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An Analytical Study of Metrics and Refactoring

Suchitra S. Iyer, M.S.E.

The University of Texas at Austin, 2009

Supervisor: Dewayne E. Perry

Object-oriented systems that undergo repeated modifications commonly endure a

loss of quality and design decay. This problem is often remedied by applying refac-

torings. Refactoring is one of the most important and commonly used techniques to

improve the quality of the code by eliminating redundancy and reducing complex-

ity; frequently refactored code is believed to be easier to understand, maintain and

test. Object-oriented metrics provide an easy means to extract useful and measur-

able information about the structure of a software system. Metrics have been used

to identify refactoring opportunities, detect refactorings that have previously been

applied and gauge quality improvements after the application of refactorings.

This thesis provides an in-depth analytical study of the relationship between

metrics and refactorings. For this purpose we analyzed 136 versions of 4 differ-

ent open source projects. We used RefactoringCrawler, an automatic refactoring
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detection tool to identify refactorings and then analyzed various metrics to study

whether metrics can be used to (1) reliably identify refactoring opportunities, (2)

detect refactorings that were previously applied, and (3) estimate the impact of

refactoring on software quality.

In conclusion, our study showed that metrics cannot be reliably used to either

identify refactoring opportunities or detect refactorings. It is very difficult to use

metrics to estimate the impact of refactoring, however studying the evolution of

metrics at a system level indicates that refactoring does improve software quality

and reduce complexity.
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Chapter 1

Introduction

1.1 Background
All successful software is subject to change and dealing with change is one of the
”essential complexities” of developing software [Bro95]. As software grows, it un-
dergoes continuous modifications often making its structure increasingly complex,
hard to understand and hence, difficult to change. The laws postulated in [LPR+97]
that suggest that software has a tendency to decay over time and becomes less un-
derstandable, maintainable and more complex have largely been proved true. In
object-oriented systems, the quality characteristics of software can often be im-
proved by applying certain behavior preserving restructurings called refactoring.
Refactorings as defined by Fowler [Fow00] is a change made to the internal struc-
ture of software to make it easier to understand and cheaper to modify without
changing its observable behavior. He goes on to describe it as improving the de-
sign after it has been written. Thus, refactoring can be seen as a form of preventive
maintenance. It makes it easier to add new code, improve the quality of existing
code and gain a better understanding of the code by increasing its readability.

1.2 Motivation
In [Fow00], Fowler and Beck recommend a list of clues or symptoms that suggest
refactoring opportunities. These symptoms or stinks are named Bad smells and in
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his opinion, their detection should be achieved from the programmer’s intuition

and experience. It is upto the programmers to decide which refactoring to apply
on the basis of the future anticipated changes for the system. Many past research
efforts [SSL01, CLMM05] have focused on using object-oriented metrics to sup-
port these subjective perceptions of code smells to identify structures in need of
refactoring. The aim is to use metrics to support decisions on where to apply which
refactorings. Metrics have also been used to detect previously applied refactorings
at each step of evolution [DDN01]. Closely related to the use of change metrics to
detect refactorings is the idea of studying change metrics to estimate the impact of
refactoring on software quality [SS07, HMKI08]. However, little academic work
has been done in studying the effect of refactorings on object-oriented entities from
the perspective of metrics. This thesis aims at analytically studying the relationship
between metrics and refactoring. Such a study would help us understand if the use
of metrics is indeed an effective way to identify refactoring opportunities, for de-
tecting refactorings that may have occurred and studying the impact of refactorings
on quality.

1.3 Research Problem
The goal of this thesis is to analytically study the relationship between metrics

and refactoring. We try to achieve the research goal by attempting to answer the
following questions:

1. Can metrics effectively identify bad smells in code to detect refactoring op-
portunities?

2. Can refactorings that have occurred be effectively detected via measuring
change in code metrics?

3. Can the impact of refactoring be estimated by studying changes in metrics of
the code after applying refactoring?
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1.4 Research Method
To achieve our research goal, we analyze existing open source Java projects for
refactorings. Rather than manually trying to detect refactorings by studying the
code and the version history, we use the tool RefactoringCrawler [DCMJ06] to
automatically detect refactorings in the code. We chose RefactoringCrawler be-
cause of its high accuracy, ease of use and availability as an eclipse plug-in. Once
refactorings are detected, we generate various object oriented metrics for the two
versions across which refactorings have been applied. We use the Eclipse metrics
plug-in 1.3.6 [Sua] and VizzAnalyzer [VIZ], also available as an Eclipse plug-in
to generate object oriented metrics. We chose the Eclipse metrics plug-in and the
VizzAnalyzer since they calculate a comprehensive set of metrics related to quality
as measured in terms of complexity, coupling and cohesion. In this thesis, we focus
on analyzing metrics for three refactorings: Move methods, Pull up methods and
Push down methods.

1.5 Thesis Outline
This chapter provides a high level understanding of the work under taken, in par-
ticular, the research goal and techniques have been explicitly stated. Chapter 2
describes the need to undertake refactoring activities and describes how and when
to apply move method, pull up method and push down method refactorings. Chap-
ter 3 describes various automatic refactoring detection techniques with particular
focus on RefactoringCrawler. Chapter 4 defines and describes the object-oriented
metrics and tools used in our analysis. Chapter 5 describes the experimental setup
and presents the research questions we wish to answer through our study. Chapter 6
presents the analyses, observations and inferences for move method refactorings.
Chapter 7 presents observations and results pertaining to pull up method refactor-
ings. Chapter 8 deals with push down methods. Chapter 9 presents a system’s
view of various metrics with regard to versions that underwent refactoring. Chap-
ter 10 includes a validity evaluation for our approach. We conclude our thesis with
Chapter 11 that presents our results and ideas for future research.
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Chapter 2

Refactoring and Decision Drivers

2.1 Refactoring: Introduction

Refactoring, introduced by Opdyke in his PhD dissertation [W.F92], refers to the

process of changing an object-oriented software system in such a way that it does

not alter the external behavior of the code, yet improves its internal structure. It
is the object-oriented equivalent of restructuring, which is defined by Chikofsky
and Cross [EJ90] as the transformation from one representation form to another at

the same relative abstraction level, while preserving the subject system’s external

behavior. The focus is on altering internal structure of code to improve the design
and hence maintainability, understandability and performance of code.

Fowler [Fow00] discusses refactoring as a secure code modification technique
aimed at improving the program structure. The characteristics of ill-structured pro-
grams are what he calls bad smells. His work includes a comprehensive catalog
of refactorings and presents a set of bad code smells associated with the cataloged
refactorings. The sections below describe the need for refactoring, the various steps
involved in applying a refactoring and a description of move method, pull up and
push down method refactorings.
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2.2 Why Refactor?

As a system ages, its design decays because maintenance efforts often concentrate
more on bug fixing and on addition of new functionality than on improving its de-
sign [Bro95]. Bad design practices, often due to insufficient knowledge, lack of ex-
perience or time can make the structure brittle and can cause modularity to decrease.
The code then becomes harder to understand and so future changes would still fur-
ther contribute to the decay. The preferred technique for correcting ill-structured
code is refactoring because the aim is to improve design without changing the sys-
tem’s observable behavior. Refactoring contributes constructively to several aspects
of a software system such as readability, understandability, reuse, maintainability,
changeability, and performance.

2.2.1 Readability and Understandability

Refactoring makes code more readable. It is important to be able to convey the
intention of the code to others. It also makes the code easier to read for the original
developer which is as much important since it is unrealistic to assume that a devel-
oper would remember all of the low-level design decisions. At the risk of sounding
counter-intuitive, Fowler [Fow00] claims that the real advantage of refactoring is
that it helps you develop software more quickly. Refactoring involves modification
effort and a much larger testing effort. However, both bug fixing and modifying
code to add new features is faster when the developer understands the system well,
the design intentions are clear and the program is still well structured.

2.2.2 Reuse and Maintainability

Increases in quality and decreases in cost and implementation effort are benefits
that can be derived from software reuse. In the closely related maintenance phase,
the software system is further refined or augmented with new features. Both these
activities need to be planned for. [BR89] suggests that all approaches that support
reuse address the following four aspects: finding, understanding, modifying, com-
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posing a component or set of components. Refactoring a program helps in all these
aspects of software reuse [W.F92]. It makes program easy to understand and as-
sists in finding suitable components for reuse. Some refactorings help modify a
component making it easy to reuse and compose together for a system.

2.2.3 Changeability

High cohesion and low coupling between classes are considered attributes of good
design. Systems with high levels of coupling face a number of issues including:
a single change causing a ripple effect, modules becoming hard to reuse and test
and difficulty in understanding a module in isolation. It is not always possible to
get the design right in the first go. This can be due to a number of reasons includ-
ing the development methodology followed, volatile nature of requirements etc. In
Agile methodology, for instance, code is maintained and extended from iteration
to iteration, and without continuous refactoring, this is hard to do. This is because
un-refactored code tends to decay and the decay takes several forms: unhealthy de-
pendencies between classes or packages, bad allocation of class responsibilities, too
many responsibilities per method or class, duplicate code, and many other varieties
of confusion and clutter that affect coupling and cohesion. When such decay is
present, it is often hard to introduce a change in the form of a new feature or refine
an existing one.

2.2.4 Performance

In cases where an application’s design and/or implementation are responsible for
poor performance, refactoring can be applied to specific locations in code to im-
prove performance. For instance, the Split Loop Refactoring [Fow00] is often used
for performance optimization in data intensive applications.
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2.3 Refactoring Process

The survey paper by Mens and Tourwe [MT04] identifies six steps in the refactoring
process:

1. Identify where the software should refactored.

2. Determine which refactorings should be applied to the portions identified.

3. Ensure that the applied refactoring is behavior.

4. Apply the refactoring.

5. Assess the effect of refactoring on quality characteristics.

6. Maintain the consistency between the refactored code and other software ar-
tifacts that use it.

Steps 1 and 2 are related in that identifying the need to refactor is driven by
the type of refactoring one would apply. Many techniques have been proposed to
automate steps 1 and 2 and most research is focused on identifying bad smells in the
source code. Once identified, the information can be used to propose refactorings
that can be used to reduce or remove the bad smell. For some basic refactorings,
tool support is available for steps 3 and 4. Once a refactoring is applied, its effect
typically is measured in terms of quality improvements. The goal of this thesis is to
analyze the role object-oriented metrics plays in Steps 1, 2 and 5 for move methods,
pull up methods and push down methods refactorings.

2.4 Refactoring Definitions

In our study of metrics and refactoring, we focus on some typical refactorings:
move methods, pull up methods and push down methods. We briefly present these
refactorings and their corresponding bad smells which can help identify parts of the
system where they need to be applied.
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2.4.1 Move Method

Figure 2.1: Move Method

A method m of class A is moved to another class B. The method m of class
A can then be turned into a simple delegation or is deleted form class A. The bad
smell motivating this refactoring is that a method uses or is used by more features
of another class than the class in which it is defined. It is applicable when there
are violations to the put together what belongs together principle. Move method
refactoring is illustrated in Figure 2.1.

2.4.2 Pull Up Method

Figure 2.2: Pull Up Method

Pull up method refactoring involves moving methods from subclasses with

identical results to its superclass A. Moving the shared functionality to the super-
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class will leave the functionality of the subclasses unchanged, and give us less code
duplication and better code readability. Pull up method refactoring is illustrated in
Figure 2.2.

2.4.3 Push Down Method

Figure 2.3: Push Down Method

Push down method is the opposite of pull up method. This is applicable
when the behavior contained in the superclass is applicable to only some of its
subclasses. This involves moving a method m from a super class A to its subclasses.
Push down method refactoring is illustrated in Figure 2.3.
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Chapter 3

Automatic Refactoring Detection

In order to evaluate how a refactoring decision affects software quality, we need to
detect refactorings that have occurred between consequent versions of open-source
software projects. Research in this area has focused on four key resources to collect
such data: source code revision history, commit logs, logs obtained from refactoring
tool usage and from programmers who have performed the refactorings.

If a project uses refactoring tools to perform refactorings, then tool usage
logs can be used to find what kind of refactorings have happened in the past [HD05].
Such an approach will have very high accuracy but will miss all refactorings that
were performed by hand without the use of the tool. Observing programmers and
interviewing them can yield answers to where and what type of refactorings oc-
curred during development. However, observing programmers during the course of
development can prove to be very expensive. Also, if programmers are interviewed
after the development process, we would be largely relying on the programmers
ability to recall the exact portions of code where refactoring occurred.

Another way of identifying refactorings is by parsing the commit logs up-
dated by programmers when a change is checked-in for words like refactor. By
searching for more specific words like moved method, rename, extract, push up,

pull down etc., a researcher can find versions where particular refactorings have
been applied. [RSG08] used 13 such keywords to find refactorings to conclude that
an increase in refactorings is followed by a decrease in software defects. [HGH08]
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used information obtained from commit logs to conclude that refactorings are more
common when commits span many files. However, this technique assumes that
programmers often include commit messages during check-in and also the correct-
ness of the check-in comment. Hence, mining commit logs may not be accurate
indicators of what refactorings have occurred.

An important technique used to detect what refactoring has occurred in the
past uses source code version history. Object-Oriented change metrics has been
used in [DDN01] to detect refactorings like splitting and merging of classes. They
argue that discovering refactorings by textual comparisons would be extremely
tedious and hence they use a set of heuristics to detect refactorings. UMLDiff
tool [XS05] can help detect move and rename refactorings. However, a key as-
sumption made by UMLDiff algorithm is that most entities remain same between
two versions. Thus, when changes are huge (between major releases, infrequent
check-ins by programmers), identifying potential moves and renames is not only
time-consuming but also has lower precision. [FG06] computes edit operations
by comparing abstract syntax tree representations of two programs and identify
changes inside the same class. However, this algorithm cannot explicitly state the
type of refactoring and misses higher level refactorings. [PD06] detect refactor-
ings by using the information from code repositories and use clone detection to
further refine the results. [RD03] use a clone finding tool (Duploc) to detect
move method refactorings. [KNG07] automatically identifies API-level refactor-
ings using a rule-based change inference approach. The focus is on recovering
structural modifications to detect moves, renaming and other refactorings. Refac-
toringCrawler [DCMJ06] uses static and semantic analysis to detect refactorings.
As can be noted from our discussion, all of the above detectors are limited by the
types of refactorings they can detect. Most of the current tools are heuristics based,
typically using a user supplied threshold value for heuristics. Hence, the user sup-
plied parameters can affect the accuracy of detection results and using them will
require some amount experimentation to determine appropriate threshold values.
Another factor that needs to be addressed is regarding the two versions that are an-
alyzed. Two adjacent versions analyzed may not have any important refactorings
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and on the other hand, some fine-grained refactorings may be missed by analyzing
non-adjacent versions.

Since the focus here is on finding how refactorings affect software quality,
we need to use an approach that is highly accurate. Mining commit logs and inter-
viewing or observing programmers to obtain past refactorings might not be accurate
enough. Also, since we are analyzing open-source projects for refactorings, we can-
not assume the use of refactoring tools to perform refactorings. Hence, we decided
to use a source code analysis technique to detect refactorings. More specifically,
we have used RefactoringCrawler to uncover past refactoring because of its high
accuracy, ease of use and availability as an eclipse plug-in.

3.1 RefactoringCrawler

All the contents in this section have been borrowed from [DCMJ06]. The tool
was put forth to address the issue of upgrading open-source applications when the
components they use undergo change in the form of refactorings. It is used to
detect component refactorings and then replay them on the applications that use
them. It detects seven types of refactorings, including renamings, change of method
signatures, moved methods etc., between two versions of Java components with
about 85% accuracy.

The algorithm combines syntactic and semantic analysis to infer different
refactorings. The syntactic analysis uses shingles encoding to identify similar en-
tities and then the semantic analysis identifies the type of refactoring applied. The
algorithm follows an order (top-down) in detecting rename refactorings (detects
class rename, followed by method rename) and (bottom-up) for moved methods so
that it can correctly infer cases where a single entity undergoes multiple refactor-
ings. A user supplied similarity threshold value is used in syntactic analysis. A very
high similarity threshold value can result in the tool missing relevant refactorings
because it would then look for near perfect matching entities. The results obtained
from syntactic analysis represent candidate entities. These are further analyzed us-
ing semantic analysis to determine whether they represent a refactoring.
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The syntactic analysis parses files in two versions into lightweight abstract
syntax trees. This parsing stops at the declaration of methods and attributes. Each
version is represented as a graph where a node represents a source level entity.
Nodes are arranged hierarchically. The shingles are fingerprints for strings with the
following property: if a string changes slightly, then its shingles changes slightly.
The result of the syntactic analysis step is a set of pairs of entities that have similar
shingles encoding in two versions. For the similar pair to be considered a can-
didate refactoring, its normalized similarity value must be above a user specified
threshold value. The semantic analysis is based on reference graphs that represent
references among source-level entities. It compares the similarity of references to a
user-specified threshold value.

To find moved method candidates, a second syntactic check is performed to
ensure that the parent classes of the two methods are different. Without this check, a
moved method would incorrectly classify all methods of a renamed class as moved
methods. Another semantic check requires that the declaration classes of methods
not be related by inheritance, otherwise it would be classified incorrectly as a moved
method instead of a push down or a pull up method. The last check requires that
all references to the target class be removed in the second version and that all calls
to methods from the initial class be replaced with sending a message to an instance
of the initial class. A pull up method pulls up the declaration of a method from a
subclass into the superclass such that the method can be reused by other subclasses.
A push down method pushes down the declaration of a method from a superclass
into a subclass that uses the method because the method is no longer reused by other
subclasses. For push up and pull down method it checks to ensure the original class
is a descendant and an ancestor respectively of the target-class.

3.2 Strengths

1. High precision and recall
Evaluation results for RefactoringCrawler have shown that both precision and
recall over 85%. Compared to approaches that use only syntactic analysis and
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produce a large number of false positives, RefactoringCrawler requires little
human intervention to validate the refactorings.

2. Robustness
RefactoringCrawler can deal with noise associated with preserving backward
compatibility and with multiple refactorings happening to same or related
entities.

3. Scalability
The algorithm combines a relatively inexpensive syntactic analysis with the
expensive semantic analysis.

3.3 Limitations

1. Poor support for interfaces and fields
A key issue with the algorithm is that since it relies on code similarity to
find whether a program element in one version matches with another, it has
problems with elements that do not have a body.

2. Requires experimentation
Selecting appropriate values for threshold values is important. Too high a
value can miss some refactorings whereas too low a value can produce a
large number of false positives.

3.4 Input & Output

Input:

1. Versions of projects to be compared.

2. Threshold values for various similarity parameters.
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Output: The output of RefactoringCrawler details the pairs of refactorings de-
tected. This output can be exported into an XML file.

Since the correctness of our analysis results depends largely on the accu-
racy of detected pairs of refactorings, we manually confirmed the results by go-
ing through the source code of the program versions. Some false positives were
eliminated in this process. We also experimented with various values for the input
similarity threshold values starting with high threshold values and realized that our
conclusions tallied with those of the authors of this tool. As recommended, we used
values between 0.5 to 0.7.
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Chapter 4

Object-Oriented Metrics

Object-Oriented programming paradigm emerged in the 1960s and has since be-
come increasingly popular in industrial software development environments. It
was developed as a methodology in part to solve some of the issues with exist-
ing paradigms. The focus in object-oriented systems is on data rather than pro-
cesses, with programs in object-oriented languages composed of modules called
objects each comprising of functions to manipulate its own data structure. Software
metrics have long been proved to reflect software quality and thus, used widely in
software maintainability evaluation methods [BJM76]. As the use object-oriented
languages became more widespread, so did the need to ensure the quality of soft-
ware written in object-oriented languages. For object-oriented systems, many met-
rics suites have been proposed. These include suites proposed by Henry and Ka-
fura [SD81, SD84], Chidamber and Kemerer [SC91, SC94], Li and Henry [WS93],
Lorenz and Kidd [MJ94], Henderson-Sellers [HS96] and Briand et al. [LPW97,
LSV99]. Other popular metrics suites include, McCabe’s Cyclomatic Complex-
ity [T.J76, TC89, TA94] and Halstead’s Complexity measures [M.H77].

In this thesis, we studied various object-oriented metrics for the following
purposes:

• We analyzed pre-refactored version of source code to evaluate the correlation
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between bad smells in code and object oriented metrics used to identify them
as in [SSL01, CLMM05].

• We analyzed object-oriented metrics for pre- and post-refactored versions of
source code to identify if indeed change metrics between the two versions
can be used to detect refactorings that may have occurred as in [DDN01]

• We analyzed object-oriented metrics for pre- and post-refactored various of
source code to measure the improvement in quality after refactoring and ana-
lyze the impact these refactorings have on quality as in [HMKI08]

4.1 Object-Oriented Metric Tools

A number of commercial and non-commercial metric tools support the collection
and analysis of software metrics. For the purpose of our thesis, a tool that would
calculate a defined set of metrics, related to quality as measured in terms of com-
plexity, coupling and cohesion was required. For ease of use, tools available as
Eclipse plug-ins were preferred. In order to automate the process of extracting
refactorings and comparing metrics before and after refactoring, a tool that had the
capability of presenting the output in a structured format such as XML was desired.
Eclipse Metrics plug-in 1.3.6 [Sua] by Frank Sauer is an open source metrics calcu-
lation and dependency analyzer plug-in for the Eclipse IDE. This plug-in computes
most required metrics and the output can be exported into an XML file. We have
used this plug-in to analyze metrics before and after refactoring for all the Java
based open source projects under consideration. The plug-in uses [HS96, Mar03]
as its primary source for the definitions of complexity, coupling and cohesion met-
rics. However, this plug-in does not compute two metrics that were important for
our analysis that gave a measure of coupling and complexity for a Java class. To
overcome this, another tool VizzAnalyzer was used [VIZ]. VizzAnalyzer is a com-
mercial tool that is also available as an Eclipse plug-in. The results can be copied
or dumped into comma separated files (CSV).
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4.2 Overview of Metrics Analyzed

Some of the metrics we investigated for the open-source projects are listed below.
It can be argued that these metrics may be more representative of program size than
of quality. However, previous research efforts have successfully demonstrated them
as indicators of software quality as in [VM96].

1. Number of Attributes (NOF)
NOF is a class level metric that gives a count of number member variables
in a class. It indicates the amount of data the class must maintain in order to
carry out its responsibilities.

2. Number of Methods (NOM)
NOM is a class level metric that gives a count of number of methods in a
class. It indicates the total level of functionality implemented by a class.It
provides a view of class size and how complex the class might be to use.

3. Number of Static Attributes (NSF)
NSF is a class level metric that gives a count of static member variables of a
class. A high value potentially restricts reuse.

4. Number of Static Methods (NSM)
NSM is a class level metric that gives a count of static methods in a class.
Since, static methods are not instantiated, a high value of this metrics indi-
cates restricted reuse.

5. Number of Children (NSC)
NSC is a class level metric. It is calculated as total number of direct sub-
classes of a class. A class implementing an interface counts as a direct child
of that interface. High values of NSC can indicate improper abstraction of the
parent class. Also, such parent classes are hard to modify since a change po-
tentially affects all its children. It can be an indication that it may be necessary
to group related classes together and introduce another level of inheritance.
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6. Depth of Inheritance Tree (DIT)
DIT is a class level metric. It gives the distance of a class from class Object
in Java. The greater the distance from Object class, greater are the number of
methods it is likely to inherit, making it more complex as far as class behavior
is concerned. High values of DIT also indicate greater design complexity,
since more methods and classes are involved.

7. Weighted Methods per Class (WMC)
WMC is a class level metric. It is obtained by computing the sum of the
McCabe Cyclomatic Complexity for all methods in a class. Cyclomatic com-
plexity is computed using the control flow graph of the program: the nodes of
the graph correspond to indivisible groups of commands of a program, and a
directed edge connects two nodes if the second command might be executed
immediately after the first command. Given E to be the number of edges of
the graph, N to be the number of nodes of the graph and P to be the num-
ber of connected components (for a single program/method, P == 1), the
cyclomatic complexity [T.J76] M is then defined as:

Definition 4.1. M = E −N + 2P

The WMC value computed using the number of methods and their complex-
ities, is a predictor of how much time and effort is required to develop and
maintain the class. Classes with large numbers of methods and hence, a high
WMC value, are likely to be more application specific, limiting the possibility
of reuse.

8. Coupling Between Object classes (CBO)
CBO is class level metric that provides the number of classes to which a
given class is coupled. A class is coupled to another of if it uses its member
functions and/or instance variables. High levels of coupling is detrimental to
modular design and prevents reuse.

9. Response for a Class (RFC)
The response set of a class is a set of methods that can potentially be exe-
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cuted in response to a message received by an object of that class. RFC is
simply the number of methods in the set. Since RFC specifically includes
methods called from outside the class, it is also a measure of the potential
communication between the class and other classes. A large RFC has been
found to indicate more faults. Classes with a high RFC are more complex
and harder to understand. Increasing RFC decreases analyzability, under-
standability, changeability and testability.

10. Lack of Cohesion of Methods (LCOM)
LCOM is a class level metric that computes cohesiveness of a class. We have
used Henderson-Sellers definition of LCOM in our study [HS96]. Consider
a set of methods {Mi} (i = 1, . . . ,m) accessing a set of attributes {Aj}
(j = 1, . . . , a). Let the attributes accessed by each method, Mi, be written
as α(Mi) and the number of methods which access each datum be µ(Aj).
LCOM is defined as follows:

Definition 4.2. LCOM =

(
1
a

∑a
j=1 µ(Aj)

)
−m

1−m

High levels of cohesion implies that the features of a class are extensively
used. LCOM measures the correlation between the methods and the local
variables of a class. The value varies from 0 to 1, with the value zero repre-
senting perfect cohesion and the value one presenting extreme lack of cohe-
sion. A high LCOM value indicates decreased encapsulation and increased
complexity while a low value implies high cohesion and good design. Lack
of cohesion implies that the classes should probably be split into two or more
subclasses.

11. Afferent Coupling (CA)
CA is a package level metric that computes the number of classes outside a
package that depend on classes inside the package. It is an indication of the
package’s responsibility.

12. Efferent Coupling (CE)
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CE is a package level metric that computes the number of classes inside a
package that depend on classes outside a package. It is an indication of the
package’s independence.

13. Instability (RMI)
RMI is a package level metric. Instability is computed as:

Definition 4.3. RMI = CE
(CA+CE)

It is an indication of a package’s resilience to change. RMI has a range [0,1]
where, 0 indicates a maximally stable package and 1 indicates a maximally
unstable package.

21



Chapter 5

Metrics and Refactoring

In this chapter, we analyze various open source projects to study the relationship
between software metrics and refactoring. The relationship between metrics and
refactoring has been widely researched. This research can be classified into three
categories:

1. Metrics as hints for identifying refactoring opportunities

2. Metrics for refactoring detection

3. Metrics for studying refactoring impact

Metrics as hints for identifying refactoring opportunities: Refactoring is con-
sidered the key to increasing software quality during the whole software life-cycle.
Though many different kinds of refactorings have been cataloged [Fow00], one of
the main problems in applying refactoring on large systems is the question of where
to apply which refactoring. This question becomes even more difficult since refac-
torings are typically applied based on human intuition. Traditionally the decision
on where to refactor is based on code smells. A bad code smell is a structure that
needs to be removed from the source code by refactoring to improve the maintain-
ability and testability of the software. Examples of bad code smells include long
classes, long methods, large number of public methods etc.
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Software metrics provide an easy means to extract useful and measurable
information about the structure of a software system. Use of appropriate software
metrics has been proposed as an objective measure of identifying bad code smells in
the design [SSL01, CLMM05]. Even though Fowler explicitly mentions [Fow00]
that no metrics can rival informed human intuition, previous research [SSL01] has
shown metrics can help identify particular anomalies in source code associated with
certain refactorings.

Metrics for refactoring detection: Reverse engineering is an ongoing process
in the development of any successful software system as it evolves in response to
changing requirements. Given that refactoring is integral to improving software
quality, it would be very useful to get a better understanding the previous refac-
toring decisions. Essentially, one would like to find out which parts of the design
has undergone refactoring, what type of refactoring was applied and why did the
designers chose to apply refactorings in those particular parts of the design.

A variety of ways to detecting refactorings have been described in Chapter 3.
As described in Chapter 3, changes in object-oriented code metrics has also been
proposed as a way to detect refactoring [DDN01]. A set of heuristics were pro-
posed in [DDN01] to detect refactorings by applying lightweight object-oriented
metrics to successive versions of a software system. Each heuristic is defined as
a combination of change metrics which reveal refactorings of a certain kind. The
heuristics aim at focusing attention on the relevant parts of the software system to
detect refactorings. One heuristic may occasionally miss refactorings or misclassify
them, but such mistakes are typically corrected by one of the other heuristics.

Metrics for studying refactoring impact: Closely related to the use of change
metrics to detect refactorings is the idea of studying change metrics to estimate
the impact of refactoring on software quality [SS07, HMKI08]. Software metrics
have been proved to reflect software quality. In [SS07], the authors analyzed source
code version control system logs of popular open source software systems to detect
changes marked as refactorings and examine how the software metrics are affected
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by this process, in order to evaluate whether refactoring is effectively used as a
means to improve software quality within the open source community.

It is typically difficult to perform appropriate refactorings since the impact
of refactoring should justify the cost. In [HMKI08], the authors try to estimate the
effect of refactoring by analyzing the metrics associated with structural changes of
the source code, in particular,

• How does coupling between classes change?

• How does cohesion of each class change?

• How does the inheritance relationships between classes change?

In [HMKI08], the authors develop a software tool which outputs quantitative result
of the effect estimation from the viewpoint of the above three questions.

We aim to answer the following three questions based on the analysis of
open source projects:

1. Can metrics enable us to identify good refactoring opportunities ?

2. Can change metrics be reliably used to identify refactorings?

3. Can metrics be used to evaluate impact of refactorings?

To obtain the answer to the above questions, we propose to do the following. We
first analyze existing open source projects to detect refactorings using an automatic
refactoring detection tool that does not use metrics to detect refactoring. Next, we
will generate software metrics for each version of the open source project analyzed.
For each detected refactoring, we will study the associated metrics and try to answer
the questions described above. Our study is qualitatively different from previous
research in each of the above three areas.

• Though there has been a previous research effort [SSL01, CLMM05] to corre-
late bad smells with applied refactorings, refactorings detected by automatic
refactoring detection techniques have not been used for this analysis. The
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previous analysis was restricted to refactorings detected using change logs.
Our analysis is more comprehensive in that designers might have forgotten to
log certain refactorings which can be captured by the automatic refactoring
detection program.

• Though there has been study on validating refactorings identified using change
metrics [DDN01], there has not been much comparison between automatic
refactoring detection techniques that do not use metrics and refactoring de-
tection techniques that use metrics.

• Our refactoring impact analysis has several features which makes it qualita-
tively different from previous research. In [SS07], when studying the impact
of refactoring on software quality, the authors used version logs to identify
refactorings as opposed to our approach where we use an automatic detection
tool. Also, they did not try to correlate each kind of refactoring to a specific
trend in the change of various metrics. In [HMKI08], the authors do attempt
to estimate the impact of each type of refactoring using metrics. However,
there are very few results to draw any conclusion on the estimation of the
impact of refactoring using metrics. The authors mention pull up method
refactoring, but only analyze move method refactoring. Also, only a single
move method was considered in the paper.

This chapter is organized as follows. We describe our experimental setup
and give an overview of various open source projects analyzed in Section 5.1. The
various issues we encountered when mining for refactorings in the various open
source projects are described in Section 5.2.

The experimental results from move method refactorings identified from the
analysis along with our observations and inferences is described in Chapter 6. Ex-
perimental results, observations and inferences for pulled up method refactorings
and pushed down method refactorings are described in Chapter 7 and Chapter 8
respectively.
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OSS Project CAROL DNSJAVA STRUTS TOMCAT
Lines of Code 7159 14334 12850 155832
No: Classes 129 149 133 1223
No: Packages 35 5 15 102
Last Release Carol 2.2.10 dns 2.0.6 Struts 2.1.6 Tomcat 6.0.18
Duration 34 months 104 months 89 months 96 months
No: Versions 70 43 11 12
Analyzed
URL carol.objectweb.org dnsjava.org struts.apache.org tomcat.apache.org

Table 5.1: Open Source Projects Analyzed

5.1 Experimental Setup

The focus of our refactoring analysis is open-source subject programs written in
Java. We selected Apache Struts, DNSJAVA, CAROL and Tomcat that satisfy
this condition and have their source code repositories available. We chose the two
Apache software foundation projects (Struts and Tomcat) for our study due to the
fact that they are well-documented, mature and popular open source projects. Tom-
cat also fulfilled our requirement for a fairly big-sized open source project. CAROL
and DNSJAVA were chosen due to the author’s familiarity with the projects and due
to the fact that they are small enough to enable manual analysis.

1. Apache Struts is an open-source framework for creating Java web applica-
tions. It has evolved considerably between its first release made in July 2001
and its last Struts 2.1.6 in Jan 2009.

2. DNSJAVA is an implementation of Domain Name Service in Java and has
evolved over 9 years between its first release in September 1998 and its last
dnsjava 2.0.6 in January 2009.

3. CAROL is a library that allows clients to use different RMI implementations
and has evolved over 34 months between August 2002 and May 2005.

4. Apache Tomcat is a servlet container for the implementation of Java servlets
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and Java Server Pages (JSP) technologies. The first release was in 1999 tom-
cat 3.0 and the last one Tomcat 6.0.18 in July 2008.

We restricted our analysis to released versions of the above open source
projects. The released versions were identified either using tags specified in their
SVN repositories (CAROL and Apache Struts) or through source downloads avail-
able in their respective websites (DNSJAVA and Apache Tomcat). We analyzed 70
versions of CAROL, 43 versions of DNSJAVA, 11 versions of Apache Struts and
12 versions of Apache Tomcat. The 136 versions of the above open source projects
were analyzed for refactorings using RefactoringCrawler [DCMJ06].

As described in Chapter 3, RefactoringCrawler is an eclipse-plug-in that de-
tects refactorings between two versions of Java components. It has the ability to
detect seven types of refactorings, including renamings, change of method signa-
tures, moved methods, etc. RefactoringCrawler was run between adjacent versions
of each of the above four open source projects. The tool was able to identify five
different types of refactorings. These include:

1. Moved Methods

2. Pulled Up Methods

3. Renamed Classes

4. Renamed Methods

5. Changed Method Signatures

The results obtained using RefactoringCrawler were further analyzed and refined
by excluding false positives. The analysis was done through manual inspection of
the source code to identify false positives. A detailed analysis of false positives
identified among RefactoringCrawler results is presented in Section 5.2.
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5.2 RefactoringCrawler: False Positives

In this section, we detail the false positives encountered when using Refactor-
ingCrawler to identify refactorings in various open source projects. Each refac-
toring detected by RefactoringCrawler was checked through manual inspection of
the source code. The false positives were identified during this manual inspection
of the source code.

Of the various refactorings identified by RefactoringCrawler, we only en-
countered false positives in move method refactorings. In addition to the 10 ver-
sions where RefactoringCrawler correctly detected move method refactorings, an-
other five versions were incorrectly identified as having undergone move method
refactoring. We marked a move method refactoring as being false positive if the
source class (the class from which the method is moved from) does not exist in
the new version (the version after refactoring has been applied). The only excep-
tion we have made is for a case where the destination class existed in both old (the
version on which refactoring is applied) and new versions. The false positives we
encountered can be classified into four main categories:

1. Renaming of classes: Classes were just renamed, but RefactoringCrawler
thought that methods were moved into the renamed class.

2. Renaming of packages: Package which contained the methods was renamed
causing incorrect detection of move method refactoring.

3. Removal of old package and moving classes from old package to different
existing packages

4. Moving of classes from one package to another

The last two categories could possibly considered a move method since the
methods were moved between packages, however we chose to classify them as false
positive since the methods were not moved out of the class to which they belonged.
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Chapter 6

Move Method Refactoring

In this chapter, we will analyze the results obtained using the experimental setup
described in Chapter 5 to study the relationship between metrics and move method
refactorings.

OSS Version NOC NOC with NOP NOP with
Move Methods Move Methods

CAROL 1.2 49 2 12 1
CAROL 1.5.2 127 2 18 1
CAROL 1.8.9.4 161 1 24 1
CAROL 2.0.8 158 1 23 1
CAROL 2.2.9 108 3 23 3
DNSJAVA 1.6.6 146 1 4 1
STRUTS 1.1 332 2 41 1
STRUTS 1.2.7 345 1 40 1
TOMCAT 6.0.4 1163 2 100 2
TOMCAT 6.0.10 1189 1 100 1

Table 6.1: Move Method Refactoring

RefactoringCrawler detected move method refactorings in 10 versions out
of the total 136 versions analyzed. Table 6.1 provides details of the versions where
move method refactorings were detected. The first column describes the version,
the second column describes number of classes (NOC), the third column describes
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number of classes with move method refactorings and the fourth and fifth column
provides similar information for the number of packages (NOP).

This chapter is organized as follows. In Section 6.1, we will describe some
high level observations on the move method refactorings detected by Refactor-
ingCrawler. The detailed experimental data on metrics obtained on the versions
which underwent refactoring is described in Section 6.2. We detail our observa-
tions on the experimental results and our inferences based on the observations in
Sections 6.3, 6.4, and 6.5. Section 6.3 tries to see whether metrics can enable us
identify good move method refactoring opportunities. Section 6.4 analyzes whether
change metrics can be reliably used to identify move method refactorings. Sec-
tion 6.5 answers the question on whether metrics can be used to evaluate the impact
of move method refactorings.

6.1 Observations:

• The move method refactorings detected by RefactoringCrawler can be broadly
classified into three categories:

1. The source and destination classes for the move method refactoring are
members of the same package.

2. The source and destination classes for the move method refactoring are
members of different existing packages.

3. The source and destination classes are members of different packages
and the destination package did not exist in the version where refactor-
ing was applied.

• Other then DNSJAVA 1.6.6, the destination class did not exist in the version
where refactoring was applied. The methods were moved into a newly created
class.

• In DNSJAVA 1.6.6, the source class does not exist in the new version after

30



refactoring. This can be classified as a special case of move method refactor-
ing.

• RefactoringCrawler detected a large number of move method refactorings
which were false positive in nature. The details are described in Section 5.2.

• The number of lines of code of methods which were moved varied from 1
to 56. The average method lines of code for move method refactorings was
12.40 while the median was 6.75.

• The ratio of number of methods moved from a class with respect to total
number of methods in the class varied from 60 % to 5.4 %. The highest
number of methods moved from a class was 22 while the lowest was 1.

6.2 Experimental Data

OSS Version Old Old Old New New New
(From) (To) (AVG) (From) (To) (AVG)

CAROL 1.2 0.667 - 0.748 1 1 0.792
CAROL 1.5.2 0.583 0.583 0.824 0.615 0.615 0.827
CAROL 1.8.9.4 0.9 0.667 0.726 0.909 0.6 0.677
CAROL 2.0.8 0.4 0.4 0.613 0.429 0.429 0.588
CAROL 2.2.9 (1) 0.412 - 0.571 1 0.278 0.601
CAROL 2.2.9 (2) 0.471 - 0.571 0.2 0.5 0.601
CAROL 2.2.9 (3) 1 - 0.571 1 0.6 0.601
DNSJAVA 1.6.6 0.878 0.878 0.678 0.556 0.556 0.731
STRUTS 1.1 0.091 - 0.68 0.101 0.019 0.695
STRUTS 1.2.7 0.357 - 0.69 0.2 1 0.498
TOMCAT 6.0.4 (1) 0.714 0.714 0.442 0.714 0.714 0.442
TOMCAT 6.0.4 (2) 0.368 0.368 0.443 0.368 0.368 0.442
TOMCAT 6.0.10 0.5 0.491 0.445 0.5 0.5 0.446

Table 6.2: Move Method Refactoring – RMI Data
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OSS Version Old Old Old New New New
(From) (To) (AVG) (From) (To) (AVG)

CAROL 1.2 (1) 0 - 0.119 0 0 0.105
CAROL 1.2 (2) 0 - 0.119 0 0 0.105
CAROL 1.5.2 (1) 0 - 0.16 0.57 0 0.165
CAROL 1.5.2 (2) 0 - 0.16 0.21 0 0.165
CAROL 1.8.9.4 0 - 0.18 0 0 0.178
CAROL 2.0.8 0.87 - 0.15 0.87 0 0.15
CAROL 2.2.9 (1) 0 - 0.11 0 0 0.101
CAROL 2.2.9 (2) 0 - 0.11 0 0 0.101
CAROL 2.2.9 (3) 0 - 0.11 0 0 0.101
DNSJAVA 1.6.6 0.61 0.83 0.19 - 0.78 0.18
STRUTS 1.1 (1) 0 - 0.29 0 0 0.28
STRUTS 1.1 (2) 0 - 0.29 0 0 0.28
STRUTS 1.2.7 0.82 - 0.28 0 0.78 0.24
TOMCAT 6.0.4 (1) 0.87 - 0.32 0 0.87 0.32
TOMCAT 6.0.4 (2) 0.72 - 0.32 0 0.72 0.32
TOMCAT 6.0.10 0.93 - 0.32 0 0.91 0.32

Table 6.3: Move Method Refactoring – LCOM Data

In this section, we detail the experimental data. In a move method refac-
toring, the class/package which underwent refactoring is referred to as old and the
class/package into which methods were moved as new. For each move method
refactoring detected by RefactoringCrawler, we analyzed the metrics on the old and
new versions. The following four metrics were analyzed:

• Instability (RMI)

• Lack of Cohesion of Methods (LCOM)

• Coupling between Object Classes (CBO)

• Response for a Class (RFC)

Table 6.2 details the data obtained for RMI metric. Data is provided for
each of the 13 packages which underwent move method refactoring. Column 1
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OSS Version Old Old Old New New New
(From) (To) (AVG) (From) (To) (AVG)

CAROL 1.2 (1) 1 - 2.09 1 2 2
CAROL 1.2 (2) 1 - 2.09 1 2 2
CAROL 1.5.2 (1) 8 - 2.16 9 9 2.25
CAROL 1.5.2 (2) 5 - 2.16 6 9 2.25
CAROL 1.8.9.4 5 - 2.32 5 4 2.31
CAROL 2.0.8 5 - 2.86 6 1 2.86
CAROL 2.2.9 (1) 8 - 3.02 1 8 2.68
CAROL 2.2.9 (2) 4 - 3.02 1 4 2.68
CAROL 2.2.9 (3) 1 - 3.02 1 1 2.68
DNSJAVA 1.6.6 3 25 5.58 - 22 5.48
STRUTS 1.1 (1) 2 - 3.83 2 11 3.67
STRUTS 1.1 (2) 22 - 3.83 18 11 3.67
STRUTS 1.2.7 10 - 3.64 9 3 3.90
TOMCAT 6.0.4 (1) 14 - 5.23 10 14 5.23
TOMCAT 6.0.4 (2) 3 - 5.23 1 3 5.23
TOMCAT 6.0.10 20 - 5.21 25 7 5.20

Table 6.4: Move Method Refactoring – CBO Data

lists the open source project version in which refactoring was detected. Column 2
provides the RMI value for the package which underwent refactoring (referred to
as FROM in the Table) in the old version. Column 3 provides the RMI value for
the package into which methods were moved to (referred to as TO in the Table) in
the old version. Column 4 provides the average RMI value across all packages in
the old version. Column 5 illustrates the RMI value for the FROM package in the
old version and Column 6 illustrates the RMI value for the TO package in the new
version. Finally, Column 7 illustrates the average RMI value across all packages in
the new version.

Table 6.2 provides more details on the various move method categories dis-
cussed in Section 6.1. CAROL 1.2, 2.2.9 and STRUTS 1.1, 1.2.7 illustrate move
method refactorings from one package to a newly created package. CAROL 1.5.2,
2.0.8, DNSJAVA 1.6.6, and TOMCAT 6.0.4 illustrate move method refactorings
within the same package. CAROL 1.8.9.4 and TOMCAT 6.0.10 illustrate move
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OSS Version Old Old Old New New New
(From) (To) (AVG) (From) (To) (AVG)

CAROL 1.2 (1) 2 - 7.68 1 4 0.105
CAROL 1.2 (2) 2 - 7.68 1 4 0.105
CAROL 1.5.2 (1) 18 - 7.63 19 22 7.79
CAROL 1.5.2 (2) 13 - 7.63 20 22 7.79
CAROL 1.8.9.4 35 - 8.99 7 30 8.41
CAROL 2.0.8 23 - 7.64 23 2 7.49
CAROL 2.2.9 (1) 19 - 7.67 11 19 7.18
CAROL 2.2.9 (2) 9 - 7.67 5 14 7.18
CAROL 2.2.9 (3) 5 - 7.67 4 9 7.18
DNSJAVA 1.6.6 16 63 12.5 - 66 12.52
STRUTS 1.1 (1) 5 - 12 7 48 12.04
STRUTS 1.1 (2) 83 - 12 102 48 12.04
STRUTS 1.2.7 33 - 12.07 28 10 12.21
TOMCAT 6.0.4 (1) 44 - 17.67 1 41 17.67
TOMCAT 6.0.4 (2) 11 - 17.67 1 11 17.67
TOMCAT 6.0.10 82 - 17.33 24 31 17.32

Table 6.5: Move Method Refactoring – RFC Data

method refactorings from one package to a different existing package.
Tables 6.3, 6.4, and 6.5 details the data obtained for class level metrics

LCOM, CBO and RFC respectively. Data is provided for each of the 16 classes
which underwent move method refactoring. In each of the Tables, column 1 lists
the open source project version in which refactoring was detected. Column 2 pro-
vides the metric value for the class which underwent refactoring (referred to as
FROM in the Table) in the old version. Column 3 provides the metric value for
the class into which methods were moved to (referred to as TO in the Table) in the
old version. Column 4 provides the average metric value across all classes in the
old version. Column 5 illustrates the metric value for the FROM class in the old
version and Column 6 illustrates the RMI value for the TO class in the new version.
Finally, Column 7 illustrates the average metrics value across all classes in the new
version.
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6.3 Bad Smells to Identify Refactoring Opportunities

Move method refactoring is applied if a method is, or will be, using or used by more
features of another class than the class on which it is defined. Bad smells that indi-
cate a move method refactoring opportunity include Shotgun Surgery, Feature Envy,

Message Chains, Inappropriate Intimacy, Data Class etc. [Fow00]. The Shotgun

Surgery bad smell indicates a situation when a change in one class requires cas-
cading changes in a number of other classes. The Feature Envy, Message Chains,

Inappropriate Intimacy are bad smells that indicate high coupling. They are a result
of deviation from putting together what belongs together. The Feature Envy smell
means a case where one method is too interested in other classes, and the Inappro-

priate Intimacy smell means that two classes are coupled tightly to each other. The
Message Chains smell implies a scenario where client is coupled to the navigation
structure. The issue here is that the overhead of calling procedures can become sig-
nificant which this indicates inefficient design. The Data Class bad smell indicates
a situation where the class is not doing much and behavior needs to be moved into
the class. The following object-oriented metrics are typically used to figure out bad
smells to identify move method refactoring opportunities.

• Instability (RMI) RMI is a measure of instability of a package. A high value
of RMI indicates that number of classes inside the package that depend on
classes outside the package is much higher when compared to the number
of classes outside the package that depend on classes inside the package. A
high value of RMI could thus be a bad smell indicating that methods should
be moved from classes inside the package to classes outside the package.

• Lack of Cohesion of Methods (LCOM) LCOM is a measure of cohesive-
ness of a class. A value close to 1 indicates lack of cohesion and could thus
be a bad smell indicating that methods should be moved from the class to
another class.

• Coupling Between Object Classes (CBO) CBO is a count of the number of
other classes to which it is coupled. Inter-class couples should be minimized
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as much as possible, because of re-usability, maintenance and modularity.
High levels of coupling is detrimental to modular design and could possibly
reduced through move method refactoring.

• Response for a Class (RFC) The response set of a class is a set of meth-
ods that can potentially be executed in response to a message received by an
object of that class. RFC is a measure of potential communication between
the class and other classes and one way to decrease RFC is through a move
method refactoring.

6.3.1 Observations and Inferences:

1. A high value of RMI can only be considered a bad smell if the move method
refactoring involves a move from one package to a different package. Of
the 13 packages that underwent move method refactorings, only 2 pack-
ages (packages in CAROL 1.8.9.4 and TOMCAT 6.0.10) had their methods
moved to a different package (the rest were moves to another class in the
same package or to a newly created package).

We compared the RMI of each package with the average RMI computed
across all packages in the particular version. RMI for the package in TOM-
CAT 6.0.10 was higher than the average, but the difference was much less
than the standard deviation. In fact, out of 100 packages, 19 packages had
the highest possible RMI value of 1. RMI for the package in CAROL 1.8.9.4
was higher than average and the difference was close to the standard devi-
ation. However, there were 9 packages which had a higher RMI than the
package which underwent refactoring and all of them had the highest possi-
ble RMI value of 1.

To enable further analysis of RMI in CAROL 1.8.9.4 and TOMCAT 6.0.10,
we built boxplots for RMI values of all packages in the respective versions.
The boxplots obtained are illustrated in Figures 6.1 and 6.2 respectively. In-
terestingly, there are no outliers in both the boxplots. This indicates that RMI
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Figure 6.1: Box Plot for RMI in Carol 1.8.9.4

Figure 6.2: Box Plot for RMI in Tomcat 6.0.10

values of none of the packages (including the ones which underwent move
method refactoring) standout when compared to the rest of the packages.
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Based on the observations, a high value of RMI may not be a good candidate
for bad smell that suggests move method refactoring. First of all, for move
method refactorings within the same package and move method refactorings
to a new package, RMI cannot be used as a bad smell metric. Secondly, our
observations indicate that the packages which underwent refactorings did not
have the maximum RMI value among all packages and there were many pack-
ages which had larger RMI value than the package in question. Even though
the RMI of the packages were greater than average RMI, the difference was
much less than standard deviation.

2. Of the 16 classes which underwent move method refactorings, 10 classes had
a LCOM value of 0. For the 6 classes which had a non-zero LCOM value, we
compared the LCOM value with the average LCOM value computed across
all classes in the version. The LCOM value of all the 6 classes was higher
than average, however there were several classes in each of the versions which
had much higher LCOM value than the 6 classes in question.

Based on the observations, LCOM metric cannot be reliably used as an in-
dicator of classes which require refactoring. Almost 62.5 % of the classes
that underwent refactorings had an LCOM value of 0, this makes it almost
impossible to consider LCOM as a bad smell for move method refactoring.

3. Of the 16 classes which underwent move method refactorings, 6 classes had
CBO values less than average while 10 classes had CBO values greater than
average. We also analyzed the boxplots of CBO values of all classes in
CAROL 1.8.9.4 and TOMCAT 6.0.10. The boxplots are illustrated in Fig-
ures 6.3 and 6.4 respectively. Analyzing the boxplot for CAROL 1.8.9.4
shows that the CBO of the class which underwent refactoring is not an out-
lier. On the other hand, analysis of the boxplot for TOMCAT 6.0.10 shows
that the CBO of the class which underwent refactoring is indeed an outlier.
However, there are a large number of classes in TOMCAT 6.0.10 whose
CBO values are outliers. Based on the observations, CBO of a class cannot
be reliably used as a bad smell to identify the class as a candidate for move
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method refactoring.

Figure 6.3: Box Plot for CBO in Carol 1.8.9.4

Figure 6.4: Box Plot for CBO in Tomcat 6.0.10

4. Of the 16 classes which underwent move method refactorings, 5 classes had
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Figure 6.5: Box Plot for RFC in Carol 1.8.9.4

Figure 6.6: Box Plot for RFC in Tomcat 6.0.10

RFC values less than average while 11 classes had RFC values greater than
average. We also analyzed the boxplots of RFC values of all classes in
CAROL 1.8.9.4 and TOMCAT 6.0.10. The boxplots are illustrated in Fig-
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OSS Version Observation
CAROL 1.2 The 2 classes which underwent refactorings showed an

an increase in the Depth of Inheritance. The heuristics
will not identify the refactoring

CAROL 1.5.2 The number of methods in both the classes which underwent
refactoring showed an increase. Refactoring cannot be
identified by the heuristic

CAROL 1.8.9.4 The depth of inheritance of the the class that underwent
refactoring showed an increase. Refactoring cannot be
identified by the heuristic

CAROL 2.0.8 The heuristics are able to identify the refactoring
CAROL 2.2.9 The heuristics are able to identify the refactoring

DNS 1.6.6 The old class does not exist anymore in the new version
Refactoring cannot be identified by the heuristic

STRUTS 1.1 The heuristics are able to identify the refactoring in
one of the classes. The second class showed an increase
in the number of methods causing the heuristics to fail

STRUTS 1.2.7 The heuristics are able to identify the refactoring
TOMCAT 6.0.4 The number of methods in both classes that underwent

refactoring did not change causing the heuristics to fail
TOMCAT 6.0.10 The depth of inheritance of the class that underwent

refactoring increases causing the heuristics to fail

Table 6.6: Finding Moved Methods Via Change Metrics

ures 6.5 and 6.6 respectively. Interestingly, the classes which underwent
refactoring in CAROL 1.8.9.4 and TOMCAT 6.0.10 both have RFC val-
ues that are outliers. However, it is still difficult to conclude anything definite
about RFC value of a class being a bad smell.

6.4 Finding Refactorings via Change Metrics

In [DDN01], the authors define the following heuristic to identify a move method
refactoring:

• The number of methods in a particular class should decrease and both the
depth of inheritance and the number of children of the class should not change.
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Version RMI rate LCOM rate CBO rate RFC rate
CAROL 1.2 1.998 0 1 0.5

CAROL 1.5.2 0.054 ∞ 0.846 0.967
CAROL 1.8.9.4 -0.043 0 0.8 0.057
CAROL 2.0.8 0.073 0 0.4 0.086
CAROL 2.2.9 2.102 0 0.230 0.878

DNSJAVA 1.6.6 -0.366 -0.403 -0.214 -0.164
STRUTS 1.1 0.318 0 0.292 0.696

STRUTS 1.2.7 2.36 -0.049 0.2 0.152
TOMCAT 6.0.4 0 0 0.647 -0.018
TOMCAT 6.0.10 0.010 -0.021 0.6 -0.329

Table 6.7: Move Method Refactoring Impact

We studied the change in various class-level metrics and applied the above heuristic
for finding refactorings. The observations of our study are described in Table 6.6.
The observations show that heuristics cannot identify refactorings on 10 out of 16
classes that underwent move method refactorings. The very low success rate (37.5
%) of change metric heuristics in [DDN01] indicate that it cannot be reliably used
to find refactorings.

6.5 Refactoring Impact

In [HMKI08], the authors tried to estimate the impact of refactoring by quantifying
the change in coupling between classes and cohesion of each class. To estimate the
impact of move method refactoring, we studied the change rate of RMI, LCOM,
CBO and RFC metrics. The results of our study is illustrated in Table 6.7. The
change rate of a package level metric MET is calculated as follows:

Definition 6.1. Given packages A,B,C,D which underwent refactoring and pack-
ages A′, B′, C ′, D′ into which methods were moved. Change rate in metric MET is
defined as:

MET change rate =

(∑
y∈A′,B′,C′,D′MET (y)−

∑
x∈A,B,C,D MET (x)

)(∑
x∈A,B,C,D MET (x)

)
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The change rate of a class level metric MET is calculated as follows:

Definition 6.2. Given classes A,B,C,D which underwent refactoring and classes
A′, B′, C ′, D′ into which methods were moved. Change rate in metric MET is de-
fined as:

MET change rate =

(∑
y∈A′,B′,C′,D′MET (y)−

∑
x∈A,B,C,D MET (x)

)(∑
x∈A,B,C,D MET (x)

)
Studying the results from Table 6.7, it is clear that change rate in LCOM

cannot be used to study the impact of move method refactoring since in most cases
there is no change in LCOM. CAROL 1.5.2 is an interesting test case where LCOM
was initially zero and increases upon refactoring causing the change rate to become
∞.

On the other hand, the study shows that the move method refactoring does
impact instability (RMI) of a package. However, in most cases (7 out of 10), the
change rate of RMI is positive and in some cases quite high. Assuming that de-
signers performed refactoring to improve overall code quality, it is surprising to
see move method refactoring having a supposedly negative impact based on change
rate in RMI. This suggests that we may not be able to estimate the impact of move
method refactoring by studying the changes in metrics.

Of the 10 versions which underwent refactorings, only the refactoring ap-
plied on DNSJAVA 1.6.6 shows a positive impact for both CBO. For the rest 9
testcases, CBO change rate is positive showing an increase in coupling after refac-
toring. DNSJAVA 1.6.6 is an interesting testcase in that the From class gets deleted
in the new version. With regard to the change rate in RFC, 3 of the move method
refactorings show a positive impact while the rest 7 show an increase in RFC after
refactoring. Of the 3, one of the of the versions that shows a positive impact is
DNSJAVA 1.6.6 which had the From class deleted.
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Chapter 7

Pulled Up Method Refactoring

In this chapter, we will analyze the results obtained using the experimental setup
described in Chapter 5 to study the relationship between metrics and pulled up
method refactorings.

RefactoringCrawler was able to identify “PulledUp Method” refactorings on
7 versions out of 136 total versions analyzed. Table 7.1 provides details of the ver-
sions that had refactorings applied. The first column describes the version, the sec-
ond column describes number of classes (NOC), the third column describes number
of classes with pulledup method refactorings and the fourth and fifth column pro-
vides similar information for the number of packages (NOP).

This chapter is organized as follows. In Section 7.1, we will describe how we

OSS Version NOC NOC with NOP NOP with
Pulled Up Methods Pulled Up Methods

CAROL 1.8.9.4 161 5 24 1
CAROL 1.8.9.5.4 163 5 24 1
DNSJAVA 1.5.1 103 2 4 1
STRUTS 1.1 332 1 41 1
STRUTS 1.2.4 340 2 40 1
STRUTS 1.2.7 345 5 40 1
TOMCAT 6.0.7 1163 1 100 1

Table 7.1: Pulled Up Method Refactoring
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classified the different pull up method refactorings detected by RefactoringCrawler.
We detail our observations on the experimental results and our inferences based
on the observations in Sections 7.2, 7.3, and 7.4. Section 7.2 tries to see whether
metrics can enable us identify good pulled up method refactoring opportunities.
Section 7.3 analyzes whether change metrics can be reliably used to identify pulled
up method refactorings. Section 7.4 answers the question on whether metrics can
be used to evaluate the impact of pulled up method refactorings.

7.1 Pulled Up Method Classification

Classification Description
PullUp 1 Existing superclass with multiple subclasses. Methods with identical

results in the subclasses are pulled up into the superclass
PullUp 2 Multiple classes implementing the same interface. A new superclass is

created to implement the interface and the existing classes are made
subclasses of the new superclass. Methods with identical results in
subclasses are then pulled up into the superclass

PullUp 3 Existing superclass with multiple subclasses such that there are two
subclasses that have methods with identical results. A new subclass is
created and the two nearly identical subclasses are made subclasses of
the newly created subclass. Methods with identical results are then
pulled up into the newly created subclass

PullUp 4 Existing superclass with multiple subclasses such that the superclass
and the subclass are in different packages. Methods are pulledup from
a particular subclass to the superclass

PullUp 5 Two classes implementing the same interface. One class is made the
subclass of another and methods pulled up from the subclass to the
superclass

Table 7.2: Pulled Up Method Classification

An interesting observation from the experimental data is the existence of
refactorings where methods from a single class have been pulled up. This is in
contrast with the typical pull up method refactoring description where methods
with identical results on multiple subclasses are pulled up into the superclass. This
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prompted us to study the nature of pulledup method refactorings identified by Refac-
toringCrawler. The pulledup method refactorings identified by RefactoringCrawler
can be classified into 5 different categories as enumerated in Table 7.2. The follow-
ing observations can be made from the 5 different “Pulled Up Method” categories
listed in Table 7.2.

• Creation of the superclass and pulling up of methods from subclasses to the
superclass is listed as a single atomic operation in Pulled up methods PullUp
2 and PullUp 3. This is partly due to the fact that our analysis is at the
granularity of tagged releases. However, for CAROL 1.8.9.5.4 which had
a PullUp 2 refactoring applied on it, the tagged releases were consecutive
SVN versions. Consecutive SVN revisions is the lowest level of granular-
ity achievable when studying software evolution on an existing open source
code.

• PullUp 4 maybe better classified as a move method since its aim is not to
remove similar methods from subclasses, but to pull up a method to improve
coupling and cohesion. It is also the only pulled up method category that
involves methods moving from one package to another. Typically the pulled
up methods remain in the same package.

7.2 Bad Smells to Identify Refactoring Opportunities

Duplicated Code [Fow00] is bad smell that indicates a pull up method refactor-
ing opportunity. In this case, identical or very similar code exists in two sibling
subclasses. Duplicated code removal reduces the size of code thereby making it
easier to understand, and hence, easier to modify. It also reduces the possibility
of bugs being introduced due to inconsistent modifications in the duplicated code
fragments. Except for PullUp 4, rest of the “PullUp Method” refactoring categories
enumerated in Table 7.2 exhibit the duplicated code bad smell. However, none of
the existing analytical or descriptive object-oriented metrics that we described in
Chapter 4 can be reliably used to identify code clones in the design.
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A large Depth of Inheritance (DIT) metric value for a class is typically con-
sidered a bad smell since it implies increased difficulty in testing and decreased
comprehensibility for the particular class. Pulled Up method refactoring is the sug-
gested refactoring to overcome this bad smell and improve the code. Of the 21
classes which underwent pulled up method refactoring, 15 classes had a DIT value
of 1, the rest had a DIT value of 2. This implies that DIT value could not have
been used as a reliable metric to identify classes which needs pulled up method
refactoring.

7.3 Finding Refactorings via Change Metrics

Demeyer et al. [DDN01] proposed several different heuristics to detect refactorings
by applying lightweight object-oriented metrics to successive versions of a soft-
ware system. The heuristics to identify refactorings relied on three main class level
metrics; (1) Depth of Inheritance (DIT), (2) Number of Methods (NOM), and (3)
Number of Children (NSC). Of the 6 different heuristics proposed in [DDN01], the
following 3 heuristics were found applicable in our analysis.

• Split into Superclass: This heuristic searches for refactorings that optimize
the class hierarchy by splitting functionality from a class into a newly created
superclass. Essentially, the heuristic looks for the creation of a superclass,
together with a number of pulled up methods.

• Merge with Subclass: This heuristic – like the one above – searches for refac-
torings that optimize the class hierarchy. The heuristic essentially looks for
the removal of a subclass, together with a number of pulled up methods from
the subclass to the superclass. The dual of this heuristic is called Split into

Subclass, where a subclass is created and methods are pushed down to the
subclass from the superclass

• Move to Superclass: This is yet another heuristic that is applicable in our
analysis to detect pulled up refactorings using change metrics. The heuristic
looks for DIT and NSC to remain the same along with a reduction in NOM.
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OSS Version Observation
CAROL 1.8.9.4 All 5 classes showed a decrease in Number of Methods (NOM)

and an increase in the Depth of Inheritance (DIT). According
to heuristics defined in [DDN01] to find refactorings, this
would correspond to Split into SuperClass where methods
are moved from subclasses to the newly created Superclass.
The applied refactoring confirms the hypothesis.

CAROL 1.8.9.5.4 All 5 classes showed a decrease in Number of Methods and
and an increase in the Depth of Inheritance. The change
in metrics would suggest a Split into SuperClass
and the applied refactoring confirms the hypothesis.

DNSJAVA 1.5.4 Methods were pulled up from two classes and the classes show
a decrease in NOM and increase in DIT. Split into SuperClass
is confirmed.

STRUTS 1.1 A single method was pulled up from a sub class into a superclass.
The class shows a decrease in number of methods and an increase
in the number of children (NSC). DIT remains the same. Change
in metrics would suggest a Split into SubClass, however
the refactoring applied is essentially a Move to SuperClass

STRUTS 1.2.4 Two methods with identical results from two subclasses were pulled
into superclass. NOM decreases for both classes. For one of the
classes DIT and NSC remains the same while for the other there is
an increase in NSC. Change in metrics would suggest a Move to
SuperClass for the first class and a Split into SubClass for
the second one. Heuristics correctly identify the first refactoring
and incorrectly classifies the second

STRUTS 1.2.7 All 5 classes which underwent pull-up refactoring had an increase in
NOM as well as an increase in DIT. Change in metrics would not
infer any refactorings where a Split into SuperClass would have
been the correct inference

TOMCAT 6.0.7 There were two identical subclasses and one subclass was made the
subclass of another. The class from which methods were pulled up
had a reduction in NOM and increase in DIT. Change metrics would
infer a Split into SuperClass which is confirmed.

Table 7.3: Finding Pulled Up Methods Via Change Metrics
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OSS Version Old Sum Old Sum New Sum New Sum
(From) (To) (From) (To)

CAROL 1.8.9.4 0 - 0 0
CAROL 1.8.9.5.4 3.64 - 0.25 0.83
DNSJAVA 1.5.1 1.15 - 0 1.38
STRUTS 1.1 0 0.93 0 0.93
STRUTS 1.2.4 0.68 0.8 0.67 0.82
STRUTS 1.2.7 3.85 - 4.19 0.58
TOMCAT 6.0.7 0.95 0.94 0 0.95

Table 7.4: PulledUp Method Refactoring – LCOM Data

We studied the change in various class-level metrics and applied the heuris-
tics for finding refactorings described in the work by Demeyer et al. [DDN01]. The
observations of our study are described in Table 7.3.

Based on the observations detailed in Table 7.3, out of 21 classes which un-
derwent pull up method refactoring, heuristics for identifying refactorings based
on change metrics [DDN01] can correctly identify the proper refactorings for 13
classes. In STRUTS 1.2.7, heuristics cannot identify the Split into Superclass refac-
toring performed on the all the 5 classes that underwent refactoring (false negative).
In STRUTS 1.1 and STRUTS 1.2.4, heuristics incorrectly classify Move to Super-

class refactorings as Split into Subclass refactorings.

7.4 Refactoring Impact
Estimating the impact of pulled up method refactoring using metrics has not been
studied before. In [HMKI08], the authors allude to the fact that the impact of pulled
up method refactorings could possibly be studied using metrics, but the case study
only refers to move method refactoring. Pulled up method refactoring mainly in-
volves moving of methods within the same package and hence does not have any
impact on instability of a package. Thus studying change rate of package instabil-
ity (RMI) metric will not be of any help in determining the impact of refactoring.
Since pulled up method refactoring involves finding code clones and getting rid of
them, we decided to study the change rate in weighted methods per class (WMC)

49



OSS Version Old Sum Old Sum New Sum New Sum
(From) (To) (From) (To)

CAROL 1.8.9.4 282 - 66 68
CAROL 1.8.9.5.4 136 - 104 14
DNSJAVA 1.5.1 54 - 12 52
STRUTS 1.1 11 84 6 57
STRUTS 1.2.4 31 15 19 20
STRUTS 1.2.7 136 - 221 12
TOMCAT 6.0.7 65 123 0 97

Table 7.5: PulledUp Method Refactoring – WMC Data

OSS Version Old Sum Old Sum New Sum New Sum
(From) (To) (From) (To)

CAROL 1.8.9.4 24 - 23 5
CAROL 1.8.9.5.4 28 - 33 2
DNSJAVA 1.5.1 24 - 16 14
STRUTS 1.1 6 3 5 3
STRUTS 1.2.4 8 3 8 3
STRUTS 1.2.7 4 - 13 0
TOMCAT 6.0.7 13 16 1 36

Table 7.6: PulledUp Method Refactoring – CBO Data

in addition to the studying the change rate in lack of cohesion of methods (LCOM),
coupling between objects (CBO), and response for a class (RFC) metrics as defined
in Section 6.5. The change rate in WMC is calculated as follows:

Definition 7.1. Given classes A,B,C,D which underwent refactoring and classes
A′, B′, C ′, D′ into which methods were pulled. Change rate in WMC is defined as:

WMC change rate =

(∑
y∈A′,B′,C′,D′WMC(y)−

∑
x∈A,B,C,D WMC(x)

)(∑
x∈A,B,C,D WMC(x)

)
To study the change rate of each of the four metrics, we calculated the sum

of each of these metrics over the classes which underwent refactoring and classes
into which methods were pulled into. The data for each of the four metrics is
presented in Tables 7.4, 7.5, 7.6, and 7.7. In each of the four tables, the first column
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OSS Version Old Sum Old Sum New Sum New Sum
(From) (To) (From) (To)

CAROL 1.8.9.4 183 - 42 41
CAROL 1.8.9.5.4 73 - 60 11
DNSJAVA 1.5.1 65 - 10 41
STRUTS 1.1 14 49 11 49
STRUTS 1.2.4 33 16 42 20
STRUTS 1.2.7 74 - 99 8
TOMCAT 6.0.7 50 62 0 46

Table 7.7: PulledUp Method Refactoring – RFC Data

Version LCOM rate WMC rate CBO rate RFC rate
CAROL 1.8.9.4 0 -0.524 0.167 -0.546

CAROL 1.8.9.5.4 0.208 -0.182 0.25 -0.027
DNSJAVA 1.5.1 0.2 0.185 0.25 -0.215

STRUTS 1.1 0 -0.021 -0.111 -0.47
STRUTS 1.2.4 0.013 -0.188 0 0.292
STRUTS 1.2.7 0.841 0.713 2.25 0.445

TOMCAT 6.0.7 -0.497 -0.484 0.275 -0.589

Table 7.8: Pulled Up Method Refactoring Impact

illustrates the open source project version which underwent refactoring. We refer to
the version in which refactoring was detected to be the old version and the version
after refactoring was applied as the new version. The second column depicts the
sum of the particular metric over all classes that underwent refactoring (referred
to as From in the Table) in the old version. The third column column depicts
the sum of the particular metric over all classes into which methods were pulled
into (referred to as To in the Table) in the old version. The fourth and fifth column
depicts the sum of the particular metric in the new version over From and To classes
respectively. In the Table, “-” refers to the fact that there was no data. In particular,
out of the 7 pulled up method refactorings detected, in 4 of the refactorings the
superclass into which methods were pulled into did not exist in the old version.

The results of our study is illustrated in Table 7.8. The results show that the
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change rate in LCOM maybe better suited to study the impact of pulled up method
refactoring as opposed to move method refactoring. There are only two versions
where there is no change in LCOM. However, except for TOMCAT 6.0.7, the other
versions show an increase in LCOM suggesting negative impact for refactoring.

Given that pulled up method refactoring should get rid of code clones, one
would guess that WMC change rate would always be positive indicating the posi-
tive impact of pulled up method refactoring in reducing code complexity. However,
there are two versions (DNSJAVA 1.5.1 and STRUTS 1.2.7) which show an in-
crease in the change rate of WMC.

The change rate of CBO shows an interesting trend of almost always having
a negative impact, i.e., coupling between classes increase after pulled up method
refactoring. This shows that although pulled up method refactoring is able to re-
move duplicated code, by moving functionality from subclasses to superclasses, it
could increase the coupling of the superclasses while making little change to the
coupling of the subclasses.

On the other hand, change rate of RFC shows a positive impact on 5 out of
7 versions. This is because by pulling up methods from multiple subclasses, we
are enabling a big reduction in the cumulative RFC of the set of the classes which
underwent refactoring.

7.4.1 Summary

Given that there are very few refactorings identified (7 out of 136 versions ana-
lyzed) and assuming that the ultimate aim of designers was to improve code quality
through refactorings, it is surprising that a large percentage of refactorings appear
to have a negative impact. One of the main aims of refactoring impact estimation is
to identify the refactorings performed in older versions that had the highest impact
and use that information when making a decision to apply refactoring on a later
version. The study shows that either analyzing the change rate of metrics may not
be well suited to estimate refactoring impact or the applied refactorings resulted
in a negative impact even though the designers may have applied them to improve
software quality.
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Chapter 8

Pushed Down Method Refactoring
In this chapter, we aimed to study the relationship between metrics and pushed
down method refactorings based on the experimental results obtained using the
analysis described in Chapter 5. Pushed down method refactoring essentially moves
a method from a superclass to one of the subclasses [Fow00]. Subclasses inherit
methods and features from their parent class. Thus, pushed down method refactor-
ing is applicable when methods in the superclass are only applicable to some of its
subclasses. Pushed down refactoring enables the superclass to only hold what is
common among all the subclasses. Refused Bequest [Fow00] is bad smell that in-
dicates a push down method refactoring opportunity. A base class inherits methods
that are not used at all. It indicates poor inheritance design. A possible scenario
described by Fowler, is when the subclass is reusing base class behavior but does
not want to support the interface of the superclass.

8.1 Experimental Results and Conclusion
RefactoringCrawler [DCMJ06] was not able to identify pushed down method refac-
torings in any of the 136 versions of the open source projects analyzed. This could
imply one of three possibilities:

1. Pushed down method refactoring is not a commonly applied refactoring.

2. The 4 different open source projects and their respective versions we analyzed
are not good representatives of all refactorings we attempted to study.

3. RefactoringCrawler is not adept at detecting push down method refactorings.
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Chapter 9

Refactoring Impact on Software
Quality

Software undergoes frequent modifications, improvements and enhancements to
cope with the changes in business requirements [KL03]. These changes applied
over time can have an adverse impact on the quality of software. The design
could become complex, difficult to maintain and test, and easily susceptible to bugs.
Refactoring [Fow00] is one of the most important and commonly used techniques
to improve the quality of the code by eliminating redundancy and reducing com-
plexity; frequently refactored code is believed to be easier to understand, maintain
and test.

Software metrics provides an easy means to extract useful and measurable
information about the structure of a software system. Metrics have also proved
to reflect software quality and has been widely used in evaluating software qual-
ity [BJM76]. Several researchers have also successfully correlated metrics with
quality [SK03, SAOB02].

Several tools are available for collecting software metrics as well as for per-
forming automated refactoring on the source code. Given the abundance of such
tools, one would expect designers to aggressively use refactoring to improve soft-
ware quality. Several researchers have attempted to study the impact of refactoring
on software quality as measured in terms of metrics [SS07, HMKI08]. In [SS07],
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the authors extract version control system logs of popular open source software sys-
tems to detect changes marked as refactorings and examine how software metrics
are affected by this process. However, the authors only analyze metrics of the meth-
ods/classes/packages affected by refactoring. Again, in [HMKI08], the authors only
analyze the change rate of metrics of the classes affected by refactoring. We also
performed a similar analysis which is described in detail in Chapters 5, 6, and 7.

In this chapter, instead of just studying the change in metrics of the classes
affected by refactoring, we will study the temporal evolution of various software
metrics. There are several reasons for the nature of our study. First of all, we are
only analyzing open source projects at the granularity of releases. When we detect a
refactoring in a particular class/package, that may not be the only change occurring
in the class/package. This implies that refactoring may not be the only cause for the
changes in metrics and results obtained from analyzing the changes in metrics may
not give us the complete picture on the impact of refactoring on software quality.

Assuming that the detected refactoring is only one among many changes
applied by the designers to improve quality of the design, we make the following
research hypotheses. Given two releases of the open source project: old and new.
Refactoring was detected between the old and new release with the new release
consisting of refactored code.

• Hypothesis 1: The quality of the system as measured using software metrics
was very poor in the old release.

• Hypothesis 2: The quality of the system as measured using software metrics
should improve in the new release.

Of the 4 open source projects we had analyzed, CAROL had the largest
number of versions as well as the largest number of refactorings detected. In this
chapter, we will restrict our analysis on CAROL. We use the metrics calculated
by the Eclipse Metrics plug-in 1.3.6 [Sua] for our software quality analysis. For
detailed results from the other 3 open source projects, please refer to the Appendix.
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Figure 9.1: Evolution of Number of Classes in Carol

9.1 Refactoring Impact

According to the laws of software evolution [LPR+97], modern software systems
exhibit the following characteristics.

• Software systems must continuously undergo changes or else they will be-
come progressively unsatisfactory (law 1)

• As a software system evolves, its complexity increases unless work is done
to maintain it or reduce it (law 2)

• Quality of the software system will appear to be declining unless it is rigor-
ously maintained and adapted to operational environment changes (law 7)

To study the evolution of open source projects that we analyzed, we plotted the evo-
lution of total number of classes in the project. The evolution of the total number
of classes in CAROL is depicted in Figure 9.1. We can make the following obser-
vations by studying the evolution of total number of classes. First of all, there is a
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continuous change in the total number of classes (except for a few intermediate ver-
sions). After the initial couple of versions, there is a big increase in the number of
classes (most probably corresponds to addition of new functionality to the software
system), followed by changes at regular intervals. Around 3/4th of the lifetime,
there is a huge drop in the number of classes followed by the number of classes re-
maining steady for a while and finally yet another increase in the number of classes
at the end. Even though the changes in total number of classes in the project is a
very crude approximation of continuous changes in a software system, the changes
in the number of classes with each version can be considered a confirmation of the
fact that CAROL does obey law 1 described above.

To study how complexity and quality of the software system evolves over
time, we study the following three metrics, (1) Instability (RMI), (2) Weighted
Methods per Class (WMC), and (3) Lack of Cohesion of Methods (LCOM). To
better illustrate the impact of refactoring, in the figures that are used to depict the
evolution of each metric, we identify the versions at which we detected refactoring
through straight lines that intersect the graph with the X-axis. After the removal
of false positives, we detected refactorings in 6 versions of CAROL. Of the 6
versions, the first 2 versions only underwent move method refactorings, the third
version underwent move method refactoring and pulled up method refactoring, the
fourth version only underwent pulled up method refactoring, and the fifth and sixth
versions only underwent move method refactorings.

1. Instability (RMI): RMI is a package level metric. It is an indication of a
package’s resilience to change. It has a range [0,1] where, 0 indicates a maximally
stable package and 1 indicates a maximally unstable package. For the purpose
of our study, we calculated the average RMI of the whole system (average across
all packages in the system). The evolution of average RMI across all packages in
CAROL is illustrated in Figure 9.1. The average RMI for CAROL starts relatively
high, increases steadily and reaches a peak. The peak is followed by a sharp decline,
followed by a further rise and then RMI decreases steadily for several versions and
shows another sharp increase at the end.
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Figure 9.2: Temporal Evolution of RMI for Carol

RMI is more relevant to move method refactoring as opposed to pulled up
method refactoring, hence we only need to analyze it for refactorings 1 to 3 and 5
to 6. With regard to our two hypotheses described earlier in the chapter, it is not the
case that the version at which refactoring has been applied is a local maxima; i.e.,
the version at which refactoring happened is not really the one with poorest quality
among all neighboring versions. For none of the move method refactorings, we
detected the condition that the old release had a relatively high average RMI. With
regard to the second hypothesis, only the third move method refactoring (CAROL
1.8.9.4 shows a decrease in RMI after refactoring. Coincidentally, this is also the
only move method refactoring that involved moving methods from one package to a
different existing package. Since other move method refactorings involved moving
classes within the same package or from one package to a newly created package,
it seems plausible that the average RMI may not show a big decline after move
method refactoring.
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Figure 9.3: Temporal Evolution of WMC for Carol

2. Weighted Methods per Class (WMC): WMC is a class level metric. It is ob-
tained by computing the sum of the McCabe Cyclomatic Complexity for all meth-
ods in a class. Large values of WMC indicates complex classes. For our study, we
calculate the average WMC of the whole system (average across all classes in the
system). The evolution of average WMC across all classes in CAROL is illustrated
in Figure 9.1. WMC shows a similar evolution pattern as RMI. It starts quite low
and shows a big increase in the early stages of the software design cycle. WMC
stays steady for a while and then shows a consistent decline with each advancing
version.

WMC is a better indicator of impact of pulled up method refactoring as
opposed to move method refactoring. Thus we need to only analyze the 3rd and 4th
refactorings depicted in the Figure. The values of WMC at the versions at which
refactorings was applied do not confirm hypothesis 1. However, there is indeed a
decrease in WMC after refactoring which supports hypothesis 2.
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Figure 9.4: Temporal Evolution of LCOM for Carol

3. Lack of Cohesion of Methods (LCOM-HS): LCOM is a class level met-
ric that computes cohesiveness of a class [HS96]. A high LCOM value indicates
decreased encapsulation and increased complexity while a low value implies high
cohesion and good design. For our study, we calculate the average LCOM of the
whole system (average across all classes in the system). The evolution of average
LCOM across all classes in CAROL is illustrated in Figure 9.1. LCOM shows a
very interesting evolution pattern. It starts quite low and is followed a big increase.
LCOM remains steady for quite a while after the big increase, increases again, fol-
lowed by a steady decline till the end.

LCOM is a good indicator of the impact of both move method and pulled
up method refactorings. The values of WMC at the versions at which refactorings
was applied do not confirm hypothesis 1. However, in all the cases, there is in-
deed a decrease in average LCOM after refactoring which supports hypothesis 2.
The biggest decrease in LCOM is after the second pulled up method refactoring
(CAROL 1.8.9.5.4).
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9.2 Conclusion

In conclusion, the study of evolution of software using various software metrics
confirms the laws of software evolution [LPR+97] described in Section 9.1. We
studied the evolution of 3 different software metrics; Instability (RMI), Weighted
Methods per Class (WMC) and Lack of Cohesion of Methods (LCOM). The study
illustrated how complexity increases and the quality decreases as the software evolves
through different versions. The study also illustrated the impact of refactoring on
complexity and quality of software. Overall refactoring appeared to have a positive
impact by reducing complexity and increasing the quality of software.
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Chapter 10

Study Limitations

In this chapter, we will describe the limitations to our study.

Subject Programs and Versions: We studied 136 program versions covering 4
open-source projects. Although programs under consideration are all very different,
we cannot possibly claim that their version histories are representative of all kinds
of software projects.

Our study is restricted to analyzing released versions of these open source
projects. Essentially, we are analyzing a cumulative set of refactorings, bug fixes,
new features and quality, performance improvements. It is possible that we could
miss refactorings as they could be masked by other changes.

Our study examined how the metrics of the open source projects under con-
sideration were affected when certain refactorings were applied regardless of the
reasons that led to the refactoring decision. It is very well possible that a refactoring
decision was motivated by other considerations, performance for example, which
might not necessarily improve the quality of the software system as measured by
the metrics we included in our study.

External Tools: For our study, we have relied on the RefactoringCrawler tool
to automatically detect refactorings in the program versions under consideration.
There is a possibility that RefactoringCrawler could falsely detect refactoring in
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versions where there were none. We analyzed every refactoring detected by Refac-
toringCrawler to weed out the false positives. It is also possible that Refactor-
ingCrawler might have missed some refactorings. This could possibly explain why
we detected very few refactorings even after analyzing 136 versions of open source
projects.
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Chapter 11

Conclusion

In this chapter, we summarize the contributions of this thesis and discuss future
research directions. The relationship between metrics and refactorings has been
widely researched. However, there has not been a detailed simultaneous study of
the various relationships on existing open source projects. Moreover, our research
is qualitatively different from previous research in several different ways. Our anal-
ysis using automatic refactoring detection techniques is much more comprehensive
than previous research which relied on refactorings detected using change logs. We
are the first to compare automatic refactoring detection techniques that do not use
metrics and refactoring detection techniques that use metrics. We are also the first to
use an automatic refactoring detection tool to mine for refactorings in existing open
source projects to analytically study the impact of refactoring on software quality
as measured by metrics.

Metrics as hints for identifying refactoring opportunities:

We conclude from our study that there does not exist any particular set of met-
rics that can be reliably used to identify bad smells for pulled up method refactor-
ings. For move method refactorings, even though several bad smells based on high
values of certain metrics have been proposed, our study indicates that the metrics
associated with particular bad smells cannot reliably identify source code whose
complexity can be reduced through move method refactoring.
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Finding Refactorings via Change Metrics:

We can conclude from our study that heuristics based on change metrics do a very
poor job in identifying refactorings. The fact that refactoring is not the only change
applied by the designers causes the heuristics to produce wrong results. Often they
do not identify any refactorings or incorrectly classify the refactoring identified.

Metrics to study refactoring impact:

Our study shows that refactoring negatively impacts the software quality as mea-
sured by metrics. This could mean that either refactorings did not achieve what they
were intended to achieve as indicated by the metrics or that the analysis of change
rate of metrics gives a very bad estimate of the impact of refactoring in software
quality.

Our analysis is further complicated by the fact that we are analyzing at the
granularity of releases and there could a multitude of other changes interspersed
with refactoring. We also analyzed the open source projects at the system level,
by calculating an average of the metric values over all packages and classes. Our
study of evolution of class and package level metrics confirmed the laws of software
evolution [LPR+97]. Also, overall refactoring appeared to have a positive impact
by reducing complexity and increasing the quality of software.

11.0.1 Future Work

There are numerous future work directions to enhance the results reported herein.
First of all, in our work, we have only studied move method and pulled up method
refactoring. It would be very interesting to study other refactoring techniques. Sec-
ondly, we would like to use a automatic refactoring detection technique other than
RefactoringCrawler to detect refactorings. Thirdly, we would like to study more
open source projects and if possible study them at the granularity of each SVN/CVS
revision to detect refactorings.
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Appendix A

Struts Quality Analysis

In this appendix, we will illustrate the evolution of RMI, LCOM and WMC metrics
in Struts.
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Figure A.1: Temporal Evolution of RMI for Struts
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LCOM across Struts Versions
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Figure A.2: Temporal Evolution of LCOM for Struts
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Figure A.3: Temporal Evolution of WMC for Struts
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Appendix B

Dnsjava Quality Analysis

In this appendix, we will illustrate the evolution of RMI, LCOM and WMC metrics
in Dnsjava.
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Figure B.1: Temporal Evolution of RMI for Dnsjava
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LCOM across Dnsjava Versions
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Figure B.2: Temporal Evolution of LCOM for Dnsjava
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Figure B.3: Temporal Evolution of WMC for Dnsjava
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Appendix C

Tomcat Quality Analysis

In this appendix, we will illustrate the evolution of RMI, LCOM and WMC metrics
in Tomcat.
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Figure C.1: Temporal Evolution of RMI for Tomcat
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LCOM across Tomcat Versions
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Figure C.2: Temporal Evolution of LCOM for Tomcat
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Figure C.3: Temporal Evolution of WMC for Tomcat
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