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This work considers formulation of new classes of adaptive controllers

for double-integrator type systems where the underlying system parameters are

uncertain and the complete state-vector is not available for feedback. Given

the parameter uncertainty within the system model, a “separation principle”

cannot generally be invoked towards an observer geared towards reconstruc-

tion of the full state vector using only measured variables.

In this report, controllers are designed for some important sub-classes

of Euler-Lagrange type mechanical systems, where states are physically inter-

preted as position and velocity variables, and only the position part of the

state vector is available as measured output. The typical approach to obtain

velocity estimates using position interpolation (also known as dirty differenti-

ation), is known to be strongly susceptible to measurement noise and therefore

does not usually represent a robust option for feedback control implementa-

tion. The proposed control scheme achieves global asymptotic stability for

vi



system dynamics subject to the condition that velocity states appear within

the governing dynamics in a linear fashion. This arguably restrictive condition

is loosened for the special case of scalar system with friction non-linearity as

is typical within hardware implementations. The objective is to study proto-

typical mechanical systems with non-linearity appearing in the velocity rate

equations with the eventual applications envisioned towards the attitude con-

trol problem accounting for the gyroscopic nonlinearity in the Euler rotational

dynamics.

Based on classical certainty equivalence approaches for adaptive con-

trol, one cannot readily deal with cross terms associated with parameter esti-

mates and unmeasured states in the Lyapunov function derivative in order to

make the Lyapunov function negative definite or negative semi-definite. How-

ever, employing a new approach, this obstacle is shown in this report to be

circumvented for scalar systems. In order to generalize the methodology for

higher-order dynamics, a filtered state approach is used. Specifically, an aux-

iliary variable is introduced which plays an important role in determining re-

strictions on the control parameters and analyzing the stability. The proposed

approach helps to overcome the uniform detectability obstacle. Additionally,

this work can be applied to uncertain linear systems where independent con-

trol inputs are applied on each of the velocity state dynamics.

Lastly, the solution for the scalar is applied to the rotor speed control
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system and is extended to the case where Coulomb friction is considered in

addition to viscous friction. Since a sign function can be approximated as a

hyperbolic tangent, the tanh model is used for the Coulomb friction. A con-

troller is developed with the assumption that the coefficients of these frictions

are unknown. The proposed control is then verified with Educational Control

Product Model 750 Control Moment Gyroscope, and the simulation and actual

test results are compared.
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Chapter 1

Introduction

Adaptive control is a certain type of non-linear feedback control for

systems with uncertain parameters within the governing dynamics. When un-

certain systems are considered, with a known mathematical structure, this

control method not only provides a controller that guarantees asymptotic sta-

bility, but also estimates the unknown system parameters. In contrast to

robust control, which uses a static control law and allows only certain range of

parameter uncertainty, adaptive control employs a dynamic control law with

estimates from the update laws and, thus, it is somewhat less restrictive re-

garding the magnitudes of parameter uncertainty.

The primary idea and motivation for adaptive control arose from de-

sign of autopilots for aircraft in the early 1950s [1]. Since then, it has been

actively studied and developed, and now the framework for controller design is

well established. Much of the earlier work is based on the full access of system

states, a major limitation of adaptive control. Moreover, the construction of

the control law is generally bounded by the certainty equivalence (CE) princi-

ple, which allows that the adaptive controller can retain the same structure of
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the corresponding deterministic case. The CE based adaptive approach gives

a systematic controller design procedure but usually shows significantly poorer

performance when compared with the deterministic case because the overall

performance of the closed loop system is totally dependent upon the quality of

parameter estimators and the underlying reference motion. Nowadays, as this

topic has become deep and rich, much research has been done regarding relax-

ing the need for full-state feedback and/or the development of non-certainty

equivalence (non-CE) based adaptive controllers to overcome these aforemen-

tioned performance drawbacks [2] [3] [4] [5].

In this report, motivated by need for adaptive output feedback control,

second-order systems with unknown parameters are proposed as part of a new

methodology for controller design. Since high-quality velocity measurements

are usually expensive and harder to obtain in many applications of mechanical

systems, it is assumed that only position signals are measured and used for

feedback. Control strategies are developed based on a hybrid of CE and non-

CE approaches using the results of the recent development in Immersion and

Invariance (I&I) adaptive control [2]. The new strategies proposed through-

out this report show the immense potential of the non-CE adaptive control

techniques.

This report is organized as follows. In Chapter 2, a position feedback

control law is developed for a scalar second order system. The unknown sys-

2



tem parameters are estimated from the updated laws designed through the

stability analysis. In Chapter 3, the design technique is extended to n-coupled

linear second-order systems using linear low-pass filters. The proposed control

method in Chapter 2 is extended to a scalar physical system with a dry friction

which is non-linear in the velocity state and applied to the rotor speed control

problem in Chapter 4. Then, conclusions are made in Chapter 5.
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Chapter 2

Second-order Scalar Systems

As a starting point of developing the output feedback based adaptive

control strategy, it is reasonable to consider the prototypical second-order sys-

tem with its respective initial conditions:

ẋ1 = x2; x1(0) = x10

ẋ2 = θ∗1f(x1) + θ∗2x2 + u; x2(0) = x20

y = x1 (2.1)

where θ∗1 and θ∗2 are constant but uncertain parameters, x1 and x2 are the

position and velocity state respectively, y is the measured output, and u is the

control input. f(x1) is assumed to be a Lipschitz continuous function and can

be non-linear in x1. The control objective is to find a control law for u that is

independent of x2 while estimating the uncertain system parameters, θ∗1 and

θ∗2. Of course, the parameter update laws must also be independent of x2.

If some of the restrictions are loosened, this problem can be easily

solved. First, let us assume that f(x1) = x1, and the parameters, θ∗1 and θ∗2

values are exactly known. Then, we can design a full-state or reduced-order
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observer and, according to the separation principle in linear control theory,

utilize the estimated states in a full-state feedback control law. Specifically

given the observability of the (A,C) pair, where

A =

[
0 1
θ∗1 θ∗2

]
, C =

[
1 0

]
we have a full-state observer of the form

˙̂x1 = x̂2 + l1(y − x̂1)

˙̂x2 = θ∗1x̂1 + θ∗2x̂2 + u+ l2(y − x̂1) (2.2)

where x̂1 and x̂2 are estimates for x1 and x2, and l1 and l2 are constant observer

gains. Since the system is observable, the gains can always be chosen such that[
−l1 1

θ∗1 − l2 θ∗2

]
is Hurwitz. If a reduced-order observer is considered, the following differential

equation can be employed

˙̂x2 = −λx̂2 − λ(λ+ θ∗2)x1 + θ∗1x1 + u (2.3)

where the convergence rate λ is a positive constant, and the estimate for x2

is given by {x̂2 + (λ + θ∗2)x1}. Using estimated states, the full-state observer

based control law is obtained as

u = −(k1 + θ∗1)x̂1 − (k2 + θ∗2)x̂2 (2.4)

or, with the reduced order observer, it is given by

u = −(k1 + θ∗1)x̂1 − (k2 + θ∗2){x̂2 + (λ+ θ∗2)x1} (2.5)
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Figure 2.1: Simulation results of observer based stabilization

where k1 > 0 and k2 > 0. Fig. (2.1) illustrates the two cases of the observer

based control.

Secondly, when the full state is available for feedback but system pa-

rameters are uncertain, a conventional adaptive control scheme can be used.

According to the certainty equivalence (CE) principle, the adaptive control

law can have the same structure of the deterministic control law. Assuming

the parameters are known, the control input given by

u = −(θ∗1 + k1)x1 − (θ∗2 + k2)x2 (2.6)

with positive k1 and k2, stabilizes the system. By replacing θ∗1 and θ∗2 with its

estimates, θ̂1 and θ̂2, the adaptive control law becomes

u = −(θ̂1 + k1)x1 − (θ̂2 + k2)x2 (2.7)

6



Let us define parameter estimate errors as

θ̃1 = θ̂1 − θ∗1

θ̃2 = θ̂2 − θ∗2 (2.8)

and consider the following Lyapunov-like function

V =
1

2
(x1 + x2)2 +

1

γ1

θ̃2
1 +

1

γ2

θ̃2
2 (2.9)

where the learning rate parameters γ1 and γ2 are positive constants. Then,

the time derivative of V is given by

V̇ = (x1 + x2)(x2 − k1x1 − k2x2 − θ̃1x1 − θ̃2x2)

+
1

2γ1

θ̃1
˙̂
θ1 +

1

2γ2

θ̃2
˙̂
θ2

= −k1(x1 + x2)

(
x1 +

k2 − 1

k1

)
+ θ̃1

(
˙̂
θ1

γ1

− x1(x1 + x2)

)
+ θ̃2

(
˙̂
θ2

γ2

− x2(x1 + x2)

)
(2.10)

If we choose the control parameters as

k1 > 0

k2 = k1 + 1 (2.11)

and the update laws as

˙̂
θ1 = γ1x1(x1 + x2)

˙̂
θ2 = γ2x2(x1 + x2) (2.12)

7



we have

V̇ = −k1(x1 + x2)2 ≤ 0 (2.13)

which implies

lim
t→∞

[
x1(t)
x2(t)

]
=

[
0
0

]
(2.14)

Although the parameter estimate errors θ̃1(t) and θ̃2(t) do not necessarily

converge to zero, they are at least guaranteed to be bounded, but the states,

x1 and x2 that we are interested in do tend to zero asymptotically for any

initial condition. Simulation is performed with the following initial conditions

x1(0) = −2, x2(0) = 1, θ̂1(0) = 0, θ̂2(0) = 0

and parameter values

θ1 = 1, θ2 = 1, k1 = 2, k2 = 3, γ1 = 1, γ2 = 1

The results are shown in Fig. (2.2).
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9



2.1 Controller Design

In our formulation, the two cases introduced in the previous section

are more or less non-overlapping and, thus, neither of the above approaches

are not directly applicable for more general situations. The linear observer

approach requires the perfect knowledge of the parameters and linearity of the

system. Therefore, even though the system is linear, without system identifi-

cation, a linear observer cannot be designed. Moreover, for non-linear systems,

one cannot expect the separation property in general. That is, the observer

design cannot be separated from the design of the state feedback control and

thus this approach is out of our options. One may use numerical differentiation

for a velocity state and design a CE based adaptive controller. However, the

computed velocity from the position measurements is, in general, corrupted

by noise that can be amplified as sampling time decreases. No matter how

good or noise-robust the numerical differentiation is, achieving the goal with-

out using it performs better.

Since unknown parameters exist in Eq. (2.1) as it is originally stated,

we still need to come up with some suitable adaptation technique. In the past,

most of work on adaptive output feedback control focused on the systems where

the cross terms of unmeasured states and unknown parameters do not appear.

In [3], generalized version of this problem is introduced and solved with the

assumption that the unknown parameters only appear in output-dependent

terms, i.e., in our formulation, θ∗2x2 is omitted in the velocity dynamics from

10



Eq. (2.1). Later, this limited formulation was extended to the dynamics

where time-varying non-linear parametric uncertainty is allowed to occur cou-

pled with unmeasured states in [4]. The solution proposed in [4] utilizes a

high-gain non-linear observer and controller with a priori magnitude bounds

on uncertain parameters associated with unmeasured states. Reference [4] sug-

gests the existence of solutions for the general problem, but their synthesis is

somewhat complex, and moreover high-gain control action may cause peaking

phenomena in response.

In this report, relatively simple form of the controller will be introduced

without designing an observer while estimating the unknown parameters. To

tackle our problem, some concepts from a recently proposed non-CE based

methodology, Immersion and Invariance (I&I) adaptive control, are employed

[2]. The idea is that parameter estimate can be constructed as a sum of two

signals, i.e., (θ̂ + β), where θ̂ comes from a update law and β is a function of

system states. If we can find θ̂ and β independent of the unmeasured state x2,

the problem boils down to finding a control law which is also independent of

x2. Basically, this approach is in line with design of a reduced-order observer

in which the estimates for unmeasured states are combinations of observer

signals and measured state signals. The only difference is that the parameter

update laws do not contain the control, u.

To further motivate this new approach, let us start with the assumption

11



that θ∗1 and θ∗2 in Eq. (2.1) are fully known. The task is now to find a control

input, u independent of x2. The well known result from the passivity control

leads us to the solution

u = −kpx1 − kz ż − θ∗1f(x1)− θ∗2x2 (2.15)

with a stable first order filter

ż = −λz + ηx1; z(0) = z0 (2.16)

where kp, kz, λ, and η are some constant positive real numbers [6]. The closed-

loop system under action of the proposed control law in Eq. (2.15) is given

by

d

dt

 x1

x2

z

 = Am

 x1

x2

z

 (2.17)

where

Am =

 0 1 0
−(kp + ηkz) 0 λkz

η 0 −λ


Since the propagation matrix, Am is Hurwitz by way of judicious selection of

kp, kz, λ and η parameters, exponential stability for the closed loop system is

guaranteed. This model is used as a target system when the I&I-like form of

adaptive control scheme is applied. Thus, we can propose a controller of the

form

u = −(θ̂1 + β1)f(x1)− (θ̂2 + β2)x̂2 − kpx1 − kz ż (2.18)

where (θ̂1 + β1) and (θ̂2 + β2) are respectively the estimates for θ∗1 and θ∗2 and

x̂2 is a replacement for x2. Note that x̂2 is not an explicit estimate for x2 and

12



will be determined as a function of available signals, x1 and z through stability

analysis presented in the sequel.

2.2 Stability Analysis

When the system is closed with control input Eq. (2.18), we obtain

ẋ1 = x2

ẋ2 = −θ̃1f(x1)− θ̃2x̂2 + θ∗2(x2 − x̂2)− kpx1 − kz ż

ż = −λz + ηx1 (2.19)

where the parameter estimate errors have different definitions compared to Eq.

(2.8) and are now taken as follows:

θ̃1 = θ̂1 + β1 − θ∗1

θ̃2 = θ̂2 + β2 − θ∗2 (2.20)

Before proceeding further with the analysis, let us assume that the upper

bound of θ∗2 is a priori known as θ̄2 in order to deal with the cross term of

the unknown parameter and the unmeasured state. Moreover, let us define an

auxiliary variable

s = x2 + αx1 − ż (2.21)

where α is a positive constant number. This variable plays an important roll

in the upcoming analysis and gives a simple structure of a Lyapunov-like func-

tion to help avoid the detecatability obstacle frequently confronted in adaptive

13



control design [7].

Let us consider the following non-negative function

V =
1

2
s2 +

1

2γ1

θ̃2
1 +

1

2γ2

θ̃2
2 (2.22)

where the learning rates γ1 and γ2 are constant positive real numbers. When

V is differentiated with respect to time, it follows that

V̇ = sṡ+
1

γ1

θ̃1(
˙̂
θ1 + β̇1) +

1

γ2

θ̃2(
˙̂
θ2 + β̇2)

= s(ẋ2 + αẋ1 − z̈) +
1

γ1

θ̃1(
˙̂
θ1 + β̇1) +

1

γ2

θ̃2(
˙̂
θ2 + β̇2)

= s{−θ̃1f(x1)− θ̃2x̂2 + θ∗2(x2 − x̂2)− kpx1 − kz ż + αx2 − λż + ηx2}

+
1

γ1

θ̃1(
˙̂
θ1 + β̇1) +

1

γ2

θ̃2(
˙̂
θ2 + β̇2) (2.23)

At this point, let us impose the following constraints on α, η, and λ in addition

to the positiveness

η > α > 0 (2.24)

λ > η − α > max{θ̄2, 0} (2.25)

and choose kp, kz and x̂2 as

kp = α(η − α) (2.26)

kz = λ− (η − α) (2.27)

x̂2 = −αx1 + ż (2.28)

14



The time derivative of the Lyapunov-like function in Eq. (2.23) becomes

V̇ = −(η − α− θ∗2)s2

+
1

γ1

θ̃1{ ˙̂
θ1 + β̇1 − γ1(x2 + αx1 − ż)f(x1)}

+
1

γ2

θ̃2{ ˙̂
θ2 + β̇2 − γ2(x2 + αx1 − ż)(−αx1 + ż)} (2.29)

To eliminate the estimate error terms in V̇ , the time derivatives of the estimates

can be chosen as

˙̂
θ1 + β̇1 = γ1(x2 + αx1 − ż)f(x1)

= γ1{x2f(x1) + (αx1 − ż)f(x1)} (2.30)

˙̂
θ2 + β̇2 = γ2(x2 + αx1 − ż)(−αx1 + ż)

= γ2{x2(−αx1 + ż) + (αx1 − ż)(−αx1 + ż)} (2.31)

If we just use the classical CE approach, i.e., no β’s are introduced, we cannot

go further from this point. However, since

x2f(x1) =
d

dt

∫ x1

0

f(σ)dσ (2.32)

x1x2 =
d

dt

(
1

2
x2

1

)
(2.33)

x2ż =
d

dt

(
−η

2
x2

1 + x1ż
)

+ λx1ż (2.34)

the update laws are determined as

˙̂
θ1 = γ1(αx1 − ż)f(x1) (2.35)

˙̂
θ2 = γ2{λx1ż − (αx1 − ż)2} (2.36)

15



with

β1 = γ1

∫ x1

0

f(σ)dσ (2.37)

β2 = γ2x1

(
−α + η

2
x1 + ż

)
(2.38)

which are independent of the unmeasured signal x2. Finally, by the constraint,

Eq. (2.25), we have

V̇ = −(η − α− θ∗2)s2

≤ 0 (2.39)

where (η − α − θ∗2) is a positive real number. Because V̇ is negative semi-

definite, we can conclude that signals, s, θ̃1 and θ̃2 are bounded, i.e.

s, θ̃1, θ̃2 ∈ L∞ (2.40)

Furthermore, since

lim
t→∞

∫ t

0

ṡ2dt =
V (0)− V (∞)

(η − α− θ∗2)

<∞ (2.41)

we can also conclude that

s ∈ L2 (2.42)

To show that ṡ ∈ L∞, we need to examine the auxiliary variable, s. By Eq.

(2.16), the states are expressed as functions of the filtered state, z.

x1 =
1

η
(ż + λz) (2.43)

x2 =
1

η
(z̈ + λż) (2.44)
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Then, Eq. (2.21) becomes

z̈ + {λ− (η − α)}ż + αλz = ηs (2.45)

As the parameters are picked such that all coefficients of the above equation

are positive, it is equivalent to the second order stable filter with input, s.

Thus, s ∈ L∞ implies that

z, ż, z̈ ∈ L∞ (2.46)

which leads to

x1, x2 ∈ L∞ (2.47)

We can then show that

ṡ ∈ L∞ (2.48)

because

ṡ = −(η − α− θ∗2)s− θ̃1f(x1)− θ̃2(−αx1 + ż) (2.49)

By Barbalat’s lemma, the fact that s, ṡ ∈ L∞ and s ∈ L2 implies

lim
t→∞

s(t) = 0 (2.50)

Finally, equations (2.43), (2.44), and (2.45) allow us to conclude that

lim
t→∞

[
x1(t)
x2(t)

]
=

[
0
0

]
(2.51)

because the states of the stable filter converge to zero as its input vanishes.

Through the analysis, we assume that the value of the system parameter

θ∗2 associated with the unmeasured state is unknown and arbitrary but its
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upper bound is a priori known. If the given plant is classified as a Euler-

Lagrange type mechanical system, θ∗2 is usually physically associated with

damping and thus non-positive, so that the system energy can be dissipated.

In this case, the constraint (2.25) becomes simply

λ > η − α (2.52)

Otherwise, we must have

λ > η − α > θ̄2 (2.53)

where θ̄2 > 0 is the known upper bound of θ∗2.

In summary, for second-order systems as stated in Eq. (2.1), the control

law

u = −(θ̂1 + β1)f(x1)− (θ̂2 + β2)(−αx1 + ż)− kpx1 − kz ż (2.54)

with

ż = λz + ηx1 (2.55)

and the update laws

˙̂
θ1 = γ1(αx1 − ż)f(x1) (2.56)

˙̂
θ2 = γ2{λx1ż − (αx1 − ż)2} (2.57)

with

β1 = γ1

∫ x1

0

f(σ)dσ (2.58)

β2 = γ2x1

(
−α + η

2
x1 + ż

)
(2.59)

18



asymptotically stabilize the system if the control parameters are selected such

that their constraints listed in Eq. (2.24) - (2.27) are satisfied.

2.3 Extension to Tracking Problem

Using the proposed design scheme, we can extend it to the tracking

problem. Suppose we have predefined smooth and bounded reference trajec-

tories, r1 and r2 for x1 and x2. By defining the tracking error states,

e1 = x1 − r1 (2.60)

e2 = x2 − r2 (2.61)

with the necessary matching condition

ṙ1 = r2 (2.62)

the augmented error dynamics are obtained

ė1 = e2

ė2 = θ∗1f(x1) + θ∗2x2 − ṙ2 + u

ż = −λz + ηe1 (2.63)

Moreover, the auxiliary variable is defined in terms of the error states as

s = e2 + αe1 − ż (2.64)

However, the constraints on the parameters remain the same. With

u = −(θ̂1 + β1)f(x1)− (θ̂2 + β2)(r2 − αe1 + ż) + ṙ2 − kpe1 − kz ż (2.65)
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the closed loop system becomes

ė1 = e2

ė2 = −θ̃1f(x1)− θ̃2(r2 − αe1 + ż) + θ∗2s− kpe1 − kz ż

ż = −λz + ηe1 (2.66)

Once we choose

˙̂
θ1 = γ1(αe1 − ż − r2)f(x1) (2.67)

˙̂
θ2 = γ2{e1(−ṙ2 + λż) + (αe1 − ż)(r2 − αe1 + ż)} (2.68)

and

β1 = γ1

∫ x1

0

f(σ)dσ (2.69)

β2 = γ2e1

(
r2 −

α + η

2
e1 + ż

)
(2.70)

the Lyapunov-like function

V =
1

2
s2 +

1

2γ1

θ̃2
1 +

1

2γ2

θ̃2
2 (2.71)

with its time derivative

V̇ = −(η − α− θ∗2)s2 (2.72)

leads to the conclusion that the auxiliary variable, s converges to zero asymp-

totically, which implies the state errors also converge to zero.
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2.4 Simulation

The two control cases developed in this chapter are simulated with the

true values of θ∗1 = 2 and θ∗2 = 2. In addition, f(x1) is assumed to be x1. The

states are therefore propagated by the equations

ẋ1 = x2

ẋ2 = 2x1 + 2x2 + u (2.73)

The system parameters are unknown, but the upper bound for θ∗2 is given by

θ̄2 = 3

The design parameters are chosen so that they do not violate their constraints:

α = 1, η = 5, λ = 20, γ1 = 1, γ2 = 1

The results are obtained using the following initial conditions:

x1(0) = −1, x2(0) = 1, z(0) = −0.25, θ̂1 = 0, θ̂2 = 0

For the tracking problem, the reference signals are set to

r1 = sin(t) (2.74)

r2 = cos(t) (2.75)

Since the reference is persistently exiting signals, it is expected that the pa-

rameter estimates tend to the true values [8].
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2.4.1 Stabilization

Figure 2.3 illustrates the simulation results for the stabilization case.

As seen in the graphs, states are regulated to zero. The estimates do not

go to the true values, but they are bounded and actually converge to some

constants.
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Figure 2.3: Simulation results of stabilization problem
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2.4.2 Tracking

The convergence of the state and parameter errors are shown in the

Figure 2.4. The difference from the stabilization problem is that the parameter

estimates converge to their true values.
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Chapter 3

Generalization to n-Coupled Systems

Using the previously developed technique, let us generalize the result.

In stead of a single second order linear system, suppose we have coupled n

number of systems of the form

ẋ1 = x2

ẋ2 = Ω(x1, x2)θ∗ + u (3.1)

where x1, x2 and u are n-dimensional vectors, θ∗ is an m-dimensional un-

known constant vector, and Ω(x1, x2) is an n × m regressor matrix which

depends on x1 and x2. Once we deal with vectors, introducing an additional

variable β for estimates as presented in the previous chapter does not work

due to the integrability obstacle associated with I&I control [2]. Therefore, a

different approach is addressed. Instead of analyzing the position and velocity

states, we will examine the so called filtered states which will be discussed in

the sequel within the controller design section.

Similar to the scalar case, for this problem to be solvable, two things

must be assumed. The first assumption is that Ω(x1, x2) can be separated into

two regressors where we do not necessarily have linearity in x1, but assume
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linear dependence in x2. In other words, the regressor matrix can be expressed

as

Ω(x1, x2) = U(x1) +W (x2) (3.2)

where U(·) is a Lipschitz continuous function and W (·) is a linear function

that satisfies the following properties.

W (v + w) = W (v) +W (w) (3.3)

W (av) = aW (v) (3.4)

Ẇ (v) = (v̇) (3.5)

where v and w are n-dimensional vectors, and a is a scalar constant. Second, it

is necessary to assume that the upper bounds of the absolute values of unknown

parameters associated with W (x2) are known. With these assumptions, the

system we are dealing with is rewritten as

ẋ1 = x2

ẋ2 =

p∑
i=1

θ∗iUi(x1) +

q∑
j=1

φ∗jWj(x2) + u (3.6)

where Ui(x1) ∈ Rn and Wj(x2) ∈ Rn are the jth column vectors of U(x1) and

W (x2), and θ∗i ∈ R is the unknown parameter associated with Ui and φ∗j ∈ R

is the partially known parameter associated with Wj with

|φ∗j | ≤ φ̄j, j = 1, 2, · · · , q (3.7)

where φ̄j’s are known positive values.

25



3.1 Controller Design

Let us consider the following filters

ẏ1 = −νy1 + x1 (3.8)

ẏ2 = −νy2 + x2 (3.9)

U̇fi = −νUfi + Ui(x1); i = 1, 2, · · · , p (3.10)

Ẇfj = −νWfj +Wj(x2); j = 1, 2, · · · , q (3.11)

u̇f = −νuf + u (3.12)

where ν is a positive real number [9]. From the filter definitions, we have

ÿ1 = −νẏ1 + (ẏ2 + νy2) (3.13)

ÿ2 = −νẏ2 +

p∑
i=1

θ∗i (U̇fi + νUfi) +

q∑
j=1

φ∗j(Ẇfj + νWfj)

+ (u̇f + νuf ) (3.14)

Ẇfj = −νWfj + Ẇj(y2) + νWj(y2) (3.15)

The solutions are given by

ẏ1 = y2 + ε1(t) (3.16)

ẏ2 =

p∑
i=1

θ∗iUfi +

q∑
j=1

φ∗jWfj + uf + ε2(t) (3.17)

Wfj = Wj(y2) + ε3(t) (3.18)

where ε1, ε2 and ε3 are exponentially decaying terms, and we can ignore them

in the rest of the analysis without loss of generality [8].
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We can now reformulate the problem. Given the dynamics

ẏ1 = y2 (3.19)

ẏ2 =

p∑
i=1

θ∗iUfi +

q∑
j=1

φ∗jWfj + uf (3.20)

U̇fi = −νUfi + Ui(x1); i = 1, 2, · · · , p (3.21)

with

Wfj = Wj(y2) (3.22)

the goal is to find a control, uf , independent of y2 that drives y1 and y2 to

zero. Let us follow a similar procedure of the scalar approach. First, with the

additional filter

ż = −λz + ηy1 (3.23)

where λ and η are positive constants, we can propose the control law

uf = −
p∑
i=1

θ̂iUfi −
q∑
j=1

φ̂jWfj − kpy1 − kzż (3.24)

However, since Wfj’s are functions of y2, they cannot be directly used. There-

fore, let us introduce estimates for Wfj and rewrite the proposed control law.

uf = −
p∑
i=1

θ̂iUfi −
q∑
j=1

φ̂jŴfj − kpy1 − kzż (3.25)

where Ŵfj’s are the estimates for Wfj’s. Obviously, Ŵfj’s must be obtained

from the available signals, i.e., they must be independent of y2. Once the
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system is closed with the proposed control, we have

ẏ1 = y2 (3.26)

ẏ2 = −
p∑
i=1

θ̃iUfi −
q∑
j=1

φ̃jŴfj −
q∑
j=1

φ∗jW̃fj (3.27)

ż = −λz + ηy1 (3.28)

U̇fi = −νUfi + Ui(x1); i = 1, 2, · · · , p (3.29)

Wfj = Wj(y2); j = 1, 2, · · · , q (3.30)

where

θ̃i = θ̂i − θ∗i (3.31)

φ̃j = φ̂j − φ∗j (3.32)

W̃fj = Ŵfj −Wfj (3.33)

with i = 1, 2, · · · , p and j = 1, 2, · · · , q.

3.2 Stability Analysis

The analysis procedure follows closely to the scalar case, but it will

be slightly more complex because more filters are involved and additional

estimates are added. First of all, let us start by defining an auxiliary variable

as

s = y2 + αy1 − ż (3.34)

Then, the time derivative of this vector is given by

ṡ = −(η − α)s−
q∑
j=1

φ∗jW̃fj −
p∑
i=1

θ̃iUfi −
q∑
i=1

φ̃iŴfi (3.35)
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if we choose

kp = α(η − α) (3.36)

kz = λ− (η − α) (3.37)

where

η > α (3.38)

λ > η − α (3.39)

For the additional estimates, let us propose the following update law

˙̂
Wfj = −kjW̃fj +

p∑
i=1

θ̂iWj(Ufi) +

q∑
i=1

φ̂iWj(Wi(y2)) +Wj(uf ) (3.40)

where kj is a positive scalar constant, which leads to

˙̃Wfj = −kjW̃fj +

p∑
i=1

θ̃iWj(Ufi) +

q∑
i=1

φ̃iWj(Wi(y2)) (3.41)

Next, let us consider the Lyapunov-like function

V =
1

2
sT s +

1

2

q∑
j=1

W̃ T
fjW̃fj +

1

2

p∑
i=1

1

γi
θ̃2
i +

1

2

q∑
i=1

1

γ′i
φ̃2
i (3.42)

where the learning rates γi’s and γ′i’s are positive constants. Differentiating V

with respect to time, we have

V̇ = −(η − α)sT s− sT
q∑
j=1

φ∗jW̃fj − sT
p∑
i=1

θ̃iUfi − sT
q∑
i=1

φ̃iŴfi

+

q∑
j=1

[
−kjW̃ T

fjW̃fj +

p∑
i=1

θ̃iW̃
T
fjWj(Ufi) +

q∑
i=1

φ̃iW̃
T
fjWj(Wi(y2))

]

+

p∑
i=1

1

γi
θ̃i

˙̂
θi +

q∑
i=1

1

γ′i
φ̃i

˙̂
φi (3.43)
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After some algebra, the equation is arranged as

V̇ = −(η − α)sT s−
q∑
j=1

φ∗js
T W̃fj −

q∑
j=1

kjW̃
T
fjW̃fj

+

p∑
i=1

θ̃i

[
˙̂
θi
γi
− sTUfi +

q∑
j=1

W̃ T
fjWj(Ufi)

]

+

q∑
i=1

φ̃i

[
˙̂
φi
γ′i
− sT Ŵfi +

q∑
j=1

W̃ T
fjWj(Wi(y2))

]
(3.44)

Obviously, we can choose update laws such that the estimate error terms

disappear.

˙̂
θi = γi

[
sTUfi −

q∑
j=1

W̃ T
fjWj(Ufi)

]
; i = 1, 2, · · · , p (3.45)

˙̂
φi = γ′i

[
sT Ŵfi −

q∑
j=1

W̃ T
fjWj(Wi(y2))

]
; i = 1, 2, · · · , q (3.46)

Then we have

V̇ = −(η − α)sT s−
q∑
j=1

φ∗js
T W̃fj −

q∑
j=1

kjW̃
T
fjW̃fj (3.47)

We can simplify V̇ by defining a vector

ξ =
[
W̃ T
f1 W̃ T

f2 · · · W̃ T
fq sT

]T
(3.48)

and using Kronecker product notation, i.e.,

V̇ = −ξT (A⊗ In×n)ξ (3.49)

where

A =


k1 0 · · · 0

φ∗1
2

0 k2 · · · 0
φ∗2
2

...
...

. . .
...

...

0 0 · · · kq
φ∗q
2

φ∗1
2

φ∗2
2
· · · φ∗q

2
(η − α)

 ∈ R
(q+1)×(q+1) (3.50)
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and In×n is an n-dimensional identity matrix. Since the Kronecker product

of two positive definite matrices is positive definite, the only requirement for

A⊗ In×n to be positive definite is that the determinant of A is positive. The

determinant of A is easily obtained using LU factorization. In other words, A

can be decomposed as

A = LU

=


k1 0 · · · 0 0
0 k2 · · · 0 0
...

...
. . .

...
...

0 0 · · · kq 0
φ∗1
2

φ∗2
2
· · · φ∗q

2
µ




1 0 · · · 0

φ∗1
2k1

0 1 · · · 0
φ∗1
2k2

...
...

. . .
...

...

0 0 · · · 1
φ∗1
2kq

0 0 · · · 0 1

 (3.51)

where

µ = (η − α)−
q∑
j=1

φ∗2j
4kj

(3.52)

and we have

det(A) = det(L) det(U)

= µ

q∏
i=1

ki (3.53)

Therefore, a positive constant µ ensures V̇ ≤ 0. Since the upper bounds for

φ∗j ’s are known, we can rewrite this constraint as

η − α >
q∑
j=1

φ̄2
j

4kj
(3.54)

The signal chasing analysis analogous to the presentation in Chapter 2 gives

us

ξ ∈ L∞ ∪ L2, ξ̇ ∈ L∞ (3.55)
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and, by Barbalat’s lemma, we can conclude that

lim
t→∞

ξ(t) = 0 (3.56)

Finally, through additional signal chasing through the filter variable defini-

tions, we have

lim
t→∞

x1(t) = 0 (3.57)

lim
t→∞

x2(t) = 0 (3.58)

lim
t→∞

W̃fj(t) = 0 (3.59)

where j = 1, 2, · · · , q.

3.3 Reconstruction of Signals

Since the analysis is not based on the actual signals but the filtered

ones, and some of the filters require the unmeasured state, x2, as an input, we

cannot directly apply the result of the preceding analysis for implementation.

For example, the control law we proposed is not u, but uf , and the filter

(3.9) is not realizable because it requires x2. Therefore, the signals must be

recovered in terms of known or measured ones with the realizable filters. Since

ẏ1 converges to y2 exponentially fast, we can replace y2 with ẏ1. If we denote

y = y1 (3.60)

we have

ẏ = −νy + x1 (3.61)
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Then, the filter for y1 becomes

ż = −λz + ηy (3.62)

and consequently the auxiliary variable, s, is of the form

s = ẏ + αy + ż (3.63)

When the same procedure is applied to the control law and the estimate update

laws, we have

uf = −
p∑
i=1

θ̂iUfi −
q∑
j=1

φ̂jŴfj − kpy − kzż (3.64)

and

˙̂
Wfj = −kjW̃fj +

p∑
i=1

θ̂iWj(Ufi) +

q∑
i=1

φ̂iWj(Wi(ẏ)) +Wj(uf ) (3.65)

˙̂
θi = γi

[
sTUfi −

q∑
j=1

W̃ T
fjWj(Ufi)

]
; i = 1, 2, · · · , p (3.66)

˙̂
φi = γ′i

[
sT Ŵfi −

q∑
j=1

W̃ T
fjWj(Wi(ẏ))

]
; i = 1, 2, · · · , q (3.67)

where

W̃fj = Ŵfj −Wj(ẏ) (3.68)

Lastly, for implementation, the actual control is reconstructed using the filter

definition

u = u̇f + νuf (3.69)
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Here, we can say that u is independent of x2 by showing that u̇f is independent

of x2 or ÿ.

u̇f = −
p∑
i=1

˙̂
θiUfi −

p∑
i=1

θ̂iU̇fi −
q∑
j=1

˙̂
φjŴfj −

q∑
j=1

φ̂j
˙̂
Wfj − kpẏ − kzz̈

= −
p∑
i=1

˙̂
θiUfi −

p∑
i=1

θ̂iU̇fi −
q∑
j=1

˙̂
φjŴfj −

q∑
j=1

φ̂j
˙̂
Wfj − kpẏ − kz (−λż + ηẏ)

(3.70)

After some algebra, we have

u = −
p∑
i=1

(
˙̂
θiUfi + θ̂iU̇fi + νθ̂iUfi

)
−

q∑
j=1

(
˙̂
φjŴfj + φ̂j

˙̂
Wfj + νφ̂jŴfj

)
− kpx1 − kz [ ηẏ + (ν − λ) ż ] (3.71)

3.4 Special case: U(x1) is linear

If some columns of the regressor U(x1) are linear, the order of the closed

loop system can be reduced. Similar to W (x2), the filtered regressors for the

linear part of U(x1) are replaced with

Ufi = Ui(y) (3.72)

U̇fi = Ui(ẏ) (3.73)

where Ufi are columns of U(x1), which are linear.

34



3.5 Extension to Tracking Problem

For the tracking formulation, we can set up the error dynamics with pre-

defined reference trajectories, r1 and r2 = ṙ1, which are bounded and smooth.

In addition, if we define a new control

v = u− ṙ2 (3.74)

we have

ė1 = ẋ1 − r1

= e2 (3.75)

ė2 = ẋ2 − r2

=

p∑
i=1

θ∗iUi(x1) +

q∑
j=1

φ∗jWj(x2) + v (3.76)

In order to follow the analysis procedure discussed in the previous section, we

need to construct the following filters

ẏ1 = −νy1 + e1 (3.77)

ẏ2 = −νy2 + e2 (3.78)

U̇fi = −νUfi + Ui(x1); i = 1, 2, · · · , p (3.79)

Ẇfj = −νWfj +Wj(x2); j = 1, 2, · · · , q (3.80)

v̇f = −νvf + v (3.81)

ṙf1 = −νrf1 + r1 (3.82)

ṙf2 = −νrf2 + r2 (3.83)

ṙf3 = −νrf3 + ṙ2 (3.84)
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Note that the filters associated with the unmeasured state, (3.78) and (3.80)

are only used for stability analysis. Moreover, with the matching conditions

ṙf1 = rf2 (3.85)

ṙf2 = rf3 (3.86)

(3.83) and (3.84) do not need to be implemented. From the filter definition,

we have

ẏ1 = y2 + ε1(t) (3.87)

ẏ2 =

p∑
i=1

θ∗iUfi +

q∑
j=1

φ∗jWfj + vf + ε2(t) (3.88)

Wfj = Wj(y2) +Wj(rf2) + ε3(t) (3.89)

Now, the structure is the same as the stabilization case. Therefore, if one

follows the proposed design procedure, the control and update laws which are

independent of x2 are obtained.

3.6 Simulation

For the simulation, three dimensional states with two unknown param-

eters are considered. The regressors are selected arbitrarily such that U(x1) is

non-linear and W (x2) is linear. The control objective in this simulation is to
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stabilize the plant with the closed system dynamics given by

ẋ1 = x2

ẋ2 = θ∗U(x1) + φ∗W (x2) + u

ẏ = −νy + x1

U̇f = −νUf + U(x1)

˙̂
Wf = −k{Ŵf −W (ẏ)}+ θ̂W (Uf ) + φ̂W (W (ẏ)) +W (uf )

˙̂
θ = γ

[
sTUf − {Ŵf −W (ẏ)}TW (Uf )

]
˙̂
φ = γ′

[
sT Ŵf − {Ŵf −W (ẏ)}TW (W (ẏ))

]
(3.90)

where the true values of unknown parameters are set to

θ∗ = 2, φ∗ = 1

The regressors are chosen as

U(x1) =

 2 sin(x13)
−2x2

12

4 sin(x11)

 , W (x2) =

 x22

−x21
1
2
x23


where

x1 =

 x11

x12

x13

 , x2 =

 x21

x22

x23


The following values are used for the control parameters

α = 1, η = 2, λ = 5, ν = 5, k = 3, γ = 1, γ′ = 1

and for the initial conditions

x10 =

 1
2
−1

 , x20 =

 −2
2
1

 , y0 =

 0.2
0.4
−0.2
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z0 =

 0.08
0.16
−0.08

 , Ŵf0 =

 0
0
0

 , θ̂0 = 3, φ̂0 = 0

The simulation results are illustrated in Figure 3.1. In addition to the

states, parameter estimates, and control, the difference between the filtered

regressor and its estimate is also shown. As proven in the analysis, the states

and regressor estimate error tend to zero asymptotically.

38



0 5 10 15 20

−1

0

1

2

3

time(sec)

x 1

 

 

x
11

x
12

x
13

(a) Time history of position, x1

0 5 10 15 20

−4

−2

0

2

4

time(sec)

x 2

 

 

x
21

x
22

x
23

(b) Time history of velocity, x2

0 5 10 15 20

−15

−10

−5

0

5

10

time(sec)

u

 

 

u(1)
u(2)
u(3)

(c) Time history of control, u

0 5 10 15 20

−0.5

0

0.5

time(sec)

W̃
f

 

 

W
f
 tilde(1)

W
f
 tilde(2)

W
f
 tilde(3)

(d) Time history of W̃f

0 5 10 15 20
1

1.5

2

2.5

3

3.5

time(sec)

θ

 

 

true value
estimate

(e) Time history of estimate, θ̂

0 5 10 15 20

0

0.5

1

1.5

time(sec)

φ

 

 

true value
estimate

(f) Time history of estimate, φ̂

Figure 3.1: Simulation results of stabilization problem
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Chapter 4

Hardware Implementation

In this chapter, the previously proposed control scheme is applied to

one dimensional rotating mass system actuated by a DC motor. Thanks to

the passivity nature of the system, a control law can be designed even though

there is a non-linear friction effect associated with a velocity state. The fric-

tion models used in the system dynamics are viscous friction which is linear

in the angular speed and Coulomb friction which is approximated as a hy-

perbolic tangent function. As a physical device, Educational Control Product

Model 750 Control Moment Gyroscope is used for the implementation [10].

The control goal is regulating the angular speed of the CMG rotor under the

condition where uncertain parameters in the dynamics exist. Control param-

eters are chosen based on simulation so that control saturation does not occur

and smooth control is guaranteed. Lastly, output states are compared with

the simulation results.

4.1 Hardware and Software

4.1.1 Hardware

• Real-Time Computer with National Instruments 7831 R data acquisition

card
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• Host Computer

• Educational Control Products(ECP) Model 750 Control Moment Gyro-

scope with amplifier

4.1.1.1 Sensors

There are 4 optical encoders that measure angular positions of the rotor

and the gimbals. The first encoder is used for the motor and has a resolution

of 6667 counts/rev. The others with higher resolution are used for the gimbals.

4.1.1.2 Actuators

Two DC motors are installed on the first and second axes. One is used

for a rotor speed control, and the other is used for a gimbal position control.

Figure 4.1: Hardware set-up
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Figure 4.2: ECP Model 750 CMG

4.1.2 Software

Labview VI’s designed by “The University of Texas at Austin Sensors

and Actuators Laboratory” are used to control the CMG on the core level [11]

[12]. These programs are developed for educational purposes. The Host VI is

slightly adjusted for this application.

• FPGA VI - It handles the input/output and watch for system errors.

• Host VI - It is used to control inputs into the system.
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4.2 Mathematical Description of the Physical System

4.2.1 Plant configuration and dynamics

Among several plant configurations of the Model 750 CMG, the simplest

one is used where all brakes are applied on all gimbal axes to minimize the

system order.

Figure 4.3: Plant configuration

This is a simple system of a rotating mass with the following equations of

motion

θ̇ = ω

Jω̇ = T (4.1)

where state variables θ and ω are angular position and velocity respectively,

J is an inertia of the rotating mass, and T is an applied torque. If friction is

considered, viscous plus Coulomb friction can be modeled. Viscous friction is

the resisting force proportional to the angular velocity while Coulomb friction

is the force with a constant magnitude in a direction opposite to the motion

under the assumption of constant normal force. Neglecting static friction, the
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Coulomb friction can be approximated using the hyperbolic tangent function

rather than the sign function because the tanh model is more numerically

stable and it represents the real system better. When the friction models are

added to the system equations, we have

θ̇ = ω

Jω̇ = −Cω − F tanh(Aω) + T (4.2)

where C and F and A are constant system parameters.

4.2.2 Unit conversion

It is convenient to use count based units because the encoder reading

and motor control effort both are presented in count units. With the assump-

tion that torque is proportional to the applied voltage, which corresponds to

the control effort, we have

T = kuu (4.3)

where u is a control effort and ku is a gain that converts the control effort to

the applied torque. Also, as the encoder reading is in counts, we have

θ = kc2rθc

ω = kc2rωc (4.4)

where θc is an angular position in counts, ωc is an angular velocity in counts

per second, and kc2r is a gain that converts units from counts to radians. Once
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we define

x1 = θc

x2 = ωc

c =
C

J

f =
F

Jkc2r

a = Akc2r

b =
ku
Jkc2r

(4.5)

the dynamics become

ẋ1 = x2

ẋ2 = −cx2 − f tanh(ax2) + bu (4.6)

It is assumed that a is known, and c, f , and b are partially known; signs of

these parameters are known, but its magnitudes are not.

4.2.3 Hardware limitation

Since this is a physical plant, there exist a control saturation. The

applied voltage cannot exceed ± 10 volts, which is equivalent to −32768 <

u < 32767 counts. This saturation constraint will be enforced in the simulation

while tuning for the various controller parameter values.
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4.3 Controller Design

4.3.1 Control objective

The general objective is to design a control law that tracks the prede-

fined reference trajectories. Since the design scheme is developed only for the

systems where unknown parameters do not appear with non-linear functions

of velocity states, the implementation seems to be inappropriate. However, if

hyperbolic tangent friction model with viscous friction fits well and its math-

ematical structure is known, this non-linearity can be circumvented. Further

discussion of Coulomb friction will be presented in the stability analysis sec-

tion. Even if the slope of the hyperbolic tangent model at zero velocity does

not match well, we can avoid the model mismatch effect by putting the ref-

erence velocity away from this region. Since the control goal is to track a

constant speed, we can set the reference velocity as a constant value. However

to obtain a smooth transient, a critically damped second order linear system

with a constant input is introduced to govern the reference trajectories, such

that the steady state will be the desired rotor velocity.

4.3.2 Controller design

Since the friction non-linearity is involved, the system we now deal with

is different from Chapter 2. Thus, the control law needs to be re-formulated

with the following dynamics

ẋ1 = x2

ẋ2 = −cx2 − f tanh(ax2) + bu (4.7)
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with the position, velocity, and acceleration reference trajectories

r1 = r

r2 = ṙ

r3 = r̈ (4.8)

Once the error states are defined as

e1 = x1 − r1

e2 = x2 − r2 (4.9)

we have the following error dynamics

ė1 = e2

ė2 = −cx2 − f tanh(ax2)− r3 + bu (4.10)

As the target dynamics are given by

ė1 = e2

ė2 = −kpe1 − kz ż (4.11)

with

ż = −λz + ηe1 (4.12)

where kp, kz, λ, and η are positive constants to be determined, we can rewrite

the velocity error equation as

ė2 = −kpe1 − kz ż + b[u− θ∗1x2 − θ∗2 tanh(ax2) + θ∗3(kpe1 + kz ż − r3)] (4.13)
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where

θ∗1 =
c

b
(4.14)

θ∗2 =
f

b
(4.15)

θ∗3 =
1

b
(4.16)

are unknown constants. Before designing a control law, let us define two

variables for convenience.

s = e2 + αe1 − ż (4.17)

s̄ = s− x2

= −r2 + αe1 − ż (4.18)

where α is a positive number to be determined. s is a signal we want to drive

to zero and s̄ is a signal independent of x2 so that we can implement it into

our control law. Now, let us choose

u = −(θ̂1 + β1)s̄− (θ̂2 + β2) tanh(as̄)− (θ̂3 + β3)(kpe1 + kz ż − r3) (4.19)

where (θ̂i + βi)’s are estimates for θ∗i ’s with i = 1, 2, 3. Here again, the satura-

tion condition is not enforced explicitly. Therefore the control parameters will

be chosen through the simulation so that the control effort do not exceed the

limit values.
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When this control law is applied, the closed-loop error dynamics become

ė1 = e2

ė2 = −kpe1 − kz ż − cs− f [ tanh(as̄) + tanh(ax2)]

− b[θ̃1s̄+ θ̃2 tanh(as̄) + θ̃3(kpe1 + kz ż − r3)] (4.20)

where

θ̃1 = (θ̂1 + β1)− θ∗1 (4.21)

θ̃2 = (θ̂2 + β2)− θ∗2 (4.22)

θ̃3 = (θ̂3 + β3)− θ∗3 (4.23)

The values of kp and kz will be determined as functions of the design param-

eters, α, λ, and η through a stability analysis. Some constraints will apply to

these parameters in order to make the system stable.

4.3.3 Stability analysis

For the analysis, let us define a lower bounded function,

V =
1

2

(
s2 + |b|

3∑
i=1

θ̃2
i

γi

)
(4.24)

where the learning rate γi’s are positive constants. Then, the time derivative

of V is given by

V̇ = [−(η − α)e2 − kpe1 + (λ− kz)ż]s− cs2 − f [tanh(as̄) + tanh(ax2)]s

− sign(b)|b|[θ̃1s̄+ θ̃2 tanh(as̄) + θ̃3(kpe1 + kz ż − r3)]s

+ |b|
[

1

γ1

θ̃1(
˙̂
θ1 + β̇1) +

1

γ2

θ̃2(
˙̂
θ2 + β̇2) +

1

γ3

θ̃3(
˙̂
θ3 + β̇3)

]
(4.25)
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Once we choose

kp = α(η − α) (4.26)

kz = λ− (η − α) (4.27)

with additional conditions on the design parameters

η > α (4.28)

λ > (η − α) (4.29)

we have

V̇ = −[(η − α) + c]s2 − f [tanh(as̄) + tanh(ax2)]s

− sign(b)|b|[θ̃1s̄+ θ̃2 tanh(as̄) + θ̃3(kpe1 + kz ż − r3)]s

+ |b|
[

1

γ1

θ̃1(
˙̂
θ1 + β̇1) +

1

γ2

θ̃2(
˙̂
θ2 + β̇2) +

1

γ3

θ̃3(
˙̂
θ3 + β̇3)

]
(4.30)

If update laws are determined such that the estimate error terms vanish, we

will end up with

V̇ = −[(η − α) + c]s2 − f
[

sinh(as)

cosh(as̄) cosh(ax2)

]
s

≤ −(η − α)s2

≤ 0 (4.31)

Since s converges to zero asymptotically, the state errors also converge to zero,

while the estimate errors remain bounded. The task remaining is to determine
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the update laws and the β’s independent of x2.

˙̂
θ1 + β̇1

γ1 sign(b)
= ss̄

= e1(r3 − λż) + s̄(αe1 − ż) +
d

dt

[
e1(−η − α

2
e1 − r2 + λz)

]
(4.32)

˙̂
θ2 + β̇2

γ2 sign(b)
= s tanh(as̄)

= tanh(as̄)

(
αe1 − ż +

λż − r3

η − α

)
+
d

dt

[
− ln{cosh(as̄)}

a(η − α)

]
(4.33)

˙̂
θ3 + β̇3

γ3 sign(b)
= s(kpe1 + kz ż − r3)

= e1(λkz ż + ṙ3) + (αe1 − ż)(kpe1 + kz ż − r3)

+
d

dt

[
e1(

kp + ηkz
2

e1 − λkzz − r3)

]
(4.34)

Therefore, the update laws and β’s are

˙̂
θ1 = γ1 sign(b)[e1(r3 − λż) + s̄(αe1 − ż)] (4.35)

˙̂
θ2 = γ2 sign(b)

[
tanh(as̄)(αe1 − ż +

λż − r3

η − α
)

]
(4.36)

˙̂
θ3 = γ3 sign(b)[e1(λkz ż + ṙ3) + (αe1 − ż)(kpe1 + kz ż − r3)] (4.37)

β1 = γ1 sign(b)

[
e1(−η − α

2
e1 − r2 + λz)

]
(4.38)

β2 = γ2 sign(b)

[
− ln{cosh(as̄)}

a(η − α)

]
(4.39)

β3 = γ3 sign(b)

[
e1(

kp + ηkz
2

e1 − λkzz − r3)

]
(4.40)

Note that we may have different forms of update laws depending on the choice

of β’s. By the analysis, we can conclude that the estimates (θ + β)’s are

bounded, but there are possibilities that individual θ’s and β’s go unbounded
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and it may cause a numerical instability. Therefore, choosing proper β’s is

important. In this case, β1 and β2 are chosen such that they are proportional to

e1, so that they converge to zero as the state errors go to zero. The function β2

cannot be determined with a linear dependency on e1, but it will be remained

bounded because it is a function of s̄ which converges to the constant reference

velocity. In terms of the numerical stability, computing ln{cosh(as̄)} is also

a large numerical overflow problem for a large s̄. Therefore, a different form

must be taken in order to avoid dealing with large numbers.

ln{cosh(as̄)} = |as̄|+ ln

{
1 + e−2|as̄|

2

}
(4.41)

4.4 Simulation

A reference trajectory needs to be chosen properly such that control

saturation does not occur. If the velocity reference is a step response of the

second order stable linear system with the target amplitude Ω, damping ratio

ζ, and natural frequency ωn, then we have a smooth trajectory. The reference

is governed by the following differential equation

d2

dt2
r2 = −2ζωn

d

dt
r2 − ω2

nr2 + ω2
nΩ (4.42)

with zero initial conditions. Moreover, for the fastest convergence to Ω with

a fixed natural frequency, a damping ratio should be equal to one. Thus, if

we want a time constant, τ = 1 which indicates approximately 4 seconds of

settling time, then ωn = 1 will work.
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The simulation is performed with the following values:

a = 0.003, b = 0.8065, c = 0.0096, f = 1799.3

The control parameters and initial conditions of update laws are chosen as

α1 = 1, η = 9, λ = 16

γ1 = 10−7, γ2 = 10, γ3 = 10−6

θ̂1(0) = 0, θ̂2(0) = 2000, θ̂3(0) = 1

which will give us a non-oscillatory response. The results shown in Figure 4.4

are obtained when the reference rotor speed is set to Ω = 3 × 104 in counts,

which is equivalent to 270 rpm.
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Figure 4.4: Simulation results of rotor speed control
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4.5 Model 750 CMG Results

Using the same control parameters and initial conditions used in the

simulation, the designed control law is applied to the Model 750. Figure 4.5

depicts the results of the hardware test. Since the velocity is not measured,

numerical differentiation is used and compared with the simulation result. In

the figure, it is observed that the velocity error is within noise level, which

means that the velocity state tracks the reference. Moreover, as the overall

performance is similar to the simulation, it can be said that the mathematical

model used is reasonable to describe the real system.
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Chapter 5

Conclusions

In this report, a new adaptive control approach for second-order class

linear systems is introduced. The objective of the research is to design a con-

trol law that stabilizes the system or tracks predefined reference trajectories

under the situation where the velocity state is unavailable for feedback and

the system parameters are unknown or partially known.

The control law is developed from a double integrator in the absence of

unknown parameter effects. This is one of the results of passivity based con-

trol that uses a filtered signal out of the position state. That is, the feedback

signal consists of the position and the filtered position states. From this feed-

back structure, we adopt the auxiliary variable, s which is key for the stability

analysis.

Partially based on the non-CE adaptive control structure, the update

laws for the uncertain parameters are established through a Lyapunov-like sta-

bility analysis. Two different approaches are suggested. The idea of the first

approach is that the estimates are sums of two signals, one from the update
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laws and the other from the measured states. This method is well extended

to the rotor speed control with the Coulomb friction in the dynamics. In spite

of the main assumption that non-linearity associated with the velocity state

does not appear in the dynamics, the control law independent of the velocity

is successfully designed and implemented in the hardware.

However, the method derived in the scalar problems cannot be general-

ized to the more general case of n-coupled systems. Therefore, a filtered state

approach is introduced for these vector cases. The main advantage of this

approach is that we can handle the coupling effects and do not need to split

the parameter estimation signals, but we are still bounded to the assumption

that the unknown parameters appear in a linear fashion with the unmeasured

velocity state.

This research is conducted as a first step towards the development of the

angular-rate-free spacecraft attitude controller with an unknown inertia ma-

trix. The application of the proposed methodology can be argued to be rather

limited because of the restrictive nature of the assumptions we imposed: the

linearity on the velocity state must be guaranteed and the bound of the ab-

solute values of the uncertain parameters associated with the velocity must

be known. However, as seen in the hardware implementation example, some

special classes of non-linearity with respect to the unmeasured states such as

friction can be successfully handled. Thus, we cannot ignore the possibility
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that the proposed technique can be extended to the desired application, the

attitude control. Therefore, future work will deal with extending the control

scheme for the more general non-linear cases.

Another restriction is observed regarding the dimension of the control

input. Under the formulation, the control signal needs to be the same as the

dimension of the position or velocity states. Of course, this is not always

the case, but that suggests further explorations on under-actuated uncertain

systems.
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