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A fundamental operation in computer graphics is to determine for a given

point and direction in a scene, which geometric surface is nearest this point from

this direction and thus visible. Conceptually, the point and direction define a “ray”.

Z-buffer hardware can compute surface visibility for a set of rays with a common

origin (i.e. eye point) and a regular pattern of directions in real-time. However, this

hardware is much less efficient at performing other visibility computations such as

those required to accurately render shadows. A more flexible solution to the visible

surface problem is needed.
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This work introduces the irregular Z-buffer algorithm, which efficiently solves

the visible surface problem for rays with a common origin and arbitrary directions.

In addition, we identify several changes to classical graphics architectures needed for

hardware acceleration of this algorithm. Though these modifications are incremental

in nature (i.e. no new functional units are introduced), we show that they enable

significant new capability. In tandem with the irregular Z-buffer algorithm, a GPU

with these changes has applications in: shadow rendering, indirect illumination,

frameless rendering, adaptive anti-aliasing, adaptive textures, and jittered sampling.

We explore the performance of hard and soft shadow rendering in particular, by way

of a detailed hardware simulator.
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Chapter 1

Introduction

Shadow rendering is one example of a problem in real-time graphics for which robust

solutions remain elusive in scenes with high geometric complexity and dynamism.

Current methods such as shadow mapping and shadow volumes, yield unsatisfactory

image quality or performance. One reason for this is the inflexibility inherent in the

solution to the visible surface problem employed by commodity graphics hardware.

Conceptually, the visible surface problem can be expressed by the question:

for a point and direction or “ray” in a scene, which geometric surface is nearest this

point from this direction and thus visible? The visible surface problem is commonly

solved with the Z-buffer algorithm [27] or ray tracing [138]. The Z-buffer algorithm is

limited to rays emanating from a shared origin along a regular pattern of directions

(Figure 1.1a), but is backed by specialized hardware that is widely available and

achieves high performance. Ray tracing is applicable to the general case of rays with

arbitrary origins and directions (Figure 1.1c), but is considered to be non-real-time

for secondary ray effects like soft shadows, due to the lack of suitable acceleration

hardware. We posit that important problems in real-time graphics such as shadow

rendering, can be addressed with a visibility solution that is more flexible than the

classical Z-buffer but less general than ray tracing, enabling hardware acceleration

to be achieved through incremental changes to conventional GPU designs.
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image plane

scene

ray

(a)  Classical Z-buffer. (b)  New:  Irregular Z-buffer. (c)  Ray tracing.

Figure 1.1: Three solutions to the visible surface problem in order of flexibility. Red
dots denote ray origins. Yellow dots are points in the scene seen from the respective
positions in the image plane. The classical Z-buffer (a) is suitable for rays with a
common origin and a regular pattern of directions. The irregular Z-buffer (b) is
suitable for the case shown in (a) as well as for rays with a common origin and
arbitrary directions. Ray tracing (c) is the most general solution. It is suitable for
cases (a) and (b) as well as for rays with arbitrary origins and directions.

1.1 Overview

We introduce the irregular Z-buffer algorithm. It solves the visible surface problem

for rays with a common origin and arbitrary directions (Figure 1.1b). The efficacy

of this approach can be seen in shadow rendering. Shadows provide key visual

cues and improve the realism of rendered scenes. Current research largely focuses

on soft shadows, but even the conceptually simpler case of hard shadows has not

been solved. Existing solutions perform poorly intensive or are susceptible to visual

artifacts. For example, shadow mapping [139] can produce hard shadows with high

performance, but results in aliasing and self-shadowing artifacts (Figure 1.2c). The

scene is rendered from the eye and light, and the two views are compared to ascertain

if points in the scene visible from the eye are also visible from the light (i.e. not in

shadow), or are occluded by intervening geometry. This comparison is error prone

due to the lack of spatial correspondence between the eye and light sampling patterns

(Figure 1.4a). Irregular shadow mapping is based on the irregular Z-buffer algorithm

and avoids these artifacts by deriving the light-view sample positions from the points

in the scene visible from the eye (Figure 1.4b).

2



(a)
Classical
Z-buffer.

(b)
Irregular
Z-buffer.

(c)
Classical

shadow mapping.

(d)
Irregular

shadow mapping.

Figure 1.2: The classical Z-buffer (a) samples a scene at regularly-spaced points
in the image plane. The irregular Z-buffer (b) samples a scene at arbitrary points
in the image plane. This capability has applications throughout real-time graphics
including shadow rendering, where it eliminates (d) the aliasing and self-shadowing
artifacts common to classical shadow mapping (c).

Figure 1.3: An example of hard shadows rendered using irregular shadow mapping.
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image plane

point light

occluder

umbra

(b)  Irregular shadow mapping.(a)  Classical shadow mapping.

image plane

error

eye

Figure 1.4: The artifacts associated with classical shadow mapping (a) result from
a mismatch in the eye and light-view sampling patterns. Irregular shadow mapping
(b) avoids these artifacts by rendering the scene to positions in the light-view image
plane computed from the points in the scene visible from the eye.

Note that the resulting light-view sample pattern is irregular (Figure 1.2b).

This irregularity inhibits efficient implementation of the irregular Z-buffer algorithm

on conventional GPUs. To understand why, consider the classical Z-buffer algorithm.

Scene geometry is first projected into the image plane. It is then determined which

samples from a regularly-spaced set lie inside each primitive (Figure 1.2a). Since the

locations of these samples (i.e. pixels) are implicit, this determination can be made

by testing the edges of the projected primitive against the sample grid. However, if

the sample locations are irregularly-spaced and cannot be computed from a formula

(Figure 1.2b), then the classical Z-buffer approach is invalid. Instead, the irregular

Z-buffer algorithm stores the sample locations in a non-uniform spatial acceleration

structure. Samples are organized by their relative spatial positions, enabling efficient

range queries even on sets of arbitrarily-placed points.

4



GPUs circa 2005 provide the programmability and branching [23] required

for hardware-accelerated traversal of irregular data structures, but are missing the

architectural features necessary for their efficient construction. These features are

crucial for rendering dynamic scenes in which the data structure is updated per

frame, but are just beginning to appear in next-generation GPU designs. As part

of this dissertation work, we identify the changes needed for hardware-accelerated

construction of 2D and 3D non-uniform data structures. These modifications are

incremental in nature and do not entail the addition of new functional units. Paired

with the irregular Z-buffer algorithm, a modified GPU has potential applications in:

shadow rendering, indirect illumination, frameless rendering, adaptive anti-aliasing,

adaptive textures, and jittered sampling. Here, we focus on the performance of hard

and soft shadow rendering using a detailed hardware simulator which implements

these changes.

1.2 Thesis Statement

This dissertation work is based on two assertions. First: new, efficient, and robust

solutions to important but unresolved problems in real-time graphics are attainable

given a method for computing surface visibility that is more flexible than the classical

Z-buffer, but which need not be as general as ray tracing. Second: hardware support

for this new visible surface algorithm is achievable through incremental changes to

classical GPU designs, achieving high performance with reasonable cost.

As an example, we will show that it is possible to efficiently render hard and

soft shadows that are geometrically-equivalent to those produced by ray tracing (i.e.

high quality), using a modestly more flexible solution to the visible surface problem

than the classical Z-buffer algorithm. Further, such shadows can be rendered with

high performance in dynamic and geometrically-complex scenes, with only minimal

changes to conventional GPU designs.

5



1.3 Approach

In principle, there are several viable approaches to developing a real-time visibility

solution with greater flexibility than the classical Z-buffer algorithm. These include:

developing acceleration hardware specific to ray tracing, optimizing ray tracing for

general-purpose hardware, or adapting the Z-buffer algorithm and its underlying

architecture to support ray tracing like functionality. Work is already under way

on a hardware architecture for ray tracing [143], and substantial recent effort has

centered on optimizing ray tracing for GPUs [107] and single and multi-core CPUs

[112, 125, 134, 133, 61]. This dissertation work focuses on the relatively unexplored

middle ground between Z-buffer rendering and ray tracing. While our approach does

not achieve the full flexibility of ray tracing, it does enable substantial improvements

in functionality while keeping the system organization and performance advantages

of commodity graphics hardware.

1.4 Contributions

The key contributions of this work form a system for real-time graphics as seen in

Figure 1.5 and are discussed more in the next subsections. These contributions are:

1. an advanced Z-buffer algorithm (the irregular Z-buffer) for determining surface

visibility at arbitrary points in the image plane,

2. a set of architectural enhancements to classical GPUs for hardware-accelerated

creation of 2D and 3D irregular spatial data structures for storing these points,

3. new methods based on the irregular Z-buffer algorithm and its architecture,

for rendering high-quality hard and soft shadows with high performance in

dynamic and geometrically-complex scenes, and

4. evaluation of the irregular Z-buffer algorithm, architecture, and applications

through the use of an execution-driven, hardware performance simulator.

6



applications

visibility solution

architecture

hard and soft shadow rendering, etc.

irregular Z-buffer algorithm

GPU design with support for
irregular spatial data structures

Figure 1.5: The major original contributions of this dissertation work relate to
elements of a system for real-time graphics. The system is composed of a hardware
architecture, a visibility algorithm implemented on top of this architecture, and
applications of the combined algorithm and architecture.

1.5 Visibility Algorithm

To review, the irregular Z-buffer algorithm and its supporting architecture solve the

visible surface problem for rays with a shared origin and arbitrary directions, as in

Figure 1.1b. The algorithm proceeds in three steps: data structure construction,

classical rasterization, and irregular rasterization. Ray directions are represented

as points within a 2D image plane. During data structure construction, coordinates

associated with these points are inserted into a 2D or 3D acceleration structure. In

principle, any data structure which supports efficient range queries can be used, such

as a tree or a grid. We employ a grid-based structure, enabling the use of classical

rasterization to conservatively estimate the set of points which will be tested against

a given primitive during irregular rasterization. During classical rasterization, scene

primitives are individually projected into the image plane. For each pixel overlapped

by a primitive, irregular rasterization performs a range query on the acceleration

structure to retrieve points located within the pixel extents, and tests these points

for occlusion against the primitive. For each covered point, a depth comparison is

performed and the respective value is conditionally updated in Z-buffer memory.
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1.6 Architectural Support

The irregular Z-buffer algorithm cannot be implemented efficiently on classical hard-

ware, due to the absence of support for construction and traversal of irregular data

structures. CPUs lack the required memory bandwidth and parallelism common to

GPUs. GPUs circa 2005 (when this work began) lack a small but important set of

architectural features found in CPUs. For example, GPUs of this era are missing the

ability to write to addresses in memory computed at run time (i.e. a scatter opera-

tion). This capability is key to the construction of irregular data structures, when

the storage location of a sample point depends on the spatial relationship between

the eye, light, and scene geometry, and cannot be known a priori. We show how a

GPU design circa 2005 can be modified to support this and other features required

for high performance construction and traversal of certain types of irregular data

structures.

More recently, the feature set of commercial GPUs has reached parity with

and in some cases now exceeds that of our design. The Larrabee architecture from

Intel due in 2009 or 2010 is one example. We show how such a design can be used for

high performance construction and traversal of a large class of memory bandwidth

efficient 2D and 3D irregular data structures.

1.7 Applications

The irregular Z-buffer algorithm and architecture are motivated by applications in

real-time graphics for which the optimal arrangement of sample points in the image

plane is not a regular grid. Hard shadow rendering (Section 1.1) and soft shadow

rendering (discussed next) are two of the most prominent examples.
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area light

occluder silhouette

(b)  Computation of penumbrae.(a)  Computation of umbrae.

umbra

penumbra

image plane

eye

Figure 1.6: Soft irregular shadow mapping is based on our hard shadow algorithm.
Umbrae are computed as in hard irregular shadow mapping. Geometric primitives
and points in the scene visible from the eye are projected into the light-view image
plane and tested for overlap (a). Penumbrae are computed separately by projecting
an area light and silhouette edges into the image plane and measuring the area of
overlap (b). The total accumulated occlusion determines the degree of shadow at
the eye-view pixel corresponding to each sample point.

1.7.1 Soft Shadows

Soft shadows more closely reproduce the qualitative properties of real-world light

sources in comparison to hard shadows, further improving the realism of computer-

generated images. While hard shadow umbrae result when a light source is fully

occluded by geometry as seen from a point in the scene, soft shadow penumbrae

occur when an area light is partially occluded as seen from the point. In this

context, hard shadows are a special case of soft shadows in which the light has

zero width. This observation leads to an extension of irregular shadow mapping for

soft shadows. In addition to point-sampling the scene from the light (Figure 1.6a),

soft irregular shadow mapping area-samples the scene near the silhouette edges of

objects (Figure 1.6b). As in the hard shadow case, soft shadows are computed at
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locations in the light-view image plane exactly as required by the position of the

eye, and so only where visible from the eye. As we’ll see, this property leads to an

implementation capable of rendering soft shadows at frame rates equivalent to the

fastest existing methods, with substantially higher image quality.

1.7.2 Additional Applications

The irregular Z-buffer algorithm and architecture have potential applications beyond

shadow rendering. Other examples in real-time time graphics in which the desired

sample pattern is similarly non-uniform include: frameless rendering, adaptive anti-

aliasing, adaptive textures, and jittered sampling. More broadly, the architectural

changes underlying the irregular Z-buffer algorithm have potential relevance outside

graphics. For example, irregular data structures and scatter operations on memory

support general-purpose computing on GPUs [24]. However, in this work we focus

on applications in real-time graphics, particularly hard and soft shadow rendering.

Figure 1.7: An example of soft shadows rendered using irregular shadow mapping.
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1.8 Dissertation Organization

The applicability of our overall approach is best illustrated by example. Therefore,

in Chapter 2 we present a method for hard shadow rendering which utilizes the flex-

ibility of the irregular Z-buffer algorithm to set a new balance between accuracy and

efficiency, and contrast this approach with previous work. Similarly, in Chapter 3

we explore the application of the irregular Z-buffer algorithm to the problem of soft

shadows, and place our strategy in the space of possible solutions. Both algorithms

store points in the scene visible from the eye in a light-space spatial acceleration

structure which is later queried during rasterization. We discuss the specific data

structures used and associated design considerations in Chapter 4. Construction of

such data data structures is inefficient on GPUs circa 2005. We examine the required

architectural enhancements in Chapter 5, and analyze the performance of hard and

soft shadow rendering in the presence of these enhancements in Chapter 6. Finally,

we review key points and summarize the larger role of hybrid rendering algorithms

such as ours in real-time graphics in Chapter 7.
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Chapter 2

Hard Shadows

The computation of hard shadows involves determining the irradiance from a diffuse

point light which reaches each location in the scene visible from the eye (Figure 2.1).

More formally, the irradiance E from a diffuse point light incident on a receiver with

normal ~n, is given by Equation 2.1. The term Φ is the intensity of the light, and

the vector L extends from the receiver point to the light. For opaque surfaces the

visibility term V is a binary value. It is 1 when the light is visible from the receiver

point and 0 otherwise. Note that occlusion from the light (denoted Ṽ ) is the dual

of V and can be represented as simply 1− V .

E = (n̂ q L̂)
Φ
|L|2 V (2.1)

Note that the dot product and the distance attenuation term Φ/|L|2 are

simple to compute since ~n is readily available, L depends only on the position of

the receiver and the light, and Φ is a constant. The visibility term is comparatively

expensive as it requires a search over the scene geometry for occluders and must be

recomputed for each receiver point.
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image plane

umbra

point light
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occluder

eye

n

L

V = 0

(a)
A point light is not visible

from a receiver point.

(b)
The shadow umbra cast by the

occluder is shown.

Figure 2.1: The geometry of hard shadows. A point light source is not visible from a
point in the scene seen from the eye (“receiver”) due to occluding geometry (a). As
a result, the point lies inside the umbra cast by the occluder (b). The determination
of shadow at the receiver point can be found in 2D by projecting the occluder and
the receiver into the light-view image plane, and testing the projected point against
the footprint of the occluder.

2.1 Methodology

Conceptually, there are many possible strategies for computing V . However, not all

of these methods are viable in an object-order (e.g. Z-buffer) system, where triangles

are sequentially processed and discarded. In such a system the visibility of a given

triangle is determined for all receiver points before moving onto the next triangle1.

Doing so requires that the positions of the receiver points be known a priori.

1In contrast, image-order algorithms such as ray tracing typically determine the visibility of a
triangle from a given point (for all triangles) before moving onto the next point.
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(b)  Classical shadow mapping.

image plane

(c)  Irregular shadow mapping.(a)  Shadow geometry.

image plane

point light

eye

occluder

receiver

p
q

shadow
polygon -1
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p z q z

Figure 2.2: Three methods for rendering hard shadows are compared. Occlusion
from the light can be determined in eye space using shadow geometry (a). This
method yields accurate umbrae, but the number and extents of shadow polygons
results in high depth complexity. Alternatively, occlusion can be rendered in light
space to a shadow map which is later resampled in eye space (b). This method
can achieve high performance, but is prone to artifacts due to a mismatch in the
eye and light-view sample patterns. Finally, occlusion can be determined entirely
in light space by storing receiver points in a light-view acceleration structure which
is queried during the visibility computation (c). In principle, this method combines
the image quality of (a) with the performance of (b).

Under this constraint, there are effectively three methods for finding V that

vary by the coordinate system (eye, light, or both) in which visibility is determined.

Occlusion from the light can be measured in eye space at the receiver points using

“shadow geometry” as seen in Figure 2.2a. This method yields high-quality umbrae.

However, the shadow polygons are often large when viewed from the eye, extending

from an occluder to the far clipping plane of the light. This property leads to

high average depth complexity from the eye and comparatively poor performance

(Subsection 2.5.1). Alternatively, occlusion from the light can be rendered in light

space to a “shadow map” which is later resampled in eye space at the receiver
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point positions, as seen in Figure 2.2b. This method often performs well but yields

lower quality umbrae due to a mismatch in the eye and light-view sample patterns

(Subsection 2.5.2). Finally, occlusion from the light can be determined entirely in

light space by transforming receiver points into the light view and storing them in

a spatial acceleration structure which is queried during the visibility computation,

as seen in Figure 2.2c. This method is a variation of shadow mapping in which

the eye and light-view sample patterns are aligned, and in principle combines the

umbral quality of shadow geometry with the performance of shadow mapping. Such

algorithms have not been well explored previously since the architectural support

necessary for building irregular data structures per frame in real-time (Chapter 5)

has only recently become available.

2.2 Contribution

The comparative value of a new shadow rendering algorithm can be quantified by

relating the image quality and performance to existing methods. Irregular shadow

mapping achieves a new balance between these metrics. As we’ll see in Chapter 6,

the algorithm yields shadow umbrae of the highest possible quality with performance

superior to existing methods of comparable quality. Our novel strategy of precisely

aligning the eye and light sample patterns avoids the two most significant sources of

artifacts common to existing shadow mapping methods. Irregular shadow mapping

fully eliminates perspective aliasing (sawtooth patterns at umbral edges), as well

as projection aliasing (incorrect self-shadowing). Further, this alignment results in

computational efficiency. Shadows are computed only where visible from the eye

rather than throughout the scene, yielding high performance.
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Figure 2.3: The steps of our hard shadow algorithm are illustrated geometrically.
The scene is rendered from the eye, and the visible (i.e. “receiver”) points are inserted
into a light-space spatial acceleration structure (a). Umbrae are computed in two
steps. The first rasterizes scene geometry from the light (b). For each point p located
in a light-view pixel overlapped by a primitive, a more accurate visibility test is
performed (c). The result of this test determines if the eye-view pixel corresponding
to the receiver point is in shadow.

2.3 Algorithm

Hard irregular shadow mapping is illustrated geometrically in Figure 2.3. Receiver

points are identified by rasterizing scene geometry from the eye (a). These points

are transformed into light space and inserted into a spatial acceleration structure

(Section 4.2). Umbral occlusion is computed by rasterizing scene geometry from

the light to coordinates p in the image plane given by the receiver points. This

process occurs in two steps. A coarse visibility test is used to estimate the set of

points occluded by a given primitive (b). For each point p within an occluded pixel,

a final visibility test is performed (c). The result determines if the eye-view pixel

corresponding to the receiver point is in an umbra cast by the primitive.
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p

Figure 2.4: The spatial data structures introduced in Section 4.2 organize receiver
points into light-view screen-space pixels. As a result, the set of points affected by a
given primitive can be estimated using classical rasterization. However, rasterizers
typically evaluate the visibility of a primitive at the pixel center. To ensure every
pixel overlapped by a primitive is considered, the edges of the primitive are moved
outward by half the width of a pixel (Equation 2.2) prior to rasterization. Umbral
occlusion is computed using the original unexpanded primitive, for receiver points
located in pixels (shown in gray) covered by the expanded primitive.

2.3.1 Primitive Expansion

Identifying the set of receiver points occluded by a given surface is the fundamental

operation in any hard shadow algorithm, but testing each point against each surface

is inefficient: O(N ∗P ) for N primitives and P points. Note that identifying the set

of points affected by a given primitive is an instance of the visible surface problem,

and can in principle be addressed with any surface visibility solution. In practice,

the hardware support for irregular shadow mapping derives from commodity GPUs

(Chapter 5), and these architectures favor the classical Z-buffer algorithm. For this

reason, we estimate the set of receiver points occluded by a given primitive using

classical rasterization as described below. Umbral occlusion is then computed only

at the receiver points in pixels overlapped by a primitive. Doing so raises the overall

efficiency of our hard shadow algorithm to max(O(Npixel∗Ppixel),O(Npoint∗Ppoint)),

where Npixel and Npoint are the average number of primitives occluding a pixel or

point respectively, for Ppixel pixels and Ppoint points.
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∆ =
n̂x + n̂y

2
∗ Wpixel (2.2)

As we’ll see in Chapter 4, the spatial acceleration structures used in irregular

shadow mapping are grid based. These structures sort receiver points into pixels

in the light-view image plane, enabling range queries to be performed via classical

rasterization. However, rasterizers often evaluate the visibility of a primitive at

the pixel center. A primitive which does not cover this point is not “visible” even

when the primitive and pixel partially overlap. In such cases, receiver points in

the pixel are not tested for occlusion against the primitive. For this reason, the

edges of primitives are moved outward prior to rasterization, by half the width of a

pixel weighted by the edge slope (Equation 2.2 where n̂ is the edge normal). Umbral

occlusion is computed using the unexpanded primitive, only at receiver points located

in pixels covered by the expanded primitive as seen in Figure 2.4.

2.3.2 Umbral Occlusion

For a given primitive and receiver point, the computation of umbral occlusion is

straightforward. This calculation is illustrated in Equation 2.3, and is geometrically

equivalent to tracing a shadow ray with the receiver point as its origin. Unlike ray

tracing, intersection testing is performed in 2D. The primitive and receiver point are

projected into the light-view image plane and examined for overlap via the same 2D

point-in-polygon operation used during classical rasterization. The distance from

the light to the unprojected primitive is interpolated at the point of intersection (q)

[101]. If the result is less than the depth of the receiver point (pz), then the receiver

point is occluded by the primitive.

V = 1−
N⋃

i=1

Ṽ ′(objecti,p) 3 Ṽ ′(objecti,p) =


0, if qz ≥ pz for q on objecti

1, if qz < pz for q on objecti

(2.3)
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2.4 Optimizations

Irregular shadow mapping is compatible with several existing optimizations from

ray tracing and conventional shadow mapping. We summarize three here. Two of

these optimizations reduce the work in scenes with opaque geometry, by terminating

the computation of umbral occlusion at a given receiver point once it is known to

be in shadow. The remaining optimization relates to image quality and addresses a

potential source of aliasing not directly resolved by our algorithm: aliasing due to

limited numerical precision.

2.4.1 Early Termination

In Equation 2.3, occlusion from multiple objects is combined via the union operator,

and Ṽ ′ is a binary function. In other words, the umbral occlusion at a receiver point

given opaque geometry is independent of the number of occluding objects and is

not specific to a particular occluder. Once the point is found to lie in shadow, no

further computation need be performed. This observation leads to early termination

of shadow rays in ray tracers, and is equally applicable here. In our algorithm,

this optimization is implemented by removing the receiver point from the spatial

acceleration structure after it is determined to be in shadow, or by marking the

point with a value denoting its state.

2.4.2 Reducing the Number of Receiver Points

Similarly, Arvo has observed that umbral occlusion need not be computed at receiver

points on opaque surfaces facing away from the light [11]. Such a point must lie inside

the umbra cast by the surface, since the surface overlaps the point in the light-view

image plane and is nearer the light (Subsection 2.3.2). In irregular shadow mapping,

the surface normal, light position, and receiver points are known in advance of data

structure construction. As a result, points sitting on surfaces facing away from the

light can be discarded rather than inserted into the spatial acceleration structure.
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2.4.3 Back Face Rendering and Depth Bias

The visual artifacts associated with conventional shadow mapping represent three

distinct types of aliasing. Of these, irregular shadow mapping addresses perspective

and projection aliasing [123], but not aliasing due to limited numerical precision.

Perspective aliasing derives from the spatial relationship between the eye and light

relative to a given surface. It occurs when the area of a shadow map texel projected

onto the surface is greater than the projected area of an eye-view pixel (Figure 2.5a),

and appears as a sawtooth pattern at umbral boundaries (Figure 1.2c). Projection

aliasing is due to the orientation of a surface relative to the light. It occurs when

a surface is nearly parallel to the light. In such cases, even a slight variance in the

position of points p and q in the light-view image plane yields a large difference

in the depth of the surface as seen from the light (Figure 2.5b), and can lead to

self-shadowing (e.g. a front facing triangle casts a shadow onto itself). By precisely

aligning the eye and light sample patterns (Figure 2.2c), irregular shadow mapping

avoids both perspective and projection aliasing2.

Perspective and projection aliasing result from the misalignment of points in

the X and Y dimensions of light space. In contrast, aliasing in Z occurs primarily

due to limited numerical precision in the underlying graphics hardware. As such,

irregular shadow mapping cannot directly resolve this source of artifacts. Here, the

light-view depth of a receiver point measured using two different methods produces

two different values, leading to self-shadowing. Consider Figure 2.5c. The depth of

a receiver point from the light as seen from the eye (pz) does not match the depth

as seen from the light (qz). The former is computed using a transformation matrix

while the latter is computed by interpolation. If the variance is such that qz < pz

then the receiver point is incorrectly found to be occluded by the surface on which

2In principle, limited numerical precision within the light-view image plane can still result in
projection aliasing for surfaces parallel to the light. In practice, this problem is avoided by treating
such surfaces as back facing.
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Figure 2.5: The visual artifacts associated with classical shadow mapping represent
three types of aliasing. Perspective aliasing causes a sawtooth pattern at the edges of
umbrae and is due to undersampling from the light (a). Projection aliasing produces
self-shadowing and is due to a discrepancy in depth between the receiver point (p)
and the nearest point in the shadow map (q) even when both points lie on the same
surface (b). Aliasing can also result from limited numerical precision in the host
graphics hardware (c). This aliasing also produces self-shadowing, but is due to a
slight variance in light-view depth between the receiver point as seen from the eye
(p) and from the light (q). Irregular shadow mapping eliminates perspective and
projection aliasing, but not aliasing due to limited numerical precision.

it sits. The incidence of these self-shadowing artifacts can be reduced by rendering

back facing surfaces from the light rather than front facing [136], and discarding

receiver points which lie on back facing surfaces as in Subsection 2.4.2. In tandem,

these simple optimizations ensure that the computation of umbral occlusion is never

performed between a receiver point and the surface on which it sits. Aliasing is still

possible in the case of thin surfaces, but can be addressed using a small depth bias.
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2.5 Further Related Work

Section 2.1 describes a taxonomy of methods for detecting occlusion from the light,

based on the coordinate system in which the computation is performed. Existing

object-order (i.e. Z-buffer) hard shadow algorithms can be classified according to

this taxonomy, highlighting high-level differences in operation, image quality, and

performance. To review, occlusion from the light can be measured in eye space

at the receiver points using “shadow geometry”. Alternatively, occlusion from the

light can be rendered in light space to a “shadow map” which is later resampled in

eye space at the receiver point positions. Finally, occlusion from the light can be

determined entirely in light space by storing receiver points in a light-view spatial

acceleration structure which is queried during the visibility computation. Existing

algorithms occupy the first two categories (Subsection 2.5.1 and 2.5.2), while our

algorithm (and a related method from Aila et al. [6] and Arvo [11]) forms the third.

2.5.1 Shadow Geometry

Shadow geometry delimits regions of the scene within the umbrae cast by occluding

objects. This geometry typically takes the form of polygons which extend from the

silhouette edges of an occluder to the far light-view clip plane, as seen in Figure 2.2a

[34]. A receiver point that lies inside the volume of space defined by these polygons is

occluded from the light. More specifically, occlusion can be determined by counting

the number of entry and exit points along a ray from the eye to a receiver point,

as it passes through one or more shadow volumes. If the counter is initialized to 0,

and is incremented or decremented per entry or exit respectively, the final value will

be > 0 for all points in the scene in shadow. On a modern GPU, this computation

occurs by rasterizing shadow geometry from the eye into a stencil buffer [42]. The

stencil value for a given pixel is modified according to the orientation of each polygon

seen from the pixel. It is incremented for polygons facing the eye and decremented

otherwise. A final value > 0 indicates that the corresponding pixel is in shadow.
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Representing umbral bounds as geometric primitives reduces the problem

of identifying regions of the scene in shadow to a straightforward visible surface

computation. This calculation has low error3 on modern GPUs and so results in

high quality hard shadows. However, shadow polygons are frequently large as seen

from the eye (Figure 2.2a), particularly those from occluding objects near the light.

Further, the number of shadow polygons can be large, and is equal to the number

of silhouette edges for all objects visible from the light. Together, these properties

lead to high average depth complexity from the eye. As a result, shadow geometry

algorithms often require rasterization hardware capable of high fill rates.

Efforts to minimize this fill rate pressure focus on two strategies. The first

reduces the number and eye-view extents of shadow primitives through aggressive

clipping and culling [89] as well as careful selection of the light-view depth bounds

[95]. The second rasterizes shadow geometry only to eye-view pixels corresponding

to receiver points known to be near a shadow silhouette [5, 29]. Even with these op-

timizations and recent hardware specializations [99] the geometric scene complexity

must be held below what would be possible in the absence of any shadow primitives.

2.5.2 Resampling / Filtering Approximate Visibility

Alternatively, occlusion from the light can be sampled in light space and stored

into a “shadow map” that is later resampled in eye space from the receiver points.

Classical shadow mapping [139] is illustrated in Figure 2.2b. Scene geometry is first

rendered from the light (giving qz) and then from the eye. The distance between

each receiver point and the light-view image plane is computed (giving pz). Point p

is determined to be in shadow according to the inequality seen in Equation 2.3. The

value of qz used in this comparison is estimated from the values for the light-view

samples (q) nearest p in the image plane.

3The visible surface calculation is accurate to the numerical precision of the depth buffer, at the
point within a pixel where visibility is determined. Sub-pixel accuracy is possible with supersample
anti-aliasing.
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Figure 2.6: A figure extended from Lloyd et al. [86] illustrating several shadow map
based algorithms. The trapezoid indicates the bounds of the eye-view frustum as
seen from above by a directional light. Dots denote points in the scene visible from
the eye (receiver points). Observe that the eye-view sampling rate decreases with
depth (a). A classical shadow map undersamples the scene near the eye (b) yielding
a large estimation error. Warping methods reduce this estimation error by fitting the
shadow map to the eye-view bounds using perspective (c - d) and / or logarithmic
(e) parameterizations. Partitioning methods (f - i) reduce the estimation error by
replacing the single shadow map with multiple sub-maps sampled at different rates,
each determined by the local eye-view sampling rate. Irregular shadow mapping
(our method) samples the scene exactly at the light-view locations given by the
receiver points (j). This avoids estimation errors and oversampling.

Shadow mapping is generally considered capable of higher performance than

shadow geometry methods. The former finds umbral occlusion by rasterizing scene

geometry from the light, while the latter rasterizes shadow geometry from the eye.

Rasterization performance is inversely proportional to the average depth complexity

of the geometry seen from a view point, and this measure is commonly higher for

shadow polygons visible from the eye (Subsection 2.5.1) than for scene primitives

visible from the light. Further, shadow mapping avoids the need to create, clip, and
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cull shadow polygons. However, error from the estimation of qz leads to aliasing and

self-shadowing artifacts. The magnitude of this error corresponds to the distance

from q to p, and is generally unbounded. As a result, the number and severity of

artifacts can be high. Even a small error can yield a large bias in intensity as seen

in Figure 2.2b, where the indicated pixel is incorrectly found to be lit.

Methods for reducing this estimation error (and so minimize the number

and severity of artifacts) typically follow one of three approaches. The first utilizes

silhouette information from occluding objects to more accurately identify umbral

boundaries in a conventional shadow map [119]. To do so, a separate “silhouette

map” encodes a piece-wise linear representation of the occluder silhouette. Each

receiver point (p) is projected into the silhouette map and into the shadow map.

The position of p relative to the silhouette determines which of the four nearest

shadow map samples (q) will be used in the inequality in Equation 2.3. This strategy

reduces the incidence of estimation artifacts, but high frequency umbral details may

be truncated or lost due to limited precision in the silhouette contours.

The second approach warps the shadow map to better align the light-view

sample pattern (points q) with the distribution of receiver points (points p). These

methods reduce, but do not eliminate estimation error and the associated artifacts.

In effect, warping shifts shadow map resolution from oversampled regions of the scene

to undersampled areas. It has been shown [141, 90, 87] that the parameterization

which produces the smallest average estimation error in a grid-based shadow map

is logarithmic (Figure 2.6e). However, current graphics hardware lacks support

for fast evaluation of log-based transforms. Instead, warping methods for existing

GPUs [123, 93, 141, 90] utilize parameterizations based on perspective transforms

(Figure 2.6c - d). In general, as the shadow map resolution approaches infinity, the

image quality of warping methods converges to that of a ray tracer, but for practical

resolutions some estimation error remains [87]. Further, these parameterizations are

view dependent. Camera motion relative to the light changes the estimation error.

Without correction [87], these changes lead to temporal artifacts (e.g. flickering).

25



The third approach divides the light-view shadow map into regions sampled

at different rates based on the position of the camera or scene geometry relative to

the light. Partitioning can be achieved by splitting the shadow map into tiles [10],

using multiple adjacent [41] or overlapping [127] shadow maps, or by constructing

an adaptive hierarchy of shadow maps of increasing resolution [44, 79, 80]. These

methods are illustrated in Figure 2.6 (f - i). Warping-partitioning combinations have

also been proposed [31, 73, 90] and are examined in detail by Lloyd et al. [88]. As

with warping, the image quality of partitioning algorithms converges to that of a

ray tracer in the limit, but at the cost of substantially more light-view samples and

proportionately greater computation and memory use.

2.5.3 Closely Related Work

Concurrently with this work, Aila and Laine [6] and Arvo [11] have proposed similar

algorithms, specifically for the purpose of rendering hard shadows on conventional

hardware, but neither is real-time. Like our algorithm, these methods store receiver

points in an explicit spatial acceleration structure (k-d tree [6] and grid [11]), which

is later queried during the occlusion computation. Our work is distinct from these

efforts in four ways. First, we consider the irregular Z-buffer algorithm as a general

solution to the visible surface problem for which shadow rendering is but one appli-

cation. Second, we show how the irregular Z-buffer algorithm can be used to render

high-quality hard and soft shadows. Third, we identify architectural enhancements

to existing GPUs to permit efficient sampling at arbitrary points in the image plane.

Fourth, through detailed simulation and analysis, we show how these changes lead

to high performance when rendering hard and soft shadows in scenes from modern

computer games.
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2.6 Summary

Real-time hard shadow rendering has been well explored. Even so, a solution which

yields high image quality and good performance in dynamic scenes from modern

games, has proven elusive. Shadow geometry algorithms can render umbrae com-

parable to those from a ray tracer, and so have been used4 in mainstream games

like Doom 3 [62]. However, the performance of these methods is inhibited by an

intrinsic inefficiency. Some (potentially many) receiver points will not be in shadow

even though the corresponding pixels are covered by shadow polygons. This case

is illustrated in Figure 2.2a and is common where the scene geometry onto which a

shadow is cast is nearly parallel to the eye look direction. In contrast, conventional

shadow mapping algorithms can achieve high performance, but are prone to artifacts

arising from misalignment of the eye and light view sample patterns (Figure 2.2b).

This mismatch is fundamental and in practice cannot be fully resolved by warping

and / or partitioning the shadow map (Figure 2.6b - i).

Irregular shadow mapping (our algorithm) precisely aligns the eye and light

sampling patterns as seen in Figure 2.2c. Receiver points are stored explicitly in

a light-view spatial acceleration structure. This permits occlusion to be computed

entirely in light space with high accuracy, and in principle combines the umbral

quality of shadow geometry with the performance of classical shadow mapping.

This method does incur some overhead from the per-frame construction of a spatial

acceleration structure. We examine this overhead and the overall performance and

image quality of the algorithm in Chapter 6.

4The use of shadow geometry in games is often restricted to occluders which are highly dynamic
(e.g. deformable characters). Shadows from other sources are precomputed. Further, only a subset
of the lights in a given scene typically cast shadows.
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Chapter 3

Soft Shadows

Soft shadows are a generalization of the light transport problem for hard shadows in

which the light source is of arbitrary size and shape. More formally, the irradiance

E from a diffuse area light incident on a receiver point with normal ~n (Figure 3.1a)

can be expressed as an integral over the area A of the light. In Equation 3.1, the

term Φ(x) is the intensity of the light at point x. The shape of the light determines

both n̂l(x) and the domain of integration A. Vector L(x) extends from the receiver

point to x. For opaque surfaces the visibility term V (x) is a binary value. It is 1

when x is visible from the receiver point and 0 otherwise.

E =
∫

x∈A

(n̂ q L̂(x))(n̂l(x) q − L̂(x))
Φ(x)
|L(x)|2V (x)dx (3.1)

†The first two paragraphs of Chapter 3, and the text of Section 3.5 and 3.6 are edited from
material written by Chris Burns and used with permission. Table 3.1 and the taxonomy around
which Section 3.6 is organized, were co-developed by Chris Burns and Greg Johnson.
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A light is partially visible

from a receiver point.
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The shadow penumbra cast by a silhouette

edge of the occluder is shown.

Figure 3.1: The geometry of soft shadows. A spherical light source is only partially
visible from a point in the scene seen from the eye (“receiver”) due to occluding
geometry (a). As a result, the point lies inside a penumbra cast by the occluder (b).
The shadow umbra is not shown. Given a light source of uniform intensity and no
distance attenuation, the degree of shadow at the receiver point can be computed
in 2D by projecting the light and the occluder into the light-view image plane, and
measuring the area of the light footprint covered by the occluder.

Many common light sources have nearly constant values for n̂l as well as Φ.

Further, if the light is small (also common) then L is nearly constant, and both of

the dot products as well as the distance term 1/|L(x)|2 can be moved outside the

integral (Equation 3.2), leaving only the visibility term V (x). This term is largely

responsible for the visual quality of shadow penumbrae, but is also the most difficult

to compute, requiring a search over the scene geometry to identify occluders.

E ≈ (n̂ q L̂)(n̂l
q − L̂)

Φ
|L|2

∫
x∈A

V (x)dx (3.2)
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3.1 Methodology

Observe the similarity in the irradiance equations for diffuse point (Equation 2.1)

and area (Equation 3.2) lights. The latter evaluates the integral of the visibility

function V over the surface of the light, but the semantics of V itself are the same

in both equations. As a result, the design of our soft shadow algorithm follows the

same methodology outlined in Section 2.1. Receiver points are stored in a light-

view spatial acceleration structure, enabling penumbral occlusion to be computed

entirely in light space with comparative accuracy and efficiency.

3.2 Contribution

Like hard irregular shadow mapping, our soft shadow algorithm occupies a unique

position in the space of possible solutions defined by image quality and performance.

Specifically, soft irregular shadow mapping achieves frame rates comparable to the

best performing existing methods, but produces substantially higher image quality

(Chapter 6). The image quality of this algorithm is commonly indistinguishable

from that of physically-accurate (but much lower performance) methods such as

beam tracing. As in the hard shadow case, this novel combination of quality and

performance results from the precise alignment of eye and light sample patterns

(Figure 2.2c). But this alignment also has a third benefit: robust image quality.

Unlike existing algorithms based on shadow mapping, ours requires no per-frame

parameter tuning to achieve high quality. Like other soft shadow algorithms in the

real-time performance regime, ours is approximate. Two geometric approximations

are used to simplify the computation of penumbral occlusion, but neither introduces

high frequency spatial or temporal artifacts.
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Figure 3.2: The four steps of our soft shadow algorithm are illustrated geometrically.
First, the scene is rendered from the eye. Visible points are transformed into light
space (a) and inserted into an irregular spatial acceleration structure. Umbrae are
determined by rasterizing scene primitives into the light-view (b) and computing a
point-in-triangle test at points p. Penumbrae are computed in two steps. The first
rasterizes a set of quads representing the estimated light-view screen-space bounds
of the penumbra cast by each silhouette edge (c). For each point overlapped by a
quad, a more accurate visibility test is performed. Here, the silhouette edge and
adjacent surface are clipped to a circle centered on the point (d) and the normal-
ized, fractional area of occlusion is measured. Finally, the umbral and penumbral
occlusion is combined and used to determine the degree of shadow at the eye-view
pixel corresponding to each receiver point.

3.3 Algorithm

Conceptually, the computation of penumbral occlusion consists of determining the

area of the light occluded by geometry as seen from a receiver point. For a light of

uniform intensity, the degree of occlusion can be found in 2D by projecting the light

and the occluder into the light-view image plane and measuring the area of overlap.

Our algorithm does exactly this, and combines the result with umbral occlusion

computed via hard irregular shadow mapping.
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The full algorithm is seen in Figure 3.2. For clarity, it is shown as a sequence

of four steps, but shadow umbrae and penumbrae can be computed concurrently.

Receiver points are identified by rasterizing scene geometry from the eye (a). These

points are transformed into light space and inserted into a spatial data structure,

as in Section 4.2. Umbral occlusion is computed (b) by rasterizing scene geometry

from the light to coordinates p in the image plane given by the receiver points, as

in Section 2.3. Penumbrae are comparatively difficult to compute. As a result, a

coarse visibility test is performed to estimate the set of receiver points affected by

a given silhouette edge (c). This test consists of rasterizing shadow geometry from

the light, where each primitive represents the expected screen-space extents of the

penumbra cast by a silhouette edge (Subsection 3.3.1 and 3.3.2). The computation

of penumbral occlusion is performed only at points p covered by a shadow primitive

(d). Here, the surface adjacent to the silhouette edge is clipped against the footprint

of the light in 2D within the light-view image plane (Subsection 3.3.3). Finally, the

umbral and penumbral occlusion accumulated at a receiver point (Subsection 3.3.4),

is used to modulate the intensity of the corresponding eye-view pixel.

3.3.1 Silhouette Edge Detection

An important property of physically-correct soft shadows is that penumbrae are cast

only at the silhouette edges of occluder geometry. The size and shape of a penumbra

is defined by the position and orientation of the silhouette edge relative to the light

and receiving geometry, not by primitives in the interior of the occluder. This

property can be exploited to improve the performance of soft shadow algorithms

by localizing computation of the visibility integral (Equation 3.2) to receiver points

known to be near silhouette edges.

For manifold (i.e. closed) geometry, a silhouette edge is defined as an edge

shared by two faces of an occluder such that one face is oriented toward the light and

one away from the light. For non-manifold geometry, an edge adjacent to a single
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(b)  A silhouette edge joins two opposing faces.
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(a)  Primary versus adjacent vertices.

Figure 3.3: Shadow penumbrae are cast only at the silhouette edges of an object. A
silhouette edge is commonly defined as an edge shared by two faces of an occluder
such that one face is oriented toward the light and one away. Vertex adjacency
information (a) is accessible through modern graphics APIs like DirectX 10 [19].
This information can be used to determine object silhouettes by examining the
light-view winding order of the primary and adjacent vertices (b).

face is also considered a silhouette. The identification of silhouette edges in either

case is straightforward on modern graphics hardware1. For example, the DirectX

10 API [19] exposes vertex adjacency information (Figure 3.3a). This information

can be used within a geometry shader to determine object silhouettes in light space

by examining the winding order of the vertices composing the primary and adjacent

faces (Figure 3.3b), or in eye space by similarly inexpensive means. Note that the

identification of silhouettes improves the performance of our algorithm but is not

necessary for correctness. In the absence of adjacency information all edges are

assumed to be silhouettes. The composition of umbral and penumbral occlusion

described in Subsection 3.3.4 ensures correctness is preserved even in the case of

interior edges (Figure 3.4).

1The given definition is incomplete as it does not guarantee that a silhouette edge is visible to the
light. Edges identified as silhouettes but which are not visible to the light do not cast penumbrae.
Such edges result in unnecessary computation in many soft shadow algorithms (ours included).
However, the visibility of a given edge cannot be accurately ascertained with high performance due
to parallax (Subsection 3.5.1).
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p

Ṽ (p) = 0.15 + 0.85 = 1.0
accurate

ṼA(p) = (0.0 + 0.15) → 0.15
accurate

ṼB(p) = (1.0 - 0.15) → 0.85
accurate

interior edge

face A face B
+ =p pq q q

Figure 3.4: Our algorithm area-samples geometry only near silhouette edges. This
strategy is necessary for performance but not correctness. Area-sampling interior
geometry introduces no error as seen here. The radii of the samples to which faces A
and B are clipped are equal, since this value is derived from the light-view depth at
the point on the shared edge (q) nearest p. This computation is explained further
in Subsection 3.3.3.

3.3.2 Silhouette Edge Geometry

Once identified, the silhouette edges are used in a two-part penumbral computation.

As in other image-space soft shadow algorithms, a coarse visibility solution is used to

conservatively estimate the set of silhouette edges affecting a given receiver point.

A final solution is then computed for the point from this edge set. Here, coarse

visibility is determined from a set of geometric primitives representing the extents

of penumbrae as seen from the light (Figure 3.2c), while final visibility is computed

directly from the original scene geometry (Figure 3.2d).

Observe that the penumbra cast by a silhouette edge forms a wedge (Figure

3.1b), and that the projection of this wedge into the light-view image plane can

be represented as a rectangle2. As a result, the shadow primitives used during the

coarse visibility test in our algorithm are rectangular and coplanar to the light-view

image plane. The width of a primitive (Figure 3.5) depends on the light width,

2This assumes a single point of projection (Subsection 3.5.1). Further, for a spherical light source
the projection of this wedge is a rectangle with hemicircular end caps, but can be conservatively
approximated with a larger rectangle.
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Figure 3.5: The width of a given shadow primitive in the light-view image plane is
proportional to the light width (Rlight), the depth of the silhouette edge (qz), and
the maximum depth of any receiver point (pz) occluded by the surface adjacent to
the edge, as described in Equation 3.3 [105].

the minimum depth of the silhouette edge, and the maximum depth of any receiver

point occluded by the surface adjacent to the edge, as described by Equation 3.3.

Unfortunately, the maximum receiver depth cannot be accurately determined prior

to computing a complete visibility solution. Therefore, this value is initially set to

the maximum light-view depth of any receiver point in the scene and later refined

(Subsection 3.4.1 and 3.4.2).

In general, the performance of soft shadow algorithms that employ shadow

geometry is often limited by the number and size of the primitives (Subsection 3.6.3).

However, the screen-space extents of a penumbra wedge as seen from the eye are

commonly much greater than the extents as seen from the light (as in our algorithm).

Consider a case in which the eye and light are perpendicular and equidistant from

the wedge. The extents of the wedge are proportional to the solid angle subtended,

which itself depends on the slope of the wedge faces. From Equation 3.3, this
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Figure 3.6: The geometry of an area sample is illustrated. A silhouette edge (red)
and its adjacent surface (yellow) are clipped to the sample bounds. The radius R is
determined from the light-view depth to the point (q) nearest p on the silhouette
edge segment (Equation 3.3). The signed and normalized area of the minor circular
segment defined by the silhouette edge is computed with Equation 3.4. This method
is accurate even when one or both edge vertices lie inside the sample bounds.

slope is the ratio of the light-occluder distance (qz) to the light radius (R light).

Therefore, the light-view extents of the wedge will be greater than the eye-view

extents only when R light >> qz. This situation occurs when the light source is very

large (uncommon) or when an occluder is very near the light (also uncommon).

3.3.3 Penumbral Occlusion

To review, occlusion from a spherical light of uniform intensity can be determined

by projecting the light and silhouette edge into the light-view image plane, and

measuring the area of the light footprint clipped by the edge. This clipping operation

(Figure 3.6) is straightforward and avoids penumbral aliasing often found in methods

which measure occlusion at discreet points on the light surface. In practice, the

image plane projection of a spherical light forms an ellipse as seen from a receiver

point, when the point is not directly beneath the light. We approximate this ellipse

with a circle. Its radius is given by Equation 3.3, where q is a point on the silhouette
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edge segment nearest p, and Rlight is the radius of the light [105]. A negative value

indicates the silhouette geometry is further from the light than the receiver point

and no occlusion is possible. For positive values of R, the normalized area of the

minor circular segment clipped by the silhouette edge (shaded area in Figure 3.6) is

computed according to Equation 3.4. As we’ll see in Section 3.3.4, the sign of the

dot product of the edge and p determines if the result is added or subtracted (i.e. p

is outside or inside the edge) from the accumulated occlusion at the receiver point.

R =
(

pz − qz

qz

)
∗R light (3.3)

w0 = −
(

(v0 − p) q (v1 − v0)
R

)
[−W,W]

w1 = +
(

(v1 − p) q (v1 − v0)
R

)
[−W,W]

θ = cos−1

 d2 −w0 ∗w1√(
d2 + w2

0

) (
d2 + w2

1

)


Ṽ ′′ =
± θ − d ∗ (w0 + w1)

2π
(3.4)

This strategy of determining penumbral occlusion by measuring the area

of overlap between a light and silhouette geometry is not unique. For example,

Assarsson et al. [14] describe an occlusion kernel for spherical lights similar to ours,

though the method of computation is different. In our algorithm, an inverse cosine

function call is used in place of texture lookups into a table of inverse tangent values.

The latency of the function call can be higher than that for the texture lookups if the

table is in cache, but the increased accuracy inhibits penumbral banding. Further,

in our algorithm the clipping operation is performed in 2D and so avoids evaluating

the quadratic equation used in intersecting a line with a cone in 3D.
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The computation of penumbral occlusion using a spherical light is motivated

by the relative simplicity of the calculation which results from the radial symmetry of

this shape. However, the overall algorithm is not restricted to spherical lights. For

example, Assarsson et al. describe an occlusion kernel for rectangular lights [14],

which can be used with our algorithm. In general, any function which returns the

degree of occlusion given a silhouette edge and receiver point can be used, though

the performance of the overall algorithm is dominated by this kernel.

3.3.4 Composition of Umbral and Penumbral Occlusion

The visibility function at a given receiver point cannot be accurately reconstructed

from penumbral occlusion alone [76]. The computation of Ṽ ′′ is only performed for

silhouette edges that pass within a distance of R (Equation 3.3) of the point. As a

result, the two cases seen in Figure 3.7 cannot be disambiguated. Occlusion due to

surfaces which fully cover the light as seen from the receiver point is not accounted

for. Since this second type of occlusion is constant for all points on the light (i.e. the

light is fully occluded or fully unoccluded) it can be measured from a single point

anywhere on the light surface using a hard shadow algorithm. Combined with the

penumbral occlusion, the result forms a complete solution to the visibility term of

Equation 3.2 [14, 76, 45].

∫
x∈A

V (x)dx ≈ 1−
 N∑

i=1

Ṽ ′(objecti,p) +
E∑

j=1

Ṽ ′′(edgej ,p)


[0,1]

umbra penumbra

(3.5)

The composition of the two sources of occlusion can be expressed in terms

of depth complexity (Equation 3.5). For a point x on the light, depth complexity is

the number of intervening surfaces between x and a receiver point. In this context,

silhouette edges denote changes in depth complexity across the surface of the light
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(a)  The light is partially occluded. (b)  The light is fully occluded.

Figure 3.7: The visibility function at a receiver point cannot be reconstructed from
penumbral occlusion alone. The absence of occlusion from surfaces which fully
cover the light leads to ambiguity. For example, a case in which the light is partially
occluded by a single surface (a) cannot be distinguished from a case in which the
light is partially occluded by one surface and fully occluded by a second surface (b).

relative to a constant factor measured at a point on the light [76]. In our algorithm,

this constant factor Ṽ ′ is computed from the center of the light source as seen from

a receiver point (p) via hard irregular shadow mapping (Section 2.3). The result is

subsequently adjusted by relative changes in depth complexity (Ṽ ′′) computed via

Equation 3.4, and clamped to the range [0, 1].

This composition of umbral and penumbral occlusion is illustrated in Figure

3.8 for several occluder configurations. Consider case (e). The umbral computation

yields a value of 0.0, while the penumbral computation yields +0.15 and +0.2 for

the two silhouette edges shown. The total accumulated occlusion is 0.35. Similarly,

in case (g) the umbral and penumbral values are 2.0, -0.15, and -0.2 respectively, for

a total occlusion value (after clamping) of 1.0. This method is fast, robust, requires

no precomputation, and is accurate in many common cases. It is approximate where

occluders overlap within the bounds of the area sample but do not fully cover the

sample, as in (h). However, no high-frequency artifacts are introduced. Rather, the

resulting penumbrae are continuous but overly narrow. The accuracy of this method

and the visual impact of the approximation are discussed further in Subsection 3.5.2.
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(h)
Ṽ (p) = (2.0 - 0.35) → 1.0

approximate

(g)
Ṽ (p) = (2.0 - 0.35) → 1.0

accurate

(e)
Ṽ (p) = (0.0 + 0.35) → 0.35

accurate

(f)
Ṽ (p) = (1.0 - 0.35) → 0.65

accurate

(d)
Ṽ (p) = (0.0 + 0.28) → 0.28

accurate

(c)
Ṽ (p) = (1.0 - 0.27) → 0.73

accurate

(a)
Ṽ (p) = (1.0 - 0.0) → 1.0

accurate
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(b)
Ṽ (p) = (1.0 - 0.15) → 0.85
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Figure 3.8: The evaluation of Equation 3.5 is illustrated geometrically for several
occluder configurations. The umbral calculation is performed by point-sampling the
scene at location p in the image plane. The penumbral calculation is performed
by area-sampling about p, with the overlap between any two occluders assumed
to be 0. The umbral and penumbral occlusion is combined to determine the total
visibility at p and thereby the degree of shadow for the eye-view pixel corresponding
to p. This method is accurate in many common cases (a - g). It is approximate
only where two or more occluding surfaces overlap within the bounds of the area
sample but do not fully occlude the sample (h). The resulting penumbrae remain
continuous and visually pleasing, but the intensity falloff is sharper.

3.4 Optimizations

A key source of inefficiency in nearly all soft shadow algorithms is overdraw. Here,

overdraw refers to the unnecessary computation of penumbral occlusion at a receiver

point, and occurs when the edge is tested for occlusion against the point but is found

not to occlude the point. Our algorithm addresses overdraw in part by estimating

the set of receiver points affected by a given silhouette edge, prior to performing

the actual penumbral occlusion calculation. This estimation step employs a set of

shadow primitives representing the expected light-view screen-space bounds of the
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penumbra cast by each silhouette edge (Figure 3.5). Each primitive must be wide

enough to occlude all receiver points potentially affected by the respective edge, but

overestimation of the width can itself result in significant overdraw. Unfortunately,

this width cannot be accurately known until after the occlusion computation, since

it is proportional to the maximum depth of any object occluded by the silhouette

edge (Equation 3.3). This width is bounded by the maximum light-view depth of

any receiver point, but this bound is insufficient to avoid substantial overdraw. We

address this problem with two simple optimizations. One reduces overdraw in the

X and Y dimensions in light space, while the second reduces overdraw in Z.

3.4.1 Reducing Overdraw in X and Y

The cyclic dependence described above can be addressed via iterative refinement. In

this case, the width of a shadow primitive in the n+ 1 iteration can be recomputed

from the maximum depth of any receiver point occluded during iteration n. Iterative

refinement adds overhead, but much of this overhead is subsumed in Z-buffer systems

in which rasterization itself is performed iteratively. For example, tiled rasterizers

presort geometry into screen-space bins and scan-convert primitives in bin order

[47, 118]. This process may be thought of as 2-level hierarchical rasterization, and

can be used to reduce the screen-space extents of shadow primitives as follows. The

width of a shadow primitive is initially computed from the maximum depth of any

receiver point. This width is then recomputed during sorting based on the maximum

depth of any receiver point located in each bin (determined during data structure

construction) overlapped by the primitive. If the resized shadow primitive no longer

overlaps the bin it is not included in the geometry list for that bin.
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Figure 3.9: A simple spatial acceleration structure for storing the coordinates of
receiver points. This structure is composed of a 3D perspective grid, such that the
face nearest the light lies within the light-view image plane.

3.4.2 Reducing Overdraw in Z

To review, the penumbra cast by a silhouette edge forms a wedge, and only receiver

points inside the wedge are affected by the edge. This property can be exploited to

reduce overdraw in Z by intersecting the wedge and the spatial acceleration structure

storing the receiver points. Penumbral occlusion is then computed only at points

within the area of overlap. For example, consider an acceleration structure composed

of a simple 3D grid such that the face nearest the light lies in the light-view image

plane (Figure 3.9). For each light-view pixel occluded by a shadow primitive, the

intersection of the respective penumbra wedge and the column of grid cells beneath

the pixel is determined (Figure 3.10). The intersection point can be estimated from

the point on the silhouette edge (q) nearest the pixel center and the slope of the

wedge (Figure 3.5). From Equation 3.3, this slope is the ratio of the light-occluder

distance (qz) to the light radius (R light). The computation of penumbral occlusion

from Equation 3.4 is only performed for receiver points at the intersection point and

deeper in the grid.
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occluder
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Figure 3.10: The penumbra cast by a silhouette edge forms a wedge. The number of
receiver points tested for occlusion against the edge can be reduced by considering
only the points inside the wedge. We do this by intersecting the wedge with a spatial
acceleration structure, in this case a 3D grid (only a single column of cells is shown).
Here, the wedge intercepts the column of grid cells at cell n. Only the points located
in this cell and deeper in the grid (denoted in red) need be tested for occlusion.

3.5 Approximations

The visibility integral of Equation 3.2 can be solved analytically [103], but not yet

at real-time frame rates. To achieve real-time performance in dynamic scenes it is

generally understood that one or more approximations are required. The challenge is

to choose approximations which defray the most computational cost while sacrificing

the least visual quality. Note that the space of possible approximations can be

loosely bisected: those that may produce objectionable artifacts (e.g. aliasing, light

leaks), and those that yield plausible but inaccurate results. Though approximations

of the former type often enable an arbitrary reduction in computation (typically

through one or more tunable parameters), the error is similarly unbounded. For this

reason, we use approximations of the second type. These generally result in more
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(a)  Single point of visibility. (b)  Simulated area light. (c)  Physically correct area light.

light

Figure 3.11: The visibility solution for an area light can be approximated using
a single point of projection (a) in place of multiple points on the light surface.
The width of penumbrae cast by the simulated area light can then be estimated.
However, the resulting umbrae are undersampled (b) in comparison to those from a
physically correct solution (c). This undersampling is due to a difference in the set
of silhouette corners (red dots) visible to the light in each of the two cases.

modest performance gains, but require no tuning and offer better error bounds. Our

algorithm uses two such approximations: single point of projection and independent

evaluation of occluders.

3.5.1 Single Point of Projection

The visibility term of Equation 3.2 can be estimated by determining occlusion from

a single point (rather than from multiple points) on the surface of an area light.

Note that shadows cast by a point light have penumbrae of zero width, and every

geometric object has a fixed silhouette from the view of the light. In contrast, the

view of an object from an area light varies from point to point across the light
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(a)  A simple scene.

area light

receiver point

occluder

eye

(b)  Simulated area light.

(c)  Physically correct area light.

Figure 3.12: A figure inspired by Assarsson and Akenine-Möller [13] illustrating
the visual impact of estimating area light visibility using a single point of projection
(Figure 3.11). The simple scene (a) contains a tall occluder oriented toward the light
such that only the four edges nearest the light are considered silhouettes as seen from
the single point of projection. This orientation maximizes the “single silhouette”
error. The rendered images show the estimated result (b) and the correct result (c).

surface. This is the fundamental cause of penumbrae. Expressed in the context

of parallax, an observer moving along a 1D light sees a nearby triangle move with

respect to a more distant surface. This motion traces out a penumbra on that

distant surface. For a 2D light the principle is the same. Unfortunately, computing

an accurate visibility solution for P points on an area light requires P times the

expense of that for a single point on the light.

As an alternative, the magnitude of the parallax effect can be estimated

heuristically, as in our algorithm. This value is proportional to the width of the

penumbra cast by one object onto another, which is itself the ratio of the distances

from the light to the occluder and the light to the object in shadow (Figure 3.5).

Expressed in Equation 3.3, the result is accurate for planar occluders and receivers
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parallel to the light [105]. This estimate is widely used in lieu of computing visibility

from multiple points on the light [43, 14, 105, 54, 144, 21, 28], since the error is not

significant, biased, or objectionable even when the light is large relative to occluders.

However, there is a second effect due to parallax in which previously hidden

silhouette edges become visible [14]. The contribution of these edges can impact

the shape of the penumbrae and the apparent size of the umbrae cast by the object

(Figure 3.11 and 3.12), but cannot be estimated effectively with only a single view

point on the light. The resulting error is expressed primarily as umbrae which are

smaller than expected, and correspondingly larger penumbrae. No high-frequency

or other objectionable artifacts are introduced. The magnitude of this error derives

from the light-view depth bounds of the occluder, the distance from the occluder to

the receiver point, and the size of the light. More specifically, the error is propor-

tional to the ratio of Rnear to Rfar, where R is given by Equation 3.3 for points

(q) on the near and far silhouette edges of the occluder. The incidence of this error

can be reduced by incorporating visibility information from multiple points on the

light surface. For example, Assarsson et al. represent a single large area light as a

collection of smaller lights [14]. This strategy is likewise compatible with the soft

shadow algorithm described in Section 3.3.

3.5.2 Independent Evaluation of Occluders

Several soft shadow algorithms (including ours) evaluate the visibility term from

Equation 3.2 per-occluder, but these partial visibility terms are not independent.

Therefore, information on the degree of overlap between occluders is lost, and the

total accumulated occlusion is overestimated by an unknown amount C as illustrated

in Equation 3.6 and Figure 3.8h. Note that Ṽ ′(objecti,x) is 1 when a point on the

light x is occluded by object i and 0 otherwise, and Ṽ ′(objecti,x) = 1−V ′(objecti,x).
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(a)  A simple scene.

area light

receiver point

occluders

eye

silhouette edges
(b)  Eye view: 1 occluder. (c)  Eye view: 2 occluders.

(d)  Eye view: 3 occluders. (e)  Eye view: 4 occluders.

Figure 3.13: The visual impact of estimating the overlap from multiple occluding
surfaces (Figure 3.8h) is illustrated in a simple scene (a). The scene contains up to
four occluders aligned so the silhouette edges are nearly colinear as seen from the
light. This alignment maximizes the overlap and thus the estimation error. The
rendered images show the correct result (b), and the increasingly sharp falloff of the
penumbra as more occluders are introduced (c - e).

∫
x∈A

V (x)dx =
∫

x∈A

N⋃
i=1

V ′(objecti,x)dx = 1−
 N∑

i=1

∫
x∈A

Ṽ ′(objecti,x)dx

− C
 (3.6)

Accurately determining C is difficult, as it requires clipping an incoming

occluder to an arbitrarily-shaped silhouette representing the composition of previous

occluders, and storing this silhouette per sample point. Bitwise coverage masks can

be used to simplify clipping and reduce the storage requirements, but at the cost

of introducing aliasing into the penumbrae [116]. In practice, algorithms following

Equation 3.6 typically approximate C. This value is bounded by 0 (no occluders
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overlap) and the sum of the area of all but the largest occluder (occluders maximally

overlap). Some algorithms compute an average over the occluders [14] while others

use the maximum [54, 144, 28]. Of particular interest is the approximation used by

Soler and Sillion, given by 1
2(min(V1, V2) + max(0, V1 + V2)). Here, V1 and V2 are

integrated visibility terms for a pair of occluders. The error in this case is bounded

by 1
4 [122].

In our algorithm, the occlusion from an object is determined independently

of that of other objects. Implicit in our approach is the assumption that C =

0. This approximation is fast to compute and accurate in a surprising number of

common cases (Figure 3.8a - g). Further, where it is approximate (Figure 3.8h) no

objectionable artifacts are introduced. Estimated penumbrae are continuous and

visually pleasing, but are biased towards darker values (Figure 3.13). In the limit,

a penumbra of zero width can result. However, this extreme case requires a large

number of silhouette edges to be (nearly) colinear after projection into the light-view

image plane, and is therefore infrequent.

3.6 Further Related Work

The approximations discussed in Section 3.5 are part of a larger space of solutions

for solving the visibility integral of Equation 3.2. This space can be structured

according to methods for approximating the domain of integration, and methods

for computing the integrand V . The former includes: single point of projection,

independent evaluation of occluders, restricted light geometry, proxy scene geometry,

and precomputation / band-limiting (Subsection 3.5.1, 3.5.2, 3.6.1, 3.6.2, 3.6.4). The

latter includes: shadow geometry, and resampling / filtering approximate visibility

(3.6.3, 3.6.5). Interactive soft shadow algorithms employ a combination of methods,

and differences in operation and performance, and image quality (Table 3.1) stem

from the specific set used. As in the hard shadow case, our soft shadow algorithm
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Algorithm
Outer

Penumbra

Inner

Penumbra

No

Light Leaks

All

Frequency

Plausible But Inaccurate

No

Aliasing

´´

´

´

Accurate

Overlap

Noticeably Implausible

Table 3.1: The visual qualities of several soft shadow algorithms compared. Ours is
marked in gray. Accuracy is loosely proportional to the number of check marks. The
absence of a check in a plausible but inaccurate column indicates the algorithm yields
plausible-looking but potentially incorrect penumbrae, while the absence of a check
in an noticeably implausible column denotes the potential for objectionable artifacts.
Penumbrae are divided into inner and outer regions by the hard silhouette of an
object. The lack of either yields overly narrow and misaligned penumbrae. Accurate
Overlap denotes accurate computation of the area of overlap between occluders.
Inaccuracies here commonly result in a bias towards overly dark penumbrae. Alias-
free algorithms produce no sawtooth or banding patterns, or flickering in penumbrae
during object-light motion. Light leaks appear as intensity discontinuities in other-
wise unbroken regions of shadow. All-frequency algorithms do not impose artificial
bounds on the frequency content of illumination via undersampling in frequency
space, or prefiltering of undersampled depth (i.e. shadow) maps. Many algorithms
reduce the incidence of these artifacts using various means, but do not resolve the
underlying issue(s). The accuracy of our algorithm is similar to that of Assarsson
et al., which employs eye-space shadow geometry. F Frequency content is lost by
prefiltering the shadow map. FF Texture mapping can re-introduce aliasing.
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is distinguished primarily in the method used to determine V . The algorithm does

not determine occlusion from the light in eye space using shadow geometry3, or a

discretized representation of the scene geometry (i.e. shadow map). Rather, receiver

points are stored in a light-view spatial acceleration structure, and occlusion is

computed at these locations in light space directly from the scene geometry.

3.6.1 Restricted Light Geometry

Observe that many sources of light in the real world (e.g. sun, incandescent bulbs,

fluorescent fixtures) are simple shapes with symmetry, and the visual impact of light

shape on penumbrae is subtle. As a result, area light sources are frequently defined as

planar rectangles or discs. For rectangular lights, a simple linear parameterization

can be used to obtain a uniform distribution of samples across the light surface

[75, 74, 2]. Soft shadow algorithms that use bilinear [39] or percentage closer filtering

[43] to estimate penumbrae from umbral silhouettes, are implicitly assuming a square

or rectangular area light due to their use of square or rectangular filter kernels.

Disc-shaped lights mimic omnidirectional spheres of constant intensity [21, 54], and

produce a sinusoidal intensity falloff which can be approximated with a Bernstein

cubic interpolation function [105, 144, 28]. The simplicity of the disc also enables fast

analytic integration of occlusion resulting in high-quality penumbrae (Equation 3.4).

3.6.2 Proxy Scene Geometry

Just as arbitrarily-shaped light sources complicate the visibility integral, arbitrary

scene geometry can be similarly difficult to support. One alternative is to compute

visibility from simplified “proxy” geometry rather than the original scene geometry.

Doing so can reduce the number of silhouette edges and reduce the complexity of

3Light-space shadow geometry is used to determine a coarse solution for V . However, the final
visibility computation employs no shadow primitives.
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the visibility computation per edge. For example, Ren et al. replace the occluding

geometry with a hierarchy of spheres [111]. The size of each sphere approximates

the scale of the local geometry replaced by that sphere. This strategy simplifies the

spherical harmonic rotations and exponentiations required to compute the degree of

occlusion at a point in the scene visible from the eye. However, finer shadow details

are lost in regions with greater geometric complexity than that expressed by the

proxy geometry.

A more common approach is to represent the scene geometry (explicitly or

implicitly) as thin planar occluders parallel to the light source. Soler and Sillion

explicitly decompose occluding geometry into planar elements and convolve these

elements with the light to produce soft shadow textures [122]. Similarly, Eisemann

and Décoret create planar proxy geometry by uniformly subdividing scene geometry

by distance from the light, and projecting the contents of each partition into a plane

parallel to the light [39]. These methods can achieve relatively high performance,

but are susceptible to light leaks between planar elements.

Alternatively, several methods use a conventional shadow map as a discrete

representation of occluder geometry [116, 51, 17]. Shadow map texels are back-

projected onto the light, and the projected area is compared with the area of the

light to produce a visibility estimate. This approach can achieve interactive [116]

and even real-time performance [51] in simple scenes, but high-frequency geometric

features (and thus finer shadow details) are lost due to the discretization. Moreover,

a straightforward implementation of this technique can introduce holes in occluders

resulting in light leaks.
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3.6.3 Shadow Geometry

While proxy geometry is used as a stand-in for scene geometry, shadow geometry

delimits regions of the scene inside the umbra or penumbra of an occluder. These

methods are similar to their hard shadow counterparts (Subsection 2.5.1) with the

added complexity of defining the boundaries between three types of space (umbra,

penumbra, fully-lit) rather than two (umbra, fully-lit).

Observe that the penumbra cast by a silhouette edge forms a wedge as shown

in Figure 3.1b. The faces of this wedge can be represented with shadow polygons.

Assarsson et al. and Forest et al. compute penumbral occlusion (Subsection 3.3.3)

at each receiver point corresponding to a pixel covered by these shadow primitives

[14, 45]. The result is combined with the occlusion computed from a second set of

shadow primitives which delimit the bounds of umbrae (Subsection 2.5.1). Haines

utilizes shadow geometry composed of sheets and cones forming the faces and corners

of penumbra wedges, shaded with a gradient mimicking the transition from light to

shadow [54]. This geometry is rendered to a texture which is then projected back

onto the scene. Chan and Durand generate a set of polygons representing the extents

of penumbrae as seen from the light [28]. This geometry is rasterized into a light-view

“smoothie buffer”. Penumbral occlusion is computed by sampling this buffer, while

umbral occlusion is computed by sampling a classical shadow map. In all three

cases, penumbral regions are defined geometrically and can be rendered directly,

yielding plausible looking shadows without aliasing or band limiting. However, the

shape and structure of the shadow geometry often derives from assumptions about

the light geometry, resulting in approximations particularly at the joints between

neighboring shadow polygons [28].

Interestingly, Laine et al. use shadow geometry to accelerate visibility queries

in several offline soft shadow algorithms built into a ray tracer [75, 76, 74]. Here the

role of the shadow primitives is more closely related to that of the split planes in a
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spatial acceleration structure. The percentage of an area light visible to a receiver

point is determined by testing the point against a hierarchy of shadow volumes.

Each volume is defined by a different subregion of the light and the silhouette of an

occluding object.

3.6.4 Precomputation and Band-Limiting

Part or all of the visibility computation can be moved offline and the results stored

in a form readily accessible at runtime. However, precomputing visibility or illumi-

nation requires making assumptions about the spatial relationship between elements

of the scene. These assumptions lead to restrictions on the motion of the camera or

light [2] and / or on rigid body motion or deformation of scene geometry [148].

Ren et al. precompute low-frequency visibility information using spherical

harmonic exponentiation [111]. Since spherical harmonic coefficients represent the

illumination in frequency space, band-limiting bounds the storage requirements of

the precomputed data. This method yields interactive frame rates and handles the

difficult case of self-shadowing in deformable models. It also works well for large

area lights and environment maps, but shadows from small local light sources are

unconvincing.

3.6.5 Resampling / Filtering Approximate Visibility

Alternatively, the visibility calculation can be minimized by resampling and / or

filtering an approximate solution to achieve often plausible looking (but potentially

inaccurate) penumbrae. For example, the hard shadow silhouettes found via classical

shadow mapping, can be blurred using bilinear filtering. The performance of these

methods benefits from hardware-accelerated filtering and from the relative inexpense

of the approximate visibility function.
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Soler and Sillion use an explicit convolution kernel to produce penumbrae

from an image of the occluders as seen from the light. The resulting soft shadow

textures are then re-projected back onto scene geometry [122]. The constant-width

filter used is accurate only for planar scene geometry parallel to the light. Fernando

uses a variable-width kernel with percentage closer filtering [109] to blur hard shadow

boundaries in a classical shadow map on a per-sample basis [43]. The size of the

filter is proportional to the penumbra width and is estimated as the ratio of the

distances from the light to the occluder and the light to the shadowed geometry

(Equation 3.3). The algorithm is simple to implement but is bandwidth intensive

since the number of shadow map texels retrieved from memory grows as the square

of the kernel width. Further, the resulting penumbrae can exhibit aliasing artifacts

since the shadow map is a discretized representation of the occluding geometry.

Mipmapping and summed area tables [77] can be used to prefilter shadow maps

to avoid this aliasing, but doing so results in the loss of high frequency shadow

information [8, 39].

3.6.6 Closely Related Work

Concurrent with our work, Sintorn et al. have developed a similar algorithm [120].

As in our approach, receiver points are stored in a light-view spatial acceleration

structure. This structure is a 2D form of the 3D perspective-correct grid described

in Subsection 4.2.2. The method for determining umbral occlusion (Section 2.3),

and the use of shadow geometry to estimate the set of receiver points affected by a

silhouette (Subsection 3.3.2), are also similar. The two algorithms differ primarily

in the computation of penumbral occlusion and in the optimizations used. Sintorn

et al. estimate the integral of the visibility function in Equation 3.2, by evaluating

V at several discreet points on the light surface. In our algorithm, we evaluate this

integral analytically, avoiding a potential source of penumbral aliasing. Further, our
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algorithm is distinct in its use of optimizations for reducing overdraw associated with

the shadow primitives (Section 3.4). The similarity in the two algorithms, though

striking, is not unexpected. The grid-based data structure and use of light-space

shadow geometry in particular are logical extensions of ideas introduced in hard

irregular shadow mapping [65].

3.7 Summary

Though extensively studied, there remains a gap in the solution space for real-time

soft shadow rendering. Specifically, no existing algorithm has been demonstrated to

achieve both high image quality and high performance in dynamic scenes with the

geometric complexity of modern games. Existing approaches vary in the visibility

function V and in the method used to estimate the integral of V over the light

surface, but image quality and performance are primarily influenced by the former.

As with hard shadows, most soft shadow algorithms determine V from shadow

geometry or a shadow map. Methods using eye-space shadow geometry can produce

penumbrae comparable to a beam tracer, but the performance is constrained by

overdraw (Subsection 2.6). Alternatively, algorithms based on shadow mapping can

achieve high performance, but are subject to aliasing, loss of frequency content,

and light leaks. The incidence of these artifacts can be reduced by prefiltering,

resampling, and oversampling, but such solutions do not address the root causes:

misalignment of the eye and light-view sample patterns (Figure 2.2b) and loss of

geometric detail due to the discretization.

Soft irregular shadow mapping (our algorithm) occupies a unique point in the

solution space defined by image quality and performance. As we’ll see in Chapter 6,

this algorithm achieves frame rates comparable to the highest performing existing

methods, but yields substantially higher image quality. More specifically, the image

quality produced is typically indistinguishable from that of physically-accurate (but
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lower performance) approaches like beam tracing. This novel combination of image

quality and performance is achieved through four key properties of our algorithm.

First, the points in the scene visible from the eye (i.e. receiver points) are stored

in an explicit spatial acceleration structure in light space, and the computation of

umbral and penumbral occlusion is performed only at these points rather than for

all points in the scene, resulting in high efficiency. Second, the computation of

occlusion is performed exactly at these points, avoiding aliasing and self-shadowing

artifacts endemic to classical shadow mapping methods. Third, the umbral occlusion

computation is separated from the computation of penumbral occlusion, enabling

the relatively expensive penumbral component to be restricted to receiver points

near silhouette edges. Fourth, the computation of penumbral occlusion is performed

analytically per silhouette edge using shadow primitives. Performance loss due to

overdraw is minimized by rasterizing these primitives from the light rather than from

the eye. Note that the composition of occlusion from silhouette edges from different

occluding surfaces is approximate. However, this approximation does not introduce

objectionable artifacts. We explore the overall image quality and performance of

this algorithm in detail in Chapter 6.
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Chapter 4

Spatial Acceleration Structures

A distinguishing characteristic of the irregular Z-buffer algorithm is the use of non-

uniform spatial acceleration structures for storing the coordinates of sample points

in an image plane. The primary purpose of this structure is to organize the sample

points spatially such that those within a specific region of interest can be quickly

loaded from memory. In the classical Z-buffer algorithm, an explicit acceleration

structure is unnecessary. Here, the samples form a grid and the coordinates of any

point can be determined from a simple formula given the indices of the point. In

the irregular Z-buffer algorithm, the placement of samples in the image plane is

typically scene dependent and as such cannot be readily computed from a formula.

As a result, the sample coordinates must be stored as they are determined, for later

use during irregular rasterization.
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4.1 Design Considerations

Spatial acceleration structures may take any of several forms including variants of

BSP trees (e.g. quadtrees, k-d trees), grids, or combinations of the two, and the

best choice often depends on the intended application. For example, in cases where

the distribution of samples changes significantly from frame to frame, the cost of

construction can be as important as query cost, and both may vary asymptotically

between structure types. In the case of irregular shadow mapping, a primary design

consideration is memory bandwidth utilization. Recall that this algorithm consists

of two phases: construction of the spatial acceleration structure, and computation

of umbral and penumbral occlusion at the receiver points stored in this structure.

As we’ll see in Chapter 6, performance is dominated by the occlusion computation

and this phase of the algorithm is memory rather than compute bound.

4.1.1 Grids Versus Trees

The relative advantage of a grid or tree-based spatial acceleration structure depends

on a wide range of variables, and a given structure is unlikely to outperform another

across all cases. In principle, trees offer several benefits over grids, including faster

range queries since fewer spatial partitions are typically visited, and more efficient

queries since spatial partitions vary in size according to their contents. Conversely,

grids are easier to construct and traverse, and construction is easier to parallelize.

In practice, the performance of a given structure is dominated by properties of the

scene (e.g. receiver point distribution, image plane extents of geometric primitives),

the functionality present in current graphics hardware, and the values of structure-

specific parameters (e.g. maximum tree depth, grid resolution). A complete analysis

of the relative merits of grid and tree-based acceleration structures is beyond the

scope of this dissertation. Here, we focus on the spatial efficiency of range queries,

as this is a primary factor influencing the memory bandwidth used during irregular

shadow mapping.
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Conceptually, the spatial efficiency of a range query can be defined as the

useful data loaded from memory divided by the total data loaded from memory. In

the case of shadow rendering, this value is defined as the total depth complexity over

all receiver points1, divided by the total number of receiver points accessed. A perfect

spatial acceleration structure is one in which the value of this efficiency measure is

1.0. In a practical structure, this value is sensitive to the average size of a geometric

primitive relative to a spatial partition, and the average point density in partitions

with high depth complexity. For a given number of spatial partitions, a k-d tree will

typically achieve higher efficiency than a grid, since the partition size is adaptive

based on the local point density. However, this efficiency comes with substantially

greater construction and traversal costs and implementation complexity. Moreover,

we have found that a simple grid can achieve an efficiency value of 0.7 with little

tuning of the grid resolution in a game-like scene, while enabling range queries to

be performed via classical rasterization (Subsection 2.3.1). For these reasons, the

two data structures discussed in Section 4.2 are both grid-based.

4.1.2 Storage Order in Memory

The storage order of receiver points in the spatial acceleration structure is key to

maximizing spatial reuse, and minimizing memory bandwidth consumption. Recall

that receiver points correspond to locations in the scene visible from the eye, but

occlusion is computed at these points in light space. As a result, the receiver points

can be organized in memory according to the order of the respective pixels in the

eye view, or by their relative spatial locations in the light view. Eye-view indexing

exposes some locality and does not require sorting receiver points frame-to-frame.

Light-view indexing exposes maximal locality but requires sorting points per frame.

1The depth complexity of a receiver point is the number of surfaces hit by a ray from the receiver
point to the light source.
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(a)  Eye view. (b)  Eye view (tiled). (c)  Light view.

Figure 4.1: A scene with two light sources is seen in (a). This view is overlaid with
colored tiles in (b). Points in the scene visible from the eye are transformed into the
image plane of the overhead light (c). Each point retains the color of the respective
eye-view pixel. Note that spatial locality is in part preserved between the eye and
light view tiles. Two points from neighboring pixels in the eye view tend to remain
nearby after projection into the light-view image plane.

With eye-view indexing, the goal of achieving high spatial reuse might at

first seem irreconcilable with the unpredictable arrangement of receiver points in

the light view. However, though the relationship between the positions of pixels in

the eye-view raster and the corresponding receiver points in the light-view image

plane is scene dependent it is not necessarily incoherent. In fact, pixels that are

nearby in the eye view tend to remain nearby after transformation into the light

view. This property is illustrated in Figure 4.1. Observe that tiles in the eye-view

remain largely intact following transformation and projection into the light-view

image plane. The degree to which this property holds depends on the amount of

local variation in the per-pixel depth of the geometry seen from the eye. The greater

the variation, the more the corresponding receiver points will be dispersed in the

light-view image plane. Light-view indexing improves spatial reuse by eliminating

the impact of this dispersal on locality. Receiver points are sorted based on their

relative spatial locations in the light-view image plane ensuring that neighboring

points are also nearby in memory.
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4.2 Practical Data Structures for Shadow Rendering

Here, we introduce two spatial acceleration structures for use with irregular shadow

mapping. Both structures are based on grids (Section 4.1.1), but are irregular. This

irregularity results from the property that the number of receiver points varies from

cell to cell based on the spatial relationship of the geometry, light, and eye, and

is bounded only by the number of eye-view pixels. The two data structures differ

primarily in the organization of the receiver points in memory, and subsequently in

the hardware features needed for efficient construction and traversal.

4.2.1 A Spatial Acceleration Structure with Eye-View Indexing

A simple spatial acceleration structure for shadow rendering is seen in Figure 4.2.

It is composed of a grid with linked lists at each cell which store the receiver points

located in the cell. This structure is similar to the grid of variable-lengthed arrays

used by Purcell et al. in GPU-based ray tracing [107] and photon mapping [108].

It is distinct in the use of a large logical grid spanning the image plane, in tandem

with a smaller stored grid. Cells in the image plane are wrapped into cells in the

grid, reducing the memory footprint of this portion of the data structure [110].

The mapping function is described by Equation 4.1, and has several key properties.

It avoids folding a region of high sample density in the image plane back onto

itself in the grid, inhibiting further concentration of samples in hot spots. This

mapping also preserves a high degree of spatial locality. Points nearby in the image

plane tend to remain nearby in the grid. This locality is exploited during irregular

rasterization by tiling the grid in memory and processing fragments in tile order [94].

Note however that the mapping function can place receiver points from multiple

independent regions of the image plane into the same linked list.
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Figure 4.2: A spatial acceleration structure used for shadow rendering, in which the
storage order of samples in memory is fixed. It consists of a 2D wrapped grid (a),
where each cell stores the memory address of the head of a linked list containing the
samples located in the cell. Note that a given list may contain samples from multiple
independent regions of the image plane due to the wrapping function, and the order
of the samples in a given list is undefined. Linked list nodes are stored contiguously
in memory in a single 1D array indexed by the positions of the respective pixels
in the eye-view raster (b). Each node contains the image plane coordinates of the
sample (32-bit), its depth (32-bit), and a tail pointer to the next node in the linked
list (32-bit). This acceleration structure is fast and simple to build and traverse on
GPUs circa 2005 with the incremental modifications discussed in Section 5.4.
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Linked list nodes are stored together in a single contiguous 1D array as seen in

Figure 4.2b. The storage order matches that of the corresponding pixels in the eye-

view raster (Subsection 4.1.2). Since the pixel storage order is set at compile time,

the storage order of points in the 1D array is similarly static and need not change

frame-to-frame, simplifying data structure construction2. Further, as we’ll see in

Section 5.4, the absence of per-frame sorting reduces the hardware features necessary

to support high performance construction. We discuss an implementation of this

data structure for the irregular Z-buffer architecture in Section 5.5 and evaluate the

performance in Section 6.4.

4.2.2 A Spatial Acceleration Structure with Light-View Indexing

To review, eye-view indexing exposes some spatial reuse. However, maximizing reuse

requires sorting the receiver points in memory based on their relative positions in

the light view, since the data structure is traversed from the point of view of the

light rather than from the eye. One example of such a spatial acceleration structure

is seen in Figure 4.3. Conceptually, it is a 3D perspective grid where each cell stores

the receiver points located within its bounds. In practice, these points are stored

contiguously in a separate 1D array indexed by the grid. The order of the points in

this array changes per frame in dynamic scenes in response to changes in the position

of the eye, light, and / or geometry. Points from the same 3D grid cell are stored

(unordered) in consecutive memory locations, followed by points from grid cells in

the same column, followed by points from grid cells in neighboring columns. Note

that a fragment from an occluding object can only shadow points in the grid with a

depth greater than that of the fragment. Importantly, the set of points potentially in

shadow are those in consecutive memory locations in the 1D array beginning at the

2The links between nodes do change per frame based on the relative positions of the respective
points in the light view.
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Figure 4.3: A spatial acceleration structure used for shadow rendering, in which the
storage order of samples in memory changes frame-to-frame. It consists of a 3D
perspective grid (a), where each cell stores the memory address of the first sample
in the cell. Samples are arranged contiguously in memory in a single 1D array (b).
Sample image plane coordinates (16-bit), depth (32-bit), and accumulated occlusion
(32-bit) are stored in separate planes of this array (c). Samples from grid cells in the
same column are stored in consecutive memory locations. For example, the samples
from cell n+2 follow those from cell n in memory (cell n+1 contains no samples). This
acceleration structure is fast and simple to build, requiring only a sort and a scan. It
is also fast to traverse. For example, samples potentially occluded by the fragment
shown are those in the 1D array in consecutive memory locations beginning at the
address given by cell n. This arrangement exposes spatial locality on cache lines and
enables simple and efficient vectorization.

index given by the cell occupied by the fragment (celln). This storage order exposes

spatial reuse of points on the same cache line, and maximizes the efficiency of vector

memory operations during computation of occlusion, but requires hardware support

for high performance sorting (Subsection 5.6.5).
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The use of a 3D grid is motivated by the observation that depth information

associated with a fragment can be employed to reduce the computation required by

our shadow rendering algorithm. For example, the penumbra cast by a silhouette

edge forms a wedge (Figure 3.1). Samples outside of this wedge are not in the

penumbra and can be skipped. Implicit in this design choice is the assumption that

samples are not constant in depth as seen from the light. This property commonly

holds in game scenes (Figure 6.2b and c). We discuss an implementation of this data

structure for the Larrabee architecture in Section 5.8 and evaluate the performance

in Section 6.5.

4.3 Summary

The irregular Z-buffer algorithm is unusual among visible surface solutions for GPUs

in its use of an explicit spatial acceleration structure for storing the coordinates of

sample points. In this chapter, we have discussed design considerations related

to these data structures as used in memory bandwidth intensive applications like

shadow rendering. We have also presented a pair of practical acceleration structures

for use with irregular shadow mapping. Other work has explored the use of tree-

based structures [79, 80, 78] and grid-based structures similar to ours [107, 108] on

GPUs. However, a key insight from our work is that hardware specialized to the

task of rasterizing scene geometry to a uniform grid can be used to perform range

queries on non-uniform grid-based spatial acceleration structures (Subsection 2.3.1).
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Chapter 5

Architectural Support

The algorithms used in real-time graphics have traditionally been tightly coupled

to the architectures that support them. Classical GPUs are single-chip parallel

processors customized to the task of rendering arbitrary collections of geometric

primitives via the standard Z-buffer algorithm (Figure 1.1a). High performance

and low cost are achieved through parallelism, pipelining, and specialization. As

such, these architectures contain a mix of fixed-function and SIMD programmable

units, with multiple copies of each unit [70]. Contemporary trends in GPU design

have favored increased programmability and replication of functional units, but the

overall structure has changed surprisingly little over the past 20 years. As a result,

the classical Z-buffer algorithm continues to prevail despite work indicating that

more flexible solutions to the visible surface problem yield higher-quality images

[32, 126, 125] and would be adopted if they could be implemented with adequate

performance.
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5.1 Methodology

To review, the classical Z-buffer algorithm samples scene geometry from regularly-

spaced points in an image plane (Figure 1.2a). The irregular Z-buffer algorithm goes

further by enabling samples to be computed at arbitrary locations in the image plane

(Figure 1.2b). This flexibility is useful in several important applications throughout

real-time graphics, but the algorithm is not real-time on existing CPUs [6] or classical

GPUs [11, 120]. CPUs lack the necessary parallelism and memory bandwidth, and

neither shortcoming can be addressed without significant architectural changes. In

contrast, GPUs circa 2005 (when this work began) lack a comparatively small set

of features related to memory access and computational flexibility. For this reason,

our efforts to achieve real-time performance with the irregular Z-buffer algorithm

focus on improving the architectural support in classical GPUs, and evaluating the

performance of our algorithm on next-generation commercial designs.

5.2 Contribution

An important contribution of this work is an analysis of the architectural features

needed for hardware-accelerated construction and query of irregular data structures,

and (consequently) hardware-acceleration of the irregular Z-buffer algorithm. This

analysis has two parts: the design and evaluation of a new GPU based on incremen-

tal changes to graphics processors circa 2005, and evaluation of a next-generation

commercial architecture expected by 2010. GPUs circa 2005 lack efficient support

for scatter operations and for most forms of read-modify-write memory operations.

We show that the memory access flexibility enabled by these operations (along with

other enhancements) enables high-speed construction and traversal of certain types

of irregular data structures. Further, we show how additional architectural features

expected to fully appear in GPUs circa 2010 enable high-performance manipulation

of a large class of memory bandwidth efficient 2D and 3D irregular data structures.
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5.3 GPU Architecture Circa 2005

Classical GPUs are specialized stream processors. This specialization yields high

speed as well as architectural simplifications enabling rapid advances in performance

and task-specific functionality, but limits the applicability of the GPU beyond the

classical Z-buffer algorithm and similar types of computation. In this section, we

briefly review the classical Z-buffer algorithm, the architecture of GPUs circa 2005,

and limitations arising from the tight integration between the two.

5.3.1 Classical Z-Buffer Software Pipeline

Stream processing is a restricted form of parallel computing in which a program is

expressed as a sequence (typically pipelined) of computational kernels which iterate

over the elements in a data stream. This abstraction simplifies parallelization of

the application, since synchronization, interprocessor communication, and resource

allocation are implicitly managed by the architecture rather than explicitly stated

in the program code.

The classical Z-buffer algorithm can be expressed as a pipelined sequence

of computational kernels which iterate over a stream of data. This pipeline [19] is

illustrated in Figure 5.1. The input to this pipeline is a geometric scene specification

typically consisting of vertex data, connectivity information for the vertices, texture

data, and light and camera descriptions. The output of this pipeline is commonly a

colored and shaded image stored in framebuffer memory. The stages of this pipeline

operate as follows. Data for a given vertex is brought together from multiple 1D

channels of the input stream (e.g. colors, normals) in the vertex assembly stage.

Vertices are subsequently transformed from the local object coordinate system into

eye space, repositioned, lit, and / or shaded during vertex shading. The vertices

for a given geometric primitive are further processed in the geometry shading stage.

Here, per-primitive transformations and surface attributes (e.g. edge equations, Z
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interpolation coefficients) are computed, before being passed onto the rasterization

stage. In this step, perspective and other screen-space transformations are applied.

Primitives are clipped to the viewport bounds and conditionally discarded via hier-

archical early Z-culling. The remaining primitives are scan-converted into per-pixel

fragments. Scissor or stencil testing may be performed on the resulting fragments.

Per-pixel lighting and shading are then computed, often based on surface attributes

interpolated at the point visible through the pixel covered by the fragment. One or

more color values (along with a single depth value) are produced and passed onto

the raster operations stage. Here, framebuffer memory associated with the current

pixel is conditionally updated according to the outcome of a depth test.

raster operations

pixel shading

clip, cull, project,
stencil, scissor,

rasterization

geometry shading

vertex shading

vertex assembly

m
em

or
y

(a)

(b)

(c)

(d)

(e)

( f )

Figure 5.1: The classical Z-buffer algorithm can be expressed as a software pipeline.
In commodity graphics hardware circa 2005, stages (a), (d), and (f) are performed
via fixed-function units, while stages (b), (c), and (e) are implemented as user-
defined programs which execute on multithreaded processors. The irregular Z-buffer
algorithm modifies the behavior of stages (e) and (f).
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5.3.2 Hardware Acceleration

The stream abstraction also reduces architectural complexity. Chip multiprocessors

based on this model (e.g. GPUs circa 2005) require smaller caches, less control logic,

and fewer connections between functional units than general-purpose multi-core

CPUs. A key design goal is the exploitation of abundant thread and data parallelism

rather than high-performance serial execution. GPUs in particular achieve this goal

through replication of functional units at multiple scales, with tens (in some cases

hundreds) of instances of each unit. These units can be subdivided into: fixed-

function blocks for generic tasks like rasterization (Figure 5.1 a, d, and f), and

programmable units for application-specific operations such as shading (Figure 5.1

b, c, and e). The programmable units are multithreaded and vectorized, share

a program counter (i.e. are SIMD not MIMD), and have no direct write access to

memory [70]. A typical instruction set [23] includes simple and compound arithmetic

operations, graphics-specific functions (e.g. texture sampling), and rudimentary flow

control with limited branching, but no synchronization or explicit atomic operations.

5.3.3 Limitations

GPUs circa 2005 perform well on computations with abundant parallelism and few

data dependencies, as in the case of the classical Z-buffer algorithm, but are much

less efficient at other types of computation. For example, the construction of an

irregular data structure can require data dependent branching, explicit emission of

outputs, atomic operations, and / or writes to addresses in memory determined at

run time. The performance of these operations is inhibited by limitations of the

architecture including: minimal connectivity between functional units, restricted

access to memory, SIMD rather than MIMD programmable cores, and small local

caches with no coherence mechanism. Note that these limitations result from the

same architectural specializations that yield high efficiency in the case of the classical

Z-buffer algorithm!
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5.4 Irregular Z-Buffer Architecture

The irregular Z-buffer architecture is derived from GPUs circa 2005, and relaxes

some but not all of the aforementioned restrictions through incremental design

changes (i.e. no new functional units are added). In aggregate, the goal of these

changes is to enable hardware-accelerated construction and traversal of irregular

data structures such as the linked list grid from Figure 4.2. At the algorithm level,

our design supports the ability to write to memory addresses computed at run time

(i.e. a scatter operation), and multiple output records per input record. The scatter

operation is key to spatial data structure construction, while multiple outputs per

input is needed for data structure traversal during rasterization. At the hardware

level, these changes are expressed as a more flexible routed interconnect between

sets of functional units, MIMD rather than SIMD programmable units, and the

addition of an instruction for explicit emission of outputs.

5.4.1 Primary Functional Units

Figure 5.2 illustrates the irregular Z-buffer architecture at a high level. The design

provides efficient support for construction and traversal of irregular spatial data

structures. The basic architecture is similar to that of the GeForce 6800 GPU [70]

and Eldridge et al.’s sort-everywhere design [40], and includes 16 multithreaded

processors with support for 4-wide vector operations, 16 raster operation units, and

a 512-bit wide memory interface. The memory system includes four controllers each

with two memory chips. The rasterizer is fed by a geometry processor (not shown),

which can access data for all vertices of a given triangle.

Figure 5.3a illustrates the design of the primary computational unit. This

unit is composed of a programmable core and an L1 texture cache, and is similar in

design to that of shader processors circa 2005. The core is multithreaded (16-way)

with a zero-cycle context switch, round-robin scheduling, and a single execution
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Figure 5.2: A high-level illustration of the irregular Z-buffer architecture. This
design is composed of 16 programmable cores with support for multithreading and
4-wide vectorization, 16 raster operation units, and 4 memory controllers each with
2 DRAM chips. The data paths between the system components shown are all 16
bytes wide.

pipeline. Both scalar and 4-wide SIMD operations are supported. The instruction

set largely follows the syntax and semantics of NV fragment program2 [23], with

arithmetic operations, logical shifts, conditional execution, and limited control flow

including a branch instruction.

Figure 5.3b illustrates the design of our raster operation (ROP) unit. As in

classical GPUs, it is a fixed-function unit which supports a limited set of atomic

read-modify-write operations on memory, such as those used in alpha blending and

depth buffer updates. Similarly, our ROP also supports multiple simultaneous in-

flight memory transactions. For this reason, the central challenge in its design is

to preserve the atomic semantics of the read-modify-write operation. A key in-

sight used in other GPUs is that atomicity need only be enforced per pixel (i.e. per
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Figure 5.3: A block-level diagram of the primary computational units in the irregular
Z-buffer architecture. The multithreaded main processor (a) is fully programmable
and is equipped with a 16 KB, 8-way set associative, read-only cache. The raster
operation unit (b) is a configurable fixed-function unit specialized for performing
atomic read-modify-write operations on memory. It is equipped with dual read-
write caches (16 KB, 8-way set associative).

memory address). Transactions to independent pixels may be arbitrarily intermin-

gled. The atomicity enforcer insures the ROP has no more than a single transaction

in progress for any particular pixel. This enforcer is similar to that described by

VanDyke et al. [131], and maintains a table indexed by a hash of the pixel address,

indicating whether a fragment is in-flight for a given hash. If a fragment is in-flight,

further fragments for that pixel are stalled (in order) in a queue until the offend-

ing fragment clears, while fragments for other pixels continue to pass through the

atomicity enforcer. A release signal notifies the atomicity enforcer when all memory

transactions related to a given pixel have completed, at which point it is safe to

begin processing another fragment for this pixel.
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5.4.2 Features Not Found In GPUs Circa 2005

The irregular Z-buffer architecture incorporates several features not found in GPUs

circa 2005. Two of the most important are the ability to write to addresses in

memory computed on the fly, and generate an arbitrary number of output records

per input to the multithreaded processor.

Multithreaded Processor

The programmable cores in GPU designs circa 2005 have several restrictions. These

cores share a program counter, can emit no more than a single output record per

input, and do not support global reduction operations. Further, the destination

memory address for a given output record is defined upstream by the rasterizer and

is immutable to the programmable core. The design of the multithreaded processor

used in the irregular Z-buffer architecture relaxes these restrictions. It is a true

MIMD design rather than a SIMD implementation of a MIMD instruction set [70].

Further, it includes the ability to generate an arbitrary number of output records per

input, the ability to specify the destination memory address for each output record

(subject to certain constraints discussed in Section 5.6), and support for minimum

and maximum global associative reduction operations. Additionally, this processor

has access to per-triangle data computed by the geometry processor, including the

homogeneous equations describing the edges and Z interpolation coefficients [101].

Raster Operation Unit

Our raster operation unit design is more flexible than that in GPUs circa 2005.

In particular, classical ROP units cannot issue writes to memory addresses other

than that specified by the input record. Ours loosens this restriction and is able to

write to addresses in memory computed within the ROP on-the-fly (i.e. a scatter

operation). For example, this unit can write to locations in memory computed from
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data read from the address associated with the input record. For this reason, a pixel

cache architecture [48] rather than a coalesce buffer [128] is used. In principle, this

capability leads to the potential for non-determinism as discussed in Section 5.6. In

practice, the operation of the irregular Z-buffer algorithm as it is used for shadow

rendering avoids non-determinism.

Interconnect

To improve both spatial and temporal reuse of cached data, memory addresses are

statically mapped to ROP units. A fragment is routed to the ROP that “owns” the

memory address of the data corresponding to the input record. The interconnect

performs this task. It is anm×n network with internal buffering capable of accepting

input from up to m processors and routing output to up to n ROP units each cycle.

An interconnect with this degree of flexibility is generally unnecessary in classical

GPU designs, where routing is straightforward. Addresses are statically partitioned

in memory and in the rasterizer such that processors and ROPs can be connected

one-to-one. ROPs and memory controllers are similarly connected. In the irregular

Z-buffer algorithm, this routing scheme is unworkable. Consider construction of

a grid-based acceleration structure for shadow rendering. The spatial relationship

between pixels in the eye-view raster and the corresponding samples in the light-

view image plane (Figure 4.1) is scene dependent and cannot be known a priori.

Specifically, the light-view grid cell into which a given sample falls, is unknown until

the sample is transformed into light space. As a result, a static partitioning of grid

cell addresses relative to eye-view pixel addresses cannot be set in the rasterizer

until after the construction computation is performed.
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5.4.3 Cost of Additional Features

Estimating the incremental cost of the novel features of this architecture is difficult.

We have not modeled our design at the RTL level, and there is insufficient published

information regarding classical GPUs to permit an accurate comparison. However,

we can identify several likely sources of increased cost. Most significantly, our MIMD

processor requires a small per-core instruction cache and decode unit unnecessary in

SIMD designs. Moreover, our m×n interconnect is more complex than the fast-path

routing found in classical designs, and thus requires greater die area. Lastly, the

dual-port pixel cache design of our ROP (see Figure 6.4 for configuration details)

necessitates additional cache wiring and control logic.

5.5 Algorithm Mapping I

Recall that the irregular Z-buffer algorithm occurs in two phases. In the first phase,

the image plane coordinates of the desired sample points are entered into a spatial

acceleration structure. In the second, scene geometry is rasterized to the positions

encoded in this structure. Here, we describe the role of our multithreaded processor

and raster operation unit in data structure construction and irregular rasterization.

This discussion occurs in the context of shadow rendering, but the operation of these

units is likely to be similar in other applications of the irregular Z-buffer algorithm.

5.5.1 Data Structure Construction

Data structure construction is a two part process. First, the light-space coordinates

of points in the scene seen from the eye (i.e. receiver points) are computed by the

multithreaded processor. Second, these points are inserted into a spatial acceleration

structure by the raster operation unit. The data structure used here is the 2D grid of

linked lists seen in Figure 4.2, in which the storage order of receiver points in memory

is determined by the order of the corresponding eye-view pixels (Subsection 4.2.1).

76



•  read eye-view fragment depth (      ) from memory
•  transform point given by          and         into light-space (              )
•  project point into light-view image plane (         )
•  wrap image plane coordinates into grid coordinates (          )
•  construct a new linked list node (     ) from         and
•  output        ,        , and

Multithreaded Processor

linked list nodes

•  output one fragment per eye-view pixel (        )
Rasterizer

eye-view fragments

one full-screen quad

Raster Operation Unit
•  lock memory address of grid cell 
•

•  read linked list array index (        ) from cell
•  write linked list array index (        ) into cell
•  unlock memory address of grid cell

•  set node tail (           ) to array index
•  write       to linked list array at index

atomic
linked list
insertion

pxyz

puv

N puv pz

NpIJ

pIJ

pIJ

pIJ

pIJ

pIJ

N
Ntail

pz′

pij

q ij

pij pz′

pij

pij

q ij

pij

(a)

(b)

(c)

(1 input record)

(0 - many output records)

Figure 5.4: The construction phase of the irregular Z-buffer algorithm as it is used
for shadow rendering on our architecture. Samples are inserted into a grid of linked
lists for later use during rasterization. Linked list nodes are stored together in a 1D
array indexed by the positions (pij) of the respective pixels in the eye-view raster.
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Figure 5.5: The raster operation unit in the irregular Z-buffer architecture can be
used to prepend a sample point onto a linked list (a). Insertion consists of an atomic
update of the pointer to the head of the linked list (b), and storage of the node data
and tail pointer (c). All linked list nodes are stored contiguously in a single 1D array.
Here, only links between nodes in the list affected by this insertion are shown.

In the case of the multithreaded processor, a simple program determines the

coordinates of a receiver point (p) from the indices of the corresponding pixel in the

eye-view raster and its depth value (Figure 5.4b). This point is transformed into

light space, and the grid cell into which it falls is determined. A new linked list node

(N) is constructed from the light-space coordinates of the point, and sent on to a

ROP unit, along with a destination address in memory. This address is the memory

location of the respective grid cell. The min() and max() reduction operations

described in Section 5.4.2 are used to track the bounding box of points in the light-

view image plane. These bounds are used during rasterization for viewport clipping

and as the extents of a stencil mask for early rejection of unnecessary fragments.

The raster operation unit inserts nodes emitted by a multithreaded processor

into the spatial acceleration structure (Figure 5.4c). Each node is prepended onto

the linked list of the specified grid cell. This process is seen in Figure 5.5, and occurs

in two steps. First, the pointer to the head of the linked list is atomically updated to

the destination memory address of the new node. Next, the tail pointer of the new
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node is set to the previous head of the linked list and the node contents are written

to memory. Here, the ability to generate writes to memory addresses determined

on-the-fly is crucial. Observe that this second write is to an address included in the

data sent by the multithreaded processor but is not the destination memory address

specified by the processor (i.e. address of the grid cell).

5.5.2 Irregular Rasterization

Irregular rasterization is similarly a two part process. First, the points stored in

a given linked list are tested against the bounds of a geometric primitive. If the

primitive occludes a point, a depth value is computed. Second, this computed depth

value is compared against the respective value in memory, and the stored value is

conditionally updated. These two steps occur on the multithreaded processor and

raster operation unit respectively.

In the case of the multithreaded processor, a simple program traverses the

linked list of a grid cell associated with a fragment produced by the rasterization

unit (Figure 5.6c). For each list node, the coordinates of the point stored in the

node are tested against the edge equations [106, 101] of the geometric primitive

undergoing rasterization. If a point is occluded by the primitive, the Z interpolation

equation for that primitive is evaluated at the coordinates given by the point. The

resulting depth value, along with the address of the eye-view pixel corresponding to

the point, are passed onto the ROP. It is here that the ability to generate multiple

output records per input (since each node may result in one output), and specify

the destination address of each output are needed.

The raster operation unit compares the depth values emitted by the multi-

threaded processor to the corresponding values in memory (Figure 5.6d). The stored

value is updated if the incoming value is closer to the light. The novel ability of our

ROP unit to write to arbitrary addresses in memory is unnecessary here. Rather, its

operation in this phase of the algorithm is very similar to that in classical GPUs.
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Figure 5.6: The rasterization phase of the irregular Z-buffer algorithm as it is used
for shadow rendering on our architecture. Geometric primitives are rasterized from
the light. For each fragment produced by the rasterizer, the multithreaded processor
queries the spatial data structure to determine which samples are occluded by the
primitive. Primitive expansion (a) is explained in Figure 2.4.
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5.6 Irregular Z-Buffer Architecture Discussion

In principle, the architectural changes expressed in the irregular Z-buffer GPU can

be used in a manner which leads to race conditions and non-determinism. We discuss

this property here as it relates to atomicity and the preservation of fragment order.

Further, we discuss the impact of these architectural changes on memory allocation

and on the applicability of optimizations commonly found in classical GPU designs,

as well as limitations arising from the incremental nature of these changes.

5.6.1 Atomicity

Recall that a key feature of our ROP unit is its ability to write to addresses in

memory computed from input data (typically associated with a pixel or a grid cell

in the spatial acceleration structure). These indirect writes occur after the pixel

or cell address has cleared the atomicity enforcer. As a result the addresses of the

writes cannot be known (and thus protected) by the enforcer, potentially leading to

race conditions and non-determinism. It is the responsibility of the software driver

or programmer to avoid such cases.

An example of such an indirect write occurs in the course of data structure

construction in the irregular Z-buffer algorithm. During assembly of the the linked

list grid as seen in Figure 5.5, the ROP issues two writes. The first updates the

value stored at the incoming memory address (the address of the node at the head

of the linked list). The second writes the contents of the new linked list head node.

The address of this node is computed from data provided by the multithreaded

processor, and is unknown to the atomicity enforcer. However, a property of this

phase of the algorithm is that each node is written only once (i.e. each sample is

inserted into the data structure once). Moreover, our ROP caches support selective

writes. Only dirty sub-regions of a block are written out to memory. As a result,

though a given linked list node may exist in multiple cache lines on the same ROP
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(or in different ROPs), each node is guaranteed to be written to memory only once.

Although avoided in this example, non-determinism cannot be guaranteed in all

cases. By exposing the irregular Z-buffer algorithm through a high-level OpenGL /

DirectX API instead of as a set of low-level ROP capabilities, the driver can insure

that the machine is never used in an unsafe manner.

5.6.2 Fragment Order

Real-time graphics APIs specify precise ordering semantics for non-commutative

operations such as alpha blending and depth-buffered color writes. In some cases

these semantics are directly useful to application programmers, but they are also

important to guard against non-determinism frame-to-frame or from one hardware

generation to another. Fortunately, order does not matter when using the irregular

Z-buffer algorithm to generate shadow or other depth-only maps. For example, the

order of the samples in each grid cell of the spatial acceleration structure (Figure 4.2)

is unimportant and opaque to the user if the data structure is hidden behind a high-

level API as suggested in Subsection 5.6.1. Similarly, fragment order is invisible to

the user during irregular rasterization since the Z-compare and update operation is

commutative (assuming no auxiliary information is carried with it such as color).

However, the irregular Z-buffer can be used in applications where color is carried

with Z (e.g. reflection map generation). For these applications, the preservation of

fragment order during rasterization matters.

Preserving order in a parallel architecture can be difficult. With current

API definitions, architectures can maintain order by processing fragments in SIMD

lockstep. In our architecture, this solution is impractical since our multithreaded

processors can compute the destination memory address of output fragments on the

fly, and produce a variable number of outputs per input. In principle, preserving

fragment order would require an expensive, global order enforcement mechanism.
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However, the irregular Z-buffer algorithm does not require the full generality of

such functionality. For example, during irregular rasterization we can guarantee

that the set of memory addresses written to as the result of a given fragment, are

unique to the light-view grid cell corresponding to that fragment. Thus, by routing

fragments to processors by grid cell indices (Subsection 5.4.2), the global ordering

problem is simplified to one of enforcing order locally within the execution pipeline

of each processor. Here, a small table of locks hashed by memory address suffices

(since order is similarly preserved in the ROP units). Again, to guarantee that

programmers cannot implement non-deterministic code, some of the basic hardware

functionality must be hidden behind higher-level APIs.

5.6.3 Memory Allocation

The irregular Z-buffer algorithm, as applied to shadow rendering, has the unusual

property that no explicit memory allocation is performed even though a dynamic

data structure is used. Explicit allocation is unnecessary as storage is implicitly

reserved for each light-view sample. The reserved memory is associated with the

eye-view pixel corresponding to the sample. This strategy is feasible due to the

one-to-one correspondence between eye-view pixels and light-view samples. The

advantages of avoiding explicit memory allocation include freedom from potential

serialization bottlenecks in the memory allocator, and reduced chance of unbalanced

allocation across memory partitions. However, there is an important disadvantage.

Since the storage location of a sample (in the acceleration structure from Figure

4.2) is associated with the position of the respective pixel in the eye-view, it is

not associated with the position of the sample in the light-view. As a result the

any-to-any routing capability of the interconnect is required for light-view irregular

rasterization during shadow rendering (Subsection 5.4.2). Alternatively, memory

can be explicitly allocated for each sample. Here, the sample is placed in the memory
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partition associated with the region of the light-view containing the sample point.

This design eliminates the need for an any-to-any interconnect during irregular

rasterization, but such a network is then required during construction of the spatial

acceleration structure.

5.6.4 Optimizations

Our architecture does not include some of the more sophisticated optimizations used

by classical GPUs such as hierarchical Z-culling [49] and framebuffer compression.

These optimizations are not well documented in the open literature and they are

challenging to implement effectively even for large industrial architecture teams.

Though we have not implemented these optimizations in our hardware simulator,

we have given them some consideration. In particular, we believe that hierarchical

Z-culling is fully compatible with the irregular Z-buffer algorithm.

Hierarchical Z-culling reduces unnecessary pixel shading and Z-compare and

update operations by discarding fragments or entire primitives known to be hidden

from the view point by other geometric objects. This optimization works by tracking

the depth bounds of samples within a subregion of the image plane and discarding

fragments with a minimum depth greater than the maximum depth of any sample in

the subregion. Hierarchical Z-culling can be implemented in the irregular Z-buffer

algorithm down to the level of a grid cell in our spatial acceleration structure. During

irregular rasterization, if a fragment is generated for a grid cell and the respective

triangle fully covers the cell, the depth bounds of the cell are recomputed. The new

value is the minimum of the maximum depth of all samples contained in the cell

and the maximum triangle depth at the cell corners. This result is passed on to the

hierarchical Z subsystem.
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5.6.5 Limitations

At the algorithm level, the primary limitation of the irregular Z-buffer architecture

is the unavailability of support for global atomic operations on arbitrary memory

addresses. Though atomicity is guaranteed locally within a given ROP, it is not

guaranteed across ROP units, nor between multithreaded processors and ROP units.

At the hardware level, this shortcoming results from the presence of small local

caches throughout the design and the absence of a cache coherence mechanism.

The lack of global atomicity limits the types of irregular data structures that

can be built efficiently. Specifically, it is impractical to construct data structures in

which the storage order of member elements in memory is determined at run time.

Recall that the storage order of samples in the spatial acceleration structure used

above is fixed. Specifically, the storage order of samples in the array of linked list

nodes seen in Figure 4.2b matches the storage order of pixels in the eye-view raster.

This order is fixed at compile time and so cannot vary frame-to-frame. In contrast,

consider the construction of a spatial acceleration structure for a set of samples,

in which the storage order is defined at run time by a radix sort of the sample

coordinates. The appropriate insertion point for a given sample can be computed

by a multithreaded processor, but the actual insertion must occur in a ROP since

the processor has no write access to memory (Figure 5.2). Therefore, the state of

the data structure as seen by the processor may be stale due to in-flight memory

transactions produced by a ROP, potentially leading to non-determinism.

5.7 GPU Architecture Circa 2010

As of this writing, the feature set of modern GPUs has reached parity with and

in some cases exceeded that of the irregular Z-buffer architecture. For example,

the Xenos GPU from AMD supports a scatter operation [16], and global atomic
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Figure 5.7: The Larrabee architecture is a scalable, multi-core GPU design from Intel
[118]. Its major components include: programmable x86-based cores with support
for multithreading and 16-wide vectorization, large L2 cache, memory controller(s),
ring-based interconnect, and fixed-function units for specialized high-performance
memory operations such as texture filtering.

read-modify-write operations on memory are implemented in the GeForce GTX 280

from NVIDIA [30]. This trend away from the hardware specializations of the classi-

cal graphics pipeline and towards support for general-purpose parallel computation

continues in next-generation GPUs. For example, the Larrabee architecture from

Intel expected in 2009 or 2010 [64] features high-performance gather / scatter, global

atomic operations, and global synchronization, with the addition of a large L2 cache

and cache coherence [118]. We describe this architecture in brief and show how it

can be used in the construction and traversal of irregular data structures in which

data elements are reordered in memory to expose maximal spatial locality.

5.7.1 Larrabee Architecture

The major functional elements of the Larrabee architecture can be seen in Figure 5.7.

The design incorporates a scalable number of programmable cores, on-chip L2 cache
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and memory controllers, and fixed-function units for specialized high-performance

operations on memory (e.g. texture filtering), joined by a bi-directional, ring-based,

routed interconnect. The primary computational block is a general-purpose multi-

threaded core derived from the Intel Pentium R© line of CPUs. As such, it supports

32 and 64-bit integer and floating point scalar arithmetic and the Intel Pentium

x86 instruction set, but is distinct in its short in-order instruction pipeline. Die

area normally occupied by out-of-order control logic is instead devoted to 16-wide

SIMD units. These units support 32-bit integer and 32 and 64-bit floating point

arithmetic, conditional execution through vector element masking, and vector load

/ store and gather / scatter memory operations. The gather / scatter operations can

load or store up to 16 data values from one source vector operand to non-contiguous

addresses in memory specified by a second source vector operand. The memory

hierarchy itself is fully cache coherent and is composed of L1 and a large partitioned

L2 cache, and off-chip memory accessible through controllers distributed around

the interconnect. L1 is shared among threads of the same core, while data sharing

between cores is enabled by hardware-assisted communication across L2 partitions.

All vector memory instructions operate through cache. As a result, the performance

of gather / scatter is limited only by the speed with which the cache subsystem can

fulfill the requests.

5.8 Algorithm Mapping II

To first order, implementation of the irregular Z-buffer algorithm on the Larrabee

architecture is similar to that on our architecture. As before, the algorithm occurs

in two phases: coordinates of the desired sample points are inserted into a spatial

acceleration structure which is later queried during rasterization. However, the

Larrabee implementation is distinct in two important respects: the storage order

of samples contained in the acceleration structure is determined at run time, and
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parallelism is managed explicitly in the implementation rather than implicitly by the

architecture. The data structure used here is a 3D perspective grid with indices into

a separate 1D array of samples (Figure 4.3). The storage order of samples in the 1D

array is designed to maximize spatial reuse during rasterization, by placing sample

points which are nearby in space nearby in memory (Subsection 4.2.2). This strategy

replaces bandwidth inefficient operations such as gather / scatter, with simple and

efficient vector loads and stores in the memory-intensive rasterization phase. The

algorithm itself is implemented in C with compiler intrinsics for explicit creation of

threads, synchronization, vectorization, and atomic operations. Our implementation

can be invoked as a library routine from within the Larrabee graphics pipeline

(Subsection 6.5.2), which is likewise implemented fully in software. Load balancing,

assignment of threads to cores, and related tasks are handled by a conventional

system-level thread scheduler.

5.8.1 Data Structure Construction

The Larrabee implementation of data structure construction is more sophisticated

than that on our architecture. Rather than a simple linked list insertion, sample

points are ordered in memory based on their relative spatial positions. Specifically, a

partial radix sort is performed on the sample coordinates as seen in the pseudocode

in Figure 5.8. This code constructs a light-space acceleration structure for use in

shadow rendering, but the procedure is likely to be similar in other applications.

Construction occurs in three steps. First, the light-space coordinates of points in

the scene visible from the eye are computed, and the number of samples which fall

within each 3D grid cell is determined. Second, a linear sum converts these counts

into offsets into the 1D array of samples. Third, the sample points are reordered in

†The data structure construction recipe described here was developed in collaboration with
Warren Hunt and is used with permission.
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0 3 0 0 1 4 0 0 0 2

3D grid (  *  *  cells)

temporary array ( ’ * ’ samples )

foreach eye-view pixel (   :  = {0 .. ’-  1},  = {0 .. ’-  1})
   •  read eye-view depth ( ’) from memory
   •  transform point given by    and  ’  into light space (  )
   •  project point into light-view image plane (  )
   •  transform    into grid coordinates (  )
   •  increment counter (  ) stored in cell  

   •  write point    to temporary array at index  

end foreach

(a)  Transform visible points into light space and count per grid cell.

(b)  Transform point counts into offsets into the array of samples via linear sum.

0 3 3 3 4 8 8 8 8 10

3D grid (  *  *  cells)

temporary array ( ’ * ’ samples)

foreach grid cell (    :  = {0 ..  - 1},  = {0 ..  - 1},  = {0 ..   - 1})
   •  read counter (   ) from cell   

   •  read counter (   ’) from cell    -  1
   •  write offset (      +     ’) to cell  

end foreach

(c)  Reorder sample points in memory and shift offsets in grid 1 cell to the right (not shown).

0 0 3 3 3 4 8 8 8 8

3D grid (  *  *  cells)

final array ( ’ * ’ samples)

atomic
update

foreach light-view sample (   :  = {0 .. ’-  1},  = {0 .. ’-  1})
   •  read point    from temporary array at index  

   •  transform    into grid coordinates (  )
   •  read offset (  ) from grid cell 
   •  write point    to final array at index  

   •  increment   and write to cell  

end foreach

Figure 5.8: Pseudocode for the data structure construction phase of the irregular
Z-buffer algorithm, as it is used for shadow rendering on the Larrabee architecture.
Points in the scene visible from the eye are transformed into light space and inserted
into the 3D grid-based acceleration structure seen in Figure 4.3. A partial radix sort
on the point coordinates results in a storage order in memory such that spatial reuse
is maximized during rasterization.

memory according to their positions in the 3D grid. Note that parallelization and

synchronization directives are not shown. However, this procedure utilizes several

operations that do not exist or are inefficient on GPUs circa 2005 and / or on the

irregular Z-buffer architecture including: atomic increment, gather / scatter memory

operations, and parallel prefix sum.
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foreach fragment (    ) from expanded  primitive
   •  determine grid cell (   ) intersected by fragment
   •  read offset (   ) from grid cell  

   •  read offset (   ’) from grid cell  

   foreach sample array index (   :  = {    ..   ’ - 1 })
      •  read sample    from array at index 
      •  if sample (    ) is inside unexpanded  primitive:
           •  interpolate primitive depth at    (  ’ )
           •  if  ’ <     sample   is occluded by primitive

   end foreach
end foreach

Figure 5.9: Pseudocode for the irregular rasterization phase of the irregular Z-buffer
algorithm, as it is used for shadow rendering on the Larrabee architecture. Scene
geometry is scan-converted to the front face of the 3D grid acceleration structure
seen in Figure 4.3, via classical rasterization. The list of samples in the column of
grid cells beneath a given fragment are tested for occlusion against the geometric
primitive which produced the fragment.

5.8.2 Irregular Rasterization

During irregular rasterization, scene geometry is evaluated for occlusion against the

sample points encoded in the spatial data structure. The Larrabee implementation

of this process is similar to that on our architecture. The main difference is that

linked list traversal is no longer needed due to the storage order of the samples in

memory. Rather, the set of samples potentially occluded by a fragment are located

at consecutive addresses, leading to simple and efficient vectorization. Pseudocode

for the Larrabee implementation is seen in Figure 5.9. As before, the input to

this process are fragments produced by a traditional rasterizer (in this case the

Larrabee software rasterizer), by scan-converting primitives to the front face of the

3D grid. Depth information associated with a fragment is used to determine the

intersection between it and the column of grid cells beneath the “pixel” for which

the fragment was generated (Figure 4.3a). Only samples at this point and deeper

in the grid are tested for occlusion, using a computation similar to that described

in Subsection 5.5.2.
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The partial radix sort performed during data structure construction orders

samples in the 1D array first in Z and then in X and Y. Thus, samples evaluated for

occlusion against a fragment during rasterization, occupy consecutive array locations

beginning at the index stored in the 3D grid cell intersected by the fragment. As

a result, the occlusion computation is trivially vectorizable across samples under

the same fragment. Only simple vector loads and stores (versus gather / scatter),

and vector arithmetic operations are needed. Further, spatial reuse of samples on

the same cache line is maximized. Thread-level parallelism is also straightforward:

fragments for different pixels are assigned to different threads. This parallelization

strategy is not specific to Larrabee. For example, the same algorithm could be

implemented in a high-level API like CUDA [100] for NVIDIA GPUs, though the

relative performance is unclear due to significant architectural differences.

5.9 Summary

In this chapter we have shown how support for arbitrary sampling patterns can

be implemented on two distinct architectures. In the case of the irregular Z-buffer

GPU, our algorithm is implemented in part in hardware. Other work has examined

similarly specialized modifications to classical GPUs for non-uniform sampling. For

example, the SAGE architecture [36] supports irregular sampling patterns within a

pixel for multisample antialiasing, and the per-pixel sample count is configurable.

However, the sample count and sample pattern are constant from pixel to pixel.

Other work has proposed changes to fixed-function rasterization units to enable

reparameterization of the sampling space. Logarithmic [87] and perspective [123,

93, 141, 90] parameterizations have been proposed for improving the quality of hard

shadows rendered with shadow mapping, but the sample count and pattern remain

constant from pixel to pixel. In contrast, the irregular Z-buffer algorithm on our

architecture supports an arbitrary number of samples per pixel with no restriction

on the sampling pattern. We have shown how this property results in increased

accuracy and efficiency when used for shadow rendering (Subsection 2.5.2).

91



In the case of the Larrabee architecture, the data structure construction and

traversal phases of the irregular Z-buffer algorithm are implemented completely in

software. Other work has explored the construction and traversal of semi-regular and

irregular data structures on classical GPUs, including grid [107, 108] and tree-based

[79, 80, 78] structures. However, the performance of these solutions is constrained

by the capabilities of the GPUs of the day. As we’ll see in the next chapter, the

irregular Z-buffer algorithm on the Larrabee architecture achieves real-time frame

rates during data structure construction, and real-time to near real-time frame rates

during traversal in the case of hard and soft shadow rendering.
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Chapter 6

Evaluation

Any new technique targeted at real-time graphics applications must run fast as well

as produce images of the desired quality. At a minimum, a new method should

achieve superior image quality with no loss of performance over existing methods,

or achieve superior performance with no loss of image quality. However, assessing

the image quality and performance of the irregular Z-buffer algorithm is challenging

since it relies on hardware features not found in shipping GPUs as of this evaluation.

6.1 Methodology

The performance of an algorithm is typically measured in one of two ways: at a high

level by counting arithmetic operations over a particular data set, or at a low level

by implementing the algorithm on current hardware and timing its execution. Here,

neither approach is adequate due to the absence of physical hardware. Memory

hierarchy characteristics such as cache size and miss latency strongly influence the

overall performance of memory intensive methods like irregular shadow mapping.

In such cases, operation counting is insufficient to accurately estimate performance.

Similarly, timing an implementation of the irregular Z-buffer algorithm on classical
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GPU architectures would be uninformative due to a lack of support for features

crucial to its performance (Section 5.7). For this reason, we evaluate the image

quality and run-time characteristics of hard and soft irregular shadow mapping via

detailed hardware simulation.

6.2 Contribution

Our evaluation is in two parts. First, we characterize the performance of hard and

soft irregular shadow mapping at a high level (e.g. overhead, behavior in relation to

scene-specific properties). Second, we evaluate the image quality and performance

of the algorithm in particular scenes through simulation. The simulators used model

the irregular Z-buffer architecture described in Section 5.4 and the Intel Larrabee

architecture discussed in Subsection 5.7.1. The former provides low-level insight

into the performance characteristics of irregular shadow mapping, while the latter

supports a coarse comparative evaluation of image quality and performance against

several existing state-of-the-art algorithms.

6.3 Performance Characterization

The simulation data in Section 6.4 and 6.5 illustrates the performance of irregular

shadow mapping in specific scenes on specific architectures, but does not yield high-

level guidance on the behavior of this algorithm in relation to other shadow mapping

methods or in response to scene-specific properties. We provide this guidance here.

First, we examine the overhead of irregular shadow mapping due to data structure

construction, in comparison to shadow mapping methods which do not require an

explicit spatial acceleration structure. Second, we characterize the performance of

the algorithm in the context of several scene related parameters, such as the number

of samples and the width of an area light.
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6.3.1 Overhead

As we’ve shown in Chapter 2 and 3, the irregular Z-buffer algorithm can increase

the efficiency of applications in which the desired sampling pattern is non-uniform.

However, this efficiency comes at the cost of increased overhead. In particular, the

construction of the spatial acceleration structure used in our algorithm introduces

overhead not found in the classical Z-buffer algorithm. Recall that the latter does

not require an explicit acceleration structure since the position of a pixel / sample in

the raster can be computed from a simple formula. Here, we consider the overhead

associated with data structure construction against the improvement in efficiency

in the case of shadow rendering via shadow mapping.

To review, shadow mapping works by rendering the scene from the eye and

light and comparing the two sets of sample points to identify regions of the scene

in shadow. Shadow mapping based on the classical Z-buffer algorithm is prone to

artifacts due to a mismatch between the eye and light sample patterns (Figure 2.2b).

Variations of classical shadow mapping reduce these artifacts by approximating the

desired sampling pattern through oversampling (i.e. increasing the resolution of the

shadow map) in tandem with other techniques.

The number of shadow map samples necessary to substantially reduce the

incidence of artifacts can be large. Lloyd et al. give partial bounds on the number

required per eye-view pixel [86]. These bounds are accurate when the eye and light

views are orthogonal, and are sufficient to avoid perspective aliasing (Figure 2.5), but

not projection aliasing. These bounds are O((f/n)2) for classical shadow mapping,

and O(log(f/n)) for logarithmic perspective shadow mapping (Figure 2.6b, d, e),

where n and f are the eye-view distances to the near and far clip planes. In irregular

shadow mapping the number of shadow map samples per eye-view pixel required to

avoid both perspective and projection aliasing is 1, regardless of the orientation of

the eye and light views. Further, the added cost of data structure construction is

small in comparison to the cost of the occlusion computation. The former averages

15% the cost of the latter for the cases discussed in Subsection 6.4.3.
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n Data Structure

Construction

Hard

Shadows

Soft

Shadows

image resolution

scene geometry

shadow geometry

area light width

O (n)

O (n)

na

na

O (n)

na

na

na

O (n)

na

O (n)

O (n 

2)

Table 6.1: The asymptotic performance of irregular shadow mapping is shown in
relation to several scene-specific properties. The data structure construction and
hard and soft shadow rendering phases of the algorithm are considered individually.
Recall that the number of light-view samples is equal to the number of eye-view
pixels, and the scene and shadow primitives are used only in the computation of
umbral and penumbral occlusion respectively.

6.3.2 Performance Sensitivity

The performance of a given rendering algorithm typically fluctuates in response to

changes in properties of a specific scene such as the number of geometric primitives

or image resolution. Irregular shadow mapping is no different. Table 6.1 illustrates

the sensitivity of the algorithm to eye-view image resolution, number and coverage

of scene primitives, number of silhouette edges, and area light width.

Image Resolution

Recall that there exists a single light-view sample per eye-view pixel. Irregular

shadow mapping is linear in the number of eye-view pixels and hence in the number

of light-view samples. In principle, construction of a spatial acceleration structure

requires sorting the coordinates of the elements to be stored (in this case samples).

In practice, our data structure consists of a grid in which the samples within a given

cell are unordered. This partial sort can be performed in O(n) time rather than the

O(n log n) time required for a full sort. Similarly, the hard and soft shadow kernels

consist of point sampling or area sampling geometric primitives. This operation is

constant per sample per primitive, and thus occurs in linear time overall.
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Scene Geometry

The performance of irregular shadow mapping depends in part on the number and

image plane extents of primitives composing the scene. This geometry is used only

in the computation of umbral occlusion, and does not play a role in data structure

construction or in the calculation of penumbral occlusion. During the computation

of umbral occlusion, the geometry is rasterized to the sample coordinates stored in

the data structure. As in classical rasterization, this function consists of a point-in-

primitive test, and is linear in the average depth complexity of the scene.

Silhouette Edges

Soft irregular shadow mapping generates a shadow primitive per silhouette edge,

denoting the expected light-view screen-space bounds of the penumbra cast by the

edge. The computation of penumbral occlusion consists of rasterizing this shadow

geometry to the sample coordinates stored in the data structure. An area sample is

computed per point (Subsection 3.3.3). This operation is constant per sample per

primitive, and thus occurs in linear time overall.

Area Light Width

Though the performance of the penumbral occlusion computation is linear in the

number of shadow primitives, the light-view screen-space extents of these primitives

are quadratic in the width of the area light. A light source that is twice the width

of another, produces shadow geometry that occupies four times the area in the

light-view image plane. This quadratic can be problematic in scenes with very large

light sources and is an issue common to soft shadow algorithms based on shadow

geometry or shadow mapping. However, the size of a penumbra (and thus extents of

the shadow primitive) also depends on the distance of the occluding object from the

light. Many common light sources are either large and distant (e.g. sun) or small

and comparatively near occluding geometry (e.g. light fixture in a room).
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6.4 Irregular Z-Buffer Architecture Evaluation

Though the above characterization provides high-level insight into the sensitivity of

irregular shadow mapping to changes in scene-specific properties, it does not yield

low-level performance data for specific scenes on a specific architecture. To this end,

we have developed a performance simulator for the irregular Z-buffer architecture as

described in Section 5.4. It is similar in spirit to the C-model performance simulators

used in industry, although it is not as detailed or as broad in scope. We focus on

the key performance aspects of the architecture, specifically memory hierarchy and

parallelism effects. The behavior of the memory system is modeled in greatest detail,

the processor performance at a medium level of detail, and the fixed-function units

such as the rasterizer at a functionality level only. Using this simulator, we find that

hard irregular shadow mapping can achieve near real-time frame rates in game-like

scenes on hardware which is conservative (e.g. in clock rate, memory bandwidth,

core count) by 2005 standards.

6.4.1 Simulation Infrastructure

Our simulation environment for the irregular Z-buffer architecture has three parts:

a supervisory program which models the functionality of an end-to-end classical Z-

buffer system, an implementation of hard irregular shadow mapping, and a hardware

simulator.

Supervisory Program

The supervisory program incorporates code for rendering colored and shaded images

from a scene specification using the classical Z-buffer algorithm. This code is used

to perform classical rasterization as needed during the course of irregular shadow

mapping. The supervisory program builds a memory image for the simulated GPU

memory system and invokes the simulator with the appropriate parameters for each
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phase of our algorithm. Following simulation termination, the supervisory program

retrieves the shadow map from the simulated framebuffer and uses the values in the

computation of a final image. This handoff is necessary since the hardware simulator

is not configured to perform classical Z-buffer rendering.

Irregular Shadow Mapping Kernels

Hard irregular shadow mapping is implemented here as a pair of kernels written in

assembly. The two perform data structure construction and irregular rasterization

as described in Section 5.5. This code is interpreted by the hardware simulator and

“executes” on the programmable cores. The target instruction set follows the syntax

and semantics of NV fragment program2, with several additional instructions for

logical shifts and for selecting the mode (e.g. linked list insertion, Z-compare) of the

ROP units. As in shader programs for circa-2005 GPUs, these kernels contain no

explicit parallelization or synchronization instructions. Thread creation, scheduling,

and synchronization is performed in hardware.

Hardware Simulator

Our hardware simulator is built on top of the Liberty Simulation Environment (LSE)

[130]. LSE simplifies the development of modular, event-driven, cycle-accurate hard-

ware simulators, and is composed of a structural specification language and compiler,

and a behavioral specification language based on C. The former is used to specify

the number, type, and interconnectivity of the machine components, and the latter

the functionality of each of these components.

At a high level, our LSE machine specification matches the design shown in

Figure 5.2. There is a one-to-one correspondence between the custom LSE modules

in the simulator, and the functional units composing the programmable processor,

ROP, interconnect, and memory network. At the functional level, the programmable
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processor can issue a scalar or 4-wide vector operation each cycle, and all instructions

except memory loads complete in one cycle. No effort is made to model stalls due

to arithmetic unit latency. The ROP unit is pipelined. Each cycle it can issue up to

two loads from the merge buffer and two stores from the compute unit, and retire

a single fragment. Multiple fragments can be in-flight at the same time, subject

to the atomicity restrictions discussed in Subsection 5.6.1. The memory system is

based on Spinach (an LSE simulator for network interface controllers) [140], and the

DSIM DRAM library [113]. We use the GDDR3 DRAM module from this library.

The model honors all bank and channel timing restrictions from the manufacturer’s

data sheet [96].

We have made a reasonable effort to tune our simulator through application

of several well-understood optimizations which reduce pressure on key resources,

particularly memory bandwidth. The role of memory tiling and locality, as well as

additional optimizations which may further improve the performance of our system

are described in Subsection 4.1.2 and 5.6.4 respectively.

6.4.2 Workload

Our test suite consists of the scenes from Figure 6.1. Several characteristics of these

scenes are summarized in Table 6.2. The t-rex scene is contrived, and is potentially

challenging for our algorithm due to the large number of fine triangles composing the

skeleton. The Doom3 scene is from a game circa 2005, and light 0 is a particularly

challenging case. Here, the light-view samples are primarily concentrated within a

localized region of the image plane. This light sits near one wall which is visible over

a large fraction of the eye-view viewport. With the light-view normal nearly parallel

to the wall, the points on this wall visible from the eye project to a narrow band

in the light view. This high concentration of points results in reduced utilization of

the grid and correspondingly longer linked lists.
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(a)  Doom3 [id Software 2005]. (b)  T-Rex.

Figure 6.1: Two scenes informing our analysis on the irregular Z-buffer architecture.
The run time performance of hard irregular shadow mapping is examined in detail
for two light sources in each scene. The Doom3 scene is from an actual game, and is
challenging due to the sample distribution for the light source on the back wall. The
t-rex scene is contrived but is challenging due to the large number of fine triangles.

6.4.3 Performance Results

The performance of irregular shadow mapping (hard shadows) on the irregular Z-

buffer architecture for the scenes from Figure 6.1 is summarized in Table 6.2. These

results do not include the cost of rasterization from the eye. The eye-view pass does

not require or exercise our proposed architectural additions, our simulator does not

support classical rasterization, and the performance of the classical rasterization

computation is already well understood. Individual results for the data structure

construction and irregular rasterization phases of the algorithm are seen in Table

6.3, for the machine configuration in Table 6.4. During data structure construction,

utilization of the programmable cores is reduced due to transient load imbalances

rather than memory-induced stalls. During irregular rasterization, a stencil test

(Figure 5.6b) rejects fragments for grid cells in the spatial acceleration structure

which contain no sample points. While we do not model this stencil buffer memory

traffic, the additional bandwidth consumed can be computed from the columns

in Table 6.5 marked Rasterization. The utilization of programmable cores during

irregular rasterization is reduced by memory-induced stalls and indicates that the

performance of the memory system bounds this phase of the algorithm.
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Scene

Doom3
T-Rex

Triangle

Count

7,581
69,840

Total

Samples

2.6 M
2.6 M

Sample Depth

Complexity

4.1 / 4.3
2.5 / 3.0

Total

Cycles

45 M
44 M

Hard

Shadows

11.20 fps
11.39 fps

Performance Summary

2
2

Light

Sources

1280 x 1024
1280 x 1024

Image

Size

Table 6.2: A summary of the simulation results for hard irregular shadow mapping
on the irregular Z-buffer architecture given the scenes from Figure 6.1. The fifth
column reports the average depth complexity per light-view sample per light source.
The frame rates reported in the seventh column include the cost of data structure
construction and irregular rasterization for the two light sources in each scene. These
frame rates assume a clock frequency of 500 MHz. Note that the cost of the eye-view
pass is not included. Simulation details are shown in Figure 6.3.

Time
(Cycles)

Scene :
Light

Cycles /
Sample

Core
Cache

ROP
Units

ROP
Cache 1

ROP
Cache 2

Bandwidth
Utilization

Doom3 : 0
Doom3 : 1

T-Rex : 0
T-Rex : 1

3.0 M
2.9 M
3.0 M
2.8 M

35.8% / 2.4%
38.1% / 0.9%
36.1% / 1.1%
39.6% / 1.7%

2.7% / < 0.1%
2.9% / < 0.1%
2.7% / < 0.1%
3.0% / < 0.1%

2.4
2.2
2.3
2.1

93.8%
93.8%
93.8%
93.8%

96.7%
99.9%
99.0%
99.2%

45.1%
48.7%
45.9%
46.6%

27.8%
26.1%
26.1%
28.3%

Average Utilization / Stalls Hit RateConstruction
Programmable

Cores

Time
(Cycles)

Scene :
Light

Cycles /
Fragment

Core
Cache

ROP
Units

ROP
Cache 1

ROP
Cache 2

Bandwidth
Utilization

Doom3 : 0
Doom3 : 1

T-Rex : 0
T-Rex : 1

22.9 M
15.8 M
20.8 M
17.3 M

37.0% / 54.4%
36.5% / 42.7%
54.5% / 36.9%
55.1% / 32.3%

1.4% / < 0.1%
2.2% / < 0.1%
1.0% / < 0.1%
1.1% / < 0.1%

4.3
2.8
6.3
5.5

59.7%
63.5%
73.7%
74.0%

56.7%
56.2%
66.9%
64.0%

57.6%
56.6%
64.9%
64.7%

40.3%
38.7%
38.4%
37.9%

Average Utilization / Stalls Hit RateRasterization
Programmable

Cores

Table 6.3: A detailed view of the performance summary in Table 6.2. Simulation
results are shown for the data structure construction (top) and irregular rasterization
(bottom) phases of our hard shadow algorithm on the irregular Z-buffer architecture.
Columns 3 and 4 express the average time spent by the programmable cores and
ROP units on useful work and average idle time due to memory latency induced
stalls. Columns 6 through 8 report the hit rates for the three sets of caches in our
system. The last column reports the DRAM bandwidth utilization as a fraction of
theoretical maximum bandwidth.
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Clock
Rate

500 MHz

Programmable
Cores

16

ROP
Units

16

DRAM
Chips

8

Size

16 KB

Line
Size

16 B

Cache Configuration

4

Memory
Controllers

Block
Size

64 B

Assoc.

8

Hit
Latency

1 cycle

Machine Configuration

Table 6.4: The irregular Z-buffer architecture machine configuration simulated. All
units including the memory interfaces are clocked at the rate shown, and all caches
share the indicated configuration.

Non-Empty
Cells

Scene :
Light

Stencil
Buffer Size

Fragments Pre /
Post Stencil

Grid
Dimensions

Fragments Pre /
Post Z-Compare

Doom3 : 0
Doom3 : 1

T-Rex : 0
T-Rex : 1

512 x 512
512 x 512
512 x 512
512 x 512

21.3%
8.4%

25.3%
27.3%

1 / 23 / 2195
1 / 59 / 1002
1 / 20 / 821
1 / 18 / 1051

553 x 501
175 x 202

1346 x 407
937 x 320

1.5 M / 0.5 M
0.2 M / 0.2 M
0.8 M / 0.3 M
0.3 M / 0.3 M

5.3 M / 1.0 M
5.7 M / 1.2 M
3.3 M / 1.3 M
3.2 M / 0.9 M

Construction Rasterization

Samples / Cell
(Min / Avg / Max)

Table 6.5: Simulation details for irregular shadow mapping on the irregular Z-buffer
architecture. The third column reports the percentage of non-empty grid cells as a
fraction of the total cell count. The fourth column shows the (non-empty) minimum,
average, and maximum linked list lengths. The stencil buffer sizes reported in the
fifth column are computed via the min() and max() reduction operations across
the programmable processors.

Irregular rasterization dominates the execution time of hard irregular shadow

mapping. For the scenes tested, rasterization requires four to seven times the number

of cycles as data structure construction. Although the cost of irregular rasterization

depends strongly on the geometric and depth complexity of the scene, our timings

indicate that the cost of data structure construction is secondary. This result is

interesting since construction is more architecturally challenging to support due to

the need for atomic read-modify-write operations during linked list insertion.
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6.5 Larrabee Architecture Evaluation

The analysis in Section 6.4 yields low-level insight into the performance of irregular

shadow mapping in specific scenes on the irregular Z-buffer architecture, but it does

not provide guidance on the performance of our algorithm relative to other state-of-

the-art approaches. Such a comparative analysis is impractical on this architecture

due to the absence of support for classical rasterization and the primitive nature of

the simulation environment (e.g. no higher-level graphics APIs). Moreover, GPU

architectures and workloads have advanced since the development of our hardware

simulator. For example, the Larrabee architecture expected in 2009 or 2010 includes

high-performance support for construction and traversal of irregular data structures

(Subsection 5.7.1). Though not yet in silicon, this GPU is modeled in a production

level simulation environment with support for classical rasterization and high-level

programming APIs. We have developed an implementation of hard and soft irregular

shadow mapping for this architecture and use it to compare the image quality and

performance of our algorithm against several existing methods. Using this simulator,

we find that hard irregular shadow mapping can achieve real-time frame rates and

outperform the fastest existing methods with similar image quality. Further, we find

that soft irregular shadow mapping achieves performance comparable to the fastest

existing methods while providing superior image quality.

6.5.1 Comparison Approach

Comparing the performance of irregular shadow mapping on Larrabee with that of

existing methods on other architectures is challenging. Porting other algorithms to

Larrabee (as of this writing) is impractical due to the prototypical nature of the

software tool chain used. Alternatively, the published results for those algorithms

could be normalized in relation to Larrabee based on FLOP counts or another metric

of the respective architectures. However, such scaling is questionable as Larrabee
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is a radically different GPU in the design and performance of its fixed-function

units, programmable cores, ISA, interconnect, and memory hierarchy. Instead, we

report competing results as published. As guidance on interpreting the results in

Subsection 6.5.4 we note that the raw FLOP count of the Larrabee configuration

simulated (24 cores at 1 GHz) is within a factor of 2 of recent GPUs. Moreover, this

bias in favor of Larrabee is substantially reduced by our use of a prototype compiler

and software rasterization pipeline. Neither is fully optimized.

6.5.2 Simulation Infrastructure

The Larrabee simulation environment has three elements: a software rasterization

pipeline which models the functionality of the classical Z-buffer algorithm, a C/C++

reference implementation of hard and soft irregular shadow mapping, and a hardware

simulator.

Software Rasterization Pipeline

The Larrabee software rasterization pipeline is a performance-oriented (but pro-

totype) code for rendering colored and shaded images from a scene specification,

using the classical Z-buffer algorithm. Its key features include: multithreading with

minimal locking, vectorization, and a “sort-middle” pipeline structure [118]. When

executed on the Larrabee hardware simulator, this code provides insight into the

performance of conventional rasterization from the light, as it is used for coarse

visibility testing in our algorithm. This code remains under development at Intel.

As such, no effort has been made to integrate it with the reference implementation

of irregular shadow mapping.
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Irregular Shadow Mapping Reference Implementation

Our reference implementation of hard and soft irregular shadow mapping matches

the description in Section 2.3 and 3.3. In addition to the routines specific to our

shadow algorithm, the code contains a functionally complete (though unoptimized)

Z-buffer based graphics pipeline capable of rendering a colored and shaded image

from a scene specification. This code supports rapid evaluation of image quality and

algorithmic correctness, and coarse performance assessment (e.g. operation counting

and raw memory bandwidth estimation). Further, the data structure construction

and hard and soft shadow kernels from this code have been hand vectorized and

multithreaded using Larrabee intrinsics. The frame rates seen in Subsection 6.5.4

result from the execution of this code on the Larrabee hardware simulator.

Hardware Simulator

The Larrabee hardware simulator is a derivative of validated, cycle-accurate sim-

ulators used in the design of Intel multi-core CPUs. Different chip configurations

can be modeled. The number of cores, threads per core, and clock rate are fully

adjustable, as are properties of the memory hierarchy. The core count and the clock

frequency of the actual Larrabee hardware have not yet been announced. Therefore,

we simulate a conservative chip configuration (i.e. known to be within the Larrabee

design envelope) with 24 cores and a 1 GHz clock [118].

6.5.3 Workload

Our test suite consists of the scenes from Figure 6.2 and 6.3. The palm and fern

scenes provide a basis for image quality and performance comparisons with several

existing hard [80] and soft [8, 43, 50, 116] shadow algorithms. These algorithms

are considered to be state-of-the-art in terms image quality and performance, and

are widely cited in the literature. Belying the substantial body of existing work
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(a)  Palm [Lefohn et al. 2007]. (b)  Street (Call of Juarez). (c)  Saloon (Call of Juarez).

Figure 6.2: The four scenes informing our performance analysis on the Larrabee
architecture include the three shown here and the fern from Figure 6.3. The image
quality and run time of irregular shadow mapping is compared against existing
state-of-the-art approaches, using the palm and fern scenes. The street and saloon
scenes reveal the performance of our algorithm in environments from a modern
game. These two scenes are from Call of Juarez by Techland and are used with the
permission of the developer.

in shadow rendering is the dearth of published performance results for scenes with

geometric complexity comparable to that of modern computer games rendered at

resolutions matching that of modern computer displays. For this reason, our test

suite includes scenes from a modern game rendered at 1600× 1200 pixel resolution.

These scenes represent two environments with substantially different light-geometry

relationships. The street scene is an exterior environment lit with a single light

source positioned far from the geometry composing the scene, and is challenging for

our algorithm due to the number of silhouette edges (Subsection 6.3.2). The saloon

scene is an interior environment lit with a single light that sits within the eye-view

frustum and is comparatively near the geometry composing the scene. This scene

is a challenging case due to the size of the light relative to its average distance from

the geometry, resulting in wide penumbrae as seen from the eye.
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Triangle

Count
Scene Algorithm

Data Structure

Construction

Image

Size

Hard

Shadows

Soft

Shadows

Silhouette

Edges

1024 x 1024 [Lefohn et al. 2007]
[Johnson et al. 2008]

Palm 44K N/A
88 fps

40 fps
60 fps

na
na

1600 x 1200 [Johnson et al. 2008]Street 155K 29K 70 fps 38 fps 27 fps

800 x 600

[Annen et al. 2008]
Fernando. 2005]

[Guennebaud et al. 2006]
[Schwarz et al. 2007]
[Johnson et al. 2008]

Fern 212K 13K

157 fps

na
na
na
na

72 fps

23 fps
18 fps
41 fps
19 fps
15 fps

1600 x 1200 [Johnson et al. 2008]Saloon 60K 8K 84 fps 61 fps 33 fps

Table 6.6: Simulated frame rates for our algorithm (highlighted in gray) on the
Larrabee architecture equipped with 24 cores at 1 GHz, for the scenes from Figure
6.2 and 6.3. For comparison, results are reported for five other recent hard and soft
shadow algorithms measured on a NVIDIA 8800 GTX part [8]. The frame rates
for our algorithm include the cost of data structure construction (grid resolution of
800× 600× 8) but not the computation of eye-view color, depth, or shading. These
results were collected using a prototype compiler, thread scheduler, and software
rasterization pipeline. Even so, they are within a factor of 2 of all but one other
method. Further, our algorithm yields noticeably higher image quality than any
other method (Figure 6.3) and with no parameter tuning necessary.

6.5.4 Performance Results

The performance of irregular shadow mapping on the Larrabee architecture for the

scenes from Figure 6.2 and 6.3 is seen in Table 6.6. The hard and soft shadow frame

rates include the cost of data structure construction. Similarly, the soft shadow

frame rates include the cost of hard shadow rendering (used to compute umbrae).

For the scenes tested, hard irregular shadow mapping substantially outperforms

resolution-matched shadow mapping [80], while soft irregular shadow mapping is

comparable in performance to all but one other method, yet produces substantially

higher image quality than any other method (Subsection 6.5.5).

Note that these results do not include the computation of eye-view color,

depth, or shading. These costs are well understood and are expected to be small.

Further, the cost of two geometry shaders and screen-space binning [118] used during
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(a)  Ray traced shadows. (b)  Irregular shadow mapping. (c)  [Annen et al. 2008].

Figure 6.3: The image quality produced by ray tracing (a), our algorithm (b), and
Annen et al. (c) compared. The inset highlights a region that is challenging for many
algorithms to render accurately. A key feature of irregular shadow mapping is the
high quality of the umbrae and penumbrae and the seamless transition between the
two. The resulting images compare favorably with those produced by a ray tracer,
simultaneously capturing high-frequency shadow details and smooth, low-frequency
penumbrae. The image in (c) is generously provided by Thomas Annen and is used
with permission.

light-view rasterization are not included due to a dependence on features not present

in the prototype software graphics pipeline used. The geometry shaders identify

silhouette edges and generate a shadow polygon for each such edge (Subsection

3.3.2). The cost of both is modest. For example, silhouette edge detection requires

at most one cross product and one dot product per edge using adjacency information

provided by DirectX 10 [19], and is only performed for triangles which pass face

culling and frustum clipping.

6.5.5 Image Quality Results

In tandem with high performance, the visual quality of the umbrae and penumbrae

produced by irregular shadow mapping distinguishes this algorithm from existing

work. Specifically, the umbrae are geometrically-equivalent to those produced by ray

tracing, and the penumbrae (though approximate) are both plausible and in many

109



cases indistinguishable from those of a ray tracer. These properties are illustrated

in Figure 6.31. As seen here and in Figure 7b - f from Annen et al. 2008 [8], the

image quality of irregular shadow mapping is significantly higher than that of other

algorithms in the same performance regime, including percentage closer soft shadows

[43], backprojection soft shadows [50], bitmask soft shadows [116], and convolution-

based methods [8].

Our algorithm computes penumbrae directly from silhouette geometry at

exactly the points in the scene visible from the eye. The resulting images are free

from artifacts due to undersampling a discretized representation of the scene (i.e.

shadow map). For example, convolution-based methods can omit shadow umbrae

in cases when an occluder is near a receiver [8]. This is due to the use of an average

occluder depth at each receiver point, and the loss of frequency content resulting

from the use of a low-precision, pre-filtered shadow map. In contrast, our algorithm

simultaneously captures high-frequency shadow details and smooth, low-frequency

penumbrae. Our method is approximate (Section 3.5), but the errors introduced

are not widespread and are less visually apparent.

6.6 Discussion

Though hard irregular shadow mapping achieves real-time frame rates in the game

scenes tested, more work will be required to achieve similar performance with soft

irregular shadow mapping. In particular, there remain two important sources of

inefficiency: overdraw from overly conservative estimation of penumbral bounds,

and unnecessary computation of penumbral occlusion from silhouette edges which

are themselves occluded. Both inefficiencies are common to algorithms in which

1Due to differences in camera models, the position of the light in (b) was hand tuned to match
that in (a) and (c), leading to a slight variance. This variance produces minor differences in shading
where the tree stump faces away from the light.
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silhouette edges are represented geometrically (for increased accuracy) rather than

stored in discretized form in a shadow map, and both are worthy of further study.

Recall that penumbrae are computed in two steps. The set of receiver points

occluded by a silhouette edge is estimated first. The final occlusion computation is

then performed on this point set. For correctness, the estimation step is conservative,

but unnecessary work (i.e. overdraw) results from an overly conservative estimate.

The optimizations described in Section 3.4 substantially reduce overdraw, but do not

eliminate it. For example, in the saloon scene from Call of Juarez (Figure 6.2c) an

average of 81% of the receiver points tested for occlusion against a given silhouette

edge, are unoccluded by the edge. Conceptually, the estimation operation can be

thought of as computing the intersection of two spatial acceleration structures, one

which stores the receiver points, and one which encodes the extents of penumbrae.

In our algorithm, the second acceleration structure is implicit, since penumbral

bounds are estimated using shadow geometry on the fly. Other work has explored

performing the estimation operation via intersection of two explicit acceleration

structures [75] but the result is not real-time.

The second inefficiency occurs when the penumbra cast by a silhouette edge

lies within the umbra cast by another occluder, as seen from a given receiver point.

Conceptually, this problem can be thought of as pruning a spatial data structure

encoding penumbral extents, according to another which encodes umbral extents.

Soft shadow algorithms which compute occlusion from the light using a discretized

representation of the scene (i.e. a classical shadow map), implicitly perform this

operation. However, to our knowledge no work has considered this problem in the

context of CSG operations on a pair of acceleration structures.
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6.7 Summary

In this chapter, we have characterized the behavior of irregular shadow mapping at a

high level in response to changes in scene-specific properties, and assessed the image

quality and performance of the algorithm in several scenes via low-level simulation.

Our approach is quadratic in the width of an area light (in the case of soft shadows),

but linear in image resolution, scene geometry, and number of silhouette edges. The

algorithm is memory bandwidth rather than compute bound on a GPU based on

circa 2005 technology. On a GPU expected by 2010, hard irregular shadow mapping

can achieve real-time frame rates and outperform the fastest existing method with

similar image quality, while soft irregular shadow mapping provides superior image

quality with performance comparable to the fastest existing methods.
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Chapter 7

Conclusions

Traditionally, game developers have been confronted with a tradeoff between image

quality and performance due to limitations of the visible surface solution employed

by commodity graphics hardware. This hardware provides efficient support for the

classical Z-buffer algorithm, resulting in high performance. However, the classical

Z-buffer algorithm is not readily adaptable to the simulation of physically-accurate

light transport. Consequently, the resulting images are of low quality in comparison

to those produced by ray tracing. Unfortunately, ray tracing is not well-supported

in existing CPUs or GPUs, resulting in low performance.

Achieving high image quality and high performance in dynamic scenes with

high geometric complexity is an open area of research addressed in part by this work.

We do so by adapting the classical Z-buffer algorithm and its underlying architecture

to support ray tracing like functionality. Though our approach does not achieve the

full flexibility of ray tracing, we show that it does enable substantial improvements in

image quality while preserving the system organization and performance advantages

of commodity graphics hardware.
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7.1 Summary

The major contribution of this dissertation is as follows. First, we introduce a new

solution to the visible surface problem that is more flexible than the classical Z-buffer

algorithm, but less general than ray tracing. Second, we identify the architectural

features needed for hardware acceleration of this algorithm. We subsequently show

how the combined algorithm and architecture enable simple, efficient, and robust

solutions to important but unresolved problems in real-time graphics like hard and

soft shadow rendering. We demonstrate how shadows which are visually indistin-

guishable from those produced by ray or beam tracing, can be rendered with high

performance with only minimal changes to GPU designs circa 2005.

7.1.1 Visibility Algorithm

This dissertation introduces the irregular Z-buffer algorithm, a solution to the visible

surface problem for rays with a common origin and arbitrary directions. In the space

of possible solutions, ours sits between the classical Z-buffer algorithm (suited to rays

with a common origin and a regular pattern of directions) and ray tracing (suited to

rays with arbitrary origins and directions). This middle-ground approach combines

the system organization and performance advantages of the former, with some of the

sampling flexibility of the latter. Like the classical Z-buffer ours is an object-order

algorithm, and as such is compatible with existing game engines and commodity

graphics hardware (with modification). Like ray tracing, our approach supports the

computation of surface visibility along arbitrary ray directions represented as points

in a 2D image plane. These points are defined by the application at run time and are

stored in a spatial acceleration structure which is queried during rasterization. This

conceptually-simple idea has potentially broad applicability throughout real-time

graphics including in: shadow rendering, indirect illumination, frameless rendering,

adaptive anti-aliasing, adaptive textures, and jittered sampling.
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7.1.2 Architectural Support

The irregular Z-buffer algorithm cannot be implemented efficiently on CPUs or on

GPUs circa 2005. CPUs have insufficient parallelism and memory bandwidth, while

classical GPUs lack the memory access flexibility for gather / scatter operations,

and hardware synchronization for efficient global atomic operations.

This dissertation introduces a new GPU design for hardware acceleration of

the irregular Z-buffer algorithm. Our architecture is based on GPUs circa-2005, but

includes several refinements. Key features of this design are: an any-to-any routed

interconnect, MIMD rather than SIMD cores, an instruction for explicit emission of

output, and scatter-type memory operations. In simulation we show that this GPU

provides efficient support for the creation and traversal of irregular data structures in

which the storage order of member elements is fixed at compile time. Separately, we

show how inclusion of global atomic operations in this feature set in a GPU expected

in 2009 - 2010 leads to acceleration of irregular data structures in which the storage

order is determined at run time. Irregular data structures of both types are widely

used in graphics, and the addition of hardware support significantly widens the class

of algorithms which are able to run efficiently on GPUs.

7.1.3 Shadow Rendering

The irregular Z-buffer algorithm is motivated by applications in which the desired

sampling pattern is non-uniform. Shadow rendering is one example. This problem

consists of identifying points in the scene (i.e. receiver points) occluded from the light

by intervening geometry. Such a determination can be made by rasterizing the scene

from the light, but the optimal sampling pattern is highly irregular, requiring that

the receiver point coordinates be stored explicitly in a spatial acceleration structure.

Existing algorithms based on the classical Z-buffer avoid the need to store receiver

points by computing occlusion from the light in eye space using shadow geometry
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or a discretized representation of the scene (i.e. shadow map) as seen from the light.

Shadow geometry methods do not perform well due to the number and extents

of shadow polygons even when umbrae and penumbrae are small, while shadow

mapping methods perform well but result in self-shadowing and aliasing artifacts.

This dissertation introduces irregular shadow mapping, an implementation

of the irregular Z-buffer algorithm for computing hard and soft shadows in dynamic

and geometrically-complex scenes. Points in the scene visible from the eye are stored

in a light-space spatial acceleration structure. Geometry is then rendered from the

light to these points. For hard shadows, a simple point-in-triangle test is performed.

For soft shadows, primitives are clipped to a circular region centered on each point.

The width of the region is proportional to the light diameter as seen from the point.

Hard irregular shadow mapping mimics the shadow computation in a ray tracer,

while the soft algorithm is similar to beam tracing. Though approximate, our soft

shadow algorithm does not produce objectionable artifacts.

Irregular shadow mapping is distinct from existing Z-buffer shadow methods

in three important respects. First, the shadow computation is performed only at

points in the scene directly visible from the eye, resulting in high efficiency. Second,

the shadow computation is performed exactly at these points, yielding high accuracy

and directly addressing the root source of visual artifacts common to classical shadow

mapping. Third, the high accuracy of the algorithm in turn eliminates the need for

per-frame parameter tuning for image quality, resulting in a robust solution.

7.1.4 Results

Real-time rendering algorithms are evaluated on image quality and performance. In

comparison to existing methods on a given scene, a new algorithm should achieve

superior image quality with no loss of performance or superior performance with no

loss of quality. We assess irregular shadow mapping as follows. Existing algorithms
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on existing hardware (NVIDIA 8800 GTX) are compared with ours under simulation

on the Larrabee architecture. Exemplars include: resolution-matched (hard) shadow

maps [80], and convolution [8], backprojection [50], bitmask [116], and percentage

closer [43] soft shadows. For the scenes tested, hard irregular shadow mapping is

50% faster than the existing method, with image quality equivalent to a ray tracer

(i.e. the highest quality possible). Soft irregular shadow mapping is comparable in

performance to all but one other approach, with substantially higher image quality

than any other method in the real-time performance regime.

7.2 Potential Impact

As of this writing, Intel has devoted substantive resources to the implementation and

support of the irregular Z-buffer algorithm on the Larrabee architecture. In addition,

GPUs introduced since 2005 have begun to include many of the features proposed

in the irregular Z-buffer architecture, though the specific implementation varies1.

Beyond these near-term consequences of our work, we anticipate that elements of

the irregular Z-buffer algorithm and its architecture have the potential to influence

the design of future chip-multiprocessors and rendering algorithms.

7.2.1 Architecture

We believe that commodity graphics architectures are on a convergent course with

general-purpose chip-multiprocessors (CMPs). As a result, features of the irregular

Z-buffer architecture could be used to enhance the performance of future general-

purpose CMPs. In particular, atomic read-modify-write operations can be handled

by a dedicated unit near memory. In general-purpose parallel architectures, these

1To be clear, we do not take credit for the appearance of these features in modern architectures.
That said, as one of several groups advocating such features, we have helped to make the case for
their implementation in commercial designs.

117



operations are typically implemented near the processor, in L1 or L2 cache equipped

with a cache coherence mechanism. Moving such operations to specialized units near

memory seems broadly promising in instances where the result of the update is not

immediately required by a processor. This idea has been explored in the context of

streaming processors [4], but should be considered more fully by the CPU community

in future CMP designs.

7.2.2 Rendering Algorithms

The architectural convergence mentioned above will result in hardware suitable for

high performance ray tracing. However, we posit that future rendering algorithms

will be neither strictly Whitted ray tracers [138] nor classical Z-buffer rasterizers [27],

but will share properties of both. As such, insights expressed in the irregular Z-buffer

algorithm have the potential to influence the design of these renderers. Evidence of

this can be seen in current work. For example, irregular shadow mapping has been

used to accelerate the computation of hard shadows in an offline ray tracer [18].

Less directly, a recent ray tracer described by Hunt and Mark focusing on hard and

soft shadows [61] shares several elements with irregular shadow mapping including

a similar acceleration structure, explicit representation of ray directions as arbitrary

points in a 2D image plane, and ray-primitive intersection testing performed in 2D.

7.3 Final Thoughts

We posit that the gap in image quality and performance between classical Z-buffer

rendering (comparatively low image quality but high performance) and ray tracing

(high image quality but comparatively low performance) can be reduced through

simultaneous advances in rendering algorithms and architectures. In particular, we

have shown how some of the image quality benefits of ray tracing can be achieved

with modifications to the classical Z-buffer algorithm. We have also shown how the
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modified algorithm can achieve high performance on hardware developed through

incremental changes to GPUs circa 2005. The resulting system is capable of ren-

dering hard shadows equivalent to those of a ray tracer, at real-time frame rates in

scenes from a modern game. The system is also capable of rendering soft shadows

commonly indistinguishable from those of a beam tracer, at near real-time frame

rates in game scenes. The two shadow algorithms strike a balance between image

quality and performance unmatched in earlier work, validating our hypothesis.
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[25] Doug Burger, Alain Kägi, and M. S. Hrishikesh. Memory hierarchy exten-

sions to the simplescalar tool set. Technical Report TR-99-25, Department of

Computer Sciences, The University of Texas at Austin, September 1999.
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