Gulf of Mexico Miocene CO2 site characterization mega transect DE-FE0001941

GCCC Digital Publication Series #13-11

Ramon Trevino

Keywords:

Capacity; Characterization; Field study; Modeling-Flow simulation; Overview; Regional study-Gulf Coast; Site selection

Cited as:

Treviño, R., 2013, Gulf of Mexico Miocene CO2 site characterization mega transect: presented at the U.S. Department of Energy, National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting, Pittsburgh, Pennsylvania, August 20-22, 2013. GCCC Digital Publication Series #13-11.

Gulf of Mexico Miocene CO2 Site Characterization Mega Transect DE-FE0001941

Ramon Trevino Texas Bureau of Economic Geology

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013

Presentation Outline

- Project Overview & Past Accomplishments
- Regional Static Capacity
- Model Area
 - Simple Dynamic Analytical Model
 - Flow Simulation Model Runs
- Hi-Res 3D Seismic (HR3D)
- CO₂ "Plays" Atlas
- Summary & Acknowledgments

Benefit to the Program

Program goals addressed

Develop technologies that:

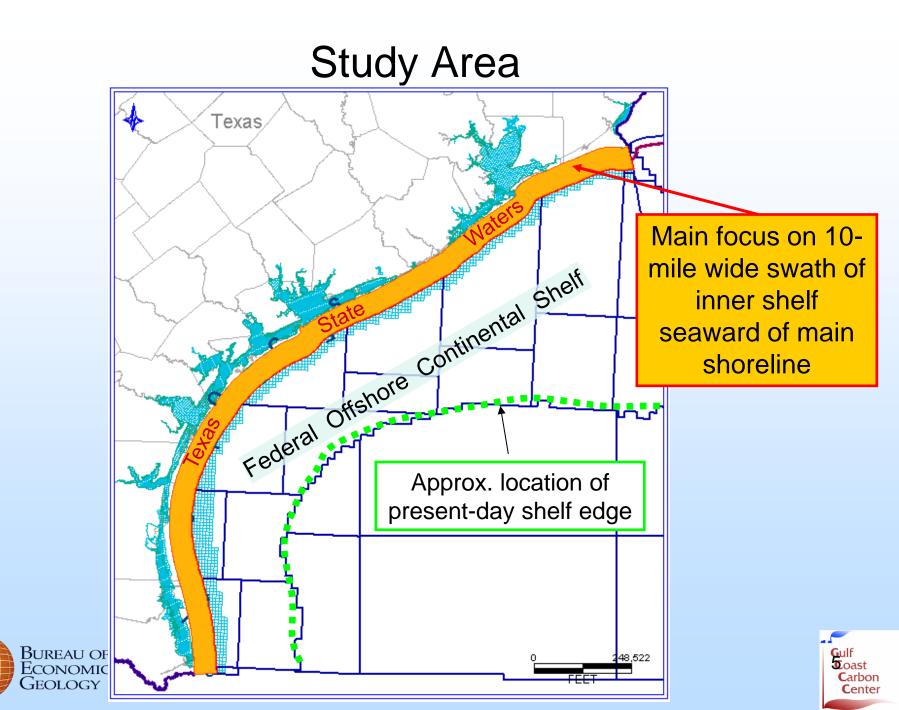
- 1. Predict CO_2 storage capacity within ±30%
- 2. Demonstrate 99% containment

Benefits Statement –

The research will develop 1) an atlas of existing traps (e.g., hydrocarbon fields) and regional data (e.g., existing well data, formation properties, etc.), 2) a best practices manual. The resulting data and techniques will help industry identify and evaluate future sequestration sites. In addition the study is using a new, high-resolution 3D (HR3D) seismic acquisition system to image the shallow geologic section and identify natural leakage pathways (i.e., areas to avoid), which

contributes to programmatic goals 1 and 2 (above).

Project Overview: Goals and Objectives


Study Goal – characterize regional Miocene-age geologic section ("formations") of Texas State Waters.

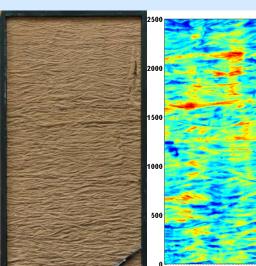
Objectives:

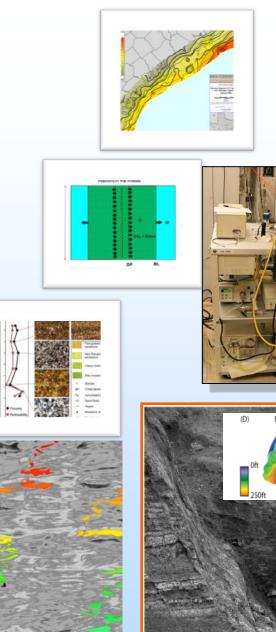
- 1. Assess & analyze existing energy industry data
- 2. Verify Miocene strata's ability to safely and permanently store large amounts of anthropogenic CO_2 .
- 3. Identify at least one specific site (capacity \ge 30 MT CO₂) for future commercial CCS operations.

Project Overview: Goals and Objectives

Success Criteria

- ✓ Minimum necessary data is available
- ✓ Identify one or more specific sites
 - Meet / exceed capacity cutoff
 - Complete geologic model(s)
 - Complete flow simulation model(s)


Project Research Scope

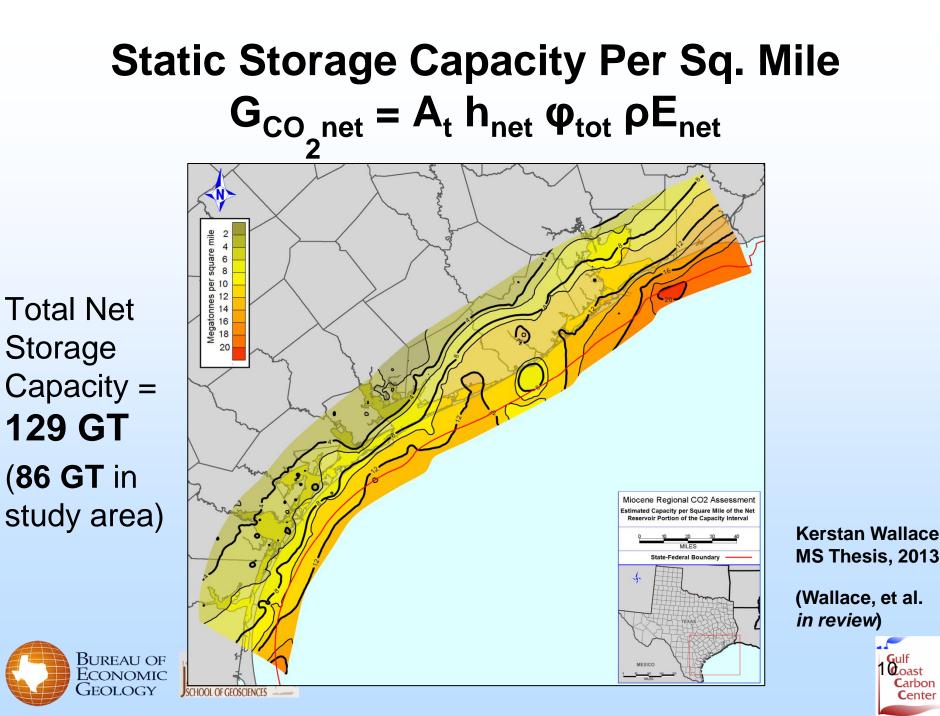

- Static capacity calculations
- Dynamic capacity calculations

 Analytical & geocellular modeling
- Geochemistry
- Mudrock sealing capacity
- Fluid migration
- Fault seal
- Hi-Res digital model
- HR3D

Seismic

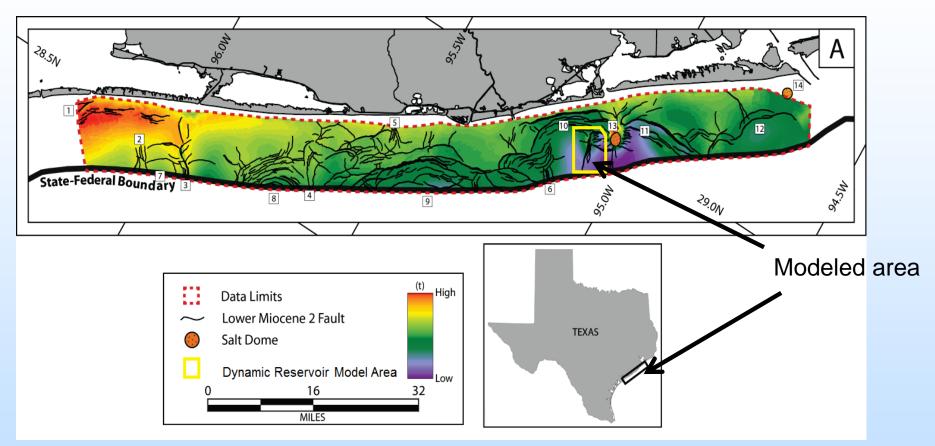
Accomplishments to Date

- Static regional capacity estimated for Texas State water
- Static regional capacity tested in small portion of study area by:
 - Simple Dynamic Analytical Model
 - 3D flow simulation
- 1st Hi-Resolution 3D (HR3D) Dataset acquired
 - Initial processing complete
 - Re-processing almost complete
 - Field test (land) conducted to verify positional accuracy
- Atlas (draft)



Presentation Outline

- Project Overview & Past Accomplishments
- Regional Static Capacity
- Model Area
 - Simple Dynamic Analytical Model
 - Flow Simulation Model Runs
- Hi-Res 3D Seismic (HR3D)
- CO₂ Plays Atlas
- Summary & Acknowledgments


Presentation Outline

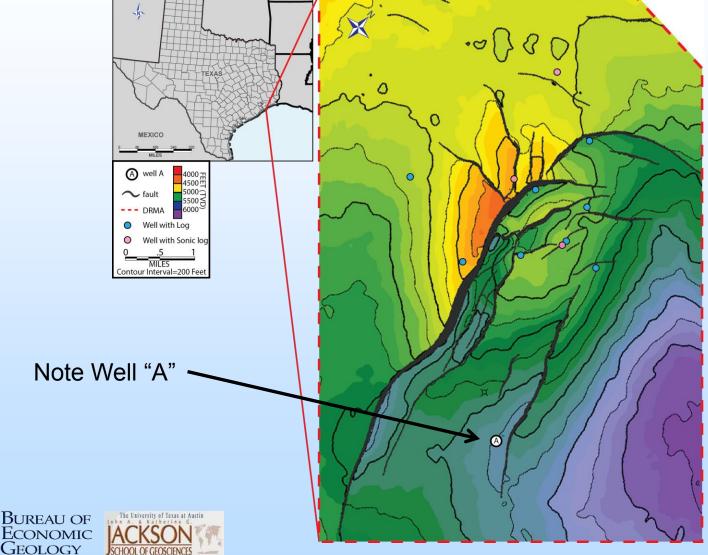
- Project Overview & Past Accomplishments
- Regional Static Capacity
- Model Area
 - Simple Dynamic Analytical Model
 - Flow Simulation Model Runs
- Hi-Res 3D Seismic (HR3D)
- CO₂ Plays Atlas
- Summary & Acknowledgments

Simple Dynamic Analytical Model

Kerstan Wallace MS Thesis, 2013

Simple Dynamic Analytical Model, Jain and Bryant (2011)

Summary of Simple Dynamic Analytical Model Inputs			
Parameter	Property	Value	Source
S_{wirr}	Irreducible Water Saturation	10-78%	6,206 Miocene reservoirs
Φ	Porosity	0.12-0.37	6,206 Miocene reservoirs
Т	Temperature	135.6° F (57.6° C)	11 log headers in DRMA
Р	Pressure	2,105 psi	Hydrostatic gradient
		(14.5 Mpa)	
Ζ	Depth	4,828 feet	Seismic mapping
		(1,472 meters)	
κ	Permeability	0.08-3686 mD	6,206 Miocene reservoirs
		(7.9×10^{-17})	
		$-3.6 \times 10^{-12} \text{ m}^2$)	
h	Thickness	99.5 feet	Seismic mapping
		(30.3 meters)	
А	Area	4742 acres	Closure analysis
		(19.2 km^2)	
$\mu_{\rm w}$	Water Viscosity	0.8177 cP	CREWES calculator
		(0.8177 mPa·s)	
μ_{g}	Gas Viscosity	0.0467 cP	NIST calculator
		(0.0467 mPa·s)	
k	Salinity	190,000 ppm	ILD and DT (well A)
n	Corey exponent (gas)	2.6	Inter-comparison project
m	Corey exponent (water)	10	Inter-comparison project
K ^o _{rg}	End point gas saturation	1	Inter-comparison project
P ₁	Pressure limit	3,527 psi	80% of lithostatic pressure
		(24.3 Mpa)	
ρ	CO ₂ density	.792 g/cc	NIST calculator


Model Assumptions

- Properties Homogeneous
- Structure not considered, BUT model inputs require accurate depth-structure map

Simple Dynamic Analytical Model Modeled Area

Kerstan Wallace MS Thesis, 2013

Simple Dynamic Analytical Model "Well A" 42706301770000

ST TR 00275-L W/2 #1

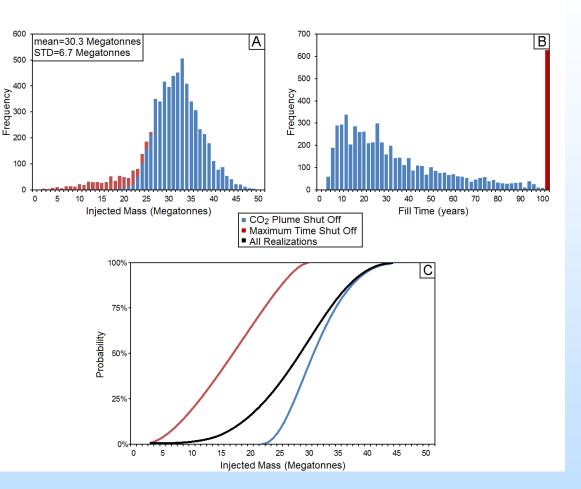
(well "A") -Ф-Top of Mioc SP ILD DT FT (mV) 0^{TVD}.1 (Ohm•m) 10 80 -100 (µs/ft) 120 Φ Derived from DT ext W. MF mprodonavnod Mar (1/2 Vr Middle Miocene p of Mod (MM) nph. B MF Reservoir Interval فريابها الأمطالالا لأكليه Mr. M. Mary Mr. **Kerstan Wallace** MS Thesis, 2013 *Stratigraphic interpretation by David L. Carr **Seismic data owned or controlled by Seismic Exchange, Inc.; interpretation is that of Kerstan Wallace 1 Soast

Carbon

Center

Seismic Column and corresponding Well Log

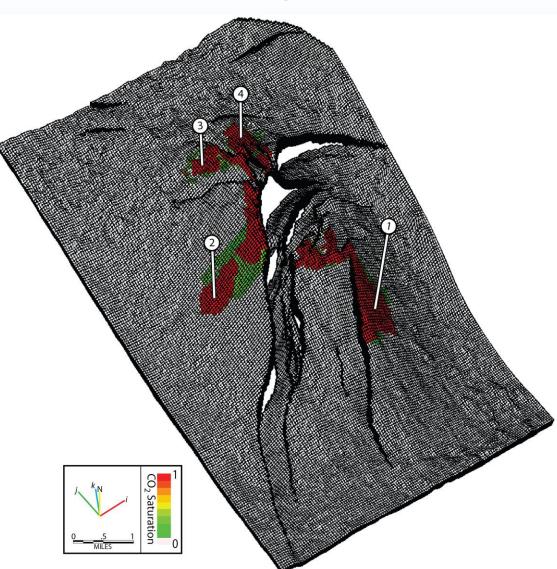
Simple Dynamic Analytical Model Results


6,206 samples of: $\phi,\,\kappa,\,\text{and}\,\,S_{wirr}$

Only conditions 1 (*plume shutoff*) and 3 (*time shutoff*) are met.

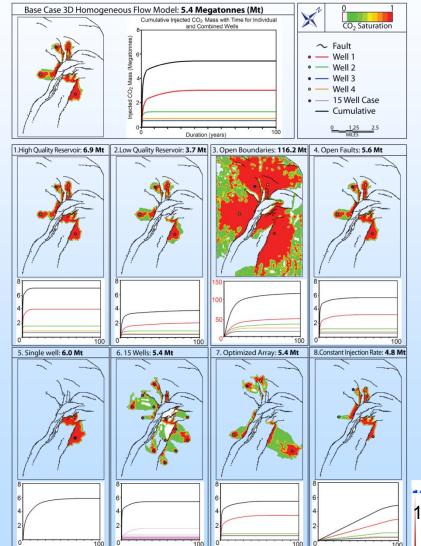
Condition 2 (*pressure limit*) not reached.

Avg. capacity = 30.3 MT Avg. fill-time = 38.3 years



3D Dynamic Fluid Flow Simulation Homogeneous Base Case

- 27 model cases
- 9 each of 3 scenarios
 - Homogeneous (shown here)
 - Statistical
 Heterogeneous
 - Seismic-based
 Heterogeneous


Homogeneous 3D Flow Model Scenario

 Cases 1-8 final plume geometries

Open boundaries effect (case #3) **by far** the most significant variable parameter

(Note scale change in case #3)

Carbon

Center

Presentation Outline

- Project Overview & Past Accomplishments
- Regional Static Capacity
- Model Area
 - Simple Dynamic Analytical Model
 - Flow Simulation Model Runs
- Hi-Res 3D Seismic (HR3D)
- CO₂ Plays Atlas
- Summary & Acknowledgments

Fluid System Analysis Strategy using HR3D

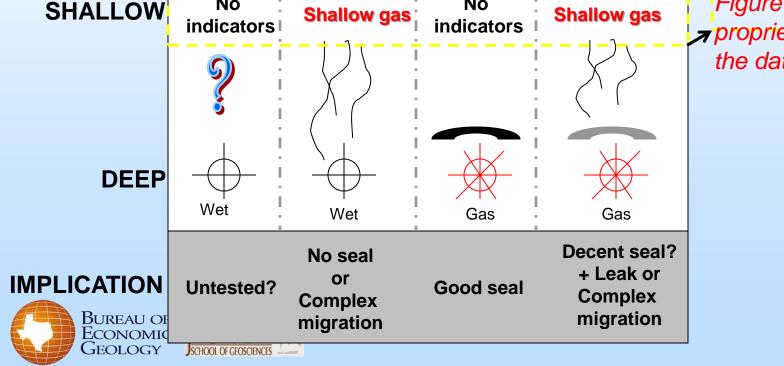
- DOE goal to find secure 30 Mt CO_2 storage site(s)
 - Collect data to reduce barriers to near-term commercial utilization

No

- Map storage geometries: compartmentalization.
- **Characterize traps and seals**

No

HR3D insight: Shallow interval Poor conventional coverage

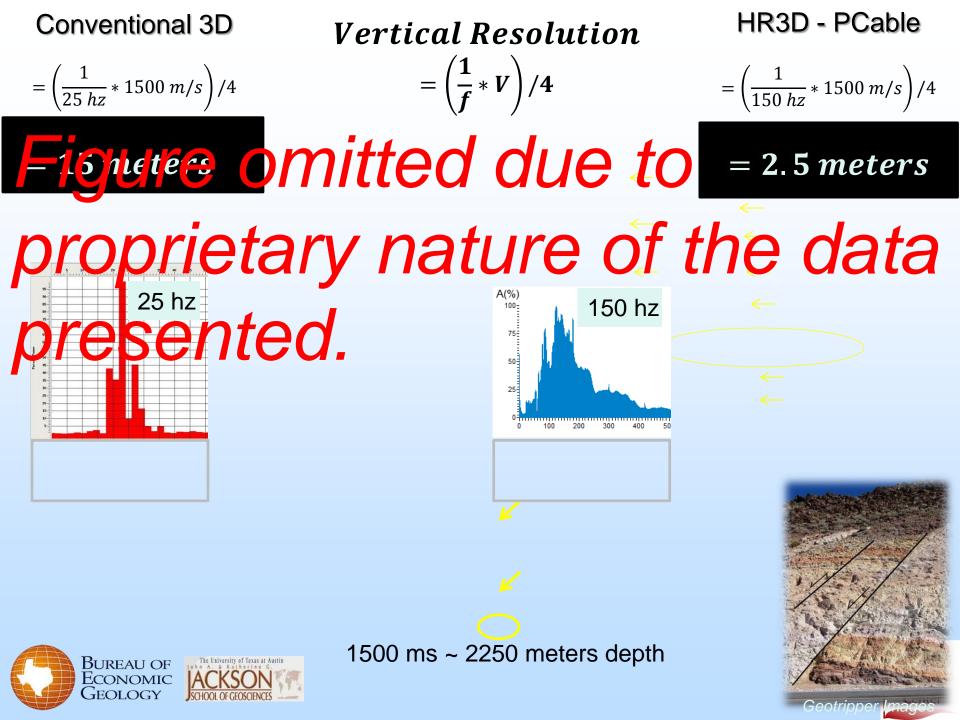

Figure omitted due to proprietary nature of the data presented.

Gulf

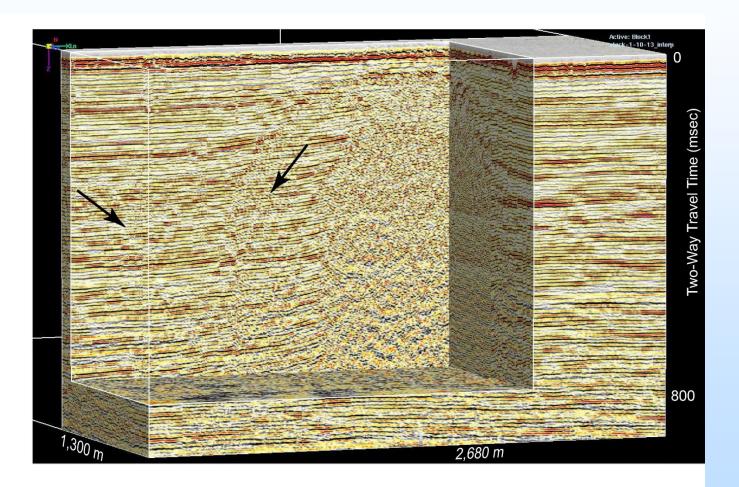
Coast

Carbon

Center



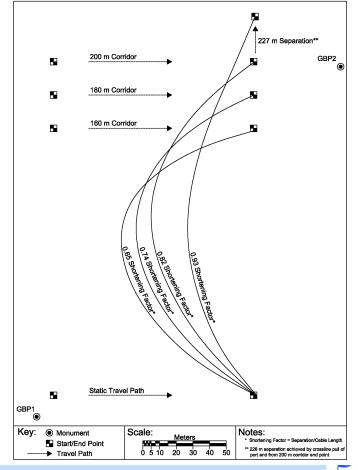
Hi-Res 3D (HR3D) Seismic


- 1st P-Cable HR3D Survey
 - Dataset Successfully Acquired
 - Initial processing challenges
 - Field testing resolved issues related to receiver position accuracy
 - Re-processing almost complete

Challenges – Initial Processing

Hi-Res 3D (HR3D) Seismic

- 1st P-Cable HR3D Survey
 - Dataset Successfully Acquired
 - Initial processing challenges
 - Field testing resolved issues
 - Re-processing almost complete



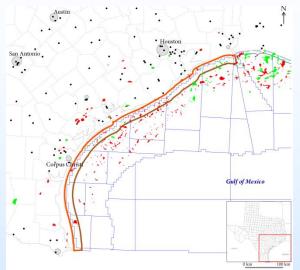
Static Field Test: Compare Calculated Receiver Positions with known (surveyed) positions

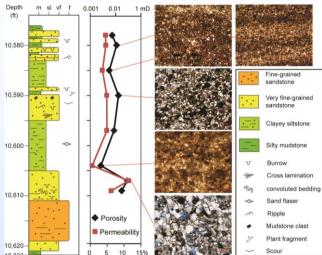
- Software solution (receiver positions) Robust, and sensitive to:
 - Cross-cable GPS's location distance to 1st junction box and tow point
- 2. Offsets used for initial processing were less than they should have been.

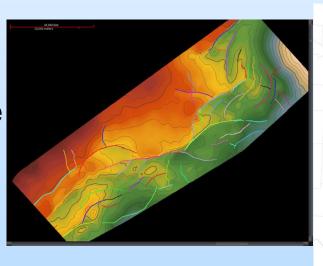
Economic Geology

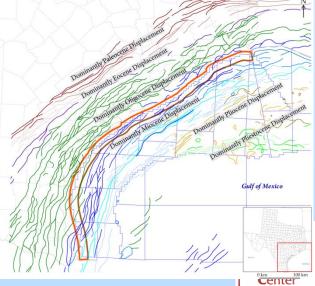
Presentation Outline

- Project Overview & Past Accomplishments
- Regional Static Capacity
- Model Area
 - Simple Dynamic Analytical Model
 - Flow Simulation Model Runs
- Hi-Res 3D Seismic (HR3D)
- CO₂ Plays Atlas
- Summary & Acknowledgments




CO₂ Atlas First Draft – Nearing Completion (Focus of Poster)


- Regional geology & petroleum systems (CO₂ analog)
- Confining system overview
- Regional capacity estimate
- CO₂ "plays" prospective storage sites



Summary

Key Findings

- Estimated Regional Static Capacity per sq. mile probably over-estimates actual storage potential
- Miocene top seals able to trap CO₂
- CO₂ backfilling preferable alternative to capillary flow fingering
- Geochemical experiments' results as expected

Summary

Lessons Learned

- Calculated receiver positions sensitive to crosscable GPS's location (distance to 1st junction box and tow point)
- P-Cable seismic acquisition cruises logistically complicated but achievable, data-rich and worthwhile

Summary

Future Plans

- 2 more P-Cable surveys
 - Establish subcontract with marine vessel / science partner organization
 - Test different pneumatic sources
 - Test calculated receiver positions / improve processed dataset result
- Publish 2-5 peer-reviewed articles
- Publish atlas
- Characterization best practices manual

Acknowledgments

- Landmark Graphics (a Halliburton Co.)
 - University grant program
 - Full suite of geoscience interpretation software
- IHS Petra geoscience interpretation software
- Project PI, Dr. Tip Meckel
- Sandia Tech, LLC

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United states Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

