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Abstract

The Cournot competition is a game in which two firms vie to produce the optimal quan-

tity of a good. Perfectly rational and fully informed firms would produce the quantities

given by the Nash equilibrium, the point at which neither firm could improve their payoff

by changing their action. Although the Nash equilibrium for the Cournot competition is

well understood, there are several proposed models describing how firms that are not fully

informed or perfectly rational might still learn the Nash equilibrium. Two commonly used

models are fictitious play and the successive best response strategy. I build on these by

using a Markov chain, a model for the evolution of random systems, to capture the proba-

bilistic behavior of imperfect firms. Most of the theory and applications of Markov chains

deals with finite or countable state spaces. In order to make sense in the context of game

theory, the theory of Markov chains on arbitrary state spaces must first be presented. I

will provide the relevant results for general state space theory, then describe its novel ap-

plications for learning Nash equilibria in the Cournot model.

Keywords: Markov chain, general state space, Nash equilibrium, Cournot competition
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1 Background

1.1 Game Theory

Game theory is the study of strategic interactions between rational decision-makers. A

rational decision-maker always decides to maximize their expected utility, given their in-

formation. Each rational agent is aware that all the other agents they compete against are

expected utility maximizers.

Definition 1.1. A game Γ is a collection (Si, ui)i∈I where

• I is a non-empty set of agents

• for each i ∈ I, Si is i’s set of possible strategies

• for each i ∈ I, ui : S → R is i’s utility function, where S := ×i∈ISi is the product of

the actions of all the players

The simplest type of game is a one-shot, simultaneous move game, in which each player

i simultaneously chooses an action si ∈ Si and receives a payoff ui(s), s := ×i∈Isi, that

depends on the strategies of all the players in the game. I will use s−i to denote the strategy

profile of all players except player i. Simple games can be represented using a payoff matrix,

which specifies the payoffs for each player for every possible strategy profile. An example

is the Prisoner’s Dilemma, in which two players both have the choice to either cooperate

or defect. Their payoffs can be represented by the following matrix:

C D

C 2, 2 0, 4

D 4, 0 1, 1

Here the first entry in each cell corresponds to the row player’s utility, and the second to

the column player’s. If the players both play C, they each receive a payoff of 2. If the row

player plays D and the column player plays C, then the row player receives a payoff of 4

and the column player receives a payoff of 0.

Definition 1.2. A pure strategy Nash equilibrium for Γ is a vector of strategies, s∗ ∈ S

such that for all si ∈ Si, ui(s∗i , s∗−i) ≥ ui(si, s∗−i).
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This definition captures the notion of mutual best responses: given the strategies of all

the other agents, no agent can benefit by changing strategies. For example, in the Prisoner’s

Dilemma discussed above, (D,D) is the unique Nash equilibrium. No player can benefit

by switching to C if their opponent is playing D, and any player will benefit by switching

from C to D no matter what their opponent does. In this case, we say the strategy D

strictly dominates C. This is the source of the dilemma - (C,C) is a better outcome for

everyone compared to (D,D), but no strictly rational actor would play C. Mixed strategy

Nash equilibria also exist but will not be discussed in this paper.

1.2 Cournot Competition

Definition 1.3. Cournot competition is a game theoretic model describing quantity

competition between two firms, where each firm i decides to produce an amount xi of a

homogeneous good. Market inverse demand is set by some function depending on the sum

x1 + x2.

In this case, letting x := x1 + x2, I will take the inverse demand function p to be

p(x) = A − Bx for A,B > 0. I will also assume that the firms are producing quantities

x1, x2 at a constant marginal cost C, where C < A, which means their profit functions π

are given by

πi(xi, xj) = xi(A−B(xi + xj))− Cxi

In the Cournot competition, each firm wants i to choose the right quantity x∗i to produce

to maximize its profit function. In this case, we can easily differentiate the profit functions

and solve for the maximum to see that

(x∗1, x
∗
2) = (

A− C − x∗2
2B

,
A− C − x∗1

2B
)

x∗1 =
A− C
2B + 1

x∗2 =
A− C
2B + 1

This vector (x∗1, x
∗
2) is the Nash equilibrium for this problem, as both firms are maximizing

their own profits given the quantity produced by the other. The symmetry is due to the
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assumption that both firms face the same demand function and marginal cost. The latter

assumption can be relaxed without complicating the solution. This computation also gives

the “best response” correspondence. If firm j produces xj , then firm i’s best response is to

produce
A− C − xj

2B
(1)

1.3 Learning Models in Repeated Games

Although the Nash equilibrium is a well-studied concept, there are several competing models

for how agents repeatedly playing the same game might learn what the equilibrium is. In the

real world, decisions about how much of a good to produce are not one-shot, simultaneous

move games. Rather, they can be more realistically modeled as a sequence of one-shot,

simultaneous move games, in which firms decide how much to produce at each time-step

given the past history of production. We should expect them to gradually learn what the

profit-maximizing quantity to produce is.

One learning model for Cournot competition is the successive best response model. In

this model, each firm i chooses the optimal response to the quantity produced by firm j in

the previous time-step. As this process continues, the firms gradually learn the equilibrium

quantities. The proposition below requires B > 1/2, which will be assumed for the rest of

this paper.

Proposition 1. If B > 1/2, the successive best response model for the Cournot competition

specified above converges to the unique Nash equilibrium.

Proof. We can view the Nash equilibrium as the fixed point for the best response corre-

spondence given above. The mapping xti 7→ xt+2
i can be calculated to be xt+2

i = k +
xti

(2B)2
,

where k = (2B−1)(A−C)
(2B)2

. If B > 1/2, this is a contraction mapping, so it converges to a

unique fixed point x∗i by Banach’s fixed point theorem. That is, the sequences of quantities

produced at times {0, 2, 4, . . . } and at times {1, 3, 5, . . . } both converge to the same fixed

point (by uniqueness), so the sequence of quantities produced by firm i converges to x∗i .

This fixed point must be the Nash equilibrium quantity for firm i. Since both firms use the

same adjustment process, the vector of quantities produced converges to (x∗1, x
∗
2).

Another common learning model is deterministic fictitious play. Suppose firm i produces
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quantities (x1
i , . . . , x

T
i ) at times 1 through T . For all times t > T , xti = Bri(

1
t

∑t
n=1 x

n
j ),

where the best response function Bri(xj) =
A−C−xj

2B was given earlier. This model cor-

responds to a pattern where firms compete until time T , at which point they start best

responding to the average of each other’s past behavior.

Proposition 2. If the best response function is a contraction mapping, deterministic ficti-

tious play converges to the unique Nash equilibrium.

Proof. See Deschamps [2].

These models assume that firms are fully aware of each other’s behavior and that they

always respond perfectly to one another. These assumptions are unrealistic for a model

that attempts to capture behavior in the real world, and I will revisit them later.

1.4 Markov Chains on Discrete State Spaces

A Markov chain is a model for the evolution of a random process. The model is composed

of the set of states the system or process can be in at any time, and a set of probabilities

governing the transitions between states over time.

Definition 1.4. A discrete time Markov chain is a sequence Φ = {Φn, n ∈ Z+},

where Φi are random variables on a state space X with the property that given Φn, Φn+1 is

independent of Φ0, . . . ,Φn−1.

In the simplest case, the state space X contains only a finite or countable (i.e. discrete)

number of states. The next state of the chain depends only on the current state of the

chain, not its previous history. The values, or sample paths, of the chain Φ are points in

the product space Ω = Π∞i=1Xi, where each Xi is an exact copy of X. If we let µ be the initial

distribution of the Markov chain, and Px0(Φ1 = x1) be the probability of transitioning from

the state x0 to the state x1, then the ‘forgetfulness’ property of the chain can be formally

stated as follows. For every n, and for every sequence of states {x0, . . . , xn},

Pµ(Φ0 = x0,Φ1 = x1, . . . ,Φn = xn) = µ(x0)Px0(Φ1 = x1)Px1(Φ1 = x2) . . . Pxn−1(Φ1 = xn)

Φ is called a time-homogeneous chain if the transition probabilities Pxi(Φ1 = xi+1) are

independent of the times i, i + 1. I will only consider discrete time, time homogeneous
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Markov chains. For a time-homogeneous Markov chain, P (x, y) := Px(Φ1 = y). Note that

the forgetfulness property of the Markov chain can also be stated as

Pµ(Φn+1 = xn+1|Φn = xn, . . . ,Φ1 = x1) = P (xn, xn+1)

Definition 1.5. The matrix P = {P (x, y), x, y ∈ X} is known as the transition matrix

for a Markov chain, and satisfies the following for all x, y:

• P (x, y) ≥ 0

•
∑

z∈X P (x, z) = 1

Definition 1.6. Given a transition matrix P , the n-step transition matrix Pn gives

the distribution of states in the chain after n steps. For A ⊆ X,

Pn(x,A) :=
∑
y∈A

Pn(x, y)

We often want to know whether it is possible for the chain to go from one state to

another in a finite number of steps. To be precise, we say that if there is some n such that

Pn(x, y) > 0, then x→ y. If y → x as well, then x↔ y, or x and y communicate.

Proposition 3. Communication is an equivalence relation, so the equivalence classes

C(x) = {y : x↔ y} cover the state space X, with x ∈ C(x)

Definition 1.7. If C(x) = X for some state x, then the Markov chain is irreducible.

Irreducibility means that it is possible to go from any state in the chain to any other.

1.5 Markov Chains on General State Spaces

It is possible to construct Markov chains on continuous state spaces, and indeed much of

the theory for discrete space chains generalizes nicely. I will define a Markov chain on

a continuous state space following the convention of Meyn and Tweedie [5], building up

from the transition probabilities. We will require the state space X to be equipped with

a countably generated σ-field, usually the Borel σ-field B(X). Note the similarity of the

definitions and theorems below to those for discrete state space chains.

Definition 1.8. If P = {P (x,A), x ∈ X,A ∈ B(X)} satisfies
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• for each A ∈ B(X), P (·, A) is a non-negative measurable function on X

• for each x ∈ X,P (x, ·) is a probability measure on X

then P is known as a transition probability kernel.

Theorem 1. For any initial measure µ on B(X) and a transition probability kernel P we

can define a Markov chain Φ = {Φ1,Φ2, . . .} on Ω = Π∞i=1Xi that is measurable with respect

to F = ∨∞i=0B(Xi), and a probability measure Pµ on F such that Pµ(B) is the probability

of the event Φ ∈ B for B ∈ F ; and for measurable Ai ⊆ Xi, i = 0, 1, . . . , n and any n,

Pµ(Φ0 ∈ A0,Φ1 ∈ A1, . . . ,Φn ∈ An) =

∫
y0∈A0

· · ·
∫
yn−1∈An−1

µ(dy0)P (y0, dy1) · · ·P (yn−1, An)

Proof. See Meyn and Tweedie [5].

Irreducibility for Markov chains on discrete/countable state spaces deals with the hitting

times of points in the space. Although sets can be reached with positive probability by a

general state space Markov chain, we cannot say the same for individual points in the

space, so we need a slightly different notion of irreducibility. Fortunately, we can use the

analagous notion of ψ-irreducibility for a general state space chain. First, we define the

relevant terms. Let Φ be a Markov chain evolving on a general state space X.

Definition 1.9. For any set A ∈ B(X) the first return time of A, denoted by τA, is

min{n ≥ 1 : Φn ∈ A}

Definition 1.10. For any state x ∈ X and set A ∈ B(X), the return time probability,

written as L(x,A), is Px(τA <∞).

L(x,A) gives the probability that starting from the state x, the chain reaches the set

A in a finite number of steps. With these definitions in mind, we use the framework for

irreducibility described by Meyn and Tweedie [5].

Definition 1.11. A Markov chain Φ is called φ-irreducible if there exists a measure φ on

B(X) such that whenever φ(A) > 0, we have L(x,A) > 0 for every x ∈ X.

This definition captures the idea that Φ hits “large” sets with positive probability,

regardless of where it starts in the space. φ-irreducibility is a relatively weak property; it

does not guarantee that sets of φ-measure 0 are avoided with probability 1. Thus, we seek

a stronger extension of φ, given by the following theorem.
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Theorem 2. If a Markov chain Φ is φ-irreducible, then there exists a probability measure

ψ on B(X) such that

1. Φ is ψ-irreducible

2. for any other measure φ′, Φ is φ′-irreducible iff ψ � φ′

3. if ψ(A) = 0, then ψ{y : L(y,A) > 0} = 0

The important features of ψ-irreducibility are that ψ can be taken as a probability

measure, and that “negligible” sets as measured by ψ are avoided with probability 1. ψ is

sometimes known as a maximal irreducibility measure.

2 Proposed Learning Models

2.1 Imperfect Responses

2.1.1 Defining the Markov Chain

Both the fictitious play model and the successive best response strategy assume that the

firms respond perfectly to one another at each timestep. Suppose instead that the firms

are playing a successive best response strategy, where they choose the best response with

probability 1 − ε, where ε > 0. With probability ε, they choose the “wrong” response.

More precisely, at each time t, with probability ε firm i decides what quantity to produce

by sampling from some distribution ν, where ν is either fixed or dependent only on the

quantities produced by both firms in the previous timestep. This model captures the idea

of firms acting either irrationally or being subject to shocks outside of their control. They

make the rational decision most of the time, but every once in a while they make a random

choice. I will assume that firms do not produce negative quantities, and that they will not

produce more than R := A−C
B as this would guarantee they lose money given the demand

function specified above. Thus, ν is always supported on the compact set [0, R]. There

are several reasonable choices one can make for ν. It can be uniform on [0, R], or it can

be normally distributed (truncated to [0, R]) such that at time t, E[νi] = Bri(x
t−1
j ). The

specific choice of ν will matter when simulating behavior. The theoretical results described
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below require that ν be a strictly positive measure, meaning that ν assigns non-zero measure

to every non-empty open subset of [0, R].

Definition 2.1. The imperfect response transition kernel P is defined as follows. Let

ε > 0, and A = (A1 × A2) ∈ B([0, R]2). Let the state at time t be α = (x1, x2), and let

ναi be a positive probability measure on [0, R] assigned to i ∈ {1, 2} depending only on the

current state α. Then,

P ((x1, x2), A) =

(1− ε+ ενα1(A1))(1− ε+ ενα2(A2)), if Br1(x2) ∈ A1, Br2(x1) ∈ A2

(1− ε+ ενα1(A1))ενα2(A2), if Br1(x2) ∈ A1, Br2(x1) 6∈ A2

ενα1(A1)(1− ε+ ενα2(A2)), if Br1(x2) 6∈ A1, Br2(x1) ∈ A2

ενα1(A1)ενα2(A2), if Br1(x2) 6∈ A1, Br2(x1) 6∈ A2

(2)

where (xi, xj) 7→ (Bri(xj), Brj(xi)) is the best response correspondence for the Cournot

competition described above.

This transition kernel makes precise the “imperfect” behavior described directly above.

By construction, the transition kernel is Markovian, since ναi and the best response corre-

spondence depend only on the state α.

Theorem 3. For any initial distribution µ, the imperfect response transition kernel P

defines a Markov chain on [0, R]2.

Proof. First we must check that P meets the criteria for definition 1.8. The first is imme-

diate. To show the second, fix α = (x1, x2) ∈ [0, R]2. Then,

P (α, ·) = (1− ε)2 + (1− ε)ε
∫
dνα1+

(1− ε)ε
∫
dνα2 + ε2

∫∫
dνα1dνα2 = (1− ε)2 + 2(1− ε)(ε) + ε2 = 1

since ναi is a probability measure. By Theorem 1, the transition kernel defines a Markov

chain with the given probability law.

Having shown the lemma, we can view the probabilistic Cournot adjustment process

between two firms as a Markov chain evolving on the state space [0, R]2. The state at time

t is the vector (xt1, x
t
2) of quantities produced by firms 1 and 2. The imperfect response
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transition kernel gives a distribution over possible quantities produced at time t + 1. Al-

though this is a Markov chain for any initial distribution µ, we will take µ = δα for some

state α, since real firms produce a fixed quantity, not a distribution over quantities.

I showed above that under the assumption that B > 1/2, the successive best response

strategy converges to the Nash equilibrium. The process just defined cannot remain at a

single point, because even if the firms arrive at the Nash equilibrium, with probability ε they

will deviate, which means they will almost surely move away from the Nash equilibrium at

some time after arriving to it. However, the theory of general state space Markov chains

will allow us to reach equally desirable conclusions about the imperfect response process.

2.1.2 Irreducibility

To show the imperfect response chain defined above is ψ-irreducible, we use T-chains.

Although this may seem like more advanced a technique than is necessary, using T-chains

allows us to take advantage of the numerous results presented by Meyn and Tweedie [5].

Definition 2.2. Let a = {a(n)} be distribution on Z+, and let Φ be a Markov chain with

transition kernel P . The Ka chain with sampling distribution a is the Markov chain

Φa with the transition kernel Ka given by

Ka(x,A) :=
∞∑
n=0

Pn(x,A)a(n) x ∈ X,A ∈ B(X)

The sampled chain can be interpreted as the chain Φ, sampled at time points drawn

from a.

Definition 2.3. If a is a sampling distribution, and there exists a substochastic transition

kernel T satisfying

Ka(x,A) ≥ T (x,A) x ∈ X,A ∈ B(X)

where T (·, A) is a lower semi-continuous function for any A ∈ B(X), then T is called a

continuous component of Ka.

Definition 2.4. If Φ is a Markov chain for which there exists a sampling distribution a

such that Ka possesses a continuous component T , with T (x,X) > 0 for all x ∈ X, then Φ

is a T-chain.
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Theorem 4. If Φ is a T-chain and L(x,O) > 0 for all x and open sets O ∈ B(X) then Φ

is ψ-irreducible.

With these definitions in mind, we show that the imperfect response chain is ψ-irreducible,

for a large class of να.

Theorem 5. Let Φ be the imperfect response chain defined in 2.1. For a state α = (x1, x2)

and a set A = A1 ×A2, A ∈ B(X), define the transition kernel T as follows:

T ((x1, x2), A) = ε2να1(A1)να2(A2)

Assume that all the να are positive measures chosen so that T (·, A) is lower semi-continuous

for all x ∈ X. Then, Φ is a ψ-irreducible T-chain.

Proof. Let a = δ1 be the sampling distribution used to define the Ka chain. This is a trivial

choice - Kδ1 has the same transition kernel as Φ. Next, note that for any state α,

T (α, ·) = ε2
∫∫

dνα1dνα2 = ε2

This computation along with the assumptions made in the statement of the lemma show

that T is a continuous component of Kδ1 . Clearly, since Kδ1(x,A) = P (x,A), where P is the

imperfect response kernel, we conclude that Kδ1(x,A) ≥ T (x,A) for all x ∈ X,A ∈ B(X).

Thus, the imperfect response chain is a T-chain. Finally, let O = O1×O2 be an open set in

[0, R]2. Let α be any state in the chain. By construction, P (α,O) ≥ ενα1(O1)∗ενα2(O2) > 0.

Then, L(α,O) ≥ Pα(τO = 1) = P (α,O) > 0. Thus, for all open sets O and states α,

L(α,O) > 0, so by Theorem 4, the imperfect response chain is ψ-irreducible.

Proposition 4. For the imperfect response chain, the irreducibility measure ψ assigns

non-zero measure to every Borel set of non-zero Lebesgue measure.

Proof. Suppose there exists some set A = A1 × A2 ∈ B([0, R]2) of non-zero Lebesgue

measure such that ψ(A) = 0. Note that ψ{y : L(y,A) > 0} = 0, by Theorem 2. However,

for all states α ∈ [0, R]2, P (α,A) ≥ ενα1(A1) ∗ ενα2(A2) > 0. Then, {y : L(y,A) > 0} =

[0, R]2, which would mean ψ is trivial, a contradiction.
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2.1.3 Recurrence and Aperiodicity

ψ-irreducibility, while useful, is quite an abstract property in the context of a Cournot

competition. As argued before, we cannot guarantee this chain will remain at the Nash

equilibrium forever. However, ψ-irreducibility allows us to show that the chain will hit any

neighborhood of the Nash equilibrium infinitely many times. This seems like a powerful

result, but ψ-irreducibility implies the chain will hit every open set in the space infinitely

many times. Instead, we will focus on hitting times of open neighborhoods containing the

Nash equilibrium. Ideally, the chain will get close to the Nash equilibrium quickly and keep

returning there often relative to other states.

Definition 2.5. For a Markov chain Φ and a set A ∈ B(X), the occupation time is

ηA :=
∞∑
n=1

1{Φn∈A}

In this instance, we care about whether or not the imperfect response chain hits a given

set A infinitely many times, or equivalently that ηA =∞.

Definition 2.6. A set A is called Harris recurrent if Q(x,A) := Px(ηA = ∞) = 1 for

all x ∈ A. A chain Φ is Harris recurrent if it is ψ-irreducible and every set A ∈ B(X) of

positive ψ measure is Harris recurrent.

To show the imperfect response chain is Harris recurrent, we use the following result

without proof.

Theorem 6. A ψ-irreducible T-chain is Harris recurrent if and only if Px{Φ → ∞} = 0

for every x ∈ X, where {Φ→∞} means the chain Φ visits every compact set only finitely

often.

Since the imperfect response chain evolves only on a compact set, by the theorem above

it is Harris recurrent. As I showed earlier, every set A ∈ B([0, R]2) with positive Lebesgue

measure has positive ψ measure, so if the chain starts at α ∈ A, it returns to A infinitely

many times with probability one. This, combined with ψ-irreducibility, should imply the

chain visits every open neighborhood containing the Nash equilibrium infinitely many times

almost surely, regardless of where it starts.
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Theorem 7. If a Markov chain is Harris recurrent, Q(x,B) = 1 for every x ∈ X and

B ∈ B(X) such that ψ(B) > 0.

Every neighborhood of the Nash equilibrium has positive ψ-measure, so by the theorem

above, the imperfect response chain visits every neighborhood of the equilibrium infinitely

many times almost surely. Of course, the theorem also implies that the chain visits every

open neighborhood infinitely many times, so we look for stronger results using invariance.

2.1.4 Invariance

As a Markov chain Φ = {Φn} evolves in time, we may expect it to approach a stable

configuration, where stability means that for large n, the distribution of Φn is constant

independently of n.

Definition 2.7. A stationary measure π for a Markov chain with transition kernel P

evolving on a state space X is a σ-finite measure π on B(X) with the property that

π(A) =

∫
X
π(dx)P (x,A), A ∈ B(X)

The interpretation is that for a Markov chain Φ with initial distribution π, each Φn will

be distributed according to π. Because the imperfect response chain is ψ-irreducible and

recurrent, the following result applies.

Theorem 8. Suppose Φ is recurrent and ψ-irreducible. Then, there exists a unique (up

to constant multiples) invariant measure π on B(X) such that π is equivalent to ψ and

satisfies for any A,B ∈ B(X) where ψ(A) > 0,

π(B) =

∫
A
π(dy)Ey[

τA∑
k=1

1{Φk∈B}]

This means that the stationary measure of B is proportional to the amount of time

spent in B between successive visits of A, assuming the chain starts in A. This theorem

guarantees existence of π, but it does not guarantee finiteness. Fortunately, because Φ is a

T-chain evolving on a compact set, we can use the criterion of smallness.

Definition 2.8. A set C ∈ B(X) is small if there exists an m > 0, a constant δ ≥ 0 and

a probability measure µm such that for all x ∈ C, B ∈ B(X),

Pm(x,B) ≥ δµm(B) (3)
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A central result of the general state space theory is that for a ψ-irreducible chain, every

Borel set of positive ψ measure contains a small set. Another important result is that

for a T-chain, compact sets are small. Because the imperfect response chain evolves on a

compact set, we can use the following result to conclude that the imperfect response chain

has a finite stationary measure.

Theorem 9. The invariant measure π is finite if there exists a small set C such that

sup
x∈C

Ex[τC ] <∞

If we take C = [0, R]2, we immediately conclude that the unique stationary measure π

is finite for the imperfect response chain. Since π is equivalent to ψ, and ψ is positive on

all Borel sets on non-zero Lebesgue measure, π assigns positive probability to all Borel sets

of non-zero Lebesgue measure. In particular, any neighborhood of the Nash equilibrium

has positive π measure. Before studying the long term dynamics of the chain, we define

one more relevant term. In studying the long term behavior of the chain, we want to avoid

scenarios where it cycles through states in some predictable fashion.

Definition 2.9. For a ψ-irreducible Markov chain, the largest d such that there exist dis-

joint sets D1 . . . Dd ∈ B(X) such that

• for x ∈ Di, P (x,Di+1) = 1, i = 0 . . . d− 1 mod d

• the set N = [∪di=1Di]
c is ψ-null

is known as the period of the chain. If d = 1, the chain is aperiodic.

Proposition 5. The imperfect response chain is aperiodic.

Proof. To see why, recall that all the να defining the transition kernel P are positive. If

there were some cyclic decomposition of Φ into more than one set, then there would be

a state α, where α ∈ D, D = D1 × D2, D ∈ B([0, R]2) such that P (α,D) = 0. But,

P (α,D) ≥ ε2να1(D1)να2(D2) > 0. Thus, the chain is aperiodic.

Having shown aperiodicity, Harris recurrence, and the existence of a finite stationary

measure, we use the following result.
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Theorem 10. Suppose Φ is an aperiodic, Harris recurrent chain, with invariant measure

π. If π is finite, then for every initial state x ∈ X,

sup
A∈B(X)

|Pn(x,A)− π(A)|→ 0

For the imperfect response chain, Theorem 10 implies that no matter where we start in

the state space, Φn for large n is distributed according to π. Intuitively, the chain spends

most of its time in sets of relatively large π-measure. If the chain spends most of its time

in sets containing the Nash equilibrium, then in some sense the competing firms have still

“learned” the optimal quantities to produce, despite their imperfect response patterns. π

itself is difficult to calculate, and it should be evident that it will depend on the specific

choice of να. In the next section, we provide simulations for different choices of να.

We can also get strong results about the speed of convergence to the stationary distribution.

First, we define the relevant metric on probability distributions.

Definition 2.10. The total variation distance between two probability distributions µ

and ν on a space X is

‖ν(·)− µ(·)‖= sup
A∈B(X)

|ν(A)− µ(A)|

With this definition in mind, we can apply the following result.

Theorem 11. Consider a Markov chain with stationary distribution π. Suppose the mi-

norization condition (3) holds for some n0 ∈ N, δ > 0, and probability measure µ, in the

special case C = X, i.e. the entire state space is small. Then,

‖Pn(x, ·)− π(·)‖≤ (1− δ)bn/n0c (4)

where brc is the greatest integer less than or equal to r.

See Roberts [6] for a proof. Since the entire state space is small for the imperfect

response chain, convergence (in the sense of total variation distance) to the stationary

distribution π is both uniform over all starting states in the chain and relatively fast for all

starting states.
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2.1.5 Normally Distributed Errors

Assume the να for each firm are normally distributed about the best response to their

competitor’s last action. If the state at time t is α = (x1, x2), then να1 ∼ N(Br1(x2), σ)

and να2 ∼ N(Br2(x1), σ). Under this model, even if firms make the “wrong” choice with

probability ε, that choice is unlikely to be far from the optimal one. There is a small issue

with the supports, as Gaussian distributions are not supported on compact sets. We can

correct this by conditioning on whether or not each draw from the να is in [0, R]2. In

principle, this conditioning slightly alters the mean. In practice, if we take σ small enough

so that for the Nash equilibrium (x∗1, x
∗
2), |x∗i ± 3σ|∈ [0, R] for each i, then the adjustment

to the mean is negligible.

We need to check two properties before applying the results from the previous section.

First, ναi = N(Bri(xj), σ) is strictly positive for all states α = (x1, x2), so the irreducibility

results apply. Second, to show the imperfect response chain is a T-chain, we need to confirm

that for all sets A = A1×A2, T (·, A) = ε2ν1(A1)ν2(A2) is a lower semi-continuous function

(see Proposition 5, and note that ν1 and ν2 depend on the state (·)). This is immediate,

because as xn → x, the best response correspondence Bri(xn) → Bri(x), which means

that the distributions ναi,n , normally distributed about the best responses, converge on

the measurable sets A1, A2. Thus, for this choice of να, the imperfect response chain is

ψ-irreducible, Harris recurrent, and uniformly ergodic with a finite stationary measure.

We can approximate1 the stationary distribution by allowing the Markov chain to run

until its distribution is very close to stationary, then sampling states of the chain. We

provide several examples below. In all cases, the parameters of the Cournot model were

chosen as A = 100, B = 2, C = 5, which means the Nash equilibrium quantity x∗ is 19.

The simulations show that the stationary measure is always concentrated around the

Nash equilibrium quantity, indicating that the firms do “learn” the optimal quantity to

produce, though they continue to make mistakes. The effects of ε and σ are as expected

as well: as both ε and σ increase, the response chain spends less time around the Nash

equilibrium.

1Code for all the simulations can be found at https://github.com/alexhalsey/cournot simulations
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Figure 1: Simulated stationary distributions of imperfect response process with error rate

ε = 0.1, and standard deviations σ = 5 (left) and σ = 2.5 (right) for the normal distributions

να. For σ = 5, π(B1(x∗)) = 0.88, and for σ = 2.5, π(B1(x∗)) = 0.92.

Figure 2: Simulated stationary distributions of imperfect response process with error rate

ε = 0.25, and standard deviations σ = 5 (left) and σ = 2.5 (right) for the normal distribu-

tions να. For σ = 5, π(B1(x∗)) = 0.71, and for σ = 2.5, π(B1(x∗)) = 0.81.
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Figure 3: Simulated stationary distributions of imperfect response process with error rate

ε = 0.50, and standard deviations σ = 5 (left) and σ = 2.5 (right) for the normal distribu-

tions να. For σ = 5, π(B1(x∗)) = 0.47, and for σ = 2.5, π(B1(x∗)) = 0.63.

Figure 4: Simulated stationary distribution of imperfect response process with error rate ε =

1, and standard deviations σ = 5 (top) and σ = 2.5 (bottom) for the normal distributions

να. This reflects a scenario when the firms never pick the successive best response, and

instead always draw their response from the normal distribution around the theoretical best

response. The orange line represents a Gaussian with mean x∗ and standard deviation σ.

For σ = 5, π(B1(x∗i )) = 0.15, and for σ = 2.5, π(B1(x∗i )) = 0.30.
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2.1.6 Bounding the Stationary Measure

We can prove the stationary measure is relatively concentrated around the equilibrium for

normally distributed να using the Wasserstein metric.

Definition 2.11. The p-Wasserstein distance between two probability measures µ and ν

on a metric space (M,d) is

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
M×M

d(x, y)pdγ(x, y)

)1/p

Γ(µ, ν) is the set of couplings of µ and ν, i.e. the set of measures on M × M whose

marginal distributions are µ and ν.

This metric is sometimes known as the “earth mover’s distance”, because if µ and ν are

viewed as “piles” of mass, W1(µ, ν) represents the minimum cost required to turn µ into

ν. The distance term is used because the cost of moving from point a to point b is d(a, b).

The following well-known properties of the Wasserstein metric will be useful.

Remark 1. 1. For point masses δx, δy, W1(δx, δy) = |x− y|.

2. For normal distributions ν1 = N(m1, σ1) and ν2 = N(m2, σ2),

• W1(ν1, ν2) ≥ |m1 −m2|

• W2(ν1, ν2)2 = |m1 −m2|2+σ2
1 + σ2

2 − 2σ1σ2

3. For any distributions µ, ν, W1(µ, ν) ≤W2(µ, ν).

4. Wp(µ, ν) = (inf E[d(X,Y )p])1/p where the infimum is taken over all joint distributions

of the random variables X,Y having marginal distributions µ, ν.

From 2 and 3, we conclude that for normal distributions with the same variance (ν1 =

N(m1, σ) and ν2 = N(m2, σ)), W1(ν1, ν2) = |m1 −m2|. W1 is the only metric that will be

used in the rest of this paper, so we will simply refer to it as W .

Lemma 1. Consider the imperfect transition kernel with normally distributed errors P .

Let P1 and P2 be P restricted to the first and second coordinates. Then, for any states

(x1, x2) and (y1, y2), W (δx1P1, δy1P1) +W (δx2P2, δy2P2) ≤ 1
2b(W (δx1 , δy1) +W (δx2 , δy2)).
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Proof. Note that δx1P1 ∼ (1 − ε)δBr1(x2) + εN(Br1(x2), σ) and δx2P2 ∼ (1 − ε)δBr2(x1) +

εN(Br2(x1), σ). Then,

W (δx1P1, δy1P1) = W ((1− ε)δBr1(x2) + εN(Br1(x2), σ), (1− ε)δBr1(y2) + εN(Br1(y2), σ) ≤

(1− ε)W (δBr1(x2), δBr1(y2)) + εW (N(Br1(x2), σ), N(Br1(y2), σ)) =

(1− ε)|Br1(x2)−Br1(y2)|+ε|Br1(x2)−Br1(y2)|=

|Br1(x2)−Br1(y2)|=

|A− C − x2

2b
− A− C − y2

2b
|=

1

2b
|x2 − y2|

By the same logic, W (δx2P2, δy2P2) ≤ 1
2b |x1 − y1|. The conclusion follows by adding the

two inequalities.

Lemma 2. For any distributions µ1, µ2 and ν1, ν2, W (µ1P1, ν1P1) + W (µ2P2, ν2P2) ≤
1
2b(W (µ1, ν1) +W (µ2, ν2)). That is, the result from the previous lemma holds for arbitrary

distributions over states in the chain, not just point masses. µi and νi represent different

distributions over firm i’s choices.

Proof. The result from Lemma 1 generalizes to random measures δX1 , δX2 , δY1 , δY1 where

X1, X2, Y1, Y2 are random variables. To see why, simply note that δX1P1 ∼ (1−ε)δBr1(X2) +

εN(Br1(X2), σ), so the same calculations from the previous lemma are still valid. Thus,

W (δX1P1, δY1P1) +W (δX2P2, δY2P2) ≤

1

2b
(W (δX1 , δY1) +W (δX2 , δY2)) =

1

2b
(|X1 − Y1|+|X2 − Y2|)

Now, consider distributions µ1, µ2 and ν1, ν2. Recall that W (µ, ν) = inf E|X − Y | where

the infimum is taken over joint distributions of X,Y having marginals µ and ν. Since

[0, R] with the standard metric is a Polish space, there exist optimal couplings (X1, Y1) and

(X2, Y2) such that E|X1 − Y1|= W (µ1, ν1) and E|X2 − Y2|= W (µ2, ν2) [7]. By what was

shown above,

W (δX1P1, δY1P1) +W (δX2P2, δY2P2) ≤ 1

2b
W (δX1 , δY1) +W (δX2 , δY2) =

1

2b
(|X1 − Y1|+|X2 − Y2|)
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We take the expectation of both sides:

E[W (δX1P1, δY1P1) +W (δX2P2, δY2P2)] ≤ 1

2b
E[|X1 − Y1|+|X2 − Y2|]

E[W (δX1P1, δY1P1) +W (δX2P2, δY2P2)] ≤ 1

2b
(W (µ1, ν1) +W (µ2, ν2))

The 1-Wasserstein metric is jointly convex, so E[W (·, ·)] ≥W (E[·],E[·]). Thus,

W (E[δX1P1],E[δY1P1]) +W (E[δX2P2],E[δY2P2]) ≤

E[W (δX1P1, δY1P1) +W (δX2P2, δY2P2)]

The left hand side is equal to W (µ1P1, ν1P1) + W (µ2P2, ν2P2) by definition of the expec-

tation of a random measure, so combining the inequalities we conclude

W (µ1P1, ν1P1) +W (µ2P2, ν2P2) ≤ 1

2b
(W (µ1, ν1) +W (µ2, ν2))

Lemma 3. For all k ∈ N, and all distributions µ1, µ2, ν1, ν2,

W (µ1P
k
1 , ν1P

k
1 ) +W (µ2P

k
2 , ν2P

k
2 ) ≤ 2R

(2b)k

Proof. The result from the previous lemma implies

W (µ1P
k
1 , ν1P

k
1 ) +W (µ2P

k
2 , ν2P

k
2 ) ≤ 1

2b
(W (µ1P

k−1
1 , ν1P

k−1
1 ) +W (µ2P

k−1
2 , ν2P

k−1
2 )) ≤

1

(2b)2
(W (µ1P

k−2
1 , ν1P

k−2
1 ) +W (µ2P

k−2
2 , ν2P

k−2
2 )) ≤ . . . ≤ 1

(2b)k
(W (µ1, ν1) +W (µ2, ν2))

For any distributions µ and ν on [0, R],

W (µ, ν) = inf
γ∈Γ(µ,ν)

∫
[0,R]× [0,R]

d(x, y)dγ(x, y) ≤ inf
γ∈Γ(µ,ν)

∫
[0,R]× [0,R]

Rdγ(x, y) = R

Thus,
1

(2b)k
(W (µ1, ν1) +W (µ2, ν2)) ≤ 2R

(2b)k

We can exploit the symmetry of the problem in the two coordinates to simplify this

inequality. Under the assumption that the best response functions (and therefore the equi-

librium quantities) are the same for both firms, P1 and P2 and their stationary measures
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π1 and π2 are the same. Take µ1 = δx∗ , µ2 = δx∗, ν1 = π1, and ν2 = π2. This allows us to

compare the imperfect response chain starting from the equilibrium quantities (x∗, x∗) to

one starting from the stationary measures (π1, π2). Then,

W (δx∗P
k
1 , π1P

k
1 ) +W (δx∗P

k
2 , π2P

k
2 ) ≤ 2R

(2b)k

The two terms on the right hand side are the same, and πiP
k = πi, so

W (δx∗P
k
i , πi) ≤

R

(2b)k

We can use the inequality above to provide a lower bound on the mass of the stationary

distribution close to the equilibrium.

Theorem 12. If Br(x
∗) is a ball of radius r about the equilibrium, then for all k ∈ N,

πi(Br(x
∗)) ≥ (1− ε)2k − R

r

1

(2b)k

Proof. Suppose both firms start at the Nash equilibrium. At each timestep, the probability

that both firms remain at the equilibrium is (1− ε)2, since the Nash equilibrium is a fixed

point of the best response function. Thus, P k((x∗, x∗), (x∗, x∗)) ≥ (1−ε)2k, or when viewed

in one coordinate (still assuming the other firm initially produces the equilibrium quantity),

P ki (x∗, x∗) ≥ (1− ε)2k. On the other hand, W (δx∗P
k
i , πi) ≤ R

(2b)k
.

Recall that we can think the 1-Wasserstein distance in terms of optimal transport, where

W (δx∗P
k
i , πi) is the minimal total cost of turning the first distribution into the second.

Consider a ball of radius r about x∗. For any coupling or transport plan γ, γ(A×B) is the

amount of mass in A that must get sent to B (see Ambrosio and Gigli [1]). In order to turn

δx∗P
k
i into πi, we must transport a mass of at least (1 − ε)2k − πi(Br(x∗)) from the Nash

equilibrium to (Br(x
∗))c, which is a distance of at least r. To be precise, for any coupling

γ of δx∗P
k
i and πi,∫

[0,R]×[0,R]
|x− y|dγ ≥

∫
x∗×Br(x∗)c

|x− y|dγ ≥
∫
x∗×Br(x∗)c

rdγ = r · γ(x∗ ×Br(x∗)c)

Since the above is true for all couplings, it is true for the infimum (the Wasserstein distance).

Then, for all k,
R

(2b)k
≥W (δx∗P

k
i , πi) ≥ r[(1− ε)2k − πi(Br(x∗))]

Rearranging the inequality yields the desired result.
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The bound provided is valid for all k, so to get the tightest lower bound we optimize

over k, i.e. πi(Br(x
∗)) ≥ maxk∈N(1− ε)2k − R

r
1

(2b)k
. We provide approximate lower bounds

on πi(Br(x
∗)) for various choices of ε and r, given the values of R and b used for the

simulations, and compare to the results of the simulations. Note that the lower bounds do

not depend on the standard deviation σ of the να.

ε r πi(Br(x
∗)) - lower bound πi(Br(x

∗)) - simulation

0.001 1 0.983 0.9985

0.001 2.5 0.985 0.9991

0.001 5 0.986 0.9997

0.01 1 0.875 0.989

0.01 2.5 0.886 0.994

0.01 5 0.895 0.997

0.05 1 0.552 0.939

0.05 2.5 0.589 0.969

0.05 5 0.626 0.985

0.10 1 0.302 0.877

0.10 2.5 0.356 0.932

0.10 5 0.393 0.967

0.15 1 0.150 0.822

0.15 2.5 0.198 0.902

0.15 5 0.235 0.952

0.20 1 0.061 0.763

0.20 2.5 0.094 0.869

0.20 5 0.131 0.936

Table 1: Behavior of the stationary distribution of the quantities produced by firm i for

varying error rates ε. The errors are normally distributed with standard deviation σ = 5.

The third column represents a theoretical lower bound on the stationary mass of a ball of

radius r about the equilibrium x∗, while the fourth represents the simulated mass of that

ball.
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These results show that for small ε, the stationary distribution for the imperfect response

chain places a provably large amount of mass very close to the Nash equilibrium. These

results are as expected; the limiting case ε = 0 corresponds to the successive best response

dynamic, which converges to the Nash equilibrium. As ε grows, the theoretical bound

drops off from the empirical results. However, in all cases the simulations show a large

concentration around the equilibrium, indicating the firms learn to produce close to the

optimal quantity in most time periods.
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2.1.7 Uniformly Distributed Errors

We can also take the να to be uniform on [0, R], which reflects a scenario where production

shocks are completely random. Note the να are all the same, so for simplicity we will just

write γ for the uniform distribution on [0, R].

We need to verify a few properties before using the results from previous sections.

The uniform measure is strictly positive, and trivially T (·, A1 × A2) = ε2γ(A1)γ(A2) is a

lower semicontinous function (since it is constant) for all sets A = A1 × A2. Thus, the

imperfect response chain is ψ-irreducible, Harris recurrent, and uniformly ergodic with a

finite stationary measure.

Similarly to the previous section, we can approximate the stationary measure by allowing

the chain to run until its distribution is very close to stationary, then sampling states of the

chain. The results are pictured below. Again, the parameters of the Cournot model were

chosen as A = 100, B = 2, C = 5, which means the Nash equilibrium quantity x∗ is 19.

Figure 5: Simulated stationary distribution π of imperfect response process with error rate

ε = 0.10 for the uniform distribution γ. π(B1(x∗)) = 0.80.

27



Figure 6: Simulated stationary distribution π of imperfect response process with error rate

ε = 0.25 for the uniform distribution γ. π(B1(x∗)) = 0.56.

Figure 7: Simulated stationary distribution π of imperfect response process with error rate

ε = 0.50 for the uniform distribution γ. π(B1(x∗)) = 0.27.

The bias in the simulations occurs because the mean of the uniform distribution on

[0, R] is slightly greater than x∗. All the same theoretical bounds determined in the previous

section still apply, since we can prove an analog of Lemma 1 for the uniform distribution.

Lemma 4. Consider the imperfect transition kernel with uniformly distributed errors P .

Let P1 and P2 be P restricted to the first and second coordinates. Then, for any states

(x1, x2) and (y1, y2), W (δx1P1, δy1P1) +W (δx2P2, δy2P2) ≤ 1
2b(W (δx1 , δy1) +W (δx2 , δy2)).

Proof. Note that δx1P1 ∼ (1− ε)δBr1(x2) + εγ and δx2P2 ∼ (1− ε)δBr2(x1) + εγ. Then,

W (δx1P1, δy1P1) = W ((1− ε)δBr1(x2) + εγ, (1− ε)δBr1(y2) + εγ) ≤
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(1− ε)W (δBr1(x2), δBr1(y2)) + εW (γ, γ) =

(1− ε)|Br1(x2)−Br1(y2)|≤

|Br1(x2)−Br1(y2)|=

|A− C − x2

2b
− A− C − y2

2b
|=

1

2b
|x2 − y2|

By the same logic, W (δx2P2, δy2P2) ≤ 1
2b |x1 − y1|. The conclusion follows by adding the

two inequalities.

Since this same result holds, the results from Lemmas 2 and 3 and Theorem 12 hold, so

the theoretical lower bounds in table 1 still apply even if the errors are uniformly distributed.

2.2 Stochastic Fictitious Play

2.2.1 Defining the Markov Chain

We can also use a Markov chain approach to modify the fictitious play algorithm, which

is less myopic and thus arguably more realistic than the successive best response dynamic.

We expect firms to keep track of the past when competing, although they will still make

mistakes. We can model this behavior by modifying the imperfect response Markov chain

constructed in the previous section. We will prove a set of results for fictitious play similar

to those proven for the best response dynamic.

Suppose two firms compete until some time T , then begin best responding to the average

of each other’s behavior over the last T periods with probability 1− ε. With probability ε,

they choose a random response. To define this as a Markov chain requires some notational

work, but the underlying idea and results are similar to the imperfect response process.

The state space of the chain is the set of possible T -length production histories, i.e. the set

of all vectors ((x1
1, x

1
2), . . . , (xT1 , x

T
2 )) for (x1, x2) ∈ [0, R]2. At each timestep, the “oldest”

production quantities in the state drop off and are replaced by the new quantities produced

at that timestep. This construction allows us to always keep track of the previous T

quantities produced.
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Definition 2.12. The fictitious play with imperfect responses transition kernel F

is defined as follows. Let ε > 0 and A = (A1, A2) ∈ B([0, R]2). Let the state at time t be

α = ((xt−T+1
1 , xt−T+1

2 ), . . . , (xt1, x
t
2)), and let ναi be a strictly positive probability measure on

[0, R] assigned to i ∈ {1, 2} depending only on the current state α. Using the best response

correspondence (1), let (xti)
∗ = Bri(

1
T

∑t
n=t−T+1 x

n
j ). Then,

F (α, ((xt−T+2
1 , xt−T+2

2 ), . . . , (x1, x
t
2), A) =

(1− ε+ ενα1(A1))(1− ε+ ενα2(A2)), if (xt1)∗ ∈ A1, (x
t
2)∗ ∈ A2

(1− ε+ ενα1(A1))ενα2(A2), if (xt1)∗ ∈ A1, (x
t
2)∗ 6∈ A2

ενα1(A1)(1− ε+ ενα2(A2)), if (xt1)∗ 6∈ A1, (x
t
2)∗ ∈ A2

ενα1(A1)ενα2(A2), if (xt1)∗ 6∈ A1, (x
t
2)∗ 6∈ A2

(5)

Note that even though the chain technically evolves on a T×2 (T pairs of quantities) dimen-

sional state space, the first T−1 pairs at time t+1 are determined by simply shifting the state

vector at time t to the left by one, since it would not make sense for the history of the chain to

change. Thus, F (α, ((xt−T+2
1 , xt−T+2

2 ), . . . , (xt1, x
t
2), A) = 0 if (xt−T+2

1 , xt−T+2
2 ), . . . , (xt1, x

t
2)

are not the last T − 1 entries of α.

This chain is similar to the imperfect response chain - in fact, the imperfect response

chain is the fictitious play chain for T = 1. Most of the same results will apply: it is

ψ-irreducible, a T-chain under reasonable assumptions, and uniformly ergodic with a finite

stationary measure.

2.2.2 Properties of the Chain

Proposition 6. The fictitious play chain is a T-chain, as long as ναi(A) is a lower semi-

continuous function of αi for all A ∈ B([0, R]).

Proof. Let α = ((xt−T+1
1 , xt−T+1

2 ), . . . , (xt1, x
t
2)) be the current state of the chain (i.e.,

the last T production decisions made by each firm). Consider the sampling distribu-

tion a(n) = δT , i.e. the Ka chain has transition kernel Ka(α,A) = F T (α,A). Let A =

(A1
1×A1

2, . . . , A
T
1 ×AT2 ) be a set in B([0, R]2×T ). Define the substochastic transition kernel

TF to be TF (α,A) = ε2T να1
1
(A1

1)να1
2
(A1

2) · · · ναT
1

(AT1 )ναT
2

(AT2 ). Here, ναt
i

refers to the error
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distribution να that the firm i uses at time t. Finally, by construction Ka(α,A) ≥ T (α,A).

TF is lower semi-continuous as long as (αi)n → αi implies ν(αi)n(A) → ναi(A) for all

A ∈ B([0, R]), which was the same condition for the imperfect response chain.

Proposition 7. The fictitious play chain is a ψ-irreducible Harris chain.

Proof. Fix an open set O = (O1
1 × O1

2, . . . , O
T
1 × OT2 ). For any states α, L(α,O) ≥

F T (α,O) ≥ ε2T να1
1
(O1

1)να1
2
(O1

2) · · · ναT
1

(OT1 )ναT
2

(OT2 ) > 0 since the να are strictly positive.

By Theorem 4, this is enough to conclude the fictitious play chain is ψ-irreducible. The

fictitious play chain is a ψ-irreducible T-chain evolving on a compact set, so by Theorem

6, it is Harris recurrent.

Because the fictitious play chain is Harris and ψ-irreducible, there exists an invariant

measure π. By Theorem 9, π can be taken as a probability measure since the chain evolves

on a compact set (meaning the entire state space is small). To conclude the chain converges

to its stationary distribution, we need to show aperiodicity.

Proposition 8. The fictitious play chain is aperiodic.

Proof. We proceed by contradiction. Suppose we have some decomposition D1, . . . Dd as

in definition 2.9. Consider D1 = (C1
1 × C1

2 , . . . , C
T
1 × CT2 ). F (D1, D2) = 1, so it must

be true that D2 = (C2
1 × C2

2 , . . . , [0, R]2), since the να are assumed to be strictly positive

measures. But then, since D1 ⊆ Dc
2, D1 ⊆ ((C2

1 )c × (C2
2 )c, . . . , ∅). This cannot happen (by

construction, no set in the state vector can ever be empty), so we conclude that there is no

cyclic decomposition for d > 1.

Thus, by Theorem 10, the fictitious play chain converges in the sense of total variation

distance to its stationary distribution. By Theorem 11, this convergence is uniform across

all starting states. By the same argument used in Proposition 4, ψ places non-zero measure

on each set of non-zero Lebesgue measure, which means π does as well since π and ψ are

equivalent (Theorem 8).

2.2.3 Simulations

We take the να normally distributed about the best responses, as was done in section 2.1.5.

To simulate the stationary measure, we allow the chain to run for a long time and then
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sample states. The parameters of the Cournot model were again chosen as A = 100, B =

2, C = 5, which means the equilibrium quantity is x∗ = 19. We provide simulations for a

few different choices of the error rate (ε) and the amount of time periods considered (T ).

In all cases, να are normally distributed with σ = 5.

Figure 8: Simulated stationary distributions of fictitious play process with error rate ε =

0.10 for T = 5 (left) and T = 20 (right). In both cases, π(B1(x∗)) = 0.915.

Figure 9: Simulated stationary distributions of fictitious play process with error rate ε =

0.25 for T = 5 (left) and T = 20 (right). For T = 5, π(B1(x∗)) = 0.786, and for T = 20,

π(B1(x∗)) = 0.791.
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Figure 10: Simulated stationary distributions of fictitious play process with error rate

ε = 0.50 for T = 5 (left) and T = 20 (right). For T = 5, π(B1(x∗)) = 0.571, and for T = 20,

π(B1(x∗)) = 0.578.

We also provide a table with simulated values for π(Br(x
∗)) for various choices of ε,r,

and T . These results show the stationary measure for the imperfect fictitious play chain

is very concentrated about the equilibrium. As expected, the mass about the equilibrium

decreases as the error rate ε increases. The results indicate a benefit to using fictitious

play rather than successive best responses, although there is a sort of plateau effect where

averaging over more periods does not necessarily improve the performance of the learning

model. This requires further investigation - I believe it might be possible to show that

the size of ε places an upper bound on how concentrated the stationary measure can be

no matter how large the look-back window T is. Nevertheless, this table shows that firms

learn to play the Nash equilibrium very often under the imperfect fictitious play learning

model.
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ε T πi(B1(x∗)) πi(B2.5(x∗)) πi(B5(x∗))

0.001 1 0.9985 0.9991 0.9997

0.001 5 0.9992 0.9993 0.9997

0.001 20 0.9989 0.9992 0.9995

0.01 1 0.989 0.994 0.997

0.01 5 0.991 0.993 0.997

0.01 20 0.991 0.994 0.997

0.05 1 0.939 0.969 0.985

0.05 5 0.958 0.969 0.984

0.05 20 0.958 0.969 0.984

0.10 1 0.877 0.932 0.967

0.10 5 0.915 0.934 0.968

0.10 20 0.915 0.938 0.968

0.25 1 0.708 0.836 0.919

0.25 5 0.786 0.845 0.919

0.25 20 0.790 0.846 0.920

0.50 1 0.469 0.676 0.838

0.50 2.5 0.571 0.692 0.841

0.50 5 0.578 0.692 0.841

Table 2: Behavior of the stationary distribution of the quantities produced by firm i under

fictitious play for varying error rates ε and look-back windows T . The errors are normally

distributed with standard deviation σ = 5. Each column represents the simulated stationary

mass of a ball of radius r about the equilibrium x∗, for r = 1, r = 2.5, and r = 5.

3 Discussion

We demonstrate that the learning process for a Cournot competition can be described

as a Markov chain on a continuous state space. The different Markov chain constructions

allowed us to study commonly used learning models while relaxing the assumption of perfect

rationality. We show that even under these assumptions, firms engaged in a Cournot
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competition will still ‘learn’ the Nash equilibrium, in a slightly weaker sense than what is

usually intended. Although their imperfect responses prevent them from learning to always

play the equilibrium, the simulations and ergodicity results show that the firms produce

quantities very close to the equilibrium at most timesteps, and they learn to do so relatively

quickly.

One interesting question is whether or not the Markov chain underlying a realistic

learning model is time-stationary. If firms arrive close to the Nash equilibrium and be-

gin to notice that producing the equilibrium quantity leads to higher profits, then they

might discard whatever learning model they have been using in favor of always producing

a fixed quantity close to or at the equilibrium. On one hand, the simulations show that

this is basically what happens with learning models proposed in this paper. In addition,

even if firms “know” the equilibrium, they are still prone to making mistakes or suffering

production shocks. On the other hand, we could define this learning model differently as

having different regimes, where as time goes on the probability of making the correct choice

increases.

The Markov chain approach allows us to view this problem in even more generality.

We can discard the assumption of fixed marginal cost and instead model the marginal

cost each firm faces as a random variable. Since both firms should be vulnerable to the

same cost shocks, we might model the marginal costs the two firms face as either the same

random variable or a pair of correlated random variables. We could also assume the firms

have incomplete memory in fictitious play, where they sample from some subset of their

competitor’s past actions rather than just seeing the past T quantities. Kaniovsky and

Young show strong convergence results for the fictitious play with sampling approach in

2× 2 games [4], which may generalize to Cournot competition.

The game theory results in this paper were driven in large part by the work of Fudenburg

and Levine [3], who give a thorough survey of fictitious play and present an outline for

using Markov chains to study strategy profiles of iterated games. Several authors also show

how Markov processes can be used to select between strict equilibria in iterated games. In

future, the continuous state space theory presented here could be used to provide a different

flavor of selection results for more general game theoretic models with more than one strict

equilibrium.
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