
Copyright

by

Roshan Kumar

2011

The Dissertation Committee for Roshan Kumar
certifies that this is the approved version of the following dissertation:

The Vehicle Routing Problem on Tree Networks:

Exact and Heuristic Methods

Committee:

Randy Machemehl, Supervisor

S. Travis Waller, Co–Supervisor

Zhanmin Zhang

Anantaram Balakrishnan

Erhan Kutanoglu

Avinash Unnikrishnan

The Vehicle Routing Problem on Tree Networks:

Exact and Heuristic Methods

by

Roshan Kumar, B.E., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2011

For ammamma

I wish you were here

Acknowledgments

Writing this dissertation is one of the most challenging tasks that I have

undertaken. It would not have been possible without the help and support of

the following people.

Dr. S. Travis Waller has been a great adviser and true friend. He gave

me the freedom to pursue various research ideas while never letting me lose

focus. He never let me get bogged down and his words of advise always had

a very calming effect on me. I greatly benefited from Dr. Anant Balakrish-

nan’s courses on network algorithms and supply chain optimization. I am

also grateful that he took a keen interest in my dissertation; his contribu-

tions improved this dissertation by leaps and bounds. Dr. Erhan Kutanoglu’s

course on logistics optimization introduced me to the subject and this disser-

tation’s genesis was in the term project for that course. I also want to thank

Dr. Randy Machemehl and Dr. Zhanmin Zhang for their invaluable comments

and suggestions.

Avi’s involvement in my personal and academic life has been immense.

From suggesting the topic to providing comments to improve the dissertation,

he helped me every step of the way. He somehow managed to effortlessly switch

between the roles of friend, guide, confidante, and constant GTalk compan-

ion while being the best in all of them. Conversations with Nati made those

long days and nights at ECJ and UTA tolerable. Interesting discussions with

Lauren and David about life, universe, and everything helped me get through

v

some otherwise slow days. Steve and Nez, along with other TeQSON mem-

bers, lent an ear to my ideas and tolerated my incessant complaining. Jen

ensured that I didn’t have to work on any Tech Memos whilst writing my

dissertation. Rishi’s attempts at improving my gender-neutral Hindi, albeit

futile, were a great source of entertainment, while PD continues to remain a

great friend many miles away. Rajesh, Raghu, Binny, and Shashank helped

me get over many of my frustrations by joining me in pounding an innocent

racquetball against a wall. Tanuj’s shared love of Arrested Development, The

Big Lebowski, biking, and Gujarati snacks made many a weekend enjoyable.

Libbie Toler and Lisa Macias made sure that I met all my deadlines

and received all my travel refunds and fellowship stipends.

I want to take a moment to thank my parents and my sister, Rithika,

for their love, support, and encouragement. They always told me to pursue

my dreams and facilitated it in every which way they could. No words can

express the gratitude I feel towards them. Prakash has played the crucial role

of a big brother whom I can look up to perfectly. Lastly, none of this would

have been possible without Rachna. She has stood by me through various ups

and downs. She allayed my fears, frustrations, and insecurities, but was quick

to admonish my pessimism. Hopefully, very soon, Skype will no longer be our

preferred method of communication.

I would like to dedicate this dissertation to my late grandmother, Mrs.

Parvathi Mani, whom I miss dearly and whose words of wisdom continue to

guide me today.

vi

The Vehicle Routing Problem on Tree Networks:

Exact and Heuristic Methods

Publication No.

Roshan Kumar, Ph.D.

The University of Texas at Austin, 2011

Supervisor: Randy Machemehl
Co–Supervisor S. Travis Waller

The Vehicle Routing Problem (VRP) is a classical problem in logis-

tics that has been well studied by the operations research and transportation

science communities. VRPs are defined as follows. Given a transportation

network with a depot, a set of pickup or delivery locations, and a set of vehi-

cles to service these locations: find a collection of routes starting and ending

at the depot, such that (i) the customer’s demand at a node is satisfied by

exactly one vehicle, (ii) the total demand satisfied by a vehicle does not exceed

its capacity, and (iii) the total distance traveled by the vehicles is minimized.

This problem is especially hard to solve because of the presence of sub–tours,

which can be exponential in number.

In this dissertation, a special case of the VRP is considered – where

the underlying network has a tree structure (TVRP). Such tree structures are

found in rural areas, river networks, assembly lines of manufacturing systems,

vii

and in networks where the customer service locations are all located off a main

highway.

Solution techniques for TVRPs that explicitly consider their tree struc-

ture are discussed in this dissertation. For example, TVRPs do not contain any

sub-tours, thereby making it possible to develop faster solution methods. The

variants that are studied in this dissertation include TVRPs with Backhauls,

TVRPs with Heterogeneous Fleets, TVRPs with Duration Constraints, and

TVRPs with Time Windows. Various properties and observations that hold

true at optimality for these problems are discussed. Integer programming for-

mulations and solution techniques are proposed. Additionally, heuristic meth-

ods and conditions for lower bounds are also detailed. Based on the proposed

methodology, extensive computational analysis are conducted on networks of

different sizes and demand distributions.

viii

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1

1.1 The Vehicle Routing Problem 2

1.1.1 VRP Taxonomy . 3

1.2 The Vehicle Routing Problem on Trees 8

1.3 Notation . 14

1.4 Some Observations . 17

1.5 Dissertation Contributions . 20

1.5.1 Dissertation Organization 22

Chapter 2. Literature Review 25

2.1 Literature Review – VRP . 25

2.1.1 Exact Solution Methods 25

2.1.2 Heuristic Methods . 30

2.1.3 VRPs with Backhauls 32

2.1.4 VRPs with Time Windows 34

2.1.5 VRPs with Heterogeneous Fleets 36

2.2 Literature Review – TVRP . 37

2.2.1 Lower Bounds . 37

2.2.2 Heuristics . 39

2.2.3 Exact Solution Methods 44

2.2.4 Vehicle Scheduling Problem on Trees 46

ix

Chapter 3. TVRP with Backhaul Customers 48

3.1 Problem Definition . 48

3.2 Preliminaries . 49

3.2.1 Observations . 49

3.2.2 Properties . 52

3.2.3 Lower Bound . 55

3.3 Integer Programming Formulation 56

3.4 An Improved Integer Programming Formulation 59

3.4.1 Network Transformation 59

3.4.2 The IP Formulation . 66

3.4.3 Valid Inequalities . 74

3.5 The Traveling Salesman Problem on Trees with Backhauls . . 76

3.5.1 Optimal TTSPB Tour Cost 79

3.5.2 Node Service Order . 79

3.5.3 Illustrative Example . 82

3.6 Heuristic . 85

Chapter 4. Computational Results and Further Improvements
to the TCVRPB 90

4.1 Test Instances . 90

4.1.1 Parameter Generation 91

4.2 Computational Results . 92

4.2.1 Solution Quality . 96

4.2.2 Computational Performance 100

4.3 Further Improvements . 101

4.3.1 Additional Computational Results 106

4.4 Conclusions . 110

Chapter 5. TVRP with Fixed Fleets 113

5.1 Problem Definition . 113

5.2 Preliminaries . 114

5.2.1 Lower Bounds . 115

5.3 Exact HTCVRP Solution Methods 117

x

5.4 Heuristic for HTCVRP . 119

5.4.1 Computing δik . 122

5.4.2 Finding seed customers 124

5.4.3 Solving the Generalized Assignment Problem 127

5.4.4 Refining Operation . 128

5.4.5 Heuristic HTCVRP . 129

5.5 Test Instances . 133

5.5.1 Parameter Generation 133

5.6 Computational Results . 134

5.6.1 Solution Quality . 136

5.6.2 Computational Performance 137

5.7 Conclusions . 139

Chapter 6. TVRP with Time–related Constraints 141

6.1 Problem Definition – DTCVRP 141

6.2 Lower Bound – DTCVRP . 142

6.3 Exact Methods – DTCVRP 144

6.3.1 Branch–and–Bound and Column Generation 144

6.3.2 IP–Formulation . 146

6.4 Heuristic – DTCVRP . 150

6.5 Computational Results – DTCVRP 160

6.5.1 Solution Quality and Computational Performance 162

6.6 Problem Definition – TCVRPTW 165

6.6.1 Additional Notation . 166

6.7 Heuristic – TCVRPTW . 166

6.8 Computational Results – TCVRPTW 172

6.8.1 Test Instances . 172

6.8.2 Computational Performance and Solution Quality 175

6.9 Conclusions . 176

Chapter 7. Summary and Scope for Future Work 179

7.1 Dissertation Contributions and Conclusions 180

7.2 Scope for Future Work . 184

xi

Bibliography 186

Vita 202

xii

List of Tables

4.1 Summary of Numerical Results for the TCVRPB 95

4.2 Summary of Numerical Results for the TCVRPB after Improve-
ments . 109

5.1 Summary of Numerical Results 138

6.1 Summary of Numerical Results for the DTCVRP 163

6.2 Summary of Numerical Results for the TCVRPTW 176

xiii

List of Figures

1.1 Uncapacitated VRP not the same as TSP 3

1.2 Dissertation focus within the VRP taxonomy 8

1.3 Solving TVRP as a VRP . 10

1.4 Routing of Milk Tankers in New Zealand 11

1.5 Transporting Coal to Ports . 12

1.6 Notation Used . 15

1.7 A Line Network . 17

1.8 A Star Network . 20

3.1 Minimizing cost does not minimize vehicles 50

3.2 Difference between TVRPs and TVRPBs 50

3.3 Figure describing Lemma 3.1 53

3.4 Fork Nodes and Short–Circuiting 61

3.5 Network Transformation Example 64

3.6 Flow Conservation Constraint 70

3.7 Order of Nodes Served in TTSPB 82

3.8 An Illustrative Example for the TTSPB 83

3.9 An Illustrative Example for the TCVRPB 89

4.1 Comparison on LP, Optimal, and Heuristic Values 96

4.2 Computation Time for IP and Heuristic 99

4.3 An Illustrative Example for the Second Heuristic 105

5.1 Computation of δik∀i ∈ N \ PfDik , ∀k ∈ K 123

5.2 An Illustrative Example for the HTCVRP 132

6.1 Maximum Savings Obtained 151

6.2 An Illustrative Example for the DTCVRP – 1 157

6.3 An Illustrative Example for the DTCVRP – 2 158

xiv

6.4 An Illustrative Example for the DTCVRP – 3 159

xv

Chapter 1

Introduction

The Vehicle Routing Problem (VRP) is a classical problem in logistics

that has been well studied by the operations research and transportation sci-

ence communities. The VRP aims to design minimum cost delivery routes

from a centralized depot or depots to customers at different locations subject

to some side constraints. The VRP is known to be NP–hard and is especially

difficult to solve because of the presence of sub–tour elimination constraints,

which are exponential in number.

In this dissertation, a special case of the VRP is considered – where

the underlying network has a tree structure (TVRP). The objective of this

dissertation is to develop customized algorithms and solution techniques for

some unexplored variants of the TVRP. It is possible to develop faster solution

techniques for these problems by explicitly taking advantage of their special

network structure.

In this chapter, first, the VRP is described in detail along with a tax-

onomy of the VRPs that exist in the literature. Next, the TVRP is introduced

and some examples of tree networks in the real world are provided. The chap-

ter concludes with an overview of the topics that will be examined.

1

1.1 The Vehicle Routing Problem

The vehicle routing problem can be defined as follows. Given a trans-

portation network with a depot, G = (N,A); a set of delivery locations, de-

fined to be the nodes, N ; non–negative costs between the locations, defined

to be costs cij on arcs (i, j); a set of vehicles, K, to service these locations;

and other additional input parameters and characteristics: find a collection of

routes starting and ending at the depot, such that

(i) the customer’s demand is satisfied,

(ii) a vehicle does not visit a customer more than once, and

(iii) some side constraints are satisfied.

The main objective of the VRP is to minimize the total distance traveled or

the total cost of operating the vehicles. In some cases, the total travel cost or

travel time is minimized (Laporte, 1992).

The VRP was first studied by Dantzig and Ramser (1959). The problem

was defined to have a clover leaf structure because each vehicle serves a subset

of customers and returns to the depot. The VRP is a generalization of the

Traveling Salesman Problem (TSP) and is NP–hard (Lenstra and Kan, 1981;

Frederickson et al., 1976).

Given a fully connected network, the TSP aims to find a single mini-

mum cost tour that spans all the nodes of the network. There are no capacity

2

Figure 1.1: Uncapacitated VRP not the same as TSP

or other side constraints. Even in the absence of side constraints, the VRP

does not always reduce to a TSP.

Consider Figure 1.1, the cost of traveling from nodes of type 4 to type

© is very expensive (say, cost M , denoted by dotted edges here), while all

other edges have unit cost. The depot is denoted by a . A TSP tour will

yield a solution of 4+M , where M is a very large number. On the other hand,

if there are two vehicles available, the VRP will yield a solution of 6, with each

vehicle serving one node type. So, only a single–vehicle VRP will reduce to a

TSP.

1.1.1 VRP Taxonomy

Side constraints are the defining feature of VRPs and add to the com-

plexity of the problem. The side constraints that need to be satisfied depend

on the characteristics of the customers and the vehicles (Toth and Vigo, 2002).

3

The most common side constraints include:

(i) Capacity Constraints : Each vehicle has a fixed capacity, and the total

demand serviced by the vehicle cannot exceed its capacity. The fleet

of vehicles can have homogeneous or heterogeneous capacities. These

problems are called Capacitated Vehicle Routing Problems (CVRPs).

(ii) Distance or Time Constraints : Each vehicle route cannot exceed a certain

pre-specified distance or time, depending on how the arc lengths are

described. These problems are abbreviated as DVRPs.

(iii) Time Windows : Customers can specify periods of the day (time–windows)

during which they can be served. In some cases, along with prescribing

time–windows, a service time at the customer location is also specified.

These problems are referred to as VRPTWs.

(iv) Backhauls : In some instances, customer locations are divided into two

subsets – linehauls and backhauls. Linehaul customers require delivery

from the depot, whereas backhaul customers require pickup to the de-

pot. A precedence relation which require linehaul customers to be served

before backhaul customers is the constraining feature of these problems

(VRPBs). This precedence constraint is practically motivated by the

fact that vehicles are often rearloaded, and rearrangement of the loads

on the trucks at the delivery points is not deemed economical or feasi-

ble (Goetschalckx and Jacobs-Blecha, 1993). Another practical reason

4

is that, in many applications, linehaul customers have a higher priority

than backhaul customers (Toth and Vigo, 2002).

(iv) Pickup and Delivery : These problems are similar to (iv), except that

no precedence relation needs to be satisfied. They are abbreviated as

VRPPDs.

(v) Split Delivery : The split delivery problem (VRPSD) relaxes the constraint

that only one vehicle should serve a customer. Each customer order can

be split between multiple vehicles in this case.

Two or more of these side constraints can also be combined to form a single

problem.

The common input parameters and characteristics that define the na-

ture of the VRP at hand include:

(i) Vehicle Fleet Characteristics: Some logistics providers have vehicle fleets

which are heterogeneous and consist of a variety of vehicle types having

different capacities. In most instances, the vehicle fleets are homogeneous

with all vehicles having the same capacity.

(ii) Number of Vehicles: The number of vehicles available at the modeler’s

disposal can be assumed to be a parameter or a decision variable. When

the number of available vehicles equals the number of demand locations,

the vehicles are said to be ‘free’. In such cases, the total number of used

vehicles should be minimized. Conversely, sometimes vehicle fleet size is

5

‘fixed’, and the number of vehicle routes is usually equal to the number

of vehicles available.

(iii) Number of Depots: The VRP can be extended to include multiple de-

pots. Each vehicle route starts and ends at the same depot, and each

depot has a fleet of vehicles available at its disposal. In some applica-

tions, the locations that each depot serves is determined a priori, and a

separate VRP is solved for each depot (Toth and Vigo, 2002). Multi–

depot VRPs have been used to solve problems related to transporting

of school meals (Cassidy and Bennett, 1972), soft drinks (Golden and

Wasil, 1987), gasolines, diesel, heating oil (Brown et al., 1987), etc.

(iv) Dynamic Variants: In these situations, only partial knowledge of the

arc traversal times is known a priori. More information is unraveled

with the determination of the solution. Also, the arc traversal times are

dependent on the number of vehicles using the arc and change with the

time period. These problems have emerged as an active area of research

due to recent technological advances that allow real–time information to

be quickly obtained and processed (Gendreau and Potvin, 1998). A time

parameter is associated with the VRP here. Such problems are harder

to solve than their static counterparts.

(v) Stochastic Information: Stochastic Vehicle Routing problems arise when

some elements of the problem are random (Gendreau et al., 1996). Only

the probability distributions, but not the actual realizations, of these

6

elements are known. Information about the demands, arc travel times,

or set of customers to be served are assumed to be stochastic here. These

problems ‘stochasticize’ VRPs and are computationally intractable as

they combine integer and stochastic programs.

(vi) Network Structure: Some transportation networks might have special

structures which make them amenable to customized heuristics and so-

lution methods. One example of this are tree networks. Tree networks

are found in abundance in road networks and possess special spatial

properties as they do not contain any directed or undirected cycles. As

a result, it is possible to develop faster and more accurate algorithms for

such VRP types.

Figure 1.2 is modified from Toth and Vigo (2002) and Eksioglu et al.

(2009), and shows the common VRPs and how some of the side constraints can

be combined. Many input elements and parameters are first necessary to define

a VRP, these are shown in square boxes to the top of the figure. The most

commonly studied VRP types are represented by circles, with corresponding

arrows denoting the interactions between various side constraints.

Additionally, there might exist other driver–related and operational

constraints. Driver–related constraints account for maximum allowable driving

time for a driver, costs accrued due to overtime, mandatory breaks after a

certain driving duration etc. Operational constraints include service levels

to be met when time–windows are considered, accounting for subsets of arcs

7

Figure 1.2: VRPs, their interrelations, and variations. The areas of focus are
shaded.

(roads) on which certain vehicle types are not allowed, not allowing routes

with vehicle load less than a prescribed proportion of capacity etc.

1.2 The Vehicle Routing Problem on Trees

This dissertation examines some variants of the Vehicle Routing Prob-

lem on Tree Networks (TVRP). The objective of the TVRP is still to find cost

minimizing vehicle routes, but with the added caveat that the network under

consideration is a tree. The classical definition of a tree is implied here – net-

works that contain no directed or undirected cycles. In a tree network there

8

exists only one unique path between any two pairs of nodes. The capacitated

version of the TVRP is NP–hard, while the uncapacitated version reduces to

solving the TSP on trees. The TVRP differs from the VRP in that the network

in a VRP contains an edge between every pair of nodes. The main compli-

cating factors in TVRPs is that a vehicle can visit a node without actually

serving it. This is not the case with VRPs, where, whenever a node is visited

by a vehicle, it is also served. In spite of this, TVRPs are of special interest

as the tree structure can be exploited to obtain faster solution methods.

All TVRPs can be solved as VRPs by finding the all–to–all shortest

paths between the nodes. In the example shown in Figure 1.3a all edges are

bidirectional and the numbers on the edges denote edge costs. There exists

no edge between nodes 1 and 2. Therefore, to go from 1 to 2, or from 2 to 1,

one must go through the depot. However, once the shortest path from 1 to

2 is added as edge {1,2} (with cost 4), the problem can simply be solved as

a VRP as there are now edges between all nodes (Figure 1.3b). This makes

the problem much more difficult to solve because of the increased number of

variables.

Tree structures are encountered in river networks, railway networks,

and rural areas. In rural areas, the absence of infrastructure between every

customer location results in a tree structure. In some regions, shortest paths

between all pairs of nodes might result in a tree network.

Tree networks also exist in areas where the transportation network con-

sists of a main highway (for example the interstate system) and the customer

9

(a) The tree (b) Tree with all–to–all short-
est paths

Figure 1.3: Solving TVRP as a VRP

locations are located off the highway. More simplistically, the highway forms

the trunk and the roads leading to the service area form the branches of such

a transportation network. Sometimes, a group of nodes can be clustered to-

gether to form a tree network (Basnet et al., 1999). Although there might

arterials and smaller highways connecting these nodes to each other, travel

time savings and vehicle fleet restrictions might dictate the use of the main

highway system to travel between these nodes.

In some cases, the entire network might not be a tree, but some nodes

can be clustered to form a single node resulting in a tree network. The total

demand of these clustered nodes is less than the capacity of the vehicle serving

it. The overall problem is a TVRP, but a TSP solution within the cluster will

determine the order in which the locations within that cluster are served.

Figure 1.4 illustrates a practical case in New Zealand where milk tankers

have to transport milk from the dairy supplier to the factory. This case was

10

Figure 1.4: Transporting Milk Using Capacitated Tankers from Dairy Farms
(©) to the Processing Factory ()

studied by Basnet et al. (1999). The problem can be defined briefly as follows.

Milk tankers collect milk from the dairy farms and transport it to the factory

for processing. The factory owns and operates these tankers and schedules

tanker routes such that the total collection cost per kilogram of milk collected

is minimized. Each tanker has a known fixed capacity. The amount of milk

to be collected from a supplier is also known. Finally, all tanker routes begin

and end at the factory. Figure 1.4 shows the network over which this milk

collection is carried out. The farms are located off a major highway. Due to

the rural location of these dairy farms, there is only one unique path between

11

two suppliers. It can also be noted that there are a few clusters of farms that

are connected to each other and are all located at the end of a public access

road leading in from the main highway. The practical case considered was such

that the total milk produced by the farm clusters were always lesser than the

tanker capacity and as a result could be reduced to a single node. The overall

structure, after clustering, results in a tree network with the dairy suppliers

forming customer locations or nodes and the factory forming the depot. This

practical case illustrates three situations where tree networks might exist –

rural areas, clustering of nodes, and customers located off a main highway.

Figure 1.5: Transporting Coal from Mines (©) to Ports () through a Rail
Network

12

Another practical case where tree networks are encountered is in the

mine railway system near Sydney, Australia. A co-operative mining logistics

agency is responsible for the collection of coals from mines and its transporta-

tion to ports for export. The mines are connected by a rail network. The

network consists of 35 coal mines owned by 14 individual producers, more

than 80 different export blends of coal, and approximately 28 trains making

an average of two trips per day. The trains transport the coal from the mines

to the ports. Each train has a fixed capacity. The agency plans the train

routes so that the total collection cost is minimized. Figure 1.5 shows this

railway network. It can be seen that the railway network forms a tree with

the port(s) as the depot(s) and the coal mines as customer locations.

Most river networks have a tree structure. For example, the Yangtze

river in China has a wide inland river network system that connects various

cities within the country. This tree–shaped river network carries about 1 billion

tons of freight annually and is the cleanest, cheapest and, widely used mode

of transportation (Wan, 2009). The movement of container loads within this

network can be modeled as a TVRP.

Finally, outside of transportation and logistics, applications of the TVRP

are also encountered in multi–product assembly line balancing problems (Jean-

Marie et al., 1992). This problem is briefly defined as follows. Given multiple

products that require a set of sequential operations on them (some products

may require common operations) , and a set of workstations that can per-

form any these operations; allot operations to workstations such that (a) the

13

number of workstations used are minimized, and (b) workstations complete all

assigned operations within a given time. Other common objective is to min-

imize total operating time when number of workstations is fixed (Liu et al.,

2008). Furthermore, every operation can be assigned to only workstation.

The TVRP can be used to solve this problem as follows. The precedence

relation between the operations can be represented as a collection of trees.

Each operation is represented as a customer location, with the demand at the

location equal to the total time required to complete operations on all products

that require that operation. The workstations are vehicles which are assigned

to ‘serve’ the customer locations subject to precedence constraints.

1.3 Notation

The basic notation that will be used throughout the dissertation is

introduced here. Additional notation will be described as and when required.

Let T = {ND, E} denote a tree rooted at the depot. ND is the set of

nodes including the depot. Denote the set of nodes excluding the depot node

as N , i.e. N = ND \ {depot}. The set of edges in the network is represented

by E, all edges facilitate movement in both directions. T contains no directed

or undirected cycles. Let |N | = n and |E| = m, then m = n− 1.

The demand at a node i ∈ N is denoted by di. The cost of traversing

edge {i, j} is given by c{i,j}. Replace the set of undirected edges by the set

of directed arcs A, such that every edge is replaced by two arcs – one in each

14

direction – with cost cij on directed arc (i, j) and |A| = 2m. Let ADJ be the

node–node adjacency matrix for T = ND, A). Let K be the set of vehicles,

Cap denote each vehicle’s capacity. Let kLB ≤ |K| ≤ kUB. If kLB = 1 and

kUB = n− 1 then the vehicles are free and if kLB = kUB the vehicles are fixed.

It is assumed that di < Cap∀i ∈ N and that customer demands cannot be

split.

Figure 1.6: An Example Describing the Notation: (a) c(i) = {j, k}; Si is the
subtree rooted at i; Pi is the parent of i; (b) Minimal Covering Sub–tree with
R = {j, k}

In compliance with other literature on trees, a leaf node of T is defined

to be a node with degree 1. For notational convenience, and without loss of

generality, assume that the tree grows downward from the root node. That is,

all nodes are topologically below the root node. Therefore, the ancestors of a

15

node are above it, and its descendants are below it. The immediate ancestor

of a node is called its parent. For a given node i, its parent is denoted by

Pi. Observe that every node has a single unique parent node. The immediate

descendant of a node is called its child. The set of children of a node i is given

by c(i). A node can have many children. For further notational convenience,

assume that the nodes of the tree are numbered in the depth first search (DFS)

order. This implies that if {i, j} ∈ E and if i < j, then i is the parent of node

j. Similarly, if {i, j} ∈ E and if i > j, then i is the child of node j. A sub–tree

Si of the tree T is defined as a tree rooted at a node i, such that the nodes i

and all its descendants are part of the sub–tree. It is a connected sub–graph of

the tree, and all its nodes and edges are also part of the tree T . The example

shown in Figure 1.6 shows all the notation explained above. The nodes j and

k are the children of node i, and the sub–graph containing the nodes within

the darker dashed region is the sub–tree Si.

The minimal covering sub–tree of a tree is defined as follows. Given

a subset of nodes R ⊂ N , the minimal covering sub–tree CSR is the set of

all the nodes in the unique paths from each node in R to the depot. The

minimal covering sub–tree will always include the depot and will be rooted at

the depot. The set of nodes in CSR is given by NR. For example, the minimal

covering sub–tree CSR for the tree in Figure 1.6(a), with R = {j, k} is as

shown in Figure 1.6(b).

The set of nodes in the unique Path from the Depot to a node i is

denoted by PfDi. That is, PfDi = NR : R = {i}. The set PfDi contains the

16

Figure 1.7: A Line Network

nodes in increasing order of index. The set of arcs in the unique path from a

node i to j is denoted by i → j. The cost of the path from the depot to i is

given by Li =
∑

j∈PfDi

∑
q∈PfDi

cj,q : (j, q) ∈ A.

1.4 Some Observations

In this section some results for simple cases of TVRPs are presented,

namely VRPs on lines and VRPs on stars. Consider a line network T =

(ND, A). In this line network, without loss of generality, it can be assumed

that the depot is the left most leaf node and the customer nodes are indexed

in increasing order of their distance from the depot. A network is said to be

a line if its possible to move between any two nodes in the network without

having to pass through the depot. A line network is shown in Figure 1.7. Node

i1 is the node with the lowest index and node i|N | is the node with the greatest

index. It can be seen that minimizing the total distance traveled by all the

used vehicles also minimizes the total number of vehicles.

Now, consider the case where the customer demand can be split between

vehicles. That is, a vehicle can serve only a part of a node’s demand and some

other vehicle(s) can serve the remaining unserved demand. For this case, a

17

lower bound on the number of vehicles required to serve all the customers can

be given as follows.

|K| =

⌈∑
j∈Si1

dj

Cap

⌉
(1.1)

That is, the total number of vehicles required to serve all the nodes

is equal to sum of the demand of all the nodes in the sub–tree Si1 divided

by the vehicle capacity rounded up. Now, in order for obtain a lower bound

on the minimum distance traveled by the |K| vehicles, the nodes have to be

served in the following order. Starting with the node farthest from the depot

(highest indexed node), serve the nodes in decreasing order of their distance

from the depot (or decreasing order of node index). When a vehicle is filled to

capacity, a new vehicle starts service at the last partially serviced node. This

strategy is a lower bound on the distance traveled because the only time an

edge is traversed more than twice is when a node demand is partially satisfied,

secondly an edge is never traversed more than four times because a node will

not be served by more than two vehicles.

The traversal method described above gives a lower bound on the total

distance traveled. However, the method also gives a feasible solution to the

problem. Therefore, the method described above gives the optimal number of

vehicles and the optimal total distance traversed by all the used vehicles.

Consider the case where split deliveries are not allowed. However, as-

sume that all node demands are equal, that is di = d∀i ∈ N . Also assume that

18

the vehicles are free and have equal capacity, Cap. It is possible to replace

vehicle capacity by ¯Cap =

⌊
Cap
d

⌋
and assume unit demand at all the nodes.

One can also observe that at optimality, at most one vehicle will have some

capacity remaining while all other used vehicles will have no capacity avail-

able. This can be examined by assuming that the converse is true and then

proving that if the converse were to be true, then the total distance traveled

by the vehicles will be higher. Again, the optimal solution will involve serving

the nodes in decreasing order of node index till the first node is served.

Now, consider the case where split deliveries are not allowed and node

demands are not equal. Assume that vehicle capacities are equal. In this case,

the VRP reduces to a bin–packing problem. The proof for the transformation is

shown in Labbé et al. (1991); Busch (1990) and is omitted here. Therefore, the

VRP on a line where the demands are not equal, but the vehicle capacities are,

is NP–hard. As a result, TVRPs are NP–hard too as trees are a generalization

of a line network.

The case when the network is a star is now examined. A star network

is represented as shown in Figure 1.8. Every edge in a star network contains

a node and the depot.

If the demands are not equal (assume equal vehicle capacities), the cost

minimization objective in such a star network is redundant as, in order to serve

every node, ever edge will be traversed exactly twice. However, the vehicle

minimization objective is NP–hard and a simple polynomial transformation

reduces the VRP on star networks to a bin–packing problem. The proof is

19

Figure 1.8: A Star Network

detailed in Labbé et al. (1991).

1.5 Dissertation Contributions

This dissertation examines some unexplored variants of the TVRP. The

variants shaded in the Figure 1.2 are the focus of this dissertation. More specif-

ically, properties, lower bounds, heuristics, and exact solution methods for the

following four variants of the TVRP are discussed: (a) TVRPs with Backhauls

(b) TVRPs with Heterogeneous Fixed Fleets, (c) TVRPs with Duration/Time

or Distance constraints, and (d) TVRPs with Time Windows. The adaptibility

of the solution techniques for different versions of the same variant – capaci-

tated, uncapacitated, multiple vehicle types, cost minimization objective, and

vehicle minimization objective – are also demonstrated.

20

For the different problems considered here, the main setup is similar.

Given capacity and other specific side constraints, find a set of cost minimizing

vehicle routes. More specifically, given a tree network, T = (ND, A); non–

negative arc costs, cij∀(i, j) ∈ A; demand at each node, di∀i ∈ N ; and a

fleet of vehicles, K, with capacity Cap located at a depot: find a collection of

cost minimizing vehicle routes that begin and end at the depot, such that the

capacity and service constraints are not violated.

TVRP with Backhauls

In TVRPs with Backhauls (TVRPB), the customers are partitioned

into two subsets. The first subset consists of customers who have placed an

order for a given quantity of product to be delivered from the depot – the

linehaul customers. The second subset consists of customers who require a

given quantity of product to be picked up from their location and delivered to

the depot – the backhaul customers. In short, linehaul customers are demand

nodes and backhaul customers are supply nodes; and demand is requested

from the depot and supply is destined for the depot. Furthermore, in a vehicle

tour, the linehaul customers have to be served before backhaul customers. This

precedence criterion is practically motivated by the fact that vehicles are often

rearloaded, and rearrangement of the loads on the trucks at the delivery points

is not deemed economical or feasible (Goetschalckx and Jacobs-Blecha, 1993).

Another practical reason is that, in many applications, linehaul customers have

a higher priority than backhaul customers (Toth and Vigo, 2002).

21

TVRP with Heterogeneous Fleets

Usually, large logistics service providers have at their disposal vehicles

of different types. Such fleets are called heterogeneous fleets as the vehicles

differ in their capacities and operating costs. The TVRP with Heterogeneous

Fleets is briefly defined as follows. Given a vehicle fleet mix and customers

located on a tree network, find a set of vehicle routes that service the customer

demands.

TVRP with Time–related Constraints

In TVRPs which have additional time constraints, the arc costs are

assumed to be arc traversal times. Two such TVRP variants are discussed in

this dissertation. First is the TVRP with Duration and Capacity constraints.

This problem is concerned with finding optimal time minimizing vehicle routes

that serve customers that are located on a tree network. Each vehicle is spec-

ified a tour time limit which cannot be exceeded. The second is the Capaci-

tated TVRP with Time Windows. In this variant, each customer specifies a

deliver/pickup time window. The objective is to find cost/time minimizing

vehicle routes which serve the customers during these time–windows only.

1.5.1 Dissertation Organization

The dissertation is organized as follows:

Chapter 2 contains a brief literature survey of VRPs and TVRPs. Many

papers and books have been written on the subject (for example, Toth

22

and Vigo (2002), Laporte (2009), Christofides (1985), Bodin et al. (1983),

Bodin (1990), Fisher (1995), Laporte (1992), Golden et al. (2008) etc.).

The literature that is most pertinent to the topics in the dissertation is

reviewed here. First a literature review of classical VRP heuristic and

exact solution techniques is presented, followed by an extensive literature

survey on TVRPs.

Chapters 3 and 4 deal with the TVRP with Backhaul Customers. Chap-

ter 3 describes exact and heuristic methods to solve this problem. A

few properties and observations and conditions for a lower bound are

first discussed. Using these, an exact solution method is proposed. An-

other solution method, based on a network transformation technique,

requiring fewer variables than the first one is also proposed. An optimal

algorithm for solving the Traveling Salesman Problem with Backhauls

on Trees is presented next. This algorithm is used in the cluster–first

route–second heuristic. Computational results are presented in Chap-

ter 4. Based on these results, a few improvements, including another

heuristic, are discussed.

Chapter 5 details the exact and heuristic technique developed for the het-

erogeneous TVRP. In this chapter, some exact solution methods and

their relation to the Generalized Assignment Problem and Bin Packing

Problem are discussed. No heuristics or approximation algorithms for

TVRPs exist in the open literature that deal with either heterogeneous

23

fleets or fixed fleets. The heuristic is capable of dealing with non-fixed

and homogeneous fleets. The heuristic proposed has four steps, one of

which is solving the Generalized Assignment Problem. The computa-

tional results obtained by implementing the heuristic and exact methods

on networks of varying sizes and demand distributions are also presented.

Chapter 6 describes new heuristics for two variants of the TVRP – vehi-

cle time or duration constraints and customer time–window constraints.

Exact and heuristic methods and other details of the Duration Con-

strained Capacitated Vehicle Routing Problem on Trees (DTCVRP) are

described. The heuristic is a modification of the Savings Algorithm

adapted to tree networks. The heuristic for the time–windows variant is

presented next. Computational results obtained by implementing these

heuristics are also described.

24

Chapter 2

Literature Review

The VRP was first studied by Dantzig and Ramser (1959). The problem

was defined to have a clover leaf structure because each vehicle serves a subset

of customers and returns to the depot. Since then, many papers and books

have been written on the subject (for example, Toth and Vigo (2002), Laporte

(2009), Christofides (1985), Bodin et al. (1983), Bodin (1990), Fisher (1995),

Laporte (1992), Golden et al. (2008) etc.). This chapter attempts to overview

the literature that is most pertinent to the topics in the dissertation. First a

literature review of classical VRP heuristic and exact solution techniques is

presented followed by an extensive literature survey on TVRPs.

2.1 Literature Review – VRP

2.1.1 Exact Solution Methods

Some exact solution methods to solve VRPs include integer program-

ming formulations, branch–and–bound schemes, dynamic programming ap-

proaches, and set partitioning based formulations.

25

Integer Programs

The most common integer programs used to solve VRPs are the vehicle

flow based formulations. They include the three–index formulation proposed

by Fisher and Jaikumar (1981a) and the two–index formulation proposed by

Laporte et al. (1985).

Given a network G = (N,A), the three–index vehicle flow formulation

for CVRPs, when the vehicles are fixed and homogeneous, is given below. The

depot node here is represented as 0. The formulation is as follows:

Variables:

xijk =

{
1 if vehicle k traverses arc (i, j)
0 otherwise

yik =

{
1 if vehicle k serves node i
0 otherwise

Minimize: ∑
i

∑
j

∑
k

cijxijk (2.1)

Subject to:∑
k∈K

yik = 1 ∀i ∈ N \ {0} (2.2)∑
k∈K

y0k = |K| (2.3)∑
j∈N

xijk =
∑
j∈N

xjik = yik ∀i ∈ N, k ∈ K (2.4)∑
i∈N

yikdi ≤ Cap ∀k ∈ K (2.5)∑
i∈S

∑
j∈S

xijk ≤ |S| − 1 ∀S ⊂ N \ {0}, |S| ≥ 2,∀k ∈ K (2.6)

xijk, yik ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (2.7)

26

Equations 2.2 – 2.5 impose that a node is served by only one vehicle;

all |K| vehicles leave the depot; if vehicle k serves node i, then that same

vehicle k will also leave node i; and the sum of demands of all the customers

served by a vehicle is less than its capacity. Equation 2.6 is the sub–tour

elimination constraint. It states that given a subset of nodes S, if a vehicle

k enters that subset than it will traverse on only |S| − 1 arcs in that subset.

This prevents subtours because if a vehicle was to travel on |S| or more arc

within that subset, then it will definitely form a cycle in that subset.

Miller–Tucker–Zemlin (Gilbert et al., 1991; Miller et al., 1960; Kara

et al., 2004) proposed a subtour elimination constraint that was not as tight as

the one reported above. The M–T–Z constraint has been used in formulations

for VRP with time windows.

Fisher and Jaikumar (1981a) noted that the three–index formulation

has embedded within it the generalized assignment problem. A Bender’s de-

composition based solution technique was used to solve this problem. The

master problem solves the assignment problem that assigns vehicles to cus-

tomers and a sub–problem determines the vehicle route for every assignment.

The algorithm guarantees an optimal solution when run to completion.

Laporte et al. (1985) stated the sub–tour elimination constraints using

some lower bounds on the bin–packing problem. They also introduced various

valid inequalities to the formulation to strengthen it and to reduce convergence

time. A constraint relaxation method is used to solve the problem using this

formulation. The method first solves a sub–problem that contains only a subset

27

of the constraints and relaxes the harder constraints. The method extracts a

solution from the sub–problem at every step and checks its feasibility with a

previously known best solution value. The algorithm also checks for subtour

violations at every iteration.

Branch–and–Bound Schemes

Christofides et al. (1981a) developed a lower bound for symmetric VRPs

called the k–degree center tree, which was based on the m–TSP relaxation of

a VRP. They divided the edges that form a VRP solution into four subsets.

Edges forming a k–degree center tree, edges incident to the depot node, edges

not incident to the depot but part of the solution, and edges not in the solu-

tion. Then, using these subsets and their properties they developed an integer

programming formulation of the problem. Lower bounds are computed by

computing the k–degree center while the other constraints are relaxed within

a lagrangean framework. A branch–and–bound algorithm is used to compute

the optimal solution.

Fisher (1994b) similarly used minimum k–trees to obtain optimal solu-

tions to the VRP. First, a minimum k–tree is computed for the given network.

If the network has n nodes, then the tree spanning the graph with n− 1 +K

edges is called the minimum k–tree. The degree of the depot is 2K. The

side constraints – vehicle capacity, and each customer being served by only

one vehicle– are dualized to obtain a lagrangean relaxation problem. The

lower bound thus obtained in embedded in a branch–and–bound framework

28

to obtain the optimal solution. The k–tree is computed using the algorithm

provided by Fisher (1994a).

Other branch–and–bound techniques have also been proposed by (La-

porte and Nobert (1983), Houck (1978), Laporte et al. (1986), and Hadjicon-

stantinou et al. (1995)).

Set Partitioning Formulations

Set partitioning is a popular way of formulating problems which have to

be evaluated over an excessive number of states. Column generation is usually

used to solve such problems. Column generation tries to evaluate only the

most ‘profitable’ states iteratively and thereby reduces the computation effort

required to solve the problem. At every step a sub–problem is solved which

introduces the most viable column into a master problem. These techniques

are usually embedded within a branch–and–bound framework. Usually within

the VRP context, the sub–problem reduces to finding a shortest paths with

or without additional side constraints depending on the problem structure.

Polynomial and pseudo–polynomial algorithms are used to solve these shortest

paths. Balinski and Quandt (1964), Rao and Zionts (1968), Foster and Ryan

(1976), and Orloff (1976) have all studied set partitioning approaches to solve

VRPs.

Recently, set partitioning approaches have be studied by Letchford et al.

(2002), Lysgaard et al. (2004), and Baldacci et al. (2008). Some of these new

techniques solve the k–degree center tree (Christofides et al., 1981a) as a sub–

29

problem. Letchford et al. (2002) and Lysgaard et al. (2004) also suggest various

valid inequalities that can be added to the master problem, whose relaxation

is solved and then embedded within a branch–and –bound or branch–and–cut

framework.

Dynamic Programming Approaches

Dynamic Programming formulations and recursions to solve CVRPs

were suggested by Eilon et al. (2007) and Christofides et al. (1981b). The

main idea of these dynamic programming formulations is that they find mini-

mum cost routes for a single vehicle over a subset of routes. All the possible

subsets are evaluated and the function is minimized over these subsets. Since

all subsets are evaluated, the number of states of the dynamic program are ex-

ponential in nature. Christofides et al. (1981b) suggest some state relaxation

procedures to reduce the total number of states over which the DP recursion

is examined.

2.1.2 Heuristic Methods

Many heuristic methods exist to solve CVRPs. The classical and most

popular ones will be discussed here. Additionally, the state of the art in VRP

solves CVRPs using various metaheuristics. This dissertation does not focus

on metaheuristic approaches, and hence, they are not discussed.

30

Clarke and Wright Savings Algorithm

As the name suggests, this algorithm was developed by Clarke and

Wright (1964a), and is one of the most commonly used CVRP algorithms.

Laporte (1992) report that this algorithm provides solutions of reasonably

good quality. It is a route–first cluster–second type heuristic. First, a route

is constructed to every node in the network. Merging of these routes is then

considered if there is a savings in doing so. While merging routes, capacity

and duration constraints are considered, and only feasible merges are exe-

cuted. The algorithm terminates when no more merges are possible. The

details of this algorithm, implemented within the context of TVRPs is pre-

sented in the next section. Many researchers (for example, Laporte and Semet

(2002), Golden et al. (1977)) have tested, and suggested enhancements and

improvements to the original heuristic.

Cluster–First Route–Second

This heuristic works conversely to the heuristic by Clarke and Wright

(1964a). First, a cluster of nodes that every vehicle route is determined, next

a TSP is solved for each of these clusters to determine the exact vehicle route.

Many approaches have been used to cluster the vehicles – with bin–packing

being one commonly used technique. Fisher and Jaikumar (1981a) suggest an

approach based on solving the generalized assignment algorithm to determine

the vehicle clusters.

31

Sweep Heuristic

A very simple sweep heuristic was suggested by Wren and Holliday

(1972). The nodes of the network are represented as polar co–ordinates. At

each iteration a vehicle is chosen, then a sweep is initiated to find and serve

an unrouted node at the least angle with respect to the depot. The sweep

continues till capacity constraints are not violated. After the vehicle clusters

are determined in this manner, routes are constructed by solving a TSP for

each vehicle route.

In addition to these many other heuristics exist for solving VRPs. Some

heuristics optimize one route at a time, others consider all routes together.

Some edge swapping heuristics are also described in Laporte (2009). Addi-

tionally, set partitioning heuristics that develop feasible routes called ‘petals’

have also been studied by Laporte (1992).

2.1.3 VRPs with Backhauls

In VRPs with Backhauls (VRPB), the customer nodes are divided into

two subsets – L, linehaul nodes and B, backhaul nodes. The capacitated

version of the problem aims to find cost minimizing vehicle routes such that:

(i) each vehicle routes begins and ends at the depot

(ii) each customer node is visited only once

(iii) sum of linehaul nodes serviced by a vehicle does not exceed capacity, and

similarly for backhaul nodes

32

(iv) linehaul nodes are visited before backhaul nodes

(v) each route should service at least one linehaul node

Exact and heuristic methods for this problem have been proposed by Mingozzi

et al. (1999), Goetschalckx and Jacobs-Blecha (1993), Anily (1996), and Toth

and Vigo (1997).

Toth and Vigo (1997) provided an integer program to solve this prob-

lem. They divide the set of edges (arcs) into three subsets – arcs arcs between

linehaul nodes, arcs between backhaul nodes, and arcs between linehaul and

backhaul nodes. A backhaul node can never be served before a linehaul node,

so these arcs are not considered while solving the problem. In their formu-

lation, they propose capacity cut constraints (CCCs) that impose subtour

elimination and capacity restrictions. These CCCs are then relaxed and the

resulting transportation or assignment problem is solved to obtain a lower

bound on the problem. The cuts can also be dualized and the resulting la-

grangean lower bound can be embedded into a branch–and–bound framework

to obtain an optimal solution. Toth and Vigo (2002) report that the lower

bounds obtained from the assignment problem are of inferior quality and can

be improved by combining them with the lagrangean lower bounds.

Mingozzi et al. (1999) provided a set partition formulation to solve the

VRPB. They define linehaul and backhaul paths that don’t exceed capacity,

and formulate an IP using these paths. They propose to solve the problem

33

using solvers, but by reducing the number of variables by solving master and

sub problems to determine the variables that need to be considered.

The savings algorithm by Clarke and Wright (1964a) was modified by

Deif and Bodin (1984a) for solving heuristically solving VRPBs. Goetschal-

ckx and Jacobs-Blecha (1993) proposed a heuristic that clustered linehaul and

backhaul customers separately, and then merged these clusters together to

form a single vehicle route. Goetschalckx and Jacobs-Blecha (1993) also pro-

posed a cluster–first route–second heuristic similar to that of Fisher and Jaiku-

mar (1981a). Finally, a cluster–first route–second type heuristic was presented

by Toth and Vigo (1996). Their heuristic included some route re–optimization

procedures that improve the heuristic solution quality.

2.1.4 VRPs with Time Windows

VRPs with Time Windows (VRPTW) are a class of VRPs that have

been studied extensively. Many exact and heuristic techniques for solving

this problem exist in the literature. Here, exact solution methods that use

lagrangean relaxation and column generation procedures and heuristics are

discussed. The problem involves routing a set of vehicles to service demand at

customer locations such that the vehicles adhere to the pre–specified pickup or

delivery time windows imposed by the customer. In other words, a vehicle can

serve a customer node only within the time window that has been specified.

The arc costs denote travel time and total travel time over all vehicles must

be minimized. Customers may impose hard or soft time windows. Soft time

34

windows can be violated at a penalty cost. In the case of hard time windows,

if a vehicle arrives at a node before the time window, then the vehicle is forced

to wait till the service time window. Additionally, a fixed service time can be

associated with each node.

The integer program for the VRPTW (Toth and Vigo, 2002) is formu-

lated as follows. The graph is modified to include two copies of the depot

node. One at the start of the route, and one at the end. Also, infeasible

arcs are excluded from the graph. Infeasibility can arise when the sum of the

demands of two nodes exceeds vehicle capacity, or when the time windows are

such that traveling on that arc will result in time window violations. Apart

from the usual capacity and service constraints, time window and service time

constraints are also added to the formulation. The sub–tours are avoided im-

plicitly by requiring vehicles to travel from one depot copy to the other, and

by enforcing that a vehicle visit a particular node only once.

Heuristics for VRPTWs mainly consist of two steps – route construc-

tion and route improvement. An overview of these algorithms can be found in

Braysy and Gendreau (2005) and Tan et al. (2001). Route construction con-

sists of building a feasible route by adding one vehicle at a time to the vehicle

route. These operations are performed sequentially or in parallel. Maximum

savings and other time window related constraints are considered in such in-

sertion heuristics. In the route improvement step, the incumbent solution is

improved by performing local searches using swapping heuristics.

Exact algorithms based on state space relaxation techniques using dy-

35

namic programming recursions was developed by Christofides et al. (1981b).

Lagrangean relaxation techniques for solving VRPTWs was suggested by Fisher

et al. (1997). The lower bound obtained by the lagrangean problem was then

embedded in a branch–and–bound algorithm. Fisher et al. (1997) also de-

veloped a relaxation based on the minimum k–trees with a time window side

constraint for the VRPTW. Fisher and Jaikumar (1981a) relaxed the time win-

dow related constraints and solved a resulting generalized assignment problem

to obtain lower bounds.

Desrochers et al. (1992) and Kallehauge et al. (2005) developed column

generation techniques based on the set partitioning formulation for solving

VRPTWs. The decomposition results in a master and sub–problem, with the

sub–problem resulting in a constrained shortest path problem with time win-

dows. Embedding this within a branch–and–bound framework results in inte-

ger solutions. Other algorithms and a unified framework for time constrained

problems have been suggested in Desaulniers et al. (1994).

2.1.5 VRPs with Heterogeneous Fleets

The Heterogeneous VRP (HVRP) can be solved to optimality by triv-

ially modifying the network flow–based integer formulation for the capacitated

VRP on general networks first presented by Laporte et al. (1985) and Fisher

and Jaikumar (1981b). Fisher and Jaikumar (1981b) also provided a cluster–

first route–second heuristic based on the GAP and TSP for solving capacitated

VRPs on general networks. With some modifications, their algorithm can be

36

applied to the heteregeneous VRP. An exact solution method based on solving

the LP–relaxation using a column generation method was proposed by Choi

and Tcha (2007). Heuristics for HVRPs based on existing VRP techniques

have been studied by Golden et al. (1984); Salhi and Rand (1993); Taillard

(1999); Desrochers and Verhoog (1991); Renaud and Boctor (2002).

2.2 Literature Review – TVRP

The Vehicle Routing Problem on Trees was introduced by Labbé et al.

(1991). It is a special case of the VRP when the network is constrained to

a tree. The capacitated TVRP (TCVRP) and all its variants were shown

to be NP–hard by Labbé et al. (1991) and Hamaguchi and Katoh (1998)

by transformation of the bin–packing problem (shown to be NP–complete by

Garey and Johnson (1979)) to a special case of the TVRP.

2.2.1 Lower Bounds

As the TCVRP is closely related to the bin–packing problem, most of

the lower bounds presented in the literature use this relation to find lower

bounds. The bin–packing problem is defined as follows. Given a set of p items

with weights w1, w2, . . . , wp; and bins of capacity Q – pack the p items into

bins such that the total number of bins are minimized. A simple lower bound

on the number of bins required to pack all p items is given by:⌈∑p
i=1wi
Q

⌉
(2.8)

37

Now, consider a sub–tree Si rooted at node i, the minimum number of vehicles

required to serve the nodes, say, bin(Vi) is given by:

bin(Vi) =

⌈∑
j∈Si

dj

Cap

⌉
(2.9)

Proposition 2.1. A lower bound, z, on the optimal objective value, z∗, to the

TCVRP is given by:

z = 2
∑
i∈N

bin(Vi)c{Pi,i} (2.10)

Proof. As described above, the minimum number of vehicles requires to serve

Si is bin(Vi). Therefore, at least bin(Vi) vehicles will enter the sub–tree Si to

serve its nodes. This implies that at least bin(Vi) vehicles will traverse the

edge {Pi, i} once on their way from the depot to the sub–tree, and once on

their way back (after service) from the sub–tree to the depot.

These lower bound results are used in Labbé et al. (1991), Basnet et al.

(1999), Mbaraga et al. (1999), and Hamaguchi and Katoh (1998). The lower

bounds on bin–packing problems can be refined by the techniques suggested

by Martello and Toth (1990). They suggest improved lower bounds by con-

sidering the fact that all items with weights between Q
2

and Q must belong

to separate bins. They reported a worst case performance of 2/3 on their

bound. These lower bound refinements were used by Busch (1990). Labbé

et al. (1991) improved the lower bound by observing that no more than two

items with weights between Q
3

and Q
2

can fit in the same bin. Fekete and

Schepers (2001) used dual feasible functions to obtain lower bounds with a

38

worst case performance guarantee of 3/4. They showed that the bound by

Martello and Toth (1990) is a special case of their procedure.

2.2.2 Heuristics

This section details the various heuristics that have been employed by

researchers to solve various variants of the TVRP. All these heuristics work

towards obtaining a feasible upper bound on the optimal solution value to the

problem.

Labbé et al. (1991) proposed a linear time (in the number of nodes)

heuristic for the TCVRP. Their procedure is as follows. At each step a leaf

node is chosen. If the demand at the leaf node and the parent node combined

is less than the vehicle capacity, the leaf node is merged with the parent node,

and both the nodes are assigned to the same vehicle. The leaf node is deleted

from the tree. If the sum of the demands of the leaf node and its parent

node exceed the vehicle capacity, then two cases exist. Either the leaf node

demand is greater than the parent node demand, or vice versa. In the former

case, the leaf node is assigned to a vehicle and is deleted from the tree. In

the latter case, the parent and leaf node positions are swapped, a vehicle is

assigned to the new leaf node and the leaf node is deleted. A vector of vehicle

assignments is maintained to record the subtrees in each vehicle. A distance

variable keeps a record of the total distance traveled by all the vehicles at each

stage. This distance variable, on heuristic termination, returns the heuristic

solution value (upper bound). The procedure terminates because a leaf node

39

is deleted at every step from the tree. It’s complexity is O(n) because every

node is examined only once.

Rennie (1995) modified this linear time algorithm as follows. Instead

of stopping the merging of nodes when capacity is violated, Rennie (1995)

suggested that the corresponding vehicle bin be moved up the tree till a node

closer to the root is encountered which can be feasibly merged.

Basnet et al. (1999) developed two heuristics for the TCVRP. The first

heuristic, H1, is based on the savings heuristic developed by Clarke and Wright

(1964a). It starts by first constructing as many vehicle routes as there are

nodes, and then combines these routes by calculating the maximum savings

that can be obtained by doing so. This method proceeds from an expensive

feasible solution to a cheaper feasible solution. The second heuristic, H2,

first assigns all nodes to a single vehicle and then subdivides these nodes into

different vehicles such that capacity constraints are satisfied. H2 moves from

a cheaper infeasible solution to a more expensive feasible solution.

Consider three nodes i, j, and k. The root node is denoted by 1.

Let vehicles V ehi and V ehj serve nodes i and j respectively. Let k be the

last common node on vehicle routes V ehi and V ehj. Finally, let sij be the

shortest distance between nodes i and j. Then, a maximum savings of 2s1k

can be obtained by merging vehicle routes V ehi and V ehj, such that capacity

constraints are not violated. H1 proceeds as follows. First a every node is

assigned its own vehicle. An associated node of a vehicle is the last common

node on the vehicle which has been considered as a merging point for that

40

vehicle route. So, in the first iteration, the associated node of each vehicle is the

node it has been assigned to. A list of vehicle routes, in non–increasing order

of their associated node’s distance from the depot is created. Two vehicles

with the same associated node are considered for merging such that the total

capacity constraints are satisfied. If a vehicle route cannot be merged with

any other route, its associated node is changed to the next node on the vehicle

route that is farthest from the depot. At every iteration vehicle routes are

merged and associated nodes are modified. At the end of every iteration, the

table is resorted. The algorithm ends when every vehicle’s associated node is

the root node.

In heuristic H2, a vehicle route with all the nodes is first created. The

route is now split into two routes at the node that is closest to the depot.

This node is called the branching node. The branching node is not part of

either route. At every iteration, the largest unassigned route is split. Then,

all the routes are inspected for capacity violations. If a vehicle route satisfies

capacity constraints, it is kept aside. The other routes move to the next

iteration. After all nodes are assigned to permissible routes, the branching

nodes are considered in non–increasing order of their distance from the root

node. They are assigned to existing routes that pass through them, subject to

capacity restrictions. If a branching node cannot be assigned to any route, a

new route is created.

Basnet et al. (1999) compared their algorithms H1 and H2 with the

algorithms of Rennie (1995) and Labbé et al. (1991). Although they did not

41

provide any worst case bounds on their algorithm, they observed that H1

performed better than the other three algorithms. However, the computation

times reported for H1 were significantly higher than the other algorithms. H1

considers all routes together, and attempts to merge them based on the total

savings achieved. This explains the better solution quality.

Hamaguchi and Katoh (1998) developed a 1.5–approximation algorithm

for the TCVRP. The algorithm assumes that the demand at each node, di < 1.

A node, i, isD−feasible if d(Si) =
∑

j∈Si
dj ≥ 1, and isD−minimal if i isD−

feasible but none of other nodes in Si are. Moreover, it is assumed that each

sub–tree can be further divided into sub–trees that satisfy
∑k−1

i=1 d(Si) < 1 and∑k
i=1 d(Si) ≥ 1. Furthermore, it is shown that k = 2. When a D −minimal

node is encountered , one of two strategies to serve the vehicles is used. The

first strategy utilizes two vehicles to serve two sub–trees of the D −minimal

sub–tree and computes the cost for doing so. The second strategy further

divides one sub–tree such that the total demand of one part of the divided

sub–tree and the undivided one exactly sums to 1. It then uses two vehicles to

serve these two sub–trees. Relations are given to decide which strategy to use.

Given the way the sub–trees are defined and divided, the customer demands

can be split in this algorithm (TCVRPSD). The average ratio (compared to

the lower bound) for 60 instances was 1.013, and the worst–case ratio was

1.072.

A 1.35078-approximation algorithm for the TCVRP was developed by

Asano et al. (2001). The same concepts of D−feasibility and D−minimality

42

are used in this algorithm. The first step of the algorithm involves performing

a set of seven reforming operations to reshape the tree. These reformations

are done such that the lower bound of the problem remains the same. Some

reforming operations include contracting sub–trees with total demand < 1

into a single node, removing demand from all internal nodes, ensuring all

non–grandparent nodes have only one child (leaf) node etc. D − feasibility,

for a node i, is redefined here as d(Si) =
∑

j∈Si
dj ≥ 2. Further, the nodes

that are D − minimal are called q − nodes. Now, the strategies described

by Hamaguchi and Katoh (1998) are used and appropriate serving strategies

are determined. When there are no more q − nodes a final strategy is applied

whose worst–case ration does not exceed (
√

41− 1)/4 = 1.35078.

Katoh and Yano (2006) presented a 2–approximation algorithm for the

TCVRP with pickup and delivery. They assumed splittable demand, and

developed an algorithm which finds a set of feasible vehicle tours such that at

any time during the tour, the sum of the goods to be delivered and picked up

does not exceed the vehicle capacity. That is, they do not consider that all

delivery takes place before pick up. Their algorithm consists of two main steps.

In the first step, they perform a set of seven reforming operations similar to

those performed by Asano et al. (2001) . In the second step, an appropriate

subgraph and serving strategy is chosen. Four subgraph types are defined and

for each case a different serving strategy is developed.

Mbaraga et al. (1999) developed a heuristic for the distance constrained

TCVRP (CDTVRP). It is based on the heuristic developed by Labbé et al.

43

(1991). The heuristic is a simple modification, and at every step, in addi-

tion to checking for capacity constraints, the heuristic also checks for distance

constraint violations. It is also a linear time heuristic.

2.2.3 Exact Solution Methods

Exact solution methods for TVRPs include branch–and–bound meth-

ods, column generation schemes, and Integer Programming formulations. Cur-

rently, exact methods exist only for TCVRPs, DTVRPs and CDTVRPs. De-

veloping exact solution methods for other variants of TCVRPs is an open

problem.

Chandran and Raghavan (2008) developed two integer programs for

solving TCVRPs. The first one builds off the fact that, once the nodes that

are part of a vehicle route are determined, nodes will be served in the order

of their DFS index, a similar IP was also developed by Busch (1990). The

second formulation uses the fact that there is only one path between a node

and any other node in the depot, and that every node has a unique parent

node. Some valid inequalities, to further expedite the convergence of the IP,

were also proposed.

Labbé et al. (1991) developed a branch–and–bound enumeration scheme

for solving the TCVRP. The scheme proceeds in a breadth first order. If the

upper bound solution value z̄ equals the lower bound value z, then scheme ter-

minates as it has found the optimal solution. Otherwise, a new vehicle route

is created for every node with capacity between Cap
2

and Cap. These nodes

44

are defined to be I1. Now, at an arbitrary iteration, r, an unassigned node,

k, farthest from the depot is chosen. Branches are created from r for every

vehicle route and a new route with only k in it, provided capacity constraints

are satisfied. A lower bound is computed for every potential node p. If zp ≥ z̄,

then p is not created. Otherwise, Ip = Ir ∪ {k}. Thus, this procedure implic-

itly considers every node assignment to every vehicle, thereby exhausting all

possibilities.

Mbaraga et al. (1999) used a similar branch–and–bound scheme for the

DTVRP and the CDTVRP. The only modification is that, for the DTVRP,

at every iteration, a branch is created only if the distance constraints are

not violated. These are trivially checked as the total distance traveled by each

vehicle is twice the length of tree with only the nodes in that vehicle considered.

Similarly, for the CDTVRP, capacity and distance constraint violations are

checked before branching.

Mbaraga et al. (1999) also define a set covering–based formulation for

the CDTVRP, which is solved using column generation. The master problem of

the column generation scheme solves the CDTVRP for a subset of variables,

these variables are then parsed to the subproblem. The subproblem of the

CDTVRP is a capacitated and distance constrained shortest path problem,

whose arc costs are defined such that the shortest path will generate a column

with the most negative reduced cost, which will in turn be parsed to the master

problem. The tree arcs and costs are modified to form an acyclic graph for

every vehicle. The constrained shortest path (SP) is then solved on these

45

acyclic graphs using the algorithm proposed by Desrosiers et al. (1995). The

SP algorithm has a pseudo–polynomial running time.

For smaller demands, bin–packing bounds are sharper and have smaller

search trees, and thus, branch–and–bound is more efficient than column gen-

eration. However, the column generation scheme is much more robust in han-

dling heterogeneous vehicles.

2.2.4 Vehicle Scheduling Problem on Trees

In TSP with time windows (TSPTW), the total tour length has to be

minimized subject to time window constraints. A version of the TSPTW,

where each node has a handling time associated with it and the total waiting

time is minimized, is called the Traveling Repairman Problem (TRP) (Tsit-

siklis, 1992). TSPTW is also referred to as the Vehicle Scheduling Problem

(VSP) when the objective minimizes the total completion time (Karuno et al.,

1997). Many papers in the literature deal with TSPTWs, VSPs, and TRPs on

trees, paths and lines. Usually, the left hand side time windows, ai, are called

release time, and the service times, si, are called handling times. TSPTWs,

TRPs, and VSPs on trees are NP–hard (Tsitsiklis, 1992). However, for some

special line graphs, polynomial algorithms do exist (Psaraftis et al., 1990).

Psaraftis et al. (1990) examined a straight line version of the VSP, where

the objective was to minimize the maximum lateness. They considered the case

where only release times were specified. For this case, a simple polynomial

algorithm was presented. If 1 is the first node, and n is the last node on the

46

line, the vehicle simply travels to node n, waits there for a time that is equal to

the maximum period it might have to wait at the node with the latest release

time, and then begins service from node n to 1 without waiting at any node.

The computational complexity of this algorithm is O(n). In the path version

of the problem it is not required to return back to node 1. Additionally, they

defined properties of special line networks called shorelines (as these structures

are usually found in ports where cargoes from ships have to be transported),

and developed VSP algorithms for those shorelines. Yu and Liu (2010) solve

the VSP on a line, but with both release and handling times. They provide

a 3/2 approximation for the tour case, and a 5/3 approximation for the path

case. When time windows are specified, it is easier to solve tours than paths,

this is because in tours, there is more flexibility in deciding waiting strategies.

Karuno et al. (1997) examined the VSP on trees for nodes having both

release and handling times. This problem is NP-hard. They provide a polyno-

mial exact solution for this VSP when there is a depth first routing constraint.

Also, using this depth first routing strategy, they developed a 2–approximate

algorithm for the non–depth first routing VSP on a tree. Bhattacharya et al.

(2008) provide a 5/3 approximation for the same problem. Finally, Karuno

and Nagamochi (2003, 2001) solved the VSP with release and handling times

on trees, but with multiple vehicles.

47

Chapter 3

TVRP with Backhaul Customers

3.1 Problem Definition

The Capacitated TVRP with Backhauls (TCVRPB) is concerned with

finding optimal cost minimizing vehicle routes that serve linehaul and backhaul

customers that are located on a tree network. The linehaul customers have a

higher priority of service and are serviced before the backhaul customers.

The problem is defined as follows. Given a tree network T = (ND, A)

with customer nodes i ∈ N and arcs (i, j) ∈ A between the nodes with non–

negative arc costs cij; a set of linehaul nodes iL ∈ L and backhaul nodes iB ∈ B

such that |L| + |B| = |N | and L ∩ B = ∅; demand at each node di; and a set

of vehicles k ∈ K with capacity Cap – find a collection of routes starting and

ending at the depot, such that

(i) the customer’s demand/supply at a node is satisfied by exactly one vehicle,

(ii) vehicle capacity restrictions are adhered to,

(iii) linehaul nodes are serviced before backhaul nodes,

The TCVRPB is discussed in the following two chapters. This chapter

describes exact and heuristic methods to solve this problem, while their imple-

48

mentation is discussed in Chapter 4. In Section 3.2, some characteristics and

properties of TVRPBs at optimality are noted. A procedure to calculate the

lower bound is also described in this section. Section 3.3 contains an Integer

Programming method to solve TCVRPBs to optimality. This IP is formulated

using the properties and observations discussed in Section 3.2. An improved

IP formulation, requiring fewer number of constraints and variables, based on

a network reformulation procedure is the focus of Section 3.4. A cluster first–

route second heuristic procedure is described in Section 3.6. The heuristic first

decides the nodes that have to be served by each vehicle, then devises an opti-

mal serving strategy for the vehicle. Optimal serving strategy involves solving

the Traveling Salesman Problem on Trees with Backhauls, the algorithm for

which is delineated in Section 3.5. The second IP formulation is faster than

the first and is used in the computational analysis that is presented in Chap-

ter 4, which also contains the details of the heuristic performance. Based on

the numerical results, a few further improvements based on a new heuristic

are implemented in Section 4.3. The Section 4.4 concludes the discussion with

a summary of the main findings and scope for future work.

3.2 Preliminaries

3.2.1 Observations

Observation 3.1. In a TCVRPB minimizing cost does not necessarily mini-

mize the number of vehicles that are used in the optimal solution.

Consider the example in Figure 3.1. The tree is rooted at the depot

49

Figure 3.1: Minimizing cost does not minimize vehicles

Figure 3.2: Difference between TVRPs and TVRPBs

and the capacity of each vehicle is 10. Assume that all edge costs are 1.

The number next to the node is the demand/supply at that node. If only

two vehicles are given, in the optimal solution vehicle 1, V1, will serve nodes

1L, 3B, and 5L; and V2 will serve nodes 2L and 4L. The optimal cost will be

14. However, if 3 vehicles are given, V1 will serve 1L; V2 will serve 2L; and V3

will serve 3B, 4L and 5L. The optimal cost will be 12.

This is true for the uncapacitated case too. In Figure 3.2, when only

one vehicle is available, its optimal route will be D−1L−3L−4B−2B−D with

a cost of 10 (assuming unit arc costs). However, if two vehicles are available,

each branch will be served separately, resulting in a cost of 8.

It is also interesting to note that the uncapacitated TVRPB is not

50

as trivial to solve as the TVRP. In the TVRP, when capacities don’t exist, a

single vehicle serving the nodes in the DFS order will yield an optimal solution.

However, this is not the case with the TVRPB. Moreover, unlike TVRPs, a

single vehicle can traverse an arc more than two times. Consider the simple

tree graph shown in Figure 3.2. Assume that a single vehicle is used and all

arc costs are 1. Here, in order to minimize distance, the vehicle will serve the

nodes in the order D− 1L − 3L − 4B − 2B −D, yielding a cost of 10. Observe

that arc (D, 1L) is traversed four times in the optimal solution. Also, observe

that a DFS visitation of linehaul and then backhaul nodes will not yield a

feasible solution.

Observation 3.2. For a node i, assume that j ∈ c(i). If arc (j, i)[(i, j)]

is traversed in the backhaul[linehaul] tour of vehicle k, then arc (i, Pi)[(Pi, i)]

must be traversed in the backhaul[linehaul] tour.

If a vehicle traverses directed arc (j, i) in the backhaul tour, then every

node it visits after that must be on the backhaul tour. Consequently, if it

decides to go up the tree, it should do so on the backhaul tour. One can make

the same argument for the linehaul case.

Observation 3.3. A vehicle k will enter a subtree Si at most twice, once on

the lineaul tour and once on the backhaul tour. Moreover, the edge {Pi, i} will

be traversed at most four times by that vehicle k.

We deal with the offline case where all demands/supply are known

beforehand. Once a vehicle k enters a sub–tree Si on a linehaul tour, it will

51

serve all the nodes it has chosen to serve in Si. This is because it will never be

cheaper for that vehicle to enter the sub–tree more than once on the linehaul

tour. The same argument can be made about the backhaul tour. Therefore,

the vehicle will traverse the edge {Pi, i} at most four times.

3.2.2 Properties

Lemma 3.1. If a vehicle k serves a linehaul node iL, it will do so on its way

from the depot, and never on its way back to the depot. In other words, if a

vehicle k decides to serve a linehaul node iL, it will do so immediately after

visiting node PiL, and never after visiting any child node c(iL).

Proof. Here, we assume that the demand at the nodes are known a priori.

Therefore, the decision of which vehicle serves which nodes is made offline,

and not enroute. It is known that a vehicle enters a sub–tree Si only if it is

going to serve nodes in that sub–tree. If the vehicle decides to serve a linehaul

node i and some other linehaul nodes in Si, then there is no reason for the

vehicle to first serve nodes ‘below’ i before serving i. Thus, the property always

holds.

For example, in Figure 3.3, a vehicle k decides to serve the nodes in

sub–tree Si. The linehaul nodes are i and j. It will always be cheaper to serve

node i before serving node j, because then the vehicle has to traverse every

arc only twice. Whereas, in the converse case, the vehicle will have to traverse

edge {i, j} four times.

52

Figure 3.3: Figure describing Lemma 3.1

Lemma 3.2. Consider a vehicle k that serves a subset of nodes Rk, such that

Rk ⊆ N . Let the covering sub–tree of Rk be denoted by CSRk
. Let the set of

nodes in the unique Path from the Depot to a node i ∈ N be denoted by PfDi.

Also, let the first backhaul node served by vehicle k be i1B . Then, the vehicle k

enters (from the depot) every node in PfDi1B
on the linehaul route and exits

(towards the depot) every node in PfDi1B
on the backhaul route.

Proof. In the sub–tree Si1B , i1B will be the only backhaul node, because if

there was a backhaul node below this node, then that node will be the node

that is served first in the backhaul route of the vehicle. The vehicle k enters

the sub–tree Si1B on the linehaul route, but exits the sub–tree on the backhaul

route. Once the vehicle exits this sub–tree, it never enters is again. Therefore,

the edge {Pi1B , i1B} will be traversed exactly twice – once on the linehaul route

and once on the backhaul route. Consequently, i1B is visited exactly twice.

Now, consider the sub–tree formed by the parent on the node i1B , SPi1B
.

Vehicle k enters this sub–tree first on the linehaul tour. As the objective seeks

53

to minimize the cost, before entering sub–tree Si1B , the vehicle will service

all other linehaul nodes (in increasing order of index). After entering (on the

linehaul route) and exiting (on the backhaul route) sub–tree Si1B , the vehicle

will service all the remaining backhaul nodes in increasing order of index before

exiting the sub–tree SPi1B
on the backhaul route. The edge between Pi1B and

its parent is traversed exactly twice. The lemma is proved by considering the

sub–tree of the parent of the last sub–tree served, and by noting that a every

sub–tree of PfDi1B
is visited exactly once.

Two corollaries follow from Lemma 3.1 and 3.2. They are stated as

follows.

Corollary 3.1. For a vehicle k, the sub–tree Si of a node i /∈ PfDi1B
is

visited only once if it contains only linehaul or only backhaul nodes, and is

visited twice otherwise.

Corollary 3.2. For a vehicle k, if i|L|L is the last linehaul node served then the

sub–tree Si|L|L contains no linehaul nodes and, given that the nodes are indexed

in DFS order, the first backhaul node served is the highest indexed node in this

sub–tree, if this sub–tree is not empty. Secondly, the sub–tree formed by the

first serviced backhaul node contains no other backhaul nodes.

54

3.2.3 Lower Bound

Consider a sub–tree Si rooted at node i, the minimum number of vehi-

cles required to serve the linehaul nodes, say, V L
i is given by:

V L
i =

⌈∑
j∈{L∩Si} dj

Cap

⌉

Similarly, the minimum number of vehicles required to serve the backhaul

nodes is:

V B
i =

⌈∑
j∈{B∩Si} dj

Cap

⌉
Therefore, the minimum number of vehicles required to serve sub–tree Si is

given by:

Vi = max
{
V L
i , V

B
i

}
Proposition 3.1. A lower bound, z, on the optimal objective value, z∗, to the

TCVRPB is given by:

z = 2
∑
i∈N

Vic{Pi,i} (3.1)

Proof. As described above, the minimum number of vehicles requires to serve

Si is Vi. Therefore, at least Vi vehicles will enter the sub–tree Si to serve its

nodes. This implies that at least Vi vehicles will traverse the edge {Pi, i}.

These vehicles will traverse the arc {Pi, i} once on their way from the depot

to the sub–tree, and once on their way back (after service) from the sub–tree

to the depot. The result follows.

55

3.3 Integer Programming Formulation

In the IP formulation, there are two major categories of constraints that

need to be considered. (A) Service constraints ensure that all the demand and

supplies are serviced without violating the vehicle capacity constraints. (B)

Movement constraints which have to enforce movement–related constraints

like, (a) all vehicles should start at the depot, (b) linehaul nodes should be

serviced before backhaul nodes, (c) the vehicle moves sequentially along the

tree and does not make arbitrary jumps to other nodes etc. This formulation

is called BIP1.

Formulation: TCVRPB(1)

xlijk =

{
1 if vehicle k uses arc (i, j) during the linehaul tour
0 otherwise

xbijk =

{
1 if vehicle k uses arc (i, j) during the during backhaul tour
0 otherwise

ylik =

{
1 if linehaul node i is served by vehicle k
0 otherwise

ybik =

{
1 if backhaul node i is served by vehicle k
0 otherwise

56

Minimize: z∗BIP1
=
∑
i

∑
j

∑
k

cij(x
l
ijk + xbijk) (3.2)

Subject to:∑
i∈L

ylikdi ≤ Cap ∀k ∈ K (3.3)∑
i∈B

ybikdi ≤ Cap ∀k ∈ K (3.4)∑
k∈K

ylik = 1 ∀i ∈ L
∑
k∈K

ybik = 1 ∀i ∈ B (3.5)

ylik ≤
∑
j∈Γ(i)

xlijk ∀i ∈ L ∀k ∈ K (3.6)

ybik ≤
∑
j∈Γ(i)

xbijk ∀i ∈ B ∀k ∈ K (3.7)

ylik ≤ xlPiik
∀k ∈ K ∀i ∈ L (3.8)

xlijk + xbijk = xljik + xbjik ∀k ∈ K ∀{i, j} ∈ E (3.9)

xlPiik
+ xbiPik

≥ xlijk + xbijk ∀i ∈ N ∀k ∈ K j ∈ c(i) (3.10)

xlPiik
≥ xlijk ∀i ∈ N ∀k ∈ K j ∈ c(i) (3.11)

xbiPik
≥ xbjik ∀i ∈ N ∀k ∈ K j ∈ c(i) (3.12)

xliPik
+ xbiPik

≥ xljik ∀i ∈ N ∀k ∈ K j ∈ c(i) (3.13)

xlPiik
+ xbPiik

≥ xbijk ∀i ∈ N ∀k ∈ K j ∈ c(i) (3.14)

xlijk ∈ {0, 1} xbijk ∈ {0, 1} ∀k ∈ K ∀{i, j} ∈ E (3.15)

ylik ∈ {0, 1} ybik ∈ {0, 1} ∀k ∈ K ∀i ∈ N (3.16)

The objective function minimizes the total cost of operating the vehicles. Con-

straints 3.3– 3.5 are service constraints which ensure that the total demand

serviced by a vehicle does not exceed its capacity in the linehaul or backhaul

tour, and that not more than one vehicle services a node.

57

Constraints from 3.6 to 3.14 are movement constraints. Constraint 3.6

enforces that if a vehicle k serves the linehaul node i, then at least one of the

arcs emanating from i must be a linehaul arc. Constraint 3.7 enforces this for

backhaul nodes. 3.6 and 3.7 are important for vehicle propagation. That is,

once a vehicle services a node, it has to move on from that node to the next

one. Constraint 3.8 mathematically imposes the first lemma. If a linehaul

node i is served by vehicle k, then it should do so from the parent node of i;

that is, a linehaul node is served by a vehicle on its way from the depot.

Constraint 3.9 which ensures that an edge is traversed at most four

times, and also that if an arc (i, j) is on the linehaul tour only, then the arc

(j, i) will either be on the backhaul tour, or the linehaul tour, but not both.

Also, if an arc (i, j) is on the backhaul and linehaul tours, then the arc (j, i)

will be on the backhaul and linehaul tours.

Constraint 3.10 enforces that for a node i, assume that j ∈ c(i), if

directed arc (i, j) is traversed in the linehaul and backhaul tour of vehicle k,

then directed arc (Pi, i) will be traversed in the linehaul tour, and directed arc

(i, Pi) will be traversed in the backhaul tour of vehicle k.

Here, it is imposed that a linehaul node is always serviced from above,

and also that once a node has been served, the vehicle should either visit its

parent or one of its child nodes. Constraints 3.11– 3.14 do not allow a backhaul

node to be serviced before all the linehaul nodes have been serviced. Also,

from Lemma 3.1, it can be said that linehaul nodes will always be served first.

Therefore, all movement related constraints are satisfied in the formulation.

58

3.4 An Improved Integer Programming Formulation

In TCVRPBs, once a vehicle begins its backhaul tour, it cannot serve

any linehaul nodes. Secondly, a vehicle cannot serve intermediate backhaul

(linehaul) nodes which are adjacent to the linehaul (backhaul) nodes that

are being served during the linehaul (backhaul) tour. Using these two facts, a

network modification of the tree is proposed in this section. An IP formulation

based on this new network is described.

3.4.1 Network Transformation

Given a tree network, T = (ND, A), the main idea of this transforma-

tion procedure involves constructing two trees – a linehaul tree and a backhaul

tree – and connecting these two trees in a manner that forces a vehicle to first

serve nodes in the linehaul tree before serving the nodes in the backhaul tree.

Before describing the procedure in detail, two concepts are noted and

defined:

(i) Fork Nodes : A fork node is defined to be a node in the tree T = (ND, E)

which has more than two incident edges. More formally, a node i is said

to be a fork node if it has more than one child, that is |c(i)| > 1. If FN

is the set of fork nodes in a tree T, then FN = {i : |c(i)| > 1∀i ∈ N}.

(ii) Short–Circuiting : The term is used loosely here and is just used to give

the concept a name. Consider three nodes i, j, and l in the tree T . Let

Pj = i and c(j) = {l}. Note that l is the only child of j. Then, if a vehicle

59

is interested in serving only nodes i and l, it is possible to construct a

covering sub–tree for that vehicle such that node j is not part of the

sub–tree, and arcs (i, j) and (j, l) are replaced with arc (i, l) with cost

cil . Although j is still a part of the route from i to l, its presence in

the tree is inconsequential as it does not affect the solution or serving

strategy of the vehicle. If the vehicle decides to go from i to l in the

covering sub–tree, then the actual route the vehicle is taking is i− j− l.

Thus, node j has been short–circuited. Note that its only possible to

short–circuit those nodes which have exactly one child. Define SCi for

every node i ∈ N as follows:

SCi =

{
1 if |c(i)| = 1
0 otherwise

SCi defines the short–circuitability of a node i, deeming that a node can

be considered for a short–circuit if its value is 1.

Figure 3.4(a) represents the tree T with one fork node l. Now, the

minimum covering sub–tree, CSR with R = {i,m, n} is represented in Fig-

ure 3.4(b). Node j can be short–circuited as it neither belongs to R, nor does

its presence affect the route of the vehicle. Although l is not a part of R, it

cannot be dismissed here, and neither can l be merged with i as that will not

reflect the true cost of any route chosen by the vehicle. The covering sub–tree

with R = {i,m} is represented in Figure 3.4(c). Both j and l can be short–

circuited here as they need not be explicitly considered in the routing decision

for the vehicle.

60

Figure 3.4: An Example Describing Fork Nodes and Short–Circuiting; In (b),
R = {i,m, n}; In (c), R = {i,m}

Linehaul and Backhaul Tree

Using the concepts defined previously, a linehaul tree, TL = (NL, AL),

and a backhaul tree, TB = (NB, AB), are constructed from the given tree T .

For convenience, assume that each tree has a copy of the depot. Also, NLD
=

NL ∪ depot and NBD
= NB ∪ depot. Again, a covering sub–tree, of the tree T ,

with a subset of nodes R ⊆ N is denoted by CSR. TL and TB are constructed

as follows. The trees CSL = (NCSL
, ACSL

) and CSB = (NCSB
, ACSB

) are

constructed. For CSL, the FN and SCi∀i ∈ NCSL
is calculated. If a node

i’s SCi value is 1, and it is neither a fork node or a linehaul node, it is short

circuited and the corresponding edge costs are modified. The resulting tree

is the linehaul tree, TL. The backhaul tree, TB, is constructed similarly. The

demands of linehaul (backhaul) nodes replicated in the backhaul (linehaul)

tree are set to zero. All other demands are kept the same.

61

Crossover Arcs

Once the linehaul and backhaul trees have been constructed, they need

to be connected such that a vehicle services backhaul nodes after servicing the

linehaul nodes. The arcs which are used to make this connection are denoted

as Crossover Arcs. Note that since linehaul nodes cannot be serviced once

the backhaul route is initiated, the crossover arcs are always directed from the

linehaul tree to the backhaul tree. Consider a linehaul node iL ∈ L. If, in the

original tree T , a node adjacent to this node is a backhaul node, say jB ∈ B,

then a crossover arc is constructed from the node that corresponds to the node

iL in TL to the node that corresponds to the node jB in TB. The cost of this

arc is cost of traversing arc (iL, jB) in T . A node is adjacent to another node

if its either its parent or child. That is, a node j is adjacent to a node i if

j ∈ {Pi ∪ c(i)}. The set of crossover arcs are denoted as ACR.

The network resulting from the transformation is denoted as GB =

(NGB
, AGB

), where NGB
= NL ∪NB ∪ depot and AGB

= AL ∪ AB ∪ ACR.

Algorithm 3.1 formally defines the steps in the network transformation

procedure. Lines 2 and 3 describe the construction of the linehaul and backhaul

tree respectively using the function TreeConstruct(), the details of which are

presented in Lines 11–27. The crossover arcs are then added to this network

according to Lines 3–7. Note here that, for the ease of representation, the

node numbers in TL and TB are the same as that in T , the numbering of nodes

for the computer implementation is detailed later in the section. All nodes in

TL are identified using the subscript L, same for TB. Also, for a node i ∈ NL,

62

Algorithm 3.1 Network Transformation

Input: T = (ND, A) cij∀(i, j) ∈ A di∀i ∈ N
Output: GB = (NGB

, AGB
) cij∀(i, j) ∈ AGB

di∀i ∈ NGB

1: R← L; Call TreeConstruct()
2: R← B; Call TreeConstruct()
3: for ∀(i, j) ∈ A do
4: if i ∈ L j ∈ B then
5: ACR ← ACR ∪ (i, j) : i ∈ NL, j ∈ NB with cost cij
6: end if
7: end for
8: NGB

← NL ∪NB ∪ depot
9: AGB

← AL ∪ AB ∪ ACR
10: GB = (NGB

, AGB
)

11: Function TreeConstruct()

12: Build Covering Sub–tree CSR = (NCSR
, ACSR

)
13: for i = 1→ |NCSR

| do
14: if i /∈ FN then
15: if i /∈ R SCi = 1 then
16: delete i
17: c(Pi)← c(i)
18: Pc(i) ← Pi
19: c{Pi,c(i)} ← c{Pi,i} + c{i,c(i)}
20: end if
21: else
22: if i /∈ R then
23: di ← 0
24: end if
25: end if
26: end for
27: end Function

63

Figure 3.5: An Example Describing the Network Transformation

its immediate ancestor in NL is defined to be its parent Pi and its immediate

descendants in NL are defined to be its children c(i). The same holds for a

node j ∈ NB.

Figure 3.5 is an example of the modification procedure described above.

Figure 3.5 is the original tree T . The modified network GB is shown in Fig-

ure 3.5(b). In T , the linehaul nodes have a subscript L and the backhaul nodes

have a subscript B. The linehaul and backhaul trees are constructed as shown

in Figure 3.5(b). Consider backhaul node 7, this node satisfies the conditions

for short–circuiting and is deleted from the linehaul tree. The arcs (6,7) and

(7,8) are replaced with the arc (6,8) in the linehaul tree. Similarly, node 6 is

deleted from the backhaul tree. On the other hand, node 2 is a fork node, and

64

needs to be replicated in both trees. The node is represented as 2L in TL and

as 2B in TB. Since node 2 is a backhaul node, the demand for node 2L is set

to zero. This is just stated for completeness, as the solution method described

later does not require the demand for the replicated node. Crossover arcs are

constructed from a linehaul node to its adjacent backhaul node. For example,

linehaul nodes 1, 3 and 5 are adjacent to backhaul node 2, hence, crossover

arcs (1L, 2B), (3L, 2B) and (5L, 2B) are constructed. Lastly, in GB the depot

nodes can be combined, they are duplicated here for visual representation.

Only fork nodes whose sub–tree contains both linehaul and backhaul

nodes are duplicated in GB. Let these fork nodes be represented by FND.

Then the total number of nodes in GB, |NGB
| = |L| + |B| + |FND| + 1. The

extra node represents the depot. Thus, when FND = ∅, the number of nodes

in GB and T are equal.

The total number of arcs in the linehaul tree, |AL| = 2× (|L|+ |FND|).

Similarly, |AB| = 2 × (|B| + |FND|). The number of crossover arcs, |ACR|

is equal to the total number of adjacent backhaul nodes to every linehaul

node. Recall that ADJ is the node–node adjacency matrix of the tree T . So,

|ACR| =
∑

i∈L
∑

j∈B∩{Pi∪c(i)}ADJij. Thus, |AGB
| = 2 × (|L| + |FND|) + 2 ×

(|B|+ |FND|) +
∑

i∈L
∑

j∈B∩{Pi∪c(i)}ADJij.

Finally, it is easy to verify that T and GB are equivalent networks.

This can be done by observing that the unique path between any two nodes,

say i and j, in T and GB are the same. For the case where i and j are either

both linehaul or backhaul nodes, this is obviously true. For the case where i

65

is a linehaul node and j is a backhaul node, or vice versa, and are adjacent

to each other, i and j are directly connected by a crossover arc. For the case

where they are not adjacent, it can be verified that there exists only one path

between the two nodes (which belong to different trees) in which nodes are not

repeated. For example, in Figure 3.5, if one wishes to travel from node 3 to

node 9, then on T the path taken would be 3−2−5−9. However, on GB, one

can choose 3L−2B−5B−9B or 3L−2L−5L−9B. But in both cases, the nodes

visited are the same. Note that one will never choose 3L − 4B − 2B − 5B − 9B

as that is not a path and contains the cycle 3− 4− 3 in T .

In order to avoid any confusion due to node–replication, the nodes are

numbered as follows. The nodes in the linehaul tree are DFS ordered with the

depot marked as node 1. That is, NL = {2, . . . , |NL|+1}. Similarly, the nodes

in the backhaul tree are numbered as NB = {|NL| + 2, |NL| + 3, . . . , |NB| +

|NL|+ 1}.

3.4.2 The IP Formulation

Using properties discussed in Section 3.2 and the network transforma-

tion described in the previous sub–section, an IP formulation is developed

here. The IP formulation is a vehicle–indexed formulation and is defined for

the network GB. This formulation is called BIP2. The variables are defined

as follows:

Variables

66

xijk =

{
1 if vehicle k travels on arc (i, j) ∈ AGB

0 otherwise

yik =

{
1 if vehicle k serves node i ∈ NGB

0 otherwise

Note here, that unlike the earlier formulation, the varaibles are not

separately defined for the linehaul and backhaul tour. This reduces the total

number of variables as will be shown later in this section.

The first set of constraints are the service constraints which are similar

to the Constraints 3.3 – 3.5 defined in the previous section. The first two con-

straints state that the total linehaul (backhaul) demand serviced by a vehicle

cannot exceed its capacity. The constraints are as follows:∑
i∈NL:di>0

yikdi ≤ Cap ∀k ∈ K∑
i∈NB :di>0

yikdi ≤ Cap ∀k ∈ K

The next two constraints impose that every node is serviced by exactly one

vehicle. The can be written as follows:∑
k∈K

yik = 1 ∀i ∈ NL : di > 0∑
k∈K

yik = 1 ∀i ∈ NB : di > 0

Next, movement–related constraints need to be defined. Recall Lemma 3.1.

It stated that a vehicle k always serves a linehaul node on its way from the

depot. This implies that a linehaul node can be served only if the arc leading

up to that node from its parent is traversed. That is,

yik ≤ xPiik ∀i ∈ NL : di > 0,∀k ∈ K

67

In the linehaul tour, it is essential to ensure that every vehicle begins its tour at

the depot. A constraint that ensures that a vehicle never moves from a node to

its child unless the arc from that node’s parent to that node has been traversed

will impose this requirement. So, if a vehicle k serves node i ∈ NL : di > 0,

this constraint enforces that all the arcs on the path that leads from the depot

to this node i are traversed by k.

xPiik ≥ xijk ∀i ∈ NL : di > 0,∀j ∈ c(i),∀k ∈ K

Two similar constraints also need to be defined for the backhaul tour to ensure

that every vehicle ends its tour at the depot. Firstly, a vehicle must proceed

towards the depot after it serves a backhaul node. So, if a vehicle serves

i ∈ NB : di > 0, then it must travel on arc (i, Pi) ∈ AL. This is expressed as:

yik ≤ xiPik ∀i ∈ NB : di > 0, ∀k ∈ K

Secondly, every vehicle’s backhaul tour must end at the depot. Whenever a

vehicle travels on the arc connecting the child to a node, it must also travel

on the arc connecting that node and its parent in the backhaul tree. So, if a

vehicle k serves node i ∈ NB : di > 0, this constraint enforces that all the arcs

on the path that leads from that node i to the depot are traversed by k.

xiPik ≥ xjik ∀i ∈ NB : di > 0,∀j ∈ c(i),∀k ∈ K

None of the constraints defined above preserve tour continuity. That is, say a

vehicle k serves node i before serving node j. Two cases exist.

68

(i) If i and j are nodes of the same type. Then if the nodes are linehaul

(backhaul), the constraints above will just enforce that all the arcs on

the path leading up to (away from) those nodes from (towards) the depot

are traversed by vehicle k.

(ii) If i is linehaul and j is backhaul. Then, the constraints will enforce that

all the arcs on the path from the depot to i are traversed by k and all

the arcs on the path from j to the depot are traversed by k.

However, the constraints do not enforce any traversal between these two in-

termediate nodes. That is, once i has been served, the vehicle must travel

to j before it goes back to the depot. In this sense, tour continuity is not

preserved. This can be enforced by describing a flow conservation constraint

for every node.

∑
j∈{Pi∪c(i)}

xijk −
∑

j∈{Pi∪c(i)}

xjik = 0 ∀i ∈ {NGB
\ depot},∀k ∈ K

The indegree of every node i must be equal to its outdegree. The Figure 3.6

explains how this constraint helps preserve tour continuity.

Consider a vehicle k that serves the backhaul nodes 3B, 5B, and 6B, as

shown in Figure 3.6(a). Let k enter the backhaul tree through the crossover

arc at 3B (shown by a dashed squiggly arc). Without the flow conservation

equation, k will traverse the arcs (3B, 2B) after serving node (3B, 5B, 4B) and

6B, 4B) after serving nodes 4B and 5B, respectively. Finally, it will traverse

the arcs from 4B to the depot.

69

Figure 3.6: Flow Conservation Constraint Imposes Tour Continuity; (a) With-
out Flow Conservation and (b) With Flow Conservation

To satisfy flow conservation at node 2B, the vehicle must traverse arc

(2B, 4B), as traversal on any other arc (to satisfy flow conservation for node

2B) will violate other constraints. Similarly, to maintain flow conservation at

nodes 4B, 5B, and 6B, k must traverse the arcs (4B, 5B) and (4B, 6B).

It is interesting to note that the property described in Lemma 3.2 and

Lemma 3.3 are also satisfied. Finally, if a vehicle serves only linehaul nodes,

then due to flow conservation, the vehicle will return back to the depot along

the linehaul tree. Similarly for purely backhaul serving vehicles too.

For completeness, the IP formulation is given in full below:

70

Formulation: TCVRPB(2)

Minimize: z∗BIP2
=
∑
i

∑
j

∑
k

cijxijk (3.17)

Subject to:∑
i∈NL:di>0

yikdi ≤ Cap ∀k ∈ K (3.18)∑
i∈NB :di>0

yikdi ≤ Cap ∀k ∈ K (3.19)∑
k∈K

yik = 1 ∀i ∈ NL : di > 0 (3.20)∑
k∈K

yik = 1 ∀i ∈ NB : di > 0 (3.21)

yik ≤ xPiik ∀i ∈ NL : di > 0,∀k ∈ K (3.22)

xPiik ≥ xijk ∀i ∈ NL : di > 0,∀j ∈ c(i),∀k ∈ K (3.23)

yik ≤ xiPik ∀i ∈ NB : di > 0,∀k ∈ K (3.24)

xiPik ≥ xjik ∀i ∈ NB : di > 0,∀j ∈ c(i),∀k ∈ K (3.25)∑
j∈{Pi∪c(i)}

xijk =
∑

j∈{Pi∪c(i)}

xjik ∀i ∈ {NGB
\ depot},∀k ∈ K (3.26)

xijk ∈ {0, 1} ∀(i, j) ∈ AGB
,∀k ∈ K (3.27)

yik ∈ {0, 1} ∀k ∈ K, ∀i ∈ {NGB
\ depot} : di > 0 (3.28)

Adaptability of the Formulation

The formulation BIP2 can be adapted as follows to solve the following

variants of the TCVRPB:

(i) Minimize Number of Vehicles Used: Firstly, the total number of available

vehicles is kept free. That is, |K| = |N |−1. Then, the objective function

71

is changed to:

z∗BIP2
=

∑
j∈c(depot)

∑
k∈K

xdepotjk

Due to the assumption that, in T , the depot has only one child, simply

calculating the total number of vehicles traversing the arc from the depot

to its child will record the total number of vehicles used by the formu-

lation. In GB, the depot either has two children (one for the linehaul

tree and one for the backhaul tree), or there are two copies of the depot

(depending on if the depots have been merges after the transformation

operation). In either case, the above equation will minimize the total

number of vehicles used.

(ii) Vehicle Fleet is Heterogeneous: In this case, vehicles of different capac-

ities are employed. Modifying the parameter Cap to Capk∀k ∈ K and

employing this modified parameter in the formulation will account for

heterogeneous fleets.

(iii) Vehicle Dependent Arc Costs: The arc costs are no longer cij∀(i, j) ∈

AGB
but cijk∀(i, j) ∈ AGB

,∀k ∈ K. Changing the arc costs to cijk

wherever they appear in BIP2 will account for these vehicle dependent

arc costs.

Number of Variables and Constraints

A node variable, yik, is defined for every node i ∈ L ∪ B. The total

number of y variables in BIP2 is |K||L∪B|, which is the same as the number

72

of y variables used in BIP1. An arc variable, xijk is defined for every arc

(i, j) ∈ AGB
. The total number of x variables in BIP2 is |K|

{
2(|L|+ |FND|)+

2(|B|+|FND|)+
∑

i∈L
∑

j∈B∩{Pi∪c(i)}ADJij
}

. The total number of x variables

in BIP1 is 4|K|(|L|+ |B|). So, unless 4|FND|+
∑

i∈L
∑

j∈B∩{Pi∪c(i)}ADJij ≥

2(|L| + |B|), the second formulation always has fewer number of variables.

Since that inequality is never true, one can safely assert that:

#of variablesBIP1 > #of variablesBIP2

Although the total number of constraints in both the formulations areO(|N ||K|),

it can be observed that the number of constraints in BIP1 is (2 + |L|)|K| +

7|N ||K|, and the number of constraints inBIP2 is 2|K|+3|N ||K|+3|FND||K|+

|N |+ |FND|. So,

#of constraintsBIP1 > #of constraintsBIP2

Strength of the Formulation

Consider the LP–relaxation of the second formulation with value zLPBIP2
.

Due to constraints 3.24 and 3.25, the value of the x variables in the backhaul

tour will be:

xiPik = max
j∈Si

{
yjk
}
∀i ∈ NB : di > 0,∀k ∈ K

Now, consider the LP–relaxation of first formulation with value zLPBIP1
. Due to

constraints 3.7, 3.9, and 3.12, the value of the x variables in the backhaul

tour will satisfy:

yik
|c(i) ∪ Pi|

≤ xbiPik
≤ max

j∈Si

{
yjk
}
∀i ∈ B, ∀k ∈ K

73

The x variables in the linehaul tour for both formulations will remain the same

as they are both governed by the same set of constraints. From the above two

relations, it can be claimed that BIP2 is a stronger formulation than BIP1

and that:

zLPBIP2
≥ zLPBIP1

3.4.3 Valid Inequalities

In this section, valid inequalities that are added to further strengthen

the IP formulation are described.

As noted by Barnhart et al. (1998), a compact formulation sometimes

has a symmetric structure and a weak LP–relaxation value, to overcome this,

some symmetry breaking inequalities should be added. The formulation BIP2

has a symmetric structure as, in the optimal solution, a set of nodes served by

any two vehicles can be interchanged. Due to this, the solution search space

increases. To overcome this symmetry, two sets of inequalities are added.

Recall that the nodes in the linehaul tree are DFS ordered with the

depot marked as node 1. That is, NL = {2, . . . , |NL|+ 1}. The first symmetry

breaking inequality imposes the condition that a linehaul node can only be

served by a vehicle whose index is less than the node index. Then, node 2 can

be served by vehicle 1, node 3 by vehicles 1 or 2, node 4 by vehicles 1,2, or 3

and so on. This constraint is expressed as:

i−1∑
k=1

yik = 1 ∀i ∈ {NL : di > 0 ∧ 2 ≤ i ≤ |K|+ 1} (3.29)

74

The second symmetry breaking constraint imposes that the lowest in-

dexed linehaul node serviced by a vehicle increases with the vehicle index.

This constraint is expressed as:

yik ≤
i−1∑
j=2

yj,k−1 ∀i ∈ {NL : di > 0 ∧ 3 ≤ i ≤ |K|+ 1}, 2 ≤ k ≤ |K| (3.30)

Next, knapsack–like constraints are added to the formulation. This

constraint states that if the sum of the demands of two linehaul (backhaul)

nodes exceeds the vehicle capacity, then only one of these linehaul (backhaul)

nodes can be serviced by that vehicle.

yik + yjk ≤ Cap ∀i, j ∈ NL : di + dj > Cap,∀k ∈ K (3.31)

yik + yjk ≤ Cap ∀i, j ∈ NB : di + dj > Cap,∀k ∈ K (3.32)

In sub–section 3.2.3, V L
i was described to be the minimum number of

vehicles required to serve the sub–tree Si : i ∈ NL. Therefore, in the linehaul

tree, the arc (Pi, i) will be traversed at least V L
i times, or at least V L

i vehicles

will use arc (Pi, i).∑
k∈K

xPiik ≥ V L
i ∀i ∈ NL (3.33)

Similarly, this constraint can be defined for the arc (i, Pi) in the backhaul tree.

Note the reversal of direction as all vehicles moving on the backhaul tree will

traverse the arc towards the depot, but not necessarily the arc from the depot.

∑
k∈K

xiPik ≥ V B
i ∀i ∈ NB (3.34)

75

3.5 The Traveling Salesman Problem on Trees with Back-
hauls

The heuristic for the TCVRPB that is described here first computes

the subset of nodes that will be served by each vehicle and then computes

the optimal route for each vehicle. Traditionally, the optimal route for each

vehicle is found by solving the traveling salesman problem. In tree networks

with backhauls, the traveling salesman problem can be solved to optimality

in polynomial time. This section describes an algorithm for the Traveling

Salesman Problem on Trees with Backhauls (TTSPB).

Definition 3.1. Given T = (ND, A) and arc costs cij with linehaul nodes

L ⊆ N and backhaul nodes B ⊆ N , and |L| + |B| = |N | and L ∩ B = ∅.

The Traveling Salesman Problem on Trees with Backhauls is concerned with

finding a cost minimizing tour that begins and ends at the depot such that all

nodes are visited exactly once.

The given tree network is modified according to Algorithm 3.1. The

rest of this section deals with this modified network GB = (NGB
, AGB

). Of

course, since a single tour covering all nodes is sought, there are no demands

associated with the nodes.

The set of arcs in the (shortest) path from i to j is denoted by i → j

and the set of nodes in the unique Path from the Depot to a node i ∈ NGB

be denoted by PfDi. Let i|L|L be the last linehaul node and i1B be the first

backhaul node served in a TTSPB tour. The set of linehaul nodes that can

76

possibly be served last during a TTSPB tour is |L|L and the set of backhaul

nodes that can possibly be served first is 1B. It is easy to verify that the

last served node in the linehaul tour must be a tail node of a crossover arc.

Correspondingly, the first served node in a backhaul tour must be a head node

of a crossover arc. That is, |L|L = {i ∈ NL : i ∈ L∧{∃j ∈ NB : (i, j) ∈ ACR}}

and 1B = {j ∈ NB : j ∈ B ∧ {∃i ∈ NL : (i, j) ∈ ACR}}.

Lemma 3.3. In a TTSPB tour, all arcs will be traversed except for the arcs

in the sets {depot→ i1B}, {i|L|L → depot}, and {ACR \ (i|L|L , i1B)}

Proof. The above statement can be decomposed into the following three parts:

(i) The arcs in the sets {depot → i1B} and {i|L|L → depot} will not be tra-

versed.

If one considers the edge set EGB
instead of AGB

, the statement can be

interpreted as: The edges in the path from the depot to the node i|L|L and

the edges in the path from the node i1B to the depot will be traversed

exactly once. This statement for the network GB is analogous to the

statement made in Lemma 3.2 for the network T and can be proved in

the same way.

(ii) The only crossover arc traversed will be the arc (i|L|L , i1B).

Once a crossover arc is traversed, one cannot return to the linehaul tree.

Therefore, only one crossover arc will be traversed and this will be the

crossover arc leading out from the last linehaul node served.

77

(iii) All other arcs will be traversed.

Once again, this implies that in the edge set EGB
, all other edges will be

traversed exactly twice. This holds true because an edge will be traversed

once leading up to a node for service and once away from the node after

service.

The number of nodes in the sets |L|L and 1B can further be reduced

by noting that a linehaul node, iL, can be the last served linehaul node only if

its sub–tree, SiL , contains no linehaul nodes which are in the set |L|L. Define

the new set of linehaul nodes that can possibly be served last as:

|L|Lnew =
{
i ∈ |L|L : {|L|L ∩ Si} = ∅

}
Similarly, the new set of backhaul nodes that can be served first is defined as:

1Bnew =

{
j ∈ 1B :

{
∃i ∈ |L|Lnew : (i, j) ∈ ACR

}
∧
{
@(p, q) ∈ ACR : p ∈ |L|Lnew , q ∈ {1B∩Sj}

}}
.

It is known that only one crossover arc will be traversed in any TTSPB

tour. The candidate crossover arcs that will be traversed in the optimal tour

will have their tail nodes in the set |L|Lnew and their head nodes in the set

1Bnew . If the candidate crossover arcs were denoted by the set CRcand, then

CRcand = {(i, j) ∈ ACR : i ∈ |L|Lnew , j ∈ 1Bnew} (3.35)

Of course, in hindsight, there is no need to compute the sets 1Bnew and |L|Lnew

as CRcand can be computed directly. But, these have been included to better

explain the idea.

78

3.5.1 Optimal TTSPB Tour Cost

Unlike the regular TSP, where finding optimal cost will also return the

optimal node service order, in TTSPBs calculating optimal tour cost is easier

than finding than the optimal node service order.

Given the last linehaul node and the first backhaul node served in

the optimal TTSPB tour, one can easily compute the tour cost using the

Lemma 3.3. The candidate first linehaul and last backhaul nodes are known to

be the tail and head nodes of the arcs in the set CRcand. The optimal TTSPB

tour cost, TTSPBcost, is computed as follows. For every arc (i, j) ∈ CRcand,

first, the cost for traversing all the arcs in GB is computed. From this cost,

the path cost for traversing from i to the depot and the shortest path cost for

traversing from the depot to j are subtracted. This is done because the arcs in

these paths will not be a part of the TTSPB tour. Then, from this cost, all the

crossover arc costs, except the one currently being used (cij) are subtracted.

At the end of this procedure, |CRcand| possible TTSPB costs are calculated.

The one with the least value is the optimal TTSPB cost, TTSPBcost. The

procedure is formalized in Algorithm 3.2.

The computational complexity of Algorithm 3.2 is O(|CRcand|) and

|CRcand| ≤
|NGB

|2

4
. Therefore, the algorithm is O(|N |2) as |NGB

| is O(|N |).

3.5.2 Node Service Order

In the optimal TTSPB tour, only one crossover arc is used. The arcs

that will be used in the optimal tour are also known from Lemma 3.3. In the

79

Algorithm 3.2 Optimal Tour Cost

Input: GB = (NGB
, AGB

) cij∀(i, j) ∈ AGB
, CRcand

Output: TTSPBcost

1: TTSPBcost ←
∑

(i,j)∈AGB
cij

2: for iter = 1→ |CRcand| do
3: X ←

∑
(i,j)∈AGB

cij − Li − Lj −
∑

(i,j)∈ACR\(i,j)iter cij

{% % (i, j)iter is the iterth element of set CRcand % %}
4: if X < TTSPBcost then
5: TTSPBcost ← X, i|L|L ← iiter, j1B ← jiter
6: end if
7: end for

optimal tour, the nodes should be serviced such that no additional arcs are

used.

Recall that, in the optimal tour, i|L|L is the last linehaul and j1B is the

first backhaul node. The set PfDi contains the nodes in the path from the

depot to i in increasing order of index. Observe that the sub–tree of a node

is the union of the sub–tree of the children of that node and that node itself.

Now, the nodes will be serviced in the following order.

Linehaul Nodes The tour starts at the depot. It serves the first node in

PfDi|L|L
. The tour then serves all the nodes in its children’s sub–trees

(selecting a sub–tree arbitrarily, but traversing each sub–tree in increas-

ing order of index), except for the sub–tree generated by the child which

is a part of PfDi|L|L
. After this, the tour serves the second node in

the set PfDi|L|L
, here too it visits all its children’s sub–trees, except for

the child that is in PfDi|L|L
. The tour continues in this fashion till it

reaches the node i|L|L , at which point it serves the last linehaul node’s

80

entire sub–tree. At the end of this procedure, all the linehaul nodes will

be served.

Backhaul Nodes The backhaul tour starts at j1B . The first backhaul node

and its entire sub–tree is served. Then, the tour serves the parent of

j1B and all unserved sub–trees of the parent’s other children. The tour

continues to move up the tree in this fashion till it finally reaches the

depot, at which point all backhaul nodes would have been served.

More formally, while moving down the tree along PfDi|L|L
, after serving

a node i ∈ PfDi|L|L
, the tour will serve the following sub–set of nodes in

increasing order of index:

Ti =
⋃

j∈
{
c(i)\PfDi|L|L

}Sj ∀i ∈ PfDi|L|L

While moving up the tree along PfDi1B
, after serving a node i ∈

PfDi1B
, the tour will serve the following sub–set of nodes in increasing order

of index:

Ti =
⋃

j∈
{
c(i)\PfDi1B

}Sj ∀i ∈ PfDi1B

To further elucidate the procedure, consider the example in Figure 3.7.

Here, 2L is the last linehaul node served and 4B is the first backhaul node

served. The tour first serves node 1, after which it serves all the nodes in the

81

Figure 3.7: Order of Nodes Served in TTSPB

set denoted by T1L , note how this set does not contain the sub–tree generated

by node 1’s child (2) which is on PfD2L . The tour then serves node 2 and

all the nodes in node 2’s subtree. At this stage, all the linehaul nodes have

been served. The tour begins its backhaul service by serving node 4 and all

the nodes in node 4’s sub–tree. The tour then serves node 3 and the set T3B

which does not contain any nodes generated by node 3’s child (4) which is on

PfD4B . The tour finally ends at the depot.

3.5.3 Illustrative Example

An Example is shown in Figure 3.8. The original tree is shown in

Figure 3.8(a). The nodes 2, 4, 7, and 9 are the backhaul nodes (they have

been subscripted with B). The arc costs are give next to each edge. It is

assumed that the cost of traversing arc (i, j) and (j, i) are equal.

82

Figure 3.8: An Illustrative Example for the TTSPB; (a) Shows the Original
Tree; (b) Shows the Transformed Network; (c) Shows the TTSPB Tour83

The networkGB after network transformation is shown in Figure 3.8(b).

In this network, each node in the linehaul tree is sub–scripted with L, similarly,

a sub–script B for nodes in the backhaul tree. The modified arc costs are

also shown. Now, from the discussion in the previous sub–section, the set of

candidate crossover arcs, as defined in Equation 3.35 are:

CRcand = {(3L, 4B), (8L, 7B)}

Using Algorithm 3.2, the two tour costs are 298 and 244 respectively.

Therefore, the optimal TTSPB tour is the one where the last linehaul node

served is node 8L and the first backhaul node served is node 7B. This optimal

cost and the its tour is shown in Figure 3.8(c).

Now, the edges which will be used only one are shown in red in Fig-

ure 3.8(c). The two sets of nodes PfD8L and PfD7B will be traversed in

the order as stated in the previous section. The tour starts at the linehaul

depot (depots have been replicated here for ease of representation) and first

serves node 1L. Since T1L is empty, it then moves to node 2L. T2L = {3L},

and the tour serves this node. It then moves to node 5L. Proceeding this

way, the tour reaches node 5B, where T5B = {9B}. Therefore, the tour serves

node 9B before it moves to node 2B. This continues till the backhaul de-

pot is reached. At termination, the order in which the nodes are served is

depot− 1L − 2L − 3L − 5L − 6L − 8L − 7B − 5B − 9B − 2B − 4B − depot.

84

3.6 Heuristic

The heuristic procedure designed for the TCVRPB is a cluster–first

route–second method. There are two main steps to the algorithm. In the first

step, the algorithm finds the nodes that will be served by each vehicle. In

the second step, the route taken by the vehicle is computed. The clustering

stage of the procedure is as follows. This step deals with the tree T = (N,A)

and not with the network GB. Pick a non–grandparent node i farthest from

the depot. A non–grandparent node i is a node whose children c(i) have no

children. In other words, the children c(i) are all leaf nodes. The nodes i∪c(i)

are packed into a two–dimensional bin. A two-dimensional bin here implies a

bin that is partitioned into two compartments, both with capacity equal to the

vehicle capacity. One partition holds the linehaul nodes, while the other holds

the backhaul nodes. The nodes i ∪ c(i) are then removed from the tree and

are replaced by the bins into which these nodes have been packed. Obviously,

these bins are now the children of the parent of node i, that is the bins form the

set c(Pi). This procedure continues till all the nodes have been accommodated

into the bins. Note that, at an intermediate stage, the set i ∪ c(i) that has

to be packed might contain the original nodes as well as bins that have been

packed previously.

The first–fit decreasing bin–packing procedure is used here. At every

step, the set i ∪ c(i) is arranged in decreasing order of demand. So, when the

set that has to be packed contains a bin, the demand of that bin is the sum

of the total linehaul and backhaul nodes it has served. Two such bins can

85

be packed into a single bin if the sum of the total demand served in linehaul

compartment of both the bins is less than the vehicle capacity and the sum

of the demand total demand served in the backhaul compartment of both the

bins is less than the vehicle capacity. At the end of this procedure, nodes in

each bin are the nodes that will be served by each vehicle. Also note that at

the end of the procedure there will be no bin in which both the compartments

are half empty.

The second step of the procedure just involves computing the TTSPB

for the set of nodes that every vehicle served. This is done using Algorithm 3.2.

Algorithm 3.3 Heuristic for TCVRPB

Input: T = (N,A) di∀i ∈ N cij∀(i, j) ∈ A
Output: Upper Bound TCVRPB Cost, z̄

1: LIST ← N
2: while LIST 6= ∅ do
3: NGP ← {j ∈ LIST : (c(j) 6= ∅) ∧ (c(p) = ∅∀p ∈ c(j))}
4: i← maxj∈NGP{Lj}
5: (V ehicle, Bin)← 2D-BinPack(i ∪ c(i))
6: LIST ← LIST \ {(i ∪ c(i)) ∧ (LIST)}
7: N ← N ∪Bin \ {i ∪ c(i)}
8: Pj ← Pi∀j ∈ Bin
9: end while

10: z̄ ← 0
11: for iter = 1→ |V ehicle| do
12: R← V ehicleiter; Call TreeConstruct() from Algorithm 3.1
13: Call Network Transformation Algorithm 3.1
14: Calculate TTSPBcost using Algorithm 3.2
15: z̄ ← z̄ + TTSPBcost

16: end for

The steps of this procedure are described in Algorithm 3.3. NGP

86

is the set of non–grandparent nodes which are eligible candidates to begin

packing. The function (V ehicle, Bin) = 2D-BinPack(X), takes in the set X

that has to be packed, and returns the bins, Bin, they have been packed into

and the set V ehicle containing the set of the elements in each bin. In the

first stage of the heuristic, at every step a a non–grandparent node is chosen

and it is packed. A simple packing heuristic has a complexity O(|N |2) and

the total number of steps in the first stage are at most |N |. Therefore, the

first stage has a complexity of O(|N |3). However, if one were to use a faster

packing heuristic, like the one proposed by Knödel (1981), the complexity will

reduce to O(|N |2 log |N |). The complexity of the second stage is same and the

TTSPB, which is O(|N |). Therefore, the total complexity of the heuristic is

O(|N |3 + |N |) and can be potentially reduced to O(|N |2 log |N |+ |N |)

The procedure is further elucidated by means of an example shown

in Figure 3.9. The original tree is shown is Figure 3.9(a), the linehaul and

backhaul nodes have been sub–scripted L and B respectively. The arc costs

are shown on the edges (in red), and the demand at every node is shown in a

green box next to the node. The vehicle capacity is assumed to be 300. The

various iterations of the first stage of the heuristic are shown in Figure 3.9(b)

– (g).

The non–grandparent node 7 is farthest from the tree and is chosen

along with its children for packing. The nodes 7 and 8 are deleted from the

tree and replaced with the partitioned bin as shown in Figure 3.9(b). The total

linehaul and backhaul demand served by the bin is shown below the bin. Now,

87

node 6 is the non–grandparent node that is farthest from the tree. Therefore, 6

and its children are packed. The resulting bin is a child of node 5 and contains

nodes 6, 7, and 8. The procedure continues in this fashion. Consider the

Figure 3.9(e), in this iteration node 2 and its three children bins have to be

packed. Note that, firstly, no two bins can be combined together because no

two bins have both partitions half empty. Next, node 2 will be accommodated

in the bin containing 3 and 4 because its the one with the highest total demand

served. The heuristic uses four vehicles to serve the nodes. After computing

the TTSPB cost for each vehicle, the total heuristic upper bound value is 416.

The optimal solution value is 410.

The next chapter describes the computational results obtained by im-

plementing the exact and heuristic techniques discussed in this chapter.

88

Figure 3.9: An Illustrative Example for the TCVRPB

89

Chapter 4

Computational Results and Further

Improvements to the TCVRPB

The heuristic and the formulation were tested on tree networks of var-

ious sizes. This chapter describes the experimental setup and the computa-

tional results of this implementation. Based on the computational results, a

few further improvements, along with a new heuristic, are also discussed and

implemented. The computational experiments were carried out only on the

second IP formulation, BIP2. It was analytically shown that BIP2 had fewer

variables and constraints compared to BIP1 and also produced a stronger

LP–relaxation compared to BIP1.

4.1 Test Instances

The test networks were generated using a procedure similar to the one

described by Labbé et al. (1991). Every node in the tree had between 1 to 5

children. Without loss of generality, the depot was forced to have a degree of

one. 20, 40, 80 and 140–node networks were generated.

90

4.1.1 Parameter Generation

Arc Costs The arc costs were uniformly distributed in [1, 100].

Demand Each test network was tested for five demand profiles uniformly

distributed between [1 10], [1 30], [1 100], [20 20] and [20 80].

Backhaul Nodes The total number of backhaul nodes, |B|, were assumed

to be between 1
3

rd
to 2

3

rd
of the total number of nodes, |N |, in the tree.

This was done in two steps. First, a random number, x, between [1
3

2
3
] was generated and the total number of backhaul nodes was set to

|B| = b(x|N |) + 0.5c. Second, backhaul nodes were designated as fol-

lows. |N | numbers in Unif(0,1) were generated. A two–dimensional

array containing these numbers and the node numbers from 1 to |N | was

created. The nodes corresponding to the first |B| smallest Unif(0,1)

numbers generated were selected to be the backhaul nodes.

Capacity The vehicle capacity was set to 100.

Number of Vehicles The formulation BIP2 requires the total number of

vehicles |K|. This was set to be equal to the total number of vehicles

that were used by the heuristic. The IP formulation does not impose

that all the vehicles must be used. It works within the given |K| and

uses the optimal number of vehicles that will minimize the total cost.

The number of vehicles are required because of the vehicle–index nature

of the formulation. Providing the IP with the number of vehicles used

91

by the heuristic also helps better compare the optimal solution value to

the heuristic value.

4.2 Computational Results

The second IP formulation, along with the valid inequalities, was solved

using CPLEX on a PC with a 32–bit architecture, 2GB RAM, and 2.93 GHz

processor. The iteration limit for branch and bound was set to 100000, the

time limit was set to 3600 seconds, and the optimality criterion for the MIP

(relative gap between the best found integer solution value and best found LP

value) was set to 0.0001. For every demand profile and for every node size, 10

instances were solved.

The order of branching the variables was set as follows. First, a variable

that represents the total number of vehicles is defined as follows:

v =
∑

j∈c(depot)

∑
k∈K

xdepotjk (4.1)

The variable v was branched first. Next, the branching rule for the variables

yik was set such that these variables are branched in increasing order of the

vehicle index. That is, the variable yik1 was branched before the variable yik2

for all k1 < k2.

Finally, CPLEX was warm–started using the heuristic solution. That

is, the heuristic solution was fed into CPLEX as the first feasible heuristic so-

lution. So that this initial solution does not violate the symmetry constraints,

the nodes served by each vehicle in the heuristic were ordered such that the

92

lowest indexed node served by a vehicle increased with vehicle index and that

a linehaul node is only served by a vehicle whose index is less than the node

index. A summary of the computational results is presented in Table 4.1. The

summary contains the following information:

Solved The number of instances (out of 10) that were solved to optimality

within 3600 seconds.

|K| The number of vehicles input to the IP formulation. It is the same as the

number of vehicles used by the heuristic.

TimeOPT The time taken by CPLEX to solve the MIP formulation to op-

timality (reported only for solved instances).

TimeUB The time taken to solve the heuristic. It is the sum of times required

to solve the clustering step and the TTSPB step of the heuristic.

Gap This is the gap between the last LP value and the last heuristic value

found by CPLEX. It is zero for all solved instances and positive for

unsolved instances. This metric helps determine how close CPLEX was

to finding the optimal solution at termination.

LP/IP The ratio of the LP–relaxation value to the optimal solution value.

This value helps understand the quality of the LP–relaxation of the for-

mulation. The closer the LP–relaxation value is to the optimal value,

the better it is for the branch and cut procedure.

93

UB/IP The ratio of the heuristic solution value and the optimal solution

value helps understand the quality of the heuristic.

LB/UB The ratio of the lower bound and the heuristic solution value.

LP/LastUB The ratio of the LP–relaxation value to the last best heuristic

solution value found for CPLEX. Reported only for unsolved instances,

as for solved instances this value is equal to the LP/IP value.

94

Network Demand Solvedα |K| TimeOPT TimeUB LP/IP UB/IP LB/UB LP/LastUB LP/LB Nodes Gap
secs secs

20–node

[1 10] 10 2 0.353 0.166 0.985 1.034 0.847 – 1.130 0 0
[1 30] 10 4 0.676 0.184 0.974 1.088 0.830 – 1.080 1.4 0
[1 100] 10 9 2.020 0.163 0.971 1.040 0.762 – 1.027 69.1 0
[20 20] 10 4 0.737 0.115 0.979 1.048 0.914 – 1.027 3.6 0
[20 80] 10 8 3.622 0.143 0.942 1.056 0.745 – 1.230 156.7 0

40–node

[1 10] 10 2 3.714 3.600 0.995 1.050 0.808 – 1.175 0 0
[1 30] 10 5 11.530 3.418 0.985 1.037 0.867 – 1.096 271.3 0
[1 100] 10 16 96.73 1.302 0.948 1.029 0.728 – 1.273 3695 0
[20 20] 10 8 12.780 1.269 0.985 1.056 0.874 – 1.071 232.5 0
[20 80] 10 18 44.118 1.191 0.950 1.055 0.676 – 1.336 1285.3 0

80–node

[1 10] 10 4 24.944 7.173 0.984 1.013 0.790 – 1.22 8 0
[1 30] 10 10 285.950 8.529 0.967 1.092 0.675 – 1.195 8249 0
[1 100] 9 25 422.065 8.431 0.947 1.051 0.634 0.96 1.420 6031 0.012
[20 20] 10 15 257.668 7.134 0.919 1.090 0.698 – 1.206 2294 0
[20 80] 6 28 1140.589 14.589 0.942 1.180 0.479 0.948 1.665 10232 0.023

140–node
[1 10] 10 10 240.325 45.466 0.991 1.108 0.739 – 1.209 158 0
[1 100] 0 49 – 54.874 – 1.142β 0.675 0.925 1.194 6974 0.0149
[20 20] 4 26 1920.000 52.194 0.946 1.152 0.739 0.947 1.296 7868.6 0.030

α All reported values are averaged over the 10 tested instances of each problem
β Ratio of heuristic value to best heuristic value found by CPLEX at termination

Table 4.1: Summary of Numerical Results for the TCVRPB

95

Figure 4.1: Comparison on LP, Optimal, and Heuristic Values

4.2.1 Solution Quality

All the 20–node and 40–node, and almost all of the 80–node test in-

stances were solved to optimality within the pre–defined time limit. The solu-

tion quality can be deciphered by noting the performance of the LP–relaxation,

the heuristic, and the number of branch–and–bound nodes.

LP–Relaxation The LP/IP ratio in Table 5.1 reports how close the LP–

relaxation was to the optimal solution. Generally, the higher this ratio,

the better the IP performance, as a high LP/IP ratio aids the branch–

and–bound procedure. The LP–relaxation is particularly tight for the [1

10] and [1 30] demand distributions. For the [1 10] demand, the LP value

is at least 98.1% the optimal solution value. This demand distribution is

96

much lesser than the vehicle capacity and, as a result, the LB was able

to pack the nodes in a more efficient manner. Since the lower bound

constraint was added as a valid inequality, the LP–relaxation of the

problem is also very good. It can also be seen that as the mean of the

demand distribution increases, the LP/IP ratio decreases. This again

can be attributed to the fact that as the demand increases, the number

of y variables split will also increase. For the instances where the IP was

not solved to optimality, the LP/LastUB ratio demonstrates how close

the LP value is to the best heuristic solution value found by CPLEX at

termination. Notice that the LP–relaxation values are still very tight.

The lowest reported LP/IP ratio for the demands [1 100] and [20 80] is

around 92.5%. Overall, the LP/IP ratio percentage is consistently in the

upper 90s implying that the IP–formulation, together with the added

inequalities, are able to generate a very tight solution space.

Number of Nodes The number of branch–and–bound nodes required to solve

the IP to optimality increases as both the mean of the demand and the

demand distribution increase. Almost all the test instances with demand

[1 10] are solved by CPLEX at the root node itself. Now, consider the in-

stances with mean demand 50, that is the instances with demand [1 100]

and [20 80]. For both these cases, the number of nodes required is much

higher than the other instances. Also, as the demand [1 100] requires

more nodes than [20 80]. Secondly, the number of node required is di-

rectly related to the total number of vehicles, |K|, in the IP–formulation.

97

The nodes increase with an increase in the number of vehicles. For ex-

ample, for the demand distributions [1 100] and [20 80], the number of

vehicles is much higher than for other demand distributions and this

severely affects the total number of branch–and–bound nodes too.

Heuristic Solution The UB/IP ratio reports the performance of the heuris-

tic solution with respect to the optimal solution. For the 20–node and

40–node instances the heuristic performs consistently well and is within

3 – 5% of the optimal solution. But, for the 80–node and 140–node

cases, the heuristic solution is around 10% of the optimal solution value.

Moreover, here too, to the heuristic solution seems to be directly affected

by the number of vehicles. The more the number of vehicles required by

the heuristic, the greater the UB/IP ratio. For example, for the 80–node

and 140–node instances with demand [20 80] and [1 100], the heuristic is

about 15–18% of the optimal solution value. Also, irrespective of network

size, the heuristic performs very well for lower demand distributions.

Only 5 instances of the 80-node problems were unsolved and 16 instances

of the 140–node problems were unsolved. For these unsolved instances, at

termination, the best integer value found by CPLEX was between 1 –3 % of

the optimal value. The Figure 4.1 shows the closeness of the LP and heuristic

values to the optimal solution.

98

Figure 4.2: Computation Time for IP and Heuristic

99

4.2.2 Computational Performance

The Figure 4.2 shows the computation times required by the IP and

the heuristic. As expected, as the network size increases, the optimal solution

time and the heuristic computation time also increase. The optimal solution

is computed fairly quickly for the 20–node and 40–node problems. Moreover,

as seen previously, the computation time increases with increase in demand

mean and demand distribution. For the 80–node instances, CPLEX was able

to solve only 6 instances of the [20 80] demand to optimality. For the 140–node

networks, CPLEX was unable to solve any of the [1 100] demand instances to

optimality within an hour. The heuristic solution time, too, increased substan-

tially for the 140–node networks. For the 80–node networks, the heuristic took

a maximum of 14 seconds, while for the 140–node networks, the heuristic took

54 seconds to find a feasible solution. Also, the heuristic always outperforms

the IP in terms of solution time. Here, too, there is a direct relation between

the number of vehicles and the computation times. As the number of vehicles

increase, the computation time increases. This is especially true for the [1 100]

and [20 80] demand cases. The heuristic requires a higher number of vehicles

for these instances and this, in turn, increases the computation times.

There seems to be a direct relation between higher fleet sizes (|K|)

and solution and computational time quality. Therefore, a few further modi-

fications that will reduce the total fleet size are suggested in the next section.

Secondly, to better understand how these improvements affect the solution and

computational performance, the experimental design is modified to reduce the

100

degrees of freedom in the parameter generation.

4.3 Further Improvements

A new heuristic, that reduces the number of vehicles, |K|, is described

here. Recall that in the original heuristic, the clustering step was performed on

the original tree T = (N,A). Here, the clustering step is performed separately

on the linehaul, TL, and backhaul, TB, trees. This will result in a set of vehicles

that will each contain a subset of linehaul nodes and a set of vehicles that will

each contain a subset of backhaul nodes. Then, an assignment problem is

solved to determine the matching of the linehaul and backhaul vehicles.

For each tree, TL and TB, the clustering procedure of the heuristic

proceeds as follows. Pick a non–grandparent node i farthest from the depot.

A non–grandparent node i is a node whose children c(i) have no children. In

other words, the children c(i) are all leaf nodes. The nodes i∪ c(i) are packed

into a bin with capacity Cap. The nodes i ∪ c(i) are then removed from the

tree and are replaced by the bins into which these nodes have been packed.

Obviously, these bins are now the children of the parent of node i, that is the

bins form the set c(Pi). This procedure continues till all the nodes have been

accommodated into the bins.

Let V ehicleL (V ehicleB) represent the set containing the set of linehaul

(backhaul) nodes in each bin. The second step of the heuristic decides the

pairing of linehaul and backhaul bins. Each pair will be served by the same

vehicle. Note that, in this heuristic, it is possible that |V ehicleL| 6= |V ehicleB|.

101

There will be ||V ehicleL| − |V ehicleB|| vehicles that will be purely linehaul

or backhaul vehicles. Let mij be the optimal TTSPB cost of the tour that

serves the subset of nodes in the ith vehicle of V ehicleL and in the jth vehicle

of V ehicleB. Further, let i take values i = {0, 1, . . . , |V ehicleL|} and let j take

values j = {0, 1, . . . , |V ehicleB|}. When i (j) is zero in mij, then it implies that

j (i), is a purely backhaul (linehaul) route. In other words, assume that the 0th

linehaul and backhaul vehicles serve no nodes. The procedure for computing

V ehicle and mij is descibed in Algorithm 4.1.

The second step of the heuristic matches the linehaul and backhaul bin

such that the total cost is minimized. An assignment problem is solved to

obtain this matching as follows.

Minimize:

z̄ =

|V ehicleL|∑
i=0

|V ehicleB |∑
j=0

mijwij (4.2)

Subject to:

|V ehicleB |∑
j=0

wij = 1 ∀i ∈ {1, 2, . . . , |V ehicleL|} (4.3)

|V ehicleL|∑
i=0

wij = 1 ∀j ∈ {1, 2, . . . , |V ehicleB|} (4.4)

wij ≥ 0 ∀i,∀j (4.5)

102

Algorithm 4.1 Heuristic #2 for TCVRPB

Input: T = (N,A) di∀i ∈ N cij∀(i, j) ∈ A
Output: V ehicleL, V ehicleB,mij

1: Use Algorithm 3.1 to construct TL = (NL, AL) and TB = (NB, AB)
2: LIST ← NL

3: while LIST 6= ∅ do
4: NGP ← {j ∈ LIST : (c(j) 6= ∅) ∧ (c(p) = ∅∀p ∈ c(j))}
5: i← maxj∈NGP{Lj}
6: (V ehicle, Bin)← BinPack(i ∪ c(i))
7: LIST ← LIST \ {(i ∪ c(i)) ∧ (LIST)}
8: N ← N ∪Bin \ {i ∪ c(i)}
9: Pj ← Pi∀j ∈ Bin

10: end while
11: V ehicleL ← V ehicle
12: LIST ← NB

13: while LIST 6= ∅ do
14: NGP ← {j ∈ LIST : (c(j) 6= ∅) ∧ (c(p) = ∅∀p ∈ c(j))}
15: i← maxj∈NGP{Lj}
16: (V ehicle, Bin)← BinPack(i ∪ c(i))
17: LIST ← LIST \ {(i ∪ c(i)) ∧ (LIST)}
18: N ← N ∪Bin \ {i ∪ c(i)}
19: Pj ← Pi∀j ∈ Bin
20: end while
21: V ehicleB ← V ehicle
22: V ehicleL0 = ∅ and V ehicleB0 = ∅
23: for i = 0→ |V ehicleL| do
24: for j = 0→ |V ehicleB| do
25: L← V ehicleLi

, B ← V ehicleBj

26: mij ← TTSPBcost calculated using Algorithm 3.2
27: end for
28: end for

103

The variable wij will be equal to 1 if the linehaul nodes in bin i and

the backhaul nodes in bin j are served by the same vehicle. Since this is an

assignment problem, solving the LP will return binary values for wij. The

first (second) constraint enforces that every linehaul (backhaul) bin is either

matched to a backhaul (linehaul) bin or to the depot. The objective function

returns the cost of this matching, which is equal to the heuristic solution value.

The heuristic is explained with the Figure 4.3. The original tree network

is shown in Figure 4.3(a). The edge costs are denoted in red and the demand at

every node is shown in a green box near the node. The linehaul and backhaul

nodes are sub–scripted L and B, respectively. First, the linehaul and backhaul

trees, TL and TB respectively, are constructed as shown in Figure 4.3(b) using

the Algorithm 3.1. The clustering procedure is then carried out separately for

each tree. This results in the sets V ehicleB = {V1, V2, V3, V4} and V ehicleB =

{V5, V6} as shown in Figure 4.3(c). The resulting costs of grouping the linehaul

and backhaul vehicles, mij, is shown in the table in Figure 4.3(c). Next, the

assignment problem is solved using these mij costs and the LP–formulation

given previously. In the final solution, the vehicles V2 and V5, and V4 and V6

are combined, while V1 and V3 serve only linehaul nodes. The resulting cost

of the heuristic solution is 416 and the total number of vehicles used is 4.

104

Figure 4.3: An Illustrative Example for the Second Heuristic

105

4.3.1 Additional Computational Results

The effect of reducing the number of vehicles that are input to the

IP–formulation is studied here. The second heuristic that was described pre-

viously, intuitively speaking, will require lesser number of vehicles than the

first heuristic. This is because each tree is treated separately, which ensures

maximum packing. In order to better understand how the number of vehicles

affects the exact solution time and performance, the test instances were modi-

fied as follows. Note that, the test instances defined previously gave an overall

sense of the performance of the solution methods for different demand profiles

and network sizes. However, to gain a better understanding of how the first

and second heuristics affect the exact solution, the experiments are setup as

follows.

Firstly, it was noted that as the mean and distribution of the demand

increased, the IP solution time increased. Therefore, to gain a better insight

into this behavior, for the computational tests performed here, the mean of

the demand was kept constant while the demand was varied. The following

demand profiles were tested: [1 100], [10 90], [20 80], [40 60], and [50 50].

Secondly, all the computational tests were carried out on 40 node networks,

testing 10 randomly generated networks for each demand profile. The solu-

tion time and quality were tested separately for the cases where the IP was

initialized using the first and second heuristic.

A summary of the computational results is presented in Table 4.2. The

summary contains the following additional information:

106

|K|H1 − v Recall that v recorded the total number of vehicles used at opti-

mality. Therefore, |K|H1−v and |K|H2−v report the difference between

the total number of vehicles used by the heuristic (and input into the

IP) and the total number of vehicles used at optimality for the first and

second heuristic, respectively.

LP
IPH1

The ratio of the LP–relaxation value to the optimal value.

LP0H1

LP0H2
CPLEX is sometimes able to obtain an LP–value higher than the LP–

relaxation value at the root node. The ratio of the LP–values at the

root node when the IP is initialized by the first and second heuristic is

reported by this metric.

UBH1

UBH2
This is the ratio of the heuristic upper bound value found by the first

and second heuristics. This also the first upper bound used by CPLEX

as it is initialized with the heuristic solution.

Table 4.2 shows that the second heuristic consistently requires lesser

number of vehicles than the first one. Moreover, as the demand variance de-

creases, the difference between the number of vehicles required by the optimal

solution and the second heuristic also decreases. The initial solution provided

to CPLEX by either heuristic does not seem to affect the LP–relaxation solu-

tion value. However, CPLEX seems to calculate a stronger LP–value at the

root node when the number of vehicles in the IP is lower. Another interesting

fact to note is that the optimal solution found by CPLEX remained the same

107

irrespective of the heuristic that was used to initialize it. This implies that the

second heuristic was capable of finding an upper bound using a lower number

of vehicles than the first one without changing the resulting optimal cost.

The number of vehicles input to the IP directly affects the compu-

tational performance. The time required by CPLEX and the nodes in the

branch–and–bound process decrease with a decrease in the number of vehi-

cles. Using the second heuristic as an initial solution reduces the time and

nodes required by CPLEX as the number of vehicles in the second heuristic

are lower. The graphs in Table 4.2 show the effect of the number of vehicles

on the time and nodes required by CPLEX to find an optimal solution. One

can conclude that a quicker solution can be obtained by warm–starting the IP

using the second heuristic than the first one.

108

Demand Solvedα |K|H1
− v |K|H2

− v LP
IPH1

LP
IPH2

LP0H1

LP0H2

LP0H1

LP

LP0H2

LP
UBH1

UBH2
Time- Time- NodesH1

NodesH2

OPTH1
OPTH2

(secs) (secs)
[1 100] 10 5.4 2.5 0.968 0.968 0.986 1.009 1.014 1.014 56.515 36.897 2609.0 916.8
[10 90] 10 4.0 2.0 0.966 0.966 0.999 1.010 1.001 1.023 50.109 26.290 1876.5 627.2
[20 80] 10 3.6 1.6 0.955 0.955 0.988 1.013 1.013 1.088 38.202 25.934 621.6 291.0
[40 60] 10 3.3 1.3 0.938 0.938 0.995 1.008 1.013 0.968 27.724 24.750 528.2 261.0
[50 50] 10 3.0 1.0 0.967 0.967 0.983 1.017 1.014 1.099 17.586 10.535 519.5 94.5

α All reported values are averaged over the 10 tested instances of each problem

Table 4.2: Summary of Numerical Results for the TCVRPB after Improvements

109

4.4 Conclusions

In the preceding two chapters, a variant of the TVRP in which the nodes

are divided in to two subsets – linehaul and backhaul nodes was introduced

and studied in detail.

A lower bound on the TCVRPB was derived by using its relation with

bin–packing problems, and a few properties and key observations that hold true

at optimality were delineated. Two IP formulations were proposed to solve

the problem. The second IP was formulated by transforming the tree into an

equivalent network. It was shown that this IP had a fewer variables and that

its LP–relaxation was stronger than the first one. A few valid inequalities were

added to the second IP formulation in an effort to increase its LP–relaxation

value (or reduce the duality gap).

An algorithm, which, at every stage deletes at least one node from

the network was presented. The algorithm had two main steps – finding the

customers that are serviced by each vehicle, and constructing the optimal

routes for that vehicle. The optimal vehicle routes were constructed by using

the algorithm for the Traveling Salesman Problem on Trees with Backhauls

(TTSPB), a polynomial algorithm for which was developed in this dissertation.

The second IP Formulation and the heuristic were tested on problem

instances of varying sizes and demand profiles. 10 instances of each network

size and demand profile was tested. Computational times for solving the IP

depended not only on the network size, but also on the demand distribution

110

and the number of vehicles in the IP. Computational time increased with

an increase in problem size, as supported by intuition. The computational

time and number of branch–and–bound nodes increased with an increase in

the number of vehicles and an increase in the demand variation. Further, the

quality of the solution also decreased with an increase in the number of vehicles

and an increase in the demand variation. The LP–relaxation was particularly

tight for the [1 10] and [1 30] demand distributions. For the [1 10] demand, the

LP value was at least 98.1% the optimal solution value. The lowest reported

LP/IP ratio for the demands [1 100] and [20 80] was around 92.5%.For the

20–node and 40–node instances the heuristic performed consistently well and

was within 3 – 5% of the optimal solution. But, for the 80–node and 140–node

cases, the heuristic solution was around 10% of the optimal solution value.

A direct relation between higher fleet sizes (|K|) and solution and com-

putational time quality resulted in a few modifications to the heuristic which

reduced the total fleet size. The clustering step was performed separately on

the linehaul, TL, and backhaul, TB, trees. Then, an assignment problem was

solved to determine the matching of the linehaul and backhaul vehicles. The

time required by CPLEX and the nodes in the branch–and–bound process de-

creased with a decrease in the number of vehicles. Using the second heuristic

as an initial solution reduced the time and nodes required by CPLEX, as the

number of vehicles in the second heuristic are lower.

Future research includes exploring stochastic and online versions of the

problem. Exploring other solution techniques – especially column generation

111

techniques, as tree structures might be particularly amenable to such tech-

niques – is also a future research direction.

112

Chapter 5

TVRP with Fixed Fleets

A constrained case of the TVRP – where the vehicle fleet is capacitated

and heterogeneous (HTCVRP) is studied in this chapter. A heuristic algorithm

that explicitly considers the tree structure are presented here. No heuristic

techniques exist for solving fixed fleet TVRPs.

5.1 Problem Definition

The problem considered in this chapter can be briefly defined as follows.

Given a tree network, T = (ND, A); non–negative arc costs, cij∀(i, j) ∈ A;

demand at each node, di∀i ∈ N ; and a heterogeneous fixed fleet of vehicles

located at a depot: find a collection vehicle routes, such that

(i) total distance traveled by (total operating cost of) all used vehicles is

minimized

(ii) demand at each node is satisfied by exactly one vehicle

(iii) total demand serviced by a vehicle does not exceed its capacity

(iv) all vehicle routes begin and end at the depot

113

This problem is the Capacitated Heterogeneous Vehicle Routing Prob-

lem on Trees (HTCVRP). It is assumed that the arc costs remain constant over

all vehicle types, and that the total fleet mix is given and finite. Heuristics for

both cases – with and without fixed vehicle costs – are presented.

The HTCVRP has embedded within it the Generalized Assignment

Problem (GAP), the Bin Packing Problem (BPP) and the Tree Traveling

Salesman Problem (TTSP). The heuristic for the HTCVRP, proposed here,

iteratively finds seed nodes using Upper Bound (UB) heuristics for the BPP,

assigns a vehicle to each seed node, then uses a Lagrangian–based GAP algo-

rithm to assign nodes to vehicles located at the seed node. The TTSP is solved

to find the optimal route for every used vehicle. The TTSP is trivially solvable

in polynomial time (Tsitsiklis, 1992). Finally, a refining operation based on

the savings heuristic (Clarke and Wright, 1964a) is employed to further reduce

the solution cost.

The rest of this chapter is organized as follows. In Section 5.3, some

exact solution methods and their relation to the Generalized Assignment Prob-

lem and Bin Packing Problem are discussed. The heuristic algorithm is pre-

sented in Section 5.3. The computational results obtained by implementing

the heuristic and exact methods are presented in Section 5.6.

5.2 Preliminaries

Let K be the set of vehicles, Capk : k ∈ K denote each vehicle’s

capacity and fk : k ∈ K denote the fixed operating cost of each vehicle.

114

Assume that the vehicles are indexed in decreasing order of their capacities,

that is Capk1 ≥ Capk2 ≥ . . . ≥ Capk|K|−1
≥ Capk|K| . In this chapter, the

number of vehicles in the fleet and the fleet mix is given. No heuristics or

approximation algorithms for TVRPs exist in the open literature that deal

with either heterogeneous fleets or fixed fleets. The robustness of the heuristic

in dealing with non-fixed and homogeneous fleets is demonstrated in the next

section. Recall that, the set of nodes in the unique Path from the Depot to a

node i is denoted by PfDi. That is, PfDi = NR : R = {i}. The cumulative

demand of the nodes in PfDi is given by Demi =
∑

j∈PfDi
dj and the cost of

the path from the depot to i is given by Li =
∑

j∈PfDi

∑
q∈PfDi

cj,q : (j, q) ∈ A.

It is assumed, without loss of generality, that the depot has degree 1. Further,

it is also assumed that the arc costs cij do not vary with respect to vehicle

k ∈ K.

5.2.1 Lower Bounds

As the HTCVRP is closely related to the bin–packing problem, a very

naive lower bound can be developed using this relation. The bin–packing prob-

lem is defined as follows. Given a set of p items with weights w1, w2, . . . , wp;

and bins of capacity Q – pack the p items into bins such that the total number

of bins are minimized. A simple lower bound on the number of bins required

to pack all p items is given by: ⌈∑p
i=1wi
Q

⌉
(5.1)

115

Remember that according to our definition, vehicle k1 is the vehicle with max-

imum capacity Capk1 . Now, consider a sub–tree Si rooted at node i, the very

minimum number of vehicles required to serve the nodes, say, Vmini
is given

by:

Vmini
=

⌈∑
j∈Si

dj

Capk1

⌉
(5.2)

Then, a naive lower bound, zmin, on the optimal objective value, z∗, to the

HTCVRP is given by:

zmin =
∑
i∈N

Vmini
(cPii + ciPi

) (5.3)

At the very least Vmini
vehicles will enter the sub–tree Si to serve its nodes.

This implies that at least Vmini
vehicles will traverse the edge {Pi, i} once on

their way from the depot to the sub–tree, and once on their way back (after

service) from the sub–tree to the depot.

The lower bound computed using Equation 5.3 can be improved as

follows. Let the new minimum number of vehicles required to serve a sub–tree

be Vi, the sub–tree demand at every iteration be SubTD, and the vehicle index

be denoted as Index. Now, Vi can be computed using Algorithm 5.1. A better

lower bound, z, can be calculated as follows:

z =
∑
i∈N

Vi(cPii + ciPi
) (5.4)

Since, Vi ≥ Vmini
∀i ∈ N , it can be stated that z ≥ zmin. Therefore, Equa-

tion 5.4 is a better lower bound.

116

Algorithm 5.1 An Improved Lower Bound for HTCVRP

Input: di ∀i ∈ N
Input: Capk ∀k ∈ K
Output: Vi ∀i ∈ N

1: for i = 1→ n do
2: SubTD =

∑
j∈Si

dj
3: Vi = 0
4: Index = 1
5: while SubTD > 0 do
6: SubTD← SubTD− CapkIndex
7: Vi ← Vi + 1
8: Index← Index + 1
9: end while

10: end for

5.3 Exact HTCVRP Solution Methods

Exact HTCVRP solution methods were developed by Chandran and

Raghavan (2008) and Mbaraga et al. (1999). Chandran and Raghavan (2008)

developed two integer programs for solving TCVRPs. The first one builds off

the fact that, once the nodes that are part of a vehicle route are determined,

nodes will be served in the order of their DFS index, a similar IP was also

developed by Busch (1990). The second formulation uses the fact that there

is only one path between a node and any other node in the depot, and that

every node has a unique parent node. The second formulation (HTCVRP(1)),

which will be further used in the heuristic proposed here, is given below:

Formulation: HTCVRP(1)

xijk =

{
1 if vehicle k traverses arc (i, j)
0 otherwise

117

yik =

{
1 if vehicle k serves node i
0 otherwise

Minimize: 2×
∑
i

∑
j

∑
k

cijxijk (5.5)

Subject to:

xPiik ≥ xijk ∀k ∈ K, i ∈ N, j ∈ c(i) (5.6)

xPiik ≥ yik ∀k ∈ K,∈ N (5.7)∑
i∈N

yikdi ≤ Capk ∀k ∈ K (5.8)∑
k∈K

yik = 1 ∀i ∈ N (5.9)

yik ∈ {0, 1} ∀i ∈ N, k ∈ K (5.10)

xijk ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (5.11)

The objective function minimizes the total distance traveled. It is mul-

tiplied by 2 because each vehicle has to return to the depot after service.

Constraint 5.6 states that if a vehicle k traverses arc (i, j), then it should also

have traversed the arc (Pi, i). This ensures that if a vehicle traverses an arc

then it must first traverse the parent arc to reach that arc. Constraint 5.7

ensures that a vehicle decides to serve node i then it should travel along the

arc leading to that node i, that is arc (Pi, i). Constraint 5.8 enforces that ev-

ery node is serviced by only one vehicle, while constraint 5.9 ensures that the

vehicle capacity is not exceeded. Some valid inequalities, to further expedite

the convergence of the IP, were also proposed by Chandran and Raghavan

(2008). The formulation can easily accommodate fixed costs by modifying the

118

objective function as follows:

2×
∑
i

∑
j

∑
k

cijxijk +
∑
k

fkx12k (5.12)

Let the depot be denoted as node 1. Since the depot has a degree of 1, all used

vehicles will always traverse arc(1, 2). Thus, fixed costs can be incorporated

into the formulation without defining new variables or constraints.

Mbaraga et al. (1999) define a set covering–based formulation for the

HTCVRP, which is solved using column generation. The master problem of the

column generation scheme solves the HTCVRP for a subset of variables, these

variables are then parsed to the subproblem. The subproblem is a capacitated

shortest path problem, whose arc costs are defined such that the shortest path

will generate a column with the most negative reduced cost, which will in turn

be parsed to the master problem. The tree arcs and costs are modified to form

an acyclic graph for every vehicle as vehicles serve nodes in DFS order. The

constrained shortest path (SP) is then solved on these acyclic graphs using

the algorithm proposed by Desrosiers et al. (1995). The SP algorithm has a

pseudopolynomial running time.

5.4 Heuristic for HTCVRP

Let Li,j be the cost of the path between nodes i and j. It is also known

that, given a vehicle and the nodes it is going to serve, the least cost vehicle

route will visit the nodes in increasing order of the DFS index (Tsitsiklis,

1992). Given this, the formulation HTCVRP(1) can be rewritten such that

119

the objective function enforces DFS movement, while the constraints enforce

the capacity and service requirements. When no fixed costs are given, the new

formulation, HTCVRP(2), with depot as node 1, is given as follows:

Formulation: HTCVRP(2)

Minimize: ∑
k∈K

∆(k) (5.13)

Subject to:

Constraints 5.8 – 5.10

Where, ∆(k), for every vehicle k ∈ K is defined as:

∆(k) = L1,p +
∑
i:yik=1

Li,q + Lr,1 (5.14)

p = min
j:1<j
{j|yjk = 1} (5.15)

q = min
j:i<j
{j|yjk = 1} (5.16)

r = max
j:j>1
{j|yjk = 1} (5.17)

The objective function 5.14 is the sum of the costs of serving the lowest DFS

indexed node from the depot; serving the non–depot nodes in DFS order; and

traversing from the highest indexed node back to the depot for each vehicle.

The constraints of the formulation HTCVRP(2) are the same as that of a gen-

eralized assignment problem (GAP). The objective function, however, is more

complex. The objective is dependent not only on the cost accrued by a vehicle

to serve a node, but also on the order in which the nodes are served. Therefore,

120

it is difficult to assign these costs a priori, because costs for every precedence

order of nodes have to be defined. Therefore, Cap–HTVP(2) cannot be solved

as a GAP.

When fixed costs, fk∀k ∈ K are given, the formulation can be modified

as given below.

Formulation: HTCVRP(3)

zk =

{
1 if vehicle k is used
0 otherwise

Minimize: ∑
k∈K

∆(k) +
∑
k

fkzk (5.18)

Subject to: ∑
i∈N

yikdi ≤ Capkzk ∀k ∈ K (5.19)∑
k∈K

yik = 1 ∀i ∈ N (5.20)

yik ∈ {0, 1} ∀i ∈ N, k ∈ K (5.21)

zk ∈ {0, 1} ∀k ∈ K (5.22)

∆(k) is as defined in equations 5.14 – 5.17. The constraint set 5.19

– 5.22 is that of the capacitated facility location problem. However, the cost

function ∆(k) in the objective is not a simple linear cost, because of which

HTCVRP(3) cannot be solved as a CFLP.

However, current GAP and CFLP methods can be used to find a heuris-

tic solution to HTCVRP if ∆(k) can be approximated as a linear function of

yik. This is done using a method similar to the one described by Fisher and

121

Jaikumar (1981b). First the concept of a seed node for every vehicle is de-

fined. A seed node of a vehicle is a node which is assigned to a vehicle a

priori. That is, fix nodes ik1 , ik2 , . . . , ik|K|−1
, ik|K| that will be served by vehicle

k1, k2, . . . , k|K|−1, k|K| respectively. Next, compute a penalty, δik, associated

with inserting node i into the route of vehicle k. Thus, computing a heuristic

solution to HTCVRP using GAP or CFLP solution methods consists of:

(a) finding seed nodes or customers

(b) computing δik∀i ∈ N, k ∈ K

Once this is done, solving the GAP or CFLP will result in a set of nodes that

every vehicle k will serve. Finding the optimal route for these set of nodes is

trivial as it involves finding the TTSP for every vehicle k. Finally, in order to

further reduce the HTCVRP heuristic solution value, a refining operation is

also performed as described in Section 5.4.4.

5.4.1 Computing δik

δik can be interpreted as the penalty accrued by vehicle k for serving

node i. This vehicle k already serves seed node ik, so δik computes the addi-

tional cost of serving i, given that k already serves ik. Recall that the set of

nodes in the unique path from the depot to the node ik is denoted by PfDik .

Now, if i ∈ PfDik then this node i will already be visited by the vehicle k

on its way to serving the seed node ik. Therefore, the penalty associated with

serving this node i, or inserting this node i into the vehicle route, will be zero.

122

For any node i /∈ PfDik , the penalty associated with inserting that node i

into the vehicle route k is equal to twice the distance of that node from the

last common node in PfDik and PfDi. This is explained in detail as follows.

Consider Figure 5.1, let node i be the node to be inserted and node ik be the

seed node. Now, before node i is added, the cost of the vehicle route k is

twice the cost of traversing from the depot to ik, 2 × Lik . However, if node i

is added to the route, the cost of vehicle k’s route will be the sum of the costs

of traversing from the depot to ik, Lik , from ik to i, Lik,i, and from i back to

the depot, Li. The penalty cost, δik can now be computed. More formally:

δik =

{
0 if i ∈ PfDik

Lik + Lik,i + Li − 2× Lik if i ∈ N \ PfDik

(5.23)

Figure 5.1: Computation of δik∀i ∈ N \ PfDik , ∀k ∈ K

When no fixed costs are given, the objective function 5.13 can be re-

placed with: ∑
i∈N

∑
k∈K

δikyik (5.24)

123

and when fixed costs are given, the objective function 5.18 can be replaced

with: ∑
i∈N

∑
k∈K

δikyik +
∑
k

fkzk (5.25)

5.4.2 Finding seed customers

Seed nodes have to be chosen such that the resulting GAP or CFLP

solution is as close to the optimal solution as possible. Seed nodes should be

selected such that, in the resulting GAP solution, the same vehicle does not

serve two seed nodes. Secondly, seed nodes should be located such that total

insertion cost, δik, is minimized. Since the vehicle fleet is heterogeneous, the

procedure assigns vehicles to nodes in decreasing order of capacity. The seed

node selection procedure defined here has three steps:

Step 1 Assign vehicle k to seed node ik

Step 2 Determine potential nodes that vehicle k will serve; delete these nodes

Step 3 Select the next seed node, ik+1, from the remaining set of nodes

It can be seen that the number of iterations is equal to the number of vehicles.

Starting with the entire tree, at every iteration of the procedure a sub–tree is

deleted, so that the pool of seed node candidates keep decreasing. The node

deletion at every stage ensures that no two seed nodes are served by the same

vehicle. Secondly, nodes are deleted in such a manner that the resulting GAP

124

solution will be minimized. This is done by trying to guarantee that a vehicle

k will choose to serve a node i such that δik = 0.

Assume that the nodes in the tree at iteration k is Nk and |Nk| = nk.

This implies that n−nk number of nodes have been deleted by iteration k−1.

Next, it’s easy to see the tree at iteration k is actually a covering sub–tree

with |R| = nk, therefore, the tree at an iteration k is denoted by CSRk
. The

tree at the first iteration is the original tree network T , with n1 = n + 1 (the

additional node is the depot). Lastly, note that at iteration k, |K| − k + 1

vehicles are yet to be assigned.

The function to assign a vehicle to a seed node, at iteration k, is denoted

by VehicleAssign(k). Contractk is the function that deletes nodes from the

tree CSRk
such that the next seed node, ik+1, that is chosen is not assigned to

the vehicle k by the GAP.

The first method, VehicleAssignH1(k) is as follows. At every iteration

k, the nk nodes are sorted in decreasing order of their cost Li. The function

quicksort(Li : i ∈ Nk) performs this function and stores the nodes in the

array SORTk. The pth element of SORTk is denoted by SORTk(p) Now, from

the first |K|−k+ 1 elements of SORTk, the node with the highest cumulative

demand Demi is selected to the be seed node ik and is assigned to vehicle k.

The details are presented in Algorithm 5.2.

The second method of assigning seed nodes, VehicleAssignH2(k) is a

slight modification of the first. From the first |K| − k+ 1 elements of SORTk,

125

Algorithm 5.2 Computation of VehicleAssignH1(k) at iteration k

Input: Nk, Li∀i ∈ Nk, Demi∀i ∈ Nk, fk
Output: ik

1: if fk 6= 0 then
2: for i = 1→ nk do
3: Li ← Li + fk
4: end for
5: end if
6: SORTk ← quicksort(Li : i ∈ Nk)
7: ik = argmax

i
{Dem(i) : i = SORTk(p)|1 ≤ p ≤ |K| − k + 1}

instead of selecting the node with the highest cumulative demand Demi to be

the seed node ik, the node that is farthest away from the seed node ik−1 is

selected.

Proposition 5.1. At every iteration k, the seed node ik is a leaf node of the

covering sub–tree CSRk

Proof. Assume that the chosen seed node ik is not a leaf node of the tree

CSRk
. But, any node that is a direct descendant of ik will also be in the first

|K|−k+1 elements of SORTk. Therefore, step 7 of Algorithm 5.2 will always

select a leaf node.

The next step in iteration k of the seed node selection procedure deletes

nodes from the tree CSRk
that will potentially be served by the current vehicle

k which has been assigned seed node ik. Contractk contains the set of nodes

whose deletion from the tree CSRk
results in the tree for the next iteration k+1,

CSRk+1
. Let binUB(Vi) be the bin–packing upper bound, with bin capacity

126

Capk, on the number of vehicles required to serve sub–tree Si. Starting at

the leaf node ik, and moving upwards in the tree, a sub–tree Si is deleted

from the tree CSRk
if binUB(Vi) < 2. The reason for this is straightforward as

this procedure deletes nodes closest to the seed node which can be served by

vehicle k. Here, the first fit decreasing (FFD) procedure is used to calculate

binUB(Vi). The steps of this procedure are described in Algorithm 5.3.

Algorithm 5.3 Computation of set Contractk at iteration k

Input: CSRk
di : i ∈ Nk Capk

Output: Contractk CSRk+1

1: i← ik+1

2: CurrentNode = ik
3: while binUB(Vi) < 2 do
4: CurrentNode = i
5: i← Pi
6: end while
7: Contractk = {i : i ∈ SCurrentNode ∩Nk}
8: Nk+1 = NK \ Contractk
9: Ak+1 = Ak \ {(i, j) ∈ Ak : i ∈ Contractk} \ {(i, j) ∈ Ak : j ∈ Contractk}\

{(i, j) ∈ Ak : i ∈ Contractk, j ∈ Contractk}
10: CSRk+1

= (Nk+1, Ak+1)

5.4.3 Solving the Generalized Assignment Problem

As stated perviously, after the seed nodes have been identified, the

next step involves solving the GAP (the CFLP if fixed costs are given). δik is

calculated for very seed node and every vehicle. The formulation HTCVRP(2)

is then used to solve the GAP. Since the GAP is a very well known problem

in logistics and operations research, many polynomial techniques that provide

close to optimal solutions exist in the literature. The Lagrangian based LBR

127

and RGT developed by Jeet and Kutanoglu (2007) is employed here. It is

easy to see that after solving the GAP, a feasible solution to the HTCVRP is

always obtained.

5.4.4 Refining Operation

A feasible solution to the HTCVRP is obtained by solving the GAP (or

CFLP). This solution can be refined further by performing a myopic savings

operation. Let the current best solution value obtained by solving the GAP be

z̄w and the current best solution be X̄w, Ȳw. Where w is the number of vehicles

used by the solution and 1 ≤ w ≤ |K|. The refining operation examines one

node at a time. Thus, the refining operation has |N | iterations. First, for

every node the total savings in cost obtained by removing that node from the

current route and placing it in one of the available w − 1 routes or a new

(w + 1)th route is calculated, provided that the insertion is possible. Let the

solution cost of removing node i from the current route and placing it in route

k be given by zwki
for each node i. That is for every node i, the savings Savi

is:

Savi = max
k
{z̄w − z̄wki

} where k = {1, 2, . . . , w, w + 1} (5.26)

LIST is the set of nodes in non–increasing order of the Savi value. LISTr

denotes the rth element of LIST . Now, if the maximum savings LIST1 is

positive, then the node i which yields this savings is inserted into its new

location and z̄wki
is the new incumbent best solution. If the maximum savings

is zero, then the node i which yields this zero savings is discarded and the next

128

iteration is initiated. Let z̄ be the best heuristic solution value and X̄, Ȳ be

the best heuristic solution obtained at the end of the refining operation. The

details of the algorithm are presented in Algorithm 5.4.

Algorithm 5.4 Refining Operation to Improve Heuristic Solution

Input: X̄w, Ȳw, z̄w
Output: X̄, Ȳ , z̄

1: Calculate Savi = maxk{z̄w− z̄wki
} where k = {1, 2, . . . , w, w+1} ∀i ∈

N
2: LIST = {p : Savp−1 ≥ Savp ≥ Savp+1} |LIST | = |N |
3: z̄ = z̄w X̄ = X̄w Ȳ = Ȳw
4: while LIST 6= ∅ do
5: if LIST1 > 0 then
6: z̄ ← z̄ − SavLIST1
7: Calculate w
8: z̄w ← z̄
9: Update X̄ and Ȳ

10: LIST = LIST \ LIST1

11: else
12: LIST = LIST \ LIST1

13: end if
14: Calculate Savi ∀i ∈ LIST
15: LIST = {p : Savp−1 ≥ Savp ≥ Savp+1}
16: end while

5.4.5 Heuristic HTCVRP

The complete heuristic proceeds in the following manner:

Step 1 Find seed customers using functions VehicleAssign(k) and Contractk

till either |K| nodes have been assigned or all nodes N have been covered

Step 2 Calculate δik for the seed customers ik

129

Step 3 Solve GAP using HTCVRP(2) with objective function 5.24, if fixed

costs are given then solve HTCVRP(3) with objective function 5.25

Step 4 Calculate the current best heuristic solution X̄w and Ȳw; and best

heuristic solution value z̄w

Step 5 Perform the refining operation described in Algorithm 5.4 to obtain

X̄, Ȳ and z̄

The pseudocode for the heuristic is given in Algorithm 5.5

Algorithm 5.5 Heuristic Algorithm for HTCVRP

Input: T = (ND, A) di∀i ∈ N cij∀(i, j) ∈ A Capk∀k ∈ K
Output: z̄ X̄ Ȳ

1: N1 = N
2: for k = 1→ |K| do
3: if Nk 6= ∅ then
4: Compute ik using VehicleAssign(k)
5: Compute δik∀i ∈ N
6: Compute set Contractk
7: end if
8: Nk+1 = Nk \ Contractk
9: end for

10: Solve GAP using HTCVRP(2) with objective function 5.24
11: Calculate z̄w, X̄w and Ȳw
12: z̄, X̄ and Ȳ using Algorithm 5.4

The heuristic developed in this chapter can be applied to homogeneous

capacitated TVRPs and to capacitated TVRPs with free vehicles. Further-

more, the heuristic is also applicable when the arc costs are asymmetric and

vehicle dependent.

130

The heuristic is explained by means of an example shown in Figure 5.2.

The original network is shown in the left. The arc costs are shown on the

edges (in red), and the demand at every node is shown in a green box next

to the node. It is assumed that 3 vehicles with capacities 900, 600, and 300

are given. The first step, (I), involves assigning every vehicle to a seed node

in T . The vehicle k1 is assigned to node 8 and k2 is assigned to node 4. Note

that vehicle 3 remains unused. After the seed nodes have been assigned, δik

is calculated for the assigned vehicles (II). The GAP is then solved (III) using

δik, di and Capk as parameters. In the GAP solution, k1 serves nodes 5, 6,

7, 8, and 9; and k2 serves nodes 1, 2, 3, and 4. The solution cost is 272.

The solution cannot be improved any further, hence, step (IV) is empty. The

optimal solution to this problem is 272 too and contains the same assignment

of nodes.

131

Figure 5.2: An Illustrative Example showing the steps in the Heuristic

132

5.5 Test Instances

The solution quality and computational efficiency of the proposed al-

gorithm were tested on randomly generated test networks. The test networks

were generated using a procedure similar to the one described by Labbé et al.

(1991). Every node in the tree had between 1 to 5 children. Without loss

of generality, the depot was forced to have a degree of one. 20, 40, 70 and

120–node networks were generated.

5.5.1 Parameter Generation

Each test network was tested for five demand profiles uniformly dis-

tributed between [1 10], [1 30], [1 100], [20 20] and [20 80]. The minimum

vehicle capacity for each instance was randomly generated to be 1 to 2 times

the maximum vehicle demand. The number of vehicles |K| was the upper

bound on number of vehicles required to serve the network when all vehicles

have minimum capacity. This upper bound can either be a bin–packing up-

per bound or a TCVRP upper bound suggested by Chandran and Raghavan

(2008). 0 to 10% of the vehicles in |K| were assumed to be four times the

minimum capacity, 0 to 20% thrice the vehicle capacity and 0 to 20% twice

the vehicle capacity. The rest of the vehicles were assumed to be of minimum

capacity. The fixed costs were assumed to be 0. The chapter studies the effec-

tiveness of the seed node selection, contraction and refining operations which

are not dependant on vehicle fixed costs. The method described here tries to

ensure that the fleet size generated remain constaint over different demand

133

distributions for a particular node–size, this is done so that the fleet size does

not affect computational performance. As a result, a direct comparison of

the results here and the results presented in the other chapters cannot be di-

rectly compared. The fleet size is treated as a parameter here, whereas in the

other chapters it is treated as a variable that affects the solution quality and

computation time.

5.6 Computational Results

For every demand profile and for every node size, 10 instances were

solved as suggested by Labbé et al. (1991). Thus, in total, the heuristic was

tested on 200 networks for its solution quality and computational efficiency.

The exact formulation, along with the valid inequalities, was solved using the

CPLEX solver on a PC with a 32–bit architecture, 4GB RAM, and 2.93 GHz

processor. The iteration limit for branch and bound was set to 100000, the

time limit was set to 1000 seconds, and the optimality criterion for the MIP

(relative gap between the best found integer solution value and best found LP

value) was set to 0.0001. The time limit is only set to 1000 because the optimal

solution method is not being tested here, moreover investigating how the IP

performs after 1000 seconds gives an insight into the ability of the heuristic

to generate good quality solutions within a fraction of the time. A summary

of the computational results is presented in Table 5.1. The summary contains

the following information:

Solved The number of instances (out of 10) that were solved to optimality

134

within 1000 seconds.

TimeOPT The time taken by CPLEX to solve the MIP formulation to op-

timality (reported only for solved instances).

TimeH1 and TimeH2 The time taken to solve the heuristic (using VehicleAssignH1

and VehicleAssignH2) respectively. It is the sum of times required to

solve VehicleAssign, Contract, Generalized Assignment Problem and

Refinement algorithms.

GapH1 and GapH2 This is the gap between the heuristic algorithm and

the optimal solution (z∗). This gap is given by z̄−z∗
z∗

. It conveys how

far off the algorithm solution value was from the optimal solution value

(reported only for solved instances of the MIP).

First GapH1 and First GapH2 This is the gap between the heuristic al-

gorithm solution value and the first best integer solution found by the

CPLEX solver (zF). It is computed as z̄−zF
z̄

. It is reported only for

unsolved instances.

Last GapH1 and Last GapH2 This is the gap between the heuristic al-

gorithm solution value and the last best integer solution found by the

CPLEX solver (zL). It is computed as z̄−zL
z̄

. It is reported only for

unsolved instances.

135

5.6.1 Solution Quality

Table 5.1 shows that for solved instances, the gap varied between 2% to

8% for heuristic H1 and between 3% and 11% for heuristic H2. On an average,

H1 seems to perform better than H2. Also, as problem size increased, the gap

did not increase substantially for either H1 or H2. This is because the seed

node selection depended on the network geometry and not on the network

size. Moreover, δik was computed based on tree geometry and not on network

size. The demand distribution [1 10] was the easiest to solve for the heuristic

and for CPLEX, while the networks with demand [20 20] were the hardest

to solve. Only a few 70–node instances could not be solved to optimality,

whereas all 120-node instances remained unsolved after 1000 seconds. This

is because the method used to generate |K| results in a very high |K| value

for larger problems thereby increasing the number of variables that need to be

branched. The First Gap reported for the unsolved instances were atleast 53%

lower than the best initial integer solution found by CPLEX. Therefore, the

heuristic can be used to initialize the CPLEX solver very effectively. Finally,

the Last Gap results suggest that the heuristic solutions were very close to the

best last integer solution found by CPLEX at termination. In fact, for 120–

node networks with [20 20] demand, the heuristic solution was better than the

last CPLEX solution. This reaffirms that for tougher problems, the heuristic

can be used to find very good solutions.

136

5.6.2 Computational Performance

As expected, the CPLEX solution time increases with problem size.

For 120–node networks, CPLEX was unable to find a solution within 1000

seconds. On the other hand, the heuristic took much lesser time to find good

solutions that were well within 10% of the optimal solution for most cases.

H1 perfomed marginally better than H2 as H2 required one extra step com-

pared to H1. It is interesting to note that the maximum reported time for

solving the heuristic without applying the refining operation was only about 5

seconds. The refinement operation performs |N |2|K| iterations for every net-

work. Therefore, due to their high |K| value, the time take for instances with

[20 20] and [20 80] demand was higher than the time taken for other demand

profiles.

137

Network Demand Solved Nodes GapH1 GapH2 TimeOPT TimeH1 TimeH2 First First Last Last
secs secs secs GapH1 GapH2 GapH1 GapH2

20–node

[1 10] 10 398 0.027 0.029 1.35 0.52 0.51 – – – –
[1 30] 10 202 0.037 0.053 0.95 0.31 0.33 – – – –
[1 100] 10 339 0.050 0.051 1.67 0.57 0.61 – – – –
[20 20] 10 3790 0.027 0.064 2.93 1.23 1.23 – – – –
[20 80] 10 5625 0.026 0.059 5.25 0.89 0.93 – – – –

40–node

[1 10] 10 4054 0.033 0.063 5.88 2.13 2.24 – – – –
[1 30] 10 1259 0.056 0.066 4.98 2.46 2.53 – – – –
[1 100] 10 1047 0.070 0.056 44.49 2.35 2.97 – – – –
[20 20] 10 3764 0.026 0.099 32.72 7.82 8.10 – – – –
[20 80] 10 3256 0.073 0.078 15.74 4.22 4.93 – – – –

70–node

[1 10] 10 9244 0.079 0.103 195.68 11.86 12.54 – – – –
[1 30] 8 30005 0.070 0.082 358.5 12.42 13.24 -0.65 -0.58 0.047 0.044
[1 100] 10 9722 0.083 0.113 133.9 7.45 7.79 – – – –
[20 20] 0 19028 – – – 48.65 53.57 -.718 -.564 0.056 0.133
[20 80] 5 33719 0.085 0.087 585.8 39.65 40.67 -0.525 -0.488 0.133 0.156

120–node

[1 10] 0 10618 – – – 28.45 29.35 -0.574 -0.566 0.104 0.102
[1 30] 0 30005 – – – 32.46 32.36 -0.589 -0.597 0.123 0.118
[1 100] 0 12318 – – – 30.23 30.30 -0.749 -0.694 0.081 0.112
[20 20] 0 2429 – – – 95.67 98.54 -743 -.615 -0.045 0.029
[20 80] 0 9327 – – – 79.94 80.59 -0.614 -0.613 0.091 0.091

Table 5.1: Summary of Numerical Results

138

5.7 Conclusions

In this chapter a special case of the VRP – where the network is a tree

and the vehicle fleet is fixed and heterogeneous was studied. Because of this

heterogeneity, existing heuristic solution methods cannot be used to solve the

problem.

The HTCVRP’s relation to the Generalized Assignment Problem and

the Capacitated Facility Location Problem was discussed. It was shown that

when the nodes were ordered in DFS order, the existing IP formulation can

be modified to have only GAP constraints. A linear approximation to this

modified formulation was presented. A heuristic was then developed to use

this GAP formulation to solve the HTCVRP. The heuristic iteratively finds

seed nodes using Upper Bound (UB) heuristics for the BPP, assigns a vehicle

to each seed node, then uses a Lagrangian–based GAP algorithm to assign

nodes to vehicles located at the seed node. Two methods for finding seed

nodes were also presented.

The heuristic was tested on 200 test networks of varying sizes. It was

found that the heuristic performs consistently well irrespective of problem size

with solutions ranging from 2 – 10% of the optimal solution value, while taking

much lesser time than the CPLEX solver. It was also shown that significant

improvements in optimal solution time can be achieved if the heuristic solution

was used to initialize the CPLEX solver.

Future research includes exploring other variants of the problem, like

139

the TVRP with Time–Windows, and stochastic and online versions of TCVRPs.

Exploring other heuristic solution techniques that explicitly take advantage of

the tree structure must also be explored.

140

Chapter 6

TVRP with Time–related Constraints

In this chapter, new heuristics for two variants of the TVRP – vehi-

cle time or duration constraints and customer time–window constraints – are

proposed. Exact and heuristic methods and other details of the Duration

Constrained Capacitated Vehicle Routing Problem on Trees (DTCVRP) are

described in Sections 6.1 – 6.5, while Sections 6.6 – 6.8 deal with the Capaci-

tated Vehicle Routing Problem on Trees with Time–Windows (TCVRPTW).

6.1 Problem Definition – DTCVRP

The Duration Constrained Capacitated TVRP is concerned with find-

ing optimal time minimizing vehicle routes that serve customers that are lo-

cated on a tree network. Each vehicle is specified a tour time limit which

cannot be exceeded.

The problem is defined as follows. Given a tree network T = (ND, A)

with customer nodes i ∈ N and arcs (i, j) ∈ A between the nodes with traversal

times tij; demand at each node di; service time at each node si; and a set of

vehicles k ∈ K with capacity Cap and tour duration limit Q – find a collection

of time–minimizing routes starting and ending at the depot, such that

141

(i) the customer’s demand/supply at a node is satisfied by exactly one vehicle,

(ii) vehicle capacity restrictions are adhered to,

(iii) no vehicle exceeds its time duration constraint

It is assumed here, as usual, that the arc costs and arc traversal times

are equal, that is cij = tij (Laporte et al., 1985, 1984). Sometimes, this problem

is referred to as the distance constrained vehicle routing problem or the time

constrained vehicle routing problem. Further, the objective is to minimize

the total time. For simplicity, and to prevent any notational overload, it is

assumed that Li is the time taken to travel from the depot to node i.

The DTCVRP is discussed in the following three sections. A lower

bound condition for the problem is defined in Section 6.2 and some exact

methods for solving the DTCVRP are discussed Section 6.3. A Heuristic is

for the problem is proposed in Section 6.4. Section 6.5 contains some results

of the computer implementation of this problem.

6.2 Lower Bound – DTCVRP

The lower bound for the DTCVRP defined by Mbaraga et al. (1999) is

documented below for completeness. This lower bound is further used in the

IP formulation that is described later on. The number of vehicles entering any

sub–tree Si for a node i ∈ N is constrained by the total demand that has to

be served in that sub–tree and also the total time it takes to serve the sub–

tree. Let V Cap
i be the minimum number of vehicles required to serve sub–tree

142

Si when only the demands in the sub–tree are considered. Then, as per the

discussion in chapters 3 and 5, it can be stated that:

V Cap
i =

⌈∑
j∈Si

dj

Cap

⌉

Now, consider the duration constraints. The amount of time a vehicle

spends serving a node i is:

ri = si + tPii + tiPi

That is, the sum of service time at node i and the time required to reach to

that node from its parent and the time required to exit from that node and

move towards its parent. This definition is possible because, in trees, every

vehicle will enter a sub-tree only once for service. So, ri is a duration constraint

equivalent of the demand at every node.

Notice that, a vehicle k ∈ K can spend upto Q− 2LPi
amount of time

serving the nodes in Si. Therefore, for every node i, the residual time available

for serving nodes below it can be defined by:

qi = Q− 2LPi

This can be interpreted as a duration constraint equivalent of the capacity

restriction for every vehicle. Let V D
i be the minimum number of vehicles

required to serve sub–tree Si. Then, if qi is the capacity at i and ri is the

demand at i,

V D
i =

⌈∑
j∈Si

rj

qi

⌉

143

The minimum number of vehicles that serve a sub–tree Si is then given

by:

Vi = max
{
V Cap
i , V D

i

}
Proposition 6.1. A lower bound, z, on the optimal objective value, z∗, to the

DTCVRP is given by:

z = 2
∑
i∈N

Vit{Pi,i} (6.1)

Proof. As described above, the minimum number of vehicles requires to serve

Si is Vi. Therefore, at least Vi vehicles will enter the sub–tree Si to serve its

nodes. This implies that at least Vi vehicles will traverse the edge {Pi, i}.

These vehicles will traverse the arc {Pi, i} once on their way from the depot

to the sub–tree, and once on their way back (after service) from the sub–tree

to the depot. The result follows.

6.3 Exact Methods – DTCVRP

This section describes the exact methods for solving DTCVRPs and

suggests an IP formulation for the same.

6.3.1 Branch–and–Bound and Column Generation

Mbaraga et al. (1999) used a branch–and–bound scheme for the DTVRP

and the DTCVRP. The scheme proceeds in a breadth first order. If the up-

per bound solution value z̄ equals the lower bound value z, then the scheme

terminates as it has found the optimal solution. Otherwise, at every iteration,

144

a branch is created only if the distance constraints are not violated. These

are trivially checked as the total distance traveled by each vehicle is twice the

length of tree with only the nodes in that vehicle considered. A new vehicle

route is created for every node with capacity between Cap
2

and Cap. These

nodes are defined to be I1. Now, at an arbitrary iteration, x, an unassigned

node, i, farthest from the depot is chosen. Branches are created from x for

every vehicle route and a new route with only i in it, provided capacity con-

straints are satisfied. A lower bound is computed for every potential node

p. If zp ≥ z̄, then p is not created. Otherwise, Ip = Ir ∪ {k}. Thus, this

procedure implicitly considers every node assignment to every vehicle, thereby

exhausting all possibilities.

Mbaraga et al. (1999) also define a set covering–based formulation for

the DTCVRP, which is solved using column generation. The master problem of

the column generation scheme solves the CDTVRP for a subset of variables,

these variables are then parsed to the subproblem. The subproblem of the

CDTVRP is a capacitated and distance constrained shortest path problem,

whose arc costs are defined such that the shortest path will generate a column

with the most negative reduced cost, which will in turn be parsed to the master

problem. The tree arcs and costs are modified to form an acyclic graph for

every vehicle. The constrained shortest path (SP) is then solved on these

acyclic graphs using the algorithm proposed by Desrosiers et al. (1995). The

SP algorithm has a pseudopolynomial running time.

For smaller demands, bin–packing bounds are sharper and have smaller

145

search trees, and thus, branch–and–bound is more efficient than column gen-

eration. However, the column generation scheme is much more robust in han-

dling heterogeneous vehicles. The reader is referred to paper by Mbaraga

et al. (1999) for the details of the branch–and–bound and column generation

techniques.

6.3.2 IP–Formulation

The IP–formulation for the DTCVRP is similar to the TCVRP formu-

lation described in Chapter 5. In addition to those constraints, a duration

constraint must be added for every vehicle. The variables in the formulation

are described as follows:

Variables

xijk =

{
1 if vehicle k travels on arc (i, j) ∈ A
0 otherwise

yik =

{
1 if vehicle k serves node i ∈ N
0 otherwise

Firstly, the total demand serviced by a vehicle k cannot exceed its

capacity. That is,

∑
i∈N :di>0

yikdi ≤ Cap ∀k ∈ K

The next constraint imposes that every node is serviced by exactly one vehicle.

∑
k∈K

yik = 1 ∀i ∈ N : di > 0

146

Next, movement–related constraints need to be defined. Since the given net-

work is a tree, a vehicle k serves a node i by traversing along the arc connecting

the parent of the node i to i. This is stated as follows:

yik ≤ xPiik ∀i ∈ N : di > 0,∀k ∈ K

Next, it is essential to ensure that every vehicle begins its tour at the depot.

A constraint that ensures that a vehicle never moves from a node to its child

unless the arc from that node’s parent to that node has been traversed will

impose this requirement. So, if a vehicle k serves node i ∈ N : di > 0, this

constraint enforces that all the arcs on the path that leads from the depot to

this node i are traversed by k.

xPiik ≥ xijk ∀i ∈ N : di > 0,∀j ∈ c(i), ∀k ∈ K

Finally, every vehicle k’s route cannot exceed time Q. Given that the network

is a tree, and given the nodes a vehicle is going to serve, the arcs traversed by

that vehicle is known. Also, it is known that a vehicle spends si amount of

time at every node i that it decides to serve. Therefore,

2
∑
i∈N

∑
j∈N

tijxijk +
∑
i∈N

siyik ≤ Q ∀k ∈ K

For completeness, the formulation is stated as follows:

147

Formulation: DTCVRP

Minimize: z∗ = 2
∑
i

∑
j

∑
k

tijxijk (6.2)

Subject to: ∑
i∈N :di>0

yikdi ≤ Cap ∀k ∈ K (6.3)∑
k∈K

yik = 1 ∀i ∈ N : di > 0 (6.4)

yik ≤ xPiik ∀i ∈ N : di > 0,∀k ∈ K (6.5)

xPiik ≥ xijk ∀i ∈ N : di > 0,∀j ∈ c(i),∀k ∈ K (6.6)

2
∑
i∈N

∑
j∈N

tijxijk +
∑
i∈N

siyik ≤ Q ∀k ∈ K (6.7)

xijk ∈ {0, 1} ∀(i, j) ∈ A,∀k ∈ K (6.8)

yik ∈ {0, 1} ∀k ∈ K, ∀i ∈ N : di > 0 (6.9)

The total number of constraints and variables in the IP are the same

as that for the IP used to solve the TCVRP plus the constraint 6.7, which is

O(|K|).

Adaptability of the Formulation

The formulation can be adapted as follows to solve the following vari-

ants of the DTCVRP:

(i) Minimize Number of Vehicles Used: Firstly, the total number of available

vehicles is kept free. That is, |K| = |N |−1. Then, the objective function

148

is changed to:

z∗ =
∑

j∈c(depot)

∑
k∈K

xdepotjk

Due to the assumption that, in T , the depot has only one child, sim-

ply calculating the total number of vehicles traversing the arc from the

depot to its child will record the total number of vehicles used by the

formulation.

(ii) Vehicle Fleet is Heterogeneous: In this case, vehicles of different capacities

are employed. Modifying the parameter Cap to Capk∀k ∈ K and the

duration limit for each vehicle to Qk.

(iii) Vehicle Dependant Arc Costs: The arc costs are no longer cij∀(i, j) ∈ A

but cijk∀(i, j) ∈ A, ∀k ∈ K. Changing the arc costs to cijk wherever they

appear in the formulation will account for these vehicle dependent arc

costs.

(iv) Asymmetric Arc Costs or Traversal Times: The formulation assumes that

the arc travel times are symmetric. This assumption can be relaxed by

adding a flow conservation constraint as follows:

∑
j∈{Pi∪c(i)}

xijk =
∑

j∈{Pi∪c(i)}

xjik ∀i ∈ N, ∀k ∈ K

149

Valid Inequalities

The symmetry breaking inequalities, as defined previously, are added to

the formulation. Additionally, the knapsack–like constraints are also added to

the formulation. The first constraint states that if the sum of the demands of

two nodes exceeds the vehicle capacity, then only one of these nodes is served

by the vehicle. The second one states that if the time required to serve two

nodes exceeds the vehicle time limit, then only one of those two nodes will be

served by the vehicle.

In Section 6.2, Vi was described to be the minimum number of vehicles

required to serve the sub–tree Si : i ∈ N . Therefore, in the tree, the arc (Pi, i)

will be traversed at least Vi times, or at least Vi vehicles will use arc (Pi, i).∑
k∈K

xPiik ≥ Vi ∀i ∈ N (6.10)

6.4 Heuristic – DTCVRP

The heuristic described here is a modification of the Savings Algorithm

first developed by Clarke and Wright (1964a). Initially, every node is assigned

its own vehicle. Two vehicles are then merged together if the merging is feasible

and results in a time saving. Now, consider two vehicles located at nodes i

and j. Initially, the total time for routing these two vehicles is 2(Li + Lj).

That is, the total time is equal to the time spent in traveling from the depot

to i and returning back to the depot, and the time spent in traveling from the

depot to j and returning back to the depot. Assume that the vehicles at i and

150

Figure 6.1: Maximum Savings Obtained by Merging Vehicles at i and j

j can be merged together into a single vehicle. Then the total time savings

obtained from this merging is equal to twice the time required to travel from

the depot to the last node that is common to both the paths i and j from the

depot. More formally, if Savij is the savings obtained from merging vehicle i

and j, then:

Savij = 2 max
p={PfDi∩PfDj}

Lp

Recall that PfDi is the set of nodes in the unique path from the depot to

node i. Figure 6.1 illustrates the savings that can be obtained by merging two

vehicles.

In a nutshell, the heuristic proceeds as follows. First, each node is

assigned its own vehicle. Therefore, initially, there are |N | − 1 vehicles. It is

also assumed that after serving that node, the vehicle is parked at that node.

At this stage the duration of the vehicle route that is parked at i is simply 2Li.

In the next step, or, for that matter, at any intermediate step, the vehicle that

is parked farthest from the depot is chosen for merging. If there is a tie, the

151

vehicle with the maximum sum of current demand served and route duration

is chosen. Two vehicles can only be merged if they are both parked at the

same node. Three cases exist:

Case 1 If there are no two vehicles parked at the same location, then the

vehicle k that was parked at j is now moved from j and parked at Pj.

The total demand and nodes served by the vehicle still remains the same,

so does the route duration since it is just moving to the parent of the

current node.

Case 1 If there are exactly two such vehicles, then these two vehicles are

selected for merging. Assume that k1 and k2 are candidates for merging

and they both are parked at some node j. Then, if the route duration

and capacity constraints permit merging, these two vehicle routes are

merged. A new vehicle route that contains the nodes served by both

these vehicles is created and parked at node j. If the vehicles cannot be

merged together, then the first vehicle that was selected is moved to its

parent node.

Case 3 More than two vehicles are parked at the same node j. In this case,

the vehicles are chosen in decreasing order of the sum of their current

demand served and route duration. Each vehicle is tried for merging

with another. If a vehicle cannot be merged, it is moved from its current

node and parked at the parent of that node.

152

At termination, every vehicle will be parked at the depot. Another point of

note is that at any iteration, all the nodes that are below the nodes where the

vehicles are parked would have been served.

In Algorithm 6.1, which formally describes the heuristic, the following

notation are used. Let parkk denote the current location of the vehicle k. Let

qk denote the time required to serve all the nodes currently in k starting at

parkk. Let dk denote the total demand served by the vehicle k. Let served(k)

be the set of nodes that have been served by vehicle k. For notational conve-

nience, assume that every time vehicles are merged, a new vehicle is created

and the merged vehicles are discarded. That is, if the heuristic started with

veh number of vehicles, then the merged vehicles will be veh+ 1, veh+ 2,

In the Algorithm 6.1, at any iteration, the variable CurrentVehicle

keeps track of the vehicle which has been considered for merging. As seen in

lines 12 – 24, on merging with v, both CurrentVehicle and v are removed

from the set K and vehicle veh which contains nodes served by both these

vehicles is added to K. veh is now considered for merging and that explains

the variable MergeCandidate which keeps track of the vehicle to be merged if

multiple vehicles are parked at the same node.

The set CandidateVehicles stores all the vehicles that are farthest

from the depot and have been parked at the same node. The vehicles in this

set are arranged in decreasing order of qk + dk. If this set contains only one

vehicle, no merging is possible and the algorithm will not enter the loop from

lines 13 to 24. The vehicle is then moved to the parent node, this is detailed

153

Algorithm 6.1 Heuristic for DTCVRP

Input: T = (N,A), di∀i ∈ N, tij∀(i, j) ∈ A, Cap, Q
Output: Upper Bound DTCVRP Cost, z̄

1: Set K ← {1, 2, . . . , |N | − 1}
2: parkk ← k ∀k ∈ K
3: dk ← dparkk ∀k ∈ K
4: qk ← si + 2tparkkPparkk

∀k ∈ K
5: served(k)← k
6: veh← |K|
7: while ∃parkk 6= depot ∀k ∈ K do
8: CandidateVehicles ← argmaxk∈K Lparkk

9: SORT(CandidateVehicles) in non–increasing order of qk + dk
10: CurrentVehicle ← First Element of CandidateVehicle
11: CurrentNode ← parkCurrentVehicle
12: MergeCandidate ← CurrentVehicle

13: for iter = 2→ |CandidateVehicles| do
14: v ← CandidateVehiclesiter
15: if (qMergeCandidate + qv − 2tCurrentNodePCurrentNode

− 2LPCurrentNode
< Q +

1)(dMergeCandidate + dv < Cap+ 1) then
16: veh← veh+ 1
17: K ← {K ∪ veh \ MergeCandidate \ v}
18: qveh ← qMergeCandidate + qv − 2tCurrentNodePCurrentNode

19: dveh ← dMergeCandidate + dv
20: parkveh ← CurrentNode

21: served(veh)← {served(MergeCandidate) ∪ served(v)}
22: MergeCandidate← veh
23: end if
24: end for
25: if CurrentVehicle ∈ K then
26: parkCurrentVehicle ← PCurrentNode

27: qCurrentVehicle ← qCurrentVehicle + 2tCurrentNodePCurrentNode

28: end if
29: end while
30: z̄ =

∑
k∈K qk −

∑
i∈N si

154

in lines 25 – 28. Finally, the upper bound can be found by just adding the qk

values of all the vehicles at termination. As, at termination, every vehicle is

at the depot. The set serve(k) will contain the nodes served by each vehicle

at termination.

The Heuristic is explained using Figures 6.2 – 6.4. The original network

is given in Figure 6.2(a). The arc costs are shown on the edges (in red), and

the demand at every node is shown in a green box next to the node. The

vehicle capacity is assumed to be 300 and the time constraint for each vehicle

is assumed to be equal to twice the maximum distance from the depot, 154

here. Service times are assumed to be zero. The various iterations of the

heuristic are shown in Figures 6.2 – 6.4. The current location of a vehicle, the

accumulated duration and demand, and the nodes it has served is noted in the

table below each tree. The column names in these tables are the same as the

notation used to describe the heuristic.

Initially every node is assigned its own vehicle as shown in Figure 6.2(b),

next the vehicle that is farthest from the depot is chosen, V8 here, and moved

to the parent node. As shown in Figure 6.2(c), vehicles 7 and 8 can be merged

together without violating any constraints, the new vehicle, 10, is created after

merging. The vehicle numbers are changed after every merging to prevent any

confusion. park, served, q, and d for vehicle 10 are modified accordingly.

The procedure continues in this manner. Consider the iteration shown in

Figure 6.3(a), at this stage, V4 or V11 can be chosen, however, the d+ q value

of V11 is greater, and it is the vehicle that is chosen by the heuristic. Similarly,

155

at the third to last iteration, Figure 6.4(b), either V11 or V9 can be merged

with V2, however, V11 has a greater q + d value, and it is chosen to be merged

with V2. The upper bound value can be calculated by just summing the q

values at the final iteration.

156

Figure 6.2: An Illustrative Example for the DTCVRP – 1

157

Figure 6.3: An Illustrative Example for the DTCVRP – 2

158

Figure 6.4: An Illustrative Example for the DTCVRP – 3

159

6.5 Computational Results – DTCVRP

The heuristic and the formulation were tested on 50–node tree net-

works. This section describes the experimental setup and the computational

results of this implementation. The test networks were generated such that

every node in the tree had between 1 to 5 children. Without loss of generality,

the depot was forced to have a degree of one.

Arc Times The arc times can affect the computational results as these are

directly related to the duration constraints imposed on each vehicle.

Two arc time profiles were tested – times uniformly distributed between

[1 100] and [20 80].

Demand Each network was tested for five demand profiles uniformly dis-

tributed between [1 100], [10 90], [20 80], [40 60] and [50 50].

Capacity The vehicle capacity was set to 100.

Number of Vehicles The formulation requires the total number of vehicles

|K|. This was set to be equal to the total number of vehicles that were

used by the heuristic. The IP formulation does not impose that all the

vehicles must be used. It works within the given |K| and uses the opti-

mal number of vehicles that will minimize the total cost. The number of

vehicles are required because of the vehicle–index nature of the formula-

tion. Providing the IP with the number of vehicles used by the heuristic

also helps better compare the optimal solution value to the heuristic

value.

160

Duration Constraints Two different duration constraints were tested. Since

it is assumed that every node can be feasibly served, the first duration

constraint was equal to twice the maximum time between the depot to

any node, that is, Q = 2 maxi∈N Li. The second duration constraint

tested was Q = 2 maxi∈N Li + 50. Service times were zero.

Since there are many parameters which can affect the solution and

computational quality, the mean over which the demand was distributed was

kept constant. All tests were performed on randomly generated 50–node net-

works. For every demand profile, for every arc time distribution and for every

duration constraint, 10 instances were solved. That is, in total, 200 different

instances of the problem were solved.

The IP formulation, along with the valid inequalities, was solved us-

ing CPLEX on a PC with a 32–bit architecture, 2GB RAM, and 2.93 GHz

processor. The iteration limit for branch and bound was set to 100000, the

time limit was set to 3600 seconds, and the optimality criterion for the MIP

(relative gap between the best found integer solution value and best found LP

value) was set to 0.0001.

The order of branching the variables was set as follows. First, a variable

that represents the total number of vehicles is defined as follows:

v =
∑

j∈c(depot)

∑
k∈K

xdepotjk (6.11)

The variable v is branched first. Next, the branching rule for the variables yik

is set such that these variables are branched in increasing order of the vehicle

161

index. That is, the variable yik1 is branched before the variable yik2 for all

k1 < k2.

CPLEX was warm–started using the heuristic solution. That is, the

heuristic solution was fed into CPLEX as the first feasible heuristic solution.

So that this initial solution does not violate the symmetry constraints, the

nodes served by each vehicle in the heuristic were ordered such that the lowest

indexed node served by a vehicle increased with vehicle index and that a node

is only served by a vehicle whose index is less than the node index. A summary

of the computational results is presented in Table 6.1. The summary contains

the same information as Table 4.1.

6.5.1 Solution Quality and Computational Performance

In general, it can be noted that, for all travel time distributions and

duration constraints, the IP performs better as the demand variance decreases.

It can also be seen that problem instances with travel times in [20 80] perform

better than the instances with travel times in [1 100]. Further, for a given

travel time distribution, the problems with a lower time constraint perform

better. This is intuitive because when the duration constraints are lower,

more number of variables and constraints can be eliminated.

The LP–relaxation values are very tight for all the problem instances.

In fact, they are all above 95%. The LP–relaxations are slightly tighter when

the variance of the travel time distribution is lesser. For the [50 50] demand

instances, the LP–relaxation values are close to 100%.

162

Vehicle Travel Demand Solvedα |K|UB − v TimeUB TimeOPT LP/IP UB/IP LB/UB LP/LB Nodes
Duration Time secs secs

2 maxi∈N Li [1 100]

[1 100] 10 1.6 0.081 419.640 0.975 1.078 0.874 1.036 5228.3
[10 90] 10 2.0 0.085 216.610 0.950 1.076 0.849 1.041 3686.8
[20 80] 10 1.8 0.088 202.888 0.956 1.060 0.894 1.011 3412.0
[40 60] 10 1.0 0.079 74.244 0.959 1.050 0.900 1.016 945.6
[50 50] 10 0.6 0.079 4.248 0.999 1.024 0.887 1.109 0.0

2 maxi∈N Li + 50 [1 100]

[1 100] 10 2.6 0.081 466.318 0.970 1.098 0.861 1.027 10075.6
[10 90] 10 1.6 0.082 274.176 0.977 1.087 0.892 1.016 6518.3
[20 80] 10 3.0 0.084 94.511 0.996 1.079 0.899 1.020 4469.0
[40 60] 10 1.0 0.075 37.284 0.990 1.034 0.949 1.016 2023.5
[50 50] 10 0.8 0.078 3.887 0.997 1.029 0.945 1.022 58.4

2 maxi∈N Li [20 80]

[1 100] 10 3.0 0.079 158.316 0.992 1.092 0.858 1.013 3455.5
[10 90] 10 3.3 0.081 31.330 0.985 1.092 0.835 1.035 1824.0
[20 80] 10 2.0 0.077 26.372 0.992 1.088 0.840 1.048 1193.0
[40 60] 10 1.0 0.082 16.555 0.988 1.078 0.924 1.028 733.5
[50 50] 10 1.6 0.079 7.053 1.000 1.041 0.907 1.024 211.2

2 maxi∈N Li + 50 [20 80]

[1 100] 10 2.5 0.097 310.957 0.972 1.082 0.897 1.028 8566.0
[10 90] 10 2.0 0.080 149.015 0.989 1.073 0.877 1.024 6484.0
[20 80] 10 2.0 0.084 116.168 0.984 1.058 0.849 1.032 5490.0
[40 60] 10 1.2 0.078 71.651 0.971 1.046 0.907 1.024 1672.0
[50 50] 10 1.0 0.079 3.179 0.997 1.034 0.965 1.000 47.8

α All reported values are averaged over the 10 tested instances of each problem

Table 6.1: Summary of Numerical Results for the DTCVRP

163

Another interesting aspect is that the lower bound values are very close

to the LP–relaxation values. This might suggest that using a branch–and–

bound algorithm (Mbaraga et al., 1999) can yield very good results.

Here too, the solution quality depends on the number of vehicles re-

quired by the heuristic. As the difference between the number of vehicles re-

quired by the heuristic and IP increases, the solution quality decreases. This

difference is higher for higher demand variance. This is because the vehi-

cle merging step in the heuristic described earlier is more effective for lower

demand variance.

The heuristic performs reasonable well for all instances tested. The

heuristic quality is consistently between 2 – 9% of the optimal solution. The

heuristic seems to perform better when the demand variance is lower. The

heuristic performs best for the problem instances with travel time in [1 100]

and duration constraint equal to 2 maxi∈N Li. The heuristic solution time

averages around 0.08 seconds for almost all the tested instances. This suggests

that the heuristic is extremely quick to compute a feasilbe solution.

The IP solution times, for each travel time distribution and duration

constraint, increase with an increase in demand variability. As noted in earlier

chapters, there is a direct relation between number of vehicles, solution quality

and solution time. The solution times for the travel time distribution [20

80] are lower compared to the travel time distribution [1 100]. For a given

travel time distribution, the problems with lower time constraints are solved

to optimality faster.

164

6.6 Problem Definition – TCVRPTW

The Capacitated TVRP with Time Windows (TCVRPTW) is con-

cerned with finding cost minimizing vehicle routes beginning and ending at

the depot such that the total demand served by each vehicle does not ex-

ceed its capacity and a vehicle serves a customer only during the time window

specified by the customer.

A formal definition of the problem is as follows. Given a tree network

T = (ND, A) with customer nodes i ∈ N and arcs (i, j) ∈ A between the nodes

with traversal times tij; demand at each node di; service time at each node

si; service time windows [ai bi] for every customer i ∈ N ; and a set of vehicles

k ∈ K with capacity Cap – find a collection of time–minimizing routes starting

and ending at the depot, such that

(i) the customer’s demand/supply at a node is satisfied by exactly one vehicle,

(ii) vehicle capacity restrictions are adhered to, and

(iii) a vehicle serves a customer i only during the specified time window [ai bi].

It is assumed that the arc costs and arc traversal times are equal, that

is cij = tij. Further, it is also assumed that if a vehicle arrives at a node it is

going to serve before the service time window, then it can wait at that till it

can start servicing it. It is assumed that the customer time windows are such

that a feasible solution to the problem exists.

165

6.6.1 Additional Notation

Li is the time taken to travel from the depot to node i. Let Lij be

the time required to travel between any two nodes i and j in N . The time

window associated with the depot, [adepot bdepot] = [AB], where A is the earliest

departure time from the depot and B is the latest arrival time at the depot.

Clearly, a feasible solution to the problem exists only if A ≤ mini∈n{bi − Li}

and if B ≥ mini∈N{ai + si + Li}. Let ei denote the time at which service

starts at a node and let li be the time at which service ends at a node. Let wi

denote the waiting at a node before service begins. Then, wi = max{0, ai−ei}.

Consequently,

li =

{
ei + si if ei − ai > 0
ai + si if ei − ai ≤ 0

The TCVRPTW is discussed in the following two sections. A Heuristic

is for the problem is proposed in Section 6.7. Section 6.8 contains some results

of the computer implementation of this problem.

6.7 Heuristic – TCVRPTW

The heuristic proposed in this section is a route building heuristic. Ev-

ery iteration of the heuristic builds the route for a vehicle. First, a node

unassigned to any vehicle is chosen according to some rule. Then, the feasibil-

ity of accommodating an unassigned node closest to this node is investigated.

For each node that can be accommodated, the best position within the vehicle

166

route is noted. The best position obviously is the one which minimizes dis-

tance. From all these candidate nodes, finally, the node whose addition causes

the least increase in the vehicle route cost is finally added to the route. This

procedure continues till no new nodes can be added to the vehicle. In the next

iteration a new vehicle route is initialized. The heuristic is a modification of

the algorithm proposed by Solomon (1987).

In order to insert a node into a vehicle route, both capacity and time

window constraints have to be checked. Ensuring capacity feasibility is straight-

forward. Let Routek denote the route of vehicle k. For this heuristic, assume

that the depot is denoted by node 0. Let Routek = {0, 1k, 2k, . . . , |k|k, 0}.

That is , let 1k be the first node that vehicle k visits and let |k|k be the last

node that vehicle k visits before going back to the depot. Now, consider a

node i that has to be inserted into the route right after the pth node, pk, that

vehicle k serves. Obviously, before the insertion the time the vehicle arrives

at the (p + 1)th node is given by ep+1k = epk + spk + Lpkp+1k . However, after

the insertion of node i into the route,

einsp+1k
= ei + si + Lip+1k

. Therefore, the amount of time by which service start time at p + 1k gets

pushed forward is by

Pushp+1k = max{0, (einsp+1k
− ep+1k)− wp+1k}

. That is, the amount by which the service start time gets pushed forward by

is equal to time at which the service starts after insertion minus the time at

167

which the service started initially minus the waiting time at that node before

the insertion or 0, whichever is greater. For the nodes in positions p+2, . . . , |k|,

the amount by which the service start time gets pushed forward can be stated

recursively as

Pushr+1k = max{0, Pushrk − wr+1k} ∀p+ 1 ≤ r ≤ |k|

. Thus, in order for an insertion i into Routek between nodes pk and p+1k to be

time feasible, two conditions, as noted by Solomon (1987), must be satisfied:

(i) ei ≤ bi

(ii) erk + Pushrk ≤ brk ∀p+ 1 ≤ r ≤ |k|+ 1

Now, consider an intermediate stage of the route construction, when

node i has to be inserted into vehicle k. Let the increase in the vehicle route

cost after inserting i after the pth node in the route be Cost(pk, i, p+1k). Then,

Cost(pk, i, p+1k) =


0 if i is on the path from pk to p+ 1k

1 ≤ p+ 1 ≤ |k|
Lpki + Lip+1k − Lpkp+1k otherwise

(6.12)

This cost is computed for all feasible locations within the route where

the node i can be inserted. The best position p(i) after which the node i is

actually inserted is given by:

Cost(pk(i), i, p+1k(i)) = min
1≤p+1≤|k|

{Cost(pk, i, p+1k)+(einsp+1k
−ep+1k)} (6.13)

168

Thus, the best insertion position does not depend only on the cost

savings, but also on how much time slack there is in the p + 1th node after

insertion. Obviously, lesser the time slack the better as that tries to eliminate

other feasible possibilities.

So, to recap, when a node i is chosen for insertion into vehicle k, first

the increase in route cost after insertion of i into all feasible positions is cal-

culated. From these, the best possible location for insertion of the node i is

chosen. Therefore, Cost(pk, i, p+ 1k) is calculated for every node that can be

inserted and for every position that node can be inserted in and from this,

Cost(pk(i), i, p + 1k(i)) is calculated for every node that can be inserted fea-

sibly into the route. Now, recall that at every step of an iteration, only one

node is inserted into the vehicle cost. This node is chosen as follows:

i∗ = argmax
i
{2Li − Cost(pk(i), i, p+ 1k(i))} (6.14)

Different strategies can be used for selecting the first node in the vehicle

route. Some strategies include selecting the farthest unassigned node, selecting

a node with the earliest deadline etc. The strategy used here is to select the leaf

node with the earliest deadline. A leaf node is chosen so that in the insertion

step of the heuristic, the parent of the leaf node is chosen first, followed by the

children of the parent and so on. The heuristic is described in Algorithm 6.2.

Every vehicle route can be further improved by performing an exchange

operation. The 2–opt method is used here. This method has been detailed

169

Algorithm 6.2 Heuristic for TCVRPTW

Input: T = (N,A), di∀i ∈ N, tij∀(i, j) ∈ A, Cap, Q, [ai bi]∀i ∈ N
Output: Upper Bound TCVRPTW Cost, z̄
1: LIST ← N
2: k ← 1
3: while LIST 6= ∅ do
4: 1k ← argmin

i∈N :c(i)=∅
{bi}

5: LIST ← LIST \ ik
6: Routek ← {0, 1k, 0}
7: RouteCapacityk ← d1k
8: RouteCostk ← 2L1k

9: e1k ← max{a1k , L1k}
10: w1k ← max{0, a1k − L1k}
11: FLAG← 1
12: while FLAG = 1LIST 6= ∅ do
13: for i = LIST1 → LIST|LIST | do
14: FLAG← 0
15: for p + 1 = 2→ Routek do
16: if di + RouteCapacityk < Cap then
17: if erk + Pushrk ≤ brk ∀p + 1 ≤ r ≤ |k|+ 1ei ≤ bi then
18: FLAG← 1
19: ei ← max{ai, epk + spk + Lpki}
20: wi ← max{0, ai − ei}
21: Calculate Cost(pk, i, p + 1k) using Equation 6.12
22: end if
23: end if
24: end for
25: end for
26: if FLAG = 1 then
27: Cost(pk(i), i, p + 1k(i)) = min1≤p+1≤|k|{Cost(pk, i, p + 1k) + (einsp+1k

− ep+1k)}
28: i∗ = argmaxi{2Li − Cost(pk(i), i, p + 1k(i))}
29: RouteCapacityk ← RouteCapacity + di∗

30: RouteCostk ← RouteCost + Lpki∗ + Li∗p+1k − Lpkp+1k

31: Routek ← {0, 1k, . . . , pk(i∗), i∗, p + 1k(i∗), . . . , |k|k}
32: Recalculate wi, ei∀i ∈ Routek
33: LIST ← LIST \ i∗
34: Delete i from T = (N,A) ∀i ∈ Routek
35: end if
36: end while
37: k ← k + 1
38: end while
39: z̄ =

∑
k∈K RouteCostk

170

extensively in the literature, for example Braysy and Gendreau (2005); Lin

and Kernighan (1973); Koskosidis and Powell (1992). The main idea is to

evaluate every pair of arcs used by a vehicle and verify if an exchange of the

arcs and their directions will yield a cheaper solution. Within the tree context,

the order of service of the nodes in a vehicle route is changed if it is feasible to

serve the nodes in the order of increasing index. Since the nodes are labeled

in DFS order, serving them in increasing order will ensure that the number of

times a vehicle traverses an arc is minimized, thereby minimizing the cost.

It is assumed in this heuristic that every vehicle leaves the depot at time

A, the earliest possible time it can depart from the depot. After the heuristic

has run to completion, the departure time from the depot can then be changed

to ensure minimum waiting at the nodes. Further, notice that this heuristic

tries to fill up a vehicle before moving on to the next vehicle. The addition of

nodes into the vehicles is done such that the route cost is minimized, however,

in some sense precedence is given to minimizing the number of vehicles here.

However, because of the way the cost functions are defined, greater priority

is given to accommodating nodes closest to the last added node because they

will have a greater savings than adding a node which is on a different branch

of the tree.

A savings type heuristic that solely minimizes total cost, similar to the

heuristic presented in Algorithm 6.1, can be developed for the time windows

case too. In this savings type heuristic, vehicle routes start simultaneously and

two vehicles can be merged if they are both at the same node. The merging

171

operation requires that time window and capacity constraints are not violated.

This is done as follows. Let the two vehicles being merges be k and k + 1,

then the nodes in vehicle k can either be served before or after the nodes

in vehicle k + 1. The two vehicles can be merged if after the merging every

node’s start service time is still feasible. Although this method considers many

vehicles simultaneously, its not clear that the savings operation will eventually

decrease the total cost. This is because the time windows of the nodes might

result in very few feasible merges. As a result, the total objective cost will go

up.

6.8 Computational Results – TCVRPTW

6.8.1 Test Instances

The heuristic was tested on 50–node tree networks. The optimal solu-

tion for the problem was obtained by solving the VRPTW IP–formulation in

CPLEX. Since the exact solution method is not the focus here, this method was

used. Other sophisticated methods like column generation and branch–and–

cut methods were not implemented. This section describes the experimental

setup and the computational results of this implementation. The test networks

were generated such that every node in the tree had between 1 to 5 children.

Without loss of generality, the depot was forced to have a degree of one.

172

Node Time Windows

One of the considerations in generating the node–time windows was

that if the problem was solved with the time–windows set to the absolute

earliest and latest arrival times for each node, then the solution obtained should

equal that of the solution obtained by solving the TCVRP to optimality. This

was done as follows. The time at which vehicles can start from the depot, A

was set equal to zero. Now, in the TCVRP optimal solution, every vehicle

visits its customers in increasing DFS order. Therefore, if a single vehicle were

to visit all the nodes in the tree, then it would start at the node labeled 1

and, before returning to the depot, end its route at the node marked |N | − 1.

The total time required for this TSP tour was set to be the time by which

every vehicle must end its tour, B. Now, every node can be feasible served if

ai ≥ Li and bi ≤ B − si − Li. Therefore, any time window within this range

will result in a feasible solution. The service times si were set to zero for all

the nodes. Now, setting ai = Li and bi = B − si − Li for all the nodes will

result in a TCVRP solution because of the way A and B were set, and because

service times are zero. The service start times, ai, for every node was randomly

generated to be 1 to 1.2 times the absolute earliest time the service can start at

that node. The service end times, bi, for every node was randomly generated

to be 0.8 to 1 times the absolute latest time service can begin at that node.

Finally, cases were tested – when 50% of the nodes have time windows and

when 75% of the nodes have time windows. The nodes which were selected to

have time windows was done in the same manner backhaul nodes were selected

173

earlier. If f% nodes had time windows, first, |N | numbers in Unif(0,1) were

generated. A two–dimensional array containing these numbers and the node

numbers from 1 to |N | was then created. The nodes corresponding to the

first f |N | smallest Unif(0,1) numbers generated were selected to have time

windows. The other parameters were generated as follows.

Arc Times The arc times were uniformly distributed in [1 100].

Demand Each network was tested for five demand profiles uniformly dis-

tributed between [1 100], [10 90], [20 80], [40 60] and [50 50].

Capacity The vehicle capacity was set to 100.

Number of Vehicles The formulation requires the total number of vehicles

|K|. This was set to be equal to the total number of vehicles that were

used by the heuristic. Providing the IP with the number of vehicles used

by the heuristic helps better compare the optimal solution value to the

heuristic value.

Since there are many parameters which can affect the solution and

computational quality, the mean over which the demand was distributed was

kept constant. All tests were performed on randomly generated 50–node net-

works. For every demand profile, for every arc time distribution and for every

duration constraint, 10 instances were solved. That is, in total, 100 different

instances of the problem were solved.

The IP formulation was solved using CPLEX on a PC with a 32–bit

architecture, 2GB RAM, and 2.93 GHz processor. The iteration limit for

174

branch and bound was set to 100000, the time limit was set to 3600 seconds,

and the optimality criterion for the MIP (relative gap between the best found

integer solution value and best found LP value) was set to 0.0001.

6.8.2 Computational Performance and Solution Quality

The computational results are shown in Table 6.2. For both the cases

– 50% and 75% nodes with time windows – the heuristic solution quality

decreases and the demand variance increases. However, it is interesting to

note that for the 50% case the solution quality actually decreases between

the [20 80] and [40 60] demand distributions. The drop is only about 1%

and could be attributed to the specific problem instances that were generated.

Overall, however, the heuristic performs better for the 50% case than for the

75% case. The heuristic seems to perform the best when the demand variance

is 0. Overall, the heuristic solution value was between 5 – 12% of the optimal

value. Another interesting aspect is the difference in the number of vehicles

used by the exact and heuristic methods. The number of vehicles required

by the heuristic is very close to number of vehicles required by the optimal

solution. The heuristic seems to predict the number of vehicles exactly when

the demand variance is 0. However, the difference is slightly higher for the [20

80] and [40 60] demand distributions.

The time required by the heuristic (which included the 2–opt) imple-

mentation ranged from 7 to 18 seconds. Obviously, the time decreased ans the

demand variance decreased because fewer vehicles are required when the de-

175

Network Time Demand Solvedα UB/OPT |K|UB − v TimeUB
Window % secs

50–node 75 %

[1 100] 10 1.128 1 18.718
[10 90] 10 1.091 0.8 15.160
[20 80] 10 1.098 1.2 13.618
[40 60] 10 1.077 1.6 11.610
[50 50] 10 1.067 0 7.823

50–node 50 %

[1 100] 10 1.122 1.4 17.235
[10 90] 10 1.103 1.4 14.101
[20 80] 10 1.070 0.6 12.898
[40 60] 10 1.082 1.6 10.717
[50 50] 10 1.057 0 7.701

α All reported values are averaged over the 10 tested instances of each problem

Table 6.2: Summary of Numerical Results for the TCVRPTW

mand variance is lower. The time required to solve the problems to optimality

is not reported here because the method used here to find the optimal solution

is a fairly naive one. The new and sophisticated techniques that have been

developed for solving the VRPTW report much lower times than the method

used here.

6.9 Conclusions

In this chapter, new heuristics for two variants of the TVRP – vehicle

time or duration constraints and customer time–window constraints – were

proposed. A lower bound for the DTCVRP was suggested in this chapter.

Additionally, the IP–formulation was also modified to accommodate duration

176

constraints. The heuristic for the distance–constrained problem was a savings–

type heuristic. Initially, every node is assigned its own vehicle. Two vehicles

are then merged together if the merging is feasible and results in a time saving.

The procedure starts at the leaf node and moves upward. The heuristic and

exact solution methods were implemented on 50–node networks with varying

demand and travel time profiles. The problems were tested for two different

duration constraint values. Totally, 200 problem instances were tested. In

general, the proposed methods performed better when the travel time vari-

ance was lower. It was found that the IP performs better as the demand

variance decreases. The LP–relaxation values were very tight for all the prob-

lem instances and exceeded 95% for most of the instances. The IP solution

quality depended on the number of vehicles required by the heuristic. As the

difference between the number of vehicles required by the heuristic and IP

increased, the solution quality worsened. The heuristic performed reasonably

well for all instances tested. The heuristic quality was consistently between 2 –

9% of the optimal solution. The heuristic performed better when the demand

variance is lower.

The heuristic proposed for the TCVRPTW built a single vehicle route

at a time. When no more nodes can be accommodated into the current vehicle,

a new route is created. Nodes were added to the vehicle route based on

some cost and waiting time minimizing criteria were defined. A method for

generating test instances was also described. the heuristic was implemented

on 50–node networks of varying demand profiles. Two types of problems were

177

generated – 50 ad 75% of the nodes having time windows. In all, 100 problem

instances were solved. It was found that the 50% case performed marginally

better than the 75% case. The heuristic solution value was between 5 – 12%

of the optimal solution value.

This chapter provided only a preliminary analysis of the TCVRPTW.

Future research includes developing exact solution methods for this problem,

especially column generation techniques, as tree structures might be particu-

larly amenable to such techniques.

178

Chapter 7

Summary and Scope for Future Work

In this dissertation, a special case of the VRP was considered – where

the underlying network has a tree structure (TVRP). The dissertation focused

on developing customized algorithms and solution techniques for some unex-

plored variants of the TVRP. It was shown that the capacitated version of

the TVRP is NP–hard, while the uncapacitated version reduces to solving the

TSP on trees. The TVRP differs from the VRP in that the network in a VRP

contains an edge between every pair of nodes. The main complicating factors

in TVRPs is that a vehicle can visit a node without actually serving it. This

is not the case with VRPs, where, whenever a node is visited by a vehicle, it is

also served. Some real–world examples of tree networks encountered in river

networks, railway networks, and rural areas were provided.

Properties, lower bounds, heuristics, and exact solution methods for

the following four variants of the TVRP were discussed: (a) TVRPs with

Backhauls (b) TVRPs with Heterogeneous Fixed Fleets, (c) TVRPs with Du-

ration/Time or Distance constraints, and (d) TVRPs with Time Windows.

The adaptibility of the solution techniques for different versions of the same

variant – capacitated, multiple vehicle types, cost minimization objective, and

179

vehicle minimization objective – was also demonstrated. An overview of the

dissertation contributions is provided in the next section, followed by direc-

tions for future research.

7.1 Dissertation Contributions and Conclusions

• TVRP with Backhaul Customers: In capacitated TVRPs with Back-

hauls (TCVRPB), the customers are partitioned into two subsets. The

first subset consists of customers who have placed an order for a given

quantity of product to be delivered from the depot – the linehaul cus-

tomers. The second subset consists of customers who require a given

quantity of product to be picked up from their location and delivered to

the depot – the backhaul customers. Furthermore, in a vehicle tour, the

linehaul customers have to be served before backhaul customers.

A lower bound for the TCVRPB was derived by using its relation with

bin–packing problems, and a few properties and key observations that

hold true at optimality were delineated. Two IP formulations were pro-

posed to solve the problem. The second IP was formulated by transform-

ing the tree into an equivalent network. It was shown that this IP had

fewer variables and that its LP–relaxation was stronger than the first

one. A few valid inequalities were added to the second IP formulation

in an effort to increase its LP–relaxation value.

An algorithm, which, at every stage deletes at least one node from the

network was presented. The algorithm had two main steps – finding the

180

customers that are serviced by each vehicle, and constructing the optimal

routes for that vehicle. The optimal vehicle routes were constructed by

using the algorithm for the Traveling Salesman Problem on Trees with

Backhauls (TTSPB), a polynomial algorithm for which was developed

in this dissertation.

The second IP Formulation and the heuristic were tested on problem

instances of varying sizes and demand profiles. 10 instances of each

network size and demand profile was tested. Computational times for

solving the IP depended not only on the network size, but also on the de-

mand distribution and the number of vehicles in the IP. Computational

time increased with an increase in problem size, as supported by intu-

ition. The computational time and number of branch–and–bound nodes

increased with an increase in the number of vehicles and an increase in

the demand variation. Based on this insight, further improvements were

suggested and a new heuristic which reduces the total number of vehicles

was proposed.

• Capacitated TVRP with Fixed Fleets: A constrained case of the

TVRP – where the vehicle fleet is capacitated, heterogeneous, and fixed

(HTCVRP) was studied in this dissertation. The HTCVRP’s relation

to the Generalized Assignment Problem and the Capacitated Facility

Location Problem was discussed. It was shown that when the nodes

were arranged in DFS order, the existing IP formulation can be modified

to have only GAP constraints. A linear approximation to this modified

181

formulation was presented. A heuristic was then developed to use this

GAP formulation to solve the HTCVRP. The heuristic iteratively finds

seed nodes using Upper Bound (UB) heuristics for the BPP, assigns a

vehicle to each seed node, then uses a Lagrangian–based GAP algorithm

to assign nodes to vehicles located at the seed node. Two methods for

finding seed nodes were also presented.

The heuristic was tested on networks of varying sizes and demand dis-

tributions. It was found that the heuristic performs consistently well

irrespective of problem size while taking much lesser time than the opti-

mal solution method. It was concluded that significant improvements in

optimal solution time can be achieved if the heuristic solution was used

to initialize the optimal solution method.

• Duration–constrained TVRP: The Duration Constrained Capaci-

tated TVRP is concerned with finding optimal time minimizing vehicle

routes that serve customers that are located on a tree network. Each

vehicle is specified a tour time limit which cannot be exceeded. A lower

bound for the DTCVRP was suggested in this chapter. Additionally, the

IP–formulation was also modified to accommodate duration constraints.

The heuristic for the distance–constrained problem was a savings–type

heuristic. Initially, every node is assigned its own vehicle. Two vehicles

are then merged together if the merging is feasible and results in a time

saving. The procedure starts at the leaf node and moves upward.

The heuristic and exact solution methods were implemented on networks

182

with varying demand and travel time profiles. The problems were tested

for different duration constraint values. In general, the proposed meth-

ods performed better when the travel time variance was lower. It was

found that the IP performed better for lower demand variations. The

LP–relaxation values were very tight for all the problem instances and

the IP solution quality depended on the number of vehicles required by

the heuristic. As the difference between the number of vehicles required

by the heuristic and IP increased, the solution quality worsened. The

heuristic performed consistently well for all instances tested. The heuris-

tic performed better when the demand variance was lower.

• TVRP with Time–Windows: The objective of the Capacitated TVRP

with Time Windows (TCVRPTW) is to find cost minimizing vehicle

routes beginning and ending at the depot such that the total demand

served by each vehicle does not exceed its capacity and a vehicle serves

a customer only during the time window specified by the customer. The

heuristic proposed for the TCVRPTW built a single vehicle route at

a time. When no more nodes can be accommodated into the current

vehicle, a new route is created. Nodes were added to the vehicle route

based on some cost and waiting time minimizing criteria were defined.

A method for generating test instances was also described. the heuristic

was implemented on networks of varying demand profiles. Two types of

problems were tested. It was found that lower the number of customers

with time–windows better the heuristic performance. The heuristic so-

183

lution value was between 5 – 12% of the optimal solution value.

7.2 Scope for Future Work

• TVRP with Time Windows: This dissertation provided a heuristic

for the TVRP with time windows. This heuristic too was a modification

of an earlier heuristic applied to VRPs on general networks. Developing

better heuristics for the TVRP with time windows is a future research

direction. Further, there are currently no exact methods for solving the

TCVRPTW which explicitly take advantage of the tree structure. A cou-

ple of different ideas for solving the problem to optimality are suggested

here. First, the main complicating factor with taking advantage of a tree

structure is that depending on how the time windows for the problem are

defined, a vehicle can enter a branch multiple times. In the worst case

once to serve every node in the branch. Using this, one can transform

the network to contain as many copies of a node as there are nodes below

it. This, however, might have more variables than constructing |N |2 arcs

and solving the normal VRPTW. A more viable approach might be to

use a time–space expanded network to formulate the problem. Depend-

ing on the peak time period and the customer time–windows, it might be

possible to discretize the network and even reduce the number of copies

of each node.

• Clustering of Nodes: An important application of tree–networks arise

in areas where clustering some nodes results in an overall tree structure.

184

The cumulative demand of the clustered nodes is less than vehicle capac-

ity. So, given a general graph, if there exists a method to intelligently

cluster nodes so that the resulting tree structure will closely approximate

the general network costs, the TVRP solution method can be used to

solve the problem. Of course, the clustering method has to be quick and

efficient and the method should be superior to the current sophisticated

metaheuristic approaches for solving VRPs.

• Special Network Types: Since this dissertation focused on solving

VRPs for a special network type, a question that arises is whether cus-

tomized VRP solution techniques can be devised for other special net-

work types. Some of these special network types include grid networks

and shoreline networks. The literature on VRPs for grid–like networks

is very scant and definitely a future research direction. Uncapacitated

problems have been solved on shoreline networks, but the capacitated

versions of such problems are unexplored.

• Other Variants Many other variants of the TVRP are yet to be ex-

plored. Using the concepts developed in this dissertation, solution strate-

gies for variants which combine two or more of the variants in this dis-

sertation can be developed. Additionally, the stochastic and dynamic

versions of the problems in this dissertation can also be explored.

185

Bibliography

Achuthan, N., Caccetta, L., 1991. Integer linear programming formulation for

a vehicle routing problem. European journal of operational research 52 (1),

86–89.

Agarwal, Y., Mathur, K., Salkin, H., 1989. A set-partitioning-based exact

algorithm for the vehicle routing problem. Networks 19 (7), 731–749.

Ahuja, R., Magnanti, T., Orlin, J., 1993. Network flows: Theory, algorithms,

and applications.

Anily, S., 1996. The Vehicle Routing Problem with Delivery and Backhaul

Options. Naval Research Logistics 43 (3), 415–434.

Anily, S., Mosheiov, G., 1994. The traveling salesman problem with delivery

and backhauls. Operations Research Letters 16 (1), 11–18.

Asano, T., Katoh, N., Kawashima, K., 2001. A New Approximation Algo-

rithm for the Capacitated Vehicle Routing Problem on a Tree. Journal of

Combinatorial Optimization 5 (2), 213–231.

Bailey, E., Unnikrishnan, A., Lin, D.-Y., 2010. Models for Minimizing Back-

haul Costs through Freight Collaboration. In: 90th Annual Conference of

the Transportation Research Board. Washington, D.C., U.S.A.

186

Balakrishnan, A., Magnanti, T., Mirchandani, P., 1996. Heuristics, lps, and

trees on trees: Network design analyses. Operations Research, 478–496.

Balakrishnan, A., Ward, J., Wong, R., 1987. Integrated facility location and

vehicle routing models: Recent work and future prospects. American Journal

of Mathematical and Management Sciences 7 (1), 35–61.

Baldacci, R., Christofides, N., Mingozzi, A., 2008. An Exact Algorithm for the

Vehicle Routing Problem based on the Set Partitioning Formulation with

Additional Cuts. Mathematical Programming 115 (2), 351–385.

Balinski, M., Quandt, R., 1964. On an Integer Program for a Delivery Problem.

Operations Research 12 (2), 300–304.

Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., Vance, P., 1998.

Branch-and-price: Column generation for solving huge integer programs.

Operations Research, 316–329.

Basnet, C., Foulds, L., Wilson, J., 1999. Heuristics for Vehicle Routing on

Tree–like Networks. Journal of the Operational Research Society 50, 627–

635.

Beasley, J., Christofides, N., 1997. Vehicle routing with a sparse feasibility

graph. European Journal of Operational Research 98 (3), 499–511.

Ben Atkinson, J., 1994. A greedy look–ahead heuristic for combinatorial opti-

mization: An application to vehicle scheduling with time windows. Journal

of the Operational Research Society, 673–684.

187

Berger, I., Bourjolly, J.-M., Laporte, G., 1992. Branch–and–bound algorithms

for the multi–product assembly line balancing problem. European Journal

of Operational Research 58 (2), 215 – 222.

URL http://www.sciencedirect.com/science/article/pii/

037722179290208Q

Bhattacharya, B., Carmi, P., Hu, Y., Shi, Q., 2008. Single Vehicle Scheduling

Problems on Path/Tree/Cycle Networks with Release and Handling Times.

Algorithms and Computation, 800–811.

Bodin, L., Golden, B., Assad, A., Ball, M., 6 1983. Routing and scheduling of

vehicles and crews – the state of the art. Computers and Opertions Research

10 (2), 63–212.

Bodin, L. D., 1990. Twenty years of routing and scheduling. Operations Re-

search 38 (4), pp. 571–579.

URL http://www.jstor.org/stable/171075

Braysy, O., Gendreau, M., 2005. Vehicle routing problem with time windows,

part i: Route construction and local search algorithms. Transportation Sci-

ence 39 (1), 104–118.

Brodie, G., Waters, C., 1988. Integer linear programming formulation for ve-

hicle routing problems. European journal of operational research 34 (3),

403–404.

188

http://www.sciencedirect.com/science/article/pii/037722179290208Q
http://www.sciencedirect.com/science/article/pii/037722179290208Q
http://www.jstor.org/stable/171075

Brown, G. G., Ellis, C. J., Graves, G. W., Ronen, D., 1987. Real-time, wide

area dispatch of mobil tank trucks. Interfaces 17 (1), 107–120.

URL http://interfaces.journal.informs.org/cgi/content/

abstract/17/1/107

Busch, I., 1990. Vehicle Routing on Acyclic Networks. Ph.D. dissertation,

Johns Hopkins University, Department of Applied Mathematics.

Casco, D. O., Golden, B. L., Wasil, E. A., 1988. Vehicle Routing: Methods and

Studies. In: Golden, B. L., Assad, A. A. (Eds.), Vehicle Routing: Methods

and Studies. North–Holland, Amsterdam, pp. 127–147.

Cassidy, P. J., Bennett, H. S., 1972. Tramp – a multi-depot vehicle scheduling

system. Operational Research Quarterly (1970-1977) 23 (2), pp. 151–163.

URL http://www.jstor.org/stable/3008264

Chandran, B., Raghavan, S., 2008. Modeling and Solving the Capacitated

Vehicle Routing Problem on Trees. In: Golden, B. L., Raghavan, S., Wasil,

E. A. (Eds.), The Vehicle Routing Problem: Latest Advances and New

Challenges. Vol. 43. Springer–Verlang, New York, pp. 239–261.

Choi, E., Tcha, D., 2007. A column generation approach to the heterogeneous

fleet vehicle routing problem. Computers & Operations Research 34 (7),

2080–2095.

Christofides, N., 1985. Vehicle Routing. The Traveling Salesman Problem: A

Guided Tour of Combinatorial Optimization, 431–448.

189

http://interfaces.journal.informs.org/cgi/content/abstract/17/1/107
http://interfaces.journal.informs.org/cgi/content/abstract/17/1/107
http://www.jstor.org/stable/3008264

Christofides, N., Mingozzi, A., Toth, P., 1981a. Exact Algorithms for the Ve-

hicle Routing Problem, based on Spanning Tree and Shortest Path Relax-

ations. Mathematical programming 20 (1), 255–282.

Christofides, N., Mingozzi, A., Toth, P., 1981b. State–space Relaxation Proce-

dures for the Computation of Bounds to Routing Problems. Networks 11 (2),

145–164.

Clarke, C., Wright, J. Q., 1964a. Scheduling of Vehicle from a Central Depot

to a Number of Delivery Points. Operations Research 12 (4), 568–581.

Clarke, G., Wright, J. W., 1964b. Scheduling of vehicles from a central depot

to a number of delivery points. Operations Research 12 (4), pp. 568–581.

URL http://www.jstor.org/stable/167703

Dantzig, G., Ramser, J., 1959. The Truck Dispatching Problem. Management

Science 6 (1), 80–91.

Deif, I., Bodin, L., 1984a. Extension of the Clarke and Wright Algorithm for

Solving the Vehicle Routing Problem with Backhauling. In: Proceedings of

the Babson Conference on Software Uses in Transportation and Logistics

Management. pp. 75–96.

Deif, I., Bodin, L., 1984b. Extension of the clarke and wright algorithm for

solving the vehicle routing problem with backhauling. In: Proceedings of

the babson conference on software uses in transportation and logistics man-

agement. Babson Park, MA, pp. 75–96.

190

http://www.jstor.org/stable/167703

Desaulniers, G., Desrosiers, J., Ioachim, I., Solomon, M., Soumis, F., 1994.

A Unified Framework for Deterministic Time Constrained Vehicle Routing

and Crew Scheduling Problems. Cahiers du GERAD.

Desrochers, M., Desrosiers, J., Solomon, M., 1992. A New Optimization Al-

gorithm for the Vehicle Routing Problem with Time Windows. Operations

Research 40 (2), 342–354.

Desrochers, M., Verhoog, T., 1991. A new heuristic for the fleet size and mix

vehicle routing problem. Computers & Operations Research 18 (3), 263–274.

Desrosiers, J., Dumas, Y., Solomon, M., Soumis, F., 1995. Time Constrained

Routing and Scheduling. Handbooks in operations research and management

science 8, 35–139.

Eilon, S., Watson-Gandy, C., Christofides, N., de Neufville, R., 2007. Dis-

tribution Management – Mathematical Modelling and Practical Analysis.

Systems, Man and Cybernetics, IEEE Transactions on 4 (6), 589.

Eksioglu, B., Vural, A., Reisman, A., 2009. The Vehicle Routing Problem: A

taxonomic review. Computers & Industrial Engineering 57 (4), 1472–1483.

Fekete, S. P., Schepers, J., 2001. New classes of fast lower bounds

for bin packing problems. Mathematical Programming 91, 11–31,

10.1007/s101070100243.

URL http://dx.doi.org/10.1007/s101070100243

191

http://dx.doi.org/10.1007/s101070100243

Fisher, M., 1994a. A Polynomial Algorithm for the Degree–constrained Mini-

mum k–tree Problem. Operations Research 42 (4), 775–779.

Fisher, M., 1994b. Optimal Solution of Vehicle Routing Problems using Mini-

mum k–trees. Operations Research 42 (4), 626–642.

Fisher, M., 1995. Vehicle routing. Handbooks in operations research and man-

agement science 8, 1–33.

Fisher, M., Jaikumar, R., 1981a. A Generalized Assignment Heuristic for Ve-

hicle Routing. Networks 11 (2), 109–124.

Fisher, M., Jaikumar, R., 1981b. A Generalized Assignment Heuristic for Ve-

hicle Routing. Networks 11 (2), 109–124.

Fisher, M., Jörnsten, K., Madsen, O., 1997. Vehicle Routing with Time Win-

dows: Two Optimization Algorithms. Operations Research 45 (3), 488–492.

Foster, B., Ryan, D., 1976. An Integer Programming approach to the Vehicle

Scheduling Problem. Operational Research Quarterly 27 (2), 367–384.

Frederickson, G., Hecht, M., Kim, C., 1976. Approximation Algorithms for

some Routing Problems. In: 17th Annual Symposium on Foundations of

Computer Science. IEEE, pp. 216–227.

Garey, M., Johnson, D., 1979. Computers and Intractability. A guide to the

theory of NP–completeness. A Series of Books in the Mathematical Sciences.

WH Freeman and Company, San Francisco, Calif.

192

Gendreau, M., Laporte, G., Séguin, R., 1996. Stochastic Vehicle Routing.

European Journal of Operational Research 88 (1), 3–12.

Gendreau, M., Potvin, J., 1998. Dynamic Vehicle Routing and Dispatch-

ing. Tech. rep., Centre de recherche sur les transports and Departement

d’informatique et de recherche operationnelle, Universite de Montreal.

Gilbert, D., et al., 1991. Improvements and Extensions to the Miller–

Tucker–Zemlin Subtour Elimination Constraints. Operations Research Let-

ters 10 (1), 27–36.

Goetschalckx, M., Jacobs-Blecha, C., 1993. The Vehicle Routing Problem with

Backhauls: Properties and Solution Algorithms. Tech. Rep. MHRC–TR–88–

13, Georgia Institute of Technology.

Golden, B., Assad, A., Levy, L., Gheysens, F., 1984. The fleet size and mix

vehicle routing problem. Computers & Operations Research 11 (1), 49–66.

Golden, B., Magnanti, T., Nguyen, H., 1977. Implementing Vehicle Routing

Algorithms. Networks 7 (2), 113–148.

Golden, B. L., Raghavan, S., Wasil, E. A., 2008. The Vehicle Routing Problem:

Latest Advances and New Challenges. Springer–Verlang, New York.

Golden, B. L., Wasil, E. A., 1987. Or practice – computerized vehicle routing

in the soft drink industry. Operations Research 35 (1), 6–17.

URL http://or.journal.informs.org/cgi/content/abstract/35/1/6

193

http://or.journal.informs.org/cgi/content/abstract/35/1/6

Hadjiconstantinou, E., Christofides, N., Mingozzi, A., 1995. A New Exact

Algorithm for the Vehicle Routing Problem based on q–paths and k–shortest

paths Relaxations. Annals of Operations Research 61 (1), 21–43.

Hamaguchi, S., Katoh, N., 1998. A Capacitated Vehicle Routing Problem on

a Tree. Algorithms and Computation 1533, 399–407.

Hinton, T., 2010. The vehicle routing problem. Ph.D. thesis, University of

Bristol.

Houck, D., 1978. The Traveling Salesman Problem as a Constrained Shortest

Path Problem: Theory and Computational Experience. Ecole polytechnique

(Montréal, Québec). Département de génie industriel.

Jean-Marie, B., et al., 1992. Branch–and–Bound Algorithms for the Multi–

product Assembly Line Balancing Problem. European Journal of Opera-

tional Research 58 (2), 215–222.

Jeet, V., Kutanoglu, E., 2007. Lagrangian relaxation guided problem space

search heuristics for generalized assignment problems. European journal of

operational research 182 (3), 1039–1056.

Kallehauge, B., Larsen, J., Madsen, O., Solomon, M., 2005. Vehicle Routing

Problem with Time Windows. Column Generation, 67–98.

Kallrath, J., 2004. Modeling languages in mathematical optimization. Vol. 88.

Springer.

194

Kara, I., Laporte, G., Bektas, T., 2004. A note on the Lifted Miller–Tucker–

Zemlin Subtour Elimination Constraints for the Capacitated Vehicle Rout-

ing Problem. European Journal of Operational Research 158 (3), 793–795.

Karuno, Y., Nagamochi, H., 2001. A Polynomial Time Approximation Scheme

for the Multi–vehicle Scheduling Problem on a Path with Release and Han-

dling times. Algorithms and Computation, 36–48.

Karuno, Y., Nagamochi, H., 2003. 2-Approximation Algorithms for the Multi–

vehicle Scheduling Problem on a Path with Release and Handling Times.

Discrete Applied Mathematics 129 (2-3), 433–447.

Karuno, Y., Nagamochi, H., Ibaraki, T., 1997. Vehicle Scheduling on a Tree

with Release and Handling Times. Annals of Operations Research 69, 193–

207.

Katoh, N., Yano, T., 2006. An Approximation Algorithm for the Pickup and

Delivery Vehicle Routing Problem on Trees. Discrete Applied Mathematics

154 (16), 2335–2349.

Knödel, W., 1981. A bin packing algorithm with complexity o(n log n) and

performance 1 in the stochastic limit. In: Proceedings on Mathematical

Foundations of Computer Science. Springer-Verlag, London, UK, pp. 369–

378.

Koskosidis, Y., Powell, W., 1992. Clustering algorithms for consolidation of

195

customer orders into vehicle shipments. Transportation Research Part B:

Methodological 26 (5), 365–379.

Kumar, R., Unnikrishnan, A., Waller, Travis, S., 2011. The capacitated vehicle

routing problem with backhauls on trees: Model, properties, formulation,

and algorithm, transportation Research Record (accepted).

URL http://amonline.trb.org/12kltu/1

Labbé, M., Laporte, G., Mercure, H., 1991. Capacitated Vehicle Routing on

Trees. Operations research 39 (4), 616–622.

Laporte, G., 1992. The Vehicle Routing Problem: An overview of exact and

approximate algorithms. European Journal of Operational Research 59 (3),

345–358.

Laporte, G., 2009. Fifty years of vehicle routing. Transportation Science 43 (4),

408–416.

Laporte, G., Desrochers, M., Nobert, Y., 1984. Two exact algorithms for the

distance–constrained vehicle routing problem. Networks 14 (1), 161–172.

Laporte, G., Mercure, H., Nobert, Y., 1986. An Exact Algorithm for the Asym-

metrical Capacitated Vehicle Routing Problem. Networks 16 (1), 33–46.

Laporte, G., Mercure, H., Nobert, Y., 1992. A Branch and Bound Algorithm

for a class of Asymmetrical Vehicle Routing Problems. Journal of the Op-

erational Research Society 43 (5), 469–481.

196

http://amonline.trb.org/12kltu/1

Laporte, G., Nobert, Y., 1983. A Branch and Bound Algorithm for the Ca-

pacitated Vehicle Routing Problem. OR Spectrum 5 (2), 77–85.

Laporte, G., Nobert, Y., Desrochers, M., 1985. Optimal Routing under Ca-

pacity and Distance Restrictions. Operations Research 33 (5), 1050–1073.

Laporte, G., Semet, F., 2002. Classical Heuristics for the Capacitated VRP.

The vehicle routing problem, 109–128.

Lenstra, J., Kan, A., 1981. Complexity of Vehicle Routing and Scheduling

Problems. Networks 11 (2), 221–227.

Letchford, A., Eglese, R., Lysgaard, J., 2002. Multistars, Partial Multistars

and the Capacitated Vehicle Routing Problem. Mathematical Programming

94 (1), 21–40.

Lin, S., Kernighan, B. W., 1973. An effective heuristic algorithm for the

traveling-salesman problem. Operations Research 21 (2), pp. 498–516.

URL http://www.jstor.org/stable/169020

Liu, S., Ng, K., Ong, H., 2008. Branch–and–bound algorithms for simple as-

sembly line balancing problem. The International Journal of Advanced Man-

ufacturing Technology 36, 169–177, 10.1007/s00170-006-0821-y.

URL http://dx.doi.org/10.1007/s00170-006-0821-y

Lysgaard, J., Letchford, A., Eglese, R., 2004. A New Branch–and–Cut Al-

gorithm for the Capacitated Vehicle Routing Problem. Mathematical Pro-

gramming 100 (2), 423–445.

197

http://www.jstor.org/stable/169020
http://dx.doi.org/10.1007/s00170-006-0821-y

Martello, S., Toth, P., July 1990. Lower bounds and reduction procedures for

the bin packing problem. Discrete Appl. Math. 28, 59–70.

URL http://portal.acm.org/citation.cfm?id=89011.89025

Mbaraga, P., Langevin, A., Laporte, G., 1999. Two Exact Algorithms for the

Vehicle Routing Problem on Trees. Naval Research Logistics 46 (1), 75–89.

McCarl, B., Meeraus, A., van der Eijk, P., Bussieck, M., Dirkse, S., Steacy, P.,

Nelissen, F., 2008. Mccarl gams user guide. Gams Development Cooperation,

Washington, USA.

Miller, C., Tucker, A., Zemlin, R., 1960. Integer Programming Formulation of

Traveling Salesman Problems. Journal of the ACM (JACM) 7 (4), 329.

Mingozzi, A., Giorgi, S., Baldacci, R., 1999. An Exact Method for the Vehicle

Routing Problem with Backhauls. Transportation Science 33 (3), 315–329.

Murty, K., 1985. Linear and combinatorial programming. ROBERT E.

KRIEGER PUBLISHING COMPANY, MELBOURNE, FL(USA), 1985,

592.

Muslea, I., 1997. The Very Offline k–Vehicle Routing Problem in Trees. Com-

puter Science Society, 1997. Proceedings., XVII International Conference of

the Chilean, 155–163.

Nagarajan, V., Ravi, R., 2008. Approximation algorithms for distance con-

strained vehicle routing problems.

198

http://portal.acm.org/citation.cfm?id=89011.89025

Nemhauser, G., Wolsey, L., 1988. Integer and Combinatorial Optimization.

Vol. 18. Wiley New York.

Orloff, C., 1976. Route Constrained Fleet Scheduling. Transportation Science

10 (2), 149.

Psaraftis, H., Solomon, M., Magnanti, T., Kim, T., 1990. Routing and Schedul-

ing on a Shoreline with Release Times. Management Science 36 (2), 212–223.

Rao, M., Zionts, S., 1968. Allocation of Transportation units to Alternative

Trips – A Column Generation Scheme with out–of–kilter Subproblems. Op-

erations Research 16 (1), 52–63.

Renaud, J., Boctor, F., 2002. A sweep-based algorithm for the fleet size and

mix vehicle routing problem. European Journal of Operational Research

140 (3), 618–628.

Rennie, S., 1995. Optimal Dispatching and Routing of Milk Tanker for North-

land Dairy Board. In: 30th Annual Conference of the Operational Research

Society of New Zealand. ORSNZ: Wellington, New Zealand, pp. 95–102.

Salhi, S., Rand, G., 1993. Incorporating vehicle routing into the vehicle fleet

composition problem* 1. European Journal of Operational Research 66 (3),

313–330.

Solomon, M., 1987. Algorithms for the vehicle routing and scheduling problems

with time window constraints. Operations research, 254–265.

199

Taillard, É., 1999. A heuristic column generation method for the heterogeneous

fleet vrp. RAIRO-Operations Research 33 (01), 1–14.

Tan, K., Lee, L., Zhu, Q., Ou, K., 2001. Heuristic Methods for Vehicle Routing

Problem with Time Windows. Artificial Intelligence in Engineering 15 (3),

281–295.

Toth, P., Vigo, D., 1996. A Heurisic Algorithm for the Vehicle Routing Problem

with Backhauls. Advanced Methods in Transportation Analysis: Proceed-

ings, Second TRISTAN Conference, 585–608.

Toth, P., Vigo, D., 1997. An Exact Algorithm for the Vehicle Routing Problem

with Backhauls. Transportation Science 31, 372–3852.

Toth, P., Vigo, D., 2002. The Vehicle Routing Problem. SIAM, Philadelphia.

Tsitsiklis, J., 1992. Special Cases of Traveling Salesman and Repairman Prob-

lems with Time Windows. Networks 22 (3), 263–282.

Wan, Z., 2009. Freight transportation planning: Container transportation net-

work within china’s yangtze river. Ph.D. thesis, University of California,

Davis.

Wren, A., Holliday, A., 1972. Computer scheduling of vehicles from one or

more depots to a number of delivery points. Operational Research Quarterly

23 (3), 333–344.

200

Yu, W., Liu, Z., 2010. Single–vehicle Scheduling Problems with Release and

Service Times on a Line. Networks.

URL http://dx.doi.org/10.1002/net.20393

201

http://dx.doi.org/10.1002/net.20393

Vita

Roshan Kumar was born in Bombay, India on March 7th, 1984 to Ma-

halakshmi Kumar and T. V. Kumar. He received his Bachelor of Engineering

degree in Industrial (Production) Engineering from the University of Bombay,

India in June, 2006 and his Master of Science degree in Operations Research

and Statistics from the University of North Carolina at Chapel Hill in May,

2008. He began his doctoral studies in Transportation Engineering under Dr.

S. Travis Waller in August, 2008.

Permanent address: 1020 E. 45th, Apt. # 159
Austin, TX 78751

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

202

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	The Vehicle Routing Problem
	VRP Taxonomy

	The Vehicle Routing Problem on Trees
	Notation
	Some Observations
	Dissertation Contributions
	Dissertation Organization

	Chapter 2. Literature Review
	Literature Review – VRP
	Exact Solution Methods
	Heuristic Methods
	VRPs with Backhauls
	VRPs with Time Windows
	VRPs with Heterogeneous Fleets

	Literature Review – TVRP
	Lower Bounds
	Heuristics
	Exact Solution Methods
	Vehicle Scheduling Problem on Trees

	Chapter 3. TVRP with Backhaul Customers
	Problem Definition
	Preliminaries
	Observations
	Properties
	Lower Bound

	Integer Programming Formulation
	An Improved Integer Programming Formulation
	Network Transformation
	The IP Formulation
	Valid Inequalities

	The Traveling Salesman Problem on Trees with Backhauls
	Optimal TTSPB Tour Cost
	Node Service Order
	Illustrative Example

	Heuristic

	Chapter 4. Computational Results and Further Improvements to the TCVRPB
	Test Instances
	Parameter Generation

	Computational Results
	Solution Quality
	Computational Performance

	Further Improvements
	Additional Computational Results

	Conclusions

	Chapter 5. TVRP with Fixed Fleets
	Problem Definition
	Preliminaries
	Lower Bounds

	Exact HTCVRP Solution Methods
	Heuristic for HTCVRP
	Computing deltaik
	Finding seed customers
	Solving the Generalized Assignment Problem
	Refining Operation
	Heuristic HTCVRP

	Test Instances
	Parameter Generation

	Computational Results
	Solution Quality
	Computational Performance

	Conclusions

	Chapter 6. TVRP with Time–related Constraints
	Problem Definition – DTCVRP
	Lower Bound – DTCVRP
	Exact Methods – DTCVRP
	Branch–and–Bound and Column Generation
	IP–Formulation

	Heuristic – DTCVRP
	Computational Results – DTCVRP
	Solution Quality and Computational Performance

	Problem Definition – TCVRPTW
	Additional Notation

	Heuristic – TCVRPTW
	Computational Results – TCVRPTW
	Test Instances
	Computational Performance and Solution Quality

	Conclusions

	Chapter 7. Summary and Scope for Future Work
	Dissertation Contributions and Conclusions
	Scope for Future Work

	Bibliography
	Vita

