
Copyright

by

Seong-Kyu Song

2004

The Dissertation Committee for Seong-Kyu Song

certifies that this is the approved version of the following dissertation:

Applying Active Network Adaptability

to Wireless Networks

Committee:

Scott M. Nettles, Supervisor

Gustavo de Veciana

Edward J. Powers

Theodore S. Rappaport

Jonathan M. Smith

Applying Active Network Adaptability

to Wireless Networks

by

Seong-Kyu Song, B.S.E., M.S.E.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2004

To my family

for their love and prayers

Acknowledgments

First of all, I would like to thank my supervisor, Dr. Scott M. Nettles for his

support and guidance. He guided me through the maze of research with the

remarkable insights and the great encouragements. He also showed me a good

role model as a teacher, a researcher, and a human being.

I am deeply indebted to Dr. Jonathan M. Smith for all his advice

and support. I am very grateful to Dr. Edward J. Powers for his supportive

guidance, to Dr. Gustavo de Veciana for his kind encouragement, and to Dr.

Theodore S. Rappaport for his helpful direction.

My gratitude to the members of the NetLab; Stephen Shannon, Pisai

Setthawong, Chandresh Kumar Jain, Hari Shankar, Sudipta Das, Minyoung

Park, Yihong Zhou, Gibeom Kim, Sangwoo Lee, and Soon Hyuk Choi for all

their enjoyable friendship and helpful discussions.

I would also like to thank my fabulous friends I have met here in Austin

for their friendship. Special thanks to Kyoil Kim, Yongju Jeon, Joonhyuk

Kang, Sangkyu Park, Dong-Ho Kim, Kiwoon Kim, Seokjin Lee, Hak-Soo Yu,

Jaeki Yoo, Youngmoon Choi and Jangwon Lee.

v

Finally, I thank God for everything. Glory to God for everything! He

allowed me many great things, one of which is my wonderful family. I cannot

fully express my gratitude to my extraordinary parents and parents-in-law for

their love, prayers, patience, and support. Their love has raised me up and

touched my life. Their prayers have guided and protected me. This work is

dedicated to my lovely wife, Ye-Rang Kim, who has shared everything of life

and always supported me with incomparable love and encouragement, and to

my precious son, Andrew Junsuh Song, who is always giving me great smiles

and invaluable happiness.

Seong-Kyu Song

The University of Texas at Austin

December 2004

vi

Applying Active Network Adaptability

to Wireless Networks

Publication No.

Seong-Kyu Song, Ph.D.

The University of Texas at Austin, 2004

Supervisor: Scott M. Nettles

The IP-based Internet, although wildly successful, is limited in its ability to

evolve and adapt, in particular at the network layer. Mobile/wireless net-

working is an important emerging area in which adaptivity and evolvability is

likely to be especially important due in part to the widely varying nature of

the underlying communication channels themselves.

We believe that active networking (AN) enables valuable adaptivity

that existing technologies currently lack. This is because AN enables highly

flexible packet functionality, on-the-fly protocol deployment, even on a packet-

by-packet granularity, and cost-effective network expansion. Because adaptiv-

ity and evolvability is at a premium, we have chosen to test our belief in the

vii

mobile/wireless networking domain using three case studies: Mobile IP, ad hoc

routing, and TCP over wireless. In our work, we demonstrate AN’s adaptivity

by developing a series of designs, simulation studies, and working prototypes.

Mobile IP is a protocol that supports mobility within the existing IP

architecture by separating naming and addressing. While its design fits the

conventional architecture and is feasible in current networks, Mobile IP ex-

emplifies the inability of current networks to evolve effectively. Using Active

Packet evolution and Update evolution techniques, we show how to deploy the

new protocol and to evolve networks to support Mobile IP.

Ad hoc networks are infrastructureless networks in which hosts are typi-

cally mobile and must act as routers. Mobility makes routing hard because the

state of links changes frequently and routing heterogeneity is likely. We show

how AN can provide useful routing adaptation to host mobility, in addition to

routing evolution.

In the last case study, we address the performance degradation of TCP

over lossy links. TCP’s congestion control may cause under-utilization of band-

width in wireless networks. We demonstrate AN’s adaptation to changing link

conditions. Furthermore, taking advantage of flexible cross-layer interactions,

we show AN’s ability to adapt to changes in TCP flow information. We show

that active packets are especially useful in this context because they are ex-

tremely agile and allow adaptation on a packet-by-packet basis.

viii

Contents

Acknowledgments v

Abstract vii

List of Tables xv

List of Figures xvi

Chapter 1 Introduction 1

1.1 Mobility and Adaptability . 3

1.2 Active Networking . 5

1.3 Thesis . 5

1.4 Goals and Approach . 6

1.4.1 Case I: Mobile IP . 7

1.4.2 Case II: Ad Hoc Routing 8

1.4.3 Case III: TCP over wireless 9

1.5 Road Map . 11

ix

Chapter 2 Background 12

2.1 TCP/IP Architecture and Wireless Links 12

2.2 Active Networking . 14

2.2.1 Network Evolution through Active Networking 17

2.3 MANE: An Active Networking Testbed for Mobile Networks . 21

2.3.1 Network Service . 25

2.3.2 PLAN . 27

2.4 The Performance of Active Networking 34

Chapter 3 Case Study I: Mobile IP 39

3.1 Mobile IP Background . 40

3.1.1 Basic Mobile IP . 41

3.1.2 Extension of Mobile IP: Route Optimization 41

3.1.3 The State of The Art: Standardization and Deployment 43

3.2 MANE Modifications for Mobile IP 46

3.3 Active Packet Evolution . 47

3.3.1 Setting Up the Forwarding Path 47

3.3.2 Forwarding: The Application-aware Protocol 48

3.3.3 Route Optimization: Binding Update on CN 50

3.3.4 Route Optimization: Binding Update with a Proxy Agent 52

3.4 Update Extension Evolution 55

3.4.1 Forwarding: The Application-transparent Protocol . . 56

3.4.2 Transparent Proxy Agents 58

x

3.5 Advantages of AN for Evolution 60

3.5.1 Standardization . 60

3.5.2 Implementation . 62

3.5.3 Deployment . 65

3.5.4 Evolution of Route Optimization 67

3.6 Lessons for AN . 70

Chapter 4 Case Study II: Ad Hoc Routing 72

4.1 Background . 73

4.1.1 Reactive Ad Hoc Routing 76

4.1.2 The State of The Art: Standardization and Deployment 81

4.2 MANE Modifications . 84

4.2.1 Addressing . 84

4.2.2 Mobility Emulation . 84

4.2.3 Routing Buffer in the Network Layer 85

4.2.4 Link Layer Acknowledgements 86

4.3 A Simple Version of DSR . 86

4.3.1 An Active Extension for DSR 87

4.3.2 Active Packets for Basic Route Discovery 87

4.4 Deploying DSR . 91

4.5 Evolving DSR . 93

4.5.1 Active Packets for Optimized DSR 94

4.6 Transitionary Adaptivity . 98

xi

4.6.1 An Active Extension for the Hybrid Protocol 99

4.6.2 An Active Packet for the Hybrid Protocol 100

4.6.3 Simulation of the Hybrid Protocol 103

4.7 Advantages of AN for Evolution and Adaptation 107

4.7.1 Standardization . 107

4.7.2 Implementation . 108

4.7.3 Deployment . 110

4.8 Other Possible Adaptivities 112

4.8.1 Mobility-based Zone Routing 112

4.8.2 Connecting to the Internet 113

4.8.3 Dynamic Routing Metric 114

4.9 Discussion . 114

Chapter 5 Case Study III: TCP Over Wireless 116

5.1 Background . 118

5.1.1 TCP Overview . 118

5.1.2 TCP Over Wireless Links 120

5.1.3 Related Work . 121

5.1.4 The State of The Art: Standardization and Deployment 125

5.2 How can Active Networking Help? 128

5.2.1 Model . 129

5.2.2 Requirements, Architecture, and Capabilities 131

5.3 MANE Modifications . 134

xii

5.3.1 TCP Itself . 134

5.3.2 Link Error Issues . 135

5.3.3 Node-resident Variables for Channel Monitoring 136

5.3.4 Interface Queue in the Link Layer 137

5.3.5 Channel Model . 137

5.4 Horizontal Adaptive Link Error Control 138

5.4.1 Basic ARQ . 139

5.4.2 ARQ/FEC . 141

5.4.3 Adaptive Link Control 142

5.4.4 AN for Channel Monitoring 144

5.4.5 Performance Evaluation 146

5.5 Vertical Snoop Protocol . 149

5.5.1 Snoop Protocol . 149

5.5.2 Performance Evaluation 151

5.6 Advantages of AN for Adaptation and Evolution 153

5.6.1 Adaptive Link Control 153

5.6.2 Transparent Performance Enhancing Proxy (PEP) . . . 156

5.7 Other Possibilities . 160

Chapter 6 Contributions 162

Chapter 7 Conclusion 166

Bibliography 169

xiii

Vita 190

xiv

List of Tables

2.1 TALx86 Components . 23

3.1 Comparison of Mobile IP Implementations 64

4.1 Ad Hoc Routing Protocols . 75

4.2 Comparison of DSR and AODV 81

4.3 Service Functions for DSR . 87

4.4 Service Functions for Hybrid Protocol 99

4.5 Comparison of DSR Implementations 109

4.6 Comparison of AODV Implementations 109

4.7 MANE Implementation of Hybrid Routing Protocol 110

5.1 Comparison of various TCP implementations 120

5.2 MANE Implementation for Adaptive Link Control 155

5.3 Comparison of Snoop TCP Implementations 158

xv

List of Figures

2.1 TCP/IP Hourglass Architecture 13

2.2 Architecture of Active Node and Execution of Active Packets . 15

2.3 Transmission of Active Packets 26

2.4 PLAN for ping . 28

3.1 Mobile IP . 42

3.2 PLAN for Setting Up Forwarding Path 48

3.3 Active Packets for Mobile-IP 49

3.4 PLAN packet for Mobile-IP 50

3.5 PLAN packet for Mobile IP with Route Optimization 51

3.6 PLAN packet for Mobile IP with Proxy Route Optimization . 54

3.7 Update Extension for Mobile-IP Evolution 56

4.1 Pseudocode for Basic DSR Route Discovery 88

4.2 PLAN for Basic DSR Route Discovery 88

4.3 Pseudocode for Basic DSR Route Reply 90

4.4 PLAN for Basic DSR Route Reply 90

xvi

4.5 Dynamic DSR Deployment . 92

4.6 Pseudocode for Optimized DSR Route Request 95

4.7 PLAN for Optimized DSR Route Request 96

4.8 Pseudocode for Optimized DSR Route Reply 97

4.9 PLAN for Optimized DSR Route Reply 97

4.10 PLAN for Hybrid Route Request 102

4.11 PLAN for Hybrid Route Reply 103

4.12 PDR over time for DSR, AODV, and Hybrid 106

5.1 AN model for TCP over wireless 129

5.2 Wireless Channel Model in MANE 137

5.3 PLAN for basic ARQ . 140

5.4 PLAN for FEC . 142

5.5 PLAN for Adaptive Link Control 143

5.6 PLAN for Monitoring RSS . 145

5.7 Comparison of Link Error Control Techniques 146

5.8 Comparison of Ideal Estimation and Active Hybrid 148

5.9 PLAN for the Snoop Protocol 150

5.10 Goodput Comparison between Regular TCP and Snoop Protocol152

xvii

Chapter 1

Introduction

Modern network architectures, in particular the IETF’s IP-based Internet,

have been very successful. With success, however, has come the recognition

of limitations, in particular with respect to customization and evolution. As

the network’s size grows larger, it becomes harder to add new services or to

modify the currently deployed protocols. For example, it took seven years

for the initial deployment of Random Early Detection (RED) into the real

network [1].

We recognize several reasons for the limitations of current network ar-

chitectures. Firstly, there are limitations in the fundamental architecture. In

the current ‘hourglass’ architecture of the IETF protocol stack, IP plays a role

as a simple unifier between upper and lower layers. Although the simplicity

and openness of IP are advantageous for scalability, this architecture allows no

specialization of the network layer by either the application layer or the link

1

layer. Further, since the network layer works as a standard unifier, it is hard

to add general services at this level.

In addition, there are structural limitations in the standardization, im-

plementation, and deployment of the network infrastructure. Through the slow

process of consensus-based standardization, protocols must be defined and en-

gineered before the system is widely deployed. Standardization requires a long

time to engineer the protocols thoroughly before implementation and deploy-

ment. One of the reasons for the long time frame of standardization is that

once the protocols are deployed, it is difficult to change or evolve them. Fur-

ther, even after standardization, there are generally “reserved” fields in packet

header formats for future use. The reservation of packet header fields is a

limited way of supporting network evolvability; this space is wasted until and

unless such evolution occurs. Once a protocol is built into the infrastructure,

it is very difficult to make modifications or updates that take effect quickly.

If a new requirement is discovered and added into the standard (which itself

takes significant time), some or all of network elements’ software will need to

be changed. This requires significant time and effort especially with increasing

network size. Thus, there are problems in deploying new functionality.

Lastly, the architecture is based on abstractions that are often violated.

With the help of the unifying network layer, upper layers should be indepen-

dent of the link layer. As a matter of fact, however, there are implicit assump-

tions built into the upper layers about the lower layers and vice versa. For

example, the link layer handles packets individually on the assumption that

2

all the payloads from applications are of the same importance. The transport

layer also has assumptions about the link layer. In TCP congestion control,

for instance, packet drops are interpreted as a symptom of congestion on the

assumption that links are highly reliable. Another example is that a TCP con-

nection is identified by a four tuple <source IP address, destination IP

address, source port number, destination port number>, and renum-

bering of TCP connections is not allowed. The transport layer assumes that

end hosts use static addresses and do not change addresses during a connec-

tion. These assumptions not only violate abstraction boundaries, but also are

no longer justified, especially with the advent of link layers with new charac-

teristics, such as wireless links.

1.1 Mobility and Adaptability

Wireless links are being rapidly deployed and as a result mobile networks are an

important emerging technology1. However, there has been a slow deployment

of the supporting protocols in the Internet; and link characteristics, such as

high bit-error rate, long delay, rapidly changing links, host mobility, and ad

hoc networks, have created problems due to the limitations of current network

architecture.

Since wireless links change their status quickly, in some cases faster

than a Round-Trip Time (RTT), protocols and systems need to adapt to link

1In this document, we will use “mobile networks” as a shorthand for networks with
mobile nodes typically communicating over wireless links.

3

fluctuations rapidly. The current architecture allows layer interactions only

through the unifying network layer; thus, it is hard to specialize link layers or

application layers for wireless links. In addition, mobility implies new services,

such as location services; however, it is not easy to add these new services to

the current architecture.

The current structure of standardization, implementation, and deploy-

ment of network infrastructure is also a problem in mobile networking. Current

mobile network deployment is happening simultaneously with standardization,

but we can expect our understanding of mobile networking protocols to im-

prove rapidly, creating a need to change out-of-date protocols. Therefore,

mobile networks require more flexible and timely protocol deployment and

evolution.

Abstraction breaking has become apparent in mobile networking as

well. The new characteristics of wireless links, such as lossy links and lo-

cation changes during connections, conflict with the assumptions of the cur-

rent network; and thus mobile networks suffer from problems like performance

degradation due to dropped packets or limited functionality.

Due to the problems described above, the existing architecture’s lim-

itations have proven significant, and mobile networking is an area in which

adaptivity and evolvability is likely to be especially important. As further ev-

idence, Marjory Blumenthal and David Clark [2] support our arguments that

the current network architecture might be ineffective due to the difficulty of

adapting the layering to new circumstances in mobile networks.

4

1.2 Active Networking

Active Networking (AN) has been developed to address the limitations of cur-

rent networks with the ability to create, deploy, and manage services promptly [3].

By introducing programmability into the network infrastructure, AN can pro-

vide application-specific and link-specific customization, as well as flexibility

and extensibility in designing and deploying protocols [4]. To be specific, ex-

tensible routers support dynamic protocol extension and customization; and

third party extensions help to allow new services to be deployed easily and

promptly. Further, programmable packets actualize services and protocols

on the fly. Packet-by-packet adaptivity enables the network to adjust very

rapidly to changing environments. We provide all necessary AN background

in Chapter 2.

1.3 Thesis

Our thesis is:

Active Networking can provide useful adaptivity and evolvabil-

ity for mobile networks, especially when faced with rapidly chang-

ing network conditions.

5

1.4 Goals and Approach

Our goal is to demonstrate how AN can be applied to the problems of mo-

bile networks, where network environments are dynamically changing and the

traditional architecture has been shown to be limited. To support this claim,

we have performed a series of case studies based on three important prob-

lems in mobile networking: Mobile IP deployment, ad hoc routing, and TCP

performance over wireless links.

To explore the issues raised by our case studies, we have both developed

a series of working prototypes that embody our techniques and performed

simulations to test these techniques on larger scales than we can practically

experiment with directly. For simulating and measuring network performance,

we use the ns-2 simulator [5]. Ns is a discrete event simulator developed by the

VINT project [6]. For prototyping, we use our AN testbed system, the Mobile

Active Network Environment (MANE) [7]. MANE is discussed in some detail

in Chapter 2.

For each case study, we discuss the current state of the art for the

problem at hand in the existing network architecture. We consider both the

standardization and deployment of the protocols and technologies relevant

to each study. At the conclusion of each case study we compare adaptivity

and evolvability with both qualitative and quantitative discussion based on

our experiments and implementation to the state of the art in the existing

network.

6

One issue our thesis and this dissertation does not address is the raw

performance of our AN solutions. This is because our implementation technol-

ogy, discussed in Chapter 2, emulates wireless transmission and in general has

been designed to facilitate experiments in flexibility rather than having been

optimized for speed. However, these issues have been extensively considered

in other AN research [8, 9, 10]. We discuss these results and their bearing on

our work in Chapter 2.

1.4.1 Case I: Mobile IP

Our first case study applies AN-based adaptivity and evolution to implement-

ing and deploying the mobile IP protocol [11, 12]. To demonstrate network

evolution for mobility, we have chosen to add support to MANE for what is

essentially Mobile IP. Several reasons motivated our choice of mobility from

which to draw our examples. First, mobility is an area in which new protocols

and improvements to existing protocols are being developed rapidly. Thus it

is an area where better evolutionary capabilities could be a real benefit, since

then protocols could be deployed and later upgraded and replaced as new tech-

niques develop. Second, in the particular area of Mobile IP, current protocols

are constrained in their design to require only local changes to the network

infrastructure. Practical evolution capability would allow other (preferable)

protocols to be developed. Finally, mobility is an interesting domain in its

own right, and the current work allows us to begin to understand the issues

there in the context of our design and implementation environment.

7

In this case study, we show how AN can be used to upgrade a network’s

services on the fly, without centralized coordination and without halting net-

work service. By doing so, we are making a strong claim that AN can be

used to quicken the pace of network service evolution. For our demonstration,

we present how to augment an active network that provides standard, IP-like

service to support routing for mobile hosts, in the spirit of Mobile IP.

Through Active Packet Evolution and Update Evolution [7], we show

how to deploy a new protocol to support mobility easily. The chief advantage

of Active Packet evolution is that it is lightweight and allows third parties to

enhance the functionality of the network without changing the nodes them-

selves. Further, using Update Evolution, application-transparent evolution

can be achieved even when the system design has not anticipated the need for

a particular kind of change. In some sense, this embodies the entire goal of

AN.

1.4.2 Case II: Ad Hoc Routing

In mobile ad hoc networks (MANETs), there is no fixed infrastructure (routers)

and all the nodes may move with any frequency [13]. Since path changes and

link failures may happen frequently, routing is one of the most difficult issues

in MANETs. The dynamic characteristics of MANETs require ad hoc routing

protocols to adapt to rapidly changing conditions.

Furthermore, since MANETs can occur without prior planning, it is

entirely possible that not all the nodes are equipped with the same routing

8

protocol. However, many ad hoc routing protocols in the literature have been

based on the assumption that one specific routing protocol can be pre-deployed

and used on all the nodes in the network. To the best of our knowledge, there

has been no work on routing problems in heterogeneous ad hoc networks. We

expect that AN can provide solutions to the requirements for adaptive and

heterogeneous routing.

Since AN can actualize a routing protocol on the fly by evaluating mo-

bile code carried in lightweight active packets, AN provides mechanisms to

implement adaptivity in ad hoc routing. In our preliminary experiments, we

demonstrate evolutionary adaptivity in which active packets help to upgrade

a routing protocol easily and without further modifications to the infrastruc-

ture. We can extend this approach to create an adaptive routing protocol or

multi-mode routing protocol by injecting active packets for the optimal routing

protocol based on current network conditions. By taking advantage of AN’s

dynamic linking and loading of router extensions, we also expect to deploy

new protocols easily and to overcome the routing heterogeneity problem.

1.4.3 Case III: TCP over wireless

The Transmission Control Protocol (TCP) is a connection-oriented, byte-

stream transport layer protocol responsible for end-to-end reliable commu-

nications [14, 15]. For reliable connections, TCP supports in-order delivery

and retransmissions. Further, in order to utilize network resources efficiently,

TCP employs several adaptive mechanisms, such as flow control and conges-

9

tion control.

TCP’s congestion control is based on the assumption that links are

so reliable that packet drops occur only due to congestion on routers; and

TCP recognizes packet drops as the symptoms of node congestion. The prob-

lem is that the error recovery and congestion control mechanisms are closely

coupled [16]. When packets are dropped, in addition to retransmitting the

dropped packets, TCP launches congestion control to decrease the bandwidth

usage of the sender. This mechanism is not effective over the wireless links,

because wireless links are lossy and packet drops can be due to either node

congestion or link errors. If the drops are due to bit-errors over the links, con-

gestion control causes the sending host to under-utilize the network bandwidth

and TCP suffers from overall performance degradation [17].

Using AN technology, we will address this problem of TCP over wireless

links. Our approaches fall into two classes: horizontal and vertical. In the

horizontal approach, link layer protocols attempt to cope with the channel

variations adaptively and transparently to the end-to-end connections. The

vertical approach complements the horizontal approach to control the TCP

flow adaptively by allowing information sharing between layers and structured

layer crossing violations.

10

1.5 Road Map

The remainder of this document is organized as follows. Chapter 2 presents

the background relevant to our study. We discuss the difficulty of deploying

mobile networks; and we describe the basic concepts of Active Networking

(AN) and our AN testbed MANE. The following three chapters present three

case studies of AN applied to mobile/wireless networking. Chapter 3 shows

how AN facilitates to newly deploy the mobile IP protocol. Chapter 4 presents

the case study of ad hoc routing and AN adaptivity issues on ad hoc networks.

Chapter 5 deals with applying AN techniques to TCP performance issues over

wireless links. Chapter 6 summarizes the contributions of our work. Finally,

Chapter 7 concludes the dissertation.

11

Chapter 2

Background

In this chapter, we present the background that is needed to understand the

remainder of the dissertation. First, we discuss the difficulty of deploying

wireless networks into the Internet. Next, we describe the basic concepts

and the general architecture of Active Networking systems. We then present

the details of our AN system, MANE, and its packet programming language,

PLAN. We conclude with a brief discussion of the performance implications

of our AN approach.

2.1 TCP/IP Architecture and Wireless Links

In the current ‘hourglass’ architecture of the IETF protocol stack shown in

Figure 2.1, the IP layer protocol plays a role as a simple unifier between up-

per layers and heterogeneous lower layers. Upper layers do not need to care

12

TCP UDP

ICMP
IP

Telnet

SNMP
SMTP

FTP
NNTP

HTTP
DNS

Ethernet
IEEE802.11

FDDI

SLIP

PPP

Figure 2.1: TCP/IP Hourglass Architecture

about different link layers, and vice versa. Through layering, complex tasks

are broken into more manageable, smaller pieces of functionality and the im-

plementation details of each layer are hidden from other layers. The logical

separation of tasks and information hiding make it easy to change or mod-

ify parts of a layer later without affecting other layers. However, one of the

drawbacks of layering is that the layers need to be defined and engineered

before the system is widely deployed. After the system is deployed, modi-

fications are limited within the layered architecture. Therefore, the layering

paradigm might be ineffective due to the difficulty of adapting the layering to

new circumstances [2].

Wireless link layers exemplify the existing network’s inability to adapt

to new environments. Wireless links were of limited concern in the initial

13

design and deployment of the Internet protocol, but have emerged as an im-

portant technology. The characteristics of wireless links, such as high bit-error

rate, long delay, and intermittent connection status, have significant impacts

on the overall performance on the network [18, 19]. According to the layering

principle, these characteristics should be handled within link layer protocols

without affecting other layers. However, simple insertion of wireless link lay-

ers into the current Internet protocol stack has not been effective because of

the implicit assumptions about link characteristics in upper layer protocols.

For instance, the routing protocols suppose that link connections change very

slowly. TCP also makes an assumption that link layers are so reliable that

packet drops only occur due to router congestion. These assumptions conflict

with the properties of wireless links. Because the currently deployed proto-

cols were designed and implemented based on these assumptions, the Internet

protocols have limits in adopting wireless links.

2.2 Active Networking

The Internet can be viewed as a programmed network in that the end hosts

and routers operate by protocols or stored programs. However, the Internet

is not fundamentally reprogrammable and can be re-programmed only by the

vendors by means of the slow process of consensus-based standardizations.

By introducing programmability, Active Networking (AN) aims at application

and link specific customization and speedy deployment of protocols and ser-

14

Execution
Environment

Execution
Environment

Execution
Environment

Node OS Node OS Node OS

Active
Packets Application

Transmission

Application

Transmission

Active
Node

Figure 2.2: Architecture of Active Node and Execution of Active Packets

vices [3]. Based upon remote evaluation [20] and mobile code technologies [21],

AN inserts an evaluate phase into the conventional store-and-forward delivery

mechanism of data networks. Using these techniques, an AN’s functionality

can be evolved in an incremental manner. Figure 2.2 illustrates the general

architecture of active nodes and execution of active packets.

The realization of this AN architecture can be characterized by two ex-

treme approaches: the active extension (AE) approach, based on programmable

switches, and the active packet (AP) approach, based on programmable pack-

ets [3]. In general, active packets contain programs that execute as they pass

through the nodes of the network. Their execution can perform management

actions on the nodes, affect their own routing, or form the basic distributed

15

computational framework of larger protocols. Through their computations on

remote nodes, active packets can affect hop-by-hop operations, which will also

affect end-to-end performance. Complementary to active packets are down-

loadable node extensions that form the basis of the programmable network

infrastructure. They provide the services that active packets can use while

they are executing on a node. These extensions can be downloaded and dy-

namically linked.

The flexibility of these two technologies together makes AN a good

choice for environments that require a high degree of adaptivity. Further,

because AN can accomplish protocol implementation on the fly, it is easy and

quick to accommodate new services in the existing networks. Also there is no

need to define packet header formats in advance since packet programs serve

this function. Therefore, AN saves time in standardizing and deploying new

protocols.

For the similar objectives of dynamic protocol customization and rapid

protocol evolution, protocol boosters were suggested [22]. Protocol boost-

ers attempt to improve performance or add additional functionality transpar-

ently to the existing system. The methodology facilitates dynamic behavior

changes and optimistic protocol realization on an as-needed basis. Since then,

there have been several prototype systems implementing an AN environment:

UPenn’s SwitchWare [23], MIT’s ANTS [24], and BBN’s SmartPackets [25],

among others. Even though their architectures and applications are slightly

different, their common objective is to show how the concept of active net-

16

working can be implemented and to study the benefits of this new approach.

2.2.1 Network Evolution through Active Networking

Broadly speaking, by “network evolution” we mean any incremental change

to a network that modifies or enhances existing functionality or adds new

functionality. In the context of Active Networking a somewhat more ambitious

goal is appropriate: evolution should be able to occur at remote nodes while

the network is operational with only minimal disruption to existing services.

AN achieves evolution by changing the programs that operate the net-

work. Thus the ways in which we can evolve the network are dictated by

the programmability mechanisms that are available to make such changes. In

some cases, these mechanisms are AN specific, but generally they are drawn

from general programming language technology. Thus, although later we will

choose instances of these mechanisms that are specific to our platform, this

discussion is general and applies broadly to AN systems.

In this section, we describe three mechanisms for achieving AN evo-

lution. In each case, we discuss what type of evolution is supported by the

mechanism. We also consider how the mechanism might support application-

aware or transparent evolutions.

Active Packets

Active packets (AP) are perhaps the most radical AN technology for evolution

and they are the only mechanism that, at a high level, are specific to AN. Such

17

packets carry (or literally are) programs that execute as they pass through

the nodes of network. A packet can perform management actions on the

nodes, effect its own routing, or form the basis of larger protocols between

distributed nodes, e.g. routing protocols. Such packets can form the glue

of the network, much like conventional packets, but with qualitatively more

power and flexibility.

The AN community has explored a number of AP systems. The early

systems include Smart Packets [25], ANTS [24], and PLAN [26], while more re-

cent systems include PAN [10], SafetyNet [27], StreamCode [28], and SNAP [9].

Although these systems differ on many details of their design and implemen-

tation, they all support the basic AP model and thus the same general styles

of evolution.

Active packets support the first and simplest type of network evolution

we identify, Active Packet evolution, which does not require changes to the

nodes of the network. Instead, it functions solely by the execution of APs

utilizing standard or existing services. The disadvantage of this approach is

that taking advantage of new functionality requires the use of new packet pro-

grams. This means that at some level the applications using the functionality

must be aware that the new functionality exists. This is the kind of evolution

facilitated by pure AP systems, such as ANTS [24], and in essence it embodies

the AN goal of application-level customization.

18

Plug-In Extensions

The programmability mechanism that is broadly familiar outside the AN com-

munity is the plug-in extension. Plug-in extensions can be downloaded and

dynamically linked into a node to add new node-level functionality. For this

new functionality to be used, it must be callable from some prebuilt and known

interface. For example, a packet program will have a standard way of calling

node resident services. If it is possible to add a plug-in extension to the set of

callable services (typically by extending the service name space) then such an

extension “plugs in” to the service call interface.

Plug-in extensions are commonly used outside of AN. For example, the

Linux kernel enables plug-in extensions for network-level protocol handlers,

drivers, and more. Java-enabled web browsers support applets, which are a

form of plug-in extension. Plug-ins are also common to AN. In CANES [29],

nodes execute programs that consist of a fixed underlying program and a

variable part, called the injected program. The fixed program contains slots

that are filled in plug-in extensions. In Netscript [30], programming takes place

by composing components into a custom dataflow. In this case, each element

in the composed program is a plug-in, and the abstract description of such an

element forms the extension interface. Plug-ins are used in hardware-based

approaches as well, including the VERA extensible router at Princeton [31],

and Active Network Nodes (ANN) at Washington University and ETH [32, 33].

Plug-in extensions support the second type of evolution we identify,

19

plug-in extension evolution. When used in conjunction with APs, packet pro-

grams can use new node resident services specialized to their needs rather than

just standard services. Such evolution is particularly important if standard ser-

vices are not sufficient to express a needed application. The combination of

Active Packet and plug-in extension evolution is facilitated by systems such

as PLANet [34], SANE [35], and SENCOMM [36].

Plug-in extensions that must be referenced by new AP programs are

obviously not application transparent. However, as long as a plug-in simply

replaces an existing interface, whether that interface is accessed from an AP or

even in a more conventional system that does not support APs at all, then the

evolution can be application transparent. This situation occurs in CANES,

for example. However, the system still must have been designed to allow the

required change (e.g. in CANES, this is made possible by the slots in the fixed

program).

Update Extensions

The final programmability mechanism we consider is the update extension.

Update extensions may also be downloaded, but they go beyond plug-in ex-

tensions in that they can update or modify existing code and can do so even

while the node remains operational. Thus, such extension can add to or mod-

ify a system’s functionality even when there does not exist an interface for it

to hook into.

There is significant research literature on such extensions (e.g. [37, 38,

20

39], to name a few) although in general the focus has been on code maintenance

rather than evolving distributed system functionality. We are using Dynamic

Software Updating [8] which was initially inspired by the difficulties of crafting

a plug-in interface for the packet scheduler in PLANet [34, 40]. However, the

system itself is not specific or specialized to AN.

Update extensions support the final type of network evolution we iden-

tify, update extension evolution, which occurs when network nodes are updated

in more or less arbitrary ways. This means that the evolution can affect the

operation of existing functionality, even if such functionality was not explicitly

designed to be extended (as was required for plug-in extensions). This means

that in general evolutions that are transparent to the clients of a service are

feasible. To our knowledge, only our current system, MANE, supports this

type of network evolution.

2.3 MANE: An Active Networking Testbed

for Mobile Networks

Our AN testbed, the Mobile Active Network Environment (MANE), imple-

ments the UPenn SwitchWare architecture [23] and is an evolution of the

UPenn testbed, PLANet [34]. To balance flexibility, performance, and safety,

the SwitchWare architecture provides users with a two-level network program-

ming interface; lightweight packet programming and general-purpose node pro-

gramming, thus unifying the two main AN approaches. Based on this archi-

21

tecture, PLANet implements network layer services for active networking. In

PLANet, PLAN (Packet Language for Active Networks) [26] is used as the

packet programming language, while Caml provides loading and linking of

active extension’s written in the Caml language [41].

PLAN is a special-purpose functional language for packets of a pro-

grammable network. PLAN defines a special construct called a chunk, which is

used to describe the remote execution of PLAN programs on other nodes [42].

Chunks consist of some code, a function name to execute, and arguments

for the function. When a chunk is evaluated, the named function is invoked

with the arguments. Remote evaluation is achieved by injecting and eval-

uating a chunk on remote hosts. Chunks provide flexibility that cannot be

obtained by traditional packet headers. Active packets are used as ‘glue’ for

general-purpose node-resident services, and therefore do not themselves re-

quire general-purpose functionality. As a result, PLAN can be (and has been)

restricted with no loss in overall functionality, but with a gain in the safety

guarantees for packet programs. We will discuss PLAN in detail with an ex-

ample in a later section.

In MANE, active packet programs are also written in PLAN [26]. MANE

routers and their extensions (both plug-in and update) are implemented in

software based on Typed Assembly Language (TAL) [43]. TAL is a cousin of

proof-carrying code (PCC) [44], a framework in which native machine code is

coupled with annotations such that the code can be automatically proved to

satisfy certain safety conditions. A well-formed TAL program is memory safe

22

popcorn Compiler from Popcorn to TALx86
talc Type-checker for TALx86
link-verifier Verifier for safety of a linked set of TALx86 files
assembler Assembler for TALx86

Table 2.1: TALx86 Components

(i.e. no pointer forging), control-flow safe (i.e. no jumping to arbitrary mem-

ory locations), and stack-safe (i.e. no modifying of non-local stack frames)

among other desirable properties. TAL has been implemented for the Intel

IA32 instruction set; this implementation, called TALx86 [45], includes a TAL

verifier and a prototype compiler from a type-safe C-like language called Pop-

corn, to TAL. The Table 2.1 lists the TALx86 components. To be specific,

MANE is written in Popcorn, which is then compiled to TAL.

The reason for our choice of TAL, as opposed to, for example, Java

(popular among AN researchers), is two-fold. First, TAL is in essence native

assembly code, and therefore has a high upper-bound on performance. Second,

our confidence in TAL (and PCC in general) is improved due to its relatively

small trusted computing base [46]: only the typechecker and the runtime system

must be trusted to ensure that loaded extensions are safe; the compiler of those

extensions does not have to be trusted. This characteristic contrasts the Java

Virtual Machine (JVM)’s that employs just-in-time (JIT) compilers [47]: not

only does the Java verifier have to be trusted, but the JIT compiler (which

internally converts the verified JVM code to native code) has to be trusted as

23

well. So while JIT-compiled Java systems are approaching the performance of

native code systems, they do so at greater security risk.

MANE improves upon PLANet in a number of ways, such as hierar-

chical addressing, mobility emulation, and service update extensions [7]. For

hierarchical addressing, we separately implemented network layer and link

layer protocols. By changing link interfaces based on the addressing hierarchy,

mobility emulation is possible. Enhancing a node with a plug-in or update

extension is achieved through type-safe dynamic linking [48].

MANE presents a two-level namespace architecture. References in the

packet to services are resolved by the service plug-in namespace, while ref-

erences between plug-ins and/or the rest of the program are resolved by the

program namespace. In both cases, these namespaces may be changed at

runtime to refer to new entities. A benefit of this separation is that the pre-

sentation of each namespace can be parameterized by policy, for example, to

include security criteria. This is useful because the division between the Ac-

tive Packet, plug-in extension and update extension layers constitutes a likely

division of privilege. APs are quite limited in what they can do, so we allow ar-

bitrary users to execute those packets. However, when a packet calls a service,

implemented as a plug-in extension, the privilege of the packet can be checked

before allowing the call to take place [49]. Similarly, when an update exten-

sion is loaded, the privilege of those extensions that would relink against the

update extension can be checked before allowing the relinking to take place. A

frequent use of plug-in extensions is to extend the services available to PLAN

24

packets. To do this, extensions are loaded and plugged into the service symbol

table. When future active packets are processed, they will reference this table,

and thus have access to the new functionality. Update extensions are dynam-

ically linked as well, but differ from plug-in extensions in that the existing

node code and any existing extensions are relinked following the update [8].

In this way, they may ‘notice’ that a new version of a particular module has

been loaded. This process allows us to make fundamental changes that were

not foreseen by the original system implementors.

2.3.1 Network Service

From the point of view of network architecture, MANE is much like IP in key

ways. MANE addresses are globally unique and hierarchical. The hierarchy is

based on sub-nets of nodes and individual nodes on a sub-net can broadcast

to each other, while communication with nodes on other networks must be

mediated by routers. MANE routers run a conventional link-state routing

protocol and although there is no support currently for multicast, it could be

added using the same techniques used for IP-multicast. MANE supports a

form of DHCP which can dynamically assign both an address and a default

router to a node connected to a given network. MANE uses an ARP style

protocol to resolve the link-level address corresponding to a network level

address and there is a provision for proxy-ARP as well.

There are, of course, key differences between the IP Internet and MANE.

MANE communicates using only active packets and nodes can be extended

25

Conventional
Sockets
in kernel

Execution
Environment

Node OS

Active
Packets

Transmission

Execution
Environment

Node OS

Application

Transmission

Active
Node

Execution
Environment

Node OS

Application

Transmission

Non-Active
Node

PLAN UDP IP

Figure 2.3: Transmission of Active Packets

and updated. To support packet programming, MANE provides certain basic

services, such as a means to identify a node and to store and retrieve soft state

based on a key. Such a soft-store is an essential service for Active Packets and

is provided by many AN systems [24, 34].

At its lowest level, MANE communicates by using UDP as a point-

to-point channel. PLAN programs are encapsulated inside UDP packets as

payloads, as shown in Figure 2.3. On top of UDP, MANE then provides an

emulation of broadcast networks. This level also provides support to emulate

physical node mobility, allowing a node to leave a sub-net and to join new

sub-nets. To the higher-level software, this emulation is transparent and the

high level protocols assume they can broadcast to all the other nodes on their

26

sub-net. When a node leaves a sub-net, it no longer can directly send to or

receive from nodes on the old sub-net; when it travels to a new sub-net, it can

both send and receive to node on the new sub-net. This support for mobility

is adequate for experimenting with mobile-IP style mobility [11, 12], but will

need to be augmented to support more general mobile networks.

2.3.2 PLAN

PLAN is a special-purpose functional language for packets of a programmable

network. PLAN has lightweight and limited functionality based on a restricted

set of primitives and data types. Functional limitations of PLAN are supple-

mented with active extensions that provide service routines to PLAN pro-

grams. Therefore, PLAN is restricted with no loss in overall functionality,

but with a gain in the safety guarantees for packet programs. For safety, all

PLAN programs are guaranteed to terminate. Furthermore, the number of

PLAN packets that can be generated from an initial packet is limited by a

global resource bound, thus limiting the resources consumed in the network.

Before we describe the details of PLAN, we present how PLAN works

using a simple example that performs ping. In the following sections, we

will explain some of PLAN’s primitive operations and core services, and how

exception handling works. These sections may be skipped (or returned to),

as they are only needed to gain a full understanding of a small number of

examples later in the dissertation.

27

1: fun ping (source:host, destination:host) : unit =

2: if (thisHostIs(destination)) then

3: OnRemote(|ack|(), source, getRB(), defaultRoute)

4: else

5: OnRemote(|ping|(source, destination), destination,

6: getRB(), defaultRoute)

7:

8: fun ack () : unit = print ("Ping Success")

Figure 2.4: PLAN for ping

A PLAN example: ping

Figure 2.4 presents PLAN code to test if the destination host is active. The

main function, ping() (Line 1), has two arguments of the source address

and the destination address. The other function, ack() (Line 8), is a simple

acknowledgment function to print out the ping result on the source.

Ping works as follows: when this program is injected into the network, it

executes at the source. It tests to see if it is at the destination (Line 2). Since it

is not, it will execute the else clause (Lines 4 – 6). OnRemote() spawns a new

active packet and provides multi-hop transmission of the packet without exe-

cution until it reaches a remote host. The first argument of OnRemote() is an

expression of a function call. The function to be called, ping, is enclosed by |’s
followed by the arguments, (source, destination). The second argument is

the remote host’s address. GetRB() returns the resource bound available to the

new packet. Resource bound acts much like a hop-count, and restricts packet

generation. With the help of the default routing function, defaultRoute, this

28

packet is sent to the next hop on a route to the destination.

When it reaches the destination, the function call, ping(), evaluates the

if statement (Lines 2 – 3). In this case, OnRemote() generates a new active

packet to be sent to the source. This active packet performs the function call,

ack(), and prints out “Ping Success” on the source.

Although simple, this example shows that protocols can be implemented

in PLAN without defining new packet types, as well as the basic idea of using

PLAN for conditional execution and how remote evaluation works.

Primitive Operations

The most important network primitives are OnRemote() and OnNeighbor().

By spawning new active packets, they enable remote computation. The list

iterators, foldl and foldr, are provided as PLAN primitives rather than as

service functions because PLAN does not support language-level parametric

polymorphism or higher-order functions [50].

• OnRemote

The syntax of this primitive is:

OnRemote(E, H, Rb, Routing).

The meaning of this primitive is to evaluate E on node H. Rb is the resource

bound of the new active packet generated by this primitive. It acts much like

a hop-count. Finally, Routing is a function used to decide how to route the

packet to H.

29

E must be an expression of a function call. Syntactically, the function

to be called, f, is enclosed by |’s followed by the arguments, (a1, ..., an).

H is an expression of type host. Rb is an integer indicating the resource

bound transferred from that of the current packet. Routing should be a service

function of type host→ host × dev; Routing(H) must return a neighbor node

that is the next hop on a route to H, and the device that the packet should

be sent through.

• OnNeighbor

This network primitive is similar to OnRemote, except that the child packet

must be evaluated on a neighbor node. The syntax is:

OnNeighbor(E, H, Rb, D).

The meaning is to evaluate E on neighbor node H. Rb is the resource bound

transferred from that of the current packet. D indicates the interface name

of type dev that the packet should be sent through. Devices are normally

obtained by calling a routing function for the neighbor node.

• foldl

Foldl is the left-associative list iterator. The meaning of

foldl(f, a, [b1; ...; bn])

is

f(f...f(f(a, b1), b2)..., bn)

30

where f is the name of either PLAN function or service function.

• foldr

Foldr is the right-associative list iterator. The meaning of

foldr(f, [a1; ...; an], b)

is

f(a1, f(a2, ...f(an, b)...)).

Together these two iterators allow us to perform many iterative operations on

lists, despite the fact that PLAN, by design, has no way to express loops.

Core Services

Services are node resident functions that can be called from PLAN. Services

may be divided into two categories: the core services and additional service

packages. The core services are expected to be resident on all active nodes.

Each service package consists of one or more service functions that are callable

from PLAN programs. Like all PLAN functions, services always return a

value; a service will return unit if the output has no meaning. Some of the

core services are as follows:

• getRB: () → int

Returns the current amount of resource bound.

• getSrc: () → host

Returns the originator of the packet.

31

• thisHost: () → host list

Returns a list of all network addresses for devices on the current node.

• thisHostOf: dev → host

Returns the network address corresponding to the given device.

• thisHostIs: host → bool

Returns true if the given address matches any of the addresses of inter-

faces on the current node.

• getSrcDev: () → dev

Returns the interface on which the packet arrived.

• getDevs: () → dev list

Returns a list of all interfaces on the current node.

• defaultRoute: host → host × dev

Returns the next hop address and the device that the packet should be

sent through. By the default, this uses the RIP routing function.

• getNeighbors: () → (host × dev) list

Returns the list of the neighbors attached to the same physical network.

• length: a list → int

Returns the length of the given list.

• member: (a, a list) → bool

Checks whether the given element is in the list or not.

32

• remove: (a, a list) → a list

Removes the specified element from the given list.

Exception Handling

The syntax for exception handling is:

try exptry handle e => exphandle

where e can be either an exception literal or a variable name. If the exception

e is raised and caught during the execution of exptry, then expression exphandle

is evaluated. If e is not a literal exception, it is regarded as a variable name.

Any exception raised during evaluating exptry will be bound to e, and thus

any PLAN exception can be caught.

Some of the language level exceptions are as follows:

• ServiceNotPresent is raised when a service is called, which is not resi-

dent on the active node.

• DivByZero is raised upon an attempted division by zero.

• NotEnoughRB is raised when the current packet runs out of resource

bound, or if it attempts to allocate to the child packet more than avail-

able resource bound.

• HostNotLocal is raised when a router is asked to forward a packet to a

node that is not connected.

33

• NoRouteEntry is raised when the invoked routing function does not know

of a route for the specified destination.

2.4 The Performance of Active Networking

A variety of existing AN research has focused on the question of how AN

systems perform. Since these issues are well understood, we have designed

and implemented MANE with an eye toward flexibility and limited hardware

demands, rather than performance evaluation. In particular, as described,

MANE emulates wired and wireless networks at the user level using UDP com-

munication. This greatly aids experimentation, especially on a limited hard-

ware base not equipped with wireless network interfaces, but it also severely

limits the raw performance of the system. Nevertheless, it is useful to under-

stand the performance impacts of these technologies and so here we summarize

the results already obtained by the AN community.

Three aspects of the SwitchWare architecture may compromise systems

performance as compared to conventional network architectures. First, the use

of Active Packets may result in a space overhead in the packets as compared to

conventional packet headers. Second, there may be a execution time overhead

for processing Active Packets. Third, there may be an execution time overhead

for the use of Active Extensions. Each of these issues has been addressed by

the AN community and we discuss each one in turn here. The bottom line is

that these results strongly suggest that the overhead of using AN is small.

34

Space Overhead for Active Packets

In MANE, APs carry the code for the packet programs as text strings in

the actual packets. This is the simplest, most direct approach, but also the

one that is the least space efficient. In general, AP systems have chosen to

either carry packet programs by value, where some representation of the code

is carried in the packet itself, or, by reference, where only a reference that

allows the actual code to be looked up is carried in the packet. The former

approach has an advantage when packet programs are not used repeatedly,

while the later has an advantage when the same programs are reused many

times. The two approaches are compatible and we would expect mature AN

systems to support both modes.

In PLAN and its followup SNAP (discussed in more detail below) pack-

ets carry programs by value. This still allows a more compact representation

than carrying the actual program text. In particular, in the CAML version of

PLAN [26], packet programs are carried as parse trees, while SNAP carries

packets in a compact byte code representation. Still, neither of these systems

made any serious attempt to optimize space use in AP’s.

The most compact representation in wide use is that of the Active Net-

work Transport System, ANTS [24]. ANTS uses Java for its packet programs

and because most Java programs have very large representations, especially

compared to PLAN, it was important for ANTS not to carry packet programs

by value. Instead, ANTS carries programs by reference using a 64 bit crypto-

35

graphic hash of the actual Java code. This hash is used to lookup code in a

node local cache. If the cache does not contain the program, ANTS has mech-

anisms to fetch the code from other nodes. This overhead of 64 bits compares

quite favorably to the overhead used in conventional network architectures to

identify the protocol and protocol version for the packet. Thus, in general,

APs do not need to use more space than conventional packets.

Interestingly, APs actually offer the opportunity to save space com-

pared to conventional packets. This is because of two features of conventional

packets. First, because they may need to have something added to them in

the future due to some initially unanticipated need, conventional packets of-

ten have “reserved” fields defined. Until they are used, these fields are simply

wasted space. Since APs accommodate new features using new packet pro-

grams, they have no such wasted space. Second, another source of space waste

in conventional packets are fields that are rarely used. An example is IP’s

fragmentation fields, which are used by only a few percent of packets in the

Internet. In AN systems, packets that do not need a feature can carry pro-

grams that do not require the data used by that feature, thus resulting in lower

overhead.

Execution Time Overhead for Active Packets

In most early AN systems there was a significant overhead for AP execution.

There were three principle reasons for this, all of which also apply to MANE.

First, these systems were implemented outside the OS kernel, requiring expen-

36

sive kernel crossings to process packets. Second, the representations used by

these languages for packets was not optimized for rapid execution, resulting in

overhead for marshalling and unmarshalling. Finally, the languages and their

implementations were not optimized for execution performance. In general,

these inefficiencies arose because early systems were designed and implemented

to explore the basic ideas behind AN and not for high performance. In fact,

it was necessary to build these initial systems to even be able to understand

what factors were key in the design of more efficient AP systems.

Fortunately, two second generation AP systems have shown that all of

the above overheads can be eliminated and that AP systems can be quite

competitive with conventional architectures. The first of these efforts, a High-

Performance Active Network (PAN) [10], showed that by implementing AP

processing in the kernel and by using C as the AP language good performance

could be achieved. Unfortunately, this approach compromised system safety.

A more comprehensive effort was Jonathan Moore’s dissertation on Safe

and Nimble Active Packets (SNAP) [51]. SNAP built on the experience gained

from early PLAN implementations and most PLAN programs, including those

used in this dissertation, can be compiled into SNAP programs [52]. SNAP

uses a compact and efficient byte-code representation for AP programs and it

transmits these packets using a layout that can be executed “in place.” This

eliminates marshalling and unmarshalling overheads and also reduces other

transmission overheads. SNAP itself is processed by a high performance byte-

code interpreter coded in C. The design of SNAP is such that it can be safely

37

executed in the kernel as part of the normal OS processing of packets and

SNAP has been added to the Linux kernel. The result is that executing SNAP

packets adds only a few percent overhead as compared to IP in Linux [9].

Thus, in general, we expect the overhead of using APs can be made small.

Execution Time Overhead for Active Extensions

The most ambitious and sophisticated AE system to date is the Dynamic

Updating system [8]. As discussed, dynamic updating supports both plug-in

and update extensions and it was chosen as the implementation environment

for MANE because of this flexibility. Dynamic updating in turn is based on

Typed Assembly Language (TAL) [43]. Since TAL provides a safe low level as-

sembly language target for compilers there is no inherent performance penalty

in its use. Thus the key question is whether Dynamic Updating introduces

significant overheads. The question is addressed in detail in Michael Hicks’

dissertation [53] and in the Dynamic Updating papers [54, 8]. The conclusion

is that Dynamic Updating adds only a small overhead, well within the variance

that different compilers introduce.

38

Chapter 3

Case Study I: Mobile IP

Our first case study applies AN-based adaptivity and evolution to implement-

ing and deploying the Mobile IP protocol [11, 12]. We show how AN can be

used to upgrade a network’s services on the fly, without centralized coordina-

tion and without halting network service. By doing so, we are making a strong

claim that AN can be used to quicken the pace of network service evolution.

For our demonstration, we describe how to augment an active network that

provides standard, IP-like service to support routing for mobile hosts, in the

spirit of Mobile IP. While our primary goal is to demonstrate the capabili-

ties of AN technology in evolving a network, a secondary goal is to explore

the suitability and usefulness of AN techniques within the mobile networking

domain.

39

3.1 Mobile IP Background

The goal of Mobile IP is simply to allow an end-node to move from one physical

network (subnet in IETF terminology) to another while still communicating

using its original IP address. The difficulty arises because IP addresses are

used both to name a node and to identify the location of the node. This is

done by embedding the subnet where the node is located in its IP address

(which is to say in its name). Routers deliver a packet destined for an IP

address to the subnet embedded in that address. Unfortunately, if that node

has moved to another subnet, then its original subnet found in its IP address is

the wrong place to deliver it. Mobile IP addresses this problem by separating

the naming and location issue by using a forwarding mechanism as described

below [11, 12].

Our motivation for choosing Mobile IP as an example comes because

its design was severely constrained by concerns about Internet evolution. In

particular, the designers of Mobile IP were concerned that it would be virtually

impossible to deploy if it required changes to a significant part of the network.

Thus the design was constrained so that only the mobile node itself, a router

on the original subnet, and a router on the new subnet needed to be changed to

support the protocol. The belief was that a user had control over the mobile

node and at least some potential influence over the routers in their home

networks and perhaps on the routers on their new network. It was deemed

infeasible to change the internal nodes of the Internet, despite the fact that

40

not doing so would lead to suboptimal performance [55, 56, 57]. We will see

that AN allows both much easier evolution of the original Mobile IP design,

but also a relaxation of these fundamental design constraints.

3.1.1 Basic Mobile IP

Figure 3.1 shows a basic example of Mobile IP. Only end nodes can be mobile.

A mobile node (MN) has a “home” network, which is implicit in its address.

Even when a node is mobile, packets for it are sent to its home network for

delivery. If a host is not mobile, packets are delivered conventionally. If a host

is mobile, when it connects to a remote or “foreign” network, it acquires a local

address from the FA. The MN then sends a registration packet to the HA on

its home network with the information that it can be contacted at its newly

acquired address (care-of-address). When a packet from the correspondent

node (CN) arrives at the HA destined for the MN, the HA tunnels the packet

to the FA using its address on the foreign network. There, the packet is de-

tunneled and delivered to the MN.

3.1.2 Extension of Mobile IP: Route Optimization

Because the packets from the CN are routed based on the MN’s home address,

the base Mobile IP protocol forces all the packets for the MN to be routed

through the HA. As shown in Figure 3.1, there are indirect connections from

the CN to the MN through the HA. This is referred to as triangle routing;

41

��������

���������

FA

CN

MN

HA

Figure 3.1: Mobile IP

packets may often be routed along paths that are longer than optimal. This

indirect routing is a direct consequence the constraints in the Mobile IP de-

sign. The IP address is the key to packet routing. Meanwhile, the IP address

works for both identification and location. Mobile IP supports mobility by

separating the roles of the IP address and adding mobility agents on the edges

of the network. Within the current Mobile IP architecture, triangle routing is

inevitable; this exemplifies the evolutionary limitations of current networks.

Because triangle routing may cause significant delay and unnecessary

overhead on the home network and the Internet, route optimization was pro-

posed [58]. It requires changes to the CN, placing it outside the original

architectural constraints of Mobile IP. By allowing the CN to cache a bind-

ing of the MN’s home address and care-of-address, route optimization avoids

triangle routing. If the CN has a binding entry for the MN, it can tunnel

42

the packets directly to the care-of-address of the MN and deliver the packets

without any assistance from the HA. Route optimization is likely to improve

Mobile IP performance, however, the CN must be aware of the possibility of

the MN’s mobility and be able to maintain a binding cache containing the

care-of-address of the MN. It is quite difficult to evolve the Internet to sup-

port route optimization, because route optimization requires all possible CNs

to be changed for full deployment.

3.1.3 The State of The Art: Standardization and De-

ployment

We discuss the current state of Mobile IP in the current network both in

terms of standardization and deployment. The key point is that despite its

being a well understood technology for some thirteen years, it is neither fully

standardized nor widely deployed. Thus far, we have failed to evolve the

Internet to support Mobile IP.

The idea of supporting mobility in the IP layer was first proposed in

1991 [11]. The first Request For Comments (RFC) for IP mobility support,

RFC 2002, was published in 1996 by The Internet Engineering Task Force

(IETF) [59]. RFC 2002 was obsoleted by RFC 3220 in January, 2002 [60],

which was obsoleted by RFC 3344 in August, 2002 [12]. It has been thirteen

years since the idea was first published; the standardization for Mobile IP is

still an ongoing process [61].

43

Meanwhile, the Internet draft for route optimization was expired with-

out standardization in March, 2002 [62]. Because route optimization requires

all IPv4 nodes to be changed with the addition of a binding cache, it was

deemed not realistic to standardize route optimization. Since the standardiza-

tion of Mobile IPv6 is at an early stage, the IETF included route optimization

as a “fundamental part of the protocol, rather than a nonstandard set of ex-

tensions” [63]. Unfortunately, deployment of IPv6 has also been very limited.

Even though the cellular industry has considered using Mobile IP to sup-

port wireless data service [64, 65], Mobile IP has not been deployed throughout

the Internet. In order to deploy the base Mobile IP protocol in the current

network, the required modifications are as follows:

• Architecture

– New functional entities on the edges: Home Agents, Foreign Agents,

and Mobile Nodes

– MNs should maintain a constant IP address when it changes its

location.

• Functionality

– Mobility Agents (HAs and FAs) should be equipped with the fol-

lowing functionality:

∗ Location Management

44

· HAs should maintain a Location Directory for MN’s care-

of-address.

· FAs should maintain a visitor list.

∗ Registration: there should be a defined protocol and message

formats for MN’s registration.

∗ Tunneling

· HAs should be able to intercept and tunnel the packets

destined for MNs.

· There should be defined protocols, such as IP-in-IP encap-

sulation, for tunneling and de-tunneling between the HAs

and FAs.

• Extended Functionality: Route Optimization

– Correspondent nodes should be aware of mobility and maintain a

binding cache for MNs.

– There should be a defined protocol and message formats for main-

taining that binding cache.

As we will see in Section 3.5 implementing and deploying this level of func-

tionality is a non-trivial task.

45

3.2 MANE Modifications for Mobile IP

We can implement and deploy a new protocol using AN’s various mechanisms

discussed in Section 2.2.1. A key differentiating factor among these mech-

anisms concerns whether a new service is application-aware or application-

transparent. Application-aware network services require that an application

must be aware that it is doing so before it can use a new service. For exam-

ple, using IP-style multicast requires the sending application (or perhaps the

middle-ware used by the application) to send to a special multicast address.

In contrast, application-transparent services are those that act without the

application’s knowledge. For example, in IP-style mobility, packets destined

for a host’s home network are transparently forwarded to that host’s current

remote network; the sending application does not need to be aware of mobile

IP services for them to work. In making this distinction, we have realized that

APs and, in many cases, plug-in extensions cannot solely provide transparent

service; they require the aid of update extensions. However, the added power

of plug-in and update extensions makes them a greater security risk; services

would benefit from using a combination of mechanisms to balance the needs

of the application and of the network.

Consider what must be added to MANE to support this protocol:

1. The home agent must be identified.

2. There must be a way to send a registration packet.

46

3. There must be a way to recognize when a packet arrives at the home

agent.

4. There must be a way to create a tunnel.

5. There must be a way to remove the original packet from the tunnel.

The application-aware and transparent evolutions will share the same

implementation for many of these functions. The shared implementation is

the inherently non-transparent part of Mobile IP, including basically all but

Point 3.

3.3 Active Packet Evolution

If it is acceptable for the node trying to communicate with the mobile host to

be aware that the host might be mobile, then it is possible to implement the

basic Mobile IP protocol discussed in Section 3.1 using only APs. Some of this

implementation can be shared with the update extension evolution example (in

Section 3.4). We discuss the common elements first, followed by a discussion

of the aspects unique to APs.

3.3.1 Setting Up the Forwarding Path

The application-aware and transparent versions share the same infrastructure

for setting up the forwarding path to a mobile host (while they differ in how

packets are actually forwarded). Before a mobile node leaves its home network,

47

1: fun addMe(source:host, HAgent:host, FAgent:host) : unit =

2: (storeTuple(source,(HAgent,FAgent,100));

3: proxyARP(source))

4:

5: fun register():unit =

6: OnRemote(|addMe|(homeName(), homeAgent(), localName()),

7: homeAgent(), getRB(), defaultRoute)

Figure 3.2: PLAN for Setting Up Forwarding Path

it must identify the router that serves as its home agent. For simplicity, we

assume that its default router serves this purpose. Once the node has attached

itself to a new network and has a unique address, it sends an AP containing a

control program to register itself to its home agent.

Figure 3.2 shows the PLAN code for setting up the forwarding path.

The main function, register() (Lines 5 – 7), generates a new packet to

execute on the home agent. When executed, this program calls the function

addMe(), and simply adds the information to the home agent’s soft state keyed

by the mobile node’s home network address (Line 2). In addition, the function

makes the home agent work as a ARP proxy for the mobile node (Line 3).

Both the application aware and transparent versions share the same soft-state

entries, allowing them to use the same control program and to coexist.

3.3.2 Forwarding: The Application-aware Protocol

The key questions remaining are how do we detect that a packet is at the

home agent of a mobile host and how is the packet then tunneled to the

48

HA

MN CN

(unchanged)

Subnet 1

MN

Subnet 2

app aware
active
packet

Subnet 3

LEGEND

MN = Mobile Node

HA = Home Agent

CN = Corresponding
Node

Figure 3.3: Active Packets for Mobile-IP

unique address. Because this version is application aware, both of these steps

can be done by having the application use a special AP as shown in Figure 3.3.

The PLAN code for the packet that must be sent by the application is

shown in Figure 3.4. GetToAgent is the main function and when it executes,

it first looks up dest in the soft-store using lookupTuple (Line 3). If that

succeeds, it has found the home agent and it uses OnRemote to send a new

packet, the tunnel, that will execute FoundFA at the foreign agent with the

same arguments as getToAgent. OnRemote provides multi-hop transmission of

the packet without execution until it reaches the foreign agent. If the lookup

fails the handle will execute. If we have actually reached the host then we

deliver the packet. Otherwise, it looks up the next hop toward dest. It then

uses OnNeighbor, which only transmits a packet one hop, to send the packet.

Thus the packet travels hop-by-hop looking for the home agent.

49

1: fun getToAgent(dest, payload, port) =
2: try
3: let val agents = lookupTuple(dest) in (* (HA, FA) tuple *)
4: OnRemote(|FoundFA|(dest, payload, port), #2 agents, getRB(), defRoute)
5: end
6: handle NotFound =>
7: if (thisHostIs(dest)) then deliver(payload, port)
8: else
9: let val next = defaultRoute(dest) in
10: OnNeighbor(|getToAgent|(dest, payload, port), #1 next,
11: getRB(), #2 next))
12: end
13:
14: fun FoundFA(dest, payload, port) =
15: let val hop = defaultRoute(dest) in
16: OnNeighbor(|deliver|(payload, port), #1 hop, getRB(), #2 hop))
17: end

Figure 3.4: PLAN packet for Mobile-IP

Now consider the FoundFA function. It executes on the foreign agent,

which in our case is the mobile host, but might be some other node on the

same sub-net. It sends a packet to the dest by executing the deliver function.

This is where the original packet is removed from the tunnel. Notice that all of

that functionality is encoded in the tunnel packet program itself. The foreign

agent does not need to have any knowledge of its role as a tunnel endpoint; it

just has to support PLAN.

3.3.3 Route Optimization: Binding Update on CN

Although avoiding the triangle routing problem is clearly a desirable goal,

efforts to achieve this goal in the existing network have been abandoned due

to the difficulty of changing the CN. In this section, we show that with an

50

1: fun getToAgent(dest, payload, port) =
2: try
3: let val agents = lookupTuple(dest) in (
4: OnRemote(|FoundFA|(dest, payload, port), #2 agents, getRB()/2,
defRoute);
5: if(!thisHostIs(getSrc()))
6: OnRemote(|storeTuple|(dest, (#1 agents, #2 agents, 100)),
7: getSrc(), getRB(), defRoute)
8:) end
9: handle NotFound =>
10: if (thisHostIs(dest)) then deliver(payload, port)
11: else
12: let val next = defaultRoute(dest) in
13: OnNeighbor(|getToAgent|(dest, payload, port), #1 next,
14: getRB(), #2 next))
15: end
16:
17: fun FoundFA(dest, payload, port) =
18: let val hop = defaultRoute(dest) in
19: OnNeighbor(|deliver|(payload, port), #1 hop, getRB(), #2 hop))
20: end

Figure 3.5: PLAN packet for Mobile IP with Route Optimization

almost trivial modification of our application aware implementation we can

support route optimization.

In order to avoid the triangle routing by route optimization, the CN

needs to maintain a binding cache for the MN; the binding cache needs to be

updated with the MN’s current location by the HA. In the application-aware

approach, since the CN is aware of mobility and able to send special packets,

we evolved our existing implementation to support route optimization using

APs. Figure 3.5 presents PLAN packet supporting route optimization.

The three underlined lines of code show the changes made to our original

version (see Fig 3.4). The change is simple, when a packet reaches the HA,

51

not only does it tunnel the packet to the FA, it also sends an update to the

CN (lines 6, 7), which installs the binding in the CN’s soft state. After that

when the application sends a PLAN packet, it will find the binding on the CN

and will tunnel it directly to the FA. The if (line 5) merely avoids updating

the CN when it already has a binding. The rest of the code works exactly as it

did in the original version. We also note that none of the other active packets

need to change to include this support.

Needless to say, this change is so trivial that it was accomplished in a

few minutes. However, it makes a big difference in optimizing packet routing.

3.3.4 Route Optimization: Binding Update with a Proxy

Agent

With AN we can go beyond the form of route optimization unsuccessfully

envisioned for the existing architecture. The version we have already shown

will optimize routing between a particular CN and a MH. However, every time

a new CN communicates it will have to go through the HA and then have its

route optimized.

Because AN allows us to actually change the interior of the network

we can do better. The idea is simple, not only do we install a binding on a

CN, we also install bindings in any active routers along a path from the HA

to the CN, making these routers proxy agents for the HA. Proxy agents are

another kind of mobility agent that maintain soft state of the MN’s location.

52

By spreading the MN’s binding information through the proxy agents, we can

improve the routing behavior of packets sent from CNs that have not yet sent

a packet to the MN. As soon as such a packet encounters a proxy agent, it is

tunneled to the FA.

Even though proxy agents are likely to enhance route optimization,

it was thought infeasible to include them in the Mobile IP architecture due

to the difficulty of evolving the internals of the current network. However,

the AN architecture allows flexible network evolution, even in the internals

of the network. We designed and implemented proxy agents that are spread

throughout the network.

Figure 3.6 is the PLAN code for route optimization with proxy agents.

The underlined parts were added to the route optimization packet as shown

in Figure 3.5. The change is simple. As with our other packets, when a

binding cache is found (line 3) the packet is tunneled to the FA. If this happens

before reaching the HA then the route has been optimized. Next, instead of

just updating the CN, a new packet is spawned (lines 5-7) which will single-

hop through the network back to the CN, trying to install a new binding

where possible. This new packet (lines 22-30) uses much the same logic as

the original one for its single hopping and so was very easy to code. It took

about 30 minutes to program the packet; three lines of the original packet were

modified and nine lines were added.

53

1: fun getToAgent(dest, payload, port) =
2: try
3: let val agents = lookupTuple(dest) in (
4: OnRemote(|FoundFA|(dest, payload, port), #2 agents, getRB()/2,
defRoute);
5: let val next = defaultRoute(getSrc()) in (
6: OnNeighbor(|updateProxy|(dest, #1 agents, #2 agents, getSrc()),
7: #1 next, getRB(), #2 next)
8:) end
9: handle NotFound =>
10: if (thisHostIs(dest)) then deliver(payload, port)
11: else
12: let val next = defaultRoute(dest) in
13: OnNeighbor(|getToAgent|(dest, payload, port), #1 next,
14: getRB(), #2 next))
15: end
16:
17: fun FoundFA(dest, payload, port) =
18: let val hop = defaultRoute(dest) in
19: OnNeighbor(|deliver|(payload, port), #1 hop, getRB(), #2 hop))
20: end
21:
22: fun updateProxy(mn, ha, fa, cn) =
23: (try
24: storeTuple(mn, (ha, fa, 100))
25: handle ServiceNotPresent => ();
26: if(thisHostIs(cn)) then ()
27: else
28: let val next = defaultRoute(cn) in
29: OnNeighbor(|updateProxy|(mn, ha, fa, cn), #1 next,
30: getRB(), #2 next) end)

Figure 3.6: PLAN packet for Mobile IP with Proxy Route Optimization

54

3.4 Update Extension Evolution

A potential problem with the evolutions shown so far is that some part of the

system must send special packets to take advantage of the new service. In

some applications, being aware of new packets or services is acceptable, while

in others it is not. The latter is true for Mobile IP: it would be unreasonable

to change all possible senders on the network to use our special packets from

Section 3.3 to send to a potentially mobile host. In this section, we demon-

strate how using update extensions, we are able to evolve the network so that

forwarding is transparent to the sender and does not require using a special

packet.

The basic strategy is shown Figure 3.7. Here a packet that is not aware

of mobility is destined for a mobile node. However, because we have updated

the Home Agent to support transparent forwarding, it is able to intercept the

packet and tunnel it to the mobile host. Thus, although we use Active Packets

and plug-in extensions to help perform our evolution in a convenient way, the

key to transparent evolution is really the use of update extensions.

Because mobility is inherently not transparent to the mobile host itself,

we can reasonably have it set up the forwarding path to the remote agent as

described in Section 3.3.1, with the added benefit that the nontransparent and

transparent techniques can coexist.

55

MN CN

Subnet 3

MN

Subnet 1

Subnet 2

HA
(updated
forwarding

code)

packet

encapsulated app unaware
active
packet

LEGEND
MN = Mobile Node

HA = Home Agent

CN = Corresponding
Node

app un

Figure 3.7: Update Extension for Mobile-IP Evolution

3.4.1 Forwarding: The Application-transparent Proto-

col

To make the forwarding transparent to the sender requires a way to detect that

a packet has arrived at the home agent and to forward it to the foreign agent

without having to rewrite the sender’s packet code. The most straightforward

way of doing this is to modify the router’s forwarding logic: whenever a packet

arrives, look up its destination address in the soft state that is used to record

which hosts are mobile, and if present, forward the packet to the foreign agent.

Pseudocode for router forwarding logic is shown below (in a C-like syntax),

with the additional part shown in italics:

void sendToNextHop(pkt_t packet, host_t dest){
host_t nextHop = Route(dest);

56

if is_mobile_host(dest) then

tunnel_to_foreign_agent(packet, dest);

else

send_on_link(packet, dest, next_hop);

}

Note that the code implementing is mobile host and tunnel to foreign

agent would be implemented elsewhere and loaded separately.

While the addition of an if-statement to the forwarding loop is con-

ceptually simple, it is impossible to realize on the fly without the support of

update extensions. This is because the forwarding loop in MANE was not de-

signed for change; that is, it did not provide a plug-in interface for performing

new operations in the loop.1 As a result, effecting this change would require

changing the code statically and recompiling, and then bringing down the node

and restarting it with the new code. This is practical when only a few nodes

need to be updated, but much less so if an evolution needs to be widespread.

On the other hand, the power of update extensions makes them more

dangerous. For example, the added conditional in the forwarding loop above

will be invoked for all packets, even those not interested in mobility. In an

active packet-only system, the needs of one packet will not interfere with an-

other’s in this way. Similarly, allowing multiple users update arbitrary parts

1We could imagine designing the forwarding loop to allow for extensibility, as is the case
in CANES [29]. However, there will always be parts of the system that were not coded to
anticipate future change, and therefore will lack a plug-in interface. As a result, these parts
of the system can only be updated if with update extensions.

57

of the router’s code could result in incompatible changes, and/or an unintelli-

gible code base. As such, update extensions will likely be limited to privileged

users, limiting their applicability.

Implementing this change as an update extension in MANE requires two

actions. First, dynamically load and link a mobility module that implements

the test of whether a packet needs to be forwarded as well as providing the

tunneling code. Second, dynamically load a new version of the forwarding

code that does the required test and then update the old running code with

the new version.

One interesting point remains. How is the tunnel itself created? Essen-

tially, it is created in the same way as in the non-transparent case, although

obviously done by the node resident mobility code. A new AP is created which

when executed on the foreign agent unpacks the original packet and delivers

it. Note that tunneling this way works even when the packet being tunneled is

not active and thus again avoids the need for the foreign agent to act explicitly

as the tunnel end-point.

3.4.2 Transparent Proxy Agents

Here we discuss how we added the proxy agents from Section 3.3.4 so that even

when the CN is not aware of mobility (and even may not be active) we can

still achieve route optimization. The more limited form of route optimization

in which only the CN has a binding cache is just a special case of what we

describe here.

58

We implemented a new AE which not only transparently forwards pack-

ets to the FA, but which also sends an AP single hopping back toward the

CN. As this active packet is executed on active routers along its path, may

encounter two cases. The first case is that the router already has the proxy

agent AE installed. In this case, the AP simply adds the information about

the MH and FA to the binding cache and moves to the next active router closer

to the CH. The second case is that the router does not already have the proxy

agent AE installed. In that case, assuming that security concerns allow it to,

the AP installs the proxy agent AE using dynamic updating. Note that this

is done on the fly without taking the router down. The eventual effect of this

is that the proxy agent AE will be gradually spread throughout the network

on an on-demand basis. If the only node that allows the AE to be installed is

the CH then we have the more restricted version of route optimization envi-

sioned for the current architecture, except that now we actually have a way of

deploying the new functionality and in an incremental way.

Our original AE for application-transparent Mobile IP was 84 lines of

Popcorn. Our new extension that supports proxy agents and dynamically

deploying itself required an additional 46 lines of Popcorn to implement. The

additional coding took less than a day. Also notice that by using dynamic

updating, not only can we evolve nodes that have neither extension loaded,

but we can also evolve nodes that had our original extension loaded so that

they have the proxy agent functionality.

59

3.5 Advantages of AN for Evolution

In this section, we support our thesis by directly comparing the evolvability of

the traditional network to that of a network with support for AN. We make this

comparison in terms of standardization, implementation, deployment, and the

ability to evolve the base Mobile IP protocol to support route optimization. In

each of these areas AN makes evolution easier than in the current architecture.

3.5.1 Standardization

Traditional Arch. Since the idea of supporting mobility in the current net-

work was first published in 1991 [11], there have been many efforts to stan-

dardize the Mobile IP protocol [59, 60, 12, 61]. After the first Request For

Comments (RFC) for Mobile IP, RFC 2002, was published as a standards track

RFC in 1996, there have been changes in the standard document [60, 12, 61].

The current one, RFC 3344, was published in August, 2002 [12] and, in fact,

the standardization for Mobile IP is still in progress [61]. Further, the effort to

evolve the base Mobile IP to support route optimization was abandoned with-

out standardization in March, 2002 [62]. Because route optimization requires

all IPv4 nodes to be changed, it was deemed not realistic to standardize route

optimization.

AN Arch. In a basic way, the highly dynamic nature of AN side-steps the

need for standardization. At its heart, the need for standardization is moti-

60

vated by the need to interoperate; all participants in a protocol agree on the

standard and so they may interoperate. For the application-aware implemen-

tations, all that is needed to make the protocols interoperate is that the soft

state stored at the HA by the MN be of the form expected by the packet

sent by the CN. This is just a matter of sending compatible APs. For the

application-transparent version, it is even easier. All that is needed is for the

packets sent by the MN and the HA to be compatible. Since the MN has the

same home network as the HA, this requires coordination only at that net-

work. It is quite possible to imagine that different home networks might have

different versions of Mobile IP, for example to handle issues of scale differently.

Another advantage that AN has is that in the AN architecture, we can

implement new protocols in a lightweight way using packet programming and

it is not hard to change network infrastructure by dynamically linking and

updating active extensions. Therefore, without the fear for the difficulty of

network evolution, we can deploy new protocols and evolve them on an as-

needed basis. This means that the need to get the protocol “right” is greatly

reduced. This need is one of the issues that makes the current architecture

hard to standardize; the fear of deploying a broken protocol.

Conclusion Because AN makes much simpler demands on the standardiza-

tion process, with respect to standardization using AN makes evolving the

network significantly easier.

61

3.5.2 Implementation

To implement Mobile IP, we need mobility agents (HAs and FAs) with the

following functionality;

• Registration

Traditional Arch. There should be a defined protocol and message

format for the registration process. The protocol is embodied by software

that understands the message format and follows the associated actions.

It takes quite a long time to implement static software containing all the

message formats and associated actions altogether.

AN Arch. Mobility agents use the existing soft state facilities to main-

taining the MN’s mobility binding. Further, the packets that perform

registration are actualized by packet programming, thus it is not neces-

sary to define the message formats in advance. Furthermore, it is easy

to add message types on an as-needed basis.

• Tunneling

Traditional Arch. HAs should be able to intercept and tunnel the

packets destined for MNs. The routing program at HAs needs to be

changed to look into the location directory before forwarding the packets

to the home network. HAs must implement one or more protocols for

62

tunneling, such as IP-in-IP encapsulation [66]. FAs should be able to

support location management and packet relaying for the visiting MNs.

All of above functionalities need to be implemented and included in the

software stacks of HAs and FAs.

AN Arch. In both approaches, all that is needed for the FA is that

it support packet execution, a basic assumption of the approach. In

the application-aware approach, no special node resident functionality

is necessary. Since the APs contain the program for tunneling, home

routers and foreign routers are just required to be able to execute packet

programs.

In the application-transparent approach, recognition that a packet needs

to be tunneled is done by node resident code. But this code can be

dynamically added to existing routers. The tunneling and detunneling

itself is implemented by packet programming using chunks. No special

predefined formats or software for processing these formats are needed.

We can also consider the complexity of the implementations. As the standard-

ization of Mobile IP proceeds, there have been several implementations of the

Mobile IP protocol [67]. One of the most widely available implementations

under a BSD-style license is the Monarch Project’s Mobile IPv4 implementa-

tion [68]. Table 3.1 presents comparison of Monarch Project’s implementation

and our MANE implementation.

63

Criteria Monarch MANE
Project’s

App.-aware:
Line of Code 12815 in C 0 in Popcorn + 40 in PLAN

for the base Mobile IP App.-trans.:
84 in Popcorn + 14 in PLAN

Line of Code for App.-aware: 0 in Popcorn +
the Extension of 1483 in C 3 additional in PLAN (43 in PLAN)

Route Optimization App.-trans.:
46 additional in Popcorn
(130 in Popcorn)

Line of Code for N/A App.-aware: 0 in Popcorn +
Proxy Agent 3 modified in PLAN +

9 additional in PLAN (52 in PLAN)
App.-trans.: 130 in Popcorn

Table 3.1: Comparison of Mobile IP Implementations

Clearly a great deal more code was needed to implement Mobile IP in

the traditional manner. This is not surprising given the significantly greater

number of things that needed to be implemented as discussed above. We do

not know how long it took for the traditional implementation. However, it took

less than a week to implement both versions of the base AN implementation

and about a day to implement all three versions of route optimization. It seems

highly unlikely that 76 times more C code was completed in this amount of

time.

Conclusion It is hard to draw strict conclusions about the implementation

of these systems because there are many variables. However, it would appear

64

that AN admits significantly shorter and simpler implementations. Simpler

implementations are easier to create and change and thus it is easier to evolve

the network from an implementation point of view.

3.5.3 Deployment

In the current network architecture, deploying a protocol before standardiza-

tion is neither realistic nor efficient. Since the standardization of Mobile IP

is still in progress [61], there is no real deployment throughout the network.

In order to deploy the Mobile IP protocol, the current network needs the

modifications described in Section 3.1.3. The following shows how the needed

modifications might be deployed in both the traditional architecture and the

AN architecture.

• Deploying New Functional Entities for Mobile IP

Traditional Arch. There is a need to deploy special routers, in par-

ticular Home Agents and Foreign Agents, throughout the network. This

would take significant time in the current Internet.

AN Arch. In the application-aware case, the new functionality is “de-

ployed” just by sending the appropriate packets. In the application-

transparent case, using dynamic updating the HAs can be deployed on

the fly without disrupting the network. There is no need for special

65

FA functionality. This only takes as long as the time to transmit the

extension and apply the update.

We can get a crude bound on how fast this deployment might take for each

architecture in the following way. For the traditional architecture to work at

all on a minimal set of nodes requires changing the network implementations

on the HA, FA, and MH. At a minimum, this requires downloading new kernel

updates, applying them, and rebooting for each node. This will certainly take

tens of minutes. Further, it will result in an interruption of service on all of

these nodes. And it will only allow mobility to the network with the updated

FA.

We measured the time need to deploy our base AE. It took 20 msec

to transmit it one hop and 2.2 secs to apply the update. Neither of these

operations disrupted the functioning of the node and when we were done,

we had support for mobility from the updated home network to any foreign

network.

Conclusion Thus far deploying Mobile IP in the existing network has not

been feasible. Even for a minimal deployment, the current network will take

10’s of minutes to deploy at best, as compared to seconds for AN. From the

deployment point of view AN provides superior evolution ability.

66

3.5.4 Evolution of Route Optimization

Finally, adding route optimization is an example of evolution in and of itself.

This section compares the traditional architecture and AN architecture for

how easy this evolution is.

Traditional Architecture

For route optimization, the CNs must be aware of mobility and maintain

a binding cache of the MNs’ location. In other words, since all nodes are

potentially CNs, all IPv4 nodes must be changed to keep a binding cache

and support tunneling according to the binding information. Furthermore,

there needs to be a protocol and message formats for registration of the MN’s

binding information at CNs. In addition to changes in all IPv4 nodes, additions

to the protocol and message types at mobility agents need to be implemented.

Because route optimization requires all IPv4 nodes to be changed, the IETF

abandoned the standardization of route optimization for Mobile IPv4 in March,

2002 [62].

Due to architectural limitations, the only way of achieving route op-

timization is through the CNs’ participation. Without further architectural

changes, it is impossible to support route optimization transparently to the

CNs. If these changes were to be made, they might take a form much like our

proxy agents. Their implementation would require another process of stan-

dardizing and engineering protocol extensions and message types. From the

67

experiences with HAs and FAs, it is a reasonable guess that it will take signif-

icant time to deploy them into the network. Further, doing so would require

making changes to the internal nodes of the network, which was considered to

be difficult enough that it was ruled out in the initial architecture.

Active Networking Architecture

In order to claim the ease of AN’s evolvability as applied to Mobile IP, we

demonstrated three evolutionary implementations for route optimization. It

took about a day to implement all three evolutions.

• Application-Aware Route Optimization This is an evolution of the

base application-aware approach. While, it is hard to evolve Mobile IP in

the traditional architecture, we could achieve this evolution by modify-

ing the packet programs with a small number of additional lines. Active

packets from the CN contain additional operations for updating the bind-

ing cache at the CN. As shown in Section 3.3.3, route optimization is

achieved by only 3 additional lines in PLAN. It took only 5 minutes to

change the packet program.

• Application-Aware Route Optimization with Proxy Agent In or-

der to further reduce routing inefficiency, we demonstrated an additional

optimization by introducing proxy agents. In the application-aware ver-

sion this required no modification to node resident code. As describe in

Section 3.3.4, we implemented an active extension for the new function-

68

ality in less than 30 minutes. The application-aware active packets can

accomplish the necessary evolution with 9 additional lines and 3 modified

lines in PLAN.

• Application-Transparent Route Optimization with Proxy Agent

In this evolution, we demonstrated an evolution from the base transpar-

ent case. Even in cases where we cannot update CNs, proxy agents can

reduce routing inefficiency by getting a MN’s binding information closer

to the CN. It is feasible to deploy proxy agents into the network on an

as-needed basis using dynamic updating. Active packets conveying both

the modified extension and MN’s binding information update either the

active extensions or the binding cache at proxy agents. For transparent

route optimization with proxy agent functionality, we implemented the

new MANE extensions with an additional 46 lines in Popcorn in about

a day.

Conclusion

The IETF has abandoned evolving Mobile IP to support route optimization

as infeasible. Using AN, not only is it feasible, but methods like the use of

proxies, which the IETF consider infeasible, are feasible. Clearly AN facilitates

evolution of route optimization.

69

3.6 Lessons for AN

Although we have focused our discussion of evolution on comparing AN to the

currently deployed architecture, it is also important to consider what lessons

we have learned that inform the AN community. In particular, we have ex-

plored two different styles of evolution: Active Packet Evolution and Update

Evolution.

Active Packet Evolution The chief advantage of Active Packet evolution

is that it is lightweight and allows third parties to enhance the functionality

of the network without changing the nodes themselves. Thus, from the point

of view of security, this style of evolution is the most desirable and gives the

widest variety of users the ability to evolve the network. One disadvantage

is that it is inherently not application transparent. Another key disadvantage

is that if the existing node interface does not support some critical piece of

functionality, it may be impossible to achieve the desired result. Despite this,

our example (and others, e.g. [69, 70]) shows that even with only very basic

services, non-trivial applications are feasible. An interesting challenge to the

AN community is to design a set of node-resident services that maximizes

the range of evolutions that can be achieved with just APs. Since, as in our

example, the APs can often embody a substantial part of the control aspect

of a protocol, this effort would be quite different from typical protocol design

and would need to focus on providing the generic components that support

the aspects of a variety of protocols that can not be expressed in the packets.

70

Interestingly, just the simple soft state provided by ANTS [24] and our system,

is already a significant step in that direction.

Update Evolution The example here is the first example of update evo-

lution in AN, chiefly because MANE is the first AN system to support such

evolution. The advantage of this approach is clear: application-transparent

evolution can be achieved even when the system design has not anticipated

the need for a particular kind of change. In some sense, this embodies the en-

tire goal of AN. There are two disadvantages. One, dynamic updating is not

a widespread technology like dynamic loading, though it can be conceptually

simple to implement [8]. Second, and more importantly, the power of update

extensions implies the need for greater security and reliability considerations

than for plug-in extensions or active packets. In the short term, this means

that only privileged users with access to the entire router code base should

make use of this technology. In the long term, more research is needed to

understand how to manage multiple updaters of the same code and ways to

limit their system-wide effects.

Based on the taxonomy in [7], we presented two kinds of Mobile IP examples

that illustrate what expressibility gains are possible as successively more pow-

erful techniques are used. However, these gains in expressibility are balanced

by the greater security risks of more powerful techniques. Greater security risks

imply that fewer users may deploy a system. Thus a basic design principle

for AN systems should be to use the least powerful evolutionary mechanisms

possible so as to maximize the range of users that may deploy a system.

71

Chapter 4

Case Study II: Ad Hoc Routing

Our second case study applies AN-based adaptivity and evolution to routing

in ad hoc networks. In mobile ad hoc networks (MANETs), there is no fixed

infrastructure (or routers) and all the nodes may move with any frequency;

thus path changes and link failures can happen frequently [13]. Perhaps the

most interesting case of such networks is to support mobile nodes communi-

cating wirelessly. As the nodes move around, link conditions between them

may change frequently and routing needs to cope with those variations nimbly.

Moreover, adhocness can lead to routing heterogeneity where different parts

of the network should use different routing algorithms; thus the capability for

adding a new protocol or evolving old protocols promptly is required.

In this case study, we show how these issues may be better addressed by

using the adaptability available in an AN framework. Because active packets

can be used to deploy a routing protocol on the fly, AN-capable nodes can

72

agilely switch between routing protocols. By selecting an optimal protocol

depending on node mobility and traffic activity, ad hoc networks can achieve

better performance and reduce routing overhead. Also, active extensions al-

low rapid and easy expansion of the node resident parts of routing protocols.

Therefore, not every node needs to be equipped with multiple protocol stacks

in order to overcome discrepancies in routing protocols.The work in this chap-

ter appears in the proceedings of International Working Conference on Active

Networking (IWAN) 2004 [71].

4.1 Background

Unlike infrastructure-based wireless networks (e.g., cellular networks), mobile

ad hoc networks (MANETs) require neither specific infrastructure nor fixed

network configurations. MANETs are self-organizing without prior planning

or deployment. When it is too costly or impossible to construct infrastruc-

ture (e.g., in battlefields) or there is a need to make or tear down a net-

work promptly (e.g., in conventions or rescue operations), MANETs are a

cost-effective alternative. While MANETs are efficient in low-cost and rapid

deployment, they are unstable – partly because of node movement, partly

because of the inherent characteristics of the wireless medium, such as inter-

mittent connections and high bit-error rates. They may suffer from significant

changes in topology, link status or capacity. In order to deal with these varia-

tions in MANET environments, there is a need for adaptability and flexibility,

73

especially in routing protocols.

In a MANET, since the range of wireless transmission is limited, there

is likely to be a need for multi-hop paths between a source and a destination.

Thus every node is expected to participate in forwarding packets and to act

as a router [72]. Depending on the readiness of route information, ad hoc

routing protocols are classified as either proactive (table-driven) or reactive (on

demand) [73]. While the proactive protocols maintain routing tables through

the periodic exchanges of routing information, the reactive protocols acquire

route information on demand. Proactive protocols are thought to be inefficient

due to excess routing overhead in frequently changing environments. Reactive

protocols have an inherent delay for route discovery and require buffer space in

the network layer for data packets waiting to be transmitted [74]. In general,

there is a trade-off between delay and routing overhead. Some hybrid protocols

combine the two approaches, but they require special preconditions, such as

network hierarchy or Global Positioning System (GPS) capability. Some of

the proposed protocols are listed in Table 4.1.

Each of the proposed protocols has its own unique advantages and disad-

vantages [73, 81]. These differences suggest that each protocol has a MANET

environment for which it is the optimal routing choice. Unfortunately, it is

difficult to pre-determine the optimal routing protocol for the whole feasible

operational range of an ad hoc network. There is no “best” routing protocol

for all network configurations. Ideally ad hoc routing protocols would adapt

to changing network conditions.

74

Proactive - DSDV (Destination-Sequenced Distance Vector Routing) [75]
- OLSR (Optimized Link State Routing Protocol [76]
- FSR (Fisheye State Routing Protocol) [77]

Reactive - DSR (Dynamic Source Routing) [78]
- AODV (Ad hod On-Demand Distance Vector Routing) [79]

Hybrid - ZRP (Zone Routing Protocol) [80]

Table 4.1: Ad Hoc Routing Protocols

Furthermore, since MANETs are created without prior planning, it is

entirely possible that the nodes comprising the MANET are heterogeneous in

terms of routing. That is, all the nodes may not be equipped with the same

routing protocol, and yet it may be necessary for the nodes to conform to

a unified routing protocol. Without prior knowledge about various routing

protocols, this would compromise the desired ability for any node to be able

to discover a route to any other reachable node in the network.

In addition to sub-optimal routing and heterogeneity problems, routing

in ad hoc networks requires more systematic interactions across several lay-

ers, not just the network layer. Performance of a routing protocol depends

on various network conditions, such as host mobility, connection activity, or

traffic patterns, etc. It seems likely that cross-layer interactions are impor-

tant in mobile ad hoc networks. This view is supported by results showing

that simulation factors in physical layer modelling affect the performance of

higher-level protocols such as routing [82].

75

4.1.1 Reactive Ad Hoc Routing

In this section, we will describe two typical protocols of reactive ad hoc routing:

Dynamic Source Routing (DSR) and Ad hoc On-Demand Distance Vector

(AODV).

DSR The Dynamic Source Routing (DSR) protocol [78] is an on-demand

routing protocol that searches for a source route (the sequence of nodes that the

packet should visit) to a destination by flooding route request packets on

the network only when the initiating node has data packets to send. Source

route information is gathered in the packet header as the route request

packet is forwarded. In order to reduce the routing overhead and make the best

possible use of route information, each node maintains a route cache. Since

there is no need for periodic ‘hello’ packets or neighbor detection packets, DSR

is simple and has low overhead under light traffic load conditions. It is also

possible to find multiple routes for a destination with one route request

packet flooding and to work over unidirectional or asymmetric links.

DSR is composed of two operations: Route Discovery and Route Main-

tenance:

Basic Route Discovery When a source node, S, has data to send, it first

searches for a valid, previously discovered source route to a destination

node, D, in its route cache. If a valid route is not found in the route

cache, S broadcasts a route request packet to its directly connected

neighbors. All intermediate nodes will re-broadcast the first instance

76

of a route request that is seen, after appending its own address to

the Route Record field of the route request packet. Eventually the

request packet will reach D, and the Route Record field of the route

request packet will contain a source route from S to D. Assuming that

the links are symmetric, D obtains the source route to S by reversing the

Route Record; and returns the Route Record to S in a route reply

packet, which follows this source route. This mechanism also works when

there are asymmetric links. D can find reverse source route to S by either

flooding its own route request or piggybacking the route reply on

its own route request packet to S.

Optimized Route Discovery Intermediate nodes can learn of local topol-

ogy simply by peeking in the route request and route reply pack-

ets that they are asked to forward. Since the Route Record field of the

route request packet contains a source route from S, every forward-

ing node can get a reversed source route to S. Also, a source route

between S and D can be found in route reply packets. Moreover,

neighbor nodes can learn source route information by overhearing rout-

ing packets sent by other nodes. Now, intermediate nodes are allowed to

generate route reply packets. They search for a source route in their

own route caches before they rebroadcast a request; if there is a valid

route in the cache, they reply but do not rebroadcast the request. It is

also possible for the nodes to update the route caches for S or D during

77

forwarding of route request and route reply, respectively.

Route Maintenance It is possible for links in a source route to be cut off

at any time due to node movements or changing link conditions. When

using a source route, S is notified of the link failure by a route error

packet generated by the node adjacent to the broken link. S deletes

routes containing the broken links from its route cache, and initiates a

new route discovery process unless there is another valid route to D in

the route cache. S spreads the stale information by piggybacking the

route error packet in its next route request packet to prevent the

neighbors from generating route reply packets containing the same

invalid link.

AODV The Ad hoc On-Demand Distance Vector (AODV) routing proto-

col [79] is an on-demand version of the Destination Sequenced Distance Vector

(DSDV) routing protocol [75]. As in DSR, routes are discovered on an as-

needed basis and routing information is maintained in the routing table only

as long as they are necessary. However, while DSR’s route caches keep whole

paths to a destination, AODV’s routing tables maintain next hop addresses

along with other information, such as destination sequence number, hop count,

a precursor list, and expiration time. Sequence numbers are used to discern

stale routes and maintain route freshness. Hop count indicates a distance to

the destination, which is used to calculate the shortest path. Precursors are

the neighboring nodes that use the entry in order to forward data packets.

78

Unlike DSR, AODV specifies the lifetime of route entries with an algorithm

for estimating the expiration time.

Though it is not specified this way in the RFC [83], AODV can also

be divided into Route Discovery and Route Maintenance. Message formats

defined for AODV are similar to those of DSR: Route Request (rreq), Route

Reply (rrep), and Route Error (rerr).

Route Discovery When a source, S, needs route information to a destina-

tion, D, and there is no valid route entry for D in its routing table, S

broadcasts a rreq to the neighbors. To reduce the overhead of rreq

broadcasting, AODV may use an expanding ring search, in which in-

creasingly larger neighborhoods are searched through control of a Time-

To-Live (TTL) field in the rreq packets. When a node receives a rreq,

it first updates or creates reverse route information for S in its routing

table. If the receiving node is either the destination or a node whose

routing table has valid information for D with a larger or the same des-

tination sequence number as in the rreq, it sends a rrep to S without

re-broadcasting the rreq. Otherwise, it re-broadcasts the rreq increas-

ing the hop count by one and decreasing the TTL by one. As the rrep

passes back to S, the intermediate nodes set up the forward route to

D by updating their routing table with the valid destination sequence

number, hop count, precursor list and lifetime for D.

Route Maintenance As in DSR, a node detecting a link break generates

79

and sends an rerr message to the precursors. Precursors can be re-

garded as next hops for delivering an rerr. Depending on the number

of precursors, the rerr is either unicast or broadcast. A node receiving

an rerr updates entries of the routing table and forwards the rerr

message to the precursors of the entry. An entry for the unreachable

destination is marked invalid with an updated lifetime, after which the

entry will be deleted from the routing table. The lifetime field of the

routing table functions as both the expiration time for a valid route and

the deletion time for an invalid route.

Comparison of DSR and AODV

Though DSR and AODV are both on-demand routing protocols and share

similar behaviors [84], they have different mechanisms each with its own mer-

its [81]. Table 4.2 summarizes the differences between DSR and AODV.

Since DSR may allow both multiple replies and multiple route entries

in the cache, a source can acquire significant knowledge about topology with

one route request packet. DSR’s aggressiveness in route discovery and

maintenance has beneficial effects on throughput and delay when mobility is

low. On the other hand, high mobility may cause DSR cache entries to become

stale rapidly, and aggressiveness can turn into a liability.

While DSR is simple and does not specify requirements for timer use,

AODV attempts to be conservative in maintaining route table by utilizing

various timer values. However, in calculating the timer values, AODV requires

80

DSR AODV

Route Discovery On-Demand On-Demand
Route Management Aggressive Conservative

Route Cache Route Table with Lifetime
Route Entry Multiple, Source route One, Next hop

Dominant Message RREP RREQ
Merits Asymmetric link Support QoS Support

Requirements Promiscuous mode Network parameters
for optimization

Table 4.2: Comparison of DSR and AODV

network parameters, such as the network diameter and node traversal time [83].

4.1.2 The State of The Art: Standardization and De-

ployment

The IETF Working Group (WG) for Mobile Ad-hoc Networks (MANET) [85]

had focused on various MANET problems, performance issues and related can-

didate protocols; it published an informational1 RFC 2501 in 1999 [72]. After

that, it has dealt with standardization of a number of routing protocol speci-

fications. Currently, there are three experimental documents to be considered

standard ad hoc routing protocols [83, 87, 88].

Since the DSR protocol was first published in 1996 [78], several Internet-

1In the Internet standardization process, each RFC has a status: Informational, Ex-
perimental, or Standards Track (Proposed Standard, Draft Standard, Internet Standard),
or Historic [86]. RFCs with Informational or Experimental status can be regarded as a
guidance rather than official standards.

81

Drafts for DSR have been proposed [89]. However, standardization is still in

progress and currently the 10th draft is awaiting standardization [90].

The AODV protocol was proposed in 1999 [79]. After several Internet-

Drafts were renewed [91], RFC 3561 was published as an experimental docu-

ment for AODV in 2003 [83]. From the viewpoint of the Internet standard-

ization, the work on AODV is still in progress [92] and it is expected that a

standards track document for AODV will be published eventually.

There have been several implementations of DSR [93, 94, 95] and AODV

[96]. Even though there have been several experimental ad hoc networks [97,

98], neither DSR nor AODV have been deployed in real networks.

Generally, in order to support reactive ad hoc routing protocols, the

required modifications are as follows:

• Architecture

– Every node should work as a router and cooperate in multi-hop

routing.

– The network layer must maintain a routing buffer to keep packets

during route discovery.

– The link layer should be in close cooperation with the network layer;

for example, during connection, the link layer monitors link status

for route maintenance.

• Functionality

82

– The network layer executes routing protocols on demand.

∗ A source node initiates route discovery by broadcasting a route

request packet.

∗ Intermediate nodes participate in route discovery by either prop-

agating the request or replying to it.

∗ During connection, if a node in the route detects link breakage,

it sends a route error packet to the source.

– The link layer informs network layer of link status during connec-

tion.

∗ By using either existing link-level acknowledgements or passive

acknowledgements, the link layer monitors link status.

∗ When a link is broken, the link layer protocol notifies the net-

work layer so that the network layer performs properly for route

maintenance.

In summary, even though the need for ad hoc networks and multi-hop

routing protocols is widely acknowledged, standardization for ad hoc routing

protocols is only slowly progressing. Further, there has not been real deploy-

ment of any ad hoc routing protocols.

83

4.2 MANE Modifications

Here, we describe the modifications of MANE needed to support ad hoc net-

working in general and in particular to support on-demand routing protocols.

4.2.1 Addressing

Like IP addresses, MANE addresses are globally unique and hierarchical. A

node is identified by a network number and a host number. The hierarchy is

based on sub-nets of nodes and each node on a sub-net can broadcast to all

other nodes. Communication with nodes on other networks must be mediated

by routers. Based on this hierarchy, we have already made MANE support

Mobile-IP-like mobility by utilizing AN’s evolution techniques as discussed in

Chapter 3. For ad hoc networks, where each node works as a router, MANE

uses a flat addressing scheme. All the nodes in an ad hoc network have the

same network number, and host numbers are used as a unique address.

4.2.2 Mobility Emulation

MANE emulates broadcast networks by keeping track of which nodes are on a

particular sub-net and using UDP to communicate between neighbors. Broad-

cast is achieved by repeatedly unicasting to every neighbor. This mechanism

also supports emulation of physical node mobility, allowing a node to leave

a sub-net and to join new sub-nets. Even though this emulation is transpar-

ent to a higher level, MANE needed to inject special APs to disconnect and

84

connect a node [7].

For ad hoc networks, we need a more scalable and better distributed

way of emulating physical mobility. Therefore, we adopted a method similar

to that used by ns for wireless network simulation [5]. There is a pre-generated

mobility file emulating node movements. Also, there is a virtual master node

with a global “god’s eye” view, whose role is to update neighbor lists by sending

neighbor information packets periodically to every node. The virtual master

obtains neighbor information from the mobility file. Neighbor information is

used only in emulating physical mobility and wireless link broadcasting, not

in network-layer routing.

4.2.3 Routing Buffer in the Network Layer

Since we are experimenting with reactive routing protocols, there needs to

be a buffer space - the routing buffer - to save the data packets during route

discovery. When routing information is available, the corresponding packets

are released from the routing buffer and pushed into the lower layer queue

for transmission. To support reactive routing protocols, we implemented the

routing buffer in the network layer. If there is no route information for a

packet, a sender saves the packet in the routing buffer and initiates route

discovery. Route reply packets cause the sender to free the packet from the

routing buffer and resume the transmission of the packet.

85

4.2.4 Link Layer Acknowledgements

Since any links can be broken while in connection due to either node move-

ments or channel deterioration, ad hoc routing protocols need to monitor route

breakdown. For route maintenance and link breakage detection, we can use

either MAC protocol in use (such as the link level acknowledgments in IEEE

802.11 [99]) or passive acknowledgment [100]. In MANE, we utilize link-level

acknowledgments in detecting link breakdown. After transmitting a packet,

the link layer protocol saves the packet in the interface queue and waits for the

corresponding acknowledgement (ACK). If there is no ACK during a certain

period of time or if a negative acknowledgement (NACK) is received, the link

layer protocol retransmits the packet. When a certain number of trials fail,

the node sends a route error packet to the source.

4.3 A Simple Version of DSR

We first present a simple version of the DSR protocol, which we will later show

how to deploy and evolve. In our simple version, no use of the route cache is

made at the intermediate nodes. All intermediate nodes simply re-broadcast

the first instance of a route request received after appending their own address,

and route reply packets are generated only by the destination.

In MANE, a protocol is implemented in two levels: active extensions

and active packets. AEs are node-resident and implement the service functions

needed for the protocol, while APs serve to glue together the AE functionality

86

Functions Types

Get ID() null =⇒ int

LookUp RouteCache host =⇒ host list

(dest)

SaveIn RouteCache host*(host list)

(dest, srcRoute) =⇒ null

Mark Dup Request host*int =⇒ null

(source, ID)

Check Dup Request host*int =⇒ bool

(source, ID)

Table 4.3: Service Functions for DSR

and actualize the protocol. We first present the services needed for DSR,

followed by the APs that are used by the protocol.

4.3.1 An Active Extension for DSR

Table 4.3 shows node resident services needed by DSR. Get ID() generates

a unique identification number for a new route request. There are two func-

tions, LookUp RouteCache() and SaveIn RouteCache(), for managing the

Route Cache. To filter out duplicate requests, Mark Dup Request() and

Check Dup Request() are used to manage the Duplicate Request Check List.

4.3.2 Active Packets for Basic Route Discovery

Figure 4.1 shows the pseudocode for route discovery, while Figure 4.2 shows

87

1: INPUT: destination address D, list of hosts R
2: if this is a duplicate request then
3: discard this packet
4: else
5: if arrived at D then
6: send Route Reply with R
7: save R in route cache
8: else
9: append my address to R

10: flood this request to all neighbors
11: end if
12: end if

Figure 4.1: Pseudocode for Basic DSR Route Discovery

1: fun routeDiscovery(src, dst, id, srtRecord) =

2: if(not Check Dup Request(src, id)) then (

3: Mark Dup Request(src, id);

4: if(thisHostIs(dst)) then (

5: SaveIn RouteCache(src, srtRecord);

6: routeReply(src, dst, srtRecord, reverse(srtRecord))

7:)

8: else ((*intermediate nodes *)

9: let val myAddr = thisHostOf(getSrcDev())

10: in

11: OnNeighbor(|routeDiscovery|(src, dst, id, myAddr::srtRecord),

12: broadcast, getRB(), getSrcDev())

13: end

14:)

15: else () (* dup req. discard *)

Figure 4.2: PLAN for Basic DSR Route Discovery

88

the PLAN implementation. The pseudocode shows that as the packet executes

at each node duplicates are discarded (Line 2 and 3). Then, if the packet is

at the destination a route reply is sent and the route is saved (Lines 5 – 7),

anticipating the possibility of data being sent back to the source. If the packet

is not at the destination, the current address is simply added to the route and

the packet reflooded (Lines 8 – 10).

In addition to the service functions in Table 4.3, the PLAN code in

Figure 4.2 uses a number of PLAN core services and language constructs,

which are discussed in detail in Chapter 2. thisHostIs() returns a boolean

value for whether the given network address matches the address of the current

node. getSrcDev() returns the interface on which the packet arrived, and

thisHostOf() returns the network address corresponding to the given device.

Using these functions and the list operator for concatenation, ::, the route

request packet can obtain the source route as it is propagated through the

network (Lines 9 – 13). OnNeighbor() is a network primitive that generates

a child AP executing on a neighbor of the current node. getRB() returns the

amount of resource bound available in the packet.

The actual algorithm corresponds closely to the pseudocode. In Line

2 route discovery starts by checking for duplicate requests. If the request

has been already seen, this packet is discarded (Line 15). If not, it will save

the tuple <source address, request id> in the Duplicate Request Check List

(Line 3). If the request has arrived at the destination, D saves the source

route to S and generates a route reply packet (Lines 4 – 7). Note that the

89

1: INPUT: source address S, list of hosts R
2: if arrived at S then
3: save R in cache
4: exit route discovery
5: send data using R
6: else
7: forward this packet to S
8: end if

Figure 4.3: Pseudocode for Basic DSR Route Reply

1: fun routeReply(src, dst, srcRoute, routing) =

2: if(thisHostIs(src)) then (

3: SaveIn RouteCache(dst, srcRoute);

4: exitRouteDiscovery()

5:)

6: else (

7: let val nexthop = hd(routing)

8: val routing = tl(routing)

9: in OnNeighbor(|routeReply|(src, dst, srcRoute, routing),

10: nexthop, getRB(), getSrcDev())

11: end

12:)

Figure 4.4: PLAN for Basic DSR Route Reply

source route is reversed to be used as a route for the route reply. If this is an

intermediate node, the node’s address is prepended to the current source route

and OnNeighbor is used to broadcast the request to all the 1-hop neighbors

(Lines 8 – 14).

Figure 4.3 shows the pseudocode for route reply, while Figure 4.4 shows

the PLAN implementation. The pseudocode shows that a packet is simply

forwarded at intermediate nodes, while at the source the route is saved in the

90

cache and then any data destined for the destination is sent.

Again, the PLAN code corresponds closely to the pseudocode. If the

reply has arrived at the source, the route is saved and route discovery exits,

triggering the data packets to be sent (implicitly). Lines 7–11 show how the

reverse source route is used at an intermediate node. In Line 7 the nextHop

is read from the front of the list and in Line 8 it is removed from the list. In

Lines 9 – 10 OnNeighbor is used to send the reply to the next hop, along with

the truncated route.

4.4 Deploying DSR

Given the varied environments faced by MANETs, it is quite possible that

the most appropriate routing algorithm will not already be deployed on all

the nodes. In fact, given that MANETs are a new technology, it is possible

that no routing algorithm of any kind is deployed. This is exactly the sort of

problem that AN was designed to solve. In particular, let us consider how we

could deploy our simple version of DSR.

Our DSR implementation has two components, the AE making up the

service routines and the APs that use these routines. Since the APs carry their

own code with them, deploying them is trivial; we simply inject the required

APs into the network. Deploying the AE is only slightly more complex.

In MANE, the code for an AE can be dynamically linked into a running

node. During this linking process, the AE can define new services that can be

91

1: INPUT: destination address D, list of hosts R, Extension E
2: if DSR Service Not Present then
3: Load DSR Extension From This Packet
4: end if
5: DSR Route Discovery

Figure 4.5: Dynamic DSR Deployment

called from PLAN. Once this has been done the APs that use those services

will be able to function. Now the only question is how to discover which

nodes need to have the AE installed and how to transport the code to those

nodes. There are many possible approaches. For example, we could imagine

an ANTS-like [24] system where APs implicitly discover whether the needed

code is node-resident and then download it from predecessor nodes or perhaps

from some global repository.

In our implementation, we used a simpler approach. The route request

packet carries the extension in the packet itself and tests to see if it needs

to be loaded as it floods the network. Figure 4.5 shows the pseudocode for

this simple solution. In Line 2, the packet checks if the extension it needs

is present. If not, it will dynamically load and install the extension on the

node before executing route discovery. This simple use of plug-in evolution [7]

allows us to deploy the DSR protocol dynamically and in a timely manner.

However, we have failed to consider one potentially important point.

Most of the changes we made to MANE that were described in Section 4.2 were

really concerned with improving our emulation of mobility and would not be

needed for a real network. However, some of the changes would actually need

92

to be made to support DSR or AODV. In particular, the proactive routing

algorithms typically used in wired networks have no need to potentially queue

packets when a route does not exist; they simply drop those packets. Adding

this queue is not simply a matter of plugging in a new PLAN callable service

function, it requires more fundamental changes to the node implementation.

This is an excellent example of where MANE’s support for “update

extensions” comes into play. Using Michael Hicks dynamic updating technol-

ogy [8], we can load an extension that makes significant changes to the node

implementation, including inserting the new queuing mechanism.

4.5 Evolving DSR

The ability to deploy a new protocol on the fly using AEs is a powerful mech-

anism for evolving the network. However, it is also a heavyweight mechanism,

requiring that code be dynamically linked into a running node. Using update

evolution is even heavier weight, since it enables almost arbitrary changes to

be made to a node. It seems likely that only a few network users will be trusted

to make these kinds of heavyweight changes to running network nodes. Does

this mean that only those privileged users will be able to evolve or customize

the network?

In this section, we show that significant protocol evolution can be

achieved without resorting to making permanent changes to the node. The

key mechanism is, of course, packet programmability. If there is a need to

93

evolve or customize a routing protocol, APs can implement the needed one

without modifying the services of the nodes in the network. This way of Ac-

tive Packet evolution [7] enables the network to promptly evolve with the help

of common and reusable AEs. PLAN plays an important role here because its

strong safety and security guarantees allow the unprivileged, third-party user

to program the network safely.

4.5.1 Active Packets for Optimized DSR

Our initial DSR implementation is quite simple and does not take advantage

of many of the optimizations that are possible. In particular, intermediate

nodes simply implement flooding, despite having route caches that might con-

tain the route that we are searching for. In order to utilize route control

packets efficiently and reduce routing overhead, the protocol needs to be op-

timized by allowing intermediate nodes to participate in routing aggressively.

Specifically, request-broadcasting nodes can obtain a source route to S, and

reply-forwarding nodes can acquire a source route to D. These nodes save

route information for efficient use of the route cache. Before re-broadcasting

the request, intermediate nodes can search their route cache. If there is a

valid entry, they can reply without re-broadcasting the request further. Most

importantly, we can implement this optimized DSR by only re-programming

APs, and we do not need to modify the DSR services in a node-resident AE.

Figures 4.6, 4.7, 4.8 and 4.9 show the pseudocode and PLAN code for

optimized DSR route discovery, respectively. The underlined portions indicate

94

1: INPUT: destination address D, list of hosts R
2: if this is a duplicate request then
3: discard this packet
4: else
5: save R in cache
6: if arrived at D then
7: send Route Reply with R
8: else
9: if route found in my cache then

10: send Route Reply with R and found route
11: else
12: append my address to R
13: flood this request to all neighbors
14: end if
15: end if
16: end if

Figure 4.6: Pseudocode for Optimized DSR Route Request

the parts that have been added to our initial simple implementation.

At intermediate nodes route discovery changes in two basic ways. First,

in addition to flooding the route discovery packet, the packet also saves the

partial route in its cache (Line 4), thus increasing its knowledge of possible

routes at essentially no cost. Second, the packet looks in the intermediate

node’s cache for a route to the destination (Line 9). If it exists, then it returns

its current route concatenated with the cached route (Lines 10 – 13), thus

expediting the route discovery process. Route reply adds a single optimization,

replies also add routes to the route caches on intermediate nodes (Figure 4.9,

Line 3).

Although in this example, new APs are used to perform a general opti-

95

1: fun routeDiscovery(src, dst, id, srtRecord) =
2: if(not Check Dup Request(src, id)) then (
3: Mark Dup Request(src, id);
4: SaveIn RouteCache(src, srtRecord);
5: if(thisHostIs(dst)) then (
6: routeReply(src, dst, srtRecord, reverse(srtRecord)))
7: else ((*intermediate nodes *)
8: let val myAddr = thisHostOf(getSrcDev()) in (
9: try (let val cachedRouteRec = LookUp RouteCache(dst)
10: val fRouteRec = myAddr::cachedRouteRec
11: fun listconcat(elem1, list1) = elem1::list1
12: val newSrtRecord = foldr(listconcat,
13: reverseHostList(srtRecord), fRouteRec) in (
14: routeReply(src, dst, id, newSrtRecord,
15: reverseHostList(newSrtRecord))))
16: handle NotFound => (
17: OnNeighbor(|routeDiscovery|(src, dst, id, myAddr::srtRecord),
18: broadcast, getRB(), getSrcDev())))
19: end))
20: else () (* dup req. discard *)

Figure 4.7: PLAN for Optimized DSR Route Request

mization, they can also be used to perform application-specific customizations

as well. For example, in the current protocol, if no route reply shortcutting

occurs, the route that is chosen is the one taken by the first route request

packet to arrive at the destination. An application might desire to use a dif-

ferent metric, such as the route that has the largest bottleneck bandwidth.

Assuming we had service routines that could tell us link bandwidths, then we

could easily program a route request packet that would measure the bottleneck

bandwidth and return a route reply for any route request that arrived at the

destination with a better value than previous route requests.

96

1: INPUT: source address S, list of hosts R
2: save R in cache
3: if arrived at S then
4: exit route discovery
5: send data using R
6: else
7: forward this packet to S
8: end if

Figure 4.8: Pseudocode for Optimized DSR Route Reply

1: fun routeReply(src, dst, srcRoute, routing) =

2: if(thisHostIs(src)) then (

3: SaveIn RouteCache(dst, srcRoute);

4: exitRouteDiscovery())

5: else (

6: let val srcRoute2dst = subHostList(srcRoute, routing)

7: val nexthop = hd(routing)

8: val routing = tl(routing)

9: in (

10: SaveIn RouteCache(dst, srcRoute2dst);

11: OnNeighbor(|routeReply|(src, dst, srcRoute, routing),

12: nexthop, getRB(), getSrcDev())

13:)

14: end

15:)

Figure 4.9: PLAN for Optimized DSR Route Reply

97

4.6 Transitionary Adaptivity

Another way to take advantage of AN is to use it to allow routing protocols

to adapt dynamically to changing network conditions. From the discussion in

the previous section and Table 4.2, it appears that DSR may be more sensitive

to mobility than AODV. Under lower mobility, since there are relatively few

link changes, DSR’s aggressive caching strategy should be effective in achiev-

ing better performance than AODV. However, in high-mobility cases, AODV

seems likely to defeat DSR because of more conservative routing management.

Superiority between them switches according to node movement frequency.

The key point is that AODV appears to work better when levels of mobility

are high, while DSR appears to work best when mobility is low. Thus, even if

the preferred protocol is in use, it is entirely possible that the level of mobility

may shift, making it desirable to change protocols.

Our approach is to build a hybrid protocol that can easily switch be-

tween AODV and DSR as mobility levels change. The possible design space for

such hybrid protocols is immense and it is important to keep in mind that our

goal is to demonstrate that AN has achieved its goals with respect to adapt-

ability, not to explore this design space or to propose the “best” protocol. By

showing a fairly simple example, it should be clear that AN techniques will

facilitate the implementation, development, and exploration of a wide variety

of such protocols.

98

Functions Types

LookUp RIB string*host

(routing protocol, dest) ⇒ host*int*int

or ⇒ host list

SaveIn RIB(dest, destSeq, host*int*int*host

hopCount, nextHop) or host*(host list)

or (dest, source route) =⇒ null

Get RREQ ID() null =⇒ int

Mark Dup Request host*int =⇒ null

(source, RREQ ID)

Check Dup Request host*int =⇒ bool

(source, RREQ ID)

Get SrcSeq() null =⇒ int

Get DestSeq(dest) host =⇒ int

Table 4.4: Service Functions for Hybrid Protocol

4.6.1 An Active Extension for the Hybrid Protocol

The key to creating a hybrid protocol that can switch rapidly between differ-

ing algorithms is to create a set of generic AE services that can be used by all

algorithms. Once this is done, we can then accomplish the actual switching

between protocols quite easily using APs. This general idea is an important

aspect of AN; by providing generic, reusable, composable node resident com-

ponents, we can then use packet programs to create many different protocols

and enable easy switching between protocols.

Here, we take this idea only to a point by creating generic services com-

99

mon to both DSR and AODV as shown in Table 4.4. The most important of

these, LookUp RIB() and SaveIn RIB(), manipulate a generic Route Infor-

mation Base (RIB), which is a combined form of the DSR route cache and

the AODV route table. Notice that we have used parametric polymorphism

so that these functions can take arguments and return values that are ap-

propriate to either DSR or AODV. The next three services, Get RREQ ID(),

Mark Dup Request(), and Check Dup Request(), are concerned with dupli-

cate elimination during flooding. These are good examples of general services

that we might expect to see reused by many different protocols and, in fact,

they have already appeared in our simple DSR implementation. The final two

services, Get SrcSeq() and Get DestSeq(), are concerned with manipulat-

ing sequence numbers. Although here they are specific to the AODV aspect

of our protocol, we can certainly imagine that with more experience, we could

define a general set of sequence number manipulation services that would be

reusable across a variety of protocols.

4.6.2 An Active Packet for the Hybrid Protocol

Using the services above, we can now program an AP that can adapt to chang-

ing conditions. If we actually wished to deploy an adaptable protocol, a key

question would be when to adapt. However, our goals are really to show that

adaptation is feasible, not to research how best to do it. Thus we assume there

exists some global policy module that monitors mobility and informs us as to

when to adapt.

100

Figure 4.10 shows the PLAN program for the hybrid routing request.

The AP for the hybrid route request contains three functions: routeRequest-

AtSrc(), dsrRREQ(), and aodvRREQ(). The source, S, evaluates routeRe-

questAtSrc() and decides which protocol to use. At low mobility, S in-

jects a DSR route request packet by calling an OnNeighbor() that evaluates

dsrRREQ() on all the neighbor nodes (Lines 2 – 4). At high mobility, S spawns

a child AP that executes aodvRREQ() with the appropriate sequence num-

bers and a hop counter (Lines 5 – 7). The two functions, dsrRREQ() and

aodvRREQ(), contain the algorithm for the route request of the corresponding

routing protocol.

When there is valid information for the request (on intermediate nodes

or the destination node), a reply packet is generated by the function call,

dsrRREP() (Lines 14 & 19) or aodvRREP() (Lines 31 & 38). The optimized

DSR protocol allows intermediate nodes to reply to the request (Lines 18 –

20). In replying with cached information, the reply-generating node needs

to concatenate the route record and cached information (Lines 19 – 20). In

AODV, the destination sequence number is compared to validate freshness of

the cached information (Line 34).

Figure 4.11 shows PLAN program for the route reply. Similarly to the

route request, the hybrid reply packet contains two different function calls for

either DSR or AODV, respectively. DsrRREP() activates the optimized DSR

route reply, which updates the RIB (Lines 3 & 8), handling the source route

(Line 5), and getting the reply forwarded to the source (Lines 6, 7, and 9 –

101

1: fun routeRequestAtSrc(src, dst) =
2: if(mobility = 0) then
3: OnNeighbor(|dsrRREQ|(src, dst, Get RREQ ID(), []),
4: broadcast, getRB(), getSrcDev())
5: else
6: OnNeighbor(|aodvRREQ|(src, dst, Get RREQ ID(), Get SrcSeq(),
7: Get DestSeq(dst), 0), broadcast, getRB(), getSrcDev())
8:
9: fun dsrRREQ(src, dst, id, srtRecord) =
10: if(not Check Dup Request(src, id)) then (
11: Mark Dup Request(src, id);
12: SaveIn RIB(src, srtRecord);
13: if(thisHostIs(dst)) then
14: dsrRREP(src, dst, srtRecord, reverse(srtRecord))
15: else ((* intermediate nodes *)
16: let val myAddr = thisHostOf(getSrcDev())
17: val newSrtRecord = myAddr::srtRecord
18: in (try (let val srcRt:(host) list = LookUp_RIB("DSR", dst)
19: in dsrRREP(src, dst, listcon(reverse(srcRt),
20: newSrtRecord), reverse(srtRecord)) end)
21: handle NotFound => (
22: OnNeighbor(|dsrRREQ|(src, dst, id, newSrtRecord),
23: broadcast, getRB(), getSrcDev()))) end))
24: else () (* dup req. discard *)
25:
26: fun aodvRREQ(src, dst, id, srcSeq, dstSeq, hopCount) =
27: if(not Check Dup Request(src, id)) then (
28: Mark Dup Request(src, id);
29: SaveIn RIB(src, srcSeq, hopCount+1, getSrc());
30: if(thisHostIs(dst)) then
31: aodvRREP(src, dst, dstSeq, 0)
32: else (try ((* intermediate nodes *)
33: let val rt_entry:(host*dev*int*int) = LookUp_RIB("AODV", dst)
34: in (if(dstSeq > #3 rt_entry) then (
35: OnNeighbor(|aodvRREQ|(src, dst, id, srcSeq, dstSeq,
36: hopCount+1), broadcast, getRB(), getSrcDev()))
37: else
38: aodvRREP(src, dst, #3 rt_entry, #4 rt_entry)) end)
39: handle NotFound => (
40: OnNeighbor(|aodvRREQ|(src, dst, id, srcSeq, dstSeq, hopCount+1),
41: broadcast, getRB(), getSrcDev()))))
42: else () (* dup req. discard *)

Figure 4.10: PLAN for Hybrid Route Request

102

1: fun dsrRREP(src, dst, srcRoute, routing) =

2: if(thisHostIs(src)) then (

3: SaveIn RIB(dst, srcRoute);

4: exitRouteDiscovery())

5: else (let val srcRoute2dst = subHostList(srcRoute, routing)

6: val nexthop = hd(routing)

7: val routing = tl(routing) in (

8: SaveIn RIB(dst, srcRoute2dst);

9: OnNeighbor(|dsrRREP|(src, dst, srcRoute, routing),

10: nexthop, getRB(), getSrcDev()))

11: end)

12:

13: fun aodvRREP(src, dst, dstSeq, hopCount) =

14: SaveIn RIB(dst, dstSeq, hopCount, getSrc());

15: if(thisHostIs(src)) then

16: exitRouteDiscovery()

17: else (

18: let val nexthop = LookUp RIB("AODV", src) in

19: OnNeighbor(|aodvRREP|(src, dst, dstSeq, hopCount+1),

20: #1 nexthop, getRB(), #2 nexthop)

21: end)

Figure 4.11: PLAN for Hybrid Route Reply

10), while aodvRREP executes the AODV route reply by forwarding the reply

to the source through the reverse path (Lines 19 – 20).

4.6.3 Simulation of the Hybrid Protocol

Although our goal was not primarily to explore the design of hybrid routing

algorithms per se, we still wanted to see if we could show that such an algo-

rithm could indeed result in improved performance when faced with changing

103

mobility. In order to explore this question we simulated our algorithm as well

as DSR and AODV.

Experimental Setup

As a simulator, we used ns-2, which is a discrete event simulator widely used

in networking research [5]. As a measure of performance, we used the Packet

Delivery Ratio (PDR). PDR is the ratio of the number of the transmitted

packets to the number of received packets and larger numbers are better. For

a direct comparison, we used CBR traffic rather than TCP traffic because

congestion control and flow control offer different loads according to network

conditions for TCP. Each node moves according to the “random waypoint”

model [78], in which the nodes repeatedly move and then pause. In this model,

the pause time and the movement speed characterize the mobility of the net-

work. In each simulation, the same scenarios of movements and traffic are used

for DSR, AODV, and the hybrid protocol. The reported values are averages

taken from ten simulations under different movements and traffic scenarios.

The packet size is 512 bytes, and 4 packets are generated per second.

The number of CBR sources is 25 out of 50 total nodes. For each simulation,

50 nodes move around in a 1000 m × 1000 m square space for 1500 seconds. To

simulate changing mobility, we divided the simulation time into 3 parts of 500

seconds each. In the first part (0–500 seconds), there is no movement and the

network is stationary. In the second part (500–1000 seconds), all the nodes

move at a maximum speed of 10 m/s with a pause time randomly selected

104

between 0 and 250 seconds. In the last 500 seconds, the maximum speed is 20

m/s and the pause time is 0 seconds. For the hybrid protocol, initially DSR

is used and as the mobility increases the nodes switch to AODV. Specifically,

during the first half of the simulation, route control packets follow DSR se-

mantics and data packets are routed using DSR. After 750 sec., the interface

for the routing protocol is changed to AODV and route control packets follow

AODV semantics. For the simulation of DSR and AODV, we used the existing

ns versions developed by the Monarch project [97].

Results

The simulation results are shown in Figure 4.12. The x-axis is simulation time

and the y-axis is the PDR. We observe that in general as mobility increases,

the PDR decreases because of more frequent link failures or changes. However,

DSR and AODV have different rates of decrease and there is a crossing point

where dominance changes. In particular, while DSR’s PDR is better than

that of AODV under low mobility, DSR shows more degradation as mobility

increases. On the other hand, AODV is relatively robust to changes in mobility.

Not surprisingly, since the hybrid protocol switches between DSR and

AODV, its performance basically follows the better protocol in the whole range

of mobility. At low mobility, the hybrid protocol adopts DSR’s aggressive route

discovery and caching scheme and it performs similarly to DSR. However,

as mobility increases, it works like AODV and becomes robust to increased

mobility. The region from 500 to 750 seconds is the only exception, because

105

�����
�����
�����
���	�
����

�����
�

� ���� ������ �����
��� ���������������

��
 !#"%$&(' !*)&(�,+-� .�0/�132�4 � 5

����������	
���
�

Figure 4.12: PDR over time for DSR, AODV, and Hybrid

during that period, we have not switched away from DSR. Since it is not

possible to change routing packets once they are injected into the network,

DSR packets that are already injected are handled while network mobility is

high. Also, after switching, AODV initiates route discovery to build the route

table. These explain why the hybrid protocol lags in following the performance

of AODV between 800 sec. and 900 sec. If we allow DSR and AODV to

share route information by combining the DSR route cache and the AODV

route table as described in Section 4.6.1, we could improve the performance

during the switching period. From the simulation results, we see that the

hybrid protocol is adaptive to network mobility and suitable for networks

under varying mobility environments.

106

4.7 Advantages of AN for Evolution and Adap-

tation

In this section, we compare the evolvability and adaptivity of the traditional

network and the AN-enabled network. We make this comparison in terms of

standardization, implementation and deployment. In each of these areas AN

makes evolution and adaptation easier than in the current architecture.

4.7.1 Standardization

Traditional Arch. It has been 8 years since the DSR protocol was pub-

lished; standardization is still in progress [90]. The AODV protocol was pub-

lished in 1999 [79]; an experimental standard document for AODV was issued

in 2003 [83]. It took 4 years to achieve limited standardization of the AODV

protocol. However, the standardization of AODV is still in progress [92] and a

standards track document is expected to be published some time in the future.

AN Arch. There are no substantial demands on standardization for deploy-

ing and conforming a routing protocol. AN can also evolve routing protocols

on an as-needed basis without elaborate standardization.

Conclusion Because AN makes much simpler demands on the standardiza-

tion process, with respect to standardization using AN makes evolving the

network significantly easier.

107

4.7.2 Implementation

To implement reactive ad hoc routing protocols, the system should meet the

following specifications:

• Working as a router in multi-hop routing,

• Running a routing protocol on demand,

• Maintaining a routing buffer,

• Detecting link breakage, and

• Recovering from route failure.

Traditional Arch. In the traditional architecture, ad hoc routing protocols

must be agreed upon before network configuration. Based on the standards,

ad hoc routing protocols are implemented in the protocol stack. In order

to overcome routing heterogeneity, all the potential routing protocols must be

implemented in the protocol stack on the nodes. However, this is a heavyweight

and inextensible approach; the protocol stack must be changed as new routing

protocols emerge. It is also hard to evolve a widely-deployed routing protocol.

Evolutionary features must be implemented and deployed as a form of new

software. In the traditional architecture, an evolution means the burden of

changes in some parts of the network infrastructure.

Table 4.5 compares the lines of code of various DSR implementations:

Monarch Project [93], picoNet [94], DSR router project by University of Col-

108

Criteria Monarch Piconet UC Boulder MANE

Line of Code N/A N/A N/A 661 in Popcorn +
for Basic DSR 33 in PLAN
Line of Code 9089 in C 2681 in C 6200 in C 0 in Popcorn +

for Optimized DSR additional 8
in PLAN

Table 4.5: Comparison of DSR Implementations

Criteria UCSB UIUC MANE

Line of Code 8346 in C 5513 in C 683 in Popcorn +
43 in PLAN

Table 4.6: Comparison of AODV Implementations

orado, Boulder [95], and MANE. Due to the limitations of the current net-

work architecture, there is no comparable implementation supporting only

basic DSR. Table 4.6 presents the lines of code of various AODV implementa-

tions [96].

AN Arch. The AN architecture requires two programming interfaces to im-

plement a routing protocol: supporting extensions and actualizing packets.

Since the substantial parts of the routing protocols are implemented using

packet programming, it is simple and quick to implement the supporting ex-

tensions, which constitutes the network infrastructure. Also, packet program-

ming facilitates dynamic protocol implementation and actualization.

109

Criteria MANE

Line of Code 1204 in Popcorn + 69 in PLAN

Table 4.7: MANE Implementation of Hybrid Routing Protocol

In MANE, it took one week to implement both basic DSR and opti-

mized DSR. It took one week to implement AODV in MANE. Since there is

no comparable hybrid scheme to ours, it is impossible to compare mobility-

adaptive routing protocols. It took one week to implement the hybrid protocol

and its lines of code is shown in Table 4.7.

Conclusion AN allows shorter and simpler implementations for protocol

development, evolution, and hybridizing. Simpler implementations are easier

to create and change and thus it is easier to evolve the network from an

implementation point of view.

4.7.3 Deployment

Traditional Arch. The traditional architecture requires network-wide soft-

ware installation to deploy a routing protocol in an ad hoc network, which

is feasible only in a small network and before system operation. Once the

network is made up, it is difficult to deploy or adopt a new protocol without

downtime. Evolving a routing protocol needs a software upgrade on every

node accompanied by downtime. Also, for an adaptive protocol, a new phase

110

of implementation and deployment should start from scratch.

AN Arch. In order to deploy a routing protocol, it is only required for

nodes to be equipped with supporting service functions in extensions that

can be either dynamically linked or updated. Once the service functions are

resident on nodes, realization of protocol is achieved by active packets. Based

on the supporting service functions, it is easy to evolve a routing protocol

by packet programming. Active packets conveying enhanced features of the

protocol actualize the evolution of the routing protocol. It is a lightweight way

of evolution to use active packets, while it is a heavyweight way of network

evolution to use dynamic updates.

Adaptation by hybridizing can be accomplished by simply combining

packet programs rather than complex design and operations. Since active

packets carry a hybrid scheme, adaptation is achieved on packet-by-packet

basis.

Conclusion The traditional architecture requires software installation and

downtime to deploy a new routing protocol or to evolve existing protocols.

While, the AN architecture based on programmable infrastructure enables us

to deploy or evolve protocols without changes and downtime on nodes. From

the deployment point of view, AN provides better evolvability.

111

4.8 Other Possible Adaptivities

In the previous sections, we discussed the deployment and evolution of the DSR

protocol, and the implementation of a hybrid protocol of DSR and AODV. We

took them as examples because they are simple and have the basic character-

istics of ad hoc routing. We have no reason not to expand these approaches to

other routing protocols including proactive routing protocols. We can think

of the following examples worthy of further research.

4.8.1 Mobility-based Zone Routing

When we hybridize the routing protocol, we made an assumption that there

is a network-wide mobility metric known to all nodes in the network. As a

matter of fact, it is hard or impossible to get a mobility metric for a net-

work as the network size grows. Without a special algorithm or information

exchange, a node can obtain network mobility only from locally available in-

formation. Furthermore, there could be some parts of the network in which

nodes’ movements are faster or slower than other parts.

If it is allowed for any intermediate nodes to make a decision on routing

protocol, there is no need for a global metric of mobility. Because Active

Packets allow protocols to change on a packet-by-packet basis, AN provides

technology to support this kind of adaptation to different environments.

112

4.8.2 Connecting to the Internet

While ad hoc networks are efficient for prompt network make-up and break-up,

it would be more useful to be connected with the infrastructure-based network,

or to be specific, the Internet. Since the Internet and ad hoc networks have

different architectures, there needs a special router at the junction working

as a gateway connecting the two different networks. In terms of the routing

protocol, the Internet has a hierarchical scheme, while ad hoc networks may

have either a hierarchical or a flat scheme. To route packets between them, the

gateways need to understand both of the routing protocols in use. Since ad

hoc networks are ad-hoc, it is quite possible that the gateway is not equipped

with the routing protocol in use on the ad hoc networks. In this case, we

can take advantage of AN in evolving the gateway either by active extension

evolution or by active packet as discussed in Section 2.2.1. Through active

extension evolution, the ad hoc network can update and equip the gateway

with the routing module to support the routing protocol in use. After that,

the following data packets do not need to be aware of the routing protocols.

If active packets are aware of the routing protocols and contains code for the

routing transformation, ad hoc networks can forward packets to and from the

Internet without modifying the gateway.

113

4.8.3 Dynamic Routing Metric

As ad hoc networks develop, various requirements besides simple routing may

arise, such as power-saving operations or quality of service (QoS). The use of

an appropriate routing metric, not just hop count, helps the network to route

packets optimally for the requirements. AN can facilitate ad hoc networks

to meet those requirements through remote execution of active packets. By

injecting active packets containing an algorithm for calculating the metric,

AN actualizes various QoS routing protocols on the fly. As the active packets

propagate through the network, they collect optimal paths for the given metric.

Each host is only required to support the interface to supply information for

the metric. Given the interface, an ad hoc network is able to find an optimal

routing path for varying requirements dynamically.

4.9 Discussion

In order for a protocol to be put into operation in MANE, we need to im-

plement both AEs and APs. APs actualize the protocol by calling services

provided by AEs. Adaptability and reusability of the protocol depend on the

design of AEs and APs. In the previous section, we demonstrate how to imple-

ment the hybrid protocol through AP-dominant programming with minimal

functionality in AEs. If we include more functions as “built-in” services in

AEs, the size of packet programs can be reduced. For instance, we do not

need Get RREQ ID() because built-in services can be designed to generate

114

a new RREQ ID internally for route discovery. Further, if we implement all

the basic functions as AEs, the protocol is embedded in MANE and APs are

routed transparently to the upper layer protocols. Even though we do not

cover AE-dominant programming in this work, currently there are three rout-

ing protocols, DSR, AODV and hybrid, embedded in MANE other than the

default routing function, defaultRoute.

In this experiment, we use a routing-aware AP to show the ease of

implementing a protocol in packet programming. By simply combining two

packet programs and common services, we can adaptively change the routing

protocols and enhance the routing performance. If we expand this approach

and combine several routing protocols in a hybrid form, we should be able to

achieve an improved protocol that can adapt itself to the conditions changing

over various ranges and that performs best under the given conditions. Since

APs facilitate protocol realization on the fly, AN can allow routing protocols

to change agilely as APs pass through the network.

For the adaptive routing activation, we assume that there is a policy

module which monitors network mobility and decides which protocol to use.

Since the main purpose of this paper is to show the applicability of AN’s

adaptability, we can call this assumption is trivial. The module, however,

plays an important role in applying the routing protocol. For adaptivity, there

is a need to fine-tune the policy module. Further, if the network mobility is

varying near the crossover point, the network may switch routing protocols

too frequently; thus, it is desirable to allow some hysteresis.

115

Chapter 5

Case Study III: TCP Over

Wireless

In this final case study, we consider how adaptation can be used to address

the performance problems of the Transmission Control Protocol (TCP) over

wireless links. The importance of TCP is obvious and TCP is one of the

central protocols of the IP-based Internetwork. TCP is the transport layer

protocol for the most widely-used application layer protocols, such as the Hy-

per Text Transfer Protocol (HTTP), Telnet, the File Transfer Protocol (FTP),

and the Simple Mail Transfer Protocol (SMTP). Further, with the spread of

IEEE 802.11 wireless Ethernet technology [99], wireless last hops have become

common. Unfortunately, TCP assumes that packet loss is due to congestion.

This assumption is not always true for wireless links, which can lead to poor

performance [17]. There has been significant research into this problem, but

116

the solutions either require widespread changes to the network or are architec-

turally limited.Because so much of the Internet relies on TCP, it is daunting to

change TCP. Changing TCP means changing every end host in the Internet.

Further, any proposed changes to TCP must be verified to be interoperable

with and harmless to the rest of the Internet. For this reason, a substantial

emphasis in this chapter is on the architectural approach. A condensed version

of this chapter appears in the proceedings of International Working Conference

on Active Networking (IWAN) 2004 [101].

This sort of network evolution is exactly the target of Active Network-

ing (AN) and we believe that AN can provide a number of strategies that will

help address this issue. Our claim is that if we had a network that incorpo-

rated AN in at least some of its nodes, the range of solutions to the problem

of TCP over wireless would be greatly increased. Of course, if AN in its most

general form penetrated everywhere, it would clearly solve this problem, be-

cause it would be easy to simply deploy the best, most general solutions and

as new solutions were developed to deploy them. Here we are interested in

exploring the implications of having more limited AN penetration on possible

solutions. We explore this idea by first presenting a model of how AN might

be deployed in the specific case of TCP over wireless. We then present some

system requirements, a deployment architecture, and highlight some key AN

capabilities. We then use this model and architecture to motivate a series of

concrete implementations that address various aspects of the problem. These

include an implementation of adaptive link control and of the TCP Snoop

117

protocol [102]. The implementations also serve as a vehicle for exploring other

design possibilities, thus broadening support for our claims.

In addition to presenting background material on TCP over wireless and

our AN approach and platform, we make our case in two ways. First, to a large

extent the issues at hand have to do with implementation architecture. Thus

a key part of our argument is a presentation of a model of TCP over wireless

systems that lays out the possible design space, followed by a consideration

of the high-level architectural issues. Second, to make things concrete, we

present implementations of some of the possible solutions. To further flesh

out our understanding of the design space, we also use the implementations

to motivate a discussion of alternative possible implementations.

5.1 Background

This section presents an overview of TCP, the problems of TCP over wireless

links, and related work.

5.1.1 TCP Overview

The Transmission Control Protocol (TCP) is a connection-oriented transport

layer protocol responsible for end-to-end reliable data transmission. TCP is

equipped with several mechanisms for reliable transmission: a sliding window-

based Go-back-N ARQ scheme for in-order delivery, retransmissions for error

recovery, and flow control and congestion control for adaptive utilization of

118

network resources [14].

For in-order delivery and error recovery, TCP uses sequence numbers

and retransmissions. Using the sequence numbers of segments and the corre-

sponding acknowledgement (ACK), a TCP sender keeps track of round trip

time (RTT) variations of the connection [103]. These RTT measurements are

used in estimating the retransmission time out (RTO) for segments. If there

is no ACK for the duration of a RTO, the sender retransmits the dropped

segment. In addition, since TCP uses cumulative ACKs, it will typically re-

transmit all the segments starting from the lost one even if the subsequent

segments have already been successfully received.

TCP’s congestion control algorithm manages network resource utiliza-

tion in a way that adapts to network load. The basic idea of TCP congestion

control is for a source to determine the available capacity in the network,

controlling the amount of data the source can transmit using the congestion

control window size. The source regards the arrival of an ACK as a signal

that the available capacity of the network has increased; and TCP gradually

increases the pace of transmission by increasing the window. It does so until

a packet loss indicates some router is congested. When this happens, TCP

reduces the congestion window by a factor of two, which halves the bandwidth

used by the sender. This is the basic idea, but in practice the mechanisms are

more complex and the basic idea of congestion control has been evolutionarily

engineered for better performance. Some of the steps of this evolution are

listed in Table 5.1.

119

TCP Version Features

Tahoe Slow Start, Congestion Avoidance, Fast Retransmit
Reno Fast Recovery, Header Prediction, Delayed ACKs

New Reno Partial ACKs
Vegas Rate-based RTT Estimator

Table 5.1: Comparison of various TCP implementations

5.1.2 TCP Over Wireless Links

There are several problems with TCP functionality and performance over wire-

less links. Over such links, there may be more fluctuations of bandwidth and

delay than in typical wired networks, stressing TCP’s algorithms ability to

adapt. One of the main problems of TCP over wireless links arises from the

fact that TCP’s error recovery and congestion control are closely coupled. This

is due to the assumption that packet drops are only the result of the network

congestion. This assumption is a kind of layer violation in that the trans-

port layer is closely correlated with the link layer. This assumption is valid in

wired networks because wired links are reliable enough that packet losses can

be interpreted as the result of congestion in routers. Thus, TCP’s congestion

control worked well until wireless links began to be used as an Internet link

layer. Wireless links are lossy and cannot be assumed to be reliable in spite of

their link-level error recovery schemes [104]. In the case of packet drops caused

by link errors, TCP should retransmit the packet without closing the conges-

tion window. These points are reinforced in the literature, where it has been

120

shown that TCP’s performance significantly degrades over wireless links [17].

5.1.3 Related Work

Several solutions have been proposed for the problem of TCP over wireless

links [16]. They can be classified into two main categories: End-to-end and

Transparent. An obvious solution is simply to do the necessary research to

understand how to mix TCP with wireless links and then deploy those solu-

tions throughout the Internet. Not surprisingly, the first step, researching a

solution has had significant success [16, 105, 106, 102, 107, 108]. The most

general solutions require updating both the TCP implementations on the end

hosts and at least some of the routers handling wireless traffic (end-to-end so-

lutions). Unfortunately, in today’s Internet, such an update is very difficult to

achieve. As a result, there has also been significant work on solutions that do

not require updating the end hosts (or perhaps only the one connected wire-

lessly), essentially restricting the design space to transparent modifications of

the base station connecting the wired network to the wireless one [102, 107].

Unfortunately, this architectural restriction can have adverse performance im-

plications [109].

We regard backward compatibility as of importance in TCP issues, thus

we discuss two of the transparent methods in more detail. Our approaches,

however, are not confined to transparent solutions.

121

End-to-end Solutions

Basically, end-to-end solutions at the end points require modifying TCP while

maintaining end-to-end semantics [16]. They attempt to improve performance

by remedying the defects of TCP. Selective ACK (SACK) [105], Explicit Loss

Notification (ELN) [16] and Explicit Congestion Notification (ECN) [106] ex-

emplify this approach. SACK aims to reduce unnecessary retransmissions

caused by the cumulative ACKs of the original TCP specification. ELN and

ECN aim to separate the error recovery and congestion control mechanisms of

TCP. In [16], the authors showed that an end-to-end protocol that has both

ELN and SACKs is effective in dealing with high packet loss rates.

The drawback of these approaches is that they require fundamental

changes to TCP. The need to replace already deployed versions of TCP means

that deployment of these approaches will be difficult and slow. Besides, this

approach needs more care because it is unclear if the modified TCP will per-

form well both on wired and wireless links. From experience, we see that it

may take time to find problems of newly deployed protocols that were thought

to be well-designed.

Transparent Solutions

In this approach, link-level losses are handled by link layer protocols and hid-

den from the transport layer. Therefore, existing TCP stacks and hosts op-

erate normally without knowing whether the connection is over wireless or

122

wired links. The TCP snoop protocol [102], AIRMAIL protocol (a combi-

nation of FEC and ARQ) [107], and I-TCP (Indirect-TCP, connection split)

protocol [108] are examples.

The main advantage of these approaches is that they are more practi-

cal than the “end-to-end” approach in terms of incremental deployment. It

is easier to modify only the link layer protocols handling lossy links than the

TCP protocol deployed on every end-host. However, as we will see from the

TCP snoop protocol, link layers should be aware of the transport layers’ se-

mantics and session state information, which is a case of layering violation. In

addition, this approach has the possibility of redundancy, inefficiency, or even

ineffectiveness. In [109], for instance, the authors concluded that competing

retransmissions by the link and transport layers often lead to significant per-

formance degradation, unless the packet loss rate is high (more than about

10%). TCP’s fast retransmission and associated congestion control degrade

TCP performance over wireless or lossy links. We discuss two representative

examples of the transparent method: the snoop protocol and I-TCP.

TCP Snoop protocol The TCP snoop protocol is one of the well-known

examples of a TCP Performance Enhancing Proxy (PEP). TCP PEPs

are adopted to improve the TCP performance in certain circumstances

where desired performance is limited by link characteristics [110].

The TCP snoop protocol is a link layer protocol that comprehends TCP

semantics on a base station (BS), which is a junction between the wired

and wireless links. In order to enhance TCP’s performance over wired-

123

cum-wireless links, the snoop protocol maintains TCP state information

by caching TCP data segments, retransmitting lost packets locally (over

a one-hop wireless link), and suppressing duplicate ACKs to prevent

unnecessary congestion control from launching at the sending fixed host.

This scheme is feasible because it only needs modifications at the BS.

The snoop protocol, however, results in a solution for TCP data flows of

one-direction only, from a fixed host (FH) to a mobile host(MH). Further,

there is overlapping retransmission functionality between the link layer

and the transport layer, which may cause inefficiency [109].

I-TCP To handle mobile hosts, the indirect model was proposed by B. R.

Badrinarth, et al. [111] The authors argued that changes are needed at

every level of the OSI model to support mobility and proposed that fixed

hosts (FH) and mobile hosts (MH) be handled differently. Based on this

indirect model, I-TCP was suggested to improve TCP performance over

wireless links [108].

I-TCP splits a TCP connection into two separate links at the border

of wired and wireless links, one over wireline links, and the other over

wireless links. A transport layer connection between an FH and an MH

is established as two separate connections and the BS is the junction

point of an I-TCP connection. With the help of I-TCP on the BS,

the TCP connection between the FH and the MH can be maintained

over the lossy links and during handoff. Packet drops due to losses on

124

the wireless medium are hidden from the FH and the FH is completely

unaware of the wireless links and indirection. Even though I-TCP is a

transport layer protocol, it does not sustain end-to-end TCP semantics.

For reliable connections, I-TCP requires that some mechanisms for error

recovery should be provided from the application layer. This seems a

significant limitation of the approach.

5.1.4 The State of The Art: Standardization and De-

ployment

There have been several proposals for TCP modifications to enhance TCP

performance over wireless links [105, 112, 106, 110, 113]. Among them, Ex-

plicit Congestion Notification (ECN) is recommended as a possible adoptable

scheme [114, 106]. A basic mechanism for ECN was included in the original

design of the Internet Control Message Protocol (ICMP) as the Source Quench

Message [115]. However, there has been significant controversy over implemen-

tation of the Source Quench Message [116]. Since TCP’s congestion control

was shown to be a main reason for performance degradation over wireless links,

a standard document for ECN, RFC 2481, was issued as an experimental doc-

ument in January 1999 [117]. In September 2001, RFC 3168 was published

as a standards track RFC obsoleting RFC 2481 [106]. In the meantime, Cisco

supports ECN starting with Internetwork Operating System (IOSTM) Release

12.2(8)T in 2003 [118].

125

However, ECN requires support from both the routers and the end

hosts, i.e., a significant evolution in the network architecture. Every TCP

installation on end hosts must be ECN-capable, which means that end hosts

need new TCP/IP stacks; every switch or router must be upgraded to support

procedures for setting the ECN field in the IP header. Due to the difficulty of

adopting ECN, ECN has not been widely deployed in the current network [119].

While end-to-end approaches might be a possible long-term solution,

they are not likely to be available throughout the Internet in the short-term.

On the other hand, transparent approaches are more feasible and incremen-

tally deployable. They do not require modifications on every end host. One

transparent approach is to reduce link errors by using adaptive link error

control protocols. Many adaptive schemes have been proposed in the litera-

ture [120, 121, 122, 123, 107, 124] and industry also plans to adopt adaptive

link control schemes for data service [99, 125, 126]. In general, their link layer

protocols achieve adaptivity in various ways: adaptive coding rate, adaptive

ARQ schemes, or adaptive frame length. Adaptive modulation and coding

was adopted by IEEE 802.11 [99] in 1997, IEEE 802.11b [127] and IEEE

802.11a [128] in 1999. They support multirate operation by adapting modu-

lation schemes, but not error correction schemes. Hybrid ARQ/FEC schemes

have been suggested for the channels whose bandwidth-delay product is high,

such as the satellite channel [123]. Their adaptivity is limited in that their

adaptation is pre-designed and fixed. For example, in the Radio Link Protocol

(RLP) specified in the 3rd Generation Partnership Project 2 (3GPP2) speci-

126

fication, when a frame has errors and cannot be recovered by FEC, the frame

is retransmitted a certain number of times, after which RLP gives up [126].

Another transparent approach is to use cross-layering on lower layers

by sharing layer-specific information. In this approach, lower layer protocols

cooperate to enhance TCP performance without changing TCP. The Berkeley

snoop protocol, which is a TCP-aware link protocol, is a well-known example of

this approach. The Berkeley snoop protocol was first published in 1995 [102].

Since then, there have been several implementations [129, 130]. However,

neither standardization nor deployment of the snoop TCP protocol has started

in the 9 years since 1995. In order to support the snoop TCP protocol, the

modifications that are required are as follows:

• Architecture

– New functional entities: snoop proxy on Base Stations

– Layering violation: link layer protocol (snoop) needs to be aware of

transport layer protocol (TCP) semantics.

– Only one direction of TCP flow (from FH to MH) is supported.

• Functionality

– The snoop proxy on Base Stations should be aware of TCP seman-

tics.

– The snoop proxy should be equipped with the following functional-

ity:

127

∗ Tracking TCP data and ACK segments by maintaining state

for TCP connections

∗ Caching outstanding TCP data packets

∗ Maintaining local timer

∗ Retransmitting by either local timeouts or duplicate TCP ACKs

∗ Suppressing duplicate ACKs from the mobile host

To address TCP problem over wireless links requires either TCP changes

on every end host or transparent modifications of lower layer protocols. Be-

cause both of the approaches demand significant network evolution, the stan-

dardization for the TCP problem has been slow; no schemes have been widely

deployed throughout the Internet.

5.2 How can Active Networking Help?

The goal of our work is to show how AN could help address the problems

of TCP over wireless links. At a high-level, this is an architectural question;

where and in what form can AN be useful? To answer this question, we

begin by creating a model of the underlying system. The section concludes

by considering a variety of architectures that map AN capabilities on to this

model. The rest of our work is principally an exploration of some specific

instances of these mappings.

One obvious point: if sufficiently powerful AN technology were deployed

everywhere then the problem would be much easier. In fact, we would be able

128

Mobile Host

(MH)

Base Station

(BS)

Fixed Host

(FH)

Wireless Hops

MH MH

Layer Boundary (loose)

Layer Boundary (strict)

Wireless Link

Wired Link

AN layer

Potential AN layer

Hard to change

Physical Layer

Link Layer

Network Layer

Transport Layer

Application Layer

Figure 5.1: AN model for TCP over wireless

to deploy end-to-end, nontransparent solutions easily and to evolve them as

better solutions were developed. Our goal here is to consider the possibili-

ties when AN is available in some places and some forms but not in such a

widespread manner to allow this trivial solution.

5.2.1 Model

The model of a TCP session shown in Figure 5.1 captures many of the key

architectural issues. Communication is between a Mobile Host (MH), and a

Fixed Host (FH). A Base Station (BS) connects the wired network where the

FH resides to the wireless one where the MH resides. Unlike the bulk of the

129

related work discussed above, we include the case where the MH may need

multiple wireless hops to reach the BS. Also, the related work focuses on the

case where the bulk of the data is being transmitted from the FH to the MH.

In general, we are also concerned with the case where the MH is the primary

source of data.

Figure 5.1 also illustrates some of our thinking about where and what

kind of AN technology might be deployed. As described in Chapter 2, our

AN architecture has both active packets (APs) containing executable code

and active extensions (AEs) which are downloaded dynamically to modify or

extend nodes. We assume that we have full control of the MH and thus can

expect that both APs and AEs can be used there where needed. Similarly, we

entertain the possibility that the wireless network is “all active” and thus that

we could potentially deploy both AEs and APs there. Three possibilities exist

for the BS. First, if the BS can employ no activeness, then we are restricted to

end-to-end solutions (and must have an active enabled FH). Second, perhaps

for security reasons, the BS may allow AP processing, but not allow AEs

to be downloaded. Finally, the BS may support both APs and AEs. The

intermediate links between the BS and FH are not a source of the problems

we are trying to address and so without loss of generality, we can assume they

are not “active.” However, notice that in the case that the BS is not “active,”

some BS-centric approaches will work if deployed at an intermediate node.

Finally, the FH has the same basic options as the BS. Of course, it is likely

that an MH will have more control over the BS than the many possible FHs,

130

so it is likely that the FH will allow fewer “active” options than the BS.

Finally, Figure 5.1 also touches on the issue of layer crossing. The

problems we are addressing come fundamentally because TCP violates the

basic layering principles of the network by making an incorrect assumption

about the nature of the wireless physical layer. Thus it is not surprising that

many of the approaches to solving these problems also violate layering. In

fact, one of our premises is that since AN can support flexible, controlled layer

crossing, it is well suited to these solutions. Thus the figure shows which

layers we expect to be the most “permeable” as well as at which layers we

most expect to deploy either APs or AEs. One important case that is not

illustrated is the use of “shim” layers. These are just layers that are inserted

between existing layers.

5.2.2 Requirements, Architecture, and Capabilities

Now that the basic system model is stated, we consider the possible architec-

ture of solutions and discuss several AN capabilities that potentially play an

important role in the solution space. However, before doing so, we consider

two system requirements.

The first requirement is preservation of TCP’s end-to-end semantics:

reliable, in-order, duplicate free delivery. We view this as a strict requirement

for any solution; taking the view that these semantics define what TCP is and

that any system that does not provide these features is not TCP. The second

requirement is backward compatibility. Since in some scenarios the possibility

131

exists of using AN to modify the end host’s implementation of TCP, we do

not view this as a strict requirement. However, many other scenarios exist

that deny this possibility and so it is important to consider. Since we view the

MH as fundamentally more changeable than the FH, backward compatibility

issues focus at the FH. Backward compatibility then takes two forms. First are

systems where the FH is “active,” but the TCP implementation is not. Such

systems admit end-to-end approaches, but must mask any “activeness” from

TCP and higher layers. Second are systems in which the FH is unchangeable

and transmits standard TCP segments. In this case, any “activeness” must be

masked before data segments or ACKs reach the FH. Given our assumption

that the Internet is not active, this means “activeness” being masked at or

before the BS. In general, we would like to be able to support “islands” of AN

functionality isolated by conventional networks. We will illustrate how this

may be done in Subsection 5.4.3.

In our view, there are two basic architectural approaches: horizontal

and vertical. The horizontal approach works between peer layers and does not

cross layer boundaries. For example, link layer protocols over wireless hops

can adaptively cope with fluctuating channel conditions and reduce link-level

errors. An important special case is when the peer layers are dynamically

inserted (and removed) shim layers. This is essentially the idea of Protocol

Boosters [22]. A useful analogy is that boosters are like snow chains; you put

them on a protocol when they are needed, but remove them when they are

not (and may if fact be degrading performance). In section 5.4, we will discuss

132

how our implementation system makes this idea especially useful.

In contrast, the vertical approach allows layering violations and infor-

mation sharing between layers. For example, in the PEP architecture discussed

previously, the BS is allowed to cross layers in dealing with TCP-aware pro-

cessing. To avoid congestion control on end hosts, the BS attempts to foil fast

retransmit by adaptively manipulating duplicate ACK packets.

One of the key AN capabilities that can be leveraged to assists with

TCP over wireless is the ability to adapt quickly, perhaps even on a packet-

by-packet basis. This ability derives from the fact that the code (or data used

by that code) contained in APs can change in each packet. We will show an

example of this based on link error control in Subsection 5.4.3.

A final AN capability of importance centers on AEs. As described in

Chapter 2, AEs can be dynamically downloaded and can add to or modify the

behavior of node resident code. The implication of this is that even protocols

that need new or modified node resident functionality can be incrementally

deployed on the fly. As an example, consider a MH that wishes to use an en-

hanced protocol that requires node-resident functionality at the BS. Assuming

the BS supports AEs, then the MH can simply extend the BS. Essentially BS

has been adapted to support the new protocol.

133

5.3 MANE Modifications

To support our current experiments, we need to modify the version of MANE

discussed in the previous Chapters. Those changes are discussed here. In

addition, many of our examples use the “chunk” feature of PLAN [42] and

here we review this feature so that those examples are more understandable.

5.3.1 TCP Itself

Perhaps the most significant addition we made to MANE was an implementa-

tion of a TCP-like protocol. To achieve this, we added a data structure called

the Transmission Control Block (TCB) [15]. Each TCP host should maintain

information about a TCP connection and TCB is used to store this informa-

tion. Among the variables maintained in the TCB, we added the basic ones

needed for the congestion control, which included sequence numbers, round

trip time (RTT) measures and variance, timeout values for retransmission,

and the congestion window.

TCP senders are responsible for reliable transmission, therefore, they

must have a buffer to store outstanding TCP segments and to retransmit

them in case of timeout or duplicate ACKs. We equipped MANE nodes with

a send buffer, which keeps outstanding TCP segments with timeout values.

The corresponding ACKs free the segments from the buffer and update RTT

measurements and congestion window size.

There are three new service functions for TCP transmission: tcpSend(),

134

tcpAck(), and tcpRcv(). On the sender side, tcpSend() initiates TCP trans-

mission with random segment sequence number, and tcpAck() performs re-

liable delivery of TCP segments following the congestion control and fast re-

transmit algorithms. A TCP receiver checks if the delivery is in-order by

calling tcpRcv(). The return value of tcpRcv() is the sequence number of

the last segment received in order, which is used for cumulative ACKs.

5.3.2 Link Error Issues

For our current experiments, we added a simple error model in which a pack-

ets bits are flipped with some probability. Although this is certainly an overly

simplistic model, it makes it easy to observe the performance of various ap-

proaches in either a low or high error regime.

For link-level error detection, we added a 32-bit Cyclic Redundancy

Check (CRC-32) to our frames as a Frame Check Sequence (FCS). The FCS

is calculated using the following standard generator polynomial of degree 32:

G(x) = x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1.

A node-resident service, crc32(), calculates a 32-bit CRC from a PLAN

chunk. The CRC value is transmitted together with the chunk. As described

in Chapter 2, chunks are used to describe the remote execution of PLAN pro-

grams on other nodes. When the chunk is evaluated, the named function is

invoked with the arguments; remote evaluation is achieved so that the receiver

can calculate the CRC of the arriving frame and compare it to the transmitted

135

value. Based on this error detection function, we can implement automatic

repeat request (ARQ) schemes by programming in PLAN.

Some of our approaches also use forward error correction (FEC). Unlike

ARQ, FEC requires a coding scheme for error correction as well as error detec-

tion. Because of the need to correct bursty errors that are common in wireless

links, we adopt Reed-Solomon (RS) Codes as an FEC coding scheme [131, 132].

We use RS codes constituted by 8-bit code symbols, or over the Galois field

GF (28). An RS code is specified as RS(n, k), which means that an n-symbol

codeword is encoded from k data symbols and n−k parity symbols. A RS(n, k)

code can correct up to t = (n− k)/2 symbols in a codeword. A node-resident

function, fecEncode(), generates a new chunk of RS codewords from a given

chunk with parameters n and k. On the remote host, the new chunk executes

to decode the codeword and evaluates the original chunk.

5.3.3 Node-resident Variables for Channel Monitoring

To implement adaptive link error control, we need to monitor the state of our

wireless link. Based on the measurements of the link, a host can dynamically

change link error control schemes. As an indicator of channel state, we use

an error counter (or bit error monitor), which counts corrupted packets in a

time window [133]. Each wireless interface of a node maintains a history of

packet errors in the time window. According to the value of the counter, policy

modules can make decisions on which control scheme to use.

136

Good

λ

γ

Bad

Figure 5.2: Wireless Channel Model in MANE

5.3.4 Interface Queue in the Link Layer

In our experiments, we show how to control link layer protocols using PLAN

packets. Therefore, we added interface queues that allow PLAN packets to

queue packets for retransmission. We added two functions, enQueue() and

deQueue(). The function enQueue() stores a packet in the interface queue

and sets a timer for retransmission. While, deQueue() clears a packet from

the queue.

5.3.5 Channel Model

For the experiment of TCP over wireless links, we need to model wireless

channel characteristics in MANE. It is shown that a first-order Markovian

model is a good approximation of wireless channel [134, 135]. The wireless

137

channel in MANE is modelled after Gilbert-Elliott channel model [136, 137],

which is a binary symmetric channel with transition probabilities, λ and γ.

As in Figure 5.2, it follows a 2-state Markov process, in which the two states

are denoted by G (good state) and B (bad state).

Losses occur with a low probability p
G

in the good state (G), while

they happen with a high probability p
B

in the bad state (B). The steady state

probabilities of being in states G and B are π
G

= γ/(λ+γ) and π
B

= λ/(λ+γ),

respectively. Therefore, the average loss rate is p = p
G
π

G
+ p

B
π

B
.

5.4 Horizontal Adaptive Link Error Control

One obvious way to improve TCP over wireless is simply to improve the error

characteristics of the wireless link. As our first example, we consider how

we can use the horizontal approach to implement this basic idea. The tricky

issue is that how best to do this is a function of the link error rate, which is

changing dynamically. If the error rates are very low, it might make sense to

have no link-level functionality, much like many links in the wired network.

At higher, but still moderate error rates, a basic ARQ scheme is employed

because of its simplicity and low overhead. However, as error rates increase,

frequent retransmissions degrade performance. Thus at high rates, to control

errors more efficiently, FEC is added into ARQ. By combining two coding

procedures, hybrid ARQ/FEC can get the benefits of both [138, 139]. In such

a ARQ/FEC, the strength of the error-correcting code (ECC) can gradually

138

adapt [120]. In this section, we show how AN can be used to implement this

adaptivity.

We can implement this scheme in PLAN with a supporting shim layer.

For adaptive link error control, we place a shim layer between the link layer and

network layer. When forwarding data packets, the shim layer protocol saves

the packet in a buffer, generates a CRC or codeword from the payload, and sets

a timer for retransmission. Then, it sends a PLAN packet encapsulating an

error control algorithm, the payload, and the codeword in a chunk. When this

chunk is executed at the destination, it completes the algorithm by checking

the packet and sending an ACK (which takes the form of another chunk).

5.4.1 Basic ARQ

We begin by considering a simple ARQ scheme. For simplicity, we assume

we have only one wireless hop. Thus we expect the round-trip times seen

by the link-level ARQ to be small. Therefore, we adopt an idle RQ or stop-

and-wait ARQ scheme rather than selective-repeat ARQ or go-back-N ARQ

schemes [140]; however, it would be straightforward to include other ARQ

schemes when the channel has a long round-trip delay with high transmission

rates. In that case, we would not need to change the node-resident services, but

would use a different PLAN program containing the required ARQ algorithm.

Figure 5.3 shows the PLAN code for our ARQ scheme. For error de-

tection, the sender calculates a CRC-32 (Line 11) and sends a new chunk

(checkCRC) containing the original chunk and the corresponding CRC (Line

139

1: fun checkCRC(chk, crc) =

2: let val crcCalcul = crc32(chk)

3: val nexthop = defaultRoute(getSrc()) in

4: (if(crcCalcul = crc) then (

5: eval(chk);

6: OnNeighbor(|deQueue|(), #1 nexthop, getRB(), #2 nexthop)

7:) else ()

8:) end

9:

10: fun arq(dst, chk) =

11: let val crc = crc32(chk)

12: val nexthop = defaultRoute(dst) in

13: (enQueue(|checkCRC|(chk, crc), #1 nexthop);

14: OnNeighbor(|checkCRC|(chk, crc), #1 nexthop, getRB(),

15: #2 nexthop)

16:) end

Figure 5.3: PLAN for basic ARQ

14). It also stores the packet in the interface queue for retransmission (Line

13). The destination evaluates the chunk, thus evoking checkCRC, which ex-

ecutes to compute the CRC of the received chunk and comparing it with the

original CRC (Lines 2 and 4). If the results are the same, the original chunk

is evaluated on the destination (Line 5). The destination is also required to

generate a chunk to invoke the deQueue() function on the sender. This chunk

works like an acknowledgment and frees the packet in the interface queue (Line

6). Note in practice, this ACK chunk might also implement other functionality

as well, such as updating an RTT estimate.

This particular code is specialized for a single wireless hop because it

always does the crc check on its neighbor. However, it could be used from

140

either the BS or the MH. Further, it would be easy to generalize this approach

to support multiple wireless hops. In this case, if transmitted from the BS, it

would simply defer execution of checkCRC until it reached its final destination

and it would also need to carry with it the address of the BS to provide the

“ack” with a destination. If transmitted from the MH, it would need to either

know the address of the BS in advance, or, as we will show later, the BS would

need to have a service function that identified it as a BS.

5.4.2 ARQ/FEC

By utilizing ARQ/FEC at high error rates, we can maintain constant through-

put at the expense of encoding/decoding overhead and complexity. Figure 5.4

presents the PLAN code for a FEC scheme using Reed-Solomon codes (or type

I hybrid ARQ [140]).

This code is similar to that for the basic ARQ. The key difference is

that before the original chunk is transmitted it is encoded using Reed-Solomon

coding (Line 11) and then when it is received, it is decoded (Line 2).

Although this code does not take advantage of this feature, by including

the FEC strength in the chunks, we could control the level of error correction

on a packet-by-packet basis. An example of where this might be of value

would be in a system like 802.11 which precedes each data transmission with

a request-to-send (RTS)/clear-to-send exchange(CTS). Then the RTS could

act as a channel probe, while the CTS could return the channel state to the

sender, which would then use it to determine how strong to make the FEC.

141

1: fun decode(codeword, scheme, n, k) =

2: let val chk = fecDecoding(codeword, scheme, n, k)

3: val nexthop = defaultRoute(getSrc()) in

4: (if(#1 chk = 0) then (

5: eval(#2 chk);

6: OnNeighbor(|deQueue|(), #1 nexthop, getRB(), #2 nexthop)

7:) else ()

8:) end

9:

10: fun fec(dst, chk) =

11: let val codeword = fecEncoding(chk, "RS", 255, 223)

12: val nexthop = defaultRoute(dst) in

13: (enQueue(|decode|(codeword, "RS", 255, 223), #1 nexthop);

14: OnNeighbor(|decode|(codeword, "RS", 255, 223),

15: #1 nexthop, getRB(), #2 nexthop)

16:) end

Figure 5.4: PLAN for FEC

5.4.3 Adaptive Link Control

Now that we have both basic ARQ and ARQ/FEC the question is how to

combine them so that the appropriate one is used based on the quality of the

channel. Figure 5.5 presents code that does this by hybridizing three schemes:

No Error Correction, ARQ and ARQ/FEC. This particular implementation

is designed to be sent by a FH. It depends on the BS to identify itself by

returning true when isThisHostBS is called as well as to maintain a measure

of channel quality, queried by isChanGood or isChanSoSo. The basic idea is

that the packet single hops through the network (Lines 2 and 16) looking for

the BS (Line 3). At the BS, it queries the channel state (Line 4) and if it is

142

1: fun adapLink(dst, chk) =

2: let val nexthop = defaultRoute(dst) in

3: (if(isThisHostBS()) then (

4: enQueue(|adapLink|(dst, chk), #1 nexthop);

5: if(isChanGood(#1 nexthop)) then (

6: let val crc = crc32(chk) in

7: OnNeighbor(|checkCRC|(chk, crc), #1 nexthop, getRB(),

8: #2 nexthop) end)

9: else (

10: let val codeword = fecEncoding(chk, "RS", 255, 223) in

11: OnNeighbor(|decode|(codeword, "RS", 255, 223),

12: #1 nexthop, getRB(), #2 nexthop)

13: end))

14: else

15: OnNeighbor(|adapLink|(dst, chk), #1 nexthop, getRB(),

16: #2 nexthop)

17:) end

Figure 5.5: PLAN for Adaptive Link Control

good, it doesn’t use error control (Line 5). If the channel error rate is medium

(Line 8), uses basic ARQ (Lines 9 – 11) otherwise it uses ARQ/FEC (Lines

13 – 15). Note that checkCRC and decode are the same as in the preceding

examples. This example shows that we can essentially implement protocol

boosters that switch their protocol on a packet-by-packet basis.

This particular example assumes that the FH can send APs, but it could

be easily adapted to the case where only the BS and MH were active. In that

case, the BS would receive a non-active packet, which it would then encapsulate

in either no error correction chunk, or a ARQ chunk or a ARQ/FEC chunk as

appropriate. The MH would execute the chunk, passing the non-active packet

143

up the stack if appropriate. This idea on encapsulating “normal” packets

inside of PLAN chunks is essentially the key to allowing “active” islands to

exist in a sea of “normal” networks.

We could also use a similar approach to the above when the MH is the

sender. In that case, if there were multiple wireless hops we would still need

to search for the BS and would evaluate the CRC or FEC there and send the

“ack” back to the MH. In any of these approaches, the fact that the algorithm

is encoded in the packet means that we can apply this adaptation on a packet

basis.

5.4.4 AN for Channel Monitoring

For adaptive link control, we need to track the state of the channel. One

approach is for the sender to use ACKs (or rather their lack) to tell when the

channel is bad. With AN it is easy to do better. The key observation is that

the receiver is in the best position to monitor the channel, while the sender

is the one that needs this information. Assuming the receiver records channel

information, we can use APs to query this state.

Figure 5.6 shows the code for an out-of-band channel monitor. The func-

tion getChanInfo() (Line 2) defines a standard interface to get information

on channel characteristics. This function returns various channel information

depending on the parameter, indicator, such as the Received Signal Strength

(RSS) or Signal-to-Noise Ratio (SNR). The code composes a query and sends

it (Line 9). The query executes on the receiver and returns the result to the

144

1: fun report(indicator) =

2: let val measure = getChanInfo(indicator)

3: val src = defaultRoute(getSrc()) in

4: OnNeighbor(|print|(measure), #1 src, getRB(), #2 src)

5: end

6:

7: fun probe(dst) =

8: let val nexthop = defaultRoute(dst) in

9: OnNeighbor(|report|("RSS"), #1 nexthop, getRB(), #2 nexthop)

10: end

Figure 5.6: PLAN for Monitoring RSS

sender (Line 4). Note that this is much more flexible than the conventional

approach, which would require specifying a special packet format and protocol

for such queries.

An important variation on this idea would be to piggyback the query

chunk on a data packet. This is easy to do because chunks are data and it

is easy to compose various chunk oriented calculations. The result is that

such queries can be done without sending additional packets and yet remain

transparent to the data flow. This ability to piggyback control on data trans-

parently, solves a key problem with Protocol Boosters, controlling when to add

or remove a booster.

Finally, consider our example above where RTS/CTS packets were used

to monitor the channel just before sending a data packet. In a conventional

network, this would require changing the format and function of the RTS and

CTS. However, if the wireless link sent APs for its RTS and CTS, then adding

145

500

1000

1500

2000

0 200 400 600

Time (sec.)

G
oo

dp
ut

 (
B

yt
es

/s
ec

.) No Error
Correction

ARQ

FEC

Adaptive
Correction

BER 10-6 BER 10-5 BER 5x10-4

Figure 5.7: Comparison of Link Error Control Techniques

to or modifying the function of these parts of the protocol would become just

a matter of packet programming.

5.4.5 Performance Evaluation

In Figure 5.7, we present a performance comparison of various versions of the

link error control mechanisms discussed above: No Error Correction, ARQ,

FEC, and Adaptive Correction. In this evaluation, the MH is the TCP sender

and the FH is the TCP receiver, while adaptive link control is over the wireless

link between the MH and the BS. Adaptive Correction is based on ideal channel

estimation, which assumes that it is possible to track channel states quickly

146

and accurately. When the error rate is very low, the adaptive protocol does

not use error correction. At low error rate, the adaptive scheme adopts the

ARQ scheme. When the error rate is increased, it uses the FEC scheme.

Figure 5.7 has time along the X-axis and goodput in bytes per second

along the Y-axis. Initially, the channel is quite reliable with a low error rate

(Bit Error Rate (BER) ≈ 10−6); but its error rate increases at time 200 (BER

≈ 10−5) and then at time 400, the channel state worsens (BER ≈ 5 × 10−4).

At low error rate, the channel is reliable and the performance of No Error Cor-

rection is better than those of ARQ and FEC due to less overhead; Adaptive

Correction adopts No Error Correction and shows better performance than

that of ARQ and FEC. At medium error rate, the ARQ scheme outperforms

No Error Correction and FEC due to light error correction. In this period,

Adaptive Correction adapts and uses ARQ. At high error rate, FEC’s per-

formance does not change significantly, while No Error Correction and ARQ

is severely affected and their performance deteriorates; Adaptive Correction

adapts to use FEC and avoids severe performance degradation. While the per-

formance of the adaptive protocol is best overall, sometimes it does not show

exactly the same performance of the best protocol in a period. For example,

between 100 and 200 seconds, the adaptive protocol is outperformed by No

Error Correction. We think that this might result from experimental errors.

In Figure 5.7, our main goal is to show the adaptivity achievable using

AN based on exact channel monitoring, not to devise a better channel estima-

tion scheme. Figure 5.8 shows goodput comparison of the adaptive protocol

147

500

1000

1500

2000

0 200 400 600

Time (sec.)

G
oo

dp
ut

 (
B

yt
es

/s
ec

.)

Perfect
Channel
Estimation

Channel
Estimation by
Monitoring
packet

BER 10-6 BER 10-5 BER 5x10-4

Figure 5.8: Comparison of Ideal Estimation and Active Hybrid

when the monitor traces the channel changes perfectly and when the monitor

uses out-of-band PLAN packets to monitor the channel state and thus drive

adaption. In this case, it does not do as well as the adaptive protocol based

on perfect channel estimation at medium error rate, because sometimes the

monitor believes that the channel is better than it really is and sends packets

without link control rather than doing ARQ. Thus, packet errors are recov-

ered by TCP retransmission rather than local retransmission of ARQ. Since

TCP retransmission takes longer than ARQ local retransmission, the adaptive

protocol with out-of-band PLAN packets does not do as well as the one based

on ideal channel monitoring. We believe that more experience would allow us

to track the channel more closely.

148

5.5 Vertical Snoop Protocol

Even with adaptive link error control, packet drops may be still possible and

the resulting congestion control action can cause performance degradation.

In vertical adaptivity, collaboration and information sharing across layers on

BS are allowed to adaptively control the TCP flow. We claim that AN is

advantageous because AN facilitates cross-layering implementation by allowing

layer-specific information to be included in active packets.

In this approach, the lower layer protocols on the BS are aware of TCP

semantics and adjust TCP flow information to prevent congestion control from

taking place due to packet drops over wireless links. Further, by following up

the parts of the end hosts’ TCP Control Block (TCB) [15], the BS can take

actions on incorrect congestion control, such as adjusting RTT measures and

screening three duplicate ACKs. In this section, we show how to deploy the

snoop protocol onto the BS, which can improve performance of TCP connec-

tions from fixed hosts (FH) to mobile hosts (MH).

5.5.1 Snoop Protocol

Figure 5.9 shows the PLAN code for an AN version of the snoop protocol. Like

our adaptive link example, this particular implementation is designed to be

sent by a FH, but, as we described for the previous protocol, a similar version

could be implemented on the BS in a system where the FH was not active.

The FH initiates data transmission by invoking tcpSend() (Line 35)

149

1: fun snoopack(src, seq) =
2: let val nexthop = defaultRoute(src) in (
3: if(thisHostIs(src)) then
4: tcpAck(seq)
5: else (
6: if(isThisHostBS()) then (
7: if(isDupAck(seq)) then ()
8: else (
9: OnNeighbor(|snoopack|(src, seq), #1 nexthop,
10: getRB(), #2 nexthop));
11: deQueue(seq))
12: else
13: OnNeighbor(|snoopack|(src, seq), #1 nexthop,
14: getRB(), #2 nexthop))) end
15:
16: fun snoop(src, dst, seq, payload) =
17: if(thisHostIs(dst)) then (
18: let val last_seq = tcpRcv(seq, payload)
19: val nexthop2src = defaultRoute(src) in
20: OnNeighbor(|snoopack|(src, last_seq),
21: #1 nexthop2src, getRB(),#2 nexthop2src)
22: end)
23: else (
24: let val nexthop2dst = defaultRoute(dst) in (
25: if(isThisHostBS()) then
26: enQueue(|snoop|(src, dst, seq, payload), dst, seq)
27: else ();
28: OnNeighbor(|snoop|(src, dst, seq, payload),
29: #1 nexthop2dst, getRB(), #2 nexthop2dst))
30: end)
31:
32: fun tcpsnoop(src, dst, payload) =
33: let val seq = tcpGetSeq()
34: in
35: tcpSend(|snoop|(src, dst, seq, payload), dst, seq, getRB())
36: end

Figure 5.9: PLAN for the Snoop Protocol

150

with a sequence number returned by tcpGetSeq() (Line 33). The first pa-

rameter of the function is a chunk containing the algorithm for the snoop

protocol. When the packet arrives at the BS (Line 25), it is saved in the

queue for retransmission (Line 26). At the destination, an ACK is sent back

in a chunk snoopack (Lines 20 – 21). This chunk not only delivers the ACK

segment to the source, but completes the realization of the snoop protocol on

the BS. Duplicate ACKs are discarded (Line 7), and the saved packet is freed

from the interface queue (Line 11).

This example shows how to deploy a new protocol easily. There is no

need to update protocol stacks on the BS. Service extensions on the BS mainly

implement the cross-layering mechanisms. As an adaptation layer, the service

extensions transform active packets to TCP segments or vice versa. Evaluation

of the PLAN packet on BS actualizes the snoop protocol and enhances TCP

performance over wireless links.

5.5.2 Performance Evaluation

Figure 5.10 presents the simulation result to compare performances between

regular TCP and the snoop protocol. In this case, the FH is the sender and

the MH is the receiver. The X-axis represents simulation time, while the Y-

axis shows goodput. The evaluation time is 800 seconds and divided to four

periods of 200 seconds. Initially, there are no wireless channel errors (BER

= 0) during the first 200 seconds. In the second period from 200 to 400

seconds, the error rate is very low (BER ≈ 10−6). During the first half of the

151

0

500

1000

1500

2000

2500

3000

0 200 400 600 800

Time (sec.)

G
oo

dp
ut

 (B
yt

es
/s

ec
.)

Regular TCP

Active Snoop

BER 0 BER 10-6 BER 10-5 BER 10-4

Figure 5.10: Goodput Comparison between Regular TCP and Snoop Protocol

evaluation, in which the error rates are zero or quite low, the performances of

the two protocols are not much different. On the other hand, when the error

rates are getting higher at 400 second (BER ≈ 10−5) and 600 second (BER

≈ 10−4), the snoop protocol outperforms regular TCP. As expected, coarse

timers and unnecessary congestion control deteriorate the regular TCP over

wireless links with high error rates. When the error rates are high, the snoop

protocol enhances performance by preventing unnecessary congestion control

and by locally retransmitting the lost frames.

152

5.6 Advantages of AN for Adaptation and Evo-

lution

In this section, we compare the adaptivity and evolvability of the traditional

network to those of the AN-enabled network. We make this comparison in

terms of the ability to adapt link error control protocols and to evolve the

network to support transparent solutions. In each of these areas AN facilitates

adaptation and evolution.

5.6.1 Adaptive Link Control

Standardization

Traditional Arch. To achieve adaptivity, it is necessary to design an adap-

tive scheme based on anticipated environments. The design should be verified

before standardization and deployment. As in the case of RLP of 3GPP speci-

fications [126], there is no room for further adaptation beyond the one designed

in. If new link environments are seen, the intended adaptivity could be sub-

optimal. To meet the new link characteristics, a new standardization process

would have to be started from scratch.

AN Arch. Since AN facilitates adaptation by supporting protocol imple-

mentation in a lightweight way using packet programming, there are no sub-

stantial demands on standardization for adaptive schemes. Also, AN provides

flexibility to cope with the environments not anticipated in the design phase

153

without further need for standardization.

Conclusion AN eases or eliminates the burden imposed by standardization.

Implementation

Traditional Arch. For the hybrid ARQ/FEC scheme, a specific policy

about hybridizing needs to be defined and their implementations should be

fixed before deployment. Once they are deployed, their operation cannot be

changed when the channel conditions are changed unexpectedly. Further, if

there is a need to measure channel states, there is a need to design and imple-

ment special control protocols. The control protocol should be implemented

as part of the link layer protocol. Software implementation of adaptive link

control is large and complicated, since the link layer protocol is implemented

in static software containing each link error control schemes, control schemes

for channel monitoring, and interfaces between them.

AN Arch. AN enabled us to actualize link control protocols by packet pro-

gramming. Since the link error control scheme is embedded in packets in a

lightweight way, we were able to adapt the link control protocol on a packet-by-

packet basis. Also, we achieved channel monitoring by piggybacking function

calls independently of the packet payload. It took one week to implement

the link error control protocols and the numbers of line of code are shown

in Table 5.2. For the ARQ and FEC schemes, we needed to implement the

supporting service functions in Popcorn to calculate CRC 32 values and to

154

Control Scheme Line of Code

ARQ 140 in Popcorn + 22 in PLAN
FEC 673 in Popcorn + 22 in PLAN
Hybrid ARQ/FEC 0 in Popcorn + 41 in PLAN

Table 5.2: MANE Implementation for Adaptive Link Control

encode/decode Reed-Solomon codes, respectively. Hybrid ARQ/FEC scheme

was implemented by combining PLAN code without changes of the service

functions on nodes.

Conclusion Because AN enables us to implement protocols by packet pro-

gramming, it allows shorter and simpler implementations. Thus it is easier to

evolve the network from an implementation point of view.

Deployment

Traditional Arch. In order to deploy an adaptive protocol, it is required

to model target environment and to design the protocol within the target

environment. Since the link layer protocol is closely coupled with the physical

layer characteristics, adaptive link layer protocols should take the physical

environment into consideration. Once the protocol is designed and deployed,

adaptivity is limited to the target environment. If new adaptivity is required,

new link layer protocols should be designed, standardized, implemented and

deployed from scratch.

155

AN Arch. AN supports packet level adaptation, thus given the standard in-

terface to extensions, it can flexibly deploy an adaptive protocol in a lightweight

way. If there is no existing interface with active extensions, AN supports

network evolution by dynamically updating active extensions. After the de-

ployment, AN facilitates adaptation to new environments either by packet

programming or extension updating.

Conclusion In the traditional architecture, each adaptive protocol has its

own target environment and their adaptivity is determined when deployed.

Further adaptivity or evolution is difficult without changing the system instal-

lation. Since AN supports lightweight system installation and upgrade, AN is

better from the viewpoint of deployment.

5.6.2 Transparent Performance Enhancing Proxy (PEP)

Standardization

Traditional Arch. The snoop protocol is one of the well-known transpar-

ent PEP approaches. The snoop protocol was shown to outperform the reg-

ular TCP over wireless links in 1995 [102]. Also, there have been several

implementations of the snoop protocol [129, 130]. In spite of that, neither

standardization nor deployment of the snoop protocol have been started yet.

An informational RFC mentions the snoop protocol as an example of TCP

PEP with the discussion of limitations, such as the interoperability problem

with IPSec, duplicate efforts of error recovery, and layering violation [110]. To

156

standardize the snoop protocol, it is necessary to address and resolve those

problems. Other transparent approaches, such as I-TCP [108], have been only

discussed in literatures without any further standardization.

AN Arch. In the AN architecture, layering is relaxed and layering violations

are feasible in both design and standardization. Besides, since protocols are

implemented in packets and supporting extensions, it is flexible on a packet

basis to avoid the interoperability problem or duplicate functionality. Thus,

AN makes much simpler demands on the standardization.

Conclusion With the simpler demands on standardization and less layering

restriction, AN facilitates network evolution for transparent PEPs.

Implementation

In order to implement the snoop protocol, we need Base Stations that can

understand TCP semantics and maintain state for TCP flows. Specifically,

the link layer protocol on the Base Stations should;

• Track TCP data and ACK segments,

• Cache outstanding TCP data packets,

• Maintain local timers,

• Retransmit by either local timeouts or duplicate TCP ACKs, and

• Suppress duplicate ACKs from the mobile host.

157

Criteria Berkeley Linux Snoop MANE

Line of Code 1632 in C 1156 in C 140 in Popcorn +
68 in PLAN

Table 5.3: Comparison of Snoop TCP Implementations

Traditional Arch. In order to deploy the snoop protocol in the traditional

network, the protocol stack on the base stations needs to be changed to sup-

port the aforementioned TCP-aware operations. As in the case of the snoop

protocol, transparent PEPs require a certain functionality to reside on the

proxy. For the proxy functionality, it is usually required to implement this in

a kernel module. Even if the snoop protocol is implemented, it is a limited

solution that only addresses the problem of TCP-specific data flow from the

fixed host to mobile host.

AN Arch. Since substantial parts of the snoop protocol can be implemented

by packet programming, AN needs a small set of basic services implemented

on base stations. Also, AN relaxes layering boundaries and supports more

flexible design and extensible approaches.

Table 5.3 shows the lines of code of two snoop implementations and MANE

implementation. The Berkeley Snoop protocol software was developed by the

Daedalus Research Group at UC Berkeley and released in August 1998 [129].

Linux Snoop is the implementation of the Snoop Protocol by the National

158

University of Singapore [130]. Linux Snoop was released in February 2004. In

MANE, it took a day to implement the snoop protocol. The MANE imple-

mentation is about 8 times fewer lines than the Berkeley implementation and

5.5 times fewer lines than Linux Snoop.

Conclusion It appears that AN admits significantly shorter and simpler

implementations. Simpler implementations are easier to create and change

and thus it is easier to evolve the network from an implementation point of

view.

Deployment

Since neither standardization nor real deployment of the snoop protocol has

been available yet, it is hard to discuss its deployment. However, the following

presents how the functionality discussed in Section 5.1.4 might be deployed in

the traditional architecture and the AN architecture.

Traditional Arch. To support the snoop protocol, there is a need for a pro-

tocol stack modification on every Base Stations; the program maintains soft

state of TCP connections and intervene in transport. It would take significant

time to deploy a new program throughout the current Internet or to change

the deployed program on Base Stations. Furthermore, only manufactures can

change the already-deployed base stations. Users and network administra-

tors are dependent on the manufactures for program deployment and system

upgrade.

159

AN Arch. Based on soft state maintenance, the new functionality is de-

ployed just by sending the appropriate packets. This only takes as long as the

time to transmit the packets and execute. AN would make it possible for base

station owners to evolve their own base stations.

Conclusion Until now, transparent PEPs, such as the snoop protocol, have

not been available in the network. To install the new protocol on base stations,

the current network will take downtime of several minutes to deploy on each

base station, as compared to seconds for AN. Further, in the AN architecture,

it is possible for users rather than manufactures to deploy new functionality to

the existing infrastructure. From the deployment point of view AN provides

superior evolution ability.

5.7 Other Possibilities

Using the model and architecture we developed, we explored a series of im-

plementations of adaptive link control and of the TCP snoop protocol. These

concrete examples are also a vehicle for exploring other design possibilities,

thus broadening support for our claims. Here are some other ideas that are

thought to be worth exploring and which may prove useful in improving end-

to-end connections over wireless links and demonstrating the usefulness of AN.

Horizontally Adaptive Routing Another way to improve link performance

is to utilize multiple routes. Since it is possible for a MH to connect with

160

more than one BS, the MH can communicate with a FH through differ-

ent routes redundantly. The network layers of the MH and the BSes

adaptively change paths between them so that link fluctuation does not

affect the end-to-end flow. Furthermore, we can expand this approach

into support for handoff.

Adaptive MTU size Because wireless links are prone to bit errors, the size

of a frame is important; the larger a frame is, the higher is the probability

of frame errors [141]. The frame size is determined by the Maximum

Transmission Unit (MTU) of the wireless link. The MTU is a link layer

restriction on the maximum size of a datagram in a single transmission.

If an IP datagram is larger than an MTU, it is fragmented by a network

layer protocol. MTU size is link layer specific, but has significant impacts

on overall performance over wireless links [124]. Therefore, the MTU size

for a wireless link can adapt to link conditions. Fragmentation and link

error correction protocols are required to cooperate because there is a

close correlation between them.

End-to-End Adaptivity If the FH is AN-capable, we can develop more ef-

ficient adaptive control over TCP flows. We expect to apply this ad-

vantage to handling handoff, during which harsh link deterioration and

route changes happen at the same time.

161

Chapter 6

Contributions

Our main contribution is to show that Active Networking’s adaptability and

evolvability can provide significant benefits to mobile networks. Through three

case studies, we demonstrated how AN can evolve networks to support mobility

and adapt mobile networks for better performance. Detailed contributions

include:

• Evolving networks to support Mobile IP style mobility

– Active Packet Evolution

∗ Demonstrated that when an application is aware of the pos-

sibility of mobility, mobility can be supported using no more

than Active Packets and simple soft state at a home router.

∗ Demonstrated that PLAN chunks can be used to construct tun-

nels, in particular between a Home Agent and a node acting as

162

a Foreign Agent. Unlike conventional Mobile-IP, the Foreign

Agent node does not need to be preprogrammed to serve this

role, all that is needed is support for APs.

∗ By using APs to correct the proxy ARP bug, showed that APs

can support dynamic error-correction.

– Update Extension Evolution

∗ Demonstrated that by using update extensions, we can support

mobility transparently even when the system design has not

anticipated adding the mobility service; mobility can be sup-

ported for normal packets as well as application-aware packets.

∗ Demonstrated that new functionality can be easily added or

modified and that dynamic updating provides flexibility to sup-

port wider variety of protocols than APs or plug-ins only.

• Ad Hoc Routing Deployment, Evolution, and Adaptation

– Demonstrated that if activeness prevails throughout an ad hoc net-

work, protocol deployment can be accomplished in a timely manner

and that the network can overcome routing heterogeneity, which is

quite likely in ad hoc networks.

– Demonstrated that APs facilitate the evolution of a routing protocol

on the fly for better performance.

– Demonstrated that, based on generic services, it is easy to adapt a

163

routing protocol to its environment, such as level of mobility, using

APs.

– Showed that AN is beneficial for customizing a routing protocol,

such as changing the caching policy or adopting a routing metric in

a lightweight way.

• Enhancing TCP Performance over Wireless Links

– Architectural model

∗ Modelled general TCP sessions in wireless networks including

the cases of multi-hop wireless and mobile host being a TCP

sender.

∗ Identified where and what kind of AN technology can be de-

ployed, and showed a strategy for incremental deployment of

AN into the current network.

∗ Suggested two main architectural approaches, horizontal and

vertical, when AN and non-AN entities are mixed in the net-

work.

– Adaptive Link Error Control

∗ Demonstrated that, as an example of the horizontal approach,

AN facilitates the implementation of link-error control proto-

cols and the adaptation of the link control on the fly.

∗ Channel Monitoring

164

· Demonstrated that APs piggybacking PLAN chunks for

channel monitoring provide a novel technique for multi-

plexing logically out-of-band control on top of physically

in-band data transmissions.

· Demonstrated that PLAN chunks are useful for policy cus-

tomization.

– Snoop Protocol Deployment

∗ Demonstrated that, as an example of the vertical approach,

Active Extensions and Active Packets together promote flexible

cross-layer protocol design and implementation.

165

Chapter 7

Conclusion

Mobile networking implies new services and protocols; however, it is not easy

to add these new services and protocols to the current network because of

architecture limits. Mobile networking is an area in which adaptivity and

evolvability is likely to be especially important.

In order to support our thesis that Active Networking (AN) can provide

useful adaptivity and evolvability to mobile networks, we demonstrated AN’s

adaptivity by developing a series of designs, simulation studies, and working

prototypes. Because AN enables highly flexible packet functionality, on-the-fly

protocol deployment, even on a packet-by-packet granularity, and cost-effective

network expansion, it is possible for mobile networks to evolve agilely and to

adapt to changing network environments.

In the first case study of Mobile IP, we could easily deploy the new

protocol so that the network supports the new service of mobility. Using AN’s

166

evolution techniques, the network was able to tunnel and forward packets

to the mobile host either with or without the help of a foreign agent. In

this case, we presented two kinds of Mobile IP examples that illustrate what

expressibility gains are possible as successively more powerful techniques are

used.

In the case of ad hoc routing, we showed how easily a routing pro-

tocol can be deployed and evolved. Furthermore, we addressed the routing

heterogeneity problem using the extensibility of AN. As another example of

adaptivity, we presented how to adapt a routing protocol to mobility. In this

experiment, we used a routing-aware AP to show the ease of implementing a

protocol in packet programming. By simply combining two packet programs

and common services, we could adaptively change the routing protocol and

enhance routing performance. If we expand this approach and combine sev-

eral routing protocols in a hybrid form, we are able to achieve an improved

protocol that can adapt itself to the conditions changing over various ranges

and that performs best under the given conditions.

In the last case study of the TCP problem over wireless links, we ad-

dressed the architectural design and suggested a design space followed by a

number of possible options to explore. We presented two approaches: horizon-

tal and vertical. In the horizontal approach, AN enabled the link layer protocol

to control link errors adaptively and to improve performance transparently to

TCP hosts. We also presented AP’s usability in monitoring wireless channel

states. In the vertical approach, we took the snoop protocol as an example

167

to show that AN’s flexibility facilitates cross-layering to improve TCP perfor-

mance.

As we pointed out in Chapters 4 and 5, there are several adaptations

worthy of future work. For example, we can extend AN’s adaptivity to proac-

tive ad hoc routing protocols, QoS routing, and power-aware routing. Also,

for the TCP problem, if sufficiently powerful AN technology were deployed

everywhere, then we would be able to deploy end-to-end, nontransparent so-

lutions easily and to evolve them as better solutions were developed. With

this future work, we expect the larger result will be continued support of our

thesis.

168

Bibliography

[1] K. G. Anagnostakis, “Congestion Control in Packet-Switching Internet-

works,” Technical Report, University of Pennsylvania, April 2001.

[2] M. S. Blumenthal and D. D. Clark, “Rethinking the Design of the In-

ternet: The End-to-End Arguments vs. the Brave New World,” ACM

Trans. on Internet Technology, vol. 1, pp. 70–109, August 2001.

[3] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall, and G. Min-

den, “A Survey of Active Network Research,” IEEE Communications

Magazine, vol. 35, pp. 80–86, January 1997.

[4] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura, “Active Networking

and the End-to-End Argument,” in Intl. Conf. on Network Protocols

(ICNP’97), (Atlanta, GA), pp. 220–228, IEEE, Oct. 1997.

[5] “The Network Simulator - ns-2.” http://www.isi.edu/nsnam/ns/.

[6] “VINT Project.” http://www.isi.edu/nsnam/vint/index.html.

[7] S.-K. Song, S. Shannon, M. Hicks, and S. Nettles, “Evolution in Action:

169

Using Active Networking to Evolve Network Support for Mobility,” in

Proc. of IWAN 2002, pp. 146–161, Dec. 2002.

[8] M. Hicks, J. T. Moore, and S. Nettles, “Dynamic Software Updating,”

in Proceedings of the ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, pp. 13–23, ACM, June 2001.

[9] J. T. Moore, M. Hicks, and S. Nettles, “Practical Programmable Pack-

ets,” in Proc. of the Twentieth IEEE Computer and Communication

Society INFOCOM Conference, pp. 41–50, IEEE, April 2001.

[10] E. Nygren, S. Garland, and M. F. Kaashoek, “PAN: A High-Performance

Active Network Node Supporting Multiple Mobile Code Systems,” in

Proc. of IEEE Conference on Open Architectures and Network Program-

ming (OPENARCH’99), pp. 78–89, IEEE, March 1999.

[11] J. Ioannidis, D. Duchamp, and Gerald Q. Maguire, Jr., “IP-based Proto-

cols for Mobile Internetworking,” in Proc. of SIGCOMM’91 Conference

on Communications Architecture and Protocols, pp. 235–245, September

1991.

[12] C. Perkins, “IP Mobility Support for IPv4,” RFC 3344, IETF, August

2002. http://www.ietf.org/rfc/rfc3344.txt.

[13] C. E. Perkins, ed., Ad Hoc Networking. Addison-Wesley, 2000.

[14] W. R. Stevens, TCP/IP Illustrated, vol. 1. Addison-Wesley, 1994.

170

[15] J. Postel, “Transmission Control Protocol,” RFC 793, IETF, Sep. 1981.

http://www.ietf.org/rfc/rfc793.txt.

[16] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, “A

Comparison of Mechanisms for Improving TCP Performance over Wire-

less Links,” in Proc. of ACM SIGCOMM’96, pp. 256–269, 1996.

[17] K. Pentikousis, “TCP in Wired-cum-Wireless Environments,” IEEE

Communications Surveys, pp. 2–14, Fourth Quarter 2000.

[18] S. Dawkins, G. Montenegro, M. . Kojo, and V. Magret, “End-to-end

Performance Implications of Slow Links,” RFC 3150, IETF, July 2001.

http://www.ietf.org/rfc/rfc3150.txt.

[19] S. Dawkins, G. Montenegro, M. . Kojo, V. Magret, and N. Vaidya,

“End-to-end Performance Implications of Links with Errors,” RFC 3155,

IETF, August 2001. http://www.ietf.org/rfc/rfc3155.txt.

[20] J. Stamos and D. Gifford, “Remote Evaluation,” ACM Trans. on Pro-

gramming Languages and Systems, vol. 12, pp. 537–565, October 1990.

[21] A. Fuggetta, G. Picco, and G. Vigna, “Understanding Code Mobility,”

IEEE Trans. on Software Engineering, vol. 24, pp. 342–361, May 1998.

[22] D. C. Feldmeier, A. J. McAuley, J. M. Smith, D. S. Bakin, W. S. Marcus,

and T. M. Raleigh, “Protocol Boosters,” IEEE Journal on Selected Areas

in Communications, vol. 16, pp. 437–444, April 1998.

171

[23] D. Alexander, W. Arbaugh, M. Hicks, P. Kakkar, A. Keromytis,

J. Moore, C. Gunter, S. Nettles, and J. Smith, “The SwitchWare Active

Network Architecture,” IEEE Network Magazine, vol. 12, no. 3, pp. 29–

36, 1998.

[24] D. Wetherall, J. Guttag, and D. Tennenhouse, “ANTS: A Toolkit for

Building and Dynamically Deploying Network Protocols,” in Proc. of

IEEE Conference on Open Architectures and Network Programming

(OPENARCH’98), April 1998.

[25] B. Schwartz, A. Jackson, W. Strayer, W. Zhou, R. Rockwell, and C. Par-

tridge, “Smart Packets: Applying Active Networks to Network Man-

agement,” in ACM Trans. on Computer Systems, vol. 18, pp. 67–88,

February 2000.

[26] M. Hicks, P. Kakkar, J. Moore, C. Gunter, and S. Nettles, “PLAN: A

Packet Language for Active Networks,” in Proc. of ACM SIGPLAN In-

ternational Conference on Functional Programming Languages, pp. 86–

93, ACM, September 1998.

[27] I. Wakeman, A. Jeffrey, and T. Owen, “A Language-Based Approach

to Programmable Networks,” in Proc. of IEEE Conference on Open Ar-

chitectures and Network Programming (OPENARCH’00), pp. 128–137,

IEEE, March 2000.

[28] K. Hino, T. Egawa, and Y. Kiriha, “Open Programmable Layer-3 Net-

172

working,” in Proc. of the Sixth IFIP Conference on Intelligence in Net-

works (SmartNet 2000), pp. 133–150, September 2000.

[29] S. Bhattacharjee, Active Networking: Architecture, Compositions, and

Applications. PhD thesis, Georgia Institute of Technology, August 1999.

[30] Y. Yemini and S. da Silva, “Towards Programmable Networks,” in

IFIP/IEEE International Workshop on Distributed Systems: Operations

and Management, October 1996.

[31] S. Karlin and L. Peterson, “VERA: An Extensible Router Architecture,”

Computer Networks, vol. 38, no. 3, pp. 277–293, 2002.

[32] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner, “Router Plugins: A

Software Architecture for Next Generation Routers,” ACM SIGCOMM

Computer Communication Review, vol. 28, pp. 229–240, October 1998.

[33] D. S. Decasper, B. Plattner, G. M. Parulkar, S. Choi, J. D. DeHart, and

T. Wolf, “A Scalable High-Performance Active Network Node,” IEEE

Network, vol. 13, pp. 8–19, Jan.-Feb. 1999.

[34] M. Hicks, J. Moore, D. Alexander, C. Gunter, and S. Nettles, “PLANet:

An Active Internetwork,” in Proc. of IEEE INFOCOM’99, pp. 1124–

1133, IEEE, March 1999.

[35] D. S. Alexander, W. A. Arbaugh, A. D. Keromytis, and J. M. Smith,

173

“A Secure Active Network Environment Architecture: Realization in

SwitchWare,” IEEE Network, vol. 12, pp. 37–45, May-June 1998.

[36] A. W. Jackson, J. P. Sterbenz, M. N. Condell, and R. R. Hain, “Active

Network Monitoring and Control: The SENCOMM Architecture and

Implementation,” in Proc. of the DARPA Active Networks Conference

and Exposition (DANCE’02), pp. 379–393, May 2002.

[37] O. Frieder and M. E. Segal, “On Dynamically Updating a Computer Pro-

gram: From Concept to Prototype,” Journal of Systems and Software,

vol. 14, pp. 111–128, February 1991.

[38] S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F. Barnes, “Runtime

Support for Type-Safe Dynamic Java Classes,” in Proc. of the 14th Eu-

ropean Conference on Object-Oriented Programming, pp. 337–361, June

2000.

[39] G. Hjálmtýsson and R. Gray, “Dynamic C++ Classes: A lightweight

mechanism to update code in a running program,” in Proc. of the

USENIX Annual Technical Conference (NO 98), pp. 65–76, June 1998.

[40] M. Hicks and S. Nettles, “Active Networking means Evolution (or En-

hanced Extensibility Required),” in Proc. of the Second International

Working Conference on Active Networks, pp. 16–32, October 2000.

[41] “Objective Caml.” http://caml.inria.fr/ocaml/.

174

[42] J. T. Moore, M. Hicks, and S. M. Nettles, “Chunks in PLAN: Lan-

guage Support for Programs as Packets,” in Proceedings of the 37th An-

nual Allerton Conference on Communication, Control, and Computing,

September 1999.

[43] G. Morrisett, D. Walker, K. Crary, and N. Glew, “From System F

to Typed Assembly Language,” in The 25th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, (San Diego, CA,

USA), pp. 85–97, January 1998.

[44] G. C. Necula, “Proof-Carrying Code,” in The 24th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, (Paris,

France), pp. 106–119, January 1997.

[45] G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith,

D. Walker, S. Weirich, and S. Zdancewic, “TALx86: A Realistic Typed

Assembly Language,” in ACM SIGPLAN Workshop on Compiler Sup-

port for System Software, pp. 25–35, May 1999.

[46] J. H. Saltzer and M. D. Schroeder, “The Protection of Information in

Computer Systems,” Proceedings of the IEEE, vol. 63, pp. 1278–1308,

September 1975.

[47] T. Lindholm and F. Yellin, The Java Virtual Machine Specification.

Addison-Wesley, 2nd ed., 1999.

175

[48] M. Hicks, S. Weirich, and K. Crary, “Safe and Flexible Dynamic Linking

of Native Code,” in Proceedings of the ACM SIGPLAN Workshop on

Types in Compilation (R. Harper, ed.), vol. 2071 of Lecture Notes in

Computer Science, Springer-Verlag, September 2000.

[49] M. Hicks, A. D. Keromytis, and J. M. Smith, “A secure PLAN (extended

version),” in Proceedings of the DARPA Active Networks Conference and

Exposition (DANCE), pp. 224–237, IEEE, May 2002.

[50] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles, “Net-

work Programming Using PLAN,” in Proceedings of the IEEE Work-

shop on Internet Programming Languages (L. Cardelli, ed.), vol. 1686 of

Lecture Notes in Computer Science, pp. 127–143, Springer-Verlag, May

1998.

[51] J. T. Moore, Practical Active Packets. PhD thesis, Department of Com-

puter and Information Science, University of Pennsylvania, 2002.

[52] M. Hicks, J. T. Moore, and S. Nettles, “Compiling PLAN to SNAP,”

in Proceedings of the Third International Working Conference on Active

Networks (I. W. Marshall, S. Nettles, and N. Wakamiya, eds.), vol. 2207

of Lecture Notes in Computer Science, pp. 134–151, Springer-Verlag,

October 2001.

[53] M. Hicks, Dynamic Software Updating. PhD thesis, Department of Com-

puter and Information Science, University of Pennsylvania, August 2001.

176

[54] M. Hicks and S. M. Nettles, “Dynamic Software Updating,” ACM Trans-

actions on Programming Languages and Systems (TOPLAS), 2005. To

appear.

[55] IAB, “IAB Concerns and Recommendations Regarding Inter-

net Research and Evolution,” RFC 3869, IETF, August 2004.

http://www.ietf.org/rfc/rfc3869.txt.

[56] D. D. Clark, K. Sollins, J. Wroclawski, and T. Faber, “Address-

ing Reality: An Architectural Response to Real-World Demands on

the Evolving Internet,” in ACM SIGCOMM 2003 Workshop on Fu-

ture Directions in Network Architecture (FDNA-03), August 2003.

http://www.isi.edu/newarch/DOCUMENTS/Principles.FDNA03.pdf.

[57] W. Willinger and J. Doyle, “Robustness and the Internet: Design

and Evolution.” http://netlab.caltech.edu/pub/papers/part1 vers4.pdf,

March 2002.

[58] D. B. Johnson, A. Myles, and C. Perkins, “Route Optimization in Mobile

IP,” internet draft, IETF, July 1994. http://k-lug.org/ griswold/Drafts-

RFCs/draft-route-optimization-mobile-ip-00.txt.

[59] C. Perkins, “IP Mobility Support,” RFC 2002, IETF, October 1996.

http://www.ietf.org/rfc/rfc2002.txt.

[60] C. Perkins, “IP Mobility Support for IPv4,” RFC 3220, IETF, January

2002. http://www.ietf.org/rfc/rfc3220.txt.

177

[61] C. Perkins, “IP Mobility Support for IPv4, revised,” internet draft,

IETF, June 2004. http://www.ietf.org/internet-drafts/draft-ietf-mip4-

rfc3344bis-00.txt.

[62] C. Perkins and D. B. Johnson, “Route Optimization

in Mobile IP,” internet draft, IETF, September 2001.

http://www.ietf.org/proceedings/02mar/I-D/draft-ietf-mobileip-optim-

11.txt.

[63] D. Johnson, C. Perkins, and J. Arkko, “Mobility Support in IPv6,” RFC

3775, IETF, June 2004. http://www.ietf.org/rfc/rfc3775.txt.

[64] 3GPP, “Technical Specification Group Services and System Aspects:

Combined GSM and Mobile IP Mobility Handling in UMTS IP

CN,” Technical Report 3G TR 23.923 version 3.0.0, 3GPP, May

2000. http://www.3gpp.org/ftp/Specs/archive/23 series/23.923/23923-

300.zip.

[65] 3GPP2, “The Technical Specifications Group - Core Networks

(TSG-X): cdma2000 Wireless IP Network Standard: Introduction,”

TSG-X Specifications 3GPP2 X.S0011-001-C v1.0, 3GPP2, Au-

gust 2003. http://www.3gpp2.com/Public html/specs/X.S0011-001-

C v1.0 110703.pdf.

[66] C. Perkins, “IP Encapsulatioin within IP,” RFC 2003, IETF, October

1996. http://www.ietf.org/rfc/rfc2003.txt.

178

[67] “Mip4 Working Group Status Pages - Implementations.”

http://www.mip4.org/2004/implementations/.

[68] “Rice Monarch Project IETF Mobile IPv4.”

http://www.monarch.cs.rice.edu/mobile ipv4.html.

[69] L. Lehman, S. Garland, and D. Tennenhouse, “Active Reliable Multi-

cast,” in IEEE INFOCOM, March 1998.

[70] U. Legedza, D. Wetherall, and J. Guttag, “Improving the Performance of

Distributed Applications Using Active Networks,” in IEEE INFOCOM,

March 1998.

[71] S.-K. Song and S. M. Nettles, “Using Active Networking’s Adaptability

in Ad Hoc Routing,” in Proc. of IWAN 2004, October 2004.

[72] S. Corson and J. Macker, “Mobile Ad hoc Networking (MANET): Rout-

ing Protocol Performance Issues and Evaluation Considerations,” RFC

2501, IETF, Jan. 1999. http://www.ietf.org/rfc/rfc2501.txt.

[73] E. M. Royer and C.-K. Toh, “A Review of Current Routing Protocols for

Ad Hoc Mobile Wireless Networks,” IEEE Personal Communications,

pp. 46–55, April 1999.

[74] J. Broch, D. Maltz, D. Johnson, Y. Hu, and J. Jetcheva, “A Performance

Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols,”

179

in Proceedings of the Fourth Annual ACM/IEEE International Confer-

ence on Mobile Computing and Networking (MobiCom’98), pp. 85–97,

Dallas, TX, Oct., 1998.

[75] C. Perkins and P. Bhagwat, “Highly Dynamic Destination-Sequenced

Distance-Vectore Routing (DSDV) for Mobile Computers,” in Proceed-

ings of the conference on Communications architectures, Protocols, and

Applications (SIGCOMM) 1994, pp. 234–244, 1994.

[76] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laoulti, A. Qayyum, and

L. Viennot, “Optimized Link State Routing Protocol for Ad Hoc Net-

works,” in Proc. of IEEE INMIC 2001, pp. 62–68, IEEE, 2001.

[77] G. Pei, M. Gerla, and T.-W. Chen, “Fisheye State Routing: A Routing

Scheme for Ad Hoc Wireless Networks,” in Proc. of IEEE ICC 2000,

vol. 1, pp. 70–74, IEEE, 2000.

[78] D. Johnson and D. Malz, “Dynamic Source Routing in Ad Hoc Wireless

Networks,” in Mobile Computing, ch. 5, pp. 153–181, Kluwer Academic

Publishers, 1996.

[79] C. Perkins and E. Royer, “Ad hoc On-Demand Distance Vector Rout-

ing,” in Proceedings of the 2nd IEEE Workshop on Mobile Computing

Systems and Applications, pp. 90–100, Feb. 1999.

[80] Z. J. Haas, “A New Routing Protocol for the Reconfigurable Wireless

180

Networks,” in Proceedings of the Sixth International Conference on Uni-

versal Personal Communications, pp. 562–566, Oct. 1997.

[81] C. E. Perkins, E. M. Royer, S. R. Das, and M. K. Marina, “Performance

Comparison of Two On-Demand Routing Protocols for Ad Hoc Net-

works,” IEEE Personal Communications, vol. 8, pp. 16–28, Feb. 2001.

[82] M. Takai, J. Martin, and R. Bagrodia, “Effects of Wireless Physical

Layer Modeling in Mobile Ad Hoc Networks,” in Proc. of the 2001 ACM

International Symposium on Mobile ad hoc networking and computing,

pp. 87–94, ACM, 2001.

[83] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand

Distance Vector (AODV) Routing,” RFC 3561, IETF, July 2003.

http://www.ietf.org/rfc/rfc3561.txt.

[84] D. A. Maltz, J. Broch, J. Jetcheva, and D. B. Johnson, “The Effects of

On-Demand Behavior in Routing Protocols for Multihop Wireless Ad

Hoc Networks,” IEEE Journal on Selected Areas in Communications,

vol. 17, pp. 1439–1453, August 1999.

[85] “Mobile Ad-hoc Networks (manet) Charter.”

http://www.ietf.org/html.charters/manet-charter.html.

[86] C. Huitema, J. Postel, and S. Crocker, “Not All RFCs are Standards,”

RFC 1796, IETF, April 1995. http://www.ietf.org/rfc/rfc1796.txt.

181

[87] T. Clausen and P. Jacquet, “Optimized Link State Rout-

ing Protocol (OLSR),” RFC 3626, IETF, October 2003.

http://www.ietf.org/rfc/rfc3626.txt.

[88] R. Ogier, F. Templin, and M. Lewis, “Topology Dissemination Based on

Reverse-Path Forwarding (TBRPF),” RFC 3684, IETF, February 2004.

http://www.ietf.org/rfc/rfc3684.txt.

[89] “Monarch Project IETF Activities.” http://www.monarch.cs.rice.edu/ietf.html.

[90] D. B. Johnson, D. A. Maltz, and Y.-C. Hu, “The Dynamic Source

Routing Protocol for Mobile Ad Hoc Networks (DSR),” internet draft,

IETF, July 2004. http://www.ietf.org/internet-drafts/draft-ietf-manet-

dsr-10.txt.

[91] C. E. Perkins, E. M. Belding-Royer, and S. R. Das, “Ad hoc On-Demand

Distance Vector (AODV) Routing,” internet draft, IETF, February 2003.

http://www.ietf.org/internet-drafts/draft-ietf-manet-aodv-13.txt.

[92] C. E. Perkins, E. M. Belding-Royer, and I. D. Chakeres, “Ad hoc

On-Demand Distance Vector (AODV) Routing,” internet draft, IETF,

October 2003. http://moment.cs.ucsb.edu/pub/draft-perkins-manet-

aodvbis-00.txt.

[93] “Implementation of DSR.” http://www.monarch.cs.rice.edu/dsr-

impl.html.

182

[94] “picoNet.” http://piconet.sourceforge.net/.

[95] “The Click DSR Router Project.” http://pecolab.colorado.edu/DSR.html.

[96] “AODV Public Implementations.” http://moment.cs.ucsb.edu/AODV/

aodv.html#Implementations.

[97] “The Monarch Project.” http://www.monarch.cs.rice.edu/.

[98] “MOMENT Lab @ UCSB.” http://moment.cs.ucsb.edu/.

[99] IEEE Computer Society LAN MAN Standards Committee, “Information

Technology- Telecommunications and Information Exchange Between

Systems - Local And Metropolitan Area Networks - Specific Require-

ments - part 11: Wireless LAN Medium Access Control (MAC) And

Physical Layer (PHY) Specifications.” IEEE Std 802.11-1997, 1997.

[100] J. Jubin and J. D. Tornow, “The DARPA Packet Radio Network Pro-

tocols,” Proceedings of the IEEE, vol. 75, pp. 21–32, January 1987.

[101] S.-K. Song and S. M. Nettles, “Active Networking for TCP over Wire-

less,” in Proc. of IWAN 2004, October 2004.

[102] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz, “Improving

TCI/IP Performance over Wireless Networks,” in Proc. of ACM Mo-

biCom’95, pp. 2–11, Nov. 1995.

183

[103] P. Karn and C. Partridge, “Improving Round-Trip Time Estimates

in Reliable Transport Protocols,” ACM Trans. Comput. Syst., vol. 9,

pp. 364–373, Nov. 1991.

[104] A. Chockalingam, M. Zorzi, and V. Tralli, “Wireless TCP Performance

with Link Layer FEC/ARQ,” in ICC’99 Proceedings, vol. 2, pp. 1212–

1216, IEEE, 199.

[105] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Se-

lective Acknowledgment Options,” RFC 2018, IETF, October 1996.

http://www.ietf.org/rfc/rfc2018.txt.

[106] K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit

Congestion Notification (ECN) to IP,” RFC 3168, IETF, September

2001. http://www.ietf.org/rfc/rfc3168.txt.

[107] E. Ayanoglu, S. Paul, T. F. LaPorta, K. K. Sabnani, and R. D. Gitlin,

“AIRMAIL: A Link-Layer Protocol for Wireless Networks,” ACM Wire-

less Networks, vol. 1, no. 1, pp. 47–60, 1995.

[108] A. Bakre and B. Badrinath, “I-TCP: Indirect TCP for Mobile Hosts,” in

Proc. of the 15th Int. Conf. on Distributed Systems, pp. 136–143, May

1995.

[109] A. DeSimone, M. C. Chuah, and O.-C. Yue, “Throughput Performance

of Transport-Layer Protocols over Wireless LANs,” in Proc. of IEEE

GLOBECOM’93, vol. 1, pp. 542–549, Dec. 1993.

184

[110] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby,

“Performance Enhancing Proxies Intended to Mitigate Link-

Related Degradations,” RFC 3135, IETF, June 2001.

http://www.ietf.org/rfc/rfc3135.txt.

[111] B. R. Badrinarth, A. Bakre, T. Imielinski, and R. Marantz, “Handling

Mobile Clients: A Case for Indirect Interaction,” in 4th Workshop on

Workstation Operating Systems, Oct. 1993.

[112] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “An Extension to

the Selective Acknowledgement (SACK) Option for TCP,” RFC 2883,

IETF, July 2000. http://www.ietf.org/rfc/rfc2883.txt.

[113] S. Bhandarkar and A. L. N. Reddy, “”improving the robustness of

tcp to non-congestion events”,” internet draft, IETF, August 2004.

http://www.ietf.org/internet-drafts/draft-ietf-tcpm-tcp-dcr-01.txt.

[114] G. Montenegro, S. Dawkins, M. Kojo, V. Magret, and N. Vaidya,

“Long Thin Networks,” RFC 2757, IETF, January 2000.

http://www.ietf.org/rfc/rfc2757.txt.

[115] J. Postel, “INTERNET CONTROL MESSAGE PROTOCOL,” RFC

792, IETF, September 1981. http://www.ietf.org/rfc/rfc792.txt.

[116] S. Floyd, “TCP and Explicit Congestion Notification,” ACM Computer

Communication Review, vol. 24, pp. 10–23, October 1994.

185

[117] K. Ramakrishnan and S. Floyd, “A Proposal to add Explicit Con-

gestion Notification (ECN) to IP,” RFC 2481, IETF, January 1999.

http://www.ietf.org/rfc/rfc2481.txt.

[118] “WRED - Explicit Congestion Notification (ECN),” January 2003.

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/

122newft/122t/122t8/ftwrdecn.htm.

[119] “ECN Problems.” http://www.icir.org/floyd/ecnProblems.html.

[120] S. Choi and K. G. Shin, “A Class of Adaptive Hybrid ARQ Schemes for

Wireless Links,” IEEE Trans. on Vehicular Technology, vol. 50, pp. 777–

790, May 2001.

[121] H. Minn, M. Zeng, and V. K. Bhargava, “On ARQ Scheme With Adap-

tive Error Control,” IEEE Trans. on Vehicular Technology, vol. 50,

pp. 1426–1436, November 2001.

[122] H. Lin, S. K. Das, and H. Y. Youn, “An Adaptive Radio Link Protocol to

Improve TCP Performance over Correlated Fading Wireless Channels,”

in Personal Wireless Communications, pp. 222–236, September 2003.

http://crewman.uta.edu/ hlin/papers/pwc2003.pdf.

[123] S. Lin and P. S. Yu, “A Hybrid ARQ Scheme with Parity Retransmission

for Error Control of Satellite Channels ,” IEEE Trans. on Communica-

tions, vol. 30, pp. 1701–1719, July 1982.

186

[124] P. Lettieri and M. B. Srivastava, “Adaptive Frame Length Control for

Improving Wireless Link Throughput, Range, and Energy Efficiency,”

in INFOCOM’98 Proceedings, vol. 2, pp. 564–571, IEEE, 1998.

[125] 3GPP, “Digital cellular telecommunications system (Phase 2+); Radio

Link Protocol (RLP) for data and telematic services on the Mobile Sta-

tion - Base Station System (MS - BSS) interface and the Base Sta-

tion System - Mobile-services Switching Centre (BSS - MSC) interface,”

Technical Specification 3G TS 04.22 version 8.0.0, 3GPP, July 1999.

http://www.3gpp.org/ftp/Specs/html-info/0422.htm.

[126] 3GPP2, “Data Service Options for Spread Spectrum Sys-

tems: Radio Link Protocol Type 3,” TSG-C Spec-

ifications 3GPP2 C.S0017-010-A v1.0, 3GPP2, June

2004. http://www.3gpp2.org/Public html/specs/C.S0017-010-

A v1.0 040617.pdf.

[127] IEEE Computer Society LAN MAN Standards Committee, “Supple-

ment to IEEE Standard for Information technology - Telecommunica-

tions and information exchange between systems - Local and metropoli-

tan area networks - Specific requirements - Part 11: Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY) specifica-

tions: Higher-speed Physical Layer Extension in the 2.4 GHz Band.”

IEEE Std 802.11b-1999, 1999.

187

[128] IEEE Computer Society LAN MAN Standards Committee, “Supplement

to IEEE Standard for Information technology - Telecommunications and

information exchange between systems - Local and metropolitan area

networks - Specific requirements - Part 11: Wireless LAN Medium Ac-

cess Control (MAC) and Physical Layer (PHY) specifications: High-

speed Physical Layer in the 5 GHz Band.” IEEE Std 802.11a-1999, 1999.

[129] “The Berkeley Snoop Protocol.” http://daedalus.cs.berkeley.edu/software/

pub/snoop/.

[130] “Linux Snoop - An Implementation of Berkeley Snoop on Linux.”

http://www.cir.nus.edu.sg/research/software/snoop/snoop.html.

[131] I. S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite

Fields,” Journal of the Society for Industrial and Applied Mathematics,

vol. 8, pp. 300–304, June 1960.

[132] T. S. Rappaport, Wireless Communications: Principles & Practice,

ch. 6. Prentice-Hall, Inc., 1996.

[133] I. Hadžić, Applying Reconfigurable Computing to Reconfigurable Net-

works. PhD thesis, The University of Pennsylvania, 1999.

[134] H. Wang and P. Chang, “On Verifying the First-Order Markovian As-

sumption for a Rayleigh Fading Channel Model,” IEEE Trans. on Ve-

hicular Technology, vol. 45, pp. 353–357, May 1996.

188

[135] M. Zorzi, R. Rao, and L. Milstein, “On the accuracy of a first-order

Markov model for data transmission on fading channels,” in Proc. IEEE

ICUPC’95, pp. 211–215, Nov. 1995.

[136] E. N. Gilbert, “Capacity of a burst-noise channel,” Bell Syst. Tech. J.,

vol. 39, pp. 1253–1265, Sept. 1960.

[137] E. O. Elliott, “Estimates of error rates for codes on burst-noise channels,”

Bell Syst. Tech. J., vol. 42, pp. 1977–1997, Sept. 1963.

[138] K. Brayer, “Error Control Techniques Using Binary Symbol Burst

Codes,” IEEE Trans. on Communication Technology, vol. 16, pp. 199–

214, April 1968.

[139] H. O. Burton and D. D. Sullivan, “Errors and Error Control,” Proc. of

IEEE, vol. 60, pp. 1293–1310, Nov. 1972.

[140] S. Lin and Daniel J. Costello, Jr., Error Control Coding: Fundamentals

and Applications, ch. 15. Prentice-Hall, Inc., 1983.

[141] B. S. Bakshi, P. Krishna, N. H. Vaidya, and D. K. Pradhan, “Improving

Performance of TCP over Wireless Networks,” in Proc. of Int. Conf. on

Distributed Computing Systems, 1997.

189

Vita

Seong-Kyu Song was born in In-Cheon, South Korea on February 27, 1969,

the son of Jong-Heon Song and Hyun-Suk Jung. He received the degrees of

Master of Science in Engineering and Bachelor of Science in Engineering from

Seoul National University in February 1994 and February 1992, respectively.

He worked for Korea Telecom in Korea from 1994 to 1999 as a member of

technical staff. In August 1999 he entered the University of Texas at Austin

to pursue his doctoral degree in Electrical and Computer Engineering. During

his studies at the University of Texas at Austin, he has worked as a member

of the Wireless Networking and Communications Group.

Permanent Address: 1620 W. 6th St. Apt. #W

Austin, TX 78703

This dissertation was typeset with LATEX2ε
1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is
a trademark of the American Mathematical Society. The macros used in formatting this
dissertation were written by Dinesh Das, Department of Computer Sciences, The University
of Texas at Austin, and extended by Bert Kay and James A. Bednar.

190

