Application of Numerical Models to Development of the Frio Brine Storage Experiment

GCCC Digital Publication Series #05-01

Susan D. Hovorka

Keywords:

Numerical Modeling, Planning Models, Predictive Models, Calibration Models, Monitoring- Well Sampling, Residual Saturation Controls

<u>Cited as</u>:

Hovorka, S.D., Application of numerical models to development of the Frio Brine Storage Experiment: presented at EPA Modeling Workshop, Houston, Texas, April 6, 2005. GCCC Digital Publication Series #05-01. Application of Numerical Models to Development of the Frio Brine Storage Experiment

Susan D. Hovorka Bureau of Economic Geology Jackson School Of Geosciences The University of Texas at Austin

N TA

Christine Doughty Lawrence Berkeley National Lab

Presentation to EPA 4/05 Houston TX

Frio Brine Pilot Research Team

- Bureau of Economic Geology, Jackson School, The University of Texas at Austin: Susan Hovorka, Mark Holtz, Shinichi Sakurai, Seay Nance, Joseph Yeh, Paul Knox, Khaled Faoud, Jeff Paine
- Lawrence Berkeley National Lab, (Geo-Seq): Larry Myer, Tom Daley, Barry Freifeld, Rob Trautz, Christine Doughty, Sally Benson, Karsten Pruess, Curt Oldenburg, Jennifer Lewicki, Ernie Majer, Mike Hoversten, Mac Kennedy
- Schlumberger: T. S. Ramakrishna, Nadja Mueller, Austin Boyd, Mike Wilt
- Oak Ridge National Lab: Dave Cole, Tommy Phelps, David Riestberg
- Lawrence Livermore National Lab: Kevin Knauss, Jim Johnson
- Alberta Research Council: Bill Gunter, John Robinson, Bernice Kadatz
- Texas American Resources: Don Charbula, David Hargiss
- Sandia Technologies: Dan Collins, "Spud" Miller, David Freeman; Phil Papadeas
- BP: Charles Christopher, Mike Chambers
- SEQUIRE National Energy Technology Lab: Curt White, Rod Diehl, Grant Bromhall, Brian Stratizar, Art Wells
- Paulsson Geophysical Bjorn Paulsson
- University of West Virginia: Henry Rausch
- USGS: Yousif Kharaka, Bill Evans, Evangelos Kakauros, Jim Thorsen
- Praxair: Joe Shine, Dan Dalton
- Australian CO2CRC (CSRIO): Kevin Dodds, Don Sherlock
- Core Labs: Paul Martin and others

Categories of Models

1) Planning models
 (2) Predictive models
 (3) Calibration models

All models shown used LBNL TOUGH2 Other co-operating modeling teams: UT-CPGE, PNL, Schlumberger

Evolution of Frio Project – Role of Modeling

Selecting the Frio Formation as an Optimal Unit to Store CO2

6/2000

Modified from Galloway and others, 1982

Center

Generic Frio Model – Effect of Layering on Capacity Assessment

Probabilistically generated Frio-like heterogeneity

5/10/01

Planning

Year		1999			200)0			200	01			200)2			20	03			200	4		2	005
Quarter	1	2 3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	
Activities																									
Complete Phase I Feasibility Study																								_	
GEO-SEQ - organize research team																									
Optimal site selection study							•	1												P	lan	nir	ng		
Propose field study										2					\$										
Site characterization- existing data																									
Predictive modeling/Refine experiment												3	4, 5_	6	7		10		15		2	22			
Modify experiment design																									
Model refinement												_				8,9		11,1	2,1	3					
NEPA permit preparation																									
Injection permit preparation																									
Modeling to support permits																			16	17					
Site preparation, workover																									
New injection well drilled																									
Basin line data collected																									
Predictive modeling with improved data																				18,1	9, 20), 23	}		
Injection																									
Post-injection measurements																									
Calibration of models																					2	21 2	24	25?	?
Closure																									?

Simple Characterization for Proposal

Using Modeling for Planning

- Pressure increase within regulatory limits

 permeability, injection rate, outer boundary conditions
- CO₂ arrival at observation well
 - amount of CO2 injected, thickness of injection interval, well separation
- Affordable duration of field test
 - injection rate, thickness of injection interval, well separation

Predictive Modeling

Final Model Grid

Predictive Modeling to Obtain Project Objectives

- Sensitivity analysis
 - Interaction of uncertainty in data, uncertainty in model parameter selection, and uncertainty in results
- Tool selection (Planning = hypothesis of tool success in detecting expected conditions)
 - Seismic, EM, Saturation logs
- Propose testable hypotheses
 - Saturation history resulting from predicted residual saturation; timing of breakthrough, geochemical processes

Will CO2 arrive?

Experimental design interaction with geologic uncertainties

2/2/03

Predicted Saturation for History Match – Sensitivity to Residual Saturation

TOUGH2 model

Final Design Monitoring Program at Frio Pilot

Models Used to Design Pre-Injection Geophysics

VSP

- Designed for monitoring and imaging
- 8 Explosive Shot Points (100 – 1500 m offsets)
- 80 240 3C Sensors (1.5 – 7.5 m spacing)

Denser spacing in reservoir interval

Cross Well

- Designed for monitoring and CO₂ saturation estimation
- P and S Seismic and EM
- ->75 m coverage @ 1.5 m Spacing (orbital-vibrator seismic source, 3C geophone sensor)

- Dual Frequency E.M.

Tom Daley, LBNL: Paulsson Geophysical

Hypothesis: Residual Saturation Controls Permanence and can be measured during experiment

Residual gas saturation of 5%

Residual gas saturation of 30%

- Modeling has identified variables which appear to control CO₂ injection and post injection migration.
- Measurements made over a short time frame and small distance will confirm the correct value for these variables
- Better conceptualized and calibrated models will be used to develop larger scale longer time frame injections TOUGH2 simulations C. Doughty LBNL

Modeled Long-term Fate - 30 years

Minimal Phase trapping

Predicted significant phase trapping

Predicted Saturation Distribution Through

Observed Saturation Distribution Through Time-Injection Well

Borehole correction

Sigma

Observed Saturation Distribution Through Time- Injection Well

S.Sakurai, BEG

Calibration of Models

Calibration of Models

- Correctness of assumptions
- Synergy of results from several tools
 - Seismic/saturation logs/hydrologic tests
- Test hypotheses
 - Saturation history resulting from predicted residual saturation; timing of breakthrough, geochemical processes

Monitoring Well Sampling

•Hourly samples delineated the arrival and characteristic of the $\rm CO_2$ breakthrough.

•Sample gas composition was monitored in real time using a quadrupole mass spectrometer.

Barry Freifeld LBNL

Modeling During Project Essential to Frio Project Objectives

- Project Goal: Early success in a high-permeability, high-volume sandstone representative of a broad area that is an ultimate target for large-volume sequestration.
- 1. Demonstrate that CO_2 can be injected into a brine formation without adverse health, safety, or environmental effects
- 2. Determine the subsurface distribution of injected CO₂ using diverse monitoring technologies
- 3. Demonstrate validity of models
- 4. Develop experience necessary for success of large-scale CO₂ injection experiments

More information: Gulf Coast Carbon Center Frio Pilot Log

www.gulfcoastcarbon.org

Date	Data Incorporated	Model Name (simulation name)	Model Features	Issues studied/Key results	Model output sent to
Aug. 2001	Regional Frio and Anahuac geology Oil-field characterization: well logs, 3D seismic	SLX	•B sand •3D: dipping formation, partially sealed fault block, stochastic lateral heterogeneity, vertical layering based schematically on well-logs of SGH-3 and SGH-4, • $k = 100 - 700$ mD, $\Delta h = 6$ m •150 m well separation	•Boundary effects on pressure •Lateral heterogeneity •CO ₂ arrival time (t _{bt} = 30-60 days)	
Apr. 2002					CO ₂ distribution to Mike Hoversten for geophysics modeling
June 2002		ARSLX	•Add Argon tracer	Chromatographic separation	CO_2 and Ar distributions to Karsten Pruess for tracer-test design
June 2002	Same as above	CPSLX	 C sand 3D: same as above k = 100 - 700 mD, Δh = 6 m 150 m and 30 m well separation 	 Inject into B or C sand layer (C) Inject above or below thin shale in C (below) New injection well or not (yes) Injection rate (high) t_{bt} = 1.9 days 	
Sept. 2002	Frio literature S _{gr}	(CPV)	•Same as above, but large S_{gr}	•Effect of bigger S_{gr} • $t_{bt} = 4$ days	
Oct. 2002					Velocity fields to Kevin Knauss for geochemical

100.2005			•Radial models	•Compare to 3D model	
Mar. 2003		5pt 9pt	Uniform grid spacing9-point differencing	•Grid resolution and orientation effects	
Apr. 2003		CPSLX and CPV	•C sand model as above •Study operational features of CO ₂ injection test	 Long open well needed for geophysics Pump monitoring well during CO₂ injection 	
July 2003			•C sane model as above, but do non-isothermal simulation (at reservoir depth only)	•Temperature effects are minor	
July 2003			•Begin hysteresis studies	•Small S_{gr} during drainage (CO ₂ injection), large S_{gr} during rewetting (trailing edge of CO ₂ plume)	
Aug. 2003	More geological detail (bigger fault block)	VERP5	•C sand •3D: dipping formation, partially sealed fault block, internal fault, no lateral heterogeneity, vertical layering from SGH-4 well-log • $k = 50 - 150$ mD, $\Delta h = 6.5$ m •30 m well separation	•More distant lateral boundaries •Small fault •Thin shale •S _{gr} : small=case 1, large=case 2 •Case 1: $t_{bt} = 3$ days •Case 2: $t_{bt} = 6$ days	
Oct 2003			•Add Poynting correction to Henry's law for CO_2 dissolution	•Minor effect	

Nov. 2003			•Well-test design studies	•Doublet variations	
Nov. 2003			•CO ₂ injection studies	•Maximum ΔP allowed by regulators	
Feb. 2004			 Include methane (dissolved or immobile) in well-test design studies Radial and 3D models 	•In situ phase conditions and signatures in pressure- transients	
Mar. 2004			•Long-time plume evolution	•S _{gr}	
June 2004	Logs from new injection well	V2004	 As above, but vertical layering from well-log of new injection well k = 150 - 600 mD, Δh = 5.6 m 	 Inject above or below thin shale (above) Case 1: t_{bt} = 4 days (above), 9.4 days (below) Case 2: t_{bt} = 7 days (above), 14.5 days (below) 	
June 2004			•High resolution RZ grid	•Grid effects (small for two-phase flow) •Fingering (not expected to be a problem)	
Aug. 2004	Core analysis from new injection well	V2004core	•As above, but core analysis results modify vertical layering • $k = 2 - 3 D$, $\Delta h = 5.5 m$	•Case 1: $t_{bt} = 2.7$ days •Case 2: $t_{bt} = 5$ days	
Sept. 2004	Well test results		•As above, but different assumptions for permeability of internal fault	 Confirm core-scale permeabilities apply at field scale Late-time pressure transient suggests internal fault may not be sealing 	

Sept. 2004			•Simulate post-injection period to help design "after" geophysics		
Sept. 2004	Tracer test results	13 layer	•Higher lateral resolution around wells, increased sand thickness • $k = 2 - 3 D$, $\Delta h = 7.5 m$ •Compare to streamline model, higher-resolution XY model •Use calibrated model for final CO ₂ prediction	•Thicker sand delays first arrival and peak of tracer •Grid effects on tracer transport are big •Case 1: $t_{bt} = 3.2$ days •Case 2: $t_{bt} = 6.1$ days	Prediction of 3.2 days for CO ₂ arrival
Oct 2004 - March 2005	CO_2 injection results: $t_{bt} = 2.1$ days, initially small vertical extent of CO_2		 Same as above, but different P_{cap} strengths Use actual CO₂ injection schedule with breaks Bigger S_{lr} also shortens t_{bt} Include wellbore model – little effect 	•Effect of P _{cap} (less interfingering of phases, faster CO ₂ arrival) •Case 1: t _{bt} = 2.5 days •Case 2: t _{bt} = 3.8 days	
Feb. 2005			•Same as above •Simulate CO ₂ plume evolution after injection ends, to compare to VSP	•Big difference between cases 1 and 2	