, based on the

model of Wang [2010], which extends the stochastic search variable selection of

George and McCulloch [1993] to seemingly unrelated regression models. Their

model allows for sparsity in the β matrix and provides an inclusion probabil-

ity for each entry in the matrix representing an edge in the graph. Details of

the specific priors used may be found in Wang [2010]. Although this model

uses point-mass priors and produces posterior samples across various sparse
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regressions, the most common posterior summary, the (arithmetical) mean,

generally produces non-sparse summaries. By contrast, among widely used

summaries, the median probability model does provide a sparse point sum-

mary. In Barbieri and Berger [2004], the median probability model is shown

to be optimal under squared error prediction loss, as long as the predictor

variables are mutually orthogonal. In practice, the median probability model

is defined as the model containing all and only those variables with marginal

inclusion probabilities greater than 1/2, whether or not the orthogonality con-

dition is satisfied.

covariate

response X1 X2 X3 X4 X5

Y1 0.8540 0.9588 0.1381 0.0335 0.0039

Y2 0.5511 0.0467 0.5779 0.9492 0.0097

Table 3.1: Average edge inclusion probabilities for the β matrix across the 500
simulated data sets.

Table (3.1) shows the average edge inclusion probabilities for the β

matrix across the 500 simulated data sets. Edge {Y1, X3} was slightly sampled

less than others, but the correlation in the predictors prohibits the inference

from accurately ruling this out completely. The strong dependence between

{X1, X3} effects the inconclusive sampling of edges {Y2, X1} and {Y2, X3} as

well – often when one edge is sampled, the other is excluded. Overall, the

inclusion probabilities vary widely depending on the simulated data set.

Figures (3.3) depicts the most common MPMs across the 500 data sets.
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The left graph was selected in 181 out of the 500 simulated data sets, and the

right graph was selected in 149 out of the 500 data sets. The true graph shown

in Figure (3.1) was only selected in 55 out of the 500 data sets.

Y1

Y2

X1

X2

X4

Y1

Y2

X1

X2

X3

X4

Figures 3.3: The two most frequently appearing median probability models
from the sparse SUR inference on each of the 500 simulated data sets. The
left graph was selected in 181 out of the 500 simulated data sets, and the right
graph was selected in 149 out of the 500 data sets.

To obtain a sense of how dissimilar the MPM summary can be com-

pared to our approach, we tally how often the MPM appears in the posterior

summary solution path displayed in, for example, the left side of Figures (3.2).

A selected graph depends on the posterior uncertainty interval of ∆λ; where a

larger interval leads to sparser graphs. Therefore, if the MPM is contained in

the solution path, it is a desirable model under our utility function modulo a

degree of statistical uncertainty. We find that the MPM is contained in only
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241 out of the 500 posterior summary solution paths. In other words, in 259

out of 500 solution paths, our utility function prefers a different model over

the MPM of equal size (where size is measured by number of of edges). Of

the 241 occasions that they coincided, 55 of those recovered the true struc-

ture. We speculate that the difference between the two approach is largely

due to strong correlation between predictors X1 and X3; our utility function

explicitly considers this structure whereas the MPM formulation does not. In

a similar simulation study with orthogonal predictors, the MPM recovers the

true sparse structure in 488 out of 500 simulated data sets.

3.4 Applications

In this section, the sparse posterior summary method is applied to a

data set from the finance (asset pricing) literature. A key component of our

analysis will be a comparison between the posterior summaries obtained when

the predictors are drawn at random versus when they are assumed fixed.

The response variables are returns on 25 tradable portfolios and our

predictor variables are returns on 10 other portfolios thought to be of theo-

retical importance. In the asset pricing literature [Ross, 1976], the response

portfolios represent assets to be priced (so-called test assets) and the predic-

tor portfolios represent distinct sources of variation (so-called risk factors).

More specifically, the test assets Y represent trading strategies based on com-

pany size (total value of stock shares) and book-to-market (the ratio of the

company’s accounting valuation to its size); see Fama and French [1992] and
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Fama and French [2015] for details. Roughly, these assets serve as a lower-

dimensional proxy for the stock market. The risk factors are also portfolios,

but ones which are thought to represent distinct sources of risk. What consti-

tutes a distinct source of risk is widely debated, and many such factors have

been proposed in the literature [Cochrane, 2011]. Moreover, finding a small

subset of factors (even from these 10) is useful for a finance researcher by

providing ease of interpretation. If 3 factors are good enough predictively and

easier for the finance researcher to grasp mentally, then this dimension reduc-

tion is useful; even in this moderately sized problem. We use monthly data

from July 1963 through February 2015, obtained from Ken French’s website:

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/.

Our analysis investigates which subset of risk factors are most relevant

(as defined by our utility function). As our initial candidates, we consider

factors known in previous literature as: market, size, value, direct profitabil-

ity, investment, momentum, short term reversal, long term reversal, betting

against beta, and quality minus junk. Each factor is constructed by cross-

sectionally sorting stocks by various characteristics of a company and forming

linear combinations based on these sorts. For example, the value factor is con-

structed using the book-to-market ratio of a company. A high ratio indicates

the company’s stock is a “value stock” while a low ratio leads to a “growth

stock” assessment. Essentially, the value factor is a portfolio built by going

long stocks with high book-to-market ratio and shorting stocks with low book-

to-market ratio. For detailed definitions of the first five factors, see Fama and
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French [2015]. In the figures to follow, each is labeled as, for example, “Size2

BM3,” to denote the portfolio buying stocks in the second quintile of size and

the third quintile of book-to-market ratio.

Recent related work includes Ericsson and Karlsson [2004] and Harvey

and Liu [2015]. Ericsson and Karlsson [2004] follow a Bayesian model selec-

tion approach based off of inclusion probabilities, representing the preliminary

inference step of our methodology. Harvey and Liu [2015] take a different

approach that utilizes multiple hypothesis testing and bootstrapping.

3.4.1 Results

As outlined in Section (3.2.1), the first step of our analysis consists of

fitting a Bayesian model. We fit model (3.1) using a multivariate version of

the priors presented in George and McCulloch [1993] and similar to Brown

et al. [1998] and Wang [2010]. Specifically, we use conjugate normal g-priors

on the regression coefficients and choose the g parameter by an empirical

Bayes procedure. The marginal distribution of the predictors are modeled via

a Gaussian latent factor model. Note that this is one of many such priors a

researcher may choose. The advantage of posterior summary variable selection

is that any reasonable statistical model for the joint (Y,X) may be chosen.

Recalling the block structure for the covariance of the full joint distri-

bution of (Y,X) from expression (4.6) we obtain posterior samples of Σ by

sampling the conditional model parameters using a matrix-variate stochastic

search algorithm (described below) and sampling the covariance of X from a
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latent factor model where it is marginally normally distributed. To reiterate

our procedure is

• Σx is sampled from independent latent factor model,

• β is sampled from matrix-variate MCMC,

• Ψ is sampled from matrix-variate MCMC.

The conditional model for Y |X also includes the sampling of an indi-

cator variable α that records if a given variable is non-zero (included in the

model). In our simulation and application results, we fix α to the identity

vector. This is done to emphasize that even when dense models are sampled

in the inference step, our procedure has the ability to select a sparse set of

predictors. Details of the model fitting algorithm may be found in Appendix

(1.1).

In the subsections to follow, we will show a panel consisting of two

figures. First, we plot the expectation of ∆λ (and associated posterior credible

interval) across a range of λ penalties. Recall, ∆λ is the “loss gap” between a

sparse summary and the best non-sparse (saturated) summary, meaning that

smaller values are “better”. Additionally, we plot the probability that a given

model is no worse than the saturated model πλ on this same figure, where

“no worse” means ∆λ < 0. Note that even for very weak penalties (small λ),

the distribution of ∆λ will have non-zero variance and therefore even if it is
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centered about zero, some mass can be expected to fall above zero; practically,

this means that πλ > 0.5 is a very high score.

Second, we display a summary graph of the selected variables for the

κ = 12.5% threshold. Recall that this is the highest penalty (sparsest graph)

that is no worse than the saturated model with 12.5% posterior probability.

For these graphs, the response and predictor variables are colored gray and

white, respectively. A test asset label of, for example, “Size2 BM3,” denotes

the portfolio that buys stocks in the second quintile of size and the third

quintile of book-to-market ratio. The predictors without connections to the

responses under the optimal graph are not displayed.

These panels of two figures are shown in two scenarios:

1. Random predictors.

2. Fixed predictors.

3.4.1.1 Random predictors

This section introduces our baseline example where the risk factors

(predictors) are random. We evaluate the set of potential models by analyzing

plots such as the left plot in Figures (3.4). This shows ∆λ and πλ evaluated

across a range of λ values. Additionally, we display the posterior uncertainty

in the ∆λ metric with gray vertical uncertainty bands; these are the centered

P% posterior credible intervals where κ = (1 − P )/2. As the accuracy of

the sparsified solution increases, the posterior of ∆λ concentrates around zero
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by construction, and the probability of the model being no worse than the

saturated model, πλ, increases. We choose the sparsest model such that its

corresponding πλ > κ = 12.5%. This model is displayed on the right in Figures

(3.4) – also referred to as the “graphical summary”.

The selected set of factors are the market (Mkt.RF), value (HML), and

size (SMB). This three factor model is no worse than the saturated model

with 12.5% posterior probability where all test assets are connected to all

risk factors. Note also that in our selected model almost every test asset is

distinctly tied to one of either value or size and the market factor. These are

the three factors of Ken French and Eugene Fama’s pricing model developed in

Fama and French [1992]. They are known throughout the finance community

as being “fundamental dimensions” of the financial market, and our procedure

is consistent with this widely held belief at a small κ level.
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Figures 3.4: (left) Evaluation of ∆λ and πλ along the solution path for the 25
size/value portfolios modeled by the 10 factors. An analyst may use this plot to
select a particular model. Uncertainty bands are 75% posterior intervals on the
∆λ metric. The large black dot and associated dashed line represents the model
selected and shown on the right. (right) The selected model for 25 size/value
portfolios modeled by the 10 factors. The responses and predictors are colored
in gray and white, respectively. Edges represent nonzero components of the
optimal action, γ.

The characteristics of the test assets in the selected graph from Figure

(3.4) are also important to highlight. The test portfolios that invest in small

companies (“Size1” and “Size2”) are primarily connected to the SMB factor

which is designed as a proxy for the risk of small companies. Similarly, the test

portfolios that invest in high book-to-market companies (“BM4” and “BM5”)

have connections to the HML factor which is built on the idea that compa-

nies whose book value exceeds the market’s perceived value should generate

a distinct source of risk. As previously noted, all of the test portfolios are
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connected to the market factor suggesting that it is a relevant predictor even

for the sparse κ = 12.5% selection criterion.

In Figure (3.5), we examine how different choices of the κ threshold

change the selected set of risk factors. In this analysis, there is a trade-off

between the posterior probability of being “close” to the saturated model and

the utility’s preference for sparsity. When the threshold is low (κ = 2 and

12.5%) the summarization procedure selects relatively sparse graphs with up

to three factors (Mkt.RF, HML, and SMB). The market (Mkt.RF) and size

(SMB) factors appear first, connected to a small number of the test assets

(κ = 2%). As the threshold is increased, the point summary becomes denser

and correspondingly more predictively accurate (as measured by the utility

function). The value factor (HML) enters at κ = 12.5% and quality minus

junk (QMJ), investment (CMA), and profitability (RMW) factors enter at

κ = 32.5%. The graph for κ = 32.5% excluding QMJ is essentially the new

five factor model proposed by Fama and French [2015]. The five Fama-French

factors (plus OMJ, BAB and LTR with a small number of connections) persist

up to the κ = 47.5% threshold. This indicates that, up to a high posterior

probability, the five factor model of Fama and French [2015] does no worse

than an asset pricing model with all ten factors connected to all test assets.
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Figure 3.5: Sequence of selected models for varying threshold level κ under
the assumption of random predictors.

Notice also that our summarization procedure displays the specific re-

lationship between the factors and test assets through the connections. Using

this approach, the analyst is able to identify which predictors drive variation

in which responses and at what thresholds they may be relevant. This feature

is significant for summarization problems where individual characteristics of

the test portfolios and their joint dependence on the risk factors may be a

priori unclear.
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As κ approaches the 50% threshold (κ = 47.5% in Figure (3.5), the

model summary includes eight of ten factors. Requesting a summary with this

level of certainty results in little sparsification. However, an additional con-

tribution of a factor results in minor increases in out utility. Sparse posterior

summarization applied in this context allows an analyst to study the impact

of risk factors on pricing while taking uncertainty into account. Coming to

a similar conclusion via common alternative techniques (e.g., component-wise

ordinary least squares combined with thresholding by t-statistics) is compar-

atively ad hoc; our method is simply a perspicuous summary of a posterior

distribution. Likewise, applying sparse regression techniques based on `1 pe-

nalized likelihood methods would not take into account the residual correlation

Ψ, nor would that approach naturally accommodate random predictors.

3.4.1.2 Fixed predictors

In this section, we consider posterior summarization with the loss func-

tion derived under the assumption of fixed predictors. The analogous loss

function when the predictor matrix is fixed at pre specified points X is:

Lλ(γ) =
∥∥[QT

f ⊗ LT
]
vec(γ)− vec(L−1AfQ

−T
f )
∥∥2

2
+ λ ‖vec(γ)‖1 , (3.9)

with QfQ
T
f = XTX, Af = E[ΩỸ

T
X], and M = Ω = LLT ; compare to (3.6)

and (3.7). The derivation of (3.9) is similar to the presentation in Section (3.2)

and may be found in Appendix (1.3).
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Figures 3.6: (left) Evaluation of ∆λ and πλ along the solution path for the
25 size/value portfolios modeled by the 10 factors under the assumption of
fixed predictors. An analyst may use this plot to select a particular model.
Uncertainty bands are 75% posterior intervals on the ∆λ metric. The large
black dot and associated dashed line represents the model selected and shown
on the right. (right) The selected model for 25 size/value portfolios modeled
by the 10 factors. The responses and predictors are colored in gray and white,
respectively. Edges represent nonzero components of the optimal action, γ.

The corresponding version of the loss gap is

∆λ = L(Ỹ,X,Θ,γ∗λ)− L(Ỹ,X,Θ,γ∗).

which has distribution induced by the posterior over (Ỹ,Θ) rather than (Ỹ , X̃,Θ)

as before. By fixing X, the posterior of ∆λ has smaller dispersion which re-

sults in denser summaries for the same level of κ. For example, compare how

dense the graph in Figures (3.4) is relative to the graph in Figures (3.6). The

denser graph in Figures (3.6) contains all ten potential risk factors compared
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to just three in Figures (3.4), which correspond to the Fama-French factors

described in Fama and French [1992]. Recall that both graphs represent the

sparsest model such that the probability of being no worse than the saturated

model is greater than κ = 12.5% — the difference is that one of the graphs de-

fines “worse-than” in terms of a fixed set of risk factor returns while the other

acknowledges that those returns are themselves uncertain in future periods.

Figure (3.7) demonstrates this problem for several choices of the un-

certainty level. Regardless of the uncertainty level chosen, the selected models

contain most (if not all) of the ten factors and many edges. In fact, it is

difficult to distinguish even the κ = 2% and κ = 47.5% models.
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Figure 3.7: Sequence of selected models for varying threshold level κ under
the assumption of fixed predictors.

3.5 Discussion

In this chapter, we propose a model selection summary for multivariate

linear models when future realizations of the predictors are unknown. Such

models are widely used in many areas of science and economics, including

genetics and asset pricing. Our utility-based sparse posterior summary pro-

cedure is a multivariate extension of the “decoupling shrinkage and selection”

methodology of Hahn and Carvalho [2015]. The approach we develop has three
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steps: (i) fit a Bayesian model, (ii) specify a utility function with a sparsity-

inducing penalty term and optimize its expectation, and (iii) graphically sum-

marize the posterior impact (in terms of utility) of the sparsity penalty. Our

utility function is based on the kernel of the conditional distribution responses

given the predictors and can be formulated as a tractable convex program. We

demonstrate how our procedure may be used in asset pricing under a variety

of modeling choices.

The remainder of this discussion takes a step back from the specifics

of the seemingly unrelated regressions model and considers a broader role for

utility-based posterior summaries.

A paradox of applied Bayesian analysis is that posterior distributions

based on relatively intuitive models like the SUR model are often just as

complicated as the data itself. For Bayesian analysis to become a routine tool

for practical inquiry, methods for summarizing posterior distributions must

be developed apace with the models themselves. A natural starting point

for developing such methods is decision theory, which suggests developing loss

functions specifically geared towards practical posterior summary. As a matter

of practical data analysis, articulating an apt loss function has been sorely

neglected relative to the effort typically lavished on the model specification

stage, specifically prior specification. Ironically (but not surprisingly) our

application demonstrates that one’s utility function has a dominant effect on

the posterior summaries obtained relative to which prior distribution is used.

This chapter makes two contributions to this area of “utility design”.
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First, we propose that the likelihood function has a role to play in posterior

summary apart from its role in inference. That is, one of the great practical

virtues of likelihood-based statistics is that the likelihood serves to summarize

the data by way of the corresponding point estimates. By using the log-density

as our utility function applied to future data, we revive the fundamental sum-

marizing role of the likelihood. Additionally, note that this approach allows

three distinct roles for parameters. First, all parameters of the model appear

in defining the posterior predictive distribution. Second, some parameters ap-

pear in defining the loss function; Ψ plays this role in our analysis. Third, some

parameters define the action space. In this framework there are no “nuisance”

parameters that vanish from the estimator as soon as a marginal posterior is

obtained. Once the likelihood-based utility is specified, it is a natural next step

to consider augmenting the utility to enforce particular features of the desired

point summary. For example, our analysis above was based on a utility that

explicitly rewards sparsity of the resulting summary. A traditional instance of

this idea is the definition of high posterior density regions, which are defined

as the shortest, contiguous interval that contains a prescribed fraction of the

posterior mass.

Our second contribution is to consider not just one, but a range, of

utility functions and to examine the posterior distributions of the correspond-

ing posterior loss. Specifically, we compare the utility of a sparsified summary

to the utility of the optimal non-sparse summary. Interestingly, these utilities

are random variables themselves (defined by the posterior distribution) and
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examining their distributions provides a fundamentally Bayesian way to mea-

sure the extent to which the sparsity preference is driving one’s conclusions.

The idea of comparing a hypothetical continuum of decision-makers based on

the posterior distribution of their respective utilities represents a principled

Bayesian approach to exploratory data analysis. This is an area of ongoing

research.

3.6 Ongoing work in asset return modeling

Another exciting area of work in asset return modeling is related to the

unpublished manuscript Carvalho et al. [2018]. In this paper, the goal is to

model asset returns at time t as a function of firm level characteristics at time

t − 1 (such as the book-to-market or market capitalization of a firm). Thus,

the framework here requires a predictive regression. Letting Rit be the excess

return of firm i at time t and Xit−1 a vector of characteristics at time t − 1,

our goal is to describe the conditional expectation function (CEF):

E[Rit | Xit−1]. (3.10)

It has been common practice in the finance literature to study pre-

dictors of returns in one of two ways: (i) A predictive linear regression for

modeling the cross section of observed returns and firms characteristics or (ii)

Portfolio sorts on firm characteristics. The former implies that the relationship

between firm characteristics and returns are linear and stationary. The latter

is analogous to “building factors” on characteristics (and estimating step func-
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tions for the CEF) like those explored in the seemingly unrelated regression

work above. Both approaches have shortcomings.

In the regression approach, recent research suggests that relationships

between returns and firm characteristics should be nonlinear and time-varying.

See Freyberger et al. [2017] for a recent finance paper exploring these ideas.

Equally complicating is the existence of many observed characteristics. Which

characteristics matter for the purposes of explaining returns, and during what

time periods are they relevant?

In the portfolio sorting approach, the large dimensionality of the “char-

acteristic space” poses a challenge. To understand this, we briefly describe

portfolio sorts. A portfolio sort involves organizing firms by characteristics

and examining the returns of firms in a given quantile. It is often used to

build explanatory factors of returns based on a given firm characteristic. Pro-

totypical examples of factors are the size and value factors unveiled in Fama

and French [1992]. Both of these factors are portfolios formed from companies

after sorting them along the dimension of interest; for size sorting is done on

market capitalization and for value sorting is done on book-to-market. The

sorting is accomplished with characteristic information up to time t − 1, and

then the firm returns in, for example, each quintile or decile may be exam-

ined. The factors themselves are constructed by forming long-short portfolios

of firms in the lowest and highest quantiles (i.e. the size factor buys low market

cap firms and sells high market cap firms). As discussed in Freyberger et al.

[2017], these sorts correspond to estimating the conditional mean function of
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returns as a step function. In a loose sense, sorting is a special case of nonpara-

metric regression. Additionally, we often see a monotonic relationship between

characteristics and returns when a sort is done. See Cattaneo et al. [2018] for

a nice connection between portfolio sorting and nonparametric estimation.

Suppose we have ten characteristics (Xit−1 ∈ R10) and would like to sort

stocks jointly into quintile portfolios across these characteristics to understand

returns at time t. This would involve constructing 510 = 9, 765, 625 distinct

portfolios which is larger than the observed number of stocks at any time in

the US stock market. More problematic, sorting offers little guidance as to

which characteristics are truly relevant to returns. See Fama and French [2015]

for a discussion of the drawbacks of portfolio sorting in the context of building

their five factor model.

Our goal is to build a regression model to describe E[Rit | Xit−1] that:

1. Models nonlinear relationships between characteristics and returns.

2. Incorporates shrinkage to bias away from irrelevant characteristics.

3. Imposes model structure through monotonicity across characteristic di-

mensions.

With these features in mind, our model will combine the attractive nonpara-

metric elements of portfolio sorting and structure imposed by traditional re-

gression techniques.
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3.6.1 Previous literature

This research is motivated by the work of Freyberger et al. [2017].

They develop an additive quadratic spline model on 36 characteristics, and

they eliminate weaker characteristics using techniques similar to the LASSO

regression of Tibshirani [1996]. Their developments are important because

splines allow them to infer a nonlinear return surface, and penalized regression

manages complexity as more characteristics are added.

We agree with the sentiment of Freyberger et al. [2017], but the flexi-

bility of their modeling approach violates a priori beliefs gathered from asset

pricing theory that most characteristics have a monotonic relationship with

returns. Our approach will incorporate monotonic structure at the character-

istic level if it is supported by existing finance theory or empirical evidence.

Additionally, we allow for time variation in our model while Freyberger et al.

[2017] can only incorporate dynamics through rolling window estimation.

Shively et al. [2009] develop of model for smooth, monotonic, quadratic

splines. Using carefully designed priors, their model can remove spline knots

if the data suggests they are irrelevant. In other words, if the true relationship

between the response and a covariate is linear, the coefficients associated with

all quadratic knots should be shrunk toward zero in this model. Therefore,

we can specify a more-than-sufficient number of knots and the model will

correct our choice. We model time variation by merging Shively’s monotonic

spline model with McCarthy et al. [2016] who provide a general method for

discounting by power weighting the likelihood density. Other papers related
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to dynamic functional estimation include Kowal et al. [2017].

We are especially interested in knowing which firm characteristics *mat-

ter* for returns at each point in time. In order to do this, we adapt the de-

coupling shrinkage and selection methodology set out in Hahn and Carvalho

[2015] and developed for applications in Puelz et al. [2016, 2017, 2018] to our

monotonic, quadratic spline model. The upcoming section discusses the model

and some preliminary results.

3.6.2 A nonlinear, monotonic conditional expectation function

We assume expected returns are equal to the sum of quadratic splines

of firm characteristics. Therefore, our additive model is:

E[Rit | Xit−1] = αt +
K∑
k=1

fkt(xki,t−1) (3.11)

where Rit is the time t return for firm i, and αt is the intercept term for time

t. Xit−1 = (x1i,t−1, . . . , xKi,t−1) is a K length vector of firm i’s characteristics

at time t − 1, where each characteristic is individually ranked across firms,

resulting in xki,t−1 ∈ [0, 1]. Defining nt as the number of firm observations at

time t, we can write the formula for the ranked characteristics as xki,t−1 =

rankk,t−1(characteristicki,t−1)

nt+1
. The resulting characteristic is the empirical quantile

of firm i’s kth characteristic at the beginning of time t. This is the approach of

Freyberger et al. [2017] and closely follows portfolio sorting methods. However,

inputting the characteristic quantiles leads to interpretation of the intercept in

Model (3.11) as the expected return for the “perfectly minimum” firm along all
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quantile dimensions. This interpretation is unmotivated, and the parameter

may be difficult to learn since there is little or no data at the extremes of

characteristics in the cross section. Therefore, we make a novel adjustment by

instead defining:

xki,t−1 =
rankk,t−1(characteristicki,t−1)

nt + 1
− 0.5. (3.12)

This shift by 0.5 results in xki,t−1 ∈ [−0.5, 0.5], and the intercept is interpreted

as the expected return for the “perfectly median” firm, that is, a firm that has

the median value across all characteristics.

We now describe the structure of the spline model. Letting fkt be the

quadratic spline for characteristic k at time t, we drop the kt subscripts for

clarity. For a given series of m̀ nonpositive knots (x̀m̀ < ... < x̀1 < 0) and ḿ

nonnegative knots (0 < x́1 < ... < x́ḿ), we set

f(x) =β1x

+ β2(x)2
− + β3(x− x̀1)2

− + ...+ βm̀+2(x− x̀m̀)2
−

+ βm̀+3(x)2
+ + βm̀+4(x− x́1)2

+ + ...+ βm̀+ḿ+3(x− x́ḿ)2
+

where the (y)+ = max(0, y) and (y)− = min(0, y). This can be abbreviated as

fkt(x) = XT
k βkt (3.13)

where Xk is the carefully constructed quadratic spline basis.

We create these splines to be nondecreasing (without loss of general-

ity) using the ideas of Shively et al. [2009], Section 3, though we have both
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positive and negative knots (they limit x ∈ [0, 1]). By definition, the spline is

monotonic nondecreasing if the first derivative is nonnegative for all x:

f ′(x) ≥ 0. (3.14)

This yields m̀+ ḿ+ 3 conditions to satisfy:

0 ≤ f ′(−0.5) = β1 + 2β2(−0.5) + 2β3(−0.5− x̀1) + ...+ 2βm̀+2(−0.5− x̀m̀)

0 ≤ f ′(x̀m̀) = β1 + 2β2(x̀m̀) + 2β3(x̀m̀ − x̀1) + ...+ 2βm̀+1(x̀m̀ − x̀m̀−1)

...

0 ≤ f ′(x̀2) = β1 + 2β2(x̀2) + 2β3(x̀2 − x̀1)

0 ≤ f ′(x̀1) = β1 + 2β2(x̀1)

0 ≤ f ′(0) = β1

0 ≤ f ′(x́1) = β1 + 2βm̀+3(x́1)

0 ≤ f ′(x́2) = β1 + 2βm̀+3(x́2) + 2βm̀+4(x́2 − x́1)

...

0 ≤ f ′(x́ḿ) = β1 + 2βm̀+3(x́ḿ) + 2βm̀+4(x́ḿ − x́1) + ...+ 2βm̀+ḿ+2(x́ḿ − x́ḿ−1)

0 ≤ f ′(0.5) = β1 + 2βm̀+3(0.5) + 2βm̀+4(0.5− x́1) + ...+ 2βm̀+ḿ+3(0.5− x́ḿ)

which can be vectorized into a lower triangular matrix L multiplied by the

coefficient vector β. Reintroducing the kt subscripts, these nonnegativity con-

straints for each characteristic k at time t may be written as:

0 ≤ Lβkt = γkt (3.15)
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where we don’t include a subscript kt on L since each characteristic k is given

the same knots spanning the unit interval in our method. Moreover, we see

that L acts as a projection matrix, projecting our more complicated constraints

on βkt to the simple nonnegative constraints on γkt. Hence

fkt(x) = XT
k βkt

= XT
kL−1Lβkt

= XT
kL−1γkt

= wTk γkt

where wTk = XT
kL−1 is now our modified spline basis. Overloading time and

firm subscripts and superscripts on wTk above, we write Equation (3.11) as:

E[Rit | Xit−1] = αt +
K∑
k=1

wiTkt−1γkt. (3.16)

Here, information about the lagged characteristics Xit−1 are incorporated into

wikt−1. Note that this modeling approach allows one to specify individually

the monotonicity of each covariate (characteristic) through the design of L.

Additionally, an analyst may decide to not specify monotonicity constraints. In

this case, a small modification is made to the sampler, described in subsequent

sections.

3.6.3 The model

With Equation (3.16) introduced, the model may be written as:

Rit = αt +
K∑
k=1

wiTkt−1γkt + εit, εit ∼ N(0, σ2
t ). (3.17)
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We introduce an indicator variable that determines whether or not the

regression coefficients are nonzero. Since these coefficients correspond to knots

in the spline basis, this structure allows the model to select the proper knots

for the splines. Formally, let j denote the vector index for the jth knot. Let

Ijkt = 1 indicate that γjkt > 0 and Ijkt = 0 indicate that γjkt = 0. Thus, Ijkt

is a Bernoulli random variable with prior probability P (Ijkt = 1) = pjkt. This

leads us to the conditional prior on γjkt:

(γjkt|Ijkt = 1, ·) ∼ N+(0, ckσ
2
t ). (3.18)

This setup permits the data to select the knots for the splines. By

over-specifying the number of potential knots, the data will inform the model

as to which should be included (Ijkt = 1) or not (Ijkt = 0).

Following Shively et al. [2009], we place uninformative priors on α ∼

N(0, 1010) and σ2 ∼ U(0, 103) as well as set pjkt = 0.2, ∀j, k, t. In summary,

the fully specified model for the vector of nt firm returns Rt is:

Rt ∼ N
(
αt1nt + Xt−1βt, σ

2
t Int
)
,

with Xt−1βt = Wt−1γt

αt ∼ N(0, 1010)

σ2
t ∼ U(0, 103)

(γjkt|Ijkt = 1) ∼ N+(0, ckσ
2
t )

(γjkt|Ijkt = 0) = 0

Ijkt ∼ Bn(pjkt = 0.2)
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where Xt−1βt = Xt−1diagK(L)−1diagK(L)βt = Wt−1γt. Note that diagK(L)

is a block diagonal matrix of size K(m̀+ḿ+3)×K(m̀+ḿ+3) where each lower

triangular block is the projection matrix L. Also, Xt−1 is matrix of size nt ×

K(m̀+ḿ+3) and βt is vector of sizeK(m̀+ḿ+3). Therefore, each firm is given

a row in Xt−1, and each m̀+ḿ+3 block of βt corresponds to the coefficients on

the spline basis for a particular characteristic, k. Incorporating the intercept

directly into the characteristic matrix, we can write the generating model

compactly as:

Rt ∼ N
(
Xt−1Bt, σ

2
t Int
)

(3.19)

where

Xt−1 =
[
1nt Xt−1

]
Bt =

[
αt βt

] (3.20)

3.6.4 Time dynamics

Let Θt be our model parameters at time t. To allow the model’s param-

eters over time, we use the power-weighted likelihood approach of McCarthy

et al. [2016]. Their approach provides the ability to evolve parameters over

time without specifying an explicit evolution equation. For δt ∈ [0, 1], such

that δ1 ≤ δ2 ≤ ... ≤ δτ , the likelihood at time τ ∈ {1, ..., T} discounts the im-

pact of past data. Therefore the power-weighted density posterior distribution

of the parameter vector at time τ is written as follows:

p(Θτ | R1:τ ) ∝ p(Θτ )
τ∏
t=1

p(rt|Θτ )
δt . (3.21)
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We choose values of δt that are exponentially decreasing in time δt = δt for

some fixed value δ ∈ [0, 1]. McCarthy et al. [2016] discuss how this fixed δ may

be chosen to maximize the one-step ahead predictive likelihood of observed

data. As a first step, we consider a range of δ’s. In the following subsection,

we derive a Gibbs sampler used to explore the joint posterior.

3.6.5 Parameter sampling

To sample all parameters at time τ ∈ {1, ..., T}, iterate through the

following, conditional upon the most recent draws of other parameters:

ατ | · ∼ N

 V

σ2

τ∑
t=1

δt1
T
nt [Rt −Wt−1γt] , V =

[
1

σ2

τ∑
t=1

δtnt +
1

1010

]−1


σ2
τ | · ∼ IG(a, b)

Ijkτ | · ∼ Bn(p∗jkτ )

γjkτ | · ∼

{
0 if Ijkt = 0

N+

(
Vjkτ

∑τ
t=1 δtE

T
jktwjkt, σ2Vjkτ

)
if Ijkt = 1

where:

a =

[
1

2

(
τ∑
t=1

ntδt +
m+2∑
j=1

K∑
k=1

Ijk

)
− 1

]
,

b =
1

2

[
τ∑
t=1

δt (Rt − ατ1nt −Wt−1γt)
T (′′) + ck

−1γTt γt

]
.
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for j = 1, ...,m+ 2 and k = 1, ..., K:

Ejkt = Rt − α1nt − [Wt−1γt]−jk and Vjkτ =

(
τ∑
t=1

δtw
T
jktwjkt + c−1

k

)−1

p∗jkτ =
ρ1ρ2

ρ1ρ2 + (1− pjkt)

ρ1 = 2pjktc
− 1

2
k V

1
2
jkτexp

− 1

2σ2

−Vjkτ ( τ∑
t=1

δtE
T
jktwjkt

)2
 ,

ρ2 = 1− Φ

(
0

∣∣∣∣∣Vjkτ
τ∑
t=1

δtE
T
jktwjkt, σ

2Vjkτ

)
.

The current draw for γjkτ assumes that the conditional expectation

function is monotone increasing with respect to characteristic k. Monotone

decreasing can be enforced by drawing from the negative half of the truncated

normal, and constraints are removed by drawing from the “full” version of the

normal distribution specified in the γjkτ draw.

3.6.6 Motivating examples

In this section, we present simulated examples to demonstrate the

methodology. We will focus on the benefits of certain features of the model,

including monotonic constraints and the ability to model dynamics using a

power-weighted density approach.

3.6.6.1 Why monotonicity?

The answer to this question harkens back to the the first chapter of

this thesis which discussed the bias-variance tradeoff. A function with more
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flexibility may be able to weave through the observed data more effectively,

but this increased freedom comes at a price, and the price is increased variance.

Figure (3.8) displays this empirically. Here, we use our methodology

on a single set of data. The true function is given by the dotted line. It is

a parabola for a portion of the x-space, and the remainder of the function

is a cubic. Gaussian noise is added to this function and 200 data points are

generated and given by the gray dots.
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Figure 3.8: Comparison of quadratic spline fit (left) and monotonic quadratic
spline fit (right) along with posterior means (black line) and individual MCMC
draws (gray lines). The true function is given by the dotted black line.

The left graph displays the estimated function in black as well as draws

from the sampler in the gray lines and 95% posterior credible interval around
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the estimated function (which is the posterior mean). It is a quadratic spline

fit when no monotonicity is enforced. The right graph displays the estimated

function with monotonicity enforced.

Notice how the credible intervals are wider when monotonicity is not

enforced (left) compared with a monotonicity constraint (right). This is espe-

cially pronounced in high noise, low signal estimation tasks like those encoun-

tered in finance. The quadratic spline fit is influenced by noise in the data.

The benefits of introducing bias via the monotonicity constraint are clear –

increased model structure allows the sampled and estimated functions to be

“better behaved”, and the result is inference with lower variance estimates.

Since finance theory often predicts the direction of monotonicity for a firm

characteristic on expected return, it is beneficial to utilize this information in

our methodology.

How does the estimation methodology work on actual finance data?

Figure (3.9) shows a function fit to “momentum” and excess return monthly

data. Momentum is calculated as the cumulative return of a firm from the past

12 months through 2 months prior to month t. Jegadeesh and Titman [1993]

famously documented that “past winners” (firms that do well in the past) tend

to outperform in the future and “past losers” (firms that historically have low

returns) tend to underperform in the future. Thus, we enforce increasing

monotonicity in the momentum characteristic. The power-weighted density

approach is used, and the data begins in January 1965. The function estimate

has been smoothed over 157 months of data, but most weight is given to data in
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the estimation month: January 1978. Notice the drastic difference in credible

intervals between the quadratic spline and monotonic quadratic spline fits.

Since previous empirical work tells us that past winners have higher future

returns than past losers, applying this constraint during inference results in

a much lower variance estimate and identification of the return-characteristic

relationship.
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Figure 3.9: Comparison of quadratic spline fit (left) and monotonic quadratic
spline fit (right) along with posterior means (black line) and individual MCMC
draws (gray lines). This is based on monthly momentum and excess return
data. Shown is the function fit for January 1978.
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3.6.6.2 Why time dynamics?

A second feature of the methodology is the ability to estimate nonlinear,

monotonic functions that are dynamic. This is important in a finance context

because we would like to determine which characteristics are relevant to returns

at different points in time. Our goal is to incorporate sensible time dynamics

while maintaining interpretability and model structure.

Figure (3.10) demonstrates our methodology utilitizing power-weighted

density for dynamics [McCarthy et al., 2016] versus a commonly used alter-

native – updating the historical average. The figure considers a true function

that is a parabola flattening over 11 time periods to a line f(x) = 0. At each

time period, 100 data points are generated from each of these functions with

the addition of Gaussian noise.

The more faded data and lines correspond to functions and samples

(respectively) that are further back in time. We show the function estimates

and draws for a historical average estimate (dotted black line) and a power-

weighted density estimate (solid black line) at time 11. The historical average

estimate treats each new cross sectional data sample equivalent in terms of

weighting, and the estimated function is markedly bias towards earlier data

generated from the higher curvature parabolas. The historical average estimate

is achieved by setting the density discount parameter δ = 1. Another issue

with this approach is that future observed data has an increasingly diminished

effect on the function estimate.
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Figure 3.10: This figure demonstrates the dynamic estimation approach of the
model. The true generating function is a parabola ax2 that flattens over 11
time points (a starts at 10 and increments to 0). All 11 true parabolas are
shown by the gray lines that fade to white for functions further back in time.
Gaussian noise is added to the true functions, and 100 points are generated
for each of the 11 time periods – each cross sectional sample is also shown by
the gray dots that fade to white for data further back in time. Displayed are
two monotonic function estimations at time point 11: (i) Historical average
given by the dotted line, and (ii) Power-weighted density estimation given by
the solid line.

In contrast, the power-weighted density estimate differentially weights

the likelihood based on when the data is observed. Past data receives smaller
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weight than more recent data, and the effect is a flatter function estimate at

time 11. Additionally, time dynamics of future function estimates are ensured

since the strictly largest weight will always be given to the most recently

observed data.

In Figure (3.11), we use monthly financial data to show the dynamics

of the CEF when modeled by the momentum characteristic. The left figure

displays the function estimate for January 1978 (also shown in Figure (3.9)),

and the right figure displays the estimate at January 2014. These dates were

chosen before and after the concept of momentum appeared in the finance

literature around 1980. Comparing these estimates provides evidence that

the “momentum effect” – where past winners continue to win and past losers

continue to lose – may be diminishing over time!
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Figure 3.11: Comparison of January 1978 fit (left) and January 2014 fit (right)
along with posterior means (black line) and individual MCMC draws (gray
lines). This is based on monthly momentum and excess return data.

3.6.7 Utility-based selection of characteristics

We conclude this section by discussing future work that will incorpo-

rate utility-based selection into the proposed methodology. A key practical

question in finance is which firm characteristics are necessary for return pre-

diction. In our application, we will consider a recent version of the data used

in Freyberger et al. [2017] which includes 36 firm characteristics in the cross

section of returns. By fitting our monotonic quadratic spline model on all 36

characteristics at every point in time, we obtain posterior draws of model pa-

rameters from a relatively complex posterior distribution. This posterior can
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be parsimoniously summarized using the procedure described below.

Recall the compactly written version of our model:

Rt ∼ N
(
Xt−1Bt, σ

2
t Int
)

(3.22)

where

Xt−1 =
[
1nt Xt−1

]
Bt =

[
αt βt.

] (3.23)

Xt−1 is an nt×K(m̀+ḿ+3) matrix representing the spline basis with K char-

acteristics and m̀+ ḿ+ 3 basis vectors for each characteristic. It is structured

so that the first m̀+ ḿ+ 3 columns correspond to the basis for characteristic

1, the next m̀+ ḿ+ 3 for characteristic 2, and so forth. Thus, βt is a stacked

K(m̀+ ḿ+ 3) length vector whose coefficients are organized in the same way:

The kth m̀ + ḿ + 3 sub-vector corresponds to coefficients on characteristic

k’s spline basis. With the model specified, we walk through the primitives

and procedure of utility-based selection. The methodology here is conditional

on the observed characteristic values Xt−1, so we will see that the approach is

very similar to Hahn and Carvalho [2015], now applied to monotonic quadratic

splines.

First, we specify the log density of Regression (3.22) as our utility

function.

Lλt(R̃t,At,Θt) =
1

2
(R̃t − Xt−1At)

T (R̃t − Xt−1At) (3.24)

where R̃t is future return data at time t, Θt is a vector of model parameters, and

At is the “action” to be taken by the data analyst. This action is intended to
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represent a sparse summary of the regression vector Bt. In order to encourage

sparsity in At, we include an additional penalty function Φ with parameter

λt:

Lλt(R̃t,At,Θt) =
1

2
(R̃t − Xt−1At)

T (R̃t − Xt−1At) + Φ(λt,At). (3.25)

The second step of the selection methodology is to integrate the loss func-

tion over all uncertainty given by the joint distribution of asset returns and

model parameters, conditioned on observed data: p(R̃t,Θt | Rt) = p(R̃t |

Θt,Rt)p(Θt | Rt). We do this integration in two steps, first over R̃t | Θt and

second over Θt:

Lλt(At) = EΘtER̃t|Θt

[
1

2
(R̃t − Xt−1At)

T (R̃t − Xt−1At) + Φ(λt,At)

]
= EΘtER̃t|Θt

[
1

2
(R̃

T

t R̃t − 2R̃
T

t Xt−1At + AT
t XT

t−1Xt−1At)

]
+ Φ(λt,At)

∝ EΘt

[
2ER̃t|Θt [R̃

T

t ]TXt−1At + AT
t XT

t−1Xt−1At

]
+ Φ(λt,At) + constants

= EΘt

[
2BT

t XT
t−1Xt−1At

]
+ AT

t XT
t−1Xt−1At + Φ(λt,At) + constants

= 2B
T

t XT
t−1Xt−1At + AT

t XT
t−1Xt−1At + Φ(λt,At) + constants.

(3.26)

In the third line, we drop the one-half and collect all terms not involving

the action At into “constants.” After integrating over the joint distribution of

returns and parameters, we notice that the posterior mean of the coefficients

appears in the first term, while the expectations pass over the second and third

terms.

We complete the square and drop constants to obtain the final form of
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the integrated loss function:

Lλt(At) =
∥∥Xt−1At − Xt−1Bt

∥∥2

2
+ Φ(λt,At) (3.27)

For a fixed time t, Loss (3.27) is exactly the same as the one derived for linear

regression models in Hahn and Carvalho [2015]. The third and final step is to

choose a penalty function Φ and optimize the loss function for a range of λt

for each time t. This is an area of ongoing development.

One interesting choice is Φ(λt,At) = λt
∑K

k=1

∥∥Ak
t

∥∥2

2
where Ak

t is the

kth m̀ + ḿ + 3 block of the vector At after neglecting the intercept. The

group lasso algorithm of Yuan and Lin [2006] can then be used to mini-

mize the integrated loss. A similar alternative is the sparse group lasso dis-

cussed in Simon et al. [2013] where an `1 norm is added: Φ(λ1t, λ2t,At) =

λ1t

∑K
k=1

∥∥Ak
t

∥∥2

2
+ λ2t ‖At‖1. Both optimization approaches are useful for our

methodology. They provide a clear way to undertake variable selection in

spline models while taking uncertainty in future data and model parameters

into account.

In order to see this, recall the structure of the sparse action At. It is a

K(m̀+ ḿ+ 3) + 1 length vector where the kth m̀+ ḿ+ 3 block (excluding the

intercept) corresponds to the spline basis for firm characterstic k. By using

the approach outlined in Yuan and Lin [2006] or Simon et al. [2013], we can

group together the spline bases for each characteristic. Then, Loss (3.27) is

minimized for varying penalty parameter choices. We are then able to look

at a range of monotonic quadratic spline models built from one characteristic
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up to the 36 characteristics available. Analogous to the SUR model selection

and portfolio selection work discussed in previous chapters, these models are

optimal under our choice of utility and fixed level of regularization given by the

penalty parameter, and we can compare them in light of predictive uncertainty.

An important feature of this approach is the ability to identify impor-

tant return predictors and how this set may vary over time. The time variation

and connection across time periods is driven by the power-weighted density

approach and embedded in the posterior. Therefore, although the minimiza-

tion of the integrated loss is performed myopically at each point in time, the

variation of optimal sparse models across time may be studied.

As a final example, we revisit our monthly finance data and model

the CEF with 36 firm characteristics. In Figure (3.12), we show the partial

function fits for each of the characteristics including the intercept. We enforce

monotonicity on each individual characteristic if there is finance theory or

empirics that suggest a monotonic relationship with expected return.

These partial relationships are fascinating to study from a finance per-

spective since they provide information about the relationship between each

characteristic and expected return conditional on all other characteristics. No-

tice that some characteristics are flat and thus have a negligible relationship

with return – c, rna, roa, roe, and free cf – while others have substantial rela-

tionships, including beme (book-to-market) and lme (market capitalization).

We will use utility-based selection at this stage to select which characteristics

have the most influence on the CEF while taking predictive uncertainty into
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account.

Figure 3.12: Partial function estimates for the CEF modeled with 36 firm
characteristics. The intercept is plotted as a black horizontal line in each
subgraph. Posterior means are shown in black and individual MCMC draws
are shown in gray. This is based on monthly data from January 1965 to
January 1978.
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Chapter 4

Regularization and Confounding in Linear

Regression for Treatment Effect Estimation

Some analysis and text in this chapter follows Hahn et al. [2018a]. We

will reintroduce the main ideas described in that paper and discuss ongoing

research.

4.1 Introduction

While the previous chapters focused on regularization and its purpose

within a formal model selection setting, this chapter considers its use as solely

a shrinkage/bias inducing technology. Specifically, we are interested in regular-

ization’s role in treatment effect estimation with observational (and potentially

clustered) data.

A treatment effect – the amount a response variable would change if

a treatment variable were changed by one unit – is appropriately estimated

only when all other confounding variables are taken into account. Confound-

ing variables are given such a name because they explain a portion of the

correlation between the treatment and response variables; effectively masking

(confounding) the true relationship the data analyst wishes to measure. The
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models considered in this chapter specify a linear relationship between the

response Yi, and the treatment and covariates Zi and Xi respectively:

Yi = αZi + XT
i β + νi. (4.1)

For notation, let letters denote vectors, boldfaced letters denote matrices, and

italicized letters denote scalars. Let β be a p-length vector of coefficient pa-

rameters, and α be the scalar treatment effect parameter. The errors ν are

normally distributed with zero mean and unknown variance. In observational

studies, there may be many covariates, i.e.: p may be large. For example, cor-

porate finance studies often involve observations that are firms and covariates

that are firm characteristics taken from financial statements. The relationship

of interest may be the effect of a firm’s cash flow (Zi) on its debt-to-equity

ratio (Yi), and there are a plethora of firm characteristics one can include as

part of Xi. Although including all covariates may mitigate bias in the esti-

mate for α, this is at the expense of increased variance of the estimator for

α. Practically, interval lengths of the treatment effect for this naive approach

will be large, and discovering statistical significance will be difficult.

One solution to the “many covariate” problem is to hand-select a subset

of variables from Xi to control for in Model (4.1) and toss out the remaining

covariates. Leamer [1983] describes how this procedure is an unsatisfyingly

ad-hoc reaction to a practical data analysis issue. After hand-selecting covari-

ates, how does the analyst truly know if all information from Xi is taken into

account? This chapter provides a solution to this problem using statistical
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regularization. Specifically, we propose using information from marginal like-

lihoods to narrow down our potentially large list of covariates. The aim is to

replace an ad-hoc selection approach with one that is informed by the data,

and our desire is to appeal to a broad base of researchers estimating linear

treatment effects from observational data.

Exploring the use of regularization in treatment effect estimation and

providing a procedure was the main contribution of Hahn et al. [2018a]. We

extend these ideas to an empirical-Bayes setting and where model errors may

be dependent across clusters of data. The forthcoming sections are speculative,

but compare this new approach to Hahn et al. [2018a] and discuss areas of

future work.

4.1.1 Previous literature

Treatment effect estimation is an important topic with a deep literature

base. This work focuses on one slice: The use of Bayesian regularized regres-

sion models for effect estimation. Li and Tobias [2014] and Heckman et al.

[2014] provide review articles of Bayesian approaches to this problem. Care-

ful attention will be given to the impact of regularization on the estimation

of treatment effects and new ways for characterizing the estimates’ standard

errors.

Hahn et al. [2018a] contributed to the small but growing literature

on Bayesian approaches to treatment effect estimation via linear regression

with many potential controls. They proposed a conceptual and computational
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refinement of ideas first explored in Wang et al. [2012], where Bayesian ad-

justment for confounding is addressed via hierarchical priors. Their method

can be seen as an alternative to Wang et al. [2012], with certain conceptual

and computational advantages, namely ease of prior specification and poste-

rior sampling. Other related papers include Wang et al. [2015], Lefebvre et al.

[2014] and Talbot et al. [2015]; see also Jacobi et al. [2016]. Zigler and Do-

minici [2014] and An [2010] focus on Bayesian propensity score models (for

use with binary treatment variables). Wilson and Reich [2014] takes a deci-

sion theoretic approach to variable selection of controls. Again, each of these

previous approaches cast the problem as one of selecting appropriate controls;

posterior treatment effect estimates are obtained via model averaging. Here,

we argue that if the goal is estimation of a certain regression parameter (cor-

responding to the treatment effect, provided the model is correctly specified),

then questions about which specific variables are necessary controls is a means

to an end rather than an end in itself. Other recent papers looking at regu-

larized regression for treatment effect estimation include Ertefaie et al. [2015]

and Ghosh et al. [2015], but even here the focus is on variable selection via

the use of 1-norm penalties on the regression coefficients.

There are several books dealing with the broader topic of causal in-

ference, including Imbens and Rubin [2015], Morgan and Winship [2014], and

Angrist and Pischke [2008]. Similar to Wang et al. [2012] where there is a focus

on the joint modeling of the treatment and response variables as a function

of covariates, the following papers have approached the problem similarly:
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Rosenbaum and Rubin [1983], Robins et al. [1992], and McCandless et al.

[2009].

Equally important and vast is the literature dealing with clustered in-

ference. We defer this literature review to a final section on the application of

our approach to the clustered data setting.

4.2 Regularization-induced confounding

What happens when regularization is naively used in treatment effect

estimation? In this section, we illustrate this important phenomena, referred

to as “regularization-induced confounding” (RIC). Hahn et al. [2018a] and

Hahn et al. [2017] provide intuition for this issue within Bayesian linear re-

gression and heterogenous treatment effect estimation using random forests,

respectively. We recapitulate their exposition here since RIC is a central is-

sue of this chapter. It is expected that regularization will introduce bias in

coefficient estimates from a regression. What is not obvious is that bias will

still exist in an unregularized treatment effect estimate if the treatment and

covariates are correlated. For illustration, suppose regularization is introduced

via a ridge penalty over parameters. A similar theoretical demonstration of

RIC is presented in Hahn et al. [2017].

Returning to Model (4.1):

Yi = αZi + XT
i β + νi,

the overall goal is to properly estimate the treatment effect α. We assume
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that the error term is mean zero Gaussian and a ridge estimator is placed on

the regression coefficients. Define observed data as X̃ = (Z X) and consider a

ridge matrix M. Following the seminal work of Hoerl and Kennard [1970], the

ridge estimator for coefficients θ =
(
α βT

)T
is θ̂ridge = (M + X̃

T
X̃)−1X̃

T
Y =

(Ip+1−(M+X̃
T
X̃)−1M)θ̂ where θ̂ = (X̃

T
X̃)−1X̃

T
Y is the maximum likelihood

estimator for θ. Taking expectation of the ridge estimator yields E[θ̂ridge] =

(Ip+1− (M + X̃
T
X̃)−1M)θ, so we have the bias as the second term within the

parentheses:

bias(θ̂ridge) = −(M + X̃
T
X̃)−1Mθ (4.2)

Consider a diagonal ridge matrix that leaves the treatment effect unregularized

M =

[
0 0
0 λIp

]
. Using this ridge matrix and the block inversion formula for

(M + X̃
T
X̃)−1, the bias for the treatment effect may be expressed as:

bias(α̂ridge) = −(ZTZ)−1ZTX
(
XTX + λIp −XT X̂Z

)−1

λβ (4.3)

where (ZTZ)−1ZTX is a p-length vector of coefficients from p univariate regres-

sions of each Xj on Z and X̂Z = Z(ZTZ)−1ZTX are the predicted values from

these regressions. For all λ > 0, we see that Equation (4.3) will be nonzero;

especially in the case when the Xj’s are correlated with the treatment Z (con-

founding exists). Also pointed out by Hahn et al. [2018a], the treatment effect

bias is not a function of the true treatment α, but instead the unknown (and

likely nonzero) coefficient vector β. Of course, the OLS estimate of α is ob-

tained when λ = 0, in which case the estimator is unbiased. In sum, Equation
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(4.3) analytically highlights the issue of bias in the treatment effect estimate

should a practitioner choose to regularize a linear treatment effect model.

4.2.1 Mitigating regularization-induced confounding

How can we avoid RIC in treatment effect estimation from observational

data? We will describe two approaches: (i) Controlling for the propensity of Z,

and (ii) Replacing the treatment with a proxy for random treatment variation

excluding X. Both of these approaches require the addition of an equation to

Model (4.1) that accounts for the relationship between Z and X:

Selection equation: Zi = XT
i γ + εi, εi ∼ N(0, σ2

ε )

Response equation: Yi = αZi + XT
i β + νi, νi ∼ N(0, σ2

ν),
(4.4)

thereby learning about confounding through the parameter γ. The first is

called the selection equation since it determines which Xi’s should be “se-

lected” for controls, and the second is the original response equation. First,

we briefly show how including an estimate of the propensity function from the

selection equation: Ẑ ≈ Xγ̂ can mitigate bias from RIC. Suppose we augment

our covariates with predicted values for the treatment X̂new =
(

Z Ẑ X
)

. Ef-

fectively, we are including information about the predictable variation in the

treatment described by the original controls X. Using the same calculations

to arrive at Equation (4.3) now unpenalizing the coefficients associated with

both Z and Ẑ, the bias of the treatment effect can be written as:

bias(α̂ridge) = −{(Z̃T Z̃)−1Z̃
T
X}1

(
XTX + λIp −XT X̂Z

)−1

λβ (4.5)
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where Z̃ =
(

Z Ẑ
)

and {·}1 corresponds to the top row of the matrix {·}.

{(Z̃T Z̃)−1Z̃
T
X}1 are the coefficients on Z in the two variable regressions of

each Xi on
(

Z Ẑ
)

. Since the propensity estimate Ẑ accounts for variation

in Z due to the controls, the coefficient on Z in these univariate regressions

is approximately zero which renders the bias of the treatment effect close to

zero. This feature will be illustrated in simulations to follow.

Hahn et al. [2018a] discuss a reparameterization of Model (4.6) that

allows for regularization via Bayesian shrinkage priors in both equations while

mitigating RIC – an alternative to controlling for the propensity of Z. The

following parameter transformation α
β + αγ
γ

→
α
βd
βc


results in a new formulation of Model (4.6):

Selection equation: Zi = XT
i βc + εi, εi ∼ N(0, σ2

ε )

Response equation: Yi = α(Zi − XT
i βc) + XT

i βd + νi, νi ∼ N(0, σ2
ν).

(4.6)

Conveniently, βc and βd nicely separate the roles covariates play in treatment

effect estimation. A covariate Xij that is distinctly predictive of the response

will have βdj 6= 0 and βcj = 0. As common in medicine, this covariate may

also be called prognostic. Alternatively, the covariate may be a confounder, in

which case βcj 6= 0, βdj 6= 0. This formulation provides an intuitive interpreta-

tion of the treatment effect. The selection equation provides the variation of

the treatment excluding X (εi = Zi − XT
i βc) that is then used to infer α. In
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other words, the residual εi may be thought of as a “randomized experiment”

that we then use to infer the treatment effect.

Examining the bias of the treatment effect under a ridge matrix that

leaves the treatment effect unregularized (M =

[
0 0
0 λIp

]
) yields:

bias(α̂ridge) = −(RTR)−1RTX
(
XTX + λIp −XT X̂Z

)−1

λβd (4.7)

where R = Z−Xβc. Further, (RTR)−1RTX will be close to the zero vector since

Ri = Zi − XT
i βc is independent of Xi. In this case, the treatment likelihood

given by the selection equation is crucial in providing information on βc and

thus Ri.

4.3 Regularization using the marginal likelihood

What remains to be discussed is how an analyst should choose the level

of regularization. In the ridge regression case, this would amount to choos-

ing two λ’s for ridge priors on the coefficients in the treatment and response

models shown in Model (4.6). Hahn et al. [2018a] approach this in a Bayesian

regression context by regularizing using a variant of the horseshoe prior on the

regression coefficients from Carvalho et al. [2010b]:

π(βj) ∝
1

v
log

(
1 +

4

(βj/v)2

)
,

π(v) ∼ C+(0, 1),

(4.8)

where v is a global scale parameter common across all elements j = 1, . . . p,

and C+(0, 1) denotes a folded standard Cauchy distribution. Such priors have
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proven empirically to be a fine default choice for regression coefficients: they

lack hyperparameters, forcefully separate strong from weak predictors, and

exhibit robust predictive performance.

In contrast to Hahn et al. [2018a] choice of priors, we consider using

ridge regression to regularize and computationally effective ways to choose

the ridge parameter (amount of regularization). With the treatment effect

estimate under a ridge prior available in closed form, we will choose the level

regularization (in both the treatment and response models) by maximizing

marginal likelihoods. To characterize uncertainty, we will use bootstrapping.

As a result, our method allows for nonparametric calculation of standard errors

for treatment effects when the data is assumed clustered.

4.3.1 Marginal likelihood

In this section, we show how to compute the marginal likelihood of data

given a ridge prior. Suppose we have the regression model:

Y = Xβ + ε, ε ∼ N(0, σ2In),

β, σ2 ∼ NIG(0,V, a, b),
(4.9)

where we place a conjugate normal-inverse-gamma prior on the parameters.

Let the posterior distribution of parameters be defined as β, σ2 | Y ∼ NIG(β,V, a, b).

The marginal likelihood may be expressed as a ratio of the posterior and prior

normalizing constants multiplied by non-kernel likelihood constants:

p(Y) =
|V|1/2baΓ(a)

|V|1/2baΓ(a)

1

πn/2
. (4.10)
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The posterior mean of the coefficients is β = VXTY where V = (V−1 +

XTX)−1. We can see how the marginal likelihood may be written in the form

of (4.10) by considering the expression for p(Y) directly:

p(Y) =

∫
p(Y | β, σ2)p(β | σ2)p(σ2)dβdσ2. (4.11)

Let k∗ and C∗ denote the kernel and non-kernel constants for distribution ∗,

respectively. Also, let Z∗ denote the normalizing constant for distribution

∗. Factoring the pdfs in (4.11) into the kernel and non-kernel constants, we

obtain:

p(Y) =

∫
CY|β,σ2kY|β,σ2Cβ|σ2kβ|σ2Cσ2kσ2dβdσ2. (4.12)

Since p(β | σ2) and p(σ2) are distributions over parameters, the non-kernel con-

stants correspond to the reciprocal of their respective normalizing constants.

Also,
∫
kY|β,σ2kβ|σ2kσ2dβdσ2. is the normalizing constant for the posterior den-

sity Zβ,σ2|Y = Zβ|σ2,YZσ2|Y, so we have:

p(Y) = CY|β,σ2Cβ|σ2Cσ2

∫
kY|β,σ2kβ|σ2kσ2dβdσ2.

= CY|β,σ2Cβ|σ2Cσ2Zβ|σ2,YZσ2|Y

= CY|β,σ2

Zβ|σ2,YZσ2|Y

Zβ|σ2Zσ2

.

(4.13)

Therefore, the marginal likelihood of the data may be written in terms of the

non-kernel constants of the likelihood multiplied by the ratio of the posterior

and prior normalizing constants.
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4.3.2 Expressing the marginal likelihood using the SVD

Is there a way to make expression (4.10) easier to compute? We consider

a singular value decomposition of X and its effect on Model (4.9) and Marginal

likelihood (4.10). Decompose X = UDWT such that U ∈ Rn×n and W ∈

Rp×p are orthonormal and whose columns are the eigenvectors of XXT and

XTX, respectively. D ∈ Rn×p is a diagonal matrix whose diagonal elements

(d1, . . . , dq), q = min(n, p), are the square-rooted nonzero eigenvalues of XTX

and XXT . Let Z = UD = XW. Defining the first q columns of W as W(q) =

W(1:q), with φ ∈ Rq×1, we define W(q)φ = β. We also keep the q columns of

Z that are associated with the q nonzero eigenvalues by defining Z(q) = Z(1:q).

The likelihood may be written as Y ∼ N(Z(q)φ = XW(q)φ, σ
2In). The OLS

estimated regression coefficients on the rotated data space are then given by

φ̂ = (ZT
(q)Z(q))

−1ZT
(q)Y = diag(d2

1, . . . , d
2
q)
−1ZT

(q)Y. We put a Gaussian (ridge)

prior on parameters of the rotated data space:

φ, σ2 ∼ NIG(0, λ−1Iq, a, b) (4.14)

which implies a prior for β, σ2 ∼ NIG(0,W(q)λ
−1IqWT

(q), a, b) = NIG(0, λ−1Ip, a, b).

Consideration of the prior on the rotated data model allows for easier com-

putation of the marginal likelihood of the response data Y. Effectively, both

priors on φ and β are diagonal ridge priors with a regularization parameter

given by λ. Our goal in the following section will be to present a fast way to

calibrate λ.
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4.3.3 Empirical Bayes calibration of the ridge prior

The Marginal likelihood (4.10) may be written on the rotated data

space.

p(Y) =
|Vφ|1/2baΓ(a)

|Vφ|1/2baΓ(a)

1

πn/2
(4.15)

where V
φ

and Vφ are the posterior and prior variance parameters. Expression

(4.15) follows the general form of the marginal likelihood (4.13) expressed

above. The prior variance is defined in (4.14) as Vφ = λ−1Iq. Under the

rotated data likelihood Y ∼ N(Z(q)φ = XW(q)φ, σ
2In) and joint Prior (4.14),

the joint posterior distribution may be written as:

φ, σ2 ∼ NIG(φλ,V
φ
, a, bλ) (4.16)

with marginal likelihood relevant parameters:

V
φ

= diag(λ+ d2
1, . . . , λ+ d2

q)
−1

bλ = b+
1

2

(
YTY− Σq

k=1

φ̂2
kd

4
k

λ+ d2
k

)
a = a+ n/2.

(4.17)

We are now able to write out an explicit form for the log marginal likelihood

expressed in (4.15):

log p(Y) = log |Vφ|1/2 − log |Vφ|1/2 + a log b− a log bλ + log Γ(a)− log Γ(a)− n

2
log π.

(4.18)
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Plugging in the relevant quantities from (4.17), we obtain:

log p(Y) =
1

2
Σq
k=1

[
log(λ)− log(λ+ d2

k)
]

+ a log b− a log

[
b+

1

2

(
YTY− Σq

k=1

φ̂2
kd

4
k

λ+ d2
k

)]
+ log Γ(a)− log Γ(a)− n

2
log π.

(4.19)

Dropping terms that don’t involve λ, we obtain a function f(λ) ∝ log p(Y):

f(λ) =
1

2
Σq
k=1

[
log(λ)− log(λ+ d2

k)
]
− a log

[
b+

1

2

(
YTY− Σq

k=1

φ̂2
kd

4
k

λ+ d2
k

)]
(4.20)

Finally, we assume a noninformative prior on σ2: a = b = 0+ where 0+ =

limt↓0 t. This will simplify the function f to:

f(λ) = q log(λ)− Σq
k=1 log(λ+ d2

k)− n log

[
1

2

(
YTY− Σq

k=1

φ̂2
kd

4
k

λ+ d2
k

)]

∝ q log(λ)− Σq
k=1 log(λ+ d2

k)− n log

(
YTY− Σq

k=1

φ̂2
kd

4
k

λ+ d2
k

)
(4.21)

Our goal is to choose λ so that (4.21) is maximized. In practice, we find

that using existing R optimization functions such as optim() work well for

optimizing (4.21). It is particularly fast since a non-negativity bound (λ > 0)

may be placed on the search space.

4.3.4 Regularization for the treatment effect model

In this section, we link the regularization method presented in Section

(4.3) with the two equation treatment effect model in (4.1). We describe the

general procedure and present a simulation study.
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With marginal likelihood (4.21) in hand, we are able to choose an ap-

propriate λ for regularizing a linear regression. Our goal is to apply this

procedure to each of the two regression models for treatment effect estimation

restated below:

Selection equation: Zi = XT
i γ + εi, εi ∼ N(0, σ2

ε )

Response equation: Yi = αZi + XT
i β + νi, νi ∼ N(0, σ2

ν).
(4.22)

Recalling the original setup, Xi is a p-length vector where p is large, i.e., we

have many covariates to control for in each regression. A ridge prior will be

placed on the coefficients γ and β in each regression to regularize these large

vectors. Also, we must be wary of regularization-induced confounding and

mitigate it by including a propensity estimate, so the response equation is

augmented to include this estimate from the first stage selection equation. In

each regularization step, the λ parameters are chosen by the empirical Bayes

approach described above. Specifically, the steps we follow are given below

(all symbols correspond to observed data vectors of the covariates, treatment,

and response):

1. Infer model Z | X with a ridge prior on γ.

2. Extract predicted values Ẑ from step 1.

3. Define X̃ =
[
Z Ẑ X

]
.

4. Infer model Y | X̃ with a flat prior on coefficients for Z and Ẑ and a ridge

prior on coefficients for X. This amounts to augmenting the response

Model (4.22) with the additional “covariate” Ẑ.

5. Extract treatment effect α as coefficient for Z.
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4.3.5 Uncertainty characterization

Point estimates for the treatment effect in a ridge regression model are

given in closed once the regularization parameter is known. For the regression

of Y on Z and X, the ridge estimator for the coefficient vector is similar to

OLS, with the addition of a “ridge matrix” given by M(λ):

θ̂(λ) = (XTX + M(λ))−1XTY. (4.23)

where θ = [α β] is the overall coefficient vector. The ridge matrix is often

taken to be diagonal with the first entry set to zero to leave the treatment

effect estimate (coefficient on Z) unpenalized. The remaining diagonal entries

are set equal to λ. Conditional on a calculated value of λ from on the marginal

likelihood maximization, we can compute a point estimate of the treatment

effect by extracting the first component of β from vector (4.23). In other

words, α̂ = [θ̂(λ)]1 where [·]1 corresponds to the first component of the inputted

vector.

In order to characterize uncertainty and compute a standard error for

our treatment effect estimate, we encapsulate this procedure within a boot-

strap. Bootstrapping is a simple technique for uncertainty characterization in

which observed data is resampled with replacement. For each resample, the

statistic of interest is computed and recorded. The process of resampling and

recording many times builds a sampling distribution from which a standard

error may be computed.
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There are outstanding issues with this current approach. First, the

calculation of λ for the full sample versus individual bootstrap samples will be

materially different. For example, the λ for the full sample may be smaller then

individual bootstrap samples since bootstrap samples have ties and omissions

of observations. Therefore, the bootstrapped treatment effect estimates with

“larger λ’s” are often overshrunk, and the resulting sampling distribution is

not centered around the full sample treatment effect estimate. To combat

this, there are bias-correcting approaches that one can employ, such as those

proposed in Efron [1987]. However, the formulas proposed here rely on the

full sample statistic to be within the sampling domain of the bootstrapped

estimates, which is not always the case for our procedure. In order to compute

properly centered sampling distributions, we compute λ once using the full

sample of data and use this same level of regularization for the bootstrapped

samples as well. Although imprecise since uncertainty in the choice of λ itself

is not taken into account, we will see in the simulated examples that we obtain

close to expected coverage rates with this approach. In the analysis to follow,

we will demonstrate the procedure on simulated data and compare to Hahn

et al. [2018a].

4.4 Hahn et al. [2018a] simulation study

In this section, we demonstrate our procedure on simulated data using

the data generating process from Hahn et al. [2018a].

We recapitulate the design of the simulation here. The simulation de-
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signed to capture a variety of scenarios a data analyst may face. We consider

the relative strengths of the confounding and direct effects as well as the num-

ber of such variables. Specifically, we use the two equation model that is

reparameterized to generate our data. Recall that this reparameterization al-

lows to explicitly control the direct and confounding effects through βd and βc

respectively; making it ideal for generating data to test and understand our

estimation methodology.

Selection equation: Zi = XT
i βc + εi, εi ∼ N(0, σ2

ε )

Response equation: Yi = α(Zi − XT
i βc) + XT

i βd + νi, νi ∼ N(0, σ2
ν).

(4.24)

We set the marginal variance of the treatment and response variables to one,

var(Z) = var(Y ) = 1, and we center and scale the control variables X to have

mean zero and unit variance.

To ensure we consider a range of data compositions, we parametrize

our simulations using an ANOVA style decomposition. Defining the `-2 norms

(squared Euclidean distance) of the confounding and direct effects as ρ2 =

‖βc‖2
2 and φ2 = ‖βd‖2

2, we may decompose the marginal variances as

var(Z) = ρ2 + σ2
ε

var(Y ) = α2(1− ρ2) + φ2 + σ2
ν ,

= κ2 + φ2 + σ2
ν ,

(4.25)

because the control variables are standardized. Fixing the marginal variances

to one implies σ2
ε = 1− ρ2 and σ2

ν = 1− α2(1− ρ2)− φ2. This decomposition

admits the following interpretation: ρ2 is the percentage of the treatment’s
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variance due to confounding (strength of the confounding effect), φ2 is the

percentage of the response variance due to the direct impact of the control

variables on the response (strength of the direct effect), and κ2 := α2(1− ρ2)

is the percentage of the response variance due to quasi-experimental variation

of the treatment variable.

Next, observe that as the confounding becomes stronger (ρ2 getting

larger), the independent variation from which we infer the treatment effect (Z−

Xβc) becomes smaller (1− ρ2). This means that for a fixed level of treatment

effect, α, and a fixed marginal variance, stronger confounding makes treatment

effect inference harder in that the residual variance becomes correspondingly

larger: 1− α2(1− ρ2)− φ2. This makes it more difficult to get a clear picture

of whether or not the confounding per se is making the problem difficult, or

if problems with strong confounding just happen to be more difficult in this

artificial way. To avoid this problem, we fix κ2 := α2(1 − ρ2) to a constant,

and allow α to vary as ρ2 is varied. In this way we can examine the impact

of confounding for a fixed difficulty of inference (as measured by the residual

variance, which is held fixed at 1− κ2 − φ2).

In Hahn et al. [2018a] simulations, they fix a decomposition of the

response variance given in (4.25) and vary the strength of the confounding

effect, ρ2. In the exercise below, we fix ρ2 and consider several other types of

data generating processes. This amounts to specifying values for κ2, φ2, and

σ2
ν that sum to one and considering a value of ρ2 between 0 and 1. Again,

because κ2 = α2(1− ρ2) is fixed, as ρ2 varies, α will vary as well.
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Next, the components of βc and βd must be specified. The nonzero

entries of each identify which Xi’s are confounders, direct effects, and both,

as previously defined. We define the first k elements of X to be confounders,

the next k to be both confounders and direct effects, and the final k elements

to be direct effects. We achieve this in our simulation by setting β1:2k
c to ones

and β
(k+1):3k
d ∼ N(0, 1). These vectors are then rescaled to have magnitudes

ρ2 and φ2, respectively. This sets the overall β vector (β = βd − αβc) to have

3k nonzero entries. (Note that under continuous priors for βc and βd, every

variable is a confounder and no variables are strictly prognostic.)

4.4.1 DGP specifications and simulation results

Let n be the number of observations and p be the number of columns of

X. In our simulations, we consider the following {n, p} pairs: {n = 50, p = 30},

{n = 100, p = 30}, {n = 100, p = 60}, {n = 100, p = 95}, {n = 200, p = 175},

and {n = 300, p = 200}. Additionally, we focus on “strong confounding”

situations, so we set ρ2 = 0.9. Our results for weaker levels of confounding

are similar to Hahn et al. [2018a], so we omit them for brevity. Finally, we

consider the following response variance decompositions: {κ2 = 0.05, φ2 =

0.7, σ2
ν = 0.25} and {κ2 = 0.05, φ2 = 0.05, σ2

ν = 0.9} to mimic low and high

residual noise environments, respectively. In the first scenario, the direct effect

drives 70% of variance in the response while the treatment effect drives 5%. In

the second scenario, the treatment and direct effects are weak while the noise

is strong. In all simulated data sets, k as specified above is set to 3. These

139



two response variance decompositions are shown for the lower dimensional

data sets (n = 50, 100 and p = 30, 60). For the higher dimensional data sets

(n = 100, p = 95, n = 200, p = 175 and n = 300, p = 200), we only show

results for the low noise decomposition (σ2
ν = 0.25). In all DGP scenarios, we

simulate 2000 data sets and display the average of the following metrics for

the treatment effect estimate: Bias, coverage, interval length (I.L.), and mean

squared error (MSE).

In each table, we show five separate estimation methods.

1. New – corresponds to the new methodology detailed in this thesis.

Regularization through ridge regression and penalty parameter selection

through marginal likelihood maximization. Standard errors are com-

puted via bootstrapping.

2. Shrinkage Bayes – corresponds to the Bayesian approach described in

Hahn et al. [2018a] that mitigates RIC using the two equation model

(4.24).

3. Naive Shrinkage Bayes – corresponds to the naive regularization ap-

proach using Bayesian shrinkage priors; also presented in Hahn et al.

[2018a]. In this case, shrinkage is only applied to regression coefficients

in the response model.

4. OLS – ordinary least squares estimation controlling for all covariates.
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5. Oracle OLS – ordinary least squares estimation controlling only for the

3k covariates that are confounders.

Posterior inference for the Shrinkage Bayes and Naive Shrinkage Bayes

follows the methodology of Hahn et al. [2018a], including use of an elliptical

slice sampler for posterior exploration of the regression coefficients. Hahn et al.

[2018b] provides details on the algorithm, and it is easily implemented with

the bayeslm package in R.

Tables (4.1) and (4.2) show results for the variance decompositions

{κ2 = 0.05, φ2 = 0.7, σ2
ν = 0.25} and {κ2 = 0.05, φ2 = 0.05, σ2

ν = 0.9} respec-

tively with {n = 50, p = 30}. This is the smallest data set considered. The

four metrics we evaluate are bias, coverage, interval length (I.L.), and mean

squared error (MSE). First, note the poor performance of the naive shrinkage

Bayes approach. This method is severely biased due to regularization-induced

confounding (RIC) and is the key finding in Hahn et al. [2018a]. Importantly,

the interval for the naive approach is small too, indicating that this approach

is confident about the wrong answer! This small interval length is a result of

the shrinkage prior.

Note the differences and similarities between the new and shrinkage

Bayes approach. These are two methods that mitigate RIC by considering

both the treatment and response likelihoods conditioned on covariates; the

former using ridge priors with the empirical Bayes choice for the regularization

parameter, and the latter using Bayesian shrinkage priors. The interval length
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for the new method is the largest, and is even slightly larger than OLS. The

MSE is lowest for the shrinkage Bayes approach, and the new method does

marginally better than OLS.

Method Bias Coverage I.L. MSE
New 0.003 0.972 1.7249 0.1319
Shrinkage Bayes -0.0667 0.96 1.1595 0.0747
Naive Shrinkage Bayes -0.5338 0.1165 0.4938 0.3216
OLS 0.0046 0.9305 1.4159 0.1394
Oracle OLS 0.0029 0.946 0.9751 0.0614

Table 4.1: n = 50,p = 30,k = 3. κ2 = 0.05. φ2 = 0.7. σ2
ν = 0.25.

Method Bias Coverage I.L. MSE
New 0.0049 0.9305 2.5603 0.4621
Shrinkage Bayes -0.1287 0.9365 1.8524 0.2357
Naive Shrinkage Bayes -0.6218 0.0185 0.2739 0.4323
OLS 0.0022 0.939 2.7212 0.5056
Oracle OLS 0.0062 0.9425 1.8668 0.234

Table 4.2: n = 50,p = 30,k = 3. κ2 = 0.05. φ2 = 0.05. σ2
ν = 0.9.

Tables (4.3), (4.4), (4.5), and (4.6) show results for the four combina-

tions of the variance decompositions {κ2 = 0.05, φ2 = 0.7, σ2
ν = 0.25} and

{κ2 = 0.05, φ2 = 0.05, σ2
ν = 0.9} and data dimensions {n = 100, p = 30} and

{n = 100, p = 60}. The rational for looking at these examples is to determine

the effect of increasing the number of covariates relative to the number of ob-

servations. For the p = 30 scenarios shown in Tables (4.3) and (4.4), the new

approach is essentially the same as OLS and performs ever so slightly worse

than the shrinkage Bayes approach.
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Similar conclusions may be drawn when looking at the p = 60 scenarios

displayed in Tables (4.5) and (4.6). The new approach has gains in interval

length and MSE relative to OLS, but is still inferior to the strong regularization

imposed in the shrinkage Bayes approach.

Method Bias Coverage I.L. MSE
New -9e-04 0.957 0.8082 0.0368
Shrinkage Bayes -0.0091 0.9575 0.7381 0.031
Naive Shrinkage Bayes -0.4648 0.213 0.4779 0.2506
OLS -8e-04 0.942 0.7437 0.0369
Oracle OLS -0.001 0.9455 0.6513 0.028

Table 4.3: n = 100,p = 30,k = 3. κ2 = 0.05. φ2 = 0.7. σ2
ν = 0.25.

Method Bias Coverage I.L. MSE
New 0.0035 0.9495 1.3949 0.1248
Shrinkage Bayes 0.0019 0.948 1.2844 0.1083
Naive Shrinkage Bayes -0.6164 0.001 0.1981 0.4017
OLS 0.0039 0.949 1.4135 0.1253
Oracle OLS 0.0045 0.948 1.2376 0.097

Table 4.4: n = 100,p = 30,k = 3. κ2 = 0.05. φ2 = 0.05. σ2
ν = 0.9.

Method Bias Coverage I.L. MSE
New -3e-04 0.9735 1.1666 0.064
Shrinkage Bayes -4e-04 0.9475 0.7453 0.0362
Naive Shrinkage Bayes -0.4833 0.1275 0.3401 0.2735
OLS 0.0029 0.9395 0.9911 0.0661
Oracle OLS 5e-04 0.9425 0.6527 0.0279

Table 4.5: n = 100,p = 60,k = 3. κ2 = 0.05. φ2 = 0.7. σ2
ν = 0.25.
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Method Bias Coverage I.L. MSE
New 0.0096 0.935 1.7725 0.2204
Shrinkage Bayes -0.036 0.9395 1.2953 0.1179
Naive Shrinkage Bayes -0.6106 0.005 0.2412 0.3978
OLS 0.0136 0.9435 1.8797 0.2375
Oracle OLS 8e-04 0.9565 1.2354 0.0986

Table 4.6: n = 100,p = 60,k = 3. κ2 = 0.05. φ2 = 0.05. σ2
ν = 0.9.

Gains in the new method over shrinkage Bayes are noticeable in sce-

narios where the number of covariates approaches the number of observations.

Tables (4.7) and (4.8) show results for data dimensions {n = 100, p = 95}

and {n = 200, p = 175}, respectively. In both scenarios, the response variance

decomposition is {κ2 = 0.05, φ2 = 0.7, σ2
ν = 0.25}. Notice that the interval

length in the shrinkage Bayes approach becomes exceedingly small, and the

coverage moves lower than the expected 95%. In these many covariate scenar-

ios, the benefits of “betting on sparsity” through regularization are traded off

with a potential for too much bias.

Notice also that the MSE for the new method is decreased relative to

OLS, and is closer to the shrinkage Bayes approach, especially for the scenario

with 200 observations and 175 covariates. The new approach maintains mini-

mal bias, improved MSE, and proper coverage relative to OLS and shrinkage

Bayes.
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Method Bias Coverage I.L. MSE
New -0.003 0.9735 1.8165 0.1582
Shrinkage Bayes -0.0782 0.7695 0.7083 0.0903
Naive Shrinkage Bayes -0.4003 0.155 0.2867 0.217
OLS -0.0109 0.87 3.1099 0.9439
Oracle OLS -0.0013 0.9485 0.6538 0.0281

Table 4.7: n = 100,p = 95,k = 3. κ2 = 0.05. φ2 = 0.7. σ2
ν = 0.25.

Method Bias Coverage I.L. MSE
New -0.0033 0.97 1.1255 0.0612
Shrinkage Bayes -0.0084 0.8385 0.5136 0.0342
Naive Shrinkage Bayes -0.2494 0.258 0.2188 0.1217
OLS -0.0099 0.938 1.2714 0.1119
Oracle OLS -0.0024 0.9475 0.4505 0.0133

Table 4.8: n = 200,p = 175,k = 3. κ2 = 0.05. φ2 = 0.7. σ2
ν = 0.25.

4.5 Clustered data

A common issue when calculating the standard error of statistical es-

timates is that data may be clustered. For example, we might wish to model

city level crime rate data by several economic variables, but the errors in this

model may be similar for all observations in a given state. In a regression set-

ting where ordinary least squares is used and clustering is ignored, the resulting

default standard errors will underestimate the true OLS standard errors. See,

for example, Moulton [1986] and Moulton [1990].

One of the most common corrections is to compute cluster-robust stan-

dard errors. These provide a more flexible alternative to restrictive random-
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effects models, and the adjustment was developed in White [2014] and Arellano

[1987]. However, the limitation of cluster-robust standard errors is that they

are only asymptotically justified. In other words, the correctness of the pro-

cedure assumes that the number of clusters goes to infinity. This may be

problematic for policy related studies where there may be only a few clusters

like states, counties, or regions.

When there are a small number of clusters, estimates of the standard

errors are usually downward biased, see for example Kezdi [2003]. A natural

next step would be to correct this bias, and several approaches in statistics

attempt to do this, including Kauermann and Carroll [2001], Angrist and Lavy

[2009], and Bell and McCaffrey [2002]. This will often make a difference, but

hypothesis tests for significance based on a Wald statistic (where β̂ is the

estimate, β is the proposed value, and s.e.(β̂) is the standard error of the

estimate)

(β̂ − β)/s.e.(β̂) (4.26)

and standard normal critical values will still over-reject (see, for example,

Bertrand et al. [2004]).

The goal of this work will be to propose an alternative to typical asymp-

totic correction methods for standard error calculation, and we attempt to do

this using a bootstrap. In the context of clustered data, our bootstrap will

involve resampling data in clusters, often called block bootstrapping. Cameron

et al. [2008] provide a great review of bootstrap methods for computing stan-
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dard errors, especially in the presence of clustered data. Efron [1987] also

provides a bias correction procedure for bootstrap-based confidence intervals

which we incorporate into our approach. This work will combine the new

regularized estimation approach presented above with block bootstrapping for

standard error calculation. Since the new approach is computationally effi-

cient, our goal is to apply it to large data sets in social science and corporate

finance that likely have clustered observations and a large number of covari-

ates.
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Chapter 5

Conclusion

This thesis introduced a new approach to model selection called utility-

based selection (UBS) and applied it to common problems in econometrics and

finance. The first chapter considered a venerable problem in finance of portfo-

lio selection. We developed a methodology for dynamic portfolio construction

that tied together a dynamic model for asset returns and the mean-variance

portfolio criterion. The methodology emphasized an important distinction

between statistical modeling of the optimization inputs and the optimization

(utility specification) procedure. While most portfolio selection methods focus

on one of these two “sub-problems,” our method weaved both together in a

principled way. There are several avenues for future work, including different

utility and model specifications and designing the procedure to implementable

for individual investors to compete with robo-investment advisors like Wealth-

front and Betterment.

The second chapter addressed the modeling of asset returns in financial

markets. The first section presented a seemingly unrelated regression model

for describing the variation in asset returns with commonly used “factors”

proposed in the finance literature. The selection procedure accounted for sta-
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tistical uncertainty in responses and predictors. The second section described

ongoing work in monotonic function estimation with an application to pre-

dictive regressions for describing returns by firm characteristics. Future work

includes taking a deeper dive into the finance theory of asset pricing by con-

sidering, for example, the GRS test for pricing efficiency [Gibbons et al., 1989]

as well as mutual fund benchmarking by calculating active alphas from pas-

sive benchmarks. There is exciting work ahead for the monotonic function

estimation project.

The third chapter considered the use of regularization in treatment

effect estimation. Regularization-induced confounding (RIC) – a pitfall of

naively deploying regularization in treatment effect models and first intro-

duced in Hahn et al. [2018a] – was reviewed. Two reparameterizations for

mitigating RIC were discussed, and a new empirical-Bayes approach for treat-

ment effect estimation was introduced. This new approach is encapsulated in

a bootstrap for uncertainty characterization, and we presented several simula-

tions to compare the new method to Hahn et al. [2018a] and other alternatives.

The new approach performs best when the number of covariates approaches

the number of observations. There is much promise for ongoing research. The

next steps include uncertainty characterization when the data are clustered by

using a block bootstrap.

The power of regularization to tame complex models and help with

model interpretation is undeniable. This thesis developed ways in which regu-

larization’s effects can be studied in light of statistical uncertainty. Addition-
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ally, we considered estimation tasks in econometrics where regularization must

be carefully implemented. As more companies, policy makers, and managers

use data to make decisions, we hope the developments in this thesis shed light

on the tradeoffs between complexity, predictability, and model interpretability.
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Appendix 1

Regularization in SURs Appendix

1.1 Matrix-variate Stochastic Search

1.1.1 Modeling a full residual covariance matrix

In order to sample a full residual covariance matrix, we augment the

predictor matrix with a latent factor f by substituting εj = bjf + ε̃j:

Yj = βj1X1 + · · ·+ βjpXp + bjf + ε̃j, ε̃ ∼ N(0, Ψ̃),

where Ψ̃ is now diagonal. Assuming that f ∼ N(0, 1) is shared among all

response variables j and b ∈ Rqx1 is a vector of all coefficients bj, the total

residual variance may be expressed as:

Ψ = bbT + Ψ̃.

We incorporate this latent factor model into the matrix-variate MCMC via a

simple Gibbs step to draw posterior samples of f . This augmentation allows

us to draw samples of Ψ that are not constrained to be diagonal.

1.1.2 Modeling the marginal distribution: A latent factor model

We model covariates via a latent factor model of the form:

Xt = µx + Bft + vt

vt ∼ N(0,Λ), ft ∼ N(0, Ik), µx ∼ N(0,Φ)
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where Λ is assumed diagonal and the set of k latent factors ft are independent.

The covariance of the covariates is constrained by the factor decomposition and

takes the form:

Σx = BBT + Λ.

Recall that this is only a potential choice for the p(X) and it is chosen here pri-

marily motivated by the applied context where financial assets tend to depend

across each other through common factors. Our variable selection procedure

would follow if any other choice was made at this point. To estimate this

model, a convenient, efficient choice is the R package bfa [Murray, 2015]. The

software allows us to sample the marginal covariance as well as the marginal

mean via a simple Gibbs step assuming a normal prior on µx.

1.1.3 Modeling the conditional distribution: A matrix-variate stochas-
tic search

We model the conditional distribution, Y |X, by developing a multivari-

ate extension of stochastic search variable selection of George and McCulloch

[1993]. Recall that the conditional model is: Y −Xβ ∼ N (IN×N , Ψq×q). In

order to sample different subsets of covariates (different models) during the

posterior simulations, we introduce an additional parameter α ∈ Rp that is

a binary vector identifying a particular model. In other words, all entries i

for which αi = 1 denote covariate i as included in model Mα. Specifically, we

write the model identified by α as Mα : Y −Xαβα ∼ N (IN×N , Ψq×q). As in

George and McCulloch [1993], we aim to explore the posterior on the model
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space, P (Mα |Y). Our algorithm explores this model space by calculating a

Bayes factor for a particular model Mα. Given that the response Y is matrix

instead of a vector, we derive the Bayes factor as a product of vector response

Bayes factors. This is done by separating the marginal likelihood of the re-

sponse matrix as a product of marginal likelihoods across the separate vector

responses. This derivation requires our priors to be independent across the

responses and is shown in the details to follow. It is important to note that

we do not run a standard SSVS on each univariate response regression sep-

arately. Instead, we generalize George and McCulloch [1993] and require all

covariates to be included or excluded from a model for each of the responses

simultaneously.

The marginal likelihood requires priors for the parameters β and σ

parameters in our model. We choose the standard g-prior for linear models

because it permits an analytical solution for the marginal likelihood integral

[Zellner, 1986a, Zellner and Siow, 1984, Liang et al., 2008a].

Our Gibbs sampling algorithm directly follows the stochastic search

variable selection procedure described in George and McCulloch [1993] using

these calculated Bayes factors, now adapted to a multivariate setting. The aim

is to scan through all possible covariates and determine which ones to include

in the model identified through the binary vector α. At each substep of the

MCMC, we consider an individual covariate i within a specific model and

compute its inclusion probability as a function of the model’s prior probability
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and the Bayes factors:

pi =
Ba0P (Mαa)

Ba0P (Mαa) +Bb0P (Mαb)
.

The Bayes factor Ba0 is a ratio of marginal likelihoods for the model with

covariate i included and the null model, and Bb0 is the analogous Bayes factor

for the model without covariate i. The prior on the model space, P (Mγ),

can either be chosen to adjust for multiplicity or to be uniform - our results

appear robust to both specifications. In this setting, adjusting for multiplicity

amounts to putting equal prior mass on different sizes of models. In contrast,

the uniform prior for models involving p covariates puts higher probability

mass on larger models, reaching a maximum for models with
(
p
2

)
covariates in-

cluded. The details of the priors on the model space and parameters, including

an empirical Bayes choice of the g-prior hyperparameter, are discussed below.

1.1.4 Details

Assume we have observed N realizations of data (Y,X). For model

comparison, we calculate the Bayes factor with respect to the null model with-

out any covariates. First, we calculate a marginal likelihood. This likelihood

is obtained by integrating the full model over βα and σ multiplied by a prior,

πα (βα, σ), for these parameters. A Bayes factor of a given model α versus the

null model, Bα0 = mα(R)
m0(R)

with:

mα (Y) =

∫
Matrix NormalN,q

(
Y |Xαβα, INxN , Ψ̃q×q

)
πα (βα, σi) dβαdσi.

(1.1)
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We assume independence of the priors across columns of Y so we can write

the integrand in (1.1) as a product across each individual response vector:

mα (Y) =

∫
Πq
i=1 NN

(
Y i |Xαβ

i
α, σ

2
i INxN

)
πiα
(
βiα, σi

)
dβiαdσi

⇐⇒

mα (Y) =

∫
NN

(
Y 1 |Xαβ

1
α, σ

2
1INxN

)
π1
α

(
β1
α, σ1

)
dβ1

αdσ1

× · · · ×
∫
NN

(
Y q |Xαβ

q
α, σ

2
qINxN

)
πqα (βqα, σq) dβ

q
αdσq

= mα

(
Y 1
)
× · · · ×mα (Y q)

= Πq
i=1mα

(
Y i
)
,

with:

Y i ∼ NN

(
Xαβ

i
α, σ

2
i INxN

)
.

Therefore, the Bayes factor for this matrix-variate model is just a product of

Bayes factors for the individual multivariate normal models.

Bα0 = B̃1
α0 × · · · × B̃

q
α0

with:

B̃i
α0 =

mα (Y i)

m0 (Y i)
.

The simplification of the marginal likelihood calculation is crucial for analytical

simplicity and for the resulting SSVS algorithm to rely on techniques already

developed for univariate response models. In order to calculate the integral

for each Bayes factor, we need priors on the parameters βα and σ. Since the
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priors are independent across the columns of Y, we aim to define πiα (βiα, σi)

∀i ∈ {1, ..., q}, which we express as the product: πiα (σi) π
i
α (βiα | σi). Motivated

by the work on regression problems of Zellner, Jeffreys, and Siow, we choose a

non-informative prior for σi and the popular g-prior for the conditional prior

on βiα, [Zellner, 1986a], [Zellner and Siow, 1980], [Zellner and Siow, 1984],

[Jeffreys, 1961]:

πiα
(
βiα, σi | g

)
= σ−1

i Nkα

(
βiα | 0, giασ2

i (X
T
α(I−N−111T )Xα)−1

)
. (1.2)

Under this prior, we have an analytical form for the Bayes factor:

Bα0 = B̃1
α0 × · · · × B̃

q
α0

= Πq
i=1

(1 + giα)
(N−kα−1)/2(

1 + giα
SSEiα
SSEi0

)(N+1)/2
, (1.3)

where SSEi
α and SSEi

0 are the sum of squared errors from the linear regression

of column Y i on covariates Xα and kα is the number of covariates in model

Mα. We allow the hyper parameter g to vary across columns of Y and depend

on the model, denoted by writing, giα.

We aim to explore the posterior of the model space, given our data:

P (Mα |Y) =
Bα0P (Mα)

ΣαBα0P (Mα)
,

where the denominator is a normalization factor. In the spirit of traditional

stochastic search variable selection [Garcia-Donato and Martinez-Beneito, 2013],

we propose the following Gibbs sampler to sample this posterior.
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1.1.5 Gibbs Sampling Algorithm

Once the parameters βα and σ are integrated out, we know the form of

the full conditional distributions for αi | α1, · · · , αi−1, αi+1, · · · , αp. We sample

from these distributions as follows:

1. Choose column Y i and consider two models αa and αb such that:

αa = (α1, · · · , αi−1, 1, αi+1, · · · , αp)

αb = (α1, · · · , αi−1, 0, αi+1, · · · , αp)

2. For each model, calculate Ba0 and Bb0 as defined by (1.3).

3. Sample

αi | α1, · · · , αi−1, αi+1, · · · , αp ∼ Ber(pi)

where

pi =
Ba0P (Mαa)

Ba0P (Mαa) +Bb0P (Mαb)
,

Using this algorithm, we visit the most likely models given our set

of responses. Under the model and prior specification, there are closed-form

expressions for the posteriors of the model parameters βα and σ.

1.1.6 Hyper Parameter for the g-prior

We use a local empirical Bayes to choose the hyper parameter for the

g-prior in (1.2). Since we allow g to be a function of the columns of Y as
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well as the model defined by α, we calculate a separate g for each univariate

Bayes factor as in (1.2) above. An empirical Bayes estimate of g maximizes

the marginal likelihood and is constrained to be non-negative. From Liang

et al. [2008b], we have:

ĝEB(i)
α = max{F i

α − 1, 0},

F i
α =

R2i
α /kα

(1−R2i
α )/(N − 1− kα)

.

For univariate stochastic search, the literature recommends choosing

a fixed g as the number of data points Garcia-Donato and Martinez-Beneito

[2013]. However, the multivariate nature of our model induced by the vector-

valued response makes this approach unreliable. Since each response has dis-

tinct statistical characteristics and correlations with the covariates, it is nec-

essary to vary g among different sampled models and responses. We find that

this approach provides sufficiently stable estimation of the inclusion probabil-

ities for the covariates.

1.2 Derivation of lasso form

In this section of the Appendix, we derive the penalized objective (lasso)

forms of the utility functions. After integration over p(Ỹ , X̃,Θ|Y,X), the

utility takes the form (from equation (3.5)):

L(γ) = tr[MγSγT ]− 2tr[AγT ] + λ ‖vec(γ)‖1 ,

where A = E[ΩỸ X̃T ], S = E[X̃X̃T ] = Σx, and M = Ω, and the overlines

denote posterior means. Defining the Cholesky decompositions: M = LLT and
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S = QQT , combining the matrix traces, completing the square with respect

to γ, and converting the trace to the vectorization operator, we obtain:

L(γ) = tr[M(γSγT − 2M−1AγT ] + λ ‖ vec(γ)‖1

∝ tr
[
M(γ −M−1AS−1)S(γ −M−1AS−1)T

]
+ λ ‖ vec(γ)‖1

= tr
[
LLT (γ − L−TL−1AS−1)S(γ − L−TL−1AS−1)T

]
+ λ ‖ vec(γ)‖1

= tr
[
LT (γ − L−TL−1AS−1)S(γ − L−TL−1AS−1)TL

]
+ λ ‖ vec(γ)‖1

= tr
[
(LTγ − L−1AQ−TQ−1)QQT ((LTγ − L−1AQ−TQ−1)T

]
+ λ ‖ vec(γ)‖1

= tr
[
(LTγQ− L−1AQ−T )(LTγQ− L−1AQ−T )T

]
+ λ ‖ vec(γ)‖1

= vec(LTγQ− L−1AQ−T )Tvec(LTγQ− L−1AQ−T ) + λ ‖vec(γ)‖1 .

The proportionality in line 2 is up to an additive constant with respect

to the action variable, γ. We arrive at the final utility by distributing the

vectorization and rewriting the inner product as a squared `2 norm.

L(γ) =
∥∥[QT ⊗ LT

]
vec(γ)− vec(L−1AQ−T )

∥∥2

2
+ λ ‖vec(γ)‖1 .

1.3 Derivation of the loss function under fixed predic-
tors

We devote this section to deriving an analogous loss function for mul-

tivariate regression when the predictors are assumed fixed. Notice that this is

essentially an extension of Hahn and Carvalho [2015] to the multiple response

case and adds to the works of Brown et al. [1998] and Wang [2010] by pro-

viding a posterior summary strategy that relies on more than just marginal

quantities like posterior inclusion probabilities.
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Suppose we observe N realizations of the predictor vector defining the

design matrix X ∈ RNxp. Future realizations Ỹ ∈ RNxq at this fixed set of

predictors are generated from a matrix normal distribution:

Ỹ ∼ Matrix NormalN,q
(
XγT , INxN , Ψqxq

)
. (1.4)

In this case, the optimal posterior summary γ∗ minimizes the expected loss

Lλ(γ) = E[Lλ(Ỹ,Θ,γ)]. Here, the expectation is taken over the joint space

of the predictive and posterior distributions: p(Ỹ,Θ|Y,X) where X̃ is now

absent since we are relegated to predicting at the observed covariate matrix X.

We define the utility function using the negative kernel of distribution (1.4)

where, as before, γ is the summary defining the sparsified linear predictor and

Ω = Ψ−1:

Lλ(Ỹ,Θ,γ) =
1

2
tr
[
Ω(Ỹ−XγT )T (Ỹ−XγT )

]
+ λ ‖vec(γ)‖1 ,

Expanding the inner product and dropping terms that do not involve

γ, we define the loss up to proportionality:

Lλ(Ỹ,Θ,γ) ∝ tr
[
Ω(γXTXγT − 2Ỹ

T
XγT )

]
+ λ ‖vec(γ)‖1 .

Analogous to the stochastic predictors derivation, we integrate over (Ỹ ,Θ) to

obtain our expected loss:

Lλ(γ) = E[Lλ(Ỹ,Θ,γ)]

= tr[MγSfγ
T ]− 2tr[Afγ

T ] + λ ‖vec(γ)‖1 .
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where, similar to the random predictor case, Af = E[ΩỸ
T
X], Sf =

XTX, M = Ω, and the overlines denote posterior means. The subscript f is

used to denote quantities calculated at fixed design points X. Defining the

Cholesky decompositions: M = LLT and Sf = QfQ
T
f , this expression can be

formulated in the form of a standard penalized regression problem:

Lλ(γ) =
∥∥[QT

f ⊗ LT
]
vec(γ)− vec(L−1AfQ

−T
f )
∥∥2

2
+ λ ‖vec(γ)‖1 (1.5)

with covariates QT
f ⊗ LT , “data” L−1AfQ

−T
f , and regression coefficients γ.

Accordingly, (1.5) can be optimized using existing software such as the lars

R package of Efron et al. [2004a].

We use loss function (1.5) as a point of comparison to demonstrate how

incorporating covariate uncertainty may impact the summarization procedure

in our applications.
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Denis Talbot, Geneviève Lefebvre, and Juli Atherton. The bayesian causal

effect estimation algorithm. Journal of Causal Inference, 3(2):207–236, 2015.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal

of the Royal Statistical Society. Series B (Methodological), pages 267–288,

1996.

Berwin A Turlach, William N Venables, and Stephen J Wright. Simultaneous

variable selection. Technometrics, 47(3):349–363, 2005.

Alf J. van der Poorten. Some problems of recurrent interest. Technical Report

81-0037, School of Mathematics and Physics, Macquarie University, North

Ryde, Australia 2113, August 1981.

Chi Wang, Giovanni Parmigiani, and Francesca Dominici. Bayesian effect

estimation accounting for adjustment uncertainty. Biometrics, 68(3):661–

671, 2012.

Chi Wang, Francesca Dominici, Giovanni Parmigiani, and Corwin Matthew

Zigler. Accounting for uncertainty in confounder and effect modifier selec-

tion when estimating average causal effects in generalized linear models.

Biometrics, 2015.

Hao Wang. Sparse seemingly unrelated regression modelling: Applications in

finance and econometrics. Computational Statistics & Data Analysis, 54

(11):2866–2877, 2010.

189



Hao Wang. Scaling it up: Stochastic search structure learning in graphical

models. Bayesian Anal., 10(2):351–377, 06 2015. doi: 10.1214/14-BA916.

URL http://dx.doi.org/10.1214/14-BA916.

Hao Wang and Mike West. Bayesian analysis of matrix normal graphical

models. Biometrika, 96(4):821–834, 2009.

Hao Wang, Craig Reeson, and Carlos M. Carvalho. Dynamic financial index

models: Modeling conditional dependencies via graphs. Bayesian Anal., 6

(4):639–664, 12 2011a. doi: 10.1214/11-BA624. URL http://dx.doi.org/

10.1214/11-BA624.

Hao Wang, Craig Reeson, Carlos M Carvalho, et al. Dynamic financial index

models: Modeling conditional dependencies via graphs. Bayesian Analysis,

6(4):639–664, 2011b.

Herbert I Weisberg and Victor P Pontes. Post hoc subgroups in clinical trials:

Anathema or analytics? Clinical Trials, page 1740774515588096, 2015.

Russ Wermers. Mutual Fund Performance: An Empirical Decomposition into

Stock-Picking Talent, Style, Transactions Costs, and Expenses. Journal of

Finance, 55(4):1655–1703, 08 2000. URL https://ideas.repec.org/a/

bla/jfinan/v55y2000i4p1655-1703.html.

Mike West. On scale mixtures of normal distributions. Biometrika, 74(3):

646–648, 1987.

Halbert White. Asymptotic theory for econometricians. Academic press, 2014.

190



Ander Wilson and Brian J Reich. Confounder selection via penalized credible

regions. Biometrics, 70(4):852–861, 2014.

Jesse Windle, Carlos M Carvalho, et al. A tractable state-space model for sym-

metric positive-definite matrices. Bayesian Analysis, 9(4):759–792, 2014.

Jeffrey Wooldridge. Introductory econometrics: A modern approach. Cengage

Learning, 2012.

Lan Wu and Yuehan Yang. Nonnegative elastic net and application in index

tracking. Applied Mathematics and Computation, 227:541–552, 2014.

Lan Wu, Yuehan Yang, and Hanzhong Liu. Nonnegative-lasso and application

in index tracking. Computational Statistics & Data Analysis, 70:116–126,

2014.

Lingzhou Xue, Shiqian Ma, and Hui Zou. Positive-definite 1-penalized esti-

mation of large covariance matrices. Journal of the American Statistical

Association, 107(500):1480–1491, 2012.

Yu-Min Yen. A note on sparse minimum variance portfolios and coordinate-

wise descent algorithms. Technical report, 2013.

Yu-Min Yen and Tso-Jung Yen. Solving norm constrained portfolio optimiza-

tion via coordinate-wise descent algorithms. Computational Statistics &

Data Analysis, 76:737–759, 2014.

191



Ming Yuan and Yi Lin. Model selection and estimation in regression with

grouped variables. Journal of the Royal Statistical Society: Series B (Sta-

tistical Methodology), 68(1):49–67, 2006.

Ming Yuan and Yi Lin. Model selection and estimation in the gaussian graph-

ical model. Biometrika, 94(1):19–35, 2007.

Ming Yuan, Ali Ekici, Zhaosong Lu, and Renato Monteiro. Dimension re-

duction and coefficient estimation in multivariate linear regression. Journal

of the Royal Statistical Society: Series B (Statistical Methodology), 69(3):

329–346, 2007.

Leonid Zamdborg and Ping Ma. Discovery of protein–dna interactions by

penalized multivariate regression. Nucleic acids research, page gkp554, 2009.

Arnold Zellner. An efficient method of estimating seemingly unrelated regres-

sions and tests for aggregation bias. Journal of the American statistical

Association, 57(298):348–368, 1962.

Arnold Zellner. On assessing prior distributions and bayesian regression anal-

ysis with g-prior distributions. Bayesian inference and decision techniques:

Essays in Honor of Bruno De Finetti, 6:233–243, 1986a.

Arnold Zellner. On assessing prior distributions and Bayesian regression anal-

ysis with g-prior distributions. Bayesian inference and decision techniques:

Essays in Honor of Bruno De Finetti, 6:233–243, 1986b.

192



Arnold Zellner and Tomohiro Ando. A direct monte carlo approach for

bayesian analysis of the seemingly unrelated regression model. Journal of

Econometrics, 159(1):33–45, 2010.

Arnold Zellner and A Siow. Basic issues in econometrics. University of Chicago

Press Chicago, 1984.

Arnold Zellner and Aloysius Siow. Posterior odds ratios for selected regression

hypotheses. Trabajos de estad́ıstica y de investigación operativa, 31(1):585–

603, 1980.

Shu-Qin Zhang, Wai-Ki Ching, Nam-Kiu Tsing, Ho-Yin Leung, and Dianjing

Guo. A new multiple regression approach for the construction of genetic

regulatory networks. Artificial intelligence in medicine, 48(2):153–160, 2010.

Zoey Yi Zhao, Meng Xie, and Mike West. Dynamic dependence networks:

Financial time series forecasting and portfolio decisions. Applied Stochastic

Models in Business and Industry, 32(3):311–332, 2016.

Hua Zhou, Mary E Sehl, Janet S Sinsheimer, and Kenneth Lange. Associa-

tion screening of common and rare genetic variants by penalized regression.

Bioinformatics, 26(19):2375–2382, 2010.

Xiaocong Zhou, Jouchi Nakajima, and Mike West. Bayesian forecasting and

portfolio decisions using dynamic dependent sparse factor models. Interna-

tional Journal of Forecasting, 30(4):963–980, 2014.

193



Corwin M Zigler, Krista Watts, Robert W Yeh, Yun Wang, Brent A Coull,

and Francesca Dominici. Model feedback in bayesian propensity score esti-

mation. Biometrics, 69(1):263–273, 2013.

Corwin Matthew Zigler and Francesca Dominici. Uncertainty in propen-

sity score estimation: Bayesian methods for variable selection and model-

averaged causal effects. Journal of the American Statistical Association, 109

(505):95–107, 2014.

194



Vita

David Puelz was born in Athens, Georgia on February 19, 1989. He

graduated from Wesleyan University in May 2011 with a BA in math and

physics. After graduating from Wesleyan, he worked at Goldman Sachs in

New York City for their investment management division. This sparked his

interest in statistics and finance, and he enrolled in a statistics Ph.D. program

at the University of Texas at Austin. He graduated with a MS in 2015 and

Ph.D. in 2018.

195


