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This dissertation empirically investigates the expectations formation

process and the constraints that economic agents face in forming beliefs about

macroeconomic variables. Chapter 1 contributes to and extends our current

understanding of information frictions in expectations. I first propose a new

framework for estimating noisy information using individual forecasts, rather

than mean forecasts as commonly done in previous work. This approach pro-

vides more power for identifying underlying information rigidities. I further

extend this framework to incorporate misperceptions on the part of economic

agents about the persistence of the underlying process being forecasted. Ap-

plying this framework to the U.S. inflation forecasts of professional forecasters

points toward significantly less noisy information than previous estimates sug-

gest but reveals a systematic underestimation on the part of forecasters of

the persistence of inflation. Using a structural model that incorporates both
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noisy signals and misperceptions of persistence, I quantify the relative impor-

tance of each channel in accounting for the expectations formation process of

these agents. The results indicate that, even for professional forecasters, there

are multiple forces that generate economically significant deviations from full

information.

Chapter 2 is joint work with Olivier Coibion, Yuriy Gorodnichenko, and

Saten Kumar. Using novel survey questions on the higher-order expectations

of firm managers, we study the formation and evolution of these beliefs. A

unique experimental approach allows us to characterize the degree of higher-

order thinking of economic agents and how this degree of higher-order thinking

affects managers? expectations as well as their economic decisions. We then

relate these results to macroeconomic models in which higher-order thinking

matters for dynamics.

Chapter 3 is develops a method for measuring the information flow of

economic agents at a given point in time using survey data. I document a

reduction in attention to several macroeconomic variables over time. I further

document that in periods in which agents are paying more attention to a

specific variable, there is also greater cross-sectional dispersion in attention

across agents.
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Chapter 1

What Do (and Don’t) Forecasters Know

About U.S. Inflation?

1.1 Introduction

Expectations are a ubiquitous feature of macroeconomic models. Eco-

nomic expectations and particularly expectations of the inflation rate, affect

all manner of economic decisions. Firms must anticipate future costs and

prices in setting their own prices and households must consider the path of

future prices when planning the timing of purchases and borrowing. As the

link between expectations and actions is so pervasive, expectations inevitably

have consequences for economic dynamics. For this reason, there is a growing

interest in understanding how economic agents form their expectations and

the constraints they face in doing so.

Economists are increasingly using models relaxing the full information

assumption of rational expectation models and limiting forecaster access to in-

formation. Agents in the sticky information model of Mankiw and Reis (2002)

must pay fixed costs to obtain new information and therefore do so only peri-

odically. Deviations from full information rational expectations in an agent’s

forecast comes from the fact that, in any period that she does not update,
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she based her entire expectation on outdated information. In a second class

of models termed noisy information models, Sims (2003), Woodford (2002),

and Mackowiak and Wiederholt (2009) restrict the agent’s ability to observe

the variable she is trying to forecast. Observing only signals about the funda-

mental rather than the fundamental itself, the forecaster engages in optimal

signal processing and at least a portion of her new expectation is formed with

dated information. While these models introduce constraints into the expec-

tations formation process, they take for granted that agents understand the

structure of the economy and therefore form expectations that, though partly

out-of-date, are model-consistent. If forecasters face constraints in information

collection and processing, it is reasonable to think that they also face difficulty

making inferences about underlying economic structures.1 Accordingly, this

paper looks at these two issues jointly with the ultimate goal of estimating

the size and importance of each channel. I find that both noisy signals about

inflation and misperceptions of the structural parameters governing inflation

dynamics lead to economically significant deviations from full information ra-

tional expectations.

The first contribution of this paper is to develop a new framework for

estimating noisy information using individual professional forecasts. Informa-

tion frictions in the noisy information model derive from the inability of agents

1Thomas Sargent noted the implausibility of rational expectations with the following
critque: ”rational expectations models impute much more knowledge to the agents within
the model ... than is possessed by an econometrician, who faces estimation and inference
problems that the agents in the model have somehow solved.” Sargent (1993)
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to observe inflation in real time and the resulting individual-specific error in

observations of inflation. Recent approaches to estimating these frictions rely

on mean forecasts, thus averaging across these individual signals and cancel-

ing out the variation that drives the need for signal processing. My approach

instead utilizes these idiosyncratic signals and exploits both individual and

time variation in forecast errors. Estimation using this approach results in

a substantial efficiency gain over comparable estimation on aggregate fore-

casts. Applying this framework to professional forecasts of U.S. inflation since

the late 1960s, I find estimates of noisy information implying that forecasters

weigh new signals slightly more than they weigh prior beliefs in forming their

expectations. As they still form almost half of their expectation with dated

information, observation constraints constitute a relevant source of frictions

that will affect macroeconomic dynamics. I then show that the individual

approach to estimation produces economically different results than the more

commonly used approach focusing on mean forecasts. The baseline noisy in-

formation model cannot account for this difference across estimation at the

individual and mean forecast levels.

In light of these results, a second contribution is to introduce an addi-

tional potential source of information frictions to the noisy information model.

An extension of the noisy information model allows the agents to incorrectly

perceive the structural parameters of the inflation process.2 I derive the pre-

2This can be interpreted in the context of the learning literature where agents form infer-
ences about structural parameters. My paper looks primarily at the effects of misperception
when it is present, not at the ways in which forecasters learn about structural parameters.
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dicted path of forecast errors given both frictions: noisy signals and mistaken

parameters. This provides a simple framework that can simultaneously quan-

tify the effect of noisy information as well as the magnitude and direction of

forecaster misperception of parameters. My approach shows that since the late

1960s, forecasters have on average underestimated inflation persistence. This

underestimation can account for the difference in the individual and aggregate

estimates of noisy information. I provide additional evidence from the term

structure of individual professional forecasts that forecasters misperceive the

parameters of the inflation process. This prediction is in line with recent lit-

erature demonstrating forecaster underestimation of persistence such as Jain

(2017).

The third contribution of this paper is to build a simple structural

model that can be used to quantify the relative importance of each friction in

explaining the predictability of forecast errors as well explaining the moments

seen in the data. The model can be used to simultaneously estimate inflation

persistence, forecaster misperception of persistence, and the strength of the

noisy information friction. These estimates support the findings of the rest of

the paper that forecasters do face both real-time information constraints and

underestimate inflation persistence. These estimates further show that infor-

mation is much less noisy than previous estimates of the noisy information

friction (that do not take the misperception friction into account) suggest.3

3See for example Coibion and Gorodnichenko (2015), Coibion and Gorodnichenko (2012),
and Dovern et al. (2014)
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The structural estimates imply that forecasters base as much as 66 percent

of their expectations on new information, leaving only 34 percent of the ex-

pectation to be formed with prior information. While forecasters still face an

economically relevant observation friction, they respond more to new signals

than previous literature reports. However, the underestimation of inflation

persistence creates a another relevant friction for expectations formation as

forecasters will project the state forward using the wrong transition equation.

Even in the case where their signals are highly credible, forecasters will make

the wrong projections about the future path of inflation and fail to recognize

the longevity of shocks to inflation.

Jointly, my results suggest that, even for professional forecasters, we

need a wider set of models to explain the formation of beliefs than is currently

utilized. Professional forecasters display expectations consistent with multiple

forms of frictions, both in observing the true value of inflation and in under-

standing the parameters governing inflation dynamics. To assess the effects of

either of these types of frictions, one needs to consider them together.

This paper contributes to an empirical literature that attempts to as-

sess the degree to which information is imperfect or rigid. A number of papers

measure the noisiness or stickiness in information using predictability in fore-

cast errors and revisions. These include Coibion and Gorodnichenko (2012,

2015), Bürgi (2017), Dovern et al. (2014), and Andrade and Le Bihan (2013).

Notably, much of the previous work in estimating information frictions has

focused on aggregate forecasts rather than individual forecaster data. While
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aggregate forecasts and forecast errors may show departures from full infor-

mation rational expectations (FIRE), these findings are not necessarily rep-

resentative of individual forecasters. Pesaran and Weale (2006) indicate that

forecasters may diverge in ways that offset each other when aggregated. Crowe

(2010), and Pesaran and Weale (2006) cite inefficiency in the consensus fore-

cast even when individuals act rationally, implying that microdata is preferable

to aggregate data whenever possible. While Bürgi (2017) and Dovern et al.

(2014) consider individual settings for estimating noisy and sticky informa-

tion, my paper interprets the difference between the individual and aggregate

results and argues for a second type of information friction, parameter mis-

perception. Andrade et al. (2016) is thematically similar to my paper as it

combines multiple frictions limitations in forecaster observation of the true

state of the economy and the need to disentangle temporary and permanent

disturbances to explain features of forecaster data. However, rather than look-

ing at persistence in forecast errors as I do, Andrade et al. (2016) matches the

terms structure of forecaster disagreement in the Blue Chip Financial Fore-

casts. Other attempts to measure and characterize information frictions in

the expectations formation process include Andrade and Le Bihan (2013) who

study professional forecasters at the European Central Bank (ECB), and Sheng

et al. (2017) who perform nonparametric analyses on forecasters from both the

SPF and Consensus Economics.

This paper also contributes to a literature arguing that lack of knowl-

edge of structural parameters may constitute a relevant constraint for expec-

6



tations formation and therefore economic dynamics. Orphanides and Williams

(2004), for example, introduce limitations in forecaster understanding of pa-

rameters by having economic forecasters engage in perpetual learning about

parameters with limited memory. They further argue that the assumption

of full information about structural parameters can cause policy makers to

choose the incorrect optimal policy with negative impacts on the economy.

Other papers that limit forecaster knowledge of underlying structures govern-

ing dynamics and therefore requiring forecasters to learn include Milani (2007),

Sargent (1993), and Cogley et al. (2010).

Lastly, this paper contributes a new literature on forecasters’ percep-

tions of inflation persistence. To the best of my knowledge, currently the only

other paper that attempts to estimate perceived persistence using individual

forecaster data is Jain (2017). Jain utilizes the term structure of forecaster

beliefs in the Survey of Professional Forecasters CPI series and formulates re-

duced form estimates of perceived persistence. Notably, her estimates show

that most forecasters perceive a level of persistence substantially different from

that of a random walk and lower than estimates derived from time series in-

ference. This is consistent with the findings from the current paper, though

my findings do not differ as radically from time series estimates as Jain’s. My

paper provides further insights by deriving not only perceived persistence, but

also the perceived constant in inflation.4

4These two together generate perceived long-run beliefs about inflation. Forecasts of long
run beliefs are of particular importance to the Federal Reserve in assessing the anchoring of
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The remainder of the paper proceeds as follows. In Section 3.2, I de-

scribe the simple noisy information model. Section 3.4 discusses the data and

the initial results. Section 1.4 describes the model with an additional source of

frictions and presents evidence for the underestimation of persistence. Section

1.5 describe the structural model used in simulations as well as its applica-

tion to estimation. Section 1.6 discusses other potential explanations for the

differences in the individual and aggregate estimates. Section 1.7 examines

extensions to the model, including time variation in parameter misperception,

forecaster observation of realizations of inflation, and the noisy information

model with public signals. Section 3.7 concludes.

1.2 Basic Noisy Information Model

Following Woodford (2002), Sims (2003) and Coibion and Gorodnichenko

(2012), I present a noisy information model that generates predictability in

individual forecast errors. In a noisy information context, a forecaster’s diffi-

culty in forming beliefs about the future stems from her inability to observe

the present state clearly. Her signal extraction problem leads to additional

persistence in her forecasts (above and beyond the persistence in the process

being forecasted), causing the serial correlation of forecast errors over time.

Allow inflation to evolve according to an AR(1) with constant, µ. In-

agent expectations and the stability of these anchors to macroeconomic events and shocks.
The Survey of Professional forecasters recognized this importance and began tracking long
run forecasts for CPI inflation in 1991. My approach can be used to track low frequency
movements in these beliefs.
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novations to inflation arrive each quarter and are indicated by wt, a Gaussian

white noise term with variance σ2
w. The long run mean of inflation is µ

1−ρ .

πt,t−1 = µ+ ρπt−1,t−2 + wt (1.1)

Each period, agents receive a signal equivalent to the true value of in-

flation in the present period plus some individual-specific noise component,

vt(i) ∼ N(0, σ2
v). They further know the structure of the economy and there-

fore know ρ and µ without error.

zt(i) = πt,t−1 + vt(i) (1.2)

A forecaster combines her new signal, zt(i), with her beliefs about

present inflation from the previous period, weighting the signal with the gain

from the Kalman filter, k. The gain is derived optimally from the parameters

of the process and measurement equations - ρ, σ2
v , and σ2

w - as well as forecaster

uncertainty about the state. The Kalman gain is defined as:

k =
Ψ

Ψ + σ2
v

where Ψ = ρ2U−+σ2
w and U− is the agent’s uncertainty about the state

before she receives her signal. The forecaster places the remaining weight, (1-

k) , on her expectation of πt,t−1 in time t-1. The result is the agent’s optimal

9



nowcast5:

πt,t−1|t(i) = kzt(i) + (1− k)πt,t−1|t−1(i). (1.3)

I adopt the following notation for agent forecasts: πt+h,t|t−τ (i), with τ ≥

0, is agent i’s forecast of inflation from time t to t+h made with information

available at time t − τ . The corresponding average, or aggregate, forecast is

denoted πt+h,t|t−τ .

In Equation 1.3, (1-k) represents the percentage of the new expectation

based on prior information and we can interpret this as the degree of imperfec-

tion in information.6 The Kalman gain is a measure of how much a forecaster

can trust her signal. The more credible her signal is, the more weight she will

assign to it in updating her expectations. The gain is increasing in process

persistence, ρ, and the process noise, σ2
w, and decreasing in the agents’ noise

variance σ2
v . For a given ρ and σ2

w, an increase in σ2
v will make the agent’s

signal noisier and less informative. Accordingly, the agent will give the signal

a lower weight in her expectation. On the other hand, given a constant ρ and

σ2
v , a larger value of σ2

w means that a larger amount of the noise in the signal

is attributable to the inflation innovation rather than signal noise, making the

signal relatively more credible. Holding σ2
v and σ2

w constant, an increase in ρ

5A nowcast is the agent’s belief about current inflation formed in the current period.
6In the perfect information model, the agent updates her expectation completely to the

new information available to her, setting k=1.
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means that the signal is relatively more dependent on lagged inflation (rather

than noise) and deserves a greater weight.

Given a nowcast, πt,t−1|t(i), the agent will form forecasts by projecting

the present belief forward according to the transition equation in Equation

1.1.

πt+1,t|t(i) = µ+ ρπt,t−1|t(i)

= µ+ kρπt,t−1 + kρvt(i) + ρ(1− k)πt,t−1|t−1(i)
(1.4)

To form the agent’s forecast error, I subtract both sides of the above

equation from πt+1,t. The ex-post forecast error of agent i can then be written

as:

FEt+1,t|t(i) = ρ(1− k)FEt,t−1|t−1(i) + wt+1 − kρvt(i). (1.5)

In this expression, the predictability of forecast errors relies on the

existence of imperfect information and signals. If agents receive full infor-

mation, k = 1, and forecast errors will not be serially correlated over time.

Additionally, under full information, σ2
v = 0, and vt(i) = 0, implying that

the forecast error will collapse to FEt+1,t|t(i) = wt+1, or the full information

rational expectations error. In this case, forecast errors arise only from the

inability to observe future innovations or shocks to inflation, wt+1, and not

from constraints in observing past and current shocks. When agent signals

11



are imperfect, σ2
v > 0 and vt(i) 6= 0, meaning signals include idiosyncratic

noise which obfuscates the true value of the current state. This introduces

predictability in forecast errors as forecasters now face constraints in observ-

ing past, present, and future innovations to the inflation process.

Taking the average of Equation 1.5 across agents gives the following

relationship between consensus forecasts and their lags.

FEt+1,t|t(i) = ρ(1− k)FEt,t−1|t−1(i) + wt+1 (1.6)

This is the standard approach used to estimate information rigidities,

e.g. Coibion and Gorodnichenko (2012). The primary difference between this

equation and Equation 1.5, aside from the use of aggregate forecast errors

rather than individual forecast errors, is the construction of the error term.

The signal noise term does not appear in the aggregate as it averages out across

agents. Each of these equations can be estimated via the following reduced

form equations.

FEt+1,t|t(i) = β0 + β1FEt,t−1|t−1(i) + εt(i) (1.7)

FEt+1,t|t(i) = β0 + β1FEt,t−1|t−1(i) + εt (1.8)

The model predicts that, for both Equations 1.7 and 1.8, β0 = 0 and, so

long as the process persistence, ρ, is positive, that recovering a β1 > 0 implies

12



the presence of noisy information. Under full information, this equation will

recover β1 = 0 and we will not observe any persistence in forecast errors. A

value of β1 significantly greater than 0 leads us to reject the null hypothesis

of full information.7 Given the existence of imperfect signals 8 and positive

process persistence, β1 will not uniquely identify the degree of persistence or

information rigidity, but a mixture of the two.9

1.2.1 Gains of the Individual Approach

To illustrate the gains from the individual approach over the aggregate

approach, I simulate data to match the inflation process and forecasters’ fil-

tering problem in the basic noisy information model. I further calibrate the

parameters of the model to standard values ρ = 0.9 and k = 0.5, though

adjusting these parameters does not substantially change the gains from the

individual approach. The value of σ2
w is set to 0.5 and σ2

v is set to 0.84 such

that, given σ2
w = 0.5 and ρ = 0.9, k = 0.5 is optimal. We can adjust the value

of σ2
w without significant change in the results as, in order to keep k = 0.5 as

the optimal Kalman gain, we must adjust σ2
v such that the relative relationship

between the two variances is the same.

7Nordhaus (1987) proposed an equivalent specification and interpreted the null hypoth-
esis β1 = 0 as a test for forecaster rationality. In his model, only deviations from rational or
optimal actions would create serial correlation in forecast errors over time. See also Keane
and Runkle (1989) and Bonham and Cohen (1995). Coibion and Gorodnichenko (2015)
show however, that for the aggregate forecast errors, we may reject the null β1 = 0 with
rational agents acting optimally under limited information.

8This is implied by the multiple tests finding positive values for these and related coeffi-
cients. See Coibion and Gorodnichenko (2012, 2015) and Dovern et al. (2014) for examples.

9I address this in Section 1.5.
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The simulated data matches the length of the sample period (F = 195)

with a short 100-period burn-in period and contains N = 249 forecasters,

as does the sample. I generate one-quarter ahead forecast errors for each

forecaster in each time period. Following the burn-in period, the simulated

data consists of an N × F matrix of forecast errors. As forecasters do not

appear in sample for all time periods, I match each simulated forecaster to a

forecaster from the sample data and populate only the periods in which the

sample forecaster appeared. I then calculate mean forecasts for each period

using only the forecasters that appear in that period. This allows me to match

the number of observations in the data for both the pooled and time series

approaches. I run the pooled and time series regressions estimating Equations

1.7 and 1.8 and record the coefficients for 1000 rounds of simulated data.

Table 1.1 shows the gains from my approach over the aggregate regres-

sion. Across the 1000 rounds of the simulation, both the mean and aggregate

estimate recover approximately the correct coefficient on lagged forecast er-

rors. The individual approach leads to a 20 percent reduction in the standard

deviation of the 1000 estimates and a 22 percent reduction in the interquartile

range of these estimates.

1.2.2 Forecast Errors at Horizons Greater than 1

We can also consider forecasts over longer horizons. Let h denote the

forecasting horizon so that when h=1, a forecast covers inflation over a quarter.

When h=2, however, a forecast is a projection over six months. Forecasts at

14



h=3 provide a forecast of inflation over the next nine months and at h=4,

over the next year. Longer horizon forecast errors must be regressed on lagged

forecast error at a lag length matching the horizon. If the lag of the forecast

error is less than the horizon length, overlap in the shocks across forecast errors

and lagged forecast errors will create serial correlation that does not come from

information rigidity.10

I show the derivation of the predicted path of forecast errors for h=2

in Appendix 2. Forecasts at horizons longer than two will share the same

properties.

FEt+2,t|t(i) = ρ2(1− k)2FEt,t−2|t−2(i)− ρ(1− k)(1 + ρk)wt + (1 + ρ)wt+1 + wt+2

− (1 + ρ)ρ2(1− k)kvt−1(i)− ρ(1 + ρ)kvt(i)

As forecasters access multiple signals and chances to update their ex-

pectations across longer-horizon forecasts, the coefficient on forecast errors

shrinks exponentially with horizon length. For horizon h, the coefficient is

ρh(1− k)h ∀h. Forecast errors that are separated by a greater length of time

should be less serially correlated than forecast errors in adjacent periods. In

10For example, a forecast of year-ahead inflation in time t will only include shocks through
time-t shocks. The realization of inflation, however, will contain shocks for four additional
quarters. These shocks will enter into the year-ahead forecast error. The year-ahead forecast
error, lagged by only a quarter, will include many of the same shocks in the forecast error,
meaning that we would expect to see serial correlation across forecasts even under full
information.
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each period between these forecast errors, forecasters form new expectations

with new information; this causes past beliefs to fade slowly from expectations.

The term wt appears in both the error term and in FEt,t−2|t−2(i).
11

This endogeneity will be present as long as k < 1, that is when information

imperfections are present. One can address this issue by adding a time fixed

effect to control for wt and remove the endogenous component of the error.

For h > 1, the appropriate estimation equation is therefore,

FEt+h,t|t(i) = β0 + β1FEt,t−h|t−h(i) +
∑
t

γ(t)1(t) + εt(i) (1.9)

The problematic term in the error is time-dependent rather than individual-

dependent meaning that this term is still present and the endogeneity problem

persists in the mean specification of higher-order forecast errors.12 Moreover,

as the aggregate specification is a time series, time period dummies cannot be

used and the aggregate regression cannot be estimated by OLS for forecast-

ing horizons greater than one. My individual framework is therefore the only

approach that works for longer horizons and allows us to assess information

rigidity for extended-period forecasts.

11See 2.4. in Appendix 2
12The aggregate semi-annual forecast regressed on its two-quarter lag is FEt+2,t|t(i) =

ρ2(1− k)2FEt,t−2|t−2(i)− ρ(1− k)(1 + ρk)wt + (1 + ρ)wt+1 + wt+2.
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1.3 Forecaster Data and Noisy Information Predictions

1.3.1 Forecast Error Data

I use forecasts of the GDP deflator series from the Survey of Profes-

sional Forecasters (SPF). Professional forecasters should be among the most

well-informed agents in the economy. Accordingly, the presence of informa-

tion frictions in their expectation signals that deviations from full information

rational expectations are likely to be economically significant across firms and

consumers as well. The survey is published quarterly by the Federal Reserve

Bank of Philadelphia, though prior to 1990 it was operated by the American

Statistical Organization and the National Bureau of Economic Research. This

quarterly availability allows me to calculate forecast errors across subsequent

periods. I use GDP deflator inflation as opposed to CPI or PCE inflation be-

cause the survey contains forecaster responses predictions GDP deflator since

its inception in 1968Q4. CPI and PCE inflation were added in 1980Q3 and

2007Q1, respectively.

I calculate annualized anticipated h-quarter GDP deflator inflation in

time-t and time-t-1 using the following equations.13

πt+h,t|t(i) =

[(
Pt+h(i)

Pt(i)

) 4
h

− 1

]
× 100

Data on the realization of inflation comes from the St. Louis FRED

GDP deflator series for the corresponding sample. Realizations of inflation are

13For a one-quarter ahead forecast, Pt+h(i) is given by PGDP3 and Pt(i) is given by
PGDP2.
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formed from the final release measures of the GDP deflator.

πt+h,t =

[(
Pt+h
Pt

) 4
h

− 1

]
× 100

1.3.2 Results from Noisy Information Models

Using this data, I estimate Equations 1.7 and 1.8 for one-quarter ahead

forecast errors. For forecasts at horizons greater than one, I estimate 1.9. The

results appear in Table 1.2.

For 1-quarter ahead forecasts, both the pooled and time series regres-

sions produce estimates that imply a non-trivial amount of information rigidity.

As we would expect, the individual forecaster results are much more precise

due to a larger sample size with Newey-West standard errors roughly 60 per-

cent lower than the standard errors from the mean regression. The coefficients

on lagged forecast errors should map to ρ(1− k) and, as both are significantly

different than zero, we can reject the null hypothesis of full information ra-

tional expectations and assume that k << 1. For the individual forecast, the

estimate 0.43 implies a point estimate14 of k as high as 0.57, indicating that

forecasters base up to 57 percent of their new expectation with their most

recent signal. This estimate is formed assuming a ρ = 1. As ρ may be less

than one, this estimate is an upper bound on k. The aggregate estimate,

14The point estimate of k is 1− β1

ρ . To find the standard errors, it is necessary to use the
delta method.
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0.53, implies an upper bound on k of 0.47.15. Both Dovern et al. (2014) and

Coibion and Gorodnichenko (2015) find k = 0.50, approximately in line with

the finding from the aggregate regression.

It is difficult to assess the difference in the two estimates statistically

as the aggregate approach is a time series estimation in a small sample and

therefore has large standard errors. The p-value of the test that the coeffi-

cients from the individual and aggregate regressions are equal is 0.24 when

the estimation is performed allowing for Newey-West standard errors. Using

the simulation in Section 1.2.1, however, none of the 1000 iterations generates

a difference between the time series coefficient and the pooled coefficient as

large as 0.10. This means that the basic noisy information model is unlikely

to produce such a difference across estimation equations. Comparing point

estimates, the individual approach indicates that forecasters base roughly ten

percent more of their new forecasts on new signals. This further suggests that

signals are not as noisy as the aggregate approach shows and forecasters can

trust their information relatively more. Dovern et al. (2014) also finds evidence

for a greater amount of implied information rigidity in estimates obtained from

mean forecasts rather than individual forecasts.16

The regressions for longer-horizon forecast errors (h > 1) include time

fixed effects to control for the heterogeneity that arises from the quarterly

15Using ρ = 0.89 to be consistent with time series estimation of the transition equation
gives estimates of k̂individual = 0.52 and k̂aggregate = 0.4.

16Dovern et al. (2014) finds estimates of information rigidity at the individual level roughly
half that of estimates found using consensus or aggregate forecasts.
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arrival of innovations to the inflation process. As the horizon and therefore

the length of time between forecast errors in the regression increases, we expect

to see an exponential decline over h in the coefficient on lagged forecast errors.

Table 1.2 shows that we do not see this decline in the data. This may result

from omitted variable bias coming from parameter misperception.17

We may worry that forecaster entry and exit in the survey is non-

random, that is that forecasters who provide better forecasters are more likely

to stay. If some forecasters receive better signals than others and are therefore

more likely to deliver better projections and stay in the survey, we might

want to disregard forecasters who are in the survey for too short a period

of time. Table 1.3 presents the same estimates from Table 1.2, but limiting

the sample to forecasters who remain in the sample for at least 30 periods.

While the wedge between coefficients declines slightly, there is little substantial

difference in the findings between the two tables. The trimmed sample also

does not cause the coefficients on higher order lags to decrease as expected.

Accordingly, for the rest of the analysis I use all the forecasters in the sample.

1.4 An Additional Source of Information Frictions

Noisy information affects first the way forecasters form expectations

about current inflation, also called nowcasts. These nowcast errors are then

perpetuated into forecasts errors as forecasters use the transition equation

17See Section 1.4.
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to form expectations of future inflation. If forecasters use the correct model

parameters to project the nowcast into the future, their forecast errors will

consist only of future innovations to inflation (that are unobservable at time

t) and their nowcast errors scaled by the persistence of the process and the de-

gree of information rigidity they face. If, however, forecasters anticipate that

shocks to inflation are less or more persistent than they actually are, they will

project their forecasts forward at a rate different than the rate at which infla-

tion actually moves. This misperception causes an additional predictability in

forecast errors and serial correlation between forecast errors over time.

1.4.1 Forecast Errors with Incorrectly Perceived Persistence

When the forecaster’s perceived inflation persistence is not consistent

with the true value of persistence, the forecast error equation will take a slightly

different form than in Equation 1.5.18

Define an agent’s perceived persistence as ρi = ρ+qi, so qi measures the

misperception of persistence. Assume all agents share the same misperception:

ρi and qi are identical ∀i. Using this similarity, denote ρi as ρ̃ and qi as q. The

forecast from Equation 1.4 takes the same form with one adjustment.

πt+1,t|t(i) = µ+ ρ̃πt,t−1|t(i)

= µ+ kρ̃πt,t−1 + kρ̃vt(i) + ρ̃(1− k)πt,t−1|t−1(i)
(1.10)

18As the misperception in the constant does not effect the coefficients on forecast errors
that help determine the effects of the frictions, I focus my analysis on misperception in
persistence. Appendix 3 shows this in detail.
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where ρ̃ takes the place of ρ in front of πt,t−1|t(i) because we now anticipate that

agents will forecast their beliefs about past inflation into beliefs about time

t inflation using what they believe to be the correct persistence parameter.

Subtracting both sides from πt gives the following equation for forecast errors:

FEt+1,1|t(i) = ρ̃(1− k)FEt,t−1|t−1(i)− qπt,t−1 + wt+1 − ρkvt(i) (1.11)

Under noisy information (k < 1), forecast errors still exhibit serial

correlation. However, even controlling for lagged forecast errors, the current

forecast error shows additional predictability based on the current value of

inflation.

If q > 0 and forecasters overestimate persistence, we expect that the

coefficient on πt,t−1 will be negative. For underestimated persistence, we expect

the opposite.

If ρ̃ = ρ, this equation collapses to Equation 1.5 and there is no misper-

ception effect. If, however, ρ̃ 6= ρ and forecasters do not form their forecasts

with the true value of persistence, we should include inflation in our framework

for estimating noisy information.

Using this equation, I estimate the following reduced form equation to

uncover the misperception.19 ∗∗∗ denotes significance at the 0.01 level.

19It is possible to estimate this equation using mean forecast errors, but the precision will
be greatly reduced.
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FEt+1,t(i) = β0 + β1FEt,t−1(i) + β2πt,t−1(i) + εt(i)

= − 0.20∗∗∗ + 0.38∗∗∗FEt,t−1|t−1(i) + 0.08∗∗∗πt,t−1
(1.12)

Under the null that there is no misperception of persistence, β2 = 0.

This estimation implies that q = −0.08, meaning that agents underestimate

the persistence of the inflation process. The underestimation of persistence is

consistent with Jain (2017)’s findings, though she finds a much more dramatic

deviation from time series estimates of ρ than my result suggests.20 The inter-

pretation on β1 is now slightly different. Rather than ρ(1 − k), β1 now maps

to ρ̃(1 − k) and the perceived value of persistence takes the place of the true

value of persistence. The finding that β1 > 0 indicates that this specification

also detects noisiness in information. 21

If we exclude inflation from the regression of forecast errors on their

own lags, we create omitted variable bias in the coefficient on forecast errors.

As inflation is positively correlated with forecast errors and the coefficient on

inflation is positive, omitting inflation from the regression will lead to a positive

bias on lagged forecast errors. In the context of this model, an upwardly

biased coefficient will lead us to conclude that forecasters receive signals that

are noisier than they actually are. This can explain why β1 is lower than it

appears in Table 1.2, where πt,t−1 is omitted.

20Jain estimates that, across SPF forecasters, the 75th percentile of perceived coefficients
on the persistent component of inflation is 0.40.

21The negative value of the β0 implies that forecasters underestimation the constant by
-0.20. See Appendix 3.
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1.4.2 Parameter Misperception at Longer Horizons

When I extend the model to consider forecast errors at longer horizons,

forecaster misperception of inflation persistence has a more complicated effect

on the predicted path of forecast errors than it does when h = 1. When

forecasters use their perceived value of ρ̃ = ρ + q, rather than ρ in forming

expectations, the predicted path of semi-annual forecast errors is:22

FEt+2,t|t(i) = ρ̃2(1− k)2FEt,t−2|t−2(i)− ρ̃(1− k)(1 + ρ̃k)πt−1,t−2 − (1 + ρ̃)qπt,t−1 − qπt+1,t

+ ρ̃(1− k)(1 + ρ̃k)wt + (1 + ρ̃)wt+1 + wt+2

− (1 + ρ̃)ρ̃2(1− k)kvt−1(i)− (1 + ρ̃)ρ̃kvt(i).

Just as the shocks between t − 2 and t all appear in the equation for

FEt+2,t|t(i), the misperception of persistence causes the realizations of inflation

from πt−1,t−2 to πt+1,t to appear in the predicted path of forecaster errors. It is

difficult to include these omitted variables as the time fixed effects terms will

absorb the time-specific inflation terms.

1.4.3 Evidence from the Term Structure of Forecasts

Section 1.4 presented evidence that there are discrepancies between the

true parameters of the inflation process and the forecaster’s perception of these

parameters with data on the forecast errors. Whether or not agents do in fact

incorrectly perceive inflation parameters can also be tested given the term

22This is derived in Appendix 2.2.
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structure of forecast data available in the Survey of Professional Forecasters.

Each period, respondents forecast the target variable several periods ahead,

indicating how they believe the variable will develop over time. To generate

an estimate of perceived inflation persistence for GDP deflator inflation, I

form the following measures of annualized one-quarter ahead forecasts for each

forecaster:

πt+h,t+h−1|t(i) =

[(
Pt+h
Pt+h−1

)4

− 1

]

For this exercise, πt+h,t+h−1|t(i) represents agent i’s forecast of inflation

from period t+ h− 1 to t+ h given information available in period t.

Applying the process implied by the transition equation in Equation

1.1, we can construct the relationships between each forecast the agent makes

in period t.

πt+h,t+h−1|t(i) = µ̃+ ρ̃πt+h−1,t+h−2|t(i) + E[wt+1]

= µ̃+ ρ̃πt+h−1,t+h−2|t(i)
(1.13)

One can formulate reduced form regression equations matching the sys-

tem of equations formed by the term structure of agent forecasts. 23 I exclude

the relationship between the nowcast and the quarter ahead forecast, as this

may be different from the relationship between other quarterly forecasts due

23Differing from Jain (2017), I formulate the relationship between forecasts themselves
rather than the revisions in the forecasts. This holds an agent’s information set constant
within each observation and avoids canceling out perceptions of long run components of
inflation that are important for understanding forecasters’ perception of the inflation process.
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to both information availability differences and forecaster perceptions of the

nowcast.24 Accordingly, consider the following system of equations.

πt+s,t+s−1|t(i) = β0 + β1πt+s−1,t+s−2|t(i) + εst,i, . . . s = 1, 2, 3 (1.14)

As the three reduced form equations described above represent the

relationship between forecasts of quarter-ahead inflation at adjacent horizons,

I combine the three and estimate the system of equations in one regression,

including fixed effects for the distance, s, of each forecast from the forecasting

period t.25

πt+s|t+s−1(i) = β0 + β1πt+s−1,t+s−2|t(i) +
4∑
s=2

γs1(s) + εt(i) (1.15)

The regression coefficient and constant provide estimates of the process

parameters, β0 = ˆ̃µ = 0.78(0.05) and β1 = ˆ̃ρ = 0.76(0.01). 26

Running a corresponding AR(1) regression on the inflation process gives

ρ̂ = 0.89∗∗∗(0.04) and µ = 0.36∗∗(0.14), where ∗∗∗ and ∗∗ denote significance

at the 0.01 and 0.05 percent levels, respectively. Agents therefore significantly

24Forecasters may, for example, believe that their nowcast should represent a prediction
of the revision the statistical agency will make to its preliminary estimate.

25If each regression is performed separately, the results for each look very similar to the
systems regression.

26The coefficients γs are not statistically different from 0. This indicates that forecasters
have stable beliefs about the constant despite the distance of the period in the future.
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underestimate the persistence of inflation and significantly overestimate the

regression’s constant term. Using the z-test from Paternoster et al. (1998) I

reject the null that ρ̃ = ρ at the 99 percent level of confidence. I can also

reject the null that µ̃ = µ at the 99 percent level. This supports the findings

of parameter misperception.

There is evidence for both types of expectation formation friction. Both

noisy information and forecaster mistakes about parameter values will lead to

serial correlation in forecast errors and have implications for the magnitude of

forecast errors. In the next section, I quantify the relative importance of each

friction for the path of expectations.

1.5 A Structural Model of Forecasting with Two Fric-
tions

In order to assess the relative importance of the noisy information and

parameter misperception channels, I use the following structural model with

variation in parameters, θ. I define:

θ =

ρq
k

 .
The parameters k and q represent the noisy information and param-

eter misperception frictions respectively. The gain, k, represents the weight

forecasters give to new signals about inflation and quantifies the effect of noisy

information on expectations. A lower value of k implies that forecasters face
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significant constraints in viewing the level of the target variable in real time.

The size of the misperception, q, introduces forecaster errors in understanding

the underlying structure governing inflation dynamics. I also include ρ in the

parameter vector as it directly influences the predictability of forecast errors

when k < 1.

I simulate forecasters forming predictions according to the data-generating

process modeled in Section 3.2. The simulated forecasts can be used to esti-

mate the moments from the data that depend on ρ, k, and q to be used in a

simulated method of moments approach to the estimation of parameters. This

model can also be used to assess other potential explanations for the differ-

ences in estimation at the individual and aggregate forecast levels. I discuss

this in greater detail in Section 1.6.

Inflation evolves and signals arrive according to the following transition

and measurement equations.27

πt+1,t = µ+ ρπt,t−1 + wt+1

Forecasters again receive private signals:

zt(i) = πt,t−1 + vt(i)

Agents process information through the Kalman filter, selecting the

optimal gain for the given level of persistence (as they perceive it), process

27This follows from Equations 1.1 and 1.2
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innovation variance, σ2
w and their own signal noise variance, σ2

v . I allow fore-

casters to perfectly observe all parameters aside from persistence. Forecasters

use ρ̃ rather as their estimate of ρ. As such - their optimal filtering process

leads them to form optimal forecasts as in Section 1.4.1.

I generate data for the length of the sample period in the data (F = 195)

with an extra 100-quarter burn in period. The total length of T is therefore

100+F. I further generate one-quarter ahead forecast errors for N = 249 fore-

casters. The simulated data following the burn-in period is an N × F matrix

of individual forecast errors. Forecasters in the SPF enter and exit the survey

throughout the sample period, generating a highly unbalanced panel structure.

To mimic this structure in the simulated data, each forecaster in the data is

matched to a row of the simulated forecast error matrix. Only the elements

of each row corresponding to the time periods in which that forecaster par-

ticipated in the survey are populated with forecast errors.28 This allows me

to match exactly the number of observations in the pooled and time series

specifications. The pooled specification now consists of the non-missing obser-

vations in this matrix. I then calculate the aggregate forecast errors, FEt+t,t|t,

by taking the mean of the individual forecast errors in each period.

28Note that it does not matter which rows of the simulated matrix we assign to the
dates matching the forecasters in the data as, in the simulated data, the primary differences
between the forecasters are the periods they appear in the survey and the draws of their
individual specific noise, which are iid. Forecasters are matched to periods according to
when they participated in the survey - such that a forecaster present only early in the
sample period will appear early in the simulated data. The model does not include learning
by doing. Accordingly, the forecasters still engage in the updating process in periods in
which they are not forecasting. This is equivalent to forecasters making private forecasts
every period, but reporting only on occasion.
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Each simulation contains M iterations. For each iteration, m, I esti-

mate the following three equations for 1-quarter ahead forecasts and save the

coefficients of interest - that is those pertaining to ρ, q, and k - and their stan-

dard errors for each round. I calibrate σ2
w to 0.5 and allow σ2

v to be determined

such that given σ2
w, ρ, and q, the chosen k is optimal. Changing this value

does not substantially alter the results as σ2
v will always be chosen relative to

the value of σ2
w. Note that in the equations below, εa and εc are time and

individual specific, whereas εc varies only with time.

FEt+1,t|t(i) = βa0 + βa1FEt,t−1|t−1(i) + εat (i) (1.16)

FEt+1,t|t = βb0 + βb1FEt,t−1|t−1 + εbt (1.17)

FEt+1,t|t(i) = βc0 + βc1FEt,t−1|t−1(i) + βc2πt,t−1 + εct(i) (1.18)

For a completed simulation I calculate the average values of the sim-

ulated coefficients using the coefficient on lagged forecast errors in all three

equations and the coefficient on lagged inflation in Equation 1.18. I define:

g(θ) =
[

1
M

∑
m β

a
1 (m) 1

M

∑
m β

b
1(m) 1

M

∑
m β

c
1(m) 1

M

∑
m β

c
2(m)

]
The simulated coefficients can be compared to the same set of coeffi-

cients from the data: ĝ =
[
0.43, 0.53, 0.38, 0.08

]
.
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1.5.1 Estimation by Simulated Method of Moments

The purpose of this estimation is to find the values of parameters most

likely to generate the moments seen in the data. The parameters to be esti-

mated are defined by θ. I define the objective function for minimization to

be the difference between the coefficients from the data and the average co-

efficients from the simulation performed with a draw of θ. For the simulated

method of moments, each simulation contains M = 100 iterations.

J(θ) = [ĝ − g(θ)]Ω[ĝ − g(θ)]′ (1.19)

Where ĝ describes the relevant coefficients from the data, g(θ) is the

corresponding coefficients simulated from a posited θ, and Ω is a weighting

matrix scaling each component of ĝ − g(θ) in the objective function J(θ). I

use the identity matrix for Ω such that each moment is weighted equally. The

steps for the estimation algorithm proceed as follows:29

1. Draw a starting value of θ0 from the acceptable range for each param-

eter. ρ0 and k0 are bounded between 0 and 1. The bounds for q0

are determined by the draw for ρ such that ρ̃0 ∈ (0, 1). Accordingly,

q0 ∈ (−ρ0, 1− ρ0).

29This is a Metropolis Hastings algorithm form of Markov chain Monte Carlo method. I
use the same set of random number draws for values of vt(i) and wt, though the draws for
vt(i) are scaled by different values of σ2

v as θ varies.
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2. Simulate data as described and calculate the value of the objective func-

tion: J0. Save θ0 and J0

3. Make a small and random perturbation to the input parameters: θ1 =

θ0+ψ∗x. Here ψ is a 3×3 matrix that scales the value of the perturbation

to each parameter. x is a vector of random variables. Simulate data again

and calculate the value of the objective function J1. Save θ1 and J1.

4. Compare J0 and J1. As the goal is minimization, accept the θ1 over θ0

if J1 < J0. If J1 > J0, accept θ1 with some probability that is decreasing

in the J1 − J0 such that values of J1 that are close to undercutting

J0 are more likely to be accepted.30. For each step, save the accepted

parameters as well as the value of the objective function associated with

them.

5. Repeat steps 2-4 for the desired length of the simulation.31

The estimated parameters θ̂ are constructed as a weighted average of

the accepted parameters from the algorithm. The weights are determined

by the relative value of the objective function. An estimation of parameters

returns ρ̂ = 0.88(0.005), q̂ = −0.18(0.004), and k̂ = 0.66(0.004). Interestingly,

30Occasionally accepting θ1 that does not produce J1 < J0 helps the algorithm avoid
getting stuck in a local minimum. Given infinite time to run, this algorithm should search
the entire space of parameters, spending the most time at its global minimum.

31This should be thousands of iterations at least. Note also that the first part of the
thread will be removed as a burn-in period and the parameters calculated from only the
remaining part of the thread.
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the estimate for ρ̂ is similar to time series estimates, despite these estimates

not appearing in the set of moments used to estimate parameters. The sizeable

underestimation of persistence is surprising, but is largely driven by the sub-

optimality of the agent’s choice of gain. This causes the wrong weighting

of the noise terms and biases the coefficient on inflation from Equation 1.18

downwards, meaning it takes larger absolute values of q to match that moment.

The estimate of k means that forecasters will form 66 percent of their new

expectations with new information. This is consistent with the recent findings

of Afrouzi (2017), which also derives a relatively low degree of information

rigidity of k ≈ 0.7 for firm managers in New Zealand. My estimate is also

substantially lower than estimates from Dovern et al. (2014) and Coibion and

Gorodnichenko (2015) and implies that information is much less noisy than

those estimates suggest. These papers find a Kalman gain of 0.5. Assuming

ρ = 0.88, my estimate implies a half-life of forecast errors of 1.8 months, while

the 0.5 estimate implies a half-life of 2.5 months. Accordingly, it takes nearly

a month longer to reduce the forecast error by half under previously estimated

values of the Kalman gain.

I simulate coefficients for the estimated values of the parameters and

take the average (over 100 rounds of the simulation) point estimates of βa1 and

βb1 from Equations 1.16 and 1.17. The individual coefficient takes an average

value of 0.44, while the average coefficient on mean forecast errors takes a

value of 0.47. The mean coefficient is higher than the individual coefficient,

as we see in the data, but we cannot match the magnitude of the difference
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in coefficients documented in Section 3.5. The true value of the coefficient

under this specification is ρ̃(1− k) = 0.24.32 When forecasters underestimate

persistence, both the individual and panel approaches result in upward bias in

the coefficient, making information appear more noisy than it actually is. The

average simulated point estimates of βc1 and βc2 from Equation 1.18 are 0.38

and 0.09, respectively. These match the corresponding moments in the data

almost exactly.

1.5.2 The Effect of Parameter Misperception

To quantify the relative importance of parameter misperception and

noisy information in generating the patterns of forecaster expectations, I shut

down the underestimation of persistence as a friction in the simulation (k =

0.66, q = 0). Without the underestimation of persistence, the counterfactual

coefficients from the aggregate and individual regressions come very close both

to each other and to the true value of the coefficient on lagged forecast errors.

When I add the misperception friction back to the simulation (k = 0.66, q =

−0.17), both coefficients become biased upwards and begin to separate from

each other. These estimates appear in Table 1.4. The aggregate point estimate

is higher than the individual point estimate. Of the overall predictability of

forecast errors, the noisy information friction can account for 64 percent at the

individual level and and 60 percent at the aggregate level. This is calculated

as the counterfactual estimate with no misperception divided by the estimate

32ρ̃(1− k) = (0.88− 0.17)× (1− 0.66) = 0.24.
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with both frictions present. The remaining 36 percent and 40 percent of the

predictability in forecast errors comes from the underestimation of persistence.

This indicates that both misperception and noisy information are relevant for

generating the predictability of forecast errors.

A back-of-the-envelope calculation using these estimates of the relative

importance of each friction on the estimates from the data suggests that, in the

absence of parameter misperception, the individual and aggregate approaches

would return coefficients on forecast errors of 0.28 and 0.32, respectively.33

These scaled estimates are remarkably similar to the true value of ρ(1 − k)

used in the simulation (0.30). This is an interesting result as the simulation

has a hard time matching the magnitude of the differences in the aggregate

and individual point estimates for any realistic value of q.34

1.6 Other Potential Explanations

Up to this point, I examine forecaster underestimation of persistence

in the context of noisy information as an explanation for the empirical mo-

ments this paper documents. In this section, I consider whether other possible

deviations from the basic noisy information model can account for my results.

33To find the scaled estimates, I multiply the point estimate by the noisy information
share as estimated in the simulation. For the individual forecasts 0.43× 0.64 = 0.28 and for
the aggregate, 0.53× 0.60 = 0.32.

34Identification in the MCMC comes primarily from Equation 1.18.
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1.6.1 Changes in Parameter Values

This paper argues that persistence in forecaster errors can be explained

by the interaction of noisy information and forecaster misperception of the

parameters governing inflation dynamics. The sample period for this analysis,

however, has seen notable changes in inflation dynamics, covering the time

of the Great Inflation and Volcker Disinflation of the 1970s and the Great

Moderation beginning in the mid-1980s. Several papers argue that inflation

persistence has changed over this period, and with it the volatility of inflation.

Stock and Watson (2007) and Cogley et al. (2010), for example, argue that

inflation persistence has declined. Benati (2008) and Erceg and Levin (2003)

argue that monetary policy regimes can influence inflation persistence, leading

to changes over time.35 In light of these concerns, I consider possible changes

in the inflation process as well as changes in the agent’s signal processing

parameters as possible explanations for the empirical moments documented in

this paper.

Using the simulated model, I can assess the effects on the regression

coefficients of various changes in parameter values. For each σ2
w, σ2

v , U
−, ρ

and µ, I simulate the data-generating process described in Section 1.5.1 with

one adjustment - halfway through the sampling period the variable in question

changes. As many of these variables affect the agent’s choice of an optimal

Kalman gain, I run each simulation in two ways. The first allows forecasters

35See Mishkin (2007) for a useful summary of changes in inflation dynamics since the
early 1970s.
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to observe the change in the variable and absorb it into their choice of Kalman

gain. In the other, forecasters do not observe the change and are left with a

suboptimal gain. The results of the estimation for Equations 1.16 and 1.17

for each simulation appear in Table 1.6 and the estimated coefficients from

Equation 1.18 appear in Table 1.7.

I calibrate the model such that the starting values match those esti-

mated via simulated method of moments. As such, the starting values are:

k = 0.66, ρ = 0.88, σ2
w = 0.5, and σ2

v = 0.35. The starting steady state value

of U− is set to 0.68 by the other parameters. I set the misperception, q, to zero

to test alternative theories. The magnitudes of the changes in each parameter

appear in Table 1.5. I use small changes in each parameter. For σ2
w and σ2

v , I

choose values that, given the calibration of the other parameters, will lead to

a ∆k = ±0.10.

• Inflation Volatility: The variance of innovations to inflation, σ2
w, will

factor into the optimal choice of Kalman gain. If the process is noisier,

that is σ2
w is higher, an agents signal is more informative she will give

it a relatively higher k. The tables show, however, that a change in σ2
w

cannot explain the pattern of moments in the data.

• Signal Noise Variance: As the agent’s signal noise variance, σ2
v , changes,

so does her optimal Kalman gain. We can think of a change in signal

noise variance as a change in the signal quality, with a decline in the

variance being an improvement and an increase in the variance as a de-
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cline in signal quality. Accordingly, if the agent observes this change in

signal quality, she will either increase or decrease the weight that she

gives the signal, k. Simulation shows a change in signal noise variance

cannot explain the wedge between the aggregate and individual approach

coefficients or a positive coefficient on inflation when that is included in

the regression equation.

• Agent Uncertainty: U− describes the forecaster’s uncertainty about

inflation before she receives her signal each period. If this uncertainty is

higher, the signal is relatively more valuable and the forecaster will assign

a higher Kalman gain to her new information. A change in uncertainty

is also unable to replicate the moments from the data.

• Inflation Constant: A change in the constant will not change the

agent’s optimal gain parameter. If the change is observed, the con-

stant term will drop out of the forecast error equation. If, however, the

change is unobserved, there will be a structural break in the constant in

the forecast error equation.36 The simulated estimates show, however,

that a change in the inflation constant cannot generate a wedge between

coefficients or a positive coefficient on inflation.

• Inflation Persistence: In the simulated model, an increase in inflation

persistence is the only change that can generate the difference between

the individual and aggregate approaches. It is also the only change in

36See Appendix 3.
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parameters that leads to a significantly positive coefficient on lagged in-

flation when the pooled regression is performed using lagged forecast er-

rors and the lagged value of inflation. However, these features only arise

when forecasters are not permitted to observe the increase in persistence

and therefore underestimate persistence, meaning the underestimation

of persistence drives this finding.37

These show that a change in persistence is the most likely of these

alternative candidate explanation. A change in persistence will replicate the

moments from the data only when it is accompanied by an underestimation

of this persistence on the part of forecasters. This points to the misperception

of the parameters governing inflation dynamics as the primary explanation for

the moments observed.

1.7 Extensions

In this section I consider three possible extensions of the noisy informa-

tion model with parameter misperception. First, I consider time variation in

the parameters describing the two frictions forecasters face. This allows fore-

casters to misperceive inflation to a different degree and weight their signals

differently across time periods. I then relax the assumption that forecast-

ers do not observe realizations of inflation by modeling the noisy information

37It is possible to generate similar results when forecasters start the period underestimat-
ing persistence and then persistence declines and either reduces or erases the effect of their
underestimation. In this sense, this finding is not out of line with the literature that argues
for a decline of inflation persistence over time.
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model where forecasters receive signals about the most recent past realization

of inflation as well as current inflation. A third extension considers the case

where forecasters receive both public and private signals about current infla-

tion, meaning that their information noise has a component that is shared

across forecasters.

1.7.1 Time Variation in Information Frictions

The inflation process over the sample period has seen many potential

changes that could influence the Kalman gain that forecasters assign to their

signals and the degree of their misperception of inflation persistence. Ac-

cordingly, I examine the possibility of time-variation in these parameters by

performing rolling window regressions for the specifications in Equations 1.7

, 1.8 and 1.12. The window width is 80 quarters, so each estimate is formed

with 20 years of data. Figure 1.1 shows these coefficients plotted against the

starting period of the window over which the coefficients are estimated.

This exercise reveals several features of time-variation in these param-

eters. There appears to be low frequency variation in the coefficient on fore-

cast errors. This indicates changes in persistence, perceived persistence, the

Kalman gain, or some combination of the three. This variation is more appar-

ent in the point estimates at the aggregate level, though the standard errors for

this approach are even larger than they are for estimates over the full sample.

The standard errors for the aggregate approach become particularly large as

the window covers longer portions of the Great Recession and recovery periods
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post-2007. The coefficient on forecast errors is bounded by the interval 0 to

1. In the windows covering the last portion of the sample, the standard errors

on the coefficient from the aggregate approach are so large that every value

in this interval is contained in the 95% confidence interval. The coefficient on

forecast errors from the panel approach is very stable and has smaller stan-

dard errors across periods. We cannot reject the null of parameter stability

over the period at the 95 percent level. This stability and precision is another

advantage that my panel approach to estimation has over the mean forecast

approach.

The evidence for time-variation in the misperception suggests that the

finding that forecasters have, on average, underestimated the persistence of

inflation since the late 1960s is largely driven by the forecasts of the 1970s. The

bottom right panel of Figure 1.1 shows the coefficient on πt,t−1, which can be

interpreted as −q, or the negative misperception of persistence. As ρ̃ = ρ+q, a

positive value of this coefficient corresponds with underestimated persistence,

while a negative value corresponds with an overestimation of persistence. The

rolling window regression suggests that forecasters underestimate persistence

early in the sample but that, once the 1970s are no longer included in the

window, forecasters overestimate persistence. After the 1980s are no longer

included in the window, the coefficient and therefore the magnitude of the

misperception are not significantly different from 0.

We can make some sense of these results in light of Cogley and Sargent

(2002), which argues that inflation was weakly persistent in the 1960s and
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1990s and highly persistent in the 1970s with persistence increasing between

1965 and 1979 and declining between 1979 and 2000. If forecasters entered the

1970s with an expectation that inflation would follow the same low persistence

as in the 1960s, they would underestimate its true persistence. By the same

logic, if by the 1980s, their perceived value of persistence had increased or

adapted to the higher level, they would end up overestimating persistence

upon its decline. As forecasters then became accustomed to the lower level of

inflation persistence, the misperception coefficient would go to 0, as we see.

Figure 1.2 shows that perceived persistence follows approximately this

pattern. The figure plots an 80-quarter rolling window regression of ρ̃ as esti-

mated from the term structure of forecasts (Equation 1.14). Perceived persis-

tence is low as the interval moves into the 1970s, a time of highly persistent

inflation according to Cogley and Sargent (2002), and increases as the inter-

val nears the 1980s, a period marked by lower persistence. Forecasters enter

the 1980s with a higher value of perceived persistence which then gradually

adjusts downwards. Following a brief increase for windows beginning in the

late 1980s, the perception of persistence begins declining over the remainder

of the sample. These results suggest that forecasters may learn about the per-

sistence of the inflation process and that more consideration should be given

to learning about parameters in the context of noisy information.
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1.7.2 Forecasters Receive Signals about Past Inflation

In Section 3.2, I assumed that forecasters receive private signals about

the state of inflation in time t and do not observe any information about past

inflation other than the signals they received in previous periods. Forecast-

ers do not observe true realizations of inflation and therefore do not observe

their own lagged forecast errors. This is a substantial assumption, especially

considering that agents receive some summary statistics and estimates about

the previous inflation realization when they receive their forecasting question-

aires for the SPF. This assumption also creates a significant inequality in the

information available to the forecasters and the information available to the

econometrician. To lessen this inequality, I can introduce the following as-

sumption about observations of inflation. Each period the statistical agencies

in charge of releasing inflation estimates release the measure πMt,t−1. This value

consists of both the true value of inflation and some measurement error et.

πMt,t−1 = πt,t−1 + et

Each period, the agent receives information about πMt−1,t−2. The fore-

caster cannot disaggregate the lagged realization of true inflation from the

error term, effectively prohibiting them from observing past realizations of in-

flation. This new information is effectively a public signal about the lagged

state of inflation.

The state still evolves according to the transition equation in Equation

1.1. The agents now observe a vector of signals, one private and one public.
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Zt(i) =

[
zt(i)
πMt−1,t−2

]
=

[
πt,t−1
πt−1,t−2

]
+

[
vt(i)
et

]
.

Following Nimark (2014), I reformulate the measurement vector as:

Zt(i) =

[
zt(i)
πMt−1,t−2

]
= H1πt +H2πt−1 +Rut.

In the above equation, ut ∼ N(0, 1), H1 =

[
1
0

]
, H2 =

[
0
1

]
, and R =[

σv
σe

]
. H1 describes the signal components pertinent to the current state while

H2 allows signals to include information about the lagged state. R serves to

scale the noise term ut such that it matches the distributions of vt(i) and et.

Forecasters will update according to:

πt,t−1|t(i) = µ+ ρπt−1,t−2|t−1(i) +K
[
Zt(i)−H1µ− (H1ρ+H2)πt−1,t−2|t−1(i)

]
.

The forecasters’s optimal Kalman gain K =
[
k1 k2

]
is now a 1 × 2

vector indicating how forecasters should weight each signal.38

K = [ρU−(H1ρ+H2)
′ + σ2

wH
′
1 + σwR

′]× [(H1ρ+H2)U
−(H1ρ+H2)

′ + (H1σw +R)(H1σw +R)′]−1

The one quarter ahead forecast error in this example is:

FEt+1,t|t(i) = ρ(1− k1)FEt,t−1|t−1(i)− k2FEt−1,t−2|t−1(i)− ρk1vt(i)− ρk2et + wt+1

38In this specification, k1 is the weight on the private signal and corresponds to k in
Section 3.2 while k2 is the weight the forecaster will optimally assign to the public signal.
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Here the forecast error depends on both the lagged forecast error and

the lagged nowcast error of inflation. The signal about the lagged state gives

the forecasters an opportunity to revise their past beliefs. The full information

model is nested in this equation the same way as in Section 3.2. When the

signal about current inflation is perfect, that is σ2
v = 0 and zt(i) = πt,t−1, k1 = 1

and k2 = 0.39 In this case, forecasters do not need to update their beliefs about

the past state as they receive perfect information about the current state.

Estimating this equation on the individual forecast error data gives the

following estimates that suggest a k2 that is negative and slightly significant.

FEt+1,t|t(i) = 0.04 + 0.43∗∗∗FEt,t−1|t−1(i) + 0.07∗∗FEt−1,t−2|t−1(i)

Considering this scenario with parameter misperception gives the fol-

lowing:

FEt+1,t|t(i) = ρ̃(1− k1)FEt,t−1|t−1(i)− k2FEt−1,t−2|t−1(i)− qπt,t−1 − ρ̃k1vt(i)− ρ̃k2et + wt+1.

Estimating this equation

FEt+1,t|t(i) = −0.19∗∗∗ + 0.41∗∗∗FEt,t−1|t−1(i) + 0.04FEt−1,t−2|t−1(i)− 0.07∗∗∗πt,t−1

39The only other case where k2 = 0 is when σe = σw+σv, meaning that the signal on past
inflation is very noisy. A standard deviation of the noise term, et, is equal to a standard
deviation of the process innovation, wt, and private signal noise, vt(i) put together, making
it relatively large and the signal effectively uninformative. Derivations of k1 and k2 appear
in Appendix 1.3.
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These estimates show a k2 not statistically different from 0 and return

coefficients on the lagged forecast error and the value of inflation very similar

to those in Section 1.4.1. In other words, once we condition on the presence

of noisy private signals and misperception about persistence, there is little

additional statistical gain to modeling the release of inflation data.

1.7.3 Forecasters Receive Public Signals

We may also be concerned that forecasters have information that is

related to that of other forecasters. In the previous subsection, forecasters

shared information about past realizations of inflation. They may also receive

public signals of the current state in addition to their private signals. In this

case, the measurement vector is defined as

Zt(i) =

[
zt(i)
st

]
=

[
πt,t−1
πt,t−1

]
+

[
vt(i)
ζt

]
= Hπt,t−1 +

[
vt(i)
ζt

]
.

In the measurement equation, H =

[
1
1

]
and ζt ∼ N(0, σ2

ζ ). The term

ζt is a signal noise term like vt(i) but varies only with time as the signal st is

the same for all forecasters. Forecasters update their expectations according

to:

πt,t−1|t(i) = πt,t−1|t−1(i) +K
[
Zt(i)−Hπt,t−1|t−1(i)

]
.

Deriving the predicted path of quarter-ahead forecast error produces

something very similar to Equation 1.5.
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FEt+1,t|t(i) = ρ(1− k1 − k2)FEt,t−1|t−1(i)− k1ρvt(i)− k2ρζt + wt+1.

Under noisy information, forecast errors will still depend on lagged

forecast errors, but the coefficient on these forecast errors will include both

components of the Kalman gain, k1 and k2. With forecaster misperception,

the forecast errors evolve according to the following equation.

FEt+1,t|t(i) = ρ̃(1− k1 − k2)FEt,t−1|t−1(i)− qπt,t−1 − k1ρ̃vt(i)− k2ρ̃ζt + wt+1.

This does not substantially change the predictions of the noisy infor-

mation model - with or without parameter misperception.40 It does, however,

complicate the interpretation of the coefficient on forecast errors. The share

of the agent’s expectation that is formed with past beliefs is now 1−k2 − k2,

and so this is the degree of information rigidity.41.

1.8 Concluding Remarks

Expectations influence the decisions of economic agents and therefore

have a clear impact on economic dynamics. As such, it is important for

40This equation is still estimable by pooled OLS. The errors are uncorrelated with the
FEt,t−|t−(i) as the consist only of signal noise terms that arrive after time t−1 and inflation
innovations that arrive after time t.

41This is interpretation is the same as that in Section 3.2. In a model with one state
variable, the information friction resulting from noisy information can be expressed as 1−
KH for both models, the number of columns in K and number of rows in H is equal to the
number of signals the agent receives.
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economists and central bankers to consider the way that economic agents form

their expectations. Recent work to this end has relaxed the assumptions of

full information rational expectations and considered the limitations and fric-

tions agents face when trying to form expectations of the future. This paper

contributes to this discussion by modeling forecasters facing two simultaneous

frictions.

This paper documents that forecasters face two different information

frictions in forming their expectations. Forecasters receive imperfect infor-

mation about inflation and misperceive the structural parameters influencing

inflation dynamics. This second friction creates bias in existing approaches to

estimating the first. Joint estimation of the two frictions shows that informa-

tion is less noisy than estimates that do not control for parameter mispercep-

tion. This is an economically important finding as it means that forecasters

actually do utilize most of the information available to them. It suggests,

however, a second friction that creates problems for expectations formation,

that is that forecasters do not know the true structure of the economy. In

the presence of this friction, economic agents may receive full information but

may still make errors in forecasting beyond the full information rational ex-

pectations error. This is a relevant point for monetary policy-makers, as they

must consider not only the quality and credibility of the information they re-

lease but also the beliefs of economic agents that influence the expectations

formation processes.

Forecaster misperception of parameters closely relates to the learning
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literature, where forecasters must form inferences about the underlying struc-

ture of the economy or apply learning methods. The noisy information model I

use does not provide a framework for thinking about the source of forecaster er-

rors in estimating parameters or how forecaster awareness of these errors could

change the signal processing problem. This paper focuses on assessing the ef-

fects of such errors on expectations and on existing approaches to quantifying

information rigidity. I demonstrate that forecasters misperceive the values of

inflation parameters and make forecasts as though they face constraints in ob-

serving the variable that they are attempting to forecast. This suggests that it

is time to consider the noisy information and parameter learning approaches

together in a more systematic way. The evidence on time-variation in param-

eter misperception and noisy information can further help to structure models

combining the two frictions in future work.
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Table 1.1: Gains from Individual Regression

Metric Estimated Coefficient on
FEt,t−1|t−1(i) FEt,t−1|t−1=1

Mean 0.44 0.44
Standard Deviation 0.052 0.065

Range 0.30 0.39
IQR 0.07 0.09

Notes : This table presents statistics on regression coefficients generated in

a simulation of the baseline noisy information model of Section 3.2. This

simulation generates data and estimates the individual and mean equations,

1.7 and 1.8, 1000 times, storing the coefficients from both regressions for each

simulation. The dependent variables for these regressions are FEt+1,t|t(i) and

FEt+1,t|t, respectively. The simulation is calibrated with ρ = 0.9 and k = 0.5

such that the true coefficient on forecast errors should equal ρ(1− k) = 0.45.

The table shows that the distribution of coefficients from both the mean and

the aggregate approach center around the true value, but that the individual

approach leads to reduced dispersion of estimates across simultations. The

standard deviation, range, and interquartile range are all lower under the

panel approach.
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Table 1.2: Coefficients from Individual and Aggregate Regressions, Full Sample

Horizon Individual Aggregate

FEt,t−h|t−h(i) Constant FEt,t−h|t−h Constant
h = 1 0.43*** 0.08*** 0.53*** 0.01

(0.03) (0.02) (0.08) (0.08)
h = 2 0.24*** - - -

(0.05) - - -
h = 3 0.21*** - - -

(0.05) - - -
h = 4 0.29*** - - -

(0.05) - - -

Notes : The first two columns of the above table show the regression coeffi-

cients using individual-level forecaster errors from the Survey of Professional

Forecasters for different horizons. Horizons greater than one include of a time

dummy to control for time-specific endogeneity. For each horizon, the current

forecast error is regressed on the lag from h quarters back to avoid overlap in

the realizations of inflation included in the measures of inflation. The second

set of columns shows the results for a time series regression on mean forecast

errors. The standard errors are Newey-West with a HAC length of h-1. ∗∗∗

denotes significance at the 0.01 level. N = 4548 for the panel regression at

h = 1 and N = 195 for the time series regression at h = 1. See Section 3.5 in

text for details.
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Table 1.3: Coefficients from Individual and Aggregate Regressions, Trimmed
Sample

Horizon Individual Aggregate

FEt,t−h|t−h(i) Constant FEt,t−h|t−h Constant
h = 1 0.45*** 0.08*** 0.52*** 0.01

(0.03) (0.03) (0.08) (0.08)
h = 2 0.33*** - - -

(0.05) - - -
h = 3 0.25*** - - -

(0.06) - - -
h = 4 0.35*** - - -

(0.05) - - -

Notes : This table replicates Table 1.2, but rather than using the full sample of

forecasters includes only those with 30 or more observations. Horizons greater

than one include time fixed effects. The standard errors are Newey-West with

a HAC length of h-1. ∗∗∗ denotes significance at the 0.01 level. See Section 3.5

for details.
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Table 1.4: Simulation: The Share of Predictability Coming from Noisy Signals

Panel A: Simulation
FEt,t−1|t−1(i) FEt,t−1|t−1

Baseline: k = 0.66, q = −0.17 0.44 0.46
No Misperception, k = 0.66, q = 0 0.28 0.28
Scaling Factor, Noisy Information Share 65% 60%

Panel B: Data
FEt,t−1|t−1(i) FEt,t−1|t−1

Point Estimate 0.43 0.53
Scaled Estimates 0.28 0.32

Notes : Panel A presents evidence from simulations in the case when forecasters

underestimate inflation persistence and in the counterfactual case where they

do not misperceive this parameter. The dependent variables are the individual

and aggregate forecast errors, FEt,t−1|t−1(i) and FEt,t−1|t−1, respectively. The

estimates presented are the coefficients on lagged forecast errors. The noisy

information share is calculated as the percentage of the coefficient on lagged

forecast errors when both frictions are present that is generated when only

noisy information is present. This is the second row of the table divided by

the first. In the simulations, I set k = 0.66 and ρ = 0.88 to match the SMM

estimates. Panel B shows the point estimates from the data as well as these

estimates scaled by the scaling factor generated in the simulated model. I

calculate the scaled estimate by multiplying the point estimate by the noisy

information share for each column.
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Table 1.5: Data Values for Simulated Coefficients

Observed Unobserved Observed Unobserved

∆ ρ̃(1− k) ρ̃(1− k) −q . −q

∆µ
+0.2 0.30 0.30 0 0
−0.2 0.30 0.30 0 0

∆ρ
+0.08 0.31 0.30 0 0.04
−0.08 0.29 0.30 0 -0.04

∆U−
+0.10 0.30 - 0 -
−0.10 0.30 - 0 -

∆σ2
w

+0.35 0.26 0.30 0 0
−0.20 0.34 0.30 0 0

∆σ2
v

+0.25 0.34 0.30 0 0
−0.16 0.25 0.30 0 0

Notes : This figure shows the calibration of the changes in parameters from

Section 1.6.1 as well as the true values of coefficients on lagged forecast errors

and on inflation when these changes are unobserved. The coefficient on infla-

tion is equal to the average ρ̃(1 − k) across the change while the coefficient

on inflation is equal to −q. Tables 1.6 and 1.7 show the average simulated

coefficients for each scenario. See Section 1.6.1 in the text for more details.
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Table 1.6: Coefficients on Individual and Aggregate Regressions with Changing
Parameters

Observed Unobserved

FEt,t−1|t−1(i) FEt,t−1|t−1 FEt,t−1|t−1(i) FEt,t−1|t−1

∆µ
+ 0.28 0.28 0.30 0.30
- 0.28 0.28 0.30 0.31

∆ρ
+ 0.29 0.29 0.58 0.61
- 0.27 0.27 0.27 0.27

∆U−
+ 0.27 0.27 - -
- 0.30 0.30 - -

∆σ2
w

+ 0.24 0.24 0.28 0.28
- 0.33 0.33 0.29 0.28

∆σ2
v

+ 0.34 0.33 0.29 0.28
- 0.23 0.24 0.28 0.28

Notes : This table presents the estimates from the individual and aggregate

regressions of forecast errors on their own lags for data simulated according

to the noisy information model with changes in the variables. The dependent

variables are the individual and aggregate forecast errors, FEt,t−1|t−1(i) and

FEt,t−1|t−1, respectively. The estimates presented are the mean coefficients

on lagged forecast errors from each approach. For each variable, σ2
w, σ2

v , U
−,

ρ and µ, I simulate the model with both an increase and a decrease in that

variable. I also perform a simulation in which forecasters observe the change

and incorporate it into their optimal action and one in which they do not

observe the change. I do not perform a simulation where forecasters do not

observe the change in U− as it does not make sense to think about the case
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where forecasters cannot see their own subjective uncertainty. The calibration

of the changes as well as the true values of the parameters appear in Table

1.5. For more details, see Section 1.6.1.
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Table 1.7: Coefficients from Pooled Regression Controlling for Misperception

Observed Unobserved

FEt,t−1|t−1(i) πt,t−1 FEt,t−1|t−1(i) πt,t−1

∆µ
+ 0.28 -0.01 0.29 0.02
- 0.28 -0.02 0.29 0.01

∆ρ
+ 0.29 0.00 0.35 0.10
- 0.27 0 0.27 0.00

∆U−
+ 0.27 -0.02 - -
- 0.30 -0.02 - -

∆σ2
w

+ 0.24 -0.02 0.28 -0.02
- 0.33 -0.02 0.28 -0.02

∆σ2
v

+ 0.34 -0.02 0.29 -0.02
- 0.23 -0.02 0.28 -0.02

Notes : This table presents the estimates from the pooled regression on forecast

errors and lagged inflation. The dependent variables are the individual and

aggregate forecast errors, FEt,t−1|t−1(i) and πt,t−1, respectively. The estimates

presented are the mean coefficients on these variables. For each variable, σ2
w,

σ2
v , U

−, ρ and µ, I simulate the model with both an increase and a decrease

in that variable. I also perform a simulation in which forecasters observe the

change and incorporate it into their optimal action and one in which they do

not observe the change. I do not perform a simulation where forecasters do

not observe the change in U− as it does not make sense to think about the case

where forecasters cannot see their own subjective uncertainty. The calibration

of the changes as well as the true values of the parameters appear in Table

1.5. For more details, see Section 1.6.1.
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Figure 1.1: Time Variation in Information Rigidity and Parameter Mispercep-
tion

Notes : This figure shows results for rolling window regressions on Equations

1.7, 1.8 and 1.12. The top two plots show the coefficients from the individual

and aggregate approaches described in Section 3.2. The bottom two plots

show the coefficients when the value of inflation is included in the individual

regression. I plot the point estimate for each coefficient along with its 95%

confidence interval. See Section 1.7.1 for details.
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Figure 1.2: Time Variation in Perceived Persistence

Notes : This figure shows an 80-window rolling regression of Equation 1.14, or

time-variation in the forecasters’ perceived persistence. The coefficient mea-

suring perceived persistence as well as its 95% confidence interval is plotted

against the first time period in each window. See Sections 1.4.3 and 1.7.1 for

more details.
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Chapter 2

Do You Know that I Know that You Know...?

Higher Order Beliefs in Survey Data

2.1 Introduction

Firms anticipate the future and make pricing and employment decisions

that have direct bearing on economic dynamics. For this reason, a firm’s

macroeconomic expectations are of particular interest to central banks and

policymakers. When firms have strategic incentives to price their products

similarly to their competitors, they must anticipate the expectations of other

managers. Such expectations of the expectations of others are known as higher

order expectations and play a key role alongside strategic complementarities

in generating amplification and propagation in macroeconomic models.

Higher order expectations have implications for models above and be-

yond the implications of an agent’s own expectation. Angeletos and La’O

(2009) highlight the importance of considering higher order beliefs separately

from an agents own beliefs. They argue that in a noisy or imperfect information

context, the precision of information does not predict higher order beliefs the

way it does own expectations. Bacchetta and Wincoop (2008) shows that the

difference between higher order and own expectations is important for deter-

60



mining the pricing volatility of assets as well as the link between asset pricing

and expectations of future asset payoffs. Therefore, we need data assessing

both types of expectation directly in order to properly calibrate macroeco-

nomic models and consider the implications of higher order expectations on

economic dynamics. The current paper addresses this need.

As higher order expectations require that agents solve a problem where

they iteratively consider the best responses of other managers to their own

actions, this is a natural place to think about level-k thinking, or limitations

in the strategic reasoning of agents. Most macroeconomic models consider the

case in which economic agents perform infinite iterations to solve the problem.

Such high level reasoning is, however, computationally expensive and difficult.

Experiments (Nagel and Duffy (1997), Nagel (1995), Camerer et al. (2004),

Stahl and Wilson (1995), Costa-Gomes and Crawford (2006)) suggest that

agents often do not perform infinite iterations of the problem, or “degrees of

reasoning,” but often stop close to 2 or 3 iterations of a problem. Models of

level-k thinking allow managers to make decisions with limited strategy. A

level-0 player will respond to a game non-strategically, possibly even without

regard to the rules of the game. A level-1 player will follow the rules of the

game, but strategize as if other players are all level-0 players. A level-2 player

will respond as if all other players are level-1, etc. Such models allow for

imperfect reasoning and strategy on the part of agents and are also gaining

popularity in macroeconomics. Fahri and Werning (2017) show that level-k

thinking coupled with heterogeneity in market frictions creates mitigates the
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effect of monetary policy, addressing the forward guidance puzzle. Garcia-

Schmidt and Woodford (2015) use level-k reasoning to show that monetary

policy commitments to keep the nominal interest rate very low need not be

deflationary. As level-k thinking can dramatically alter the predictions of a

higher order expectation model, we consider these two features of expectations

jointly and provide survey evidence on their interplay.

The first contribution of this paper is to introduce a novel set of ques-

tions on higher order expectations to a survey of firm managers. Strategic

complementarities in pricing make it necessary for firm managers to anticipate

the beliefs and actions of other managers, giving rise to higher order expec-

tations. We introduce new questions to an existing survey of firm managers

in New Zealand1 that allow us to characterize the features of these expecta-

tions and compare them to the features of a managers’ own expectations. We

compare our data from these questions to the predictions of models of higher

order expectations where agents form beliefs about the beliefs of other agents,

as in Morris and Shin (2002), and find some facts inconsistent with managers

reasoning to such a high degree.

Accordingly, our second contribution is to consider empirically whether

managers engage such high orders of reasoning when forming these higher order

expectations. Models of level-k thinking such as Nagel (1995) and Camerer

et al. (2004) limit an agent’s ability to anticipate the general equilibrium effect

1See Coibion et al. (2018) and Afrouzi et al. (2015).
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of his own actions or expectations. In other words, the agent does not fully

consider the response of other agents to his own actions, even if other agents

would respond in the same way that he does. This limitation could arise from

a cognitive constraint or the costs associated with higher level computation.

We introduce questions to the survey that allow us to characterize the thinking

type of each manager and compare the properties of level-k thinking to existing

models of level-k thought and cognitive hierarchy. We can also assess whether

thinking types predict differences in managers’ higher order expectations. We

find that managers do not exhibit behavior completely consistent with current

models of level-k thinking. We also do not find any differences in higher order

expectations that can be explained by differences in reasoning type.

Lastly, we assess the effects of information by conducting an experiment

gauging the response of manager expectations to signals. Noisy information

models such as Woodford (2002) and Sims (2003) argue that agents will par-

tially update their beliefs given new information or signals. The degree to

which they update indicates how much informative content they believe the

signals contain. Our experiment introduces different types of signals about in-

flation itself and different orders of expectations about inflation. We find that

managers respond strongly to information about past inflation and about the

higher order expectations of other managers, but more weakly to the inflation

expectations of other managers. This holds regardless of the thinking type of

the manager.

The remainder of the paper is organized as follows. Section 2.2 describes
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a model of higher order expectations under strategic complementarities in price

and compares the expectations of managers in New Zealand to the predictions

of this model. Section 2.3 describes our results on level-k thinking and Section

2.4 describes the results of the experiment. Section 2.5 concludes.

2.2 A Model of Higher Order Expectations

Strategic complementarities in pricing behavior require that firms think

not only of their own expectations of a fundamental, but also of other firms’

expectations and actions. Firm A must think about the fundamental and what

Firm B thinks of the fundamental. Firm B then anticipates the fundamental,

what firm A thinks of the fundamental, and what Firm A thinks that Firm B

thinks. Firm A’s expectations must respond accordingly and this continues.

As firms anticipate each others’ actions, they form higher order beliefs that

involve iterating a problem to progressively higher levels of reasoning. We use

the static model of Morris and Shin (2002) to demonstrate how the expec-

tations and higher order expectations of the firms in our survey compare to

the predictions of a model of strategic complementarities where firms perform

infinite regress in their expectations.

2.2.1 Strategic Complementarities in Pricing

A firm chooses to set its optimal price, pi as a linear combination of its

expectations of a fundamental, m2, and its expectation of the average price

2We can think of the fundamental as monetary policy.
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level in the economy, p:

pi = αEi[m] + (1− α)Ei[p] (2.1)

In the above equation, α ∈ (0, 1) describes the degree of complementar-

ity in firm pricing. As all firms behave in the same way, manager i can iterate

the optimal price equation forward by basing his beliefs about the aggregate

price level on the aggregate pricing decision.

pi = αEi[m] + (1− α)Ei

[∫
pjdj

]

The aggregate price level becomes an average of progressively higher

order expectations of m, weighted by the complementarities present at each

step.

p = αE[m] + α(1− α)E
2
[m] + α2(1− α)E

3
[m] + . . . (2.2)

The optimal choice of pi then depends on the manager’s expectation of

each event in Equation 2.2

pi = αEi[E[m]] + α(1− α)Ei[E
2
[m]] + α2(1− α)Ei[E

3
[m]] + . . . (2.3)
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2.2.2 Noisy Information

Firms operate under imperfect information. This means that, rather

than observing m completely, they see noisy public and private signals that

include the true value of m and some noise. Allow m ∼ N(y, 1
κy

), where y is a

public signal about the fundamental. Firms also receive a private signal about

m, xi = m + vi, with vi ∼ N(0, 1
κx

). Firms weight their signals according to

the relative noise in each into an individual expectation of m:

Ei[m] =
κy
κ
y +

κx
κ
xi (2.4)

where κ = κx + κy. Aggregating gives:

E[m] =
κy
κ
y +

κx
κ
m

One can obtain progressively higher order expectations of m by contin-

uing to substitute Ei[m] for m. Higher orders of reasoning will depend more

on the public signal as they rely more on average, rather than idiosyncratic,

beliefs.

Referring to the firm’s optimal price-setting equation, 2.3, we can sub-

stitute for the manager’s expectations of m at various orders.

pi = (1− α)
∞∑
k=0

αk
[[

1−
(κx
κ

)k]
y +

(κx
κ

)k
xi

]
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Given a that k goes to infinity, every agent sets the optimal price:

pi = φyy + φxxi (2.5)

with φy = κy
(1−α)κx+κy and φx = (1−α)κx

(1−α)κx+κy . The realization of the aggregate

price is the integral of Equation 2.5 across the support of all managers.

p = φyy + φxm (2.6)

2.2.3 Comparing Own Expectations and Higher Order Expecta-
tions

We compare the predictions of the above model of pricing and expecta-

tions to the moments of managers’ expectations of inflation and higher order

expectations of inflation in the New Zealand data. A summary of the moments

for each type of expectation can be found in Table 2.1.

2.2.3.1 Means

Consistent with models of noisy information under strategic comple-

mentarities, the mean of the distribution of firms’ own expectations of the

aggregate price level is similar to that of the firms’ higher order expectation of

the aggregate price level - or their expectation of other managers’ expectation.

Ei[p] = φyy + φx(
κy
κ
y +

κx
κ
xi) (2.7)
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Aggregating across agents gives the mean of agents’ own expectations.

E[p] = φyy + φx(
κy
κ
y +

κx
κ
m) (2.8)

The individual expectation of Equation 2.8 is an individual manager’s

higher order expectation:

Ei[E[p]] = φyy + φx

[(
1−

(κx
κ

)2)
y +

(κx
κ

)2
xi

]
(2.9)

Aggregating Equation 2.9 again gives the mean of the higher order

expectation.

E
2
[p] = φyy + φx

[(
1−

(κx
κ

)2)
y +

(κx
κ

)2
m

]
(2.10)

Given κx
κ
< 1, which is true as long as κy > 0, higher order expecta-

tions become slightly more weighted to the public signal. We do not expect,

however, a substantial difference in managers’ own expectations and higher

order expectations. This holds in the data, with E[p] = 3.41 and E
2
[p] = 3.50

for managers in our sample.

2.2.3.2 Variance

The noisy information model predicts that the cross sectional variance

of higher order expectations will be smaller than the variance of the managers’
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own expectations. This happens as higher order expectations become more

weighted toward the common signal, which is perfectly observed by all agents.

The variance of own expectations of the aggregate price level is derived from

the individual and aggregate own expectations, Equations 2.7 and 2.8.

V [Ei[p]] = E[(Ei[p]]− E[p]])2] (2.11)

= φ2
x

(κx
κ

)2
E[(xi −m)2]

= φ2
x

(κx
κ

)2 1

κx

The cross-sectional variance of higher order expectations derives from

Equations 2.9 and 2.10:

V [Ei[E[p]] = E[(Ei[E[p]]− E2
[p]])2] (2.12)

= φ2
x

(κx
κ

)4
E[(xi −m)2]

= φ2
x

(κx
κ

)4 1

κx

As κx
κ
< 1, the variance of the higher order expectation is lower than

the variance of managers’ own expectations. This feature is also present in our

data, with the variance of higher order expectations at 9.36 and the variance

of managers’ own expectations at 5.90.

2.2.3.3 Uncertainty

As all distributional parameters are known to all managers, the subjec-

tive uncertainty about both the expectation of the price level and the higher
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order expectation of the price level should be the same as the cross sectional

variances of these objects and given by Equations 2.11 and 2.12.. Therefore,

we expect to see in the data that managers’ subjective uncertainty about their

own prediction of inflations should be higher than their uncertainty regard-

ing the expectations of other managers. This holds true in the data with the

uncertainty average uncertainty about own expectations and higher order ex-

pectations at 1.10 and 0.89, respectively. However, these numbers are much

smaller than the respective cross sectional variances and therefore do not line

up with the predictions of the model under infinite orders of reasoning.

2.2.3.4 Correlation

This model posits perfect correlation between the expectations and

higher order expectations of managers.

Corr(Ei[p], Ei[E[p]) =
Cov(Ei[p], Ei[E[p])

SD(Ei[p])× SD(Ei[E[p])

As both own expectations and higher order expectations vary only with

realizations of xi and y, the correlation between the two will equal 1:

Corr(Ei[p], Ei[E[p]) =
φ3
x

(
κx
κ

)3
E[(xi −m)2]

(φx
(
κx
κ

)
E[(xi −m)])× (φ2

x

(
κx
κ

)2
E[(xi −m)])

= 1

In the data, we see a deviation from this prediction, with the correlation

between the two types of expectations equal to 0.63.
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2.2.3.5 Regression Coefficient

Figure 2.1 shows a scatter plot and regression line plotting higher order

expectations against own expectations in the New Zealand data. The regres-

sion coefficient on managers’ own expectations is 0.54∗∗∗(0.02). This finding is

consistent with the predictions of the model so far. The regression coefficient

is given by the following equation.

β =Corr(Ei[p], Ei[E[p])
SD(Ei[E[p])

SD(Ei[p])

Using the fact that the correlation between own and higher order ex-

pectations should equal 1 and the standard deviations derived from Equations

2.11 and 2.12, we find that the regression coefficient is equal to the following

expression:

β =
φx
(
κx
κ

)2 1√
κx

φx
(
κx
κ

)
1√
κx

=
κx
κ

Under the assumptions of the model, this is strictly less than one.

2.3 Level-k Thinking

Section 2.2 described a series of predictions that hold if agents under-

take infinite degrees of reasoning about the pricing decisions of others. Reason-

ing of this sort is, however, difficult and computationally intensive. Managers
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are therefore likely, due to either cognitive constraints or recognizing the costs

of such reasoning, limit their degrees of thinking to levels well below infinity.3.

We introduce questions into our survey that allow us to categorize the thinking

types of firm managers in New Zealand and compare the properties of level-k

behavior in our survey with the predictions of existing models.

2.3.1 Categorizing Types

To characterize firms’ degree of reasoning, we ask the following ques-

tion. We also time the firm managers as they answer this question to provide

another measure of the amount of thinking that managers do.

“Please choose a number from zero to 100. We will take your number

as well as the numbers chosen by other managers to calculate the average pick.

The winning number will be the number that is closest to two-thirds (2/3) of

the average.

The individual(s) with the winning number will receive (or share with

other winners in case of tie) $500.”

As in Nagel (1995) and Nagel and Duffy (1997), we can then define

the degree of reasoning by the manager’s answer to this question. A kth-level

thinker provides the following guess:

3Experimental literature on this topic suggests that experiment participants rarely get
beyond reasoning at level 3 (Nagel and Duffy (1997), Nagel (1995), Camerer et al. (2004),
Stahl and Wilson (1995), Costa-Gomes and Crawford (2006)).
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g(k) =

(
2

3

)k
× 50 (2.13)

The distribution of guesses appears in Figure 2.2. In the full sample,

firm managers provide guesses throughout the full interval. However, when we

restrict the sample to those managers who spend at least 20 seconds on the

question, the guesses pile on integers associated with reasoning types between

k = 1 and k = 5, with the number of firms of each type declining with k.

Accordingly, we classify these managers by their guess and assign k = 0 to

those who do less than 20 seconds of thinking. The guesses associated with

k = 0 therefore fall throughout the interval of allowable guesses, rather than

at 50.4

Table 2.2 shows the breakdown of types in our survey and in two papers

that use experiments to identify agents’ depths of reasoning. Nagel and Duffy

(1997) runs experiments with small groups of students to see what depths of

reasoning appear in the first round of the beauty contest game. This model and

definition of k-types requires that a level-k thinker believes that everyone else

in the game performs at level-k−1. Camerer et al. (2004) develops a model of

’cognitive hierarchy’ that allows agents to form beliefs about the distribution

of other reasoning types in the sample. A level-k thinker is assumed to observe

the correct frequency of thinkers at his type and types below, but to incorrectly

4In the Nagel (1995) model, g(k = 0) = 50 while guesses throughout the interval are
associated with k < 0.
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assume that there are no thinkers at types above his own. As a result, he posits

inaccurate relative frequencies of thinkers. As a thinker’s reasoning type, k,

increases and he observes the true frequencies of a greater number of types,

his expectation of the density over the sample becomes “increasingly rational”

and closer to the true distribution of types. The thinking types of managers

in our survey appear more dispersed than in other surveys. We see a greater

density of thinkers at k = 0, partially due to the way we assign this rating (as

anyone who does less than 20 seconds of thinking about the question). In our

survey, 36.8 percent of managers are k = 0, as opposed to 20 to 27.3 percent in

the other papers. We also see a higher densities of managers at higher levels,

k = 3 and k ≥ 4, with 12.9 and 13.5 percent of managers at these levels. In

other surveys we see 3 to 4 percent of people at these levels.

2.3.2 Higher Order Beliefs

We assess the beliefs of managers about the distribution of other man-

agers’ types by asking them to provide a probability distribution over ranges

of other managers’ guesses. Specifically, we ask:

“Other managers are asked to guess a number from zero to 100, with the

goal of making their guess as close as possible to two-thirds of the average guess

of all those participating in the contest. What percentage of other managers’

guesses do you think will fall in each of the following ranges?5

5The ranges include 0− 9.99, 10− 19.99, 20− 20.99 and so on through 90− 100.
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The results of the distribution question are not fully consistent with

either the Nagel (1995) or Camerer et al. (2004) models. Table 2.3 reports

results on these beliefs by reasoning type. Roughly 80 percent of managers of

all reasoning levels assign positive probability to multiple bins a fact that is

not consistent with the Nagel model of reasoning. A level-k thinker as defined

by the guess in Equation 2.13 should report positive probability on only one

bin, the one associated with the level-k−1 guess. This level-k thinker will also

not place positive probability on the bin associated with her own guess. For

types k = 1, 2, and 3, managers place an average probability of 0.72 to 0.77 on

this bin, meaning they think that between 72 and 77 percent of other managers

are the same type as them. All levels, k ≥ 1, assign positive probability to

bins associated with thinkers beneath their own level, consistent with both

Nagel (1995) and Camerer et al. (2004). However, only types k ≥ 4 report

believing that a majority of managers will fall into bins associated with lower

level thinkers. Thinkers at types k ≤ 3 also report positive probability on bins

associated with levels of k above their own. This result proposes a puzzle not

explained by current depths of reasoning models. In such models, a level-k

thinker cannot fathom the existence of a level-k+ 1 thinker, as to do so would

be to engage in a higher order of reasoning himself.

Figure 2.3 shows the average believed distribution of guesses for each

thinking type, k, as well as the true density function across guesses.6 This

6Using Equation 2.13, we can interpret a manager’s beliefs about the guesses of other
managers as his beliefs about their types. For example, a level-1 thinker places a guess
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illustrates that all types believe that the majority of managers share their own

type and all managers at levels k ≤ 3 assign probability to guesses associated

with players at levels both higher and lower than their own. All managers

underestimate the true dispersion of guesses. Accordingly, none of the thinking

types correctly observe the true density of types, nor do beliefs about the

density become closer to the truth with increasing k, as in Camerer et al.

(2004).

Managers’ reported beliefs about the guesses of other managers mean

that their own guesses are not consistent with the rules of game. Managers

believe the average guess, Ei[GuessHO] to be close to their own. To win

the prize, the manager should submit a guess of two-thirds of his believed

average guess. It may be the case that when asked directly about higher order

expectations, managers will engage an additional level of reasoning that was

not present when they formed their own guess or expectation. In this case,

part of being a lower level thinker is failing to realize when expectations and

higher order expectations are inconsistent with each other.7. If this is true, a

thorough model of level-k thinking will allow thinkers to perform at different

levels when considering their own expectations or actions and when considering

the expectations or actions of others.

To test the consistency of the agents’ guesses in the beauty contest

in the bin 20 − 20.99, so placing positive probability in this bin indicates that a manager
believes some percentage of other managers are type k = 1.

7This is a reasonable proposition, as the concept of level-k thinking itself introduces
failures or limitations in reasoning to the agent’s problem.
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game with their beliefs about the average guess of other managers, we can

check the following relationship:

GuessOwn(i) = c+ βEi[GuessHO] + εt (2.14)

The constant term, c, should be equal to 0 and β = 0.67. Estimating

this equation for managers who spent more than 20 seconds on the guessing

game question gives the following result:

GuessOwn = 0.15 + 0.91∗∗∗Ei[GuessHO] + εt (2.15)

(0.26) (0.01) (2.16)

where robust standard errors are presented in parentheses. We can reject the

null that β = 0.67. If we restrict the sample to higher levels of k (k > 2) we

find

GuessOwn = 5.04 + 0.50∗∗∗Ei[GuessHO] + εt (2.17)

(1.10) (0.08) (2.18)

Here, we can no longer reject H0 : β = 0.67, but we find a constant term

significantly different from 0. These results indicate that thinkers of all types

guess too high relative to their reported beliefs of the guesses of other man-

agers. Additionally, all managers at levels lower than k = 3 - or 58 percent
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of those that spent at least 20 seconds on the beauty contest question - show

behavior consistent with different levels of reasoning for guess and their higher

order expectation of the guesses of others.

2.4 Experiment

In a noisy information environment, firm managers will update their

expectations of inflation as well as of other managers’ expectations when they

receive new information. However, they will update their expectation only

partially, reflecting that they may not believe the information to be fully cred-

ible or noiseless. To assess empirically the degree of noise that managers

perceive in signals, we introduce signals in an experimental context and gauge

the response of managers’ expectations to these signals.

We are interested to see how managers respond, not only to informa-

tion, but to different kinds of information. Following the initial survey where

we ask about inflation expectations and higher order expectations, we per-

form the following experiment. We divide managers into five groups. Group

A is a control group and does not receive any information. Group B receives

information about the average beliefs of survey participants about inflation:

E[π]. Group C receives information about the average higher order inflation

expectations of survey participants: E
2
[π]. Group D’s signal consists of both

information about average expectations and average higher order expectations.

We utilize Group E to compare the impact of information about other man-

agers’ beliefs to information about the target variable. Managers in Group E
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receive a signal about lagged inflation.

To assess the impact of the signal on agent believes, we run the following

regression for each experimental group:

Posteriori,Group = αGroup + βGroupPriori,Group (2.19)

The coefficient on the prior expectation has a different interpretation

based on its value. If β̂Group ≈ 1, managers see the signal as uninformative and

do not update their prior beliefs at all. If 0 < β̂Group < 1, the signal is partially

informative and managers will update their posterior somewhat, but will still

rely partially on the prior. A β̂Group = 0 indicates a completely informative

signal that causes managers to discard their priors in favor of the signal.

Table 2.4 shows the coefficient on the prior expectation for the regres-

sion of posterior expectations on prior expectations for own inflation expec-

tations and higher order inflation expectations. Each experimental group has

its own coefficient for each variable. We find that all managers update their

expectations slightly, as evidenced by βA < 1 for the control group. However,

we see that agents perceive information about past realization and the aver-

age higher order beliefs of other managers more informative than information

about the other managers’ average expectation of inflation. The coefficient

on the prior inflation expectation is 0.090 and 0.096 for the groups receiving

information about the average higher order expectation. It is 0.059 for the

group receiving information about the past realization. This contrasts with
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a coefficient of 0.502 for the group receiving information about the average

inflation expectation. We see a similar discrepancy for the coefficients on the

prior higher order expectation. For the groups receiving information about

the average higher order expectation in the survey, this coefficient is 0.118 and

0.071. For those receiving information about the past realization of inflation,

it is 0.062, and for those receiving information about the average own expecta-

tion, it is 0.430. These results imply that managers view signals about higher

levels of thought as more informative than signals about lower levels.8

We also ran these regressions separately for different levels of thinking,

but did not find any significant differences in the way managers at different

reasoning types processed signals.

2.5 Concluding Remarks

This paper presents novel survey evidence on higher order expectations

as well as level-k thinking. We find evidence broadly in line with noisy infor-

mation models with strategic complementarities in pricing that require firm

managers to form higher order expectations. We also find, however, evidence

that managers may not reason to an infinite degree. We back this up further

by characterizing managers by their levels of thinking. We further show that

levels of thinking conform to aspects of different models of level-k thinking, but

8It is worth further investigation to see if this fact is consistent with the finding in Section
2.3 that a manager’s guess in the beauty contest game is not necessarily consistent with his
beliefs about the guesses of others.
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do not line up with others. This means there is work to be done in correctly

modeling and defining the behavior of a level-k thinker.

This paper also measures the treatment effects of information on firm

expectations. We find differential responses in responses to different types of

information. According to our analysis, depths of reasoning do not significantly

impact manager responses to treatments.

Jointly, these results contribute to a broader research agenda explain-

ing the expectations formation of agents. Central banks may find this work

particularly interesting as our results challenge certain model-based predic-

tions of how expectations are formed and how decision-makers reason through

information problems.

Future work9 will focus on how a firm’s higher order expectations and

reasoning type effect its actions and its long term responses to information.

9Pending a follow-up wave of the survey
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Table 2.1: Summary Statistics

Own Expectation HO Expectation

Mean 3.41 3.50
Standard Deviation 3.06 2.43
Uncertainty 1.10 0.89

Notes : This table gives summary statistics for managers’ own expectations

and higher order expectations of inflation, where the higher order expectation

is defined as the expectation of the average of other managers’ expectation.

Consistent with the predictions of a model with strategic interaction in pric-

ing, these expectations have similar means and the standard deviation and

uncertainty of higher order expectations is less than those of own expecta-

tions. There is, however, a substantial difference in the standard deviation

and uncertainty terms for each variable. This is inconsistent with the model

of strategic interaction in which agents infinitely reason the behavior of their

competitors. See Section 2.2 for more information.
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Table 2.2: Breakdown of Reasoning Types

Level of
Thinking, k NZ Managers

Duffy and
Nagel 1997

Camerer et al
2004

k = 0 36.8 ∼ 20.0 ∼ 27.3
k = 1 21.2 ∼ 50.0 ∼ 35.4
k = 2 15.6 ∼ 22.0 ∼ 23.0
k = 3 12.9 ∼ 4.5 ∼ 10.0
k = 4+ 13.5 ∼ 3.5 ∼ 3.2

Notes : This table shows the distribution of level-k types from our survey, from

the mean game of Nagel and Duffy (1997) and from the cognitive hierarchy

characterization of Camerer et al. (2004). Our results are broadly similar

to other experimental approaches for characterizing depths of reasoning. We

see a slightly higher density of participants at k = 0. This results from our

definition of a k = 0 manager as someone who spends less than 20 seconds on

the beauty contest question. See Section 2.3 for more information.
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Table 2.3: Beliefs about Other Managers’ Guesses

Fraction Reporting Average Probability on Bin

Level of
Thinking, k

Positive Probability on
More than One Bin

of Own
Guess

of Lower k
than Guess

of Higher k
than Guess

k = 0 0.87 - - -
k = 1 0.82 0.72 0.14 0.14
k = 2 0.78 0.77 0.11 0.13
k = 3 0.82 0.74 0.16 0.10
k = 4+ 0.83 0.36 0.64 -

Notes : This table describes managers’ beliefs about other managers’ guesses in

the beauty contest game. The first column gives the fraction of each thinking

type reporting that they believe other managers provide guesses in more than

one bin. The remaining columns show the average probability that agents of

each thinking type place on bins associated with levels of k above, below, and

the same as their own. For more information on how these results compare

with existing models of level-k thinking, see Section 2.3.
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Table 2.4: Responses to Experiment

Experiment Group Treated With: Own Expectations HO Expectations

A - 0.727 (0.020) 0.700 (0.021)
B E[π] 0.502 (0.041) 0.430 (0.039)

C E
2
[π] 0.090 (0.018) 0.118 (0.024)

D E[π] & E
2
[π] 0.096 (0.022) 0.071 (0.020)

E πt−1 0.059 (0.015) 0.062 (0.021)

Notes : This table shows the results of the experiment. We provided each

group with the signal described in the second column and asked for a poste-

rior expectation. Group A did not receive a signal as the control group. The

remaining columns of the table present the coefficient on the prior expecta-

tion from a regression of the posterior on the prior. A coefficient close to one

indicates that managers view the signal as uninformative and stick closely to

their priors. As the coefficient values get closer to zero, it indicates that man-

agers find the signal more informative and more greatly update their priors.

Here, the most informative signals were information about the lagged value

of inflation itself and information about the average higher order expectation.

Information on the average expectation of inflation had a lesser impact on

posterior expectations. See Section 2.4 for more details.
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Figure 2.1: Own Expectations and Higher Order Expectations

Notes : This figure shows managers’ higher order expectations plotted against

their own expectations, along with the regression line relating these two. The

See 2.2 for more information.
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Figure 2.2: Distribution of Reasoning Types

Notes : This figure shows the distribution of guesses from the beauty contest

game. We asked managers to provide a guess between zero and 100 with

the guess closest to 2
3

of the average guess receiving a prize. For managers

who spent at least 20 seconds in considering their guess, we see clumping of

guesses at those points which correspond neatly with level-k types as defined

in Nagel (1995). Those managers who answered the question in less than 20

seconds made guesses dispersed across the full interval. See Section 2.3 for

more information.
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Figure 2.3: Beliefs About Distribution of Other Managers’ Guesses

Notes : This figure shows the average beliefs about the distribution of other

managers’ guesses in the beauty contest game by reasoning type. Individuals of

each type believe that the majority of other managers provide guesses similar

to their own. All thinking types also underestimate the true dispersion of the

guesses of other managers. See Section 2.3 for more information.
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Chapter 3

Time Varying Attention:

Evidence from Survey Data

3.1 Introduction

Central banks and policymakers care about the economic expectations

of agents in the economy as the actions of these agents directly affect pol-

icy objectives. For this reason, there is a growing interest in how economic

agents approach the problem of collecting information and using it to form be-

liefs. Amid this growing interest is an interest on rational inattention models,

where rather than facing exogenous constraints on information, agents opti-

mally choose some level of attention to assign to a target variable subject to

a capacity constraint.

Rationally inattentive agents choose the degree of attention they pay

to a variable in response to economic dynamics. Therefore, this degree of

attention is likely be subject to changes given different monetary policy regimes

and underlying economic conditions. This paper proposes a framework for

estimating attention that tracks time variation. This allows us to view changes

in the expectations formation process in light of changes to macroeconomic

processes over time. I find that forecasters’ degree of inattention has indeed
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changed over time, declining for most variables since the late 1960s. I further

argue that this change is consistent with a rationally inattentive response to

underlying economic conditions.

Interestingly, in periods associated with higher attention, we also see

a greater dispersion in attention across agents. This implies that underlying

macroeconomic conditions that generate a greater attention response are also

more likely to generate a heterogeneous response in attention across agents.

This is a new stylized fact that may prove useful in modeling rational inatten-

tion in future work.

This paper relates to a literature on rational inattention, using the

seminal models of Sims (2003) and Mackowiak and Wiederholt (2009), to

empirically assess the degree to which agents are inattentive. Afrouzi (2017)

does something similar, calibrating a rational inattention model and backing

out estimates of noisy information parameters. My approach begins with the

empirical estimation of a noisy information model, making this paper similar

to Coibion and Gorodnichenko (2015), Coibion and Gorodnichenko (2012),

Dovern et al. (2014), Andrade and Le Bihan (2013), and Chapter 1 of this

dissertation.

The paper is organized as follows. Sections 3.2 and 3.3 present the

model and estimation strategy, respectively. Section 3.4 presents the data. I

discuss the results in Section 3.5. Section 3.6 provides a brief discussion and

Section 3.7 concludes.
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3.2 Model of Inattention

I begin with a simple Kalman filter model in which agents predict a

fundamental, xt, according to a linear combination of the their past beliefs

about the fundamental and a private signal that they receive. While signal

processing via methods like the Kalman filter commonly appear in noisy in-

formation models, these same methods can be used in a rational inattention

framework. In noisy information models, agents receive exogenously imperfect

signals. As their information is imperfect, they cannot fully trust their signals

and place a portion of the weight of their new expectation on prior beliefs.

On the other hand, rationally inattentive agents face a capacity constraint on

processing information and therefore view attention to any particular variable

as costly. The precision of agent signals in rational inattention models is,

therefore, endogenously generated and left up to agent choice.

Mackowiak et al. (2017) show that, given a fundamental that evolves

according to an AR(1) process, the optimal signal chosen by a rationally inat-

tentive agent has the same structure as the signals from a basic noisy infor-

mation model. Accordingly, I allow the fundamental to follow an AR(1):

xt = µ+ ρxt−1 + wt. (3.1)

Agents optimally select signals of the form:

zt(i) = xt + vt(i) (3.2)
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where wt ∼ N(0, σ2
w) and vit ∼ N(0, σ2

v(i)). Each forecaster chooses

their signal noise variance, σ2
v(i), consistent with rational inattention models

over noisy information models. The constant in the transition equation, µ,

allows the fundamental to converge to a non-zero long run mean. The agent

forms her time-t expectation of xt according to the following equation:

x̃t|t(i) = ki(zt) + (1− ki)x̃t|t−1

= ki(πt + vit) + (1− ki)x̃t|t−1

= kiπt + (1− ki)x̃t|t−1 + kivit

(3.3)

The steady state Kalman gain, ki has the following representation:

ki =
Pt|t−1(i)

σv,x(i)2 + Pt|t−1(i)

The a priori covariance of the estimate, Pt|t−1(i), represents the fore-

caster’s perceived variance, or uncertainty, of the time-t state conditioned on

signals received up to period t-1. As she enters time t and receives signal

zt(i), she updates this uncertainty estimate to Pt|t(i) = (1 − ki)Pt|t−1(I). A

forecaster can reduce her uncertainty about a particular variable by allocating

attention to it. Models of rational inattention rely on placing constraints on

information flow, or the reduction in uncertainty that results from attention; a

forecaster can generate information flow up to a specified capacity constraint

and will therefore optimally choose to limit attention.
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Using entropy as a measure of uncertainty, as in Mackowiak and Wieder-

holt (2009), it is possible to define information flow as the difference between

the entropy of a random variable, x, prior to receiving the signal zit and the

conditional entropy of x given the signal zt(i). The entropy of x prior to re-

ceiving zt(i), given that xt is normally distributed with conditional variance

σ2
x|zt−1(i)

is:

H(x|zt−1(i)) =
1

2
log2(2xeσ

2
x|zt−1(i)

). (3.4)

The conditional entropy given signal zt(i) is:

H(x|zit) =
1

2
log2(2xeσx|zt(t)

2). (3.5)

Given these two terms, the information flow for a univariate process is

equal to the mutual information between the two, defined as:

I(x; zt(i)) = H(x|zt−1(i))−H(x|zt(i)). (3.6)

As the a priori estimate covariance establishes the agent’s uncertainty

about the state before realizing her signal, let σ2
x|zt−1(i)

take the value of the

a priori variance of the state estimate, Pt|t−1(i). Following the observation

of the signal, the agent’s estimate covariance updates to Pt|t(i). Therefore,

we can consider Pt|t(i) an estimate of the conditional variance σx|zt(i). Each

individual’s information flow now takes the form:
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I(x; zt(i)) =
1

2
log2(2xePt|t−1(i))−

1

2
log2(2xePt|t(i))

=
1

2

[
log2(Pt|t−1)− log2(Pt|t)

]

Using the relationship between the two uncertainty estimates, Pt|t(i) =

(1− ki)Pt|t−1(i), it is possible to rewrite this as:

I(x; zt(i)) =
1

2

[
log2(Pt|t−1(i))− log2((1− ki)Pt|t−1(i))

]
=

1

2

[
log2(Pt|t−1(i))− log2(1− ki)− log2(Pt|t−1(i))

]
= −1

2
log2((1− ki)).

(3.7)

As ki is bounded between 0 and 1, this term is guaranteed to be non-

negative. Information flow is also greater than zero as long as ki > 0 or as

long as agent signals contain some informative content.

3.3 Estimation Strategy

Changing underlying economic conditions over time will induce a dif-

ferent choice of signal noise variance, σ2
v(i). This choice leads to a different

Kalman gain, ki, and a different information flow, I(x|zt(i)). We should ac-

cordingly expect information flow to differ across agents based on the time

periods that they participate in the sample. Accordingly, we should be able
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to track subtle changes in attention by tracking the average attention across

agents present in each time period.

From Equation 3.7, it is clear that one only needs an estimate of the

individual-specific Kalman gain to obtain an estimate of the individual’s in-

formation flow. I estimate ki for the individuals in the sample by running a

constrained regression of the agent’s forecast of xt on her lagged forecast of

the same event and on the realization of xt, which is the observable part of

her signal.

x̃t|t = β0(i) + β1(i)xt + β2(i)x̃t|t−1 + εt (3.8)

I impose the constraint β1 + β2 = 1 as β1 = k̂i and β2 = (1 − k̂i).

The errors in the above equation have a structural interpretation as signal

noise terms, scaled by each agent’s Kalman gain. I expect that the agents’

forecasting equation will not include a constant term and therefore want to

check that the regression constants do not differ from 0.

The information flow for each individual is then calculated as a mono-

tonic transformation of k̂i, Î(x; zt(i)) = −1
2
log2((1−k̂i)). For each time period,

I then take the average of information flow across agents and estimate the cross

sectional dispersion in information flow to see how the agents’ attention prob-

lem has changed over time.
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I(x|zt) =

∑
i Î(x; zt(i))1t(i)∑

i 1t(i)

While changes in the time-average of attention occur due to changes in

the composition of sample, it remains the case that, over time, the sample may

transition to higher or lower attention individuals. As rationally inattentive

forecasters will respond to changing underlying economic conditions with ad-

justments to attention, observing forecasters present in different periods will

give a sense of forecasters’ response to changing regimes.

3.4 Data

The data for this estimation comes from the Survey of Professional

Forecasters, a quarterly survey conducted by the Federal Reserve Bank of

Philadelphia.1. Several design features of this survey make it desireable for this

estimation. First, the survey began in 1968 tracking several macroeconomic

variables. This allows for the examination of attention across several influential

periods in monetary policy including the high inflation of the 1970s followed by

the Volcker Disinflation and Great Moderation. Second, the survey consists of

a highly unbalanced panel, meaning that not all forecasters are observed for all

periods. This allows me to estimate the information flow for individuals who

are present in different periods and therefore differentially exposed to different

1The American Statistical Organization and the National Bureau of Economic Research
conducted the survey prior to 1990.
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policy regimes and underlying conditions.

The survey includes several macroeconomic variables since its inception

in 1968. These variables include the GDP price deflator, unemployment, real

GDP, industrial production, and housing starts. I form each of these variables

except for unemployment into projected growth rates. I use the quarterly

nowcast of each variable as x̃t|t(i) and use the final release measure of each as

variable to represent the realization or the observable part of the signal. Each

forecaster’s lagged expectation of time-t x is given by the quarter lag of the

quarter-ahead forecast.

3.5 Results

Figure 3.1 shows the distribution of Kalman gains across individuals for

each of the five macroeconomic variables available since the survey’s inception.

Table 3.1 gives summary statistics about the individual Kalman gains for

each variable. There is heterogeneity across variables in the average Kalman

gain, though the average gain is similar for GDP price inflation, industrial

production, and housing starts. Variables with relatively higher and lower

degrees of attention also appear to have less dispersion in individual Kalman

gains.

Figures 3.2 and 3.3 show the average information flow and the cross

sectional standard deviation of information flow for each time period for price

inflation, real GDP, industrial production, and housing starts. These graphs

appear in a separate figure, 3.4, for unemployment.
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• GDP Price Inflation. The average Kalman gain for inflation is 0.41,

meaning that the average forecaster forms her nowcast giving 41 percent

weight to the signal and 59 percent to her lagged expectation. We also

see that attention to inflation, or information flow, has decreased over

time. Dispersion has decreased with attention.

• Unemployment Interpreting the individual Kalman gain as the amount

of weight the agent gives to her new signal, we see that agents pay the

most amount of attention to new signals about unemployment, with 73

percent of their nowcast coming from the signal and only 27 percent on

their past expectation. Figure 3.4 shows the time variation in informa-

tion flow and the standard deviation in information flow for unemploy-

ment. I present these results differently as forecasters show low-frequency

variation in attention to unemployment rather than declining attention

over time. We can see, however, that aggregate attention and dispersion

in attention covary for unemployment.

• Real GDP: While agents weight signals about unemployment relatively

highly, they pay relatively little attention to signals about real GDP.

Real GDP has the lowest average Kalman gain at 0.33. This implies

that forecasters give more weight to their past expectations than to their

signals when forming a nowcast about GDP. Both average information

flow and the dispersion in information flow has decreased over time for

real GDP.

98



• Industrial Production As measured by the Kalman gain, forecasters

pay a moderate amount of attention to industrial production, with the

average Kalman gain at 0.43. This implies the nowcast gives 43 per-

cent weight to the new signal. Attention and dispersion in attention to

industrial production have declined over time.

• Housing Starts. Similar to industrial production, forecasters pay a

moderate amount of attention to housing starts with an average Kalman

gain at 0.43. We see declining attention and dispersion in attention over

time for housing starts.

Figure 3.5 shows the standard deviation of information flow plotted

against the aggregate information flow. This pools across periods and vari-

ables. As the time trend in unemployment appears to be different than for

the other variables, I show the relationship between information flow and dis-

persion separately for unemployment. The relationship between aggregate

information flow and the cross sectional standard deviation is positive for un-

employment and for the pooled remaining variables, though the magnitude of

the relationship is different. Running the following regression:

Std.Dev.V ariable,t = c+ βAggregateAttentionV ariable,t + εV ariable,t (3.9)

β̂ = 0.09∗∗(0.04) for unemployment and β̂ = 0.25∗∗∗(0.01)for the remaining

variables. ∗∗ and ∗∗∗ indicate the 5 and 1 percent significance levels, respec-

tively.
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3.6 Discussion

These results suggest that a forecaster’s attention problem has changed

over time. A full rational inattention model would include a capacity con-

straint on information flow. Seeing a reduction in information flow to so many

variables suggests that either forecasters’ capacity has declined, or their pay-

off from attention has declined to the point that they allocate their capacity

elsewhere.

A reduction in attention to variables due to macroeconomic conditions

is a possibility for the period over which we see the reduction. Forecasters pay

more attention during the volatile period of the 1970s and show a reduction

in attention moving into the Great Moderation as well as the more macroe-

conomically stable 1990s. A rationally inattentive agent is less likely to pay

attention to a stable process as there will not be many unpredictable changes.

3.7 Concluding Remarks

This paper provides an estimation approach and initial results regard-

ing time-variation in information flow in the survey of professional forecasters.

I find that forecasters have reduced attention to inflation, real GDP, industrial

production, and housing starts while holding attention to unemployment rela-

tively constant. I also find that cross sectional dispersion in attention increases

with the average degree of attention. Future work may focus on sources of this

link between attention and increased heterogeneity.
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Table 3.1: Individual Kalman Gains
GDP

Inflation Unemployment
Real
GDP

Industrial
Production

Housing
Starts

Mean 0.46 0.74 0.36 0.48 0.48
Median 0.41 0.74 0.32 0.45 0.42
Standard Deviation 0.26 0.16 0.23 0.25 0.24
Interquartile Range 0.31 0.19 0.24 0.34 0.25

Notes : This table provides descriptive statistics of the distributions of individ-

ual Kalman gains for each of the following variables: GDP deflator inflation,

unemployment, real GDP, industrial production, and housing starts. Each

variable is approximately normally distributed with a median value close to

the mean. There is variation in the average Kalman gain across variables,

with forecasters showing a high degree of attention to unemployment and a

relatively low degree of attention to real GDP. Variables with average Kalman

gains closer to the center of the acceptable interval (0, 1) also show greater

dispersion across individuals.
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Figure 3.1: Distribution of Individual Kalman Gains

Notes : This figure shows the distribution of individual Kalman gains for each

variable available since the survey’s initial release in 1968. See Section 3.5 and

Table 3.1 for more information.
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Figure 3.2: Time Variation in Information Flow

Notes : This figure shows the average information flow across individuals present

in each time period. For each of the above variables, information flow appears

to decline at later dates.
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Figure 3.3: Time Variation in Dispersion

Notes : This figure shows the standard deviation in information flow in each

time period. For each of the above variables, cross sectional dispersion appears

to decline at later dates.
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Notes : This figure shows time variation in the mean and standard deviation

of information flow in unemployment. We see low frequency changes in both

over time, but not a systematic time trend.
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Figure 3.5: Information Flow and Dispersion

Notes : This figure shows the relationship between information flow and cross

sectional dispersion for these variables. For the variables that exhibit declining

information flow over time, standard deviation increases with information flow.

The same is true for unemployment, even though we do not see a time trend

in attention to unemployment.
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Appendix 1

Derivations

1.1 Basic Noisy Information Model

Derivation of Equation 1.4 :

πt+1,t|t(i) = µ+ ρπt,t−1|t(i)

= µ+ ρ(kzt(i) + (1− k)πt,t−1|t−1(i))

= µ+ kρπt,t−1 + kρvt(i) + ρ(1− k)πt,t−1|t−1(i)

(1.1)

Derivation of Equation 1.5:

To form the agent’s forecast error, I subtract both sides of the above equation

from πt+1,t.

FEt+1,t|t(i) = πt+1,t − (µ+ kρπt,t−1 + ρ(1− k)πt,t−1|t−1(i))

= µ+ ρπt,t−1 + wt+1 − (µ+ kρπt,t−1 + ρ(1− k)πt,t−1|t−1(i))

= ρ(1− k)(πt,t−1 − πt,t−1|t−1(i)) + wt+1 − kρvt(i)

= ρ(1− k)FEt,t−1|t−1(i) + wt+1 − kρvt(i)

(1.2)
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1.2 Model with Two Frictions

Derivation for Equation 1.10

πt+1,t|t(i) = µ+ ρ̃πt,t−1|t(i)

= µ+ ρ̃(kzt(i) + (1− k)πt,t−1|t−1(i))

= µ+ kρ̃πt,t−1 + kρ̃vt(i) + ρ̃(1− k)πt,t−1|t−1(i)

(1.3)

Derivation for Equation 1.11

FEt+1,1|t(i) = πt+1,t − (µ+ kρ̃πt,t−1 + kρ̃vt(i) + ρ̃(1− k)πt,t−1|t−1(i))

= µ+ ρπt,t−1 + wt+1 − µ− kρ̃πt,t−1 − kρ̃vt(i)− ρ̃(1− k)πt,t−1|t−1(i)

= (ρ− ρ̃k)πt,t−1 − ρ̃(1− k)πt,t−1|t−1(i) + wt+1 − ρkvt(i)

= (ρ̃− q − ρ̃k)πt,t−1 − ρ̃(1− k)πt,t−1|t−1(i) + wt+1 − ρkvt(i)

= ρ̃(1− k)FEt,t−1|t−1(i)− qπt,t−1 + wt+1 − ρkvt(i)
(1.4)

1.3 Extensions

When forecaster i observes a private signal about current inflation and

a public signal about lagged inflation, she forms her optimal nowcast according

to:

πt,t−1|t(i) = µ+ ρπt−1,t−2|t−1(i) +K
[
Zt(i)−H1µ− (H1ρ+H2)πt−1,t−2|t−1(i)

]
= µ+ ρπt−1,t−2|t−1(i) + k1(πt,t−1 + vt(i)− µ− ρπt−1,t−2|t−1(i))

+ k2(πt−1,t−2 + et − πt−1,t−2|t−1(i))
(1.5)
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Regrouping terms gives:

πt,t−1|t(i) = (1− k1)(µ+ ρπt−1,t−2|t−1(i))− k2πt−1,t−2|t−1(i) + k1πt,t−1 + k2πt−1,t−2 + k1vt(i) + k2et

Using the fact that πt,t−1|t−1(i) = µ+ ρπt−1,t−2|t−1(i):

πt,t−1|t(i) = (1− k1)πt,t−1|t−1(i)− k2πt−1,t−2|t−1(i) + k1πt,t−1 + k2πt−1,t−2 + k1vt(i) + k2et

The forecaster’s projection for 1-quarter ahead inflation will take the following

form:

πt+1,t|t(i) = µ+ ρ((1− k1)πt,t−1|t−1(i)− k2πt−1,t−2|t−1(i) + k1πt,t−1 + k2πt−1,t−2 + k1vt(i) + k2et)

= µ+ ρ(1− k1)πt,t−1|t−1(i)− ρk2πt−1,t−2|t−1(i) + ρk1πt,t−1 + ρk2πt−1,t−2 + ρk1vt(i) + ρk2et
(1.6)

Subtracting both sides from πt+1,t, where πt+1,t = µ+ ρπt,t−1 + wt+1 gives the

following equation for one-quarter ahead forecast errors:

FEt+1,t|t(i) = ρ(1− k1)(πt,t−1 − πt,t−1|t−1(i)) + ρk2(πt−1,t−2|t−1(i)− πt−1,t−2)

− ρk1vt(i)− ρk2et + wt+1

= ρ(1− k1)FEt,t−1|t−1(i)− ρk2(πt−1,t−2 − πt−1,t−2|t−1(i))

− ρk1vt(i)− ρk2et + wt+1

= ρ(1− k1)FEt,t−1|t−1(i)− k2(ρπt−1,t−2 − ρπt−1,t−2|t−1(i))

− ρk1vt(i)− ρk2et + wt+1

(1.7)
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We can then express the above equation as a relationship between quarter-

ahead forecast errors and its lagged value as well as the lag of the nowcast

error.

FEt+1,t|t(i) = ρ(1− k1)FEt,t−1|t−1(i)− k2(FEt−1,t−2|t−1(i))− ρk1vt(i)− ρk2et + wt+1

(1.8)

Derivation and interpretation of Kalman gain terms, k1 and k2

K = [ρU−(H1ρ+H2)
′ + σ2

wH
′
1 + σwR

′]× [(H1ρ+H2)U
−(H1ρ+H2)

′ + (H1σ
2
w +R)(H1σ

2
w +R)′]−1

K =
[
ρU−ρ+ σw + σwσv ρU− + σwσe

]
×
[
ρU−ρ+ σ2

w + 2σwσv + σ2
v ρU− + σwσe + σvσe

ρU− + σwσe + σvσe U− + σ2
e

]−1
Allow χ to symbolize the determinant of the 2×2 matrix in the above equation.

χ =
1

U−σ2
w + 2U−σwσv + U−σ2

v + ρU−ρσ2
e − 2ρU−σwσe − 2ρU−σvσe

K =
[
ρU−ρ+ σ2

w + σwσv ρU− + σwσe
]
×

[
U−+σ2

e

χ
−(ρU−+σwσe+σvσe)

χ
−(ρU−+σwσe+σvσe)

χ
ρU−ρ+σ2

w+2σwσv+σ2
v

χ

]

Multiplying through,

k1 = (ρU−ρ+ σ2
w + σwσv)× (U− + σ2

e)− (ρU− + σwσe)× (ρU− + σwσe + σvσe)× χ

=
U−σ2

w + U−σwσv + ρU−ρσ2
e − 2ρU−σwσe − ρU−σvσe

U−σ2
w + 2U−σwσv + U−σ2

v + ρU−ρσ2
e − 2ρU−σwσe − 2ρU−σvσe
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k2 = − (ρU−ρ+ σ2
w + σwσv)× (ρU− + σwσe + σvσe) + (ρU− + σwσe)× (ρU−ρ+ σ2

w + 2σwσv + σ2
v)× χ

=
ρU−σ2

v + ρU−σwσv − ρU−ρσvσe
U−σ2

w + 2U−σwσv + U−σ2
v + ρU−ρσ2

e − 2ρU−σwσe − 2ρU−σvσe

Under full information, the forecaster receives a signal about today’s inflation

that is equal to the true value of inflation. As such, vt(i) = 0 and σv = 0.

Substituting into the equations for k1 and k2:

k1 =
U−σ2

w + +ρU−ρσ2
e − 2ρU−σwσe

U−σ2
w + ρU−ρσ2

e − 2ρU−σwσe
= 1

k2 =
0

U−σ2
w + ρU−ρσ2

e − 2ρU−σwσe
= 0

k2 is only equal to zero under one other condition, when a standard deviation

in the error noise is as large as the sum of a standard deviation in the inflation

innovation and a standard deviation of the private signal noise. In this case

the signal about past inflation is too noisy to be informative.

ρU−σ2
v + ρU−σwσv − ρU−ρσvσe = 0⇔ σv + σw = σe

We can also consider the situation where the forecaster perfectly observes the

lagged value of inflation, or et = 0 and σe = 0.

k1 =
U−σ2

w + U−σwσv
U−σ2

w + 2U−σwσv + U−σ2
v
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k2 =
ρU−σ2

v + ρU−σwσv
U−σ2

w + 2U−σwσv + U−σ2
v

Under this circumstance, the agent weights the two signals according to the

relative noise in the process innovation, wt, and in her signal vt(i), with the

signal about the past receiving more weight if the signal about the present is

noisier and the signal about the present receiving more weight if inflation is

more volatile. k1 and k2 should sum to 1.
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Appendix 2

Forecasts at Longer Horizons

Deriving the relationship between forecast errors and lagged forecast er-

rors for longer horizons requires transforming forecasts from higher-frequency

observations to lower-frequency observations. As shocks compound quarterly,

this transformation introduces endogeneity to the relationship between fore-

cast errors and lagged forecast errors at longer horizons. This appendix

presents derivations for longer horizon forecasts.

2.1 Two-Quarter Horizon

Inflation follows the same AR(1) process with shocks arriving each quar-

ter. Agents further receive the same signals each period. 1 πt+1,t is inflation

from period t to period t+ 1.

The forecast will follow:

πt+1,t|t(i) = µ+ ρ(kzt(i) + (1− k)πt,t−1|t−1(i))

= µ+ ρkπt,t−1 + ρkvt(i) + ρ(1− k)πt,t−1|t−1(i))

and the forecast error:

1See Equations 1.1 and 1.2.
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FEt+1,t|t(i) = ρ(1− k)FEt,t−1|t−1(i) + wt+1 − ρkvt(i)

As shown in Section 3.2, we can estimate this equation by OLS under basic

assumptions. The following derivation of semi-annual forecast errors

πt+2,t = πt+1,t + πt+2,t+1

= µ+ (1 + ρ)πt+1,t + wt+2

(2.1)

The expectation of this event takes the same form.

πt+2,t|t(i) = πt+1,t|t(i) + πt+2,t+1|t(i)

= µ+ (1 + ρ)πt+1,t|t(i)

= µ+ (1 + ρ)
[
µ+ ρkπt,t−1 + ρkvt(i) + (1− k)πt,t−1|t−1(i)

] (2.2)

From Equations 2.1 and 2.2 the semi-annual forecast error is:

FEt+2,t|t(i) = (1 + ρ)FEt+1,t|t(i) + wt+2 (2.3)

This provides the semi-annual forecast error in terms of the lagged quarterly

forecast error. The desired relationship is the semi-annual forecast error and

the lagged semi-annual forecast error. As time is denominated in quarters, the

desired lag of two-quarter inflation occurs at time t− 2 rather than time t− 1.

Mirroring the structure of Equation 2.3, FEt,t−2|t−2(i) is given by
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FEt,t−2|t−2(i) = (1 + ρ)FEt−1,t−2|t−2(i) + wt (2.4)

Note that we can derive the relationship between the one-quarter ahead fore-

casts that appear in the Equations 2.3 and 2.4.

FEt+1,t|t(i) = ρ(1− k)FEt,t−1|t−1(i) + wt+1 − ρkvt(i)

= ρ2(1− k)2FEt−1,t−2|t−2(i) + ρ(1− k)wt + wt+1 − ρ2(1− k)kvt−1(i)− ρkvt(i)

Plugging this into Equation 2.3:

FEt+2,t|t(i) = (1 + ρ)
[
ρ2(1− k)2FEt−1,t−2|t−2(i) + ρ(1− k)wt + wt+1 − ρ2(1− k)kvt−1(i)− ρkvt(i)

]
+ wt+2

= (1 + ρ)ρ2(1− k)2FEt−1,t−2|t−2(i) + (1 + ρ)ρ(1− k)wt + (1 + ρ)wt+1 + wt+2

− (1 + ρ)ρ2(1− k)kvt−1(i)− ρ(1 + ρ)kvt(i)
(2.5)

Rearranging Equation 2.4 gives:

FEt−1,t−2|t−2(i) =
1

1 + ρ
FEt,t−2|t−2(i)−

1

1 + ρ
wt (2.6)

Substituting this into Equation 2.5 gives the desired relationship between a

semi-annual forecast and its appropriate lag.
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FEt+2,t|t(i) = (1 + ρ)ρ2(1− k)2
[

1

(1 + ρ)
FEt,t−2|t−2(i)−

1

1 + ρ
wt

]
+ (1 + ρ)ρ(1− k)wt + (1 + ρ)wt+1 + wt+2 − (1 + ρ)ρ2(1− k)kvt−1(i)− ρ(1 + ρ)kvt(i)

= ρ2(1− k)2FEt,t−2|t−2(i)− ρ(1− k)(1 + ρk)wt + (1 + ρ)wt+1 + wt+2

− (1 + ρ)ρ2(1− k)kvt−1(i)− ρ(1 + ρ)kvt(i)

The error term consists of signal noise terms for the periods between the two

forecasting periods and shocks that occur in t, t+1, and t+2. The presence of

wt in the error term means that the error term is correlated with the dependent

variable and this equation cannot be estimated by OLS.

2.2 Two-Quarter Horizon with Misperceived Persistence

The agent’s quarter-ahead forecast will now follow:

πt+1,t|t(i) = µ+ ρ(kzt(i) + (1− k)πt,t−1|t−1(i))

= µ+ ρkπt,t−1 + ρkvt(i) + ρ(1− k)πt,t−1|t−1(i))

and the forecast error:

FEt+1,t|t(i) = ρ̃(1− k)FEt,t−1|t−1(i)− qπt,t−1 + wt+1 − ρkvt(i)

The expectation of two-quarter ahead inflation takes the following form, while

the realization is the same as in Equation 2.1.
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πt+2,t|t(i) = πt+1,t|t(i) + πt+2,t+1|t(i)

= µ+ (1 + ρ̃)πt+1,t|t(i)

The forecast error for two-quarter ahead inflation can then be written as:

FEt+2,t|t(i) = µ+ (1 + ρ)πt+1,t|t + wt+2 − (µ+ (1 + ρ̃)πt+1,t|t(i))

= (1 + ρ̃− q)πt+1,t|t − (1 + ρ̃)πt+1,t|t(i) + wt+2

= (1 + ρ̃)FEt+1,t|t(i)− qπt+1,t + wt+2

(2.7)

Similarly, we can write the two-quarter ahead forecast error from two quarters

ago as:

FEt,t−2|t−2(i) = (1 + ρ̃)FEt−1,t−2|t−2(i)− qπt−1,t−2 + wt (2.8)

We can derive the relationship between the quarter ahead forecast errors in

Equations 2.7 and 2.8:

FEt+1,t|t(i) = ρ(1− k)FEt,t−1|t−1(i)− qπt+1,t + wt+1 − ρkvt(i)

= ρ̃2(1− k)2FEt−1,t−2|t−2(i)− ρ̃(1− k)πt−1,t−2 − qπt,t−1

+ ρ̃(1− k)wt + wt+1 − ρ̃2(1− k)kvt−1(i)− ρ̃kvt(i)
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Plugging this into 2.7 gives:

FEt+2,t|t(i) = (1 + ρ̃)ρ̃2(1− k)2FEt−1,t−2|t−2(i)− (1 + ρ̃)ρ̃(1− k)πt−1,t−2 − (1 + ρ̃)qπt,t−1 − qπt+1,t

+ (1 + ρ̃)ρ̃(1− k)wt + (1 + ρ̃)wt+1 + wt+2

− (1 + ρ̃)ρ̃2(1− k)kvt−1(i)− (1 + ρ̃)ρ̃kvt(i)
(2.9)

Rearranging 2.8 gives us the following:

FEt−1,t−2|t−2(i) =
1

1 + ρ̃
FEt,t−2|t−2(i) +

q

1 + ρ̃
πt−1,t−2 −

1

1 + ρ̃
wt. (2.10)

We can then substitute this into Equation 2.11 to obtain:

FEt+2,t|t(i) = ρ̃2(1− k)2FEt,t−2|t−2(i)− ρ̃(1− k)(1 + ρ̃k)πt−1,t−2 − (1 + ρ̃)qπt,t−1 − qπt+1,t

+ ρ̃(1− k)(1 + ρ̃k)wt + (1 + ρ̃)wt+1 + wt+2

− (1 + ρ̃)ρ̃2(1− k)kvt−1(i)− (1 + ρ̃)ρ̃kvt(i)
(2.11)

Where I use that [ρ̃2(1− k)2 − (1 + ρ̃)ρ̃(1− k)] = ρ̃(1− k)(1 + ρ̃k). The pre-

dicted path of forecast errors now includes multiple realizations of inflation in

addition to the endogeneity problem identified in the previous section. When

we add time fixed effects to this regression to control for the wt, it will absorb

the effect of the realizations of the time-dependent realizations of inflation.
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Appendix 3

Misperception of the Constant

3.1 Forecast Errors with Incorrectly Observed Constant

A misperception of the constant of the inflation process, µ, creates

a different form of forecast errors. Define µi = µ + di ∀i. Further assume

constant beliefs across forecasters and call µi = µ̃ and di = d for all forecasters.

Forecasters will form their a priori beliefs about future inflation using their

perceived constant.

πt+1,t|t(i) = µ̃+ ρπt,t−1|t(i)

= µ̃+ ρ(kzt(i) + (1− k)πt,t−1|t−1(i)

= µ̃+ ρkπt,t−1 + ρ(1− k)πt−1|t−1(i) + ρkvt(i)

(3.1)

Subtracting both sides from the realization of πt+1,t and substituting

µ̃ = µ+ d gives the following equation for forecast errors.

FEt+1,t|t(i) = = µ+ ρπt,t−1 + wt+1 − µ̃+ ρkπt,t−1 + ρ(1− k)πt−1|t−1(i) + ρkvt(i)

= −d+ ρ(1− k)FEt,t−1|t−1(i)− qπt,t−1 + wt+1 − ρkvt(i)
(3.2)

Should µ̃ = µ and d = 0 for all time periods, as is the case when the

constant is observed, the constant will drop from the forecast error equation.
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If forecasters misperceive the constant, the estimation will simply produce a

nonzero constant term.

3.2 Forecast Errors if Both Parameters are Incorrectly
Observed

If forecasters mis-estimate both parameters, the quarter-ahead forecast

errors will follow a pattern combining the effects of the last two sections.

FEt+1,t|t(i) = −d+ ρ(1− k)FEt,t−1|t−1(i)− qπt,t−1 + wt+1 − ρkvt(i) (3.3)

Using this equation, I estimate the following reduced form equation to

uncover the parameters d and q .

FEt+1,t(i) = β0 + β1FEt,t−1(i) + β2πt,t−1(i) + εt(i)

= − 0.2003∗∗∗ + 0.3764∗∗∗FEt,t−1|t−1(i) + 0.0849∗∗∗πt,t−1
(3.4)

Under the null that there is no misperception of parameters, β0 = 0 and

β2 = 0. This estimation implies that d = 0.200 and q = −0.085, meaning that

agents overestimate the regression constant and underestimate persistence in

for the inflation process.
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Appendix 4

Derivations and Results for Nowcast Errors

4.1 Predicted Path of Nowcast Errors

The Kalman filter model consists of the following process and measure-

ment equations.

πt,t−1 = µ+ ρπt−1,t−2 + wt (4.1)

zt(i) = πt,t−1 + vt(i) (4.2)

The optimal nowcast is a linear combination of the signal and the agent’s prior

expectation.

πt,t−1|t(i) = kzt(i) + (1− k)πt,t−1|t−1(i) (4.3)

Substituting the process and measurement equations, 4.1 and 4.2, into the

optimal nowcast equation, 4.3 gives the following relationship:
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πt,t−1|t(i) = k(πt,t−1 + vt(i)) + (1− k)πt,t−1|t−1(i)

= k(µ+ ρπt−1,t−2 + wt + vt(i)) + (1− k)(µ+ ρπt−1|t−1(i))

= µ+ k(ρπt−1,t−2 + wt + vt(i)) + (1− k)(ρπt−1|t−1(i))

Subtracting both sides from the true value of πt,t−1:

πt,t−1 − πt,t−1|t(i) = µ+ ρπt−1,t−2 + wt − µ− ρkπt−1,t−2 − ρ(1− k)πt−1|t−1(i)− kwt − kvt(i)

= ρ(1− k)(πt−1 − πt−1|t−1(i)) + (1− k)wt − kvt(i)

Note that the constant from the transition equation drops out of the forecast

error equation. For ease of notation, let FEt,t−1|t(i) take the place of πt,t−1 −

πt,t−1|t(i).

FEt,t−1|t(i) = ρ(1− k)FEt−1,t−2|t−1(i) + (1− k)wt − kvt(i)

FEt,t−1|t(i) = 0.06∗∗∗ + 0.29∗∗∗FEt−1,t−2|t−1(i)

4.2 Predicted Path of Nowcast Errors with Mis-perceived
Persistence

Forecasters form their a priori beliefs about inflation using their per-

ceived persistence, ρ̃ = ρ+ q.
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πt,t−1|t(i) = k(πt,t−1 + vt(i)) + (1− k)πt,t−1|t−1(i)

= k(µ+ ρπt−1,t−2 + wt + vt(i)) + (1− k)(µ+ ρ̃πt−1,t−2|t−1(i))

= µ+ k(ρπt−1,t−2 + wt + vt(i)) + ρ̃(1− k)πt−1,t−2|t−1(i)

The corresponding forecast error is therefore:

FEt,t−1|t(i) = ρ(1− k)πt−1,t−2|t−1(i)− ρ̃(1− k)πt−1,t−2|t−1(i) + (1− k)wt − kvt(i)

= ρ̃(1− k)FEt−1,t−2|t−1(i)− q(1− k)πt−1,t−2 + (1− k)wt − kvt(i)

4.3 Predicted Path of Nowcast Errors with Mis-perceived
Inflation Constant

In this case the forecaster applies the transition equation to πt,t−1|t−1(i) with

the incorrect constant, µ̃ = µ+ d.

πt,t−1|t(i) = k(πt,t−1 + vt(i)) + (1− k)πt,t−1|t−1(i)

= k(µ+ ρπt−1,t−2 + wt + vt(i)) + (1− k)(µ̃+ ρπt−1,t−2|t−1(i))

= kµ+ (1− k)µ̃+ k(ρπt−1,t−2 + wt + vt(i)) + (1− k)ρπt−1,t−2|t−1(i)

= kµ+ (1− k)(µ+ d) + k(ρπt−1,t−2 + wt + vt(i)) + (1− k)ρπt−1,t−2|t−1(i)

= µ− (1− k)d+ k(ρπt−1,t−2 + wt + vt(i)) + (1− k)ρπt−1,t−2|t−1(i)

The nowcast error under these circumstances:
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FEt,t−1|t(i) = (1− k)d+ ρ(1− k)FEt−1,t−2|t−1(i) + (1− k)wt − kvt(i)

4.4 Predicted Path of Nowcast Errors with Mispercep-
tions of Both Persistence and the Constant

With misperception of both parameters, the predicted path of nowcast errors

is:

FEt,t−1|t(i) = (1− k)d+ ρ̃(1− k)FEt−1,t−2|t−1(i)− q(1− k)πt−1,t−2 + (1− k)wt − kvt(i)

= − 0.06 + 0.27∗∗∗FEt−1,t−2|t−1(i) + 0.04∗∗∗πt−1,t−2

This again provides evidence for the underestimation of persistence as the

interpretation of the coefficient on πt−1,t−2 is −q. A positive coefficient implies

that q is negative, or that forecasters underestimate inflation persistence.

process.
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