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Many continuous steel bridges constructed prior to the 1970s have floor systems 

consisting of a non-composite concrete deck over steel beams with no shear connectors.  

While many of these bridges are still in good condition, the structures may not satisfy 

current load requirements and thus may need to be strengthened or replaced to avoid load-

posting and to maintain structural safety.  One potentially economical method of extending 

the service life of such bridges is to post-install adhesive anchor shear connectors to create 

composite action between the existing steel beams and concrete deck.  This is efficient in 

regions dominated by positive flexural demands where the concrete deck is in compression.  

Inelastic moment redistribution away from the interior pier sections can be considered to 

address strength deficiencies in these regions, which are dominated by negative flexural 

demands. 

This dissertation explores this method of strengthening continuous non-composite 

steel girder bridges.  Of particular interest is the “shakedown” behavior of partially 

composite strengthened girders under large repeated loads requiring moment 

redistribution.  These concepts are commonly referred to as “autostress” design.  After 

conducting preliminary studies on the feasibility of this strengthening method for typical 

bridges in the state of Texas, an extensive large-scale experimental program was conducted 

in conjunction with finite element modeling.  The results of the testing and modeling are 

discussed in detail.  Design recommendations and a design example are also provided. 
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CHAPTER 1: INTRODUCTION 

1.1 OVERVIEW 

Many continuous steel bridges constructed prior to the 1970s have floor systems 

consisting of a non-composite concrete deck over steel beams with no shear connectors.  

In these bridges, the deck serves primarily as a driving surface and helps to transfer the 

traffic loads to the girders, which are the primary load-resisting members.  While many of 

these bridges are still in good condition, the structures may not satisfy current load 

requirements and thus may need to be strengthened or replaced to avoid load-posting, or 

restricting the axle weights allowed on the bridge, and to maintain structural safety. 

Previous researchers have investigated the strengthening of simply supported steel 

girder bridges by creating composite action using “post-installed shear connectors” to 

provide a mechanical attachment between the existing concrete deck and steel beams 

(Kwon 2008).  It was recommended that three different types of connectors be considered 

to create composite action, one of which is comprised of adhesive anchors, as shown in 

Figure 1-1.  This connector type was chosen as the focus of the research reported in this 

dissertation because of its simple installation process that is done entirely from the 

underside of the bridge deck, which minimizes traffic disruption.  By creating composite 

action, both the steel beams and the concrete deck contribute to resisting the loads on the 

bridge.  In regions dominated by positive bending where the deck is in compression, this 

results in significant gains in strength and stiffness. 
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Figure 1-1: Adhesive Anchor Post-Installed Shear Connectors 

However, for continuous girders, the low tensile strength of concrete and the 

minimal longitudinal deck reinforcement found in most older bridges prevent any 

significant benefits from composite action in negative bending.  Thus, a different technique 

is needed to address any strength deficiencies in regions near the interior piers of a 

continuous girder bridge, which are dominated by negative flexural demands.  This 

research investigates the use of inelastic moment redistribution from these interior piers to 

increase the overall load rating of the entire bridge.  Moment redistribution means that 

yielding is allowed to occur at the interior piers under large loads, and excess moments are 

redistributed to the adjacent positive moment regions.  This concept is commonly referred 

to as “autostress design” and is based on behavior at the shakedown limit state, which is 

the appropriate plastic limit state for statically indeterminate structures under repeated load 

patterns, such as traffic loading.   

Thus, the overall approach to increasing the load rating of non-composite 

continuous steel girder bridges investigated in this research combines the use of inelastic 

moment redistribution in negative moment regions at interior supports with the use of post-

installed shear connectors in the positive moment regions in the spans. 

1.2 OBJECTIVES OF RESEARCH 

The research reported in this dissertation represents a portion of a 5-year project 

carried out at the Ferguson Structural Engineering Laboratory at the University of Texas 

Concrete deck

Steel beam

Adhesive anchor connectors
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at Austin and funded by the Texas Department of Transportation (Kreitman et al. 2015, 

Kreitman et al. 2016).  The overall objectives of this project were to: 

1. Explore the feasibility of the proposed strengthening method for typical bridges 

in the state of Texas, 

2. Investigate the behavior of representative strengthened girders, both 

experimentally and computationally, and 

3. Provide detailed design recommendations for strengthening in-service non-

composite continuous steel I-girder bridges. 

This dissertation is focused on the behavior of strengthened girders under large 

loads at strength limit states.  The fatigue behavior of the adhesive anchor connector is 

covered in detail by Patel (2013) and Ghiami Azad (2016).   

1.3 SCOPE OF DISSERTATION 

Following this introductory chapter, Chapter 2 provides pertinent background 

information from the literature regarding composite behavior, post-installed shear 

connectors, and inelastic moment redistribution.  A description of the initial studies that 

were conducted to evaluate the feasibility of the proposed strengthening method is 

provided in Chapter 3.  Chapter 4 introduces the large-scale experimental program, while 

Chapter 5 and Chapter 6 discuss the experimental results in a general and more detailed 

sense, respectively.  The details of the finite element modeling techniques and results from 

both a parametric study investigating the distribution of elastic moments in strengthened 

girders and the computational analysis of the experimental testing are provided in Chapter 

7.  Chapter 8 describes the design approach for the strengthening process and provides 

design equations for the static and fatigue strength of post-installed adhesive anchor shear 

connectors.  Finally, Chapter 9 summarizes the work reported here and suggests some 

additional related topics for future research. 

Calculations and equations used for data analysis, along with additional results not 

directly shown in the text are provided in Appendix A, Appendix B, and Appendix C.  

Appendix D is comprised of a detailed design example for strengthening a sample bridge. 
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CHAPTER 2: BACKGROUND 

2.1 OVERVIEW 

The proposed strengthening method combines several aspects of bridge design and 

structural behavior to create an efficient strengthening solution.  This chapter presents the 

relevant background information pertaining to the general behavior of composite girders, 

previous research on post-installed shear connectors, principles of inelastic moment 

redistribution for bridges, and a summary of applicable AASHTO bridge design provisions. 

2.2 COMPOSITE BEHAVIOR 

A composite steel bridge has a floor system in which the concrete deck is 

mechanically attached to the steel beams so that the two elements bend together (Oehlers 

and Bradford 1995).  This is illustrated in Figure 1-1.  The shear connectors provide the 

mechanical attachment that transfers the horizontal shear force at the interface between the 

bottom of the concrete deck and the top flange of the steel beam.  These connectors are 

typically headed studs that are welded to the top flange of the steel section and embedded 

into the concrete deck during casting.  Historically, short channel sections and other shapes 

welded to the top flange have also been used as shear connectors.  Composite girders are 

significantly stiffer and stronger in flexure compared to non-composite girders because 

more material is effective in the cross section.  This is especially true for composite girders 

in positive bending where the concrete deck is in compression and the steel beam is 

primarily in tension.  

2.2.1 Full and Partial-Composite Behavior 

A fully composite girder has enough shear connectors to transfer the required 

horizontal interface shear force to develop the full plastic moment of the composite cross 

section.  A condition where there is zero “slip”, or relative longitudinal displacement, 

between the concrete deck and the steel beam, also known as “full interaction,” is generally 

not possible to attain.  However, the slip between the deck and the steel beam in a fully 

composite girder is generally considered negligible and ignored for analysis under service 

loads, although significant slip may occur at ultimate load.  Thus, under service loads, a 

continuous strain distribution can be assumed throughout the entire composite section, as 

shown in Figure 2-1(a). 
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Conversely, a partially composite girder does not have enough shear connectors to 

transfer the horizontal shear required to develop the full plastic moment of the composite 

section.  Instead, the strength of the section is controlled by the shear connection.  A 

significant amount of slip occurs between the deck and the girder, even at service loads, 

and the strain distribution is discontinuous at the interface, as depicted in Figure 2-1(b).  

The amount of slip at a given section in a partially composite girder is determined by 

integrating the magnitude of this strain discontinuity along the length of the girder.  A 

typical strain distribution in a non-composite girder is also shown in Figure 2-1(c).  

Although the slope of the strain profiles, or the curvatures, of the steel and concrete sections 

are generally assumed to be the same in all three cases shown in the figure, each element 

bends separately about its own neutral axis in a non-composite section.  Interface slip also 

occurs in non-composite girders due to the strain discontinuity. 

 

 

Figure 2-1: Strain Distribution in Fully, Partially, and Non-Composite Girders 

2.2.2 Strength of Composite Girders 

The maximum flexural strength of a compact, well-braced, fully or partially 

composite girder under positive moment is calculated using one of the assumed plastic 

stress distributions shown in Figure 2-2 (AISC 2010).  For fully composite girders, the 

plastic neutral axis (PNA) can be located either in the concrete deck (a) or in the steel beam 

(b), while the plastic neutral axis in a partially composite girder will always be located in 

the steel section (c).  At the plastic moment strength level, all portions of the steel beam 

(a) 
Fully Composite

(b)
Partially Composite

(c)
Non-Composite
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are assumed to be fully yielded in either tension or compression, depending on the location 

of the neutral axis.  A compressive stress block with a resultant force equal to the horizontal 

interface shear force (𝐶𝑓, defined in the next section) extends down from the top of the 

deck through a depth that satisfies force equilibrium.  The deck is assumed to resist no 

tensile forces.  The flexural capacity is determined by the summation of moments in this 

stress distribution.  Several experimental studies have confirmed that this results in a lower-

bound and generally quite accurate estimate of the actual strength of fully and partially 

composite girders (Culver and Coston 1961, Slutter and Driscoll 1963, Chapman and 

Balakrishnan 1964). 

 

Figure 2-2: Plastic Stress Distributions in Composite Girders 

Interface Shear Force 

At the plastic moment strength level in a fully composite girder, the maximum 

horizontal interface shear force (𝐶𝑓) that is transferred by the shear connection is the 

smaller of the maximum axial forces that can be developed above and below the interface, 

or in the deck and in the steel, respectively.  The maximum compressive force that can be 

developed in the deck is usually assumed to take the form of the Whitney stress block, 

which is comprised of a uniform stress distribution of 85% of the compressive strength 

over the entire cross-sectional area of the deck.  This conservatively ignores the deck 

reinforcement in compression.  For composite girders under negative moment, the 

maximum tensile force in the deck is typically taken as the full yield strength of the 

(a)
Fully Composite

PNA in Deck

(b)
Fully Composite

PNA in Steel

(c)
Partially Composite

PNA in Steel
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longitudinal reinforcement, ignoring the concrete in tension.  The maximum compressive 

or tensile force that can be developed in the steel beam is the maximum plastic force if all 

fibers are yielded.  In the case of negative moment, where a significant depth of the steel 

beam is in compression, this assumes that the section is compact and sufficiently braced so 

that no premature local or lateral-torsional buckling will occur. 

For partially composite girders, the maximum interface shear force that can be 

transferred is controlled by the shear connectors, and is thus lower than the maximum 

forces that can be developed in the deck and in the steel.  The maximum horizontal interface 

shear force that can be transferred in a partially composite girder is the sum of the ultimate 

strengths of all shear connectors located between the points of zero and maximum moment 

in a span.  Thus, the horizontal interface shear force (𝐶𝑓) is: 

For positive moment regions: 

𝐶𝑓 = 𝑚𝑖𝑛 {

0.85 𝑓𝑐
′ 𝐴𝑐

(𝐴𝑠 𝐹𝑦)
𝑔𝑖𝑟𝑑𝑒𝑟

𝛴𝑄𝑛

 

Equation 2-1 

For negative moment regions: 

𝐶𝑓 = 𝑚𝑖𝑛 {

(𝐴𝑠 𝐹𝑦)
𝑟𝑒𝑏𝑎𝑟

(𝐴𝑠 𝐹𝑦)
𝑔𝑖𝑟𝑑𝑒𝑟

𝛴𝑄𝑛

 

Equation 2-2 

where 𝐴𝑠 is the area of the steel section or of the longitudinal reinforcement having a yield 

strength of 𝐹𝑦, 𝐴𝑐 is the area of the concrete deck within the effective width having a 28-

day compressive strength of 𝑓𝑐
′, and Σ𝑄𝑛 is the sum of the static shear strength of all shear 

connectors between the points of zero and maximum moment. 

If the top expression in Equation 2-1 or Equation 2-2 is the smallest, the plastic 

neutral axis is located in the steel beam.  If the middle expression is the smallest, the plastic 

neutral axis is in the deck. In both cases, however, the girder is considered to be fully 

composite. If the bottom expression is the smallest so that the shear connectors control the 

strength of the section, the neutral axis is in the steel beam, and the section is considered 

to be partially composite.  
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The value of the interface shear force is used to determine the required number of 

shear connectors (𝑁𝑓𝑢𝑙𝑙) to be placed between points of zero and maximum moment for a 

fully composite girder: 

𝑁𝑓𝑢𝑙𝑙 =
𝐶𝑓

𝑄𝑛
 

Equation 2-3 

where 𝑄𝑛 is the static shear strength of a single connector. 

For partially composite girders, the composite ratio (𝜂) is defined as the ratio 

between the number of shear connectors provided (𝑁) and the number of connectors 

required to develop full-composite action.  This composite ratio is often expressed as a 

percentage.  A girder with a composite ratio less than unity (less than 100%) is partially 

composite, while a girder with a composite ratio equal to or greater than unity is fully 

composite: 

𝜂 =
𝑁

𝑁𝑓𝑢𝑙𝑙
 

Equation 2-4 

Efficiency of Partial-Composite Behavior 

While a partially composite girder has a reduced flexural strength as compared to a 

fully composite girder, the relationship between composite ratio and strength is not linear.  

In fact, partial-composite action is efficient, as small composite ratios can provide 

significant strength increases.  This is illustrated in Figure 2-3, which shows the ultimate 

load-carrying capacity of a 38-foot long simple span girder with a point load at midspan as 

a function of the composite ratio, which is referred to as the shear connection ratio in the 

figure.  The geometry of this girder is equivalent to the large-scale tests discussed in Section 

2.3.2 (Kwon et al. 2007). 
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Figure 2-3: Effect of Shear Connection Ratio on Strength (Kwon et al. 2007) 

Because of the efficiency of partial-composite action, many building structures are 

designed economically using partially composite girders.  However, in bridge design, the 

fatigue strength of conventional welded shear studs tends to control the design, rather than 

the static strength requirements.  Fatigue design usually requires enough shear connectors 

for fully composite action to develop in a bridge.  The Association of American State 

Highway and Transportation Officials (AASHTO) bridge design specifications, discussed 

in Section 2.5.1, do not currently allow for partial-composite action for this reason 

(AASHTO 2010). 

2.2.3 Stiffness of Composite Girders 

The moment of inertia of a fully composite girder with negligible interface slip is 

computed by statics as the transformed moment of inertia of the composite cross section.  

However, the interface slip present in partially composite girders reduces the effective 

stiffness of the section.  The American Institute for Steel Construction (AISC) Commentary 

to the Specification for Structural Steel Buildings provides an equation to estimate the 

effective moment of inertia (𝐼𝑒𝑓𝑓) of a partially composite girder for the purposes of 

calculating deflections (AISC 2010): 

𝐼𝑒𝑓𝑓 = 𝐼𝑠 + √𝜂 (𝐼𝑡𝑟 − 𝐼𝑠) Equation 2-5 
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where 𝐼𝑠 and 𝐼𝑡𝑟 are the moments of inertia of the steel section and of the fully composite 

uncracked transformed section, respectively.  The effective elastic section modulus (𝑆𝑒𝑓𝑓) 

can be estimated in the same manner to approximate the extreme fiber stresses in a partially 

composite section.  These equations are based on empirical elastic testing of partially and 

fully composite girders in positive flexure (Grant et al. 1977).  Note that the elastic modulus 

of steel should be used with these values of moment of inertia to obtain the flexural stiffness 

of the transformed composite or partially composite section. 

The effective section properties calculated from Equation 2-5 are actually fictitious 

values that represent the overall behavior of the girder.  They are intended for use to 

approximate deformations and stresses in design, rather than to describe the actual behavior 

of a partially composite cross section.  The actual behavior is complex because plane 

sections do not remain plane due to the significant amount of interface slip.  This is 

discussed further in Chapter 6.  Partial-composite elastic beam theory that directly includes 

the effects of interface slip has been developed by several researchers, most notably 

Newmark et al. (1951) and Proctor (1963).  More recent work by Seracino et al. (2004, 

2006) has revisited the concepts of partially composite behavior with applications to 

composite bridge girders. 

2.3 POST-INSTALLED SHEAR CONNECTORS 

Creating composite action in existing non-composite bridges has been investigated 

previously in only a few studies prior to an extensive investigation conducted at the 

University of Texas at Austin over the past decade.  This section summarizes the research 

conducted elsewhere regarding the development of post-installed shear connectors as well 

as the work that has been done at the University of Texas at Austin to date. 

2.3.1 Types of Post-Installed Connectors Developed Previously 

Klaiber et al. (1983) performed static pushout and girder tests on two types of post-

installed connectors, shown in Figure 2-4.  Before insertion, the shaft of the epoxied bolt 

connector (see Figure 2-4(b)) was coated in a concrete-steel epoxy to fill voids and create 

a solid bond between the connector and the deck.  Both post-installed connectors exhibited 

higher ultimate strengths than conventional welded studs of the same diameter, and the 

double-nutted connector, which was simpler to install, was successfully used in the field. 
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Figure 2-4: Post-Installed Connectors Tested by Klaiber et al. (1983) – (a) Double-

nutted Connector and (b) Epoxied Bolt Connector 

Dionne et al. (1997) investigated the use of post-installed shear connectors by 

conducting small-scale direct-shear static and fatigue tests on seven different types of 

mechanical anchors and three types of epoxied anchors.  They suggested that the anchors 

that combined both mechanical and epoxied connections, shown in Figure 2-5, were most 

efficient in resisting slip and providing the necessary strength and ductility. 

 

Figure 2-5: Post-Installed Connectors Recommended by Dionne et al. (1997) – (a) 

Mechano-chemical Anchor with Abutment Sleeve and (b) Mechano-chemical Anchor 

with Inverted Conical Sleeve 

Coiled spring pins have also been used as post-installed shear connectors.  Buckby 

et al. (1997) conducted small-scale static and fatigue pushout testing on these connectors, 

as shown in Figure 2-6, which were used to improve the fatigue life of an already composite 

box girder bridge in Canada. 

(a) (b)

(a)

(b)
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Figure 2-6: Coiled Spring Pin Connectors in Pushout Tests by Buckby et al. (1997) 

2.3.2 Previous Research at the University of Texas at Austin 

Research on post-installed shear connectors funded by the Texas Department of 

Transportation has been ongoing at The University of Texas at Austin for the past decade.  

This began with a laboratory-based research project focused on developing post-installed 

connectors with good static and fatigue performance to increase the strength of simply 

supported bridge girders (Kwon et al. 2007).  This research was then implemented in the 

field to strengthen an existing non-composite bridge with simply supported spans near San 

Antonio, Texas (Kwon et al. 2009).  A second laboratory-based project was conducted to 

extend this strengthening concept to continuous bridges by using both post-installed 

connectors and inelastic moment redistribution, a portion of which is described in detail in 

this dissertation (Kreitman et al. 2015).  Finally, a design for strengthening an existing 

bridge in East Texas was completed using post-installed shear connectors and inelastic 

moment redistribution (Kreitman et al. 2016).  This strengthening design is presented in 

detail as a design example in Appendix D. 

This research ultimately recommends the use of the three connectors shown in 

Figure 2-7 for strengthening positive moment regions of bridges.  Throughout all testing, 

high-strength threaded rods (ASTM A193 B7) and structural bolts (ASTM A325) with 

diameters of 3/4 or 7/8 inch were used for the connectors.  Table 2-1 summarizes the theses 

and dissertations that contain additional details on this research, and the following sections 

present the key findings from these studies. Emphasis is placed on the behavior of the 

adhesive anchor, which is the easiest to install and was the focus of the research described 

in this dissertation. 
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Figure 2-7: Post-Installed Connectors Recommended by Researchers at the University 

of Texas at Austin (Kwon et al. 2009) 

Table 2-1: Additional Theses and Dissertations Describing Research Involving Post-

Installed Shear Connectors at the University of Texas at Austin 

Reference Primary Contents 

Hungerford 

(2004) 
Small-scale static tests on six types of post-installed connectors (3/4-inch) 

Schaap 

(2004) 
Small-scale static tests on five other types of post-installed connectors (3/4-inch) 

Kayir 

(2006) 

Small-scale static and fatigue tests on five types of post-installed connectors 

tested by Hungerford and Schaap that exhibited good static behavior (3/4-inch) 

Kwon 

(2008) 

Small-scale static and fatigue tests on three types of post-installed connectors, 

large-scale static tests on simply supported girders strengthened with three types 

of connectors (7/8-inch), development of design provisions for simply supported 

bridges 

Patel 

(2013) 

Small-scale fatigue tests on adhesive anchors (7/8-inch), analytical work on 

fatigue behavior of partially composite simply supported bridge girders 

Ghiami 

Azad 

(2016) 

Large-scale fatigue tests on continuous girders strengthened with adhesive 

anchors (7/8-inch), analytical work on fatigue behavior of partially composite 

continuous bridge girders 

 

Double Nut Bolt High-Tension 
Friction Grip Bolt

Adhesive Anchor
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Small-Scale Static and Fatigue Testing  

In total, 11 different types of post-installed shear connectors were tested under static 

loads, and five of these connectors were also tested under fatigue loads.  Additionally, cast-

in-place welded studs were tested for comparison.  These tests were all conducted on single 

connectors using a direct-shear test setup, which is designed to subject the connector to 

primarily shear force, minimizing any bending or prying tendencies that may be present in 

the more conventional push-out test.  One of the direct-shear test setups used in these 

studies is shown in Figure 2-8. 

 

Figure 2-8: Sample Direct-Shear Test Setup (Kayir 2006) 

For the three connectors shown in Figure 2-7, the following equation was 

recommended for the ultimate static strength of a single connector (𝑄𝑛): 

𝑄𝑛 = 0.5𝐴𝑠𝑐𝐹𝑢 Equation 2-6 

where 𝐴𝑠𝑐 is the cross-sectional area of the connector, taken as 80% of the gross area for 

connectors with threads in the shear plane, and 𝐹𝑢 is the ultimate tensile strength of the 

connector material. 

The results from all fatigue testing on adhesive anchors, including both 3/4- and 

7/8-inch diameter connectors, are graphed in Figure 2-9.  The top graph presents the data 

in the conventional terms of the stress range applied to the connector during testing.  The 

significantly improved fatigue strength over welded shear studs is apparent in this graph, 

indicating the possibility for partial-composite design.  However, over the course of this 

research, it became apparent that the interface slip in partially composite girders is also 

important, and that the connector slip may actually provide a better correlation with fatigue 
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life than does the connector stress.  The bottom graph presents the same data with the 

vertical axis representing the connector slip range, rather than the stress range.  Fewer data 

points are shown on this graph because slip was measured during only one portion of this 

testing. 

Fatigue testing of large-scale girders strengthened with post-installed adhesive 

anchor shear connectors yielded even better fatigue strengths than observed in the small-

scale testing.  The results of these large-scale tests are summarized briefly in Chapter 5 and 

is discussed in detail by Ghiami Azad (2016). 

  

Figure 2-9: Results from Small-Scale Fatigue Testing of Adhesive Anchor Connectors 

– (a) Stress-based Approach and (b) Slip-based Approach 
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Large-Scale Girder Testing 

The large-scale testing conducted by Kwon (2008) consisted of 38-foot simple span 

girders loaded monotonically to failure by a point load at midspan.  The geometry of the 

specimens and a photograph of the setup is shown in Figure 2-10.  After conducting one 

test on a non-composite girder, three additional girders were tested after strengthening with 

each of the three types of post-installed connectors shown in Figure 2-7.  Eight pairs of 

connectors were installed at a uniform spacing on either side of the point load, giving the 

girders a composite ratio of 30%.  A fifth beam was tested, also at a composite ratio of 

30%, using adhesive anchor connectors concentrated near the ends of the beam to reduce 

the slip demand on the connectors.  The results from this large-scale testing on the non-

composite girder and the two adhesive anchor specimens are summarized in the load-

deflection graph of Figure 2-10.  The dashed black lines indicate the expected load-

deflection curve for non-composite and 30% composite girders using simple plastic 

analysis.  The ultimate strengths agree well with the simple plastic analysis, and the 

ductility of the specimen strengthened with adhesive anchor connectors concentrated near 

the ends of the girder was significantly greater than that of the specimen with uniform 

connector spacing. 

The large-scale testing conducted on continuous girders strengthened with post-

installed shear connectors is described in detail in Chapter 4, Chapter 5, and Chapter 6 of 

this dissertation. 
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Figure 2-10: Test Setup and Results from Large-Scale Testing of Simply Supported 

Girders Strengthened with Post-Installed Shear Connectors (Kwon 2008) 

Implementation 

A strengthening scheme was designed and implemented on a simply supported 

three-span bridge near San Antonio, Texas, which was originally constructed in 1950.  

Each simply supported span was strengthened with one of the three different types of post-

installed connectors from Figure 2-7.  A composite ratio of 50% was used for the spans 

containing high-tension friction-grip bolt and double-nut bolt connectors, while 

significantly more adhesive anchor connectors were used due to uncertainties in the fatigue 

performance at the time.  The connectors were concentrated near the ends of each simple 

span with a 12-inch longitudinal spacing. 

Live load tests were carried out before and after the connectors were installed using 

dump trucks filled with gravel.  Deflections were measured during the tests to evaluate the 
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increase in stiffness of the bridge response before and after connector installation.  

Additionally, strain gages were installed at select locations to monitor the neutral axis 

depth, which is an indicator of the amount of composite behavior.  Although it was not 

possible to conduct strength testing, it was concluded that the post-installed connectors 

were effective in developing a significant amount of composite action under service-level 

loads. 

A strengthening design was also conducted for a continuous three-span bridge in 

East Texas, which was originally constructed in 1943 and widened in 1961.  The details of 

this design are discussed in the sample calculations provided in Appendix D.  For further 

details, refer to Kreitman et al. (2016). 

2.4 MOMENT REDISTRIBUTION AND SHAKEDOWN 

Using inelastic procedures to design new steel bridges can result in a reduction of 

member sizes, particularly by eliminating the need for cover plates or multiple flange 

transitions in the negative moment regions over the piers.  The AASHTO bridge design 

specifications have included some form of inelastic design procedures since 1973, 

including the allowance of inelastic moment redistribution from interior pier sections 

(Barth et al. 2004).  When evaluating and strengthening existing bridges, accounting for 

the ductile, post-yielding behavior of steel by performing an inelastic analysis can be 

advantageous to minimize the amount of rehabilitation that is needed.  Significant increases 

in load-carrying capacity can be obtained by simply recognizing the strength and ductility 

of steel beyond the elastic limit.  However, yielding of a bridge under repeated large truck 

loads could lead to an undesirable accumulation of permanent deflections in a structure 

over time.  This section describes the phenomenon of shakedown, which addresses this 

type of behavior. 

2.4.1 Shakedown Behavior 

Shakedown is the appropriate limit state to consider for a statically indeterminate 

structure subjected to repeated cycles of a load pattern that causes yielding.  For continuous 

bridges, yielding can often be allowed at the interior pier sections so that excess moments 

are redistributed to the adjacent span regions.  The main concern with this type of behavior 

is that the inelastic rotations sustained in the steel beams at the piers may increase with 

every cycle of load.  Eventually, this may create serviceability problems if deflections 
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increase without bound.  However, if the magnitude of the large loads crossing the bridge 

is high enough to cause yielding at the piers but not too high, the bridge will “shake down” 

after one or more cycles of load, and all future loads of equal or lesser magnitude will be 

resisted elastically.  This is accomplished by the formation of residual moments in the 

continuous girders, as a result of the permanent inelastic rotations at the interior piers.  

These residual moments counteract the moments from the applied traffic loads and thus 

delay additional yielding during future cycles of load, preventing additional inelastic 

rotations.  Note that a structure must be statically indeterminate to be able to carry residual 

moments and exhibit this behavior.  For loads that are higher than this “shakedown limit 

load,” the inelastic rotations will continue to increase with additional cycles, leading to 

“incremental collapse,” under eventual excessive deformations.  In this case, the residual 

moments are not capable of counteracting the moments from the applied loads to an extent 

that would prevent yielding and inelastic rotation from occurring at all sections along the 

girder during future cycles.  Figure 2-11 illustrates the general behavior of shakedown (a) 

and incremental collapse (b). 

  

Figure 2-11: Illustration of (a) Shakedown Behavior and (b) Incremental Collapse 

Behavior 

Note that shakedown is not the same as low-cycle fatigue, also called “alternating 

plasticity”, in which fracture occurs as a result of a loading cycle that causes alternating 

yielding in tension and compression (ASCE-WRC 1971).  Instead, the shakedown limit 

state refers to progressively increasing plastic rotations and permanent deformations 
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associated with repeated yielding in either tension or compression, but not both, at 

particular sections.  For this reason, the shakedown limit state is often referred to as 

“deflection stability.” 

Illustrative Example 

A simple example showing the shakedown behavior of a propped cantilever beam 

with a moving point load is presented here.  This example has been adopted from Fukumoto 

and Yoshida (1969).  Figure 2-12 depicts the response of a beam to two cycles of a point 

load moving from left to right across the beam, and Figure 2-13 shows the different 

deflected shapes as the point load moves across the beam.  The following analysis makes 

a few simplifying assumptions.  First, yielding is assumed to occur instantaneously through 

the entire cross section when the moment reaches the plastic moment.  No yielding is 

considered before the plastic moment has been reached.  Second, the material is assumed 

to be elastic-perfectly plastic such that no strain hardening occurs.  Thus, the plastic 

moment is the maximum moment that can be carried by the section.  These two 

assumptions are commonly referred to as “plastic hinge” behavior.  Finally, it is assumed 

that the positive and negative plastic moment capacities are equal in magnitude (±𝑀𝑝). 
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Figure 2-12: Shakedown of a Propped Cantilever with Moving Point Load – Moment 

Variation during the First Two Cycles 
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Figure 2-13: Shakedown of a Propped Cantilever with Moving Point Load – Deflected 

Shapes during the First Two Cycles 

The elastic moment envelope in the top frame of Figure 2-12 represents the 

maximum positive and negative moment induced at each section along the beam as the 

load moves across the beam.  The maximum positive moment in the beam occurs at point 

A when the load is also located at point A.  The maximum negative moment occurs at the 

fixed end, or point D, when the load is located near midspan at point C.  For a constant 

magnitude of load moving across the beam, the moment at D is larger than the moment at 

A, indicating that a plastic hinge will form at D at a lower load than it will at A.  For the 
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purposes of this example, the magnitude of the applied load is greater than the load required 

to form a plastic hinge at D but smaller than the shakedown limit load. 

The bottom two frames in Figure 2-12 show the influence lines for the moment at 

points A and D for the first and second loading cycles.  An influence line plots the variation 

of a particular force quantity at a single section of the beam as a function of the position of 

the moving load on the beam.  The elastic influence lines are shown as dashed lines, while 

the solid lines trace the actual influence lines for the inelastic behavior.  These actual 

influence lines differ from the elastic lines during the first cycle because yielding occurs at 

point D and moments are redistributed to the remaining portions of the beam.  This 

redistribution alters the moment at both points A and D, as well as at every other location 

along the beam. 

Figure 2-13 shows the deflected shapes as the point load moves along the beam 

during the first and second loading cycles.  The solid lines indicate the behavior during the 

first cycle while the dashed lines indicate the behavior during the second cycle. 

As the load moves from left to right across the beam during the first cycle, the initial 

behavior is fully elastic, so that the solid and dashed lines in Figure 2-12 coincide.  When 

the load reaches point A, the maximum positive moment is attained, but this moment has 

not exceeded the plastic capacity.  Thus, as the load moves further to the right, the beam 

continues to respond elastically.  However, once the load reaches point B, the moment at 

point D is equal to the plastic moment, and a plastic hinge forms at point D.  At this point 

in the analysis, the section at D cannot carry any additional moment.  However, as the load 

continues to move to the right between points B and C, the elastic moment demand at point 

D increases.  Because the section cannot resist the additional demand, the excess moments 

are redistributed away from point D and out into the span.  The result of this can be seen 

in the influence line for the moment at point A, which increases in magnitude as compared 

to the elastic influence line as the load moves to the right of point B.  As the load continues 

to move to the right of point B, the plastic hinge at point D rotates freely, as indicated in 

Figure 2-13 (c). 

The maximum negative elastic moment demand at the fixed end occurs when the 

load reaches point C.  After the load moves past this location, point D begins to unload 

elastically because the moment demand is now decreasing at that location.  Plastic 

deformation and moment redistribution cease, and the beam responds elastically as the load 

moves off the right end of the beam.  However, once the load has been completely removed 

from the beam, residual moments remain in the system as a result of the permanent rotation 
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of the plastic hinge at point D (𝜃𝑝), which prevents the beam from returning to its original 

straight configuration, as shown in Figure 2-13 (e).  Because only the reaction forces can 

act on the beam in the unloaded state, the residual moment diagram must have a triangular 

shape, as shown in the bottom frame of Figure 2-12 shaded with diagonal lines. 

Because of the residual moments present in the system before the start of the second 

cycle, the initial moment at points A and D in the bottom frame of Figure 2-12 are not 

equal to zero as they were at the start of the first cycle.  After this initial offset however, 

the trend of the elastic influence line is followed as the moving load transverses the entire 

length of the beam.  Since the moments at points A and D do not exceed the plastic moment 

capacity for any location of the point load, no additional yielding or moment redistribution 

occurs.  This is indicated in Figure 2-12 by the actual influence lines remaining within the 

bounds of the capacities.  Thus, the residual moments that remain in the beam when the 

load moves off of the right end are unchanged from the first cycle.  Additionally, the 

permanent inelastic rotation at point D (𝜃𝑝) remains unchanged as the load moves across 

the beam during the second cycle, as indicated in Figure 2-13.  All future cycles of the 

same or lesser load will result in the same behavior as shown for the second load cycle, 

and no additional yielding or inelastic rotations will occur.  In other words, this beam has 

“shaken down” for the particular magnitude of applied load. 

Although the stabilization occurs after only a single cycle in this case, a more 

complex structure may take more than one loading cycle to shake down.  If at any point 

during the second cycle in this example had the moment demand exceeded the plastic 

moment capacity at any location along the beam, additional plastic rotation and moment 

redistribution would have occurred in that location.  This would have resulted in a different 

residual moment distribution at the end of the second cycle, which would then be the 

starting point for the third cycle.  Several cycles may be necessary before a state of 

shakedown is reached, especially in a structure with more than two possible hinge locations 

It may also be the case that the structure undergoes plastic rotation during every 

cycle and never comes to the stable condition shown in the second load cycle of Figure 

2-12 and Figure 2-13.  As additional cycles of load are applied, incremental collapse would 

eventually occur, as an increasing amount of permanent inelastic deformation accumulates 

with additional cycles.  Any load causing this type of behavior is greater than the 

shakedown limit load and is associated with incremental collapse. 
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2.4.2 Shakedown Theorems 

Shakedown was first recognized in Germany in the 1920s in statically 

indeterminate trusses (Grüning 1926).  Much of the early theoretical work was completed 

in Europe during the following decade.  The first mathematical representation of 

shakedown behavior was given by Bleich (1932) for a truss with one degree of static 

indeterminacy.  Melan (1936) extended the mathematical framework for structures with 

more than one degree of indeterminacy.  Since the mid-1900s, general theorems of 

shakedown and different methods of computing the shakedown load for beams and frames 

have been developed.  There are three theorems which determine whether or not a structure 

will shake down (Neal 1977).  These are the lower-bound, upper-bound, and uniqueness 

theorems, which are analogous to the well-known theorems regarding plastic limit loads 

for structures under static loading cases. 

The lower-bound theorem requires the satisfaction of equilibrium and yield 

conditions.  This theorem states that if a set of statically admissible residual moments exists 

such that the sum of those residual moments and the elastic moments from a particular 

applied loading pattern does not produce moments exceeding the plastic moment capacity 

anywhere along the beam, that applied load must be less than or equal to the shakedown 

limit load.  Thus, all loading conditions satisfying the lower-bound theorem will result in 

a structure that will shake down to elastic behavior after some number of cycles. 

The upper-bound theorem requires the determination of a plastic mechanism that 

satisfies compatibility of deformations.  The theorem states that the applied load required 

to form this mechanism must be greater than or equal to the shakedown limit load.  Thus, 

all loading conditions leading to all possible plastic mechanisms are greater than or equal 

to the shakedown limit load and will result in incremental collapse for all cases except for 

the true shakedown limit load.  The true shakedown limit load is the smallest load resulting 

from all possible mechanisms.   

The uniqueness theorem simply states that only the exact and unique shakedown 

limit load can satisfy both the lower- and upper-bound theorems. 

The upper-bound theorem often provides an easy method to compute the 

shakedown load for a particular loading pattern for simple structures.  However, concepts 

based on the lower-bound theorem are often used to develop simple design procedures for 

complex structures.  This is the case for the AASHTO provisions for inelastic moment 

redistribution, which are discussed in Section 2.5.2. 
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An example of using both the upper- and lower-bound methods to calculate the 

shakedown load is given in the following sections for the same propped cantilever beam 

with a single moving point load from the previous example.  For both examples, the 

assumptions that the section remains elastic up to a moment of 𝑀𝑝, that the material is 

elastic-perfectly plastic with no strain hardening, and that the positive and negative plastic 

moments are equivalent (±𝑀𝑝) remain in effect.  Refer to Figure 2-14 and Figure 2-15 for 

diagrams and calculations for the upper- and lower-bound theorem examples, respectively. 

Upper-Bound Theorem Example 

To calculate the shakedown load using the upper-bound theorem, a virtual work 

approach is used.  First, the elastic moment envelope is computed.  This is shown in the 

top frame of Figure 2-14 and is identical to that shown in the top frame of Figure 2-12.  

The maximum positive and negative moments occur at points A and D, respectively.  These 

points will be the locations of the plastic hinges in the shakedown mechanism, which is 

shown in the middle frame of the figure.  Because this is a simple structure, the controlling 

mechanism for shakedown is easily determined, as it must be the case that hinges form at 

the locations of the maximum positive and negative moments.  For more complex 

structures, several mechanisms may need to be considered to arrive at the correct 

shakedown load.  If the incorrect mechanism is chosen, the computed load will be greater 

than the correct shakedown limit load for the structure. 

Once the moment envelope and mechanism are known, the internal and external 

virtual work are computed.  These calculations are summarized in the bottom frame of 

Figure 2-14.  The internal virtual work is the product of the plastic moment and the plastic 

hinge rotation at each hinge location.  These values are added together to get the total 

internal virtual work (𝛿𝑊𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙).  The external virtual work is the product of the moment 

from the elastic moment envelope and the plastic hinge rotation at each hinge location.  

These values are added together to get the total external virtual work (𝛿𝑊𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙). 

The shakedown load is calculated by equating the total internal and external virtual 

work.  For the propped cantilever in this example, the shakedown load is equal to 

5.59 𝑀𝑝/𝐿.  For comparison, the load that causes the first hinge to form at the fixed end is 

5.21 𝑀𝑝/𝐿 and the minimum static plastic collapse load is 5.83 𝑀𝑝/𝐿, occurring when the 

load is located a distance of 0.41 𝐿 away from the pinned support (Fukumoto & Yoshida 

1969). 
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Figure 2-14: Upper-Bound Method Example 

Lower-Bound Theorem Example 
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equilibrium in the unloaded structure.  This distribution of residual moments is shown in 

the middle frame of Figure 2-15 in a general sense, such that the residual reaction forces 

(𝑅𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙) are equal and opposite, resulting in a linearly varying moment diagram with a 

maximum residual moment at D. 

To satisfy the requirements of the lower-bound theorem, total moment, or the 

summation of the elastic moment and the residual moment, must not exceed the capacity 

at any location.  The bottom frame of Figure 2-15 provides calculations for the maximum 

load that can be applied to satisfy this requirement at both points A and D for different 

values of the residual reaction force.  The controlling maximum calculated load, shown in 

bold for each case, will be less than or equal to the correct shakedown load (5.59 𝑀𝑝/𝐿), 

which is achieved when a residual reaction force is chosen such that the maximum applied 

loads to remain below the capacity at both A and D converge to the same value. 
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Figure 2-15: Lower-Bound Method Example 
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2.4.3 Previous Research on Shakedown of Steel and Composite Girders 

The majority of experimental testing completed in the area of shakedown has been 

conducted on bare steel beams, not on composite members.  Small-scale tests were 

conducted by Klöppel (1936), Massonnet (1953), Gozum (1954), Sherbourne (1963), 

Fukumoto and Yoshida (1969), and Eyre and Galambos (1970), who all observed that the 

predicted shakedown loads were conservative, possibly due to strain hardening of the steel, 

which was typically ignored in the predictions. 

Larger-scale shakedown testing for bridge structures began in the 1970s and 1980s 

under the direction of the American Iron and Steel Institute (AISI) (Grubb & Carskaddan 

1979, Carskaddan 1980, Grubb & Carskaddan 1981).  Following some initial theoretical 

studies, the experimental research was focused primarily on the effects of slenderness and 

moment gradient on the inelastic moment-rotation behavior of composite I-girders.  

However, with the exception of one test consisting of an actual steel-concrete composite 

girder, the experiments were conducted on singly symmetric steel-only I-sections with 

larger top flanges than bottom flanges to represent a composite section in negative bending 

that engages the reinforcing bars in the deck.  This research led to the development and 

publication of an AASHTO guide specification for “Alternate Load Factor Design” 

(ALFD), also known as autostress design, which detailed an iterative inelastic analysis 

procedure to incorporate yielding and moment redistribution into bridge design, but was 

restricted to steel sections with compact flanges and webs (AASHTO 1986). 

Design using the ALFD guide specification was verified by tests on composite 

bridges and bridge models.  Roeder and Eltvik (1985) conducted load tests on a new bridge 

designed using ALFD up to load levels that caused yielding and inelastic moment 

redistribution.  Good behavior was observed throughout the test, and less permanent 

deformation and deck cracking was observed than predicted.  Moore and Grubb (1990) 

tested a ⅖-scale model of a two-span, three-girder, composite bridge designed using ALFD 

provisions, with the exception that the girders had noncompact webs.  This model bridge 

performed well under AASHTO specified design service loads, overloads, and maximum 

loads, deeming ALFD an appropriate design method for sections with noncompact webs.  

Similar good behavior under AASHTO-defined limit states was observed by Weber (1994) 

after testing of a ½-scale model of a three-span, fully composite, single bridge girder 

comprised of a compact steel beam designed according to the ALFD specifications. 
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However, a few other experimental studies indicated that composite girders may 

not actually achieve shakedown under repeated large loads.  Bergson (1994) conducted 

shakedown testing on a ⅓-scale model of a three-span, four-girder bridge that was initially 

designed and constructed for the purposes of elastic testing.  Results from this test indicate 

a loss in composite action at loads near the predicted shakedown load, although extensive 

cracking was observed in the under-designed deck at large loads.  Flemming (1994) applied 

an actual moving load using a bogie that was rolled across a ½-scale model of a two-span, 

five-girder bridge to investigate the shakedown behavior of partially composite girders.  

One of the spans of the bridge was constructed as 80% composite, while the other span 

was only 50% composite.  The deflections generally did not stabilize during shakedown 

testing, and degradation in the composite strength was observed with additional cycles at 

larger loads.  Similar behavior was observed by Thirugnanasundralingam (1991) during 

testing conducted on two-span, fully composite girders under a moving load applied using 

a “rocker beam” which had a curved bottom flange so that as it rotated, the point of load 

application moved along the test specimen.  The tests indicated that the experimental 

shakedown load was significantly lower than the theoretical value, as measured slips and 

deflections did not stabilize.  It is useful to note here that these specimens showing poor 

shakedown behavior in these three studies were no more than ½-scale models and had deck 

thicknesses not exceeding 4 inches.  It is possible that the unrealistic deck design may have 

contributed to the observed poor behavior. 

2.5 APPLICABLE AASHTO DESIGN PROVISIONS 

The following sections summarize the applicable design provisions from the 

AASHTO LRFD Bridge Design Specifications (AASHTO 2010).  This includes both the 

procedures to design welded stud shear connectors and for inelastic moment redistribution. 

2.5.1 Shear Connector Design 

The provisions for the design of welded stud shear connectors in composite I-girder 

bridges are given in Section 6.10.10 of the LRFD specifications.  The design starts with 

the fatigue provisions, because that limit state usually governs the number of connectors 

required, and then a strength check is performed.  Partially composite design is not allowed 

in these specifications, primarily because the demands of the fatigue provisions usually 

result in fully composite girders. 
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Fatigue Design 

The pitch (𝑝), or longitudinal spacing, of the shear connectors is determined using 

the following equation (AASHTO LRFD Equation 6.10.10.1.2-1): 

𝑝 =
𝑛 𝑍𝑟

𝑣
 

Equation 2-7 

where 𝑛 is the number of connectors placed transversely in the cross section, 𝑍𝑟 is the 

fatigue resistance of a single connector, and 𝑣 is the elastic shear flow at the steel-concrete 

interface.  The fatigue resistance depends on the single-lane average daily truck traffic 

((𝐴𝐷𝐷𝑇)𝑆𝐿), which also determines which of the two fatigue load combinations is used for 

design.  For (𝐴𝐷𝑇𝑇)𝑆𝐿 values exceeding 960 trucks per day, the Fatigue I load combination 

is used to design for infinite fatigue life.  Otherwise, the Fatigue II load combination is 

used to design for a finite fatigue life for a particular number of truck passages (𝑁) over an 

assumed 75-year design life.  The only difference between the two load combinations is 

the live load factor, which is 1.50 for infinite life for Fatigue I and 0.75 for finite life for 

Fatigue II.  The fatigue shear resistance (𝑍𝑟) for infinite and finite life are given in the 

following equations. 

For infinite life and the Fatigue I load combination (AASHTO LRFD Equation 

6.10.10.2-1): 

𝑍𝑟 = 5.5𝑑2 Equation 2-8 

For finite life and the Fatigue II load combination (combination of AASHTO LRFD 

Equations 6.10.10.2-2 and 6.10.10.2-3; 6.6.1.2.5-3): 

𝑍𝑟 = (34.5 − 4.28 𝑙𝑜𝑔(𝑁))𝑑2 Equation 2-9 

𝑁 = (365)(75)𝑛(𝐴𝐷𝑇𝑇𝑆𝐿) Equation 2-10 

where 𝑑 is the diameter of the shear connector and 𝑛 is the number of stress cycles on the 

connector for a single truck passage.  For continuous bridges with span lengths greater than 

40 feet, 𝑛 is taken as 1.0 for all connectors located more than one-tenth of the span length 

away from an interior support.  For connectors located within one-tenth of the span length 

from an interior support, 𝑛 is taken as 1.5. 

The shear flow is calculated as (AASHTO LRFD Equation 6.10.10.1.2-3): 
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𝑣 =
𝑉𝑓 𝑄

𝐼
 

Equation 2-11 

where 𝑉𝑓 is the range of vertical shear force at a particular section due to fatigue loading, 

𝑄 is the first moment of the transformed area of the concrete deck, and 𝐼 is the transformed 

moment of inertia of the composite cross section.  This procedure inherently assumes that 

any slip at the interface is negligible so that the section is effectively fully composite. 

Strength Design 

For strength limit states, the number of connectors required is determined through 

plastic analysis of the cross-section, as discussed in Section 2.2.2.  The minimum number 

of connectors (𝑁) to be provided between the points of zero and maximum moment is 

(AASHTO Equation 6.10.10.4.1-2): 

𝑁 =
𝑃𝑛

𝑄𝑛
 

Equation 2-12 

where 𝑃𝑛 is the total longitudinal shear force in the deck at the point of maximum moment, 

and 𝑄𝑛 is the factored ultimate shear strength of a single connector, as defined in the 

specification.  Note that 𝑃𝑛 is equivalent to the variable 𝐶𝑓 defined in Section 2.2.2.  

However, since partial-composite design is not currently allowed by the specifications, the 

third line of Equation 2-1 and Equation 2-2 is not included. 

Other Requirements 

The minimum and maximum longitudinal spacing allowed for shear connectors are 

6 and 24 inches, respectively.  The connectors are expected to be distributed with equal 

spacing along the length of the girders.  The minimum transverse spacing of connectors is 

4 inches, while the minimum clear distance to the edge of the flange is specified as 1 inch.  

Each connector must penetrate at least 2 inches into the deck and must have a clear top 

cover of concrete of at least 2 inches. 

2.5.2 Inelastic Moment Redistribution 

The autostress design provisions that first appeared in the AASHTO ALFD guide 

specification document in the mid-1980s were introduced into the first edition of the 
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AASHTO LRFD bridge design specifications nearly a decade later (AASHTO 1994).  

These provisions from the ALFD specifications provided a more rigorous alternative to the 

10% allowance of moment redistribution from the interior piers for compact, well-braced 

girders that had been in the provisions for 20 years (AASHTO 1973).  However, autostress 

design was never widely used by bridge engineers because it required an iterative inelastic 

analysis and was limited to only compact steel sections (Barth et al. 2004). 

By the third edition of the LRFD specifications, the 10% moment redistribution 

provision was removed from the code and replaced by a simple, rational approach to 

estimate the redistribution moments based on shakedown behavior (AASHTO 2004).  

Details regarding the development of these provisions are provided by Hartnagel (1997).  

These optional provisions, which remain essentially unchanged through the specifications 

current at the time of this report, are located in Appendix B6 of the AASHTO LRFD Bridge 

Design Specifications (AASHTO 2010).  The steps, illustrated in Figure 2-16 for a 

symmetric three-span continuous girder, are as follows: 

 Ensure that the interior pier section and bridge geometry abide by the specified 

requirements.  In particular, the girders must be well-braced and have a compact 

compression flange.  The web can be compact, noncompact, or slender to a 

certain extent, and bearing stiffeners are required.  The bridge must not have 

horizontal curvature, and the supports cannot exceed a 10° skew angle, nor can 

the cross frames be staggered. 

 Conduct an elastic analysis of the bridge girder for the load combination of 

interest.  Moment redistribution is allowed for Service II and all Strength load 

combinations.  Obtain the elastic moment envelope (𝑀𝑒). 

 Compute the effective plastic moment capacity (𝑀𝑝𝑒) at each interior pier.  This 

effective capacity accounts for the slenderness of the section and ensures that 

an adequate amount of plastic rotation can be attained for moment redistribution 

to occur. 

 If the magnitude of the elastic moment at an interior pier exceeds the effective 

capacity, the difference between the two is the amount of moment that needs to 

be redistributed.  This “redistribution moment” at that pier (𝑀𝑟𝑑) is limited to 

20% of the elastic moment at that location. 

 Draw the redistribution moment diagram by connecting the computed 

redistribution moments at each pier with straight lines. 
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 Add the redistribution moment diagram to the elastic moment envelope, and 

check that the capacity is not exceeded at any other location along the girder. 

 

Figure 2-16: AASHTO Moment Redistribution Procedure 

Elastic Moment Envelope

Redistribution Moment Diagram

Resulting Moment Envelope

Constant between 2.63 and 2.90, depending 
on section properties and limit state

= elastic modulus

= width of compression flange

= thickness of compression flange

= web depth
= yield stress of compression flange



 36 

Note that this procedure is based on the lower-bound theorem, as it provides a 

simple method of determining a residual moment diagram that can be added to the elastic 

moments such that the capacity is not exceeded at any location along the girder.  Thus, 

these redistribution moments are not necessarily representative of the actual residual 

moments expected to form in the structure. 

2.6 SUMMARY 

A comprehensive review of the relevant background information from the literature 

was presented in this chapter.  This includes information regarding composite behavior, 

post-installed shear connectors, and inelastic moment redistribution.  Additionally, 

applicable provisions from the AASHTO design specifications were discussed.  These 

concepts were used to facilitate the research presented in the following chapters during the 

investigation into the behavior of continuous bridge girders strengthened with post-

installed shear connectors and inelastic moment redistribution. 
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CHAPTER 3: PRELIMINARY BRIDGE STRENGTHENING 

STUDIES 

3.1 OVERVIEW 

Preliminary studies were conducted to evaluate the feasibility of the proposed 

approach to strengthen non-composite steel girder bridges with post-installed shear 

connectors and inelastic moment redistribution.  These studies began by conducting a 

survey of existing Texas bridges that may be candidates for strengthening using this 

method.  The bridges from this survey were then evaluated to assess the extent of 

strengthening that may be possible using this method.  This chapter summarizes the process 

and results from these preliminary studies. 

3.2 BRIDGE SURVEY 

A survey of continuous non-composite steel I-girder bridges in Texas was 

conducted to determine the typical characteristics of bridges that may be candidates for 

strengthening with post-installed shear connectors and inelastic moment redistribution.  

The results from this survey formed the basis for the analytical and experiment work 

described in this dissertation.  While detailed results of this survey are covered by Patel 

(2013), a summary is provided here. 

Original design drawings and recent inspection reports from 36 continuous girder 

units from 25 bridges were studied.  Most of these bridges were constructed between 1955 

and 1965.  Although a few of the surveyed bridges were constructed from plate girders 

with span lengths up to 270 feet, the focus of the survey was placed on the units consisting 

of rolled wide flange girders, which formed an overwhelming majority in the survey.  The 

wide flange shapes vary from a 27WF94 to a 36WF194 for span lengths between 40 and 

100 feet.  Cover plates are welded to the top and bottom flanges to increase the flexural 

capacity at the interior supports for nearly all of the units studied.  In some cases, similar 

cover plates are also located in the middle of the spans to improve the strength in positive 

bending. 

Typical girder spacing ranges from 6.5 to 8.5 feet with three to eight girders in a 

typical cross section to accommodate two to six lanes of traffic.  Approximately one-third 

of the bridges have skewed supports, while only a few have any horizontal curvature.  The 

units studied are continuous over two to five spans and most are symmetric in both the 

longitudinal and transverse directions.  The majority of the concrete decks are 6.5 inches 
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thick with average transverse and longitudinal reinforcement ratios of 0.9% and 0.5%, 

respectively. 

Because only a few of the design drawings specified material requirements for each 

bridge, historic bridge design standards and material standards were consulted to determine 

the likely material properties of the steel beams, concrete deck, and reinforcing bars.  The 

majority of the bridges were likely constructed using ASTM A7 steel, which has a 

minimum specified yield stress of 33 ksi, although a few bridges constructed after 1963 

may have been built with ASTM A36 steel, having a yield stress of 36 ksi (AASHTO 

2011).  A design compressive strength of 3000 psi is assumed to have been used for the 

concrete deck, with the deck reinforcement having a likely yield stress of 40 ksi (THD 

1951).  The surveyed bridges are generally in good condition, with corrosion of the steel 

components and some cracking and spalling of the concrete decks and substructures being 

the most common issues noted during recent inspections. 

3.3 CONCEPT STUDIES 

Preliminary analyses were conducted on the 13 three-span continuous units from 

this survey to evaluate the feasibility and capabilities of strengthening with post-installed 

shear connectors and inelastic moment redistribution.  To quantify the benefits gained from 

this strengthening, a load rating was conducted for each of the continuous units in the 

existing non-composite state as well as after strengthening. 

3.3.1 Overview of Load Rating 

Load rating provides a comparison of the load-carrying capacity of an existing 

bridge to the loads that are used in current design practices.  This is a way to evaluate the 

safety and capacity of an existing bridge that was designed for different, usually smaller, 

loads. 

Types of Load Rating and Limit States 

The AASHTO Manual for Bridge Evaluation specifies procedures for conducting 

a load rating of an existing bridge using three methods: allowable stress rating, load factor 

rating, and load and resistance factor rating (AASHTO 2011).  Load factor rating, based 

on the load factor design provisions from the most recent version of the AASHTO Standard 

Specifications for Highway Bridges, was chosen for the purposes of these studies to be 
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consistent with typical practices of the Texas Department of Transportation (AASHTO 

2002). 

A complete and thorough load rating considers flexure, shear, and axial forces at 

all locations in every member in the superstructure and substructure as well as the 

connections and any other details.  The final reported load rating of a bridge is the smallest 

rating calculated in any component at any location along the bridge.  However, for a 

particular type of bridge, the controlling sections and limit states can often be easily 

identified beforehand to simplify the process.  For the continuous steel I-girder bridges 

considered in this study, the flexural capacity of the girders will usually control, especially 

if the girders are comprised of rolled sections.  For built-up sections with stiffeners and 

thin webs, a load rating for shear should also be considered.  Connections, such as girder 

splices, are not normally considered in the rating process but can be if necessary or desired.  

Since the bridges considered here are comprised of rolled sections and the welded girder 

splices carry low levels of moment, only the girder flexural behavior was considered in the 

load rating. 

Load ratings for strength can be computed at both inventory and operating rating 

levels.  The inventory rating is associated with load magnitudes used in the design of new 

bridges and makes use of the same load factors.  Live loads equivalent to the inventory 

rating should be able to be resisted indefinitely throughout the life of the bridge, barring 

any fatigue or durability-related failures.  The operating rating represents the maximum 

load the bridge is permitted to sustain.  Repeated application of this large level of load to 

the bridge is not recommended (AASHTO 2011). 

The limit states considered in these load ratings were Overload and Maximum 

Load, as defined by the AASHTO Standard specifications (AASHTO 2002).  The Overload 

limit state restricts permanent inelastic deformations from heavy permit vehicles that may 

be occasionally allowed on the bridge (Hansell and Viest 1971).  It corresponds to the 

Service II limit state in the LRFD specifications, and restricts the maximum stresses in the 

steel beam to 80% and 95% of the yield stress for non-composite and composite sections, 

respectively.  Because the AASHTO specifications do not allow for partially composite 

design, it is unclear what limiting stress should be used for partially composite sections.  

However, a 95% limit has been chosen for this study due to the significant increase in 

stiffness for strengthened girders with even small composite ratios.  When moment 

redistribution is considered from the interior supports, the stress limit at the Overload limit 

state is ignored in those regions.  The Maximum Load limit state is associated with the 
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ultimate capacity of the bridge and corresponds to the Strength I limit state in the LRFD 

specifications when primarily considering gravity loads.  Limit states involving 

serviceability, lateral loads, or other types of loads are generally not considered in load 

rating.  The fatigue limit state can be investigated using provisions in the Manual for Bridge 

Evaluation if desired, but this was not done in this case (AASHTO 2011). 

Load Rating Procedures 

The first step in load rating is to conduct a structural analysis of the existing bridge 

using the live load corresponding to the chosen rating method.  For the load factor rating 

conducted here, this was an HS 20 live load as defined in the AASHTO Standard 

specifications and summarized in Figure 3-1. 

 

Figure 3-1: HS 20 Live Load (AASHTO 2002) 

Next, the flexural capacities of the critical sections of the bridge are calculated.  For 

load factor rating, the capacity is calculated using the design provisions in the AASHTO 

standard specifications.  For a compact, sufficiently braced section in flexure, the capacity 

is taken as the plastic moment (𝑀𝑝) for the Strength I limit state.  For the Service II limit 

state, the capacity refers to the limits on the maximum stress in the steel beam.  Actual or 

estimated in situ material properties should be used in the load rating calculations.  Because 

this information was not readily available for these studies, the recommended material 

properties from the Manual for Bridge Evaluation were used, as discussed in Section 3.2 

(AASHTO 2011). 

The next step is to compute the rating factor at every critical section along the 

bridge for both the inventory and operating rating levels.  This rating factor (𝑅𝐹) represents 

the fraction of the live load that the bridge can safely carry, and is defined as the ratio of 

the capacity available to resist live loads to the factored live load:  

OROR

8 k 32 k 32 k

14’ 14’ to 30’
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𝑅𝐹 =
𝐶 − 𝐴1𝐷

𝐴2(𝐿 + 𝐼)
 Equation 3-1 

where 𝐶 is the capacity of the section, 𝐷 is the dead load force effect, (𝐿 + 𝐼) is the live 

load force effect including the impact factor or dynamic allowance, and 𝐴1 and 𝐴2 are load 

factors that depend on the type and level of the load rating.  For load factor rating, 𝐴1 is 

taken as 1.3 for both the inventory and operating levels, and 𝐴2 is taken as 2.17 for the 

inventory rating and 1.3 for the operating rating.  Because the only difference between the 

inventory and operating load rating calculations is the load factor on the live load (𝐴2), the 

two ratings will differ by a constant factor for all bridges.  The operating rating will always 

be 1.67 times greater than the inventory rating.  A bridge can adequately resist the full live 

load if all rating factors are greater than unity. 

The final step in the rating procedure is to express the rating factor in terms of the 

live load.  This is simply done by multiplying the rating factor by the magnitude of the HS 

load used in the structural analysis.  For example, for the HS 20 load used here, the rating 

factor is multiplied by 20.  The lowest inventory and operating load ratings from every 

section along the bridge are then chosen as the final load ratings for the bridge. 

The load rating calculations for these concept studies were carried out using BAR7 

(PennDOT 2010).  This software, developed by the Pennsylvania Department of 

Transportation, analyzes a single girder line of a bridge using the provisions outlined in the 

Manual for Bridge Evaluation. 

3.3.2 Load Rating Results 

The 13 three-span bridges from the survey included in the concept studies were 

load rated before and after strengthening to evaluate the proposed strengthening method.  

Figure 3-2 shows a bar graph summarizing the results for existing and strengthened 

bridges.  No moment redistribution was considered for the existing non-composite bridge 

girders.  All girders were strengthened to a composite ratio of 30%, and the figure illustrates 

the variation in load rating for the strengthened girders both with and without consideration 

of moment redistribution. 
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Figure 3-2: Load Rating Results 

The existing bridges have inventory load ratings varying from HS 10.5 to HS 21.6, 

with 12 of the 13 bridges falling below the HS 20 target.  The controlling load rating for 

all 13 of the existing bridges was the Overload limit state in one of the positive moment 

regions along the girders.  This indicates that these bridges are good candidates for the 

proposed strengthening method, which is most effective in regions of the bridge dominated 

by positive bending.  The Overload limit state is expected to control over the Maximum 

Load limit state for compact well-braced steel sections which can develop the full plastic 

moment capacity (Mertz 2004). 

Without considering any moment redistribution, the strengthened bridges have 

inventory load ratings ranging from HS 15.0 to HS 23.9 with just over half of the 

strengthened bridges exceeding the HS 20 target.  The controlling load rating for all of 

these girders is the Overload limit state in the negative moment regions, indicating that 

composite behavior has provided a significant strength gain in the positive moment regions.  

It also indicates that considering moment redistribution can further increase the load rating. 

After strengthening to a composite ratio of 30% and allowing for moment 

redistribution, all but one of the 13 bridges have an inventory load rating exceeding HS 20.  

For most of the girders, the controlling load rating for this case is the Maximum Load limit 

state in negative moment regions, although a few bridges are controlled by the Overload 

limit state in positive bending.  It is important to note here that the greatest contributor to 
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the increase in the load rating by considering moment redistribution is from the removal of 

the stress limits at the interior supports at the Overload limit state, so that the girder is 

allowed to reach the effective plastic moment at these locations .  This leads to a large 

increase in the capacity at the Overload limit state, which often results in a significant 

increase in the load rating without actually requiring any moments to be redistributed.  For 

all bridges in this study, the flexural capacity at an interior pier for the Overload limit state 

increases by 35% to 45% as the stress limit is removed in lieu of the effective plastic 

moment. 

The only bridge that required moments to be redistributed in addition to this 

increase in capacity is the single bridge that remained below the HS 20 rating target.  To 

reach an HS 20 inventory rating, this bridge must be strengthened to nearly fully composite 

in the positive moment regions with 13% of the elastic moment at the interior supports 

redistributed to the adjacent span regions at the Maximum Load limit state. 

3.3.3 Summary 

Thirteen three-span bridge units from the survey were investigated to evaluate the 

feasibility of the proposed strengthening method involving post-installed shear connectors 

and inelastic moment redistribution.  The existing non-composite bridges were nearly all 

load rated below an HS 20 inventory level, which was chosen as the strengthening target 

for these studies.  By adding post-installed shear connectors for a composite ratio of 30% 

and allowing for moment redistribution, all but one of the bridge units can be strengthened 

to an inventory load factor rating exceeding HS 20. 

Overall, increases in the load rating of up to 70% were attained using a composite 

ratio of only 30% and minimal moment redistribution.  These studies indicate that the 

proposed strengthening method is likely an efficient manner of strengthening continuous 

non-composite steel I-girder bridges. 
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CHAPTER 4: EXPERIMENTAL PROGRAM 

4.1 OVERVIEW 

A large-scale experimental program was developed to investigate the structural 

performance of continuous bridge girders strengthened with post-installed shear 

connectors and inelastic moment redistribution.  Although the focus of this dissertation is 

on the behavior at the shakedown and ultimate strength limit states, the specimens were 

also tested under elastic and fatigue loading, as described by Ghiami Azad (2016).  This 

chapter provides details of the single-girder specimens, the test setup, and the testing 

program.  Results from these tests are discussed in Chapter 5 and Chapter 6. 

4.2 SPECIMEN DESIGN 

Two specimens were constructed to each represent a single girder line of a two-

span continuous bridge.  The first specimen had symmetric 42-foot long spans, while the 

second specimen had symmetric 52-foot spans.  These span lengths are near full-scale, as 

50-foot long exterior spans are common amongst the existing Texas bridges that were 

surveyed, as described in Chapter 3.  Testing a single girder line conservatively eliminates 

interaction and load-sharing between adjacent girders and helps to simplify the 

interpretation of the results. 

Although the specimens were designed to represent a typical bridge girder from the 

survey, it was difficult to replicate material properties from the mid-1900s due to lack of 

availability of older materials.  Thus, instead of ASTM A7 steel, which has a specified 

minimum yield stress of 33 ksi, the steel beam was made of ASTM A992 steel, which has 

a minimum specified yield stress of 50 ksi.  The design compressive strength for the 

concrete deck was 3 ksi, which is typical for existing bridges, although reinforcing bars 

with a nominal yield stress of 60 ksi were used in lieu of bars with a 40 ksi yield stress that 

are likely present in the existing bridges. 

The two specimens were identical in cross section, as shown in Figure 4-1, and 

consisted of a W30x90 rolled wide flange section with a 6.5-inch thick, 6.5-foot wide 

concrete deck.  This steel beam is lighter and more slender than any found in the bridge 

                                                 
 Some content in this chapter has been previously published in the following article.  This article was 

written primarily by the author of this dissertation with only minor contributions from the co-authors: 

Kreitman K, et al. (in press), ‘Shakedown Behavior of a Continuous Steel Bridge Girder Strengthened 

with Post-Installed Shear Connectors’, Structures, http://dx.doi.org/10.1016/j.istruc.2016.06.001 
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survey.  Thus, it represents a conservative case for rolled steel shapes that could be found 

in bridge applications while preserving a realistic member depth.  The deck dimensions are 

representative of the decks of the surveyed bridges, although the width is slightly smaller 

than the typical girder spacing (7 to 8 feet).  The deck width was constrained by the 

geometry of the test setup and is not expected to have significantly affected the test results, 

because the strength of a partially composite girder is ultimately controlled by the strength 

of the shear connection, rather than that of the deck.  The deck reinforcement was designed 

based on the findings from the bridge survey, and the reinforcement layout is shown in 

Figure 2-1.  Pairs of adhesive anchors, shown in Figure 2-7, were used for shear connectors. 

 

Figure 4-1: Cross Section View of Large-Scale Test Specimens 

Elevation views of the two different girder specimens are shown in Figure 4-2 and 

Figure 4-3.  The girders have a 12-inch overhang of the steel beam and a 6-inch overhang 

of the concrete deck from the centerline of the support on each end.  Full-depth stiffeners 

were welded to each side of the web at the three support points to assist in bracing the beam 

during casting and to prevent localized failures at points of concentrated loads.  A bolted 

splice in the steel beam was located at 7 feet from the interior support in the south span of 

both specimens.  The splice was designed for 75% of the shear and moment capacity of the 

member, according to the AASHTO LRFD specifications (AASHTO 2010).  This splice 

was provided to facilitate construction of the test specimen in the laboratory.  Loads were 

applied to the girders in the four locations labeled A through D in the figures.  The 

instrumentation layouts are also shown in the figures and are discussed in Section 4.5. 

6.5”

6.5’

W30x90

#5 @ 16”
#5 @ 6”

#5 @ 12”



 46 

  

Figure 4-2: Elevation View of First Specimen – (a) North Span and (b) South Span 

 

 

Figure 4-3: Elevation View of Second Specimen – (a) North Span and (b) South Span 
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To enhance the ductility of the specimens, the adhesive anchor shear connectors 

were concentrated in four groups near points of low moment demand, as indicated in Figure 

4-2 and Figure 4-3.  Groups I and II are located in the north span, while Groups III and IV 

are located symmetrically in the south span.  The first specimen was designed to be 

nominally 30% composite so that each group contains 7 pairs of connectors.  Thus, a total 

of 56 adhesive anchor shear connectors were installed along the entire length of the first 

specimen.  The second specimen was designed as nominally 20% composite so that 5 pairs 

of connectors were installed in each group for a total of 40 connectors along the length of 

the girder.  Transversely, the connectors were spaced approximately 6 inches apart on 

either side of the web.   This essentially centered each connector on the protruding portion 

of the flange. 

4.3 LABORATORY TEST SETUP 

A test setup was constructed in the Ferguson Structural Engineering Laboratory to 

allow for an experimental program that would represent the effects of traffic loads on a 

bridge girder.  Pictured in Figure 4-4 (a), the setup consisted of three support structures and 

four load frames that were positioned on the strong floor in the laboratory to accommodate 

the different geometry of the two specimens.  The interior support (b) was designed to 

allow for essentially free rotation and longitudinal translation through means of a circular 

bar sandwiched between two flat plates.  The two end supports (c) allowed for some 

restrained translation and rotation due to the flexibility of the slender W30x90 sections that 

served as the supports.  Global rotation about the longitudinal axis was prevented by the 

V-shaped frames under the deck at the end supports (c).  The bottom flange of the steel 

beam was braced laterally at 10- to 20-foot intervals using steel plates attached to short 

wide flange columns at each load frame (d,e).  Sheets of polytetrafluoroethylene (PTFE) 

were used to reduce friction at all bracing locations.  Hydraulic rams with capacities 

ranging from 200 to 500 kips were mounted on the load frames (d) and used to apply load 

to the top of the deck of the specimen.  Load cells were placed at all load and support 

locations. 
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Figure 4-4: 3D Rendering and Photos of Test Setup – (a) Overall View, (b) Interior 

Support, (c) End Support, (d) Load Frame, and (e) Lateral Bracing 
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4.4 SPECIMEN CONSTRUCTION 

The specimens were constructed in several steps, as depicted in Figure 4-5.  First, 

the steel beams were erected (a) and spliced together (b).  Next, the deck formwork, which 

was constructed previously, was put in place (c).  After laying and tying the mats of 

reinforcement (d), the deck was cast (e).  The formwork was removed after approximately 

one week of curing. 

 

Figure 4-5: Specimen Construction – (a) Steel Erection, (b) Splice Plates, (c) Deck 

Formwork, (d) Deck Reinforcement, and (e) Deck Casting 

(a) (b)

(c)

(e)(d)
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4.4.1 Connector Installation 

The adhesive anchor shear connectors were installed after the deck was cast and 

cured, using the general procedure developed by Kwon et al. (2007).  The connectors used 

in both of the specimens consisted of 7/8-inch diameter ASTM A193 B7 threaded rod with 

a corresponding structural nut and washer, and Hilti HIT-HY 200-R structural adhesive, as 

seen in Figure 4-6.  The threaded rods were cut to approximately 6-3/4 inches long for a 

4.5-inch embedment depth into the concrete deck.  This resulted in a 2-inch top cover for 

the connectors as required by the AASHTO LRFD specifications (AASHTO 2010).  Before 

installation, the cut rods were lightly cleaned and degreased to improve adhesion.  The two-

part adhesive was injected using the compatible Hilti HDM 500 manual dispenser and 

mixer. 

 

Figure 4-6: Connector Supplies – (a) Threaded Rod and (b) Adhesive 

The installation process is summarized in Figure 4-7.  First, a 1-inch diameter hole 

was drilled through the top flange of the steel beam using a magnetic drill with an M2 HSS 

annular cutter (a).  Care was taken to stop the drill as soon as possible after completing the 

cut in the flange as contact with the concrete tended to dull the cutter quickly.  Next, a 

15/16-inch diameter hole was drilled into the concrete deck to a depth of 4.5 inches, 

through the hole in the steel beam, using a rotary hammer drill (b).  The hole was then 

cleaned as specified by the adhesive installation instructions (c).  After using compressed 

air to clean the initial debris from the hole, an oversized round brush was inserted and 

removed twice using a twisting motion.  Compressed air was used again to remove all 

debris from the hole.  After cleaning, the adhesive was injected into the hole and the 

connector rod was inserted.  The adhesive was viscous enough to not run downwards out 

(a) (b)
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of the hole and to keep the threaded rod in place immediately after insertion.  The rod did 

not need to be held in place while the adhesive cured.  The threads below the underside of 

the top flange were wrapped with duct tape to prevent any adhesive from reaching that 

area.  Excess adhesive was wiped off immediately with a rag.  After allowing at least the 

specified one hour for the adhesive to cure, the tape was removed, and a washer and nut 

were placed on the threaded rod.  The nut was then tightened to 125 ft-lb using a calibrated 

torque wrench, as specified by the adhesive installation instructions. 

 

 

Figure 4-7: Connector Installation Process 

(a) (b)

(f)(e)

(d)(c)
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4.4.2 Material Testing 

To characterize the material strengths of the components of the specimen, several 

material tests were conducted on the steel beam, the deck concrete, the reinforcing bars, 

and the threaded rod comprising the connectors.  The results from these tests are 

summarized in Table 4-1 and Table 4-2 for the two specimens.  For the first specimen, the 

steel beams on either side of the splice were manufactured in different heats, and thus have 

slightly different material properties.  The entire length of the second specimen was 

constructed of steel beams from the same heat as the south portion of the first specimen. 

Table 4-1: Material Properties of the First Specimen 

Material Span Yield Stress 
Tensile, Compressive, 

or Shear Strength 

Steel beam 

North 
Flange: 52.4 ksi 

Web: 54.7 ksi 

Flange: 71.7 ksi 

Web: 72.3 ksi 

South 
Flange: 56.3 ksi 

Web: 54.8 ksi 

Flange: 76.0 ksi 

Web: 78.3 ksi 

Concrete deck Both N/A 4.7 ksi 

Rebar Both 61.7 ksi 99.0 ksi 

Connectors Both N/A 
Tension: 134 ksi 

Shear: 87.7 ksi 

 

Table 4-2: Material Properties of the Second Specimen 

Material Span Yield Stress 
Tensile, Compressive, 

or Shear Strength 

Steel beam Both 
Flange: 56.3 ksi 

Web: 54.8 ksi 

Flange: 76.0 ksi 

Web: 78.3 ksi 

Concrete deck Both N/A 2.5 ksi 

Rebar Both 61.3 ksi 101 ksi 

Connectors Both N/A 
Tension: 134 ksi 

Shear: 87.7 ksi 

 

The material properties of the steel beams were obtained by uniaxial tension testing 

of 8-inch long coupons that were produced from both the flange and web.  The static yield 
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stress is reported in the table, as it is the most comparable to the slow load rates used in 

laboratory testing.  With the exception of finite element modeling, in which different yield 

strengths were used for the web and the flange, all strength calculations presented or 

referenced in this dissertation were completed using the average yield stress from the two 

flange coupons. 

The concrete material properties were determined by 28-day compression testing 

of 4-inch diameter, 8-inch tall cylinders that were cast from the deck concrete mix.  To 

account for the two trucks of ready-mix concrete that were required to complete the total 

volume of the deck, the cylinders were made from a mixture of concrete from both trucks 

for the first specimen.  For the second specimen, a separate set of cylinders were cast for 

each of the two trucks, and the strength reported in the table is an average of the two sets.  

Because testing of the specimen was conducted over a 6 to 9 month period after casting of 

the deck, cylinders were tested periodically during this time to get a measure of the concrete 

compressive strength throughout the testing program.  However, no significant increase in 

the compressive strength was observed following the 28-day tests. 

Tension testing of the deck reinforcement was conducted on short lengths of bars 

from the same heat as the reinforcement used in the deck of each specimen.  The testing 

was conducted in a similar manner to the tension coupons of the steel beam, and the 

reported yield stress is the measured static yield stress during the test. 

Shear and tension tests were conducted on the threaded rod used for the adhesive 

anchor shear connectors, and are discussed in more detail by Patel (2013). 

4.5 INSTRUMENTATION 

Both girders were instrumented to record the structural behavior during testing by 

measuring the applied loads and reaction forces, vertical deflections, interface slip, and 

longitudinal strain.  Data from all of these sources were collected using an Agilent data 

acquisition system and LabVIEW software.  Additionally, an optical motion tracking 

system (Optotrak Certus™) was used to continuously monitor the inelastic behavior during 

some phases of testing. 

The layout of the instrumentation for each specimen is shown in the elevation views 

of Figure 4-2 and Figure 4-3.  Deflections were measured at approximately evenly spaced 

locations along the length of the specimen at 8- to 10-foot intervals.  The majority of the 

slip and strain measurements were concentrated in the vicinity of the post-installed shear 
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connectors to monitor the behavior of these specific regions.  Note that for the first 

specimen, the instrumentation layout shown in the figure is for testing in the north span 

only.  Testing in the south span was done using a symmetrically reversed instrumentation 

layout.  The second specimen was tested using a consistent instrumentation layout 

throughout all phases of strength testing.  Figure 4-8 shows photographs of the various 

types of instrumentation. 

 

Figure 4-8: Photos of Instrumentation – (a) 500-kip Load Cell with Spherical Head, 

(b) 200-kip Load Cell with Load Button, (c) String Potentiometer, (d) Linear 

Potentiometer for Deflection, (e) Strain Gages, and (f) Linear Potentiometer for Slip 

To measure the applied loads, 200- or 500-kip capacity load cells were placed 

between the piston of the hydraulic ram and a steel plate attached to the concrete deck using 

Hydro-Stone® gypsum cement.  To minimize slight alignment errors, especially as the 

girder bends under load, spherical heads were placed on top of the 500-kip canister load 

cells, as shown in the figure (a).  For the same purpose, a load button with a slightly curved 

bottom surface was threaded into the bottom of the 200-kip shear load cells, which were 

threaded directly into the piston of the ram (b).  At all support locations, pairs of 100-kip 

(end supports) or 500-kip (interior support) load cells were sandwiched between steel 

plates to measure the reaction forces. 

(c)

(d) (e)

(f)

(a)

(b)
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Vertical deflections were measured with either linear potentiometers with a 4-inch 

stroke (d) or string potentiometers with a 10- to 15-inch stroke (c).  Interface slip was 

measured using linear potentiometers with a 2-inch stroke (f).  These potentiometers were 

attached to the underside of the deck and measured the displacement of the deck relative 

to a small steel angle fixed to the underside of the top flange on the west side of the web.  

Analog dial gages with a 1-inch stroke were placed in a similar manner at a few locations 

on the east side of the web to provide redundancy in the measurements and to ensure that 

the slip values measured on both sides of the girder were the same.  More than 250 strain 

gages with a 6-mm length were glued to the steel beam and deck reinforcement to monitor 

longitudinal strain in many locations (e).  These gages were used to monitor the neutral 

axis depth, which indicates the amount of composite action, and to estimate the force 

carried by a pair of connectors.   

To obtain an approximate measurement of the connector force and stress, sets of 

strain gages were placed through the depth of the steel beam on either side of a connector 

pair at a distance of one-half of the connector spacing from the connector location (see 

Figure 4-2 and Figure 4-3).  From the measured strains, the curvature of the section was 

approximated, and the axial force in the steel beam was computed.  The force carried by a 

connector pair was then estimated by taking the difference between the axial force in the 

steel beam on either side of the connectors.  It was assumed that the two connectors in each 

pair shared the load equally and that any force transferred by friction is negligible.  For the 

first specimen, only the middle connector in each group was instrumented with surrounding 

strain gages to estimate the connector force.  For the second specimen, strain gages were 

used around all connectors for this purpose.  Figure 4-9 shows the locations of the strain 

gages in a cross section surrounding the connectors for each specimen. 
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Figure 4-9: Cross Section Strain Gage Locations around Connectors for the (a) First 

Specimen and (b) Second Specimen 

The optical motion tracking system was used to monitor the localized inelastic 

deformations in the steel beam during testing.  This system is comprised of “markers,” 

which are attached to the specimen and emit rapid pulses of infrared light, and “position 

sensors,” which track the location of each marker in 3D space to an accuracy of 0.01 mm.  

A typical setup for this system is shown in Figure 4-10.  For the first specimen, this system 

was used in all three critical locations at which yielding was expected, namely at the 

locations of Loads A and D as well as around the interior support.  For the second specimen, 

only the regions near Load A and around the interior support were monitored using the 

optical system.  Figure 4-11 shows the layout for the markers in the different locations for 

both specimens.  All markers were placed on the west side of the girder.  Post-processing 

of the data consisted primarily of computing longitudinal strains, rotations, curvatures, and 

neutral axis depths, and estimating the spread of the inelastic behavior along the length of 

the girder. 

9.5”

9.5”

9.5”

5.5” 5.5”

(b)(a)
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Figure 4-10: Typical Setup for Optical Motion Tracking System 

Position sensor

Markers on specimen
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Figure 4-11: Marker Layout for Optical Motion Tracking System 
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In addition to the data recorded electronically, visual observations were made of 

the behavior during testing.  This included observations of cracking in the concrete deck, 

yielding and local buckling in the steel beam, and fracture of the connectors.  To better 

observe the inelastic behavior of the steel beam, a light coat of whitewash was applied on 

the east side of the steel beam at the locations at which yielding was expected, namely 

around the locations of Load A, Load D and the interior support. 

4.6 TEST PROGRAM  

Each girder specimen was subjected to several different types of loading over the 

course of approximately 6 months to simulate the various loads a bridge may be exposed 

to throughout its lifetime.  This includes elastic-level loads, fatigue loads, large repeated 

loads representing the shakedown limit state, and monotonic loading to failure to determine 

the ultimate strength.  The focus of this dissertation is on the inelastic behavior of the 

girders, namely on the testing conducted at the shakedown and ultimate strength limit 

states.  Details from the elastic and fatigue tests are provided elsewhere (Ghiami Azad 

2016), with important points summarized here. 

Because of the difficulty of applying realistic bridge traffic loads in the laboratory, 

the effects of moving loads were simulated using cycles of strategically placed point loads 

at the four locations indicated in Figure 4-2 and Figure 4-3.  For the first specimen, the two 

spans were generally tested separately, since applying load in one span put little demand 

on the shear connectors in the opposite span.  Both spans of the second specimen were 

tested simultaneously, with the exception of the fatigue testing, to more accurately 

represent traffic flow along a bridge. 

The following summarizes the eight phases of testing conducted on the first 

specimen, listed chronologically: 

1. Elastic testing of the non-composite girder in the north span 

2. Elastic testing of the composite girder in the north span 

3. Shakedown testing in the north span 

4. Fatigue testing in the south span 

5. Fatigue testing in the north span 

6. Shakedown testing in the south span 

7. Ultimate strength testing in the south span 

8. Ultimate strength testing in the north span 
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The following summarizes the five phases of testing conducted on the second 

specimen, listed chronologically: 

1. Elastic testing of the non-composite girder in both spans 

2. Elastic testing of the composite girder in both spans 

3. Fatigue testing in the south span 

4. Shakedown testing in both spans 

5. Ultimate strength testing in both spans 

4.6.1 Elastic Testing 

Before installing the connectors, testing of the non-composite girder under small 

loads in the elastic range was conducted to break the natural bond at the interface between 

the bottom of the deck and the top flange of the steel beam.  This is the expected condition 

of most existing non-composite bridges in the field.  After installing the connectors, the 

same elastic testing was conducted on the strengthened girder to evaluate the increase in 

stiffness, which nearly doubled for both specimens.  During the elastic testing phases, the 

maximum stress in the steel did not exceed 35% of the yield stress. 

4.6.2 Fatigue Testing 

Fatigue testing was conducted under the repeated application of Load A in the north 

span or Load D in the south span using a closed loop control system to automatically apply 

the loading cycles.  The following sections provide only a brief summary of the test 

program for the fatigue testing in both specimens, as it is not the focus here. 

First Specimen 

A load range of 50 kips was chosen for the first fatigue test, which was conducted 

in the south span during the fourth phase of testing of the first specimen.  This load caused 

connector slip ranges that were approximately equal to those expected under HL-93 fatigue 

loading, as defined in the AASHTO LRFD specifications, in strengthened bridges from the 

survey described in Chapter 3. 

After excellent fatigue performance under a load range of 50 kips, it was decided 

to conduct the fatigue test in the north span of the first specimen under a larger load range 

of 75 kips.  This represents a load that is 50% greater than an equivalent HL-93 fatigue 

truck, in terms of the slip demand placed on the shear connectors. 
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Second Specimen 

A load range of 75 kips was again used for fatigue testing in the south span of the 

second specimen.  Because of the longer span length and different connector layout in the 

girder, this further increased the maximum slip demand on the shear connectors to 

approximately 3 times that expected in a typical strengthened bridge under loading from 

an HL-93 fatigue truck. 

4.6.3 Shakedown Testing 

The phenomenon of shakedown was investigated by applying cycles of a load 

pattern which simulated the effects of a series of increasingly heavier trucks crossing a 

bridge.  These load patterns are described in Figure 4-12 along with the corresponding 

moment diagrams for comparison to typical moment envelopes from a bridge live load.  

For the first specimen, the two spans were tested separately, so each cycle of the load 

pattern consisted of two load steps, each of which consisted of applying and then removing 

the load.  Both spans of the second specimen were tested simultaneously, so three load 

steps comprised a single cycle of the load pattern. 
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Figure 4-12: Load Patterns for Shakedown Testing 

Cycles of the load pattern were applied repeatedly at the same level of load until 

the maximum deflection did not change significantly from one cycle to the next.  At this 
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point, the girder was deemed to have “shaken down,” or developed a set of residual 

moments which counteract the moments from the applied load to an extent that purely 

elastic behavior occurs for all future cycles of load at equal or lesser magnitude.  Then, the 

magnitude of the load was increased, and the process was repeated.  For testing purposes, 

shakedown was said to have occurred when the change in deflection did not exceed 0.01 

inch between consecutive cycles.  For the first specimen, this deflection was measured at 

the location of Load A for testing in the north span and at the location of Load D for testing 

in the south span.  For the second specimen, in which the two spans were tested 

simultaneously, the deflection at both locations was required to abide by the criteria before 

shakedown was deemed to be achieved. 

The relative magnitude of the loads that cause large positive moments (Load A and 

Load D) to the loads that cause large negative moments (Loads B and C) controls the 

amount of moment redistribution that must occur as the beam shakes down.  The relative 

magnitudes of the loads were chosen to achieve approximately 20% moment redistribution 

from the interior pier sections for each specimen, which is the maximum amount of 

redistribution allowed by the AASHTO LRFD specifications (AASHTO 2010).  For the 

first specimen, a ratio of approximately 0.87 was used between the magnitude of Load A 

or Load D and the magnitude of Loads B and C.  This ratio was generally maintained 

throughout the test, especially at loads in the inelastic range.  For the second specimen, this 

ratio was 1.0, because of the different span length and load locations. 

Calculations for predicting the shakedown limit load for both specimens are given 

in Appendix A.  Although moment redistribution of 20% was targeted, these calculations 

show that for the first specimen, the 0.87 load ratio actually results in moment 

redistribution of 22% in the north span and 25% in the south span.  For the second 

specimen, the 1.0 load ratio actually results in moment redistribution of only 15%.  These 

discrepancies are due to inconsistencies in defining the percentage of redistribution 

moments as well as the use of different stiffness distributions along the girder when 

determining the load ratio.  As discussed in Chapter 7, because a continuous girder is 

statically indeterminate, the distribution of flexural stiffness along the length affects the 

elastic distribution of moments.  In the early stages of research, the appropriate flexural 

stiffness distribution along a strengthened girder was unknown.  Thus, the load ratio for 

the first specimen was chosen as an average of that from analyses at 20% redistribution 

using both the non-composite and composite stiffness, as described in Section 7.3.  

However, prior to testing of the second specimen, the parametric study described in 
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Chapter 7 had been completed, indicating that for the laboratory specimens, the distribution 

of flexural stiffness is close to that of the non-composite girder.  Thus, the non-composite 

stiffness was used in the structural analysis which led to the choosing of the 1.0 load ratio 

for the second specimen.  The prediction calculations in Appendix A use this non-

composite stiffness for both specimens for consistency. 

Approximately 100 cycles of load were applied during each of the three phases of 

shakedown testing over the course of several days.  The loads were applied using 

pneumatic or electric hydraulic pumps, which were operated manually.  For each loading 

and unloading step, data were recorded from all of the instrumentation at no less than five 

approximately equally spaced load intervals. 

4.6.4 Ultimate Strength Testing 

The final phases of testing for each specimen consisted of monotonic loading to 

connector failure to observe the ultimate strength of the girder as well as the post-peak load 

behavior.  As shown in Figure 4-13, the two spans were tested separately for the first 

specimen, using Load A in the north span and Load D in the south span.  Both Load A and 

Load D were applied to test the two spans simultaneously for the second specimen.  

Pneumatic or electric hydraulic pumps were used to manually apply the loads.  In the elastic 

range, data were recorded at 5-kip load increments.  Beyond the elastic range, data were 

recorded at deflection increments of 0.25 inch. 

 

Figure 4-13: Load Patterns for Ultimate Strength Testing 

4.7 SUMMARY 

This chapter provided a summary of the experimental program that was developed 

and executed to investigate the structural performance of representative bridge girders 

strengthened with post-installed shear connectors.  Two continuous two-span specimens 

were constructed and tested under fatigue, shakedown, and ultimate strength loading 

conditions.  The results of this testing are discussed in Chapter 5 and Chapter 6.  

A D A D

First Specimen (North) First Specimen (South) Second Specimen
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CHAPTER 5: EXPERIMENTAL RESULTS 

5.1 OVERVIEW 

The results of the laboratory testing on the two strengthened girder specimens 

described in the previous chapter are presented and discussed in this chapter as well as in 

Chapter 6.  First, a brief summary of the results of the fatigue testing is presented, followed 

by a detailed discussion of the load-deflection behavior, the inelastic behavior, the 

composite behavior, and the behavior of the shear connectors during the shakedown and 

ultimate strength phases of testing of both specimens.  Chapter 6 further explores the 

inelastic behavior and moment redistribution during shakedown testing and some 

interesting features of the partial-composite behavior within the groups of shear 

connectors. 

The predicted limit loads given in this chapter are based on simple plastic hinge 

analysis using the measured material properties, with calculations given in Appendix A.  

Note that all of the data presented in these chapters is solely from the superimposed loads 

applied during the experimental testing.  The dead load is accounted for by a reduction in 

the predicted limit loads, as calculated in Appendix A.  Generally, the dead load moments 

did not exceed 15% of the predicted moment capacity at any location along the girders. 

5.2 FATIGUE TESTING 

Although the results of the fatigue testing are presented in detail by Ghiami Azad 

(2016), a brief summary is provided here for both specimens for completeness. 

First Specimen – South Span 

The south span fatigue test was conducted at a load range equivalent to an HL-93 

fatigue truck in terms of slip demand on the connectors.  This test primarily loaded 

connectors that had not been subjected to any significant prior stress.  After 2 million cycles 

of loading and no connector failures, the test was stopped.  Insignificant changes in 

stiffness occurred in the partially composite girder over the course of the fatigue test, 

suggesting that little damage to the connectors had been sustained. 

                                                 
 Some content in this chapter has been previously published in the following article.  This article was 

written primarily by the author of this dissertation with only minor contributions from the co-authors: 

Kreitman K, et al. (in press), ‘Shakedown Behavior of a Continuous Steel Bridge Girder Strengthened 

with Post-Installed Shear Connectors’, Structures, http://dx.doi.org/10.1016/j.istruc.2016.06.001 
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First Specimen – North Span 

 The north span fatigue test was conducted at a load range 50% greater than that of 

an equivalent HL-93 fatigue truck.  This test primarily loaded connectors that had been 

previously subjected to large stress demands from the shakedown testing.  Over the course 

of the 330,000 cycles of loading applied during this phase of testing, a gradual loss of 

stiffness was observed in the girder.  This was attributed to degradation of the adhesive 

surrounding the portion of the threaded rod of the connector that passes through the 

oversized hole drilled through the top flange of the steel beam.  By the end of the test, 

essentially all of the adhesive had been degraded in this area in all of the connectors in the 

north span, leaving an approximate 1/8-inch “gap” region through which the connectors 

could slip without transferring any force, as shown in Figure 5-1.  This resulted in 

essentially non-composite behavior under the applied fatigue loads. 

 

Figure 5-1: Adhesive Degradation during North Span Fatigue Test in First Specimen 

– (a) Schematic of Gap Formation and (b) Photograph of Typical Connector after 

Testing 

Second Specimen – South Span 

For the second specimen, fatigue testing was conducted only in the south span of 

at a load range predicted to cause maximum slip demand on the connectors of 

approximately 3 times that predicted by an HL-93 fatigue truck.  This test was conducted 

for 1.7 million cycles of load and resulted in no shear connector failures.  A small amount 

of adhesive degradation was observed corresponding to slight loss of stiffness of the girder, 

but not to the extent shown in Figure 5-1. 
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5.3 SHAKEDOWN TESTING 

Two phases of shakedown testing were conducted on the first girder specimen, 

which considered the north and south spans separately.  A single phase of shakedown 

testing was conducted along the entire length of the second girder specimen.  The loading 

pattern followed for all three shakedown tests is described in Figure 4-12 and simulates the 

effects of increasingly heavier trucks crossing a bridge.  This pattern causes alternating 

large positive bending moments at Load A in the north span or at Load D in the south span, 

and large negative bending moments at the interior support.  As noted in Section 4.6.3, 

although both tests were designed such that shakedown was expected to occur at 

approximately 20% moment redistribution from the interior support, this predicted value 

was actually 22% to 25% for the first specimen and 15% for the second specimen due to 

discrepancies in the analysis technique. 

Recall that shakedown was deemed to have been achieved when the change in 

deflection from one cycle to the next did not exceed 0.01 inch.  Also, recall that when a 

statically indeterminate structure shakes down, it reaches a state in which the residual 

moments that have developed as a result of yielding at one or more location counteract the 

moments from the applied load to an extent that no additional yielding occurs in future 

cycles of the same or lower load. 

5.3.1 Load-Deflection Behavior 

First Specimen 

The north span shakedown test of the first specimen was conducted prior to any 

fatigue testing, so that the connectors had not been subjected to any significant previous 

forces.  The south span shakedown test took place after fatigue testing in both spans so that 

the connectors in this test had been previously subjected to 2 million cycles of fatigue 

loading.  However, no significant deterioration of the composite behavior was observed 

during the south span fatigue test, and the prior fatigue loading seems to have had little to 

no influence on the results of the shakedown testing presented here. 

A summary of the loading program for both phases of shakedown testing on the 

first specimen is given in Table 5-1.  The number of cycles to achieve shakedown is noted 

in the table for each load level, along with the total residual deflection after all cycles at 

each load level.  This residual deflection is representative of the extent of inelastic behavior 

that has occurred in the girder. 
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In this first specimen, shakedown was observed at load levels slightly beyond the 

predicted shakedown limit.  Because the portion of the steel beam in the south span had a 

higher yield stress than that in the north span, the predicted shakedown limit loads are 

different for the two spans.  The north span test was stopped at a load level of approximately 

2.5% greater than the predicted limit to preserve the specimen for future phases of testing.  

Four additional cycles of load were applied at this load level, as well as at two lower load 

levels in the elastic range to demonstrate the repeatability of the behavior following 

shakedown at large loads.  The south span test was continued to a load level of 9% greater 

than the predicted shakedown limit load.  However, the test was stopped after one cycle at 

this load due to the onset of local buckling of the web of the steel beam at the interior 

support.  Thus, shakedown was not observed at this load level.  The largest load level at 

which shakedown was observed during the south span test was nearly 5% greater than the 

predicted limit. 

Generally, the number of cycles required to achieve shakedown increased with 

increasing magnitude of the applied load.  As more inelastic behavior occurs in both the 

critical positive and negative moment regions at larger loads, it takes more cycles of load 

for the residual moments to stabilize at a level that counteracts both the large positive and 

negative moment demands on the structure.  However, less cycles were needed for the 

south span test than for the north span test, especially for loads beyond the predicted elastic 

limit.  This is because during the south span test, only small amounts of additional yielding 

occurred from applying Loads B and C until large load levels were reached, as these loads 

were applied previously during the testing of the north span.  Because the region around 

the interior support had already yielded during the north span test, essentially elastic 

behavior was observed in that region during testing of the south span until load levels 

nearing the predicted shakedown limit were reached. 

Figure 5-2 plots the peak load-deflection behavior during the north and south span 

shakedown tests of the first specimen.  The circular data points represent the magnitude of 

Load A or Load D and the deflection at the load point at the peak load of each cycle.  Data 

for the load step consisting of Loads B and C are not shown in this figure.  The solid and 

dashed lines show the full load-deflection behavior of single cycles of load, one at each of 

the predicted elastic and shakedown limits.  Each of these individual cycles was essentially 

elastic, and the slope of the loading portion of each cycle did not change significantly 

throughout the test, indicating that there was little to no degradation in the composite 

behavior.   
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The accumulation of inelastic deformation can be seen graphically in the slight 

increases of deflection for consecutive cycles at the same level of load.  At any given load 

level, the change in deflection from one cycle to the next generally decreased with 

increasing cycles until it fell below the shakedown criterion of 0.01 inch.  This trend is 

further illustrated in Figure 5-3 for the load level at the predicted shakedown limit. 
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Table 5-1: Summary of Loading for Shakedown Testing of First Specimen 

Load        

Magnitude          

(k) 

Number of    

Cycles to            

Shakedown 

Net Residual 

Deflection at Load A 

or Load D (in) 

Predicted             

Limit                 

Loads 

A or D B & C North South North South  

46 55 2 2 0.00 0.00  

70 85 2 2 0.01 0.00  

91 110 2 2 0.03 0.00  

108 130 2 3 0.06 0.00  

120 145 2 2 0.10 0.01 Elastic Limit 

131 158 2 2 0.14 0.05  

140 160 3 3 0.17 0.06  

144 165 3 2 0.22 0.07  

148 170 4 3 0.25 0.09  

152 175 4 3 0.29 0.09  

157 180 5 3 0.35 0.11  

161 185 5 3 0.46 0.15  

165 190 6 3 0.54 0.18  

170 195 5 3 0.54 0.22  

174 200 7 4 0.65 0.25  

178 205 7 4 0.76 0.30  

183 210 8 7 0.91 0.39  

187 215 9 8 1.07 0.52 Shakedown Limit (N) 

191 220 11 (15)* 10 1.23 0.67 Shakedown Limit (S) 

200 230 -- 14 -- 1.14  

209 240 -- (1)† -- 1.44  

80 95 (4)‡ -- 1.23 --  

140 160 (4)‡ -- 1.23 --  

Total Cycles: 101 84  

*Shakedown achieved after 11 cycles; applied 4 additional cycles to investigate behavior 

†Testing stopped after one cycle due to local buckling at interior support region 

‡Additional cycles applied at lower elastic loads to investigate behavior 
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Figure 5-2: Peak Load-Deflection Behavior during Shakedown Testing of the First 

Specimen 

 

Figure 5-3: Change in Deflection between Consecutive Cycles during Shakedown 

Testing of the First Specimen – At the Shakedown Limit Load 
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Second Specimen 

The shakedown test of the second specimen was conducted in both spans using all 

four loads.  The connectors in the south span had been previously subjected to 1.7 million 

cycles of fatigue loading, which did not cause a significant amount of deterioration of the 

composite behavior.  The connectors in the north span were installed just prior to this phase 

of shakedown testing and were not subjected to any significant previous forces. 

Table 5-2, Figure 5-4, and Figure 5-5 summarize the loading program, plot the peak 

load-deflection behavior, and show the trends in the deflection change between cycles in 

the same manner as presented for the first specimen.  While the general trends are similar, 

key points are discussed here for the second specimen. 

The largest load level for which shakedown was observed in the second specimen 

was approximately 2.5% lower than the predicted shakedown limit.  At the predicted 

shakedown limit, the test was stopped after 20 cycles because the deflection changes were 

not converging to a value below the 0.01-inch criterion, indicating that shakedown would 

not be observed at this level of load.  This may be due to the excessively low nominal 

composite ratio of 20% that was used in this specimen.  Three additional cycles of a lower 

level of load were again applied to confirm the repeatability of elastic behavior following 

the application of large repeated loads.  As with the first specimen, more cycles were 

required to achieve shakedown and larger residual deflections were measured at larger load 

levels.  However, it is difficult to make quantitative comparisons between the two 

specimens due to the different span lengths, load locations, and composite ratios, which 

required the use of a different applied load pattern and load ratio for shakedown testing. 
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Table 5-2: Summary of Loading for Shakedown Testing of Second Specimen 

Magnitude      

of All          

Loads (k) 

Number of 

Cycles to  

Shakedown 

Net Residual 

Deflection at Load 

A or Load D (in) 

Predicted       

Limit            

Loads 
North South 

35 2 0.00 0.01  

50 3 -0.01 0.03  

65 3 -0.04 0.06  

75 5 -0.03 0.07  

85 4 0.01 0.08  

95 7 0.06 0.13  

100 3 0.09 0.16 Elastic Limit 

105 6 0.12 0.19  

109 6 0.17 0.21  

114 6 0.24 0.28  

118 7 0.30 0.35  

123 6 0.40 0.43  

127 9 0.57 0.58  

132 12 0.75 0.72  

136 14 0.95 0.95  

141 17 1.30 1.35  

145 (20)* 1.57 1.49 Shakedown Limit 

100 (3)† 1.57 1.52  

Total Cycles: 133  

*Shakedown not achieved at this load level, test stopped after 20 cycles 

†Additional cycles applied at elastic limit to investigate behavior 
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Figure 5-4: Peak Load-Deflection Behavior during Shakedown Testing of the Second 

Specimen 

 

Figure 5-5: Change in Deflection between Consecutive Cycles during Shakedown 

Testing of the Second Specimen – At the Shakedown Limit Load 
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5.3.2 Inelastic Behavior 

The extent of inelastic behavior in the girders was tracked by visually observing 

the pattern of yield lines formed in the steel beam and the cracks developed in the concrete 

deck during testing.  Additionally, data from the optical motion tracking system, described 

in Section 4.5, were used to estimate the curvature at the interior support, where the 

majority of the inelastic behavior was expected to occur during shakedown testing. 

Figure 5-6 shows photographs of the interior support region after the completion of 

all three phases of shakedown testing.  To enhance the visibility of the yield lines, this 

portion of the steel beam was painted with whitewash prior to testing, so that the dark spots 

on the photographs indicate locations that had yielded.  While the majority of the yielding 

appears to have occurred in the lower portion of the web where large concentrated forces 

entered the support structure, flexural yielding was also visible near the top of the web and 

on both flanges.  The local buckling of the web that caused the termination of the south 

span shakedown test in the first specimen can be seen in just to the right side of the stiffener 

in the photograph.  A similar pattern in the whitewash had begun to develop in the second 

specimen as well by the end of the shakedown testing, indicating the onset of local 

buckling. 

The distribution of curvature along the region spanning 20 inches to either side of 

the center line of the interior support is also shown in Figure 5-6 for all three specimens.  

The plot shows the curvature distribution at the peak load for the predicted elastic and 

shakedown limits as well as at the maximum level of load applied beyond the shakedown 

limit.  The predicted yield curvature is also plotted for comparison.  This yield curvature 

was calculated by assuming that the neutral axis was located at mid-depth of the section, 

as expected for a non-composite section (see Section 5.3.3). 

Generally, the curvature at the predicted elastic limit load was close to but did not 

exceed the predicted yield curvature at all locations.  The exception to this occurred during 

testing of the south span of the first specimen.  Because large levels of Loads B and C had 

already been applied during the north span test in the first specimen, a significant amount 

of residual curvature was present at this location prior to conducting the south span test.  

Thus, the curvature distribution at the predicted elastic limit load in the south span test is 

of similar shape as those at loads beyond the elastic limit.  The curvature at the predicted 

shakedown limit load and at the maximum load applied increase from approximately the 

yield curvature on the outsides of the region to much larger values at the center line of the 
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support.  Curvatures up to six times the predicted yield curvature were observed at large 

loads. 

Figure 5-7 shows photographs of cracks developed in the concrete deck by the end 

of all three shakedown tests.  In this figure and in all others showing deck cracking, the 

cracks have been marked with bold lines for emphasis.  All cracks spanned the full width 

across the top of the deck.  Upon removal of the formwork for the first specimen, three 

cracks formed under dead load.  One of these cracks was located at the center line of the 

interior support, while the other two formed approximately 5 feet to either side of the 

support.  These cracks extended through the full depth of the deck, indicating fully 

composite behavior due to the presence of the natural bond between the underside of the 

deck and top flange of the steel beam after casting.  Dead load cracks did not form in the 

second specimen, and no deck cracking was observed during any of the phases of fatigue 

testing.  During the shakedown phases of testing for both specimens, the bond had already 

been broken, so the cracks formed at this stage did not penetrate through the entire 

thickness of the deck, indicating non-composite behavior at this region. 

The initiation of deck cracking during shakedown testing occurred at the interior 

support at a wide range of load levels between the two specimens.  For the north span test 

of the first specimen, these cracks began to develop at a load level of approximately 90% 

of the predicted shakedown limit load.  No additional cracks formed during the south span 

shakedown test of the first specimen, further confirming the minimal amount of inelastic 

behavior in that region during the test.  However, for the second specimen, the first deck 

cracks at the interior support were observed at much lower loads, approximately 35% of 

the predicted limit load.  This difference is likely due to the significantly lower concrete 

strength in the second specimen as well as the increased flexibility of the overall girder 

from the increased span length. 

It is important to note that the deck cracking observed during these tests may be a 

concern for strengthened bridges in the field for durability reasons.  Unfortunately, there is 

no simple method of predicting longitudinal flexural stresses in the deck over an interior 

support of a strengthened girder in which the span regions develop partial-composite action 

while the interior support regions remain non-composite.  There is also no mention of deck 

stresses at interior supports in the moment redistribution provisions in Appendix B6 of the 

AASHTO LRFD specifications.  If potential cracking of the deck is a concern for a 

particular application, the use of finite element models or another rational method of 

analysis may be necessary. 
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Although the majority of the inelastic behavior during the shakedown testing phases 

was expected to occur in the negative bending region at the interior support, some yielding 

of the steel beam and cracking of the deck were observed in the regions near Load A and 

Load D, which were subjected to large positive moments.  This is noteworthy because 

analysis and design techniques based on simple plastic hinge analysis do not account for 

this behavior, as they assume that no inelasticity occurs prior to the development of the full 

plastic strength of the section.  Figure 5-8 shows the typical development of a small amount 

of yield lines in the whitewash near these load points after the completion of shakedown 

testing.  These yield lines were spread out to a maximum of 3 feet away from the load point 

and penetrated no more than one-third of the way into the bottom of the web.  Further 

discussion of the extent of the inelastic behavior that occurred in positive bending in 

provided in Section 6.2. 

A photograph showing the typical distribution of cracks in the underside of the deck 

by the end of shakedown testing is shown in Figure 5-9.  These cracks were typically 

concentrated in a region no more than 18 inches to either side of the load point.  For the 

first specimen, these deck cracks formed at the same time as those at the interior support, 

at approximately 90% of the predicted shakedown limit load in both spans.  For the second 

specimen, no cracking was observed at the load points at any point during shakedown 

loading. 
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Figure 5-6: Photographs of Yield Lines in Whitewash after Shakedown Testing and 

Curvature Distribution during Shakedown Testing at the Interior Support 
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Figure 5-7: Photographs of Deck Cracks at Interior Support after Shakedown Testing 

 

Figure 5-8: Photographs of Typical Yield Lines in Whitewash at Loads A and D after 

Shakedown Testing in Both Specimens 
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Figure 5-9: Photographs of Typical Deck Cracking at Load A or Load D after 

Shakedown Testing 

5.3.3 Composite Behavior 

The level of composite action can be evaluated by the location of the neutral axis 

within the depth of the steel section.  For a doubly symmetric non-composite section, the 

neutral axis will be located at mid-depth of the steel beam for all levels of moment applied 

to the section.  Any level of composite action with the concrete deck will raise the neutral 

axis above mid-depth.  However, it is difficult to quantify the theoretical depth of the 

neutral axis in a partially composite girder because the presence of interface slip creates a 

complex strain distribution, as is discussed further in Section 6.3.3.  Despite this, the plastic 

neutral axis can be easily calculated for any partially composite section, and will be used 

here as a comparison for the partially composite regions.  However, note that this plastic 

neutral axis only truly applies as the cross section approaches its maximum strength. 

The variation of the neutral axis locations at the peak load of each cycle is plotted 

in Figure 5-10 and Figure 5-11 for the first and second specimens, respectively.  In each 

figure, the graph on the left shows the neutral axis location in regions dominated by positive 

bending at Load A and Load D, while the graph on the right shows the neutral axis location 

in the negative moment region around the interior support.  The data on the graphs come 

from both strain gages and the optical system.  Because the optical system is less accurate 

at measuring small strains, the data from that system is only plotted for load levels above 

the predicted elastic limit.  The horizontal axis, which represents the applied load in all of 
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these graphs is normalized by the predicted shakedown limit load to facilitate comparison 

between the two specimens. 

For both spans of the two specimens, the neutral axis in the partially composite 

regions near Load A and Load D was at or below the predicted plastic neutral axis location 

at all load levels.  Generally, the neutral axis gradually and slightly dropped lower in the 

section from the start of the test to approximately 75% of the predicted shakedown load.  

As the load increased beyond that point, the neutral axis shifted back upwards in the 

section.  The neutral axes were at approximately the same location in both specimens, 

despite the difference in the composite ratio, which results in a different predicted location 

of the plastic neutral axis.  Further discussion of the variation in the partially composite 

neutral axis location at the locations of the connectors is given in Section 6.3.3. 

At the interior support in both specimens, the neutral axis was located at or just 

above mid-depth of the steel beam, indicating that little to no composite action was 

developed at that location, as expected. 
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Figure 5-10: Neutral Axis Location during Shakedown Testing of the First Specimen 
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Figure 5-11: Neutral Axis Location during Shakedown Testing of the Second 

Specimen 
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distribution of force and slip between connectors in the same group is provided in Section 

6.2. 

The force-slip behavior for the middle connectors in each group is shown in the 

graphs of Figure 5-12 for a single cycle of Load A or Load D at both the predicted elastic 

and shakedown limit loads.  In this figure, it was assumed that the pair of connectors in a 

cross section share the load equally, so that the force-slip behavior of a single connector 

could be plotted.  Additionally, both the connector force and slip were taken as zero at the 

start of the shakedown test in the associated span on these graphs.  For comparison, the 

design strength of a single connector is also plotted.  The shape of the curves is similar for 

all connectors at both load levels, although the curve becomes more stretched horizontally 

at larger loads, indicating some softening of the shear connection as the tests progressed.  

Large discrepancies in the force values, particularly for the second specimen at the 

predicted shakedown limit load, are evident in the graph.  It is likely that this is due to 

errors in the estimation of these force values, which were computed using the change in 

axial force in the steel beam from strain gage measurements on either side of the connector 

pair.  Residual slip and force were present in all connectors at both load levels, with larger 

residual values at larger loads.  However, the residual forces are not necessarily reliable 

quantities, because of the method used to estimate the force from strain gage 

measurements.  Slight errors in the measurement of the small strains when the girder was 

unloaded may have significantly influenced the calculated force values.  The residual slip 

was directly measured at the locations of the connectors during the test, and is thus a 

reliable value. 
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Figure 5-12: Force-Slip Behavior of Connectors during Shakedown Testing of Both 

Specimens 
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5.4 ULTIMATE STRENGTH TESTING 

As with the shakedown testing, two phases of ultimate strength testing were 

conducted on the first girder specimen, which considered the north and south spans 

separately.  A single phase of ultimate strength testing was conducted on the second 

specimen by loading both spans simultaneously.  The loading pattern followed for all three 

ultimate strength tests is described in Figure 4-13 and primarily causes large positive 

moments at Load A and Load D, resulting in large demands on the connectors in each 

loaded span. 

In both specimens, the ultimate strength testing was conducted after all other phases 

of testing were complete.  By this time, all connectors had been subjected to large repeated 

loads during shakedown testing.  Additionally, all connectors except for those in the north 

span of the second specimen had been subjected to previous fatigue loading.  For most 

cases, the fatigue testing did not have a significant impact on the behavior of the partially 

composite girder.  However, degradation of the adhesive between the threaded rod of the 

connectors and the top flange of the steel beam occurred during fatigue testing in the north 

span of the first specimen, as described in Figure 5-1.  The effects of this degradation can 

be seen in the behavior during ultimate strength testing. 

5.4.1 Load-Deflection Behavior 

First Specimen 

The load-deflection behavior during ultimate strength testing of the first specimen 

is shown in Figure 5-13.  The deflection plotted in this graph is the total deflection since 

the start of all phases of testing.  Thus, the initial deflection in each span represents the 

residual deflection from all prior testing.  The predicted ultimate strength of the partially 

composite girder is also plotted on the graph for comparison.  The plotted prediction is the 

average of that for both the north and south spans, which differ by approximately 10 kips 

due to slight differences in the yield stress of the steel. 

Both spans exhibited essentially linear elastic behavior up to approximately the 

largest load applied during the shakedown testing.  This was expected, because the girder 

had previously shaken down at these large levels of load, meaning that residual moments 

had already formed in the structure to offset the moments from the applied loads so that 

the response up to this point was elastic.  However, the elastic stiffness in the north span 

was smaller than that in the south span.  This is likely a result of the adhesive degradation 
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suffered by the connectors in the north span during fatigue testing, creating a gap region 

which softened the shear connection considerably. 

Beyond the largest load applied during shakedown testing, the girder began to yield 

and lose stiffness, as reflected by the inelastic load-deflection behavior seen in the figure.  

The peak strength was reached in the north span at a load of 10% greater than the predicted 

ultimate strength and at a deflections of nearly 8 inches, or L/65.  In the south span, the 

peak strength was reached at a load of 2% greater than the predicted ultimate strength and 

at a deflection of just over 6 inches, or L/85.  At this point, all connectors in a single group 

in the tested span failed simultaneously.  This failure was easily observed during testing, 

as it was accompanied by a loud noise.  The connector failures occurred in Group I during 

the north span test and in Group III during the south span test.  Because the test was run 

under deflection control, the failure of the connectors caused an approximately 30% drop 

in the load to a value close to the predicted non-composite strength. 

Loading continued on both specimens following connector failure to observe the 

post-failure behavior.  As the test was continued, both specimens rapidly picked up 

additional load, indicating that composite action was still present, even though half of the 

shear connectors had already failed in the tested span.  This composite action may have 

been developed through a combination of friction at the interface and the remaining group 

of connectors in the tested span.  Both tests were stopped at a deflection of nearly 9 inches, 

or L/55, when the maximum stroke of the hydraulic ram was reached.  Unloading occurred 

nearly elastically for both specimens at a shallower slope than the initial elastic loading 

phase, because a significant amount of the composite stiffness was lost after connector 

failure. 

The south span was reloaded the following day to continue the test after stacking 

thick steel plates on top of the deck to increase the effective stroke of the ram.  Reloading 

occurred nearly elastically until the point of unloading was reached.  Then the curve 

continued to follow the loading trend from the previous day until the maximum stroke of 

the ram was again reached at a deflection of approximately 14 inches, or L/35.  Unloading 

was also nearly identical to the previous day.  At this point, the test was stopped to prevent 

damage to the test setup. 

When the deck was lifted off the steel beam during removal from the laboratory, it 

was noticed that four additional connectors had failed.  These connectors were located in 

Group II in the north span.  It is most likely that these connectors fractured during the 
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ultimate strength testing, based on the rough fracture surface, although it is unclear from 

the observations during testing and data collected when exactly these failures occurred. 

 

Figure 5-13: Load-Deflection Behavior during Ultimate Strength Testing of the First 

Specimen 

Second Specimen 
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one of the connectors in Group III had already failed.  Unfortunately, it was not possible 
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shakedown testing phases.  Although the majority of the fracture surface was rough, there 

were indications that a crack may have initiated in this connector during fatigue testing.  
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that fatigue testing, which only occurred in the south span, had no adverse effect on the 

elastic behavior.  After reaching the maximum load applied during the shakedown testing, 

the load-deflection behavior entered the inelastic range, and the shear connection remained 

intact through a deflection of approximately 8 inches, or L/80.  The peak load attained in 

both spans was nearly identical at approximately 10% larger than the predicted ultimate 

strength.  Note that even though one of the connectors in Group III had failed prior to the 

test, both spans reached approximately the same peak load. 

At this point, the shear connectors began to fail, although the failures did not occur 

simultaneously as they did in the first specimen.  The majority of the connectors in Group 

III in the south span failed between a deflection of 8 and 8.5 inches, followed by the 

connectors in Group I in the north span between 8.5 and 9 inches.  Each failure was 

accompanied by a loud noise and some loss in load-carrying capacity.  However, it was 

difficult to determine the order in which the connectors failed based on visual observation, 

as many of them remained solidly adhered to the top flange of the girder even after the 

threaded rod had sheared at the interface (see Figure 5-24 for photographs of typical failed 

connectors).  Additional discussion on the order of failure of the connectors in these groups 

is discussed in Section 6.3.1. 
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Figure 5-14: Load-Deflection Behavior during Ultimate Strength Testing of the 

Second Specimen 

Both Specimens 

Figure 5-15 provides photographs of the two unloaded specimens after the 

completion of the ultimate strength testing.  The large residual deflections can be seen in 

the photographs, particularly in the south span of the first specimen.  However, it is 

important to note that the specimens maintained a load-carrying capacity greater than at 

least the predicted non-composite limit load even after being pushed to large deflections 

during the ultimate strength testing.  Despite some local buckling in the top flanges at the 

load points and in the bottom flange and web at the interior support, both specimens were 

still able to carry load exceeding the predicted non-composite strength up to deflections as 

large as L/35, indicating the significant ductility and inelastic strength of these girders. 
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Figure 5-15: Photographs of Both Specimens after Ultimate Strength Testing 

5.4.2 Inelastic Behavior 

As with the shakedown testing, the extent of inelastic behavior was tracked 

throughout the ultimate strength testing at the load points and the interior support.  This 

was done by visually observing the yield lines in the steel beam and cracking in the concrete 

deck, and by using the data recorded by the optical motion tracking system to estimate the 

strain distribution and curvature well into the inelastic range.  Figure 5-16 shows the yield 

patterns in the steel beam at the interior support after all three ultimate strength tests.  These 

patterns are similar to those observed after shakedown testing, but at a larger intensity.  The 

majority of the yielding was again concentrated at the bottom of the web just over the 

interior support, where large concentrated reaction forces were resisted.  Additional 

flexural yielding can be seen near the top of the web in the photographs.  There was also 

significant yielding on both the top and bottom flanges.  Significant amounts of local 

buckling in the web and bottom flange had developed in all three specimens by the end of 

the ultimate strength testing, just to the right side of the stiffener in the photos.  This is 

depicted in Figure 5-17 for the second specimen.  In this photo, the straight edge of the 

level and the shape of the buckle have been emphasized with solid and dotted yellow lines, 

respectively.  Although this local buckling made it difficult to use the data from the optical 

system to estimate the curvature distribution at the interior support, the data indicates that 

there was only a small increase in this curvature during ultimate strength testing.  This is 

to be expected, as the loading pattern primarily causes large positive moments at the load 

points and does not provide large negative bending demands at the interior support. 

First Specimen

Second Specimen
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Figure 5-18 shows the cracking patterns that had developed in the deck by the end 

of all three ultimate strength tests.  This figure differentiates between cracks formed under 

dead load, during shakedown testing, and during ultimate strength testing.  All cracks 

spanned the full width across the deck, and were generally spaced at approximately 6 

inches apart, which is equal to the spacing of the transverse reinforcement. 

The yield line patterns in the positive moment regions near the load points after 

ultimate strength testing of both specimens are shown in Figure 5-19.  Significant yielding 

in both flanges and through almost the entire depth of the web had occurred by the end of 

the ultimate strength testing, with the yielding spread over a distance of at least 4 feet to 

either side of the load point.  Small amounts of local buckling occurred in the top flange 

and top portion of the web at points just slightly offset from the centerline of the load in 

each region.  However, even under large deflections, these local buckles were small and 

did not have an adverse effect on the load-carrying capacity. 

Figure 5-19 also shows the curvature distribution within a range of 50 inches around 

Load D in the first specimen and Load A in the second specimen, which were both 

instrumented with markers from the optical system during ultimate strength testing.  The 

curvature distributions in the region around the load points are shown at the predicted 

ultimate strength limit, just before the first connector failure, and at large deflections well 

beyond failure of the connectors.  The estimated yield curvature is plotted as well for 

comparison.  This yield curvature was calculated based on the measured depth of the 

neutral axis at the predicted elastic limit load (see Section 5.4.3)  As expected, the curvature 

increased with increasing deflection as the test progressed, with larger curvatures occurring 

closer to the load point.  All curvatures were well into the inelastic range over the entire 

region shown on the plot, confirming that the yielding was widely spread in these partially 

composite regions. 

Typical cracking of the underside of the concrete deck at the load points after 

ultimate strength testing is shown in Figure 5-20 (a), which differentiates between cracks 

formed during shakedown testing and those formed during ultimate strength testing.  

Additional cracks that developed during the ultimate strength testing phases were located 

a farther distance from the load point, at a typical spacing of approximately 6 inches, which 

again corresponds to the spacing of the transverse deck reinforcement.  Some cracks that 

formed during the shakedown testing were also extended during the ultimate strength 

testing to span over the entire width of the underside of the deck. 
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Figure 5-20 (b) shows a photograph of the extensive deck cracking and crushing 

that occurred at Load D during the south span ultimate strength test of the first specimen 

at a deflection approaching 14 inches.  This occurred just to the north side of the steel plate 

assembly through which the load was applied to the top of the deck.  Significant crushing 

occurred above the top mat of reinforcement, while a very wide crack opened on the bottom 

side of the deck.  This crack, along with the crushing on the top side, spanned over the full 

width of the deck. 

 

Figure 5-16: Photographs of Yield Lines in Whitewash after Ultimate Strength Testing 

at the Interior Support 

 

Figure 5-17: Photographs of Local Buckling at Interior Support after Ultimate 

Strength Testing of the Second Specimen – (a) Flange Buckling and (b) Web Buckling 
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Figure 5-18: Photographs of Deck Cracking at Interior Support after Ultimate 

Strength Testing 
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Second Specimen: After Test
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Figure 5-19: Photographs of Yield Lines in Whitewash after Ultimate Strength Testing 

and Curvature Distribution during Ultimate Strength Testing at Loads A and D 

-3.0E-3

-2.5E-3

-2.0E-3

-1.5E-3

-1.0E-3

-5.0E-4

0.0E+0

Local 
buckling

Local 
buckling

A

D

A

D

A D(or) A D

First Specimen Second Specimen
C

u
rv

at
u

re
 (

1
/i

n
)

50” (typ.)

At Load AAt Load D

Δ = 8.8” 
(L/57)

Δ = 9.2” 
(L/68)

At predicted ultimate strength limit
Just before first connector failure
At deflection well beyond connector failure
Predicted yield curvature



 96 

 

Figure 5-20: Photographs of Deck Cracking at Load A or Load D after Ultimate 

Strength Testing – (a) Typical Cracking of Underside of Deck and (b) Crushing of 

Deck at Load D during Ultimate Strength Testing of First Specimen in the South Span 

5.4.3 Composite Behavior 

In a similar manner as during the shakedown testing, the extent of composite 

behavior was monitored during the ultimate strength testing by the location of the neutral 

axis.  Figure 5-21 and Figure 5-22 show the variation in this neutral axis location during 

the ultimate strength testing of the first and second specimen, respectively.  The predicted 

neutral axis location is also plotted for comparison in the same manner as for the 

shakedown testing in Figure 5-10 and Figure 5-11. 

The data on these plots was produced using both strain gages and the optical system.  

However, due to the localized nature of strain gage measurements, the data obtained at 

strains beyond the yield point proved to be unreliable for these calculations.  On the other 

hand, data from the optical system is more reliable at larger strains.  Thus, in the figures, 

the neutral axis locations determined using the strain gage data are only plotted within the 

elastic range, while those calculated from the optical system are plotted only in the inelastic 

range of the load-deflection curves shown in Figure 5-13 and Figure 5-14.  Data from the 

optical system were not recorded nor were strain gages located in all regions of interest for 
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Cracks formed during ultimate strength test
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both specimens.  Only the available data is plotted in the figures.  For simplicity, these 

plots only include the loading portion of the tests.  They do not show any unloading 

behavior. 

At the location of Load A and Load D for both specimens, the neutral axis started 

fairly high in the section, near the predicted plastic neutral axis location, likely as a result 

of some friction at the interface.  Once this friction was overcome, the neutral axis dropped 

lower in the section, before rising back towards the predicted location of the plastic neutral 

axis.  At connector failure, the neutral axis immediately dropped approximately 2 inches 

in all cases, but remained well above mid-depth of the steel section, where the predicted 

neutral axis is located for a non-composite section.  During the south span test of the first 

specimen, which was loaded to large deflections, the neutral axis continued to gradually 

fall lower in the section, approaching mid-depth at large deflections.  This indicates that 

even after connector failure, some amount of composite action may have still been present 

in the girder. 

At the interior support in both sections, the neutral axis again tended to start slightly 

above the predicted location before dropping down to just above mid-depth of the steel 

beam by the end of the elastic range.  The neutral axis then remained at or just above the 

predicted location for the remainder of the test. 
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Figure 5-21: Neutral Axis Location during Ultimate Strength Testing of First 

Specimen 
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Figure 5-22: Neutral Axis Location during Ultimate Strength Testing of Second 

Specimen 

5.4.4 Shear Connector Behavior 

The force-slip behavior of the middle shear connectors in each group during the 

ultimate strength testing is shown for both specimens in Figure 5-23, which also notes the 

point of connector failure in both spans as well as the design strength for an individual 

connector.  Recall that the connectors in Group I and Group III failed in both specimens, 
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Before discussing the results, it is important to note again here that the slip was 

directly measured on the specimen during testing, and thus provides reliable data.  The 

force carried by the connectors was estimated using the change in axial force in the steel 

beam from one side of a pair of connectors to the other, as determined from strain gage 

data.  Error in strain readings and the assumptions inherent in such an estimation make the 

force data less reliable than the slip data.  Despite this, the trends seen in the plots for 

connector force are useful to help understand the overall behavior of the shear connection, 

both before and after connector failure. 

There are significant differences between the force-slip behaviors of the connectors 

within each plot, especially during testing of the first specimen.  One possible reason for 

these large discrepancies is that these plots only capture the behavior of one connector in 

each group.  The distribution of load between connectors in a group is complex, and is 

discussed further in Section 6.3.1.  However, the effects of the degraded adhesive in the 

north span connectors in the first specimen are evident in this data.  The connectors in 

Group I were required to slip nearly 0.2 inch before carrying any load.  This indicates that 

these connectors had to slip through the entire gap created by the loss of adhesive in the 

1/8-inch oversized hole before coming into bearing on the opposite side of the hole to re-

engage in composite action. 

With the exception of the north span connectors in the first specimen, which had 

significant adhesive degradation, all of the connectors exceeded the design strength by 30 

to 45% prior to failure.  It is possible that the connectors that failed in the north span below 

the design strength reached the maximum slip capacity, which led to the fracture of those 

connectors.  Despite this failure at a force level approximately 30% lower than the design 

strength, the girder was still able to carry a peak load well beyond the predicted ultimate 

strength.  Additionally, although it was difficult to pinpoint the exact point of failure for 

each connector during testing of the second specimen, the failure points shown in the plot 

are the best estimate of when failure occurred based on the data and observations available.  

As discussed further in Section 6.3.1, it is likely that the middle connector in the north span 

was one of the last to fail in Group I, while the corresponding connector in the south span 

was one of the first to fail in Group III.  During testing of the first specimen, all connectors 

in a group failed simultaneously. 

After failure of a group of connectors in any span, the force in the intact connectors 

in the remaining group in that span dropped significantly, but not to zero.  Although it is 

difficult to see in the plots, upon continued loading of the specimen, the force resisted by 
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these intact connectors increased with the same stiffness exhibited during the drop in the 

force, but never reached the maximum load attained prior to connector failure.  This is 

another indication that some composite action continued to be developed in the specimen, 

even after half of the connectors in a span had failed, possibly as a result of friction at the 

interface and these intact connectors.  This behavior was observed consistently during all 

of the ultimate strength testing conducted on both specimens, and is discussed in further 

detail in Section 6.3.1. 

Figure 5-24 shows photographs of the failed connectors from both specimens and 

of the underside of the concrete deck in regions where the connectors failed and regions 

where they remained intact.  In this figure, particular connectors are labeled to indicate 

their location within the specimen.  The number denotes the distance in feet from the north 

end of the specimen, while the letter indicates whether the connector was located on the 

east or west side of the cross section.  The majority of the connectors failed at the steel-

concrete interface, as seen in the photographs at the top of the figure.  The length of the 

portion of the threaded rod remaining above the nut and washer assembly in the failed 

connector was approximately equal to the flange thickness for nearly all failed connectors.  

Generally, little to no damage was observed in the concrete deck in the region immediately 

around all connectors, whether they failed or remained intact during testing. 

However, seven connectors in the first specimen and one in the second specimen 

fractured at a depth of 1 to 1.5 inches into the concrete deck, as evidenced by the longer 

portion of the threaded rod above the nut and washer in the photographs.  Three of these 

connectors in the first specimen were located in Group I and are shown in the top left 

photograph of the figure.  The other four, not shown in the top left photograph, were located 

in Group II.  All of these were in the north span and suffered near total degradation of the 

adhesive during fatigue testing.  These connectors are assumed to have failed during 

ultimate strength testing, as no indication of prior failure was evident in the data.  The 

single connector that fractured within the concrete deck in the second specimen did not 

have an extensive amount of adhesive degradation and is known to have failed prior to 

ultimate strength testing. 

As seen in the photographs, the connectors that fractured within the concrete deck 

tended to exhibit permanent bending deformations.  In the first specimen, significant 

amounts of crushing of the concrete deck occurred around these seven connectors, as 

shown by the dotted lines drawn around the breakout cones in the figure.  Because the 

interface region is not visible during testing, it is difficult to determine causality in this 



 102 

situation.  It is unclear whether local concrete crushing occurred first, causing these 

connectors to fracture higher up within the deck, or if the connectors fractured within the 

deck first, but remained in place in the specimen for long enough to cause the concrete to 

crush before dislodging from the specimen.  Additionally, some transverse cracking was 

observed between the connectors in Groups I and II in the first specimen, as marked by 

solid lines in the figure.  No significant concrete crushing or cracking was observed on the 

underside of the concrete deck in the second specimen. 

 

 

Figure 5-23: Force-Slip Behavior of Connectors during Ultimate Strength Testing of 

Both Specimens 
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Figure 5-24: Photographs of Failed Connectors and Underside of Deck at Connector 

Regions after Ultimate Strength Testing of Both Specimens 
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5.5 SUMMARY 

The results from laboratory testing of two large-scale two-span continuous bridge 

girders strengthened with post-installed adhesive anchor shear connectors were presented 

and discussed in this chapter.  A further examination into particular details of the results is 

provided in Chapter 6.  The two specimens, which were constructed with composite ratios 

of nominally 20% and 30%, exhibited excellent structural performance and resilient 

behavior throughout all phases of testing, which lasted nearly 6 months for each specimen.  

The predicted strength values were exceeded during fatigue, shakedown, and ultimate 

strength testing, and only one shear connector is known to have failed prior to the ultimate 

strength testing phases.  This failure was only detected using ultrasonic testing, and was 

not obvious from any of the data collected during previous testing phases, indicating that 

the failure of a single connector did not adversely affect the behavior.  Additionally, 

following connector failure in the ultimate strength testing phases, composite action was 

still able to develop, possibly as a result of friction at the steel-concrete interface and the 

remaining intact connectors.  This allowed for the specimens to maintain load-carrying 

capacities well beyond the predicted strength of the non-composite girder to large 

deflections of up to L/35. 

Generally, it does not seem that the fatigue loading had a significant influence on 

the strength of either specimen at both the shakedown and ultimate strength limit states.  

This was even true for connectors that had significant degradation of the adhesive between 

the threaded rod of the connector and the hole in the top flange of the steel beam, leaving 

essentially a 1/8-inch “gap” for the connector to slide in without resisting any force.  In this 

case, enough slip occurred in the girder to re-engage the connectors in direct bearing with 

the steel flange, allowing for composite action to develop under large loads. 

Overall, the results of this experimental program indicate that bridges strengthened 

with post-installed adhesive anchor shear connectors are expected to have good structural 

performance, even under large demands in the field that may require moment redistribution 

and significant ductility. 
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CHAPTER 6: FURTHER ANALYSIS OF EXPERIMENTAL 

RESULTS 

6.1 OVERVIEW 

This chapter provides further detailed analysis of the results from the experimental 

testing to give additional insight into the behavior of the specimens.  An in-depth look into 

the inelastic behavior and plastic rotations sustained during the shakedown testing is 

discussed first, followed by the general trends in behavior within the shear connector 

groups. 

6.2 INELASTIC BEHAVIOR DURING SHAKEDOWN LOADING 

While the results presented in Chapter 5 were primarily associated with the 

behavior of the girder specimens under load, this section focuses on the “residual” data 

when the specimens were unloaded in between cycles of shakedown loading.  When there 

are no externally applied loads on a statically indeterminate structure, any deformations 

and forces present in the system are derived solely from the permanent inelastic 

deformations that have previously occurred.  Thus, the extent of inelastic behavior can be 

observed by interpreting this residual data and is quantified here by (1) the plastic rotation 

that developed at the critical locations, which is an indication of the ductility demand on 

the section, and (2) the amount of residual moment present in the unloaded state, which 

corresponds to the amount of moment redistribution that occurred under the applied load. 

The plastic rotations were estimated using the data obtained through the optical 

system, which records the position of several “markers” which were fixed to the specimens 

in the gridded layouts shown in Figure 4-11.  The rotation of each column of markers was 

calculated from this position data at each unloaded step.  Any change in rotation along the 

length of a girder under no external load indicates permanent inelastic rotation at that 

location.  The change in rotation from the columns of markers on opposite ends of each 

instrumented region was taken as the total plastic rotation in that region. 

In theory, the residual moments present in the system can be determined from the 

residual reaction forces measured after the load was removed for each load step.  However, 

evaluation of the data collected during testing led to the conclusion that these residual 

reaction forces were not reliable measurements, primarily because neither force nor 

moment equilibrium were satisfied at the unloaded state.  This is likely because the residual 

reaction forces were small (less than 5 kips) in comparison to the capacity of the load cells 
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used to measure the forces.  Thus, an alternate method of estimating the residual moments 

was developed using the residual deflections measured during testing, instead of the 

unreliable residual reaction forces.  This deformation-based technique also provides an 

estimate of the plastic rotation, which can be compared to the rotations calculated from the 

optical system data. 

Section 6.2.1 provides a description of this analysis technique, while Section 6.2.2 

and Section 6.2.3 present the results regarding the plastic rotations and residual moments, 

respectively. 

6.2.1 Method of Analysis 

The technique developed to estimate the amount of moment redistribution from the 

residual deflected shape uses plastic hinges to represent the inelastic behavior at each 

critical section.  The method is based on the assumption that the total residual deflection 

along the girder is the sum of the residual deflections caused by the rotation of each plastic 

hinge, shown in Figure 6-1.  The permanent rotation of each plastic hinge causes residual 

moment to be present in the system in order to maintain zero deflection at the support 

locations.  The shape of the residual moment diagram associated with a rotation of each 

hinge is also shown in the figure.  For completeness, the equations derived for each 

deflected shape and for the associated residual moment at the interior support (𝑀𝑟𝑑) are 

provided in Appendix B. 

 

Figure 6-1: Deflected Shapes from Rotation of Plastic Hinges (a) at Load A in North 

Span, (b) at Interior Support, and (c) at Load D in South Span 

The plastic hinge rotations were determined using a least squares fit, so that the 

deflections measured during testing most closely matched the analytically determined 

(b)(a) (c)
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deflected shape from the hinge rotations.  A script in MATLAB was created to carry out 

the analysis, which was constrained so the rotations could not be less than zero 

(MathWorks 2015).  Positive rotations were taken in the direction shown in Figure 6-1. 

As seen in Appendix B, the equations describing the deflection due to the plastic 

rotation are entirely dependent on the geometry of the girder and are independent of the 

flexural stiffness (𝐸𝐼).  However, the value of the redistribution moment is dependent on 

the stiffness, which can be difficult to quantify for partially composite girders with groups 

of shear connectors.  Generally, for a statically indeterminate structure, the elastic 

distribution of moments is a function of the relative stiffness of different portions of a 

structure.  Fortunately, as discussed in Section 7.3, the elastic distribution of moments 

expected for the non-composite girder will likely provide a good estimate for the partially 

composite girder.  For the case of the experimental specimens, this is simply a constant 

stiffness over the entire length of the girder.  However, the actual value of this stiffness to 

use in the analysis is unclear, as it depends on the level of partial-composite action. 

Thus, to estimate the stiffness, a similar analysis was conducted using the measured 

deflections at the peak load of each cycle.  In this case, the total deflection along the girder 

was assumed to be the sum of the elastic deflection caused by the applied load and the 

residual deflection caused by the rotation of each plastic hinge, shown in Figure 6-1.  The 

plastic rotations calculated at the unloaded step immediately following each load step were 

used to determine the residual deflections at that load step.  The remainder of the measured 

deflection under load was assumed to be due to purely elastic deformation. 

The elastic deflected shape under the three different loading conditions used during 

the shakedown testing are shown in Figure 6-2, and the equations derived for these 

deflected shapes are provided in Appendix B.  These equations assume that the flexural 

stiffness is constant along the full length of the girder.  An estimate of the moment of inertia 

(𝐼) at each load step was computed using a least squares best fit so that the measured 

deflections most closely matched the analytically determined deflected shape from the 

elastic deformation and the hinge rotations.  This moment of inertia was then used to 

compute the residual moment at the unloaded steps using the equations in Appendix B 

associated with the plastic hinge rotations shown in Figure 6-1. 
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Figure 6-2: Elastic Deflected Shapes from Applied Load for (a) Load A in North Span, 

(b) Loads B and C in Both Spans, and (c) Load D in South Span 

6.2.2 Plastic Rotations 

The residual rotations calculated from the optical system data after the last cycle at 

the predicted shakedown limit load are shown in the following two figures.  Figure 6-3 

plots the variation in the residual rotation over the longitudinal distance near the critical 

locations around Load A and Load D for both specimens.  Figure 6-4 plots the residual 

rotation variation around the interior support for both specimens.  Note that for the second 

specimen, the optical system was only used at the location of Load A and at the interior 

support, and not at Load D.  For the first specimen, the optical system was used in all three 

locations. 

One key difference between the trends shown in the two figures is the slope of the 

rotation curves.  Recall that under no external load, any change in rotation is primarily due 

to permanent plastic rotations.  Throughout the majority of the instrumented regions at 

Load A and Load D in Figure 6-3, the slope of the rotation curves is fairly constant, with 

shallower slopes occurring farther away from the load point.  This indicates that the plastic 

rotation is spread out over this entire region and likely extends slightly outside of the 

instrumented area.  Conversely, at the interior support in Figure 6-4, there is a steep slope 

in the rotation curves close to the centerline of the support, but the curves quickly flatten 

out farther away from the support.  This indicates that the plastic rotation is concentrated 

within a distance of approximately 10 inches from the support. 

This observation is to be expected based on the section properties and the loading 

conditions.  The shape factor (𝑘), or the ratio of the plastic moment capacity to the yield 

moment, is larger for the partially composite section at Load A and Load D (𝑘 = 1.24 to 

1.34) than for the non-composite section at the interior support (𝑘 = 1.16).  These shape 

factors are calculated in Appendix A.  As a comparison, the shape factor for the idealized 

case of a plastic hinge is 1.0.  For higher shape factors, yielding will start to occur at the 
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extreme fibers of the cross section at relatively lower moments as compared to the plastic 

moment capacity.  This means that sections that are farther away from the point of 

maximum moment will have already started to yield by the time the plastic capacity is 

reached at that point of maximum moment.  Thus, inelasticity will ultimately be spread 

over a wider distance away from the point of maximum moment, as seen in Figure 6-3 at 

Load A and Load D.  For smaller shape factors, sections that are fairly close to the point 

of maximum moment will remain fully elastic when the plastic moment capacity is reached 

at that point of maximum moment.  This type of behavior is seen in Figure 6-4 at the interior 

support.  In addition to the different shape factors, the relatively shallow and steep moment 

gradients at Load A and Load D and at the interior support, respectively, contribute to the 

plasticity spread within these regions (see Figure 4-13). 

 

Figure 6-3: Residual Rotations in Positive Bending during Shakedown Testing of Both 

Specimens 
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Figure 6-4: Residual Rotations in Negative Bending during Shakedown Testing of 

Both Specimens 
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although the estimation based on the residual deflections tended to result in slightly higher 

values of plastic hinge rotation than did the data from the optical system.  With the 

exception of the interior support location during south span testing of the first specimen, 

the trends in this data are nearly identical for all tests and all locations.  Small amounts of 

plastic rotation begin developing at around half of the predicted shakedown limit load, and 

these rotations increased rapidly as the limit load is approached and exceeded.  Recall that 

for the first specimen, the south span test was conducted after the north span test in which 

significant yielding occurred at the interior support.  Thus, the plastic hinge rotation at the 

interior support at the start of the south span test is equivalent to the final rotation at that 

location during the north span test.  No significant increase in the plastic hinge rotation at 

that interior support occurred until slightly below the predicted shakedown limit load.  This 

is consistent with many of the observations made in Chapter 5. 

For the first specimen, the total plastic hinge rotation varied between approximately 

0.006 radians and 0.010 radians after shakedown was observed at the predicted limit load.  

For the north span test of the first specimen, the rotation at Load A was near the high end 

of that range while the rotation at the interior support was near the low end.  The opposite 

was true for the south span test of the first specimen.  Although shakedown was not 

observed in the second specimen at the predicted limit load, the plastic hinge rotations 

when the test was stopped varied between 0.009 radians and 0.012 radians at all three 

critical locations. 

For comparison, the moment redistribution provisions in the AASHTO LRFD 

Bridge Design Specifications were developed to limit the plastic rotation at an interior 

support to a maximum of 0.009 radians at the Service II limit state and 0.03 radians at the 

Strength I limit state (AASHTO 2010).  These limitations ensure that excessive 

deformations that may affect the serviceability of the bridge do not occur and that the cross 

section has adequate plastic rotation capacity so that the moment redistribution can happen 

without local buckling.  The testing conducted here corresponds more closely to the 

Strength I limit state, which has a rotation limit of approximately twice the largest rotation 

that was observed experimentally.  Note that within the specifications, these rotation limits 

apply only to the non-composite cross sections at the interior supports and not to the 

partially composite sections in the spans.  While permanent inelastic deformations in the 

spans can contribute to excessive deflections and potential serviceability problems, local 

buckling is less of a concern because only a small portion of the steel section is subjected 

to compressive stresses. 
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Figure 6-5: Plastic Hinge Rotation at Critical Locations during Shakedown Testing of 

First Specimen 
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Figure 6-6: Plastic Hinge Rotation at Critical Locations during Shakedown Testing of 

Second Specimen 
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6.2.3 Residual Moment Results 

As described in Section 6.2.1, the plastic hinge rotations computed at the unloaded 

state were used to determine the elastic portion of the response under the applied loads.  

An estimate of the moment of inertia was made based on this elastic behavior.  The 

variation in this moment of inertia with the applied load for both specimens is shown in 

Figure 6-7.  Note that for the second specimen, the moment of inertia values calculated for 

the individual load steps consisting of the application of Load A and Load D were similar 

and thus were averaged to obtain the data plotted in the figure.  The figure also indicates 

the predicted effective moment of inertia for the partially composite section, calculated in 

Appendix A using Equation 2.5, as well as the moment of inertia for the non-composite 

section, which is simply that of the steel beam. 

Generally, the moment of inertia under applied Load A or Load D is gradually 

reduced as the magnitude of the load increases.  This might be a result of cracking occurring 

in the concrete deck or small losses in composite action.  However, the load-deflection 

behavior of each cycle indicates that this has a negligible effect on the overall behavior 

(see Section 5.3.1).  For the first specimen, the effective moment of inertia for the partially 

composite section provides a reasonably good prediction of the moment of inertia at low 

levels of loads, but over-predicts the observed value at larger loads.  For the second 

specimen, the effective moment of inertia over-predicts the calculated value significantly 

at all loads.  This might be because of the low composite ratio of this specimen, which falls 

just barely within the range of applicability of Equation 2.5. 

For both specimens, the moment of inertia calculated under applied Loads B and C 

is significantly lower than that for Load A or Load D.  This is likely because Loads B and 

C induce a moment diagram in which the point of maximum moment is closer to the interior 

support than any of the shear connectors.  Thus, the connectors are ineffective in creating 

composite action under this type of load.  However, the calculated values of the moment 

of inertia are still well above that predicted for the non-composite section, indicating that 

there may still be small benefits from composite action.  For the first specimen, the moment 

of inertia under applied Loads B and C remains essentially constant through all levels of 

load.  However, for the second specimen, this moment of inertia decreases slightly at low 

levels of load before leveling off to a relatively constant value at higher loads. 
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Figure 6-7: Variation in Estimated Moment of Inertia during Shakedown Testing of 

Both Specimens 
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that has been redistributed up to that point in the test.  The maximum residual moment, 

which occurs at the interior support, is equivalent to the redistribution moment defined in 

the AASHTO LRFD specifications (𝑀𝑟𝑑).  The equations derived to perform these 

calculations are provided in Appendix B.   For each cycle of load, the moment of inertia 

under applied Load A or Load D was used in these calculations, rather than that under 

applied Loads B and C.  This was done because the entire length of the girder is subjected 

to residual moments that are either all positive or all negative.  Thus, the connectors are 

effective in creating composite action and the moment of inertia calculated under applied 

Load A or Load D is likely a better representation of the stiffness than that calculated under 

applied Loads B and C.  The predicted redistribution moment at the shakedown limit load, 

calculated in Appendix A based on the AASHTO LRFD specifications, is also indicated 

on the graphs for each test. 

The general trends seen in Figure 6-8 are similar to those seen in Figure 6-5 and 

Figure 6-6 because the redistribution moments are directly related to the amount of 

permanent inelastic deformation that has developed in the structure.  Again, the trends 

observed during the south span test of the first specimen are consistent with the expected 

behavior because significant yielding had already occurred at the interior support during 

the north span test conducted beforehand. 

At the shakedown limit load, the predicted redistribution moment exceeds the 

estimated redistribution moment for both specimens.  Particularly, the predicted value 

exceeds the estimated experimental value observed during testing of the first specimen by 

more than 150%.  For the second specimen, the predicted value exceeds the value estimated 

from the experimental data by only 30%.  The over-prediction of this redistribution 

moment is to be expected because the AASHTO LRFD provisions for moment 

redistribution assume that yielding only occurs in negative bending at the interior supports, 

and that no yielding occurs in positive bending in the spans.  As indicated in Figure 6-1, 

the redistribution moments from the plastic hinge rotation in the spans and at the interior 

support have opposite signs.  Thus, some of the positive redistribution moment that results 

from plastic rotation at the interior support will be offset by the negative redistribution 

moment developed due to any yielding in the spans.  Additionally, it is important to note 

that there were several assumptions that were made in calculating these estimated 

redistribution moments from the measured deflections that may introduce some error into 

the results. 
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Figure 6-8: Variation in Estimated Redistribution Moment during Shakedown Testing 

of Both Specimens 
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6.2.4 Discussion of Inelastic Analysis 

The analysis technique used here is largely limited to shakedown-type loading in 

which the structure is frequently loaded and unloaded, and each cycle of load, even well 

within the expected range of inelastic behavior, induced a nearly elastic response.  This 

limitation comes from the challenges that arise in separating the elastic and inelastic 

portions of the response at any given point in the loading history.  These challenges 

primarily stem from the difficulties in estimating the distribution of flexural stiffness, 

which affects the distribution of moments within a statically indeterminate structure.  This 

can be particularly difficult for partially composite girders with shear connectors 

concentrated in groups, as discussed in Section 7.3.  Thus, it was not feasible to apply this 

type of analysis to results from the ultimate strength tests due to the uncertainty in 

differentiating between the elastic and inelastic responses. 

This more rigorous analysis technique not only provides additional information 

regarding the inelastic behavior but also highlights some of the assumptions that are 

commonly made in simple models, such as the upper- and lower-bound methods.  One 

example of an assumption that is not aligned with the actual behavior is using a plastic 

hinge to represent the inelastic behavior.  This is an assumption that is made in nearly every 

type of inelastic analysis short of detailed finite element modeling.  The data from the 

optical system clearly show that flexural yielding of an I-shaped girder is spread over a 

finite length surrounding the location of maximum moment.  However, as shown in the 

results here, using plastic hinges to model concentrated inelasticity provides a reasonable 

estimate of the overall behavior.  Another example is the inherent assumption in the 

AASHTO LRFD moment redistribution provisions that yielding only happens in negative 

bending at the interior supports of continuous girders, so that all sections in the spans 

subjected to primarily positive moment demands remain elastic.  As has been illustrated in 

the data presented here, a significant amount of inelastic behavior occurred in regions of 

both positive and negative bending during the testing of these two large-scale specimens.   

However, despite these limitations of simple models to predict the observed 

inelastic behavior below the limit load, these models are still powerful tools for design and 

analysis, as long as the differences between the predicted and actual behavior are kept in 

mind. 
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6.3 BEHAVIOR WITHIN CONNECTOR GROUPS 

In Chapter 5, the general force-slip behavior of the shear connectors during testing 

was presented for only the connector pair located at the middle of each group.  This section 

explores the distribution of force and slip amongst all connectors in a group as well as the 

variation of cross-sectional behavior within a connector group.  All of the results presented 

in this section are from both shakedown and ultimate strength testing of the second 

specimen because it was more fully instrumented to collect this data than was the first 

specimen (refer to Figure 4-3). 

6.3.1 Connector Force 

As discussed in Section 4.5, the force carried by the shear connectors was estimated 

by placing strain gages through the depth of the steel beam on either side of a connector 

pair.  The change in the axial force in the steel beam, which was calculated from the strain 

readings, from one side of a connector pair to the other was assumed to be the horizontal 

interface shear force transferred between the steel beam and the concrete deck by that pair 

of connectors.  Although this process ignores any force transfer that may occur through 

friction and tends to be sensitive to measurement errors in the strain values, the general 

trends shown by the results are useful to illustrate how the forces might be distributed 

within a group of connectors. 

In this section, the data regarding the force in the connectors is first presented in 

terms of the sum of all of the shear connector forces in each group.  This total connector 

force is a measure of the level of composite action in the girder, as it represents the 

compressive force developed in the concrete deck, which is equilibrated by an equal and 

opposite tensile force in the steel beam.  The compressive force developed in the deck is 

the manner through which composite action actually occurs because it allows the concrete 

to participate in resisting positive flexural demands on the section.  Following the 

discussion of the total force in a group, the distribution of force within a group of 

connectors is explored. 

Total Connector Force in a Group 

Figure 6-9 and Figure 6-10 plot the sum of all connector forces in each group during 

shakedown and ultimate strength testing, respectively.  These total force values indicate 

that each connector carried on average a maximum of 30 to 35 kips of force during the 
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shakedown testing and 35 to 40 kips of force during the ultimate strength testing.  This is 

slightly larger than the design strength of a single connector (30.1 kips, as computed in 

Appendix A).  To simplify the plot in Figure 6-10, only the data from the loading portion 

of the ultimate strength testing is shown. 

The sign convention used in the figures associates positive connector forces when, 

moving from north to south along the girder, compressive force is being transferred into 

the deck, increasing the axial tension in the steel beam.  For example, the application of 

Load A induces a positive force in Group I and a negative force in Group II.  Similarly, the 

application of Load D induces a positive force in Group III and negative force in Group 

IV.  Because any downward load applied to a continuous girder induces negative moments 

at the interior support, which tends to put the concrete deck in tension, any compressive 

force developed in the deck under positive flexure in the spans must flow out of the deck 

prior to reaching the negative moment region around the interior support.  Thus, the total 

force in the two groups in one span should be equal and opposite, as indicated in both 

figures for load cases involving Load A and Load D.  In these load cases, the maximum 

positive moment is located between the connector groups in the loaded span so that a 

significant amount of compression is in the deck at this point of maximum positive 

moment. 

However, a different trend is seen in Figure 6-9 under applied Loads B and C during 

shakedown testing.  Theoretically, this load case should not engage any composite behavior 

because the point of maximum positive moment is located outside of both connector groups 

in each span.  Thus, any compressive force developed in the deck between the connector 

groups would have been subsequently removed from the deck at the location of this 

maximum positive moment.  However, as can be seen in the figure, a small amount of force 

is still developed, mostly in Group I and Group IV at the ends of the girder.  Although an 

exact explanation for this is unclear based on the data collected, it is possible that the 

associated equilibrating interface shear force occurs through friction developed between 

the load point and the start of the negative moment region around the interior support. 

Further evidence that the development of interface shear forces through friction 

may be possible is indicated in Figure 6-10 by the behavior of the intact connector groups 

(II and IV) after connector failure occurred in Group I and Group III.  While the order of 

failure is discussed further in the next section, this figure indicates that there may be some 

force carried by the intact connector groups, particularly in Group IV, following complete 

connector failure in the other group in the span. 
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Figure 6-9: Total Force Transmitted into the Deck in Each Shear Connector Group 

during Shakedown Testing of the Second Specimen 
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Figure 6-10: Total Force Transmitted into the Deck in Each Shear Connector Group 

during Ultimate Strength Testing of the Second Specimen 
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applied load were reasonably consistent amongst all connectors in a group, the actual 

magnitude of that force varied considerably between connectors.  There are not any 

significant trends of how or why this variation occurs, and it doesn’t seem to be closely 

linked to the slip distribution within the connector groups, as discussed in the next section.  

It is possible that this variation is simply a result of the local conditions around each 

connector.  Previous research has shown that during small-scale testing, the stiffness of 

individual shear connectors in the elastic range varied significantly, likely due to the quality 

of both the concrete in the immediate vicinity of the connector and of the adhesive layer 

around the connector (Patel 2013).  Inconsistencies in the alignment and centering of each 

connector during installation might also play a role.  This variation might also be in part 

due to slight errors in the strain measurements that were compounded through the force 

estimation process. 

During ultimate strength testing, the trends in the estimated force are also similar 

between each pair of connectors in a group with fairly linear behavior in the elastic range 

followed by a softening of the connectors as the deflections increased.  Again, a variation 

of the magnitude of the force is present between connectors, although this variation seems 

to be reasonably consistent with that observed in the shakedown testing.  For example, in 

Group I, connector pair “e” consistently resists the highest load, while connector pair “a” 

generally resists the lowest level of load in both tests.  Additionally, recall that one of the 

connectors in the pair at location “b” in Group III had failed at some point prior to ultimate 

strength testing.  The force estimated to be carried by this single connector is significantly 

lower than all other single connectors.  The exact reason for this is unclear, but it is possible 

that the asymmetry of the cross section with a single connector inhibits the effectiveness 

of the connector, or that the remaining connector was also damaged, but it was not 

detectable at the time. 

The points on the plot in which connector failures were estimated to have occurred 

are also denoted in Figure 6-12 and listed in Table 6-1.  It was not possible to exactly 

pinpoint the failure of each individual connector from audial and physical observations 

during testing.  While failure of the connectors was accompanied by a loud noise, it was 

often difficult to determine from where the noise originated.  The bottom portion of some 

connectors were easily removed from the specimen following failure, but several were held 

tightly in place after fracturing by the adhesive surrounding the connector in the top flange 

of the steel beam and had to be hammered out after testing was complete.  Thus, these 
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estimates were made primarily using the trends in the connector force, supplemented by 

observations made during testing. 

An interesting observation to note is that connector failures occurred at a wide range 

of estimated connector force.  The values reported in Table 6-1 are for a single connector, 

assuming a pair of intact connectors shares the force equally.  While some variability in 

the strength of a single connector is expected, this was likely exacerbated by the method 

used to estimate the force from strain measurements.  Additionally, it is logical that the 

connectors in Group III would be the first to fail because one of these had already fractured 

prior to the start of the ultimate strength testing.  However, the reason that the connectors 

in Group I failed rather than those in Group II is unclear from the force data.  Although the 

data indicates that the most heavily loaded connector pair was in Group I (pair “e”), this 

was not the first connector pair to fail in the north span.  Furthermore, the maximum total 

force developed in both groups was essentially equal.  A better explanation for this is the 

slip demand on the connectors, as discussed in the next section. 
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Figure 6-11: Typical Distribution of Force within Connector Groups during 

Shakedown Testing of the Second Specimen 
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Figure 6-12: Distribution of Force within Connector Groups during Ultimate Strength 

Testing of the Second Specimen 
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Table 6-1: Estimated Order of Connector Failure during Ultimate Strength Testing of 

the Second Specimen 

Group Connector Deflection       

(in) 

Connector 

Force (k) 

Connector Slip 

(in) 

III b (#1) -- -- -- 

III c (#1) 8.02 40.6 0.34 

III b (#2) 8.18 6.3 0.42 

III a (both) 8.26 54.1 0.50 

III 

III 

d (#1) 

e (#1) 
8.33 

47.5 

47.7 

0.39 

0.36 

III 

III 

c (#2) 

d (#2) 
8.34 

27.9 

25.5 

0.45 

0.43 

I d (#1) 8.53 30.0 0.36 

I 

I 

III 

a (#1) 

b (#1) 

e (#2) 

8.78 

16.2 

29.3 

51.7 

0.44 

0.43 

0.50 

I 

I 

I 

I 

I 

a (#2) 

b (#2) 

c (both) 

d (#2) 

e (both) 

8.79 

7.3 

17.0 

38.8 

8.6 

55.1 

0.49 

0.48 

0.47 

0.46 

0.45 

 

6.3.2 Connector Slip 

The interface slip within the groups of connectors was measured using linear 

potentiometers, as pictured in Figure 4-8.  For the second specimen, these linear 

potentiometers were located at the first, middle, and last connectors in each group.  Thus, 

a direct measure of connector slip was only made for three out of five pairs of connectors 

in every group.  However, due to the compatibility requirements for deformations and the 

small longitudinal spacing of the connectors (24 inches), linearly interpolating between the 

measured values will likely provide a good estimate of the slip of the other two connectors 

in each group.  Nevertheless, to simplify the graphs in this section, only the three 

connectors with linear potentiometers at the same location are shown. 
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The variation of slip between individual connectors in a group is plotted in Figure 

6-13 and Figure 6-14 for shakedown and ultimate strength testing, respectively.  As with 

the force data, results from only Group I and Group II in the north span are shown for the 

three different loading conditions used in the shakedown testing, because the behavior in 

Group III and Group IV was nearly identically symmetric.  Also, only the loading portion 

of the ultimate strength testing is shown in Figure 6-14. 

During both shakedown and ultimate strength testing, the slip measured in the 

exterior groups (I and IV) was nearly constant for all connectors in the group.  However, 

the slip measured in the interior groups (II and III) increased significantly from the 

connector closest to midspan to the connector closest to the interior support. 

As with the force data, the connectors in the north span underwent significant 

amounts of slip under the application of Load A.  However, significant slips were also 

observed under applied Loads B and C, which is in contrast to the connector forces 

estimated for this loading case.  This slip that occurs without the transfer of significant 

amounts of force indicates softening of the shear connector with increasing load. This 

softening is also evident in the nonlinear variation of slip with the applied load in 

comparison to the linear increase of connector force with load.  Negligible amounts of slip 

occurred in the north span connectors under applied Load D until large load levels were 

reached. 

During ultimate strength testing, the slip follows an approximately linear increase 

with deflection, with some slight deviations.  In particular, at large deflections just prior to 

connector failure, the slip in the connectors in Group I began to increase at a rapid rate 

while the slip in the connectors in Group II began to level off.  As mentioned previously, 

it is likely that the significantly larger slips that occurred in the Group I connectors, as can 

be seen in Figure 6-14, was the main reason that this was the group that failed in the north 

span.  Note that the values of slip just prior to failure given in Table 6-1 for the connectors 

that were not directly instrumented to measure slip were linearly interpolated from the 

measurements at adjacent connectors. 
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Figure 6-13: Typical Distribution of Slip within Connector Groups during Shakedown 

Testing of the Second Specimen 
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Figure 6-14: Distribution of Slip within Connector Groups during Ultimate Strength 

Testing of the Second Specimen 
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To investigate this cross-sectional behavior, general features of a strain profile in a partially 

composite section is first discussed.  Then, data showing the variation in the measured 

neutral axis location during the experimental testing is presented. 

Strain Profiles 

The left plot in Figure 6-15 shows the typical variation in strain profiles measured 

within a connector group.  In the figure, tensile strains are taken as positive.  This data was 

recorded during ultimate strength testing near the end of the linear elastic region for 

connectors in Group II.  The plotted strains were directly measured in the steel beam, but 

were estimated in the concrete deck.  The estimate of the deck strains was made using the 

assumptions that the slope of the strain profile is the same as that in the steel beam and that 

no net axial force is present in the girder.  The interface strain discontinuity discussed in 

Section 2.2.1 that causes slip in partially composite girders is evident from the plot. 

Because of this strain discontinuity, the section effectively has two different neutral 

axes, one of which corresponds to the strains in the steel beam and the other corresponding 

to the strains in the concrete deck.  The right plot in Figure 6-15 illustrates the change in 

the location of these two neutral axes within the connector group.  On the north end of the 

group (location “a”), the cross section is partially composite as the neutral axis in the steel 

beam is located above mid-depth while the neutral axis in the concrete deck is located 

below mid-depth.  This indicates that there is a net tensile axial force in the steel which is 

counteracted by a net compressive axial force in the deck.  Moving southward in the group, 

the neutral axis in the steel drops in the section while the neutral axis in the concrete rises.  

This indicates that the section is trending towards non-composite behavior, as compressive 

force is transferred from the deck back into the steel beam.  At location “f” at the south end 

of the group, the neutral axes are located at approximately mid-depth in both the steel and 

concrete, as is expected for non-composite behavior. 

An interesting feature of partially composite behavior is that the common 

assumption in beam theory that plane sections remain plane is violated by the slip that 

occurs at the interface.  Thus, the moment (𝑀) resisted by a cross section is not directly 

related to the curvature (𝜙) by the constant values of the elastic modulus (𝐸) and moment 

of inertia (𝐼) even for simple elastic behavior (i.e. 𝑀 ≠ (𝐸𝐼)𝜙).  In fact, the direct 

calculation of a single value of the moment of inertia of a partially composite section is not 

feasible because the cross-sectional response under a given moment depends on the 
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interface strain discontinuity at that section, which is related to the slip.  Unfortunately, slip 

and strain discontinuity are variables that cannot be determined through cross-sectional 

analysis, and must be computed through a global analysis of the entire girder (Ghiami Azad 

2016).  The effective moment of inertia that can be calculated using Equation 2.5 is an 

empirically determined value that is useful for estimating the expected deflections for 

design purposes.  The same is true for the effective section modulus that can be calculated 

using the same relationship. 

To illustrate this behavior, consider that between locations “a” and “f” in the region 

shown in Figure 6-15, the moment from the applied loads decreases by approximately 85%.  

However, the curvature, measured as the slope of the strain profile, decreases by only 65%, 

indicating the nonlinear relationship between moment and curvature in partially composite 

sections.  

 

Figure 6-15: Typical Variation of Strain Profiles between Connector Pairs 
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Neutral Axis Locations 

The variation in the location of the neutral axis in the steel beam is plotted in Figure 

6-16 and Figure 6-17 for shakedown and ultimate strength testing, respectively.  In both 

figures, the results from only Group I and Group II in the north span are shown because 

the behavior in Group III and Group IV was nearly identically symmetric.  Note that to 

simplify the plots, only neutral axis locations that fell within the bounds of the steel section 

are shown.  Additionally, only the loading portion of the ultimate strength testing data is 

shown in Figure 6-17.  Note that the predicted location of the partially composite neutral 

axis plotted in both figures is actually the plastic neutral axis of the partially composite 

cross section.  Because this applies only to sections subjected to large levels of moment, it 

does not provide a good estimate of the neutral axis location within the connector groups. 

Significantly different neutral axis locations were observed between exterior 

(Group I) and interior (Group II) connector groups during both shakedown and ultimate 

strength testing.  Additionally, there is less variation in the neutral axis location within 

Group I than within Group II.  These discrepancies are primarily due to differences in the 

slip and the associated strain discontinuity, which significantly impact the strain profile as 

discussed in the previous section.   

During shakedown testing, a general trend of the neutral axis moving lower in the 

section with increasing applied load was followed.  The neutral axis location measured at 

most southerly location in Group II (location “f”) remained fairly constantly at mid-depth 

under applied Load A, as would be expected for a non-composite section.  However, for 

the other two load cases, the neutral axis at this location was slightly above mid-depth, 

indicating that some different effects of composite action may have been present in these 

cases as well, as was also evident in the connector force plots in Figure 6-9 and Figure 

6-11.  Note that no strain measurements were taken at the comparable location in Group I, 

as this would have been located at the centerline of the exterior support where theoretically 

no deformation would occur. 

During ultimate strength testing, the neutral axis location in Group I tends to move 

upwards significantly with the measured deflection prior to connector failure.  In Group II, 

much smaller rises in the neutral axis location occurred with increasing deflections.  

Immediately after the connectors in Group I failed, the neutral axis at all locations in this 

group dropped to approximately mid-depth of the steel beam, indicating non-composite 

behavior.  In Group II, the neutral axis dropped, but remained above mid-depth of the steel 
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beam following connector failure.  This is further indication that some composite action 

may be developed in the vicinity of the remaining intact connectors following connector 

failure in the span. 
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Figure 6-16: Typical Variation of Neutral Axis Location during Shakedown Testing of 

the Second Specimen 
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Figure 6-17: Typical Variation of Neutral Axis Location during Ultimate Strength 

Testing of the Second Specimen 

6.4 SUMMARY 

This chapter explored some additional features of the results from the experimental 

testing, beyond those presented in Chapter 5.  The first portion of the chapter examined the 

inelastic behavior of both specimens during shakedown testing, while the second portion 

focused on the behavior within the groups of concentrated shear connectors during 

shakedown and ultimate strength testing of the second specimen. 
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The inelastic behavior during shakedown testing was investigated using two 

methods to estimate the plastic rotation that occurred at the critical locations.  This also led 

to estimates of the variation of the moment of inertia and the redistribution moments that 

developed during testing.  It was found that plastic rotations of up to 0.0122 radians and 

0.0155 radians occurred in positive bending at the load points and in negative bending at 

the interior support, respectively.  Additionally, the moment of inertia was found to 

decrease slightly with increasing loads, likely a result of cracking of the concrete deck and 

possibly also from slight losses in composite action.  The estimated redistribution moments 

were significantly smaller than the predicted values, likely because of the assumptions 

made in the prediction calculations. 

The investigation into the behavior within the groups of connectors included 

computing the total amount of force transmitted by the connector groups, comparing the 

distribution of connector force and slip within a group, and observing the cross-sectional 

behavior within a group.  Based on the total force transmitted by each group of connectors, 

it was determined that the design strength of a single connector provides a conservative 

estimate of the actual strength provided.  However, there was significant variation of the 

force estimated to be carried by each pair of connectors in a group, which is likely a result 

of the method in which these forces were calculated.  It seems that the particular groups in 

which connector failure initiated were determined by the slip of the connectors, rather than 

the force.  Finally, the complexities of the cross-sectional behavior for a partially composite 

section due to the interface slip were illustrated by the curvatures and neutral axis locations 

within a connector group. 
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CHAPTER 7: FINITE ELEMENT MODELING 

7.1 OVERVIEW 

Finite element models were developed using the general purpose finite element 

software ANSYS Mechanical (version 14.5) to further explore the behavior of continuous 

girders strengthened with post-installed shear connectors (ANSYS 2012).  These models 

were utilized primarily for two different goals.  First, elastic models were constructed to 

investigate the effects of post-installing shear connectors on the distribution of elastic 

moments in continuous girders.  Second, models using inelastic materials were developed 

to predict the experimental behavior of the two girder specimens discussed in Chapter 4, 

Chapter 5, and Chapter 6. 

Following a description of the techniques used for the modeling and analysis, this 

chapter describes the results of a parametric study on the elastic distribution of moments 

in a strengthened continuous girder.  The results from modeling of the experimental testing 

are then presented, along with a discussion of the challenges encountered, especially in 

simulating repeated inelastic behavior of the concrete deck and shear connectors. 

7.2 MODELING AND ANALYSIS TECHNIQUES 

Models were constructed primarily for two- or three-span continuous girders and 

consisted of a single prismatic steel beam with a concrete deck, as shown in Figure 7-1.  

Post-installed shear connectors were added to create composite action.  The following 

sections describe the details of the element types and material models used for the steel, 

concrete, and connectors.  Additionally, boundary and loading conditions are discussed, 

along with analysis techniques.  The results of the finite element simulations were validated 

using problems with known solutions, such as the limit state of plastic collapse under 

monotonic loading and shakedown behavior under repeated loading of continuous non-

composite girders.  Partially composite modeling techniques were validated against 

experimental data from the simply supported girder tests discussed in Section 2.3.2 (Kwon 

2008). 
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Figure 7-1: Typical Finite Element Model 

7.2.1 Steel Beam 

The steel beam was modeled using 4-node shell elements (SHELL181) with six 

degrees of freedom, or three translations and three rotations, at each node.  This element, 

which has five integration points through the shell thickness, considers bending, 

membrane, and shear deformations, and is capable of attaining large strains and rotations 

in nonlinear applications.  A full integration scheme with incompatible modes was used to 

improve accuracy in the bending-dominated analysis.  A mesh size of 10-15% of the beam 

depth was used for both the web and for the flanges, with approximately square elements. 

For elastic analyses, an elastic material model was used for the steel beam, using 

the elastic properties shown in Figure 7-2.  For inelastic analyses, an elastic-perfectly 

plastic, bilinear kinematic hardening relationship was used for the material model for a 

uniaxial state of stress, with parameters as defined in Figure 7-2.  The yield stress used in 

each model was taken as the measured yield stress from tensile coupons given in Table 4-

1 and Table 4-2.  A very small value, which was many orders of magnitude smaller than 

the elastic modulus, was used for the strain hardening modulus to achieve convergence.  

This relationship is a reasonable representation of the stress-strain behavior of steel for 

values of strain that do not exceed the onset of strain hardening.  Yielding under multi-

axial states of stress is based on the von Mises (J2) yield criterion (von Mises 1913). 
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Figure 7-2: General Material Definition for Steel Beam 

7.2.2 Concrete Deck 

Eight-node solid elements with three translational degrees of freedom at each node 

were used to model the concrete deck.  Generally, a mesh size of 5-10% of the deck width 

was used.  The deck was divided into at least three elements through the thickness to 

provide accuracy under bending deformations.  For elastic analyses, an elastic material 

model was used for the concrete deck.  An elastic modulus of 3120 ksi was used to 

represent the stiffness of concrete with a nominal compressive strength of 3 ksi.  A nominal 

Poisson’s ratio of 0.2 was also used in all elastic and inelastic analyses. 

For inelastic analyses, a variety of material models were used in attempts to attain 

convergence, accuracy, and computational efficiency for different loading conditions.  
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1. The “cast iron plasticity” model, which is a metal plasticity model that allows 

for different hardening behavior in tension and compression.  Although this 

model is well-suited for monotonic loading conditions, it provides a poor 

definition of the material behavior under repeated inelastic loading, because it 

represents cracking and crushing as ductile yielding through the accumulation 

of fictitious plastic strain. 

2. The “concrete” model, which is a smeared cracking model based on the multi-

axial state of stress that can be defined in conjunction with smeared 

reinforcement in three perpendicular directions.  While this model better 

represents the actual inelastic behavior of the concrete material than does the 

cast iron plasticity model, localized damage due to stress concentrations in the 

vicinity of the shear connector elements resulted in poor convergence, 

especially during unloading steps. 

3. The “microplane” model, which enforces uniaxial stress-strain laws on many 

planes oriented in different directions in an element.  In a similar manner to the 

“concrete” model, this model provides a reasonable estimate of the actual 

behavior in the inelastic range, but was difficult to achieve convergence with, 

especially upon unloading. 

Multilinear Elastic Material Model 

It was ultimately realized that the large computational demand associated with the 

inelastic concrete material models could be significantly reduced by developing a simpler 

multilinear elastic material model to approximate the effects of the concrete deck without 

simulating any specific localized cracking.  Large inelastic stresses and strains are not 

expected to occur in the concrete deck in partially composite girders, even at large loads, 

because the strength is controlled by the shear connectors.  Consequently, using an elastic 

material model for the concrete is expected to be a reasonable approach.  An exception to 

this is that large localized inelastic demands may occur in the concrete deck in the vicinity 

of the shear connectors.  However, for the modeling approach used herein, the effects of 

any inelasticity in the concrete around the shear connectors on the local response of the 

connectors is included, in an approximate way, in the shear connector model described in 

the next section. 
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The multilinear elastic material model in ANSYS is defined by discrete stress-strain 

points, and the behavior must be the same in tension and compression.  It is compatible 

with SOLID65 elements, which are capable of cracking, crushing, and plastic deformation, 

although none of these attributes were used.  For simplicity, a bilinear, elastic-perfectly 

plastic model was chosen with a strain hardening modulus of many orders of magnitude 

smaller than the elastic modulus to promote convergence.  Thus, the main parameters that 

are needed to define the model are the effective elastic stiffness and the effective maximum 

stress.  To adequately simulate the contribution of the deck to the overall stiffness of the 

girder under low levels of load, the effective elastic stiffness was taken as equal to the 

elastic stiffness of the actual concrete in the deck.  The effective maximum stress was 

determined so that the flexural capacity (𝑀𝑝) of the effective deck is equal to that of the 

actual deck for a particular expected value of the axial load (𝑃) in the deck at the ultimate 

strength of the section.  This is illustrated in Figure 7-3, in which 𝑇 is the plastic tensile 

force developed in the bottom mat of the deck reinforcement, 𝑓𝑐
′ is the compressive strength 

of the actual deck, and 𝑓𝑐𝑒
′  is the maximum stress in the effective deck.  

 

Figure 7-3: Equivalent Effective Deck Section for Multilinear Elastic Material Model 
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location of maximum positive moment, and consistent material properties were used for 

the deck along the entire length of the girder.  Because the deck only contributes a minimal 

amount of strength in the non-composite negative moment regions, there is only a small 

error introduced by this assumption.  Figure 7-4 shows the multilinear elastic material 

models used to represent the behavior of the deck in the predictions for the experimental 

testing discussed in Section 7.4.  This effective material model was validated against data 

from previous experimental testing of simply supported girders strengthened with post-

installed shear connectors (Kwon 2008) and compared favorably to simulations using the 

cast iron, concrete and microplane material models. 

 

Figure 7-4: Sample Material Definition for Concrete Deck – Multilinear Elastic 

Material Model 
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The post-installed shear connectors were represented by nonlinear translational 

spring elements (COMBIN39).  These are unidirectional longitudinal or torsional spring 

elements with a generalized, user-defined nonlinear force-deformation behavior. 

-2

-1

0

1

2

-0.003 -0.002 -0.001 0 0.001 0.002 0.003

St
re

ss
 (

ks
i)

Strain (in/in)

First specimen

Second specimen

Specimen
1 2

Effective elastic stiffness (ksi) 3,910 2,850
Poisson’s ratio 0.2 0.2
Effective compressive strength (ksi) 1.6 1.4



 144 

Each connector was defined by two longitudinal spring elements: one in the 

longitudinal direction (parallel to the girder line) and one in the transverse direction 

(perpendicular to the girder line).  These spring elements connected the centerline of the 

shell element representing the top flange of the steel beam to the underside of the solid 

elements of the concrete deck.  Relative vertical displacement between the top flange of 

the girder and the deck was prevented using constraint equations, effectively eliminating 

any uplift of the deck in the model.   

For elastic analyses, a stiffness of 900 kips per inch was used for these springs, 

based on observations during the small-scale fatigue testing conducted in an earlier phase 

of this research (Patel 2013).  For inelastic analyses, the force-deformation behavior 

defined for these elements was based on small-scale static testing of single adhesive anchor 

connectors from previous research, and is shown in Figure 7-5 (Kwon 2008).  Hysteretic 

behavior is modeled using the option to unload along a path parallel to the initial slope.  If 

reloading occurs before the sign of the force in the element changes, the reloading path will 

follow the unloading path back to the original curve.  However, if the sign of the force in 

the element does change before reloading occurs, the element does not retain knowledge 

of the loading history, and the reloading follows the original force-deformation curve that 

passes through the origin.  Because the reversed loading behavior of adhesive anchor shear 

connectors in the inelastic range has not been adequately tested, it is unclear how accurate 

this spring element represents the behavior.  However, the load-slip behavior from reversed 

load fatigue testing conducted by Patel (2013) indicates that this may be a reasonable 

approximation.  These nonlinear spring elements have infinite ductility as defined here and 

are thus not able to simulate connector failure. 
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Figure 7-5: Force-Deformation Behavior of Shear Connector Springs 
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support.  Translation in the out-of-plane direction was prevented by defining a boundary 

condition of zero displacement at a single node at mid-depth of the web at each of the 

exterior supports.  This also prevents global rotation about the vertical axis.  Global rotation 

about the longitudinal and horizontal axes was prevented by placing elastic springs with 

small values of stiffness under the extreme edges of the concrete deck at both ends of the 

girder.  These springs were comprised of COMBIN14 elements, which are longitudinal or 

torsional uniaxial spring-damper elements.  The longitudinal option was chosen in the 

vertical direction, and a spring stiffness of 0.001 kip per inch was used. 

Self-weight of the steel beam and concrete deck were not directly included in the 

model to simplify the loading process.  This is because the self-weight is carried by the 

non-composite section, prior to installing the connectors, while the other loads are resisted 

by the partially composite section, after installing the connectors.  Instead, the yield stress 

of the steel was reduced by an amount equal to the extreme fiber stress in the non-composite 

section under the self-weight only.  This reduction was different for positive and negative 

bending regions for each girder and varied from 4 ksi to 10 ksi. 

Concentrated loads were applied to the girder as pressure loads on 12-inch square 

by 1.5-inch thick plates.  These are the dimensions of the plates used to apply load in the 

experimental testing.  These plates were comprised of SOLID45 elements, which are 

general eight-node solid elements with many capabilities that were not used here.  A simple 

elastic material model for steel was used for these plates, which were placed at the loading 

points on top of the concrete deck to avoid the direct application of concentrated forces to 

the deck. 

While the majority of the models were run under load control, simulations of the 

experimental testing at the ultimate strength limit state were conducted under deflection 

control.  This was done by specifying a vertical deflection at the center of the loading 

plates. 

7.2.5 Analysis Procedure 

All simulations were conducted as nonlinear static analyses, with the only 

nonlinearities coming from the material models.  ANSYS uses a Newton-Raphson iterative 

method for seeking equilibrium solutions during a simulation.  The geometry was 

considered to be linear for all analyses.  The sparse direct solver was used for all analyses, 
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and automatic time stepping was used to determine the magnitude of change for each 

iteration. 

7.3 ELASTIC DISTRIBUTION OF MOMENTS IN PARTIALLY COMPOSITE GIRDERS 

It is common practice when evaluating or load rating existing bridge girders to carry 

out the structural analysis using line elements that represent a single girder.  Conducting 

this type of structural analysis on a continuous, statically indeterminate system requires an 

estimation of how the flexural stiffness is distributed along the girder.  Changes in the 

distribution of stiffness affect the elastic distribution of moments, with stiffer portions of 

the structure attracting larger moments. 

 For non-composite girders, the flexural stiffness at each location along the girder 

can be simply defined as the product of the moment of inertia of the cross section of the 

steel beam and the elastic modulus of steel.  Additionally, for fully composite girders, the 

transformed moment of inertia of the composite cross section can be used to define the 

flexural stiffness at any location along the girder in the same manner.  However, the 

moment of inertia of a partially composite cross section is difficult to define because plane 

sections do not remain plane due to the slip that occurs at the steel-concrete interface, as 

discussed in Section 6.3.3.  An effective moment of inertia for a partially composite girder 

can be estimated using Equation 2-5, but it is unclear the extent to which that this moment 

of inertia is applicable along the length of a continuous girder.  The behavior becomes even 

more complex when the connectors are concentrated in groups, rather than distributed 

uniformly along the girder.  Thus, it is difficult to define the appropriate flexural stiffness 

parameters to be used when conducting a line element structural analysis of a strengthened 

girder. 

To better understand this behavior, a parametric finite element study was 

undertaken to investigate the effects of post-installing shear connectors on the elastic 

distribution of moments in strengthened girders.  The main objective of this study was to 

make recommendations regarding how to conduct a structural analysis to design and 

evaluate girders strengthened with post-installed shear connectors.  These studies included 

both 3D finite element modeling in ANSYS and line element modeling in RISA-2D (RISA 

2002).  In the 3D models, the connectors are discretely represented in a layout 

recommended by the design provisions given in Chapter 8.  In the line element models, the 

effects of post-installing connectors are represented by using different values of flexural 
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stiffness at different locations along the girder.  In these models, the elastic modulus for 

the steel-concrete section was taken as the elastic modulus of steel (29,000 ksi), and the 

moment of inertia was varied to represent different values of flexural stiffness. 

7.3.1 Description of Models for Parametric Study 

Three different girder geometries were chosen from the bridge survey discussed in 

Section 3.2 with different exterior-to-interior span ratios, as shown in Table 7-1.  Although 

the interior span of Girder A is longer than the exterior spans, this girder represents 

geometries with effectively equivalent span lengths, because the moment envelope under 

bridge live load creates approximately equal maximum moments in all spans.  Girders B 

and C represent bridge girders with relatively short and long interior spans, respectively. 

The composite ratio was varied independently in the interior and exterior spans at 

the values indicated in Table 7-2, representing the range of non-composite to fully 

composite.  Figure 7-6 shows the connector layout used in all 3D FEA models.  Each line 

element analysis was conducted once using the stiffness distribution of the non-composite 

girder and once using a distribution in which the stiffness of the positive moment regions 

was taken as that of the composite section (𝐼𝑒𝑓𝑓), calculated using Equation 2-5, while the 

stiffness of the negative moment regions was taken as that of the non-composite section, 

or the steel beam only (𝐼𝑠).  This is illustrated in Figure 7-7.  The dead load inflection points 

were used to locate the transition between the positive and negative moment regions in 

these analyses.  In cases where a span has a composite ratio of zero, the stiffness in the 

positive moment region was taken as the stiffness of the non-composite section (𝐼𝑒𝑓𝑓 = 𝐼𝑠). 

Concentrated loads of 100 kips were applied to each girder in all analyses in 

configurations that cause large positive moments in the exterior span (case I), large 

negative moments at the interior supports (case II), and large positive moments in the 

interior span (case III).  The locations of these loads are indicated in Figure 7-8.  The 100-

kip load magnitude was an arbitrary choice, since the analyses were conducted under fully 

elastic conditions, but maintaining a consistent value of load enabled direct comparison of 

the results from each analysis. 

The concrete deck was considered uncracked along the entire length of the girder 

in the 3D FEA model.  This is consistent with the recommendations given in Section 4.5.2.2 

the LRFD Bridge Design Specifications (AASHTO 2010).  The elastic stiffness of the deck 

was computed using a concrete compressive strength of 3 ksi. 
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Table 7-1: Girder Geometry for Parametric Study 

Girder 
Span Length (ft) Steel 

Shape 

Deck Dimensions (in) 

Exterior Interior Width Thickness 

A 70 90 W36x150 96 6.5 

B 50 50 W30x116 96 6.5 

C 60 100 W36x150 104 6.5 

 

Table 7-2: Post-Installed Shear Connectors for Parametric Study 

Girder 
Number of Connectors per Group 

𝜼 = 𝟎 𝜼 ≈ 𝟎. 𝟑 𝜼 ≈ 𝟎. 𝟔 𝜼 ≈ 𝟏. 𝟎 

A 0 16 32 52 

B 0 12 24 40 

C 0 16 32 52 

 

 

Figure 7-6: Connector Layout for 3D FEA Models in Parametric Study 

Pairs of connectors 
spaced @ 12” (typ.)

0.15 0.156”

Symmetric about 
center line



 150 

 

Figure 7-7: Stiffness Distributions for Line Element Models in Parametric Study 

 

Figure 7-8: Loading Cases for Parametric Study 
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each of the two stiffness distributions shown in Figure 7-7.  The reaction forces from each 

analysis were used to draw a bending moment diagram and determine the peak moment for 

each case.  The peak moment is of most interest because it will often control the load rating 

of a girder.  For loading Cases I and III, the peak moment was taken as the positive moment 

at the point of the applied load, in the exterior or interior span, respectively.  For loading 

Case II, the peak moment was taken as the negative moment at the interior support.   

The peak moments from all analyses of the strengthened girder were compared to 

that of the non-composite girder to evaluate the effects of post-installing shear connectors 

on the elastic distribution of moments.  Figure 7-9 shows a bar graph indicating the 

difference in the peak moments between each line element analysis and the corresponding 

3D FEA model for Girder A.  The horizontal axis of this figure indicates the different 

combinations of composite ratios in the exterior and interior spans.  The percent difference 

was calculated using the FEA model as a baseline, as this model was assumed to provide 

the most accurate moments for design.  A positive percentage in the graph indicates that 

the peak moment from the line element analysis was greater than that obtained from the 

FEA model, and vice versa.  The blue and red bars represent the line element analyses 

conducted using the non-composite and composite stiffness distributions, respectively.  

The composite ratios for the exterior and interior spans in each analysis are denoted at the 

bottom of the figure. 

Note that while only the results from Girder A are presented here, similar results 

were obtained from Girders B and C.  Bar graphs indicating the results from these two 

girders are shown in Figure C-2 and Figure C-3 in Appendix C. 
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Figure 7-9: Comparison of Peak Moments from 2D and 3D Analyses for Non-

Composite and Strengthened Girder A 
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The graphs indicate that the peak moment in the exterior span (loading Case I) is 

not particularly sensitive to the stiffness distribution.  For all combinations of composite 

ratios in the exterior and interior spans, the difference in the peak moment between the line 

element analysis and the 3D FEA model is below 5%, regardless of the stiffness 

distribution used in the line element analysis.  This is likely because the flexibility of the 

pinned end of the exterior span prevents significant stiffening of the entire span from any 

composite action developed through post-installing shear connectors. 

However, larger differences can occur in the peak moment determined through 3D 

FEA modeling and line element analysis at both the interior support and the interior span.  

As can be seen in the figure, the trends for a strengthened girder can be categorized in two 

distinct groups.  The first group includes all cases in which both the exterior and interior 

spans have a composite ratio of at least 0.3.  For all combinations of composite ratios in 

the exterior and interior spans that fall into this category, the peak moment in the line 

element analysis is estimated to within 2% of that from the 3D FEA model using the non-

composite stiffness distribution.  Differences in the peak moment of more than 20% can 

occur if the composite stiffness distribution is used for these analyses.  The second group 

includes all cases in which one span has a composite ratio of at least 0.3 while the other is 

not strengthened and thus has a composite ratio of zero.  In these cases, the peak moment 

in the line element analysis was no more than 4% different than that from the 3D FEA 

model when the composite stiffness distribution is used.  Up to a 15% difference in the 

peak moment can occur if the non-composite stiffness distribution is used in this case. 

Although the reasons for these trends are not perfectly clear, it seems that when all 

spans have a composite ratio of at least 0.3, this leads to a significant stiffening effect along 

the entire length of the girder, rather than distinctly stiffening the positive moment regions 

without modifying the behavior of the negative moment regions.  Thus, for these cases, the 

non-composite stiffness distribution, which does not distinguish between positive and 

negative moment regions, provides a better estimate for the elastic distribution of moments 

than does the composite stiffness distribution, which has discretely different stiffness in 

positive and negative moment regions.  However, when some but not all spans have a 

composite ratio of at least 0.3 while the remaining spans have a composite ratio of zero, 

significant stiffening seems to occur only in positive moment regions with little effect on 

the behavior in the negative moment regions.  For these cases, the discretely varying 

composite stiffness distribution provides a better estimate of the elastic distribution of 

moments than does the non-composite stiffness distribution. 
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7.3.3 Analysis Recommendations 

These results indicate that for girders in which all spans are strengthened with post-

installed shear connectors, the non-composite stiffness distribution can be used in a line 

element analysis to determine the flexural demand for a strengthening design.  This is 

convenient because it does not require a separate structural analysis for the existing and 

strengthened structures.  However, if only some of the spans are strengthened with post-

installed connectors, it is likely that using the non-composite stiffness distribution will lead 

to significant errors in the design moments.  Thus, it is recommended to conduct a separate 

structural analysis for the strengthened structure using the effective composite stiffness 

(𝐼𝑒𝑓𝑓) in spans that will be strengthened and the non-composite stiffness in spans in which 

no shear connectors will be added. 

7.4 INELASTIC BEHAVIOR OF STRENGTHENED GIRDERS 

Finite element modeling in ANSYS was also used to predict the results of the 

experimental testing of the two large-scale girder specimens.  Although similar simulations 

were run prior to the testing to aid in the design of the specimens and the test program, the 

results presented here are from analyses conducted after the experimental testing was 

complete, which follow the exact same loading program as used in the testing.  The 

modeling techniques and parameters were not changed to provide a better match with the 

experimental data.  Instead, the procedures described in Section 7.2 that had previously 

been developed and validated using simple problems and previous experimental results 

were used in these predictions with no alterations.   

Modeling repeated inelasticity of strengthened girders at the shakedown limit state 

presented some challenges.  Generally, it was difficult to maintain computational efficiency 

and attain convergence at each load step while also simulating reasonably accurate 

behavior of the individual elements and materials.  This was found to be particularly 

challenging for the concrete deck, which was ultimately modeled as a multilinear elastic 

material, which simulated the effect of the deck on the overall behavior of the girder to 

promote convergence and efficiency, as discussed in Section 7.2.2.  Additionally, some 

uncertainty arises in the load-slip behavior of the nonlinear spring elements used to 

represent the shear connectors, as discussed in Section 7.2.3.  However, due to the lack of 

experimental data regarding the behavior of adhesive anchor connectors, the extent of this 
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uncertainty is unclear.  These nonlinear spring elements also have unlimited ductility and 

thus were not able to simulate connector failure, as is evident in the results presented here. 

The figures in this section provide graphs that compare the data obtained during the 

experimental testing and the computational modeling in ANSYS.  Figure 7-10 shows a 

comparison of the load-deflection behavior for both specimens during shakedown loading.  

Overall, a good match is seen between the experimental and computational results in the 

peak load-deflection behavior during shakedown loading.  Slightly larger deflections 

tended to occur during the experimental testing than in the computational models at loads 

beyond first yield.  However, under large load levels during the south span loading of the 

first specimen, the computational deflections increase beyond those observed 

experimentally. 

Additionally, significantly fewer cycles were required to achieve shakedown for 

the computational modeling than for the experimental testing.  This is illustrated in Figure 

7-11, which shows the change in peak deflection from one cycle to the next at the predicted 

shakedown limit load in the north span of the first specimen.  Seven cycles were required 

to achieve shakedown during the experimental testing, while only three cycles were 

required in the computational model.  
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Figure 7-10: Comparison of Experimental and Computational Load-Deflection 
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Figure 7-11: Comparison of Experimental and Computational Deflection Change at 

the Shakedown Limit Load during North Span Loading of the First Specimen 
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Figure 7-12: Comparison of Experimental and Computational Load-Deflection 

Behavior during Ultimate Strength Loading 
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regardless of the force-slip history of the element, as discussed in Section 7.2.3.  Figure 

7-14 illustrates examples of intact (a) and failed (b) connectors during ultimate strength 

loading in the south span of the first specimen.  This figure highlights the key discrepancies 

in the behavior between the experimental and computational results when unloading and 

reloading the connector as well as the lack of connector failure in the computational model. 

 

Figure 7-13: Comparison of Experimental and Computational Connector Behavior 

during Shakedown Loading – (a) Poor Representation of Behavior due to Force 

Reversal, and (b) Good Representation of Behavior with No Force Reversal 
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Figure 7-14: Comparison of Experimental and Computational Connector Behavior 

during Ultimate Strength Loading – (a) Typical Intact Connector, and (b) Typical 

Failed Connector 
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 Continue exploring the use of inelastic material models for the concrete deck to 

attain both convergence and acceptable levels of computational efficiency. 

7.5 SUMMARY 

Finite element modeling was conducted using ANSYS to simulate continuous 

bridge girders strengthened with post-installed shear connectors.  The modeling and 

analysis techniques used were validated using simple examples and a limited amount of 

experimental testing conducted previously.  The models were used both to investigate the 

effects of post-installing shear connectors on the elastic distribution of moments in a 

continuous girder and to predict the behavior of the experimental testing. 

From the parametric study conducted regarding the elastic behavior of strengthened 

girders, it was concluded that post-installing shear connectors in concentrated groups does 

not seems to have a significant effect on the elastic distribution of moments in many cases.  

In particular, if all of the spans have a composite ratio of at least 0.3, the peak moment in 

the partially composite strengthened girder can be estimated with less than 5% error by the 

elastic moment distribution of the non-composite girder.  However, if one or more spans 

remain non-composite while others are strengthened to a composite ratio greater than 0.3, 

the composite stiffness distribution indicated in Figure 7-7 provides significantly more 

accuracy in the elastic distribution of moments. 

The computational simulations of the experimental testing yielded comparable 

overall results under both shakedown and ultimate strength loading.  This occurred despite 

the fact that some approximations were made in the computational model that differ from 

the physical properties of the system.  These approximations include (1) the use of a 

multilinear elastic material model that represents the effects of the concrete deck on the 

overall behavior of the girder without explicitly modeling localized damage, (2) the force-

slip model used for the connectors that unrealistically returns to zero slip when the force 

changes sign, and (3) a boundary condition that provides vertical support to all nodes 

through the web of the girder at the centerline of the interior supports to minimize local 

inelastic deformations from large concentrated reaction forces.  The good comparability 

observed between the computational modeling and experimental testing indicate that the 

model is likely not sensitive to these approximations, although further study would be 

necessary to confirm this.  Additionally, further work could be done to improve the 

computational model to minimize or eliminate these approximations. 
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CHAPTER 8: DESIGN APPROACH AND RECOMMENDATIONS 

8.1 OVERVIEW 

Recommendations for designing a strengthening scheme for existing non-

composite continuous steel I-girder bridges were developed based on the preliminary 

strengthening studies, experimental testing, and finite element modeling, as described in 

earlier chapters of this dissertation.  These recommendations and a general design 

procedure are summarized in this chapter, along with recommendations for installation of 

adhesive anchor shear connectors.  A detailed design example with sample calculations is 

provided in Appendix D. 

8.2 RECOMMENDED STRENGTHENING DESIGN PROCEDURE 

The recommended design procedure for strengthening existing bridges with post-

installed shear connectors and moment redistribution is summarized in Figure 8-1.  This 

procedure was developed considering primarily the flexural strength of the bridge girders 

and the fatigue strength of the post-installed shear connectors.  Girder shear strength and 

the behavior of other bridge components are not explicitly included here, but should be 

checked as needed. 

 

Figure 8-1: Design Procedure 
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can be chosen to meet the needs of a particular bridge or situation, allowing for flexibility 

in the procedure for a variety of cases.  In this research project, an AASHTO HS 20 load 

was used to be consistent with the Load Factor Design and Rating methods from the 

Standard Specifications for Highway Bridges (AASHTO 2002). 

The moving load analysis can be conducted in any manner desired by the designer.  

As described in Section 7.3, a simple line element analysis using the non-composite 

flexural stiffness adequately represents the distribution of forces along the length of the 

girder in both the non-composite existing bridge as well as the partially composite 

strengthened bridge, assuming post-installed shear connectors are used in all spans.  The 

appropriate distribution factors should be applied for interior and exterior girders.  This 

type of simple analysis works well for straight girder bridges with a fairly symmetric span 

layout.   

A more rigorous live load analysis can be conducted using software with 3D 

modeling capabilities, such as SAP2000, which can explicitly model the steel beams, 

concrete deck, and shear connectors (CSI 2011).  This type of analysis may be particularly 

useful for bridges with complex geometries.  However, it requires an initial guess of the 

number and layout of the shear connectors to be made, leading to an iterative design 

procedure.  It is recommended to run separate analyses for the non-composite existing 

bridge and for the partially composite strengthened bridge, because the moment envelopes 

may vary based on the location of the shear connectors.  This may be especially true for 

asymmetric span layouts or if the composite ratio varies greatly along the length of the 

strengthened bridge.  In any 3D model, it is recommended that each adhesive anchor shear 

connector be represented as a linear elastic spring with a stiffness of 900 kips per inch.  

Alternatively, a pair of connectors in the same cross section can be combined into a single 

spring with a stiffness of 1800 kips per inch. 

8.2.2 Evaluate Existing Bridge 

Using the results from the live load analysis, the strength of the existing bridge can 

be determined by conducting a load rating.  For the purposes of this research, the Load 

Factor Rating method was used, as specified in the Manual for Bridge Evaluation 

(AASHTO 2011).  The limit states of Overload and Maximum Load were both considered 

in the load rating process.  The Overload limit state prevents excessive permanent 

deformations of the bridge under typical levels of load and corresponds to the Service II 
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limit state in the LRFD Bridge Design Specifications (AASHTO 2010).  The Maximum 

Load limit state is a reflection of the maximum carrying capacity of the bridge and 

corresponds to the Strength I limit state in the LRFD specifications when only considering 

gravity loads. 

Fatigue was not considered in the evaluation of existing bridges during this 

research, but can be if desired.  The Manual for Bridge Evaluation provides guidelines on 

evaluating the remaining fatigue life for critical details of existing bridges (AASHTO 

2011).  Recently proposed revisions to these guidelines are available through research 

conducted by the National Cooperative Highway Research Program (NCHRP 2012). 

8.2.3 Set Targets for Strengthened Bridge 

Once the existing bridge has been evaluated, targets for the strength and remaining 

life of the strengthened bridge should be established before beginning the strengthening 

design process.  These targets can be chosen to accommodate any particular case, but it is 

recommended that both strength limit states for the girders and fatigue limit states for the 

post-installed shear connectors are considered.  For fatigue of the post-installed shear 

connectors, a projected average daily truck traffic in a single lane ((𝐴𝐷𝑇𝑇)𝑆𝐿) of the bridge 

over the expected remaining life should be estimated. 

Throughout the majority of the research discussed here, a strengthening target of 

attaining an inventory load rating of HS 20 was chosen as an upper bound of the 

strengthening requirements that a bridge owner might consider.  A bridge with an inventory 

rating of HS 20 has a load-carrying capacity meeting the design requirements for a new 

bridge designed with the Load Factor Design method from the most recent edition of the 

AASHTO Standard specifications.  For fatigue, no specific strengthening targets were 

consistently used, as this will vary depending on the desired remaining bridge life and the 

projected truck traffic over that life for the particular bridge of interest. 

8.2.4 Conduct Additional Live Load Analysis (If Necessary) 

If the target strength live load is of the same type as the live load used in the analysis 

of the existing bridge, there is often no need to conduct additional analysis.  As shown in 

Section 7.3, post-installing groups of shear connectors near the ends of the positive moment 

regions to develop partially composite action does not significantly change the elastic 

distribution of moments within a continuous girder in many cases.  This is true for straight 
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girders with reasonably symmetric span layouts that require post-installed shear connectors 

in all spans.  For other cases, more rigorous modeling may be necessary. 

However, if the target strength live load is of a different type than the live load used 

in the analysis of the existing bridge, a new live load analysis must be conducted prior to 

beginning the strengthening design.  For example, this would be the case if the non-

composite bridge was evaluated using an HS 20 live load, but the strengthening target is 

an HL-93 live load. 

8.2.5 Check Negative Moment Regions and Redistribute Moments 

To begin the design of the strengthened bridge, the first step is to check the negative 

moment regions around the interior piers.  If the capacity of the existing non-composite 

girder exceeds the demand from the moment envelope at all pier locations, the negative 

moment regions can be deemed acceptable in terms of strength, and the design can proceed 

to the positive moment regions. 

Otherwise, if the demand from the moment envelope at any of the interior pier 

locations exceeds the capacity of the existing non-composite girder, inelastic moment 

redistribution is required.  It is recommended that the provisions of Appendix B6 of the 

AASHTO LRFD specifications be used for moment redistribution.  These provisions 

require that the bridge is straight with no more than a 10° skew, and that the interior pier 

sections are well-braced, meet slenderness limits, and have bearing stiffeners.  Based on 

the results from the bridge survey, these provisions are generally already satisfied in most 

existing bridges with the exception of the support skew angle limit, the bearing stiffener 

requirement, and often the lateral bracing requirements.  In many cases, bearing stiffeners 

and/or additional lateral bracing will need to be added to the bridge as part of the 

strengthening process.  These requirements ensure that the interior pier sections have 

adequate inelastic rotation capacity for moment redistribution to occur. 

The provisions also limit the amount of moment redistribution to 20% of the elastic 

moment, a requirement that does not seem to be restrictive for strengthening the surveyed 

bridges.  This limitation prevents serviceability problems from arising due to excessive 

permanent deflections caused by the inelastic deformations at the interior piers and 

prevents local buckling from occurring at the interior supports due to excessive inelastic 

rotational demands.  By following the procedure outlined in the specifications, the 

“redistribution moment diagram” can be drawn, as detailed in Section 2.5.2.  These 



 166 

redistribution moments are then added to the design moment envelope for the remainder 

of the design.  Note that inelastic moment redistribution can occur at both the Overload 

and Maximum Load limit states, although the capacities and moment envelopes will be 

different between the two cases.  This process is illustrated in detail in the design example 

provided in Appendix D. 

8.2.6 Design Connectors for Positive Moment Regions 

The next step in the design is focused on strengthening the positive moment regions 

near the middle of the spans by adding shear connectors and creating composite action.  To 

begin this process, the required strength in these regions is determined from the design 

moment envelope, including the redistribution moments if applicable.  Simple plastic 

cross-sectional analysis is then used to determine the number of connectors needed to attain 

the required strength, as described in Section 1.2.2 and illustrated in Appendix D.  The 

following equation was recommended by Kwon et al. (2009) for the design strength of a 

single post-installed shear connector (𝑄𝑛): 

𝑄𝑛 = 0.5𝐴𝑠𝑐𝐹𝑢 Equation 8-1 

where 𝐴𝑠𝑐 is the effective shear area of the connector, taken as 80% of the nominal area for 

the threaded rod adhesive anchor connectors, and 𝐹𝑢 is the specified nominal tensile 

strength of the connector material. 

Note that the maximum strength of a fully composite girder is controlled by the 

properties of the steel beam and concrete deck, rather than the shear connectors.  If the 

required strength in any of the positive moment regions exceeds the strength of the fully 

composite cross-section, adding more shear connectors will not result in any further 

strength gain.  Along with the 20% limit on moment redistribution, the strength of the fully 

composite section places an upper limit on the potential strength increase that can be 

achieved for a particular bridge. 

8.2.7 Locate Connectors along Bridge 

After the strength design is complete, the connectors must be laid out along the 

girders before the fatigue limit state can be checked.  The following recommendations for 

connector layout, illustrated in Figure 8-2, are made based on parametric studies conducted 

by Ghiami Azad (2016): 
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 Connectors should be placed in pairs, with one on either side of the web at every 

location.  It is recommended that general AASHTO requirements regarding 

clear cover, edge distance, and minimum transverse spacing are followed.  A 

transverse spacing of approximately 6 inches was used in all laboratory testing 

for beams with 10- to 11-inch wide flanges. 

 It is recommended that connectors are concentrated near points of zero or low 

moment, rather than distributed uniformly through the positive moment 

regions, to improve the ductility of the strengthened girders. 

 A longitudinal spacing of approximately 12 inches is recommended between 

pairs of concentrated connectors.  However, analysis indicates that the behavior 

is not significantly affected by slight changes in spacing, provided that the 

connectors are still effectively concentrated near points of low moment.  All 

laboratory testing was conducted with 12- or 24-inch spacing.  Choosing a 

connector spacing that is a multiple of the transverse rebar spacing will help 

avoid bars during construction. 

 At the ends of continuous units, the connector group should be located as close 

as possible to the end of the steel beam.  It is recommended to take this distance 

as one-half of the longitudinal spacing of the connectors.  The minimum 

longitudinal distance from the centerline of the support to the first connector 

pair used in the laboratory testing was 6 inches. 

 The most efficient location for the interior connector groups is typically when 

the connector closest to the interior support is located approximately 15% of 

the span length away from that support.  For high composite ratios or large 

connector spacing, the group should be moved closer to the interior support.  

However, it is not recommended that the connector closest to the interior 

support is located closer than 10% of the span length from that support, as this 

significantly increases the fatigue demand on the connectors, based on the 

AASHTO LRFD specifications. 

 Constructability and accessibility in the field should be considered when 

choosing a connector layout.  If possible, the site should be visited to identify 

potential problems that may arise during connector installation.  The use of a 

rebar locator is highly recommended to slightly modify the layout to avoid 

reinforcing bars in the deck during construction. 
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Figure 8-2: Recommended Connector Layout 

8.2.8 Check Fatigue Strength of Connectors 

Once a connector layout has been chosen, an analysis is conducted under fatigue 

loading, and the connectors are checked at the fatigue limit state.  The following fatigue 

design provisions for post-installed adhesive anchor shear connectors have been 

recommended based on recent testing of adhesive anchor shear connectors (Kreitman et al. 

2016).  The provisions follow a parallel format to the general fatigue design provisions in 

Section 6.6 of the AASHTO LRFD specifications, rather than the shear stud provisions in 

Section 6.10.10. 

To determine which load combination is used for design, a limiting value of the 

average annual daily truck traffic in a single lane ((𝐴𝐷𝑇𝑇)𝑆𝐿 𝑙𝑖𝑚𝑖𝑡) is calculated based on 

the expected remaining bridge life in years (𝑌): 

(𝐴𝐷𝑇𝑇)𝑆𝐿 𝑙𝑖𝑚𝑖𝑡 =
8,700,000

𝑌
 Equation 8-2 

The above equation was determined by equating the fatigue resistances of the 

adhesive anchor for finite and infinite life, given in the following equations, accounting for 

the different load factors in the two load combinations, and corresponds to the values in 

Table 6.6.1.2.3-2 of the AASHTO LRFD specifications.  This limit assumes that the 

number of stress cycles per truck passage (𝑛) is equal to one, and should be divided by the 

value of 𝑛, as defined later in this section, if this is not the case. 

If the predicted average annual daily truck traffic in a single lane ((𝐴𝐷𝑇𝑇)𝑆𝐿) over 

the expected remaining bridge life in years (𝑌) is greater than the limit given in Equation 

8-2, the Fatigue I load combination is used to design for infinite fatigue life.  In this case, 

the nominal fatigue resistance ((∆𝐹)𝑛) is defined in Equation 8-3: 

Uniform spacing 
of ~12”

~0.15L1

~6”

~0.15L2

L1 L2

Uniform spacing 
of ~12”
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(∆𝐹)𝑛 = (∆𝐹)𝑇𝐻 = 15 𝑘𝑠𝑖 Equation 8-3 

If the (𝐴𝐷𝑇𝑇)𝑆𝐿 is less than the limit given in Equation 8-2, the Fatigue II load 

combination is used to design for finite fatigue life over a computed number of stress cycles 

(𝑁), defined by Equation 8-4.  Note that the Fatigue II load combination will control in 

essentially every situation, as Equation 8-2 generates very high limiting (𝐴𝐷𝑇𝑇)𝑆𝐿 values 

that are unlikely to be exceeded.  In this case, the nominal fatigue resistance ((∆𝐹)𝑛) is 

defined in Equation 8-5: 

𝑁 = (365)(𝑌)(𝑛)(𝐴𝐷𝑇𝑇)𝑆𝐿 Equation 8-4 

(∆𝐹)𝑛 = (
𝐴

𝑁
)

1
𝑚

 Equation 8-5 

where 𝐴 = 4.24 𝑥 1015 𝑘𝑠𝑖7 and 𝑚 = 7.  For continuous bridges with span lengths greater 

than 40 feet, the number of cycles per truck passage (𝑛) is taken as 1.0 for connectors 

located more than one-tenth of the span length away from an interior support.  For 

connectors located within one-tenth of the span length from an interior support, 𝑛 is taken 

as 1.5.  Note that the exponent in the equation for the Fatigue II load combination has been 

modified from 1/3 in the current AASHTO LRFD specifications to 1/7 for post-installed 

adhesive anchor shear connectors. 

The nominal fatigue resistances were derived from small-scale direct-shear testing 

done on 3/4- and 7/8-inch diameter connectors (Kayir 2006, Kwon 2008, Patel 2013).  

Caution should be used in applying these design equations to connectors outside of this 

range.  The fatigue analysis should be conducted using a procedure that explicitly considers 

the slip at the steel-concrete interface in partially composite girders, which can significantly 

reduce the force demand on the connectors.  This procedure is discussed in detail by Ghiami 

Azad (2016). 

8.3 RECOMMENDED CONNECTOR INSTALLATION PROCEDURE 

The adhesive anchor shear connectors are recommended to be comprised of 7/8-

inch diameter ASTM A193 B7 threaded rods.  A two-part structural adhesive (Hilti HIT-

HY 150-MAX or 200-R) was used in all of the experimental testing.  The connectors are 
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installed with the following procedure, illustrated in Figure 8-3, which is nearly identical 

to that used in the laboratory specimens: 

1. Drill a 1-inch diameter hole through the top flange of the steel beam at the 

connector location (a).  This can be done using a portable drill with a magnetic 

base. 

2. Through the hole in the flange, drill a 15/16-inch diameter hole into the concrete 

deck to the desired depth (b).  This can be done using a rotary hammer drill.  A 

2-inch cover to the top of the concrete deck was maintained in all laboratory 

testing, leaving an embedment depth of 4.5 inches into the deck. 

3. Clean the hole with a wire brush and compressed air, as specified by the 

adhesive installation procedures (c). 

4. Inject the adhesive into the hole using the appropriate dispenser (d).  Take care 

that the hole is filled from the top down so that no air bubbles are present.  The 

Hilti adhesive was viscous enough to not run downwards out of the hole after 

injection. 

5. Place the threaded rod into the hole using a twisting motion so the adhesive fills 

the threads (e).  The Hilti adhesive was able to hold the connector in place 

immediately after installation and has a 9-minute working time at 70°F. 

6. Allow the adhesive to cure.  The Hilti adhesive has a 1-hour cure time at 70°F. 

7. Tighten the nut to the torque specified by the adhesive (f).  The Hilti adhesive 

specifies a torque of 125 foot-pounds for 7/8-inch diameter rods. 

8. Strike the exposed threads below the nut with a grinder.  Although it is unlikely 

to occur, this will prevent any nuts that inadvertently loosen over time from 

potentially falling onto traffic or pedestrians passing under the bridge. 
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Figure 8-3: Connector Installation 

Generally, this procedure follows the installation process recommended by the Hilti 

adhesive product with a few exceptions, namely the use of a 15/16-inch diameter hole in 

the deck instead of the prescribed 1-inch diameter.  Due to the slightly enlarged head of 

the hammer drill bits, a 1-inch bit does not fit through the 1-inch diameter hole in the top 

(a) (b)

(f)(e)

(d)(c)
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flange.  To minimize the oversized hole in the flange, a 15/16-inch diameter bit was used 

for the hole into the deck. 

8.4 SUMMARY 

A design procedure for strengthening existing non-composite continuous steel I-

girder bridges was presented in this chapter along with the recommended installation 

procedure for post-installed adhesive anchor shear connectors.  Appendix D contains a 

detailed design example which illustrates the application of this design procedure to 

strengthening a non-composite bridge. 
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CHAPTER 9: SUMMARY AND CONCLUSIONS 

9.1 SUMMARY 

The behavior of continuous non-composite bridge girders strengthened with post-

installed adhesive anchor shear connectors and inelastic moment redistribution was 

studied.  The primary objectives were to explore the feasibility of this strengthening 

method, to evaluate the performance of strengthened girders, and to develop design 

recommendations for implementing such strengthening measures in existing non-

composite bridges.  A variety of theoretical, experimental, and computational tasks were 

completed as part of this investigation. 

Following a review of the relevant literature, preliminary studies were carried out 

to assess the effectiveness of this strengthening method.  A survey of 25 non-composite 

steel I-girder bridges in the state of Texas was conducted to determine typical 

characteristics of bridges that may be candidates for this type of strengthening.  Thirteen 

of these bridges were load rated both before and after strengthening to assess the feasibility 

and effectiveness of the strengthening.  These studies indicated that the proposed 

strengthening method is likely an efficient method of increasing the load rating of such 

bridges. 

Next, large-scale testing was conducted on a representative bridge girder 

strengthened with post-installed shear connectors.  While this dissertation focused on the 

experimental behavior at strength limit states, including under large repeated loads 

requiring moment redistribution and under monotonic loading to failure, the 

comprehensive testing program also included elastic and fatigue loading phases, which are 

discussed elsewhere (Ghiami Azad 2016).  Excellent performance was observed 

throughout all phases of testing, with the specimens exceeding the predicted strength at all 

limit states. 

Finite element models were also constructed to explore the elastic and inelastic 

response of strengthened girders.  These models were used to develop recommendations 

for conducting simplified structural analysis on line girder elements under elastic-level 

loads.  Prior to conducting the experimental testing, these models were also used to predict 

the behavior during that testing.  However, this was difficult to accomplish accurately due 

to the complexities of modeling repeated inelastic behavior of concrete and the shear 

connectors. 
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Finally, a design approach was recommended for strengthening existing continuous 

non-composite steel I-girder bridges, along with recommended procedures for installing 

adhesive anchor shear connectors.  A detailed design example is presented in Appendix D. 

9.2 CONCLUSIONS 

The findings of this research indicate that strengthening continuous non-composite 

steel girder bridges with post-installed shear connectors and inelastic moment 

redistribution is a feasible and efficient method of extending the useful service life of a 

bridge.  Additionally, although not discussed in detail in this dissertation, the application 

of 2 million cycles of fatigue loading did not adversely affect the strength of the post-

installed connectors.  The following points summarize the major conclusions from this 

research: 

 Many existing non-composite steel girder bridges in Texas have a significantly 

lower load-carrying capacity than is required by current design standards.  

Strengthening of these bridges may be necessary or desired to maintain safety 

or to avoid load-posting. 

 Significant strength gains can be achieved by post-installing shear connectors 

and allowing for moment redistribution in continuous bridges.  Most of the 

surveyed bridges require a composite ratio not exceeding 30% and only small 

amounts of moment redistribution to reach a load-carrying capacity exceeding 

that required by current design standards.  Increases in load rating of up to 70% 

may be attained.   

 Experimental testing of large-scale strengthened girders indicated resilient 

structural performance under elastic, fatigue, and strength loading, even at 

composite ratios below 30%.  Shakedown behavior was observed at loads up to 

5% beyond the predicted shakedown limit load, and the ultimate strength of the 

specimens exceeded that predicted by simple plastic analysis.  However, it was 

noted that simple plastic analysis does not adequately predict the inelastic 

behavior that occurs prior to reaching the limit load. 

 Post-installing shear connectors in groups near the ends of the positive moment 

regions in each span, as is recommended here, often does not significantly 

change the distribution of flexural stiffness along the length of the girder.  Thus, 

the results from a simple line element structural analysis conducted using the 
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stiffness distribution of a non-composite girder can generally be used to 

approximate the expected distribution of moments in a partially composite 

strengthened girder.  This applies only to cases in which all spans are 

strengthened with post-installed shear connectors, and may provide inaccurate 

results under other conditions. 

 Finite element analysis of continuous girders strengthened with post-installed 

shear connectors provided reasonably similar results to the experimental 

testing.  However, efficiently modeling the behavior of the concrete deck and 

the shear connectors under repeated loads in the inelastic range can be 

challenging.  

9.3 RECOMMENDATIONS FOR FUTURE RESEARCH 

The following recommendations are made for future research conducted on 

strengthening existing non-composite steel girder bridge with post-installed shear 

connectors: 

 Additional research is needed regarding the necessity of bearing stiffeners and 

the required spacing of lateral bracing around the interior supports of 

continuous steel girder bridges for inelastic moment redistribution.  These 

features may not be present in older bridges, but are required by the moment 

redistribution provisions in Appendix B6 of the AASHTO LRFD 

specifications, which are recommended for use in conjunction with the 

strengthening design procedure discussed in Chapter 8.  The addition of bearing 

stiffeners and new cross frames as part of a strengthening project increases the 

cost, and based on this research, the circumstances under which these features 

are actually needed are unclear. 

 Expanding the scope of this research to a wider range of bridge geometries is 

needed for applicability of these strengthening procedures to an increased 

number of older bridges.  This research focused on straight bridges with no 

skew or low skew angles, which is also a requirement to use the moment 

redistribution provisions in the AASHTO LRFD specifications.  Additional 

research is needed to examine the feasibility and design requirements for 

strengthening curved and heavily skewed bridges with post-installed shear 

connectors and inelastic moment redistribution. 
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 Additional work is needed to develop efficient and accurate finite element 

modeling techniques for post-installed adhesive anchor shear connectors in 

partially composite girders.  In particular, better modeling approaches are 

needed to simulate the interaction between a shear connector and the 

surrounding concrete, especially under repeated or reversed loading where there 

is accumulated damage in the vicinity of the connector.  Additionally, the 

development of a technique to model the gap that may develop due to the 

degradation of the adhesive between the threaded rod of the connector and the 

hole in the top flange of the steel beam is needed. 

 Conducting a long-term field monitoring program of a strengthened bridge is 

needed to assess the durability of adhesive anchor shear connectors and evaluate 

the permanent deformations associated with any moment redistribution that 

may occur over time. 

The following recommendations are made for future research conducted on the 

general behavior and the design of shear connectors in composite bridge girders: 

 Research that focuses on reconciling the different observed behavior of shear 

connectors in small-scale, simple tests and large-scale girder tests is needed to 

better understand the complexities of composite behavior.  These differences 

are observed both under fatigue loading and under monotonic loading to failure.  

With a better understanding of this behavior, an improved small-scale shear 

connector test may be developed that is more representative of the actual 

loading and deformation environment for a shear connector in an actual girder. 

 Extending the concepts developed in this research to conventional welded shear 

studs would be useful to promote improvements in the current design 

procedures for composite girders.  A number of issues examined during the 

course of this research may have useful implications for improving the design 

of new composite bridges using welded shear studs and for using new methods 

to evaluate existing composite bridges constructed with welded shear studs. 

 Additional research is needed to investigate the use of high-strength threaded 

rods as shear connectors that are installed without welding in new composite 

bridges.  This may lead to the use of a much smaller number of shear connectors 

than is currently required when using welded shear studs.  
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APPENDIX A: EXPERIMENTAL PREDICTIONS 

A.1 OVERVIEW 

This appendix contains calculations for the predicted strengths and behavior of the 

girder specimens in the experimental testing described in Chapter 4 and Chapter 5.  These 

calculations are presented separately for the north span of the first specimen, the south span 

of the first specimen, and both spans of the second specimen.  The two spans of the first 

specimen have different steel yield strengths, and thus the predictions differ slightly.  

Additionally, the two specimens have different span lengths, so different predictions are 

made for each.  However, the geometric properties of the cross section are identical for all 

spans in both specimens and are summarized in Table A-1. 

Table A-1: Section Properties for Both Specimens 

Flange width (𝑏𝑓, in) 10.4 

Flange thickness (𝑡𝑓, in) 0.61 

Flange area (𝐴𝑓, in2) 6.34 

Total depth (𝑑, in) 29.5 

Web thickness (𝑡𝑤, in) 0.47 

Area (𝐴𝑠, in2) 26.3 

Moment of inertia (𝐼𝑥, in4) 3610 

Elastic section modulus (𝑆𝑥, in3) 245 

Plastic section modulus (𝑍𝑥, in3) 283 

Deck width (𝑏𝑑𝑒𝑐𝑘, in) 78 

Deck thickness (𝑡𝑑𝑒𝑐𝑘, in) 6.5 

Deck area (𝐴𝑑𝑒𝑐𝑘, in2) 507 

Deck moment of inertia (𝐼𝑑𝑒𝑐𝑘, in4) 1790 

 

Additionally, the properties and strength of the shear connectors are consistent 

among both spans of the two specimens.  The design strength of the 7/8-inch diameter (𝑑𝑠𝑐) 

connectors is calculated using Equation 8.1 as follows.  In the calculation, 𝐴𝑠𝑐 is the 

effective cross-sectional area of the connector, which is taken as 80% of the gross area 

because the connector is threaded.  Note that the nominal ultimate tensile strength of the 
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connectors is used in this calculation (𝐹𝑢 𝑠𝑐 = 125 𝑘𝑠𝑖) rather than the measured tensile 

strength of the threaded rod because of the empirical nature of the design equation: 

 

𝐴𝑠𝑐 = 0.8
𝜋 𝑑𝑠𝑐

2

4
= 0.8(

𝜋 (
7
8 𝑖𝑛)

2

4
) = 0.481 𝑖𝑛2 

 

 
𝑄𝑛 = 0.5 𝐴𝑠𝑐  𝐹𝑢 𝑠𝑐 = 0.5(0.481 𝑖𝑛2)(125 𝑘𝑠𝑖) = 30.1 𝑘𝑖𝑝𝑠 

 

A.2 FIRST SPECIMEN – NORTH SPAN 

The material properties for the north span of the first specimen are given in Table 

A-2. 

Table A-2: Material Properties for the North Span of the First Specimen 

Steel yield stress in positive moment regions (𝐹𝑦 𝑠𝑝𝑎𝑛, ksi) 52.4 

Steel yield stress in negative moment regions (𝐹𝑦 𝑝𝑖𝑒𝑟, ksi) 52.4 

Elastic modulus of steel beams (𝐸𝑠, ksi) 29000 

Compressive strength of concrete (𝑓′𝑐, ksi) 4.7 

Elastic modulus of concrete (𝐸𝑐, ksi) 3910 

 

A.2.1 Properties of Non-Composite Section at Interior Support 

 Yield Moment 

The yield moment of the section in negative bending at the interior support is 

calculated using the properties of the steel beam only: 

 
𝑀𝑦 𝑝𝑖𝑒𝑟 = 𝑆𝑥 𝐹𝑦 𝑝𝑖𝑒𝑟 = (245 𝑘𝑠𝑖)(52.4 𝑘𝑠𝑖) (

1 𝑓𝑡

12 𝑖𝑛
) = 1070 𝑘. 𝑓𝑡 
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 Moment Capacity and Shape Factor 

The specimen was designed to have adequate lateral bracing to prevent lateral-

torsional buckling, and the W30x90 shape is compact.  Thus, the moment capacity of the 

section in negative bending at the interior support is the plastic moment of the steel section.  

The “shape factor” (𝑘𝑝𝑖𝑒𝑟) of the section is defined as the ratio of the plastic moment to the 

yield moment: 

 
𝑀𝑝 𝑝𝑖𝑒𝑟 = 𝑍𝑥 𝐹𝑦 𝑝𝑖𝑒𝑟 = (283 𝑘𝑠𝑖)(52.4 𝑘𝑠𝑖) (

1 𝑓𝑡

12 𝑖𝑛
) = 1240 𝑘. 𝑓𝑡 

 

 
𝑘𝑝𝑖𝑒𝑟 =

𝑀𝑝 𝑝𝑖𝑒𝑟

𝑀𝑦 𝑝𝑖𝑒𝑟
=

1240 𝑘. 𝑓𝑡

1070 𝑘. 𝑓𝑡
= 1.16 

 

 Neutral Axis 

The neutral axis for a doubly symmetric non-composite section at all levels of load 

in the elastic and inelastic range is expected to be located at mid-depth of the web. 

A.2.2 Properties of Partially Composite Section in the Span 

 Elastic Properties and Yield Moment 

The effective moment of inertia (𝐼𝑒𝑓𝑓) and effective elastic section modulus (𝑆𝑒𝑓𝑓) 

of a partially composite section can be estimated using Equation 2.5.  This equation 

interpolates between the properties of the non-composite section (𝐼𝑥 and 𝑆𝑥) and the fully 

composite transformed section (𝐼𝑡𝑟 and 𝑆𝑡𝑟).  To compute the properties of the full-

composite section, the elastic neutral axis of the fully composite transformed section 

(𝑦𝑁𝐴 𝑡𝑟) must be located below the steel-concrete interface.  In the following calculations, 

𝑛 is the short term modular ratio: 

 
𝑛 =

𝐸𝑠

𝐸𝑐
=

29000 𝑘𝑠𝑖

3910 𝑘𝑠𝑖
= 7.42  
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𝑦𝑁𝐴 𝑡𝑟 =
𝐴𝑠 (

𝑑
2) −

𝐴𝑑𝑒𝑐𝑘

𝑛 (
𝑡𝑑𝑒𝑐𝑘

2 )

𝐴𝑠 +
𝐴𝑑𝑒𝑐𝑘

𝑛

=
(26.3 𝑖𝑛2) (

29.5 𝑖𝑛
2 ) −

(507 𝑖𝑛2)
7.42 (

6.5 𝑖𝑛
2 )

(26.3 𝑖𝑛) +
(507 𝑖𝑛2)

7.42

= 1.75 𝑖𝑛 

 

 

𝐼𝑡𝑟 = 𝐼𝑥 + 𝐴𝑠 (
𝑑

2
− 𝑦𝑁𝐴 𝑡𝑟)

2

+
𝐼𝑑𝑒𝑐𝑘

𝑛
+

𝐴𝑑𝑒𝑐𝑘

𝑛
(
𝑡𝑑𝑒𝑐𝑘

2
+ 𝑦𝑁𝐴 𝑡𝑟)

2

= 3610 𝑖𝑛4 + (26.3 𝑖𝑛2) (
29.5 𝑖𝑛

2
− 1.75 𝑖𝑛)

2

+
(1790 𝑖𝑛4)

7.42
+

(507 𝑖𝑛2)

7.42
(
6.5 𝑖𝑛

2
+ 1.75 𝑖𝑛)

2

= 10000 𝑖𝑛4 

 

 
𝑆𝑡𝑟 =

𝐼𝑡𝑟
𝑑 − 𝑦𝑁𝐴 𝑡𝑟

=
10000 𝑖𝑛4

(29.5 𝑖𝑛) − (1.75 𝑖𝑛)
= 361 𝑖𝑛3 

 

Additionally, the composite ratio (𝜂) of the section must be calculated, which is 

equal to the ratio of the number of connectors provided (𝑁) to the number of connectors 

required for fully composite action (𝑁𝐹𝐶), which is calculated based on the maximum 

interface shear that can be developed in the fully composite section (𝐶𝑓 𝐹𝐶).  In this case, 

there are 7 pairs of connectors in each group, so 𝑁 = 14: 

 
𝐶𝑓 𝐹𝐶 = 𝑚𝑖𝑛 {

0.85𝑓𝑐
′𝐴𝑑𝑒𝑐𝑘

𝐴𝑠𝐹𝑦
=𝑚𝑖𝑛 {

0.85(4.7 𝑘𝑠𝑖)(507 𝑖𝑛2)

(26.3 𝑖𝑛2)(52.4 𝑘𝑠𝑖)
= 𝑚𝑖𝑛 {

2030 𝑘
1380 𝑘

= 1380 𝑘 

 

 
𝑁𝐹𝐶 =

𝐶𝑓 𝐹𝐶

𝑄𝑛
=

1380 𝑘

30.1 𝑘
= 45.8 

 

 
𝜂 =

𝑁

𝑁𝐹𝐶
=

14

45.8
= 0.306 
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The effective elastic section properties for the partially composite section can now 

be calculated using Equation 2.5.  To calculate the section modulus, simply replace the 

moment of inertia terms with the corresponding section modulus terms.  The yield moment 

is also computed using the effective section modulus: 

 
𝐼𝑒𝑓𝑓 = 𝐼𝑥 + √𝜂(𝐼𝑡𝑟 − 𝐼𝑥)

= (3610 𝑖𝑛4) + √0.306((10000 𝑖𝑛4) − (3610 𝑖𝑛4))

= 7140 𝑖𝑛4 

 

 
𝑆𝑒𝑓𝑓 = 𝑆𝑥 + √𝜂(𝑆𝑡𝑟 − 𝑆𝑥) = (245 𝑖𝑛3) + √0.306((361 𝑖𝑛3) − (245 𝑖𝑛3))

= 309 𝑖𝑛3 
 

 
𝑀𝑦 𝑠𝑝𝑎𝑛 = 𝑆𝑒𝑓𝑓𝐹𝑦 𝑠𝑝𝑎𝑛 = (309 𝑖𝑛3)(52.4 𝑘𝑠𝑖) (

1 𝑓𝑡

12 𝑖𝑛
) = 1350 𝑘. 𝑓𝑡 

 

 Moment Capacity and Shape Factor 

The moment capacity of a partially composite section is calculated following the 

procedure for simple plastic cross section analysis described in Section 2.2.2.  The interface 

shear (𝐶𝑓) is calculated as follows.  For a partially composite section, the third term in the 

equation, which represents the strength of the shear connection, will always control: 

 

𝐶𝑓 = 𝑚𝑖𝑛 {

0.85𝑓𝑐
′𝐴𝑑𝑒𝑐𝑘

𝐴𝑠𝐹𝑦_𝑠𝑝𝑎𝑛

𝑁 𝑄𝑛

=𝑚𝑖𝑛 {

0.85(4.7 𝑘𝑠𝑖)(507 𝑖𝑛2)

(26.3 𝑖𝑛2)(52.4 𝑘𝑠𝑖)
(14)(30.1 𝑘)

= 𝑚𝑖𝑛 {
2030 𝑘
1380 𝑘
421 𝑘

= 421 𝑘 

 

Because the section is partially composite, the plastic neutral axis will always be 

located in the steel beam, either in the top flange or in the web.  If the plastic neutral axis 

is in the web of the steel beam, the net plastic force in the top and bottom flanges will 

cancel out, since the section is doubly symmetric.  Thus, the plastic neutral axis can only 

be in the web of the steel beam if the maximum plastic force that can be developed in the 

web (𝑃𝑦 𝑤𝑒𝑏) is greater than the compressive force in the slab, or the interface shear.  

Otherwise, the plastic neutral axis is located in the top flange of the steel beam: 
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𝑃𝑦 𝑤𝑒𝑏 = 𝐴𝑤𝑒𝑏𝐹𝑦_𝑠𝑝𝑎𝑛 = (𝐴𝑠 − 2𝐴𝑓)𝐹𝑦_𝑠𝑝𝑎𝑛

= (26.3 𝑖𝑛2 − 2(6.34 𝑖𝑛2))(52.4 𝑘𝑠𝑖) = 714 𝑘 
 

 
714 𝑘 > 421 𝑘  →   𝑃𝑦 𝑤𝑒𝑏 > 𝐶𝑓   →   𝑃𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑎𝑥𝑖𝑠 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑒𝑏 

 

The stress distribution at the plastic moment capacity is shown in Figure A-1.  Force 

resultants, which act at mid-height of the corresponding stress block, are indicated by filled 

arrowheads and bold labels.  For simplicity, an equivalent stress distribution, shown in the 

far right portion of the figure, will be used for the calculations.  In this equivalent stress 

distribution, the top half of the steel is shown under the yield stress in compression, while 

the bottom half of the steel is subjected to the yield stress in tension.  This stress distribution 

creates two equal force resultants that form a force couple with the same magnitude as the 

plastic moment of the steel section (𝑀𝑝 𝑠𝑡𝑒𝑒𝑙).  The portion of the steel above mid-depth of 

the beam and below the plastic neutral axis is also under a tensile stress of twice the yield 

stress.  The unknown distance 𝑧 represents the height of the web above mid-depth of the 

steel section but below the plastic neutral axis.  Since the interface shear (𝐶𝑓) is no longer 

controlled by the plastic force in the deck, only the top portion of the deck is assumed to 

be under compressive stress.  The depth of the concrete compression block is denoted as 

𝑎. 

 
𝑎 =

𝐶𝑓

0.85𝑓𝑐′𝑏𝑒𝑓𝑓
=

421 𝑘

0.85(4.7 𝑘𝑠𝑖)(78 𝑖𝑛)
= 1.35 𝑖𝑛 

 

 
𝑇𝑠 = 𝑧𝑡𝑤(2𝐹𝑦_𝑠𝑝𝑎𝑛) = (𝑧)(0.470 𝑖𝑛)(2(52.4 𝑘𝑠𝑖)) = (49.3

𝑘

𝑖𝑛
) (𝑧) 

 

 
𝑀𝑝 𝑠𝑡𝑒𝑒𝑙 = 𝑍𝑥𝐹𝑦_𝑠𝑝𝑎𝑛 = (283 𝑖𝑛3)(52.4 𝑘𝑠𝑖) = 14800 𝑘. 𝑖𝑛 

 

 
𝛴𝐹 = 0  →   𝑇𝑠 − 𝐶𝑓 = 0  →   (49.3

𝑘

𝑖𝑛
) (𝑧) − 421 𝑘 = 0  →   𝑧 = 8.55 𝑖𝑛 
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𝑀𝑝 𝑠𝑝𝑎𝑛 = 𝛴𝑀𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = 𝑇𝑠 (

𝑑

2
−

𝑧

2
) + 𝐶𝑓 (𝑡𝑑𝑒𝑐𝑘 −

𝑎

2
) + 𝑀𝑝 𝑠𝑡𝑒𝑒𝑙

= ((49.3
𝑘

𝑖𝑛
) (8.55 𝑖𝑛))(

(29.5 𝑖𝑛)

2
−

(8.55 𝑖𝑛)

2
)

+ (421 𝑘) (6.5 𝑖𝑛 −
1.35 𝑖𝑛

2
) + 14800 𝑘. 𝑖𝑛

= (21700 𝑘. 𝑖𝑛) (
1 𝑓𝑡

12 𝑖𝑛
) = 1810 𝑘. 𝑓𝑡 

 

 

Figure A-1: Stress Distribution at Plastic Moment of Partially Composite Section with 

Neutral Axis in the Web of the Steel Beam 

The shape factor (𝑘𝑠𝑝𝑎𝑛) is determined in the same manner as for the non-composite 

section at the interior support: 

 
𝑘𝑠𝑝𝑎𝑛 =

𝑀𝑝 𝑠𝑝𝑎𝑛

𝑀𝑦 𝑠𝑝𝑎𝑛
=

1810 𝑘. 𝑓𝑡

1350 𝑘. 𝑓𝑡
= 1.34 

 

 Neutral Axis 

For a partially composite section, the location of the neutral axis in a cross section 

is difficult to define because plane sections do not remain plane due to the slip that occurs 

at the interface.  In fact, the distribution of slip over the entire length of the girder must be 

Plastic 
neutral 

axis

Actual stress 
distribution

Equivalent stress 
distribution

Mid-depth 
of steel 
beam
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calculated first to locate the neutral axis for a particular cross section, which will vary 

depending on the location of the cross section along the length of the girder as well as the 

flexural demand on the section.  However, the location of the neutral axis at the plastic 

moment is simple to define using the stress distribution in Figure A-1.  In this case, the 

plastic neutral axis is 8.55 inches above mid-depth of the web, or 6.20 inches below the 

steel-concrete interface.  This is the value that is plotted as the “predicted location” in 

Figure 5-10 and Figure 5-21 for comparison to the experimental data.  

A.2.3 Dead Load Analysis 

When predicting the strength under the applied loads in the experimental testing, 

the effects of the dead load must be considered.  The dead load is calculated as the sum of 

the self-weight of the steel beam (𝑊𝑠 = 90 𝑙𝑏/𝑓𝑡) and the weight of the concrete deck 

(𝑊𝑐 = 150 𝑙𝑏/𝑓𝑡3): 

 

𝐷𝐿 = 𝑊𝑠 + 𝑊𝑐 𝐴𝑑𝑒𝑐𝑘 = (90
𝑙𝑏

𝑓𝑡
) + (150

𝑙𝑏

𝑓𝑡3
) (507 𝑖𝑛2) (

1 𝑓𝑡

12 𝑖𝑛
)
2

= (618 
𝑙𝑏

𝑖𝑛
) (

1 𝑘

1000 𝑙𝑏
) = 0.618

𝑘

𝑓𝑡
 

 

The moments resulting from this dead load are shown in Figure A-2.  The critical 

locations are at Load A and at the interior support.  The dead load moments at these two 

locations are denoted 𝐷𝐿𝑠𝑝𝑎𝑛 and 𝐷𝐿𝑝𝑖𝑒𝑟, respectively: 

 
𝐷𝐿𝑠𝑝𝑎𝑛 = 76.6 𝑘. 𝑓𝑡                 𝐷𝐿𝑝𝑖𝑒𝑟 = −136 𝑘. 𝑓𝑡 
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Figure A-2: Dead Load Moments for First Specimen 

A.2.4 Predictions under Shakedown Loading 

For the first specimen, a load ratio of 0.87 was used between Load A and each of 

Loads B and C.  The associated moment diagrams under unit loads 0.87𝑃 and 𝑃 are shown 

in Figure A-3.   
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Figure A-3: Load Pattern and Moment Diagrams for Shakedown Testing of the North 

Span of the First Specimen 

 Elastic Limit Load 

First yield in the specimen under the loading pattern shown in Figure A-3 can occur 

either at the location of Load A in positive bending or at the interior support in negative 

bending.  The following calculates the load (𝑃𝑦) that causes first yield to occur at both 

locations: 

 
𝐴𝑡 𝐿𝑜𝑎𝑑 𝐴:   (7.48 𝑓𝑡) 𝑃𝑦 + 𝐷𝐿𝑠𝑝𝑎𝑛 = 𝑀𝑦 𝑠𝑝𝑎𝑛   →  𝑃𝑦 =

𝑀𝑦 𝑠𝑝𝑎𝑛 − 𝐷𝐿𝑠𝑝𝑎𝑛

7.48 𝑓𝑡

=
1350 𝑘. 𝑓𝑡 − 76.6 𝑘. 𝑓𝑡

7.48 𝑓𝑡
= 170 𝑘 

 

 
𝐴𝑡 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑆𝑢𝑝𝑝𝑜𝑟𝑡:   (−6.71 𝑓𝑡) 𝑃𝑦 + 𝐷𝐿𝑝𝑖𝑒𝑟 = −𝑀𝑦 𝑝𝑖𝑒𝑟                 

→    𝑃𝑦 =
𝑀𝑦 𝑝𝑖𝑒𝑟 + 𝐷𝐿𝑝𝑖𝑒𝑟

6.71 𝑓𝑡
=

1070 𝑘. 𝑓𝑡 − 136 𝑘. 𝑓𝑡

6.71 𝑓𝑡

= 139 𝑘 

 

The smaller of these two values for 𝑃𝑦 controls, indicating that first yield is 

predicted to occur at the interior support at a load of 𝑃𝐵,𝐶 𝐸𝐿 𝑙𝑖𝑚𝑖𝑡 = 139 𝑘.  For the purposes 

of presenting the results in Chapter 5, this was rounded to the closest load level used in the 

testing, or 𝑃𝐵,𝐶 𝐸𝐿 𝑙𝑖𝑚𝑖𝑡 = 145 𝑘. 

16’ 10’ 10’32’ 32’26’ 42’
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 Shakedown Limit Load 

Predicting the shakedown limit load is done using the upper-bound method 

described in Section 2.4.2.  The only possible mechanism for this loading pattern is shown 

in Figure A-4. 

 

Figure A-4: Shakedown Mechanism for the North Span of the First Specimen 

The internal and external virtual work are calculated as follows.  The predicted 

shakedown limit load is then computed based on equilibrium of the virtual work: 

 
𝛿𝑊𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = (𝑀𝑝 𝑠𝑝𝑎𝑛 − 𝐷𝐿𝑠𝑝𝑎𝑛)(1.63𝜃 + 𝜃)

+ (−𝑀𝑝 𝑝𝑖𝑒𝑟 − 𝐷𝐿𝑝𝑖𝑒𝑟)(−𝜃)

= (1810 𝑘. 𝑓𝑡 − 76.6 𝑘. 𝑓𝑡)(2.63𝜃)

+ (−1240 𝑘. 𝑓𝑡 − (−136 𝑘. 𝑓𝑡) )(−𝜃) = (5660 𝑘. 𝑓𝑡)(𝜃) 

 

 
𝛿𝑊𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = ((7.48 𝑓𝑡) 𝑃)(1.63𝜃 + 𝜃) + ((−6.71 𝑓𝑡) 𝑃)(−𝜃)

= ((26.4 𝑓𝑡) 𝑃)(𝜃) 

 

 
𝛿𝑊𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝛿𝑊𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙    →    (5660 𝑘. 𝑓𝑡)(𝜃) = ((26.4 𝑓𝑡) 𝑃𝑆𝐷)(𝜃)    

→    𝑃𝑆𝐷 = 215 𝑘 

 

 
𝑃𝐴 𝑆𝐷 𝑙𝑖𝑚𝑖𝑡 = 0.87𝑃 = 0.87(215 𝑘) = 187 𝑘  

 

 
𝑃𝐵,𝐶 𝑆𝐷 𝑙𝑖𝑚𝑖𝑡 = 𝑃 = 215 𝑘 

 

The amount of moment redistribution is commonly quantified as the percentage of 

the redistribution moment (𝑀𝑟𝑑) to the total elastic moment at the interior pier (𝑀𝑒𝑙).  The 

16’ 26’
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redistribution moment is simply the amount by which the elastic moment exceeds the 

moment capacity at the interior pier. 

 
𝑀𝑒𝑙 = (−6.71 𝑓𝑡)𝑃𝐵,𝐶 𝑆𝐷 𝑙𝑖𝑚𝑖𝑡 + 𝐷𝐿𝑝𝑖𝑒𝑟 = (−6.71 𝑓𝑡)(215 𝑘) − 136 𝑘. 𝑓𝑡

= −1580 𝑘. 𝑓𝑡 

 

 
𝑀𝑟𝑑 = |𝑀𝑒𝑙| − 𝑀𝑝 𝑝𝑖𝑒𝑟 = |−1580 𝑘. 𝑓𝑡| − 1240 𝑘. 𝑓𝑡 = 340 𝑘. 𝑓𝑡 

 

 𝑀𝑟𝑑

|𝑀𝑒𝑙|
=

340 𝑘. 𝑓𝑡

|−1580 𝑘. 𝑓𝑡|
= 22% 

 

While the specimens and loading procedure were originally designed to target 20% 

moment redistribution, the load ratio was chosen prior to conducting both the material 

testing and the parametric study discussed in Section 7.3 regarding the elastic distribution 

of moments in a strengthened girder.  Thus, different assumptions were originally made in 

determining the load ratio to use for testing than are used in this appendix to calculate the 

predicted behavior.  For this reason, the actual amount of moment redistribution is not 

exactly equal to the initial 20% target. 

A.2.5 Predictions under Ultimate Strength Loading 

Ultimate strength testing was conducted in the north span of the first specimen 

under the application of only Load A.  The associated moment diagram under a unit load 

𝑃 is shown in Figure A-5. 



 189 

 

Figure A-5: Ultimate Strength Loading for the North Span of the First Specimen 

Predicting the plastic limit load is done using the upper-bound method, also called 

the kinematic method, for static loading.  This is based on similar principles of virtual work 

used in the upper-bound method for predicting the shakedown limit load, and more details 

can be found elsewhere (Neal 1977).  The only possible mechanism for this applied load 

is shown in Figure A-6 and is identical to that for shakedown loading. 

 

Figure A-6: Ultimate Strength Mechanism for the North Span of the First Specimen 

The internal and external virtual work are calculated as follows.  The predicted 

plastic limit load (𝑃𝑈𝐿𝑇) at the ultimate strength limit state is then computed based on 

equilibrium of the virtual work: 

16’ 26’ 42’

16’ 26’
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𝛿𝑊𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = (𝑀𝑝 𝑠𝑝𝑎𝑛 − 𝐷𝐿𝑠𝑝𝑎𝑛)(1.63𝜃 + 𝜃)

+ (−𝑀𝑝 𝑝𝑖𝑒𝑟 − 𝐷𝐿𝑝𝑖𝑒𝑟)(−𝜃)

= (1810 𝑘. 𝑓𝑡 − 76.6 𝑘. 𝑓𝑡)(2.63𝜃)

+ (−1240 𝑘. 𝑓𝑡 − (−136 𝑘. 𝑓𝑡) )(−𝜃) = (5650 𝑘. 𝑓𝑡)(𝜃) 

 

 
𝛿𝑊𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = (26 𝑓𝑡)(𝜃)(P) 

 

 
𝛿𝑊𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝛿𝑊𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙    →    (5650 𝑘. 𝑓𝑡)(𝜃) = (26 𝑓𝑡)(𝜃)(𝑃𝑈𝐿𝑇)    

→    𝑃𝑈𝐿𝑇 = 217 𝑘 

 

A.3 FIRST SPECIMEN – SOUTH SPAN 

The material properties for the south span of the first specimen are given in Table 

A-3. 

Table A-3: Material Properties for the South Span of the First Specimen 

Steel yield stress in positive moment regions (𝐹𝑦 𝑠𝑝𝑎𝑛, ksi) 56.3 

Steel yield stress in negative moment regions (𝐹𝑦 𝑝𝑖𝑒𝑟, ksi) 52.4 

Elastic modulus of steel beams (𝐸𝑠, ksi) 29000 

Compressive strength of concrete (𝑓′𝑐, ksi) 4.7 

Elastic modulus of concrete (𝐸𝑐, ksi) 3910 

 

A.3.1 Properties of Non-Composite Section at Interior Support 

 Yield Moment 

The yield moment of the section in negative bending at the interior support are 

identical to that calculated for the north span because it is the same section: 

 
𝑀𝑦_𝑝𝑖𝑒𝑟 = 𝑆𝑥 𝐹𝑦 𝑝𝑖𝑒𝑟 = (245 𝑘𝑠𝑖)(52.4 𝑘𝑠𝑖) (

1 𝑓𝑡

12 𝑖𝑛
) = 1070 𝑘. 𝑓𝑡 
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 Moment Capacity and Shape Factor 

The moment capacity of the section in negative bending at the interior support and 

the shape factor are identical to that calculated for the north span because it is the same 

section: 

 
𝑀𝑝_𝑝𝑖𝑒𝑟 = 𝑍𝑥 𝐹𝑦 𝑝𝑖𝑒𝑟 = (283 𝑘𝑠𝑖)(52.4 𝑘𝑠𝑖) (

1 𝑓𝑡

12 𝑖𝑛
) = 1240 𝑘. 𝑓𝑡 

 

 
𝑘𝑝𝑖𝑒𝑟 =

𝑀𝑝 𝑝𝑖𝑒𝑟

𝑀𝑦 𝑝𝑖𝑒𝑟
=

1070 𝑘. 𝑓𝑡

1240 𝑘. 𝑓𝑡
= 1.16 

 

 Neutral Axis 

As with the north span, the neutral axis for a doubly symmetric non-composite 

section at all levels of load in the elastic and inelastic range is expected to be located at 

mid-depth of the web. 

A.3.2 Properties of Partially Composite Section in the Span 

 Elastic Properties and Yield Moment 

The elastic properties and yield moment of this partially composite section is 

calculated in the same manner as for the north span.  Again, there are 7 pairs of connectors, 

so 𝑁 = 14.  The calculations for the fully composite transformed section are identical to 

that of the north span and thus are not repeated here.  The stress distribution at the plastic 

moment capacity is identical to that shown in Figure A-1: 

 
𝐶𝑓 𝐹𝐶 = 𝑚𝑖𝑛 {

0.85𝑓𝑐
′𝐴𝑑𝑒𝑐𝑘

𝐴𝑠𝐹𝑦
=𝑚𝑖𝑛 {

0.85(4.7 𝑘𝑠𝑖)(507 𝑖𝑛2)

(26.3 𝑖𝑛2)(56.3 𝑘𝑠𝑖)
= 𝑚𝑖𝑛 {

2030 𝑘
1480 𝑘

= 1480 𝑘 

 

 
𝑁𝐹𝐶 =

𝐶𝑓 𝐹𝐶

𝑄𝑛
=

1480 𝑘

30.1 𝑘
= 49.2 
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𝜂 =

𝑁

𝑁𝐹𝐶
=

14

49.2
= 0.285 

 

 
𝐼𝑒𝑓𝑓 = 𝐼𝑥 + √𝜂(𝐼𝑡𝑟 − 𝐼𝑥)

= (3610 𝑖𝑛4) + √0.285((10000 𝑖𝑛4) − (3610 𝑖𝑛4))

= 7020 𝑖𝑛4 

 

 
𝑆𝑒𝑓𝑓 = 𝑆𝑥 + √𝜂(𝑆𝑡𝑟 − 𝑆𝑥) = (245 𝑖𝑛3) + √0.285((361 𝑖𝑛3) − (245 𝑖𝑛3))

= 307 𝑖𝑛3 
 

 
𝑀𝑦 𝑠𝑝𝑎𝑛 = 𝑆𝑒𝑓𝑓𝐹𝑦 𝑠𝑝𝑎𝑛 = (307 𝑖𝑛3)(56.3 𝑘𝑠𝑖) (

1 𝑓𝑡

12 𝑖𝑛
) = 1440 𝑘. 𝑓𝑡 

 

 Moment Capacity and Shape Factor 

The moment capacity and shape factor of a partially composite section is calculated 

in the same manner as for the north span: 

 

𝐶𝑓 = 𝑚𝑖𝑛 {

0.85𝑓𝑐
′𝐴𝑑𝑒𝑐𝑘

𝐴𝑠𝐹𝑦_𝑠𝑝𝑎𝑛

𝑁 𝑄𝑛

=𝑚𝑖𝑛 {

0.85(4.7 𝑘𝑠𝑖)(507 𝑖𝑛2)

(26.3 𝑖𝑛2)(56.3 𝑘𝑠𝑖)
(14)(30.1 𝑘)

= 𝑚𝑖𝑛 {
2030 𝑘
1480 𝑘
421 𝑘

= 421 𝑘 

 

 
𝑃𝑦 𝑤𝑒𝑏 = 𝐴𝑤𝑒𝑏𝐹𝑦_𝑠𝑝𝑎𝑛 = (𝐴𝑠 − 2𝐴𝑓)𝐹𝑦_𝑠𝑝𝑎𝑛

= (26.3 𝑖𝑛2 − 2(6.34 𝑖𝑛2))(56.3 𝑘𝑠𝑖) = 767 𝑘 
 

 
767 𝑘 > 421 𝑘  →   𝑃𝑦 𝑤𝑒𝑏 > 𝐶𝑓   →   𝑃𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑎𝑥𝑖𝑠 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑒𝑏 

 

 
𝑎 =

𝐶𝑓

0.85𝑓𝑐′𝑏𝑒𝑓𝑓
=

421 𝑘

0.85(4.7 𝑘𝑠𝑖)(78 𝑖𝑛)
= 1.35 𝑖𝑛 
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𝑇𝑠 = 𝑧𝑡𝑤(2𝐹𝑦_𝑠𝑝𝑎𝑛) = (𝑧)(0.470 𝑖𝑛)(2(56.3 𝑘𝑠𝑖)) = (52.9

𝑘

𝑖𝑛
) (𝑧) 

 

 
𝑀𝑝 𝑠𝑡𝑒𝑒𝑙 = 𝑍𝑥𝐹𝑦_𝑠𝑝𝑎𝑛 = (283 𝑖𝑛3)(56.3 𝑘𝑠𝑖) = 15900 𝑘. 𝑖𝑛 

 

 
𝛴𝐹 = 0  →   𝑇𝑠 − 𝐶𝑓 = 0  →   (52.9

𝑘

𝑖𝑛
) (𝑧) − 421 𝑘 = 0  →   𝑧 = 7.96 𝑖𝑛 

 

 
𝑀𝑝 𝑠𝑝𝑎𝑛 = 𝛴𝑀𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = 𝑇𝑠 (

𝑑

2
−

𝑧

2
) + 𝐶𝑓 (𝑡𝑑𝑒𝑐𝑘 −

𝑎

2
) + 𝑀𝑝 𝑠𝑡𝑒𝑒𝑙

= ((52.9
𝑘

𝑖𝑛
) (7.96 𝑖𝑛))(

(29.5 𝑖𝑛)

2
−

(7.96 𝑖𝑛)

2
)

+ (421 𝑘) (6.5 𝑖𝑛 −
1.35 𝑖𝑛

2
) + 15900 𝑘. 𝑖𝑛

= (22900 𝑘. 𝑖𝑛) (
1 𝑓𝑡

12 𝑖𝑛
) = 1910 𝑘. 𝑓𝑡 

 

 
𝑘𝑠𝑝𝑎𝑛 =

𝑀𝑝 𝑠𝑝𝑎𝑛

𝑀𝑦 𝑠𝑝𝑎𝑛
=

1910 𝑘. 𝑓𝑡

1440 𝑘. 𝑓𝑡
= 1.33 

 

 Neutral Axis 

As discussed previously for the north span, locating the neutral axis in a partially 

composite cross section is difficult, because plane sections do not remain plane due to the 

interface slip.  Thus, the location of the neutral axis at the plastic moment is plotted as the 

“predicted location” in Figure 5-10 and Figure 5-21 for comparison to the experimental 

data.  For this case, the plastic neutral axis was calculated to be 7.96 inches above mid-

depth of the web, or 6.79 inches below the interface. 

A.3.3 Dead Load Analysis 

Because the geometry of the girder specimen is symmetrical across the interior 

support, the dead load is identical to that for the north span, as shown in Figure A-2: 

 
𝐷𝐿𝑠𝑝𝑎𝑛 = 76.6 𝑘. 𝑓𝑡                 𝐷𝐿𝑝𝑖𝑒𝑟 = −136 𝑘. 𝑓𝑡 
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A.3.4 Predictions under Shakedown Loading 

As with the north span, a load ratio of 0.87 was used between Load D and each of 

Loads B and C.  The associated moment diagrams under unit loads 0.87𝑃 and 𝑃 are shown 

in Figure A-7.  These are identical to those for the north span loading, but are mirrored 

across the interior support 

 

Figure A-7: Load Pattern and Moment Diagrams for Shakedown Testing of the South 

Span of the First Specimen 

 Elastic Limit Load 

For the north span loading, first yield was calculated to occur at the interior support.  

Because the only difference between the north and south spans of the first specimen is that 

the yield strength of the steel in the positive moment regions of the south span is slightly 

larger than that of the north span, the interior support will control again for the south span 

loading.  Thus: 

 
𝑃𝑦 = 𝑃𝐵,𝐶 𝐸𝐿 𝑙𝑖𝑚𝑖𝑡 = 139 𝑘 

 

Again, this value was rounded to the closest load level used in the testing, or 

𝑃𝐵,𝐶 𝐸𝐿 𝑙𝑖𝑚𝑖𝑡 = 145 𝑘 for comparison to the load levels applied to the specimen during 

testing. 

10’ 10’32’ 32’16’26’42’
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 Shakedown Limit Load 

Predicting the shakedown limit load and calculating the actual amount of moment 

redistribution are done in the same manner as for the north span.  The only possible 

mechanism for this loading pattern is shown in Figure A-8.  This mechanism is identical 

to that for the north span, but mirrored across the interior support: 

 

Figure A-8: Shakedown Mechanism for the South Span of the First Specimen 

 
𝛿𝑊𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = (𝑀𝑝 𝑠𝑝𝑎𝑛 − 𝐷𝐿𝑠𝑝𝑎𝑛)(1.63𝜃 + 𝜃)

+ (−𝑀𝑝 𝑝𝑖𝑒𝑟 − 𝐷𝐿𝑝𝑖𝑒𝑟)(−𝜃)

= (1910 𝑘. 𝑓𝑡 − 76.6 𝑘. 𝑓𝑡)(2.63𝜃)

+ (−1240 𝑘. 𝑓𝑡 − (−136 𝑘. 𝑓𝑡) )(−𝜃) = (5930 𝑘. 𝑓𝑡)(𝜃) 

 

 
𝛿𝑊𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = ((7.48 𝑓𝑡) 𝑃)(1.63𝜃 + 𝜃) + ((−6.71 𝑓𝑡) 𝑃)(−𝜃)

= ((26.4 𝑓𝑡) 𝑃)(𝜃) 

 

 
𝛿𝑊𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝛿𝑊𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙    →    (5930 𝑘. 𝑓𝑡)(𝜃) = ((26.4 𝑓𝑡) 𝑃𝑆𝐷)(𝜃)    

→    𝑃𝑆𝐷 = 225 𝑘 

 

 
𝑃𝐷 𝑆𝐷 𝑙𝑖𝑚𝑖𝑡 = 0.87𝑃 = 0.87(215 𝑘) = 195 𝑘  

 

 
𝑃𝐵,𝐶 𝑆𝐷 𝑙𝑖𝑚𝑖𝑡 = 𝑃 = 225 𝑘 

 

 
𝑀𝑒𝑙 = (−6.71 𝑓𝑡)𝑃𝐵,𝐶 𝑆𝐷 𝑙𝑖𝑚𝑖𝑡 + 𝐷𝐿𝑝𝑖𝑒𝑟 = (−6.71 𝑓𝑡)(225 𝑘) − 136 𝑘. 𝑓𝑡

= −1650 𝑘. 𝑓𝑡 

 

16’26’
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𝑀𝑟𝑑 = |𝑀𝑒𝑙| − 𝑀𝑝 𝑝𝑖𝑒𝑟 = |−1650 𝑘. 𝑓𝑡| − 1240 𝑘. 𝑓𝑡 = 410 𝑘. 𝑓𝑡 

 

 𝑀𝑟𝑑

|𝑀𝑒𝑙|
=

410 𝑘. 𝑓𝑡

|−1650 𝑘. 𝑓𝑡|
= 25% 

 

Unfortunately, the shakedown limit load calculated for this span does not match 

closely with any of the load levels applied during the experimental testing.  Thus, this was 

rounded to the nearest load level used, or 𝑃𝐷 𝑆𝐷 𝑙𝑖𝑚𝑖𝑡 = 191 𝑘 and 𝑃𝐵,𝐶 𝑆𝐷 𝑙𝑖𝑚𝑖𝑡 = 220 𝑘, for 

purposes of presenting the results in Chapter 5. 

A.3.5 Predictions under Ultimate Strength Loading 

Ultimate strength testing was conducted in the south span of the first specimen 

under the application of only Load D.  The associated moment diagram under a unit load 

𝑃 is shown in Figure A-9.  This is identical to that for the north span, but mirrored across 

the interior support. 

 

Figure A-9: Ultimate Strength Loading for the South Span of the First Specimen 

Predicting the plastic limit load was done in the same manner as for the north span.  

The only possible mechanism for this applied load is shown in Figure A-10 and is identical 

to that for shakedown loading: 

16’26’42’
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Figure A-10: Ultimate Strength Mechanism for the South Span of the First Specimen 

 
𝛿𝑊𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = (𝑀𝑝 𝑠𝑝𝑎𝑛 − 𝐷𝐿𝑠𝑝𝑎𝑛)(1.63𝜃 + 𝜃)

+ (−𝑀𝑝 𝑝𝑖𝑒𝑟 − 𝐷𝐿𝑝𝑖𝑒𝑟)(−𝜃)

= (1910 𝑘. 𝑓𝑡 − 76.6 𝑘. 𝑓𝑡)(2.63𝜃)

+ (−1240 𝑘. 𝑓𝑡 − (−136 𝑘. 𝑓𝑡) )(−𝜃) = (5930 𝑘. 𝑓𝑡)(𝜃) 

 

 
𝛿𝑊𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = (26 𝑓𝑡)(𝜃)(P) 

 

 
𝛿𝑊𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝛿𝑊𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙    →    (5650 𝑘. 𝑓𝑡)(𝜃) = (26 𝑓𝑡)(𝜃)(𝑃𝑈𝐿𝑇)    

→    𝑃𝑈𝐿𝑇 = 227 𝑘 

 

A.4 SECOND SPECIMEN  

The material properties for the second specimen are given in Table A-4. 

Table A-4: Material Properties for the Second Specimen 

Steel yield stress in positive moment regions (𝐹𝑦 𝑠𝑝𝑎𝑛, ksi) 56.3 

Steel yield stress in negative moment regions (𝐹𝑦 𝑝𝑖𝑒𝑟, ksi) 56.3 

Elastic modulus of steel beams (𝐸𝑠, ksi) 29000 

Compressive strength of concrete (𝑓′𝑐, ksi) 2.5 

Elastic modulus of concrete (𝐸𝑐, ksi) 2850 

 

16’26’
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A.4.1 Properties of Non-Composite Section at Interior Support 

 Yield Moment 

The yield moment of the section in negative bending at the interior support is 

calculated in the same manner as for the first specimen: 

 
𝑀𝑦_𝑝𝑖𝑒𝑟 = 𝑆𝑥 𝐹𝑦 𝑝𝑖𝑒𝑟 = (245 𝑘𝑠𝑖)(56.3 𝑘𝑠𝑖) (

1 𝑓𝑡

12 𝑖𝑛
) = 1150 𝑘. 𝑓𝑡 

 

 Moment Capacity and Shape Factor 

The moment capacity and shape factor of the section in negative bending at the 

interior support is calculated in the same manner as for the first specimen: 

 
𝑀𝑝_𝑝𝑖𝑒𝑟 = 𝑍𝑥 𝐹𝑦 𝑝𝑖𝑒𝑟 = (283 𝑘𝑠𝑖)(56.3 𝑘𝑠𝑖) (

1 𝑓𝑡

12 𝑖𝑛
) = 1330 𝑘. 𝑓𝑡 

 

 
𝑘𝑝𝑖𝑒𝑟 =

𝑀𝑝 𝑝𝑖𝑒𝑟

𝑀𝑦 𝑝𝑖𝑒𝑟
=

1330 𝑘. 𝑓𝑡

1150 𝑘. 𝑓𝑡
= 1.16 

 

 Neutral Axis 

As with the first specimen, the neutral axis for a doubly symmetric non-composite 

section at all levels of load in the elastic and inelastic range is expected to be located at 

mid-depth of the web. 

A.4.2 Properties of Partially Composite Section in the Span 

 Elastic Properties and Yield Moment 

The yield moment of this partially composite section is calculated in the same 

manner as for the first specimen.  For this girder, there are 5 pairs of connectors, so 𝑁 =

10.  The stress distribution at the plastic moment capacity is identical to that shown in 

Figure A-1: 

 



 199 

 
𝑛 =

𝐸𝑠

𝐸𝑐
=

29000 𝑘𝑠𝑖

2850 𝑘𝑠𝑖
= 10.2 

 

 

𝑦𝑁𝐴 𝑡𝑟 =
𝐴𝑠 (

𝑑
2) −

𝐴𝑑𝑒𝑐𝑘

𝑛 (
𝑡𝑑𝑒𝑐𝑘

2 )

𝐴𝑠 +
𝐴𝑑𝑒𝑐𝑘

𝑛

=
(26.3 𝑖𝑛2) (

29.5 𝑖𝑛
2 ) −

(507 𝑖𝑛2)
10.2 (

6.5 𝑖𝑛
2 )

(26.3 𝑖𝑛) +
(507 𝑖𝑛2)

10.2

= 2.98 𝑖𝑛 

 

 

𝐼𝑡𝑟 = 𝐼𝑥 + 𝐴𝑠 (
𝑑

2
− 𝑦𝑁𝐴 𝑡𝑟)

2

+
𝐼𝑑𝑒𝑐𝑘

𝑛
+

𝐴𝑑𝑒𝑐𝑘

𝑛
(
𝑡𝑑𝑒𝑐𝑘

2
+ 𝑦𝑁𝐴 𝑡𝑟)

2

= 3610 𝑖𝑛4 + (26.3 𝑖𝑛2) (
29.5 𝑖𝑛

2
− 2.98 𝑖𝑛)

2

+
(1790 𝑖𝑛4)

10.2
+

(507 𝑖𝑛2)

10.2
(
6.5 𝑖𝑛

2
+ 2.98 𝑖𝑛)

2

= 9360 𝑖𝑛4 

 

 
𝑆𝑡𝑟 =

𝐼𝑡𝑟
𝑑 − 𝑦𝑁𝐴 𝑡𝑟

=
9360 𝑖𝑛4

(29.5 𝑖𝑛) − (2.98 𝑖𝑛)
= 353 𝑖𝑛3 

 

 
𝐶𝑓 𝐹𝐶 = 𝑚𝑖𝑛 {

0.85𝑓𝑐
′𝐴𝑑𝑒𝑐𝑘

𝐴𝑠𝐹𝑦
=𝑚𝑖𝑛 {

0.85(2.5 𝑘𝑠𝑖)(507 𝑖𝑛2)

(26.3 𝑖𝑛2)(56.3 𝑘𝑠𝑖)
= 𝑚𝑖𝑛 {

1080 𝑘
1480 𝑘

= 1080 𝑘 

 

 
𝑁𝐹𝐶 =

𝐶𝑓 𝐹𝐶

𝑄𝑛
=

1080 𝑘

30.1 𝑘
= 35.9 

 

 
𝜂 =

𝑁

𝑁𝐹𝐶
=

10

35.9
= 0.279 

 

 
𝐼𝑒𝑓𝑓 = 𝐼𝑥 + √𝜂(𝐼𝑡𝑟 − 𝐼𝑥)

= (3610 𝑖𝑛4) + √0.279((9360 𝑖𝑛4) − (3610 𝑖𝑛4))

= 6650 𝑖𝑛4 
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𝑆𝑒𝑓𝑓 = 𝑆𝑥 + √𝜂(𝑆𝑡𝑟 − 𝑆𝑥) = (245 𝑖𝑛3) + √0.279((353 𝑖𝑛3) − (245 𝑖𝑛3))

= 302 𝑖𝑛3 
 

 
𝑀𝑦 𝑠𝑝𝑎𝑛 = 𝑆𝑒𝑓𝑓𝐹𝑦 𝑠𝑝𝑎𝑛 = (302 𝑖𝑛3)(56.3 𝑘𝑠𝑖) (

1 𝑓𝑡

12 𝑖𝑛
) = 1420 𝑘. 𝑓𝑡 

 

 Moment Capacity and Shape Factor 

The moment capacity and shape factor of a partially composite section is calculated 

in the same manner as for the first specimen: 

 

𝐶𝑓 = 𝑚𝑖𝑛 {

0.85𝑓𝑐
′𝐴𝑑𝑒𝑐𝑘

𝐴𝑠𝐹𝑦_𝑠𝑝𝑎𝑛

𝑁 𝑄𝑛

=𝑚𝑖𝑛 {

0.85(2.5 𝑘𝑠𝑖)(507 𝑖𝑛2)

(26.3 𝑖𝑛2)(56.3 𝑘𝑠𝑖)
(10)(30.1 𝑘)

= 𝑚𝑖𝑛 {
1080 𝑘
1480 𝑘
301 𝑘

= 301 𝑘 

 

 
𝑃𝑦 𝑤𝑒𝑏 = 𝐴𝑤𝑒𝑏𝐹𝑦_𝑠𝑝𝑎𝑛 = (𝐴𝑠 − 2𝐴𝑓)𝐹𝑦_𝑠𝑝𝑎𝑛

= (26.3 𝑖𝑛2 − 2(6.34 𝑖𝑛2))(56.3 𝑘𝑠𝑖) = 767 𝑘 
 

 
767 𝑘 > 301 𝑘  →   𝑃𝑦 𝑤𝑒𝑏 > 𝐶𝑓   →   𝑃𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑎𝑥𝑖𝑠 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑒𝑏 

 

 
𝑎 =

𝐶𝑓

0.85𝑓𝑐′𝑏𝑒𝑓𝑓
=

301 𝑘

0.85(2.5 𝑘𝑠𝑖)(78 𝑖𝑛)
= 1.82 𝑖𝑛 

 

 
𝑇𝑠 = 𝑧𝑡𝑤(2𝐹𝑦_𝑠𝑝𝑎𝑛) = (𝑧)(0.470 𝑖𝑛)(2(56.3 𝑘𝑠𝑖)) = (52.9

𝑘

𝑖𝑛
) (𝑧) 

 

 
𝑀𝑝 𝑠𝑡𝑒𝑒𝑙 = 𝑍𝑥𝐹𝑦_𝑠𝑝𝑎𝑛 = (283 𝑖𝑛3)(56.3 𝑘𝑠𝑖) = 15900 𝑘. 𝑖𝑛 

 

 
𝛴𝐹 = 0  →   𝑇𝑠 − 𝐶𝑓 = 0  →   (52.9

𝑘

𝑖𝑛
) (𝑧) − 301 𝑘 = 0  →   𝑧 = 5.69 𝑖𝑛 
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𝑀𝑝 𝑠𝑝𝑎𝑛 = 𝛴𝑀𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = 𝑇𝑠 (

𝑑

2
−

𝑧

2
) + 𝐶𝑓 (𝑡𝑑𝑒𝑐𝑘 −

𝑎

2
) + 𝑀𝑝 𝑠𝑡𝑒𝑒𝑙

= ((52.9
𝑘

𝑖𝑛
) (5.69 𝑖𝑛))(

(29.5 𝑖𝑛)

2
−

(5.69 𝑖𝑛)

2
)

+ (301 𝑘) (6.5 𝑖𝑛 −
1.82 𝑖𝑛

2
) + 15900 𝑘. 𝑖𝑛

= (21200 𝑘. 𝑖𝑛) (
1 𝑓𝑡

12 𝑖𝑛
) = 1760 𝑘. 𝑓𝑡 

 

 
𝑘𝑠𝑝𝑎𝑛 =

𝑀𝑝 𝑠𝑝𝑎𝑛

𝑀𝑦 𝑠𝑝𝑎𝑛
=

1760 𝑘. 𝑓𝑡

1420 𝑘. 𝑓𝑡
= 1.24 

 

 Neutral Axis 

As discussed previously for the first specimen, locating the neutral axis in a 

partially composite cross section is difficult because plane sections do not remain plane 

due to the interface slip.  Thus, the location of the neutral axis at the plastic moment is 

plotted as the “predicted location” in Figure 5-11 and Figure 5-22 for comparison to the 

experimental data.  For this case, the plastic neutral axis was calculated to be 5.69 inches 

above mid-depth of the web, or 9.06 inches below the interface. 

A.4.3 Dead Load Analysis 

The dead load moments are calculated in the same manner as for the first specimen.  

The only difference in this analysis between the two specimens is the span length.  The 

dead load moments are plotted in Figure A-11.  At the critical locations, the dead load 

moments are: 

 
𝐷𝐿𝑠𝑝𝑎𝑛 = 117 𝑘. 𝑓𝑡                 𝐷𝐿𝑝𝑖𝑒𝑟 = −209 𝑘. 𝑓𝑡 
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Figure A-11: Dead Load Moments for Second Specimen 

A.4.4 Predictions under Shakedown Loading 

For this specimen, the same load was applied at all four load locations, so the load 

ratio was 1.0.  The associated moment diagrams under unit loads of 𝑃 are shown in Figure 

A-12.  Note that the first and last load steps are identical, but mirrored across the interior 

support. 
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Figure A-12: Load Pattern and Moment Diagrams for Shakedown Testing of the 

Second Specimen 

 Elastic Limit Load 

First yield in the specimen under the loading pattern shown in Figure A-12 can 

occur either at the location of Load A and Load D in positive bending or at the interior 

support in negative bending.  The following calculates the load (𝑃𝑦) that causes first yield 

to occur at both locations: 

 
𝐴𝑡 𝐿𝑜𝑎𝑑 𝐴 𝑜𝑟 𝐿𝑜𝑎𝑑 𝐷:   (10.7 𝑓𝑡) 𝑃𝑦 + 𝐷𝐿𝑠𝑝𝑎𝑛 = 𝑀𝑦 𝑠𝑝𝑎𝑛                      

→  𝑃𝑦 =
𝑀𝑦 𝑠𝑝𝑎𝑛 − 𝐷𝐿𝑠𝑝𝑎𝑛

10.7 𝑓𝑡
=

1420 𝑘. 𝑓𝑡 − 117 𝑘. 𝑓𝑡

10.7 𝑓𝑡

= 122 𝑘 

 

 
𝐴𝑡 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑆𝑢𝑝𝑝𝑜𝑟𝑡:   (−9.37 𝑓𝑡) 𝑃𝑦 + 𝐷𝐿𝑝𝑖𝑒𝑟 = −𝑀𝑦 𝑝𝑖𝑒𝑟                 

→    𝑃𝑦 =
𝑀𝑦 𝑝𝑖𝑒𝑟 + 𝐷𝐿𝑝𝑖𝑒𝑟

9.37 𝑓𝑡
=

1150 𝑘. 𝑓𝑡 − 209 𝑘. 𝑓𝑡

9.37 𝑓𝑡

= 100 𝑘 

 

The smaller of these two values for 𝑃𝑦 controls, indicating that first yield is 

predicted to occur at the interior support at a load of 𝑃𝐵,𝐶 𝐸𝐿 𝑙𝑖𝑚𝑖𝑡 = 100 𝑘. 

 

20’ 32’ 52’ 36’ 16’ 36’16’ 20’32’52’
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 Shakedown Limit Load 

Predicting the shakedown limit load and calculating the actual amount of moment 

redistribution are done in the same manner as for the first specimen.  The only possible 

mechanism for this loading pattern is shown in Figure A-13: 

 

Figure A-13: Shakedown Mechanism for the Second Specimen 

 
𝛿𝑊𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 2 ∗ ((𝑀𝑝 𝑠𝑝𝑎𝑛 − 𝐷𝐿𝑠𝑝𝑎𝑛)(1.60𝜃 + 𝜃)

+ (−𝑀𝑝 𝑝𝑖𝑒𝑟 − 𝐷𝐿𝑝𝑖𝑒𝑟)(−𝜃))  

= 2 ∗ ((1760 𝑘. 𝑓𝑡 − 117 𝑘. 𝑓𝑡)(2.60𝜃)

+ (−1330 𝑘. 𝑓𝑡 − (−209 𝑘. 𝑓𝑡))(−𝜃)) = (10800 𝑘. 𝑓𝑡)(𝜃) 

 

 
𝛿𝑊𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = 2 ∗ ((10.7 𝑓𝑡) 𝑃)(1.60𝜃 + 𝜃) + ((−9.37 𝑓𝑡) 𝑃)(−𝜃))

= ((74.4 𝑓𝑡) 𝑃)(𝜃) 

 

 
𝛿𝑊𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝛿𝑊𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙    →    (10800 𝑘. 𝑓𝑡)(𝜃) = ((74.4 𝑓𝑡) 𝑃𝑆𝐷)(𝜃)    

→    𝑃𝑆𝐷 = 145 𝑘 

 

 
𝑃𝐴 𝑆𝐷 𝑙𝑖𝑚𝑖𝑡 = 𝑃𝐵,𝐶 𝑆𝐷 𝑙𝑖𝑚𝑖𝑡 = 𝑃𝐷 𝑆𝐷 𝑙𝑖𝑚𝑖𝑡 = 𝑃 = 145 𝑘  

 

 
𝑀𝑒𝑙 = (−9.37 𝑓𝑡)𝑃𝐵,𝐶 𝑆𝐷 𝑙𝑖𝑚𝑖𝑡 + 𝐷𝐿𝑝𝑖𝑒𝑟 = (−9.37 𝑓𝑡)(145 𝑘) − 209 𝑘. 𝑓𝑡

= −1570 𝑘. 𝑓𝑡 

 

 
𝑀𝑟𝑑 = |𝑀𝑒𝑙| − 𝑀𝑝 𝑝𝑖𝑒𝑟 = |−1570 𝑘. 𝑓𝑡| − 1330 𝑘. 𝑓𝑡 = 240 𝑘. 𝑓𝑡 

 

20’32’20’ 32’
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 𝑀𝑟𝑑

|𝑀𝑒𝑙|
=

240 𝑘. 𝑓𝑡

|−1570 𝑘. 𝑓𝑡|
= 15% 

 

A.4.5 Predictions under Ultimate Strength Loading 

Ultimate strength testing was conducted on the second specimen under the 

application of both Load A and Load D.  The associated moment diagram under unit loads 

of 𝑃 is shown in Figure A-14. 

 

Figure A-14: Ultimate Strength Loading for the Second Specimen 

Predicting the plastic limit load was done in the same manner as for the first 

specimen.  The only possible mechanism for this applied load is shown in Figure A-15: 

 

Figure A-15: Ultimate Strength Mechanism for the Second Specimen 

20’32’32’20’

20’32’20’ 32’
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𝛿𝑊𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 2 ∗ ((𝑀𝑝 𝑠𝑝𝑎𝑛 − 𝐷𝐿𝑠𝑝𝑎𝑛)(1.60𝜃 + 𝜃)

+ (−𝑀𝑝 𝑝𝑖𝑒𝑟 − 𝐷𝐿𝑝𝑖𝑒𝑟)(−𝜃))

= 2 ∗ ((1760 𝑘. 𝑓𝑡 − 117 𝑘. 𝑓𝑡)(2.60𝜃)

+ (−1330 𝑘. 𝑓𝑡 − (−209 𝑘. 𝑓𝑡))(−𝜃)) = (10800 𝑘. 𝑓𝑡)(𝜃) 

 

 
𝛿𝑊𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = 2 ∗ (32 𝑓𝑡)(𝜃)(𝑃) = (64 𝑓𝑡)(𝜃)(𝑃) 

 

 
𝛿𝑊𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝛿𝑊𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙    →    (10800 𝑘. 𝑓𝑡)(𝜃) = (64 𝑓𝑡)(𝜃)(𝑃𝑈𝐿𝑇)    

→    𝑃𝑈𝐿𝑇 = 169 𝑘 
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APPENDIX B: EQUATIONS USED IN FURTHER ANALYSIS OF 

EXPERIMENTAL RESULTS 

B.1 OVERVIEW 

This appendix contains the equations for the deflected shapes and redistribution 

moments used in the analysis discussed in Section 6.2.1. 

B.2 RESIDUAL DEFLECTIONS AND REDISTRIBUTION MOMENTS 

Figure B-1 shows the deflected shapes and associated residual moment diagrams 

resulting from rotation of a plastic hinge in three different critical locations along a 

symmetric two-span continuous girder.  This figure is analogous to Figure 6-1.  The 

equations describing these deflected shapes and redistribution moments (𝑀𝑟𝑑) are given in 

the following sections.  For simplicity in deriving these equations, the deflection at the 

hinge point (𝛿) was used in lieu of the hinge rotation (𝜃) for cases in which the hinge was 

located in one of the spans. 

 

Figure B-1: Deflected Shapes from Rotation of Plastic Hinges (a) at Load A in North 

Span, (b) at Interior Support, and (c) at Load D in South Span 

B.2.1 Plastic Hinge at Load A in North Span 

For  0 ≤ 𝑥 ≤ 𝑐: ∆1(𝑥) = (
−𝑐𝑥3 + (4𝐿3 − 5𝐿2𝑐 + 2𝑐3)𝑥

𝑐𝑑(2𝐿2 + 3𝐿𝑑 − 𝑑2)
) 𝛿1 

(b)(a) (c)
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For  𝑐 ≤ 𝑥 ≤ 𝐿: ∆1(𝑥) = (
𝑥3 − 5𝐿2𝑥 + 4𝐿3

𝑑(2𝐿2 + 3𝐿𝑑 − 𝑑2)
) 𝛿1 

For  𝐿 ≤ 𝑥 ≤ 2𝐿: ∆1(𝑥) = (
−𝑥3 + 6𝐿𝑥2 − 11𝐿2𝑥 + 6𝐿3

𝑑(2𝐿2 + 3𝐿𝑑 − 𝑑2)
) 𝛿1 

𝑀𝑟𝑑 1 = −(
3𝐸𝐼

𝑑(𝐿 + 𝑑)
) 𝛿1 𝛿1 = (

𝑑(2𝐿3 + 𝐿2𝑑 − 𝑑𝐿𝑑2 − 𝑑3)

2(3𝐿3 − 𝐿2𝑑 + 𝑑3)
)𝜃1 

B.2.2 Plastic Hinge at Interior Support 

For  0 ≤ 𝑥 ≤ 𝐿: ∆2(𝑥) = (
−𝑥3 + 𝐿2𝑥

4𝐿2
)𝜃2 

For  𝐿 ≤ 𝑥 ≤ 2𝐿: ∆2(𝑥) = (
𝑥3 − 6𝐿𝑥2 + 11𝐿2𝑥 − 6𝐿3

4𝐿2
)𝜃2 

𝑀𝑟𝑑 2 = −(
3𝐸𝐼

2𝐿
) 𝜃2 

B.2.3 Plastic Hinge at Load D in South Span 

For  0 ≤ 𝑥 ≤ 𝐿: ∆3(𝑥) = (
𝑥3 − 𝐿2𝑥

𝑑(2𝐿2 + 3𝐿𝑑 − 𝑑2)
) 𝛿3 

For  𝐿 ≤ 𝑥 ≤ 2𝐿 − 𝑐: ∆3(𝑥) = (
−𝑥3 + 6𝐿𝑥2 − 7𝐿2𝑥 + 2𝐿3

𝑑(2𝐿2 + 3𝐿𝑑 − 𝑑2)
) 𝛿3 

For  2𝐿 − 𝑐 ≤ 𝑥 ≤ 2𝐿: ∆1(𝑥) = (
−𝑐(2𝐿 − 𝑥)3 + (4𝐿3 − 5𝐿2𝑐 + 2𝑐3)(2𝐿 − 𝑥)

𝑐𝑑(2𝐿2 + 3𝐿𝑑 − 𝑑2)
) 𝛿3 
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𝑀𝑟𝑑 3 = −(
3𝐸𝐼

𝑑(𝐿 + 𝑑)
) 𝛿3 𝛿3 = (

𝑑(2𝐿3 + 𝐿2𝑑 − 𝑑𝐿𝑑2 − 𝑑3)

2(3𝐿3 − 𝐿2𝑑 + 𝑑3)
) 𝜃3 

B.3 ELASTIC DEFLECTIONS UNDER APPLIED LOADS 

Figure B-2 shows the deflected shapes resulting from the three different loading 

cases used in the shakedown testing.  This figure is analogous to Figure 6-2.  The equations 

describing these deflected shapes are given in the following sections. 

 

Figure B-2: Elastic Deflected Shapes from Applied Load for (a) Load A in North Span, 

(b) Loads B and C in Both Spans, and (c) Load D in South Span 

B.3.1 Applied Load A in North Span 

For  0 ≤ 𝑥 ≤ 𝑎: 
∆𝐴(𝑥) = (

𝑃𝐴𝑏

24𝐸𝐼𝐿3
) ((𝑎2 + 𝐿𝑎 − 4𝐿2)𝑥3

+ (7𝐿3𝑎 − 5𝐿2𝑎2)𝑥) 

For  𝑎 ≤ 𝑥 ≤ 𝐿: 
∆𝐴(𝑥) = (

𝑃𝐴𝑎

24𝐸𝐼𝐿3
) ((5𝐿2 − 𝑎2)𝑥3 − 12𝐿3𝑥2

+ (7𝐿4 + 5𝐿2𝑎2)𝑥 − 4𝐿3𝑎2) 

For  𝐿 ≤ 𝑥 ≤ 2𝐿: ∆𝐴(𝑥) = (
𝑃𝐴𝑎𝑏(𝐿 + 𝑎)

24𝐸𝐼𝐿3
) (−𝑥3 + 6𝐿𝑥2 − 11𝐿2𝑥 + 6𝐿3) 

(b)(a) (c)

A B C D
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B.3.2 Applied Loads B and C in Both Spans 

For  0 ≤ 𝑥 ≤ 𝑎: ∆𝐵𝐶(𝑥) = (
𝑃𝐵𝐶𝑏2

12𝐸𝐼𝐿3
) ((−3𝐿 + 𝑏)𝑥3 + (3𝐿3 − 3𝐿2𝑏)𝑥) 

For  𝑎 ≤ 𝑥 ≤ 𝐿: 
∆𝐵𝐶(𝑥) = (

𝑃𝐵𝐶𝑎

12𝐸𝐼𝐿3
) ((3𝐿2 − 𝑎2)𝑥3 − 6𝐿3𝑥2

+ (3𝐿4 + 3𝐿2𝑎2)𝑥 − 2𝐿3𝑎2) 

For  𝐿 ≤ 𝑥 ≤ 2𝐿 − 𝑎: 
∆𝐵𝐶(𝑥) = (

𝑃𝐵𝐶𝑎

12𝐸𝐼𝐿3
) ((−3𝐿2 + 𝑎2)𝑥3 + (12𝐿3 − 6𝐿𝑎2)𝑥2

+ (−15𝐿4 + 9𝐿2𝑎2)𝑥 + 6𝐿5 − 4𝐿3𝑎2) 

For  2𝐿 − 𝑎 ≤ 𝑥 ≤ 2𝐿: 
∆𝐵𝐶(𝑥) = (

𝑃𝐵𝐶𝑏2

12𝐸𝐼𝐿3
) ((3𝐿 − 𝑏)𝑥3 + (−18𝐿2 + 6𝐿𝑏)𝑥2

+ (33𝐿3 − 9𝐿2𝑏)𝑥 − 18𝐿4 + 2𝐿3𝑏) 

B.3.3 Applied Load D in South Span 

For  0 ≤ 𝑥 ≤ 𝐿: ∆𝐷(𝑥) = (
𝑃𝐷𝑎𝑏(𝐿 + 𝑎)

24𝐸𝐼𝐿3
) (𝑥3 − 𝐿2𝑥) 

For  𝐿 ≤ 𝑥 ≤ 2𝐿 − 𝑎: 
∆𝐷(𝑥) = (

𝑃𝐷𝑎

24𝐸𝐼𝐿3
) ((−5𝐿2 + 𝑎2)𝑥3 + (18𝐿3 − 6𝐿𝑎2)𝑥2

+ (−19𝐿4 + 7𝐿2𝑎2)𝑥 + 6𝐿5 − 2𝐿3𝑎2) 

For  2𝐿 − 𝑎 ≤ 𝑥 ≤ 2𝐿: 
∆𝐷(𝑥) = (

𝑃𝐴𝑏

24𝐸𝐼𝐿3
) ((𝑎2 + 𝐿𝑎 − 4𝐿2)(2𝐿 − 𝑥)3

+ (7𝐿3𝑎 − 5𝐿2𝑎2)(2𝐿 − 𝑥)) 
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APPENDIX C: FULL RESULTS OF PARAMETRIC STUDY 

C.1 OVERVIEW 

This appendix provides graphs showing all of the results from the parametric study 

discussed in Chapter 7.  That chapter presents the results from only one of the three girder 

geometries used in the study, because the trends in the results were very similar.  Results 

for all three girders, including that from the girder presented in Chapter 7, are shown here. 

C.2 RESULTS FROM PARAMETRIC STUDY 

Figure D-1, Figure C-2, and Figure C-3 show the results from the parametric study 

for Girders A, B, and C, respectively.  Note that Figure D-1 is identical to Figure 7-10.  

The trends are similar for all three girder geometries. 
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Figure C-1: Comparison of Peak Moments from 2D and 3D Analyses for Non-

Composite and Strengthened Girder A 
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Figure C-2: Comparison of Peak Moments from 2D and 3D Analyses for Non-

Composite and Strengthened Girder B 
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Figure C-3: Comparison of Peak Moments from 2D and 3D Analyses for Non-

Composite and Strengthened Girder C  

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

D
if

fe
re

n
ce

 in
 P

e
ak

 M
o

m
e

n
t 

b
et

w
ee

n
 L

in
e 

El
em

e
n

t 
an

d
 3

D
 F

EA
 A

n
al

ys
is

Composite Ratio:

Exterior Spans

Interior Span

0 0.3 0.6 1 0.3 0.3 0.6 0.6 1 1 0 0 0 0.3 0.6 1

0 0.3 0.6 1 0.6 1 0.3 1 0.3 0.6 0.3 0.6 1 0 0 0

Case I
Exterior Span

Case II
Interior Support

Case III
Interior Span

Both spans have 

One span has 
One span has 

Non-composite stiffness
Composite stiffness



 215 

APPENDIX D: DESIGN EXAMPLE 

D.1 OVERVIEW 

This example addresses the strengthening design for a three-span continuous steel 

girder unit comprising a portion of an existing non-composite bridge in Texas.   

D.1.1 Description of Bridge 

The two-lane bridge was originally constructed in 1943 with four steel beams 

through the cross section.  In 1961, the bridge was widened to four lanes by adding two 

steel beams to either side of the original structure.  The steel unit from this bridge is 

symmetric in both the transverse and longitudinal directions.  A half-cross section view of 

the bridge is shown Figure D-1.  A general half-elevation view of a typical girder is shown 

in Figure D-2.  Because of symmetry, only one-half of each girder needs to be analyzed. 

 

Figure D-1: Cross Section View of Bridge 

 

Figure D-2: Half-Elevation View of Typical Girder 

7’-7.5” 7’-7.5” 7’-10” 3’-11”

Girder A
Widened
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Original
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Original

36WF150

6.5” (widened) 8” (original)

Symmetric about center line

Symmetric about center line

70’ 45’

Cover plates

Girder splices

Bearings (typ.)
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D.1.2 General Design Information 

The majority of the strength calculations and analyses are conducted using the load 

factor design method in the Standard Specifications for Highway Bridges (AASHTO 

2002).  All table, section, and equation references also refer to this document, unless 

otherwise specified.  Although this is not the current design specification in the United 

States, it is often common practice to use the Standard specifications to evaluate bridges 

that were designed using those specifications. 

However, the moment redistribution and fatigue provisions are taken from the 

LRFD Bridge Design Specifications for this example (AASHTO 2010).  The moment 

redistribution provisions in the LRFD specifications are much simpler to use and apply to 

a wider range of geometries than those in the Standard specifications.  Additionally, the 

fatigue design is conducted using the LRFD specifications to more accurately reflect the 

effect of realistic truck traffic at the time of the strengthening design. 

Note that this design example is focused on the flexural strength of the non-

composite and partially composite girders as well as the fatigue strength of the post-

installed shear connectors. Although it is not explicitly shown here, a full strengthening 

design would consider all possible limit states for all members of the bridge.  This includes 

but is not limited to the following: 

 Shear strength of the steel beams 

 Strength of the substructure and foundations 

 Strength of the approach spans 

The following material properties are used in these calculations.  Because these 

properties were not directly specified on the available design drawings, the values used 

here are based on typical materials used at the time of construction and recommendations 

in the Manual for Bridge Evaluation (AASHTO 2011): 

 Yield stress of steel beams, 𝐹𝑦 = 33 𝑘𝑠𝑖 (ASTM A7 steel) 

 Elastic modulus of steel beams, 𝐸𝑠 = 29000 𝑘𝑠𝑖 

 28-day compressive strength of concrete deck, 𝑓𝑐
′ = 3 𝑘𝑠𝑖 

 Elastic modulus of concrete deck, 

 𝐸𝑐(𝑘𝑠𝑖) = 57√𝑓′𝑐 (𝑝𝑠𝑖) = 57√3000 𝑝𝑠𝑖 = 3222 𝑘𝑠𝑖 
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D.1.3 Scope of Design Example 

Detailed design calculations and discussion are provided here for Girder B.  A 

summary of the results for the other three girders are also provided in less detail, as the 

process is nearly identical. 

The general process for the design is as follows: (1) conduct structural analysis, (2) 

evaluate existing non-composite structure, (3) set strengthening targets, (4) check negative 

moment regions and redistribute moments as necessary, (5) design connectors for strength 

requirements in positive moment regions, and (6) locate connectors and check fatigue.   

D.2 DETAILED DESIGN OF GIRDER B 

A half-elevation view of Girder B, which is equivalent to Girder A, is shown in 

Figure D-3.  This girder was added as part of the widening of the bridge in 1961.  It is 

constructed of a 36WF160 rolled steel shape, with cover plates welded to the top and 

bottom flange at the interior pier and in the middle of the interior span.  Table D-1 

summarizes the section properties for design for the steel beam (Section 1), as well as for 

the steel beam with cover plates at the interior pier (Section 2) and in the interior span 

(Section 3). 

 

Figure D-3: Half-Elevation View of Girders A and B 
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Table D-1: Section Properties for Girders A and B 

 Section 1 Section 2 Section 3 

Cover plate width (𝑏𝑝𝑙, in) 0 11.0 9.00 

Cover plate thickness (𝑡𝑝𝑙, in) 0 0.750 0.375 

Flange width (𝑏𝑓, in) 12.0 12.0 12.0 

Flange thickness (𝑡𝑓, in) 1.02 1.02 1.02 

Flange area (𝐴𝑓, in2) 12.2 20.5 15.6 

Flange moment of inertia (𝐼𝑦𝑐, in4) 147 230 170 

Total depth (𝑑, in) 36.0 37.5 36.8 

Web thickness (𝑡𝑤, in) 0.650 0.650 0.650 

Area (𝐴𝑠, in2) 47.0 63.5 53.8 

Moment of inertia (𝐼𝑥, in4) 9760 15300 12000 

Elastic section modulus (𝑆𝑥, in3) 542 818 653 

Plastic section modulus (𝑍𝑥, in3) 624 927 747 

Radius of gyration (𝑟𝑦, in) 2.51 2.70 2.52 

Polar moment of inertia (𝐽, in4) 12.4 15.5 12.7 

Web depth (𝐷, in) 34.0 34.0 34.0 

Depth of web in compression, 

elastic (𝐷𝑐, in) 

17.0 17.0 17.0 

Depth of web in compression, 

plastic (𝐷𝑐𝑝, in) 

17.0 17.0 17.0 

Effective deck width (𝑏𝑑𝑒𝑐𝑘, in) 

and girder spacing (𝑆, in) 

91.5 91.5 91.5 

Deck thickness (𝑡𝑑𝑒𝑐𝑘, in) 6.5 6.5 6.5 

Deck area (𝐴𝑑𝑒𝑐𝑘, in2) 595 595 595 

Deck moment of inertia (𝐼𝑑𝑒𝑐𝑘, in4) 2090 2090 2090 

 

D.2.1 Conduct Structural Analysis 

The structural analysis was done using a line girder analysis with the software 

BAR7.  This software, which is commonly used for load rating of bridges, outputs the 

unfactored dead and live load moments, given the geometry of a given bridge girder, the 
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magnitude of the live load, and the appropriate distribution factor.  The load factor design 

and rating procedures are used in this example, so an HS 20 live load was chosen for the 

analysis. 

The dead load was taken as the self-weight of the girder (including cover plates), 

the self-weight of the deck, the weight of a 4-inch asphalt overlay, and a portion of the 

curb, sidewalk, and railing weights.  The tributary area for the deck and overlay was taken 

as half of the distance to the adjacent girders, and the overlay was assumed to contribute a 

load of 12 psf per inch of thickness.  The weight of the curb, sidewalk, and railings was 

even distributed over all of the girders, according to the recommendation in Section 

3.23.2.3.1.1. 

The vehicular live load used in the analysis was an HS 20 load, which is the target 

load rating for the bridge after strengthening.  The distribution factor for moment, is 

calculated as follows.  Note that this calculated distribution factor represents the fraction 

of a wheel line of the design truck that is distributed to the girder of interest.  The software 

BAR7 defines the distribution factor as the fraction of the total design truck distributed to 

the girder of interest.  Thus, the distribution factor entered into the software is one-half of 

this calculated value: 

 

𝐷𝐹 =
𝑆

5.5
=

(91.5 𝑖𝑛) (
1 𝑓𝑡
12 𝑖𝑛)

5.5
= 1.39 

Table 

3.23.1 

The unfactored dead load moments and live load moment envelope are plotted in 

Figure D-4.  Table D-2 indicates the values of these moments at the critical sections of the 

girder.  The critical sections for flexural strength are at the points of maximum positive 

moment near the center of each span, at the points of maximum negative moment at the 

centerline of each interior support, and at the points of section transitions, which only occur 

on this girder at the termination of the cover plates.  The moments at the lateral brace points 

in the unbraced lengths adjacent to the interior pier are also given in the table.  Recall that 

because of symmetry, only one-half of the girder is analyzed here.  Each section is denoted 

by its location relative to the end of the continuous steel unit.  Thus, the section at the 

centerline of the interior pier is denoted as 70’. 
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Figure D-4: Plot of Unfactored Moments for Girder B 

Table D-2: Unfactored Moments at Critical Sections and at Lateral Brace Locations around 

the Interior Pier Section in Girder B 

Location 

(ft) 
Section Type 

Section 

Number 

Unfactored Moment (k-ft) 

Dead 

Load 

Live Load 

Pos. Neg. 

28 Critical, Span 1 442 679 -195 

46.7 Lateral Brace 1 121 514 -324 

62 Critical, Transition 1 -503 136 -432 

70 
Critical, Pier 

Lateral Brace 
2 -967 116 -657 

76 Critical, Transition 1 -606 89 -452 

92.5 Lateral Brace 1 108 439 -261 

106.5 Critical, Transition 1 434 666 -191 

115 Critical, Span 3 486 694 -191 
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D.2.2 Evaluate Existing Non-Composite Girder 

The evaluation of the non-composite girder is done through a load rating at the 

critical sections listed in Table D-2 using the Load Factor Rating method.  The rating factor 

(𝑅𝐹) is calculated using the following equation: 

 𝑅𝐹 =
𝐶 − 𝐴1 𝐷𝐿

𝐴2(𝐿𝐿 + 𝐼)
 

MBE 

Equation 

6B.4.1-1 

where 𝐶 represents the capacity of the section, 𝐷𝐿 is the dead load force effect, 𝐿𝐿 + 𝐼 is 

the live load force effect including the dynamic impact factor, and 𝐴1 and 𝐴2 are constants 

depending on the type of rating and the limit state considered.   

This rating factor represents the fraction of the live load applied during the 

structural analysis that can be safely resisted by the girder, which in this case is an HS 20 

live load.  The corresponding load factor rating (𝑅𝑇) is determined by multiply the rating 

factor by the magnitude of the live load used in the analysis in tons, which in this case is 

20. 

 𝑅𝑇 = (𝑅𝐹)(𝑊) = (𝑅𝐹)(20) 

MBE 

Equation 

6B.4.1-2 

Both the Overload and Maximum Load limit states are considered here.  The values 

of the coefficients 𝐴1 and 𝐴2 for an inventory-level rating for the two limit states are as 

follows: 

 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑:    𝐴1 = 1.0;    𝐴2 = 1.67 MBE 

Equation 

6B.4.3 
 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐿𝑜𝑎𝑑:    𝐴1 = 1.3;    𝐴2 = 2.17 

The capacity at the Overload limit state is based on a limiting value for the stresses 

in the steel beam.  Because the entire girder is non-composite at this point, the stress in the 

extreme fiber of the steel beam is limited to 80% of the yield stress.  This is equivalent to 

limiting the moment to 80% of the yield moment (𝑀𝑦) because all of the stresses are carried 

by the non-composite section.  Thus, in general, the flexural capacity at the Overload limit 

state (𝐶𝑂𝐿) is: 

 
𝐶𝑂𝐿 = 0.80 𝑀𝑦 = 0.80 𝑆𝑥 𝐹𝑦 

Section 

10.57.1 
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The capacity at the Maximum Load limit state (𝐶𝑀𝐿) is the smaller of the local 

buckling capacity, lateral-torsional buckling capacity, and the plastic moment of the 

section, as defined in Section 10.48.  The following calculations determine the capacity at 

both the Overload and Maximum Load limit states for the critical sections listed in Table 

D-2: 

 Critical Location at 28’ (Section #1) 

The Overload capacity is calculated as: 

 
𝐶𝑂𝐿 28′ = 0.80 𝑆𝑥 𝐹𝑦 = 0.80(542 𝑖𝑛3)(33 𝑘𝑠𝑖) (

1 𝑓𝑡

12 𝑖𝑛
) = 1190 𝑘. 𝑓𝑡  

To calculate the Maximum Load capacity, the compression (top) flange can be 

considered to be continuously braced by the deck so that lateral-torsional buckling will not 

control the strength.  Thus, the steel section is classified as compact if: 

  𝑏𝑓

𝑡𝑓
≤

4,100

√𝐹𝑦

   →   
12.0 𝑖𝑛

1.02 𝑖𝑛
≤

4,100

√33,000 𝑝𝑠𝑖
   →    11.8 ≤ 22.6   

→    𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑙𝑎𝑛𝑔𝑒 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 

Equation 

10-93 

 𝐷

𝑡𝑤
≤

19,230

√𝐹𝑦

   →   
34.0 𝑖𝑛

0.650 𝑖𝑛
≤

19,230

√33,000 𝑝𝑠𝑖
   →    52.3

≤ 106   →    𝑤𝑒𝑏 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 

Equation 

10-94 

This section qualifies as a compact section, so the flexural strength is defined as the 

plastic moment of the section.  The Maximum Load capacity is: 

 
𝐶𝑀𝐿 28′ = 𝑍𝑥  𝐹𝑦 = (624 𝑖𝑛3)(33 𝑘𝑠𝑖) (

1 𝑓𝑡

12 𝑖𝑛
) = 1720 𝑘. 𝑓𝑡 

Section 

10.48.1 

The rating factor and load rating for the Overload and Maximum Load limit states 

for this critical location are: 

 𝑅𝐹𝑂𝐿 28′ =
1190 𝑘. 𝑓𝑡 − (1.0)(442 𝑘. 𝑓𝑡)

(1.67)(679 𝑘. 𝑓𝑡)
= 0.660  



 223 

 
𝑅𝑇𝑂𝐿 28′ = (0.660)(20) = 13.2   →    𝐻𝑆 13.2 

 

 
𝑅𝐹𝑀𝐿 28′ =

1720 𝑘. 𝑓𝑡 − (1.3)(442 𝑘. 𝑓𝑡)

(2.17)(679 𝑘. 𝑓𝑡)
= 0.777 

 

 
𝑅𝑇𝑀𝐿 28′ = (0.777)(20) = 15.5   →    𝐻𝑆 15.5 

 

 Critical Location at 62’ (Section #1) 

The Overload capacity is equivalent to that at 28’, although it will be given a 

negative sign since this location is dominated by negative flexure: 

 
𝐶𝑂𝐿 62′ = −1190 𝑘. 𝑓𝑡  

The unbraced length (𝐿𝑏) for the compression (bottom) flange is 23.3 feet, or 280 

inches.  The steel section is the same as that at 28’, so the compression flange and web 

meet the compact limits.  Thus, the steel section is classified as compact if: 

 

𝐿𝑏

𝑟𝑦
≤

[3.6 − 2.2 (
𝑀1

𝑀𝑝
)] 𝑥103

𝐹𝑦
 

Equation 

10-96 

 
𝑀1 = (1.3)(121 𝑘. 𝑓𝑡) + (2.17)(−324 𝑘. 𝑓𝑡) = −546 𝑘. 𝑓𝑡  

 
𝑀𝑝 = −𝑍𝑥 70′  𝐹𝑦 = (927 𝑘. 𝑓𝑡)(33 𝑘𝑠𝑖) (

1 𝑓𝑡

12 𝑖𝑛
) = −2550 𝑘. 𝑓𝑡  

 

→   
280 𝑖𝑛

2.51 𝑖𝑛
≤

[3.6 − 2.2 (
−546 𝑘. 𝑓𝑡
−2550 𝑘. 𝑓𝑡

)] 𝑥103

33 𝑘𝑠𝑖
  →   111 ≰ 94.8   

→    𝐿𝑇𝐵 𝑛𝑜𝑡 𝑂𝐾 

 

In the above equation for the lateral-torsional buckling check, 𝑀1 is the smaller of 

the brace moments and 𝑀𝑝 is the plastic moment capacity at the other brace point.  The 
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ratio of 𝑀1 to 𝑀𝑝 is taken as positive if the factored moments cause single curvature within 

the unbraced length, which is the case here. 

Because the unbraced length is too large, the section is not compact.  The steel 

section is classified as a braced noncompact section if the following equation is true.  Note 

that because the compression flange and web are known to meet the compact limits, only 

the lateral-torsional buckling check needs to be done here: 

 
𝐿𝑏 ≤

20,000𝐴𝑓

𝐹𝑦 𝑑
   →    280 𝑖𝑛 ≤

20,000(12.2 𝑖𝑛2)

(33 𝑘𝑠𝑖)(36.0 𝑖𝑛)
         

→    280 𝑖𝑛 ≰ 205 𝑖𝑛   →    𝐿𝑇𝐵 𝑛𝑜𝑡 𝑂𝐾 

Equation 

10-101 

Again, because the unbraced length is too large, the section does not qualify as a 

braced noncompact section.  Thus, it is a partially braced member, and the capacity is 

calculated as follows: 

 
𝐶𝑀𝐿 62′ = −𝑀𝑟𝑅𝑏 

Equation 

10-103a 

 

𝑀𝑟 = (91 𝑥 103)𝐶𝑏 (
𝐼𝑦𝑐

𝐿𝑏
)√0.772

𝐽

𝐼𝑦𝑐
+ 9.87 (

𝑑

𝐿𝑏
)
2

≤ 𝑀𝑦 
Equation 

10-103c 

 

𝐶𝑏 = 1.75 + 1.05 (−
𝑀1

𝑀2
) + 0.3 (−

𝑀1

𝑀2
)

2

≤ 2.3  

 
𝑀1 = (1.3)(121 𝑘. 𝑓𝑡) + (2.17)(−324 𝑘. 𝑓𝑡) = −546 𝑘. 𝑓𝑡  

 
𝑀2 = (1.3)(−967 𝑘. 𝑓𝑡) + (2.17)(−657 𝑘. 𝑓𝑡) = −2680 𝑘. 𝑓𝑡  

 

𝐶𝑏 = 1.75 + 1.05 (−
−546 𝑘. 𝑓𝑡

−2680 𝑘. 𝑓𝑡
) + 0.3 (−

−546 𝑘. 𝑓𝑡

−2680 𝑘. 𝑓𝑡
)

2

= 1.55  

 
𝑀𝑦 = 𝑆𝑥𝐹𝑦 = (542 𝑖𝑛3)(33 𝑘𝑠𝑖) (

1 𝑓𝑡

12 𝑖𝑛
) = 1490 𝑘. 𝑓𝑡  
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𝑀𝑟 = (91𝑥103)(1.55) (
147 𝑖𝑛4

280 𝑖𝑛
)√0.772 (

12.4 𝑖𝑛4

147 𝑖𝑛4
) + 9.87 (

36.0 𝑖𝑛

280 𝑖𝑛
)
2

= 35400 𝑘. 𝑖𝑛 (
1 𝑓𝑡

12 𝑖𝑛
) = 2950 𝑘. 𝑓𝑡 ≰ 𝑀𝑦    →    𝑀𝑟

= 1490 𝑘. 𝑓𝑡 

 

 

𝑅𝑏 = 1 − 0.002(
𝐷𝑐  𝑡𝑤
𝐴𝑓

)

[
 
 
 
𝐷𝑐

𝑡𝑤
−

𝜆

√
𝑀𝑟

𝑆𝑥 ]
 
 
 

≤ 1.0

= 1 − 0.002
(17.0 𝑖𝑛)(0.650 𝑖𝑛)

12.2 𝑖𝑛2
[
17.0 𝑖𝑛

0.650 𝑖𝑛
−

15,400

√33,000 𝑝𝑠𝑖
]

= 1.11 ≰ 1.0   →    𝑅𝑏 = 1.0 

 

 
𝐶𝑀𝐿 62′ = −(1490 𝑘. 𝑓𝑡)(1.0) = −1490 𝑘. 𝑓𝑡  

Note that because 𝑀𝑟 is equal to 𝑀𝑦, the ratio of 𝑀𝑟 to 𝑆𝑥 under the square root in 

the equation for 𝑅𝑏 is simply equal to 𝐹𝑦.  In the equation for 𝐶𝑏, 𝑀1 and 𝑀2 are the smaller 

and larger of the factored brace point moments, respectively.  The ratio of 𝑀1 to 𝑀2 is 

taken as negative if the moments cause single curvature, which is the case here. 

The rating factor and load rating for the Overload and Maximum Load limit states 

for this critical location are: 

 𝑅𝐹𝑂𝐿 62′ =
−1190 𝑘. 𝑓𝑡 − (1.0)(−503 𝑘. 𝑓𝑡)

(1.67)(−432 𝑘. 𝑓𝑡)
= 0.952  

 
𝑅𝑇𝑂𝐿 62′ = (0.952)(20) = 19.0   →    𝐻𝑆 19.0 

 

 
𝑅𝐹𝑀𝐿 62′ =

−1490 𝑘. 𝑓𝑡 − (1.3)(−503 𝑘. 𝑓𝑡)

(2.17)(−432 𝑘. 𝑓𝑡)
= 0.892 

 

 
𝑅𝑇𝑀𝐿 62′ = (0.892)(20) = 17.8   →    𝐻𝑆 17.8 
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 Critical Location at 70’ (Section #2) 

The Overload capacity is calculated as: 

 
𝐶𝑂𝐿 70′ = −0.80 𝑆𝑥 𝐹𝑦 = 0.80(818 𝑖𝑛3)(33 𝑘𝑠𝑖) (

1 𝑓𝑡

12 𝑖𝑛
) = −1800 𝑘. 𝑓𝑡  

Because there is a cross frame at this location, the unbraced lengths on both sides 

of this critical location need to be checked.  The unbraced length (𝐿𝑏) for the compression 

(bottom) flange is 23.3 feet, or 280 inches, in the direction of the exterior span and 22.5 

feet, or 270 inches, in the direction of the interior span.  However, from the calculations at 

62’, it is already known that the unbraced length adjacent to the interior pier in the exterior 

span is classified as a partially braced member, so the compact and braced noncompact 

checks do not need to be made here.  The capacity for a partially braced member is 

calculated for the unbraced lengths on either side of the interior pier are: 

 
𝐶𝑀𝐿 70′ = −𝑀𝑟𝑅𝑏 

Equation 

10-103a 

 

𝑀𝑟 = (91 𝑥 103)𝐶𝑏 (
𝐼𝑦𝑐

𝐿𝑏
)√0.772

𝐽

𝐼𝑦𝑐
+ 9.87 (

𝑑

𝐿𝑏
)
2

≤ 𝑀𝑦 
Equation 

10-103c 

 

𝐶𝑏 = 1.75 + 1.05 (−
𝑀1

𝑀2
) + 0.3 (−

𝑀1

𝑀2
)

2

≤ 2.3  

 
𝑀1 𝑒𝑥𝑡 = −546 𝑘. 𝑓𝑡  

 
𝑀1 𝑖𝑛𝑡 = (1.3)(108 𝑘. 𝑓𝑡) + (2.17)(−261 𝑘. 𝑓𝑡) = −426 𝑘. 𝑓𝑡  

 
𝑀2 = −2680 𝑘. 𝑓𝑡  

 
𝐶𝑏 𝑒𝑥𝑡 = 1.55  
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𝐶𝑏 𝑖𝑛𝑡 = 1.75 + 1.05 (−
−426 𝑘. 𝑓𝑡

−2680 𝑘. 𝑓𝑡
) + 0.3 (−

−426 𝑘. 𝑓𝑡

−2680 𝑘. 𝑓𝑡
)
2

= 1.59  

 
𝑀𝑦 = 𝑆𝑥𝐹𝑦 = (818 𝑖𝑛3)(33 𝑘𝑠𝑖) (

1 𝑓𝑡

12 𝑖𝑛
) = 2250 𝑘. 𝑓𝑡  

 

𝑀𝑟 𝑒𝑥𝑡 = (91𝑥103)(1.55) (
230 𝑖𝑛4

280 𝑖𝑛
)√0.772 (

15.5 𝑖𝑛4

230 𝑖𝑛4
) + 9.87 (

36.0 𝑖𝑛

280 𝑖𝑛
)
2

= 57300 𝑘. 𝑖𝑛 (
1 𝑓𝑡

12 𝑖𝑛
) = 4480 𝑘. 𝑓𝑡 ≰ 𝑀𝑦    →    𝑀𝑟 𝑒𝑥𝑡

= 2250 𝑘. 𝑓𝑡 

 

 

𝑀𝑟 𝑖𝑛𝑡 = (91𝑥103)(1.59) (
230 𝑖𝑛4

270 𝑖𝑛
)√0.772 (

15.5 𝑖𝑛4

230 𝑖𝑛4
) + 9.87 (

36.0 𝑖𝑛

270 𝑖𝑛
)
2

= 58800 𝑘. 𝑖𝑛 (
1 𝑓𝑡

12 𝑖𝑛
) = 4900 𝑘. 𝑓𝑡 ≰ 𝑀𝑦    →    𝑀𝑟 𝑖𝑛𝑡

= 2250 𝑘. 𝑓𝑡 

 

 

𝑅𝑏 = 1 − 0.002 (
𝐷𝑐  𝑡𝑤
𝐴𝑓

)

[
 
 
 
𝐷𝑐

𝑡𝑤
−

𝜆

√
𝑀𝑟

𝑆𝑥 ]
 
 
 

≤ 1.0

= 1 − 0.002
(17.0 𝑖𝑛)(0.650 𝑖𝑛)

20.5 𝑖𝑛2
[
17.0 𝑖𝑛

0.650 𝑖𝑛
−

15,400

√33,000 𝑝𝑠𝑖
]

= 1.06 ≰ 1.0   →    𝑅𝑏 = 1.0 

 

 
𝐶𝑀𝐿 70′ = −(2250 𝑘. 𝑓𝑡)(1.0) = −2250 𝑘. 𝑓𝑡  

The rating factor and load rating for the Overload and Maximum Load limit states 

for this critical location are: 

 𝑅𝐹𝑂𝐿 70′ =
−1800 𝑘. 𝑓𝑡 − (1.0)(−967 𝑘. 𝑓𝑡)

(1.67)(−657 𝑘. 𝑓𝑡)
= 0.759  
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𝑅𝑇𝑂𝐿 70′ = (0.759)(20) = 15.2   →    𝐻𝑆 15.2 

 

 
𝑅𝐹𝑀𝐿 70′ =

−2250 𝑘. 𝑓𝑡 − (1.3)(−967 𝑘. 𝑓𝑡)

(2.17)(−657 𝑘. 𝑓𝑡)
= 0.696 

 

 
𝑅𝑇𝑀𝐿 70′ = (0.696)(20) = 13.9   →    𝐻𝑆 13.9 

 

 Critical Location at 76’ (Section #1) 

The Overload capacity is equivalent to that at 62’: 

 
𝐶𝑂𝐿 76′ = −1190 𝑘. 𝑓𝑡  

The unbraced length (𝐿𝑏) for the compression (bottom) flange is 22.5 feet, or 270 

inches.  The steel section is the same as that at 28’ and 62’, so the compression flange and 

web meet the compact limits.  Some calculations for the unbraced length were conducted 

previously for the critical location at 70’ and will not be repeated in detail here.  The steel 

section is classified as compact if: 

 

𝐿𝑏

𝑟𝑦
≤

[3.6 − 2.2 (
𝑀1

𝑀𝑝
)] 𝑥103

𝐹𝑦
 

Equation 

10-96 

 
𝑀1 = −426 𝑘. 𝑓𝑡  

 
𝑀𝑝 = −𝑍𝑥 70′  𝐹𝑦 = (927 𝑘. 𝑓𝑡)(33 𝑘𝑠𝑖) (

1 𝑓𝑡

12 𝑖𝑛
) = −2550 𝑘. 𝑓𝑡  

 

→   
270 𝑖𝑛

2.51 𝑖𝑛
≤

[3.6 − 2.2 (
−426 𝑘. 𝑓𝑡
−2550 𝑘. 𝑓𝑡

)] 𝑥103

33 𝑘𝑠𝑖
  →   108 ≰ 98.0   

→    𝐿𝑇𝐵 𝑛𝑜𝑡 𝑂𝐾 
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Because the unbraced length is too large, the section is not compact.  Because the 

compression flange and web already satisfy the compact limits, the steel section is 

classified as a braced noncompact section if: 

 
𝐿𝑏 ≤

20,000𝐴𝑓

𝐹𝑦 𝑑
   →    270 𝑖𝑛 ≤

20,000(12.2 𝑖𝑛2)

(33 𝑘𝑠𝑖)(36.0 𝑖𝑛)
         

→    270 𝑖𝑛 ≰ 205 𝑖𝑛   →    𝐿𝑇𝐵 𝑛𝑜𝑡 𝑂𝐾 

Equation 

10-101 

Again, because the unbraced length is too large, the section does not qualify as a 

braced noncompact section.  Thus, it is a partially braced member, and the capacity is 

calculated as follows: 

 
𝐶𝑀𝐿 76′ = −𝑀𝑟𝑅𝑏 

Equation 

10-103a 

 

𝑀𝑟 = (91 𝑥 103)𝐶𝑏 (
𝐼𝑦𝑐

𝐿𝑏
)√0.772

𝐽

𝐼𝑦𝑐
+ 9.87 (

𝑑

𝐿𝑏
)
2

≤ 𝑀𝑦 
Equation 

10-103c 

 
𝐶𝑏 = 1.59  

 
𝑀𝑦 = 𝑆𝑥𝐹𝑦 = (542 𝑖𝑛3)(33 𝑘𝑠𝑖) (

1 𝑓𝑡

12 𝑖𝑛
) = 1490 𝑘. 𝑓𝑡  

 

𝑀𝑟 = (91𝑥103)(1.59) (
147 𝑖𝑛4

270 𝑖𝑛
)√0.772 (

12.4 𝑖𝑛4

147 𝑖𝑛4
) + 9.87 (

36.0 𝑖𝑛

270 𝑖𝑛
)
2

= 38600 𝑘. 𝑖𝑛 (
1 𝑓𝑡

12 𝑖𝑛
) = 3220 𝑘. 𝑓𝑡 ≰ 𝑀𝑦    →    𝑀𝑟

= 1490 𝑘. 𝑓𝑡 
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𝑅𝑏 = 1 − 0.002(
𝐷𝑐  𝑡𝑤
𝐴𝑓

)

[
 
 
 
𝐷𝑐

𝑡𝑤
−

𝜆

√
𝑀𝑟

𝑆𝑥 ]
 
 
 

≤ 1.0

= 1 − 0.002
(17.0 𝑖𝑛)(0.650 𝑖𝑛)

12.2 𝑖𝑛2
[
17.0 𝑖𝑛

0.650 𝑖𝑛
−

15,400

√33,000 𝑝𝑠𝑖
]

= 1.11 ≰ 1.0   →    𝑅𝑏 = 1.0 

 

 
𝐶𝑀𝐿 76′ = −(1490 𝑘. 𝑓𝑡)(1.0) = −1490 𝑘. 𝑓𝑡  

The rating factor and load rating for the Overload and Maximum Load limit states 

for this critical location are: 

 𝑅𝐹𝑂𝐿 76′ =
−1190 𝑘. 𝑓𝑡 − (1.0)(−606 𝑘. 𝑓𝑡)

(1.67)(−452 𝑘. 𝑓𝑡)
= 0.774  

 
𝑅𝑇𝑂𝐿 76′ = (0.774)(20) = 15.5   →    𝐻𝑆 15.5 

 

 
𝑅𝐹𝑀𝐿 76′ =

−1490 𝑘. 𝑓𝑡 − (1.3)(−606 𝑘. 𝑓𝑡)

(2.17)(−452 𝑘. 𝑓𝑡)
= 0.716 

 

 
𝑅𝑇𝑀𝐿 76′ = (0.716)(20) = 14.3   →    𝐻𝑆 14.3 

 

 Critical Location at 106.5’ (Section #1) 

The Overload capacity is equivalent to that at 28’: 

 
𝐶𝑂𝐿 106.5′ = 1190 𝑘. 𝑓𝑡  

To calculate the Maximum Load capacity, the compression flange and web have 

already been shown to meet the compact limits.  Additionally, the compression (top) flange 

can be considered to be continuously braced by the deck so that lateral-torsional buckling 

will not control the strength.  Thus, the steel section is classified as compact and the 

capacity is: 
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𝐶𝑀𝐿 106.5′ = 𝑍𝑥  𝐹𝑦 = (624 𝑖𝑛3)(33 𝑘𝑠𝑖) (

1 𝑓𝑡

12 𝑖𝑛
) = 1720 𝑘. 𝑓𝑡 

Section 

10.48.1 

The rating factor and load rating for the Overload and Maximum Load limit states 

for this critical location are: 

 𝑅𝐹𝑂𝐿 106.5′ =
1190 𝑘. 𝑓𝑡 − (1.0)(434 𝑘. 𝑓𝑡)

(1.67)(666 𝑘. 𝑓𝑡)
= 0.680  

 
𝑅𝑇𝑂𝐿 106.5′ = (0.680)(20) = 13.6   →    𝐻𝑆 13.6 

 

 
𝑅𝐹𝑀𝐿 106.5′ =

1720 𝑘. 𝑓𝑡 − (1.3)(434 𝑘. 𝑓𝑡)

(2.17)(666 𝑘. 𝑓𝑡)
= 0.800 

 

 
𝑅𝑇𝑀𝐿 106.5′ = (0.800)(20) = 16.0   →    𝐻𝑆 16.0 

 

 Critical Location at 115’ (Section #3) 

The Overload capacity is calculated as: 

 
𝐶𝑂𝐿 115′ = 0.80 𝑆𝑥 𝐹𝑦 = 0.80(653 𝑖𝑛3)(33 𝑘𝑠𝑖) (

1 𝑓𝑡

12 𝑖𝑛
) = 1440 𝑘. 𝑓𝑡  

To calculate the Maximum Load capacity, the compression flange and web have 

already been shown to meet the compact limits.  Additionally, the compression (top) flange 

can be considered to be continuously braced by the deck so that lateral-torsional buckling 

will not control the strength.  Thus, the steel section is classified as compact and the 

capacity is: 

 
𝐶𝑀𝐿 115′ = 𝑍𝑥 𝐹𝑦 = (747 𝑖𝑛3)(33 𝑘𝑠𝑖) (

1 𝑓𝑡

12 𝑖𝑛
) = 2050 𝑘. 𝑓𝑡 

Section 

10.48.1 

The rating factor and load rating for the Overload and Maximum Load limit states 

for this critical location are: 
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 𝑅𝐹𝑂𝐿 115′ =
1440 𝑘. 𝑓𝑡 − (1.0)(486 𝑘. 𝑓𝑡)

(1.67)(694 𝑘. 𝑓𝑡)
= 0.823  

 
𝑅𝑇𝑂𝐿 115′ = (0.823)(20) = 16.5   →    𝐻𝑆 16.5 

 

 
𝑅𝐹𝑀𝐿 115′ =

2050 𝑘. 𝑓𝑡 − (1.3)(486 𝑘. 𝑓𝑡)

(2.17)(694 𝑘. 𝑓𝑡)
= 0.942 

 

 
𝑅𝑇𝑀𝐿 115′ = (0.942)(20) = 18.8   →    𝐻𝑆 18.8 

 

 Summary of Load Rating of Existing Non-Composite Girder 

Table D-3 summarizes the results of the load rating calculations for the existing 

girder at the critical locations from Table D-2.  The controlling load rating is HS 13.2, 

which occurs at the Overload limit state at the critical section at the maximum positive 

moment in the exterior span (28’). 

Table D-3: Load Rating Results of Existing Non-Composite Girder B 

Location 

(ft) 
Section Type 

Capacity (k-ft) Inventory Load Rating 

Overload 
Maximum 

Load 
Overload 

Maximum 

Load 

28 Critical, Span 1190 1720 HS 13.2 HS 15.5 

62 Critical, Transition -1190 -1490 HS 19.0 HS 17.8 

70 Critical, Pier -1800 -2250 HS 15.2 HS 13.9 

76 Critical, Transition -1190 -1490 HS 15.5 HS 14.3 

106.5 Critical, Transition 1190 1720 HS 13.6 HS 16.0 

115 Critical, Span 1440 2050 HS 16.5 HS 18.8 

 

D.2.3 Set Strengthening Targets 

The bridge owner would like to increase the inventory load factor rating to HS 

20, which corresponds to the minimum strength of a new bridge designed using the 

Standard specifications.  At a minimum, a remaining life of 25 years is desired for the 



 233 

purposes of fatigue design of the post-installed shear connectors.  It is expected that an 

average annual daily truck traffic ((𝑨𝑫𝑻𝑻)𝑺𝑳) of 1160 trucks per day will cross the 

bridge over the next 25 years. 

D.2.4 Check Negative Moment Regions and Redistribute Moments 

To start the strengthening process, first the strength of the negative moment regions 

at the interior piers (70’) is evaluated and compared to the factored moments (𝑀𝑢) to 

determine whether or not moment redistribution is necessary.  As with the evaluation of 

the existing girder, both the Overload and Maximum Load limit states are considered here.  

The factored moments for these limit states are as follows, where 𝐷𝐿 is the dead load force 

effect and 𝐿𝐿 + 𝐼 is the live load force effect, including the dynamic impact factor: 

 
𝑀𝑢 𝑂𝐿 = 1.0𝐷𝐿 + (1.67)(𝐿𝐿 + 𝐼)

= 1.0(−967 𝑘. 𝑓𝑡) + (1.67)(−657 𝑘. 𝑓𝑡)

= −2060 𝑘. 𝑓𝑡 

Section 

10.57 

 
𝑀𝑢 𝑀𝐿 = 1.3𝐷𝐿 + 2.17(𝐿𝐿 + 𝐼)

= 1.3(−967 𝑘. 𝑓𝑡) + 2.17(−657 𝑘. 𝑓𝑡)

= −2680 𝑘. 𝑓𝑡 

Table 

3.22.1A 

If the factored moment at the interior pier exceeds the capacity of the section at that 

interior pier, moment redistribution can be considered to increase the load rating at that 

location.  The capacity at both limit states was calculated during the evaluation of the 

existing non-composite girder: 

 
𝐶𝑂𝐿 70′ = −1800 𝑘. 𝑓𝑡  

 
𝐶𝑀𝐿 70′ = −2250 𝑘. 𝑓𝑡  

The magnitude of the factored moments exceed the calculated capacities at the 

interior pier section (70’) for both the Overload (2060 k-ft > 1800 k-ft) and Maximum Load 

(2680 k-ft > 2250 k-ft) limit states.  This means that moment redistribution should be 

considered at both limit states. 
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The findings of this research recommend using the simple, rational moment 

redistribution provisions from Appendix B6 of the LRFD specifications, rather than the 

provisions that cover moment redistribution in the Standard specifications.  The provisions 

in the LRFD specifications are much simpler to use and apply to a wider range of cases 

than those in the Standard specifications, based on research done in the mid-1990s (Barth 

et al. 2004).  The following requirements are given in Section B6.2 of the LRFD 

specifications, and must be satisfied to allow for moment redistribution: 

1. The bridge must be straight with supports not skewed more than 10°   →   𝑂𝐾 

2. The specified minimum yield stress does not exceed 70 ksi   →   𝑂𝐾 

3. Holes in the tension flange may not be present within a distance of twice the 

web depth from each interior pier section from which moments are redistributed   

→   𝑂𝐾 

4. The web proportions cannot violate the following requirements: 
𝐷

𝑡𝑤
≤ 150  →   

34.0 𝑖𝑛

0.650 𝑖𝑛
≤ 150  →   52.3 ≤ 150  →   𝑂𝐾 

2𝐷𝑐

𝑡𝑤
≤ 6.8√

𝐸

𝐹𝑦
  →   

2(17.0 𝑖𝑛)

0.650 𝑖𝑛
≤ 6.8√

29000 𝑘𝑠𝑖

33 𝑘𝑠𝑖
  →   52.3 ≤ 202  →   𝑂𝐾 

𝐷𝑐𝑝 ≤ 0.75𝐷  →   17.0 𝑖𝑛 ≤ 0.75(34.0 𝑖𝑛)   →   17.0 𝑖𝑛 ≤ 25.5 𝑖𝑛  →   𝑂𝐾 

5. The compression flange proportions cannot violate the following requirements, 

the first of which ensures that the flange is compact: 

𝑏𝑓

2𝑡𝑓
≤ 0.38√

𝐸

𝐹𝑦
  →   

12.0 𝑖𝑛

2(1.02 𝑖𝑛)
≤ 0.38√

29000 𝑘𝑠𝑖

33 𝑘𝑠𝑖
  →   5.88 ≤ 11.3  

→   𝑂𝐾 

𝑏𝑓 ≥
𝐷

4.25
  →   12.0 𝑖𝑛 ≥

34.0 𝑖𝑛

4.25
  →   12.0 𝑖𝑛 ≥ 8 𝑖𝑛  →   𝑂𝐾 

Note that the flange proportions here are checked without considering the 

contributions of the cover plates.  Engineering judgement can be used to 

include any contribution from the cover plates, if desired. 

6. The compression flange must be adequately braced to prevent lateral-torsional 

buckling and allow the section to achieve enough plastic rotation to adequately 

redistribute moments: 

𝐿𝑏 ≤ [0.1 − 0.06 (
𝑀1

𝑀2
)]

𝑟𝑡𝐸

𝐹𝑦
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The cover plate terminates within the unbraced length, so that two different 

sets of section properties are valid within the unbraced lengths in question.  

To be conservative, the section properties of the smaller section (Section 

#1) are used.  The effective radius of gyration for lateral-torsional buckling 

is defined in Appendix A6 of the LRFD specifications (Equation A6.3.3-

10), and is calculated for Section #1 as: 

𝑟𝑡 =
𝑏𝑓

√12 (1 +
1
3

𝐷𝑐𝑡𝑤
𝑏𝑓𝑡𝑓

) 

=
12.0 𝑖𝑛

√12 (1 +
1
3

(17.0 𝑖𝑛)(0.650 𝑖𝑛)
(12.0 𝑖𝑛)(1.02 𝑖𝑛)

) 

= 3.04 𝑖𝑛 

Because both the unbraced length and the brace point moments are different 

on either side of the interior pier, both must be checked at the Overload and 

Maximum Load limit states.  However, because the load factors for the 

Maximum Load limit state are exactly 30% greater than those for the 

Overload limit state, the ratio of the factored brace moments (𝑀1 and 𝑀2) 

will be the same for both limit states.  Thus, only the Maximum Load limit 

state will be used here. 

𝐿𝑏 𝑒𝑥𝑡

≤ [0.1

− 0.06 (
1.3(121 𝑘. 𝑓𝑡) + (2.17)(−324 𝑘. 𝑓𝑡)

1.3(−967 𝑘. 𝑓𝑡) + (2.17)(−657 𝑘. 𝑓𝑡)
)]

(3.04 𝑖𝑛)(29000 𝑘𝑠𝑖)

33 𝑘𝑠𝑖

= (235 𝑖𝑛 ) (
1 𝑓𝑡

12 𝑖𝑛
) = 19.5 𝑓𝑡 

𝐿𝑏 𝑖𝑛𝑡

≤ [0.1

− 0.06 (
1.3(108 𝑘. 𝑓𝑡) + (2.17)(−261 𝑘. 𝑓𝑡)

1.3(−967 𝑘. 𝑓𝑡) + (2.17)(−657 𝑘. 𝑓𝑡)
)]

(3.04 𝑖𝑛)(29000 𝑘𝑠𝑖)

33 𝑘𝑠𝑖

= (242 𝑖𝑛 ) (
1 𝑓𝑡

12 𝑖𝑛
) = 20.1 𝑓𝑡 

In the above calculations, 𝑀1 is the smaller of the brace point moments, 

while 𝑀2 is the larger of the brace point moments.  The ratio of 𝑀1 to 𝑀2 is 

taken as a positive value if the factored moments cause single curvature 

within the unbraced length, which is the case here. 

The actual unbraced lengths exceed these calculated limiting values: 
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𝐿𝑏 𝑒𝑥𝑡 = 23.3 𝑓𝑡 > 19.5 𝑓𝑡  →   𝑁𝑂𝑇 𝑂𝐾 

𝐿𝑏 𝑖𝑛𝑡 = 22.5 𝑓𝑡 > 20.1 𝑓𝑡  →   𝑁𝑂𝑇 𝑂𝐾 

Thus, the existing cross frames do not provide adequate lateral bracing to 

allow for moment redistribution.  To redistribute moments in this girder, 

additional cross frames must be added on either side of the interior pier 

to reduce the unbraced length.  These cross frames must be located such 

that they reduce the unbraced length so that this requirement is satisfied. 

In this design, the cross frames will be added at 10 feet from the interior 

pier in the exterior span and at 10.5 feet from the interior pier in the interior 

span.  These locations are chosen to match the existing cross frame locations 

on Girders C and D, which are different from those in Girders A and B 

because they were constructed at different times.  Repeating the calculations 

for the limiting unbraced lengths using the new brace point moments, shown 

later in Table D-4, shows that the new unbraced lengths satisfy the lateral 

bracing requirements: 

𝐿𝑏 𝑒𝑥𝑡 = 10.0 𝑓𝑡 < 15.1 𝑓𝑡  →   𝑂𝐾 

𝐿𝑏 𝑖𝑛𝑡 = 10.5 𝑓𝑡 < 16.0 𝑓𝑡  →  𝑂𝐾 

7. There shall be no section transitions within the unbraced length of the interior 

pier section   →   𝑁𝑂𝑇 𝑂𝐾 

Because the cover plates at the interior pier terminate within the adjacent 

unbraced lengths from the pier, this requirement is not satisfied.  Although 

the exact reason for this requirement is unclear in the specification, it is 

likely there for a few reasons, which are discussed here. 

Firstly, if the section changes within the unbraced length, it is unclear which 

section properties should be used to check the lateral-torsional buckling 

capacity within that unbraced length.  To be conservative, the properties of 

the smallest section within the unbraced length are used here (see number 6 

on this list). 

Secondly, the moment redistribution provisions are based on the assumption 

that the critical section for negative flexure is at the centerline of the interior 

pier.  If there is a section transition near the interior pier, that location could 

be the critical location for negative flexure instead.  This means that the 

location of the section transition might reach its capacity first, and moments 

would be redistributed from that location instead of from the centerline of 
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the interior pier.  However, when evaluating the existing bridge, it was 

found that the load rating was in fact controlled by the section at the 

centerline of the interior pier, rather than at the ends of the cover plates, 

indicating that this will not be a concern for this bridge. 

Finally, and most importantly, the LRFD specifications eliminate the 

requirements to satisfy flexural stress checks at the Overload limit state 

within the entire negative moment region as well as flexural capacity checks 

at the Maximum Load limit state within the unbraced lengths adjacent to 

the interior pier from which moments are redistributed (LRFD Sections 

B6.3.2.1 and B.6.4.1.1).  Thus, if there is a transition to a smaller section 

within that unbraced length, it is possible that the reduced flexural strength 

of that section may be exceeded by the factored moments or stresses.  

However, a simple additional check that the flexural capacity at both the 

Overload and Maximum Load limit states exceeds the factored moment 

after redistribution at any section transitions within the unbraced length 

adjacent to the interior pier will eliminate this possibility.  Note that for the 

Overload limit state, the stress limits should be abolished and the capacity 

should be taken as the same nominal moment capacity used in the check for 

at Maximum Load limit state. 

Because of the conservative use of section properties in calculating the 

maximum unbraced length to prevent lateral-torsional buckling and the 

assessment that the controlling section in negative flexure will be the 

centerline of the interior pier, rather than at any nearby section transitions, 

this requirement that no section transitions occur within the unbraced 

lengths of the pier section is ignored.  The reduced flexural capacity at each 

transition will be checked against the factored moments after redistribution 

to ensure that the section has adequate strength. 

Note that alternatively, this requirement could be directly satisfied by 

placing the additional cross frames that are needed to reduce the unbraced 

length (see number 6 on this list) at the location of the section transition or 

at a location even closer to the interior pier. 

8. The shear limit state must not be exceeded within the unbraced length adjacent 

to the interior pier regions. →   𝑂𝐾 
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Although a check for shear is not shown here, the shear strength 

requirements are satisfied for this girder. 

9. Bearing stiffeners must be present at the interior pier locations  →   𝑁𝑂𝑇 𝑂𝐾 

Thus, bearing stiffeners must be added at the interior pier to allow for 

inelastic moment redistribution.  It is recommended that these stiffeners are 

should be designed according to the provision in Article 6.10.11.2 of the 

LRFD specifications.  These provisions require double-sided stiffeners that 

extend over the full depth of the web and as close to the outer edges of the 

flanges as is practical.  Thus, choose a stiffener width of 5 inches and 

calculate the minimum thickness using the following equation from the 

LRFD specifications: 

𝑏𝑡 ≤ 0.48𝑡𝑝√
𝐸

𝐹𝑦
  →   𝑡𝑝 ≥

𝑏𝑡

0.48
√

𝐹𝑦

𝐸
  →   𝑡𝑝 ≥

(5 𝑖𝑛)

0.48
√

33 𝑘𝑠𝑖

29000 𝑘𝑠𝑖
  →   𝑡𝑝

≥ 0.35 𝑖𝑛 

Choose a thickness of 3/8 inches so that double-sided 5-inch by 3/8-inch 

bearing stiffeners should be installed at the interior pier sections of Girder 

B.  Strength considerations for the bearing stiffeners can be addressed by 

investigating the effects of the concentrated reaction force at the interior 

piers.  Equations for the strength of the stiffeners can also be found in 

Article 6.10.11.2 of the LRFD specifications. 

Assuming that additional cross frames and bearing stiffeners are added, moment 

redistribution can be allowed for this girder.  Following the provisions in Section B6.5 of 

the LRFD specifications, the effective plastic moment for the section is calculated, which 

accounts for the slenderness of the section to ensure an adequate amount of inelastic 

rotation capacity can be attained.  This effective plastic moment differs for the Overload 

and Maximum Load limit states, which are referred to as the Service II and Strength I limit 

states, respectively, in the LRFD specifications.  Sections that have “ultracompact” webs 

have been shown to exhibit enhanced moment-rotation characteristics and thus have a 

larger effective plastic moment.  The section is classified as having an ultracompact web 

if: 
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2𝐷𝑐𝑝

𝑡𝑤
≤ 2.3√

𝐸

𝐹𝑦
  →   

2(17.0 𝑖𝑛)

0.650 𝑖𝑛
≤  2.3√

29000 𝑘𝑠𝑖

33 𝑘𝑠𝑖
  →   52.3

≤ 68.2   →    𝑤𝑒𝑏 𝑖𝑠 𝑢𝑙𝑡𝑟𝑎𝑐𝑜𝑚𝑝𝑎𝑐𝑡 

LRFD 

Equation 

B6.5.1-1  

The effective plastic moment at both the Overload and Maximum Load limit state 

is calculated as follows.  Note that for the Overload limit state, the capacity is simply the 

nominal moment capacity of the section (𝑀𝑛).  Because the section has an ultracompact 

web, a compact flange (as determined in number 5 of the moment redistribution 

requirements), and additional lateral bracing will be added to satisfy the moment 

redistribution requirements, this nominal capacity is simply the plastic moment capacity 

(𝑀𝑝) of the section.  For the Maximum Load limit state, the capacity is equal to a calculated 

fraction of the nominal capacity: 

 
𝑀𝑝𝑒 𝑂𝐿 = 𝑀𝑛 = 𝑀𝑝 = 𝐹𝑦𝑍𝑥 = (33 𝑘𝑠𝑖)(927 𝑖𝑛3) (

1 𝑓𝑡

12 𝑖𝑛
)

= 2550 𝑘. 𝑓𝑡 

LRFD 

Equation 

B6.5.1-2 

 

𝑀𝑝𝑒 𝑀𝐿 = (2.78 − 2.3
𝑏𝑓

𝑡𝑓
√

𝐹𝑦

𝐸
− 0.35

𝐷

𝑏𝑓
+ 0.39

𝑏𝑓

𝑡𝑓
√

𝐹𝑦

𝐸

𝐷

𝑏𝑓
)𝑀𝑛

≤ 𝑀𝑛   

LRFD 

Equation 

B6.5.1-3 

 

   →    (2.78 − 2.3 (
12.0 𝑖𝑛

1.02 𝑖𝑛
)√

33 𝑘𝑠𝑖

29000 𝑘𝑠𝑖
− 0.35 (

34.0 𝑖𝑛

12.0 𝑖𝑛
)

+ 0.39 (
12.0 𝑖𝑛

1.02 𝑖𝑛
)√

33 𝑘𝑠𝑖

29000 𝑘𝑠𝑖
(
34.0 𝑖𝑛

12.0 𝑖𝑛
)) (2550 𝑘. 𝑓𝑡)

= 3350 𝑘. 𝑓𝑡 > 2550 𝑘. 𝑓𝑡   →    2550 𝑘. 𝑓𝑡 

 

In this case, the capacity at both the Overload and Maximum Load limit states 

considering moment redistribution is equal to the full plastic moment capacity of the 

section.  This is common for girders comprised of rolled steel sections. 
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Once the effective plastic moment has been calculated, the redistribution moment 

at the interior pier is calculated for both limit states.  The redistribution moment represents 

the portion of the factored moment that exceeds the effective plastic moment.  Thus, the 

redistribution moment must be positive, as redistribution is only necessary when the 

factored moment is greater than the effective plastic moment.  Note that only gravity loads 

are considered in this design, so no lateral forces are included in this calculation. 

 
𝑀𝑟𝑑 𝑂𝐿 = |𝑀𝑢 𝑂𝐿| − 𝑀𝑝𝑒 𝑂𝐿 = |−2060 𝑘. 𝑓𝑡| − 2550 𝑘. 𝑓𝑡

= −490 𝑘. 𝑓𝑡   →    0 𝑘. 𝑓𝑡 

LRFD 

Equation 

B6.4.2.1-1 

 
𝑀𝑟𝑑 𝑀𝐿 = |𝑀𝑢 𝑀𝐿| − 𝑀𝑝𝑒 𝑀𝐿 = |−2680 𝑘. 𝑓𝑡| − 2550 𝑘. 𝑓𝑡

= 130 𝑘. 𝑓𝑡 

LRFD 

Equation 

B6.4.2.1-1 

Although it was determined previously that moment redistribution is necessary at 

both the Overload and the Maximum Load limit states, the redistribution moment at 

Overload is calculated to be zero.  This is because of the significant increase in the strength 

that is attributed to this section from the original capacity, defined as 80% of the moment 

at first yield, and the effective plastic moment, which in this case is the full plastic moment 

capacity.  Thus, although moment redistribution needs to be considered at the Overload 

limit state, and all of the requirements from Section B6.2 of the LRFD specifications must 

be satisfied, no actual redistribution of moments is needed at the Overload limit state. 

At the Maximum Load limit state, however, the effective plastic moment is only 

slightly larger than the capacity calculated prior to considering moment redistribution.  In 

fact, with the addition of the extra cross frames required to satisfy the redistribution 

requirements, there would be no difference in the capacity prior to considering 

redistribution and the effective plastic moment, at least in this case.  This is because the 

girder at 70’ would be classified as a compact section and would have a capacity equal to 

the plastic moment of the steel section. 

The calculated redistribution moment is limited to 20% of the factored moment, 

which is confirmed by the following check.  The actual percentage of the factored elastic 

moment that is redistributed is also calculated here: 

 
𝑀𝑟𝑑 𝑀𝐿 ≤ 0.2|𝑀𝑢 𝑀𝐿| = 0.2|−2680 𝑘. 𝑓𝑡| = 536 𝑘. 𝑓𝑡   

→    130 𝑘. 𝑓𝑡 < 536 𝑘. 𝑓𝑡   →    𝑂𝐾 

LRFD 

Equation 

B6.4.2.1-3 
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 𝑀𝑟𝑑 𝑀𝐿

|𝑀𝑢 𝑀𝐿|
=

130 𝑘. 𝑓𝑡

2680 𝑘. 𝑓𝑡
= 4.9%  

The redistribution moment diagram is constructed by first plotting the redistribution 

moments calculated at the interior piers, and then connecting them by straight lines, with 

zero moment at the end of the girder.  Figure D-5 plots the redistribution moment diagram 

at the Maximum Load limit state, along with the same dead load and live load moments 

from Figure D-4.  Table D-4 summarizes the value of the redistribution moment at each of 

the critical sections, along with the dead and live load moments at the critical sections from 

Table D-2.  For the remainder of the design, the redistribution moments will be added to 

the dead and live load moments for the Maximum Load limit state.  Note that the 

redistribution moments always have a load factor of 1.0. 

 

Figure D-5: Plot of Unfactored and Redistribution Moments for Girder B 
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Table D-4: Unfactored and Redistribution Moments at Critical Sections in Girder B 

Location 

(ft) 
Section Type 

Section 

Number 

Unfactored Moment (k-ft) Redistribution 

Moment (k-ft) 
Dead 

Load 

Live Load 

Pos. Neg. OL ML 

28 Critical, Span 1 442 679 -195 0 52 

60 Lateral Brace 1 -405 188 -418 0 111 

62 Critical, Trans. 1 -503 136 -432 0 115 

70 
Critical, Pier 

Lateral Brace 
2 -967 116 -657 0 130 

76 Critical, Trans. 1 -606 89 -452 0 130 

80.5 Lateral Brace 1 -378 151 -354  130 

106.5 Critical, Trans. 1 434 666 -191 0 130 

115 Critical, Span 3 486 694 -191 0 130 

 

Finally, check that the factored moment at the section transitions near the interior 

pier do not exceed the capacity after redistribution at the Maximum Load limit state.  This 

is a necessary check in this case because the cover plates terminate within the unbraced 

length adjacent to the interior pier section from which moments are redistributed. 

 Critical Location at 62’ (Section #1) 

After the addition of a cross frame at 10 feet from the interior pier section in the 

exterior span, the unbraced length (𝐿𝑏) for the compression (bottom) flange is now 10 feet, 

or 120 inches.  The compression flange and web have already been shown to meet the 

compact limits.  Thus, the steel section is classified as compact if: 

 

𝐿𝑏

𝑟𝑦
≤

[3.6 − 2.2 (
𝑀1

𝑀𝑝
)] 𝑥103

𝐹𝑦
 

Equation 

10-96 

 
𝑀1 = (1.3)(−405 𝑘. 𝑓𝑡) + (2.17)(−418 𝑘. 𝑓𝑡) = −1430 𝑘. 𝑓𝑡  

 
𝑀𝑝 = −𝑍𝑥 70′  𝐹𝑦 = (927 𝑘. 𝑓𝑡)(33 𝑘𝑠𝑖) (

1 𝑓𝑡

12 𝑖𝑛
) = −2550 𝑘. 𝑓𝑡  
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→   
120 𝑖𝑛

2.51 𝑖𝑛
≤

[3.6 − 2.2 (
−1430 𝑘. 𝑓𝑡
−2550 𝑘. 𝑓𝑡

)] 𝑥103

33 𝑘𝑠𝑖
  →   47.8 ≤ 71.7   

→    𝐿𝑇𝐵 𝑂𝐾 

 

Thus, the steel section is classified as compact and the Maximum Load capacity is: 

 
𝐶𝑀𝐿 62′ = −𝑍𝑥 𝐹𝑦 = −(624 𝑖𝑛3)(33 𝑘𝑠𝑖) (

1 𝑓𝑡

12 𝑖𝑛
)

= −1720 𝑘. 𝑓𝑡 

Section 

10.48.1 

The factored moment at the Maximum Load limit state at this location is: 

 
𝑀𝑢 𝑀𝐿 62′ = 1.3(−503 𝑘. 𝑓𝑡) + 2.17(−432 𝑘. 𝑓𝑡)

+ 1.0(111 𝑘. 𝑓𝑡) = −1480 𝑘. 𝑓𝑡 

Table 

3.22.1A 

Because the capacity exceeds the factored moment at this section transition, the 

calculated 130 k-ft redistribution moment can be allowed. 

 Critical Location at 76’ (Section #1) 

After the addition of a cross frame at 10.5 feet from the interior pier section in the 

interior span, the unbraced length (𝐿𝑏) for the compression (bottom) flange is now 10.5 

feet, or 126 inches.  The compression flange and web have already been shown to meet the 

compact limits.  Thus, the steel section is classified as compact if: 

 

𝐿𝑏

𝑟𝑦
≤

[3.6 − 2.2 (
𝑀1

𝑀𝑝
)] 𝑥103

𝐹𝑦
 

Equation 

10-96 

 
𝑀1 = (1.3)(−378 𝑘. 𝑓𝑡) + (2.17)(−354 𝑘. 𝑓𝑡) = −1260 𝑘. 𝑓𝑡  

 
𝑀𝑝 = −𝑍𝑥 70′  𝐹𝑦 = (927 𝑘. 𝑓𝑡)(33 𝑘𝑠𝑖) (

1 𝑓𝑡

12 𝑖𝑛
) = −2550 𝑘. 𝑓𝑡  
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→   
126 𝑖𝑛

2.51 𝑖𝑛
≤

[3.6 − 2.2 (
−1260 𝑘. 𝑓𝑡
−2550 𝑘. 𝑓𝑡

)] 𝑥103

33 𝑘𝑠𝑖
  →   50.2 ≤ 76.1   

→    𝐿𝑇𝐵 𝑂𝐾 

 

Thus, the steel section is classified as compact and the Maximum Load capacity is: 

 
𝐶𝑀𝐿 76′ = −𝑍𝑥 𝐹𝑦 = −(624 𝑖𝑛3)(33 𝑘𝑠𝑖) (

1 𝑓𝑡

12 𝑖𝑛
)

= −1720 𝑘. 𝑓𝑡 

Section 

10.48.1 

The factored moment at the Maximum Load limit state at this location is: 

 
𝑀𝑢 𝑀𝐿 76′ = 1.3(−606 𝑘. 𝑓𝑡) + 2.17(−452 𝑘. 𝑓𝑡)

+ 1.0(130 𝑘. 𝑓𝑡) = −1638 𝑘. 𝑓𝑡 

Table 

3.22.1A 

Because the capacity exceeds the factored moment at this section transition, the 

calculated 130 k-ft redistribution moment can be allowed. 

D.2.5 Design Connectors for Positive Moment Regions 

Now that the redistribution moments are known, the partially composite positive 

moment regions are designed and checked at both the Overload and Maximum Load limit 

states.  For this girder, a different design needs to be conducted for the exterior span, which 

has a critical section at 28’, and for the middle span, which has a critical section at 115’.  

The design for the interior span also needs to be checked at the transition location at the 

termination of the cover plate at 106.5’.  The Overload limit state involves stress-based 

calculations on the non-composite, short term composite, and long term composite sections 

which can make for a complicated way to begin the design.  Thus, it is recommended to 

begin the design with the Maximum Load limit state. 

 Design for the Maximum Load Limit State – Exterior Spans 

The factored moment, including redistribution moments, for the critical section in 

the exterior spans (28’) at the Maximum Load limit state is: 
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𝑀𝑢 𝑀𝐿 28′ = 1.3(442 𝑘. 𝑓𝑡) + 2.17(679 𝑘. 𝑓𝑡) + 1.0(52 𝑘. 𝑓𝑡)

= 2100 𝑘. 𝑓𝑡 
 

The capacity at the Maximum Load limit state is simply the nominal moment 

capacity of the section (𝑀𝑛).  This is usually equal to the plastic moment of the partially 

composite cross section, because the deck provides continuous lateral support for the top 

flange of the girder to prevent lateral-torsional buckling, and little to none of the steel 

section is required to resist large compressive forces so local buckling tends not to control. 

First, the fully composite section is analyzed to determine the number of connectors 

required for full-composite action as well as the strength and stiffness of the fully 

composite section, indicated by the subscript “𝐹𝐶”.  The number of connectors needed is 

simply the compression force in the deck (𝐶𝑓) divided by the strength of a single connector 

(𝑄𝑛), which is calculated from the effective cross-sectional area (𝐴𝑠𝑐) and the ultimate 

tensile strength (𝐹𝑢 𝑠𝑐) of the ASTM A193 B7 threaded rod comprising the connector 

(Kwon et al. 2007): 

 

𝐴𝑠𝑐 = 0.8
𝜋 𝑑𝑠𝑐

2

4
= 0.8(

𝜋 (
7
8 𝑖𝑛)

2

4
) = 0.481 𝑖𝑛2  

 
𝑄𝑛 = 0.5 𝐴𝑠𝑐  𝐹𝑢 𝑠𝑐 = 0.5(0.481 𝑖𝑛2)(125 𝑘𝑠𝑖) = 30.1 𝑘𝑖𝑝𝑠 

 

Simple plastic cross-sectional analysis, is used to determine the properties of the 

fully composite section: 

 
𝐶𝑓 𝐹𝐶 = 𝑚𝑖𝑛 {

0.85𝑓𝑐
′𝐴𝑑𝑒𝑐𝑘

𝐴𝑠𝐹𝑦
=𝑚𝑖𝑛 {

0.85(3 𝑘𝑠𝑖)(595 𝑖𝑛2)

(47.0 𝑖𝑛2)(33 𝑘𝑠𝑖)
= 𝑚𝑖𝑛 {

1520 𝑘
1550 𝑘

= 1520 𝑘 

 

 
𝑁𝐹𝐶 =

𝐶𝑓 𝐹𝐶

𝑄𝑛
=

1520 𝑘

30.1 𝑘
= 50.5 

 

Generally, the number of connectors in a design should be rounded up to the next 

even number, as they are installed in pairs.  However, since the final design is unlikely to 
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be fully composite, the number of connectors required for a fully composite girder can 

remain as a decimal for now.  Also, because the first term in the equation for 𝐶𝑓 is the 

smallest, the plastic neutral axis will be either in the top flange or top portion of the web of 

the steel beam.  If the plastic neutral axis is in the web of the steel beam, the net plastic 

force in the top and bottom flanges will cancel out, since the section is doubly symmetric.  

Thus, the plastic neutral axis can only be in the web of the steel beam if the maximum 

plastic force that can be developed in the web (𝑃𝑦 𝑤𝑒𝑏) is greater than the compressive force 

in the slab (𝐶𝑓).  Otherwise, the plastic neutral axis is located in the top flange of the steel 

beam, as is the case here, indicated by the following calculations: 

 
𝑃𝑦 𝑤𝑒𝑏 = 𝐴𝑤𝑒𝑏𝐹𝑦 = (𝐴𝑠 − 2𝐴𝑓)𝐹𝑦 = (𝐴𝑠 − 2𝑏𝑓𝑡𝑓)𝐹𝑦

= (47.0 𝑖𝑛2 − 2(12.0 𝑖𝑛)(1.02 𝑖𝑛))(33 𝑘𝑠𝑖) = 743 𝑘 
 

 
743 𝑘 < 1520 𝑘  →   𝑃𝑦 𝑤𝑒𝑏 < 𝐶𝑓 𝐹𝐶   

→   𝑃𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑎𝑥𝑖𝑠 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑜𝑝 𝑓𝑙𝑎𝑛𝑔𝑒 

 

The stress distribution at the plastic moment capacity is shown in Figure D-6.  Force 

resultants, which act at mid-height of the corresponding stress block, are indicated by filled 

arrowheads and bold labels.  For simplicity, an equivalent stress distribution, shown in the 

far right portion of the figure, will be used for the calculations.  In this equivalent stress 

distribution, the entirety of the steel beam is shown under tensile yield stress, while the 

portion of the top flange above the plastic neutral axis is subjected to twice the yield stress 

in compression.  Using the equivalent stress distribution helps to simplify the calculations 

while keeping the same net stresses on the section.  The unknown distance “𝑦” represents 

the depth of the top flange that is in compression and can be solved for by summing forces 

on the cross-section.  The plastic moment capacity (𝑀𝑝) is then calculated by summing 

moments on the section.  Since there is no net axial force on the section, moments can be 

summed about any point.  Here, the steel-concrete interface is chosen, and 

counterclockwise moments are taken as positive: 

 
𝑇𝑠 = 𝐴𝑠𝐹𝑦 = (47.0 𝑖𝑛2)(33 𝑘𝑠𝑖) = 1550 𝑘  

 
𝐶𝑠 = 𝑏𝑓𝑦𝐹𝑦 = (12.0 𝑖𝑛)(𝑦)(33 𝑘𝑠𝑖) = (396

𝑘

𝑖𝑛
) (𝑦) 
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𝛴𝐹 = 0  →   𝑇𝑠 − 𝐶𝑠 − 𝐶𝑓 𝐹𝐶 = 0  

→   (1550 𝑘) − (396
𝑘

𝑖𝑛
) (𝑦) − (1520 𝑘) = 0              

→       𝑦 = 0.0758 𝑖𝑛 

 

 
𝑀𝑝 𝐹𝐶 = 𝛴𝑀𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = 𝑇𝑠 (

𝑑

2
) − 𝐶𝑠 (

𝑦

2
) + 𝐶𝑓 𝐹𝐶 (

𝑡𝑑𝑒𝑐𝑘

2
)

= (1550 𝑘) (
36.0 𝑖𝑛

2
) − (396

𝑘

𝑖𝑛
) (0.0758 𝑖𝑛) (

0.0758 𝑖𝑛

2
)

+ (1520 𝑘) (
6.5 𝑖𝑛

2
) = (32800 𝑘. 𝑖𝑛) (

1 𝑓𝑡

12 𝑖𝑛
) = 2740 𝑘. 𝑓𝑡 

 

 

Figure D-6: Stress Distribution at Plastic Moment of Fully Composite Section – 

Exterior Span of Girder B 

The transformed moment of inertia (𝐼𝑡𝑟) and elastic section modulus to the extreme 

bottom fiber of the steel beam (𝑆𝑡𝑟) of the fully composite section can also be calculated 

using basic concepts of mechanics of materials after locating the elastic neutral axis (at a 

distance of 𝑦𝑁𝐴 below the interface).  Two sets of calculations follow, one of which 

corresponds to the short-term composite section and the other of which corresponds to the 

long-term composite section.  The short-term composite section properties, indicated by 

the subscript “𝑆𝑇”, are calculated using the short-term modular ratio of 𝑛 while the long-
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term composite section properties, indicated by the subscript “𝐿𝑇”, are calculated using the 

long-term modular ratio of 3𝑛: 

Short-term section: 

 
𝑛 =

𝐸𝑠

𝐸𝑐
=

29000 𝑘𝑠𝑖

3122 𝑘𝑠𝑖
= 9.3  

 

𝑦𝑁𝐴 𝑆𝑇 =
𝐴𝑠 (

𝑑
2) −

𝐴𝑑𝑒𝑐𝑘

𝑛 (
𝑡𝑑𝑒𝑐𝑘

2 )

𝐴𝑠 +
𝐴𝑑𝑒𝑐𝑘

𝑛

=
(47.0 𝑖𝑛2) (

36.0 𝑖𝑛
2 ) −

(595 𝑖𝑛2)
9.3 (

6.5 𝑖𝑛
2 )

(47.0 𝑖𝑛) +
(595 𝑖𝑛2)

9.3

= 5.75 𝑖𝑛 

 

 

𝐼𝑡𝑟 𝑆𝑇 = 𝐼𝑠 + 𝐴𝑠 (
𝑑

2
− 𝑦𝑁𝐴)

2

+
𝐼𝑑𝑒𝑐𝑘

𝑛
+

𝐴𝑑𝑒𝑐𝑘

𝑛
(
𝑡𝑑𝑒𝑐𝑘

2
+ 𝑦𝑁𝐴)

2

= 9760 𝑖𝑛4 + (47.0 𝑖𝑛2) (
36.0 𝑖𝑛

2
− 5.75 𝑖𝑛)

2

+
(2090 𝑖𝑛4)

9.3
+

(595 𝑖𝑛2)

9.3
(
6.5 𝑖𝑛

2
+ 5.75 𝑖𝑛)

2

= 22200 𝑖𝑛4 

 

 
𝑆𝑡𝑟 𝑆𝑇 =

𝐼𝑡𝑟 𝑆𝑇

𝑑 − 𝑦𝑁𝐴
=

22200 𝑖𝑛4

(36.0 𝑖𝑛) − (5.75 𝑖𝑛)
= 734 𝑖𝑛3 

 

Long-term section: 

 
3𝑛 = 3(9.3) = 27.9  

 

𝑦𝑁𝐴 𝐿𝑇 =
𝐴𝑠 (

𝑑
2) −

𝐴𝑑𝑒𝑐𝑘

3𝑛 (
𝑡𝑑𝑒𝑐𝑘

2 )

𝐴𝑠 +
𝐴𝑑𝑒𝑐𝑘

3𝑛

=
(47.0 𝑖𝑛2) (

36.0 𝑖𝑛
2 ) −

(595 𝑖𝑛2)
27.9 (

6.5 𝑖𝑛
2 )

(47.0 𝑖𝑛) +
(595 𝑖𝑛2)

27.9

= 11.4 𝑖𝑛 
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𝐼𝑡𝑟 𝐿𝑇 = 𝐼𝑠 + 𝐴𝑠 (
𝑑

2
− 𝑦𝑁𝐴)

2

+
𝐼𝑑𝑒𝑐𝑘

3𝑛
+

𝐴𝑑𝑒𝑐𝑘

3𝑛
(
𝑡𝑑𝑒𝑐𝑘

2
+ 𝑦𝑁𝐴)

2

= 9760 𝑖𝑛4 + (47.0 𝑖𝑛2) (
36.0 𝑖𝑛

2
− 11.4 𝑖𝑛)

2

+
(2090 𝑖𝑛4)

27.9
+

(595 𝑖𝑛2)

27.9
(
6.5 𝑖𝑛

2
+ 11.4 𝑖𝑛)

2

= 16500 𝑖𝑛4 

 

 
𝑆𝑡𝑟 𝐿𝑇 =

𝐼𝑡𝑟 𝐿𝑇

𝑑 − 𝑦𝑁𝐴
=

16500 𝑖𝑛4

(36.0 𝑖𝑛) − (11.4 𝑖𝑛)
= 671 𝑖𝑛3 

 

Now that the analysis of the fully composite section is complete, the iterative 

process of designing the partially composite section can be done.  Since the plastic strength 

of the fully composite section (2740 k-ft) is greater than the factored moments at the 

Maximum Load limit state (2130 k-ft), the girder can be strengthened using partial-

composite design.  To begin, choose an approximate composite ratio, and calculate the 

number of connectors required and the strength of the partially composite section, indicated 

by a subscript “𝑃𝐶”.  Recall that because the connectors are installed in pairs, the number 

of connectors should be rounded up to the nearest even number.  The strength calculations 

are conducted in the exact same manner as for the fully composite section, except the 

interface shear (𝐶𝑓) will now be controlled by the strength of the partially composite shear 

connection.  This means that the plastic neutral axis will always be located in the steel 

beam. 

A composite ratio (𝜂) of approximately 30% will be chosen to start.  This value 

represents the minimum recommended for design.  The stress distribution for this partially 

composite case is shown in Figure D-7.  Because the plastic neutral axis is now located in 

the web, a different equivalent stress distribution is used to simplify the calculations.  In 

this case, the top half of the steel is shown under the yield stress in compression, while the 

bottom half of the steel is subjected to the yield stress in tension.  This stress distribution 

creates two equal force resultants that form a force couple with the same magnitude as the 

plastic moment of the steel section (𝑀𝑝 𝑠𝑡𝑒𝑒𝑙).  The portion of the steel above mid-depth of 

the beam and below the plastic neutral axis is also under a tensile stress of twice the yield 

stress.  The unknown distance 𝑧 represents the height of the web above mid-depth of the 

steel section but below the plastic neutral axis.  Since the interface shear (𝐶𝑓 𝑃𝐶) is no longer 
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controlled by the plastic force in the deck, only the top portion of the deck is assumed to 

be under compressive stress.  The depth of the concrete compression block is denoted as 

𝑎. 

 
𝑁 = 𝜂 𝑁𝐹𝐶 = (0.3)(50.5) = 15.15  →   𝑁 = 16 = 8 𝑝𝑎𝑖𝑟𝑠  

 
𝜂𝑎𝑐𝑡𝑢𝑎𝑙 =

𝑁

𝑁𝐹𝐶
=

16

50.5
= 0.317 

 

 

𝐶𝑓 𝑃𝐶 = 𝑚𝑖𝑛 {

0.85𝑓𝑐
′𝐴𝑑𝑒𝑐𝑘

𝐴𝑠𝐹𝑦

𝑁 𝑄𝑛

=𝑚𝑖𝑛 {

0.85(3 𝑘𝑠𝑖)(595 𝑖𝑛2)

(47.0 𝑖𝑛2)(33 𝑘𝑠𝑖)
(16)(30.1 𝑘)

= 𝑚𝑖𝑛 {
1520 𝑘
1550 𝑘
482 𝑘

= 482 𝑘 

 

 
743 𝑘 > 482 𝑘  →   𝑃𝑦 𝑤𝑒𝑏 > 𝐶𝑓   →   𝑃𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑎𝑥𝑖𝑠 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑒𝑏 

 

 
𝑎 =

𝐶𝑓 𝑃𝐶

0.85𝑓𝑐′𝑏𝑒𝑓𝑓
=

482 𝑘

0.85(3 𝑘𝑠𝑖)(91.5 𝑖𝑛)
= 2.07 𝑖𝑛 

 

 
𝑇𝑠 = 𝑧𝑡𝑤(2𝐹𝑦) = (𝑧)(0.650 𝑖𝑛)(2(33 𝑘𝑠𝑖)) = (42.9

𝑘

𝑖𝑛
) (𝑧) 

 

 
𝑀𝑝 𝑠𝑡𝑒𝑒𝑙 = 𝑍𝑥𝐹𝑦 = (624 𝑖𝑛3)(33 𝑘𝑠𝑖) = 20600 𝑘. 𝑖𝑛 

 

 
𝛴𝐹 = 0  →   𝑇𝑠 − 𝐶𝑓 𝑃𝐶 = 0  →   (42.9

𝑘

𝑖𝑛
) (𝑧) − 482 𝑘 = 0  →   𝑧

= 11.2 𝑖𝑛 
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𝑀𝑝 𝑃𝐶 = 𝛴𝑀𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = 𝑇𝑠 (

𝑑

2
−

𝑧

2
) + 𝐶𝑓 𝑃𝐶 (𝑡𝑑𝑒𝑐𝑘 −

𝑎

2
) + 𝑀𝑝 𝑠𝑡𝑒𝑒𝑙

= ((42.9
𝑘

𝑖𝑛
) (11.2 𝑖𝑛))(

(36.0 𝑖𝑛)

2
−

(11.2 𝑖𝑛)

2
)

+ (482 𝑘) (6.5 𝑖𝑛 −
2.07 𝑖𝑛

2
) + 20600 𝑘. 𝑖𝑛

= (29200 𝑘. 𝑖𝑛) (
1 𝑓𝑡

12 𝑖𝑛
) = 2430 𝑘. 𝑓𝑡 

 

 

Figure D-7: Stress Distribution at Plastic Moment of Partially Composite Section – 

Exterior Span of Girder B 

The plastic moment capacity of the approximately 30% partially composite section 

(2430 k-ft) exceeds the maximum factored moment at the Maximum Load limit state in the 

exterior spans (2130 k-ft).  Because 30% is the minimum recommended composite ratio, 

choose 𝑁 = 16 for the exterior spans to satisfy the requirements of the Maximum Load 

limit state. 

 Check the Design at the Overload Limit State – Exterior Spans 

Next, check the Overload limit state with 𝑁 = 16 in the exterior spans.  This 

requires the computation of steel stresses due to bending moments and requires the use of 

different values of the section modulus for the different load types.  For bridges 
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strengthened with post-installed shear connectors, all dead load present prior to the 

installation of the connectors is applied to the non-composite section.  Any dead load 

applied after the connectors are installed, such as an overlay of the driving surface, is 

applied to the long-term composite section, along with any redistribution moments at the 

Overload limit state, of which there are none in this case.  The live load is applied to the 

short-term composite section.  The short- and long-term effective elastic moduli of the 

partially composite section (𝑆𝑒𝑓𝑓) are calculated by interpolation between the properties of 

the non-composite steel beam and the properties of the transformed fully composite section 

(AISC 2010).  Note that because there are no redistribution moments at the Overload limit 

state, the long-term effective elastic section modulus will not be used in any calculations, 

but is shown here as an example: 

 
𝑆𝑒𝑓𝑓 𝑆𝑇 = 𝑆𝑥 + √𝜂𝑎𝑐𝑡𝑢𝑎𝑙(𝑆𝑡𝑟 𝑆𝑇 − 𝑆𝑥)

= (542 𝑖𝑛3) + √0.317((734 𝑖𝑛3) − (542 𝑖𝑛3)) = 650 𝑖𝑛3 
 

 
𝑆𝑒𝑓𝑓 𝐿𝑇 = 𝑆𝑥 + √𝜂𝑎𝑐𝑡𝑢𝑎𝑙(𝑆𝑡𝑟 𝐿𝑇 − 𝑆𝑥)

= (542 𝑖𝑛3) + √0.317((671 𝑖𝑛3) − (542 𝑖𝑛3)) = 615 𝑖𝑛3 

 

The following factored stress is calculated at the Overload limit state in positive 

bending at the critical section at 28’: 

 
𝜎𝑢 𝑂𝐿 = 1.0 (

442 𝑘. 𝑓𝑡

542 𝑖𝑛3
 ) (

12 𝑖𝑛

1 𝑓𝑡
) + (1.67) (

679 𝑘. 𝑓𝑡

650 𝑖𝑛3
) (

12 𝑖𝑛

1 𝑓𝑡
) = 30.7 𝑘𝑠𝑖 

 

For a composite section, the extreme stress in the steel beam is limited to 95% of 

the yield stress at the Overload limit state.  Note that this requirement applies to only fully 

composite sections in the LRFD specifications, which do not currently allow for partial-

composite design.  The difference in stress limits between non-composite (80%) and fully 

composite (95%) sections is primarily due to the vast difference in the ratio of maximum 

moment capacity (𝑀𝑛) to yield moment (𝑀𝑦) for the two types of sections.  Because even 

with low composite ratios, partially composite sections have maximum moment-to-yield 

moment ratios much closer to fully composite sections than to non-composite sections, the 

95% stress limit is recommended for use with partially composite strengthened girders.  

Thus, the capacity, or maximum allowed stress (𝜎𝑚𝑥 𝑂𝐿 ), at the Overload limit state is 

calculated as: 
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𝜎𝑚𝑎𝑥 𝑂𝐿 = 0.95𝐹𝑦 = 0.95(33 𝑘𝑠𝑖) = 31.4 𝑘𝑠𝑖 

 

This maximum allowed stress (31.4 ksi) exceeds the stress from the factored loads, 

indicating that the requirements of the Overload limit state are satisfied by 𝑁 = 16.  

Thus, to satisfy the requirements of both the Overload and Maximum Load limit 

states, use 𝑵 = 𝟏𝟔 in the exterior spans on Girder B.  Note that 𝑁 is the number of shear 

connectors required between points of zero and maximum moment.  Thus, each of the 

exterior spans spans will contain two sets of 16 connectors. 

 Design for the Maximum Load and Overload Limit States – Interior Span 

The same procedure is followed for the design of the connectors in the interior span.  

Table D-5 summarizes the results of the calculations for the critical section in the interior 

span (115’) and for the location of cover plate termination in the interior span (106.5’) at 

the Maximum Load limit state.  Again, the minimum recommended composite ratio of 0.3 

is used for the partially composite calculations. 



 254 

Table D-5: Results from Partially Composite Design Calculations for the Interior Span of 

Girder B 

 115’ 106.5’ 

Section number 3 1 

Factored Maximum Load moment (𝑀𝑢 𝑀𝐿, k-ft) 2310 2180 

Deck force, fully composite (𝐶𝑓 𝐹𝐶, k) 1520 1520 

Number of connectors, fully composite (𝑁𝐹𝐶) 50.5 50.5 

Plastic web force (𝑃𝑦 𝑤𝑒𝑏, k) 743 743 

Plastic neutral axis location, fully composite Flange Flange 

Plastic moment, fully composite (𝑀𝑝 𝐹𝐶, k-ft) 3120 2740 

Short term moment of inertia, fully composite (𝐼𝑡𝑟 𝑆𝑇, in4) 25400 22200 

Short term section modulus, fully composite (𝑆𝑡𝑟 𝑆𝑇, in3) 839 734 

Long term moment of inertia, fully composite (𝐼𝑡𝑟 𝑆𝑇, in4) 19000 16500 

Long term section modulus, fully composite (𝑆𝑡𝑟 𝑆𝑇, in3) 765 671 

Number of connectors, partially composite (𝑁𝑃𝐶) 16 16 

Actual composite ratio 0.317 0.317 

Deck force, partially composite (𝐶𝑓 𝑃𝐶, k) 482 482 

Plastic neutral axis location, partially composite Web Web 

Plastic moment, partially composite (𝑀𝑝 𝑃𝐶, k-ft) 2780 2430 

Short term section modulus, partially composite (𝑆𝑒𝑓𝑓 𝑆𝑇, in3) 1060 650 

Long term section modulus, partially composite (𝑆𝑒𝑓𝑓 𝐿𝑇, in3) 866 615 

Factored Overload stress (𝜎𝑢 𝑂𝐿, ksi) 22.0 30.1 

Maximum allowed Overload stress (𝜎𝑚𝑎𝑥 𝑂𝐿, ksi) 31.4 31.4 

 

The plastic moment capacity exceeds the factored moment at the Maximum Load 

limit state at both locations.  The maximum allowed stress also exceeds the factored stress 

at the Overload limit state at both locations.  Thus, the requirements for both limit states 

are satisfied with this design, so use 𝑵 = 𝟏𝟔 in the interior spans on Girder B. 

D.2.6 Locate Connectors and Check Fatigue 

Before checking the fatigue behavior of the post-installed shear connectors, a 

connector layout must be chosen.  Based on the recommendations given by Ghiami Azad 
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(2016), the layout in Figure D-8 is proposed.  Because the girder is symmetric, only the 

left half is shown in the figure.  Within a group, the connectors are spaced at 12 inches, 

which is equal to the transverse rebar spacing in the deck.  The connector nearest to the 

end of the girder is located 6 inches away from the centerline of the support, while the 

connectors nearest to the interior support are located a distance equal to 15% of the span 

length from that support. 

 

Figure D-8: Connector Layout for Girder B 

In addition to the recommendations provided for locating the connectors, it is 

important to consider constructability and field conditions when choosing a connector 

layout, paying particular attention to the accessibility of the locations along the girder in 

which the connectors are to be installed.  Because small changes in the connector layout 

will likely not significantly affect the behavior, some adjustments can be made in the field 

when necessary.  It is highly recommended to use a rebar locator to find the transverse deck 

reinforcement in the locations where the connectors will be installed.  Once the bars are 

located, modify the connector layout so that the connectors are installed approximately 

halfway between reinforcing bars and use a connector spacing equal to a multiple of the 

bar spacing.  This should prevent conflicts with reinforcing bars when drilling into the deck 

to install the connectors. 

The first step in checking the connectors for fatigue is to determine which load 

combination from the AASHTO LRFD specifications is to be used, by comparing the 

projected daily truck traffic in a single lane to the limiting value calculated from the 

provisions: 

 
(𝐴𝐷𝑇𝑇)𝑆𝐿 = 𝑝 (𝐴𝐷𝑇𝑇) = (0.8) (1160

𝑡𝑟𝑢𝑐𝑘𝑠

𝑑𝑎𝑦
) = 928

𝑡𝑟𝑢𝑐𝑘𝑠

𝑑𝑎𝑦
 

LRFD 

Equation 

3.6.1.4.2-1 

70’ 45’

7 spaces @ 12” = 7’
0.15L = 10.5’ 7 spaces @ 12” = 7’

0.15L = 13.5’6”

8 pairs 8 pairs 8 pairs

Symmetric about 
center line
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(𝐴𝐷𝑇𝑇)𝑆𝐿 𝑙𝑖𝑚𝑖𝑡 =

8,700,000

𝑌
=

8,700,000

25
= 348,000

𝑡𝑟𝑢𝑐𝑘𝑠

𝑑𝑎𝑦
  

Because the projected truck traffic is below the limiting value, the Fatigue II load 

combination is used to design for finite life.  Note that as discussed in Section 8.2.8, the 

above equation results in a very high limiting (𝐴𝐷𝑇𝑇)𝑆𝐿 value, indicating that the Fatigue 

II load combination will essentially always control the design.  Thus, the nominal fatigue 

resistance is calculated as follows: 

 
𝑁 = (365)(𝑌)(𝑛)(𝐴𝐷𝑇𝑇)𝑆𝐿

= (365
𝑑𝑎𝑦𝑠

𝑦𝑒𝑎𝑟
) (25 𝑦𝑒𝑎𝑟𝑠) (1.0

𝑐𝑦𝑐𝑙𝑒𝑠

𝑡𝑟𝑢𝑐𝑘
) (928

𝑡𝑟𝑢𝑐𝑘𝑠

𝑑𝑎𝑦
)

= 8,470,000 𝑐𝑦𝑐𝑙𝑒𝑠 

 

 

(∆𝐹)𝑛 = (
𝐴

𝑁
)
1/𝑚

= (
4.24 𝑥 1015 𝑘𝑠𝑖7

8,470,000 𝑐𝑦𝑐𝑙𝑒𝑠
)

1 7⁄

= 17.5 𝑘𝑠𝑖  

Figure D-9 shows the results from the fatigue analysis, conducted in a manner that 

explicitly considers the interface slip.  This analysis was carried out using an Excel-based 

program, which was developed during the course of this research and models the 

connectors as linear springs (Ghiami Azad 2016).  The recommended stiffness of 900 kips 

per inch was used for the spring representing each individual connector.  The figure plots 

the stress range in each connector induced by the fatigue loading defined in the Fatigue II 

load combination in the LRFD specifications.  Because of symmetry, only one-half of the 

girder is shown. 
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Figure D-9: Results from Fatigue Analysis for Girder B 

The maximum stress range (∆𝐹) that a connector undergoes during fatigue loading 

is 14.9 ksi.  As shown in the figure, this critical connector is the closest connector to the 

interior support in the interior span.  This maximum stress range is less than the nominal 

fatigue resistance (17.5 ksi), indicating that the connectors have adequate fatigue life to 

satisfy the design requirement of a 25-year remaining life. 

The actual remaining life can be estimated by reversing the design equations to 

solve for the number of cycles and corresponding number of years that can be resisted at a 

given stress range.  These calculations indicate that the connectors in Girder B are 

estimated to have a remaining fatigue life of 77 years: 

 
𝑁𝑎𝑐𝑡𝑢𝑎𝑙 =

𝐴

(∆𝐹)𝑚
=

4.24 𝑥 1015 𝑘𝑠𝑖7

(14.9 𝑘𝑠𝑖)7
= 26,000,000 𝑐𝑦𝑐𝑙𝑒𝑠   

 
𝑌𝑎𝑐𝑡𝑢𝑎𝑙 =

𝑁𝑎𝑐𝑡𝑢𝑎𝑙

(365)(𝑛)(𝐴𝐷𝑇𝑇)𝑆𝐿
=

26,000,000 𝑐𝑦𝑐𝑙𝑒𝑠

(365
𝑑𝑎𝑦𝑠
𝑦𝑒𝑎𝑟) (1.0

𝑐𝑦𝑐𝑙𝑒𝑠
𝑡𝑟𝑢𝑐𝑘

) (928
𝑡𝑟𝑢𝑐𝑘𝑠
𝑑𝑎𝑦

)

= 77 𝑦𝑒𝑎𝑟𝑠 
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D.2.7 Conduct Load Rating of Strengthened Girder 

Following the strengthening a load rating of each of the critical sections can be done 

in the same manner as the initial evaluation of the existing non-composite structure.  A 

slight modification should be made to the equation to calculate the rating factor to include 

the redistribution moment at a section (𝑅𝐷): 

 𝑅𝐹 =
𝐶 − 𝐴1 𝐷𝐿 − (1.0)𝑅𝐷

𝐴2(𝐿𝐿 + 𝐼)
 

Modified 

MBE 

Equation 

6B.4.1-1 

 Critical Location at 28’ (Section #1, N = 16): 

The Overload limit state must be addressed in terms of stresses now, because 

different types of loads are resisted by different sections.  The capacity, or limiting stress, 

for the Overload limit state of a composite section was calculated previously as: 

 𝐶𝑂𝐿 28′  = 31.4 𝑘𝑠𝑖  

The dead load is resisted by the non-composite section, while the live load is 

resisted by the short-term partially composite section.  If there were any redistribution 

moments at the Overload limit state, these would be resisted by the long-term partially 

composite section.  Thus, the unfactored stresses for each of these load types are: 

 𝜎𝐷𝐿 28′  =
𝑀𝐷𝐿 28′

𝑆𝑥
=

442 𝑘. 𝑓𝑡

542 𝑖𝑛3
(
12 𝑖𝑛

1 𝑓𝑡
) = 9.79 𝑘𝑠𝑖  

 
𝜎𝐿𝐿 28′  =

𝑀𝐿𝐿 28′

𝑆𝑒𝑓𝑓 𝑆𝑇
=

679 𝑘. 𝑓𝑡

650 𝑖𝑛3
(
12 𝑖𝑛

1 𝑓𝑡
) = 12.5 𝑘𝑠𝑖 

 

The Maximum Load limit state is always evaluated in terms of moment.  The 

unfactored moments are given in Table D-4, and the capacity is the plastic moment capacity 

of the partially composite section: 

 
𝐶𝑀𝐿 28′ = 𝑀𝑝 𝑃𝐶 = 2430 𝑘. 𝑓𝑡  

The rating factor and load rating for the Overload and Maximum Load limit states 

for this critical location are: 
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 𝑅𝐹𝑂𝐿 28′ =
31.4 𝑘𝑠𝑖 − (1.0)(9.79 𝑘𝑠𝑖)

(1.67)(12.5 𝑘𝑠𝑖)
= 1.03  

 
𝑅𝑇𝑂𝐿 28′ = (1.03)(20) = 20.7   →    𝐻𝑆 20.7 

 

 
𝑅𝐹𝑀𝐿 28′ =

2430 𝑘. 𝑓𝑡 − (1.3)(442 𝑘. 𝑓𝑡) − (1.0)(52 𝑘. 𝑓𝑡)

(2.17)(679 𝑘. 𝑓𝑡)
= 1.22 

 

 
𝑅𝑇𝑀𝐿 28′ = (1.22)(20) = 24.5   →    𝐻𝑆 24.5 

 

 Critical Location at 62’ (Section #1): 

Because moments are redistributed from the adjacent interior pier section, the 

Overload capacity is not subjected to the stress limits and is simply the nominal moment 

capacity of the section.  Thus, the capacity for both the Overload and Maximum Load limit 

states are the same.  This capacity was calculated in Section D.2.4 after the addition of the 

new cross frames around the interior pier: 

 
𝐶𝑂𝐿 62′ = 𝐶𝑀𝐿 62′ = −1720 𝑘. 𝑓𝑡  

The unfactored moments are given in Table D-4.  The rating factor and load rating 

for the Overload and Maximum Load limit states for this critical location are: 

 𝑅𝐹𝑂𝐿 62′ =
−1720 𝑘. 𝑓𝑡 − (1.0)(−503 𝑘. 𝑓𝑡)

(1.67)(−432 𝑘. 𝑓𝑡)
= 1.69  

 
𝑅𝑇𝑂𝐿 62′ = (1.69)(20) = 33.7   →    𝐻𝑆 33.7 

 

 
𝑅𝐹𝑀𝐿 62′ =

−1720 𝑘. 𝑓𝑡 − (1.3)(−503 𝑘. 𝑓𝑡) − (1.0)(111 𝑘. 𝑓𝑡)

(2.17)(−432 𝑘. 𝑓𝑡)
= 1.26 

 

 
𝑅𝑇𝑀𝐿 62′ = (1.26)(20) = 25.1   →    𝐻𝑆 25.1 
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 Critical Location at 70’ (Section #2): 

Because moments are redistributed from this interior pier section, the Overload and 

Maximum Load capacities are the effective plastic moments calculated in Section D.2.4: 

 
𝐶𝑂𝐿 70′ = 𝑀𝑝𝑒 𝑂𝐿 = −2550 𝑘. 𝑓𝑡  

 
𝐶𝑀𝐿 70′ = 𝑀𝑝𝑒 𝑀𝐿 = −2550 𝑘. 𝑓𝑡 

 

The unfactored moments are given in Table D-4.  The rating factor and load rating 

for the Overload and Maximum Load limit states for this critical location are: 

 𝑅𝐹𝑂𝐿 70′ =
−2550 𝑘. 𝑓𝑡 − (1.0)(−967 𝑘. 𝑓𝑡)

(1.67)(−657 𝑘. 𝑓𝑡)
= 1.44  

 
𝑅𝑇𝑂𝐿 70′ = (1.44)(20) = 28.9   →    𝐻𝑆 28.9 

 

 
𝑅𝐹𝑀𝐿 70′ =

−2550 𝑘. 𝑓𝑡 − (1.3)(−967 𝑘. 𝑓𝑡) − (1.0)(130 𝑘. 𝑓𝑡)

(2.17)(−657 𝑘. 𝑓𝑡)
= 1.00 

 

 
𝑅𝑇𝑀𝐿 70′ = (1.00)(20) = 20.0   →    𝐻𝑆 20.0 

 

 Critical Location at 76’ (Section #1): 

Because moments are redistributed from the adjacent interior pier section, the 

Overload capacity is not subjected to the stress limits and is simply the nominal moment 

capacity of the section.  Thus, the capacity for both the Overload and Maximum Load limit 

states are the same.  This capacity was calculated in Section D.2.4 after the addition of the 

new cross frames around the interior pier: 

 
𝐶𝑂𝐿 76′ = 𝐶𝑀𝐿 76′ = −1720 𝑘. 𝑓𝑡  

The unfactored moments are given in Table D-4.  The rating factor and load rating 

for the Overload and Maximum Load limit states for this critical location are: 
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 𝑅𝐹𝑂𝐿 76′ =
−1720 𝑘. 𝑓𝑡 − (1.0)(−606 𝑘. 𝑓𝑡)

(1.67)(−452 𝑘. 𝑓𝑡)
= 1.48  

 
𝑅𝑇𝑂𝐿 76′ = (1.48)(20) = 29.5   →    𝐻𝑆 29.5 

 

 
𝑅𝐹𝑀𝐿 76′ =

−1720 𝑘. 𝑓𝑡 − (1.3)(−606 𝑘. 𝑓𝑡) − (1.0)(130 𝑘. 𝑓𝑡)

(2.17)(−452 𝑘. 𝑓𝑡)
= 1.08 

 

 
𝑅𝑇𝑀𝐿 76′ = (1.08)(20) = 21.7   →    𝐻𝑆 21.7 

 

 Critical Location at 106.5’ (Section #1, N = 16): 

The Overload limit state must be addressed in terms of stresses again, because 

different types of loads are resisted by different sections.  The capacity, or limiting stress, 

for the Overload limit state of a composite section was calculated previously as: 

 
𝐶𝑂𝐿 106.5′  = 31.4 𝑘𝑠𝑖 

 

The unfactored dead and live load stresses are: 

 
𝜎𝐷𝐿 106.5′  =

𝑀𝐷𝐿 106.5′

𝑆𝑥
=

434 𝑘. 𝑓𝑡

542 𝑖𝑛3
(
12 𝑖𝑛

1 𝑓𝑡
) = 9.61 𝑘𝑠𝑖 

 

 
𝜎𝐿𝐿 106.5′  =

𝑀𝐿𝐿 106.5′

𝑆𝑒𝑓𝑓 𝑆𝑇
=

666 𝑘. 𝑓𝑡

650 𝑖𝑛3
(
12 𝑖𝑛

1 𝑓𝑡
) = 12.3 𝑘𝑠𝑖 

 

The Maximum Load limit state is always evaluated in terms of moment.  The 

unfactored moments are given in Table D-4, and the capacity is the plastic moment capacity 

of the partially composite section: 

 
𝐶𝑀𝐿 106.5′ = 𝑀𝑝 𝑃𝐶 = 2430 𝑘. 𝑓𝑡  

The rating factor and load rating for the Overload and Maximum Load limit states 

for this critical location are: 
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 𝑅𝐹𝑂𝐿 106.5′ =
31.4 𝑘𝑠𝑖 − (1.0)(9.61 𝑘𝑠𝑖)

(1.67)(12.3 𝑘𝑠𝑖)
= 1.06  

 
𝑅𝑇𝑂𝐿 106.5′ = (1.06)(20) = 21.2   →    𝐻𝑆 21.2 

 

 
𝑅𝐹𝑀𝐿 106.5′ =

2430 𝑘. 𝑓𝑡 − (1.3)(434 𝑘. 𝑓𝑡) − (1.0)(130 𝑘. 𝑓𝑡)

(2.17)(666 𝑘. 𝑓𝑡)
= 1.20 

 

 
𝑅𝑇𝑀𝐿 106.5′ = (1.20)(20) = 24.0   →    𝐻𝑆 24.0 

 

 Critical Location at 115’ (Section #3, N = 16): 

The Overload limit state must be addressed in terms of stresses again, because 

different types of loads are resisted by different sections.  The capacity, or limiting stress, 

for the Overload limit state of a composite section was calculated previously as: 

 
𝐶𝑂𝐿 115′ = 31.4 𝑘𝑠𝑖 

 

The unfactored dead and live load stresses are: 

 
𝜎𝐷𝐿 115′ =

𝑀𝐷𝐿 115′

𝑆𝑥
=

486 𝑘. 𝑓𝑡

653 𝑖𝑛3
(
12 𝑖𝑛

1 𝑓𝑡
) = 8.93 𝑘𝑠𝑖 

 

 
𝜎𝐿𝐿 115′ =

𝑀𝐿𝐿 115′

𝑆𝑒𝑓𝑓 𝑆𝑇
=

694 𝑘. 𝑓𝑡

757 𝑖𝑛3
(
12 𝑖𝑛

1 𝑓𝑡
) = 11.0 𝑘𝑠𝑖 

 

The Maximum Load limit state is always evaluated in terms of moment.  The 

unfactored moments are given in Table D-4, and the capacity is the plastic moment capacity 

of the partially composite section: 

 
𝐶𝑀𝐿 115′ = 𝑀𝑝 𝑃𝐶 = 2780 𝑘. 𝑓𝑡  

The rating factor and load rating for the Overload and Maximum Load limit states 

for this critical location are: 
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 𝑅𝐹𝑂𝐿 115′ =
31.4 𝑘𝑠𝑖 − (1.0)(8.93 𝑘𝑠𝑖)

(1.67)(11.0 𝑘𝑠𝑖)
= 1.22  

 
𝑅𝑇𝑂𝐿 115′ = (1.22)(20) = 24.5   →    𝐻𝑆 24.5 

 

 
𝑅𝐹𝑀𝐿 115′ =

2780 𝑘. 𝑓𝑡 − (1.3)(486 𝑘. 𝑓𝑡) − (1.0)(130 𝑘. 𝑓𝑡)

(2.17)(694 𝑘. 𝑓𝑡)
= 1.34 

 

 
𝑅𝑇𝑀𝐿 115′ = (1.34)(20) = 26.8   →    𝐻𝑆 26.8 

 

The results of this load rating for the strengthened girder are summarized in Table 

D-6.  After post-installing the shear connectors and considering moment redistribution, the 

inventory load factor rating of Girder B is increased from HS 13.3 to HS 20.0.  This load 

rating is controlled by the section at the interior piers at the Maximum Load limit state. 

Table D-6: Load Rating Results of Strengthened Girder B 

Location 

(ft) 
Section Type 

Inventory Load Factor Rating 

Overload Maximum Load 

28 Critical, Span HS 20.7 HS 24.5 

62 Critical, Transition HS 33.7 HS 25.1 

70 Critical, Pier HS 28.9 HS 20.0 

76 Critical, Transition HS 29.5 HS 21.7 

106.5 Critical, Transition HS 21.2 HS 24.0 

115 Critical, Span HS 24.5 HS 26.8 

 

D.2.8 Summary of Strengthening Design for Girder B 

To strengthen Girder B to a minimum inventory load factor rating of HS 20, a total 

of 96 adhesive anchor shear connectors should be post-installed and approximately 5% of 

the factored moment at the interior piers must be redistributed at the Maximum Load limit 

state.  In order to allow for moment redistribution, double-sided 5-inch by 3/8-inch bearing 

stiffeners need to be installed at the interior piers.  Additionally, new cross frames must be 
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installed to reduce the unbraced length at the interior piers to satisfy the requirements of 

Appendix B6 of the LRFD specifications.  These cross frames should be placed 10 feet 

into the exterior span and 10.5 feet into the interior span, measured from the interior pier. 

The connectors are installed in pairs on opposite sides of the web of the steel beam 

in a cross section, as illustrated in Figure D-10.  The transverse spacing of 6 inches was 

determined by approximately centering the connectors on the protruding portion of the 

flange.  The connectors are grouped in six locations, with one group located near each end 

of the positive moment regions in all three spans.  The specific connector layout is shown 

in Figure D-8.  This layout can be modified slightly due to constraints in the field during 

installation, such as transverse deck reinforcing bars or other obstacles. 

 

Figure D-10: Cross-Sectional Connector Layout 

D.3 SUMMARY OF DESIGN PROCESS AND RESULTS FOR GIRDER A 

Girder A is identical to Girder B, so refer to the half-elevation view shown in Figure 

D-3 and the section properties in Table D-1. 

D.3.1 Conduct Structural Analysis 

The distribution factor for Girder A is calculated using the lever rule, assuming that 

the deck acts as a simple span between the girders (Section 3.23.2.3.1.2).  This calculation 

is illustrated in Figure D-11.  The wheels of the design truck are spaced 6 feet apart in the 

transverse direction, and the centerline of the wheel cannot be closer than 2 feet from the 

curb.  The distribution factor for Girder A is thus calculated to be 0.607.  Figure D-12 and 

Table D-7 summarize the results of the structural analysis for Girder A. 

6”

2”
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Figure D-11: Lever Rule for Distribution Factor Calculation for Girder A 

 

Figure D-12: Plot of Unfactored Moments for Girder A 
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Table D-7: Unfactored Moments at Critical Sections and at Lateral Brace Locations around 

the Interior Pier Section in Girder B 

Location 

(ft) 
Section Type 

Section 

Number 

Unfactored Moment (k-ft) 

Dead 

Load 

Live Load 

Pos. Neg. 

28 Critical, Span 1 366 297 -85.4 

46.7 Lateral Brace 1 100 225 -142 

62 Critical, Transition 1 -416 59.3 -189 

70 
Critical, Pier 

and Lateral Brace 
2 -800 50.8 -287 

76 Critical, Transition 1 -501 29 -198 

92.5 Lateral Brace 1 89.5 192 -114 

106.5 Critical, Transition 1 359 291 -83.4 

115 Critical, Span 3 402 303 -83.4 

 

D.3.2 Evaluate Existing Non-Composite Girder 

All of the capacity calculations are for Girder A are identical to those for Girder B.  

The results of the load rating for Girder A are summarized in Table D-8.  The controlling 

load rating is HS 33.2, which occurs at the Overload limit state at the critical section at the 

maximum positive moment in the exterior span (28’).  All of the load ratings are greater 

than the target value of HS 20, so no strengthening is necessary for this girder.  This is 

because it is subjected to minimal amounts of traffic load in comparison to the other girders.  

Although the check is not shown here, the girder is also adequate for the combination of 

sidewalk and traffic loading in the Standard specifications. 
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Table D-8: Load Rating Results of Existing Non-Composite Girder A 

Location 

(ft) 
Section Type 

Capacity (k-ft) Inventory Load Rating 

Overload 
Maximum 

Load 
Overload 

Maximum 

Load 

28 Critical, Span 1190 1720 HS 33.2 HS 38.1 

62 Critical, Transition -1190 -1490 HS 49.0 HS 45.7 

70 Critical, Pier -1800 -2250 HS 41.7 HS 38.3 

76 Critical, Transition -1190 -1490 HS 41.7 HS 38.5 

106.5 Critical, Transition 1190 1720 HS 34.2 HS 39.2 

115 Critical, Span 1440 2050 HS 41.0 HS 45.8 

 

D.3.3 Summary of Strengthening Design for Girder A 

The existing non-composite Girder A has an inventory load factor rating of HS 

33.2.  Thus, no strengthening is necessary for this girder. 

D.4 SUMMARY OF DESIGN PROCESS AND RESULTS FOR GIRDER C 

A half-elevation view of Girder C is shown in Figure D-13.  This girder was built 

as part of the original bridge in 1943.  It is constructed of a 36WF150 rolled steel shape, 

with cover plates riveted to the top and bottom flange at the interior pier and in the middle 

of the interior span.  Table D-9 summarizes the section properties for design for the steel 

beam (Section 1), as well as for the steel beam with cover plates at the interior pier 

(Sections 2 and 3) and in the interior span (Section 3).  Note that because this girder sits on 

the boundary between the original and widened portions of the bridge, the deck thickness 

and girder spacing are different on either side of the girder.  Thus, average values of the 

deck properties are used here. 
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Figure D-13: Half-Elevation View of Girder C 
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Table D-9: Section Properties for Girder C 

 Section 1 Section 2 Section 3 Section 4 

Cover plate width (𝑏𝑝𝑙, in) 0 13.0 13.0 13.0 

Cover plate thickness (𝑡𝑝𝑙, in) 0 0.500 1.00 0.375 

Flange width (𝑏𝑓, in) 12.0 12.0 12.0 12.0 

Flange thickness (𝑡𝑓, in) 0.940 0.940 0.940 0.940 

Flange area (𝐴𝑓, in2) 11.3 17.8 24.3 16.2 

Flange moment of inertia (𝐼𝑦𝑐, in4) 135 227 318 204 

Total depth (𝑑, in) 35.9 36.9 37.9 36.7 

Web thickness (𝑡𝑤, in) 0.625 0.625 0.625 0.625 

Area (𝐴𝑠, in2) 44.3 57.3 70.3 54.1 

Moment of inertia (𝐼𝑥, in4) 9040 13300 17900 12200 

Elastic section modulus (𝑆𝑥, in3) 504 723 944 668 

Plastic section modulus (𝑍𝑥, in3) 581 818 1060 758 

Radius of gyration (𝑟𝑦, in) 2.47 2.81 3.01 2.75 

Polar moment of inertia (𝐽, in4) 10.1 11.2 18.8 10.6 

Web depth (𝐷, in) 34.0 34.0 34.0 34.0 

Depth of web in compression, 

elastic (𝐷𝑐, in) 
17.0 17.0 17.0 17.0 

Depth of web in compression, 

plastic (𝐷𝑐𝑝, in) 
17.0 17.0 17.0 17.0 

Effective deck width (𝑏𝑑𝑒𝑐𝑘, in) 

and girder spacing (𝑆, in) 
92.8 92.8 92.8 92.8 

Deck thickness (𝑡𝑑𝑒𝑐𝑘, in) 7.25 7.25 7.25 7.25 

Deck area (𝐴𝑑𝑒𝑐𝑘, in2) 673 673 673 673 

Deck moment of inertia (𝐼𝑑𝑒𝑐𝑘, in4) 2950 2950 2950 2950 

 

D.4.1 Conduct Structural Analysis 

The distribution factor for interior Girder C is calculated to be 1.41.  Figure D-14 

and Table D-10 summarize the results of the structural analysis for Girder C. 
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Figure D-14: Plot of Unfactored Moments for Girder C 

Table D-10: Unfactored Moments at Critical Sections and at Lateral Brace Locations 

around the Interior Pier Section in Girder C 

Location 

(ft) 
Section Type 

Section 

Number 

Unfactored Moment (k-ft) 

Dead 

Load 

Live Load 

Pos. Neg. 

28 Critical, Span 1 463 676 -193 

38.2 Lateral Brace 1 338 628 -261 

57.5 Critical, Transition 1 -311 225 -395 

60 Lateral Brace 2 -438 179 -417 

63.5 Critical, Transition 2 -630 114 -457 

70 Critical, Pier 3 -1038 123 -679 

76 Critical, Transition 2 -655 94.7 -470 

80.5 
Critical, Transition 

and Lateral Brace 
1 -404 142 -363 

101.5 Critical, Transition 1 363 635 -234 

102.8 Lateral Brace 4 384 649 -229 

115 Critical, Span 4 502 720 -215 
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D.4.2 Evaluate Existing Non-Composite Girder 

All of the capacity calculations for Girder C are done in the same manner to those 

for Girder B.  The results of these and of the load rating calculations for Girder C are 

summarized in Table D-11.  The controlling load rating is HS 11.5, which occurs at the 

Overload limit state at the critical section at the maximum positive moment in the exterior 

span (28’).  In fact, this is the controlling load rating for all of the steel beams. 

Table D-11: Load Rating Results of Existing Non-Composite Girder C 

Location 

(ft) 
Section Type 

Capacity (k-ft) Inventory Load Rating 

Overload 
Maximum 

Load 
Overload 

Maximum 

Load 

28 Critical, Span 1110 1600 HS 11.5 HS 13.4 

57.5 Critical, Transition -1110 -1390 HS 24.2 HS 22.7 

63.5 Critical, Transition -1590 -1990 HS 25.2 HS 23.3 

70 Critical, Pier -2080 -2600 HS 18.4 HS 16.7 

76 Critical, Transition -1590 -1990 HS 23.8 HS 22.0 

80.5 Critical, Transition -1110 -1390 HS 23.3 HS 21.7 

101.5 Critical, Transition 1110 1600 HS 14.1 HS 16.2 

115 Critical, Span 1470 2080 HS 16.1 HS 18.0 

 

D.4.3 Set Strengthening Targets 

The same strengthening targets are used for Girder C as for Girder B.  Thus, the 

goals of the strengthening design are to increase the inventory load factor rating to HS 20, 

and to provide a minimum remaining life of 25 years for the purposes of fatigue design of 

the post-installed shear connectors.  The same average annual daily truck traffic 

((𝐴𝐷𝑇𝑇)𝑆𝐿) of 1160 trucks per day will be used. 

D.4.4 Check Negative Moment Regions and Redistribute Moments 

In a similar manner to Girder B, the capacity of the negative moment regions at the 

interior piers (70’) of Girder C is evaluated and compared to the factored moments at the 

Overload and Maximum Load limit states to determine whether or not inelastic moment 

redistribution is needed.  The factored moments are calculated from those given in Table 
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D-10.  Because these regions will remain non-composite, the capacities are the same as 

those in Table D-11.  A summary of these values is given in Table D-12. 

Table D-12: Necessity of Moment Redistribution for Girder C 

Factored Overload moment (𝑀𝑢 𝑂𝐿, k-ft) -2170 

Factored Maximum Load moment (𝑀𝑢 𝑀𝐿, k-ft) -2840 

Overload capacity (𝐶𝑂𝐿, k-ft) -2080 

Maximum Load capacity (𝐶𝑀𝐿, k-ft) -2600 

 

The factored moment at the interior pier section exceeds the capacity at both the 

Overload and Maximum Load limit states.  This means that moment redistribution should 

be considered at both limit states.  As with the design of Girder B, the requirements from 

Appendix B6 of the LRFD specifications must be satisfied to allow for moment 

redistribution: 

1. The bridge must be straight with supports not skewed more than 10°   →   𝑂𝐾 

2. The specified minimum yield stress does not exceed 70 ksi   →   𝑂𝐾 

3. Holes in the tension flange may not be present within a distance of twice the 

web depth from each interior pier section from which moments are redistributed   

→   𝑁𝑂𝑇 𝑂𝐾 

Because this girder has riveted cover plates on the top and bottom flanges 

at the interior pier section, this requirement is not satisfied, although the 

holes are filled completely with rivets.  Although there is little to no 

literature available about the inelastic moment-rotation behavior of wide 

flange steel beams with riveted cover plates, tests on riveted plate 

connections have not indicated any significant lack of ductility or otherwise 

poor behavior that would adversely impact the moment-rotation behavior.  

In this case, engineering judgement is used to eliminate this requirement, 

and allow for moment redistribution.  Additionally, essentially no 

redistribution is actually necessary (as is calculated later), and the extent of 

inelastic behavior in this region is expected to be minimal. 

4. Web proportion requirements   →   𝑂𝐾 

5. Compression flange proportion requirements   →   𝑂𝐾 

6. Compression flange bracing requirements 
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As with Girder B, because one the cover plates terminates within the 

unbraced length, the properties of the smallest section (Section 2) are used 

to be conservative.  The calculations result in:  

𝐿𝑏 = 20.5 𝑓𝑡 > 10.3 𝑓𝑡 = 𝐿𝑏 𝑙𝑖𝑚𝑖𝑡𝑖𝑛𝑔   →   𝑁𝑂𝑇 𝑂𝐾 

Thus, the existing cross frames do not provide adequate lateral bracing to 

allow for moment redistribution.  To redistribute moments in this girder, at 

least one additional cross frame must be added at or near the interior pier 

to reduce the unbraced length.   

Recall that there is not a cross frame located at the centerline of this interior 

support, although there are cross frames at this location on Girders A and B 

which were constructed at a later date.  Thus, add a cross frame at the 

centerline of the interior pier for this girder.  This reduces the unbraced 

length to 10 feet in the exterior span and to 10.5 feet in the interior span.  

Repeating the calculations for the limiting unbraced lengths with an 

additional cross frame located at the interior pier shows that the new 

unbraced lengths satisfy the lateral bracing requirements: 

𝐿𝑏 𝑒𝑥𝑡 = 10.0 𝑓𝑡 < 15.3 𝑓𝑡  →   𝑂𝐾 

𝐿𝑏 𝑖𝑛𝑡 = 10.5 𝑓𝑡 < 16.1 𝑓𝑡  →  𝑂𝐾 

7. There shall be no section transitions within the unbraced length of the interior 

pier section   →   𝑁𝑂𝑇 𝑂𝐾 

Because the cover plates at the interior pier terminate within the adjacent 

unbraced lengths from the pier, this requirement is actually not satisfied.  

However, for the same reasons discussed in the design for Girder B, namely 

that the section properties used in calculating the lateral-torsional buckling 

requirements and that the controlling section in negative flexure is the 

centerline of the interior pier, not the section transitions at the ends of the 

cover plates, this requirement is ignored.  The reduced flexural capacity at 

each transition need to be checked against the factored moments after 

redistribution to ensure that the section has adequate strength. 

Note that alternatively, this requirement could be directly satisfied by 

adding two cross frames and placing each at or closer to the interior pier 

than the ends of the cover plate. 

8. The shear limit state must not be exceeded within the unbraced lengths adjacent 

to the interior pier regions. →   𝑂𝐾 
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Although a check for shear is not shown here, the shear strength 

requirements are satisfied for this girder. 

9. Bearing stiffeners must be present at the interior pier locations  →   𝑂𝐾 

Riveted bearing stiffeners constructed of L-shapes are present at the interior 

support on this girder 

Assuming that at least one additional cross frame is added at or near the interior 

support to satisfy number 6 in the preceding list, moment redistribution can be allowed for 

this girder.  Table D-13 summarizes the results of calculations for the redistribution 

moment, following the provisions in Section B6.5 of the LRFD specifications in a similar 

manner to the design of Girder B. 

Table D-13: Results from Moment Redistribution Calculations for Girder C 

Ultracompact web? Yes 

Effective plastic moment at Overload (𝑀𝑝𝑒 𝑂𝐿, k-ft) 2920 

Effective plastic moment at Maximum Load (𝑀𝑝𝑒 𝑀𝐿, k-ft) 2920 

Overload redistribution moment (𝑀𝑟𝑑 𝑂𝐿, k-ft) -750  0 

Maximum Load redistribution moment (𝑀𝑟𝑑_𝑀𝐿, k-ft) -80.0  0 

 

Although it was determined previously that moment redistribution is necessary at 

both the Overload and the Maximum Load limit states, in fact no moment redistribution is 

actually needed at either limit state.  For the Overload limit state, this is again because of 

the significant increase in the strength that is attributed to the section when considering 

moment redistribution from the strength defined by the stress limit of 80% of the yield 

stress.  For the Maximum Load limit state, this is a result of the addition of at least one 

cross frame that allows the section to reach the full plastic moment capacity without lateral-

torsional buckling occurring.  Thus, while moment redistribution needs to be considered 

and the aforementioned requirements of Section B6.2 of the LRFD specifications should 

be followed including the addition of one or more cross frames, no redistribution moments 

are necessary for the design of Girder C. 
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D.4.5 Design Connectors for Positive Moment Regions 

In a similar manner to Girder B, the partially composite positive moment regions 

are now designed and checked at both the Overload and Maximum Load limit states.  For 

this girder, a different design needs to be conducted for the exterior span, which has a 

critical section at 28’, and for the middle span, which has a critical section at 115’.  The 

design is also checked at the transition location at the termination of the cover plate in the 

interior span at 101.5’. 

Table D-14 summarizes the results from these calculations.  As with Girder B, the 

partially composite design was begun with the minimum recommended composite ratio of 

0.3, which ended up controlling the design in the interior span.  However, in the exterior 

spans, a composite ratio of 0.66 is necessary to satisfy the requirements of the Overload 

limit state. 
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Table D-14: Results from Partially Composite Design Calculations for Girder C 

 28’ 115’ 101.5’ 

Section number 1 4 1 

Factored Maximum Load moment (𝑀𝑢 𝑀𝐿, k-ft) 2090 2340 1870 

Deck force, fully composite (𝐶𝑓 𝐹𝐶, k) 1710 1710 1710 

Number of connectors, fully composite (𝑁𝐹𝐶) 48.6 57.0 48.6 

Plastic web force (𝑃𝑦 𝑤𝑒𝑏, k) 717 717 717 

Plastic neutral axis location, fully composite Deck Flange Deck 

Plastic moment, fully composite (𝑀𝑝 𝐹𝐶, k-ft) 2690 3240 2690 

Short term moment of inertia, fully composite 

(𝐼𝑡𝑟 𝑆𝑇, in4) 
22200 27000 22200 

Short term section modulus, fully composite 

(𝑆𝑡𝑟 𝑆𝑇, in3) 
707 869 707 

Long term moment of inertia, fully composite 

(𝐼𝑡𝑟 𝑆𝑇, in4) 
16400 20100 16400 

Long term section modulus, fully composite 

(𝑆𝑡𝑟 𝑆𝑇, in3) 
642 793 642 

Number of connectors, partially composite (𝑁𝑃𝐶) 32 18 18 

Actual composite ratio 0.658 0.316 0.370 

Deck force, partially composite (𝐶𝑓 𝑃𝐶, k) 962 541 541 

Plastic neutral axis location, partially composite Flange Web Web 

Plastic moment, partially composite (𝑀𝑝 𝑃𝐶, k-ft) 2590 2890 2390 

Short term section modulus, partially composite 

(𝑆𝑒𝑓𝑓 𝑆𝑇, in3) 
669 781 627 

Long term section modulus, partially composite 

(𝑆𝑒𝑓𝑓 𝐿𝑇, in3) 
616 739 588 

Factored Overload stress (𝜎𝑢 𝑂𝐿, ksi) 31.3 21.9 22.0 

Maximum allowed Overload stress (𝜎𝑚𝑎𝑥, ksi) 31.4 31.4 31.4 

 

The plastic moment capacity exceeds the factored moment at the Maximum Load 

limit state at all three locations.  The maximum allowed stress also exceeds the factored 

stress at the Overload limit state at all three locations.  Thus, the requirements for both limit 
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states are satisfied with this design, so use 𝑵 = 𝟑𝟐 in the exterior spans and 𝑵 = 𝟏𝟖 in 

the interior span on Girder C. 

D.4.6 Locate Connectors and Check Fatigue 

The connector layout in Figure D-15 is proposed, based on the same 

recommendations given in previous research as were used in the design of Girder B.  

However, the layout has been modified to avoid the splice plates, shown as green lines in 

the figure, and cover plates, shown as orange lines in the figure.  It is not practical to post-

install adhesive anchor shear connectors through these riveted plates.  Thus, the connector 

groups nearest to the interior support in the exterior span have to be located farther than 

the recommended 15% of the span length.  The connector groups in the interior span have 

been shifted closer than the recommended 15% of the span length to the interior support to 

compensate.  Additionally, there is a 6-ft gap within each connector group to avoid the 

splice plates.  The final positioning of the connector groups was determined by trial and 

error to determine the minimum overall fatigue demand on the connectors while keeping 

all connectors outside of the splice and cover plate regions.  Because the girder is 

symmetric, only the left half is shown in the figure.  Within a group, the connectors are 

spaced at 12 inches, which is equal to the transverse rebar spacing in the deck.  The 

connector nearest to the end of the girder is located 6 inches away from the centerline of 

the support, and no connector is closer than 6 inches to a cover plate. 

 

Figure D-15: Connector Layout for Girder C 

The fatigue check is conducted in the same manner as for Girder B.  Because the 

predicted truck traffic and required remaining life are the same as for Girder B, the nominal 

fatigue resistance of a single connector is also the same ((∆𝐹)𝑛 = 17.5 𝑘𝑠𝑖).   
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Figure D-16 shows the results from the fatigue analysis, conducted in the same way 

as for Girder B, which explicitly considers the interface slip and uses a stiffness of 900 kips 

per inch for the linear springs that represent each shear connector.  The figure plots the 

stress range in each connector induced by the fatigue loading defined in the Fatigue II load 

combination in the LRFD specifications.  Because of symmetry, only one-half of the girder 

is shown. 

 

Figure D-16: Results from Fatigue Analysis for Girder C 

The maximum stress range (∆𝐹) that a connector undergoes during fatigue loading 

is 15.5 ksi.  As shown in the figure, this critical connector is the closest connector to the 

interior support in the interior span.  This maximum stress range is less than the nominal 

fatigue resistance (17.5 ksi), indicating that the connectors have adequate fatigue life to 

satisfy the design requirement of a 25-year remaining life.  By reversing the design 

equations, the connectors in Girder C are estimated to have a remaining fatigue life of 

58 years. 
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factor rating of Girder C is increased from HS 11.5 to HS 20.1.  This load rating is 

controlled by the section near the middle of the exterior spans at the Overload limit state. 

Table D-15: Load Rating Results of Strengthened Girder C 

Location 

(ft) 
Section Type 

Inventory Load Factor Rating 

Overload Maximum Load 

28 Critical, Span HS 20.1 HS 27.1 

57.5 Critical, Transition HS 24.2 HS 27.8 

63.5 Critical, Transition HS 42.5 HS 28.8 

70 Critical, Pier HS 33.2 HS 21.3 

76 Critical, Transition HS 40.7 HS 27.4 

80.5 Critical, Transition HS 23.3 HS 27.3 

101.5 Critical, Transition HS 22.3 HS 27.8 

115 Critical, Span HS 24.2 HS 28.7 

 

D.4.8 Summary of Design for Girder C 

To strengthen Girder C to a minimum inventory load factor rating of HS 20, a total 

of 164 adhesive anchor shear connectors should be post-installed.  While moment 

redistribution does need to be considered, no actual moments need to be redistributed at 

either the Overload or Maximum Load limit state.  However, additional lateral bracing 

must be provided to the girder at the interior piers to reduce the unbraced length to satisfy 

the requirements of Appendix B6 of the LRFD specifications. 

The connectors are installed in pairs on opposite sides of the web of the steel beam 

through a cross section, as illustrated in Figure D-10.  They are grouped in six locations, 

with one group located near each end of the positive moment regions in all three spans.  

The specific connector layout is shown in Figure D-15.  This layout can be modified 

slightly due to constraints in the field during installation, such as transverse deck 

reinforcing bars or other obstacles. 

After post-installing the shear connectors and considering moment redistribution, 

the inventory load factor rating of Girder C is increased from HS 11.5 to HS 20.1.  This 

load rating is controlled in the strengthened bridge by the section near the middle of the 

exterior spans at the Overload limit state. 
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D.5 SUMMARY OF DESIGN PROCESS AND RESULTS FOR GIRDER D 

A half-elevation view of Girder D is shown in Figure D-17.  This girder was built 

as part of the original bridge in 1943.  It is constructed of a 36WF150 rolled steel shape, 

with cover plates riveted to the top and bottom flange at the interior pier and in the middle 

of all three spans.  Table D-16 summarizes the section properties for design for the steel 

beam (Section 1), as well as for the steel beam with cover plates in the exterior spans 

(Section 2), at the interior pier (Sections 3 and 4) and in the interior span (Section 3). 

 

Figure D-17: Half-Elevation View of Girder D 

70’ 45’

21.8’ 20.5’23.7’14.5’ 22.3’ 12.2’

Symmetric about 
center line

13” x ½” 
cover plates

Lateral 
bracing (typ.)

13” x ⅝” 
cover plates13” x ⅜” 

cover plates
Riveted 

splice (typ.)

6’ 6’ 18.5’6.5’ 4.5’5’30’14.5’ 5’4’ 6’



 281 

Table D-16: Section Properties for Girder D 

 Section 1 Section 2 Section 3 Section 4 

Cover plate width (𝑏𝑝𝑙, in) 0 13.0 13.0 13.0 

Cover plate thickness (𝑡𝑝𝑙, in) 0 0.375 0.625 1.125 

Flange width (𝑏𝑓, in) 12.0 12.0 12.0 12.0 

Flange thickness (𝑡𝑓, in) 0.940 0.940 0.940 0.940 

Flange area (𝐴𝑓, in2) 11.3 16.2 19.4 25.9 

Flange moment of inertia (𝐼𝑦𝑐, in4) 135 204 250 341 

Total depth (𝑑, in) 35.9 36.7 37.2 38.2 

Web thickness (𝑡𝑤, in) 0.625 0.625 0.625 0.625 

Area (𝐴𝑠, in2) 44.3 54.1 60.6 73.6 

Moment of inertia (𝐼𝑥, in4) 9040 12200 14500 19100 

Elastic section modulus (𝑆𝑥, in3) 504 668 778 999 

Plastic section modulus (𝑍𝑥, in3) 581 758 878 1120 

Radius of gyration (𝑟𝑦, in) 2.47 2.75 2.87 3.04 

Polar moment of inertia (𝐽, in4) 10.1 10.6 12.2 22.4 

Web depth (𝐷, in) 34.0 34.0 34.0 34.0 

Depth of web in compression, 

elastic (𝐷𝑐, in) 
17.0 17.0 17.0 17.0 

Depth of web in compression, 

plastic (𝐷𝑐𝑝, in) 
17.0 17.0 17.0 17.0 

Effective deck width (𝑏𝑑𝑒𝑐𝑘, in) 

and girder spacing (𝑆, in) 
94.5 94.5 94.5 94.5 

Deck thickness (𝑡𝑑𝑒𝑐𝑘, in) 8 8 8 8 

Deck area (𝐴𝑑𝑒𝑐𝑘, in2) 756 756 756 756 

Deck moment of inertia (𝐼𝑑𝑒𝑐𝑘, in4) 4030 4030 4030 4030 

 

D.5.1 Conduct Structural Analysis 

The distribution factor for interior Girder D is calculated to be 1.43.  Figure D-18 

and Table D-17 summarize the results of the structural analysis for Girder D. 
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Figure D-18: Plot of Unfactored Moments for Girder D 
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Table D-17: Unfactored Moments at Critical Sections and at Lateral Bracing in Girder D 

Location 

(ft) 
Section Type 

Section 

Number 

Unfactored Moment (k-ft) 

Dead 

Load 

Live Load 

Pos. Neg. 

14.5 Critical, Transition 1 408 533 -98.6 

28 Critical, Span 2 503 698 -197 

38.2 Lateral Brace 2 372 654 -267 

44.5 Critical, Transition 1 221 577 -312 

57.5 Critical, Transition 1 -313 246 -394 

60 Lateral Brace 3 -454 189 -422 

63.5 Critical, Transition 3 -652 114 -447 

70 Critical, Pier 4 -1090 117 -670 

76 Critical, Transition 3 -677 92.4 -458 

80.5 
Critical, Transition 

and Lateral Brace 
1 -408 137 -340 

96.5 Critical, Transition 1 295 563 -245 

102.8 Lateral Brace 3 433 657 -214 

115 Critical, Span 3 558 729 -202 

 

D.5.2 Evaluate Existing Non-Composite Girder 

All of the capacity calculations for Girder D are done in the same manner to those 

for Girder B.  The results of these and of the load rating calculations for Girder D are 

summarized in Table D-18.  The controlling load rating is HS 15.8, which occurs at the 

Overload limit state at the end of the cover plate in the exterior span nearest the exterior 

support (14.5’). 
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Table D-18: Load Rating Results of Existing Non-Composite Girder D 

Location 

(ft) 
Section Type 

Capacity (k-ft) Inventory Load Rating 

Overload 
Maximum 

Load 
Overload 

Maximum 

Load 

14.5 Critical, Transition 1110 1600 HS 15.8 HS 18.2 

28 Critical, Span 1470 2080 HS 16.6 HS 18.6 

44.5 Critical, Transition 1110 1600 HS 18.5 HS 20.7 

57.5 Critical, Transition -1110 -1600 HS 24.2 HS 27.5 

63.5 Critical, Transition -1710 -2140 HS 28.3 HS 26.3 

70 Critical, Pier -2200 -2750 HS 19.8 HS 18.1 

76 Critical, Transition -1710 -2140 HS 27.0 HS 25.0 

80.5 Critical, Transition -1110 -1390 HS 24.7 HS 23.0 

96.5 Critical, Transition 1110 1600 HS 17.3 HS 19.6 

115 Critical, Span 1710 2410 HS 18.9 HS 21.0 

 

D.5.3 Set Strengthening Targets 

The same strengthening targets are used for Girder D as for Girder B.  Thus, the 

goals of the strengthening design are to increase the inventory load factor rating to HS 20, 

and to provide a minimum remaining life of 25 years for the purposes of fatigue design of 

the post-installed shear connectors.  The same average annual daily truck traffic 

((𝐴𝐷𝑇𝑇)𝑆𝐿) of 1160 trucks per day will be used. 

D.5.4 Check Negative Moment Regions and Redistribute Moments 

In a similar manner to Girder B, the capacity of the negative moment regions at the 

interior piers (70’) of Girder D is evaluated and compared to the factored moments at the 

Overload and Maximum Load limit states to determine whether or not inelastic moment 

redistribution is needed.  The factored moments are calculated from those given in Table 

D-18.  Because these regions will remain non-composite, the capacities are the same as 

those in Table D-17.  A summary of these values is given in Table D-19. 
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Table D-19: Necessity of Moment Redistribution for Girder D 

Factored Overload moment (𝑀𝑢 𝑂𝐿, k-ft) -2210 

Factored Maximum Load moment (𝑀𝑢 𝑀𝐿, k-ft) -2890 

Overload capacity (𝐶𝑂𝐿, k-ft) -2200 

Maximum Load capacity (𝐶𝑀𝐿, k-ft) -2750 

 

The factored moment at the interior pier section exceeds the capacity at both the 

Overload and Maximum Load limit states.  This means that moment redistribution should 

be considered at both limit states.  As with the design of Girder B, the requirements from 

Appendix B6 of the LRFD specifications must be satisfied to allow for moment 

redistribution: 

1. The bridge must be straight with supports not skewed more than 10°   →   𝑂𝐾 

2. The specified minimum yield stress does not exceed 70 ksi   →   𝑂𝐾 

3. Holes in the tension flange may not be present within a distance of twice the 

web depth from each interior pier section from which moments are redistributed   

→   𝑁𝑂𝑇 𝑂𝐾 

As with Girder C, because this girder has riveted cover plates on the top and 

bottom flanges at the interior pier section, this requirement is not satisfied.  

However, in a similar manner as with Girder C, engineering judgement is 

used to eliminate this requirement in this case.  This is partially because 

limited experimental testing of riveted connections has not indicated a lack 

of ductility, and only a minimal amount of redistribution is actually 

necessary in this case so the extent of inelastic behavior is expected to be 

minimal. 

4. Web proportion requirements   →   𝑂𝐾 

5. Compression flange proportion requirements   →   𝑂𝐾 

6. Compression flange bracing requirements 

As with Girder B, because one the cover plates terminates within the 

unbraced length, the properties of the smallest section (Section 2) are used 

to be conservative.  The calculations result in:  

𝐿𝑏 = 20.5 𝑓𝑡 > 10.9 𝑓𝑡 = 𝐿𝑏 𝑙𝑖𝑚𝑖𝑡𝑖𝑛𝑔   →   𝑁𝑂𝑇 𝑂𝐾 

Thus, the existing cross frames do not provide adequate lateral bracing to 

allow for moment redistribution.  To redistribute moments in this girder, at 
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least one additional cross frame must be added at or near the interior pier 

to reduce the unbraced length.   

Recall that there is not a cross frame located at the centerline of this interior 

support, although there are cross frames at this location on Girders A and B 

which were constructed at a later date.  Thus, add a cross frame at the 

centerline of the interior pier for this girder.  This reduces the unbraced 

length to 10 feet in the exterior span and to 10.5 feet in the interior span.  

Repeating the calculations for the limiting unbraced lengths with an 

additional cross frame located at the interior pier shows that the new 

unbraced lengths satisfy the lateral bracing requirements: 

𝐿𝑏 𝑒𝑥𝑡 = 10.0 𝑓𝑡 < 15.2 𝑓𝑡  →   𝑂𝐾 

𝐿𝑏 𝑖𝑛𝑡 = 10.5 𝑓𝑡 < 16.3 𝑓𝑡  →  𝑂𝐾 

7. There shall be no section transitions within the unbraced length of the interior 

pier section   →   𝑁𝑂𝑇 𝑂𝐾 

Because the cover plates at the interior pier terminate within the adjacent 

unbraced lengths from the pier, this requirement is actually not satisfied.  

However, for the same reasons discussed in the design for Girder B, namely 

that the section properties used in calculating the lateral-torsional buckling 

requirements and that the controlling section in negative flexure is the 

centerline of the interior pier, not the section transitions at the ends of the 

cover plates, this requirement is ignored.  The reduced flexural capacity at 

each transition need to be checked against the factored moments after 

redistribution to ensure that the section has adequate strength. 

Note that alternatively, this requirement could be directly satisfied by 

adding two cross frames and placing each at or closer to the interior pier 

than the ends of the cover plate. 

8. The shear limit state must not be exceeded within the unbraced lengths adjacent 

to the interior pier regions. →   𝑂𝐾 

Although a check for shear is not shown here, the shear strength 

requirements are satisfied for this girder. 

9. Bearing stiffeners must be present at the interior pier locations  →   𝑂𝐾 

Riveted bearing stiffeners constructed of L-shapes are present at the interior 

support on this girder 
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Assuming that at least one additional cross frame is added at or near the interior 

support to satisfy number 6 in the preceding list, moment redistribution can be allowed for 

this girder.  Table D-20 summarizes the results of calculations for the redistribution 

moment, following the provisions in Section B6.5 of the LRFD specifications in a similar 

manner to the design of Girder B. 

Table D-20: Results from Moment Redistribution Calculations for Girder D 

Ultracompact web? Yes 

Effective plastic moment at Overload (𝑀𝑝𝑒 𝑂𝐿, k-ft) 3080 

Effective plastic moment at Maximum Load (𝑀𝑝𝑒 𝑀𝐿, k-ft) 3080 

Overload redistribution moment (𝑀𝑟𝑑 𝑂𝐿, k-ft) -870  0 

Maximum Load redistribution moment (𝑀𝑟𝑑_𝑀𝐿, k-ft) -190  0 

 

Although it was determined previously that moment redistribution is necessary at 

both the Overload and the Maximum Load limit states, in fact no moment redistribution is 

actually needed at either limit state.  For the Overload limit state, this is again because of 

the significant increase in the strength that is attributed to the section when considering 

moment redistribution from the strength defined by the stress limit of 80% of the yield 

stress.  For the Maximum Load limit state, this is a result of the addition of at least one 

cross frame that allows the section to reach the full plastic moment capacity without lateral-

torsional buckling occurring.  Thus, while moment redistribution needs to be considered 

and the aforementioned requirements of Section B6.2 of the LRFD specifications should 

be followed including the addition of one or more cross frames, no redistribution moments 

are necessary for the design of Girder D. 

D.5.5 Design Connectors for Positive Moment Regions 

In a similar manner to Girder B, the partially composite positive moment regions 

are now designed and checked at both the Overload and Maximum Load limit states.  For 

this girder, a different design needs to be conducted for the exterior span, which has a 

critical section at 28’, and for the middle span, which has a critical section at 115’.  The 

design is also checked at the transition locations at the termination of the cover plate in the 

exterior span at 14.5’ and 44.5’, as well as in the interior span at 96.5’. 
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Table D-21 summarizes the results from these calculations.  As with Girder B, the 

partially composite design was begun with the minimum recommended composite ratio of 

0.3, which ended up controlling the design. 

Table D-21: Results from Partially Composite Design Calculations for Girder D 

 28’ 14.5’ 44.5’ 115’ 96.5’ 

Section number 2 1 1 3 1 

Factored moment (𝑀𝑢 𝑀𝐿, k-ft) 2190 1700 1560 2330 1620 

Deck force, fully composite (𝐶𝑓 𝐹𝐶, k) 1780 1460 1460 1920 1460 

Number of connectors, fully composite (𝑁𝐹𝐶) 59.3 48.6 48.6 63.8 48.6 

Plastic web force (𝑃𝑦 𝑤𝑒𝑏, k) 717 717 717 717 717 

Plastic neutral axis location, fully composite Deck Deck Deck Flange Deck 

Plastic moment, fully composite (𝑀𝑝 𝐹𝐶, k-ft) 3360 2790 2790 3730 2790 

Short term moment of inertia, fully composite 

(𝐼𝑡𝑟 𝑆𝑇, in4) 
28300 23300 23300 31600 23300 

Short term section modulus, fully composite 

(𝑆𝑡𝑟 𝑆𝑇, in3) 
1540 1300 1300 1700 1300 

Long term moment of inertia, fully composite 

(𝐼𝑡𝑟 𝑆𝑇, in4) 
2110 17300 17300 23600 17300 

Long term section modulus, fully composite 

(𝑆𝑡𝑟 𝑆𝑇, in3) 
1150 962 962 1270 962 

Number of connectors, partially composite (𝑁𝑃𝐶) 18 18 18 20 20 

Actual composite ratio 0.303 0.370 0.370 0.314 0.411 

Deck force, partially composite (𝐶𝑓 𝑃𝐶, k) 541 541 541 601 601 

Plastic neutral axis location, partially composite Web Web Web Web Web 

Plastic moment, partially composite (𝑀𝑝 𝑃𝐶, k-ft) 2920 2420 2420 3320 2470 

Short term section modulus, partially composite 

(𝑆𝑒𝑓𝑓 𝑆𝑇, in3) 
1080 986 986 1290 1010 

Long term section modulus, partially composite 

(𝑆𝑒𝑓𝑓 𝐿𝑇, in3) 
859 782 782 1050 797 

Factored Overload stress (𝜎𝑢 𝑂𝐿, ksi) 16.8 16.2 12.3 15.4 13.7 

Maximum allowed Overload stress (𝜎𝑚𝑎𝑥, ksi) 31.4 31.4 31.4 31.4 31.4 
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The plastic moment capacity exceeds the factored moment at the Maximum Load 

limit state at all five locations.  The maximum allowed stress also exceeds the factored 

stress at the Overload limit state all five locations.  Thus, the requirements for both limit 

states are satisfied with this design, so use 𝑵 = 𝟏𝟖 in the exterior spans and 𝑵 = 𝟐𝟎 in 

the interior span on Girder D. 

D.5.6 Locate Connectors and Check Fatigue 

The connector layout in Figure D-19 is proposed, based on the same 

recommendations given in previous research as were used in the design of Girder B.  

However, in a similar manner as with Girder C, the layout has been modified to avoid the 

splice plates, shown as green lines in the figure, and cover plates, shown as orange lines in 

the figure.  It is not practical to post-install adhesive anchor shear connectors through these 

riveted plates.  Thus, the connector groups nearest to the interior support in the exterior 

span have to be located farther than the recommended 15% of the span length.  The 

connector groups in the interior span have been shifted closer than the recommended 15% 

of the span length to the interior support to compensate.  Additionally, there is a 5-ft 8-in 

gap within the connector group nearest the interior support in the exterior span and a 6-ft 

gap within the connector group nearest the interior support in the interior span to avoid the 

splice plates.  Due to the limited available space between plates in the exterior span, the 

connectors nearest the interior support in this span are spaced at 10 inches, which is not a 

multiple of the transverse rebar spacing in the deck.  During installation, minor adjustments 

can be made to this spacing to avoid the reinforcement as needed.  Use of a rebar locater is 

highly recommended.  All other connectors are spaced at 12 inches, which is equal to the 

transverse rebar spacing.  The final positioning of the connector groups was determined by 

trial and error to determine the minimum overall fatigue demand on the connectors while 

keeping all connectors outside of the splice and cover plate regions.  Because the girder is 

symmetric, only the left half is shown in the figure.  The connector nearest to the end of 

the girder is located 6 inches away from the centerline of the support, and no connector is 

closer than 6 inches to a cover plate. 
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Figure D-19: Connector Layout for Girder D 

The fatigue check is conducted in the same manner as for Girder B.  Because the 

predicted truck traffic and required remaining life are the same as for Girder B, the nominal 

fatigue resistance of a single connector is also the same ((∆𝐹)𝑛 = 17.5 𝑘𝑠𝑖). 

Figure D-20 shows the results from the fatigue analysis, conducted in the same way 

as for Girder B, which explicitly considers the interface slip and uses a stiffness of 900 kips 

per inch for the linear springs that represent each shear connector.  The figure plots the 

stress range in each connector induced by the fatigue loading defined in the Fatigue II load 

combination in the LRFD specifications.  Because of symmetry, only one-half of the girder 

is shown. 

 

Figure D-20: Results from Fatigue Analysis for Girder D 
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The maximum stress range (∆𝐹) that a connector undergoes during fatigue loading 

is 16.9 ksi.  As shown in the figure, this critical connector is the closest connector to the 

interior support in the interior span.  This maximum stress range is less than the nominal 

fatigue resistance (17.5 ksi), indicating that the connectors have adequate fatigue life to 

satisfy the design requirement of a 25-year remaining life.  By reversing the design 

equations, the connectors in Girder D are estimated to have a remaining fatigue life of 

32 years. 

D.5.7 Conduct Load Rating of Strengthened Girder 

A load rating of the strengthened girder is carried out in the same manner as for 

Girder B.  The results of this load rating are summarized in Table D-22.  After post-

installing the shear connectors and considering moment redistribution, the inventory load 

factor rating of Girder C is increased from HS 15.8 to HS 22.9.  This load rating is 

controlled by the section near the middle of the exterior spans at the Overload limit state. 

Table D-22: Load Rating Results of Strengthened Girder D 

Location 

(ft) 
Section Type 

Inventory Load Factor Rating 

Overload Maximum Load 

14.5 Critical, Transition HS 26.0 HS 32.7 

28 Critical, Span HS 22.9 HS 30.0 

44.5 Critical, Transition HS 28.7 HS 34.1 

57.5 Critical, Transition HS 23.6 HS 27.1 

63.5 Critical, Transition HS 47.3 HS 32.3 

70 Critical, Pier HS 35.9 HS 23.1 

76 Critical, Transition HS 45.5 HS 30.9 

80.5 Critical, Transition HS 24.7 HS 29.0 

96.5 Critical, Transition HS 27.8 HS 34.2 

115 Critical, Span HS 28.1 HS 32.8 

 

D.5.8 Summary of Design for Girder D 

To strengthen Girder D to a minimum inventory load factor rating of HS 20, a total 

of 112 adhesive anchor shear connectors should be post-installed.  While moment 
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redistribution does need to be considered, no actual moments need to be redistributed at 

either the Overload or Maximum Load limit state.  However, additional lateral bracing 

must be provided to the girder at or near the interior piers to reduce the unbraced length 

to satisfy the requirements of Appendix B6 of the LRFD specifications. 

The connectors are installed in pairs on opposite sides of the web of the steel beam 

through a cross section, as illustrated in Figure D-10.  They are grouped in six locations, 

with one group located near each end of the positive moment regions in all three spans.  

The specific connector layout is shown in Figure D-19.  This layout can be modified 

slightly due to constraints in the field during installation, such as transverse deck 

reinforcing bars or other obstacles. 

After post-installing the shear connectors and considering moment redistribution, 

the inventory load factor rating of Girder D is increased from HS 15.8 to HS 22.9.  This 

load rating is controlled in the strengthened bridge by the section near the middle of the 

exterior spans at the Overload limit state. 

D.6 SUMMARY OF DESIGN FOR ALL GIRDERS 

The results of the design are summarized in Figure D-21.  A total of 372 post-

installed adhesive anchor shear connectors are required to satisfy both strength and fatigue 

requirements for the entire steel unit of this bridge.  Only small amounts of moment 

redistribution, not exceeding 5% of the factored design moment, is required from the 

interior pier sections for this bridge.  The controlling inventory load factor rating for the 

girders in the strengthened bridge is HS 20.0, occurring at the interior pier sections of 

Girder B.  This is an increase of nearly 75% over the HS 11.5 rating of the existing non-

composite steel girder unit. 
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Figure D-21: Summary of Design for All Girders 
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practical limit which is often suggested by various design guidelines to ensure that both the 
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load ratings in positive bending exceed the HS 20 requirement because of this minimum 

composite ratio.  The exception to this is the exterior spans of Girder C, which requires a 

composite ratio of 0.66 to reach a load rating of just greater than HS 20. 

Because moment redistribution is required at the interior pier sections of Girders B, 

C, and D, particular requirements outlined in Appendix B6 of the LRFD Bridge Design 

Specifications must be fulfilled to allow the steel section to undergo plastic rotation 

required for moment redistribution, without premature local or lateral-torsional buckling 

(AASHTO 2010).  Additional cross frames need to be added around the interior piers.  

Details and suggestions for locating these additional cross frames are provided in the design 

calculations in the Appendix.  A double-sided bearing stiffener must also be installed at 

the interior pier of Girder B.  Bearing stiffeners are already present at the interior pier 

sections of Girders C and D. 
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