
Copyright

by

Alan Robert Campbell

2011

The Thesis Committee for Alan Robert Campbell

Certifies that this is the approved version of the following thesis:

Numerical Analysis of Complex-Step Differentiation in

Spacecraft Trajectory Optimization Problems

APPROVED BY

SUPERVISING COMMITTEE:

Supervisor:
David Hull

Cesar Ocampo

Numerical Analysis of Complex-Step Differentiation in

Spacecraft Trajectory Optimization Problems

by

Alan Robert Campbell, B.S.

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2011

I did this for me.

Acknowledgments

I would like to thank my advisor, David Hull, and the rest of my pro-

fessors for their guidance in my studies. I am especially indebted to my family,

friends, and classmates over the years for providing support and supplementing

my desire to achieve all that I have.

v

Abstract

Numerical Analysis of Complex-Step Differentiation in

Spacecraft Trajectory Optimization Problems

Alan Robert Campbell, M.S.E.

The University of Texas at Austin, 2011

Supervisor: David Hull

An analysis of the use of complex-step differentiation (CSD) in opti-

mization problems is presented. Complex-step differentiation is a numerical

approximation of the derivative of a function valid for any real-valued analytic

function. The primary benefit of this method is that the approximation does

not depend on a difference term; therefore round-off error is reduced to the

machine word-length. A suitably small choice of the perturbation length, h,

then results in the virtual elimination of truncation error in the series approxi-

mation. The theoretical basis for this method is derived highlighting its merits

and limitations. The Lunar Ascent Problem is used to compare CSD to tradi-

tional forward differencing in applications useful to the solution of optimization

problems. Complex-step derivatives are shown to sufficiently apply in various

interpolation and integration methods, and, in fact, consistently outperform

traditional methods. Further, the Optimal Orbit Transfer Problem is used to

vi

test the accuracy, robustness, and runtime of CSD in comparison to central

differencing. It is shown that CSD is a considerably more accurate derivative

approximation which results in an increased robustness and decreased opti-

mization time. Also, it is shown that each approximation is computed in less

time using CSD than central differences. Overall, complex-step derivatives are

shown to be a fast, accurate, and easy to implement differentiation method

ideally suited for most optimization problems.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables x

List of Figures xi

Chapter 1. Introduction 1

Chapter 2. Complex-Step Differentiation 3
2.1 Background . 3
2.2 Difference Methods of Numerical Differentiation 5

2.2.1 Forward Differencing . 6
2.2.2 Backward Differencing 8
2.2.3 Central Differencing . 8

2.3 Complex-Step Derivatives . 10

Chapter 3. Use of CSD in the Lunar Launch Problem 16
3.1 The Baseline Lunar Ascent Problem 16
3.2 Linear Interpolation . 19
3.3 Higher-Order Spline Interpolation 21

3.3.1 Hull Quadratic Spline 22
3.3.2 Natural Cubic Spline 25

3.4 Integration Methods . 26

viii

Chapter 4. Analysis of CSD in the Orbit Transfer Problem 30
4.1 The Optimal Orbit Transfer Problem 30
4.2 Solution of the OTP . 34

4.2.1 Impulsive Solution . 35
4.2.1.1 Optimization Setup 35
4.2.1.2 Linear Perturbation Analysis 38
4.2.1.3 Solution . 42

4.2.2 Finite-Burn Solution . 45
4.2.2.1 Three-Segment Solution 47
4.2.2.2 Five-Segment Solution 53

4.3 Analysis and Comparison of Numerical Derivatives 56
4.3.1 Accuracy . 57
4.3.2 Robustness . 60
4.3.3 Computational Cost . 61

Chapter 5. Summary and Conclusion 65
5.1 Conclusion . 65
5.2 Recommendations for Future Work 66

Bibliography 68

Vita 71

ix

List of Tables

4.1 Initial and Final Orbits . 32
4.2 Spacecraft Parameters . 34

4.3 ∂c(XP)
∂XP

∣∣∣
STM

at Iteration One. 59

4.4 Comparison between Central Differences and Complex-Step Deriva-
tives . 60

4.5 Number of Iterations to Converge 61
4.6 Impulsive-Solution Time Comparison (all times in seconds) . . 63
4.7 Three-Segment Finite-Burn Time Comparison (all times in sec-

onds) . 64
4.8 Five-Segment Finite-Burn Time Comparison (all times in seconds) 64

x

List of Figures

3.1 Interpolated Control History with Evenly Spaced Nodes and
Uneven Control Spacing . 22

4.1 Spatial Views of Orbits 1 and 2 About the Earth 33
4.2 Locally Optimal Solution, ∆v = 2.527km

s
. 44

4.3 Locally Optimal Solution, ∆v = 3.072km
s

. 45
4.4 Spherical Angles α and β. 48
4.5 Minimum-Fuel Three-Segment Solution 53
4.6 Five-Segment Minimum-Fuel Trajectory 56

xi

Chapter 1

Introduction

This work intends to provide a thorough analysis of the use of a rel-

atively new type of numerical differentiation method, complex-step differen-

tiation, in optimization problems. This is done, in particular, in two ways.

First, the applicability of this method is tested for several tools used in the

solution of optimization problems, and, second, the performance is examined

in comparison to traditional methods.

To be clear, complex-step differentiation (CSD) has existed in some

form since, at least, Lyness & Moler (1967)[1] presented their proof for using

the Cauchy theorem to calculate numerical derivatives for analytical functions.

Examples of the implementation, and simplification of the method presented

by Lyness and Moler, do not appear for some time after. In its present form,

Squire & Trapp (1998)[2] for the mathematics and Martins, Sturdza & Alonso

(2003)[3] for the numerical implementation appear to be defining works. In

addition, Lai’s Ph.D dissertation (2006)[4] generalizes the approach and details

implementation into a Kalman filter. Shampine (2007)[5] gives a detailed

approach for a general implementation of CSD into MATLAB and examines

1

numerical issues with the use of complex arithmetic. Finally, Lantoine et

al. (2009)[6] outlines an elegant extension to higher order derivatives and its

implementation and Arora et al. (2009)[7] examines the application of CSD

into parallel processing and sensitivity analysis in optimization.

These works, however, do not present a thorough comparison of CSD

with traditional methods. While Lantoine has an accuracy comparison for

higher-order derivatives, and Arora looks at runtimes, there does not appear

to be published results of basic functionality and performance. In Chapter 3

complex-step derivatives are used and compared with forward differences to

determine their applicability in 1st, 2nd, and 3rd order interpolation schemes

as well as in fixed-step and variable-step integration all within the framework

of the Lunar Ascent Problem. Chapter 4 applies complex-step derivatives to

a more complicated problem, an optimal orbit transfer, and compares these

derivatives to central differences to determine their relative accuracy, robust-

ness, and computational cost. It is the desire to explicitly show the ability

of complex-step derivatives to be used in as wide range of solution methods

and to show a marked improved in performance over traditional methods. But

first, Chapter 2 details several traditional methods of numerical differentiation,

derives the basis for complex-step differentiation, and examines positives and

negatives of both.

2

Chapter 2

Complex-Step Differentiation

2.1 Background

Beginning with the advent of the digital computer, numerical approxi-

mation of first-order derivatives has been an important area of study for numer-

ous applications. Sensitivity analysis, optimization, and nonlinear algebraic

equation solution represent only a fraction of the applications where Jacobian

matrices, derivatives, or gradients are necessary. Many of the traditional (and

simplest) methods rely on properties of the definition of a derivative[8], that

is

f ′(x) = lim
h→∞

f(x+ h)− f(x)

h
. (2.1)

The difficulty of numerical differentiation arises in the implications of

numerical representation. There is an intrinsic error in computational methods

which is a result of modeling real numbers as bits of data. This is particularly

evident in the case of repeating decimals or irrational numbers: no matter how

many digits or bits are used to represent 1/3 or π, these numbers cannot be

used without some error. This error is commonly known as round-off error,

3

more strictly defined as any error resulting from a computational approxima-

tion to a real number.

Another common source of numerical error is known as truncation error,

defined as the resulting error from taking a finite number of steps in computa-

tion. Since many functions (such as trigonometric or exponential functions) are

implemented numerically as series expansions, truncation error results when

these series are truncated to a finite order.

A subset of round-off error that is often a concern is subtractive error.

This can be defined as the loss of significant figures when similar numbers are

subtracted. For example, the subtraction of 1.00002−1.00001 gives an answer

with only a single significant digit when two numbers with six significant digits

are subtracted. The limiting of significant figures often leads to large round-off

error when finite word-length arithmetic is involved.

Different methods of numerical differentiation are valued according to

a trade-off of accuracy, speed, and ease of implementation according to the

needs of the user. In general, a particular method can excel at one or two

of these considerations, but it is rare to find a method that is truly fast, ac-

curate, and easy to implement. This is a result of numerical considerations

(including error) that must be taken into account for any user of numerical dif-

ferentiation. This thesis intends to highlight the advantages of one particular

method, complex-step differentiation, that is relatively fast, nearly exact, and

quite easy to implement for a specific, yet wide, class of problems. First, a class

of traditional methods which will be used as the primary basis of comparison

4

are detailed.

2.2 Difference Methods of Numerical Differentiation

In this section, traditional difference methods of numerical differenti-

ation are highlighted with particular attention paid to their advantages and

disadvantages in terms of speed, accuracy and implementation. The three ma-

jor forms of differencing are given with derivation and notes regarding their

use. Forward, central, and backward differencing are the three primary dif-

ference operators used to approximate the first derivative. Each of these are

obtained from variations on the Taylor series expansion of the definition of the

derivative given in Equation 2.1. The Taylor series is an infinite series rep-

resenting any infinitely differentiable function, in traditional notation given

by

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n. (2.2)

In expanded notation, the Taylor series looks like

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 +

f (3)(a)

3!
(x− a)3 + · · · . (2.3)

A first-order truncation of the Taylor series is often used in difference methods,

however, higher order formulas do exist and are used. Higher order difference

methods do require several additional function evaluations resulting in a trade-

off between the added accuracy and the additional computational cost.

5

2.2.1 Forward Differencing

Arguably the most common method of numerical differentiation is the

forward difference. This method is derived from the Taylor series expansion

of a positive perturbation (h) of the function f(x), that is,

f(x+ h) = f(x) + hf ′(x) + h2f
′′(x)

2
+ h3f

′′(x)

3!
+ · · · . (2.4)

Dropping terms of the order h2 and above and solving for f ′(x) gives

f ′(x) ≈ f(x+ h)− f(x)

h
, (2.5)

a first-order approximation for the first derivative of a function.

Implementation of the forward difference method is quite simple, merely

calculate the value of the function of interest at a point, x, and a nearby point,

x+h, subtract and divide by the value of the perturbation. There are, however,

several concerns that must be addressed for best performance of this method.

Firstly, the choice of the perturbation length, h, is usually arbitrary,

but certainly not trivial. Analytically, as can be seen in Equation 2.1, choice

of an infinitely small h leads to the exact value of the derivative. Clearly, this

is not a suitable choice numerically because there are only a finite number of

digits that can be represented in the computer memory. In addition, there is

the concern of subtractive error. It would seem that a very small value of h

would be a good choice because it would minimize truncation error, but these

6

values increase the presence of round-off error. Conversely, relatively large

values of h do not suffer as much from the effect of round-off error but are

increasingly affected by truncation error. There exists a trade-off point, which

is primarily problem dependent, that minimizes the total error by balancing

the effects of truncation and round-off error.

A suitable choice for h here is

h = ε(1 + |x|), (2.6)

where ε, as a rule of thumb, is 1.0 × 10−8 for forward differencing unless

otherwise determined empirically. Another recommendation[9] for the choice

of h is

h =
√
κx (2.7)

where κ represents the machine precision (on the order of 1.1×10−16 for 64-bit

binary machines).

The existence of truncation and round-off error, along with the nec-

essary presence of subtraction error leaves something to be desired in terms

of the accuracy of forward differences. While a suitable choice of h results

in forward differencing being accurate enough for most problems, particularly

sensitive or poorly scaled problems may often suffer or fail with this method.

For relatively simple problems, the ease of implementation and relative speed

make forward differencing a widely popular method.

7

2.2.2 Backward Differencing

Closely related to the forward difference, the backward difference is

derived from the expansion of the Taylor series about a negative perturbation

(h) of the function f(x), that is,

f(x− h) = f(x)− hf ′(x) + h2f
′′(x)

2
− h3f

(3)(x)

3!
+ · · · . (2.8)

Dropping terms of the order h2 and above and solving for f ′(x) gives

f ′(x) ≈ f(x)− f(x− h)

h
, (2.9)

for the first-order approximation of f ′(x). Backward differencing has all of the

same advantages and disadvantages of forward differencing as given in Section

2.2.1. The only difference is the direction of the perturbation step used to

calculate the derivative approximation.

2.2.3 Central Differencing

If forward differencing is the most common method of numerical differ-

entiation, central differencing is most likely a close second. The derivation of

this formula is built on both the forward and backward difference derivation.

8

Subtracting Equation 2.8 from Equation 2.4 gives

f(x+h)−f(x−h) = f(x)−f(x)+hf ′(x)+hf ′(x)+h2f
′′(x)

2
−h2f

′′(x)

2
+ · · · ,

(2.10)

which, in fact, results in all of the even-order terms canceling leaving

f(x+ h)− f(x− h) = 2hf ′(x) + 2h3f
(3)

3!
+ · · · . (2.11)

Dropping the higher-order terms and solving for f ′(x) gives

f ′(x) ≈ f(x+ h)− f(x− h)

2h
. (2.12)

Since the quadratic terms (actually, all of the even-order terms) subtract out,

this approximation is accurate to an additional order compared to the other

differencing methods. The improved accuracy of the central difference method

is one reason for its use opposed to the simpler forward difference. Another,

more prevalent, advantage for central differences is the performance near the

optimum. In the area near the minimum, the function naturally takes the form

of a quadratic, since the quadratic terms of the Taylor series expansion subtract

out, the error of central differences is identically zero near the optimum.

The choice of h here is according to Equation 2.6, just as for forward

differences, however a different ε is generally used to take into account the

additional accuracy of the method and serve as an approximate solution to the

trade-off between round-off and truncation error. Here, for central differences,

9

ε = 1.0× 10−4 is used unless empirically determined otherwise.

In addition to its added accuracy and favorable near-minimum per-

formance, central differences are still quite simple to implement. For com-

plex problems, though, the runtime can be significantly increased (by ap-

proximately a factor of two) as a result of the additional perturbation to the

function value that must be determined compared to forward differences. It

is then up to the user to decide whether the advantage of additional accuracy

outweighs the disadvantage of the time increase in calculating the derivatives.

Even then, with precise tuning of the perturbation length and the additional

order of accuracy, central differences can still break down in difficult and/or

sensitive applications.

2.3 Complex-Step Derivatives

While difference methods are, in general, relatively fast and easy in

implement, their downfall, especially in complicated applications, is their ac-

curacy. Several methods have been derived in order to provide more accurate

estimates. Automatic differentiation (AD) is a method that takes advantage

of the chain-rule property to determine the derivative of a function[10, 11].

Advantages of AD include its ability to calculate derivatives essentially ex-

actly and its extensibility to higher-order derivatives. Disadvantages include

a relative difficulty to implement and significantly higher runtimes[6].

Several methods of “analytical” derivative calculation exist which in-

10

volve relating the derivative to known values and relationships in the prob-

lem. A particular example is derived in Section 4.2.1.2. These methods boast

derivatives accurate to the numerical error of the coded problem and run faster

than any other method, but often require a large manual effort to derive the

necessary relationships.

On the other hand, complex-step differentiation is a method that offers

the potential for virtually analytic accuracy, with speed and implementation

ease on the order of difference methods. CSD can be related to differencing in

its derivation, and can be used as an easy implementation of a specific type of

AD[12].

Before the general derivation of the CSD approximation is presented

here, the relationship can be obtained as a special case of the forward difference

approximation given in Equation 2.5. Assuming that f = u+ iv is an analytic

function of z = x+ iy where i =
√
−1, such that i2 = −1, and where

∂u

∂x
=

∂v

∂y
∂u

∂y
= −∂v

∂x
, (2.13)

it can be written, using the definition of a derivative given by Equation 2.1

and the first relationship in Equation 2.13, that

∂u

∂x
= lim

h→0

v(x+ i(y + h))− v(x+ iy)

h
. (2.14)

11

If the function f is originally real-valued, that is, for y = 0,

z = x+ iy

z = x, (2.15)

so,

v(x) = 0

u(x) = f(x). (2.16)

Thus, Equation 2.14 can be rewritten as

∂f

∂x
= lim

h→0

= [f(x+ ih)]

h
, (2.17)

which, for a small, discrete h gives

∂f

∂x
≈ = [f(x+ ih)]

h
. (2.18)

This gives the estimate of the first derivative of f(x) as the special case of

the forward difference approximation of a real-valued, analytic function. This

case denotes the limits of the usefulness of a complex-step derivative approx-

imation. The approximation is only valid for real-valued, analytic functions.

Now, this is not a significant restriction of the applicability of this method.

Most commonly used functions are analytic, though two notable examples of

12

non-analytic functions are the absolute value function (not analytic at zero)

and piecewise-defined functions (not typically analytic where pieces meet).

A more elegant derivation of the complex-step approximation can be

obtained similarly to differences, but expanding the Taylor series about a per-

turbation (h) which lies in the complex plane, that is,

f(x+ ih) = f(x) + ihf ′(x) + (ih)2f
′′(x)

2
+ (ih)3f

(3)(x)

3!
+ · · · . (2.19)

which, using the relationship i2 = −1, gives

f(x+ ih) = f(x) + ihf ′(x)− h2f
′′(x)

2
− ih3f

(3)(x)

3!
+ · · · . (2.20)

Then, separating Equation 2.20 into its real and imaginary parts gives

<[f(x+ ih)] = f(x)− h2f
′′(x)

2
+ h4f

(4)(x)

4!
+ · · ·

=[f(x+ ih)] = =
[
ihf ′(x)− ih3f

(3)(x)

3!
− · · ·

]
. (2.21)

Using the imaginary component of Equation 2.21, solving for f ′(x) and drop-

ping higher order terms gives

f ′(x) ≈ =[f(x+ ih]

h
, (2.22)

which is identical with the expression shown in Equation 2.18. This derivation

gives the added effect of showing a key benefit of CSD. Note that there is

13

no subtraction in this expression, as opposed to the formulas for difference

methods. This allows the choice of arbitrarily small values for the perturbation

length (h). If the first higher order term dropped is examined, it can be seen

that the truncation error can be eliminated if [3]

h2

∣∣∣∣f (3)(x)

3!

∣∣∣∣ < κ |f ′(x)| (2.23)

where κ is the machine precision. This gives the result that both round-off

and truncation error can be eliminated to the accuracy of the algorithm by an

appropriately small choice of h.

In addition to accuracy at the level of AD, the single perturbation

implies that runtime on the order of forward differences is to be expected, al-

though complications resulting from the use of complex arithmetic are possible.

This, however, may be made up for in iterative solutions by the improved accu-

racy - fewer iterations may be required for convergence. While each iteration

may take slightly longer for CSD, the fewer overall iterations may give a re-

duced overall runtime. It should also be noted here that for environments that

do not inherently handle complex arithmetic it may be necessary to include or

create the appropriate packages to allow complex values in the functions and

routines used to solve a particular problem.

In this work, only the MATLAB environment is used, primarily be-

cause its built-in ability to easily handle complex values. There are particular

routines and functions in MATLAB that do not accurately compute for com-

14

plex values, and, for some, no error is given. It is important to make sure that

functions used are applicable, and the correct function, for complex-valued in-

puts. For example, the commonly used ‘prime’ (’) function for the transpose

of a matrix or vector actually returns the complex-conjugate transpose, which

would result in an incorrect derivative calculation. The correct function for a

matrix or vector transpose for complex-valued input is transpose. Many ex-

amples exist, too many to comprehensively denote here. Shampine (2007)[5]

gives several examples, but the user is ultimately responsible for knowing the

applicability of complex-valued inputs for their routines and functions.

The aim of the rest of this work is to detail the applicability of CSD for

several different methods often used in the solution of optimization problems

(Chapter 3) and to explicity show the advantages (and/or disadvantages) of

CSD in terms of accuracy, speed, implementation, and robustness as compared

to traditional difference methods (Chapter 4)

15

Chapter 3

Use of CSD in the Lunar Launch Problem

Again, the ability of complex-step derivatives to be used to estimate

derivatives has been known for some time. Detailed results from the applica-

tion of this method to real problems have not been widely published. It is the

goal of this chapter to establish the usability of complex-step derivatives for

a wide variety of methods for the solution of optimization problems. This is

done by comparing the solution of a particular problem, the minimum-time

lunar ascent, obtained using traditional differencing methods and complex-

step derivatives. Several different tools that may be used in the solution of

this problem are tested by this method as well. In particular, the problem

is solved using fixed and variable-step integration methods, linear, quadratic,

and cubic splines to estimate the control history, using direct optimization

methods.

3.1 The Baseline Lunar Ascent Problem

A simple formulation of the lunar ascent problem is the launch of a

vehicle from the surface of the moon and its ascent to a particular, given

16

orbit insertion. The orbit insertion point is defined by an altitude and velocity

vector leaving the final downrange position free. A constant thrust acceleration

engine is modeled giving the result that the minimum-fuel solution is equivalent

to the minimum-time solution.

Some assumptions are made in the solution of this problem. It has

been determined by Hull (2010)[13] that the optimal solution for the three-

dimensional lunar ascent problem is the case where solution lies entirely in the

great-circle plane between the given initial and final conditions. Therefore,

the problem modeled here will be strictly the two-dimensional case. Hull

also determins that the guidance law derived using an assumption of a flat-

moon (a perpendicular, constant gravitational field) is sufficient for the actual

spherical-moon problem. Here, a flat-moon gravitational field model is used.

Since, as stated, the minimum-fuel solution is equivalent to the minimum-

time solution, the optimization problem will be set up as

J = tf . (3.1)

The equations of motion are given by

Ẋ =



ẋ

ẏ

u̇

v̇


=



u

v

α cos θ

α sin θ − g


(3.2)

17

where g = 5.32 ft/s2 and α = 20.8 ft/s2. The initial conditions are,

X0 =



x0

y0

u0

v0


=



0

0

0

0


(3.3)

with final conditions,

Xf =



xf

yf

uf

vf


=



free

50000 ft

5444 ft/s

0 ft/s


. (3.4)

Since this problem is being solved with a direct method, the constraints

are given by

c =


y(tf)/yf − 1

u(tf)/uf − 1

v(tf)/uf

 = 0, (3.5)

and an optimization parameter vector represented by

XP =

 θi

tf

 (3.6)

where θi is a column vector containing the control at each node. The initial

18

guess for this vector is

XP0 =



θ1

θ2

θ3

θ4

θ5

tf


0

=



40◦

30◦

20◦

10◦

0◦

300s


. (3.7)

3.2 Linear Interpolation

The problem is solved assuming a linear interpolated control history

with sampling occuring at five nodes given by the scaled values

τi =

[
0 1/4 1/2 3/4 1

]
, (3.8)

where τ , t/tf and with the control at each node denoted by θi, representing

the pitch angle measured from the horizontal to the thrust vector.

The baseline solution is acheived using a fixed-step, fourth-order Runge-

Kutta integrator with twenty steps to integrate the equations of motion in a

nonlinear programming (NLP), parameter optimization problem (POP) solved

using MATLAB’s fmincon and its ’sqp’ algorithm. Using user-input forward

differences to calculate the gradients, where hi = ε (1 + |Xi|) and ε = 1×10−8,

19

the optimal parameter vector is found to be

XPOPT
=



θ1

θ2

θ3

θ4

θ5

tf


OPT

=



26.040◦

20.794◦

15.155◦

9.197◦

3.036◦

272.706s


. (3.9)

Using the same solution method with the exception of the gradients,

the optimal solution is again determined. Here, the gradients are user-input,

calculated via complex-step differentiation with a perturbation of 1.0i×10−14.

This perturbation length is used because it is lower than the tolerance used

in the optimization and the integration, yet is able to be displayed onscreen

in MATLAB’s format long. Based on the theory reported in Chapter 2, it is

expected that the same solution should be reached using complex-step differ-

entiation, with the possibility of small differences arising from more accurate

derivative calculation. A more expensive solution should not occur.

The optimal parameter vector for the linear interpolation solution with

20

complex-step derivatives is given by

XPOPT
=



θ1

θ2

θ3

θ4

θ5

tf


OPT

=



26.040◦

20.794◦

15.155◦

9.197◦

3.036◦

272.706s


. (3.10)

It can be seen that the exact solution obtained using forward differences is

achieved using complex-step derivatives. In addition, convergence was achieved

in ten iterations for the complex-step derivative case as opposed to eleven it-

erations needed for the forward differences. The theory appears to hold for

numerical derivatives used in simple optimization algorithms. Several other

tools used to solve optimization problems are tested in subsequent sections.

3.3 Higher-Order Spline Interpolation

In the previous solution, the control history is represented by a simple

linear interpolation model with five nodes. A continuous control history is

likely to be more optimal. In addition, a continuous control differentiable at

the node points allows the integration steps to be more widely varied. With a

control history, for example a linear interpolation, where the control is not con-

tinuous or differentiable across the nodes, the integration steps must coincide

21

with the nodes to ensure a smooth integration. A continuously differentiable

control allows the integration steps to be located at any point along the time

history.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

Scaled Time (s/s)

P
itc

h
A

ng
le

 (
de

g)

Natural Cubic
Hull Quadratic
Linear
Nodes

Figure 3.1: Interpolated Control History with Evenly Spaced Nodes and Un-
even Control Spacing

Two interpolation schemes are examined to test the use of complex-

step derivatives in higher-order spline interpolation. Figure 3.1 shows a contol

history defined with linear interpolation, a Hull spline, and a natural cubic

spline. The discontinuity in the first derivative of the linearly interpolated

control is evident.

3.3.1 Hull Quadratic Spline

The Hull spline is a 2nd order (quadratic) interpolation method first

developed by Hull (described via personal communication from October 2010-

22

April 2011) and loosely based on the Subbotin spline as presented in [14]

Section 9.1. To describe the formulation of the spline, nodes (τi) are the points

at which the values of the function is known, and knots (ti) are the points where

the function of the spline is allowed to change. In this interpolation method,

the intial and final times are both nodes and knots, and knots are also placed

at the midpoint between interior nodes, that is,


t0 = τ0

ti = 1
2

(τi+1 + τi) , 1 ≤ i ≤ n− 1

tn = τn+1

. (3.11)

The benefit of the Hull spline is that it is a simple, continuous interpo-

lation method that leaves no free parameters. The downside of the Subbotin

spline is that the knots must be defined in order to determine the node place-

ment. In many real problems, the placement of the knots is not significant, but,

since the function is only known at certain places, the nodes are constrained.

As a result of this, the Hull spline was derived to provide a quadratic interpo-

lation with knots determined from defined nodes. Between knots, the shape

of the spline function is given by

Si = yi+1 +
1

2
(zi+1 + zi) (τ − τi+1) +

1

2hi
(zi+1 − zi) (τ − τi+1)2 (3.12)

23

with yi representing the value at each node (in this case, θ), and

hi =
1

2
(τi+1 − τi) . (3.13)

The value zi, representing the continuous slope at the knot, is found by solving

the linear system of equations given by



8 0 0 0 0

1 6 1 0 0

0
. 0

0 0 1 6 1

0 0 0 0 8





z0

z1

...

zn−1

zn


= 8



(y1 − y0) /h0

(y2 − y1) /h1

...

(yn − yn−1) /hn−1

(yn+1 − yn) /hn


. (3.14)

In the solution of the Lunar Launch problem using a Hull Spline for the

control history, the same initial guess and model is used as with the baseline.

This gives a slightly different solution than in the baseline, but this is a result of

the difference in the interpolation as the controls iterate toward the optimum.

The optimal parameter vector is identical for both solution methods and is

24

shown by

XPOPT
|HQS =



θ1

θ2

θ3

θ4

θ5

tf


OPT

=



26.007◦

20.762◦

15.129◦

9.180◦

3.021◦

272.706s


, (3.15)

In both cases, the solution converged to the accepted solution in nine itera-

tions. Just as in the linearly interpolated case, identical solutions are achieved

between the two differentiation methods.

3.3.2 Natural Cubic Spline

Cubic splines are commonly used for interpolation and function ap-

proximation because they are continuous functions and their first and second

derivatives are continuous as well. This is of particular benefit for applica-

tions where second-derivatives are necessary. In addition, the continuity of the

second derivative adds the aesthetic benefit of the spline appearing smooth.

Finally, cubic splines are most often used because they not only allow for

continuity in the first and second derivatives but also are more resistant to os-

cillations that may be found using higher-order polynomials. The cubic spline

used here is derived in [14], Section 9.2.

As opposed to the Hull spline, a natural cubic spline requires the defi-

25

nition of the nodes which then coincide with the knots. Here, the same node

distribution is used as in the baseline model (given by Equation 3.8). Again,

the same intial guess and model is used as in all previous trials. The optimal

parameter vector for both methods is given by

XPOPT
|NCS =



θ1

θ2

θ3

θ4

θ5

tf


OPT

=



26.025◦

20.765◦

15.126◦

9.183◦

3.028◦

272.706s


, (3.16)

Once again, the two methods of gradient determination give an identical re-

sult to each other, and once again the solution is near, but not identical to

those found using the other interpolation methods. Here, convergence to the

accepted solution is achieved in ten iterations for both methods.

3.4 Integration Methods

When using a linearly interpolated control history, it is important to

coordinate the nodes with integration steps. If this is not done, the integrator

will be trying to integrate over a function where the first derivative is discon-

tinuous when the node lies in the middle of an integration step. Depending on

the function, this may cause large error in the integration leading to inaccura-

26

cies or even failure to converge or solve. This is, perhaps, the most important

consideration for using spline interpolation: to establish a continuous function

over which to integrate. Having a continuous function allows the integration

steps to be placed arbitrarily without having to worry about discontinuities.

The allowance of arbitrary integration step placement leads to the use of vari-

able step-size integration, since, in most cases, the length of the step is left

for the integrator to determine. Now, no restrictions on step length or place-

ment exist. In sensitive problems, the use of a variable step-size integrator can

greatly reduce the integration error with appropriate step placement; short

steps in sensitive areas to maintain accuracy, and longer steps in less sensitive

areas to aid speed.

Here, both spline functions, Hull and natural cubic, are tested with

a variable step-size integrator: MATLAB’s ode45 used with the relative and

absolute tolerances both set to 1 × 10−10 to match the tolerances set in the

optimizer. For both spline functions, the solution process is identical to that

described in their respective sections (Sections 3.3.1 and 3.3.2).

The optimal parameter vector for the solution of the lunar ascent prob-

27

lem using variable-step integration and a Hull spline is given by

XPOPT
|FD =



θ1

θ2

θ3

θ4

θ5

tf


OPT

=



26.007◦

20.761◦

15.129◦

9.180◦

3.020◦

272.706s


(3.17)

for forward differences, and by

XPOPT
|CS =



θ1

θ2

θ3

θ4

θ5

tf


OPT

=



26.007◦

20.762◦

15.129◦

9.180◦

3.021◦

272.706s


(3.18)

for complex-step derivatives. Here, the results for forward differences and

complex-step differentiation are not exactly the same. A nearly identical result

is shown here for forward differences as was found for the fixed-step integration

with a Hull spline (given by Equation 3.15), and the complex-step derivatives

gives the same result as the fixed-step integration. The forward difference case

also converges in twenty-two iterations and 81.679 seconds while the complex-

28

step differentiation case converges in ten iterations and 12.470 seconds. The

difference in the convergence statistics as well as the slight difference in the

result is most likely caused by more accurate calculation of the gradient.

The optimal parameter vector for the solution of this problem using

variable-step integration and a natural cubic spline is given by

XPOPT
|FD =



θ1

θ2

θ3

θ4

θ5

tf


=



26.025◦

20.765◦

15.126◦

9.183◦

3.028◦

272.706s


, (3.19)

Again, the solution for each gradient method matches up identically here, as

well as with with the fixed step-size integration results (Equation 3.16). It

should also be noted that in all of the previous solutions the optimization

process converged in virtually the same amount of time, and identically the

same number of iterations with the exception of the variable step-size, natural

cubic spline result. Here, the complex-step solution converged in ten iterations

and 30.387s, while the forward difference solution converged in fifteen itera-

tions and 137.903s. This provides another example of the advantages of more

accurate numerical derivatives, advantages that are examined more closely in

Section 4.3.

29

Chapter 4

Analysis of CSD in the Orbit Transfer Problem

In addition to determining the applicability of complex-step differenti-

ation to different features and methods used to solve constrained optimization

problems, as seen in Chapter 3, it is desired to compare this differentiation

method to others in a numerical sense. As the solution of the Lunar Launch

Problem is easily varied to include several different features and methods com-

monly seen in optimization problem, a new problem, the Orbit Transfer prob-

lem, is used as the baseline for the numerical analysis. In Section 4.1 a thor-

ough description of the general and specific aspects of this problem is given.

Section 4.2 details the solution method to the problem as well as the means

of handling different versions and the application of CSD to the solution. Fi-

nally, Section 4.3 explains the methods of comparison and analysis and gives

the numerical results and their implications.

4.1 The Optimal Orbit Transfer Problem

Simply put, the optimal Orbit Transfer Problem (OTP) usually involves

finding the minimum time or minimum fuel solution to a spacecraft transfer

30

between two distinct orbits of a central body. In this case the minimum fuel

solution is the interest, and the central body is the Earth which is assumed

to be an inertial reference frame. This problem is of particular interest since

the primary constraint in space missions is monetary cost and the cost of a

mission can be most easily reduced by minimizing the amount of fuel necessary

to complete the mission. This is a because the primary cost of a space mission

is launching mass out of the Earth’s gravitational well. Reducing the amount

of fuel needed not only decreases the mass of the spacecraft but reduces its

volume as well, thereby reducing the necessary structural mass.

In its most simple sense, the solution to the OTP is generally re-

garded to be a Hohmann transfer-an 180◦, two-impulse transfer[15]. This

solution, however, requires several assumptions including coplanar, aligned or-

bits and impulsive burns at the beginning and end-points. In some cases,

a three-impulse maneuver (known as a Bi-Elliptic transfer) can actually re-

quire less fuel than a Hohmann transfer, but this often requires a very large

flight time[16]. Here, more realistic assumptions are made. The orbits are not

constrained to be coaxial or coplanar, and, in addition to impulsive burns,

solutions with finite burn arcs are assessed.

As mentioned, the OTP is not constrained to coplanar, coaxial orbits.

Specifically, a transfer between two elliptical orbits of different sizes where the

orbits are inclined and rotated with respect to each other is considered. The

two orbits are defined by their classical orbital elements as seen in Table 4.1.

31

Table 4.1: Initial and Final Orbits

Element Orbit 1 Orbit 2
a (km) 20000 40000
e 0.2 0.2
i 0 45◦

Ω 0 0
ω 45◦ 0

Figure 4.1 shows the two orbits around the Earth. Figure 4.1a is an

oblique view of the two orbits emphasizing the inclination change while Figure

4.1b is a top view (of the X-Y plane) to indictate the change in argument of

periapse. The dashed line is the apseline of the smaller orbit (Orbit 1) while

the X-axis represents the apseline of the larger orbit (Orbit 2).

32

−4
−3

−2
−1

0
1

2
3

x 10
4

−2 −1 0 1 2

x 10
4

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x 10
4

Y (km)

X (km)

Z
 (

km
)

O
1

O
2

Earth

(a) Oblique View

−5 −4 −3 −2 −1 0 1 2 3

x 10
4

−3

−2

−1

0

1

2

3
x 10

4

X (km)

Y
 (

km
)

O
1

O
2

Earth

(b) Top View of XY Plane

Figure 4.1: Spatial Views of Orbits 1 and 2 About the Earth

33

For this problem, a constant set of spacecraft and gravitational field

parameters are assumed. An Earth-centered reference frame with a simple

2-body, inverse-square gravitational field is modeled and the standard value

for the gravitational parameter (µE = 398600.8km3/s2) for Earth is used. The

parameters for the spacecraft engine are found in Table 4.2.

Table 4.2: Spacecraft Parameters

Parameter Value
m0 1000 kg
Tmin 0.0 kN
Tmax 0.1 kN
Isp 1000 s
g0 0.009806 km/s2

4.2 Solution of the OTP

The first solution of this problem is the impulsive-maneuver solution

described in Section 4.2.1. An instantaneous burn is applied at a point to be

determined on the first orbit, the spacecraft coasts on a ballistic trajectory

until intercept of the second orbit, and a second instantaneous burn is applied

to match the velocity at that point.

The second solution that is considered is a segmented, finite-burn so-

lution as described in Section 4.2.2. The thrust direction of the spacecraft

is assumed to constant for each segment but can change between successive

segments. The length and direction of the burn arc is dependent on the thrust-

ing ability of the engine. The number of overall segments are prescribed for

34

a given solution. Three and five-segmented solutions are analyzed. In gen-

eral, the optimal solution begins and ends with a burn arc with a coast arc in

between.

4.2.1 Impulsive Solution

To numerically solve the impulsive-maneuver optimal Orbit Transfer

Problem, a nonlinear programming (NLP), parameter optimization problem

(POP) is formed. This requires definition of an objective function, optimiza-

tion parameters, constraints, and nonlinear equations of motion. As stated,

the equations of motion are based on a 2-body, inverse-square gravitational

law.

4.2.1.1 Optimization Setup

The state vector is defined in Equation 4.1 and Equation 4.2 gives the

equations of motion.

X =


r

v

m

 (4.1)

Ẋ =


v

− µ
r3

r

−T
c

 (4.2)

35

Here, c = g0Isp.

The integration of the equations of motion is performed using MAT-

LAB’s ode45, a variable step-size integrator where the absolute and relative

tolerances at each step are set to 1 × 10−12. In the case, described below,

where the State Transition Matrix (STM) is used to calculate the first-order

Jacobian, the same settings are used for its integration as well.

For this problem, the spacecraft’s initial position is given to be on Orbit

1 (location on the orbit is free), and its final position is constrained to be on

Orbit 2 (again, the location on the orbit is free). This constraint is achieved

without needing to determine the orbital elements of the spacecraft at every

iteration step. The five linearly independent orbital elements are replaced by

the 5× 1, linearly independent vector made up of the angular momentum and

x and y components of the eccentricity vector. The constraint vector is thus

given by

c(XP) =


h(tf)− h∗

ex(tf)− e∗x

ey(tf)− e∗y

 = 0 (4.3)

where h = r× v, and e = v×h/µ− r/‖r‖.

Here, the starred values represent the prescribed angular momentum

and eccentricity of Orbit 2 which are subtracted from the actual value of the

spacecraft at the endpoint. The constraint vector is forced to zero by the

36

optimizer with a tolerance set to 1 × 10−12. In addition, t2, the time of the

second impulsive burn, is constrained to be greater than t1, the time of the

first impulsive burn, ensuring a positive time of flight.

An optimization parameter vector, XP , is chosen to fully define the

problem. XP is shown by

XP =



t1

∆v1

t2

∆v2


. (4.4)

This parameter vector is chosen because it allows the locations on Orbits 1

and 2 to remain optimization variables as well as letting the impulsive velocity

change at each burn (∆v) to vary as well. The times t1 and t2 each are

measured from a specified t0 = 0, defined as the periapse passage on Orbit 1.

With the parameters, constraints, and state defined, the optimization

process is performed. Since the minimum fuel solution is desired, an objective

function is so defined. In the impulsive solution, fuel is represented as ∆v =

‖∆v‖, the change in velocity. The objective function is then defined to be the

sum of the magnitudes of the change in velocity vectors at each burn point,

that is,

J = min 〈‖∆v1‖+ ‖∆v2‖〉 . (4.5)

37

MATLAB’s fmincon optimization function is used with its ‘sqp’ op-

timization algorithm to solve the NLP POP. This program is chosen for its

ability to solve constrained optimization problems combined with its ease in

handling complex numbers. Another important reason for the use of fmin-

con is its ability to either compute its own or to allow user-input partials.

First derivatives of both the objective function and the constraint function

with respect to the parameter vector are required if the user is going to sup-

ply the Jacobians. This is done thrice, as the problem is solved separately

using user-input partials via three methods: Central Differences, Linear Per-

turbation Analysis (or State Transition Matrix derivatives), and Complex-Step

Differentiation.

4.2.1.2 Linear Perturbation Analysis

While central differences and complex-step differentiation have been

detailed in Chapter 2, the third method has not. This method for computing

the first-order partials of the objective function and the constraint equations

is Linear Perturbation Analysis [17]. This method determines the derivatives

analytically using the State Transition Matrix. Since the derivatives are ana-

lytical, this method is used as the comparison basis. Even though the deriva-

tives are analytical, this method is not strictly exact; there is usually some

error in the STM as a result of the numerical integration. This is not a major

factor in the comparison, because both of the other methods also go through

numerical integration with the same order of accuracy.

38

For this problem, the STM is numerically integrated simultaneously

with the equations of motion, subject to the initial condition that Φ(t0, t0) = I.

The rate of change of Φ is denoted by

Φ̇ =

 0 I

G 0

Φ (4.6)

where G is the Gravity Gradient Matrix, defined for the three degree-of-

freedom, 2-body problem by

G =


2µ(x2−0.5(y2+z2)

r5
3µxy
r5

3µxz
r5

3µxy
r5

2µ(y2−0.5(x2+z2)
r5

3µyz
r5

3µxz
r5

3µyz
r5

2µ(z2−0.5(x2+y2)
r5

 . (4.7)

Once the STM is obtained, it is necessary to derive formulas for the

derivatives of the objective function and constraints with respect to the param-

eter vector in terms of the STM. Since the derivatives of the objective function

and the inequality constraints are simpler and are available analytically, they

are input. The partials of the equality constraints, however, are derived as

∂c

∂XP

=
∂c

∂r(t2)

∂r(t2)

∂XP

+
∂c

∂v(t2)

∂v(t2)

∂XP

. (4.8)

39

Then, assuming that e =

 ex

ey

 ,

∂c

∂r(t2)
=

 ∂h
∂r(t2)

∂e
∂r(t2)


∂c

∂v(t2)
=

 ∂h
∂v(t2)

∂e
∂v(t2)

 . (4.9)

These terms can be shown to be

∂h

∂r(t2)
= I×v(t2)

∂e

∂r(t2)
=

1

µ
(v(t2)× (I× v(t2)))−

(
1

r
I− r(t2)rT(t2)

r3

)
∂h

∂v(t2)
= r(t2)× I

∂e

∂v(t2)
=

1

µ
(I× h + v(t2)× (r(t2)× I)) (4.10)

where I represents a 3× 3 identity matrix.

The ∂r(t2)/∂XP and ∂v(t2)/∂XP terms can be derived to show that [18]

40

∂r(t2)

∂t1
= −Φ11∆v1

∂r(t2)

∂∆v1

= Φ12

∂r(t2)

∂t2
= v(t−2)

∂r(t2)

∂∆v2

= 0 (4.11)

and

∂v(t2)

∂t1
= −Φ21∆v1

∂v(t2)

∂∆v1

= Φ22

∂v(t2)

∂t2
= − µ

r3
r(t2)

∂v(t2)

∂∆v2

= I. (4.12)

where Φ =

 Φ11 Φ12

Φ21 Φ22

 and the superscript ‘-’ represents the instant before

the impulse is applied.

Combining the results in Equations 4.10, 4.11, and 4.12 gives the 8× 5

matrix Jacobian for the equality constraint vector c(XP) with respect to the

paramter vector XP denoted in 4.8.

41

4.2.1.3 Solution

MATLAB’s fmincon requires an intial guess for the parameter vector to

start its iteration process. The closer the initial guess is to the actual solution

the faster the optimizer converges. For this problem, the same initial guess is

used for each derivative method.

The initial guess of ∆v1 and ∆v2 is determined by approximating the

transfer trajectory as an 180-degree transfer, neglecting both the change in

inclination and the change in argument of periapse. The time of flight is found

by approximating an 135-degree transfer, taking into account the change in

argument of periapse but neglecting the inclination change. The time of the

first burn, t1, is set equal to t0 = 0, therefore t2 is the estimated time of flight.

After finding a local optimal solution near this location, the initial guess is

changed, and a second, local optimal solution was found. The new initial

guess is determined by rotating the first guess approximately halfway around

the orbit and determining the new ∆v1and ∆v2. The two successful inital

42

guesses are given by

XP =



t1

∆v1

t2

∆v2


, X01 =



0

−0.654

0.654

0

21363

0

−1.6

0



, X02 =



10000

0

−1.654

−0.2

31363

1.0

0

1.0



. (4.13)

As stated , two locally optimal solutions are found roughly 180◦ apart in the

inertial reference frame. The optimal parameter vectors are

XP =



t1

∆v1

t2

∆v2


, XOPT1 =



−3683.9

0.2332

0.6787

0.3126

25334

0.1972

0.2704

−1.7118



, XOPT2 =



10616.0

0.1657

−0.5528

−0.8616

33506.8

0.2954

−0.4367

2.1173



. (4.14)

The total ∆v for the first solution is 2.527km/s, and the total ∆v for the sec-

43

ond solution is 3.072km/s. Figure 4.2 shows the transfer trajectory for the

lower of the two local optima, Figure 4.3 shows the transfer trajectory for the

higher of the two. The first trajectory results in a final mass of the space-

craft of 772.83km/s while the second trajectory gives a final spacecraft mass of

731.05km/s.

−4 −3 −2 −1 0 1 2 3

x 10
4

−2 −1 0 1 2

x 10
4

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x 10
4

Y (km)
X (km)

Z
 (

km
)

O
1

O
trans

O
2

Earth

Figure 4.2: Locally Optimal Solution, ∆v = 2.527km
s

44

−4 −3 −2 −1 0 1 2 3

x 10
4

−2 −1 0 1 2

x 10
4

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x 10
4

Y (km)

X (km)

Z
 (

km
)

O
1

O
trans

O
2

Earth

Figure 4.3: Locally Optimal Solution, ∆v = 3.072km
s

4.2.2 Finite-Burn Solution

A more realistic scenario, since current engines cannot achieve an in-

stantaneous burn, is modeling the transfer with a series of separate segments of

finite length. Each segment is classified as a “burn arc” or a “coast arc,” where

burn arcs represent a segment of the mission where the spacecraft engine is

on, and, conversely, coast arcs represent a segment of the mission where the

spacecraft engine is off. Generally, the solution to this problem is acheived by

presupposing a number of segments and allowing the optimizer to determine

whether each segment is a burn arc or a coast arc. Also generally speaking, for

45

relatively high-thrust engines the optimal solution consists of one or multiple

burn arcs at the beginning followed by a coast arc with one or multiple burn

arcs to complete the transfer.

In Section 4.2.2.1 a three-segment transfer is assumed, which should

result in a burn-coast-burn transfer. Then, in Section 4.2.2.2 a five segment

solution is assumed, implying a burn-burn-coast-burn-burn result. It should

be noted that for each burn arc, the thrust control vector is constrained to be

constant.

To numerically solve the Finite-Burn Optimal Orbit Transfer Problem

the NLP POP is formed. This requires definition of the objective function,

optimization parameters, the constraints, and the nonlinear equations of mo-

tion. As stated, the equations of motion are based on a 2-body, inverse-square

gravitational law. As a result of the similarity between this problem and

the impulsive-maneuver solution, many components could be either copied

exactly or with minor changes. Each finite-burn solution is determined us-

ing complex-step differentiation and using user-input central differences. The

added complexity of this version of the optimal Orbit Transfer Problem allows

the differences in the gradients to have an additional effect., Here the opti-

mization converges to the same solution, but a significantly different number

of iterations is required.

46

4.2.2.1 Three-Segment Solution

The setup for the three-segment solution of the Optimal Orbital Trans-

fer is based on the solution for the impulsive problem. Differences occur from

the addition of a thrusting term in the equations of motion. The state vec-

tor is the same as given in Equation 4.1. The dynamical equations, however,

account for the thrust of the spacecraft. For this problem, they are given by

Ẋ =


v

− µ
r3

r + T
m

u

−T
c

 . (4.15)

The thrust acceleration term consists of the thrust magnitude scaled

by the spacecraft mass, and is pointed along a control vector, u, which is

constrained in this problem to be constant for each segment. Since this is a

three-dimensional problem, u is a 3 × 1 vector. To decrease the number of

parameters necessary to solve the problem u is defined by Equation 4.16 in

terms of the spherical angles α and β, as

u =


cos(α) cos(β)

sin(α) cos(β)

sin(β)

 . (4.16)

Here, α represents the right ascension and β represents the inclination of a

unit vector in a spherical coordinate frame as seen in Figure 4.4.

47

X

Y

Z

ß

α

r

Figure 4.4: Spherical Angles α and β.

From here, the optimization parameter vector is defined to be made up

of the times indicating the start of the transfer, the end of the first segment,

the end of the second segment, and the end of the third segment (the end of

the transfer), as well as the control (T ,α,β) for each segment. This results in

a 13× 1 parameter vector shown in Equation 4.17.

48

XP =



t1

t2

t3

t4

α1,β1

α2,β2

α3,β3

T1

T2

T3



(4.17)

The constraint vector for this solution remains the same as in Equation

4.3. The additional flight times here are still constrained to be positive, and

each thrust value is constrained to be between the spacecraft engine Tmin and

Tmax giving an inequality constraint vector of

d(XP) =


t2 ≥ t1

t3 ≥ t2

t4 ≥ t3

 . (4.18)

Even though the minimum fuel solution is still desired, the objective

function for this problem changes to account for the finite burn aspect. Here,

the objective function is based on a summation of the used fuel for each flight

49

segment, that is,

J = −

(
m0 −

3∑
i=1

Ti
c

(ti+1 − ti)

)
. (4.19)

The initial guess for the optimization of this problem is based on the

solution of the impulsive problem. The initial and final burn time from the

impulsive solution are taken as the center of the initial and final segment of this

solution. The length of each finite burn is determined by converting the known

∆v from each burn of the impulsive solution into the time of flight necessary

to consume that amount of fuel via the Tsiolkovsky Rocket Equation

∆v = Ispg0 ln

∣∣∣∣m0

mf

∣∣∣∣ . (4.20)

The middle segment is guessed to be a coast arc, and each burn arc

is guessed to occur at Tmax. The angles for the first and last segment are

determined from the direction of the impulsive ∆v. Since the middle segment

is guessed to be a coast arc, the angles for this segment do not matter and

are guessed to be (0,0). Putting all of this together, the initial guess for the

parameter vector is shown by

50

XP0 =



t1

t2

t3

t4

α1,β1

α2,β2

α3,β3

T1

T2

T3


0

=



−7421.5

54.6

17957.5

32710.5

−1.24, 0.4108

0.0, 0.0

0.9407,−1.3777

0.1

0.0

0.1



. (4.21)

Both CSD and user-input central differences are used to optimize this

problem using the same function, algorithm, and settings as for the impulsive

solution. Both methods converge to the same solution. The optimal parameter

vector is given by

51

XPOPT
=



t1

t2

t3

t4

α1,β1

α2,β2

α3,β3

T1

T2

T3


OPT

=



−8405.5

233.2

17483.1

32910.6

−1.899, 2.904

0.0, 0.0

4.198,−1.741

0.1

0.0

0.1



, (4.22)

and the trajectory is shown in Figure 4.5. The optimal final mass calculated

for this solution is mf = 754.8kg.

52

−4
−2

0
2

x 10
4

−2 −1 0 1 2

x 10
4

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x 10
4

Y (km)
X (km)

Z
 (

km
)

O
1

Burn 1
Coast
Burn 2
O

2

Earth

Figure 4.5: Minimum-Fuel Three-Segment Solution

4.2.2.2 Five-Segment Solution

The Optimal Orbit Transfer Problem was also solved for the case of

five separate segments. Setup for this solution is similar to the previous three-

segment and impulsive burn scenarios. The parameter vector here is expanded

to include the angles, times, and thrust magnitudes for the additional segments

and is shown in Equation 4.23 along with the initial guess

53

XP =



t1

t2

t3

t4

t5

t6

α1,β1

α2,β2

α3,β3

α4, β4

α5, β5

T1

T2

T3

T4

T5


0

=



−7421.6

−3684.0

54.6

17957.5

25334.0

32710.5

−1.24, 0.4108

−1.24, 0.4108

0.0, 0.0

0.9407,−1.3777

0.9407,−1.3777

0.1

0.1

0.0

0.1

0.1



. (4.23)

The initial guess for the five-segment solution is obtained from the

successful intial guess used in the three-segment case. The initial and final

burn arcs are split in half to give the additional two burn arcs in the burn-

burn-coast-burn-burn assumed trajectory. For the initial guess, the direction

of the thrust is guessed to be the same for the intial two burn arcs and for the

final two burn arcs.

54

This initial guess converges using both CSD and central differencing to

the optimal parameter vector given by

XPopt =



t1

t2

t3

t4

t5

t6

α1,β1

α2,β2

α3,β3

α4, β4

α5, β5

T1

T2

T3

T4

T5


OPT

=



−7893.7

−3829.3

46.7

17608.5

25336.0

33705.3

0.8691, 0.2811

1.6066, 0.3585

0.0, 0.0

1.3442,−1.3631

0.8451,−1.3768

0.1

0.1

0.0

0.1

0.1



, (4.24)

and to the trajectory in Figure 4.6. The final mass of the spacecraft for the

five-segment trajectory is mf = 761.5kg.

55

−4 −3 −2 −1 0 1 2 3

x 10
4

−2 −1 0 1 2

x 10
4

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x 10
4

Y (km)

X (km)

Z
 (

km
)

O
1

Burn 1
Burn 2
Coast
Burn 3
Burn 4
O

2

Earth

Figure 4.6: Five-Segment Minimum-Fuel Trajectory

4.3 Analysis and Comparison of Numerical Derivatives

The fact that using gradients calculated with complex-step derivatives

results in the convergence to the same solution as gradients calculated using

other established numerical differentiation methods is useful as far as the im-

plication that these derivatives are a viable method of calculating gradients

for a certain class of problems. What the result does not say is how well they

compare to central differences or analytical derivatives. Here, the accuracy of

56

complex-step derivatives is compared to central differences for the impulsive

solution to the Orbit Transfer Problem in Section 4.3.1. The robustness, in

terms of iterations to converge, is examined for all three methods in 4.3.2.

Also, the computational cost, in terms of runtime for the gradient calculation

and for the overall optimization, is tested in Section 4.3.3.

4.3.1 Accuracy

As stated in Section 4.2.1, the gradients of the equality constraints,
∂c(XP)
∂XP

, are computed via central differences, complex-step differentiation and

analytical derivatives as a function of the State Transition Matrix. The central

differences used in this solution are user-input according to

∂f

∂xi
=
f(xi + h)− f(xi − h)

2h
(4.25)

where h = ε (1 + |xi|), and ε = 1.4 × 10−5. This particular ε has been deter-

mined by another student (described via personal communication with Ricardo

Restrepo, February-March 2011) using a method described in [19] to provide

the minimum error, balancing the round-off and truncation error, for this prob-

lem (specifically, the impulsive solution of this problem). Thus, it can be said

that the central differences used in this comparison are more accurate central

differences for this problem given a constant ε , than an arbitrary choice of the

perturbation length may result.

The complex-step derivatives are calculated using a perturbation length

57

of 1.0i× 10−14. This is chosen to allow multiple significant digits to display in

MATLAB’s long format (16 digits) and to be below the integration tolerances

set in ode45 (1.0× 10−12) .

The comparison is based on the analytical derivatives calculation us-

ing the Linear Perturbation Analysis method in Section 4.2.1.2. Since these

derivatives are accurate to the numerical integration error in determing the

State Transition Matrices, they can be used to determine the accuracy of both

the central differences and the complex-step derivatives.

This is done by finding the magnitude of the difference for each element

of the gradient matrix for central differences and complex-step derivatives

respectively from the analytical gradient

∆cXP,method
= ∆

∂c(XP)

∂XP

∣∣∣∣
method

=
∂c(XP)

∂XP

∣∣∣∣
method

− ∂c(XP)

∂XP

∣∣∣∣
STM

. (4.26)

A problem here, however, lies in the fact that this gradient is often poorly

scaled with elements of enormously varying magnitudes. For example, the

central difference matrix and the analytical derivative matrix may be identical

to 10 significant digits in two elements, yet the difference could be of the order

10−2 in one element and 10−12 in another, or perhaps even more extreme.

To atone for this, in addition to the above comparison, the difference

matrices found by from Equation 4.26 can be scaled; each element of the dif-

ference matrix is divided by the appropriate element in the analytical gradient

58

matrix

∆c̄XP,method
=

∆∂c(XP)
∂XP

∣∣∣
method

∂c(XP)
∂XP

∣∣∣
STM

=

∂c(XP)
∂XP

∣∣∣
method

− ∂c(XP)
∂XP

∣∣∣
STM

∂c(XP)
∂XP

∣∣∣
STM

. (4.27)

Thus, Equation 4.26 represents a sort of absolute error, while Equation 4.27

gives a sort of relative error. For both comparisons, it is easier to compare

scalars than matrices, so the 2-norm of the difference and scaled difference

matrix is computed to provide a “magnitude” for each matrix.

As a point of reference, ∂c(XP)
∂XP

∣∣∣
STM

at the first iteration is given in

Table 4.3 (to five significant digits) along with what each element represents.

Table 4.3: ∂c(XP)
∂XP

∣∣∣
STM

at Iteration One.

∂c(XP)
∂XP

∣∣∣ hxf − h∗xf
hyf − h∗yf hzf − h∗yf exf − e∗xf eyf − e∗yf

t1 0 0 −2.2979 −3.9293× 10−5 4.2887× 10−6

∆v1x 0 0 −5.7588× 104 0.2352 −1.0363

∆v1y 0 0 7.0872× 104 0.0208 1.0307

∆v1z 1.8874× 104 −1.1314× 104 0 0 0

t2 0 0 1.4377 −7.1449× 10−6 −2.3837× 10−5

∆v2x 0 0 1.2281× 104 −0.1128 −0.4489

∆v2y 0 0 −5.4919× 104 0.9808 −0.1238

∆v2z −1.2281× 104 5.4919× 104 0 0 0

Values for ‖∆cXP
‖ and ‖∆c̄XP

‖ for each method are computed at

the first and fifth iteration. These values are found in Table 4.4 along with

∆cXP,max
and ∆c̄XP.max

.

59

Table 4.4: Comparison between Central Differences and Complex-Step Deriva-
tives

Value ‖∆cXP
‖Iter1 ‖∆cXP

‖Iter5 ∆cXP,max

∣∣
Iter1

∆cXP,max

∣∣
Iter5

∆cXP,CD
2.1322× 10−5 1.3074× 10−3 1.8086× 10−5 9.8021× 10−4

∆cXP,CS
1.2966× 10−5 6.4119× 10−5 1.5645× 10−6 3.8071× 10−5

∆c̄XP,CD
2.6897× 10−5 1.4910× 10−6 2.6725× 10−5 9.0096× 10−7

∆c̄XP,CS
1.3287× 10−8 2.4910× 10−8 1.2872× 10−8 1.3800× 10−8

It is easily seen that in every possible interest at this point that the

complex-step derivatives are significantly more accurate than the central dif-

ferences.

4.3.2 Robustness

Now that it has been shown that complex-step derivatives outperform

even “optimal” central differences in terms of accuracy related to analytical

derivatives, it needs to be shown the effect that this has on the ability of

the optimizer to converge to the accepted solution. This section describes the

ease of convergence of the problem using complex-step derivatives compared to

central differences and STM-based derivatives for the impulsive problem and

compared to central differences only for both finite-burn problems. In theory,

for greater accuracy of the gradients used in the optimization process the

optimizer should converge sooner and for a wider range of initial guesses (i.e.

the optimization is more robust). In this process, robustness is characterized

by two parameters: convergence to accepted solution and number of iterations

to converge.

60

In the optimization of the impulsive-maneuver problem, all three dif-

ferentiation methods converge to the same solution to known significant digits.

Also, both complex-step differentiation and central differences converge to the

same solution for both the five-segment and three-segment finite burn solu-

tions. That leaves simply the number of iterations to compare. This is given

by Table 4.5 for all solutions.

Table 4.5: Number of Iterations to Converge

Solution Impulsive 3-Segment 5-Segment
Analytical 54 N/A N/A
Central Diff. 57 101 167
Complex-Step 54 87 137

It is easy to note the improvement in number of iterations to conver-

gence, and thus robustness, for complex-step derivatives over central differ-

ences in every example. Table 4.5 also seems to indicate that an increase in

the complexity of the problem, the greater effect the complex-step derivatives

have in finding the optimal solution. In the impulsvie case, a three iteration

improvement is present compared to 14 iterations for the three-segment case

and 30 iterations for the five-segment case.

4.3.3 Computational Cost

In modern computer science there are two ways to define computational

cost: function evaluations and runtime. Here, runtime is the primary interest

because it seems to be a more direct way to measure this cost. There are two

61

different runtimes that will be of concern. One is the total optimization time

which is defined as the time required for the optimizer to converge once it has

been entered with an initial guess. The second is differentiation time; simply

the length of time it takes to compute the gradient of interest. Differentia-

tion time indicates the efficiency of calculating a gradient using a particular

method. The total optimization time not only takes into account differen-

tiation time, but also how the optimizer takes advantage of more accurate

gradients to acheive convergence faster.

Total optimization time is calculated by noting the difference in com-

puter time between the algorithm’s entrance into the optimization process and

it’s exit. This is done using MATLAB’s tic and toc functions. These func-

tions are also used in the calculation of the differentiation time. Each time

the function to compute the value of the constraints and the gradients of the

constraints is called the differentiation time is defined by the time it takes from

the initialization of the gradient matrix until the matrix is filled. This value is

output to file where it is stored for later calculation of the mean, maximum,

and minimum differentiation times.

Table 4.6 shows the mean, maximum, and minimum differentiation time

for each differentiation method as well as the total optimization time for the

impulsive solution.

62

Table 4.6: Impulsive-Solution Time Comparison (all times in seconds)

Method Analytical Central Diff. Complex-Step
tOPT 27.5262 132.6227 62.6643

tderiv|mean 3.4786× 10−4 1.2237 0.4779
tderiv|max 0.0085 2.5255 0.5748
tderiv|min 2.000× 10−4 0.8025 0.3989

The times in this table show that not only does complex-step differen-

tiation hold an accuracy improvement over central differences but also has a

significantly shorter runtime to calculate each derivative. This is primarily a

result of the single perturbation step required at to calculate each derivative

whereas central differencing requires two perturbation steps for each deriva-

tive. Now, this is the case in a MATLAB environment, in other environments

that do not intrinsically handle complex numbers, the additional differential

equations and conversions necessary may take a large chunk out of this ad-

vantage, if not turn it into a slight disadvantage. In addition, the total opti-

mization time is significantly decreased. Besides the factor of the decreased

individual differentiation times, the fewer necessary iterations needed provide

an additional advantage.

Similar results hold for the three and five-segment solutions as well. For

the three-segment, finite-burn case, the results for the various differentiation

times along with the total optimization times for each differentiation method

are found in Table 4.7 .

63

Table 4.7: Three-Segment Finite-Burn Time Comparison (all times in seconds)

Method Central Diff. Complex-Step
tOPT 230.266 207.767

tderiv|mean 1.4717 0.8884
tderiv|max 1.5276 2.5819
tderiv|min 1.4095 0.8112

For the five-segment, finite-burn case, the results for total optimization

time as well as mean, maximum, and minimum differentiation times for both

central differences and complex-step derivatives are found in Table 4.8.

Table 4.8: Five-Segment Finite-Burn Time Comparison (all times in seconds)

Method Central Diff. Complex-Step
tOPT 1034.089 460.388

tderiv|mean 2.4942 1.4646
tderiv|max 4.1284 2.4910
tderiv|min 2.3904 1.3996

The results presented here strongly indicate a significant advantage in

the runtime for complex-step differentiation over central differences as well as

in the time to convergence for both methods.

64

Chapter 5

Summary and Conclusion

Complex-step differentiation is analyzed as an alternative to traditional

numerical differentiation methods. Traditional methods are examined, focus-

ing on their advantages and disadvantages. A mathematical basis for complex-

step differentiation is presented providing insight to the limitations and advan-

tages of the method. Then, complex-step differentiation is implemented in the

lunar ascent problem testing its applicability in linear, quadratic, and cubic

interpolation schemes as well as in the use of fixed-step and variable-step in-

tegration. Finally, the optimal orbit transfer problem is examined comparing

complex-step derivatives to central differences in terms of accuracy, optimiza-

tion convergence, and computational cost.

5.1 Conclusion

This study shows that complex-step differentiation is an applicable nu-

merical differentiation method for a wide range of tools used in the solution of

optimization problems. Complex-step derivatives are demonstrably more accu-

rate than traditional differencing methods. The accuracy is shown to improve

65

the robustness of given algorithms as well as the computational cost as a result

of fewer iterations necessary for convergence. In addition, these derivatives

consistently evaluate faster than central differences in a MATLAB environ-

ment. The restrictions on this method, that it is limited to analytic functions

and requires complex arithmetic, appear to be significantly outweighed by their

benefits over traditional methods. In short, complex-step derivatives truly are

a fast, accurate and easy to implement numerical differentiation method.

5.2 Recommendations for Future Work

There are two primary directions for future extensions of this work.

One, is the extension of testing beyond the MATLAB environment. Implemen-

tation of complex-step differentiation into compiled languages such as FOR-

TRAN and C++ is a major step in the use of complex-step derivatives in op-

timization problems due to the additional speed gained in these environments

compared to MATLAB. This implementation is more difficult since these lan-

guages do not have the inherent flexibility of MATLAB in handling complex

arithmetic, obviously a necessary component for these derivatives. In partic-

ular, it is interesting to consider the effect in runtime comparisons between

complex-step derivatives and central differences in an environment where the

real and imaginary components of the differential equations would need to be

separated - essentially doubling the number of integrations performed.

Secondly, an implementation of the work found in [6], an extension of

66

complex-step derivatives into higher dimensions for use in higher-order deriva-

tives, into a similar study as to this would provide interesting results. In

particular, analyzing 2nd order derivatives evaluated through this extension

and their use in 2nd order optimization methods and in computing Hessians

used in nonlinear programming solvers could provide even more benefits than

simple complex-step differentiation.

67

Bibliography

[1] Lyness, J. N., and Moler, C. B. 1967. “Numerical Differentiation of An-

alytic Functions.” SIAM Journal on Numerical Analysis. Vol.4, June

1967, pp. 202-210.

[2] Squire, W. and Trapp, G. 1998. “Using Complex Variables to Estimate

Derivatives of Real Functions.” SIAM Review. Vol. 40, No.1, 1998, pp.

110-112.

[3] Martins, J. R. R. A., Sturdza, P., and Alonso, J. J. 2003. “The Complex-

Step Derivative Approximation.” ACM Trans. Math. Softw. Vol. 29,

No. 3, 2003, pp. 245–262.

[4] Lai, K. L. 2006. Generalizations of the Complex-Step Derivative Approx-

imation. PhD thesis. University of Buffalo, Buffalo, NY, Sept. 2006.

[5] Shampine, L. F. 2007. “Accurate Numerical Derivatives in MATLAB.”

ACM Trans. Math. Softw., 33, 4, Article 26 (August 2007), 17 pages.

[6] Lantoine, G., Russell, R. P., Dargent, T. 2010. “Using Multicomplex

Variables for Automatic Computation of High-Order Derivatives.” Paper

AAS 10-218, Feb. 2010. AAS/AIAA Space Flight Mechanics Meeting,

San Diego, CA.

68

[7] Arora, N., Russell, R. P., and Vuduc, R. W. 2009. “Fast Sensitivity

Computations for Trajectory Optimization.” AAS/AIAA Astrodynamics

Specialist Conference and Exhibit, 2009.

[8] Weisstein, Eric W. "Numerical Differentiation." FromMathWorld–AWol-

framWeb Resource. http://mathworld.wolfram.com/NumericalDifferentiation.html

Accessed 9 April, 2011.

[9] Numerical Recipes in C. The Art of Scientific Computing, 2nd Edition,

1992.

[10] Griewank, A. 1989. “On Automatic Differentiation.” In Mathematical

Programming: Recent Developments and Applications. Kluwer Academic

Publishers. 1989. pp. 83-108.

[11] Dixon, L. C. W. 1991. “On the Impact of Automatic Differentiation on the

Relative Performance of Parallel Truncated Newton and Variable Metric

Algorithms.” SIAM Journal of Optimization. Vol. 1, No. 4, November

1991, pp. 475-486.

[12] Martins, J. R., Sturdza, P., and Alonso, J. J. 2001. “The Connection Be-

tween the Complex-Step Derivative Approximation and Algorithmic Dif-

ferentiation." AIAA Paper 2001-0921, AIAA Aerospace Sciences Meeting

and Exhibit, Reno, NV. Jan. 2001.

[13] Hull, D. G. 2010. “Optimal Guidance for 3D Lunar Ascent.” 20th

69

AAS/AIAA Space Flight Mechanics Meeting, San Diego, CA. 14-17 Febru-

ary 2010.

[14] Cheney, W. and Kincaid, D. 2004. Numerical Mathematics and Comput-

ing, Fifth Edition. Brooks/Cole-Thomson Learning, Belmont, CA. 2004.

[15] Bate, R.R., Mueller, D. D., and White, J.E. 1971. Fundamentals of As-

trodynamics. Dover Publications Inc., New York, NY. 1971.

[16] Curtis, H.D. 2005. Orbital Mechanics for Engineering Students. Elsevier

Butterworth-Heinemann, Burlington, MA. 2005.

[17] Battin, R.H. 1999. An Introduction to the Mathematics and Methods of

Astrodynamics, Revised Edition. American Institute of Aeronautics and

Astronautics. 1999.

[18] Ocampo, C. and Munoz, J. P. “Variational Equations for a Generalized

Spacecraft Trajectory Model.” Journal of Guidance, Control, and Dy-

namics. Vol. 33, No. 5, Sept-Oct. 2010.

[19] Ocampo, C. and Hernandez, S. 2011. “Automation of Optimal Control

Finite Burn Trajectories.” 21st AAS/AIAA Space Flight Mechanics Meet-

ing, New Orleans, LA. 13-17 February 2011.

70

Vita

Alan Robert Campbell was born in Erie, Pennsylvania on 4 September

1986, the son of Roy A. Campbell and Catherine A. Campbell. He received

the Bachelor of Science degree with Honors in Aerospace Engineering from the

Schreyer Honors College at the Pennsylvania State University in May, 2009.

Following the completion of his undergraduate study, he was accepted into

the Graduate School at the University of Texas at Austin and began study of

Orbital Mechanics and Controls in the Department of Aerospace Engineering

and Engineering Mechanics in August, 2009.

Permanent address: 19778 Morris Rd.

Meadville, Pennsylvania 16335

This thesis was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

71

