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Abstract 

 

Continuous Learning of Analytical and Machine Learning Rate of 

Penetration (ROP) Models for Real-Time Drilling Optimization 

 

Cesar Mattos de Salles Soares, Ph.D. 

The University of Texas at Austin, 2018 

 

Supervisor:  Kenneth Gray 

 

Oil and gas operators strive to reach hydrocarbon reserves by drilling wells in the 

safest and fastest possible manner, providing indispensable energy to society at reduced 

costs while maintaining environmental sustainability. Real-time drilling optimization 

consists of selecting operational drilling parameters that maximize a desirable measure of 

drilling performance. Drilling optimization efforts often aspire to improve drilling speed, 

commonly referred to as rate of penetration (ROP). ROP is a function of the forces and 

moments applied to the bit, in addition to mud, formation, bit and hydraulic properties. 

Three operational drilling parameters may be constantly adjusted at surface to influence 

ROP towards a drilling objective: weight on bit (WOB), drillstring rotational speed (RPM), 

and drilling fluid (mud) flow rate.  

In the traditional, analytical approach to ROP modeling, inflexible equations relate 

WOB, RPM, flow rate and/or other measurable drilling parameters to ROP and empirical 

model coefficients are computed for each rock formation to best fit field data. Over the last 

decade, enhanced data acquisition technology and widespread cheap computational power 

have driven a surge in applications of machine learning (ML) techniques to ROP 
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prediction. Machine learning algorithms leverage statistics to uncover relations between 

any prescribed inputs (features/predictors) and the quantity of interest (response). The 

biggest advantage of ML algorithms over analytical models is their flexibility in model 

form. With no set equation, ML models permit segmentation of the drilling operational 

parameter space. However, increased model complexity diminishes interpretability of how 

an adjustment to the inputs will affect the output. There is no single ROP model applicable 

in every situation. 

This study investigates all stages of the drilling optimization workflow, with 

emphasis on real-time continuous model learning. Sensors constantly record data as wells 

are drilled, and it is postulated that ROP models can be retrained in real-time to adapt to 

changing drilling conditions. Cross-validation is assessed as a methodology to select the 

best performing ROP model for each drilling optimization interval in real-time. 

Constrained to rig equipment and operational limitations, drilling parameters are optimized 

in intervals with the most accurate ROP model determined by cross-validation. Dynamic 

range and full range training data segmentation techniques contest the classical lithology-

dependent approach to ROP modeling. Spatial proximity and parameter similarity sample 

weighting expand data partitioning capabilities during model training. The prescribed ROP 

modeling and drilling parameter optimization scenarios are evaluated according to model 

performance, ROP improvements and computational expense. 
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Chapter 1: Introduction and Background 

In a quest to access abundant energy resources, oil and gas companies drill wells 

through the Earth’s crust to strike hydrocarbon reservoirs in older geological rock 

formations. Well construction requires translational, rotational and hydraulic energy 

systems. Drilling rigs supply the power and equipment necessary to handle large quantities 

of heavy pipe and create boreholes. Threaded joints of steel pipe compose the drillstring, 

which serves as the conduit for both axial and rotational forces imparted by the drill bit on 

rock formations. Axial force is provided by the weight of drillstring components, supported 

by a hook at the end of the rig’s travelling block. Drilling line is strung through the traveling 

block and the crown block to gain mechanical advantage. The drawworks motor reels 

drilling line in and out, manipulating the tension in the drilling line (hookload) and 

controlling the amount of axial force that reaches the bit. Modern rigs contain a top drive 

motor. Connected to the drillstring at the surface, the top drive produces torque needed to 

break rock downhole. Hydraulic energy is generated by robust pumps and transmitted to 

the bottom of the well by the drilling fluid. Drilling fluid, also known as drilling mud, is 

pumped inside the drillpipe, through the bit nozzles and back up to the surface via the 

annular space between the drillstring and the wellbore. Drilling mud serves a variety of 

purposes, such as providing the primary pressure barrier preventing formation fluids from 

reaching the wellbore, cooling the bit from heat created by friction and circulating drilled 

rock cuttings to the surface.  

Before the well construction process begins, engineers devote a considerable 

amount of time to trajectory planning, drill bit, mud, and drillstring design and baseline 

operational parameters selection according to historical field knowledge and equipment 

constraints. Operational parameters related to the three energy systems described are 
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controlled at the surface to optimize drilling: axial force at the bit, drillstring rotational 

speed and drilling fluid flow rate. Real-time adjustment of these variables allows for 

drilling faster, reducing vibrations and/or preventing drilling dysfunctions. 

Data collected by sensors at the surface and downhole are key drivers for fine-

tuning drilling operational parameters. With drilling rigs instrumented to measure ever-

increasing volumes of data, machine learning and data analytics have emerged as a 

dominant trend in drilling optimization. Contemporary articles in oil and gas news websites 

have emphasized the importance of the digitization revolution in the industry. Veazey 

(2018) states that 400 oil and gas employees in key leadership roles agree that insights 

derived from data can contribute to 16% reduction in operating costs. Hart (2018) reports 

that artificial intelligence can cut costs by 20% in drilling and completions operations. 

Zborowski (2018) describes the efforts of an operator to facilitate data processing and 

analysis with centralized databases, citing a reduction in average well drilling time from a 

month to 12 days in the Eagle Ford shale play due to data analytics. Papers presented in 

recent conferences corroborate these viewpoints, indicating a prevalent tendency in the oil 

and gas industry towards advanced analytics solutions (Cao et al., 2018). Liu et al. (2018) 

unveil one such example related to drilling optimization, introducing a real-time data 

analytics application built with an agile development strategy. Oil and gas companies have 

just begun to realize the vast rewards attained from data analytics, which can add enormous 

value to drilling speed modeling and optimization of operational drilling parameters. 

1.1. PROBLEM STATEMENT  

Drilling optimization refers to the process of designing equipment and selecting 

operational parameters to minimize the cost of drilling a well. In this context, drilling 

speed, commonly referred to as rate of penetration (ROP), emerges as a key performance 
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metric (Judzis et al., 2007, Auwal et al., 2012, Armenta et al., 2015). Sikes (1936) 

identified six factors that influence the ROP attained on the field: rock formation, hole 

diameter, hole cleaning and hydraulics, weight on bit (WOB), rotational speed (RPM), and 

bit type. Formation properties, such as confined compressive strength (CCS), abrasiveness, 

heterogeneity, pore pressure and permeability, profoundly impact ROP. Although rock 

strength may be estimated from sonic travel times and other electric log properties (Onyia, 

1988) with logging-while-drilling (LWD) tools, low-frequency mud pulse telemetry 

downhole data is not appropriate for real-time applications and wired pipe technology does 

not prove itself economical in most plays. Drilling programs certainly plan for varying 

lithology, but current technology does not allow for active control over rock properties.  

During the planning phase of a well, drilling engineers determine bit, drillstring and 

mud configurations best suited for drilling through a particular stratigraphic section. In 

addition to bit diameter, polycrystalline diamond compact (PDC) bit design parameters 

encompass the number of PDC cutters, PDC cutter siderake angle, and PDC cutter 

backrake angle. Sinor et al. (1998) experimentally evaluated the influence of cutter density, 

backrake angle, size and rotational speed on ROP, concluding that cutter backrake angle 

controls ROP and more aggressive (small backrake) cutters drill faster. On the other hand, 

more aggressive bits tend to wear faster and may produce long rock cuttings that are 

detrimental to hole cleaning (Hemphill et al., 2001). Drill bit manufacturers optimize bit 

and cutter design parameters for specific applications (Norris et al., 1998, Centala et al., 

2011, Bruton et al., 2014, Yan et al., 2014, Azar et al., 2015) based on the operating 

company’s preference or market needs. However, drillstring composition and bit properties 

cannot be altered in real-time to mitigate drilling dysfunctions or adjust to formation 

changes. Similarly, mud density and viscosity affect ROP (Eckel, 1954, Eckel, 1967) but 
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are generally determined in the pre-drill phase to satisfy lithology and hole cleaning 

constraints and can only be manipulated within an often narrow drilling window. 

Drilling is a complex process, and a function of several variables which are difficult 

or impossible to measure in real-time. As an example, Young (1966) and Young and Gray 

(1967) have demonstrated that the pressure gradient ahead of the bit, which cannot be 

measured in the field, governs ROP. The inability to properly measure and/or control these 

variables while drilling hinders their applicability to real-time optimization. Hence, real-

time drilling optimization is delineated by adjustment of three controllable operational 

drilling parameters: pipe weight force exerted at the bit (WOB), drillstring rotational speed 

(RPM) and drilling fluid flow rate (q). These variables can be constantly adjusted by the 

driller (autodriller) at the surface to enhance drilling speed or protect downhole tools from 

excessive vibrations and dysfunctions. Mathematically, the drilling optimization problem 

can be formulated as: 

 

 

Figure 1.1: Drilling optimization mathematical representation. 
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In Figure 1.1, ROP is a function of the three surface drilling variables controllable 

in real-time. Additionally, penetration rate is influenced by the downhole pressure 

overbalance at the bit, given by the difference between bottomhole pressure (BHP) and 

formation pore pressure (Eckel, 1958, Cunningham and Eenink, 1959). As overbalance 

increases, more force is applied to drilling cuttings near the bit. This chip hold-down 

phenomena (Garnier and van Lingen, 1959, van Lingen, 1962, Darley, 1965) prevents 

recently drilled rock fragments from circulating out of the hole, reducing ROP. Warren and 

Smith (1985) concluded that drilling speed slows down with depth more drastically for 

impermeable rocks, as the local pore pressure decreases due to an increase in pore volume 

caused by strain relaxation. Dynamic BHP is determined by the hydrostatic column of 

drilling fluid, rock cuttings loading ratio in the mud, annular friction losses experienced as 

mud is circulated back to the surface (dependent on flow rate), and choke backpressure 

applied at the surface. While BHP can be adjusted by manipulating mud density 

(increasing/decreasing barite concentration), flow rate (regulating mud pumps) and choke 

pressure (opening/closing choke valve), this value is constrained between pore pressure 

and formation fracturing pressure. If BHP falls below pore pressure, an influx of formation 

fluid (“kick”) enters the well, possibly initiating a well control event. On the other hand, 

excessive BHP can cause the formation to fracture and eventually lead to lost circulation 

of drilling fluid. Therefore, the BHP and mud density optimization windows are slim due 

to lithology constraints. In fact, BHP is kept at a fixed value in tight margin wells by 

controlling the choke valve annular backpressure with managed pressured drilling (MPD) 

applications (Rehm et al., 2008, Mammadov et al., 2015). 

Other factors impacting ROP include bit efficiency and wear. As the bit drills 

through incremental footage, cutters wear out and bit drilling efficiency is reduced. Bit 

wear is dependent on cutter geometry, lithology, temperature, WOB and RPM (Sinor and 
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Warren, 1989). Several studies have attempted to model bit wear (Gouda et al., 2011, 

Lakhanpal and Samuel, 2017, Liu et al., 2018), but the only current standard measure of 

wear comes from the International Association of Drilling Contractors (IADC) dull grade 

evaluation after pulling the bit out of the hole. Mechanical Specific Energy (MSE) 

measures the energy input needed to drill a unit volume of rock. Bit drilling efficiency (ηb) 

is defined by the ratio between energy spent in drilling (MSE) and the rock’s actual strength 

in in-situ conditions (CCS). Simon (1963) formulated the rotational energy input per rock 

volume required for the drilling of oil and gas wells and evaluated the distinct energy 

requirements for breaking rock, concluding that a large portion of elastic strain energy is 

consumed by unloading stress waves resulting from crack propagation in a semi-infinite 

medium below the bit. During drilling, energy is also dissipated along the length of the 

well in the form of drillstring vibrations and friction with the borehole wall. MSE embodies 

this wasted energy if calculated with surface data. Dykstra et al. (1994) demonstrate that 

surface measurements may not be indicative of downhole vibrations and vice-versa. The 

popular specific energy concept was introduced by Teale (1965), combining the work done 

per drilled rock volume by rotational and axial (thrust) forces at the bit: 

 

𝑀𝑆𝐸 =
𝑊𝑂𝐵

𝐴𝑏
+

120𝜋 × 𝑅𝑃𝑀 × 𝑇

𝐴𝑏 × 𝑅𝑂𝑃
   (1.1) 

 

where MSE is the mechanical specific energy [psi], WOB is the weight on bit [lbf], Ab is 

the cross-sectional area of the bit [in2], RPM is the rotational speed [rev/min], T is the 

torque [lbf-ft] and ROP is the penetration rate [ft/hr]. Several similar formulations defining 

drilling mechanical energy requirements were derived in the literature, including the ones 

by Rabia (1985), Pessier and Fear (1992), Dupriest and Koederitz (2005) and Deng et al. 

(2015). Armenta (2008) introduced the influence of bit hydraulics in MSE, renaming the 
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term to Drilling Specific Energy (DSE). Mohan et al. (2009) and Rashidi et al. (2010b) 

also developed drilling energy formulations accounting for hydraulic energy contribution. 

Drilling optimization studies minimizing MSE encompass Farrelly and Rabia (1987), 

Dupriest (2006), Chen et al. (2014) and Zhang et al. (2015).  

Popularized by Dupriest and Koederitz (2005), MSE is a widespread drilling 

efficiency metric monitored during drilling. TSE, or torsional severity estimate, was 

proposed by Ertas et al. (2013) to quantify downhole torsional vibrations in real-time and 

alleviate drilling dysfunctions. This quantity is discussed at length in the next section. In 

most contemporary drilling operations, rotational energy dominates over thrust when 

computing MSE values and the first term in Eq. 1.1 can be ignored. Menand and Mills 

(2017) derived drilling strength to account for this missing axial energy term, restoring the 

importance of WOB data in drilling field surveillance: 

 

𝐷𝑆 =
10 × 𝑊𝑂𝐵 × 𝑅𝑃𝑀

𝑑𝑏 × 𝑅𝑂𝑃
   (1.2) 

 

where DS is the drilling strength [psi] and db is the bit diameter [in]. 

Referring back to Fig. 1.1, drilling optimization schemes are limited by operational 

and rig equipment constraints. WOB has an upper limit according to bit operating range 

and may also be constrained by pipe buckling. RPM must not exceed downhole tools’ 

ratings. Hole cleaning governs the flow rate lower limit. Surface torque cannot surpass 

drillpipe make-up torque rating. Bit pressure should be kept within the formation pore 

pressure and fracturing pressure window. Pressure at surface is constrained by the 

maximum standpipe pressure (SPP). Top drive power restricts RPM and surface torque, 

while pump power limits flow rate and surface pressure. These constraints must be satisfied 

by the drilling optimization objective function, which is highly dependent on the ROP 
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model utilized. This dissertation investigates fundamental questions in solving the 

constrained optimization problem of real-time adjustment of drilling parameters (WOB, 

RPM and flow rate) to drill faster and produce hydrocarbons safely and economically. 

1.2. INDUSTRY DRILLING OPTIMIZATION APPROACHES 

ExxonMobil’s Drilling Advisory System (DAS) is the state of the art in real-time 

drilling optimization, combining ROP maximization with minimization of MSE and 

torsional vibrations (stick-slip) from drilling parameters obtained at surface. DAS is the 

successor of the drilling optimization strategy described by Dupriest and Koederitz (2005) 

– constantly monitor MSE at the rig and relate MSE trends to the ROP-WOB drilloff curve, 

identifying drilling inefficiencies and the founder point where optimal drilling parameters 

maximize ROP: 

 

 

Figure 1.2: ROP vs. WOB and bit efficiency vs. depth of cut (DOC) relationships 

extracted from Dupriest and Koederitz (2005). 

Dupriest and Koederitz (2005) singled out vibrations as the major performance limiter in 

ExxonMobil’s drilling operations globally, emphasizing the need to incorporate vibration 

mitigation techniques in the drilling optimization workflow. Dupriest et al. (2005) 

demonstrated that by monitoring LWD downhole vibrations data in real-time alongside 
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MSE, drillers were able to better diagnose ROP limiters and adjust drilling parameters to 

the optimal founder point in the development of Qatar’s North Field. In the following year, 

Dupriest (2006) reported that the process of identifying ROP limiters and extending the 

founder point was embedded in all of ExxonMobil’s operations, with four and a half 

million drilled footage per year. Remmert et al. (2007) expressed the success of the ROP 

enhancement program in Qatar once again, noting that it saved the company $54 million 

in less than two years. The basis of this drilling optimization process was to train field 

personnel in monitoring MSE and downhole vibrations (when data were available) while 

drilling and sharing learnings across the rig fleet. 

Vibrations modeling provides a more systematic approach to handle drillstring 

vibrations than pure surveillance of field data. Bailey et al. (2008) illustrated ExxonMobil’s 

method to deal with lateral vibrations (bit whirl) by modeling bottomhole assembly (BHA) 

response in the frequency domain over a range of operating parameters and determining 

optimal stabilizer placement. Further efforts to mitigate whirl through BHA or bit redesign 

were reported by Dupriest and Sowers (2009), Bailey et al. (2010) and Bailey and Remmert 

(2010). It is important to note that since these techniques to reduce vibrations rely on 

altering a BHA component or its placement, the drillstring must be tripped out of the hole 

and no real-time modifications are possible. Axial vibrations (bit bounce) are not a 

significant issue when drilling with PDC bits, and torsional vibrations were finally 

accounted for in real-time by DAS. 

The DAS optimization process begins in the planning phase of a well with a soft-

string model (Ertas, 2012, Ertas et al., 2013, Ertas et al., 2014) which solves Newton’s 

nonlinear equations of motion for the drillstring subject to external forces (gravity, mud, 

borehole) and torques based on mechanical properties (E and G), density and size (OD) of 

drillstring components, well trajectory and mud properties for a vibration-free baseline 
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case. Boundary conditions are defined at the bit and at surface and can be adjusted to 

represent different drilling methodologies (e.g. depth of cut control, constant RPM or 

hookload). The baseline first-order ordinary differential equation system yields pipe 

stretch, twist, tension and torque with respect to distance from the bit. Linearized torsional 

responses to harmonic perturbations at the bit around this baseline solution are propagated 

along the drillstring with transfer matrices to identify the primary stick-slip period (96-97% 

accuracy) and relate the surface torque envelope to bit RPM amplitude as a function of 

depth for this primary torsional resonant frequency (85-90% accuracy). While operational 

parameters (WOB, RPM) influence the magnitude of the modeled forces and torques, the 

primary torsional resonant frequency and drillstring compliance (twist divided by torque) 

at such frequency are defined by drillstring composition and wellbore trajectory. Real-time 

surface measurements of torque, RPM and depth are compared to the primary torsional 

mode response to estimate the downhole bit RPM envelope and consequently torsional 

vibrations severity:  

 

𝑇𝑆𝐸 =
𝐷𝐻𝑅𝑃𝑀𝑚𝑎𝑥 − 𝐷𝐻𝑅𝑃𝑀𝑎𝑣𝑔

𝐷𝐻𝑅𝑃𝑀𝑎𝑣𝑔
=

∆𝑇𝑠

∆𝑇
𝑅𝑃𝑀⁄ × 𝑆𝑅𝑃𝑀

   (1.3) 

 

where TSE is the torsional severity estimate, DHRPM is the downhole rotational speed 

[rev/min], SRPM is the surface rotational speed [rev/min], ΔTs is the peak-to-peak surface 

torque variation [lbf-ft] and ΔT/RPM is the dTorque-per-RPM for the primary stick-slip 

period as a function of depth determined from the previously described model. A TSE 

value of 1 represents fully developed stick-slip, where the bit comes to a full stop 

momentarily. Hence, the TSE value compares current surface drilling measurements to the 

modeled primary stick-slip mode response to assess the severity of ongoing torsional 

vibrations.  
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Chang et al. (2014) detail field applications of DAS, showing ROP improvements 

as high as 35% when the driller follows suggestions provided by the system. DAS starts 

off in learning mode, guiding the driller in selecting different combinations of WOB and 

RPM in an effort to explore the operational parameter space. Once the algorithm has 

captured enough data to characterize the drilling environment, DAS switches into 

application mode and provides recommendations of operational parameters that maximize 

a defined objective function: 

 

 

Figure 1.3: DAS user interface extracted from Sanderson et al. (2017). 
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In Fig. 1.3, the black star represents the system’s suggested WOB and RPM values during 

calibration (plots a, b and c) and in optimization (plot d). The heat map illustrates objective 

function performance in the parameter space. Calibration data must remain stable for a 

short interval (e.g. 2ft) before being converted to response points, which are then used to 

fit the response surface. This technique combines data filtering and ROP model fitting into 

one step. Driver et al. (2016) describe a similar strategy by conducting multilinear 

regression with 5ft data averages. Moraveji and Naderi (2016) also employed response 

surfaces in fitting ROP models, but not in a real-time setting. Ambrus et al. (2017) 

developed a Bayesian network drilling efficiency model within an optimization workflow 

that generates WOB-RPM heat maps and operational cones and has been deployed to 20 

rigs in North America. 

Payette et al. (2015) provide one example of an objective function maximized by 

DAS: 

 

𝑂𝐵𝐽 =
𝑅𝑂𝑃

𝑀𝑆𝐸
max[0, (1 − 𝛼𝑇𝑆𝐸𝑛)]   (1.4) 

 

where α and n are real and positive. Incorporation of MSE and TSE in the drilling 

optimization objective function ensures that ROP is maximized up to the point where it 

does not cause drilling dysfunctions which would lead to premature bit wear or failure of 

downhole tools. This compromise in a multi-objective optimization problem is 

characterized by trade-off surfaces and pareto optimal points, discussed extensively by 

Boyd and Vandenberghe (2004). The same authors provide the basis for combining any 

number of objectives in a scalarized multicriterion problem: 
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𝑂𝐵𝐽 = ∑𝜆𝑖𝐹𝑖

𝑞

𝑖=1

   (1.5) 

 

where λi is the weight of each Fi objective. Multi-objective drilling optimization 

methodologies considering bit life are described by Awotunde and Mutasiem (2014) and 

Guria et al. (2014). Both studies employ a bit wear function to account for the time required 

to trip out, change the bit, and trip back into the hole in addition to the drilling time 

determined by ROP.  

Payette et al. (2017) state that DAS monitors depth of cut and bit aggressiveness 

during drilling to detect changing conditions and revert the system back to learning mode 

when necessary. Depth of cut is formulated as: 

 

𝐷𝑂𝐶 =
𝑅𝑂𝑃

5 × 𝑅𝑃𝑀
   (1.6) 

 

where DOC is the depth of cut [in/rev]. Studies analyzing DOC in PDC bit drilling have 

been around for a long time (Gray et al., 1962, Warren and Sinor, 1986). Also referred to 

as penetration per revolution, DOC is directly proportional to bit torque (Pastusek et al., 

2016). Note that the second term in Teale’s MSE formulation (Eq. 1.1) is directly 

proportional to torque and inversely proportional to DOC, indicating that the slope of a 

torque vs. DOC plot can yield insights about drilling efficiency. Jain et al. (2016) describe 

PDC bits designed with DOC control to mitigate stick-slip. In addition to DOC, bit 

aggressiveness is also incorporated in DAS’ workflow to assess drilling conditions: 

 

𝜇𝑏 =
36 × 𝑇

𝑊𝑂𝐵 × 𝑑𝑏
   (1.7) 
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where μb is the bit aggressiveness. Defining the WOB required to generate an amount of 

torque, aggressiveness represents a measurement of how the bit engages a rock formation. 

The concept of aggressiveness was first introduced as a bit-specific coefficient of sliding 

friction by Pessier and Fear (1992) and has since been studied by many authors. Rajabov 

et al. (2012) investigated the impact of PDC cutter side rake and back rake angles to bit 

aggressiveness. 

Further successful field applications of ExxonMobil’s Drilling Advisory System 

are presented by Bailey et al. (2016), Sanderson et al. (2017) and Spivey et al. (2017). 

More recently, Bailey et al. (2018) developed a model to estimate TSE distributions for a 

new well with redesigned drillstring stiffness, torque and RPM based on the TSE histogram 

of an offset well that experienced drilling dysfunctions. DAS exhibits a proven track record 

of successful deployments throughout the years, yet no closed-loop drilling control 

functionality has been reported. Several drilling automation initiatives are progressing 

across the oil and gas industry, with many companies contending to develop a viable 

solution. Cayeux et al. (2009) discuss the industrialization of drilling automation and early 

field trials in the North Sea. Florence et al. (2015) report on the automation progress 

achieved by the Society of Petroleum Engineers (SPE) Drilling Systems Automation 

Technical Section (DSATS). Bilgesu et al. (2017) describe application of artificial 

intelligence (AI) simulated annealing techniques in a DSATS automation competition. 

Computerized drilling control was suggested as early as Young (1969), and the oil and gas 

industry is finally edging closer to closed-loop control of drilling parameters. 

Operators have invested plenty of capital and time in drilling optimization. In the 

1980s, Amoco began developing the first drilling simulators (Millheim and Huggins, 

1983a and 1983b, Millheim, 1986). Amoco’s simulation efforts continued with Onyia 

(1987), who used inverted ROP models to create geologic drilling logs (GDLs). Further 
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simulation initiatives were developed in conjunction with academia (Hareland and 

Hoberock, 1993, Rampersad et al., 1994) and then expanded by Saga Petroleum in the 

North Sea (Bratli et al., 1997, Gjelstad et al., 1998). In fact, the North Sea play emerged 

as an early adopter of drilling optimization simulators. Nygaard et al. (2002) proclaim 10-

25% savings in drilling costs as a result of an eight-year history of applying inverted ROP 

models to derive apparent rock strength in a Conoco-Statoil partnership. Joint industry 

efforts in drilling simulation are still seen today (Sugiura et al., 2015).  

The first real-time operating center (RTOC) for drilling surveillance was 

envisioned by Superior Oil and Dresser Mag (Isaacs and Bobo, 1984). One of the RTOC’s 

functions was to clean up field data and store it in a database. Shell started analyzing 

drilling data for overpressure detection early on (Jorden and Shirley, 1966), and later 

developed three separate RTOCs in the 21st century (van Oort et al., 2005, Gongora et al., 

2013, Laurens and Kales, 2014). In the mid-1990s, BP already possessed a unified database 

of drilling data for ROP modeling and optimization (Xu et al., 1995). By 2008, the 

company had invested in real-time WOB and RPM adjustment, predicting the resulting 

ROP and minimizing cost per foot (Iqbal, 2008). Recently, BP created a well advisor 

solution in partnership with Kongsburg (Israel et al., 2015) and then performed field trials 

of a closed-loop control drilling system in partnership with Schlumberger (Israel et al., 

2017). Chevron has taken a slightly different approach to drilling optimization by relying 

on their knowledge of rock strength and estimating drilling efficiency for ROP prediction 

(Caicedo et al., 2005, Guerrero and Kull, 2007). Petrobras teamed up with Baker Hughes 

in 2008 and built a team focused on real-time operational parameter optimization (Hougaz 

et al., 2012). Hess employed NOV’s wired pipe technology to support closed-loop 

automation efforts in the Bakken shale play (Trichel et al., 2016). CNPC derived a torsional 

vibrations model in the frequency domain, similar to the one described in ExxonMobil’s 
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DAS papers, to select optimal drilling parameters (Cui et al., 2016). Apache is exploring 

offset well performance comparison in real-time, integrating visualization of historical 

drilling parameters in the driller’s workflow (Behounek et al., 2017a). Anadarko recently 

invested in in-house development of a real-time drilling analytics system that can optimize 

ROP with flexible functionality. With a rapid development strategy, a small team was able 

to build the proof of concept in three months and bring four data analytics modules into 

production in eleven months (Cao et al., 2018).  

Besides shared achievements with operators, service companies have also pursued 

their own drilling optimization and automation ambitions. Baker Hughes started using 

downhole data in drilling optimization in the early 2000s (Robnett et al., 2002). At that 

time, data analysis was performed manually, and the credibility of downhole measurements 

was questionable. The authors envisioned closed-loop neural network drilling control. 

Today, Baker Hughes provides optimization of operational parameters through 

multivariate linear regression (Driver et al., 2016) and real-time dashboards for 

performance comparison and visualization (Atwal and Knight, 2016). Schlumberger 

created Operation Support Centers to assist with manual selection of drilling parameters 

(Monden and Chia, 2007) and later developed a closed-loop real-time ROP optimization 

algorithm (Dunlop et al., 2011, Chapman et al., 2012, Dow et al., 2012). Halliburton has 

established an entire data workflow for digital oilfield solutions (Sankaran et al., 2009). 

Their software handles all stages of drilling predictive analytics, including data acquisition, 

validation, processing, storage, visualization and execution of optimization workflows. In 

2011, NOV described advisory, semi-autonomous and autonomous real-time drilling 

optimization for future automation efforts (Koederitz and Johnson, 2011). The company 

then leveraged its wired pipe technology towards closed-loop downhole WOB control for 

sliding segments in unconventional plays (Pink et al., 2012, Pink et al., 2013). Weatherford 
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prioritized integration of geology knowledge in drilling optimization (Webb et al., 2016). 

Joint service company projects in drilling optimization and automation have been 

published by Rommetveit et al. (2004) and Macpherson et al. (2013). SAS institute, an 

analytics software company, has joined the drilling optimization landscape and provided 

insights into the real-time vs right-time discussion (Holdaway, 2012). Rig data 

management companies such as Pason are also entering the drilling optimization market 

(Kristjansson et al., 2016). The authors describe utilization of historical data to select the 

best WOB and RPM for drilling each rock formation. 

Staying current with industry drilling optimization approaches is paramount in 

scrutinizing and implementing novel techniques. However, most companies do not disclose 

specific modeling aspects pertaining to their drilling optimization methodologies. Due to 

intellectual property and trade secret concerns, their publications in the literature focus on 

field results rather than detailed description of optimization procedures.  

1.3. RESEARCH OBJECTIVE 

The objective of this project is to establish a comprehensive real-time drilling 

optimization workflow that can be utilized by any rig in all types of drilling operations. 

Every step of the process is investigated, beginning with processing and filtering drilling 

data, then training analytical and machine learning ROP models with meaningful 

predictors, and finally selecting optimal operational parameters to drill sections of a well. 

Emphasis is placed on determining the best way to partition data and retrain ROP models 

in real-time, ensuring that drilling parameters are optimized to achieve the highest ROP in 

each drilling interval with the best available model. The optimization workflow in this 

dissertation encompasses seven ROP models: 
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• Analytical ROP models: Bingham (1964), Bourgoyne and Young (1974), Hareland 

and Rampersad (1994), Motahhari et al. (2010) 

• Machine learning algorithms: random forests (Breiman, 2001), support vector 

machines (Drucker et al., 1996), neural networks (McCullogh and Pitts, 1943) 

 

ROP predictions derived from the models listed above guide optimization of drilling 

operational parameters. Eight optimization strategies are evaluated in terms of ROP 

improvements and computational expense: 

 

• Gradient-based optimization: L-BFGS-B (Byrd et al., 1995), trust region reflective 

(Branch et al., 1999), SLSQP (Kraft, 1988)  

• Direct search optimization: Nelder-Mead (Nelder and Mead, 1965), COBYLA 

(Powell, 1994), basin-hopping (Wales and Doye, 1997), particle swarm 

optimization (Kennedy and Eberhart, 1995), brute force search 

 

Drilling optimization is performed in three stages, starting with the classical lithology-

dependent approach based on offset well data: 

 

• Lithology-dependent post-drilling optimization: assists in establishing appropriate 

choices of modeling and optimization methods 

• Lithology-dependent real-time drilling interval optimization with continuous 

model learning: this novel concept proposes ROP model retraining as more data are 

collected in real-time, taking full advantage of all drilling data available. Cross-

validation selects the most accurate ROP model for each drilling interval 

optimization 



 

 

 

 

 19 

• Real-time optimization of drilling parameters with new data segmentation 

techniques: ROP models are fitted to dynamic or full training data ranges, ignoring 

formation boundaries. Spatial proximity and parameter similarity sample weighting 

are introduced to amplify partitioning of the training dataset during model training 

 

No single ROP model is suitable for every drilling scenario encountered on the 

field. The approach explored in this dissertation involves retaining a collection of analytical 

and machine learning models which can be trained and evaluated in real-time for best 

possible performance. Many studies have analyzed the applicability of ROP models in a 

post-drilling data analysis framework, fitting a model with data from a previously drilled 

well and selecting optimal WOB, RPM and flow rate for an upcoming well on the same 

pad. The methodology presented here leverages constant data acquisition during drilling to 

retrain ROP models in real-time. Training data is segmented in intervals of specified depth 

length or number of data points. Respecting the traditional lithology dependence of ROP 

models, the initial batch of training data is collected in the first few feet of a formation. 

ROP models are fitted to this initial data and the best performing model according to cross-

validation is employed in optimizing operational parameters for the next drilling interval. 

Data are measured as drilling progresses, and ROP models are retrained at the end of each 

interval with all data accumulated within the formation. The newly fitted model exhibiting 

the lowest error is used to optimize drilling in the next interval and the process repeats itself 

until the end of the formation is reached.  This continuous learning approach relies on the 

models’ ability to obtain additional knowledge about drilling mechanisms as more data 

become available. Investigation of ROP model behavior when fed training data 

incrementally and model performance variation with respect to retraining interval length 

are topics explored in this study. Fitting ROP models and optimizing drilling parameters 
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repeatedly may seem computationally prohibitive in real-time, but it is unreasonable to 

expect adjustment of operational parameters at each foot drilled. Sensible retraining 

interval lengths account for drilling optimization computational requirements and field 

applicability. 

Historically, model coefficients for analytical ROP models are computed to best fit 

field data in a specific lithology. If the same approach is applied to real-time training of 

machine learning models, which typically require considerable amounts of data, formation 

transition zones can be problematic due to lack of substantial data as drilling begins in a 

new rock formation. The importance of the classical ROP modeling lithology dependence 

is questioned by comparing model performance with novel data segmentation methods. 

This dissertation explores fitting ROP models with a dynamic training data range of defined 

length, disregarding formation boundaries. Models are still retrained in intervals, but the 

training dataset spans a stipulated depth range independent of lithology. ROP model 

training with the full range of collected data is also investigated. Further expanding on the 

concepts of dynamic and full training dataset ranges, sample weighting techniques assign 

importance values to individual data points during model fitting. In the first approach, 

points are weighted according to proximity to the upcoming optimization interval. Just-

captured data likely represents the ongoing drilling process more accurately. Therefore, 

spatially proximal samples carry higher weights and receive more emphasis in model 

fitting than data obtained in earlier sections. As an alternative weighting procedure, data 

points with drilling operational parameters similar to the mean near the next optimization 

interval are prioritized. This second weighting approach assumes that points with 

comparable drilling parameters are representative of equivalent drilling behavior. ROP 

model training methodologies directly influence optimization of drilling variables. The 

author is unaware of any academic work to date specifically focused on examining how to 
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segment data and retrain ROP models in real-time and the subsequent impact to drilling 

optimization. 

In addition to comparing analytical and machine learning model performance, 

computational time required for model training and optimizing drilling parameters with 

each modeling strategy is analyzed to answer imperative questions about the best 

methodology to optimize drilling operations in real-time:  

 

• How often should ROP models be retrained as new data are recorded? What is the 

appropriate compromise between model performance, operational viability of 

adjusting drilling parameters, and computational time? 

• Is the lithology dependence of ROP models relevant? Can model performance 

improve with a dynamic or full training data range which ignores formation 

boundaries? What is the optimal dynamic range length? 

• Does sample weighting reduce model error? Is it best to weight data by spatial 

relevance or by emphasizing similar operational parameter values? 

 

Bingham (1964), Bourgoyne and Young (1974), Hareland and Rampersad (1994), 

Motahhari et al. (2010) constitute the analytical ROP model equations investigated. 

Python’s scikit-learn (Pedregosa et al., 2011) implementation of random forests, support 

vector machines and neural networks compose machine learning algorithms tested for ROP 

prediction. Hypothesis testing establishes a foundation for assessing the statistical 

relevance of drilling variables to be included in machine learning ROP models. Grid search 

and cross-validation define optimal hyperparameters that control machine learning model 

architecture. Model performance is analyzed by computing a measure of distance between 
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data collected on the field and modeled ROP. Both absolute value and squared distance 

error metrics are considered.  

Two optimization problems are scrutinized in this dissertation. Gradient-based and 

direct search optimization techniques are evaluated in fitting analytical ROP model 

coefficients and selecting optimal operational drilling parameters. Fundamental questions 

related to assessment of optimization algorithms include: 

 

• What is the most computationally efficient approach to fit analytical ROP model 

coefficients? 

• Which optimization methods achieve optimal drilling parameters without being 

computationally prohibitive for use in real-time operations? Does the strategy 

change from analytical to machine leaning ROP models? 

• Are more accurate ROP models also harder to optimize? Does improved model 

performance justify higher computational expense? 

• Does the lithology dependence of ROP models make sense from an optimization 

perspective? Can more satisfactory optimization results (higher ROP and lower 

computational time) be obtained by training ROP models in a dynamic or full 

training data range setting? What is the impact of incorporating sample weighting 

to drilling optimization? 

 

ROP improvement and computational time are the criteria for comparison between 

optimization methods in determining optimal drilling operational parameters. L-BFGS-B 

(Byrd et al., 1995), trust region reflective (Branch et al., 1999) and SLSQP (Kraft, 1988) 

represent the gradient-based techniques analyzed. Direct search methodologies encompass 

Nelder-Mead (Nelder and Mead, 1965), COBYLA (Powell, 1994), basin-hopping (Wales 
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and Doye, 1997), particle swarm optimization (Kennedy and Eberhart, 1995), and brute 

force search. Applications of these optimization methods are conducted with 

implementations in Python’s scipy.optimize (Oliphant, 2007) library, except for the particle 

swarm optimization algorithm programmed in the pyswarm (Lee and Castillo-Hair, 2013) 

Python package. 

1.4. DISSERTATION OUTLINE 

There are eight chapters in this dissertation. Following this introductory chapter, 

Chapter 2 reviews the history of ROP modeling in the literature and compares analytical 

and machine learning modeling methodologies. Chapter 3 presents gradient-based and 

direct search optimization methods and formulates the two optimization problems related 

to real-time drilling optimization: model fitting and selection of optimal drilling 

parameters. Drilling data processing and the dataset utilized in this study are discussed in 

Chapter 4. Traditional lithology-dependent post-drilling optimization, examined in Chapter 

5, guides important decisions on modeling and optimization strategies employed in 

subsequent chapters. Chapter 6 introduces the concept of real-time continuous ROP model 

learning and defines the appropriate retraining interval length. Chapter 7 investigates 

optimization of drilling parameters according to different data segmentation and sample 

weighting techniques. Chapter 8 summarizes the conclusions, major contributions and 

future considerations resulting from this work. This dissertation includes material from 

papers previously published (Soares et al., 2016) or to be published (Soares and Gray, 

2018, and Soares et al., 2018) by the author. 
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Chapter 2: Rate of Penetration (ROP) Modeling 

Successful optimization of drilling parameters is contingent on a model’s ability to 

predict ROP accurately. Hence, reliable models that can estimate the relationships between 

operational variables and ROP are essential for drilling optimization. This chapter 

describes ROP relationships with the three controllable surface drilling variables in real-

time drilling optimization and reviews the historical progression of ROP modeling in the 

literature. In the traditional approach to ROP modeling, analytical (closed-form) equations 

describe the drilling process. Formulations for the four analytical models considered in this 

study are presented.  More recently, machine learning applications to ROP modeling have 

emerged. Section 2.4 relates statistical concepts in the random forests, support vector 

machines and neural networks algorithms to common drilling scenarios, making a complex 

subject tractable to the general drilling audience. Cross-validation and overfitting concepts 

are introduced, and analytical and machine learning models are compared in terms of bias 

and variance. 

2.1. ROP RELATIONSHIPS WITH WOB, RPM AND FLOW RATE 

As discussed in Section 1.1, real-time drilling optimization consists of adjustment 

of three controllable operational drilling parameters: axial force at the bit (WOB), 

drillstring rotational speed (RPM) and mud flow rate. Laboratory experiments and field 

observations of the relationship between WOB and ROP can be found in the literature: 
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Figure 2.1: ROP vs. WOB relationships extracted from Maurer (1962) and Bourgoyne et 

al. (1986). 

Maurer (1962) established that when drilling under perfect hole cleaning conditions, ROP 

is directly proportional to WOB squared. However, imperfect hole cleaning scenarios 

experienced on the field cause an increase in ROP due to hookload adjustment (increasing 

WOB) to generate more rock cuttings and worsen the cleaning problem. The author 

recognized that field drilling conditions are typically characterized by a linear relationship 

between WOB and ROP, and that after point “e”, the cleaning problem outweighs the 

benefits of increased weight. Bourgoyne et al. (1986) portrayed a ROP-WOB relationship 

similar to Maurer’s but noted that there is a minimum threshold WOB required to begin 

drilling, represented by point “a”. Dupriest and Koederitz (2005) illustrated a response 

curve for drilloff tests (see Fig. 1.2) divided in three regions, indicating that the relationship 

between ROP and WOB is linear when the bit is drilling efficiently. The ROP-WOB 

relation remains linear up until the founder point, or optimum WOB, after which the bit 

transmits less energy to the rock than the typical 30-40% at peak efficiency and ROP gains 

with further WOB increase are limited. Gandelman (2012) cited improper hole cleaning, 
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pipe buckling and drillstring vibrations as the main reasons behind the sub-linear portion 

of the ROP-WOB response curve.  

The ROP-RPM relationship typically observed on the field is less segmented than 

the previously described ROP-WOB relation: 

 

 

Figure 2.2: ROP vs. RPM relationships extracted from Maurer (1962) and Bourgoyne et 

al. (1986). 

Maurer (1962) noted that ROP has a linear relationship with RPM under perfect hole 

cleaning conditions. As the drillstring rotational speed increases, the bit impacts the rock 

more often and generates more cuttings that must be cleaned out of the hole. Bourgoyne et 

al. (1986) depicted a very similar RPM-ROP relationship. Gandelman (2012) established 

that excessive RPM leads to vibrations. The energy dissipated through vibrations is wasted, 

decreasing ROP and inducing bit wear. 

While drilling fluid flow rate provides hydraulic impact energy at the bit nozzles, 

the overall relationship between ROP and flow rate is not as straightforward as the previous 

two. Flow rate influences bottomhole pressure (BHP) in competing ways. Annular friction 

losses increase with increasing flow rate, leading to higher BHP. At the same time, an 
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increase in flow rate improves hole cleaning and removes high-density rock cuttings near 

the bit, lowering BHP. With higher BHP, the pressure differential between the wellbore 

and the formation (overbalance) increases, and the resulting chip hold-down effect reduces 

ROP (Garnier and van Lingen, 1959, van Lingen, 1962, Darley, 1965). Therefore, the 

global effect of an adjustment in flow rate to ROP will depend on several factors and in 

which portion of the hydraulics response curve the driller is currently operating. It is 

important to remember that flow rate is constrained between the minimum necessary for 

adequate hole cleaning and a maximum that does not cause excessive BHP to fracture the 

formation. 

2.2. ROP MODELING CHRONOLOGY 

Studies began investigating which variables influence ROP as early as the 1930s. 

Sikes (1936) determined that six different factors impact ROP: rock formation, hole 

diameter, hydraulics, WOB, RPM, and bit type. The author also suggested that hole 

cleaning is the most influential parameter limiting ROP. These early evaluations were of 

qualitative rather than quantitative nature, offering no predictive power. In the 1950s and 

early 1960s, many empirical formulations relating ROP to WOB and RPM were developed 

and grouped together as R-W-N (ROP-WOB-RPM) relationships. Maurer (1962) lists nine 

R-W-N relations derived by different experimenters, all with distinct exponent and 

coefficient values. According to Maurer (1962), these field formulations are governed by 

hole cleaning conditions and cannot be applied universally since they fall on different 

portions of the ROP-WOB and ROP-RPM response curves. Rowley et al. (1961) 

developed R-W-N relations further by including a combination of linear and quadratic 

WOB and RPM terms, with a total of six terms (a constant, two linear terms, two quadratic 

terms, and one interaction term) and six model constants multiplying them. The authors 
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noted that drilling efficiency increases at a decreasing rate with additional WOB and 

decreases at a decreasing rate with higher RPM. Galle and Woods (1963) reproduced 

several optimization curves based on formation abrasiveness and drillability coefficients 

and a drilling fluid constant for selection of the best WOB and RPM in the field. Bingham’s 

(1964) simple relation between ROP, WOB, RPM and bit diameter represented an 

important step towards broader applicability of previous R-W-N relations by adding an 

empirical exponent to the WOB term. This approach of including a formation-dependent 

WOB exponent in the ROP model formulation was actually originally presented by Murray 

and Cunningham (1955), who attributed the concept to H. B. Woods.  

Hydraulics influence on ROP was first discussed by Eckel and Nolley (1949). The 

authors concluded that ROP is directly proportional to a term multiplying flow rate and 

nozzle velocity. In a subsequent study, Eckel (1967) suggested that a Reynolds number 

function combining hydraulics and mud properties can represent hole cleaning conditions 

downhole: 

 

𝑅𝑂𝑃 = 𝐾 × 𝑊𝑂𝐵𝑎 × 𝑅𝑃𝑀𝑏 × (
𝑘𝑞𝜌

𝑑𝑛𝜇
)

𝑐

  , 2 <  
𝑘𝑞𝜌

𝑑𝑛𝜇
< 100   (2.1) 

 

where K and k are constants and a, b and c are exponents computed for a specific formation, 

q is the flow rate [gpm], ρ is the mud density [SG], dn is the bit nozzle diameter [in] and µ 

is the fluid viscosity [cP]. Eckel (1968) proved that this relation between ROP and the 

hydraulics Reynolds number term indeed holds with an exponent c value of approximately 

0.5. 

Bourgoyne and Young (1974) developed the most comprehensive analytical ROP 

model to date, expressing eight different parameters that affect ROP: formation strength, 

rock compaction with depth, undercompaction in abnormally pressured formations, 
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pressure differential at the bit, WOB, RPM, bit wear, and hydraulics. Pore pressure 

prediction (Bourgoyne and Young, 1973) represented one of the early applications of the 

model. However, the Bourgoyne and Young (BY or B&Y) model became universally 

renowned due to numerous implementations in workflows optimizing drilling parameters 

(e.g. Al-Betairi et al., 1988, Eren, 2010, Guria et al., 2014). This very popular ROP model 

was originally developed for roller cone bits, but it has also been widely utilized when 

drilling with PDC bits (Rashidi et al., 2008, Nascimento et al., 2015, Mammadov et al., 

2015, Wiktorski et al., 2017). Since the B&Y model does not include analysis of rock 

failure mechanisms unique to roller cone bits, such PDC bit applications are acceptable. 

Recently, experimenters have adapted the B&Y model to specific drilling situations by 

incorporating small modifications. Eren and Ozbayoglu (2010) applied the B&Y model 

with a WOB correction for deviated wells. Alum and Egbon (2011) extended B&Y’s model 

by evaluating the influence of annular friction losses (and ECD) and drilling fluid plastic 

viscosity on ROP under different flow regimes. Wiktorski et al. (2017) included dog leg 

severity and an added ECD term in the B&Y formulation. 

All analytical ROP models presented thus far are based on field intuition and/or 

laboratory testing. They do not evaluate the bit-rock interaction process directly, and their 

application is independent of bit type. Many of the models developed after B&Y 

incorporate an analysis of the rock cutting mechanisms downhole, differentiating between 

roller cone and fixed cutter drag-type (PDC being the most popular) bits. Roller cone bits 

were widely favored early on, particularly the tricone bit composed of 3 rolling cones that 

rotate around their own axis and are laden with milled teeth or tungsten carbide inserts 

(introduced in 1951), drilling the rock in compression with a crushing action (Scott, 1996). 

PDC bits, the workhorse of the industry today, display fixed cutters composed of a 

synthetic diamond layer on top of cemented tungsten-carbide substrate, destroying the rock 
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in shear. Feenstra (1988) reported that the self-sharpening ability of PDC cutters (tungsten 

carbide wearing at a higher rate than the diamond layer) differentiated PDC bits from other 

drag bits by allowing faster drilling at lower WOB. The author also stated that PDC bits 

experienced less chip hold-down but lacked in impact resistance and temperature stability. 

Warren and Sinor (1994) provided a comprehensive history of PDC bits, noting that the 

first commercial PDC bit became available to the oil and gas market in 1976. In the 

beginning of the 1980s, many successful applications in soft to medium rocks were already 

underway. However, the tendency of PDC bits to whirl and eventually fail due to lateral 

vibrations prevented their expansion into hard rock territory. At the time of Warren and 

Sinor’s (1994) publishing, bit manufacturers were placing a lot of emphasis on developing 

whirl-resistant PDC bits, but performance in harder rocks was still unsatisfactory. By 2011, 

Pessier and Damschan (2011) asserted that PDC bits had overtaken roller cone bits almost 

entirely, with exception of very specific scenarios. For those unique applications, the 

authors proposed two hybrid bit designs that combine the continuous shearing mechanism 

of PDC cutters with the intermittent crushing action provided by roller cone inserts. This 

hybrid bit concept had been around since the 1980s but displayed lackluster performance 

(Pessier and Damschan, 2011). Hybrid designs have gained popularity recently, causing 

many drill bit providers to experiment with innovative configurations (Liu et al., 2016, 

Crane et al., 2017). 

Bit-specific analytical ROP models generally include formation geomechanical 

properties, as they analyze the rock cutting mechanisms of each bit type. Cunningham 

(1978) developed a roller cone bit model dependent on rock drilling strength, determined 

by drilling tests performed in the formation of interest. Warren (1981) derived a ROP 

model for soft-formation roller cone bits based on dimensional analysis, including two 

separate terms and a measure of rock strength relative to a specific type of rock. This model 
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was later improved by accounting for imperfect hole cleaning conditions, resulting in the 

famous three-term roller-cone bit ROP model with hydraulics and mud properties 

published by Warren (1987). Winters et al. (1987) added a fourth term to Warren’s model 

to incorporate the effects of rock ductility on ROP. Hareland and Hoberock (1993) 

commented on the difficulty of obtaining rock ductility and cone offset parameters 

introduced by Winters et al. (1987) and modified the Warren (1987) model to include a 

function of bottomhole differential pressure accounting for chip hold-down effects. 

Hareland et al. (2010) investigated the rock fracturing mechanism of roller-cone bits by 

measuring the volume of craters created by individual inserts in indentation tests. Model 

parameters encompass the number of insert penetrations per revolution, number of inserts 

in contact with the rock and chip formation angle. Kowakwi et al. (2012) altered the soft-

rock model by Warren (1981) with their own hydraulics function based on HSI 

(horsepower per square inch), a chip hold-down function, and a bit wear function. ROP 

models specific to PDC bits tend to be based on force balance at cutter contact points with 

the rock. Complex input requirements limit the applicability of such models. PDC bit 

models derived by Hareland and Rampersad (1994) and Motahhari et al. (2010) relate 

operational variables and a simplified interface between cutters and the formation to 

drilling speed. These two models are utilized throughout this study and formulated in the 

next section. 

Analysis of forces and moments at the bit provide a more complete description of 

the bit-rock interaction process. However, a full geometric description of the contact points 

and angles between borehole and bit downhole is required in order to compute stresses on 

the rock and failure criteria. Dykstra et al. (2001) provide an interesting discussion on 

engineering vs. research models for drillstring dynamics. Force balance ROP models for 

roller cones have been developed by Umez-Eronini (1983) and Walker et al. (1986). Early 
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fixed-cutter bit-rock interaction models predicting ROP for diamond bits include Appl and 

Rowley (1968) and Peterson (1976). In the 1980s, Sandia National Laboratories exhibited 

acute interest in finite element modeling for PDC bits in geothermal drilling: Glowka and 

Stone (1985) modeled the thermal response of PDC cutters and Glowka (1989) studied 

PDC bit forces. Other models describing PDC bit forces include Warren and Sinor (1986), 

Detournay and Defourny (1992) (later extended in Detournay et al., 2008, with directional 

drilling applications in Perneder et al., 2012 and validated by Zhou et al., 2012), and 

Gerbaud et al. (2016). While force balance models provide valuable insights into how bits 

operate, they rely on geometric inputs not available in real-time and are better suited for 

bit design optimization, in a simulation environment. For real-time drilling optimization, 

practical models relate measurable drilling parameters to ROP. Machine learning (ML) 

algorithms prove particularly useful in achieving this task.  

In the past couple of decades, machine learning has emerged as a prominent 

modeling approach across several industries. Linear regression represents the simplest of 

machine learning algorithms. All ML models possess the capability of incorporating any 

measurable data as inputs (predictors/features) to predict a response through statistics. 

Analytical ROP models provide a good starting point to define which parameters should 

be included in ML ROP models and hypothesis testing can ensure the statistical relevance 

of drilling variables deemed important by analytical model authors (see Section 5.1). It is 

important to note that in ML communities, the word “parameters” is used in reference to 

model coefficients learned during the training process, such as the weights in linear 

regression and neural networks. In drilling, variables that can be adjusted in operations 

(WOB, RPM, flow rate, etc.) are commonly known as drilling parameters. Throughout this 

dissertation, the drilling parameters terminology is utilized often and conventional ML 

model parameters are referred to as model coefficients. 
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By far, the most popular machine learning algorithm for ROP prediction is neural 

networks (NN), encountered in the works of Bilgesu et al. (1997), Dashevskiy et al. (1999), 

Moran et al. (2010), Rahimzadeh et al. (2010), Bataee and Mohseni (2011), Arabjamaloei 

and Shadizadeh (2011), Esmaeili et al. (2012), Gandelman (2012), Gidh et al. (2012), 

Jahanbakhshi et al. (2012), Evangelatos and Payne (2016), Shi et al. (2016), Elkatatny et 

al. (2017) and Amer et al. (2017). Adoption of additional ML algorithms to ROP modeling 

are also found in the literature; Hegde et al. (2015, 2017), Hegde (2016), Ansari et al. 

(2016), Mantha and Samuel (2016) and Hegde and Gray (2017) published on 

implementations of different types of regression, k-nearest neighbors, boosting, random 

forests (RF) and support vector machines (SVM). Random forests, support vector machines 

and neural networks are the ML algorithms chosen for this study based on performance 

and applicability to a wide range of problems. These algorithms are described in Section 

2.4. 

2.3. ANALYTICAL ROP MODEL EQUATIONS 

Four analytical ROP models are implemented throughout this dissertation: the two 

classic and widely popular Bingham (1964) and Bourgoyne and Young (1974) models, and 

the two PDC bit models with viable real-time applications in Hareland and Rampersad 

(1994) and Motahhari et al. (2010). Formulations for these four analytical models are 

presented in this section. 

2.3.1. Bingham (1964) 

Bingham (1964) developed a simplistic relation to predict ROP based on WOB, 

RPM and bit diameter. The model assumes that ROP is directly proportional to RPM and 

describes a power-law relationship between ROP and WOB. This approach appears similar 
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to R-W-N relations described by Maurer (1962). However, by including a drillability 

constant (a) and an empirical WOB exponent (b), computed for each rock formation, 

Bingham’s ROP model alleviated the localized model application issue: 

 

𝑅𝑂𝑃 = 𝑎 (
𝑊𝑂𝐵

𝑑𝑏
)

𝑏

𝑅𝑃𝑀   (2.2) 

 

where ROP is the rate of penetration [ft/hr], a and b are dimensionless constants for each 

formation, WOB is the bit weight [klbf], db is the bit diameter [in], and RPM is the rotational 

speed [rev/min]. Nevertheless, both model coefficients (a and b) are determined for an 

entire rock formation and cannot account for changing drilling physical behavior in 

different operational parameter regions: 

 

 

Figure 2.3: ROP vs. WOB relationship adapted from Bourgoyne et al. (1986) by adding 

Bingham WOB exponents (b) in a segmented operational parameter space. 

Figure 2.3 represents a common flaw of all analytical (closed-form) models, which assume 

a single equation can predict ROP behavior throughout a formation. Since a set of empirical 

model coefficients is calculated to best fit all the field data collected in a formation, it must 
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average varying operational conditions encountered while drilling different well segments. 

The main limitation of analytical ROP models is their inability to represent this segmented 

operational parameter space, illustrated in Figures 2.1-2.3. Model performance highly 

depends on coefficient bounds, as reported by Soares (2015) and Soares et al. (2016). 

Bingham coefficient bounds are determined based on similar coefficients in the Bourgoyne 

and Young (1974) model, with bound values as suggested in Bourgoyne et al. (1986) – 

Bingham’s a adheres to the same bounds as the drillability constant a1 in the modified 

Bourgoyne and Young model and Bingham’s b follows the WOB exponent a5 (Table 2.1).  

2.3.2. Bourgoyne and Young (1974) 

Bourgoyne and Young’s (1974) exponential ROP relation and the subsequent 

Bourgoyne et al. (1986) model equation are built upon the concept of formation drillability. 

This quantity measures the drilling speed obtained while drilling a formation at specified 

“normal” drilling conditions. Both model formulations, including eight modeled terms 

which affect ROP, are examined in this section and equivalent terms are shown in 

chronological order. Starting with the overall ROP model equations: 

 

𝑑𝐷

𝑑𝑡
=  Exp (𝑎1 + ∑𝑎𝑗𝑥𝑗

8

𝑗=2

)                          Bourgoyne and Young (1974) 

 

𝑅𝑂𝑃 = (𝑓1)(𝑓2)(𝑓3)(𝑓4)(𝑓5)(𝑓6)(𝑓7)(𝑓8)           Bourgoyne 𝑒𝑡 𝑎𝑙. (1986) 

 

  

    

    (2.3) 

 

where D is the well depth [ft], t is the time [hr], ROP is the rate of penetration [ft/hr], a1 is 

the formation strength parameter, a2 is the normal compaction trend exponent, a3 is the 

undercompaction exponent, a4 is the pressure differential exponent, a5 is the bit weight 
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exponent, a6 is the rotational speed exponent, a7 is the tooth wear exponent, and a8 is the 

hydraulic exponent. Functions f1 through f8 in Bourgoyne et al. (1986) encompass 

empirical model coefficients a1 through a8 from Bourgoyne and Young (1974) and the 

modeled relationship for each drilling factor (x1-x8). Formation drillability is expressed by 

the coefficient a1 in Bourgoyne and Young (1974) and by the function f1 in Bourgoyne et 

al. (1986): 

 

𝑥1 = 1 

 

𝑓1 = 𝑒2.303𝑎1 = 𝐾 

   

   

  (2.4) 

 

Parameter x2 (and function f2) represents the normal compaction model for rock 

strengthening: 

 

𝑥2 = 10,000.0 − 𝐷 

 

𝑓2 = 𝑒2.303𝑎2(10,000−𝐷) 

  

     

    (2.5) 

 

Equations 2.5 are normalized to a depth of 10,000ft, indicating that formation drillability 

is defined at this “normal” drilling depth. This can be seen by plugging in a depth value of 

10,000ft in Eqs. 2.5. Regardless of a2, the values of zero obtained for x2 and one for f2 

eliminate the influence of the normal compaction drilling factor on ROP when substituted 

back in Eqs. 2.3. The following model describes undercompaction in abnormally pressured 

formations: 
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𝑥3 = 𝐷0.69(𝑔𝑝 − 9.0) 

 

𝑓3 = 𝑒2.303𝑎3𝐷0.69(𝑔𝑝−9.0) 

 

 

    (2.6) 

 

where gp is the pore pressure gradient of the rock formation [lbm/gal (ppg)]. Equations 2.6 

are normalized to a pore pressure gradient of 9ppg. Bottomhole pressure differential 

influence on drilling is given by: 

 

𝑥4 = 𝐷(𝑔𝑝 − 𝜌𝑐) 

 

𝑓4 = 𝑒2.303𝑎4𝐷(𝑔𝑝−𝜌𝑐) 

 

 

    (2.7) 

  

where ρc is the equivalent circulating mud density [lbm/gal]. From the equations above, 

formation drillability is established at zero overbalance. The bit weight factor is modeled 

as: 

 

𝑥5 = ln(

𝑊𝑂𝐵
𝑑𝑏

− (
𝑊𝑂𝐵
𝑑𝑏

)
𝑡

4.0 − (
𝑊𝑂𝐵
𝑑𝑏

)
𝑡

) 

 

𝑓5 = (

𝑊𝑂𝐵
𝑑𝑏

− (
𝑊𝑂𝐵
𝑑𝑏

)
𝑡

4.0 − (
𝑊𝑂𝐵
𝑑𝑏

)
𝑡

)

𝑎5

 

 

  

   

 

    (2.8) 

 

where WOB is the weight on bit [klbf] and db is the bit diameter [in]. The term containing 

the subscript t represents the threshold WOB (per inch of bit diameter) required to begin 

drilling. Although x5 is expressed as a logarithmic relationship, it becomes a power-law 
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model equivalent to f5 after undergoing the exponential operator in the first Eq. 2.3. Normal 

drilling conditions are characterized by 4klbf/in, or 4,000lbf of weight per inch of bit 

diameter. Next, the drillstring rotational speed parameter is introduced: 

 

𝑥6 = ln (
𝑅𝑃𝑀

100
) 

 

𝑓6 =  (
𝑅𝑃𝑀

60
)

𝑎6

 

  

  

    (2.9) 

 

where RPM is the drillstring rotational speed [rev/min]. As seen in Eqs. 2.9, there is a 

distinction in RPM normalization from 100rev/min in the original Bourgoyne and Young 

(1974) model to 60rev/min in the newer Bourgoyne et al. (1986) formulation. Bit wear is 

expressed as: 

 

𝑥7 = −ℎ 

 

𝑓7 =  𝑒−𝑎7ℎ 

  

 

  (2.10) 

 

where h is the fractional tooth height worn away. The main difference between the two 

versions of the model shows up in the last function. Previously an exponential relationship 

with Eckel’s hydraulics Reynolds number (introduced in Eq. 2.1), the updated hydraulics 

model is a power-law function of the hydraulic jet impact force: 

 

𝑥8 =
𝜌𝑞

350𝜇𝑑𝑛
 

 

𝑓8 =  (
𝐹𝑗

1,000
)

𝑎8

 

 

  

  (2.11) 
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where ρ is the mud density [lbm/gal], q is the flow rate [gal/min], μ is the apparent viscosity 

at 10,000 sec-1 [cp], dn is the bit nozzle diameter [in] and Fj is the hydraulic impact force 

[lbf] exerted on the rock below the bit: 

 

𝐹𝑗 = 𝜌𝑞𝑣𝑛 (
lbf

32.174
ft lbm

s2

)(
min

60s
) = 0.000518𝜌𝑞𝑣𝑛 

 

(2.12) 

 

where vn is the nozzle velocity [ft/s]. The first Eq. 2.11 normalizes the Reynold’s number 

function developed by Eckel (1967, 1968) by 350, while the second equation is normalized 

to a hydraulic impact force of 1,000lbf. Fluid velocity through the bit nozzles is given by: 

 

𝑣𝑛 =
𝑞

𝑇𝐹𝐴
(
min

60s
)(

ft3

7.4805gal
)(

12in

ft
)

2

= 0.3208
𝑞

𝑇𝐹𝐴
 (2.13) 

 

where TFA is the total nozzle flow area [in2]. Combining Eqs. 2.12 and 2.13, hydraulic 

impact force reflects a quadratic relationship with flow rate. Bourgoyne et al. (1986) 

demonstrated that hydraulic horsepower at the bit could also be used as the hydraulic 

parameter of choice for optimization, leading to similar results as the two previous 

suggested terms. Generally normalized by the bit area (Tibbitts et al., 1981), hydraulic 

horsepower per square inch (HSI) [HP/in2] is given by: 

 

𝐻𝑆𝐼 =
∆𝑝𝑏𝑞

𝜋
4⁄ 𝑑𝑏

2 (
HP

550
ft lbf

𝑠

)(
ft3

7.4805gal
)(

12in

ft
)

2

(
min

60s
) 

𝐻𝑆𝐼 =
1

𝜋
4⁄ 𝑑𝑏

2

∆𝑝𝑏𝑞

1714.3
 

 

 

(2.14) 

 

where Δpb is the pressure drop across the bit [psi]: 
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∆𝑝𝑏 =
𝜌𝑞2

2𝐶𝑑
2𝑇𝐹𝐴2

(
lbf

32.174
ft lbm

s2

)(
min

60s
)

2

(
ft3

7.4805gal
) (

12in

ft
)

2

 

∆𝑝𝑏 =
𝜌𝑞2

10861 𝑇𝐹𝐴2
 

                   

 

(2.15) 

 

where Cd is a dimensionless discharge coefficient accounting for friction, typically 

assigned a value of 0.95. The factor of ½ arises from the kinetic energy term in the 

conservation of energy derivation (Bourgoyne et al., 1986).  Substituting bit pressure drop 

(Eq. 2.15) into Eq. 2.14, HSI is directly related to flow rate cubed. With hydraulic 

horsepower at the bit per square inch of bit area representing the hydraulics parameter, the 

last B&Y model term becomes: 

 

𝑓8 = (𝐻𝑆𝐼)𝑎8 (2.16) 

 

The three proposed hydraulic terms are, respectively, linear (hydraulics Reynolds number), 

quadratic (jet impact force) and cubic (HSI) with respect to flow rate. 

Although the Bourgoyne and Young ROP model describes the drilling process 

thoroughly, many parameters utilized in the model are hard or impossible to measure in 

real-time with existing technology and must be approximated (e.g. pore pressure gradient, 

drilling fluid apparent viscosity and bit wear). In addition, the model relies on 

normalization constants for depth, WOB, RPM and flow rate terms first derived for drill 

bits from the 1970s. Nascimento et al. (2015) and Kutas et al. (2015) expose this issue by 

reporting B&Y model applications from various authors with different normalizing factors 

and proposing new values themselves. For the dataset analyzed in this dissertation, 

applying the 4klbf/in WOB normalization to an 8-3/4in diameter bit defines normal drilling 

conditions of 35klbf bit weight, outside the bit manufacturer’s specified operating range of 
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3.5-30klbf (SHARC, 2015). Another point to consider is that constant parameters in an 

interval, such as bit diameter, nozzle diameter, mud weight and apparent viscosity, are 

useful when comparing drilling performance for different bits and drilling fluids. However, 

B&Y model coefficients a1-a8 are empirically determined in very specific operational 

conditions particular to the given bit and mud. For example, increasing bit diameter results 

in a larger hole size, altering annular hydraulics and thus the a8 coefficient. Consequently, 

validity of coefficients is only guaranteed when the model predicts ROP for the exact same 

bit, drilling fluid, formation and in similar operating conditions. Therefore, the author 

contends that the same B&Y coefficient values are not applicable across a range of bits or 

muds and that one model coefficient can absorb all constant parameter effects. The newly 

proposed modified Bourgoyne and Young formulation eliminates normalizing factors and 

constant parameters, simplifying the model to rely on measurements of the core variables 

in real-time drilling optimization: 

 

𝑅𝑂𝑃 = 𝑎1𝐷
𝑎2𝑊𝑂𝐵𝑎5𝑅𝑃𝑀𝑎6𝑞𝑎8 (2.17) 

 

Bourgoyne et al. (1986) suggested a range of values for coefficients a5-a8. Several 

studies in the literature (Bahari and Seyed, 2007, Bahari et al., 2008, Rahimzadeh et al., 

2011, Anemangely et al., 2017) agree on the same bounds for coefficients a1-a4: 
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Table 2.1: Model coefficient bounds for Bourgoyne et al. (1986) and modified 

Bourgoyne and Young ROP models. 

 
 

For the novel proposed formulation, coefficient bounds for WOB and RPM terms’ 

exponents (a5 and a6) are maintained at the recommended values, reinforced by the 

response curves illustrated in Figures 2.1 and 2.2. Bounds for the all-encompassing a1 

coefficient are expanded to incorporate the influence of removed constant parameters and 

normalizing factors. Maurer’s (1962) perfect cleaning ROP theory states that drilling speed 

is inversely proportional to the square of rock strength. Coefficient a2 accounts for this rock 

compaction factor with depth as a proxy for rock strength, and bounds proposed for the 

modified model formulation in Table 2.1 reflect Maurer’s relationship. Lastly, the three 

hydraulic terms suggested by Bourgoyne et al. (1986) are linear, quadratic and cubed with 

respect to flow rate. The original upper bound for the hydraulics term exponent a8 (0.6) is 

adapted in the modified formulation to reflect the appropriate flow rate correlation range 

(30.6 = 1.933). Equation 2.15 for pressure drop across the bit also supports a squared relation 

with flow rate at maximum. 

2.3.3. Hareland and Rampersad (1994) 

Hareland and Rampersad (1994) applied conservation of mass to describe the 

penetration of a single bit cutter into the formation. The model assumes that each cutter 
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compresses and removes a volume of rock proportional to the contact area and the WOB 

applied. The general Hareland and Rampersad (1994) ROP model equation for drag bits 

is: 

 

𝑅𝑂𝑃 =
𝑎

(𝑅𝑃𝑀𝑏 𝑊𝑂𝐵𝑐)

14.14 𝑁𝑐  𝑅𝑃𝑀 𝐴𝑣

𝑑𝑏
 (2.18) 

 

where ROP is the rate of penetration [ft/hr], a, b, and c are cutter geometry correction 

factors, WOB is the weight on bit [klbf], RPM is the drillstring rotational speed [rev/min], 

Nc is the number of cutters, Av is the area of rock compressed in front of a single cutter [in2] 

and db is the bit diameter [in]. The contact area between a cutter and the rock formation is 

defined in terms of cutter penetration P [in]: 

 

𝑃 =
2𝑊𝑚𝑒𝑐ℎ

𝜋 𝑑𝑐  𝜎𝑐
 (2.19) 

 

where Wmech is the mechanical loading (WOB) per cutter [lbf], dc is the cutter diameter [in] 

and σc is the uniaxial (unconfined) compressive rock strength [psi]. For PDC bits, Hareland 

and Rampersad (1994) characterizes Av as: 

 

𝐴𝑣 = cos𝛼 sin 𝜃 [(
𝑑𝑐

2
)

2

𝑐𝑜𝑠−1 (1 −
2𝑃

cos𝜃  𝑑𝑐
)

− (
𝑑𝑐𝑃

cos𝜃
−

𝑃2

(cos𝜃)2
)

0.5

(
𝑑𝑐𝑃

2cos𝜃
)] 

               

 

(2.20) 

 

where α is the cutter side rake angle and θ is the cutter back rake angle. Conducting 

dimensional analysis on Eq. 2.20 reveals an inconsistency in units. The overall quantity Av 

has units of area [in2], while P has units of length [in]. Analyzing the two expressions inside 
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the square brackets separately, the parameter inside the inverse cosine is dimensionless and 

the trigonometric function is then multiplied by the initial [in2] portion, producing 

consistent units for the first term. Next, the expression inside the radical has units of [in2], 

resulting in units of [in]. Its multiplying term has units [in2], culminating in conflicting 

[in3] units for the second term inside the square brackets. Examining Av behavior with 

varying WOB in Eq. 2.20: 

 

 

Figure 2.4: Av vs. WOB relationship for Hareland and Rampersad (1994) PDC bit ROP 

model formulation. 

Figure 2.4 was reproduced with typical bit design and rock strength values of α = 

30°, θ = 10°, Nc = 38, dc = 0.63in, and σc = 10,000psi. From Eq. 2.18, the overall 

relationship between ROP and WOB depends on both Av and the empirical model 

coefficient c: 

 

𝑅𝑂𝑃 ∝
𝐴𝑣

𝑊𝑂𝐵𝑐
 (2.21) 

 



 

 

 

 

 45 

Coefficient c appears in the denominator of Eqs. 2.18 and 2.21, detracting from the ROP-

WOB relation encountered in Av. Zooming in on the manufacturer’s WOB operating range 

for the Smith 616 PDC bit (SHARC, 2015) utilized to drill the Williston Basin well 

analyzed in this study and varying the c coefficient from 0.1 to 0.6: 

 

 

Figure 2.5: Total WOB contribution for Hareland and Rampersad (1994) PDC bit ROP 

model in the Smith 616 PDC bit operating range. 

Figure 2.5 indicates that Av is approximately proportional to the square root of WOB in the 

conventional bit weight operational range with the original Hareland and Rampersad 

(1994) PDC bit ROP model formulation. The model will produce a negative WOB effect 

on ROP for any value of c greater than 0.5. 

The initial Hareland and Rampersad (1994) drag bit model was derived for natural 

diamond bits, with Av expressed as: 

 

𝐴𝑣 = (
𝑑𝑐

2
)

2

𝑐𝑜𝑠−1 (1 −
2𝑃

 𝑑𝑐
) − (𝑑𝑐𝑃 − 𝑃2)0.5 (

𝑑𝑐

2
− 𝑃) (2.22) 
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Recreating Fig. 2.4 for this definition of rock area compressed in front of a cutter: 

 

 

Figure 2.6: Av vs. WOB relationship for Hareland and Rampersad (1994) natural 

diamond bit ROP model formulation. 

Figure 2.6 illustrates a profoundly distinct Av-WOB relation when compared to Figure 2.4. 

Contrasting Eqs. 2.20 and 2.22, the Av formulation for PDC bits includes a multiplication 

by the cosine of cutter siderake and sine of backrake angles, and all terms containing P are 

divided by the cosine of the backrake angle. The only exception to this pattern arises in the 

last term, which was demonstrated to possess incompatible units. Hence, the author 

proposes a new version of Av for PDC bits, following the template from the natural diamond 

bit derivation: 

 

𝐴𝑣 = cos 𝛼 sin 𝜃 [(
𝑑𝑐

2
)

2

𝑐𝑜𝑠−1 (1 −
2𝑃

cos𝜃  𝑑𝑐
)

− (
𝑑𝑐𝑃

cos𝜃
−

𝑃2

cos2 𝜃
)

0.5

(
𝑑𝑐

2
−

𝑃

cos𝜃
)] 

            

 

  (2.23) 
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With this suggested formulation, Av behavior with WOB mirrors the desired 

relationship displayed in Fig 2.6: 

 

 

Figure 2.7: Corrected Av vs. WOB relationship for Hareland and Rampersad (1994) PDC 

bit ROP model. 

Now, the total WOB contribution to the model is investigated varying c between 1 and 1.5: 
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Figure 2.8: Total WOB contribution for corrected Hareland and Rampersad (1994) PDC 

bit ROP model in the Smith 616 PDC bit operating range. 

In the figure above, Av exhibits a power-law relation with WOB with an exponent of 

approximately 1.5 within the Smith 616 PDC bit operational weight range. Therefore, 

coefficient c values are restricted from a minimum of -0.5 to a maximum of 1 to conform 

with the WOB exponent bounds of 0.5 to 2 proposed by Bourgoyne et al. (1986) and 

presented in Table 2.1. The final form of the corrected Hareland and Rampersad (1994) 

PDC bit model is given by: 

 

𝑅𝑂𝑃 = 𝑊𝑓

𝑎

(𝑅𝑃𝑀𝑏 𝑊𝑂𝐵𝑐)

14.14 𝑁𝑐  𝑅𝑃𝑀 

𝑑𝑏
cos𝛼 sin 𝜃 

[(
𝑑𝑐

2
)

2

𝑐𝑜𝑠−1 (1 −
4 𝑊𝑚𝑒𝑐ℎ

𝜋cos𝜃  𝑑𝑐
2 𝜎𝑐

)

− (
2 𝑊𝑚𝑒𝑐ℎ

𝜋cos𝜃 𝜎𝑐
−

4 𝑊𝑚𝑒𝑐ℎ
2

(𝜋cos𝜃  𝑑𝑐  𝜎𝑐)2
)

0.5

(
𝑑𝑐

2
−

𝑊𝑚𝑒𝑐ℎ

𝜋cos𝜃  𝑑𝑐  𝜎𝑐
)] 

     

 

      

  (2.24) 

 

where Wf is a bit wear function. The slight modification from its original version included 

in the model formulation above ensures units consistency and appropriate ROP behavior 
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with varying WOB. Other coefficient bounds are established with basis on the 

corresponding modified Bourgoyne and Young model coefficients (Table 2.1): 

Table 2.2: Model coefficient bounds for corrected Hareland and Rampersad (1994) PDC 

bit ROP model. 

 
 

2.3.4. Motahhari et al. (2010) 

Motahhari et al. (2010) utilized the same mass conservation principle as Hareland 

and Rampersad (1994) to derive a PDC bit model for positive displacement mud motor 

applications: 

 

𝑅𝑂𝑃 = 𝑊𝑓 (
𝐺 𝑅𝑃𝑀𝑡

𝛾 𝑊𝑂𝐵∝

𝑑𝑏 𝑆
) (2.25) 

 

where ROP is the rate of penetration [ft/hr], G is a model coefficient related to bit-rock 

interactions and bit geometry, α and γ are ROP model exponents, Wf is a bit wear function, 

WOB is the weight on bit [klbf], RPMt is the total bit rotational speed resulting from mud 

motor and drillstring rotational speeds [rev/min], db is the bit diameter [in] and S is the 

confined compressive rock strength (CCS) [psi]. Geometrical relations describing the area 

of rock compressed in front of a single cutter, similar to Hareland and Rampersad’s (1994) 

Av (Eq. 2.22), are included in the bit wear function Wf  in the Motahhari et al. (2010) model 

formulation.  
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The bit wear function in Eqs. 2.24 and 2.25 accounts for a reduction in cutter-rock 

contact area and cutter penetration with incremental wear. Many publications have sought 

to model Wf (Hareland and Rampersad, 1994, Rahimzadeh et al., 2010, Motahhari et al., 

2010, Rashidi et al., 2010a, Liu et al., 2014), introducing additional model coefficients and 

rock properties (such as abrasion) not measurable in real-time. Therefore, in this study, the 

wear function Wf is assumed to have a simplistic linear relationship with depth, reaching 

the reported IADC dull grading evaluation at the end of the bit run: 

 

𝑊𝑓 = 1 −
∆ℎ̅̅̅̅

8
(
𝐷 − 𝐷𝑠

𝐷𝑒 − 𝐷𝑠
) (2.26) 

 

where ∆ℎ̅̅̅̅  is the average IADC dull grading measure of wear in inner and outer cutter rows 

(on a scale from 0 to 8), D is the current drilling depth, Ds is the depth at the start of the bit 

run and De is the depth at the end of the bit run. Eq. 2.26 represents a measure of bit 

efficiency, yielding a value of one for a new bit at the start of a bit run (D = Ds). At full 

efficiency (Wf = 1), the wear function does not impact the predicted ROPs in Eqs. 2.24 and 

2.25. As the bit wears out during drilling, Eq. 2.26 expresses a linear loss in efficiency with 

depth until the bit reaches an efficiency of 1 −
∆ℎ̅̅ ̅̅

8
 at the end of the bit run (D = De), resulting 

in a gradual predicted ROP reduction. 

 Coefficient bounds for the Motahhari et al. (2010) ROP model are determined from 

bounds for analogous Bourgoyne and Young (1974) model coefficients, with values 

suggested in Bourgoyne et al. (1986) – Motahhari et al.’s G coefficient is bounded 

according to the drillability constant a1 in the modified Bourgoyne and Young model, α 

follows the WOB exponent a5 and γ complies with the same bounds as the RPM exponent 

a6 (Table 2.1). 
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2.4. MACHINE LEARNING ALGORITHMS 

Flexibility in model form allows ML algorithms to overcome analytical ROP 

models’ inability to segment the drilling operational parameter space (as shown in Fig. 

2.3). With no predefined equation, hyperparameters specific to each algorithm control 

model architecture. ML hyperparameters are prescribed by the human user before model 

training, while parameters, such as the weights of a neural network, are learned during the 

training phase. In this section, a simplified explanation of the random forests, support 

vector machines and neural networks algorithms is provided in the context of segmenting 

drilling features into distinct operational regions. Section 5.4 describes the hyperparameter 

optimization process, in addition to a more detailed description of each algorithm’s 

hyperparameters. Machine learning techniques have been applied extensively in several 

industries and the reader is referred to a few publications for further in-depth technical 

description of the algorithms: Bishop (2006): Pattern Recognition and Machine Learning; 

Hastie et al. (2009): The Elements of Statistical Learning: Data Mining, Inference, and 

Prediction; Murphy (2012): Machine Learning: A Probabilistic Perspective; Abu-Mostafa 

et al. (2012): Learning from Data; and James et al. (2013): An Introduction to Statistical 

Learning with Applications in R. 

2.4.1. Random Forests 

Consider a hypothetical drilling scenario in which the leading factor affecting ROP 

behavior is whether drillstring rotational speed is over 60rev/min. A decision tree ROP 

model splits the dataset into two groups according to this criterion. Data points with RPM 

lower than 60rev/min are grouped together and their average ROP represents the modeled 

response for the entire cluster. The same procedure is applied to points with rotational 

speed exceeding 60rev/min. Now, suppose that high WOB values combined with high 
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RPM lead to severe hole cleaning issues and ROP actually slows down. By inserting an 

interior node testing for excessive WOB in the branch with RPM greater than 60rev/min, 

the decision tree model accounts for the inadequate hole cleaning situation: 

 

 

Figure 2.9: Decision trees for ROP prediction in hypothetical scenario.  

Figure 2.9 illustrates that even though ROP may be higher with an increase in RPM or 

WOB individually, the combined effect of raising those variables may lead to ROP 

reduction. The terminal nodes (leaves) represent different regions of the operational space. 

While analytical ROP models cannot segment the response of a single variable (WOB, 

shown in Fig. 2.3), decision trees are able to identify drilling conditions encountered in 

operational regions defined by two or more drilling features (RPM and WOB, for the 

rightmost tree in Fig. 2.9).  

Segmentation in the WOB-RPM parameter space can be visualized while 

examining a different hypothetical drilling scenario modeled with a decision tree: 
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Figure 2.10: Segmentation of WOB-RPM space by a decision tree model. Larger bubble 

diameters represent increasing ROP. 

The figure above is divided into four regions (R1-R4). In R1, low WOB and RPM values 

lead to a baseline low ROP. Maintaining low RPM and increasing WOB leads to higher 

ROP values (R2). Within region R3, ROP increases considerably by keeping WOB low and 

increasing RPM in relation to R1. However, as WOB is increased in relation to R3, ROP 

actually decreases (R4). This behavior is similar to the situation encountered in the 

hypothetical scenario presented in Fig 2.9. Independent increases in WOB and RPM result 

in higher ROP, but high WOB and RPM values combined lead to hole cleaning issues and 

ROP reduction. 

In a realistic field drilling scenario, the simple trees presented in Fig. 2.9 will likely 

perform poorly in predicting ROP. They could be grown further, with more internal nodes 

that divide the dataset into additional regions. However, deeper trees suffer from high 

variance, meaning that a small change in the training data will modify the tree structure 

considerably and yield vastly different predictions. In order to overcome high variance, 

researchers have designed algorithms that grow multiple distinct deep trees and then 
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average out the predictions of all trees for each data point. Random forests (RF) implements 

this concept by only considering a random subgroup of variables for each internal node 

split to decorrelate the trees (Ho, 1995). Breiman (2001) improved the original random 

forests algorithm by introducing bootstrap aggregating (bagging). In this newer RF version, 

considered the standard contemporarily, trees are trained on a random subset of the training 

data sampled uniformly and with replacement (bootstrap sampling). The number of 

features to be considered at each split, number of trees, and how deep trees grow are all 

hyperparameters of the random forests algorithm and further discussed in Section 5.4.  

2.4.2. Support Vector Machines 

The maximal margin hyperplane provides another method of splitting up the 

drilling operational parameter space. A hyperplane divides a space of any dimensions in 

two. In a two-dimensional space, a hyperplane is simply a line, whereas in a three-

dimensional space, it is represented by a plane. Suppose that, in a separate hypothetical 

scenario, drilling is progressing efficiently and ROP approaches a linear relationship with 

RPM. However, when the drillstring rotational speed exceeds 150rev/min, severe drilling 

vibrations occur and ROP behavior becomes erratic. These two operational regions 

(efficient drilling and high vibrations) are linearly separable with respect to RPM, and the 

maximal margin hyperplane will be defined by the line located at the greatest distance from 

data points in both groups: 
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Figure 2.11: Maximal margin hyperplane separating efficient drilling (blue) and high 

vibrations (orange) data. 

Note that the maximal margin hyperplane is entirely based on the data points 

situated right at the margins. These two points in the figure above, equidistant from the 

hyperplane, are referred to as support vectors. Figure 2.11 displays an idealized case for 

detection of a drilling dysfunction. Considering additional drilling parameters and in actual 

field conditions, it is unreasonable to expect acquisition of linearly separable data 

distinguishing efficient drilling from high vibrations, inadequate hole cleaning or bit 

balling operational regions. Support vector machines (SVM) overcome this issue by 

allowing some data points to violate the margin, a soft-margin (Cortes and Vapnik, 1995), 

and by mapping input data to a higher-dimensional space with non-linear kernel functions 

(Boser et al., 1992). A cost hyperparameter controls the amount of margin violations 

tolerated. Popular choices for the kernel model, which is also a hyperparameter, include 

polynomial and radial basis functions. SVM’s extension to regression problems (support 

vector regression machines) incorporates an ε-insensitive loss function (Drucker et al., 



 

 

 

 

 56 

1996). The ε hyperparameter defines a threshold distance from model predictions, and 

training data points inside this region (ε-tube) are ignored and assigned zero loss. 

2.4.3. Neural Networks 

Neural networks bear such designation due to analogies to the human brain. 

Computational units are termed neurons (McCullogh and Pitts, 1943), which communicate 

with one another in analogous manner to biological neurons’ synapses. A neural network 

is composed of an input layer, one or more hidden layers, and an output layer. Neurons in 

the first hidden layer aggregate a weighted linear combination of any relevant 

measurements prescribed in the input layer and add non-linearity through activation 

functions. Their outputs are recombined in subsequent hidden layers until the modeled 

response is obtained in the output layer. Much of the hype surrounding neural networks 

comes from the fact that it has been proven that given enough neurons, a single hidden 

layer neural network serves as a universal approximator for any continuous function 

(Hornik et al., 1989). Arehart (1990) published one of the first applications of neural 

networks to a drilling problem, predicting bit wear with ROP, WOB, torque, RPM and HSI 

as inputs. In a drilling speed modeling framework, features such as depth, WOB, RPM and 

flow rate are fed into the input layer and then combined in hidden layers to produce ROP 

as the output: 

 



 

 

 

 

 57 

 

Figure 2.12: Neural network architecture with depth, WOB, RPM, and flow rate as 

inputs, 4 neurons in the first hidden layer (HLN – hidden layer neuron with 

activation function fa), 2 neurons in the second hidden layer and ROP as 

output. Term b1,1 comes from a bias term (not shown). 

The highlighted output for the first neuron in the first hidden layer produces a 

transformation of the original data, discovering new features that represent relations 

between these inputs. Neurons in the second hidden layer link the outputs of the four 

previous neurons and generate their own features, finally yielding the predicted ROP in the 

output layer. Weights for each neuron connection are computed through the back-

propagation algorithm (Rumelhart et al., 1986). The number of hidden layers, number of 

neurons in each hidden layer and activation function of each neuron are hyperparameters 

that define the neural network architecture. 



 

 

 

 

 58 

2.5. ANALYTICAL AND MACHINE LEARNING ROP MODELING COMPARISON 

Increased flexibility provided by ML algorithms allows for modeling of more 

complex functions, a desirable trait for the highly non-linear problem of estimating ROP. 

However, increased model complexity also creates a couple of significant downsides in 

reduced interpretability and risk of overfitting. The simple decision trees in Fig. 2.9 are 

straightforward to interpret, but such interpretability is greatly diminished as the random 

forests algorithm averages out multiple deep trees to improve predictive accuracy. On the 

other hand, analytical ROP model equations easily reveal the effect of a step-wise change 

in a drilling parameter (e.g. WOB) to ROP but their oversimplification is not conducive to 

modeling complicated problems. Complexity in model form invokes the bias-variance 

trade-off, an important topic in ML applications discussed in this section. 

2.5.1. Bias-Variance Trade-Off 

Model complexity induces a compromise between bias and variance. Variance, as 

mentioned earlier, measures the impact of modifying the training dataset on model 

predictions. The simplest possible model is given by a constant, represented by a horizontal 

line in a 2D plot. Such model will have zero variance, since no matter what training data 

are provided, the model will always produce the same output. On the other hand, bias 

relates to the simplification error caused by representing complex relationships with 

rudimentary models. If the previous constant model (horizonal line) is applied to an 

intricate problem, it will be extremely biased and likely highly inaccurate. Conversely, 

fitting a curve traversing every training data point will result in a very complicated model 

with low bias.  However, small changes to a few data points will impact the model and its 

predictions profoundly, exemplifying high variance. This bias-variance trade-off indicates 
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that an appropriate level of model complexity is necessary to achieve both low bias and 

low variance.  

 In the context of ROP modeling, analytical models tend to be highly biased. 

Analytical ROP models presented in Section 2.3 generally assume that drilling speed is a 

power-law function of a few measurable variables, even though the drilling process is much 

more complicated. The amount of bias varies between models, as the more intricate 

Bourgoyne and Young (1974) formulation is not as biased as Bingham’s (1964) simplistic 

equation. Variance, on the other hand, typically remains low for analytical models with 

bounded coefficients. Even if the response of a few data points is slightly modified, overall 

model predictions will not vary significantly. Machine learning algorithms can handle any 

number of variables as inputs. Ideally, a perfectly unbiased ML ROP model would 

incorporate measurements from all phenomena affecting drilling in an architecture flexible 

enough to fully represent their true interactions. In reality, current technology is not 

sufficient to provide direct measurements of all drilling variables and the issue is 

aggravated when considering real-time data availability. As machine learning models get 

more complex in model form, their bias decreases but additional variance is introduced. 

Complex models are also at risk of overfitting the training data.  

Measurement noise may be fitted in addition to signal if the chosen model form is 

more complex than the true response function. Consider an experiment in which five data 

points have been collected: 
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Figure 2.13: Overfitting example from Abu-Mostafa et al. (2012): Learning from Data 

page 120. 

In the left plot of the figure above (Fig 2.13a), a 4th order polynomial (red) can perfectly fit 

the five data points in the training dataset. The model will exhibit zero error with the data 

measured thus far. However, the target function (blue) is quadratic, and if a new data point 

is collected (Fig 2.13b), it may fall far away from the fitted red curve. Model error at the 

new point, represented by the black arrow, is very high. This discrepancy between model 

performance on training data and new data, caused by overfitting, reveals that the model 

will not generalize well. Overfitting presents a substantial concern with complex machine 

learning models. Hence, ML model error must be evaluated on data unseen by ML 

algorithms during the training phase. Such data, denominated test data, yield an error 

metric typically referred to as the test error. Models benefit by learning from as much data 

as possible, implying that it is undesirable to leave out a portion of available data when 

fitting the model in order to evaluate test error. 
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2.5.2. Cross-Validation 

Cross-validation (CV) is a valuable technique to estimate test error without holding 

out data points from the training dataset for ensuing model testing. The process starts by 

randomly splitting the dataset into k folds (groups). Then, models are trained iteratively 

with data from all but one fold and test error is computed with the left-out fold. The CV 

error is given by the average of test errors from all iterations. The following figure 

illustrates the 10-fold (k = 10) cross-validation procedure with drilling data: 

 

 

Figure 2.14: 10-fold cross-validation for ROP modeling.  

Cross-validation assesses a model’s ability to generalize using the training dataset. 

Analytical ROP models are restricted in model form by bounded coefficients and tend to 
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display similar performance with respect to training and test data. However, for consistency 

purposes, cross-validation will also be applied to analytical ROP models in this study. 
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Chapter 3: Drilling Optimization Problem Formulations 

Real-time drilling optimization encompasses two distinct optimization problems. 

First, an ROP model which accurately represents the drilling process must be trained. This 

optimization problem involves finding model coefficients that best fit field data, bounded 

by sensible values as discussed in Chapter 2. Then, optimal drilling parameters (WOB, 

RPM, flow rate), bounded by operational and rig equipment limitations, are selected 

according to the trained model to maximize ROP. This chapter presents an overview of 

gradient-based and direct search optimization methods and formulations of the two 

optimization problems of interest. Implementations of ML algorithms, such as the ones in 

Python’s scikit-learn (Pedregosa et al., 2011) utilized in this study, contain their own 

particular training scheme. In Section 3.2, three possible loss functions for fitting analytical 

model coefficients are described and model performance metrics are introduced. 

3.1. OPTIMIZATION METHODS 

Mankind has solved optimization problems since ancient history. From the 

allocation of materials and manpower to construct cities and roads in the most efficient 

manner to calculating the shortest travel path, optimization has been ubiquitous in human 

life. Optimization problems are generally framed in terms of minimizing an objective 

function, which indicates a measurement of performance, of one or more variables: 

 

minimize      𝑓(𝑥1, … , 𝑥𝑛) = 𝑓(𝑥⃗)   (3.1)    

  

where 𝑓 ∶ 𝐑𝑛 → 𝐑  is the objective function and 𝑥1 through 𝑥𝑛 are the decision variables. 

This objective function notation illustrates that the function f maps n real-valued inputs into 
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one real-valued output. The solution to the problem posed in Eq. 3.1 is to find the vector 

of variables corresponding to the lowest value of the objective function: 

 

𝑓(𝑥⃗∗) ≤ 𝑓(𝑥⃗)   (3.2)    

 

where 𝑥⃗∗ is the globally optimal solution if Eq. 3.2 is satisfied for the entire domain of the 

objective function f. In problems with complex objective functions, solvers generally seek 

the less ambitious goal of satisfying Eq. 3.2 within a neighborhood, arriving at a local 

optimum.  

Mathematical advancements in solving optimization problems became possible 

with the invention of Calculus in the 17th century, independently by Isaac Newton and 

Gottfried Leibniz. In 1755, Leonhard Euler’s Institutiones Calculi Differentialis 

(Foundations of Differential Calculations) book defined the first-order (first derivative) 

necessary optimality condition for unconstrained optimization problems with a 

continuously differentiable objective function of several variables (Forst and Hoffmann, 

2010): 

 

∇𝑓(𝑥⃗∗) = 0   (3.3)    

 

where 𝑥⃗∗ represents a vector of variables that minimizes the objective function locally. 

This condition states that the gradient of the objective function must equal zero (stationary 

point) at a local extremum. Eq. 3.3 is a necessary condition for optimality, but it does not 

generally guarantee that 𝑥⃗∗ is indeed a local minimum. Second-order (second derivative) 

requirements are needed to guarantee (sufficient condition) local optimality. A function’s 

Hessian matrix, composed of second-order partial derivatives, provides information about 
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the curvature of its graph. The second-order sufficient optimality condition for twice 

differentiable functions states that the Hessian matrix must be positive definite at a local 

minimum: 

 

𝑠𝑇 ∇2 𝑓(𝑥⃗∗) 𝑠 > 0,     ∀𝑠 ≠ 0   (3.4)    

 

All eigenvalues of a positive definite matrix are positive. Since the second derivative 

represents the rate of change of the first derivative, Eq. 3.4 implies that first derivatives are 

increasing and the function has upward curvature at a local minimum. A less-strict second-

order necessary optimality condition requires the Hessian matrix to be positive semi-

definite (𝑠𝑇 ∇2 𝑓(𝑥⃗∗) 𝑠 ≥ 0,     ∀𝑠). 

Most real-life problems are bounded by constraints, meaning that decision variables 

must fall within a feasible region. Adding equality and inequality constraints to the 

unconstrained optimization problem described in Eq. 3.1: 

 

minimize      𝑓(𝑥⃗) 

                                     subject to     𝑔𝑖(𝑥⃗) ≤ 0,     𝑖 = 1,… ,𝑚 

                                                            ℎ𝑖(𝑥⃗) = 0,     𝑖 = 1,… , 𝑝 

   

 

  (3.5)    

 

Eq. 3.5 represents the standard form of a constrained optimization problem. Joseph-Louis 

Lagrange’s 1797 publication Théorie des Fonctions Analytiques (Theory of Analytical 

Functions) was a pioneering study of optimization problems with equality constraints 

(Forst and Hoffmann, 2010). The method of Lagrange multipliers introduces dual variables 

to incorporate a weighted sum of the constraints into the objective function, yielding the 

Lagrangian function: 
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𝐿(𝑥⃗, 𝜆, 𝜐) = 𝑓(𝑥⃗) + ∑ 𝜆𝑖𝑔𝑖(𝑥⃗)

𝑚

𝑖=1

+ ∑𝜐𝑖ℎ𝑖(𝑥⃗)

𝑝

𝑖=1

   (3.6)    

 

where 𝜆𝑖 is the Lagrange multiplier (dual variable) for the ith inequality constraint and 𝜐𝑖 is 

the Lagrange multiplier (dual variable) for the ith equality constraint. In Eq. 3.6, the 

Lagrangian function formulation introduces a penalty, or displeasure, for any violation of 

the constraints gi and hi. The Lagrange dual problem seeks to find optimal 𝜆∗and 𝜐∗ values 

that provide the best lower bound for the associated primal problem in Eq. 3.5 (Boyd and 

Vandenberghe, 2004).  More than a hundred and fifty years after Lagrange’s publication, 

Kuhn and Tucker (1951) generalized the method of Lagrange multipliers for inequality 

constraints (Eq. 3.6 includes this generalization). Afterwards, it was discovered that Karush 

(1939) had already arrived at equivalent results. Hence, the first-order necessary optimality 

conditions for constrained problems, implemented in many contemporary solvers, are 

known as the Karush-Kuhn-Tucker (KKT) conditions. Accounting for constraints, the 

stationarity condition presented in Eq. 3.3 becomes: 

 

∇𝑥𝐿(𝑥⃗∗, 𝜆∗, 𝜐∗) = 0 

 

∇𝑓(𝑥⃗∗) + ∑𝜆𝑖
∗∇𝑔𝑖(𝑥⃗

∗)

𝑚

𝑖=1

+ ∑𝜈𝑖
∗∇ℎ𝑖(𝑥⃗

∗)

𝑝

𝑖=1

= 0 

   

   

  (3.7)    

 

Eq. 3.7 describes one of the KKT conditions. Additional feasibility conditions are given 

by: 
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  𝑔𝑖(𝑥⃗
∗) ≤ 0,     𝑖 = 1,… , 𝑚 

ℎ𝑖(𝑥⃗
∗) = 0,     𝑖 = 1,… , 𝑝 

  𝜆𝑖
∗ ≥ 0,             𝑖 = 1,… ,𝑚 

   

   

  (3.8)    

 

Finally, the last KKT first-order constrained optimality condition represents 

complementary slackness: 

 

  𝜆𝑖
∗𝑔𝑖(𝑥⃗

∗) = 0,     𝑖 = 1,… ,𝑚   (3.9)    

 

Since all 𝑔𝑖 are nonpositive, Eq. 3.9 indicates that all 𝜆𝑖
∗ Lagrange multipliers are equal to 

zero except when the ith inequality constraint is active (𝑔𝑖(𝑥⃗
∗) = 0). This is an important 

property for drilling parameter optimization and is further discussed in Section 3.3.   

For a limited amount of easy constrained optimization problems, it is possible to 

solve the KKT system of equations analytically. However, interesting, complex problems 

must be solved iteratively by numerical methods. Starting from an initial guess 𝑥⃗0, 

optimization algorithms seek improved objective function values with passing iterations 

until they converge to an optimal value 𝑥⃗∗. In line search, an example of a common 

optimization strategy, a search direction is specified to move from the current iteration 

point towards a better solution: 

 

𝑥⃗𝑘+1 = 𝑥⃗𝑘 + 𝛼𝑘𝑝𝑘  (3.10)    

 

where 𝑝𝑘  is the search direction at iteration k and αk is the step length. As indicated by the 

optimality conditions in Eqs. 3.3, 3.4 and 3.7, information about the gradient and Hessian 

of the objective function is useful in defining a search direction. Intuitively, the gradient of 
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a function at a point establishes the direction of fastest change, providing a natural search 

direction selection. Therefore, a large class of optimization methodologies are gradient-

based, relying on the gradient, and oftentimes Hessian, of the objective function to select 

the next iteration step.  

One obstacle to successful implementation of gradient-based techniques arises 

from the requirement that the objective function must be continuously differentiable (and 

twice differentiable if Hessian information is utilized). Gradients and Hessians can be 

approximated with finite difference techniques, although loss of accuracy often occurs due 

to operations with small numbers (Powell, 1998). In addition, the objective function must 

be sufficiently smooth for these approximations to effectively represent the true 

derivatives. Hence, a second class of optimization methods are derivative-free, conducting 

direct search for optimal values. Direct search optimization algorithms sample the 

optimization space broadly with spaced out guesses driven by heuristics, using no 

information about the gradient of the objective function. 

Both gradient-based and direct search methods are explored throughout this 

dissertation to solve the two relevant optimization problems: fitting ROP models and 

selecting the best operational drilling parameters to drill a well segment. The eight 

optimization algorithms investigated are summarized in the table below and further 

discussed in Sections 3.1.1 and 3.1.2: 
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Table 3.1: Optimization methods considered for the two problems in real-time drilling 

optimization. 

 
 

Basin-hopping can fall into either gradient-based or direct search categories, as it employs 

any local optimization methodology (such as the five preceding ones in Table 3.1) and 

introduces a randomized global stepping procedure in search of the global optimum. In 

addition to the gradient-based vs. direct search distinction, algorithms are classified as to 

whether they can handle bounds and/or constraints. Design variable bounds are a type of 

constraint and can be formulated as such even if an algorithm does not explicitly accept 

bounds as inputs (e.g. COBYLA). All eight optimization techniques in Table 3.1 are 

applied as implemented in Python’s scipy.optimize (Oliphant, 2007) library with the 

exception of particle swarm optimization, which is carried out with Python’s pyswarm (Lee 

and Castillo-Hair, 2013) package.  

For simplicity, vector notations are omitted (𝑥⃗𝑘 = 𝑥𝑘) and gradient and Hessian 

functions at each iteration point are defined in the following sections as: 

 

𝑓𝑘 = 𝑓(𝑥𝑘) 

𝑔𝑘 = ∇𝑓(𝑥𝑘) 

𝐻𝑘 = ∇2 𝑓(𝑥𝑘) 

   

  

(3.11)    
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3.1.1. Gradient-Based Optimization 

Newton’s classical optimization algorithm iteratively computes an optimal solution 

by approximating the objective function in the vicinity of each point with a second-order 

Taylor series expansion (quadratic model): 

 

𝑓(𝑥𝑘 + 𝑠𝑘) ≈ 𝑓𝑘 + 𝑔𝑘
𝑇𝑠𝑘 +

1

2
𝑠𝑘

𝑇𝐻𝑘𝑠𝑘 = 𝑚𝑘(𝑠𝑘) (3.12)    

 

where sk is the step to be taken at iteration k and mk is the objective function model at 

iteration k. The model mk is minimized by setting its gradient with respect to sk equal to 

zero: 

 

∇𝑠𝑘
𝑚𝑘 = 0 (3.13)    

 

The solution to Eq. 3.13 yields the Newton step, which minimizes the value of the 

approximated objective function (Eq. 3.12) at each iteration: 

 

𝑠𝑘
𝑁 = −𝐻𝑘

−1𝑔𝑘 (3.14)    

 

Equation 3.14 demonstrates that Newton’s method relies on computation of the gradient 

and Hessian of the objective function locally. It is important to note that the Hessian matrix 

must be invertible for the Newton step to be defined. Newton’s optimization algorithm 

performs well when the quadratic model in Eq. 3.12 provides a good approximation to the 

objective function. For certain iterations, the Newton step formulated in Eq. 3.14 can move 

the next guess far away from the current point and the model approximation may not hold.  
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In this case, it is possible that the objective function value is not reduced, and the algorithm 

will not converge to an optimal solution. 

 Two common approaches in optimization may be implemented with Newton’s 

method to mitigate this convergence issue. Line search, introduced in Eq. 3.10, 

incorporates a variable step length. Comparing the iterative role of the Newton step to Eq. 

3.10: 

 

𝑠𝑘
𝑁 = 𝛼𝑘𝑝𝑘  (3.15)    

 

Now, the Newton direction is defined as: 

 

𝑝𝑘
𝑁 = −𝐻𝑘

−1𝑔𝑘 (3.16)    

 

From Eq. 3.15, the classic Newton algorithm performs a Newton step in the Newton 

direction with constant step length (αk) equal to one. In the line search modified Newton 

method, the step length can be reduced to ensure that the quadratic model approximation 

of the objective function is reliable. The line search problem is defined as finding the step 

length that minimizes Eq. 3.12: 

 

minimize      𝑓(𝑥𝑘 + 𝛼𝑘𝑝𝑘) (3.17)    

 

where 𝑝𝑘 = 𝑝𝑘
𝑁 for the line search modified Newton method. The problem above is 

frequently solved approximately with a restricted amount of trials to reduce computational 

expense (Nocedal and Wright, 2006).  
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 Trust region is the second strategy that can improve convergence of the classical 

Newton algorithm.  This technique ensures that iteration step sizes remain within a sub-

region (the trust region) where the quadratic approximation of the objective function is 

satisfactory. Typically specified by a radius, since the trust region is often spherical in 

shape, the size of the trust region is influenced by the ratio between the true objective 

function value reduction and the reduction predicted by the quadratic model (in the 

previous iteration): 

 

𝑟𝑘 =
𝑓(𝑥𝑘) − 𝑓(𝑥𝑘 + 𝑠𝑘)

𝑚𝑘(0) − 𝑚𝑘(𝑠𝑘)
 (3.18)    

 

The trust region size in iteration k+1 is adjusted according to the value of rk, representing 

the latest agreement between the objective function and its quadratic model. If the value of 

rk is small or negative, there is little trust in the model and the trust region shrinks. On the 

other hand, the closest rk is to one, the more reliable the model is, and the trust region 

expands. Both trust region and line search methodologies approximate the objective 

function locally with a Taylor series quadratic model (Eq. 3.12). In line search, the search 

direction is established from the model and, subsequently, the appropriate step length is 

calculated. Contrary to line search, trust region approaches first define a maximum step 

size and then simultaneously compute the distance and direction that result in the biggest 

objective function decrease (Nocedal and Wright, 2006). 

As previously mentioned, a critical obstacle to the application of Newton’s method 

and its line search and trust region modifications emerges as the Hessian matrix must be 

invertible. If the Hessian is not positive definite at an iteration point, there is no invertibility 

guarantee. In addition, it may be impossible to formulate the Hessian explicitly and 
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numerical calculations are frequently computationally expensive. Quasi-Newton methods 

overcome this problem by replacing the true Hessian with an approximation which is 

typically forced to be symmetric and positive definite. The approximate Hessian is updated 

at every iteration based on gradient changes from previous steps. Rewriting the quadratic 

objective function model (Eq. 3.12) in terms of possible moves to coordinate x and 

substituting the true Hessian Hk by the approximate Hessian Bk: 

 

𝑚𝑘(𝑥) = 𝑓𝑘 + 𝑔𝑘
𝑇(𝑥 − 𝑥𝑘) +

1

2
(𝑥 − 𝑥𝑘)

𝑇𝐵𝑘(𝑥 − 𝑥𝑘) (3.19)    

 

Note that since Bk is approximated from the gradient of the objective function, only first-

order derivative information is necessary for implementation of quasi-Newton methods. 

The search direction for quasi-Newton line search algorithms becomes: 

 

𝑝𝑘 = −𝐵𝑘
−1𝑔𝑘  (3.20)    

 

There are several distinct approaches to updating 𝐵𝑘
−1

. A very popular quasi-Newton 

update is known as the BFGS (Broyden–Fletcher–Goldfarb–Shanno) formula, proposed in 

works published by the four authors in 1970 (Fletcher, 1987).  

The BFGS approximate Hessian update is employed in many contemporary 

optimization algorithms. In Table 3.1, L-BFGS-B (Byrd et al., 1995) is the first 

optimization strategy considered for solving the two main optimization problems in this 

dissertation. L-BFGS-B is a quasi-Newton optimization method abiding by the BFGS 

Hessian approximation. The preceding “L” refers to storing a limited memory, smaller 

dimension (low-rank) BFGS matrix at each update to alleviate computational 
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requirements. The succeeding “B” indicates that the algorithm can handle bound 

constraints, imposing lower and upper limits on each design variable. As described by Byrd 

et al. (1995), L-BFGS-B establishes search directions complying with the specified bounds 

by minimizing the quadratic model with respect to variables that are not actively 

constrained (held at the bounds) and then performs a line search to determine the 

appropriate step length. 

Next in Table 3.1, the trust region reflective (TRF) algorithm was designed for 

bound-constrained nonlinear optimization problems by solving the first-order optimality 

conditions formulated in Branch et al. (1999). Instead of computing the exact, yet 

computationally expensive, trust region step that minimizes the quadratic model, TRF 

approximates the optimal step by only considering two possible directions of movement 

(low-dimensional subspace) as suggested by Byrd et al. (1988). The directions considered 

vary depending on whether the Hessian approximation is positive definite. If that is indeed 

the case, the steepest descent (−𝑔𝑘) and quasi-Newton (−𝐵𝑘
−1𝑔𝑘) directions compose the 

explored subspace. Otherwise, corrections to the quasi-Newton direction are applied. 

TRF’s scipy.optimize (Oliphant, 2007) implementation is restricted to least-squares 

problems, so this method is only applied to analytical ROP model fitting (Section 3.2). 

Unlike the two previous gradient-based algorithms, sequential least-squares 

programming (SLSQP) can handle bound, equality and inequality constraints (Kraft, 

1988). SLSQP also employs a quadratic model approximation to define search directions, 

but it does so with the Lagrangian as the objective function in order to tackle additional 

constraints. Updates to the approximate second-order derivative of the Lagrangian are 

analogous to BFGS updates, and line search is performed to determine the optimal step 

length. SLSQP’s ability to manage inequality and equality constraints is a major advantage 

in optimizing drilling operational parameters. 
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3.1.2. Direct Search Optimization 

Complex objective functions can be non-smooth, possessing non-differentiable and 

sometimes even discontinuous segments. In such intricate optimization problems, the 

gradient is not defined in the entire objective function’s domain and gradient estimation 

techniques such as finite difference will fail miserably around discontinuous sections. 

Therefore, even though derivatives provide knowledge about the rate of change and 

curvature of a function, a second class of optimization methods do not utilize any gradient 

information and rely solely on function evaluations. Some authors refer to them as 

derivative-free methods. Others, such as Powell (1994, 1998) and Kolda et al. (2003), label 

them direct search methods. The latter denomination is utilized in this study; it is preferred 

since it is more descriptive of the nature of these algorithms, which operate by broadly 

sampling the objective function and implementing heuristics to locate improved function 

values. 

According to Powell (1998, 2007), the Nelder-Mead (Nelder and Mead, 1965) or 

downhill simplex algorithm is one of the most popular direct search methods for 

unconstrained optimization problems. A n-dimensional simplex is a n-polytope given by 

the smallest convex set that encloses its n+1 vertices. In simpler terms, simplices extend 

the concept of a triangle to any dimensions. Hence, simplices are triangles in two-

dimensional spaces and tetrahedrons in three-dimensional spaces. Unconstrained 

determination of optimal WOB, RPM and flow rate values to drill a well section as fast as 

possible is a three-dimensional problem. When solving it with the Nelder-Mead method, 

the algorithm starts with an initial simplex (in this case, a tetrahedron) and evaluates the 

objective function (ROP model) at its vertices. At each iteration, update rules adjust the 

vertex with the least desirable function value (lowest ROP) and produce a new simplex. 
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Simplices can elongate or contract according to local objective function behavior, aiming 

to converge towards the optimal value.  

COBYLA (Powell, 1994), or constrained optimization by linear approximation, is 

also based on the concept of simplices. However, instead of only considering the worst 

objective function value at one of the simplex’s vertices in each iteration, COBYLA uses 

all vertices’ function evaluations to construct a linear polynomial that best approximates 

the objective function locally. Then, the linear polynomial is minimized based on 

information about its derivative and a trust region radius to find a new vertex with improved 

objective function value. Note that the derivative of the linear model is utilized, but not the 

derivative of the true objective function. Constraints are introduced by a merit function 

which adds penalties to constraint violations to the original objective function, in a similar 

manner to Lagrange’s method. Newly obtained vertex coordinates must reveal a lower 

merit function piecewise linear approximation value than the previous optimal, ensuring 

that constraints are satisfied. 

Basin-hopping (Wales and Doye, 1997) combines local optimization operations, 

performed by an optimization algorithm of choice (such as the ones described above and 

in the previous section), with a Monte Carlo global stepping algorithm. By introducing 

randomness and possibly accepting a move that worsens the objective function value, 

basin-hopping strives to locate the global optimum rather than remaining stuck at local 

optima. Each local search is preceded by a stochastic (random) perturbation and local 

minima coordinates are accepted according to the Metropolis criterion if less optimal than 

the current global optimum. Local optimization can be achieved by either gradient-based 

or direct search methods, depending on user specification. For the drilling optimization 

problems in this dissertation, the COBYLA algorithm was chosen as the local minimization 

procedure for basin-hopping based on performance and ability to handle constraints.  
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Particle swarm optimization (Kennedy and Eberhart, 1995), or PSO, is a member 

of swarm intelligence procedures inspired by biological systems in nature. The method 

carries a number of possible solutions (particles) that communicate with each other, 

iteratively updating their position and velocity towards an improved solution. PSO enforces 

constraints by only storing feasible solutions in the particles’ memories. Particles are 

initialized in the feasible space with random position and velocity and eventually converge 

to the optimal solution, as exemplified in the figure below for the ROP maximization 

problem: 

 

 

 

Figure 3.1: ROP maximization by WOB and RPM adjustment with the particle swarm 

optimization algorithm. Blue dots are particles, black arrows represent 

particles’ velocities and the yellow star indicates the optimal ROP solution. 

The left plot in Fig. 3.1 represents the randomly initialized PSO particles at the beginning 

of the optimization process and the plot on the right displays convergence towards the 

optimal ROP value. PSO has been applied with relative success to B&Y ROP model fitting 

by Anemangely et al. (2017) and to optimization of drilling parameters in the works of 

Gandelman (2012), Self et al. (2016) and Hegde and Gray (2018). This population-based 

approach shares similarities with other evolutionary optimization methods applied in 
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drilling optimization, such as the genetic algorithm (Bahari et al., 2008) and the shuffled 

frog leaping algorithm (Yi et al., 2014). 

Finally, brute force search evaluates the objective function with every possible 

combination of parameters within a pre-defined grid. This methodology is the only one that 

always guarantees a global optimal solution given a fine enough grid. However, without 

any clever heuristics on objective function sampling, computational requirements for 

searching through every single feasible alternative can be extremely demanding. Thus, 

real-time application of this optimization strategy may prove computationally prohibitive. 

3.2. ANALYTICAL ROP MODEL FITTING 

ROP model fitting is, in itself, an optimization problem. In this process, model 

coefficients are computed to minimize the difference between data observed on the field 

and values calculated by the model. These differences are commonly referred to as 

residuals: 

 

𝑟𝑖 = 𝑅𝑂𝑃𝐹𝑖𝑒𝑙𝑑,𝑖 − 𝑅𝑂𝑃𝑀𝑜𝑑𝑒𝑙,𝑖   (3.21) 

 

where ri represents the residual for ith data point. Residuals are the main components of a 

loss (or cost) function, the objective to be minimized in a model fitting optimization 

problem. Different loss functions can be enforced, affecting how the ROP model is trained. 

3.2.1. Loss Functions 

Traditionally, the most common cost function in model fitting is represented by the 

sum of the squares of residuals. The optimization’s objective is to minimize such loss: 
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min(∑𝑟𝑖
2

𝑁1

𝑖=1

) = min(∑(𝑅𝑂𝑃𝐹𝑖𝑒𝑙𝑑,𝑖 − 𝑅𝑂𝑃𝑀𝑜𝑑𝑒𝑙,𝑖)
2

𝑁1

𝑖=1

) 

      

       

(3.22)            

 

where N1 is the number of points in the training dataset. The sum of squared differences in 

the equation above is also known as l2 loss. Euclidian distance, or l2-norm, arises from the 

square root of the squared difference between model prediction and measured value at a 

point.  

Suppose ROP can be modeled as a simplistic power-law relationship with WOB: 

 

𝑅𝑂𝑃𝑀𝑜𝑑𝑒𝑙,𝑖 = 3(𝑊𝑂𝐵𝐹𝑖𝑒𝑙𝑑,𝑖)
𝑏
 (3.23) 

  

where b is the WOB exponent that best represents this relation (conforming with 

Bingham’s ROP model nomenclature). As suggested by Bourgoyne et al. (1986), WOB 

exponent values should be bounded between 0.5 and 2. The optimization problem of fitting 

the ROP model in Eq. 3.23 with l2 loss becomes: 

 

min(∑ (𝑅𝑂𝑃𝐹𝑖𝑒𝑙𝑑,𝑖 − 3(𝑊𝑂𝐵𝐹𝑖𝑒𝑙𝑑,𝑖)
𝑏
)

2
𝑁1

𝑖=1

) 

 

subject to     0.5 ≤ 𝑏 ≤ 2                                  

      

       

  (3.24)            

 

In the equation above, the sum of residuals squared is a function of the model coefficient 

b. A conceivable representation of the relationship between l2 loss and WOB exponent b 

values for a number N1 of data points is illustrated as: 
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Figure 3.2: Sum of residuals squared vs. WOB exponent for a simplistic ROP power-law 

model. 

In this hypothetical scenario, ROP has a true linear relationship with WOB (b* = 1), laying 

in the efficient portion of the drilling response curve described by Dupriest and Koederitz 

(2005). From Fig. 3.2, the derivative of the loss function with respect to WOB exponent b 

has a value of zero at the optimal b* for the problem formulated in Eq. 3.24: 

 

𝑑 ∑ 𝑟𝑖
2𝑁1

𝑖=1

𝑑𝑏
|𝑏=𝑏∗ = 0 (3.25)    

 

Equation 3.25 represents the unconstrained first-order local optimality condition 

introduced in Section 3.1 (Eq. 3.3). For the ROP model described in Eq. 3.23, Eq. 3.25 can 

be solved analytically for the optimal coefficient b*. However, this simplistic power-law 

relationship between ROP and WOB is likely not representative of all field drilling 

conditions. A more realistic ROP model includes the effect of additional drilling 
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parameters. Rewriting the modified B&Y model (Section 2.3.2) in terms of θ parameters 

(ML model coefficients’ customary notation): 

 

𝑅𝑂𝑃 = 𝜃1𝐷
𝜃2𝑊𝑂𝐵𝜃3𝑅𝑃𝑀𝜃4𝑞𝜃5 (3.26)    

 

The unconstrained stationarity condition for the above model is given by the gradient of 

the squared sum of residuals with respect to the five θ model coefficients: 

 

∇𝜃 ∑𝑟𝑖
2

𝑁1

𝑖=1

=
𝜕 ∑ 𝑟𝑖

2𝑁1
𝑖=1

𝜕𝜃𝑗|𝑗=1
5 =

[
 
 
 
 
 
 
 
 
 
 
 
 𝜕 ∑ 𝑟𝑖

2𝑁1
𝑖=1

𝜕𝜃1

𝜕 ∑ 𝑟𝑖
2𝑁1

𝑖=1

𝜕𝜃2

𝜕 ∑ 𝑟𝑖
2𝑁1

𝑖=1

𝜕𝜃3

𝜕 ∑ 𝑟𝑖
2𝑁1

𝑖=1

𝜕𝜃4

𝜕 ∑ 𝑟𝑖
2𝑁1

𝑖=1

𝜕𝜃5 ]
 
 
 
 
 
 
 
 
 
 
 
 

|𝜃=𝜃∗ = 0 

     

      

 

 

 

 

  (3.27)    

 

where subscript j represents each of the θ1 through θ5 parameters. This system of equations 

can be difficult to solve, and most solvers compute a numerical solution iteratively as 

described in Section 3.1. 

As another popular alternative, the model fitting loss function can invoke the 

absolute difference between field data and modeled values: 

 

min(∑|𝑟𝑖|

𝑁1

𝑖=1

) = min(∑|𝑅𝑂𝑃𝐹𝑖𝑒𝑙𝑑,𝑖 − 𝑅𝑂𝑃𝑀𝑜𝑑𝑒𝑙,𝑖|

𝑁1

𝑖=1

) 
(3.28) 
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Fitting a model with the absolute difference (l1-norm) cost function improves robustness 

to data outliers. With l2 loss, substantial differences between modeled values and measured 

data are amplified by the squared relationship, causing the model to excessively adjust to 

outliers. On the other hand, l1 loss solutions are frequently less stable, oscillating 

considerably. Furthermore, the absolute value function is not continuously smooth, as its 

derivative is not defined at zero. An additional loss function option is given by the Huber 

norm (Huber, 1964), which implements squared difference cost for small residual values 

and absolute difference cost after residuals grow past a pre-defined distance: 

 

𝐿𝐻,𝑖(𝑟𝑖, 𝛿) = {

𝑟𝑖
2

2
⁄                    if |𝑟𝑖| ≤ 𝛿

𝛿|𝑟𝑖| − 𝛿2

2⁄       if |𝑟𝑖| > 𝛿
 

(3.29) 

 

where LH,i is the Huber loss for ith data point and δ is a distance parameter governing the 

transition from quadratic to absolute difference penalties. This loss function approach 

combines advantages from both l1 and l2 losses: the derivative is defined in the entire 

function’s domain and data outliers are not overly dominant. Again, the model fitting 

optimization problem is related to minimizing residuals: 

 

min(∑𝐿𝐻,𝑖

𝑁1

𝑖=1

)

= min(∑{
(𝑅𝑂𝑃𝐹𝑖𝑒𝑙𝑑,𝑖 − 𝑅𝑂𝑃𝑀𝑜𝑑𝑒𝑙,𝑖)

2

2
⁄                    if |𝑟𝑖| ≤ 𝛿

𝛿|𝑅𝑂𝑃𝐹𝑖𝑒𝑙𝑑,𝑖 − 𝑅𝑂𝑃𝑀𝑜𝑑𝑒𝑙,𝑖| −
𝛿2

2⁄           if |𝑟𝑖| > 𝛿

𝑁1

𝑖=1

) 

 

 

 

(3.30) 

 

Comparing the three possible loss functions with residuals for a generic ROP model 

fitting problem: 
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Figure 3.3: ROP residuals and resulting l1, l2, and Huber loss function values. 

In Fig. 3.3, l2 loss (orange) is quadratic throughout and grows much faster than the other 

two cost functions as residual values increase. Huber loss (gray) behavior is controlled by 

the δ parameter. Note that the l1 loss (blue) derivative is not defined at zero. Section 5.2 

explores the choice of cost function between l1, l2 and Huber losses in analytical ROP 

model fitting for the dataset investigated in this study. 

3.2.2. Performance Metrics 

Error metrics related to both l1 and l2 loss functions will be reported for analytical 

and ML ROP models. First, absolute error is defined by normalizing the absolute difference 

between modeled and measured values at each data point by the ROP value observed on 

the field and then averaging these values for the entire test set: 

 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 =
1

𝑁2
∑

|𝑅𝑂𝑃𝐹𝑖𝑒𝑙𝑑,𝑗 − 𝑅𝑂𝑃𝑀𝑜𝑑𝑒𝑙,𝑗|

𝑅𝑂𝑃𝐹𝑖𝑒𝑙𝑑,𝑗

𝑁2

𝑗=1

 (3.31) 
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where N2 is the number of points in the test dataset. Note that model error is evaluated on 

a test dataset (N2), different from the training dataset (N1) utilized in model fitting. 

The square root of the mean of squared residuals yields RMSE (root-mean-squared-

error), a useful metric with the same units as the quantity being modeled:  

 

𝑅𝑀𝑆𝐸 = √
1

𝑁2
∑(𝑅𝑂𝑃𝐹𝑖𝑒𝑙𝑑,𝑗 − 𝑅𝑂𝑃𝑀𝑜𝑑𝑒𝑙,𝑗)

2

𝑁2

𝑗=1

 
      

  (3.32) 

 

One substantial disadvantage of RMSE as an error standard is that RMSE is a relative 

measurement, incapable of quantifying error significance without knowledge of the 

quantity mean. Suppose the RMSE of a ROP model in a certain formation is 10ft/hr. If the 

average ROP in that formation is 200ft/hr, then the model predicts ROP with only 5% error 

on average. However, if the same RMSE value is observed in a formation with an average 

ROP of 20ft/hr, it will represent 50% mean error. Therefore, in order to compare RMSE 

across different formations in a meaningful scale, the author proposes normalizing it by the 

mean ROP in the test dataset: 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑀𝑆𝐸 =
√

1
𝑁2

∑ (𝑅𝑂𝑃𝐹𝑖𝑒𝑙𝑑,𝑗 − 𝑅𝑂𝑃𝑀𝑜𝑑𝑒𝑙,𝑗)
2𝑁2

𝑗=1

1
𝑁2

∑ 𝑅𝑂𝑃𝐹𝑖𝑒𝑙𝑑,𝑗
𝑁2
𝑗=1

 
 

(3.33) 

 

In this dissertation, analytical and ML ROP model performance is computed by Eqs. 3.31 

and 3.33 (in percentages).  
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3.3. SELECTION OF OPTIMAL DRILLING PARAMETERS 

Pastusek et al. (2016) stated that modern autodrillers control the rotation speed of 

the drawworks drum to maintain ROP, WOB or mud motor differential pressure setpoints. 

The controller accounts for drum diameter, number of drilling line wraps on the drum, 

number of lines strung through the crown and traveling block sheaves, and drum speed in 

order to limit ROP. Alternatively, it rotates the drum as fast as possible (for highest ROP) 

while satisfying other constraints. Separately, the top drive adjusts drillstring rotational 

speed for the desired RPM. In a subsequent paper, Pastusek et al. (2018) noted an ongoing 

goal of developing a new penetration per revolution control mode for autodrillers that 

corrects ROP according to drillstring and mud motor RPM changes. Drilling fluid 

circulation rate is controlled by the stroke rate and liner size of the rig pumps. The 

controllers described yield three real-time drilling optimization design variables: WOB, 

RPM and mud flow rate.  

As illustrated in the opening chapter, optimization of drilling parameters is 

performed by solving an objective function subject to some constraints (see Fig. 1.1). One 

example of a drilling objective function implemented in ExxonMobil’s Drilling Advisory 

System (Eq. 1.4, extracted from Payette et al., 2015) includes both MSE and an estimation 

of torsional vibrations severity in its formulation. The approach presented here assumes 

that the range of operational drilling parameters established by the constraints prevents 

excessive vibrations or other drilling dysfunctions, simplifying the problem’s objective to 

ROP maximization with respect to the three controllable surface variables: 
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max
𝑊𝑂𝐵,𝑅𝑃𝑀,𝑞

𝑅𝑂𝑃 = − min
𝑊𝑂𝐵,𝑅𝑃𝑀,𝑞

(−𝑅𝑂𝑃) = − min
𝑊𝑂𝐵,𝑅𝑃𝑀,𝑞

(−𝑓(𝐷,𝑊𝑂𝐵,𝑅𝑃𝑀, 𝑞)) 

 

subject to     𝑊𝑂𝐵𝑚𝑖𝑛 ≤ 𝑊𝑂𝐵 ≤ 𝑊𝑂𝐵𝑚𝑎𝑥                                               

                             0 ≤  𝑅𝑃𝑀 ≤ 𝑅𝑃𝑀𝑚𝑎𝑥 

                           𝑞𝑚𝑖𝑛 ≤ q ≤ 𝑞𝑚𝑎𝑥  

                                 0 ≤ 𝑇 ≤ 𝑇𝑚𝑎𝑥 

 

0 ≤  
𝑅𝑃𝑀 × 𝑇

5252
≤ 𝑃𝑇𝐷                   

 

0 ≤
𝑞 × 𝑆𝑃𝑃

1714
≤ 𝑃𝑝𝑢𝑚𝑝           

      

       

      

 

      

 

  

 

 

  (3.34)            

 

Optimization problems are generally formulated in terms of minimizing an objective 

function, as discussed in Section 3.1. ROP maximization is achieved by minimizing -ROP 

and applying a sign change to the result. 

Downhole tools’ ratings, hydraulics, and rig equipment power limitations constrain 

the drilling process. Constraints for selection of optimal drilling parameters in Eq. 3.34 are: 

 

• WOB must remain within the bit manufacturer’s specified operating range 

• RPM is limited by rotational speeds that do not damage BHA components 

• Flow rate is bounded between the minimum required for adequate hole cleaning 

and a maximum which does not cause BHP to exceed formation fracturing pressure 

• Surface torque must not exceed drillpipe make-up torque rating 

• Top drive power is split between surface torque and drillstring rotational speed  

• Total horsepower provided by all rig pumps produces a trade-off between drilling 

mud flow rate and standpipe pressure (SPP) at surface 
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Torque is not controlled directly, but rather monitored as function of WOB via bit 

aggressiveness. Rewriting Eq. 1.7 for torque: 

 

𝑇 =
𝜇𝑏𝑊𝑂𝐵𝑑𝑏

3
(

ft

12in
) =

𝜇𝑏𝑊𝑂𝐵𝑑𝑏

36
 (3.35) 

 

where the bit aggressiveness μb, dependent on lithology, relates weight on bit and arm of 

torque to the amount of torque obtained.  

The optimal parameter selection problem in Eq. 3.34 does not encompass all field 

drilling constraints. It provides a starting point with basic constraints and supplementary 

functionality may be added as needed.  Pressure control, not explicitly formulated in the 

constraints, is paramount in drilling. However, accurate information about the pore 

pressure and fracture gradient drilling window and a realistic hydraulics model to forecast 

downhole pressures are fundamental requirements to effectively control surface and well 

pressures. Thus, mud flow rate serves as a proxy for pressure oversight and SPP is kept at 

average field values.  

Performance of a drilling optimization simulation is measured by its ability to 

achieve high ROP as predicted by an accurate model. The type of ROP model employed 

in the objective function significantly influences the appropriate selection of optimization 

algorithm. With the simplistic power-law ROP model in Eq. 3.23, bit weight is easily 

optimized by computing the model’s derivative with respect to WOB: 

 
𝑑𝑅𝑂𝑃

𝑑𝑊𝑂𝐵
= 3𝑏(𝑊𝑂𝐵𝐹𝑖𝑒𝑙𝑑,𝑖)

𝑏−1
   (3.36) 

 

Setting Eq. 3.36 equal to zero defines the first-order unconstrained optimality condition. 

With more complex ROP models, optimization becomes harder. There is no ideal 
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optimization methodology for every situation, since optimization algorithm efficiency 

depends on the ROP model designated in the objective function. Gradient-based and direct 

search techniques introduced in Section 3.1 are explored in optimizing drilling parameters 

with both analytical and ML ROP models. It is important to remember that some 

optimization methods presented earlier only handle design variable bound constraints. 

SLSQP, COBYLA, basin-hopping and PSO are the algorithms in Table 3.1 that can 

account for rig equipment power limitations. 

Analytical ROP models described in Section 2.3 are formulated as closed-form 

equations. Even if their gradients with respect to WOB, RPM and flow rate cannot be 

written out explicitly, finite difference gradient estimation techniques can approximate 

them accurately. Hence, analytical ROP models are expected to be conducive to 

optimization with gradient-based techniques. When performed with the method of 

Lagrange multipliers (such as in SLSQP), gradient-based ROP maximization has the major 

benefit of revealing active drilling constraints. This is a direct result of the complementary 

slackness KKT condition (Eq. 3.9), which suggests that Lagrange multipliers are only 

nonzero for active constraints at a local optimum. Information about active constraints is 

crucial in redesigning drilling tools and processes or upgrading rig equipment to extend 

ROP performance limits. If analytical ROP models represent convex functions, global 

optimal drilling parameters can be determined with cheap computational power. The 

geometric interpretation of a convex function is that the chord between any two points lies 

above its graph (Boyd and Vandenberghe, 2004). Bingham (1964), modified Bourgoyne 

and Young, and Motahhari et al. (2010) ROP models can be shown to be convex. Inequality 

constraints in Eq. 3.34 are also in convex form, yielding a convex program with convex 

ROP model objective. In a convex program, a local optimum is the global optimum, and 

the KKT conditions are sufficient for local (and global) optimality. Out of the four 
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analytical models in Section 2.3, only B&Y (and its modified version proposed for real-

time drilling optimization) accounts for and is capable of optimizing mud flow rate.  

Machine learning ROP models (Section 2.4) are not characterized by a closed-form 

equation. Due to segmentation of the parameter space (Fig. 2.10), ML models’ gradients 

are difficult to approximate, and efficient optimization of drilling parameters likely 

demands direct search methods. Direct search optimization requires many objective 

function evaluations and is possibly computationally intractable in real-time. Gradient-

based and direct search optimization algorithms will be assessed in terms of computational 

efficiency and finding operational drilling parameters that lead to the highest ROP 

improvements with both analytical and ML ROP models. Python’s scipy.optimize 

(Oliphant, 2007) and pyswarm (Lee and Castillo-Hair, 2013) packages will be employed, 

facilitating coding of objective functions and constraints. 
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Chapter 4: Drilling Data: Measurements, Processing and Williston 

Basin Dataset 

ROP models presented in Chapter 2 are trained to reproduce drilling behavior from 

field data measured during drilling operations. Knowledge of biases and sources of error 

in data recording, processing and transmission establishes a vital foundation for ROP 

modeling. Data quality profoundly impacts a model’s ability to predict accurate responses. 

The biggest assumption in building effective models is that the data correctly capture 

measured quantities and can be trusted. Unfortunately, this is often not the case with 

drilling data. WOB data are the biggest source of error in ROP modeling. Studies in the 

literature indicate as much as 100% WOB measurement error in certain wells (Kolnes et 

al., 2007). In this chapter, rig drilling data workflows and data filtering techniques are 

discussed. Section 4.3 describes the dataset analyzed in this dissertation, a vertical portion 

of a Bakken shale horizontal well in North Dakota’s Williston Basin. 

4.1. DRILLING DATA WORKFLOWS 

Accelerometers, gyroscopes, magnetometers, strain gauges, pressure transducers 

and temperature sensors measure drilling data both at surface and downhole (Baumgartner 

and van Oort, 2015). Each sensor carries its own particular sources of error. ROP is 

typically measured at the surface from the traveling block height derivative. ROP 

measurements can be severely influenced by pipe stretch due to tension and compression 

of the drillstring (Xu et al., 1995). Surface WOB is not measured directly, but rather 

computed relatively from hookload measurements. The reference hookload is obtained at 

the beginning of drilling each pipe stand when the drillstring is rotating freely off-bottom 

(stable torque signal) and the pumps are at full speed. This WOB zeroing, or taring, 

procedure subtracts the buoyed drillstring weight and both mechanical and hydraulic 
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friction forces at current drilling conditions from the hookload indicator. It must be 

repeated after connecting every stand of pipe to the drillstring, since weight and friction 

datum change as the well is drilled deeper. WOB at surface is given by the reduction in 

reference hookload as the bit exerts pipe weight axial force onto the rock formation.  

Florence and Iversen (2010) describe four separate techniques of measuring 

hookload: the earliest and still most common diaphragm-type hydraulic weight indicator 

clamped onto the deadline, a similar electrical clamp-on sensor, compression load cells 

(hydraulic or electrical) in the deadline anchor, and strain gauge load pins underneath the 

traveling block. All four methodologies are influenced by external factors such as 

temperature, friction and wear. Weight readings must be calibrated and corrected 

accordingly. As noted by Cayeux et al. (2015), the only manner to measure hookload 

directly is through an instrumented internal blow-out preventer in the top drive. However, 

not many contemporary top drives are equipped to measure hookload.  

Surface RPM is usually measured by a magnetic proximity switch. Voltage across 

the sensor is related to top drive current via calibration. The variable frequency drive 

control of the top drive yields a surface torque value, also subject to calibration. Mud flow 

rate is given by the product of pump rate (stroke counter), stroke volume and pump 

efficiency, which is dependent on liner size. It can alternatively be computed by a Coriolis 

flowmeter (Cayeux et al., 2013). Pressure at the surface is measured by a sensor in the 

standpipe, which connects the rig’s mud pumps to the rotary hose. The rotary hose attaches 

to the top drive through the gooseneck, delivering mud circulation to the drillpipe and the 

wellbore. In mud motor drilling applications, the differential pressure across the motor is 

proportional to the downhole RPM and torque generated by the motor. Neufeldt et al. 

(2018) state that mud motor differential pressure obtained at surface is a relative 

measurement based on SPP. Similar to hookload (for WOB measurements), SPP taring 
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must occur frequently, with the bit off-bottom and pumps at full speed, to ensure accurate 

motor differential pressure data. 

There are substantial differences between surface WOB values and the weight that 

actually reaches the bit downhole. Friction forces created by drillstring contact points with 

the wellbore detract from the reference hookload as drilling progresses, especially in 

deviated wells. Kerkar et al. (2014) describe downhole WOB estimation from surface 

hookload, but several corrections must be applied for friction in the travelling and crown 

block sheaves, wellbore friction, inclination angle, buoyancy factor and differential 

pressure. Measurement-while-drilling (MWD) tools provide direct readings of downhole 

WOB data by placing strain gauges in a sub near the bit. Downhole torque can be measured 

in the same manner. Strain gauge measurements are highly affected by temperature and 

can be hard to calibrate (Baumgartner, 2017). Gyroscopes and magnetometers measure 

downhole RPM and vibrations. Baumgartner (2017) reports that a large amount of useful 

downhole data is readily discarded due to filtering and averaging techniques designed to 

cope with sensor memory and transmission bandwidth limitations, hampering investigation 

of high-frequency downhole drilling dynamics. 

Mud pulse telemetry has been the industry’s preferred method of downhole data 

transmission to surface for several years. Even with modern technology, pressure pulses in 

the drilling fluid are affected by mud properties, flow rate and drillstring vibrations. Signal 

processing algorithms are required to convert data to pressure pulses downhole and back 

to digital data at surface, adding a second filtering layer to downhole data. Bandwidth of 

mud pulse telemetry systems is limited to slightly over 6 bits/sec (Emmerich et al., 2015), 

a data rate too slow for real-time drilling optimization. Pink et al. (2011) reported 

successful implementation of several vibration and downhole RPM sensors along the 

drillstring to diagnose drillstring dynamics issues. These applications were still limited to 
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post-drilling analysis, as the data were recorded in tool memory. The project eventually 

evolved into NOV/IntelliServ wired pipe deployments that measure downhole data at 

multiple points in the drillstring and can reach bandwidths of 57,000 bits/sec (Coley and 

Edwards, 2013). Craig and Adsit (2014) described wired pipe field experience in over 100 

wells and Shishavan et al. (2016) demonstrated that it is possible to design a pressure and 

ROP controller for well control and drilling optimization with high-speed wired pipe 

downhole data. This technology shows promise for utilization of downhole data in real-

time drilling optimization, but it is still cost-prohibitive in most plays. After data reaches 

the surface, current WITSML (Wellsite Information Transfer Standard Markup Language) 

data transfer at the rig is limited to 1Hz frequency (Behounek et al., 2017a). WITSML rig 

data can be moved to more powerful computers via the internet for further analysis. 

Nonetheless, the drilling optimization scheme derived in this dissertation works with basic 

rig-site computers and data measured at the surface, resulting in as little delay as possible 

to implementation of optimal operational drilling parameters. 

Dividing drilling parameters from the four analytical ROP models described in 

Section 2.3 into three different data workflow categories: 
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Table 4.1: Drilling variables for four analytical ROP models divided into data types. 

 
 

Bit design properties are set in the planning phase of a well and remain constant throughout 

a bit run. Drilling fluid properties are placed in a category of their own – mud additives can 

be introduced at surface to affect density and viscosity but will require some time to alter 

properties in the entire circulating system. Depth, WOB, RPM, and flow rate are variables 

measured at surface and always accessible for ROP prediction in modern rigs. Downhole 

parameters such as equivalent circulating mud density (ECD) and an estimation of rock 

strength (via sonic transit times) may be available depending on bottomhole assembly 

configuration. However, low-frequency mud pulse telemetry downhole data is not 

appropriate for real-time applications and wired pipe technology does not prove itself 
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economical in most plays. Bit wear and pore pressure gradient cannot be directly measured 

in real-time with current technology. 

Table 4.1 serves as a starting point for deciding which variables should be included 

in machine learning (ML) ROP models. By intuition, ML algorithms should consider the 

same drilling features as analytical models. For real-time systems, surface parameters are 

emphasized since they are readily available in all contemporary drilling data workflows. 

As previously described, drilling optimization applications with downhole parameters have 

questionable practicability in real-time due to limited data transmission rates and several 

inherent filtering processes. Thus, depth, WOB, RPM and flow rate surface measurements 

will constitute the basis for analytical and machine learning ROP model inputs in this 

dissertation. Hypothesis testing (Section 5.1) can confirm the statistical importance of these 

variables in relation to ROP. 

4.2. DATA QUALITY AND SIGNAL PROCESSING 

Raw drilling field data are typically plagued by sensor calibration and malfunction 

issues along some drilled intervals. Additional measurement inaccuracies may result from 

tracking, represented by correlated errors at adjacent data points in a time series (James et 

al., 2013). Ensuring good drilling data quality is a crucial first step in obtaining a relevant 

and effective ROP model. As mentioned in the beginning of this chapter, WOB data 

(derived from hookload measurements) propagate substantial errors to ROP modeling. 

Cayeux et al. (2013) propose equations to correct for the biggest sources of hookload error: 

mud hose and umbilicals weights, hoisting system horizontal movement, and sheave 

friction. Kyllingstad and Thoresen (2018) suggest improvements to reference hookload 

readings by accounting for buoyancy, nozzle jet lift, cuttings loading downhole and choke 

back pressure, among other factors. In addition to all these error sources, wellbore 
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inclination significantly affects WOB measurements due to friction in pipe-wellbore 

contact points.  

Behounek et al. (2017b) state that the Operators Group for Data Quality (OGDQ) 

is pursuing industry standards for sensor calibration and minimum data quality 

requirements. In the latest IADC/SPE Drilling Conference, held in March 2018, several 

presented papers focused on improving drilling data quality. Behounek et al. (2018) 

discussed further objectives for OGQD and divided issues with drilling data quality into 

five categories: systematic, measurement, conversion, calculation and propagation. 

Kyllingstad and Thoresen (2018) and Neufeldt et al. (2018) concentrated on WOB data 

quality enhancement. The latter study, published by employees from rig data management 

company Pason, is extremely alarming in regard to field practices related to drilling data. 

Previously discussed in Section 4.1, WOB taring (zeroing) provides a reference hookload 

for every pipe stand drilled and is a crucial part of the WOB measuring process. In a study 

performed with data from 40 wells, Neufeldt et al. (2018) discovered that WOB was zeroed 

correctly in only 8% of all drilled stands:  
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Figure 4.1: WOB zeroing distribution for stands in 40 wells, extracted from Neufeldt et 

al. (2018). 

Drillers are occupied with many tasks during operations, such as ensuring the safety of 

crew members and pursuing drilling performance benchmarks. Fig 4.1 suggests that drillers 

may be overloaded, forgetting to tare WOB almost 70% of the time.  

Neufeldt et al. (2018) establish ideal conditions for WOB zeroing: traveling block 

moving downward at the start of each stand’s drilling, a freely rotating drillstring and total 

pump output. Average WOB measurement errors resulting from improper taring are 

reported for the 40 wells in the same study: 
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Figure 4.2: Mean WOB errors caused by improper taring procedures in 40 wells, 

extracted from Neufeldt et al. (2018). 

Fig 4.2 displays substantial data inaccuracy due to inadequate WOB zeroing. Forgetting to 

tare WOB for multiple consecutive stands leads to the worst possible scenario. In fact, the 

experimenters note that 8% of all vertical stands examined displayed WOB errors greater 

than 30%, mostly due to continuous taring oversight. Since pipe weight is progressively 

added to the drillstring without proper correction to the hookload reference, recorded WOB 

values are much higher than actually experienced by the bit. Pipe-wellbore friction in 

lateral sections (orange) slightly compensates for zeroing omissions, so the issue is less 

aggravated than in vertical sections (blue). Manual taring entries by the driller also 

culminate in considerable WOB error. Although small (below 5%), errors are recorded 

even when WOB is zeroed properly. The researchers responsible for this eye-opening study 

developed an algorithm to automatically zero WOB, which will hopefully enhance the 

quality of drilling data in the near future. 

More often than not, drilling data have already undergone some form of filtering 

by the time they are fed as inputs to a model. Several studies have investigated 
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implementation of data filtering techniques to improve the quality of drilling data. Xu et 

al. (1995) utilized boxplots for detection of data outliers. Kolnes et al. (2007) developed a 

data quality module that combines multiple readings and physics-based models to validate 

measurements. Lohne et al. (2008) described automated calibration of real-time drilling 

models with an unscented Kalman filter. Ambrus et al. (2013) applied Bayesian network 

methods for data validation, noting that all downhole measurements are susceptible to 

torsional vibrations. Ashok et al. (2016) expanded on this work and presented an entire 

workflow for data quality assurance, emphasizing on relational redundancy where models 

can validate data.  

An essential distinction must be made between time-based and depth-based data 

for real-time drilling optimization. With raw time-based data, a low-pass filter may be 

applied to remove high-frequency noise. Alternatively, Kalman filters are a popular choice 

to smooth out unstable data spikes. The drilling dataset utilized in this dissertation is depth-

based. Therefore, drilling parameter measurements have already been averaged out in 

depth intervals determined by the service company that collected the data. Frequency-

based filtering is not appropriate since the sampling frequency is discontinuous and 

unknown. Hence, the data filtering strategy adopted with the Williston Basin depth-based 

dataset, described in the next section, is to remove data outliers in an equivalent manner to 

boxplot filtering discussed by Xu et al. (1995).  

4.3. WILLISTON BASIN DATASET 

The dataset analyzed in this study consists of depth-based surface data collected in 

the vertical portion of a horizontal Bakken shale well in the Williston Basin, North Dakota. 

This vertical well segment was drilled with an 8-3/4in Smith 616 PDC bit (six blades, 16mm 

cutters) and a five-stage mud motor. The bit was pulled out of the well with IADC dull 
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grading indicating 1/8 wear in the inner cutter rows, 2/8 wear in the outer rows, and chipped 

and worn cutters in the shoulder area. These values reveal a fractional cutter wear average 

of 0.1875 (1.5/8). Drilled through 4,873ft of rock, the interval spans nineteen formations 

with varying thickness and average ROP: 

Table 4.2: Nineteen rock formations included in the Williston Basin dataset. 

 
 

In Chapter 5, a different set of empirical analytical model coefficients is calculated for each 

formation in the table above, maintaining the traditional ROP modeling lithology 

dependence assumption. Similarly, ML ROP models are trained individually for each 

formation. The wide range of formations’ vertical lengths and amount of data collected 

adds value to experiments through evaluation of ROP model performance in varying 

stratigraphic conditions. Shallower formations encompass less measured data points due to 

high drilling speeds, and ROP modeling may be affected by lower sampling rates. Error 

metrics presented in Section 3.2.2 are weighted by both vertical length and number of data 

points in a formation.  
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This depth-based dataset had already been processed by the operator and/or service 

company, although no clear depth or time intervals can be detected (as evidenced by the 

last two columns of Table 4.2). Sampling irregularities were probably caused by the 

removal of data points containing negative parameter values. Nevertheless, data quality 

was still hampered by sensor malfunction in some segments, yielding unrealistic WOB and 

ROP measurements. ROP and WOB histograms in the Pine Salt Sandstone formation 

exemplify this poor drilling data quality, which must be corrected with data filters:  

 

 

Figure 4.3: Unfiltered (left) and filtered (right) ROP data histograms in the Pine Salt 

Sandstone formation. 

 

 

Figure 4.4: Unfiltered (left) and filtered (right) WOB data histograms in the Pine Salt 

Sandstone formation. 
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Data were filtered by removing samples with ROP or WOB values two standard deviations 

away from the mean in each rock formation, leaving 7,079 data points for analysis. By 

removing only 18 out of 819 (2.2%) data points collected in the Pine Salt Sandstone 

formation, the histograms on the right-hand side of Figs. 4.3 and 4.4 appear much more 

realistic.  

Referring back to Table 4.1, depth, WOB, RPM and mud flow rate are operational 

parameters constantly measured at surface while drilling. Analytical ROP modeling 

equations require additional drilling parameters as inputs. Rock properties for each 

formation were derived from the operator’s proprietary hydro-mechanical specific energy 

model. Mud density (10ppg) and viscosity (16cP) provided in hydraulics reports are 

assumed to be constant throughout the interval, and ECD is set equal to static mud weight. 

As revealed earlier in this section, the 4,873ft-long well segment in question was drilled 

with an 8-3/4in Smith 616 PDC bit containing 56 total (18 backup) 16mm (0.63in) cutters 

and six 12/32in nozzles (TFA = 0.66in2). After drilling the interval, the bit was pulled out of 

the hole exhibiting IADC dull grading fractional cutter wear average of 
∆ℎ̅̅ ̅̅

8
 = 0.1875. The 

wear function defined by Eq. 2.26 (Section 2.3.4) linearly reduces drilling efficiency with 

depth until it reaches 1 −
∆ℎ̅̅ ̅̅

8
 at the end of the bit run. Lastly, PDC bit cutter design 

parameters include backrake and siderake angles: 
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Figure 4.5: Representation of a single PDC cutter with siderake angle α and backrake 

angle θ. Previously published in Soares et al. (2016). 

PDC cutters’ backrake and siderake angles are proprietary information. A backrake of 10 

degrees and a siderake of 30 degrees were established as inputs for the Hareland and 

Rampersad (1994) PDC bit model based on the work of Rajabov et al. (2012) (see Soares 

et al., 2016). Number of PDC cutters and cutter diameter were obtained from the 

manufacturer’s catalog (SHARC, 2015). Table 4.3 summarizes PDC cutter design 

properties utilized in ROP model training: 

Table 4.3: Given and inferred PDC cutter design properties for 8-3/4in Smith 616 PDC 

bit. 

 
 

Constraints for the drilling parameter selection problem (Section 3.3, Eq. 3.34) are 

determined based on equipment limitations (when supplied) and actual drilling data 
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measurements. The manufacturer’s recommended WOB operating values for Smith 616 

PDC bits range from 3.5klbf to 30klbf (SHARC, 2015), but WOB readings in deeper 

sections of this well reach slightly past 35klbf. These WOB values are reasonable when 

accounting for friction, so WOB is constrained to a lower bound of 5klbf and an upper 

bound of 35klbf. In this dataset, surface RPM measurements of up to 80rev/min are 

reported and RPM ratings of downhole tools are not available. Since the well segment was 

drilled with a five-stage mud motor providing 100RPM on average, RPM values are 

bounded between a minimum of 100rev/min and a maximum of 180rev/min to avoid failure 

of downhole tools. Instead of adding uncertainties with hydraulics models and pore 

pressure and fracture gradient estimations (not provided), flow rate is maintained within 

the minimum and maximum values experienced in the training dataset. Drilling mud flow 

rate also conforms to pump power constraints, defined with average SPP values measured 

in drilling the well. Top drive power (800HP), pump power (2x1600HP) and drillpipe 

make-up torque rating (23.8 klbf-ft) are derived from similar drilling rigs operating in the 

Bakken shale region. Torque limits are imposed by determining bit aggressiveness 

(dependent on lithology) from torque and WOB training data. Table 4.4 outlines the 

constraints prescribed for optimization of drilling parameters in this Williston Basin well 

interval: 

Table 4.4: Drilling optimization constraints for Williston Basin dataset. 

 



 

 

 

 

 105 

The constraints listed in Table 4.4 are utilized for drilling parameter optimization 

throughout this dissertation. Flow rate and SPP bounds vary depending on the training data 

segmentation technique employed in ROP model fitting.  
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Chapter 5: Lithology-Dependent Post-Drilling Optimization 

Drilling parameter optimization and ROP prediction studies in the literature 

routinely assume that all data measured when drilling a well have already been recorded 

and are available for examination, in a post-drilling framework. Although evaluation of 

real-time continuous model learning and drilling interval optimization is the main objective 

of this study, post-drilling data analysis presents an opportunity for inspecting and refining 

modeling and optimization processes. These investigations are also vital to establishing 

computational feasibility in real-time. In this chapter, seven experiments are performed 

with all data collected in a vertical segment of a Bakken shale well (Section 4.3) to explore 

modeling and optimization alternatives posed in previous chapters: hypothesis testing for 

machine learning models’ input selection, assessment of analytical model fitting 

techniques, comparison between Bourgoyne and Young ROP model formulations, 

hyperparameter optimization define ML model architectures, cross-validation gauges 

overall model errors, appraisal of drilling optimization methods, and model performance 

variation with incremental training data availability. Average computing times are reported 

for experiments performed with a 7th Generation Intel® Core™ i5 processor @ 2.50GHz 

and 8GB RAM. 

5.1. HYPOTHESIS TESTING 

Hypothesis testing establishes a methodology to confirm the importance of 

operational drilling variables as inputs for machine learning ROP models. Following 

scrutiny of Table 4.1, intuition from analytical ROP model equations and real-time data 

availability indicate that depth, WOB, RPM and flow rate constitute inputs of interest. 

Here, hypothesis testing is applied to validate the statistical relevance of the relationship 

between ROP and such parameters. Assuming a linear model between ROP and WOB:  
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𝑅𝑂𝑃 = 𝜃0 + 𝜃1𝑊𝑂𝐵 + 𝜀   (5.1)  

 

where θ0 is the intercept, θ1 is the slope and ε is an error term. The null hypothesis states 

that the statistical relationship between ROP and WOB is inexistent, meaning that θ1 should 

be equal to (or very close to) zero in the equation above. Hence, the null hypothesis must 

be rejected in order to ratify the relation between ROP and WOB. Frequently, the null 

hypothesis is tested with a t-statistic, which measures how many standard deviations θ1 is 

away from zero. Derived from the t-statistic, the p-value represents the probability of θ1 

being the amount of calculated standard deviations away from zero if the null hypothesis 

was true. In summary, a large t-statistic will lead to a low p-value, implying that θ1 is far 

enough from zero and that there exists a relationship between ROP and WOB, rejecting 

the null hypothesis. This hypothesis testing concept, illustrated in Eq. 5.1 for the 

relationship between ROP and WOB, applies to all other operational drilling features.  

 James et al. (2013) suggest that p-values of 0.01 or 0.05 are common thresholds to 

reject the null hypothesis. Previous hypothesis testing applications in ROP modeling tend 

to be more lenient due to data quality limitations. Driver et al. (2016) describe such process 

in a study that starts out by identifying 27 drilling variables and eventually narrows down 

the final ROP model to the 6 most relevant parameters by eliminating measurements with 

high p-value (greater than 0.55) or multicollinearity. Atwal and Knight (2016) extend the 

previous approach by substituting the weighted average of model coefficients 

(deterministic) by a probability distribution (stochastic). 

Fitting linear models between ROP and each of the proposed relevant variables and 

calculating p-values for all nineteen formations in the Williston Basin dataset presented 

earlier: 
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Table 5.1: Hypothesis testing for the relationships between ROP and depth, WOB, RPM 

and flow rate in nineteen Williston Basin formations. 

 
 

Table 5.1 shows how many formations, out of nineteen total, satisfy the specified p-value 

thresholds. At least half of all formations demonstrate significant statistical relevance in 

the relationships between ROP and depth, WOB and RPM. WOB and depth measurements 

display the strongest connections to ROP. The ROP relation with flow rate falls one short 

of the formation majority with the stringiest p-value cutoffs, likely due to steady mud flow 

rates throughout lithological intervals. Nevertheless, a more tolerant p-value threshold 

identifies drilling fluid flow rate as a relevant variable in ROP prediction, as expected from 

field observations. Depth, WOB, RPM and flow rate will compose ML model inputs based 

on Table 5.1 results, surface data availability and comparability with analytical models. 

5.2. ANALYTICAL ROP MODEL FITTING STRATEGIES 

Experimenters are faced with loss function and optimization algorithm choices 

when determining analytical ROP model coefficients that best fit field data (see Chapter 

3). The objective of model fitting is to find the coefficients which minimize the difference 

between modeled values and the ROP measured on the field. Several researchers have 

investigated different approaches to calculate B&Y ROP model coefficients. The original 

Bourgoyne and Young (1974) publication suggests a multiple regression methodology 

minimizing the sum of residuals squared (l2 loss). Studies published in the literature adhere 

to the l2 cost function, but recommend various optimization algorithms as the best 

alternative to fit B&Y coefficients: trust region interior-reflective Newton method (Bahari 

and Seyed, 2007), genetic algorithm (Bahari et al., 2008), fuzzy system with simulated 
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annealing (Moradi et al., 2010), progressive stochastic optimization (Rahimzadeh et al., 

2011), genetic algorithm followed by neural network (Bahari et al., 2011), Markov Chain 

Monte Carlo simulation (Formighieri and Filho, 2015) and cuckoo optimization algorithm 

(Anemangely et al., 2017). In this section, coefficients for the four analytical ROP models 

presented in Section 2.3 are computed with the trust region reflective and basin-hopping 

implementations in Python’s scipy.optimize (Oliphant, 2007) library and the particle swarm 

optimization algorithm in Python’s pyswarm (Lee and Castillo-Hair, 2013) package. These 

three optimization procedures explore an assortment of strategies, with one gradient-based 

approach in the TRF algorithm and two direct search methods in basin-hopping (with 

COBYLA as the local minimizer) and PSO.  

Table 5.2 displays absolute and normalized RMSE percentage errors obtained with 

the proposed optimization algorithms and the dataset presented in Section 4.3: 

Table 5.2: Model performance of four analytical ROP models in nineteen Williston Basin 

rock formations with varying optimization methods. 
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The 1986 Bourgoyne and Young model formulation (Bourgoyne et al., 1986) was utilized 

for consistency with respect to studies discussed earlier in this section. Particle swarm 

optimization did not converge (DNC) for the Bingham model, likely due to low 

dimensionality. Model performance was identical with TRF and basin-hopping algorithms, 

yielding with same coefficient values. Slightly higher model errors were observed with 

coefficients optimized by the particle swarm algorithm in most instances. Agreement in 

optimal model coefficient values between the two best performing methodologies implies 

that global optimal coefficients were discovered. In basin-hopping, Monte Carlo simulation 

with random perturbations increases the chances of finding a global optimal solution. 

However, the global stepping procedure also demands increased computational expense. 

The average computing time (7th Generation Intel® Core™ i5 processor @ 2.50GHz and 

8GB RAM) to perform 10-fold cross-validation for the four models in each formation was 

15.6 seconds for TRF, 2292 seconds for basin-hopping, and 601 seconds for PSO. Hence, 

the trust region reflective algorithm in Python’s scipy.optimize (Oliphant, 2007) library is 

employed as the standard optimization method to compute analytical ROP model 

coefficients throughout this study. 

Following optimization algorithm selection, three loss function alternatives are 

investigated in ROP model training. Introduced in Section 3.2.2, absolute difference (l1), 

squared difference (l2) and Huber norm cost functions were considered when fitting 

coefficients and model performance was evaluated: 
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Table 5.3: Model performance of four analytical ROP models in nineteen Williston Basin 

rock formations with varying loss functions. 

 
 

The pre-defined residual distance threshold distinguishing between squared difference and 

absolute difference losses for the Huber norm cost function (δ) varied in each formation, 

defined as 10% of the mean test data ROP. As expected, the absolute difference cost 

function reduces absolute error but increases normalized RMSE compared to models 

trained with squared difference loss. Interestingly, Huber loss results in further reduction 

of absolute error and more modest normalized RMSE increase. These results indicate that 

the Huber norm cost function is a reasonable alternative for analytical ROP model fitting, 

especially since the threshold residual distance δ may be manipulated towards a particular 

goal. However, machine learning models are generally trained with squared difference loss. 

In order to conduct performance comparisons with errors achieved by equivalent objectives 

across all models, analytical ROP model coefficients will be fitted with l2 cost function in 

this dissertation.  
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Intuitively, analytical ROP model fitting is conducive to gradient-based 

optimization methods since loss function derivatives with respect to model coefficients are 

accessible. Results in Tables 5.2 and 5.3 support training analytical ROP models with l2 

loss function and the trust region reflective algorithm implemented in Python’s 

scipy.optimize (Oliphant, 2007) library. These choices are optimal from both performance 

and computational efficiency perspectives. 

5.3. BOURGOYNE AND YOUNG MODEL FORMULATIONS 

Model performance for four separate Bourgoyne and Young model formulations is 

investigated: 

 

• Bourgoyne and Young (1974), first set of Eqs. 2.3-2.11 

• Bourgoyne et al. (1986), second set of Eqs. 2.3-2.11 

• Bourgoyne et al. (1986) v2, similar to previous but with HSI as the hydraulics 

parameter (Eq. 2.16 instead of Eq. 2.11) 

• Modified Bourgoyne and Young, Eq. 2.17 

 

Cross-validation errors evaluated with coefficient bounds suggested in Table 2.1 are shown 

below:  
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Table 5.4: Model performance in nineteen Williston Basin rock formations for different 

formulations of the Bourgoyne and Young ROP model. 

 
 

Models were fitted by the TRF algorithm with l2 loss function (Section 5.2). Formation 

average error metrics vary at most 1.5% between all four B&Y equations. Even though the 

novel model performs slightly worse than the two Bourgoyne et al. (1986) formulations in 

overall formation average error, it exhibits the lowest error in an overwhelming majority 

of the nineteen formations. Averaged results are skewed by the two formations with highest 

overall error, where modified B&Y model errors are 4-5% higher than errors for the other 

three formulations. Five empirical coefficients are trained for the new model, in 

comparison to the eight original B&Y model coefficients. Moreover, implementation of 

the modified Bourgoyne and Young model requires only surface drilling parameters. 
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Disregarding pore pressure gradient, ECD and bit wear data without loss of ROP prediction 

accuracy, the proposed modified B&Y model is better suited for real-time applications.  

5.4. HYPERPARAMETER OPTIMIZATION 

Hyperparameters control machine learning models’ architectures and complexity, 

invoking the bias-variance trade-off discussed in Section 2.5.1. Generally, increasing 

model complexity leads to lower bias and higher variance. For the random forests 

algorithm, the number of trees hyperparameter defines the amount of decision tree models 

fitted with random subsets of training data and averaged out when determining the 

response. Variance is reduced with additional trees, as mentioned in Section 2.4.1. 

However, extra trees increase computational expense and do not necessarily result in 

improved model performance.  In addition to fitting trees to different subsets of data (with 

bootstrap sampling), RF only considers a maximum number of variables at each node split 

to further decorrelate trees. Tree nodes split groups of data points into two subgroups 

according to the one variable segmentation that yields the highest error reduction at that 

particular node (a greedy approach). Since depth, WOB, RPM and flow rate are the drilling 

parameters utilized in training ML ROP models, a maximum of four features can be 

considered per split (although the maximum number would cause all variables to be 

examined at all splits, producing more correlated trees and limiting variance reduction). 

RF trees are commonly grown deep, and a third hyperparameter regulates tree depth by 

requiring a minimum number of data points to further split a group. The smaller this 

quantity is, the deeper trees will grow, reducing bias and increasing variance. 

Support vector machines utilize kernel functions to implicitly map input data to a 

higher-dimensional feature space in which separation of groups of data is less troublesome. 

Linear, polynomial (3rd degree) and Gaussian (radial basis) function alternatives are 
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analyzed for the kernel function hyperparameter. As described in Section 2.4.2, SVM’s 

extension to regression defines a region (ε-tube) around model predictions where training 

data points are not penalized (ε-insensitive loss function). Figure 2.11 demonstrates that 

only support vectors, data points that lie on or inside the margin, affect the SVM model. 

The epsilon (ε) hyperparameter sets a threshold distance for support vectors, which are 

located outside the ε-tube. Thus, higher epsilon values lead to fewer support vectors. In 

classification problems with SVM, the hyperparameter C establishes a budget for margin 

violations. As C decreases, the margin widens, leading to a higher number of support 

vectors. For support vector regression, C controls the tolerance to deviations outside the ε-

tube. Therefore, both ε and C influence the amount of support vectors and, consequently, 

model complexity. With small C and epsilon values, more support vectors are established 

and model complexity is high, resulting in low bias and high variance. Finally, the gamma 

(γ) hyperparameter appears as a coefficient in Gaussian and polynomial kernel function 

formulations and alters the measure of similarity between data points established by these 

kernels. Support vectors have a small radius of influence with large γ values, leading to a 

low-complexity model with high bias and low variance. Conversely, an extremely small 

gamma results in support vectors impacting the whole dataset regardless of distance, 

reducing bias and increasing variance. 

Hyperparameters for neural networks vary depending on the solver selected to train 

the models. Momentum and/or learning rate are common hyperparameters when fitting 

neural network weights with stochastic gradient descent (SGD) or SGD adaptive moment 

estimation (Adam) solvers. However, as shown in Table 5.5, the BFGS algorithm performs 

better in training NN ROP models with the relatively small depth-based dataset in this 

study. Regardless of solver choice, the number of hidden layers and number of neurons in 

each hidden layer are hyperparameters that define the total quantity of computational units 
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in the model. As expected, model complexity increases as more neurons are utilized. Each 

neuron carries an activation function that adds non-linearity to its weighted combination of 

features. It is not uncommon to designate different activation functions to separate hidden 

layers, but scikit-learn’s neural networks implementation does not support this capability. 

Identity, logistic (sigmoid), hyperbolic tangent (tanh) and rectified linear unit (relu) 

functions constitute the options investigated for the activation function hyperparameter. 

Lastly, the regularization hyperparameter alpha (α) seeks to reduce variance by introducing 

a l2 penalty to the neural network weights. Larger alpha values lead to increased l2 penalty 

and further variance reduction. 

Python’s scikit-learn (Pedregosa et al., 2011) implementations of random forests, 

support vector machines and neural networks compose the machine learning algorithms 

tested for ROP prediction. Input data for SVM and NN models are standardized to zero 

mean and variance equal to one to remove effects of differing drilling parameters’ 

magnitudes. There are no definite rules for hyperparameter selection, as optimal model 

structure varies by application. Researchers typically define a grid and search for the best 

hyperparameter combinations with cross-validation. The same methodology is applied in 

this study: 
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Table 5.5: Hyperparameter grid search for random forests, support vector machines and 

neural networks ROP models. 

 
 

Hyperparameters selected in Table 5.5 represent optimal combinations for the majority of 

the nineteen Williston Basin formations. While it is possible to pick optimal 

hyperparameter combinations for each formation, the chosen values provide a good starting 

point for general depth-based ROP modeling applications. The modest accuracy 

improvement obtained with formation-specific hyperparameters does not justify the 

computational expense of attempting a high number of combinations in real-time.  

In the Neural Networks Grid section of Table 5.5, numbers of neurons in the hidden 

layer(s) appear as either a single number or a pair of numbers. Single numbers represent a 

network with as many neurons in one hidden layer. A pair of numbers describes a neural 
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network with two hidden layers, each containing the respective number of neurons. Hence, 

the best hyperparameter combination favors a 2-layer neural network with four neurons in 

the first hidden layer and two neurons in the second hidden layer. Some authors (e.g. Hastie 

et al., 2009) recommend training neural networks with a large number of neurons and 

larger regularization parameter (α). This approach was also tested and only yielded 

marginal (if any) performance improvement in scattered formations, with significant 

increase in computational demands. The relatively small number of samples in this dataset 

also supports using the quasi-Newton BFGS (Broyden-Fletcher-Goldfarb-Schanno) 

optimization algorithm instead of the popular Adam (Kingma and Ba, 2015) stochastic 

gradient descent solver for large-scale machine learning applications. Similar preference 

for less complex, lower-variance models was also observed with the selected SVM 

hyperparameters (large γ, ε and C), indicating highly complex models are not needed for 

this depth-based dataset. RF models reduce variance resulting from deeply grown trees (up 

to groups of individual samples) by averaging out predictions from 25 distinct trees which 

only consider 2 variables at every split. Reducing model complexity also alleviates the risk 

of overfitting. 

5.5. CROSS-VALIDATION ERRORS 

Data filtering, optimization algorithm for analytical model fitting, ML models’ 

input features and architectures have been established in previous sections. Now, post-

drilling error metrics for each ROP model are calculated by performing cross-validation 

with the entire dataset in each formation. There are a few possible options to display 

prediction error results for the seven ROP models in the nineteen formations investigated. 

Tables with 133 entries for each error metric would be cumbersome to interpret. 

Histograms are capable of illustrating a model’s error distribution across all formations, 
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but seven separate plots would be required for every metric. The most concise solution to 

visualize ROP modeling errors is provided by box and whisker plots, which allow for fast 

comparison of key formation error distribution features for all seven models in one graph. 

Box plots, composed of a box and two whiskers, divide formation error data for each model 

into quartiles, four groups of approximately the same size. The top of the box defines the 

75th percentile, while the bottom of the box portrays the 25th percentile. A horizontal line 

inside the box represents the median. Nineteen formations (Table 4.2) are divided into three 

groups of five formations and one group of four formations. Therefore, after sorting 

formation ROP prediction errors for a model in increasing order, the box and whisker plots 

introduced in this section are interpreted as follows: 

 

• Error range between the bottom whisker (minimum error) and the bottom of the 

box encompasses the five formations exhibiting lowest errors for each model 

• Next five formations with lowest errors constitute the range inside the box up to 

(and including) the median line 

• Following five formation errors are located inside the box above the median line 

• Range between the top of the box and the top whisker (maximum error) 

encapsulates the remaining four formations, with highest model prediction errors 

 

Formation-dependent cross-validated errors in a post-drilling framework are 

presented below: 
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Figure 5.1: Cross-validation model performance in lithology-dependent post-drilling data 

analysis.  

In Fig. 5.1, analytical models are abbreviated as – BIN: Bingham (1964), BY: modified 

Bourgoyne and Young, HAR: corrected Hareland and Rampersad (1994), MOT: 

Motahhari et al. (2010); and machine learning models have acronyms – RF: random 

forests, SVM: support vector machines, NN: neural networks. ML models considerably 

outperform analytical models according to absolute error and normalized RMSE when the 

entirety of data collected during drilling is available as the training set. A few formations 

displayed extremely high errors, with absolute errors for analytical models nearing 100%. 

Nonetheless, models were able to predict ROP reasonably well for most formations, as 

indicated by three quartiles under 40% absolute error for analytical models and under 20% 

for ML models. Modified Bourgoyne and Young boasted the lowest cross-validation errors 

among analytical models, while random forests led ML algorithms in performance. The 

random forests ROP model performed best in all but one formation. In fact, ML models 

composed the top three post-drilling highest prediction accuracy models in all nineteen 

formations. Error metrics for the best overall analytical and machine learning models are 

shown below: 
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Table 5.6: Best analytical (modified Bourgoyne and Young) and machine learning 

(random forests) cross-validation ROP model performance in post-drilling 

framework. Results are presented in percentages. 

 
 

The first numerical row in Table 5.6 reveals average error metrics for all nineteen 

formations. Average formation errors are then weighted by both formation thickness 

(vertical length) and number of data points. These metrics account for shorter formations 

contributing less to total drilling time. Table 5.7 considers the computational expense of 

the cross-validation procedure:  

Table 5.7: Average formation cross-validation errors and computational time for seven 

ROP models. 

 
 

The table above indicates that it takes, on average, about 22 seconds to cross-validate all 

seven models with data from one formation. Surprisingly, SVM and NN model training 

was faster than three out of the four analytical ROP models.  

Results in Figure 5.1 and Tables 5.6 and 5.7 show that ML algorithms substantially 

outperform analytical ROP models when trained with all measured data in a formation. 
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Average and weighted errors for the best performing ML model (random forests) are about 

20% lower compared to errors for the best analytical model (modified Bourgoyne and 

Young). Flexibility in model form provides a significant advantage for ML algorithms, as 

both models were trained with the same surface operational variables: depth, WOB, RPM 

and drilling fluid flow rate. ML model performance could be further improved by 

considering additional data sources (if available in real-time), such as gamma ray logs, 

sonic travel times, bit torque and bottomhole pressure. In this case, care must be taken to 

avoid collinearity between closely related features (e.g. WOB and torque). Another 

approach to boost ML accuracy is to refine hyperparameter grid search, although this 

strategy poses a risk of developing a very specialized model architecture that works 

favorably for one application but not as much in a more general framework. 

5.6. DRILLING PARAMETER OPTIMIZATION 

Section 3.3 formulates the drilling parameter optimization problem (Eq. 3.34) and 

Table 4.4 presents constraints specific to the Williston Basin dataset. In this section, 

optimization methods described in Section 3.1 are evaluated according to ROP 

improvement, proposed change in drilling parameters and computational time required. As 

a reminder, SLSQP, COBYLA, basin-hopping (if using SLSQP or COBYLA as local 

optimizers) and PSO are the only algorithms from Table 3.1 that can handle top drive and 

pump power constraints. Weight on bit, drillstring rotational speed, and drilling fluid flow 

rate are optimized for drilling each of the nineteen Williston Basin formations according 

to lithology-dependent analytical and machine learning ROP models trained in a post-

drilling framework. 

Optimization results for gradient-based methods are displayed in the table below: 
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Table 5.8: Gradient-based optimization of drilling parameters in lithology-dependent 

post-drilling framework. 

 
 

Values in the table above represent the nineteen formations’ average adjustment in 

operational drilling parameters suggested by each optimization method and the resulting 

ROP improvement predicted by each ROP model. For the four analytical models 

considered, both gradient-based optimization techniques drove drilling parameters to their 

upper bounds and achieved high ROP improvements in a computationally-efficient 

manner.  Note that modified Bourgoyne and Young is the only analytical model capable of 

optimizing drilling mud flow rate. Gradient-based methods did not perform well with 

random forests models. In fact, drilling parameters were left unchanged and the 7.86ft/hr 

positive difference in ROP is simply due to model error. ROP gains obtained with the three 

machine learning models are significantly more modest than their analytical optimization 

counterparts. However, cross-validation error results from the previous section indicate 

that ML models are much more accurate than analytical models in this lithology-dependent 

post-drilling context. 
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Direct search optimization results are split into two tables for displaying purposes. 

In the first table, Nelder-Mead, COBYLA and basin-hopping (with COBYLA as local 

optimizer) performances are analyzed: 

Table 5.9: Direct search optimization of drilling parameters in lithology-dependent post-

drilling framework. Part 1 with Nelder-Mead, COBYLA and basin-hopping 

(with COBYLA) algorithms. 

 
 

Nelder-Mead optimization is unbounded, causing analytical ROP models to extrapolate 

drilling behavior to extremely high, unfeasible operational parameter values. Similar 

results are observed for models trained by the neural networks algorithm. Contrary to 

gradient-based optimization, direct search methods are capable of locating improved 
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drilling parameters with random forests models. ROP improvements are more substantial 

when optimizing machine learning models with direct search methods. 

Particle swarm and brute force optimizations are shown next: 

Table 5.10: Direct search optimization of drilling parameters in lithology-dependent post-

drilling framework. Part 2 with particle swarm optimization and brute force 

algorithms. 

 
 

PSO yields larger ROP gains with machine learning models than Nelder-Mead, COBYLA, 

and basin-hopping (with COBYLA) direct search optimizations. Two sets of results are 

presented for brute force optimization. In the first experiment, drilling parameters were 

varied by unit increments in brute force search (Brute Force 1:1:1, middle portion of the 

table). Even though this approach generally results in the highest ROP gains for ML ROP 
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models, computational requirements are extremely demanding for attempting a large 

number of possible parameter combinations. The average optimization time for the three 

ML models in a formation exceeded four hours (16084 seconds), making brute force search 

in this fine grid computationally prohibitive in real-time. Hence, in the second attempt, 

increments of 1klbf for WOB, 5rev/min for RPM, and 5gpm for flow rate were utilized 

(Brute 1:5:5, bottom portion of Table 5.10). This coarser brute force grid results in 

alleviated computational requirements, at the expense of ROP gains. Referring to Table 

4.4, WOB and RPM are constrained between 5-35klb and 100-180rev/min, respectively. 

After the initial 5klb trials, both brute force search grids span 30 WOB steps. With unit 

variations, the original grid (1klbf:1rev/min:1gpm) performs 80 RPM increments, while 

the second grid (1klbf:5rev/min:5gpm) accounts for sixteen 5rev/min increases. The 

number of flow rate steps depends on training data flow rate range. In the Lodgepole 

Limestone optimization case study conducted at the end of this section, nineteen 1gpm 

increments separate minimum and maximum flow rate values observed while drilling the 

formation. Therefore, for post-drilling optimization of drilling parameters in the Lodgepole 

Limestone formation, the finer brute force search grid requires 50,220 (31x81x20) ROP 

model predictions compared to 2,108 (31x17x4) function evaluations with the coarser grid. 

Analytical ROP models, due to their positively bounded coefficient nature, will 

always push WOB, RPM and flow rate to their upper bounds, within constraints. This 

notion is evidenced in Tables 5.8-5.10, displaying identical change in drilling parameters 

and ROP improvements for all bounded optimization algorithms tested. The only exception 

is the corrected Hareland and Rampersad (1994) model, which suggests optimal WOB 

values slightly below the upper limit due to possible ROP reduction at high WOB and low 

rock strength values in its convoluted formulation (Section 2.3.3). Since analytical model 

coefficients must average drilling behavior (Fig 2.3), field knowledge about ROP 
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relationships with drilling variables dictate that coefficient bounds (Table 2.1) should 

guarantee a positive relation. The top drive power constraint, a trade-off between WOB 

and RPM, prioritizes increases in whichever variable is modeled with higher exponent 

value to maximize ROP. Pump power caps flow rate according to average SPP (pressure 

optimizations are not considered in this dissertation). In the Bakken shale well dataset 

analyzed, rig equipment power was not a limiting factor. Other constraints (bit WOB 

operating range upper bound, downhole tools’ maximum RPM rating, fracture gradient) 

restricted further drilling parameter augmentations. 

Machine learning ROP models can identify regions in the operational parameter 

space that are proponent to drilling dysfunctions (e.g. excessive vibrations, inadequate hole 

cleaning, bit balling). Consequently, unlike analytical models, optimization with ML 

models may suggest optimal operational parameters that are not maximized to their upper 

bounds. Drilling parameter adjustments in Tables 5.8-5.10 differ depending on 

optimization method, with no clear trend. ROP gains are the highest with the finer grid 

brute force search for RF and NN models, but computational demands are restrictive with 

regards to real-time optimization. With SVM, particle swarm optimization achieved 

slightly higher ROP improvements than brute force, indicating that the model predicts large 

ROP changes with small parameter increments (less than unit) and that the 

1klbf:1rev/min:1gpm brute force grid was not fine enough to locate global optimal 

parameters. Further refinement of the brute force search grid introduces additional 

computational expense and eventually leads to diminishing ROP gains. 

Difference in optimization philosophy between analytical and ML ROP models is 

evidenced by comparing optimizations with the highest predicted ROP improvements for 

the most accurate models in each category:  
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Table 5.11: Lithology-dependent post-drilling optimization summary for modified 

Bourgoyne and Young ROP models with SLSQP optimization algorithm. 

 
 

Drilling parameters are maximized to their upper bounds in every formation when 

optimized according to the modified B&Y model. Optimization results in Table 5.11 

suggest that shallower formations offer the biggest potential for ROP improvement, as 

WOB values remained low in actual drilling of the upper portion of this well segment. 

Comparing SLSQP optimization with modified B&Y models to brute force 

(1klbf:1rev/min:1gpm) optimization with random forests models: 
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Table 5.12: Lithology-dependent post-drilling optimization summary for random forests 

ROP models with brute force search optimization algorithm.  

 
 

Similar to Table 5.11, ROP gains display a general negative trend with deeper formations. 

In the table above, all but two formations (Rierdon Limestone, ΔWOB = +0.10klb and Base 

Last Salt Limestone, ΔWOB = +3.84klb) require a negative change in WOB to optimize 

ROP and the average suggested WOB modification is ΔWOB = -3.93klb. Drilling 

dysfunctions can demand such adjustments, but it is unlikely that dysfunctions dominated 

drilling behavior in seventeen out of nineteen formations. Instead, the negative WOB 

influence on ROP modeled by the random forests algorithm is likely a consequence of bad 

data quality. Optimization in most formations favor a reduction in RPM, while flow rate 

adjustments vary wildly. Predicted ROP gains are not as significant as in optimization with 

modified B&Y models (ΔROPavg = 28.62ft/hr in Table 5.12 vs. ΔROPavg = 74.94ft/hr in 

Table 5.11). However, random forests models are substantially more accurate than 

modified B&Y models, with average absolute error lower by 18.2% and average 
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normalized RMSE lower by 17.32% in Table 5.6, predicting more realistic results. The 

prediction error gap widens if error metrics are weighted by the number of training samples 

collected in each rock formation. 

Next, optimizations with individual ML ROP models are examined separately to 

identify the source of extensive computational requirements. Starting with the SVM model: 

Table 5.13: ROP difference and computational time for all optimization methods with 

support vector machines ROP models. 

 
 

Particle swarm optimization, followed by brute force (1klbf:1rev/min:1gpm) and Nelder-

Mead, leads to the highest ROP improvements. Performance variation between 

optimization methods is not as accentuated as with other ML models, except for coarser 

brute force (1klbf:5rev/min:5gpm) search due to model sensitivity to small changes in 

drilling parameters. Interestingly, computational times for all SVM optimizations were not 

as high as originally anticipated, representing a small fraction of the computational expense 

reported in Tables 5.8-5.10 for optimization of all three ML models.  

 Table 5.14 displays results for optimizations with NN models: 
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Table 5.14: ROP difference and computational time for all optimization methods with 

neural networks ROP models. 

 
 

ROP gains are highest for brute force (1klbf:1rev/min:1gpm), brute force 

(1klbf:5rev/min:5gpm), particle swarm optimization and basin-hopping (with COBYLA), 

with all four methods obtaining similar improvements. Again, computational requirements 

were not as high as expected. 

Results in Tables 5.13 and 5.14 suggest that optimizations with RF models are 

responsible for almost all computational demand previously attributed to the three ML 

ROP models in Tables 5.8-5.10. Investigating random forests optimizations individually: 

Table 5.15: ROP difference and computational time for all optimization methods with 

random forests ROP models. 
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The table above confirms that drilling parameter optimization with RF models requires 

substantially more computational power than with other ROP models. Fig. 2.10 illustrates 

divisions in the operational parameter space created by a simplistic decision tree model. 

With trees grown a lot deeper, random forests models develop extremely segmented 

parameter spaces. This severe partitioning generates two contrasting effects: random 

forests ROP models are the most accurate because the algorithm separates training data 

into groups where operating parameters exhibit similar drilling behavior, but such models 

are also the hardest to optimize drilling parameters for. While optimizations with other 

ROP models frequently navigate the parameter space seamlessly and converge fast, RF 

optimizations struggle to locate optimal drilling variables in a discontinuous parameter 

space.  

Unsurprisingly, gradient-based optimization techniques cannot effectively operate 

in RF parameter spaces. Brute force search with 1klbf:1rev/min:1gpm increments yields 

the best ROP improvements in Table 5.15 but takes over four hours (16020 seconds) per 

formation optimization. The Nelder-Mead method converges very fast and produces 

acceptable ROP gains, possibly representing a good alternative for real-time RF 

optimization. Nevertheless, Nelder-Mead does not support any constraints and could be 

dangerous for closed-loop drilling control if models suggest drilling parameters outside the 

feasible region (as NN did in Table 5.9). For the dataset analyzed here, parameters 

optimized by Nelder-Mead with the random forests model remained within acceptable 

bounds. The author believes this is caused by random forests ROP models not extrapolating 

drilling behavior and relying only on information contained in the training data, but 

additional investigation is required to confirm this hypothesis. Particle swarm optimization 

leads to nearly as much ROP improvement as brute force search with finer grid for the RF 
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model. However, PSO computational requirements with RF ROP models are still very 

taxing for real-time implementation. 

 PSO metrics displayed in Tables 5.10 and 5.13-5.15 were obtained by initializing a 

swarm of 50 particles and limiting optimizations to a maximum of 300 iterations, as 

suggested by Anemangely et al. (2017). With analytical, SVM and NN ROP models, PSO 

converges fast and yields excellent ROP improvements. While PSO also achieves vast ROP 

gains with the RF model, the algorithm requires over 30 minutes (2065 seconds) for each 

formation optimization and still does not converge to the prescribed tolerance within the 

maximum 300 iterations. Conducting PSO optimizations for RF models with lower limit 

of maximum iterations: 

Table 5.16: ROP difference and computational time for PSO with random forests ROP 

models by varying the maximum number of iterations. 

 
 

The stochastic nature of PSO results in an unpredictable relationship between ROP 

improvement and maximum number of iterations. If the optimization is repeated multiple 

times with different initial particle positions and velocities, average results will likely 

indicate that more iterations lead to higher ROP gains. However, as evidenced in Table 

5.16, it is possible for PSO to locate a more optimal solution with fewer iterations due to 

varying random starting conditions prescribed by the algorithm. PSO with 10 maximum 

iterations attains better ROP improvements for RF models than all methods in Table 5.15 

apart from PSO (300 iterations) and brute force (1klbf:1rev/min:1gpm) search, while 
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maintaining computational feasibility in real-time applications. This approach takes 

advantage of the large swarm size (50 particles), pursuing a limited number of 

improvements (10 iterations) to the 50 initial particle solutions instead of seeking 

convergence. Intuitively, it will perform well in the heavily segmented parameter spaces 

of random forests models when at least one of the particles is initialized near a region with 

high ROP values. 

 Post-drilling optimizations in the Lodgepole Limestone formation are analyzed to 

reveal insights about the parameter space of ROP models. Table 5.17 summarizes 

information about the data collected in this particular formation: 

Table 5.17: Properties and data statistics for Lodgepole Limestone formation. 

 
 

Deepest out of all formations in this Williston Basin dataset, Lodgepole Limestone spans 

a depth interval nearly identical to the average of all formations (256ft), possesses a large 

number of measured data points, and exhibits low ROP model errors (Tables 5.11 and 

5.12). Even in this final formation for the bit run investigated, the maximum required top 

drive power (289HP, with 11.38klb-ft torque and 133.2rev/min RPM) does not approach 

the rig’s top drive capability (800HP). Mud pumps (3200HP) are also not challenged by a 

maximum 867HP demand (with 373.0gpm flow rate and 3986psi SPP). 
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Starting with the only analytical ROP model accounting for flow rate in its 

formulation, the 3D optimization space for the Lodgepole Limestone modified Bourgoyne 

and Young model is illustrated below: 

 

 

Figure 5.2: Optimization parameter space for modified Bourgoyne and Young Lodgepole 

Limestone ROP model with solution markers for six optimization methods. 

The optimization space is derived from brute force search with unit increments and color-

coded in red-yellow-green stoplight style according to ROP values. With positively 

bounded model coefficients as exponents for WOB, RPM and flow rate, analytical models 

display predictable parameter spaces with gradually increasing ROP towards higher 

operational variables’ values. All optimization methods arrive at the same solution in the 

top right corner of Fig 5.2, maximizing WOB, RPM and flow rate in this simple parameter 

space. Nelder-Mead solutions are not shown due to their unbounded nature. Analyzing the 

WOB-RPM response surface for the brute force parameter combinations closest to the 

average flow rate (362.5gpm) in the Lodgepole Limestone formation: 
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Figure 5.3: WOB-RPM optimization surface (at average flow rate) for modified 

Bourgoyne and Young Lodgepole Limestone ROP model with solution 

markers for six optimization methods. 

As expected, higher WOB and RPM values lead to increasing ROP. The WOB-RPM 

surface exhibits the same shape regardless of flow rate, with higher ROP as flow rate 

increases. 

 Next, the optimization parameter space for the Lodgepole Limestone random 

forests ROP model is investigated: 
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Figure 5.4: Different views of optimization parameter space for random forests 

Lodgepole Limestone ROP model with solution markers for six 

optimization methods. 

First demonstrated in Figure 2.10, models generated by the random forests algorithm create 

segmented parameter spaces. The four plots above indicate that according to this 

Lodgepole Limestone random forests model, WOB does not exert substantial influence on 

ROP. There is a high ROP region (dark green) at 100rev/min RPM and 360-365gpm flow 

rate. Unlike Fig. 5.2, ROP transitions are not always gradual in the figure above and 

discontinuities are experienced (e.g. 35klb WOB, 360gpm flow rate and 140rev/min RPM). 

Rotated views provide more information about the optimization space, but the closer faces 



 

 

 

 

 138 

of the cube are cropped in the two bottom plots of Fig 5.4, possibly due to the large number 

of data points plotted. Solutions computed by the different optimization methods are not 

visible since they are not located on the outer faces of the brute force grid. In order to locate 

them, the parameter space is sliced halfway through the WOB grid: 

 

 

Figure 5.5: Cut through optimization parameter space for random forests Lodgepole 

Limestone ROP model with solution markers for six optimization methods. 

Note that heatmap colors are different than in Fig 5.4 because of the color bar scale. L-

BFGS-B and SLSQP solutions overlap. Similar response patterns to the outer 35klb face 

occur at 20klb WOB. However, with this lower WOB value, the dark green high ROP strip 

extends to RPM values near 140rev/min. Hence, the RF ROP model suggests that higher 

WOB values require lower RPM for faster drilling in the Lodgepole Limestone formation. 

Full investigation of drilling responses demands several cuts through the parameter space 

(similar to Fig 5.5). In an attempt to enhance visualization, the parameter space is 

triangulated into a surface: 
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Figure 5.6: Different views of triangulated optimization parameter space for random 

forests Lodgepole Limestone ROP model with solution markers for six 

optimization methods. 

While optimization solutions can be clearly seen with rotated views of this triangulated 

surface, triangulation is subjective and does not necessarily represent the same space as in 

Figure 5.4. 

Transparency is introduced to Fig. 5.4 as an alternative approach to analyze the 

parameter space: 
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Figure 5.7: Different views of semitransparent optimization parameter space for random 

forests Lodgepole Limestone ROP model with solution markers for six 

optimization methods. 

From the four plots in the figure above, it is clear that PSO comes closest to the brute force 

optimal solution with this Lodgepole Limestone random forests ROP model. PSO optimal 

parameters reach the bottom part of the high ROP dark green region (bottom left plot). 

Basin-hopping achieves the second nearest solution to brute force and gradient-based 

methods (L-BFGS-B and SLSQP) overlap far away, in the low ROP dark red region.  

 Scrutinizing the WOB-RPM surface at average flow rate (362.5gpm): 
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Figure 5.8: Different views of WOB-RPM optimization surface (at average flow rate) for 

random forests Lodgepole Limestone ROP model with solution markers for 

six optimization methods. 

Rotated views of this WOB-RPM response surface exemplify discontinuities created by 

the random forests algorithm. With ML models, two-parameter ROP response surfaces 

exhibit different shapes depending on the value of the third parameter: 
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Figure 5.9: WOB-RPM optimization surfaces at varying flow rates for random forests 

Lodgepole Limestone ROP model with solution markers for six 

optimization methods. 

In Fig. 5.9, the left-hand WOB-RPM surface is constructed at average flow rate 

(362.5gpm), the top right surface is at minimum flow rate (354.5gpm) and the bottom right 

surface is at maximum flow rate (373.5gpm). ROP values at average flow rate are actually 

higher than at maximum flow rate. All three surfaces display distinct shapes. 

 Analyzing the parameter space for the Lodgepole Limestone SVM ROP model: 
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Figure 5.10: Different views of solid and semitransparent optimization parameter spaces 

for support vector machines Lodgepole Limestone ROP model with solution 

markers for six optimization methods. 

This SVM optimization parameter space is highly uniform, except for a sliver where rapid 

changes occur. The high ROP region is contained in a very narrow band. Almost all 

optimization solutions overlap. Reproducing the WOB-RPM response surface at average 

flow rate: 
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Figure 5.11: Different views of WOB-RPM optimization surface (at average flow rate) 

for support vector machines Lodgepole Limestone ROP model with solution 

markers for six optimization methods. 

In Fig. 5.11, the majority of the WOB-RPM surface results in the same low ROP value. 

This SVM model, likely not representative of drilling field conditions, predicts the same 

ROP for all WOB if RPM is not within the 120-140rev/min range. ROP increases 

significantly in a small region of WOB and RPM values, which all optimization methods 

are successful in locating. 

 Finally, the Lodgepole Limestone NN ROP model parameter space is illustrated 

below: 
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Figure 5.12: Different views of solid and semitransparent optimization parameter spaces 

for neural networks Lodgepole Limestone ROP model with solution markers 

for six optimization methods. 

This NN parameter space is more segmented than the SVM model (Fig 5.10), but not as 

discontinuous as the one produced by the RF algorithm (Fig. 5.4). Optimal solutions vary 

substantially, but most methods (except COBYLA) suggest very low WOB values. PSO’s 

solution is located far from brute force optimal parameters, but still yields high ROP values 

in a green zone of the parameter space. Scrutinizing the WOB-RPM response surface at 

average flow rate: 
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Figure 5.13: Different views of WOB-RPM optimization surface (at average flow rate) 

for neural networks Lodgepole Limestone ROP model with solution markers 

for six optimization methods. 

Fig. 5.13 displays a highly complex WOB-RPM surface. Unexpectedly, the gradient-based 

SLSQP algorithm was able to navigate this intricate surface well and approach the brute 

force solution. Gradient-based optimization performed much better in comparison to the 

random forests WOB-RPM surface (Fig. 5.8), probably due to more gradual transitions in 

ROP values. PSO did not achieve great results in this particular case, but the algorithm 

works better with NN models than other optimization methods (excluding brute force) on 

average (Table 5.14).  
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Results presented in this section support utilization of the SLSQP algorithm for 

optimizing drilling parameters with analytical ROP models. All optimization methods, 

except the unbounded Nelder-Mead, suggest maximizing operational parameters to their 

upper bounds based on analytical models’ ROP predictions. SLSQP handles any type of 

constraints and efficiently establishes optimal drilling parameters that lead to the highest 

ROP improvements. PSO is adopted as the standard optimization algorithm for ML ROP 

models, with a maximum of 300 iterations for both SVM and NN and a maximum of 10 

iterations for RF. Achieving almost the same ROP gains as brute force search, PSO 

diminishes computational requirements and supports equality and inequality constraints. 

Basin-hopping (with COBYLA) is a respectable alternative for power-constrained 

optimization with ML models, accomplishing satisfactory ROP gains. Computational 

expense is acceptable with SVM and NN models but may be prohibitive to real-time 

applications with random forests. For this Williston Basin dataset, rig equipment power 

constraints did not impose any limitations. Drilling parameters utilized in the field or 

proposed as constraints (Table 4.4) did not come close to full top drive or pump power 

capacity. However, in situations where constraints other than parameter bounds are critical, 

SLSQP, COBYLA, basin-hopping, PSO, or other optimization methodologies which 

support all constraint categories must be employed. 

From Table 5.7, cross-validating the seven suggested ROP models requires about 

22 seconds of computational time. With optimization strategies established in this section, 

drilling parameter optimization takes at most 77 seconds (for RF models). Thus, a 

maximum of one minute and forty seconds are needed to select the best performing ROP 

model according to CV and optimize drilling parameters with respect to such model. If an 

analytical ROP model is the best performer by CV error, optimal drilling parameters are 

determined almost instantaneously with the SLSQP algorithm. In this case, the modeling 
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and optimization process occurs in 22 seconds (the time for cross-validation of the seven 

ROP models). These results indicate that it is possible to optimize drilling operational 

parameters with continuous ROP model learning in real-time with an inexpensive modern 

laptop computer (7th Generation Intel® Core™ i5 processor @ 2.50GHz and 8GB RAM). 

In the next section, the merits of continuous model learning are examined from a 

performance perspective. 

5.7. MODEL PERFORMANCE WITH INCREMENTAL TRAINING DATA AVAILABILITY 

Drilling data are constantly recorded and transmitted to the driller’s cabin in 

modern drilling rigs.  Assuming adequate data quality, it is plausible to expect that the 

drilling system can be better understood as more data become available. Therefore, a 

fundamental question for real-time ROP modeling is whether models can learn more about 

the drilling process with additional data. In other words, it is desirable to evaluate the ability 

of ROP models to reduce test error with incremental training data availability. Machine 

learning models are predicated on statistics, and thus expected to become more accurate as 

data from different portions of the drilling response curve (e.g. efficient drilling, high 

vibrations, inadequate hole cleaning) are collected. Conversely, analytical ROP models 

must average drilling behavior into empirical model coefficients (see Figure 2.3). 

The incremental training data availability experiment is performed in nine 

iterations. In the first iteration, 10% of randomized data in a formation is utilized to train 

each ROP model, which is then tested against the remaining data points. The percentage of 

randomized data included in the training set increases by 10% at each iteration, until it 

reaches a ratio of 90% training data and 10% test data. Four learning metrics of interest are 

defined to evaluate model performance. An example of this experimental setup is displayed 

for two ROP models in the Lodgepole Limestone formation: 
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Table 5.18: Visualization of incremental data availability learning metrics for one run in 

the Lodgepole Limestone formation. 

 
 

Average difference is simply the average error difference between each consecutive 

iteration (red). The second metric represents the error difference between the first and last 

iterations (blue). Next, the new minima indicator (yellow) shows how many times the 

model was able to achieve a new overall test error minimum out of all previous iterations 

(maximum of eight, one for each iteration following the first). Note that while the absolute 

error for the modified Bourgoyne and Young model decreases in the fourth iteration with 

respect to the third iteration, it is not a new minimum since second iteration error is lower. 

Finally, best improvement (green) portrays the biggest error drop at any pair of consecutive 

iterations. Learning metrics of interest illustrated in Table 5.18 depend on the random 

segmentation of data. Hence, the experiment is repeated one hundred times with different 

seeding for randomized data partitions and results are averaged out to ensure statistical 

relevance.  

Model learning performance with incremental training data availability is presented 

in Figure 5.14 with absolute error learning metrics: 
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Figure 5.14: Absolute error learning metrics of interest for increasing training set length – 

Top left: average difference between iterations; Bottom left: difference 

between first (10% training data) and last (90% training data) iterations; Top 

right: new minima; Bottom right: best improvement in consecutive 

iterations. 

Boxplots in Fig. 5.14 are interpreted in opposite manner to CV error boxplots (Fig. 5.1), as 

the learning metrics displayed above represent an improvement in performance (lower 

error). With more data gathered in a specific rock formation, machine learning ROP models 

are able to lower test absolute error significantly and predict ROP with much more 

accuracy. ML models achieve new minima in more than half of the eight possible iterations 

for the majority of formations in the dataset. The same is not true for analytical models, 

with new minima mostly ranging between two and three out of eight potential opportunities 

and negative average difference between iterations for some formations. Similar results 

were obtained for normalized RMSE learning metrics: 
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Figure 5.15: Normalized RMSE learning metrics of interest for increasing training set 

length – Top left: average difference between iterations; Bottom left: 

difference between first (10% training data) and last (90% training data) 

iterations; Top right: new minima; Bottom right: best improvement in 

consecutive iterations. 

By all metrics analyzed, machine learning models reduce test error much more 

effectively than analytical models with increasing training set size. Additional learning 

information is obtained by examining which iteration experienced the biggest error 

improvement and the total percentage of new minima: 
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Table 5.19: Best improvement iteration and new minimum percentage according to 

absolute error and normalized RMSE. 

 
 

New minimum percentage is given by the overall ratio of iterations attaining a new 

minimum error value out of eight possibilities in each formation. ML models achieve the 

biggest error drop in the third or fourth iterations (out of nine) on average, demonstrating 

that their capability of repeatedly reaching new minima is not hampered by faster 

improvement with additional training data. 

The incremental training data availability experiment in this section demonstrated 

that, by all learning metrics introduced, machine learning models are able to reduce test 

error more effectively than analytical models as more data are acquired. This outcome is 

important for real-time drilling optimization, proving that machine learning models 

become more reliable for ROP prediction as more data are collected in a given formation. 

Based on these results, analytical ROP models are expected to be more relevant as drilling 

begins in a new formation and ML models should become more accurate once enough 

meaningful data becomes available. 
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Chapter 6: Lithology-Dependent Real-Time Drilling Interval 

Optimization with Continuous Model Learning 

Previous drilling optimization studies published in the literature generally fit ROP 

models to offset well data and, subsequently, optimize drilling operational parameters for 

another well based on the predicted ROP. This type of post-drilling analysis, conducted in 

Chapter 5, does not take advantage of data constantly collected in real-time as the well is 

drilled. Results in Sections 5.5 and 5.6 established that cross-validation of the seven ROP 

models analyzed and optimization of drilling parameters with the best performing model 

last between 22 and 100 seconds, indicating this process is not computationally prohibitive 

in real-time. Furthermore, Section 5.7 proved that ROP models, particularly ML 

algorithms, can significantly reduce test error when trained with a higher volume of data. 

In real-time, ROP models can evolve and adapt as more data become available by being 

retrained in intervals. This concept of continuous model learning is introduced in this 

chapter. Model performance is scrutinized with respect to retraining interval length and 

cross-validation is evaluated as a methodology to select the best ROP model to optimize 

operational parameters for the next drilling interval. 

6.1. MODEL RETRAINING IN REAL-TIME 

The customary lithology-dependent post-drilling optimization of operational 

parameters was investigated in the preceding chapter. Post-drilling analysis is typically 

performed to obtain insights from a previously drilled well and improve drilling 

performance for a future well in the same region. Respecting the classical lithology 

dependency of ROP models, all the data collected during drilling of one rock formation are 

employed in training a model capable of predicting ROP in the formation in question: 
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Figure 6.1: Post-drilling formation-dependent model training and subsequent parameter 

optimization for drilling the Rierdon Limestone formation in a new well. 

Black dashed lines in Fig. 6.1 illustrate formation boundaries for the Rierdon Limestone 

formation. Data measured when drilling a well through this formation (left plot, green data) 

are utilized to fit a ROP model. This model is then employed in determining optimal 

drilling parameters for drilling the Rierdon Limestone formation in an upcoming nearby 

well (right-hand plot). Ambrus et al. (2017) advise caution against relying on optimal 

drilling parameters derived in such context, stating that post-well parameters should be 

used as a starting reference but must adjust to insights obtained from real-time data.   

Real-time continuous model learning is accomplished by dividing formation data 

in intervals: 
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Figure 6.2: First optimization interval in drilling a new formation (Rierdon Limestone). 

Conforming to the traditional ROP modeling lithology dependency assumption, model 

training begins after the first batch of data is collected in a newly-drilled formation. ROP 

models are fitted to this data and the best performing model is employed in optimizing 

drilling parameters for the first optimization interval, delineated by the thinner black 

dashed lines in the figure above. Once the second interval (first optimization interval) is 

drilled, data measured in both intervals are used to retrain ROP models. Optimal drilling 

parameters for the following interval (second optimization interval) are determined by the 

most accurate ROP model fitted with the first two batches of data. This procedure is 

repeated with continuous model retraining at the end of each drilled interval until the lower 

boundary of the formation is reached: 
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Figure 6.3: 60ft drilling optimization intervals in the 566ft-long Rierdon Limestone 

formation. 

In Fig 6.3, the 566ft-long Rierdon Limestone formation is divided into nine 60ft intervals 

and one 26ft interval. After every 60ft, ROP models are retrained with the batches of data 

available up to that point and utilized in optimizing drilling parameters for the next interval.  

In theory, given enough computational power, ROP models could be retrained after 

every foot to select the best operational variables to drill the next foot of rock. However, 

in practice, it would be unrealistic to adjust drilling parameters this often. A more 

reasonable and natural approach is characterized by optimizing parameters at the beginning 

of drilling each drillpipe stand (~90ft). During pipe connections, mud circulation and 

drillstring rotation are interrupted. Once drilling resumes, operational parameters can be 

brought up to the desired levels. Although this tactic makes sense operationally, thinner 

formations may present a challenge. Table 4.2 shows that three formations in the Williston 

Basin dataset span a vertical section under 90ft in length. These formations would be 

completely ignored from an optimization standpoint with model retraining every 90ft. An 

additional issue arises if drilling slowly, as a 90ft optimization interval may encompass 

hours of sub-optimal drilling.  

The length of a range 2 drillpipe joint (~30ft) establishes a good starting point for 

optimization interval demarcation, which can then be shortened or lengthened according 
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to necessity. Optimization interval length dictates how often ROP models are retrained. 

Drilling optimization and model retraining intervals can be stipulated by length (Figure 

6.3), by number of data points acquired, or by time elapsed (for time-based data). For this 

Williston Basin depth-based dataset, model prediction accuracy is analyzed with respect to 

retraining intervals defined by varying depth length and number data points in Section 6.3.  

6.2. CONTINUOUS LEARNING REAL-TIME DRILLING INTERVAL OPTIMIZATION 

WORKFLOW 

The concept of optimizing drilling in intervals is not new. Drilling engineers 

typically provide field personnel with a drilling roadmap containing operational parameter 

setpoints to be enforced by the (auto)driller at different depth intervals. These setpoints are 

derived from previous experience in the region and drilling models. Bentsen and Wilson 

(1976, 1977) discuss point, interval and multi-interval techniques in optimizing WOB and 

RPM, emphasizing that the entire drilling process must be considered by optimization 

strategies. Nygaard et al. (2002) perform optimization of drilling parameters in lithology 

intervals, some of them 500ft long. Many other studies conducting drilling optimization in 

intervals can be cited. Nevertheless, their approaches rely on a model trained with historical 

offset well data, incapable of adapting to data acquired in real-time. Drilling heat maps 

have recently been introduced as real-time adaptive modeling techniques to optimize 

drilling. ExxonMobil’s DAS drilling response surface (Fig 1.3), first presented by Payette 

et al. (2015), and the drilling efficiency parameter described by Ambrus et al. (2017) both 

optimize WOB and RPM with ROP heat maps that can adjust to real-time data. However, 

these models are only retrained when drilling dysfunctions or changes in drilling conditions 

occur, at which point entirely new model calibrations are required. 
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Continuous model learning, proposed in Section 6.1, constantly retrains several 

ROP models in intervals of specified length and optimizes drilling parameters for the next 

interval according to the most accurate model. In real-time, the data required to evaluate 

model performance in an optimized interval is only available after said interval has already 

been drilled. Therefore, the strategy suggested here chooses the most accurate ROP model 

for optimization at each interval based on the CV error with batches of data already 

collected, simulating a real-time model selection scenario. Complying with formation-

dependent ROP models, the continuous learning real-time drilling interval optimization 

workflow presented in this chapter can be summarized as follows: 

 

1) Collect first batch of data while drilling in the beginning interval of a new formation 

2) Set first batch of data as the training data for ROP modeling 

3) Perform 10-fold cross-validation on training data for seven ROP models  

a. Analytical: Bingham (1964), modified Bourgoyne and Young, corrected 

Hareland and Rampersad (1994) and Motahhari et al. (2010). Model 

formulations can be found in Section 2.3. Analytical model fitting is 

accomplished by the trust region reflective algorithm in Python’s 

scipy.optimize (Oliphant, 2007) library 

b. Machine learning: random forests (Breiman, 2001), support vector 

regression machines (Drucker et al., 1996) and neural networks (McCulloch 

and Pitts, 1943) implementations in Python’s scikit-learn (Pedregosa et al., 

2011) package. ML models are trained with depth, WOB, RPM and flow 

rate as inputs (Section 5.1). Optimal hyperparameters provided in Table 5.5 

4) Select the most accurate ROP model according to CV error and train it with all 

training data (following instructions in Steps 3.a or 3.b) 
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5) Optimize drilling parameters conforming to constraints established in Table 4.4 for 

the next optimization interval with the ROP model obtained in Step 4. Optimization 

method is dependent on the type of ROP model from Step 4 

a. Analytical ROP models: SLSQP algorithm in Python’s scipy.optimize 

(Oliphant, 2007) library 

b. RF ROP model: PSO algorithm in Python’s pyswarm (Lee and Castillo-

Hair, 2013) package with a swarm of 50 particles and 10 maximum 

iterations  

c. SVM or NN ROP model: PSO algorithm in Python’s pyswarm (Lee and 

Castillo-Hair, 2013) package with a swarm of 50 particles and 300 

maximum iterations  

6) Aggregate data collected during drilling the optimized interval to training dataset 

7) Repeat steps 3-6 until drilling reaches the end of the formation 

 

The optimization workflow described above is repeated for all formations in the Williston 

Basin dataset (Table 4.2) with a specified optimization and model retraining interval 

length.  

 Data collected during drilling an optimized interval are defined as the test data. 

Even though such data is not actually available for decision making in real-time, test data 

provide many insights on model performance. For performance evaluation purposes, all 

seven ROP models are trained with all training data (in Step 4 above). These models’ errors 

on test data are recorded and three key performance metrics are established: 

 

• Test errors for the most accurate ROP model according to CV on training data at 

each optimization interval are stored in a “best by cross validation” metric 
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• Test errors for the most accurate ROP model according to test data at each 

optimization interval are stored in a “best by test error” metric 

• Percentage of optimization intervals in which the “best by cross validation” model 

is the same as the “best by test error” model is stored in a “best CV/test error 

agreement” metric 

 

Averages of the first two metrics are compared to determine the test data performance gap 

between the collection of models selected by CV on training data in each interval and the 

(unattainable in real-time) collection of models that would have been selected in each 

interval if test data were available ahead of the interval’s drilling. The third metric assesses 

how often CV was successful in choosing the model with best performance on test data 

based solely on training data. 

 According to Sections 5.5 and 5.6, the time required to execute the optimization 

workflow above for each optimization interval (Steps 3-6) varies between a minimum of 

22 seconds (if an analytical ROP model is chosen in Step 4) and a maximum of one minute 

and 40 seconds (if the RF ROP model is chosen in Step 4). The table below analyzes 

drilling time in individual intervals for real-time considerations: 
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Table 6.1: Time spent drilling intervals of different lengths at varying speeds. 

 
 

Suppose the bit is drilling ahead at 200ft/hr and parameter optimization is performed every 

10ft. Even in this unlikely scenario of adjusting drilling parameters every three minutes, 

optimal operational parameters determined by the real-time drilling interval optimization 

workflow can always be applied in the last one minute and twenty seconds of interval 

drilling. The average on-bottom ROP for the Williston Basin dataset was 73.1ft/hr. 

Rounding this value up to 80ft/hr and using the reference 30ft optimization interval 

definition, about 21 out of 22.5 interval minutes will be drilled optimally in the slowest 

computational case. 

6.3. RETRAINING INTERVAL ANALYSIS 

6.3.1. Optimization Interval Length 

Model performance variation with respect to optimization interval length is 

scrutinized in a continuous learning setting. Models are trained with the data available up 

to a certain point in a formation and tested on the following interval to be optimized. 

Boxplots in this section are interpreted in the same manner as CV error boxplots in Section 

5.5, with formation errors determined by the average of errors in all intervals within a 
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formation. Starting with a retraining segment defined by the typical range 2 drillpipe joint 

length of 30ft: 

 

 

Figure 6.4: ROP model performance with 30ft retraining intervals in nineteen rock 

formations.  

In Figure 6.4, “BEST” (or “best by test error”) represents formation errors obtained by 

combining models with the highest ROP prediction accuracy (lowest test error) in each 

interval and “BCV” (or “best by cross validation”) represents the formation errors of the 

best model combination according to cross-validation error on the training data, indicative 

of a realistic model selection scenario in real-time. The “BEST” benchmark is displayed 

for comparison purposes, as the data required to validate this model selection is not 

available until after the interval is drilled. Note that model performance difference between 

analytical and machine learning ROP models is not as accentuated as in Fig. 5.1, where 

models were trained with all formation data. Shortening model retraining interval to 20ft: 
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Figure 6.5: ROP model performance with 20ft retraining intervals in nineteen rock 

formations.  

Comparing Figures 6.4 and 6.5, formation errors for all models are lower with shorter 

retraining intervals. By retraining models in even shorter intervals of 10ft:  

 

 

Figure 6.6: ROP model performance with 10ft retraining intervals in nineteen rock 

formations.  

Lower median (orange line) and 75th percentile (top of the boxes) errors are again observed, 

suggesting a trend of decreasing error as models are retrained more often. This trend is 

evidenced when contrasting error metrics for optimal model combinations selected by 

cross-validation training error and by test error: 

 

 



 

 

 

 

 164 

Table 6.2: Test error for best models picked by cross-validation on the training data and 

best models picked by test error at every retraining interval. Intervals 

defined by depth lengths of 30ft, 20ft and 10ft. 

 
 

Performance differences of 3-6% are experienced when predicting ROP with 

models selected by cross-validation on the training data as opposed to the unattainable best 

test error models. Analyzing how often each model was chosen by these two criteria: 
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Table 6.3: Model selection percentages by cross-validation error and test error according 

to retraining interval length. 

 
 

The “Best CV / Test Error Agreement” metric reveals the frequency of optimization 

intervals where the model selected by cross-validation on the training data matched the 

model with highest prediction accuracy. Table 6.3 indicates that irrespective of retraining 

interval length, the random forests algorithm dominated performance according to cross-

validation on the training data and, to a lesser extent, exhibited higher accuracy on test 

data.  

Changing retraining interval definition to data points instead of depth length, 

investigation begins by retraining models after every 30 measured data points. Then, 
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retraining intervals are shortened to every 20 points collected and, subsequently, 10 data 

points. Figures and tables similar to Figs. 6.4-6.6 and Tables 6.2 and 6.3 are reproduced 

below: 

 

 

Figure 6.7: ROP model performance with retraining intervals defined by 30 data points in 

nineteen rock formations. 

 

 

Figure 6.8: ROP model performance with retraining intervals defined by 20 data points in 

nineteen rock formations. 
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Figure 6.9: ROP model performance with retraining intervals defined by 10 data points in 

nineteen rock formations. 

Table 6.4: Test error for best models picked by cross-validation on the training data and 

best models picked by test error at every retraining interval. Intervals 

defined by number of data points collected: 30pts, 20pts and 10pts. 
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Table 6.5: Model selection percentages by cross-validation error and test error according 

to number of data points in retraining interval. 

 
 

Once again, model performance improves by retraining models more frequently and the 

random forests algorithm paces cross-validated error performance.  

Results in this section show that, regardless of whether retraining intervals are 

defined by length or number of data points, ROP prediction accuracy improves for all 

models as retraining intervals are shortened. This outcome justifies the concept of 

continuous model learning, since better predictive performance is observed with models 

that adapt more frequently to real-time data.  For the remainder of this dissertation, a 
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standard model retraining (and optimization) length of 30ft is established in a compromise 

between model accuracy and field applicability. 

Best performing model selection remains very similar throughout the experiments, 

with no discernible patterns due to interval lengths or number of points. According to cross-

validation on the training data, random forests models are the most accurate in 85-90% of 

intervals, while analytical models are rarely present in that category. Therefore, agreement 

between best performing models selected by cross-validation on the training data and by 

test data is correlated to the number of intervals where RF models are the most accurate on 

test data. The 42-50% agreement proportion is considerably better than picking one out of 

the seven models at random (14.3%) and could be improved by reducing the number of 

models considered. Still, the discrepancy between the frequency at which random forests 

models perform best according to CV and on test data is puzzling. A possible explanation 

is that NN models, which are not selected by cross-validation on training data often, 

performs marginally better than RF on test data in a significant number of intervals. 

Another reasonable justification for the CV/test error model selection differences is poor 

data quality. Test error is highly dependent on the few data points in an optimization 

interval, and an argument can be made that the cross-validation error on training data is a 

better indicator of a model’s generalization capability. Nevertheless, the collection of 

models chosen by cross-validation displayed only 3-6% lower accuracy than the 

unattainable best by test error benchmark, justifying application of this methodology for 

model selection in real-time. 

6.3.2. 1st Optimization Interval 

ROP modeling lithology dependency is a major limiter to the continuous learning 

drilling optimization workflow established in Section 6.2. Since models are fitted with data 
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specific to a formation, training data are scarce in the first few optimization intervals of a 

newly drilled formation. Learning metrics introduced in Section 5.7 demonstrated that ML 

ROP models are much more effective than analytical models in becoming more accurate 

with incremental data availability. Based on these two observations and intuition that ML 

models require a substantial amount of data to produce accurate predictions, analytical 

ROP models are expected to perform better than ML models in the beginning optimization 

intervals of a formation. Once enough meaningful formation data are collected, ML models 

should outpace analytical models. Model performance in the first optimization interval of 

each formation was analyzed to test this hypothesis: 

Table 6.6: Best ROP models by absolute error in first optimization intervals of each 

formation. 
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Table 6.7: Best ROP models by normalized RMSE in first optimization intervals of each 

formation. 

 
 

Tables 6.6 and 6.7 display the amount of first formation intervals (out of 19 

formations) in which each ROP model was selected as the best performing model. Contrary 

to intuition, ML ROP models vastly outperformed analytical models in formations’ first 

optimization intervals according to both absolute error and normalized RMSE. Even when 

only ten data points were used in model training, analytical ROP models produced the 

lowest error in only two out of nineteen first formation intervals. Referring to Tables 6.3 

and 6.5, analytical models were selected as the best performing model according to test 

error in about 15% of optimization intervals for all interval specifications. Nonetheless, 

those selections happened sparingly throughout the formations, instead of concentrating in 

the first few optimization intervals as originally conceived.  

6.3.3. 0th Optimization Interval 

When the bit is drilling ahead and a formation boundary is reached, the lithology-

dependent real-time drilling interval optimization workflow proposed in Section 6.2 

requires training of a new ROP model. In such lithology transition zones, drilling is sub-

optimal, as the first batch of data is collected in the beginning drilling interval of a new 
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formation and no optimization occurs. This non-optimized starting formation interval is 

defined here as the “0th optimization interval”. Without optimization of operational 

parameters, 0th optimization intervals of all formations are the drilling segments most likely 

to develop to drilling inefficiencies. In practice, this lack of optimization would result in 

maintaining the same drilling parameters utilized in the previous formation or adhering to 

parameters prescribed in the drilling roadmap.   

In this section, ROP modeling lithology dependency is questioned by evaluating 

the 0th optimization interval performance of ROP models trained with data collected in the 

preceding formation. This metric is compared to average errors for models trained with 

actual formation data in the subsequent formation intervals, analyzing if the violation of 

the historical lithology dependence of ROP models results in loss of accuracy. The standard 

30ft-long retraining interval definition (Section 6.3.1) is used, thus models fitted with data 

from a previous formation must predict ROP for the initial 30ft (0th optimization interval) 

of each formation. Greenhorn Limestone, the first formation in Table 4.2, is not analyzed 

since there are no data from preceding formations available. 

Beginning with analytical ROP models’ performance: 
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Table 6.8: Analytical ROP modeling average absolute error in formation intervals and 0th 

optimization interval modeled with data from previous formation. 

 
 

Table 6.9: Analytical ROP modeling average normalized RMSE in formation intervals 

and 0th optimization interval modeled with data from previous formation. 
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Analytical ROP models exhibit lower absolute error and normalized RMSE in the 0th 

optimization interval (with data from previous formation) than in formation intervals (with 

data from the actual formation) for only a small number of formations. There are no 

identifiable patterns with formation depth or thickness. For the majority of formations, and 

according to overall average error, the lithology dependence assumption is justified for 

analytical ROP models.  

Repeating the same experiment with machine learning ROP models: 

Table 6.10: ML ROP modeling average absolute error in formation intervals and 0th 

optimization interval modeled with data from previous formation. 
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Table 6.11: ML ROP modeling average normalized RMSE in formation intervals and 0th 

optimization interval modeled with data from previous formation. 

 
 

Tables 6.10 and 6.11 display the reverse outcome observed in Tables 6.8 and 6.9. With 

machine learning ROP models, errors are lower in 0th optimization intervals compared to 

the remainder of formation intervals. Although ROP in some individual formations is still 

more accurately predicted with lithology-dependent models, average errors favor models 

trained with data from the preceding formation. This is particularly true with the random 

forests algorithm. The likely explanation for this behavior is that models trained in the same 

formation lack substantial data in the first few retraining intervals. Models tested on 0th 

optimization intervals benefit from all data measured in the previous formation, possibly 

containing information about combinations of drilling parameters that lead to drilling 

dysfunctions not yet experienced in the first batches of data in a new formation. As 

previously shown (Section 5.7), machine learning models perform significantly better with 
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larger volumes of data. Results in Tables 6.10 and 6.11 support this notion. The same is 

not observed with analytical ROP models (Tables 6.8 and 6.9) since they must average 

drilling behavior into model coefficients, not taking advantage of the full array of 

information obtained in the preceding formation.   

At least from a ML modeling perspective, the traditional lithology dependency 

requirement for ROP models is contested in this section. Chapter 7 introduces different 

methodologies to segment the drilling training dataset ignoring formation boundaries.  

6.4. DRILLING PARAMETER OPTIMIZATION  

The lithology-dependent real-time drilling interval optimization workflow 

presented in Section 6.2 establishes a performance baseline for comparison of novel data 

segmentation techniques in Chapter 7. Hence, all portions of the optimization workflow 

are investigated here. Results are reported with the standard 30ft retraining interval 

definition, generating a total of 148 formation-specific intervals. Tables, instead of 

boxplots, are mainly utilized from this point forward to facilitate one-on-one metric 

comparisons for all seven ROP models and collections of most accurate models selected 

by cross-validation on the training data and by test error. As a reminder, computational 

times for experiments in this section and in Chapter 7 were recorded with an inexpensive 

modern laptop computer (7th Generation Intel® Core™ i5 processor @ 2.50GHz and 8GB 

RAM).  

Analysis begins by evaluating modeling errors and cross-validation computational 

time: 
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Table 6.12: Model error metrics and computational time for formation-dependent training 

dataset with 30ft retraining intervals. 

 
 

As expected, model performance is significantly worse for all models when compared to 

models previously trained with all formation data (Section 5.5). Comparing the table above 

to Table 5.7, ML ROP models experience larger error increase (~10-14%) than analytical 

models (~3-8%). CV computational time is comparable to previous results. In the “best by 

cross-validation” row, optimization time represents the average computational time needed 

to optimize the best performing model selected by cross-validation at each interval. This 

constitutes the collection of models utilized to optimize drilling parameters in a practical 

field application of the real-time interval optimization workflow. Combining CV and 

optimization time, the total of about 90 seconds on average to define optimal drilling 

parameters in each interval is not computationally prohibitive in real-time (see Table 6.1). 

Examining statistics for model selection by CV, optimization time is largely driven by the 

random forests model: 
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Table 6.13: Model selection and cross-validation/test error agreement for formation-

dependent training dataset with 30ft retraining intervals. 

 
 

Conforming to previous results, the table above indicates that analytical ROP models are 

rarely the best performers according to CV on training data, while contributing to the 

collection of most accurate models on test data in around 15% of the 148 optimization 

intervals. Neural networks exhibit the biggest CV/test error selection discrepancy in Table 

6.13, an enigma previously mentioned in Section 6.3.1. 

 Suggested drilling parameter adjustments and ROP gains derived from interval 

optimizations of each ROP model are presented next:  

Table 6.14: Model normalized RMSE and drilling parameter optimization results for 

formation-dependent training dataset with 30ft retraining intervals. 

 
 

Section 5.5 has established that analytical ROP model optimizations drive operational 

parameters to their maximum bound, while optimizations according to ML models attempt 

to locate regions in the parameter space where drilling speed is high. Similar to previous 
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results (Tables 5.8-5.10 and 5.12), ML model optimizations to this Williston Basin dataset 

generally suggest a reduction in drilling operational parameter values. This notion is further 

explored by inspecting ROP and WOB difference distributions over all optimized intervals 

for the most accurate analytical (modified B&Y) and ML (random forests) ROP models: 

 

 

Figure 6.10: ROP difference distribution in 148 interval optimizations for modified 

Bourgoyne and Young ROP models with formation-dependent training 

dataset and 30ft retraining intervals. 

Figure 6.10 illustrates that optimizations according to modified B&Y models are very 

optimistic about achievable ROP improvements, with a large portion of intervals 

displaying possible ROP gains of over 100ft/hr. In comparison, random forests optimized 

predictions are more moderate: 
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Figure 6.11: ROP difference distribution in 148 interval optimizations for random forests 

ROP models with formation-dependent training dataset and 30ft retraining 

intervals. 

The ROP distribution in the figure above is much more concentrated around the mean than 

in Fig. 6.10. Negative ROP differences are represented, indicating that some drilled 

intervals overperformed random forests’ optimized predictions. 

WOB difference distributions are depicted next: 
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Figure 6.12: WOB difference distribution in 148 interval optimizations for modified 

Bourgoyne and Young ROP models with formation-dependent training 

dataset and 30ft retraining intervals. 

Due to the positively bounded nature of analytical ROP model coefficients, drilling 

variables are forced to always have a positive relationship with ROP in the modified B&Y 

model. Several intervals are optimized to WOB increases greater than 20klbf. Constraints 

established in Table 4.4 limit WOB to an upper bound of 35klbf. Therefore, intervals with 

large optimized WOB differences were originally drilled with low bit weight. Drilling 

behavior in such intervals is extrapolated by the modified B&Y model to WOB values 

much higher than seen in the training data, resulting in the extremely high, but possibly 

unrealistic ROP improvements shown in Fig. 6.10. Optimized WOB differences with 

random forests models portray a significantly distinct modeling philosophy: 
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Figure 6.13: WOB difference distribution in 148 interval optimizations for random 

forests ROP models with formation-dependent training dataset and 30ft 

retraining intervals.  

Fig. 6.13 demonstrates that random forests models suggest reductions in WOB for most 

optimized intervals. These reductions approach 30klbf in certain intervals, nearing the 

imposed 5klbf WOB lower bound. Since WOB is optimized to high ROP regions 

determined by RF models, it is reasonable to speculate that the recommended negative 

WOB adjustments avoid parameter combinations that lead to drilling dysfunctions. 

However, it is highly unlikely that over 125 out of 148 total formation intervals were drilled 

experiencing dysfunctional behavior. Field personnel are trained to avoid such issues, and 

the blame for these dubious WOB-ROP relationships modeled by the RF algorithm 

probably lies with poor drilling data quality. 
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Chapter 7: Data Segmentation Techniques for Real-Time Optimization 

of Drilling Parameters 

The traditional methodology of training lithology-dependent ROP models has a 

strong foundation, as rock properties vastly affect drilling behavior. Nevertheless, data 

collected in drilling previous rock formations possibly explore different regions of the 

operational parameter space and may contribute to enhanced modeling in a new formation, 

as evidenced in Section 6.3.3. In lithology transition zones, determining optimal drilling 

parameters in real-time with a lithology-dependent modeling approach may prove 

particularly tricky, since not much relevant data are available.  

This chapter introduces different procedures to partition the training dataset, 

questioning the classical lithology dependence of ROP models. Training data are 

partitioned according to a dynamic range of fixed depth length or the full range of data 

collected in the well, violating lithology dependency. Segmentation approaches then 

incorporate spatial proximity and parameter similarity weighting techniques to further 

divide training data according to sample importance. These proposed data segmentation 

methodologies are evaluated with respect to ROP modeling error and ROP improvement 

from optimization of drilling parameters. Complying with the continuous learning real-

time drilling optimization workflow established in Section 6.2, ROP models are retrained 

in 30ft intervals. This 30ft optimization interval standard, with reasonable frequency of 

drilling parameter adjustments and assurance that thinner formations are not left 

unoptimized, facilitates field applicability. Experiments with dynamic range, full range and 

data weighting techniques will be compared to the baseline formation-dependent 

continuous learning with 30ft retraining intervals presented in Section 6.4. The impact of 

aggregating historical data to the training dataset is also analyzed. Model performance, 
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ROP gains and CV’s ability to select the most accurate ROP model are the assessment 

metrics of interest. 

7.1. DYNAMIC RANGE OF TRAINING DATA 

Dynamic range ignores formation boundaries and imposes a fixed training dataset 

length. Illustrating this segmentation technique with the Rierdon Limestone formation: 

 

 

Figure 7.1: 200ft dynamic range training dataset moving through Rierdon Limestone 

formation boundary. 

In the left plot of Fig. 7.1, the 200ft-long dynamic training data range is entirely located 

within the formation preceding the Rierdon Limestone formation. However, after drilling 

optimization in six 30ft intervals (right-hand plot), the dynamic range spans two separate 

formations. Zooming in on the interval to be optimized in the second plot: 
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Figure 7.2: Rierdon Limestone optimization interval for 200ft dynamic range training 

dataset segmentation. 

Optimization with dynamic training data range follows the continuous learning workflow, 

established in Section 6.2. Dynamic range neglects operational parameter optimization in 

only one interval (in the beginning of a bit run), compared to sub-optimal first drilling 

intervals in each formation with a lithology-dependent approach. Moreover, this 

segmentation technique ensures that a substantial amount of training data is available at all 

optimization intervals. With 30ft retraining intervals, the training dataset is divided into 

162 intervals for the Williston Basin dataset, 14 more than the 148 formation-dependent 

intervals (Section 6.4). 

 Optimal dynamic range length for highest ROP modeling predictive accuracy must 

be determined before analysis begins. Starting out with a dynamic range as long as the 

average formation thickness in the Williston Basin dataset (~250ft) and varying its length 

in 50ft steps:  
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Table 7.1: ROP model performance with increasing dynamic range depth length and 30ft 

retraining intervals. 

 
 

With increasing dynamic range length, analytical ROP model performance worsens. This 

is expected, as analytical models must represent the averaged drilling behavior in a longer 

data span. Conflicting results are observed for ML models, as no clear performance trend 

is observed with longer dynamic training data ranges. Shortening dynamic range length in 

increments of 50ft: 

Table 7.2: ROP model performance with decreasing dynamic range depth length and 30ft 

retraining intervals. 

 
 

Analytical ROP models perform better with shorter dynamic training data ranges, due to 

their averaging nature described earlier. Agreement between best model selected by CV 

and by test error mostly hovers between 40% and 50%. RF performs best with a 350ft 

dynamic range according to absolute error and with a 200ft dynamic range according to 
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normalized RMSE. SVM performs best with a 350ft dynamic range according to absolute 

error and with a 300ft dynamic range according to normalized RMSE. Finally, NN 

performs best with a 200ft dynamic range according both error metrics. The 200ft dynamic 

training data range represents a sweet spot for compromise between analytical and machine 

learning model performance and is utilized as the standard dynamic range length for the 

remainder of this study.  

Evaluating model error and CV time for the 200ft dynamic training data range: 

Table 7.3: Model error metrics and computational time for 200ft dynamic range training 

dataset with 30ft retraining intervals. 

 
 

These results are compared to the formation-dependent baseline (Table 6.12). Model 

performance improves for both analytical and ML ROP models with dynamic range 

training data segmentation, bringing the classical ROP modeling lithology dependence 

assumption into question. Computational expenses are similar to the baseline. Best model 

selection is investigated next: 
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Table 7.4: Model selection and cross-validation/test error agreement for 200ft dynamic 

range training dataset with 30ft retraining intervals. 

 
 

Comparing Table 7.4 to the formation-dependent baseline (Table 6.13), random forests 

models claim the lowest CV error in an even higher percentage of intervals with 200ft 

dynamic range. On the other hand, RF models are not the best performers according to test 

error as often, resulting in 3.51% (absolute error) and 3.29% (RMSE) fewer drilling 

intervals where the same model is the most accurate in terms of both cross-validation and 

test error.  

Finally, Table 7.5 displays interval optimization results for the 200ft dynamic range 

segmentation technique: 

Table 7.5: Model normalized RMSE and drilling parameter optimization results for 200ft 

dynamic range training dataset with 30ft retraining intervals. 

 
 

Besides improved performance, ML ROP models achieve ROP gains higher than the 

formation-dependent baseline (Table 6.14) with 200ft dynamic training data range. 
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Optimization with SVM models produced the biggest increase in average ROP 

improvement, from 35.11ft/hr with formation-dependent training data to 41.31ft/hr with 

200ft dynamic training data range. This outcome is further investigated by analyzing ROP 

difference histograms for intervals optimized by the SVM model with both segmentation 

techniques: 

 

 

Figure 7.3: ROP difference distribution in interval optimizations for SVM ROP models 

with 30ft retraining intervals. Left plot: formation-dependent training dataset 

(148 intervals); Right plot: 200ft dynamic range training dataset (162 

intervals). 

ROP difference distributions in the figure above have similar shape, but the dynamic range 

distribution (right-hand plot) is shifted towards higher ROP improvements. Interestingly, 

SVM models recommend more negative average flow rate differences for the formation-

dependent approach (-7.04gpm in Table 6.14 and -0.23gpm in Table 7.5): 
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Figure 7.4: Flow rate difference distribution in interval optimizations for SVM ROP 

models with 30ft retraining intervals. Left plot: formation-dependent 

training dataset (148 intervals); Right plot: 200ft dynamic range training 

dataset (162 intervals). 

SVM optimizations with 200ft dynamic range (right-hand plot) result in positive flow rate 

differences for more optimization intervals and less significantly negative recommended 

flow rate adjustments. 

7.2. FULL RANGE OF TRAINING DATA 

Instead of establishing a fixed-length moving range of training data, the full range 

training dataset encompasses all data measured in drilling the well up to each optimization 

interval. The intuition behind this approach is to take full advantage of all available data, 

as ML models were shown to reduce test error very effectively with incremental training 

data in Section 5.7. Analyzing the same Rierdon Limestone optimization interval as in Fig. 

7.2: 
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Figure 7.5: Rierdon Limestone optimization interval for full range training dataset 

segmentation. 

Models are still retrained every 30ft, leading to the same 162 intervals optimized by the 

200ft dynamic training data range methodology. ROP modeling error and computational 

metrics analogous to Table 7.3 are presented: 

Table 7.6: Model error metrics and computational time for full range training dataset with 

30ft retraining intervals. 

 
 

Analytical ROP models perform much worse compared to 200ft dynamic range (Table 7.3) 

or the formation-dependent baseline (Table 6.12), as expected from behavior previously 
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observed when increasing dynamic range length (Table 7.1). Interestingly, modified B&Y 

models display significantly lower error than other analytical models when trained with 

full training data ranges. It is possible that analytical model equation constants, such as bit 

diameter, aggravate averaging behavior established by model coefficients. Random forests 

and SVM models predict ROP more accurately than their formation-dependent 

counterparts, but NN errors are significantly higher with full training data range. Dynamic 

range segmentation of training data is better suited for RF and NN models, while full range 

is effective for SVM. CV time increases considerably for SVM and slightly for NN, leading 

to ten additional seconds required for cross-validating the seven ROP models. CV and test 

error model selection agreement increases with respect to the baseline (and significantly 

improves compared to dynamic range), as analytical models are rarely ever selected as best 

performers according to test data: 

Table 7.7: Model selection and cross-validation/test error agreement for full range 

training dataset with 30ft retraining intervals. 

 
 

Random forests models persist as dominant leaders in cross-validation error performance 

and SVM almost doubles in test data selection. Surprisingly, NN models remain the most 

accurate in 19% of intervals based on test error (about the same as in lithology-dependent), 

even though average interval errors are much higher than in the two previous training data 

segmentation techniques.  
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 Interval optimizations with full range of training data are summarized below: 

Table 7.8: Model normalized RMSE and drilling parameter optimization results for full 

range training dataset with 30ft retraining intervals. 

 
 

Table 7.8 displays substantial optimized ROP improvements for all ROP models, 

particularly for analytical ones. However, ROP gains predicted by analytical models are 

unlikely to materialize, as their error metrics are also very high. For machine learning 

models, large ROP improvements present a huge opportunity. With the same 162 intervals 

as 200ft dynamic range segmentation, RF optimizations with full training data range 

improved ROP gains from 26.45ft/hr to 44.39ft/hr on average. This is a distinguished 

accomplishment, obtained according to the most accurate ROP model. RF errors were very 

similar for both methodologies, 21.56% normalized RMSE for dynamic range and 22.08% 

normalized RMSE for full range. 

Investigating random forests ROP difference histograms for both dynamic range 

and full range segmentation approaches: 
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Figure 7.6: ROP difference distribution in 162 interval optimizations for RF ROP models 

with 30ft retraining intervals. Left plot: 200ft dynamic range training 

dataset; Right plot: full range training dataset. 

Full range optimizations (right-hand plot) produce ROP improvements in the range of 

40ft/hr-60ft/hr for several intervals, and around 100ft/hr for a considerable number of 

intervals. Drilling parameter recommendations are shown next: 

 

 

Figure 7.7: WOB difference distribution in 162 interval optimizations for RF ROP 

models with 30ft retraining intervals. Left plot: 200ft dynamic range training 

dataset; Right plot: full range training dataset. 

RF models trained with full range of training data suggest more drastic reductions in WOB. 

Notice the large increase in the number of intervals with WOB differences between -10klbf 

to -30klbf. On average, full range RF models recommend -9.42klbf WOB adjustment, 



 

 

 

 

 195 

compared to -6.92klbf with 200ft dynamic range. Conversely, RPM difference histograms 

indicate that full range optimizations result in significantly more positive RPM changes: 

 

 

Figure 7.8: RPM difference distribution in 162 interval optimizations for RF ROP models 

with 30ft retraining intervals. Left plot: 200ft dynamic range training 

dataset; Right plot: full range training dataset. 

Optimizations with dynamic range RF models advise -6.60rev/min average RPM 

adjustments, compared to +1.29rev/min for full range. Lastly, flow rate difference 

histograms are presented: 

 

 

Figure 7.9: Flow rate difference distribution in 162 interval optimizations for RF ROP 

models with 30ft retraining intervals. Left plot: 200ft dynamic range training 

dataset; Right plot: full range training dataset. 
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Similar to RPM differences, dynamic range intervals average -7.51GPM flow rate 

adjustment while full range optimizations propose +14.64GPM. It is important to note that, 

as established in Table 4.4, mud flow rate is constrained between the minimum and 

maximum values encountered in the training data to avoid inadequate hole cleaning and 

lost circulation. With training datasets spanning significantly more than 200ft (as in 

dynamic range), full range optimizations enjoy wider flow rate adjustment windows, 

possibly culminating in the larger ROP improvements experienced in Fig. 7.6. In summary, 

optimizations with RF models fitted to full training data ranges favor increasing flow rate 

and RPM in most intervals and drastically decreasing WOB, as opposed to 

recommendations to reduce all three drilling parameters with 200ft dynamic range RF 

models. 

7.3. SPATIAL PROXIMITY WEIGHTING 

Data weighting attaches a measure of significance to individual training data 

samples in an attempt to develop more reliable models. This weighting concept is 

incorporated to the traditional lithology-dependent approach and data segmentation 

techniques described in Sections 7.1 and 7.2, further extending training data partitioning 

capabilities. Spatial proximity weighting exploits the notion that data points measured 

closest to the interval to be optimized are likely the most representative of drilling behavior 

expected within the interval. This methodology is illustrated with 200ft dynamic training 

data range for the same Rierdon Limestone interval analyzed in Fig. 7.2: 
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Figure 7.10: Rierdon Limestone optimization interval for 200ft dynamic range training 

dataset segmentation incorporating spatial proximity weighting. 

In Fig. 7.10, the 200ft-long dynamic training data range is split into two 100ft segments. 

Samples in the second partition (“Training Set 2”) are attributed higher weights than the 

first 100ft of data (“Training Set 1”), based on proximity to the optimization interval. 

Larger weights cause ROP modeling fitting procedures to place more emphasis on samples 

located in the second half of the training dataset, adjusting model coefficients accordingly. 

Described in Section 3.2.1, l2 loss (least squares regression) was established as the 

standard technique for analytical ROP model fitting in this dissertation (Section 5.2). 

Spatial proximity weighting illustrated in Fig 7.10 is accomplished by splitting training 

data residuals into two groups in the l2 loss model fitting objective function formulation: 
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    (7.1) 

 

where w1 is the weight assigned to the first training set segment with N1 data points and w2 

is the weight assigned to the second training set segment with N2 data points. With w2 

greater than w1, as suggested for the dynamic range in Fig. 7.10, the objective function in 

Eq. 7.1 conditions the ROP model to be more representative of drilling data spatially 

proximal to the optimization interval. This training data partitioning concept can be 

extended to attribute different weights to multiple segments of the training dataset: 
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  (7.2) 

 

where P is the number of training data partitions and wi is the weight assigned to the ith 

sample in the jth partition. In Eq. 7.2, the training dataset can be segmented into any number 

of P partitions. Progressive spatial proximity weighting assigns incremental significance to 

samples as they inch closer to the optimization interval. Conceptually, this technique is 

particularly useful in conjunction with full range training dataset segmentation.  

 In Section 5.2, the trust region reflective algorithm in Python’s scipy.optimize 

(Oliphant, 2007) library was designated as the algorithm of choice for analytical ROP 

model fitting. This trust region implementation in scipy.optimize was designed for least-

squares problems, with a limited selection of pre-defined loss functions. Since the objective 
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function in Eq. 7.2 incorporates linear weights in its formulation, TRF cannot be used for 

fitting sample-weighted analytical ROP models. The L-BFGS-B technique provided in the 

same Python package is a suitable substitute supporting stipulation of any objective 

function, with similar gradient-based approach. L-BFGS-B computes model coefficients 

identical to the ones obtained with TRF in the experiment described in Table 5.2, with 

comparable computing performance. Hence, L-BFGS-B is elected as the standard 

algorithm for analytical ROP model fitting with data weighting techniques. RF and SVM 

implementations in Python’s scikit-learn (Pedregosa et al., 2011) have embedded sample 

weighting support. In random forests, highly weighted training data points bear heavier 

influence on node splitting decisions. For SVM, scikit-learn rescales the budget parameter 

C, which controls toleration to margin violations, to prioritize classifying higher-weighted 

samples on the correct side of the margin. Regrettably, scikit-learn’s neural networks 

algorithm does not support training data weighting. In order to overcome this deficiency, 

samples are repeated a number of times equivalent to their weights. Eqs. 7.1 and 7.2 reveal 

that attributing a weight value of 2 to a data point has the same effect as adding the sample 

twice to the training dataset. Therefore, for neural networks model training with data 

weighting strategies, weights are rounded to the nearest integer and their corresponding 

samples are repeated an equivalent number of times. This approach has the disadvantage 

of requiring approximate weights and additional computational time if the number of 

samples in the training dataset increases considerably.  

7.3.1. Formation-Dependent Training Data 

Section 6.4 covers real-time drilling interval optimization with unweighted 

lithology-dependent ROP models, providing a baseline for weighting techniques. Cross-

validation and optimization computational expenses are very similar regardless of whether 
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training data weights are prescribed, and CV/test error weighted model selection agreement 

remains within 40-50%. Thus, the analysis here focuses on model error (normalized 

RMSE) and optimization outcomes. Assigning weights twice as large for the second half 

of the training dataset (w1 = 1 and w2 = 2 in Eq. 7.1, with N1 representing the first half of 

training data points): 

Table 7.9: Model normalized RMSE and drilling parameter optimization results for 

formation-dependent training dataset with 30ft retraining intervals and 

second half of training samples weighted double. 

 
 

These results are compared to the unweighted formation-dependent baseline (Table 6.14). 

Model performance improves by an average of 1.5% normalized RMSE for all analytical 

models, and 0.23% normalized RMSE for RF. SVM and NN models perform slightly 

worse. ROP differences are equivalent, except for higher gains in optimizations with SVM. 

However, since SVM models exhibit higher errors, there is no guarantee that these ROP 

improvements are actually significant. 

Comparison between Tables 7.9 and 6.14 establishes potential for ROP modeling 

predictive accuracy improvement with spatial proximity sample weighting. Additional 

spatial weighting scenarios are tested for dynamic and full training data ranges. 
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7.3.2. Dynamic Range of Training Data 

Section 7.1 institutes the baseline for dynamic range weighting techniques. 

Optimization results for two-way partitioning with double weighting (w1 = 1 and w2 = 2 in 

Eq. 7.1) are presented in the table below: 

Table 7.10: Model normalized RMSE and drilling parameter optimization results for 

200ft dynamic range training dataset with 30ft retraining intervals and 

second half of training samples weighted double. 

 
 

Normalized RMSE is lower for analytical models, but slightly higher for ML models with 

respect to the unweighted dynamic range baseline (Table 7.5). ROP gains remain virtually 

unchanged. 

 In the following simulation, the second half of training data is weighted five times 

as much as the first 100ft (w1 = 1 and w2 = 5 in Eq. 7.1): 
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Table 7.11: Model normalized RMSE and drilling parameter optimization results for 

200ft dynamic range training dataset with 30ft retraining intervals and 

second half of training samples weighted five times more than first half. 

 
 

Analytical model performance improves with larger weights for samples closer to the 

optimized interval. Random forests errors are slightly lower than in Table 7.10, reverting 

back to the normalized RMSE achieved in the baseline (Table 7.5). ROP improvements 

are very similar, except for huge gains in SVM optimizations. Nevertheless, SVM errors 

increase with respect to Table 7.10. 

Next, second-partition samples receive 10 times more emphasis in model training 

(w1 = 1 and w2 = 10 in Eq. 7.1): 

Table 7.12: Model normalized RMSE and drilling parameter optimization results for 

200ft dynamic range training dataset with 30ft retraining intervals and 

second half of training samples weighted ten times more than first half. 

 
 

Table 7.12 ratifies the trend of decreasing analytical model errors with higher spatial 

proximity weights, while ML model performance remains unpredictable.  
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Progressive spatial proximity weighting is investigated by splitting the dynamic 

training data range into four segments and incrementally attributing higher weights to 

partitions closer to the optimized interval (w1 = 1, w2 = 2, w3 = 3, w4 = 4 in Eq. 7.2): 

Table 7.13: Model normalized RMSE and drilling parameter optimization results for 

200ft dynamic range training dataset with 30ft retraining intervals and 

training samples divided into four partitions of equal size weighted 

progressively. 

 
 

Analytical models display lower errors than the initial two-way partition (Table 7.10), but 

higher errors than 5-fold weighting (Table 7.11). This four-way progressive weighting 

technique is conducive to neural networks, which display low normalized RMSE and large 

ROP improvements.  

Finally, further progressive spatial proximity weighting analysis is conducted with 

10 data partitions (w1 = 1, w2 = 2, w3 = 3, w4 = 4, w5 = 5, w6 = 6, w7 = 7, w8 = 8, w9 = 9, w10 

= 10 in Eq. 7.2): 
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Table 7.14: Model normalized RMSE and drilling parameter optimization results for 

200ft dynamic range training dataset with 30ft retraining intervals and 

training samples divided into ten partitions of equal size weighted 

progressively. 

 
 

Table 7.14 shows a modest analytical performance improvement with respect to four-way 

partition (Table 7.13), but higher errors compared to two-partition five-fold weighting 

(Table 7.11). All ML models performed worse than the previous weighting scenario with 

four partitions. 

 Figures 7.11 and 7.12 summarize modeling and optimization results for 200ft 

dynamic training data range with spatial proximity weighting: 
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Figure 7.11: Normalized RMSE and ROP improvement for analytical ROP models in all 

200ft dynamic range spatial proximity weighting scenarios. 
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Figure 7.12: Normalized RMSE and ROP improvement for machine learning and cross-

validation best performing ROP models in all 200ft dynamic range spatial 

proximity weighting scenarios. 

Dynamic range analytical ROP modeling errors decrease with larger proximity weights or 

more training data partitions weighted progressively, with two-partition ten-fold weighting 

as the best alternative. Optimized ROP differences with analytical models do not vary 

significantly according to weighting. ML models trained with 200ft dynamic range 

performed better without sample weighting, with only RF two-partition five-fold weighting 

reaching the unweighted baseline. Therefore, normalized RMSE for the collection of best 

performing models according to CV error, heavily influenced by RF models, is lowest for 

the unweighted scenario. 
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7.3.3. Full Range of Training Data 

Optimization results presented in Section 7.2 (Table 7.8) establish the baseline for 

full range weighting simulations. Table 7.15 displays two-way partition of full range 

training datasets with double spatial proximity weighting: 

Table 7.15: Model normalized RMSE and drilling parameter optimization results for full 

range training dataset with 30ft retraining intervals and second half of 

training samples weighted double. 

 
 

Significant improvements of almost 20% normalized RMSE are seen for analytical models. 

This massive performance gap is explained by analytical models emphasizing drilling 

behavior nearby optimized intervals out of the large number of samples in the training 

dataset. RF and SVM models perform slightly worse than the unweighted full range 

baseline, while NN achieves 3% lower normalized RMSE and 10ft/hr additional gains in 

ROP.  

Increasing second partition weights to five times as much as samples in the first 

half of the full range training data (w1 = 1 and w2 = 5 in Eq. 7.2): 
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Table 7.16: Model normalized RMSE and drilling parameter optimization results for full 

range training dataset with 30ft retraining intervals and second half of 

training samples weighted five times more than first half. 

 
 

Normalized RMSE decreases substantially for analytical models and slightly for RF and 

NN in comparison with Table 7.15. Further enlarging proximity weights (w1 = 1 and w2 = 

10 in Eq. 7.2): 

Table 7.17: Model normalized RMSE and drilling parameter optimization results for full 

range training dataset with 30ft retraining intervals and second half of 

training samples weighted ten times more than first half. 

 
 

Once more, all models’ performance improves except for SVM. 

Full range progressive spatial proximity weighting with four-way partitioning is 

scrutinized next: 
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Table 7.18: Model normalized RMSE and drilling parameter optimization results for full 

range training dataset with 30ft retraining intervals and training samples 

divided into four partitions of equal size weighted progressively. 

 
 

Contrasting Tables 7.15 and 7.18, model errors (except SVM) decrease with additional 

training data partitions. Increasing the number of full training data range divisions:  

Table 7.19: Model normalized RMSE and drilling parameter optimization results for full 

range training dataset with 30ft retraining intervals and training samples 

divided into ten partitions of equal size weighted progressively. 

 
 

Normalized RMSE decreases for RF and the four analytical models with additional training 

data partitions. Analytical ROP models in Table 7.19 perform significantly better than the 

full range unweighted baseline (Table 7.8). However, their normalized RMSE errors are 

still higher than metrics for unweighted formation-dependent (Table 6.14) and dynamic 

range (Table 7.5) techniques.  

Summarizing results for full training data range with spatial proximity weighting: 
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Figure 7.13: Normalized RMSE and ROP improvement for analytical ROP models in all 

full range spatial proximity weighting scenarios. 
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Figure 7.14: Normalized RMSE and ROP improvement for machine learning and cross-

validation best performing ROP models in all full range spatial proximity 

weighting scenarios. 

Spatial proximity weighting accomplishes substantial normalized RMSE reduction for full 

range analytical models. Similar to dynamic range spatial weighting, trends of decreasing 

error with more partitions or larger proximity weights are observed, with ten-fold 

weighting in two training data segments achieving the best analytical model performance. 

ROP improvements predicted by the four analytical models follow the opposite trend, 

decreasing in magnitude as models become more accurate even though operational 

parameter recommendations remain the same. Full range RF and SVM models do not 

improve with spatial weighting techniques, while NN adheres to the same normalized 

RMSE decreasing trends as analytical models. The collection of best performing models 

according to CV error is once again governed by RF results. 
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7.4. PARAMETER SIMILARITY WEIGHTING 

Parameter similarity weighting appraises data samples by considering operational 

parameters’ closeness to the mean depth, WOB, RPM and flow rate nearby the 

optimization interval. Parameter averages in the second half of the preceding optimization 

interval (last 15ft) are proposed as the references for similarity weighting. This approach 

presumes that data points with similar operational parameters experience comparable 

drilling conditions, seeking to generate ROP models predisposed to drilling behavior 

adjacent to the interval to be optimized. Generalizing the model fitting objective function 

in Eq. 7.2 to incorporate different weights for each sample in the training dataset: 

 

min(∑𝑤𝑖𝑟𝑖
2

𝑁

𝑖=1

) = min(∑𝑤𝑖(𝑅𝑂𝑃𝐹𝑖𝑒𝑙𝑑,𝑖 − 𝑅𝑂𝑃𝑀𝑜𝑑𝑒𝑙,𝑖)
2

𝑁

𝑖=1

)   (7.3) 

 

where N is the number of samples in the training dataset and wi is the weight assigned to 

ith sample. Similarity metrics according to WOB are defined as: 

 

𝑤𝑊𝑂𝐵,𝑖 = max [0, ( 1 − 𝑘𝑊𝑂𝐵

|𝑊𝑂𝐵𝑖 − 𝑊𝑂𝐵𝑎𝑣𝑔|

𝑊𝑂𝐵𝑎𝑣𝑔
)]   (7.4) 

 

where kWOB is a weighting constant for the WOB parameter and WOBavg is the mean WOB 

in the 15ft preceding the optimized interval. In Eq. 7.4, if kWOB equals to one and WOBi 

more than doubles WOBavg, the maximum function determines that wWOB,i is zero for the 

data point in question. Weights analogous to Eq. 7.4 are derived for depth, RPM and flow 

rate. Equation 7.5 combines all four parameter weights into one sample similarity 

weighting formulation: 

 

𝑤𝑖 = 1 + 𝑤𝐷,𝑖 + 𝑤𝑊𝑂𝐵,𝑖 + 𝑤𝑅𝑃𝑀,𝑖 + 𝑤𝑞,𝑖     (7.5) 
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Weighting constants, such as kWOB in Eq. 7.4, can be customized to specific needs, placing 

more emphasis on individual operational drilling parameters. Since similarity weights are 

nonnegative, the minimum sample weight given by Eq. 7.5 is equal to one. 

7.4.1. Formation-Dependent Training Data 

Similar to spatial proximity weighting, cross-validation and optimization 

computational times with parameter similarity weights do not vary significantly from the 

unweighted lithology-dependent baseline (Section 6.4). Model selection agreement 

between CV and test error drift around 40-50%, with no clear trends. Hence, normalized 

RMSE and optimization results compose the comparison metrics of interest.  The potential 

of parameter similarity weighting is investigated with weighting constants (k) for all four 

drilling parameters equal to one: 

Table 7.20: Model normalized RMSE and drilling parameter optimization results for 

formation-dependent training dataset with 30ft retraining intervals and 

parameter similarity weighting. 

 
 

All ROP models, except SVM, exhibit slightly lower errors compared to the unweighted 

baseline in Table 6.14. ROP improvements remain similar. 
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7.4.2. Dynamic Range of Training Data 

Dynamic range parameter closeness weighting analysis begins with exclusive 

WOB similarity scrutiny (kWOB = 1 in Eq. 7.4 and wD = wRPM = wq = 0 in Eq. 7.5): 

Table 7.21: Model normalized RMSE and drilling parameter optimization results for 

200ft dynamic range training dataset with 30ft retraining intervals and WOB 

similarity weighting (kWOB = 1). 

 
 

Normalized RMSE decreases marginally and ROP gains increase for all models in relation 

to the unweighted dynamic range baseline (Table 7.5). Increasing the WOB weighting 

constant to five (kWOB = 5 in Eq. 7.4 and wD = wRPM = wq = 0 in Eq. 7.5): 

Table 7.22: Model normalized RMSE and drilling parameter optimization results for 

200ft dynamic range training dataset with 30ft retraining intervals and WOB 

similarity weighting (kWOB = 5). 

 
 

With kWOB = 5, samples measuring WOB values distanced more than 20% from the 

reference WOB average (last half of preceding optimization interval) are attributed wWOB 



 

 

 

 

 215 

= 0 and wi = 1. This scenario adds more variability to WOB similarity weights and samples 

with WOB closer to the reference nearby the optimized interval have increased impact in 

model training. In comparison to kWOB = 1, normalized RMSE decreases for analytical and 

SVM models. 

Including all four drilling parameters into the similarity weighting scheme with k = 

1 weighting constants: 

Table 7.23: Model normalized RMSE and drilling parameter optimization results for 

200ft dynamic range training dataset with 30ft retraining intervals and 

parameter similarity weighting. 

 
 

Model performance for all ROP models except RF worsens with respect to exclusive WOB 

importance with kWOB = 1 (Table 7.21). Analytical model errors are almost identical to the 

unweighted baseline (Table 7.5), indicating that unit similarity weighting constants for all 

four parameters did not introduce many model training changes with dynamic range 

segmentation. SVM and NN perform slightly worse than the baseline and ROP 

improvements are equivalent. 

Next, varying weighting constants are attributed to the four drilling parameters (kD 

= 10, kWOB = 5, kRPM = 10, kq = 10 in Eq. 7.4): 
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Table 7.24: Model normalized RMSE and drilling parameter optimization results for 

200ft dynamic range training dataset with 30ft retraining intervals and 

parameter similarity weighting. Varying weighting constants established for 

different parameters. 

 
 

Following analysis of the previous kWOB = 5 similarity weighting technique, data points 

where depth, RPM or flow rate differ more than 10% from the 15ft mean references will 

be assigned weights equal to zero for such variables. This weighting strategy emphasizes 

WOB similarities based on field knowledge and hypothesis testing conclusions (Table 5.1) 

that WOB is the operational parameter with biggest effect on ROP. Model performance 

improves considerably for analytical ROP models, with the lowest errors among parameter 

similarity weighting simulations. ML models’ normalized RMSE increase in comparison 

to the previous weighting scheme. All models, apart from SVM, display lower average 

errors than unweighted formation-dependent models in Table 6.14. These results suggest 

that defining lithology by geomechanical properties that directly affect drilling behavior 

(and operational parameters) may be more beneficial to ROP modeling than the standard 

depositional facies classification, which incorporates heterogeneity. 

The figures below encompass all dynamic range spatial proximity and parameter 

similarity weighting scenarios: 
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Figure 7.15: Normalized RMSE and ROP improvement for analytical ROP models in all 

200ft dynamic range weighting scenarios. 
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Figure 7.16: Normalized RMSE and ROP improvement for machine learning and cross-

validation best performing ROP models in all 200ft dynamic range 

weighting scenarios. 

Based on Fig. 7.15, two-partition spatial proximity weighting with w2 = 10 is the 

recommendation for dynamic range analytical ROP models. ML models trained with 200ft 

dynamic training data range are best left unweighted (Fig. 7.16). 

7.4.3. Full Range of Training Data 

 WOB similarity with unit weighting constant (kWOB = 1 in Eq. 7.4 and wD = 0, wRPM 

= 0, wq = 0 in Eq. 7.5) leads to the following optimized parameter recommendations for 

models trained with full training data ranges: 
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Table 7.25: Model normalized RMSE and drilling parameter optimization results for full 

range training dataset with 30ft retraining intervals and WOB similarity 

weighting (kWOB = 1). 

 
 

Model errors are lower than the full range unweighted baseline (Table 7.8) for all analytical 

models and neural networks. With larger WOB weighting constant (kWOB = 5 in Eq. 7.4 

and wD = 0, wRPM = 0, wq = 0 in Eq. 7.5): 

Table 7.26: Model normalized RMSE and drilling parameter optimization results for full 

range training dataset with 30ft retraining intervals and WOB similarity 

weighting (kWOB = 5). 

 
 

Analytical and SVM full range ROP models benefit from more WOB weighting variability 

(higher kWOB). On the other hand, NN normalized RMSE increases and exceeds baseline 

error.  

Optimization results with unit k constants for all four drilling parameters are 

presented in the table below: 
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Table 7.27: Model normalized RMSE and drilling parameter optimization results for full 

range training dataset with 30ft retraining intervals and parameter similarity 

weighting. 

 
 

This weighting scheme works particularly well for RF models, which perform better than 

the unweighted baseline for the first time out of all dynamic and full range weighting 

scenarios. Analytical ROP models display lower normalized RMSE with exclusive unit  

WOB weighting constant, in analogous manner to dynamic range weighting observations. 

Finally, establishing separate weighting constants for each parameter (kD = 10, kWOB = 5, 

kRPM = 10, kq = 10 in Eq. 7.4) in order to emphasize WOB similarities: 

Table 7.28: Model normalized RMSE and drilling parameter optimization results for full 

range training dataset with 30ft retraining intervals and parameter similarity 

weighting. Varying weighting constants established for different parameters. 

 
 

Table 7.28 demonstrates that vast performance improvements can be achieved for full 

range analytical models with parameter similarity weighting. Bingham (1964), corrected 

Hareland and Rampersad (1994) and Motahhari et al. (2010) accomplish nearly 30% lower 
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normalized RMSE than unweighted full range models in Table 7.8. NN models also boast 

lower errors than the baseline, but RF and SVM perform slightly worse. All ML models 

exhibit higher ROP improvements. 

Figures 7.17 and 7.18 illustrate spatial proximity and parameter similarity 

weighting errors and ROP improvements for models trained with full training data range: 

 

 

Figure 7.17: Normalized RMSE and ROP improvement for analytical ROP models in all 

full range weighting scenarios. 
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Figure 7.18: Normalized RMSE and ROP improvement for machine learning and cross-

validation best performing ROP models in all full range weighting 

scenarios. 

In terms of parameter similarity, full range analytical ROP models perform best in the last 

simulation, with varying weighting constants (kD = 10, kWOB = 5, kRPM = 10, kq = 10). 

Nonetheless, two-partition ten-fold (w2 = 10) spatial weighting produces the lowest 

normalized RMSE for all analytical models with full range training dataset. The same 

weighting technique delivers the best performing analytical ROP models overall when 

applied in conjunction with 200ft dynamic training data ranges. Full range random forests 

models yield the lowest errors with unit similarity weighting constants for all four drilling 

parameters (22.01% average normalized RMSE). However, this error metric is still higher 

than the one with unweighted 200ft dynamic range RF models (21.56% normalized 

RMSE). SVM models are not conducive to any weighting scenario but benefit the most 
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from full range of training data, as the unweighted full range scenario results in 25.91% 

normalized RMSE and 103.7ft/hr ROP improvement compared to 26.36% normalized 

RMSE and 41.31ft/hr ROP improvement with unweighted dynamic range. Referring to 

Fig. 2.11, only support vector data points affect SVM models. This circumstance is 

probably the reason why such models were the only to favor training with full training data 

ranges.  

Lastly, NN showed similar error reduction trends as analytical models with full 

range weighting techniques, likely due to the simple model architecture (2 hidden layers 

with 4 and 2 neurons, respectively). Full range NN models with four-partition progressive 

spatial proximity weighting result in the lowest errors (27.76% normalized RMSE and 

54.68ft/hr ROP difference), which are still higher than metrics observed with unweighted 

dynamic range NN models (24.76% normalized RMSE and 28.95ft/hr ROP difference). 

Curiously, the two-partition ten-fold spatial proximity weighting scheme generated ROP 

gains significantly higher than any other full range NN scenario. ROP, WOB, RPM and 

flow rate difference histograms for optimizations according to NN models trained with 

such weighting technique are reproduced below in comparison with unweighted full range 

NN models: 
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Figure 7.19: ROP difference distribution in 162 interval optimizations for full range NN 

ROP models with 30ft retraining intervals. Left plot shows results for 

unweighted models and right plot displays models fitted with two-partition 

ten-fold spatial proximity weighting. 

 

 

Figure 7.20: WOB difference distribution in 162 interval optimizations for full range NN 

ROP models with 30ft retraining intervals. Left plot shows results for 

unweighted models and right plot displays models fitted with two-partition 

ten-fold spatial proximity weighting. 

 



 

 

 

 

 225 

 

Figure 7.21: RPM difference distribution in 162 interval optimizations for full range NN 

ROP models with 30ft retraining intervals. Left plot shows results for 

unweighted models and right plot displays models fitted with two-partition 

ten-fold spatial proximity weighting. 

 

 

Figure 7.22: Flow rate difference distribution in 162 interval optimizations for full range 

NN ROP models with 30ft retraining intervals. Left plot shows results for 

unweighted models and right plot displays models fitted with two-partition 

ten-fold spatial proximity weighting. 

Unweighted and weighted distributions in Figs 7.19-7.22 exhibit very similar shapes. 

Weighted ROP and RPM difference histograms are shifted towards more positive values, 

while WOB optimization recommendations tend towards the more negative portion of the 

curve. Flow rate difference distributions are virtually the same. Table 7.8 displays average 

full range NN unweighted modeling performance and optimization results (normalized 

RMSE = 31.42%, ΔWOB = -8.18klb, ΔRPM = 6.06rev/min, Δq = -12.54gpm, ΔROP = 
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53.80ft/hr), while Table 7.17 presents the same metrics for two-partition ten-fold spatial 

weighting (normalized RMSE = 27.91%, ΔWOB = -8.92klb, ΔRPM = 11.93rev/min, Δq = 

-12.92gpm, ΔROP = 75.49ft/hr). The additional 22ft/hr ROP improvements predicted by 

more accurate weighted models are a consequence of more negative WOB values and 

higher RPM in most optimized intervals. 

 Results presented in this section indicate that establishing appropriate weighing 

constants is paramount in achieving adequate model performance with parameter similarity 

weighting. With the exception of RF, spatial proximity weighting techniques outperformed 

parameter similarity weighting for models fitted to full training data ranges. Unweighted 

SVM produced the only full range models to perform best overall, as 200ft dynamic range 

data segmentation dominated in terms of model accuracy. 

7.5. INCORPORATING HISTORICAL DATA 

Historical data from offset wells provide valuable information about drilling 

experience within a geographical region. Knowledge about drilling behavior in the later 

portions of a rock formation helps ROP models prepare effective operational parameter 

recommendations in advance of reaching such segments. Even though offset well data are 

typically employed in a post-drilling framework (Chapter 5) to produce drilling roadmaps 

for an upcoming well, rock formations tend to display high degree of heterogeneity and 

possibly react to drilling very differently compared to nearby wells. Furthermore, 

exploratory wells are drilled with no access to historical drilling data in the region. Hence, 

the approach explored in this section takes advantage of both historical and real-time data 

in training ROP models. Behounek et al. (2017a) explored this general idea of constructing 

drilling models with both historical and real-time data. Unfortunately, no additional 

datasets near the Bakken shale well analyzed in this study were available. To circumvent 



 

 

 

 

 227 

this issue, the suggested strategy sets aside a portion of each formation’s measured samples 

as historical data. In a lithology-dependent setting, the historical data for each formation is 

available as early as the formation’s first optimization interval. For dynamic range and full 

range segmentation techniques, formation historical data is aggregated to the training 

dataset once the interval to be optimized starts in said formation, ensuring that only one 

formation’s historical data are available for model fitting at each retraining interval. The 

effect of increasing historical data availability is investigated by varying the percentage of 

data separated from the real-time dataset (10%-20%-30%).  

7.5.1. Formation-Dependent Training Data 

Before analyzing the impact of incorporating historical data to the training dataset, 

performance results for formation-dependent training data with weighting techniques from 

Sections 7.3.1 and 7.4.1 are summarized: 

Table 7.29: ROP model performance comparison for formation-dependent training 

dataset with 30ft retraining intervals and different weighting techniques. 

 
 

A percentage of random data points in all formations, varying from 10% to 30%, is 

removed from the original dataset and set aside as historical data. Historical samples are 

combined with the training dataset in the first optimization interval of each formation: 
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Table 7.30: ROP model performance comparison for formation-dependent training 

dataset with 30ft retraining intervals incorporating varying amounts of 

historical data. 

 
 

Aggregation of historical data to the training dataset results in much lower errors for all 

formation-dependent ROP models, which perform significantly better compared to Table 

7.29. Best CV/test error model selection agreements are substantially higher and improve 

with incremental percentages of historical data. Model errors with 30% historical data 

approach those obtained with the entire formation data available (Table 5.7). 

Computational times remain similar to previous investigations. Analyzing model selections 

according to CV and test error for the 30% historical data scenario: 

Table 7.31: Model selection and cross-validation/test error agreement for formation-

dependent training dataset with 30ft retraining intervals and 30% historical 

data. 
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Table 7.31 shows that random forests models are the best performers on test data much 

more frequently with historical data in the training set, driving up CV/test error model 

agreement considerably. Analytical ROP models rarely display the lowest error in 

optimized intervals. 

 Optimization results for formation-dependent models with 30% historical data are 

presented in the table below: 

Table 7.32: Model normalized RMSE and drilling parameter optimization results for 

formation-dependent training dataset with 30ft retraining intervals and 30% 

historical data. 

 
 

Although model performance improves, ROP improvements are very similar to the 

baseline in Table 6.14. 

7.5.2. Dynamic Range of Training Data 

Model errors for 200ft dynamic range training datasets with the best performing 

weighting techniques from Sections 7.3.2 and 7.4.2 are displayed in Table 7.33: 

 

 

 

 



 

 

 

 

 230 

Table 7.33: ROP model performance comparison for 200ft dynamic range training 

dataset with 30ft retraining intervals and different weighting techniques. 

 
 

Historical data percentages varying from 10% to 30% are incorporated to the dynamic 

training data range as optimization intervals reach each formation: 

Table 7.34: ROP model performance comparison for 200ft dynamic range training 

dataset with 30ft retraining intervals incorporating varying amounts of 

historical data. 

 
  

All ROP models fitted to datasets encompassing historical samples perform significantly 

better than with previous dynamic range evaluations in Table 7.33. This is particularly true 

for ML ROP models. 

 Average interval optimization recommendations derived from dynamic range 

models with 30% historical data are shown next: 
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Table 7.35: Model normalized RMSE and drilling parameter optimization results for 

200ft dynamic range training dataset with 30ft retraining intervals and 30% 

historical data. 

 
 

NN models produce the highest ROP gains compared to the baseline (Table 7.5). 

Interestingly, these models suggest less negative WOB changes than in Table 7.5, opposing 

the trend of drastically lowering WOB to obtain the highest ROP improvements observed 

so far. 

7.5.3. Full Range of Training Data 

ROP modeling performance results with full range training data and the most 

successful spatial proximity and parameter similarity weighting scenarios from Sections 

7.3.3 and 7.4.3 are exhibited below: 

Table 7.36: ROP model performance comparison for full range training dataset with 30ft 

retraining intervals and different weighting techniques. 
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Historical data are incorporated to the training dataset as optimized intervals begin in a new 

formation: 

Table 7.37: ROP model performance comparison for full range training dataset with 30ft 

retraining intervals incorporating varying amounts of historical data. 

 
 

Weighting techniques presented in Table 7.36 are much more effective in reducing full 

range analytical model errors than aggregating historical data to the training samples. 

Nevertheless, RF and SVM model errors decrease significantly with historical data, 

improving cross-validation and test error model selection agreement. 

 Optimizations with full range models containing 30% historical data yield the 

following adjustments: 

Table 7.38: Model normalized RMSE and drilling parameter optimization results for full 

range training dataset with 30ft retraining intervals and 30% historical data. 
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By recommending substantial reductions in WOB, RPM and especially flow rate compared 

to the full range baseline (Table 7.8), NN models with 30% historical data achieve an 

additional 7ft/hr ROP improvement on average.  

As demonstrated in this section, incorporating historical samples to the training 

dataset can significantly improve model performance and agreement in best performing 

models selected by CV and by test error. If offset well data are available, ROP models are 

more accurate than when trained solely with real-time data. The sample weighting concept 

can be extended to historical data with Eq. 7.1 (Section 7.3). Offset well data should be 

assigned lower weights than real-time data, prioritizing drilling knowledge obtained in 

actual operating conditions. This approach is not coherent in this study, since all samples 

were measured in the same well. Instead, weighting of historical data is suggested as a 

recommendation for future work with expectations for favorable results.  
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Chapter 8: Conclusions 

8.1. SUMMARY OF FINDINGS 

The real-time drilling parameter optimization problem was introduced in Chapter 

1. A review of industry optimization approaches revealed that ExxonMobil’s Drilling 

Advisory System consistently appears in the literature as the state-of-the-art approach for 

real-time adjustment of drilling operational parameters. Numerous successful 

implementations of the system are described, realizing huge cost savings for the operator.  

Chapter 2 presented the history of ROP modeling and examined the equations 

utilized in this study. A novel modified version of the Bourgoyne and Young (1974) ROP 

model was proposed for specific use in real-time implementations, and a correction was 

applied to the Hareland and Rampersad (1994) PDC model to enforce consistent units and 

appropriate drilling behavior. Random forests, support vector machines and neural 

networks were explained in a drilling context, making statistical concepts behind these ML 

algorithms accessible to the general drilling audience. 

Gradient-based and direct search optimization methods were discussed in Chapter 

3. Eight optimization techniques (three gradient-based, five direct search) were introduced 

as candidates to solve the two optimization problems in real-time drilling parameter 

optimization. ROP model fitting, the first of these two optimization problems, was 

established with three loss function choices. Constrained operational parameter selection 

was formulated accounting for rig equipment and drilling tools limitations.  

Chapter 4 described drilling data workflows and presented the Williston Basin 

dataset analyzed in this study. Surface measurements were designated as the appropriate 

data source for ROP model fitting and drilling optimization due to availability in real-time. 
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Operational parameter optimization constraints specific to the Williston Basin dataset were 

established. 

In Chapter 5, many modeling and optimization decisions essential for real-time 

considerations were investigated in a lithology-dependent post-drilling analysis 

framework. With hypothesis testing, depth, WOB, RPM and drilling fluid flow rate were 

confirmed to constitute statistically relevant parameters for ROP modeling. Gradient-based 

optimization techniques were determined as the standard to fit analytical ROP model 

coefficients, producing adequate results in a computationally efficient manner. The 

proposed modified version of the Bourgoyne and Young ROP model was compared against 

previous model formulations, yielding encouraging results. Hyperparameter optimization 

showed that simpler machine learning models are preferred with the amount of data in a 

depth-based drilling dataset and established a set of reference hyperparameters that can be 

utilized in similar settings. Cross-validation on training data demonstrated that machine 

learning ROP models predict drilling speed significantly more accurately than analytical 

models with the same surface measurements generally utilized by the latter. For the 

Williston Basin dataset analyzed, the modified Bourgoyne and Young model proposed in 

this dissertation resulted in the best performance among analytical ROP models while the 

random forests algorithm achieved lowest error overall. Novel learning metrics proved that 

ML models are capable of reducing test error much more effectively with increasing 

training data availability.  

Furthermore, Chapter 5 investigations also determined that ROP model type exerts 

a major influence on the nature of optimization techniques suitable to determine optimal 

operational drilling parameters. Optimization with ML ROP models demands direct search 

methods and considerable computational power to locate global optimal parameters, while 

analytical models can be optimized extremely fast with gradient-based approaches. The 
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random forests algorithm produced the best performing ROP models, but RF models were 

also the hardest to optimize drilling parameters for. Severe segmentation of RF models’ 

parameter spaces restricted any success with gradient-based optimization techniques and 

required significant computational expense with direct search approaches. Particle swarm 

optimization limited to a small number of maximum iterations displayed satisfactory 

results for optimization with random forests models while maintaining the plausibility of 

real-time implementations. PSO was also determined as the standard optimization 

algorithm for SVM and NN models based on attained ROP improvements. 

Chapter 6 introduced the concept of continuous ROP model learning as more data 

are measured in real-time. A continuous learning real-time drilling interval optimization 

workflow, applicable to all drilling scenarios, was proposed. Retraining models more 

frequently resulted in improved model performance, demonstrating the value of this 

approach. Cross-validation achieved satisfactory results as a technique to select models 

with high ROP prediction accuracy in real-time. This model selection procedure is essential 

when drilling exploratory wells, as no information about previous drilling experience in 

the region is available. The amount of data required for adequate ML ROP modeling 

performance proved lower than expected. ML models exhibited lower error than their 

analytical counterparts in optimization intervals with as few as ten data points available for 

model training. In terms of drilling parameter optimization, analytical models were shown 

to enforce previous beliefs about drilling behavior, extrapolating positively-bounded 

relationships between ROP and drilling parameters to the maximum bounds. Conversely, 

it was determined that optimization with ML models searches for parameter space regions 

with high ROP in the training data to find the “sweet spot” for drilling a particular interval. 

Uncharacteristic ROP-WOB relations in optimization recommendations with ML models 
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established that poor drilling data quality unquestionably hinders drilling optimization 

efforts. 

The traditional ROP modeling lithology dependency was contested in Chapter 7. 

Dynamic range with a specified depth length of training data and full training data range 

were introduced as alternative data segmentation strategies. An optimal dynamic range 

length of 200ft was determined for the Williston Basin dataset. Model performance and 

optimization results for dynamic and full range training data partitioning demonstrated that 

these methods outperform the classical lithology-dependent approach. ROP gains predicted 

by ML models trained with full training data range were extremely promising, but 

recommendations to drill at very low WOB values create suspicion around poor data 

quality. Spatial proximity and parameter similarity weighting techniques were incorporated 

to formation-dependent, dynamic range and full range methodologies to further segment 

training data according to sample importance. Experiments conducted in these scenarios 

revealed significantly improved analytical ROP model performance, particularly with 

200ft dynamic training data ranges using two-partition ten-fold spatial weighting. Lastly, 

historical data availability was shown to have immense impact on ROP modeling accuracy. 

Significant reduction in model errors were experienced as the prescribed percentage of 

historical data increased.  

8.2. MAJOR CONTRIBUTIONS 

Novel techniques proposed by the author encompass: 

 

• Modified version of the classic Bourgoyne and Young (1974) ROP model 

specifically designed for real-time applications 
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• Corrected Hareland and Rampersad (1994) ROP model formulation for PDC bits 

to ensure units consistency and appropriate WOB behavior 

• Novel learning performance benchmarks prove that machine learning models 

reduce test error much more effectively than analytical models with increasing 

training data availability 

• Continuous learning real-time drilling optimization workflow with ROP model 

retraining and drilling parameter optimization in intervals 

• Cross-validation as a methodology to select the best performing ROP model for the 

upcoming drilling interval in real-time 

• Dynamic range with specified depth length and full range training data 

segmentation strategies that challenge the traditional lithology-dependent ROP 

modeling approach 

• Spatial proximity and parameter similarity data weighting techniques attach 

importance to individual samples during model training 

 

ROP model fitting insights derived in this dissertation include: 

 

• Established that analytical ROP models can be trained efficiently with gradient-

based methods such as the trust region reflective and L-BFGS-B algorithms, with 

no need for complex optimization schemes presented in previous studies 

• Defined basic set of hyperparameters for random forests, support vector machines 

and neural networks models with depth-based drilling data, developing 

computationally inexpensive models simple enough for real-time applications 

while maintaining satisfactory performance 
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Contributions to the continuous learning framework, with ROP models constantly 

adapting to newly captured real-time data, encompass: 

 

• Shortening retraining interval length improves ROP model performance, justifying 

the continuous learning approach 

• Lithology dependence of ROP models is avoidable, with dynamic and full range 

training data partitioning introduced as alternatives 

• Even though neural networks ROP models benefit from incremental training data 

availability, the training dataset must remain within a certain proximity to the 

optimized interval. This is evidenced by models trained with 200ft dynamic training 

data ranges performing significantly better than full range models in this study 

• Spatial proximity and parameter similarity weighting improve analytical ROP 

model performance considerably 

• Random forests ROP models were consistently the most accurate, but also the 

hardest to optimize due to severe segmentation of the parameter space 

 

The real-time drilling optimization workflow introduced in this dissertation is 

highly customizable and should serve as a frame of reference for further applications. 

Additional ROP models, drilling parameters considered in machine learning model fitting 

(downhole data with wired drillpipe), optimization methods, constraints, segmentation and 

weighting techniques may be included. It is important to note that drilling parameter 

optimization best practices depend on the dataset. As an example, shale plays benefit from 

a large number of drilled wells and historical samples, which should be incorporated to 

real-time datasets in ROP model training. If rig equipment power constraints (or any other 

constraints besides design variable bounds) play an important role in optimization, 
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algorithms such as COBYLA, SLSQP, basin-hopping and PSO must be implemented and 

accounted for in terms of computational expense. Out of the optimization algorithms tested, 

only SLSQP is capable of providing knowledge about active constraints (via Lagrange 

multipliers).  This information is crucial in redesigning equipment and processes to extend 

drilling limitations (the founder point). Since SLSQP optimizations with ML ROP models 

were not satisfactory, analytical models must be employed in such efforts. Reliable closed-

loop control of drilling parameters is contingent on accurate ROP modeling and 

computationally-efficient optimization. Therefore, insights derived in this study have vast 

implications for drilling automation applications. 

8.3. RECOMMENDATIONS FOR FUTURE WORK 

This section extends concepts presented in this dissertation and proposes novel 

techniques to be explored. The bright future of machine learning algorithms for real-time 

drilling optimization is discussed as concluding remarks. Future work recommendations 

are divided into individual aspects of the modeling and optimization workflow. 

 

Drilling parameter optimization problem formulation: 

 

• Incorporate multi-objective optimization accounting for bit wear, excessive 

vibrations and other drilling dysfunctions 

• Include hydraulics models for downhole pressure constraints  

• Add support for constraints in mud motor applications 

• Explore additional optimization algorithms that are computationally-efficient with 

machine learning models and support bound, equality, and inequality constraints 
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Data quality: 

 

• Correct for correlated errors at adjacent data points in a time series (tracking) 

• Correct for sensor calibration errors with temperature data 

• Implement more advanced signal processing techniques such as Kalman filtering 

• Evaluate the concept of time series stability filtering, with less but more reliable 

data points available for model training 

 

Continuous learning real-time drilling interval optimization workflow: 

 

• Develop adaptive retraining interval lengths according to how fast drilling is 

proceeding 

• Adjust drilling parameters in advance for formation changes 

• Implement online learning with neural networks models, updating network weights 

from the previous solution instead of retraining them from scratch as more data 

points are measured 

 

Sample weighting strategies in ROP model training: 

 

• Explore more parameter similarity weighting alternatives with varying weighting 

constants 

• Incorporate historical data weighted less than real-time data 

• Evaluate variograms as a sample weighting methodology by finding well sections 

with similar parameter variance trends and spatially correlating them 

• Investigate the feasibility of assigning data quality measures for sample weighting 
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• Assess parameter similarity weighting as a technique for formation boundary 

detection and, alternatively, as a methodology to define lithology based on drilling 

parameters (proxy for geomechanical properties) 

 

Shallow machine learning techniques were employed in this study. New 

developments in machine learning have given rise to deep learning methods, producing 

neural networks models with many hidden layers and much more complex architecture. 

Deep learning models have stimulated great progress in the fields of image recognition 

(convolutional neural networks), natural language processing (recurrent neural networks, 

long short-term memory networks) and genomics (LeCun et al., 2015). These more 

complicated models require a large amount of data and could be viable for ROP modeling 

with higher frequency drilling data. As the volume of data collected in the oil and gas 

industry grows exponentially, deep learning emerges as a promising concept for models in 

drilling and many other disciplines. In deep reinforcement learning (Mnih et al., 2015), 

models learn from experience in a set environment with established rewards. Without prior 

knowledge of gaming rules, reinforcement learning models successfully taught themselves 

how to play Atari games to human-level skill in a popular contemporary application (Mnih 

et al., 2013).  This idea could be implemented in drilling optimization by allowing the 

model to experiment with values of WOB, RPM and mud flow rate in a drilling simulator 

with rewards for drilling faster, eventually detecting the drilling sweet spot and expanding 

its knowledge for future field drilling applications.  

As machine learning models become even more complex, model interpretability 

suffers. Currently, many researchers are working on methods to improve the explainability 

of deep learning models in order to avoid treating them as “black boxes”. Generative 

models such as deep belief nets (Hinton et al., 2006) recreate inputs by learning features 
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probabilistically in their hidden layers. Soft attention methods reveal insights about model 

behavior in deep learning image interpretation, as shown in retinal fundus images by Poplin 

et al. (2018). Much of the opposition against machine learning models in the oil and gas 

industry arises from lack of interpretability. Uncertainty does not bode well in a high-risk 

business where human lives and the environment are at stake. Hopefully sufficient progress 

in ML model explainability can be achieved in the near future, breaking down barriers for 

machine learning implementation in closed-loop real-time drilling parameter optimization. 

Drillers may remain in the loop with advisory input in constraints and formation changes 

from RTOCs. Undeniably, modern computers possess the capability to process large 

amounts of data from multiple sensors and assist in producing hydrocarbons swiftly and 

safely, providing cheap and abundant energy to human society for years to come. 
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Glossary 

 

Adam: adaptive moment estimation 

AI: artificial intelligence 

BHA: bottomhole assembly 

BHP: bottomhole pressure 

BIN: Bingham (1964) ROP model 

BY (B&Y): Bourgoyne and Young (1974) ROP model 

CCS: confined compressive strength 

COBYLA: constrained optimization by linear approximation 

CV: cross validation 

DAS: drilling advisory system 

DNC: did not converge 

DOC: depth of cut 

DS: drilling strength 

DSATS: Drilling Systems Automation Technical Section 

ECD: equivalent circulating density 

GDL: geologic drilling log  

HAR: Hareland and Rampersad (1994) ROP model 

HSI: horsepower per square inch 

IADC: International Association of Drilling Contractors 

KKT: Karush-Kuhn-Tucker (optimality conditions) 

L-BFGS-B: limited(-memory) Broyden–Fletcher–Goldfarb–Shanno bound (constrained) 

LWD: logging-while-drilling 

MD: measured depth 
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ML: machine learning  

MOT: Motahhari et al. (2010) ROP model 

MPD: managed pressure drilling 

MSE: mechanical specific energy 

MWD: measurement-while-drilling 

OGDQ: Operators Group for Data Quality 

NN: neural networks 

PDC: polycrystalline diamond compact  

PSO: particle swarm optimization 

RF: random forests 

ROP: rate of penetration 

RPM: revolutions per minute 

RTOC: real-time operating center 

SGD: stochastic gradient descent 

SLSQP: sequential least squares quadratic programming 

SPE: society of petroleum engineers 

STRQ: surface torque 

SVM: support vector machines 

TFA: total flow area 

TOB: torque on bit 

TRF: trust region reflective  

TSE: torsional severity estimate 

UCS: unconfined compressive strength 

WITSML: Wellsite Information Transfer Standard Markup Language 

WOB: weight on bit 
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