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Graph Analytics and Subset Selection Problems

in Machine Learning

Ethan Russell Elenberg, Ph.D.
�e University of Texas at Austin, 2018

Supervisors: Sriram Vishwanath
Alexandros G. Dimakis

In this dissertation we examine two topics relevant to modern machine

learning research: 1) Subgraph counting and 2) High-dimensional subset selec-

tion. �e former can be used to construct features for performing graph analytics.

�e la�er has applications in sparse modeling such as feature selection, sparse

regression, and interpretable machine learning. Since these problems become in-

tractable for large datasets, we design e�cient approximation algorithms for both

tasks with data-dependent performance guarantees.

In the �rst part of the dissertation, we study the problem of approximating

all three and four node induced subgraphs in a large graph. �ese counts are called

the 3 and 4-pro�le, respectively, and describe a graph’s connectivity properties.

�is problem generalizes graphlet counting and has found applications ranging

from bioinformatics to spam detection. Our algorithms use the novel concept of

graph pro�le sparsi�ers: sparse graphs that can be used to approximate the full
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pro�le counts for a given large graph. We obtain novel concentration results show-

ing that graphs can be substantially sparsi�ed and still retain good approximation

quality for the global graph pro�le. We also study the problem of counting local

and ego pro�les centered at each vertex of the graph. �ese quantities embed ev-

ery vertex into a low-dimensional space that characterizes the local geometry of

its neighborhood. We introduce the concept of edge pivots and show that all local

3 and 4-pro�les can be computed as vertex programs using compressed two-hop

information. Our algorithms are local, distributed message-passing schemes and

compute all graph pro�les in parallel. We empirically evaluate these algorithms

with a distributed GraphLab implementation, and show improvements over pre-

vious state-of-the-art in experiments scaling up to 640 cores on Amazon EC2.

In the second part we shi� to the problem of subset selection: for exam-

ple, selecting a few features from a large feature set. Motivated by the need for

interpretable, nonlinear regression models for high-dimensional data, we draw a

novel connection between this and submodular maximization. We extend an ear-

lier concept of weak submodularity from the se�ing of sparse linear regression

to a broad class of objective functions, including generalized linear model likeli-

hoods. We then show that three greedy algorithms (Oblivious, Forward Stepwise,

and Orthogonal Matching Pursuit) perform within a constant factor from the best

possible subset. Our methods do not require any statistical modeling assumptions

and allow direct control over the number of obtained features. �is contrasts with

other work that uses regularization parameters to control sparsity only implicitly.

Our proof technique connecting convex analysis and submodular set function the-
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ory may be of independent interest for other statistical learning applications that

have combinatorial structure.

In the third part, we consider the problem of explaining the predictions of

a given black-box classi�er. For example, why does a deep neural network assign

an image to a particular class? We cast interpretability of black-box classi�ers as a

subset selection problem and propose to solve it with an e�cient streaming algo-

rithm. We provide a constant factor approximation guarantee for this algorithm

in the case of a random stream order and a weakly submodular objective function.

�is is the �rst such theoretical guarantee for this general class of functions, and

we also show that no such algorithm exists for a worst case stream order. Our

algorithm obtains similar explanations of Inception V3 predictions 10 times faster

than the state-of-the-art LIME framework.
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Chapter 1

Introduction

We consider problems in two areas of machine learning: 1) Algorithms for

counting and approximating graph pro�les and 2) Optimizing weakly submodu-

lar set functions subject to cardinality constraints. Both topic areas present new

challenges as we seek to analyze increasingly large datasets, since naı̈ve solutions

would simply enumerate every subset of data points up to a given size. In both

cases we use speci�c assumptions, either conditions on the graph structure or

dependency conditions among the set elements, to design natural approximation

algorithms with data-dependent guarantees.

Figure 1.1 shows motivating examples for these two topics. Many large,

structured datasets are represented naturally in the form of a graph for improved

information storage and retrieval. For example, given the graph in Figure 1.1(a)

one straightforward task is to count the number of triangles, shown in black. One

can also ask a more detailed question: for each vertex v , how many triangles in-

cludev? To generalize Figure 1.1(a), we consider a problem called graph k-pro�les

which involves counting all induced subgraphs up to size k .

Figure 1.1(b) illustrates dimensionality reduction via a simple linear regres-

sion example: in this case the set of 2-dimensional blue points (x1,x2) is well-

1
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Figure 1.1: Simpli�ed motivating examples for the two types of problems ad-
dressed in this dissertation. (a) Count the number of triangles in given graph,
shown in black. Additionally, count the number of triangles incident on a single
edge or vertex. If this is a social network graph, then this information can be used
to help identify or classify di�erent users. (b) Select a plane on which to project
a high dimensional dataset, such that the data has some structure and we can in-
fer a relationship between some of the variables. For example, �nd the best two
variables to predict some third variable.

approximated by the 1-dimensional red line. If our goal is to predict a third vari-

able x3 from observed data, then this linear relationship suggests that one feature

can be eliminated. To generalize Figure 1.1(b), we consider sparsity constrained

(potentially nonlinear) optimization. For example, build a model using only 100

out of 1 million features. In truly large scale problem se�ings, the entire dataset

cannot be processed all at once. Here, the general combinatorial challenge is to

select a good subset of N items using only o(N ) memory.

�ese problems are complements of each other: if we think about graph

pro�les as designing graph features, the sparse optimization can be thought of as

selecting features to form a meaningful model. Both of these problems quickly be-

2



come intractable on modern datasets, so our focus will be on designing e�cient ap-

proximation algorithms with provable, data-dependent performance guarantees.

�e following sections provide an outline of the main results in the disser-

tation.

1.1 Part 1: E�cient Graph Pro�le Counting

�e �rst part of this dissertation focuses on a quantity called the k-pro�le,

which is based on counting induced subgraphs of size k in a large graph. We de�ne

three di�erent kinds of pro�les: the global, local, and ego k-pro�le in Chapter 2.

Subgraph counting is an important primitive for graph analytics tasks across many

domains, such as spam detection [1], bioinformatics [2], and clustering [3]. Addi-

tionally, they are deeply connected to the emerging theory of graphons and graph

limits [4–6]. In supervised learning problems, counts of certain subgraphs have

been used to classify nodes [7], edges [8], subgraphs [9], and graphs [10]. In all of

these applications, new features are extracted from graph-structured data. For the

case of local k-pro�les, for example, every vertex is embedded into a moderately

sized feature space.

In many large-scale se�ings, data is distributed across multiple locations.

�us it is desirable to design algorithms that run on distributed graph engines like

GraphLab PowerGraph [11], GraphX [12], or Pregel [13]. �ese frameworks use

message-passing to extract complex information beyond simple edge queries.

�estion 1. Can we design e�cient, distributed algorithms to compute local, global,

3



and ego pro�les on very large graphs?

We propose algorithms for counting ego 3-pro�les and local k-pro�les for

k = {3,4}. �ese algorithms use message-passing to count all local pro�les con-

currently, which avoids recalculating intermediate computations. �ey also �t

within the Gather-Apply-Sca�er framework common to most modern, distributed

graph engines. Experiments show that with modest cluster sizes, our proposed

algorithms run much faster than naı̈ve, serial implementations.

For many applications, such as interactive, exploratory analysis, a data sci-

entist might be satis�ed with approximate answers if they enable faster running

times and less memory consumption. One simple way to reduce computation is to

construct a subsampled version of the graph with uniform edge sampling, i.e. keep

every edge independently with some �xed probability p. From this, we show how

to derive unbiased estimators for each entry in the k-pro�le. �en the problem

becomes how to obtain good performance guarantees for this sparsi�er.

�estion 2. How well does a global k-pro�le estimator based on uniform edge sub-

sampling perform on real-world graphs?

We characterize the performance of the abovek-pro�le sparsi�ers as a func-

tion of the number of subgraphs dependent on a single edge. �is allows us to

randomly discard most edges of the graph and still have k-pro�le estimates that

are provably within a bounded error with high probability. Our analysis uses two

types of concentration bounds: a result on deviations of multivariate polynomials,

4



and an information theoretic inequality for families of dependent random func-

tions.

1.2 Part 2: Regression Guarantees via Weak Submodularity

In the next topic area, we turn our a�ention to a complementary problem.

Sparsity is a fundamental design principle for nearly all machine learning models.

Similar to Occam’s razor, the guiding methodology is that simple models are easy

to implement and generalize be�er to new data not included in the initial training

set. Many example applications have very high-dimensional data: time series,

multimedia, one-hot encoding of categorical features, etc. �us, many problems

such as sparse regression, matrix approximation, and dictionary selection share a

common framework: given p items, select a set S which maximizes some function

f (S) subject to the constraint |S| ≤ k � p.

In general we cannot avoid the subset selection problem’s combinatorial

nature and can only solve it exactly by exhaustive search. Moreover, greedy algo-

rithms are not optimal unless the set function f is modular.1 In a sparse regres-

sion application, this corresponds to the unrealistic assumption of independent

features. However, if f is submodular, a classical result shows that the greedy for-

ward selection algorithm of Nemhauser [15] returns a set within a factor of 1− 1/e

from the optimum.

�estion 3. Can classical (and recent) results from combinatorial optimization be

1Very recently, a more re�ned analysis [14] characterizes problem instances of monotone sub-
modular maximization for which greedy algorithms indeed return the true optimum.

5



used in a more general se�ing by relaxing the de�nition of submodular set functions?

�is question was answered partially by Das and Kempe [16] who de�ned a

notion of weak submodularity.2 �ey showed that in the case of linear regression,

sparse eigenvalue conditions on the covariance matrix imply similar constant fac-

tor guarantees on the approximation ratio. However, the question remains largely

open for many recent advances in algorithms and applications from submodular

function optimization literature [17–19]. In the second part of this dissertation,

we make progress toward the answer by extending the analytical framework of

[16] to more general sparsity-constrained regression problems.

�estion 4. Explore the connection between combinatorial structure and standard

assumptions in continuous optimization. In particular, can (weak) submodularity be

used to provide guarantees for continuous problems such as sparse regression under

Restricted Strong Convexity conditions?

We answer this question positively by showing that any continuous ob-

jective function satisfying a version of Restricted Strong Convexity (along with

a smoothness assumption) corresponds to a set function that satis�es weak sub-

modularity. Using this connection, we obtain performance guarantees for three

types of greedy algorithms (Oblivious, Forward Stepwise Selection, and Orthogo-

nal Matching Pursuit) without making any other modeling assumptions. Speci�-

cally, we need not assume that a true sparse solution exists but can directly control

2 �is is one of many recent relaxations of submodularity. �e reader is referred to Appendix C
for a detailed discussion of the relationships among di�erent parameterizations of non-submodular
functions.
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the sparsity of the output. Alternatives such as `1 regularization either require very

strong assumptions or only control the sparsity level implicitly. First we show via

weak submodularity that when the function satis�es RSC, the approximation ratio

of each algorithm is lower bounded by a constant. �en we provide a general pro-

cedure to convert any approximation ratio guarantee into a bound on recovering

the optimal sparse parameter. In other words (a�er adding some other standard

statistical assumptions), convergence to the maximum function value also implies

convergence to the argmax.

1.3 Part 3: Streaming Weak Submodularity

In some applications, we wish to interpret the predictions of a black-box

neural network so that a data scientist, engineer, or domain expert can assess its

performance. Explanations for machine learning models are believed to be crucial

for adoption in many industries like healthcare, autonomous vehicles, and defense.

�ey also help provide a framework to enforce regulations on fairness across de-

mographic groups and to assign liability when a failure occurs. For example, the

European Union’s General Data Protection Regulation (GDPR), which took e�ect

in May 2018, contains language designed to inform consumers about how their

data is used to make automated decisions.3

However, each model evaluation can be expensive, e.g. if it is stored on

the cloud and accessed through an API. One disadvantage of the standard greedy

3Presently, the GDPR’s requirement of a “right to explanation” (and its enforceability in pro-
duction machine learning systems) remains controversial among legal scholars [20, 21].

7



algorithm [15] is that it requires repeated access to each data element. �is is un-

desirable for additional reasons in tasks such as large-scale data summarization,

where the entire dataset cannot �t in main memory. We address these issues by

considering a streaming version of the problem. Streaming algorithms make a

constant number of passes (o�en only one) over the data and use sublinear space.

�erefore, we examine streaming algorithms for maximizing weakly submodular

functions, with applications to interpretability of black-box neural network clas-

si�ers.

�estion 5. When set elements arrive in a random (or adversarial) streaming order,

what is the approximability of weak submodular maximization as a function of γ ?

Are algorithmic guarantees consistent with the γ = 1 submodular case, or is 0 < γ <

1 fundamentally di�erent?

First, we obtain an impossibility result which shows that, even for γ = 0.5,

no randomized streaming algorithm which uses sublinear memory can have a

constant factor approximation. �is is quite di�erent from the case of γ = 1

where a worst-case approximation factor of 1/2 − ϵ is achievable [22]. Next, we

design and analyze a greedy, deterministic streaming algorithm for maximizing

γ -weakly submodular functions which has an expected approximation ratio of

(1 − ϵ )γ ·
[
4 + γ

2 − 2
√
γ + 4

]
. Here the expectation is with respect to a random

stream order. �e algorithm uses O (ϵ−1k logk ) memory and does not require

knowledge of γ to run. �is is achieved by extending key algorithmic components

of Sieve-Streaming [22], combined with a novel analysis.
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�estion 6. Can streaming weak submodularity be used to establish performance

guarantees in new application areas, such as interpretability of black-box classi�ers?

Finally, we provide a partial answer to the above question. We conduct

an experimental evaluation of our algorithm for nonlinear sparse regression and

interpretability of black-box neural network classi�ers, namely Inception V3 [23].

We de�ne a new subset selection problem similar to that of LIME [24] and apply

our framework to approximately maximize this function. Experimentally, we �nd

that our interpretability method produces explanations of similar quality to LIME

and runs approximately 10 times faster.

1.4 Organization

Chapter 2 deals with the �rst part of the dissertation: algorithms and ap-

proximation guarantees for severalk-pro�le problems on large-scale graphs. Chap-

ter 3 deals with the concept of weak submodularity and its application to subset

selection problems, with sparse logistic regression as a special case. Chapter 4 an-

alyzes a streaming variant of weak submodular maximization, with applications

to both sparse regression and black-box interpretability. Each chapter concludes

with relevant directions for future work.

1.5 Notation

Next we collect some notation that will be used throughout this disserta-

tion. Sets are represented by sans script fonts e.g. A,B. Vectors are represented
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using lower case bold le�ers e.g. x,y, and matrices are represented using upper

case bold le�ers e.g. X,Y. �e i-th column of X is denoted Xi . Non-bold face le�ers

are used for scalars (e.g. j,M ,r ), graphs (e.g. G, H1, F3(v )) vertices and edges of a

graph (e.g. vi , vj ⊆ V , eij = (vi ,vj ) = vivj ⊆ E), and function names (e.g. f (·)). �e

neighborhood set of a vertex v is denoted Γ(v ), and the ego graph of v is denoted

N (v ). �e transpose of a vector or a matrix is represented by > e.g. X>. For any

vector v, de�ne ‖v‖2,k :=
√∑k

i=1v
2
(i )

, where v (i ) represent the order statistics of

v in decreasing order. De�ne [p] := {1,2, . . . ,p}. For simplicity, we assume a set

function de�ned on a ground set of size p has domain 2[p]. For singleton sets, we

write f (j ) := f ({j}).
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Chapter 2

Graph Pro�les:

Algorithms and Approximation Guarantees

2.1 Introduction

In this chapter,1 we discuss several variations of the graph k-pro�le prob-

lem. We propose distributed algorithms for computing local k-pro�les that fall

within the Gather-Apply-Sca�er framework. �en we describe a general scheme

for approximate global k-pro�le counting, and analyze it using two types of con-

centration inequalities. Finally, we show the e�ectiveness of our distributed algo-

rithms and sampling schemes through a series of experiments on multicore, shared

memory platforms as well as distributed computing clusters.

Graph k-pro�les are local statistics that count the number of small sub-

graphs in a big graph. �ey are a natural generalization of triangle counting and

are increasingly popular for several problems in big graph analytics. Globally,

1�e material in this chapter is based on the following conference papers: [25] E. R. Elenberg,
K. Shanmugam, M. Borokhovich, and A. G. Dimakis. Beyond Triangles: A Distributed Frame-
work for Estimating 3-pro�les of Large Graphs. In KDD, pages 229–238, 2015. [26] E. R. Elenberg,
K. Shanmugam, M. Borokhovich, and A. G. Dimakis. Distributed Estimation of Graph 4-pro�les. In
WWW, pages 483–493, 2016. �e dissertation author’s primary contributions are derivation of un-
biased k-pro�le estimators, application of concentration inequalities, algorithm implementations,
and analysis of experiments. �e dissertation author also assisted with other contributions and is
the primary contributor of these papers.
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they form a concise graph description that has found several applications for the

web [1, 27] as well as social and biological networks [2, 28]. Furthermore, as we

explain, the local pro�le of a vertex is an embedding in a low-dimensional fea-

ture space that reveals local structural information. Mathematically, k-pro�les are

of signi�cant recent interest since they are connected to the emerging theory of

graph homomorphisms, graph limits, and graphons [4,5,28]. Estimating k-pro�les

of big graphs is a topic that has received a�ention from several communities re-

cently (e.g. see [3, 25, 26, 28–32] and references therein).

2.1.1 Graph Pro�le De�nitions

�ere are 4 possible graphs on 3 vertices, labeledH0, . . . ,H3 in Figure 2.1(a).

�e global 3-pro�le of a graph G (V ,E) is a vector having one coordinate for each

distinct Hi that counts how many times that Hi appears as an induced subgraph

of G. For example, the graph G = K4 (the complete graph on 4 vertices) has the

3-pro�le [0,0,0,4] since it contains 4 triangles and no other (induced) subgraphs.

�e graph C5 (the cycle on 5 vertices, i.e. a pentagon) has the 3-pro�le [0,5,5,0].

Note that the sum of the k-pro�le is always
(
|V |
k

)
, the total number of subgraphs. In

this chapter we are also interested in the signi�cantly more challenging problem

of estimating 4-pro�les. Figure 2.1(b) shows the 11 possible graphs on 4 vertices,2

labeled as Fi , i = 0, . . . ,10. Given a big graph G (V ,E) and k = {3,4}, we are

interested in estimating the global k-pro�le, i.e. count how many times each Hi

2Actually there are 17 local subgraphs when considering vertex automorphisms. �is is dis-
cussed in Section 2.2.3 and [26] in detail, but for clarity we will ignore vertex automorphisms in
this introductory section.
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and Fi appears as an induced subgraph of G.

H0 H1 H2 H3

(a)

F0 F1 F2 F3 F4 F5

F6 F7 F8 F9 F10

(b)

Figure 2.1: (a) �e 4 possible non-isomorphic graphs on 3 vertices used to calculate
the 3-pro�le of a graph G. �e 3-pro�le counts how many times each Hi appears
inG. (b) �e 11 non-isomorphic graphs on 4 vertices used to calculate the 4-pro�le
of a graph.

In addition to global graph statistics, we are interested in local k-pro�les:

given a speci�c vertexv0, the local 3-pro�le (4-pro�le) ofv0 is a 4-dimensional (11-

dimensional) vector, with each coordinate i counting how many inducedHi ’s (Fi ’s)

containv0. In Figure 2.2 we show an example of the local 4-pro�le of a vertex. �e

local k-pro�le can be seen as an embedding of each vertex in a low-dimensional

space that characterizes the local geometry of its neighborhood: vertices that con-

nect di�erent clusters will have di�erent local 4-pro�les compared to those that are

only part of one dense cluster. A very naı̈ve estimation of 4-pro�les requires ex-

amining
(
n
4

)
possible subgraphs. Furthermore, for estimating each local 4-pro�le
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v1

v0 v2 v4

v3

Figure 2.2: An example for local pro�les. �e global 3-pro�le is [0,3,6,1]. �e
global 4-pro�le is [0,0,0,0,2,0,0,1,2,0,0]. �e ego 3-pro�le of v0 is [0,1,0,0]. �e
local 4-pro�le ofv0 is [0,0,0,0,1,0,0,1,2,0,0]. �e �rst 1 in the pro�le corresponds
to the subgraph F4. Notice thatv0 participates in only one F4, jointly with vertices
v2,v3,v4.

independently, this computation has to be repeated n times, once for each ver-

tex. Note that the local 4-pro�les may be rescaled and added together to obtain

the global 4-pro�le. Since some of the 4-pro�le subgraphs are disconnected (like

F0,F1,F5), local 4-pro�les contain information beyond the local neighborhood of a

vertex. �erefore, in a distributed se�ing, it seems that global communication is

required.

Finally, we also consider the problem of calculating the ego 3-pro�le for

each vertex, e.g. v0. �is is the 3-pro�le of the graph N (v0) i.e. the neighbors ofv0,

also called the ego graph ofv0. �e ego 3-pro�le ofv0 can be seen as a projection of

the vertex into a coordinate system [28]. �is is a very interesting idea of viewing

a big graph as a collection of small dense graphs, in this case the ego graphs of

the vertices. Note that calculating the ego 3-pro�les for a set of vertices of a graph

is di�erent (in fact, signi�cantly harder) than calculating local 3-pro�les. Indeed,

we show that the ego 3-pro�le can be computed by counting a subset of the local

4-pro�le. Figure 2.2 also shows an example of the ego 3-pro�le of a vertex.
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2.1.2 Contributions

For the rest of this chapter we describe three contributions in this area,

which are summarized as follows:

Algorithms: Our �rst contribution deals with e�ciently designing distributed

algorithms for estimatingk-pro�les on large graphs. We rely on the Gather-Apply-

Sca�er model used in GraphLab PowerGraph [11] but, more generally, our algo-

rithm �ts the architecture of most graph engines. �is restrictive se�ing does not

allow communication between nonadjacent vertices, a key component of previous

centralized, shared-memory approaches. We introduce the concept of edge pivot-

ing which allows us to collect 2-hop information without maintaining an explicit

2-hop neighborhood list at each vertex. �is enables the computation of all the

local 3-pro�les in parallel. Each edge requires only information from its endpoints

and each vertex only computes quantities using data from incident edges. For the

problem of ego 3-pro�les, we show how to calculate them by combining edge pivot

equations and local 4-clique counts.

We also show that, surprisingly, very limited global information is su�-

cient to calculate the local 4-pro�le of a vertex and that it can be reused to calculate

all the local 4-pro�les in parallel. Speci�cally, we introduce a distributed algorithm

to estimate all the local 4-pro�les and the global 4-pro�le of a big graph. Our al-

gorithm operates by having each vertex �rst perform local message-passing to its

neighbors and then solve a novel system of equations for the local 4-pro�le. Fo-

cusing on a vertex v0, the �rst easy step is to calculate its local 3-pro�le. It can be
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shown that the local 3-pro�le combined with the full two-hop connectivity infor-

mation is su�cient to estimate the local 4-pro�le for each vertex v0. �is is not

immediately obvious, since naı̈vely counting the 3-path (an automorphism of F4)

would require 3-hop connectivity information. However, we show that less in-

formation needs to be communicated. Speci�cally, we prove that the triangle list

combined with what we call the two-hop histogram is su�cient: for each vertex

vi that is 2-hops from v0, we only need the number of distinct paths connecting it

to v0, not the full two hop neighborhood. If the two-hop neighborhood is a tree,

this amounts to no compression. However, for real graphs the two-hop histogram

saves a factor of 3x to 5x in communication (see the experiments in Section 2.4).

�is enables an even more signi�cant running time speedup of 5–10 times on sev-

eral distributed experiments using 12–20 compute nodes.

Graph Pro�le Sparsi�cation: Our second innovation is a provable edge sub-

sampling scheme: we establish sharp concentration results for estimating the en-

tire global k-pro�le of a graph. �is allows us to randomly discard most edges of

the graph and still have k-pro�le estimates that are provably within a bounded er-

ror with high probability. One idea that originated from triangle counting [33,34]

is to �rst perform random subsampling of edges to create a sparse graph called

a triangle sparsi�er. �en count the number of triangles in the sparse graph and

rescale appropriately to estimate the number in the original graph. We present

two proof techniques, based on [35] and [36], that show the randomly sparsi�ed

graph has a pro�le su�ciently concentrated around its expectation.
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System Implementation: Finally, we implement our algorithms in GraphLab

PowerGraph [11] and perform several experiments scaling up to 640 cores on Ama-

zon EC2. We present results on both overall runtimes and network communication

on multicore and distributed systems. We �nd that our algorithm can estimate the

3-pro�le of a graph in approximately the same time as triangle counting. Speci�-

cally, we compare against the PowerGraph triangle counting routine and �nd that

it takes us only 1%-10% more time to compute the full 3-pro�le. For the signi�-

cantly harder problem of ego 3-pro�les, we were able to compute (in parallel) the

3-pro�les of up to 100,000 ego graphs in the timescale of several minutes. We

compare our parallel ego 3-pro�le algorithm to a simple sequential algorithm that

operates on each ego graph sequentially and show tremendous scalability bene�ts,

as expected. �e bene�ts of two-hop histogram compression and sparsi�cation al-

low us to compute the global and local 4-pro�les of very large graphs. For example,

for a graph with 5 million vertices and 40 million edges we estimated the global

4-pro�le in less than 10 seconds. For computing all local 4-pro�les on this graph,

the previous state-of-the-art [30] required 1200 seconds while our distributed al-

gorithm required less than 100 seconds.

2.1.3 Related Work

In this section, we describe several related topics and discuss di�erences in

relation to our work.
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Graph Subsampling and Concentration Inequalities: Random edge sub-

sampling is a natural way to quickly obtain estimates for graph parameters. For

the case of triangle counting such graphs are called triangle sparsi�ers [34]. Re-

lated ideas were explored in the Doulion algorithm [33, 34, 37] with increasingly

strong concentration bounds. �e recent work by Ahmed et al. [38] develops sub-

graph estimators for clustering coe�cient, triangle count, and wedge count in a

streaming subsampled graph. Other recent work [39–42] uses random sampling

to estimate parts of the 3 and 4-pro�le. �ese methods do not account for a dis-

tributed computation model and require more complex sampling rules. As dis-

cussed, our theoretical results build on [34] to de�ne the �rst 3-pro�le sparsi�ers,

sparse graphs that are a fortiori triangle sparsi�ers.

Concentration inequalities for the number of triangles in a random graph

have been studied extensively. �e standard method of martingale bounded di�er-

ences (McDiarmid’s inequality) is known to yield weak concentrations around the

mean for this problem. �e breakthrough work of Kim and Vu [35] provides su-

perior asymptotic bounds by analyzing the concentration of multivariate polyno-

mials. �is was later improved and generalized in [43], and applied to subsampled

triangle counting in [34]. �e results in Section 2.3.2 follow this proof technique,

while the analysis in Section 2.3.3 uses a di�erent, information theoretic technique

called read-k functions [36] that produces sharper concentration results for prac-

tical problem sizes.3

3Even though concentrations using Kim-Vu become tighter asymptotically, this happens for
graphs with well over 1013 edges (see also Figure 2.6).
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Triangle Counting in Graph Engines: Graph engines (e.g. Pregel, GraphLab,

Galois, GraphX, see [44] for a comparison) are frameworks for expressing dis-

tributed computation on graphs in the language of vertex programs. Triangle

counting algorithms [27, 45] form one of the standard graph analytics tasks for

such frameworks [11,44]. In [46], the authors list triangles e�ciently by partition-

ing the graph into components and processing each component in parallel. Typi-

cally it is much harder to perform graph analytics over the MapReduce framework,

but some recent work [47,48] has used clever partitioning and provided theoretical

guarantees for triangle counting.

Frequent Subgraph Discovery: �e general problem of �nding frequent sub-

graphs, also known as motifs or subgraph isomorphisms, is to �nd the number of

occurrences of a small query graph within a larger graph. Typically frequent sub-

graph discovery algorithms o�er pruning rules to eliminate false positives early in

the search [49–51]. �is is most applicable when subgraphs have labeled vertices

or directed edges. For these problems, the number of unique isomorphisms grows

much larger than in our application.

In [28], subgraphs were queried on the ego graphs of users. While enumer-

ating all 3-sets and sampling 4-sets of neighbors can be done in parallel, forming

the ego subgraphs requires checking for edges between neighbors. �is suggests

that a graph engine implementation would be highly preferable over an Apache

Hive system. Our algorithms simultaneously compute the ego subgraphs and their

pro�les, reducing the amount of communication between nodes. Algorithm 3 is
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suitable for both NUMA multicore and distributed architectures, but our imple-

mentation focus in this chapter is on GraphLab.

Graphlets and Applications: First described in [2], graphlets generalize the

concept of vertex degree to include the connected subgraphs a particular ver-

tex participates in with its neighbors. Unique graphlets are de�ned at a vertex

based on its degree in the subgraph. Graphlet frequency distributions (GFDs)

have proven useful in the �elds of computational neuroscience [52] and bioinfor-

matics. Speci�cally, GFD analysis of protein interaction networks helps to design

improved generative models [53], accurate similarity measures [2], and be�er fea-

tures for classi�cation [10]. �e term graphlets typically refers to only connected

subgraphs, but in some examples such as [54], the authors analyze neuronal net-

works using all global 4-subgraphs.

SubgraphCounting: Fast matrix multiplication has been used for certain types

of subgraph counting. Alon et al. proposed a cycle counting algorithm which uses

the trace of a matrix power on high degree vertices [55]. Related approximation

schemes [37] and randomized algorithms [29] depend on centralized architectures

and computing matrix powers of very large matrices.

Previous systems of equations relating clique counts to other 4-subgraphs

appear in [29, 30, 56–59]. However, these are applied in a centralized se�ing and

depend on information collected from nonadjacent vertices. In this work, we use

additional equations to solve the same system by sharing only local information
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over adjacent vertices. We evaluate our algorithm against Orca [30], a centralized

4-graphlet counting algorithm, as well as its GPU implementation [60]. Notice

that while Orca calculates only connected 4-subgraphs, our algorithm calculates

all the connected and the disconnected 4-subgraphs for each vertex.

Concurrent with the writing and subsequent publication of these results in

[26], a parallel algorithm for 4-subgraph counting was introduced in [59]. Our al-

gorithm di�ers by working within GraphLab PowerGraph’s Gather-Apply-Sca�er

framework instead of the native, multithreaded C++ implementation of [59]. In

terms of empirical performance, both our work and [59] show similar running time

improvements of one order of magnitude over Orca. A more detailed comparison

would depend on the hardware and datasets used. More importantly, our work

focuses on a distributed (as opposed to multicore parallel) framework, and for our

se�ing minimizing communication is critical. Our theoretical results are signi�-

cantly di�erent from [59] and may be useful in improving that system also. Specif-

ically, [59] explicitly counts the number of 4-cycles (F7 in Figure 2.1(b)) whereas we

show that it is possible to use only two-hop histograms instead. �is results in less

communication overhead, but this bene�t is perhaps not as signi�cant for shared-

memory multicore platforms. Our second theoretical result, the novel sparsi�ca-

tion concentration bounds, can be used for any subgraph estimation algorithm and

quanti�es a provable tradeo� between speed and accuracy.
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2.2 Distributed Algorithms

In this section we introduce novel, distributed algorithms for estimating

the local k-pro�les of massive graphs for k = {3,4}, as well as ego 3-pro�les. �ese

local vectors can be used to obtain the global pro�les (by rescaled addition as we

discuss in the sequel). Our algorithms can be applied independently of the edge

sampling described in Section 2.3. We rely on the Gather-Apply-Sca�er (GAS)

model used in GraphLab PowerGraph (but, more generally, our algorithm �ts the

architecture of most graph engines). A distributed algorithm in this framework has

3 main phases: Gather, Apply, and Sca�er. Every vertex and edge has stored data

which is acted upon. During the Gather phase, a vertex can access all its adjacent

edges and neighbors and gather data they possess, e.g. neighbor ID, using a custom

reduce operation ⊕ (e.g. addition, concatenation). �e accumulated information is

available for a vertex at the next phase, Apply, in which it can change its own data.

In the �nal Sca�er phase, every edge sees the data of its (incident) vertices and

operates on it to modify the edge data. All nodes start each phase simultaneously,

and if needed, the whole GAS cycle is repeated until the algorithm’s completion.

We introduce the concept of edge pivoting which allows us to collect 2-

hop information without maintaining an explicit 2-hop neighborhood list at each

vertex. �is enables the computation of all the local k-pro�les in parallel. Each

edge requires only information from its endpoints and each vertex only computes

quantities using data from incident edges. For the problem of ego 3-pro�les, we

show how to calculate them by combining edge pivot equations and local clique

counts.
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�e key to our approach is to identify subgraphs at a vertex based on the

degree with which it participates in the subgraph. From the perspective of a given

vertex v , there are actually six distinct 3 node subgraphs up to isomorphism as

given in Figure 2.3(a). Letn0,v ,n
e
1,v ,n

d
1,v ,n

e
2,v ,n

d
2,v , andn3,v denote the corresponding

local subgraph counts at v . We will �rst outline an approach that calculates these

counts and then add across di�erent vertex perspectives to calculate the �nal 4

scalars (n2,v = ne2,v + nc2,v and n1,v = ne1,v + nd1,v ). It is easy to see that the global

counts can be obtained from these local counts by summing across vertices:

ni =
1
3



∑
v∈V

ni,v


 , ∀i . (2.1)

2.2.1 Distributed Local 3-pro�le

We will now give our approach for calculating the local 3-pro�le counts of

G (V ,E) using only local information combined with |V | and |E |.

Scatter: We assume that every edge (v,a) has access to the neighborhood sets of

both v and a, i.e. Γ(v ) and Γ(a). �erefore, intersection sizes are �rst calculated at

every edge, i.e. |Γ(v ) ∩ Γ(a) |. Each edge computes the following scalars and stores

them:
ne1,va = |V | − ( |Γ(v ) | + |Γ(a) | − |Γ(v ) ∩ Γ(a) |),

nc2,va = |Γ(v )\{Γ(a) ∪ a}| = |Γ(v ) | − |Γ(v ) ∩ Γ(a) | − 1,

ne2,va = |Γ(a) | − |Γ(v ) ∩ Γ(a) | − 1 = nc2,av ,

n3,va = |Γ(v ) ∩ Γ(a) |.

(2.2)

�e computational e�ort at every edge is at most O (dmax), where dmax is the max-

imum degree of the graph, for the neighborhood intersection size.
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H0(v ) He
1 (v ) Hd

1 (v ) Hc
2 (v ) He

2 (v ) H3(v )

(a)

J0(v ) J1(v ) J2(v ) J3(v )

(b)

F3(v )

F

F4(v ) F6(v ) F8(v ) F9(v )

F
′

F
′′

(c)

Figure 2.3: Naming conventions for local subgraphs throughout this chapter:
unique (a) 3-subgraphs, (b) ego 3-subgraphs, and (c) 4-subgraphs from the per-
spective of the white vertex v . Note that J0(v ) is the same as F

′

6(v ). F8 is the
only subgraph with a third vertex automorphism F

′′

8 because no other subgraph
contains vertices with 3 di�erent degrees.

Gather: In the next round, vertex v “gathers” the above scalars as follows:

ne2,v =
∑

a∈Γ(v )

ne2,va, n
e
1,v =

∑
a∈Γ(v )

n1,va .

nc2,v
a
=

1
2

∑
a∈Γ(v )

nc2,va, n3,v
b
=

1
2

∑
a∈Γ(v )

n3,va .

nd1,v
c
= |E | − |Γ(v ) | − n3,v − n

e
2,v .

n0,v =

(
|V | − 1

2

)
− n1,v − n2,v − n3,v .

(2.3)
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Here, relations (a) and (b) are because triangles and wedges from center are dou-

ble counted. (c) comes from noticing that each triangle and wedge from endpoint

excludes an extra edge from forming Hd
1 (v ). In this Gather stage, the communica-

tion complexity is O (M ) where it is assumed that Γ(v ) is stored over M di�erent

machines. �e corresponding distributed algorithm is described in Algorithm 1.

Algorithm 1 3-prof
Input: Graph G (V ,E) with |V | vertices, |E | edges
Gather: For each vertex v union over edges of the ‘other’ vertex in the edge,
∪a∈Γ(v )a = Γ(v ).
Apply: Store the gather as vertex data v.nb, size automatically stored.
Scatter: For each edge eva , compute and store scalars in (2.2).
Gather: For each vertex v , sum edge scalar data of neighbors

g←
∑

(v,a)∈Γ(v ) e.data.
Apply: For each vertex v , calculate and store the quantities described in (2.3).
return [v: v.n0 v.n1 v.n2 v.n3]

2.2.2 Distributed Ego 3-pro�le

In this section, we give an approach to compute ego 3-pro�les for a set

of vertices V ⊆ V in G. For each vertex v , the algorithm returns a 3-pro�le cor-

responding to that vertex’s ego N (v ), a subgraph induced by the neighborhood

set Γ(v ), including edges between neighbors and excluding v itself. Formally, our

goal is to compute {n3(N (v ))}v∈V. Clearly, this can be accomplished in two steps

repeated serially on all v ∈ V: �rst obtain the ego subgraph N (v ) and then pass it

as input to Algorithm 1, summing over the ego vertices Γ(v ) to get a global count.

�e serial implementation is provided in Algorithm 2. We note that this was es-

sentially done in [28], where ego subgraphs were extracted from a common graph
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separately from 3-pro�le computations.

Instead, Algorithm 3 provides a parallel implementation which solves the

problem by �nding cliques in parallel for all v ∈ V. �e main idea behind this

approach is to realize that calculating the 3-pro�le on the induced subgraph N (v )

is exactly equivalent to computing speci�c 4-node subgraph frequencies among v

and 3 of its neighbors, enumerated as Ji (v ), 0 ≤ i ≤ 3 in Figure 2.3(b). Now, the

aim is to calculate Ji (v )’s, e�ectively part of a local 4-pro�le.

Scatter: We assume that every edge (v,a) has already computed the scalars from

(2.2). Additionally, every edge (v,a) also computes the list Nva = Γ(v ) ∩ Γ(a)

instead of only its size. �e computational complexity is still O (dmax).

Gather: First, the vertex “gathers” the following scalars, forming three edge pivot

equations in unknown variables Ji (v ):∑
a∈Γ(v )

(
nc2,va

2

)
= 3J0(v ) + J1(v )

∑
a∈Γ(v )

(
n3,va

2

)
= J2(v ) + 3J3(v )∑

a∈Γ(v )

nc2,van3,va = 2J1(v ) + 2J2(v )

(2.4)

By choosing two subgraphs that the edge (v,a) participates in, and then

summing over neighbors a, these equations gather implicit connectivity informa-

tion 2 hops away from v . However, note that there are only three equations in

four variables and we must count one of them directly, namely the number of 4-

cliques J3(v ). �erefore, at the same gather step, the vertex also creates the list
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CNv =
⋃

a∈Γ(v ),p∈Nva (a,p). Essentially, this is the list of edges in the subgraph in-

duced by Γ(v ). �is requires worst case communication proportional to the num-

ber of edges in N (v ), independent of the number of machines M .

Scatter: Now, at the next sca�er stage, each edge (v,a) accesses the pair of lists

CNv , CNa . Each edge (v,a) computes the number of 4-cliques it is a part of, de�ned

as follows:

n4,va =
∑

i,j∈Γ(v )∩Γ(a)

1 ((i, j ) ∈ CNv ) . (2.5)

�is incurs computation time of |CNv |.

Gather: In the �nal gather stage, every vertex v accumulates these scalars to

get J3(v ) = 1
3

∑
a∈Γ(v )

n4,va requiring O (M ) communication time. As in the previ-

ous section, the scaling accounts for extra counting. Finally, the vertex solves the

equations (2.4) using J3(v ).

Algorithm 2 Ego-ser
Input: Graph G (V ,E) with |V | vertices, |E | edges, set of ego vertices V
for v ∈ V do

Signal v and its neighbors.
Include an edge if both its endpoints are signaled.
Run Algorithm 1 on the graph induced by the neighbors and edges between
them.

end for

return [v: vego.n0 vego.n1 vego.n2 vego.n3]

2.2.3 Distributed Local 4-pro�le

In this section, we describe 4-prof, our algorithm for computing the exact

4-pro�les in a distributed manner. To the best of our knowledge, this is the �rst
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Algorithm 3 Ego-par
Input: Graph G (V ,E) with |V | vertices, |E | edges, set of ego vertices V
Gather: For each vertex v union over edges of the ‘other’ vertex in the edge,
∪evaa = Γ(v ).
Apply: Store the gather as vertex data v.nb, size automatically stored.
Scatter: For each edge eva , compute and store as edge data:

Scalars in (2.2).
�e list Nva .

Gather: For each vertex v , sum edge data of neighbors:
Accumulate LHS of (2.4).
g.CN ← g.CN ∪Nva .

Apply: Obtain CNv and equations in (2.4) using the scalars and g.CN.
Scatter: Sca�er CNv ,CNa to all edges (v,a).

Compute n4,va as in (2.5).
Gather: Sum edge data n4,va of neighbors at v .
Apply: Compute J3(v ).
return [v: vego.n0 vego.n1 vego.n2 vego.n3]

distributed algorithm for calculating 4-pro�les. �e key insight is to cast existing

and novel equations into the GraphLab PowerGraph framework [11] to get implicit

connectivity information about vertices outside the 1-hop neighborhood. Specif-

ically, we construct the local 4-pro�le from local 3-pro�le, local 4-clique count,

and additional histogram information which describes the number of paths to all

2-hop neighbors.

�eorem 2.2.1. �ere is a distributed algorithm that computes the exact local 4-

pro�le of a graph given each vertex has stored its local 3-pro�le, triangle list, and

2-hop histogram.

Note that similar to (2.1), the local 4-pro�les at each vertex can be added

and appropriately rescaled (using the symmetries of each subgraph, also called
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automorphism orbits [2]) to obtain the global 4-pro�le.

4-prof solves a slightly larger problem of keeping track of counts of 17

unique subgraphs up to vertex automorphism (see Figure 2.3(c)). We will describe

a full rank system of equations which is su�cient to calculate the local 4-pro�le at

everyv ∈ V . �e remainder of this subsection explains each component of 4-prof.

�ese separate routines are combined e�ciently in Algorithm 4 to calculate the

local 4-pro�le in a small number of GAS cycles.

Edge Pivot Equations: �e majority of our equations relate the local 4-pro�le

to neighboring local 3-pro�les with edge pivots as described earlier. At each vertex

v , each combinatorial equation relates a linear combination of the local 4-subgraph

counts to the count of a pair of 3-subgraphs sharing an edge va. Some of these

equations appear in a centralized se�ing in previous literature ([29, 30, 57, 59]). In

our algorithm, the 3-subgraph pair count accumulates atv as all incident edgesva

pivot over it. �e edges �xed by a speci�c 3-subgraph pair correspond to common

edges among a subset of 4-subgraphs. Before that, in an initial GAS round, each

vertex v must gather the ID of each vertex in its neighborhood, i.e. a ∈ Γ(v ), and

the quantities in (2.2) must be stored at each edge va during the Sca�er phase.

Gather: �e above quantities are summed at each vertex v as in (2.3) to calculate

the local 3-pro�le atv . In addition, we gather the sum of functions of pairs of these
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quantities forming 13 edge pivot equations:∑
a∈Γ(v )

(
ne1,va

2

)
= F1(v ) + F2(v ),

∑
a∈Γ(v )

(
nc2,va

2

)
= 3F ′6(v ) + F

′

8(v ),

∑
a∈Γ(v )

(
n3,va

2

)
= F

′

9(v ) + 3F10(v ),∑
a∈Γ(v )

ne1,van
c
2,va = 2F ′3(v ) + F

′

4(v ),∑
a∈Γ(v )

ne1,van3,va = 2F5(v ) + F
′′

8 (v ),∑
a∈Γ(v )

nc2,van
e
2,va = F

′

4(v ) + 2F7(v ),∑
a∈Γ(v )

nc2,van3,va = 2F ′8(v ) + 2F ′9(v ),

nd1,v |Γ(v ) | = F2(v ) + F4(v ) + F8(v ).

(2.6)

�e primed notation di�erentiates between subgraphs of di�erent automorphism

orbits, as in Figure 2.3(c). By accumulating pairs of 3-pro�le structures as in (2.6),

we receive aggregate connectivity information about vertices more than 1 hop

away. Consider the sixth equation as an example. �e product between n2,va and

ne2,va subgraphs along edge va forms 4-node graphs with the following structural

constraints: three vertex pairs are connected, two vertex pairs are disjoint, and one

pair may be either connected or disjoint. F ′4(v ) and F7(v ) satisfy these constraints

and di�er on the unconstrained edge. �us, as shown in Figure 2.4, they both

contribute to the sum of nc2,vane2,va .

�e following edge pivot equations are linearly independent when solving

for the local 4-pro�le only. Note the last 2 equations require calculating the local
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v a

∑
a∈Γ(v ) n

c
2,van

e
2,va F

′

4(v ) 2F7(v )

= +

Figure 2.4: Edge pivot equation for vertex v counting triangles as edges va pivot
about their common vertex v . �e subgraphs F ′4(v ) and F7(v ) di�er by one edge.

3-pro�le: ∑
a∈Γ(v )

(
ne2,va

2

)
= F6(v ) + F8(v ),∑

a∈Γ(v )

ne1,van
e
2,va = F3(v ) + F4(v ),∑

a∈Γ(v )

ne2,van3,va = F
′′

8 (v ) + 2F9(v ),∑
a∈Γ(v )

n3,a − n3,va = F8(v ) + 2F9(v ) + 3F10(v ),∑
a∈Γ(v )

ne2,a − n
c
2,va = F4(v ) + 2F7(v ) + F

′′

8 (v ) + 2F ′9(v ).

(2.7)

Apply: Store the le� hand sides of all 13 equations at v .

Clique Counting: �e aim of this subtask is to count 4-cliques that contain the

vertexv . Similar to Section 2.2.2, we accumulate a list of triangles at each vertexv .

�en, at the Sca�er stage for everyva, it is possible to check if neighbors common

to v and a have an edge between them. �is implies a 4-clique.

Scatter: In addition to the intersection size |Γ(v ) ∩ Γ(a) | at each edgeva as before,

we now require the intersection list {b : b ∈ Γ(v ),b ∈ Γ(a)} as a starting point.
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Gather, Apply: �e intersection list is gathered at each vertex v . �is produces

all pairs of neighbors in Γ(v ) which are adjacent, i.e. all triangles containing v . It

is stored as ∆(v ) during the Apply stage at v .

Gather, Apply: Each edgeva computes the number of 4-cliques by counting how

many pairs in ∆(a) contain exactly two neighbors of v . We use a similar equation

to calculate F8(v ) concurrently:∑
a∈Γ(v )

|(b,c ) ∈ ∆(a) : b ∈ Γ(v ),c ∈ Γ(v ) | = 3F10(v ),∑
a∈Γ(v )

|(b,c ) ∈ ∆(a) : b < Γ(v ),c < Γ(v ) | = F8(v ).
(2.8)

At the Apply stage, store the le� hand sides as vertex data.

Histogram 2-hop Information: Instead of calculating the number of cycles

F7(v ) directly, we can simply construct another linearly independent equation and

add it to our system. Let each vertex a have a vector of (vertex ID, count) pairs

(p,ca[p]) for each of its adjacent vertices p. Initially, ca[p] = 1 and this histogram

contains the same information as Γ(a). For any a ∈ Γ(v ) and p < Γ(v ), ca[p] = 1⇔

vap forms a 2-path. �us,v can collect these vectors to determine the total number

of 2-paths from v to p. �is lets us calculate a linear combination involving cycle

subgraph counts with an equation that is linearly independent from the others in

our system.

Gather: At each v , take a union of histograms from each neighbor a, resolving

duplicate entries with the reduce operation (p,ca1 ) ⊕ (p,ca2 ) = (p,ca1 + ca2 ).
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Algorithm 4 4-prof
1: Input: Graph G (V ,E) with |V | vertices, |E | edges.
2: Gather: For each vertex v union over edges of the ‘other’ vertex in the edge,
∪a∈Γ(v )a = Γ(v ).

3: Apply: Store the gather as vertex data v.nb, size automatically stored.
4: Scatter: For each edge eva , compute and store scalars in (2.2).
5: Gather: For each edge eva , sum edge scalar data of neighbors in (2.6) - (2.7)

and combine two-hop histograms.
6: Apply: For each vertex v , sum over p < Γ(v ) in (2.9), store other data in array

v.u. No Sca�er.
7: Gather: For each vertex v collect pairs of connected neighbors in ∆(v ).
8: Apply: Store connected neighbor (triangle) list as vertex data v.conn. No

Sca�er.
9: Gather: For each vertex v sum (2.8).

10: Apply: Append data to array v.u. Multiply v.u by a matrix to solve system
of equations.

11: return [v: v.N0 v.N1 v.N2 . . . v.N10]

Apply: Given the gathered histogram vector, {⊕a∈Γ(v ) ca[p]}p<Γ(v ) , calculate the

number of non-induced 4-cycles involving p and two neighbors:∑
p<Γ(v )

(
⊕a∈Γ(v ) ca[p]

2

)
= F7(v ) + F9(v ). (2.9)

Next, we upper bound the savings from our 2-hop histogram by analyzing

the improvement when the only information transmi�ed across the network to a

vertex v is each non-neighboring vertex and its �nal count ⊕a∈Γ(v )c[p]. Let

hv = |Γ(Γ(v )) \ {Γ(v ) ∪v}|.

For each v , the di�erence between full information and histogram information is

at most ∑a∈Γ(v ) ( |Γ(a) | − 1) − 2hv . �e exact bene�t of (2.9) depends on the internal

implementation of the reduce operation ⊕ as pairs of neighbors are gathered.
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Counting the number of distinct pairs of 2-paths to each 2-hop neighbor,

i.e.
1
2 (c[p]2 −c[p]), requires counting the second moment of c taken over hv terms.

Due to a result by Alon ([61], Proposition 3.7), the memory required to count this

value exactly (moreover, to approximate it deterministically) is Ω(hv ). �us, up to

implementation details, our memory use is optimal.

Normalization and Symmetry: Our �nal local equation comes from summing

the local 4-pro�le across all 17 automorphisms:
17∑
i

Fi (v ) =

(
|V | − 1

3

)
. (2.10)

To calculate the global 4-pro�le, we utilize global symmetry and scaling

equations. Let Fi =
∑
v∈V Fi (v ). Globally, each subgraph count is in exact propor-

tion with the same subgraph counted from a di�erent vertex automorphism. �e

ratio depends on the subgraph’s degree distribution:

F3 = 2F ′3, F4 = F
′

4, F6 = 3F ′6,

F8 = F
′

8, F
′′

8 = 2F8, F9 = F
′

9.
(2.11)

Global symmetry makes the equation for F8 and the system (2.7) linearly

dependent. We sum across vertices, inverting a single 11 × 11 system to yield the

�nal global 4-pro�le [N0, . . . ,N10]> by scaling appropriately:

N0 =
F0
4 , N1 =

F1
2 , N2 =

F2
4 , N3 = F

′

3,

N4 =
F
′

4
2 , N5 =

F5
3 , N6 = F

′

6, N7 =
F7
4 ,

N8 = F8, N9 =
F9
2 , N10 =

F10
4 .

(2.12)
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2.3 Sampling, Estimators, and Concentration Bounds

In this section, we describe and analyze an unbiased estimator of the global

k-pro�le based on uniform edge subsampling. Our analysis models the transfor-

mation from original to sampled graph as a one step Markov chain with transitions

expressed as a function of the sampling probability. Our result is that a random

sampling of edges forms a k-pro�le sparsi�er, i.e. a subgraph that preserves the el-

ements of the k-pro�le with su�cient probability concentration. �is framework

is a generalization of the triangle sparsi�ers by Tsourakakis et al. [34].

Our �rst proof relies on a result by Kim and Vu [35] for concentration of

multivariate polynomials, similarly to [34]. Unfortunately, the Kim and Vu con-

centration holds only for a class of polynomials called totally positive and some

terms in the 3-pro�le do not satisfy this condition. For that reason, the proof

of [34] does not directly extend beyond triangles. Our technical innovation in-

volves showing that it is still possible to decompose our polynomials as combina-

tions of totally positive polynomials using a sequence of variable changes.

While this technique scales well in theory, typically the estimated errors

are orders of magnitude larger than the measured quantities for reasonable graph

sizes. Our second proof introduces novel concentration bounds for global k-pro�le

sparsi�ers that use a novel information theoretic technique called read-k func-

tions [36]. Our read-k bounds allow usable concentration inequalities for sparsi-

�cation factors of approximately 0.4 or higher (Section 2.4). Note that removing

half the edges of the graph does not accelerate the running time by a factor of 2,

but rather by a factor of nearly 8, as shown in our experiments.
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2.3.1 k-pro�le Sparsi�er

In this section, we describe the process for approximating the exact num-

ber of subgraphs in a graphG. For 3 node subgraphs of type H0, H1, H2 and H3, as

depicted in Figure 2.1(a), denote the exact counts by n3 = [n0, . . . ,n3]> and the es-

timates by [X0, . . . ,X3]>. Because the vector n3 is a scaled probability distribution,

there are only 3 degrees of freedom. �erefore, we calculate

n3(G ) =

[(
|V |

3

)
− n1 − n2 − n3, n1, n2, n3

]>
.

We are sparsifying the original graph G by keeping each edge indepen-

dently with probability p. Denote the random subsampled graph by G̃ and its

global 3-pro�le by [Y0, . . . ,Y3]>. We relate the subsampled 3-pro�le counts to the

original ones through a one step Markov chain involving transition probabilities.

�e subsampling process is the random step in the chain. Any speci�c subgraph

is preserved with some probability and otherwise transitions to one of the other

subgraphs. For example, a 3-clique is preserved with probability p3. Figure 2.5

illustrates the other transition probabilities.

In expectation, this yields the following linear system:



E [Y0]
E [Y1]
E [Y2]
E [Y3]


=



1 1 − p (1 − p)2 (1 − p)3
0 p 2p (1 − p) 3p (1 − p)2
0 0 p2 3p2(1 − p)
0 0 0 p3





n0
n1
n2
n3


, (2.13)
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Figure 2.5: Edge sampling process.
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from which we obtain unbiased estimators for each entry in X(G ) = [X0, . . . ,X3]>:

X0 = Y0 −
1 − p
p

Y1 + (1 − p)2

p2 Y2 −
(1 − p)3

p3 Y3

X1 =
1
p
Y1 −

2(1 − p)
p2 Y2 + 3(1 − p)2

p3 Y3

X2 =
1
p2Y2 −

3(1 − p)
p3 Y3

X3 =
1
p3Y3.

(2.14)

Lemma 2.3.1. X(G ) is an unbiased estimator of n(G ).

Proof. By substituting (2.14) into (2.13), clearly E [Xi] = ni for i = 0,1,2,3. �

For the rest of the subsection, we shi� our a�ention to 4-pro�les. Denote

the exact counts by n4 = [n0, . . . ,n10]>, the estimates by [X0, . . . ,X10]>, and the

global 4-pro�le of G̃ by [Y0, . . . ,Y10]>. Just as each triangle survives with prob-

ability p3 and each 4-clique clearly survives with p6. �erefore, in expectation,

E[Y10] = p6N10 and X10 =
1
p6Y10 is unbiased.

�is simple correspondence does not hold for other subgraphs: each clique

in G̃ can only be a clique in G that survived edge removals, but other subgraphs

of G̃ could be originating from multiple subgraphs ofG depending on the random

sparsi�cation process. We can, however, relate the original 4-pro�le vector to the

expected subsampled 4-pro�le vector by a matrix multiplication. Let F (abcd ) and

F̃ (abcd ) represent the induced 4-subgraph on the vertices abcd before and a�er

subsampling, respectively. �en de�ne H by Hij = P(F̃ (abcd ) = Fi | F (abcd ) = Fj ).

�us, we form an unbiased estimator, i.e. E[Xi] = Ni , i = 1, . . . ,10, by inverting

the edge sampling matrix.
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For 3-pro�les, this process is described by the system (2.13). For 4-pro�les,

the vectors are 11 dimensional and a similar linear system can be explicitly com-

puted – the full system of equations is included in Appendix B. �is matrix turns

out to be invertible and we can therefore calculate the 4-pro�le exactly if we have

access to the expected values of the sparsi�ed 4-pro�le. Of course, we can only

obtain one sample random graph and calculate that 4-pro�le, which will be an

accurate estimate if the 4-pro�le quantities are su�ciently concentrated around

their expectation.

2.3.2 Kim-Vu Concentration Bounds

We now turn to prove our �rst concentration bounds for the above esti-

mators. We introduce some notation for this purpose. Let X be a real polynomial

function of m real random variables {ti }mi=1. Let α = (α1,α2, . . . ,αm ) ∈ Z
m
+ and

de�ne E≥1[X ] = maxα :‖α ‖1≥1 E(∂
αX ), where

E(∂αX ) = E

[
(
∂

∂t1
)α1 . . . (

∂

∂tm
)αm [X (t1, . . . ,tm )]

]
. (2.15)

Further, we call a polynomial totally positive if the coe�cients of all the monomials

involved are non-negative. We state the main technical tool we use to obtain our

concentration results.

�eorem 2.3.1 (Kim-Vu Concentration [35]). Let X be a random totally positive

Boolean polynomial inm Boolean random variables with degree at most k . If E[X ] ≥

E≥1[X ], then

P
(
|X − E[X ]| > ak

√
E[X ]E≥1[X ]λk

)
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= O (exp (−λ + (k − 1) logm)) (2.16)

for any λ > 1, where ak = 8kk!1/2.

�e above theorem was used to analyze 3-pro�les of Erdős-Rényi random

ensembles (Gn,p) in [35]. Later, this was used to derive concentration bounds for

triangle sparsi�ers in [34]. Here, we extend §4.3 of [35] to the 3-pro�le estimation

process, on an arbitrary edge-sampled graph.

�eorem 2.3.2. (Generalization of triangle sparsi�ers to 3-pro�le sparsi�ers) Let

n3(G ) = [n0, n1, n2, n3] be the 3-pro�le of a graphG (V ,E). Let |V | = n and |E | =m.

Let n3(G̃ ) = [Y0, Y1, Y2, Y3] be the 3-pro�le of the subgraph obtained by sampling

each edge in G with probability p. Let α ,β and ∆ be the largest collection of H1’s,

wedges and triangles that share a common edge. De�ne X(G ) according to (2.14),

ϵ > 0, and γ > 0. If p,ϵ satisfy:

n0
3 max{α ,β ,∆} ≥

a2
3 log6

(
m2+γ

)
ϵ2

p

max{ 1
3√n3
,∆/n3}

≥
a2

3 log6
(
m2+γ

)
ϵ2

p

α/n1
≥

a2
1 log2 (mγ )

ϵ2

p

max{ βn2
, 1√

n2
}
≥

a2
2 log4

(
m1+γ

)
ϵ2 ,

(2.17)

then ‖X(G ) − n(G )‖∞ ≤ 12ϵ
(
|V |
3

)
with probability at least 1 − 1

mγ .

Proof. �e proof of this theorem is deferred to Appendix A.1. �
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�e sampling probability p in �eorem 2.3.2 depends poly-logarithmically

on the number of edges and linearly on the fraction of each subgraph which occurs

on a common edge. For example, if all of the wedges inG depend on a single edge,

i.e. β = n2, then the last equation suggests the presence of that particular edge in

the sampled graph will dominate the overall sparsi�er quality.

2.3.3 Read-k Concentration Bounds

When applied to graph sparsi�cation for triangle counting, the Kim and Vu

polynomial concentration [34, 35] from the previous section unfortunately gives

very loose bounds for practical graph sizes. Figure 2.6 compares the accuracy

bound derived in this section to the bound predicted by using [35]. Clearly the

Kim-Vu concentration does not provide meaningful bounds for the experiments

in Section 2.4. However, the bounds in this section match observed sparsi�er ac-

curacy much more closely.

�e novel concentration results in this section exploit the fact that par-

tial derivatives of the desired quantities are sparse in the number of edge vari-

ables. �is allows us to use a novel information theoretic concentration technique

called read-k functions [36]. For simplicity, we only explain the concentration of

4-cliques (F10 subgraphs) here. We establish the general result for all 11 4-pro�le

variables in Appendix B. Our main concentration result is as follows:

�eorem 2.3.3. Let G be a graph with N10 4-cliques, and let k10 be the maximum

number of 4-cliques sharing a common edge. LetX10 be the 4-clique estimate obtained

from subsampling each edge with probability 0 < p ≤ 1, choose 0 < δ < 1, and
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Figure 2.6: Comparison of 4-clique sparsi�er concentration bounds with accuracy
measured in edge sampling experiments on the LiveJournal graph.

choose ϵRK > 0. If

p ≥



log(2/δ )k10

2ϵ2
RKN10




1/12

,

then |N10 − X10 | ≤ ϵRKN10 with probability at least 1 − δ .

Proof. Our proof relies on read-k function families [36], a recent characteriza-

tion of dependencies among functions of random variables. Rather than Lipschitz

bounding the value of each partial derivative, as in [25, 34, 35], this technical tool

bene�ts from the fact that each �rst partial derivative is sparse in the number of

edge variables.

De�nition 2.3.1 (read-k families). Let X1, . . . ,Xm be independent random vari-

ables. For j ∈ [r ], let Pj ⊆ [m] and let fj be a Boolean function of {Xi }i∈P j . Assume
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that |{j | i ∈ Pj }| ≤ k for every i ∈ [m]. �en the random variables Zj = fj ({Xi }i∈P j )

are called a read-k family.

Each variable only a�ects k of the r Boolean functions. Let G be a graph

with N10 4-cliques and a maximum of k10 4-cliques sharing a common edge. �e

corresponding 4-clique estimator X10 follows this exact structure. Each edge sam-

pling variable appears in at most k10 of the N10 terms. We now state the main

result required for our analysis. Note that when applied to estimating the num-

ber of 4-cliques, the bound is independent of the number of edges. �erefore, it

is much stronger than arguments involving Lipschitz bounded functions such as

McDiarmid’s inequality.

Proposition 1 (Read-k Concentration [36]). Let Z1, . . . , Zr be a family of read-k

indicator variables with P(Zi = 1) = pi , and let p be the average of p1, . . . ,pr . �en

for any ϵ > 0,

P




r∑
i=1

Zi ≥ (p + ϵ )r

 ≤ exp

(
−D (p + ϵ ‖ p) r

k

)
P




r∑
i=1

Zi ≤ (p − ϵ )r


 ≤ exp

(
−D (p − ϵ ‖ p)

r

k

)
,

where D (x ‖ y) = x log
(
x
y

)
+ (1 − x ) log

(
1−x
1−y

)
is the Kullback-Leibler divergence of

x and y. Both bounds are less than exp(−2ϵ2r/k ).

Let Y10 =
∑
�(a,b,c,d )∈H10 tabtbctcdtdatactbd . �en

P
(
|Y10 − p

6N10 | ≥ ϵRKN10
)
≤ 2 exp


−

2ϵ2
RKN10

k10



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⇒ P ( |X10 − N10 | ≥ ϵRKN10) ≤ 2 exp

−

2p12ϵ2
RKN10

k10


 .

�e claim follows by se�ing the right hand side less than δ and solving for p. �

Next, we state conditions under which our method outperforms the Kim

and Vu concentration results [35].

Corollary 2.3.1. Let G be a graph with m edges. If p = Ω(1/ logm) and δ =

Ω(1/m), then read-k provides be�er triangle sparsi�er accuracy than Kim-Vu. If

additionally k10 ≤ N 5/6
10 , then read-k provides be�er 4-clique sparsi�er accuracy than

Kim-Vu.

Proof. We prove this result for the case of 4-cliques only because the case for trian-

gles is similar. First we must derive a similar 4-clique concentration bound using

the techniques in [34, 35].

Lemma 2.3.2. Let G be a graph withm edges and N10 cliques, and k10 be the max-

imum number of 4-cliques sharing a common edge. Let a6 = 86√6!, 0 < p ≤ 1, and

ϵKV > 0. Let X10 be the 4-clique estimate obtained from subsampling each edge with

probability p. If

p

max
{

6√1/N10,
3√k10/N10

} ≥ a2
6 log12(m5+γ )

ϵ2
KV

, (2.18)

then |N10 − X10 | ≤ ϵKVN10 with probability at least 1 − 1
mγ .

Similar to �eorem 2.3.2, the proof of this lemma is an application of the

main result in [35]. It can be found in Appendix A.
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Now we are ready to prove the corollary by comparing �eorem 2.3.3 and

Lemma 2.3.2. Fix p,δ ,> 0 and γ > 1 such that p = Ω(1/ logm) and δ = m−γ =

Ω(1/m). Now we analyze the bounds ϵKV and ϵRK . For any graph and a6 de�ned

in Lemma 2.3.2,

1
a2

6
≤ 1, γ

(5 + γ )12 ≤ 1,

log(21/γm) ≤ 2 logm,
(
k10
N10

)2/3
≤ 1.

(2.19)

We further require k10 ≤ N 5/6
10 . �en the condition on p with (2.19) implies

p11 ≥ 1/ log11(m)

≥
γ log(21/γm)

2a2
6(5 + γ )12 log12(m)

min
{
k10/N

5/6
10 , (k10/N10)

2/3
}
.

Rearranging terms,

ϵ2
KV =

a2
6 log12(m5+γ ) max

{
6√1/N10,

3√k10/N10
}

p

≥ ϵ2
RK =

log(2mγ )k10/N10
2p12 . �

We note that the asymptotic condition on p in Corollary 2.3.1 includes a

constant term much less than 1. �is is due to the looseness of inequalities in (2.19)

and implies that �eorem 2.3.3 is superior to Lemma 2.3.2 over all p values of prac-

tical interest. While these bounds contain the quantities we wish to estimate, they

provide guidelines for the performance of sampling heuristics. We also investigate

this in the next section for some realistic graphs.
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2.4 Experiments

First we describe implementation details common to all experiments in this

section. �en we present both running time and accuracy results for 3-pro�les,

followed by similar results for 4-pro�les.

�e Systems: We perform the experiments on three systems. �e �rst system

is a single power server, further referred to as Asterix. �e server is equipped with

256 GB of RAM and two Intel Xeon E5-2699 v3 CPUs, 18 cores each. Since each

core has two hardware threads, up to 72 logical cores are available to the GraphLab

engine. We implement our algorithms on GraphLab v2.2 (PowerGraph) [11].

�e next two systems are EC2 clusters on AWS (Amazon Web Services)

[62]. One is comprised of 12 m3.2xlarge machines, each having 30 GB RAM

and 8 virtual CPUs. Another system is a cluster of 20 c3.8xlarge machines,

each having 60 GB RAM and 32 virtual CPUs.

�e Data: In our experiments we use a total of six real graphs. �ese graphs

represent di�erent datasets: social networks (LiveJournal and Twi�er), citations

(DBLP), knowledge content (Wikipedia), and WWW structure (PLD – pay level do-

mains and Notre Dame). Notice that the above graphs are originally directed, but

since our work deals with undirected graphs, all duplicate edges (i.e., bi-directional)

were removed and directionality is ignored. Graph sizes are summarized in Table

2.1.
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Table 2.1: Datasets
Name Vertices Edges (undirected)
Twi�er [63] 41,652,230 1,202,513,046
PLD [64] 39,497,204 582,567,291
LiveJournal [65] 4,846,609 42,851,237
Wikipedia [66] 3,515,067 42,375,912
WEB-NOTRE [65] 325,729 1,090,108
DBLP [65] 317,080 1,049,866

2.4.1 3-pro�les

In this section, we describe the experimental setup and results comparing

the 3-prof, Ego-par and Ego-ser algorithms. �e performance (running time and

network usage) of our 3-prof algorithm is compared with the Undirected Trian-

gles Count Per Vertex (hereina�er referred to as trian) algorithm shipped with

GraphLab. We show that in time and network usage comparable to the built-in

trian algorithm, our 3-prof can calculate all the local and global 3-pro�les. �en,

we compare our parallel implementation of the ego 3-pro�le algorithm, Ego-par,

with the naı̈ve serial implementation, Ego-ser. It appears that our parallel ap-

proach is much more e�cient and scales much be�er than the serial algorithm.

�e sampling approach, introduced for the 3-prof algorithm, yields promising re-

sults – reduced running time and network usage while still providing excellent

accuracy. We support our �ndings with several experiments over various datasets

and systems. Experimental results are averaged over 3–10 runs.

Local 3-pro�le vs. Triangle Count: �e �rst result is that our 3-prof is able

to compute all the local 3-pro�les in almost the same time as the GraphLab’s
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built-in trian computes the local triangles (i.e., number of triangles including

each vertex). Let us start with the �rst AWS cluster with less powerful machines

(m3.2xlarge). In Figure 2.7(a) we can see that for the LiveJournal graph, for

each sampling probability p and for each number of nodes (i.e., machines in the

cluster), 3-prof achieves running times comparable to trian. Notice also the ben-

e�t in running time achieved by sampling. We can reduce running time almost

by half, without signi�cantly sacri�cing accuracy (which will be discussed in the

sequel). While the running time is decreased as the number of nodes grows (more

computing resources become available), the network usage becomes higher (see

Figure 2.7(c)) due to the extensive inter-machine communication in GraphLab. We

can also see that sampling can signi�cantly reduce network usage. In Figures 2.7(b)

and 2.7(d), we can see similar behavior for the Wikipedia graph: running time and

network usage of 3-prof is comparable to trian.

Next, we conduct the experiments on the second AWS cluster with more

powerful (c3.8xlarge) machines. For LiveJournal, we note modest improve-

ments in running time for nearly the same network bandwidth observed in Figure

2.7. On this system we were able to run 3-prof and trian on the much larger

PLD graph. In Figures 2.8(b) and 2.8(d) we compare the running time and network

usage of both algorithms. For the large PLD graph, the bene�t of sampling can

be seen clearly; by se�ing p = 0.1, the running time of 3-prof is reduced by a

factor of 4 and the network usage is reduced by a factor of 2. Figure 2.9 shows the

performance of 3-prof and trian on the LiveJournal and Wikipedia graphs. We

can see that the behavior of running times and the network usage of the 3-prof al-
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gorithm is consistently comparable to trian across the various graphs, sampling,

and system parameters.

Let us now show results of the experiments performed on a single powerful

machine (Asterix). Figure 2.11(a) shows the running times for 3-prof and trian

for Twi�er and PLD graphs. We can see that on the largest graph in our dataset

(Twi�er), the running time of 3-prof is less than 5% larger than that of trian, and

for the PLD graph the di�erence is less than 3% (for p = 1). Twi�er takes roughly

twice as long to compute as PLD, implying that these algorithms have running

time proportional to the graph’s number of edges.

Ego 3-pro�les: �e next set of experiments evaluates the performance of our

Ego-par algorithm for counting ego 3-pro�les. We show the performance of Ego-par

for various graphs and systems and also compare it to a naı̈ve serial algorithm

Ego-ser. Let us start with the AWS system with c3.8xlarge machines. In

Figure 2.10 we see the running time of Ego-ser and Ego-par on the LiveJournal

graph. �e task was to �nd ego 3-pro�les of 100, 1K, and 10K randomly selected

nodes. Since the running time depends on the size and structure of each induced

subgraph, Ego-ser and Ego-par operated on the same list of ego vertices. While

for 100 random vertices Ego-ser performed well (and even achieved the same run-

ning time as Ego-par for the PLD graph), its performance drastically degraded for

a larger number of vertices. �is is due to its iterative nature – it �nds ego 3-

pro�les of the vertices one at a time and is not scalable. Note that the open bars

mean that this experiment was not �nished. �e numbers above them are extrap-
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olations, which are reasonable due to the serial design of the Ego-ser.

On the contrary, the Ego-par algorithm scales extremely well and com-

putes ego 3-pro�les for 100, 1K, and 10K vertices almost in the same time. In

Figure 2.12(a), we can see that as the number of nodes (i.e., machines) increases,

the running time of Ego-par decreases since its parallel design allows it to use

additional computational resources. However, Ego-ser cannot bene�t from more

resources and its running time even increases when more machines are used. �e

increase in running time of Ego-ser is due to the increase in network usage when

using more machines (see Figure 2.12(b)). �e network usage of Ego-par also in-

creases, but this algorithm compensates by leveraging additional computational

power. In Figure 2.13, we can see that Ego-par performs well even when �nding

ego 3-pro�les for all the LiveJournal vertices (4.8M vertices).

Next in Figures 2.11(b) and 2.11(c), we can see the comparison of Ego-par

and Ego-ser on the PLD and the DBLP graphs on the Asterix machine. For both

graphs, we see a very good scaling of Ego-par, while the running time of Ego-ser

scales linearly with the size of the ego vertices list.

Accuracy: Finally, we show that while the sampling approach can signi�cantly

reduce running time and network usage, it has negligible e�ect on the accuracy of

the solution. Notice that the sampling accuracy refers to the global 3-pro�le count

(i.e., the sum of all the local 3-pro�les over all vertices in a graph). In Figure 2.14

we show accuracy of each scalar in the 3-pro�le. For the accuracy metrics, we use

ratio between the exact count (obtained running 3-prof with p = 1) divided by
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the estimated count (i.e., the output of our 3-prof when p < 1). It can be seen that

for the three graphs, all the 3-pro�les are very close to 1. For example, for the PLD

graph, even when p = 0.01, the accuracy is within 0.004 from the ideal value of 1.

Error bars mark one standard deviation from the mean, and across all graphs the

largest standard deviation is 0.031. As p decreases, the triangle estimator su�ers

the greatest loss in both accuracy and consistency.

2.4.2 4-pro�les

Let us now describe the implementation and experimental results of our 4-

pro�le algorithm on GraphLab v2.2 (PowerGraph) [11] by measuring its running

time and accuracy on large input graphs.4 First, we show that edge sampling yields

very good approximation results for global 4-pro�le counts and achieves substan-

tial execution speedups and network tra�c savings when multiple machines are

in use. Due to its distributed nature, we can show 4-prof runs substantially faster

when using multiple CPU cores and/or machines. Notice that multicore and multi-

ple machines can not speed up some centralized algorithms, e.g. Orca [30], which

we use as a baseline for our results. Note also that Orca produces only a par-

tial 4-subgraph count, i.e. it calculates only connected 4-subgraphs, while 4-prof

calculates all 17 per vertex.

2-hop Histogram: �e �rst result compares two methods of calculating the

le� hand side of (2.9) from Section 2.2.3. We show that a simple implementation

4Code is available at http://github.com/eelenberg/4-profiles.
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in which a vertex gathers its full 2-hop neighborhood (i.e., IDs of its neighbors’

neighbors) is much less e�cient than the two-hop histogram approach used in

4-prof (see Section 2.2.3). In Figures 2.15 and 2.16 we can see that the histogram

approach is an order of magnitude faster for various numbers of machines, and

that its network requirements are up to 5x less than that of the simple implemen-

tation. Moreover, our algorithm could handle much larger graphs while the simple

implementation ran out of memory.

Running Time: Next, we show that 4-prof can run much faster than the cur-

rent state-of-the-art graphlet counting implementations. �e algorithm and the

GraphLab platform on which it runs are both distributed in nature. �e la�er al-

lows 4-prof to exploit multiple cores on a single machine as well as a cluster of

machines. Figure 2.19(c) shows running time as a function of CPU cores. We com-

pare this result to the running time of a single core, C++ implementation of Orca

[30]. Our 4-prof algorithm becomes faster a�er only 25 cores and is 2x faster us-

ing 60 cores. Moreover, 4-prof allows scaling to a large number of machines. In

Figure 2.18 we can see how the running time for the LiveJournal graph decreases

when the number of machines increases. Since Orca cannot bene�t from multiple

machines, we see that 4-prof runs up to 12x faster than Orca. �is gap widens

as the cluster grows larger. In [60], the authors implemented a GPU version of

Orca using CUDA. However, the reported speedup is about 2x which is much less

than we show here on the AWS cluster (see Figure 2.18 for p = 1). We also note

a substantial running time bene�t of the sampling approach for global 4-pro�les.
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In Figures 2.18 and 2.17, we see that with p = 0.1 we can achieve order of magni-

tude improvements in both speed and network tra�c. �is sampling probability

maintains very good accuracy, as shown in Figure 2.19(b).

Accuracy: Finally, we show that our edge sampling approach greatly improves

running time while maintaining a very good approximation of the global 4-pro�le.

In Figure 2.19(a) we can see that the running time decreases drastically when the

sampling probability decreases. At the same time, Figure 2.19(b) shows that the

mean ratio of true to estimated global 4-pro�les is within ±2.5%. Similar to [42],

which uses a more complex sampling scheme to count connected 4-subgraphs,

this ratio is usually much less than 1%. We show here only pro�les F7 − F10 since

their counts are the smallest and were observed to have the lowest accuracy. In

Figure 2.6 we compare theoretical concentration bounds on a logarithmic scale and

show the bene�t of �eorem 2.3.3. While the guarantees provided by Kim-Vu [35]

bounds are very loose (the additive error is bounded by numbers which are orders

of magnitude larger than the true value), the read-k approach is much closer to the

measured values. We can see that for large sampling probabilities (p ≥ 0.5), the

measured error is at most 2 orders of magnitude smaller than the value predicted

by �eorem 2.3.3.

2.5 Conclusions

We have introduced novel distributed algorithms for estimating 3 and 4-

pro�les of large graphs. Our concentration theorems and experimental results
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con�rm that 3-pro�le estimation via subsampling is comparable in runtime and

accuracy to triangle counting. We additionally show that 4-pro�les can be es-

timated with limited 2-hop information and that randomly erasing edges gives

sharper approximation guarantees compared to previous analysis. Our scheme

outperforms the previous state-of-the-art and can exploit cloud infrastructure to

scale.

�is chapter o�ers several directions for future work. First, both local and

ego pro�les can be used as features to classify vertices in social or bioinformatic

networks. While algorithms for global 5-pro�le counting were recently studied

in [31], tractable distributed algorithms for k > 4 using similar edge pivot equa-

tions remain as future work. Our observed dependence on 4-clique count suggests

that an improved graph engine-based clique counting subroutine will improve the

parallel algorithm’s performance. Subgraph counting could potentially be used to

help design graph convolutional network architectures [9, 67, 68]. �is perspec-

tive may be useful in the growing body of research on vector embeddings [69] and

generative models [70, 71] for graphs.
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Figure 2.7: AWS m3.2xlarge cluster. 3-prof vs. trian algorithms for Live-
Journal and Wikipedia datasets (average of 3 runs). 3-prof achieves comparable
performance to triangle counting. (a,b) – Running time for various numbers of
nodes (machines) and various sampling probabilities p. (c,d) – Network bytes sent
by the algorithms for various numbers of nodes and various sampling probabilities
p.
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Figure 2.8: AWS c3.8xlarge cluster. 3-prof vs. trian algorithms for LiveJour-
nal and PLD datasets (average of 3 runs). 3-prof achieves comparable performance
to triangle counting. (a,b) – Running time for various numbers of nodes (machines)
and various sampling probabilities p. (c,d) – Network bytes sent by the algorithms
for various numbers of nodes and various sampling probabilities p.
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Figure 2.9: AWS c3.8xlarge cluster with 20 nodes. 3-prof vs. trian results
for LiveJournal and Wikipedia datasets (average of 3 runs). (a) – Running time for
both graphs for various sampling probabilities p. (b) – Network bytes sent by the
algorithms for both graphs for various sampling probabilities p.
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Figure 2.10: AWS c3.8xlarge cluster. Ego-par vs. Ego-ser results for Live-
Journal and PLD datasets (average of 5 runs). Running time of Ego-par scales
well with the number of ego centers, while Ego-ser scales linearly.
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Figure 2.11: Asterix machine. Results for Twi�er, PLD, and DBLP datasets. (a)
– Running time of 3-prof vs. trian for various sampling probabilities p. (b,c) –
Running time of Ego-par vs. Ego-ser for various number of ego centers. Results
are averaged over 3, and 3, and 10 runs, respectively.
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Figure 2.12: AWS c3.8xlarge cluster. Ego-par vs. Ego-ser results for Live-
Journal and Wikipedia datasets (average of 5 runs). Running time of Ego-par
decreases with the number of machines due to its parallel design. Running time of
Ego-ser does not decrease with the number of machines due to its iterative nature.
Network usage increases for both algorithms with the number of machines.
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Figure 2.13: AWS c3.8xlarge cluster with 20 nodes. Ego-par results for Live-
Journal dataset (average of 5 runs). �e algorithm scales well for various number
of ego centers and even full ego centers list. (a) – Running time. (b) – Network
bytes sent by the algorithm.
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Figure 2.14: Global 3-pro�les accuracy achieved by 3-prof algorithm for various
graphs and for each pro�le count. Results are averaged over 5, and 5, and 10
iterations, respectively. Error bars indicate 1 standard deviation. �e metric is a
ratio between the exact pro�le count (when p = 1) and the given output for p < 1.
All results are very close to the optimum value of 1.
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Figure 2.15: AWS cluster of up to 20 machines (nodes), results averaged over 10
iterations. Running time comparing naı̈ve 2-hop implementation and 2-hop his-
togram approach on the Notre Dame web graph.
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Figure 2.16: Network usage comparing naı̈ve 2-hop implementation and 2-hop
histogram approach on the Notre Dame web graph.
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Figure 2.17: Network usage of 4-prof for various number of compute nodes and
sampling probability p, on the LiveJournal graph.
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sampling probability p, on the LiveJournal graph.
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Figure 2.19: LiveJournal graph, Asterix system. All the results are averaged over 10
iterations. (a) – Running time as a function of sampling probability. (b) – Accuracy
of the F7 − F10 global counts, measured as ratio of the exact count to the estimated
count. (c) – Comparison of running times of Orca and our exact 4-prof algorithm.
Clearly, 4-prof bene�ts from the use of multiple cores.
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Chapter 3

Weak Submodularity: Restricted Strong Convexity,

Subset Selection, and Sparse Regression

3.1 Introduction

Sparse modeling1 is central in modern data analysis and high-dimensional

statistics since it provides interpretability and robustness. Given a large set of p

features we wish to build a model using only a small subset of k features: the cen-

tral combinatorial question is how to choose the optimal feature subset. Speci�-

cally, we are interested in optimizing over sparse parameter vectors β and consider

problems of the form:

β̄
k
∈ argmax

β :‖β ‖0≤k
l (β ) , (3.1)

for some function l (·). �is is a very general framework: the function l (·) can be

a linear regression R2 objective, a generalized linear model (GLM) likelihood, a

1�e material in this chapter is based on the following workshop paper and journal publica-
tion: [72] E. R. Elenberg, R. Khanna, A. G. Dimakis, and S. Negahban. Restricted Strong Convexity
Implies Weak Submodularity. In NIPS Workshop on Learning in High Dimensions with Structure,
2016. [73] E. R. Elenberg, R. Khanna, A. G. Dimakis, and S. Negahban. Restricted Strong Convexity
Implies Weak Submodularity. �e Annals of Statistics, 2018 (to appear). �e dissertation author’s
primary contributions are the connection of weak submodularity to general sparse regression, sub-
modularity ratio lower bound, generalized approximation guarantees for Oblivious and Forward
Stepwise algorithms, su�cient conditions for statistical recovery, and design, implementation, and
analysis of experiments. �e dissertation author also assisted with other contributions and is the
primary contributor of these papers.
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graphical model learning objective, or an arbitrary M-estimator [74]. �is subset

selection problem is NP-hard [75] even for the sparse linear regression objective,

and a vast body of literature has analyzed di�erent approximation algorithms un-

der various assumptions.

�e Restricted Isometry Property (RIP) and the (closely related) Restricted

Eigenvalue property are conditions on l (β ) that allow convex relaxations and

greedy algorithms to solve the subset selection problem within provable approxi-

mation guarantees. In parallel work, several authors have demonstrated that the

subset selection problem can be connected to submodular optimization [76–79]

and that greedy algorithms are widely used for iteratively building good feature

sets.

�e mathematical connection between submodularity and RIP was made

explicit by Das and Kempe [16] for linear regression. Speci�cally, they showed

that when l (β ) is the R2 objective, it satis�es a weak form of submodularity when

the linear measurements satisfy RIP. Note that for a given set of features S, the

function l (βS) with support restricted to S can be thought of as a set function and

this is key in this framework. Using this novel concept of weak submodularity

they established strong multiplicative bounds on the performance of greedy al-

gorithms for subset selection and dictionary selection. Work by Bach [79] in the

linear regression se�ing discusses the notion of suppressors; however, that condi-

tion is stronger than the weak submodularity assumption. Krause and Cevher [80]

draw similar connections between submodularity and sparse regression, but they

require a much stronger coherence-based assumption.
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In this chapter we extend this machinery beyond linear regression, to any

function l (β ). To achieve this we need the proper generalization of the Restricted

Eigenvalue and RIP conditions for arbitrary functions. �is was obtained by Ne-

gahban et al. [74] and is called Restricted Strong Convexity. Speci�cally, we show

that any objective function that satis�es restricted strong convexity (and a natural

smoothness assumption) of [74] must be weakly submodular.

We establish multiplicative approximation bounds on the performance of

greedy algorithms, including (generalized) Orthogonal Matching Pursuit and For-

ward Stepwise Regression, for general likelihood functions using our connection.

To the best of our knowledge, this is the �rst analysis of connecting a form of

submodularity to the objective function’s strong concavity and smoothness. Our

approach provides sharp approximation bounds in any se�ing where these funda-

mental structural properties are well-understood, e.g. generalized linear models.

Contrary to prior work we require no assumptions on the sparsity of the

underlying problem. Rather, we obtain a deterministic result establishing multi-

plicative approximation guarantees from the best-case sparse solution. Our results

improve over previous work by providing bounds on a solution that is guaranteed

to match the desired sparsity. Convex methods such as `1 regularized objectives

require strong assumptions on the model, such as the irrepresentability conditions

on the feature vectors, in order to provide exact sparsity guarantees on the recov-

ered solution.

Our main result is that for any function l (·) that satis�es M-restricted

smoothness (RSM) and m-restricted strong convexity (RSC), the corresponding
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set function f (S) = −l (βS) is weakly submodular with parameter γ ≥ m/M. �e

parameters M , m, and γ are de�ned formally in Section 3.3. We use this result

to analyze three greedy algorithms, each progressively be�er but more computa-

tionally intensive: the Oblivious (or Marginal Regression) algorithm computes for

each feature the increase in objective and keeps the k individually best features.

Orthogonal Matching Pursuit (OMP) greedily adds one feature at a time by picking

the feature with the largest inner product with the function gradient. �e gradient

is the correct generalization of the residual error used in linear regression OMP.

Finally, the most sophisticated algorithm is Forward Stepwise Regression: it adds

one feature at a time by re-��ing the model repeatedly and keeping the feature

that best improves the objective function at each step. We obtain the following

performance bounds:

• �e Oblivious algorithm produces a (γ/k)-approximation to the best k-subset

a�er k steps.

• Orthogonal Matching Pursuit produces a (1 − e−m/M)-approximation to the

best k-subset a�er k steps.

• Forward Stepwise Regression produces a (1−e−γ )-approximation to the best

k-subset a�er k steps.

We also show that if Forward Stepwise Regression is used to select more than k

features, we can approximate the best k-sparse feature performance within an ar-

bitrary accuracy. Finally, under additional assumptions, we derive statistical guar-
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antees for convergence of the greedily selected parameter to the optimal sparse so-

lution. Note that our results yield stronger performance guarantees even for cases

that have been previously studied under the same assumptions. For example, for

linear regression we obtain a be�er exponent in the approximation factor of OMP

compared to previous state-of-the-art [16] (see Remark 8).

One implication of our work is that weak submodularity seems to be a

sharper technical tool than RSC, as any function satisfying the la�er also satis-

�es the former. Das and Kempe [16] noted that it is easy to �nd problems which

satisfy weak submodularity but not RSC, emphasizing the limitations of spectral

techniques versus submodularity. We show this holds beyond linear regression,

for any likelihood function.

Our connection between restricted strong convexity and weak submodu-

larity has many bene�ts. First, the weak submodularity framework can now be

used to develop theory for additional problems where spectral conditions would

be overly restrictive or unwarranted. For example, we show that RSC assump-

tions play an important role in characterizing distributed greedy maximization

[81] and rank constrained matrix optimization [82]. Second, this framework al-

lows statisticians to draw from classical results and recent advances in the �eld

of (weak) submodular set function theory to provide general guarantees on the

performance of greedy algorithms [83, 84].
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3.2 Related Work

�ere have been a wide range of techniques developed for solving problems

with sparsity constraints. �ese include using the Lasso, greedy selection meth-

ods (such as Forward Stagewise/Stepwise Regressions [85], OMP, and CoSaMP

[86]), forward-backward methods [87,88], Pareto optimization [89], exponentially

weighted aggregation [90], and truncated gradient methods [91]. Under the re-

stricted strong convexity and smoothness assumptions that will be outlined in the

next section, forward-backward methods can in fact recover the correct support

of the optimal set of parameters under an assumption on the smallest value of the

optimal variable as it relates to the gradient. In contrast, the results derived in

our se�ing for sparse GLMs allow one to provide recovery guarantees at various

sparsity levels regardless of the optimal solution, with only information on the

desired sparsity level and the RSC and RSM parameters. �is is again in contrast

to the other work that also needs information on the smallest nonzero value in

the optimal set of coe�cients, as well as an upper bound on the gradient of the

objective at this optimal set.

Focusing explicitly on OMP, most previous results require the strong RIP

assumption, whereas we only require the weaker RSC and RSM assumptions. In

our se�ing of arbitrary model conditions, OMP requires RIP as highlighted in

Corollary 2.1 of Zhang [92]. However, we do note that under certain stochas-

tic assumptions, for instance independent noise, the results established in those

works can provide sharper guarantees with respect to the number of samples re-

quired by a factor on the order of log [(k logp)/n] (See Section 3.5). Nevertheless,
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we emphasize that our results apply under arbitrary assumptions on the noise and

use only RSC and RSM assumptions.

In [16], Das and Kempe’s framework optimizes the goodness of �t param-

eter R2 in linear regression. We derive similar results without relying on the

closed-form solution to least squares. Greedy algorithms are prevalent in com-

pressed sensing literature [86] and statistical learning theory [93]. Greedy meth-

ods for sparsity constrained regression were analyzed in [87, 88, 91, 94–96] under

assumptions similar to ours but without connections to submodularity. Conver-

gence guarantees for `1 regularized regression were given for exponential families

in [97], and for general nonlinear functions in [98]. However, the la�er requires

additional assumptions such as knowledge of the nonlinearity and bounds on the

loss function’s derivatives, which can again be derived under appropriate stochas-

ticity and model assumptions.

Classical results on submodular optimization [15, 99, 100] typically do not

scale to large-scale applications. �erefore, several recent algorithms improve ef-

�ciency at the expense of slightly weaker guarantees [19, 22, 81, 101–104]. Sub-

modularity has been used recently in the context of active learning [17, 76, 78]. In

this setup, the task is to select predictive data points instead of features. Recently,

[105], [106], and [107] obtained constant factor guarantees for greedy algorithms

using techniques from submodularity even though the problems considered were

not strictly submodular. �ese results solve speci�c problems and do not draw a

general connection to RSC. In [83], the authors show tight bounds for maximizing

cardinality constrained, weakly submodular set functions that also have bounded
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curvature. For maximizing weakly submodular functions subject to more general

matroid constraints, [84] recently proved that a randomized greedy forward step-

wise algorithm has a constant factor approximation guarantee. Strong convexity,

smoothness, and submodularity ratio were used in [108] to study robust support

selection and robust Bayesian optimization. More information about related re-

laxations of submodularity can be found in Appendix C.

�ere are deep connections between convexity and submodularity [79].

For example, the convex closure of a submodular function can be tractably com-

puted as its Lovász extension [109]. �is connection is fundamental to providing

polynomial-time minimization algorithms for submodular set functions [110,111].

Similarly, another continuous extension of set functions, called the multilinear

extension is vital for algorithmic development of constant factor approximation

guarantees for submodular maximization [112]. A more detailed study of convex-

ity and concavity-like properties of submodular functions was presented in [113].

More recent works exploit similar connections to provide constant factor approx-

imation guarantees for a class of non-convex functions [18, 114, 115].

3.3 Preliminaries

Recall that a set function f (·) : 2[p] 7→ R is called submodular if and only

if for all A,B ⊆ [p], f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B). Intuitively, submodular

functions have a diminishing returns property. �is becomes clear when A and B

are disjoint: the sets have less value taken together than they have individually.

We also state an equivalent de�nition:
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De�nition 3.3.1 (Proposition 2.3 in [79]). f (·) is submodular if for all A ⊆ [p] and

j,k ∈ [p]\A ,

f (A ∪ {k }) − f (A) ≥ f (A ∪ {j,k }) − f (A ∪ {j}).

�e function is called normalized if f (∅) = 0 and monotone if and only if

f (A) ≤ f (B) for all A ⊆ B. A seminal result by Nemhauser et al. [15] shows that

greedy maximization of a monotone, submodular function (Algorithm 6 in Section

3.3.2) returns a set with value within a factor of (1 − 1/e) from the optimum set of

the same size. �is has been the starting point for several algorithmic advances

for large-scale combinatorial optimization, including stochastic, distributed, and

streaming algorithms [81, 102, 103, 116].

Next, we de�ne the submodularity ratio of a monotone set function.

De�nition 3.3.2 (Submodularity Ratio [16], Weak Submodularity). Let S,L ⊂ [p]

be two disjoint sets, and f (·) : 2[p] 7→ R. �e submodularity ratio of L with respect

to S is given by

γL,S :=
∑

j∈S [f (L ∪ {j}) − f (L)]
f (L ∪ S) − f (L)

. (3.2)

�e submodularity ratio of a set U with respect to an integer k is given by

γU,k := min
L,S:L∩S=∅,
L⊆U,|S|≤k

γL,S . (3.3)

Let γ > 0. We call a function γ -weakly submodular at a set U and an integer k if

γU,k ≥ γ .
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It is straightforward to show that f (·) is submodular if and only if γL,S ≥ 1

for all sets L and S. In our application, 0 < γL,S ≤ 1 which provides a notion of

weak submodularity in the sense that even though the function is not submodular,

it still provides provable bounds of performance of greedy selections. Our notion

of weak submodularity based on [16] is di�erent from the de�nitions in [117,118].2

In Appendix F of [83], it was shown that our de�nition does not imply [118] and

vice versa.

Next we de�ne the restricted versions of strong concavity and smoothness,

consistent with [74, 120].

De�nition 3.3.3 (Restricted Strong Concavity, Restricted Smoothness). A func-

tion l : Rp 7→ R is said to be restricted strong concave with parameter mΩ and

restricted smooth with parameterMΩ on a domain Ω ⊂ Rp × Rp if for all (x,y) ∈ Ω,

−
mΩ

2 ‖y − x‖22 ≥ l (y) − l (x) − 〈∇l (x),y − x〉 ≥ −
MΩ

2 ‖y − x‖22 .

Remark 1. If a function l (·) has restricted strong concavity parameter m, then its

negative −l (·) has restricted strong convexity parameterm. In the sequel, we will use

these properties interchangeably for maximum likelihood estimation where l (·) is the

log likelihood function and −l (·) is the data �t loss.

If Ω′ ⊆ Ω, then MΩ′ ≤ MΩ and mΩ′ ≥ mΩ. With slight abuse of notation,

unless stated otherwise let (mk ,Mk ) denote the RSC and RSM parameters on the

domain Ωk of all pairs of k-sparse vectors that di�er in at most k entries, i.e. Ωk :=

2A revised version of [118] instead uses the term proportional submodularity [119].
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{(x,y) : ‖x‖0 ≤ k , ‖y‖0 ≤ k, ‖x − y‖0 ≤ k }. If j ≤ k , then Mj ≤ Mk and

mj ≥ mk . In addition, denote Ω̃k := {(x,y) : ‖x‖0 ≤ k , ‖y‖0 ≤ k , ‖x − y‖0 ≤ 1}

with corresponding smoothness parameter M̃k , which is clearly greater than or

equal to M̃1 = M1.

3.3.1 Sparsity Constrained Generalized Linear Regression

Due to its combinatorial nature, there has been a tremendous amount of

e�ort in developing computationally tractable and fundamentally sound methods

to solve the subset selection problem approximately. In this section we provide

background on various problems that arise in subset selection. Our focus here will

be on sparse regression problems. We will assume that we obtain n observations

of the form (xi ,yi ). For now we make no assumptions regarding how the data is

generated, but wish to model the interaction between xi ∈ Rp and yi ∈ R as

yi = д(〈xi ,β∗〉) + noise,

for some known link function д and a sparse vector β∗. Each feature observation

is a row in the n × p design matrix X. �e above is called a generalized linear

model, or GLM, and arises as the maximum likelihood estimate of data drawn

from a canonical exponential family, i.e. normal, Bernoulli, Dirichlet, negative

binomial, etc. [121]. Another interpretation is in minimizing the average Bregman

divergence between the response yi and the mean parameter 〈xi ,β〉. �ere has

been a large body of literature studying this method’s statistical properties. �ese

include establishing sparsistency, parameter consistency, and prediction error [74,
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97, 122]. We refer the reader to the standard literature for more details on GLMs

and exponential families [121, 123].

3.3.2 Support Selection Algorithms

We study general M-estimators of the form (3.1) for some function l (·).

Note that l (·) will implicitly depend on our speci�c dataset, but we hide that for

ease of notation. One common choice of l (·) is the log likelihood of a paramet-

ric distribution. [16] considers the speci�c case of maximizing the R2 objective.

�rough a simple transformation, that is equivalent to maximizing the log likeli-

hood of the parametric distribution that arises from the model yi = 〈xi ,β∗〉 + w

where w ∼ N (0,σ 2). If we let β̂
s

be the s-sparse solution derived, and again let β̄k

be the best k-sparse parameter, then we wish to bound

l (β̂
s
) ≥ (1 − ϵ )l (β̄k

),

without any assumptions on the underlying sparsity or a true parameter.

For a concave function l (·) : Rp 7→ R, we can de�ne an equivalent set

function f̄ (·) : 2[p] 7→ R so that f̄ (S) = maxsupp(x)⊆S l (x). �e problem of support

selection for a given integer k is then max|S|≤k f̄ (S). Recall that a vector is k-

sparse if it is 0 on all but k indices. We provide approximation guarantees on the

normalized set function de�ned as f (S) = f̄ (S) − f̄ (∅). �e support selection

problem is thus equivalent to �nding the k-sparse vector β that maximizes l (β ):

max
S:|S|≤k

f (S) ⇔ max
β :βSc=0
|S|≤k

l (β ) − l (0) . (3.4)
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Let β (A) denote the β maximizing f (A), and let β (A)
B denote β (A) restricted to the

coordinates speci�ed by B. We present three support selection strategies for the

set function f (·) that are simple to implement and are widely used.

Oblivious Algorithm: One natural strategy is to select the top k features

ranked by their individual improvement over a null model, using a goodness of

�t metric such as R2 or p-value. �is is referred to as the Oblivious algorithm,

shown as Algorithm 5. In the context of linear regression, this is simply Marginal

Regression. While it is computationally inexpensive and parallelizes easily, the

Oblivious algorithm does not account for dependencies or redundancies in the

span of features.

Forward Stepwise Algorithm: A less extreme greedy approach would check

for incremental gain at each step using nested models. �is is referred to as the

Forward Stepwise algorithm, presented as Algorithm 6. Given a set of features S

is already selected, choose the feature with largest marginal gain, i.e. select {j}

such that S ∪ {j} has the most improvement over S. All regression coe�cients are

updated each time a new feature is added. In the case of submodular set functions,

this returns a solution that is provably within a constant factor of the optimum

[15].
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Algorithm 5 Oblivious Support Selection
1: Input: sparsity parameter k , set function f (·) : 2[p] 7→ R
2: for i = 1 . . .p do

3: v[i]← f ({i})
4: end for

5: Sk ← indices corresponding to the top k values of v
6: return Sk , f (Sk ).

Algorithm 6 Forward Stepwise Selection
1: Input: sparsity parameter k , set function f (·) : 2[p] 7→ R
2: SG0 ← ∅
3: for i = 1 . . .k do

4: s ← argmaxj∈[p]\Si−1
f (SGi−1 ∪ {j}) − f (SGi−1)

5: SGi ← SGi−1 ∪ {s}
6: end for

7: return SG
k

, f (SG
k
).

Algorithm 7 Orthogonal Matching Pursuit
1: Input: sparsity parameter k , objective function l (·) : Rp 7→ R
2: SP0 ← ∅
3: r← ∇l (0)
4: for i = 1 . . .k do

5: s ← argmaxj |〈ej ,r〉|
6: SPi ← SPi−1 ∪ {s}

7: β (SPi ) ← argmaxβ :supp(β )⊆SPi
l (β )

8: r← ∇l (β (SPi ) )
9: end for

10: return SP
k
, l (β (SPk ) ).

Generalized OMP: Another approach is to choose features which correlate

well with the orthogonal complement of what has already been selected. Using

79



(3.4) and an appropriately chosen model, we can de�ne the gradient evaluated at

the current parameter β to be a residual term. In Orthogonal Matching Pursuit,

features are selected to maximize the inner product with this residual, as shown

in line 5 of Algorithm 7. Here ej represents a unit vector with a 1 in coordinate

j and zeros in the other p − 1 coordinates. OMP requires much less computation

than forward stepwise selection, since the feature comparison is done via an n-

dimensional inner product rather than a regression score. A detailed discussion

can be found in [124].

3.4 Approximation Guarantees

In this section, we derive theoretical lower bounds on the submodularity

ratio based on strong concavity and strong smoothness of a function l (·). We show

that if the concavity parameter is bounded away from 0 and the smoothness pa-

rameter is �nite, then the submodularity ratio is also bounded away from 0, which

allows approximation guarantees for Algorithms 5–7. While our proof techniques

di�er substantially, the outline of this section follows that of [16] which obtained

approximation guarantees for support selections for linear regression. While our

results are applicable to general functions, in [73] we discuss a direct application

of maximum likelihood estimation for sparse generalized linear models.

We assume a di�erentiable function l : Rp 7→ R. Recall that we can de�ne

the equivalent, normalized, monotone set function f : 2[p] 7→ R for a selected

support as f (S) = maxsupp(β )⊆S l (β ) − l (0). We will use set functions wherever

possible to simplify the notation.
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We now present our main result as �eorem 3.4.1, a bound on a function’s

submodularity ratio γU,k in terms of its strong concavity and smoothness param-

eters (see De�nitions 3.3.2–3.3.3). Proofs of lemmas and theorems omi�ed from

this section can be found in Appendix E.

�eorem 3.4.1 (RSC/RSM Implies Weak Submodularity). De�ne f (S) as in (3.4),

with a function l (·) that is (m |U|+k ,M |U|+k )-(strongly concave, smooth) on Ω |U|+k and

M̃ |U|+1 smooth on Ω̃ |U|+1. �en the submodularity ratio γU,k is lower bounded by

γU,k ≥
m |U|+k

M̃ |U|+1
≥

m |U|+k
M |U|+k

. (3.5)

Remark 2. In the case of linear least-squares regression, m and M become sparse

eigenvalues of the covariance matrix, i.e. m |U|+k = λmin( |U| + k ) ≥ 0 and M̃ |U|+1 =

λmax(1) = 1. �us �eorem 3.4.1 becomes γU,k ≥ λmin( |U| +k ), i.e. “RIP implies weak

submodularity,” consistent with Lemma 2.4 of [16].

Remark 3. Sincem/M ≤ 1, this method cannot prove that the function is submodular

(even on a restricted set of features). However, the guarantees in this section only

require weak submodularity.

Remark 4. �eorem 3.4.1 has the following geometric interpretation: the submod-

ularity ratio of f (S) is bounded in terms of the maximum curvature of l (·) over the

domain Ω̃ |U|+1 and the minimum curvature of l (·) over the (larger) domain Ω |U|+k .

�e upper-curvature bound e�ectively controls the maximum amount that each in-

dividual function coordinate can in�uence the function value. �e lower-curvature

bound provides a lower-bound on the improvement of adding all features at once.
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Hence, loosely speaking the submodularity ratio bound will be the ratio of both of

these quantities. �is intuition is used more formally in the proof (Appendix E), where

for a k-sparse set S and j ∈ S, l (β (U) ) is perturbed by scaled projections of ∇l (β (U) )

onto β (U∪S)
j and eS, respectively.

�eorem 3.4.1 allows us to generalize several results of [16], starting with

the following lemma:

Lemma 3.4.1. Let 1 ≤ k ≤ n.

f ([k]) ≥ max
{

1
k
,
m1
4Mk

(
3 + m1

M1

)} k∑
j=1

f (j )

≥ max
{

1
k
,
mk

4Mk

(
3 + mk

Mk

)} k∑
j=1

f (j ) .

Now we present our �rst performance guarantee for feature selection.

�eorem 3.4.2 (Oblivious Algorithm Guarantee). De�ne f (S) as in (3.4), with a

function l (·) that isMk-smooth andmk-strongly concave on Ωk . Let f
OBL

be the value

at the set selected by the Oblivious algorithm, and let f OPT be the optimal value over

all sets of size k . �en

f OBL ≥ max
{
mk

kM1
,
mkm1
4MkM1

(
3 + m1

M1

)}
f OPT

≥ max
 mk

kMk
,
3m2

k

4M2
k

,
m3

k

M3
k

 f OPT .

Remark 5. When the function is modular, i.e.mΩ = MΩ for allΩ, then f OBL = f OPT

and the bound in �eorem 3.4.2 holds with equality.
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Next, we prove a stronger, constant factor approximation guarantee for the

greedy, Forward Stepwise algorithm.

�eorem 3.4.3 (Forward Stepwise Algorithm Guarantee). De�ne f (S) as in (3.4),

with a function that is M-smooth andm-strongly concave on Ω2k . Let SGk be the set

selected by the FS algorithm and S∗ be the optimal set of sizek corresponding to values

f FS and f OPT . �en

f FS ≥
(
1 − e

−γSGk ,k
)
f OPT ≥

(
1 − e−m/M

)
f OPT . (3.6)

Remark 6. �is constant factor bound can be improved by running the Forward

Stepwise algorithm for r > k steps. �e proof of �eorem 3.4.3 generalizes to compare

performance of r greedy iterations to the optimalk-subset of features. �is generalized

bound does not necessarily approach 1 as r → ∞, however, since γSGr ,k is a decreasing

function of r .

Corollary 3.4.1. Let f FS+
denote the solution obtained a�er r iterations of the For-

ward Stepwise algorithm, and let f OPT be the objective at the optimal k-subset of

features. Let γ = γSGr ,k be the submodularity ratio associated with the output of f FS+

and k . �en

f FS+ ≥ (1 − e−γ (r/k) ) f OPT .

In particular, se�ing r = ck corresponds to a (1 − e−cγ )-approximation, and se�ing

r = k logn corresponds to a (1 − n−γ )-approximation.

Corollary 3.4.1 is useful when γ can be bounded on larger support sets. We

next present approximation guarantees when γ can only be bounded on smaller

support sets.
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�eorem 3.4.4. De�ne f (S) as in (3.4), with a function l (·) that ism′-strongly con-

cave on Ωk andM
′
-smooth on Ω̃k . Let SGk be the set of features selected by the Forward

Stepwise algorithm and Sk be the optimal feature set on k variables corresponding to

values f G and f OPT . �en

f FS ≥ Θ
(
2−M

′/m′
) (

1 − e−m
′/M ′

)
f OPT .

Remark 7. We note that our bounds are loose for certain special cases like modular

functions and linear regression. �ese require making use of additional tools and

speci�c properties of the function and data at hand (see [16]).

Orthogonal Matching Pursuit is more computationally e�cient than for-

ward stepwise regression, since step i only �ts one regression instead of p−i . �us

we have a weaker guarantee than �eorem 3.4.3. Similar to Corollary 3.4.1, this

result generalizes to running OMP for r > k iterations.

�eorem 3.4.5 (OMP Algorithm Guarantee). De�ne f (S ) as in (3.4), with a log-

likelihood function that is (M ,m)-(smooth, strongly concave) on Ω2k . Let f
OMP

be the

value at the set of features selected by the OMP algorithm and f OPT be the optimal

value over all sets of size k . �en

f OMP ≥
(
1 − e−m/M

)
f OPT .

Corollary 3.4.2. Let f P+
denote the solution obtained a�er r iterations of the OMP

algorithm, and let f OPT be the objective at the optimal k-subset of features. Let α =

(m/M) be the ratio associated with the output of f P+
and k . �en

f P+ ≥ (1 − e−α (r/k) ) f OPT .
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In particular, se�ing r = ck corresponds to a (1 − e−cα )-approximation, and se�ing

r = k logn corresponds to a (1 − n−α )-approximation.

Remark 8. �eorem 3.4.5 and Corollary 3.4.2 improve on the approximation guar-

antee of [16] by a factor of γ in the exponent. Previous work obtained the approxima-

tion factor 1−e−γλmin (2k )
, whereas the proof of �eorem 3.4.5 establishes 1−e−λmin (2k )

.

�erefore we obtain a be�er exponent for linear regression and also generalize to any

likelihood function. �eorem 3.4.3 also gives intuition on when the performance of

OMP will di�er from that of Forward Selection, i.e. when the inequality (3.6) is loose.

3.5 Statistical Recovery Guarantees

Understanding optimization guarantees are useful, but they do not clearly

translate to bounds on parameter recovery. Below we present a general theorem

that allows us to derive parameter bounds. When combined with Section 3.4, it

produces recovery guarantees for greedy algorithms as special cases.

�eorem 3.5.1 (Parameter Recovery Guarantees). Suppose that a�er r iterations to

approximate a function evaluated at a set S∗s of cardinality s , we have the guarantee

that

f (Sr ) ≥ Cs,r f (S∗s ) .

Recall that f (Sr ) = max
supp(β )⊂Sr l (β ) − l (0). Let β̂

r
be the solution to the optimiza-

tion problem and consider any arbitrary s-sparse vector βs
with support on S∗s . �en,

underms+r RSC on Ωs+r we have that

‖β̂
r
− βs
‖22 ≤

4
m2

s+r
‖∇l (βs )‖22,(s+r ) + 4

ms+r
(1 −Cs,r )[l (βs ) − l (0)] .
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For the remainder of this section, we consider several cases of �eorem

3.5.1 and compare to results from previous work.

3.5.1 Forward Selection with Linear Regression Model

First we will consider a special case of Algorithm 6 for linear regression

where the rows of the design matrices are N (0,Σ) for a covariance matrix of the

form Σ = I + 11T . Further, we assume the model

y = Xβ∗ + w ,

where ‖β∗‖2 ≤ 1 and is s-sparse, the rows of X ∈ Rn×p are N (0,Σ), and wi ∼

N (0,σ 2) are i.i.d. We also take l (β ) = 1/n‖Xβ − y‖22 .

Corollary 3.5.1. Given the above setup, if (s +r )σ 2 logp = o(n) and r = Ω(s logn),

then the parameter error goes to zero with high probability as n → ∞.

3.5.2 Orthogonal Matching Pursuit with Linear Regression Model

Next, we consider the results of Zhang, which provide parameter recovery

bounds in the case of OMP (Algorithm 7). �e simplest comparison is to contrast

our results with Corollary 2.2 of [92]. Consider the linear regression model above

with an original s-sparse vector, r iterations of the algorithm, and a spiked identity

covariance model, Σ = (1 − a)I + a11T .

Proposition 2. While �eorem 3.5.1 holds for any a, Zhang [92] requires that a does

not exceed
1

s+1 .

86



Proof. Zhang requires the RIP condition to hold, namely Ms ≤ 2ms+r . We know

that the di�erence between means of 2λmin(s+r ) and λmax(s ) is ∆ = 1−a−as . Since

∆/2 ≤ µ/2 in both cases and χ 2 variables concentrate within constant factors of their

means, we have Ms ≤ 3/2(1 − a) + as/2 ≤ 2ms+r . However, ∆ > 0 ⇔ s ≤ 1/a − 1.

Rearranging, we have a ≤ 1
s+1 . �us, as has been noted in prior work, the RIP

condition will not hold for the spiked model in se�ings where a is much larger

than 1
s+1 . �

Nevertheless, we can still proceed and assume that the RIP condition is not

required. In that case, the bound established in [92] shows

‖β̂
r
− β∗‖22 ≤ 24Ms+r ‖Xβ∗ − y‖22/m

2
s+r .

When Ms+r and ms+r are of the same order, then this result is be�er than ours by

log factors. However, when we consider a case like the spiked covariance model,

then our results are be�er by a factor of s in terms of statistical accuracy but worse

by a factor of logn with respect to sample complexity.

3.5.3 Orthogonal Matching Pursuit with Logistic Regression Model

Finally, consider our bounds for OMP (Algorithm 7) in the case of logistic

regression. Applying our approximation guarantees in �eorem 3.4.5 matches the

bound given by �eorem 2 of [94] up to constant factors. However, their guarantee

for parameter recovery requires a condition that is only known to be satis�ed

under incoherence assumptions. Our �eorem 3.5.1 holds more generally. �eir

conditions on exact recovery are incomparable with our statistical error bounds.
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3.6 Experiments

Next we evaluate the performance of our greedy algorithms with feature

selection experiments on simulated and real-world datasets. A bias term β0 is

added to the regression by augmenting the design matrix with a column of ones.

�e Data: A synthetic experiment was conducted as follows: �rst each row of

a 600 × 200 design matrix X is generated independently according to a �rst order

AR process (α = 0.3 and noise variance σ 2 = 5). �is ensures that the features

are heavily correlated with each other. Bernoulli ±1 (i.e., Rademacher) random

variables are placed on 50 random indices to form the true support β̄k , and scaled

such that ‖β ‖22 = 5. �en responses y are computed via a logistic model. We also

conduct an experiment on a subset of the RCV1 Binary text classi�cation dataset

[125]. 10,000 training and test samples are used in 47,236 dimensions. Since there

is no ground truth, a logistic regression is �t using a subset of at most 700 features.

Algorithms and Metrics: �e Oblivious, Forward Stepwise (FS), and OMP

algorithms were implemented using a logistic log likelihood function given X and

y on the given design matrix and response:

l (β ) =
n∑
i=1

logp (yi | xi ; β ) =
n∑
i=1

log(1 + e〈xi ,β〉) − yi〈xi ,β〉 . (3.7)

We implemented 3 additional algorithms. Lasso �ts a logistic regression model

with `1 regularization. Lasso-Pipeline recovers the sparse support using Lasso and

then �ts regression coe�cients on this support with a separate, unregularized
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model. �e regularization parameter was swept to achieve outputs with varying

sparsity levels. Forward Backward (FoBa) [126] �rst runs FS at each step and then

drops any features if doing so would decrease the objective by less than half the

latest marginal gain.

Our main metric for each algorithm is the normalized objective function

l (β̂
s
) − l (0) for the output sparsity s ∈ {1, . . . ,70}. We also compare the sets

supp(β̂
s
) and supp(β̄k

) using area under ROC and percent of true support recov-

ered. Finally, we measure generalization accuracy by drawing additional observa-

tions (xi ,yi ) from the same distribution as the training data.

Results: Figure 3.1 shows the results of our synthetic experiment averaged over

20 runs. For all metrics, Oblivious performs worse than OMP which is slightly

worse than FS and FoBa. �is matches intuition and the series of bounds in Sec-

tion 3.4. We also see that the Lasso-Pipeline performs noticeably worse than all

algorithms except Oblivious and Lasso. �is suggests that greedy feature selection

degrades more gracefully than Lasso in the case of correlated features.

Figure 3.2 shows similar results for the high-dimensional RCV1 Binary

dataset. Due to their large running time complexity, FS and FoBa were omi�ed.

While all algorithms have roughly the same generalization accuracy using 300

features, OMP has the largest log likelihood.
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3.7 Conclusions

We have extended the results of [16] and shown that functions satisfy-

ing RSC also satisfy a relaxed form of submodularity that can be used to analyze

the performance of greedy algorithms compared to the best sparse solution. Ex-

perimental results con�rm that greedy feature selection outperforms regularized

approaches in a nonlinear regression model. Directions for future work include

similar analysis for other greedy algorithms that incorporate group sparsity [74]

or thresholding, and applications beyond sparse regression. Bounds on dictionary

selection (analogous to those in [16]) also apply to general likelihood functions

satisfying RSC and RSM.
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Figure 3.1: Synthetic Dataset - α = 0.3, n = 600 training and test samples, p = 200
dimensions with true support on 50 features, averaged over 20 runs. (a) �e greedy
algorithms perform be�er than Lasso and Oblivious algorithms, but beyond 50
steps they over�t to noise in the training data. While Lasso outperforms Oblivious
in support recovery (b), its regression su�ers from regularization bias.
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Figure 3.2: RCV1 Binary Dataset - n = 10,000, p = 47,236. OMP outperforms
Lasso-Pipeline.
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Chapter 4

Streaming Weak Submodularity:

Interpreting Neural Networks on the Fly

4.1 Introduction

Consider the following1 combinatorial optimization problem. Given a ground

set [N ] of N elements and a set function f : 2[N ] 7→ R≥0, �nd the set S of size k

which maximizes f (S). �is formulation is at the heart of many machine learning

applications such as sparse regression, data summarization, facility location, and

graphical model inference. Although the problem is intractable in general, if f is

assumed to be submodular then many approximation algorithms have been shown

to perform provably within a constant factor from the best solution.

Some disadvantages of the standard greedy algorithm of [15] for this prob-

lem are that it requires repeated access to each data element and a large total

number of function evaluations. �is is undesirable in many large-scale machine

learning tasks where the entire dataset cannot �t in main memory, or when a sin-

1Parts of the material in this chapter are based on the following conference paper: [116]
E. R. Elenberg, A. G. Dimakis, M. Feldman, and A. Karbasi. Streaming Weak Submodularity: In-
terpreting Neural Networks on the Fly. In NIPS, pages 4047–4057, 2017. From that material, the
dissertation author’s primary contributions are design of the parameter a in the approximation
guarantees, as well as design, implementation, and analysis of experiments. �e dissertation au-
thor also assisted with other contributions and is the primary contributor of this paper. Additional
material in this chapter is the dissertation author’s contribution.
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gle function evaluation is time consuming. In our main application, each function

evaluation corresponds to inference on a large neural network and can take a few

seconds. In contrast, streaming algorithms make a small number of passes (o�en

only one) over the data and have sublinear space complexity, and thus, are ideal

for tasks of the above kind.

Recent ideas, algorithms, and techniques from submodular set function

theory have been used to derive similar results in much more general se�ings. For

example, Chapter 3 (and corresponding publications [72, 73]) used the concept of

weak submodularity to derive approximation and parameter recovery guarantees

for nonlinear sparse regression. �us, a natural question is whether recent results

on streaming algorithms for maximizing submodular functions [17,22,127] extend

to the weakly submodular se�ing.

�is chapter answers the above question by providing the �rst analysis of a

streaming algorithm for any class of approximately submodular functions. We use

key algorithmic components of Sieve-Streaming [22], namely greedy threshold-

ing and binary search, combined with a novel analysis to prove a constant factor

approximation forγ -weakly submodular functions (de�ned in Section 4.3). Specif-

ically, our contributions are as follows.

• An impossibility result showing that, even for 0.5-weakly submodular ob-

jectives, no randomized streaming algorithm which uses o(N ) memory can

have a constant approximation ratio when the ground set elements arrive in

a worst case order.
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• Streak: a greedy, deterministic streaming algorithm for maximizingγ -weakly

submodular functions which usesO (ϵ−1k logk ) memory and has an approx-

imation ratio of (1 − ϵ )γ ·
[
4 + γ

2 − 2
√
γ + 4

]
when the ground set elements

arrive in a random order.

• An experimental evaluation of our algorithm in two applications: nonlinear

sparse regression using pairwise products of features and interpretability of

black-box neural network classi�ers.

�e above theoretical impossibility result is quite surprising since it stands in sharp

contrast to known streaming algorithms for submodular objectives achieving a

constant approximation ratio even for worst case stream order.

One advantage of our approach is that, while our approximation guaran-

tees are in terms of γ , our algorithm Streak runs without requiring prior knowl-

edge about the value of γ . �is is important since the weak submodularity param-

eter γ is hard to compute, especially in streaming applications, as a single element

can alter γ drastically.

We use our streaming algorithm for neural network interpretability on In-

ception V3 [23]. For that purpose, we de�ne a new set function maximization

problem similar to LIME [24] and apply our framework to approximately maxi-

mize this function. Experimentally, we �nd that our interpretability method pro-

duces explanations of similar quality as LIME, but runs approximately 10 times

faster.
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4.2 Related Work

Monotone submodular set function maximization has been well studied,

starting with the classical analysis of greedy forward selection subject to a matroid

constraint [15,99]. For the special case of a uniform matroid constraint, the greedy

algorithm achieves an approximation ratio of 1 − 1/e [99], and a more involved al-

gorithm obtains this ratio also for general matroid constraints [128]. In general, no

polynomial-time algorithm can have a be�er approximation ratio even for a uni-

form matroid constraint [129, 130]. However, it is possible to improve upon this

bound when the data obeys some additional guarantees [100, 131, 132]. For maxi-

mizing nonnegative, not necessarily monotone, submodular functions subject to a

general matroid constraint, the state-of-the-art randomized algorithm achieves an

approximation ratio of 0.385 [112]. Moreover, for uniform matroids there is also a

deterministic algorithm achieving a slightly worse approximation ratio of 1/e [133].

�e reader is referred to [79] and [134] for surveys on submodular function theory.

A recent line of work aims to develop new algorithms for optimizing sub-

modular functions suitable for large-scale machine learning applications. Algo-

rithmic advances of this kind include Stochastic-Greedy [102], Sieve-Streaming

[22], and several distributed approaches [19, 81, 101, 103, 104]. Our algorithm ex-

tends ideas found in Sieve-Streaming and uses a di�erent analysis to handle more

general functions. Additionally, submodular set functions have been used to prove

guarantees for online and active learning problems [17, 76, 78]. Speci�cally, in the

online se�ing corresponding to our se�ing (i.e., maximizing a monotone func-

tion subject to a cardinality constraint), [135] achieve a competitive ratio of about
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0.3178 when the function is submodular.

�e concept of weak submodularity was introduced in [16,80], where it was

applied to the speci�c problem of feature selection in linear regression. �eir main

results state that if the data covariance matrix is not too correlated (using either

incoherence or restricted eigenvalue assumptions), then maximizing the goodness

of �t f (S) = R2
S as a function of the feature set S is weakly submodular. �is leads

to constant factor approximation guarantees for several greedy algorithms. Weak

submodularity was connected with Restricted Strong Convexity in Chapter 3 and

the corresponding publications [72, 73]. �is showed that the same assumptions

which imply the success of regularization also lead to guarantees on greedy algo-

rithms. �is framework was later used for additional algorithms and applications

[81,82]. Other approximate versions of submodularity were used for greedy selec-

tion problems in [18, 105, 106, 108, 136]. To the best of our knowledge, this is the

�rst analysis of streaming algorithms for approximately submodular set functions.

Increased interest in interpretable machine learning models has led to ex-

tensive study of sparse feature selection methods. For example, [137] consider

greedy algorithms for logistic regression, and [98] solve a more general problem

using `1 regularization. Recently, [24] developed a framework called LIME for in-

terpreting black-box neural networks, and [138] proposed a method that requires

access to the network’s gradients with respect to its inputs. We compare our al-

gorithm to variations of LIME in Section 4.6.2.
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4.3 Preliminaries

First we establish some de�nitions and notation speci�c to this section.

�e number of elements in the input stream is assumed to be N , and all big O

notation is assumed to be scaling with respect to N . Given a set function f , we

o�en use the discrete derivative f (B | A) := f (A ∪ B) − f (A). f is monotone if

f (B | A) ≥ 0,∀A,B and nonnegative if f (A) ≥ 0,∀A. Using this notation one can

de�ne weakly submodular functions based on the following ratio.

De�nition 4.3.1 (Weak Submodularity, adapted from [16]). A monotone nonneg-

ative set function f : 2[N ] 7→ R≥0 is called γ -weakly submodular for an integer r

if

γ ≤ γr := min
L,S⊆[N ]:
|L|,|S\L|≤r

∑
j∈S\L f (j | L)

f (S | L)
,

where the ratio is considered to be equal to 1 when its numerator and denominator

are both 0.

�is generalizes submodular functions by relaxing the diminishing returns

property of discrete derivatives. It is easy to show that f is submodular if and

only if γN = 1. Note that this de�nition allows the two sets to have nonempty

intersection, which di�ers slightly from the one in Chapter 3.

De�nition 4.3.2 (Approximation Ratio). A given streaming maximization algo-

rithm ALG which returns a set S has approximation ratio R ∈ [0,1] if E[f (S)] ≥

R · f (OPT), where OPT is the optimal solution and the expectation is over the ran-

dom decisions of the algorithm and the randomness of the input stream order (when

it is random).
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Formally our problem is as follows. Assume that elements from a ground

set [N ] arrive in a stream at either random or worst case order. �e goal is then to

design a one pass streaming algorithm that, given oracle access to a nonnegative

set function f : 2[N ] 7→ R≥0, maintains at most o(N ) elements in memory and

returns a set S of size at most k approximating

max
|T|≤k

f (T) ,

up to an approximation ratio R (γk ). Ideally, this approximation ratio should be as

large as possible, and we also want it to be a function of γk and nothing else. In

particular, we want it to be independent of k and N .

To simplify notation, we use γ in place of γk in the rest of the chapter.

Additionally, proofs for all our theoretical results are deferred to Appendix F.

4.4 Impossibility Result

To prove our negative result showing that no streaming algorithm for our

problem has a constant approximation ratio against a worst case stream order, we

�rst need to construct a weakly submodular set function fk . Later we use it to

construct a bad instance for any given streaming algorithm.

Fix some k ≥ 1, and consider the ground set Nk = {ui ,vi }
k
i=1. For ease of

notation, let us de�ne for every subset S ⊆ Nk

u (S) = |S ∩ {ui }ki=1 | , v (S) = |S ∩ {vi }ki=1 | .

Now we de�ne the following set function:

fk (S) = min{2 · u (S) + 1,2 · v (S)} ∀ S ⊆ Nk . (4.1)
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Lemma 4.4.1. fk is nonnegative, monotone, and 0.5-weakly submodular for the in-

teger |Nk |.

Since |Nk | = 2k , the maximum value of fk is fk (Nk ) = 2 · v (Nk ) = 2k .

We now extend the ground set of fk by adding to it an arbitrary large number

d of dummy elements which do not a�ect fk at all. Clearly, this does not a�ect

the properties of fk proved in Lemma 4.4.1. However, the introduction of dummy

elements allows us to assume that k is an arbitrary small value compared to N ,

which is necessary for the proof of the next theorem. In a nutshell, this proof is

based on the observation that the elements of {ui }ki=1 are indistinguishable from

the dummy elements as long as no element of {vi }ki=1 has arrived yet.

�eorem 4.4.1. For every constant c ∈ (0,1] there is a large enough k such that

no randomized streaming algorithm that uses o(N ) memory to solve max|S|≤2k fk (S)

has an approximation ratio of c for a worst case stream order.

We note that fk has strong properties. In particular, Lemma 4.4.1 implies

that it is 0.5-weakly submodular for every 0 ≤ r ≤ N . In contrast, the algorithm

we show later assumes weak submodularity only for the cardinality constraint k .

�us, the above theorem implies that worst case stream order precludes a constant

approximation ratio even for functions with much stronger properties compared

to what is necessary for ge�ing a constant approximation ratio when the order is

random.

�e proof of �eorem 4.4.1 relies critically on the fact that each element is

seen exactly once. In other words, once the algorithm decides to discard an ele-
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ment from its memory, this element is gone forever, which is a standard assump-

tion for streaming algorithms. �us, the theorem does not apply to algorithms that

use multiple passes over [N ], or non-streaming algorithms that use o(N ) writable

memory, and their analysis remains an interesting open problem.

4.5 Streaming Algorithms

In this section we give a deterministic streaming algorithm for our prob-

lem which works in a model in which the stream contains the elements of [N ]

in a random order. We �rst describe in Section 4.5.1 such a streaming algorithm

assuming access to a value τ which approximates aγ · f (OPT), where a is a short-

hand for a = (
√

2 − e−γ/2 − 1)/2. �en, in Section 4.5.2 we explain how this

assumption can be removed to obtain Streak and bound its approximation ratio,

space complexity, and running time.

4.5.1 AlgorithmWith Access to τ

Consider Algorithm 8. In addition to the input instance, this algorithm gets

a parameter τ ∈ [0,aγ · f (OPT)]. One should think of τ as close to aγ · f (OPT),

although the following analysis of the algorithm does not rely on it. We provide

an outline of the proof, but defer the technical details to Appendix F.

�eorem 4.5.1. �e expected value of the set produced by Algorithm 8 is at least

τ

a
·

3 − e−γ/2 − 2
√

2 − e−γ/2
2 = τ · (

√
2 − e−γ/2 − 1) .

Proof (Sketch). Let E be the event that f (S) < τ , where S is the output produced by
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Algorithm 8 ThresholdGreedy(f ,k ,τ )
Let S← ∅.
while there are more elements do

Let u be the next element.
if |S| < k and f (u | S) ≥ τ/k then

Update S ← S ∪ {u}.
end if

end while

return S

Algorithm 8. Clearly f (S) ≥ τ whenever E does not occur, and thus, it is possible

to lower bound the expected value of f (S) using E as follows.

Observation 4.5.2. Let S denote the output of Algorithm 8, then E[f (S)] ≥ (1 −

Pr[E]) · τ .

�e lower bound given by Observation 4.5.2 is decreasing in Pr[E]. Propo-

sition 4.5.1 provides another lower bound for E[f (S)] which increases with Pr[E].

An important ingredient of the proof of this proposition is the next observation,

which implies that the solution produced by Algorithm 8 is always of size smaller

than k when E happens.

Observation 4.5.3. If at some point Algorithm 8 has a set S of size k , then f (S) ≥ τ .

�e proof of Proposition 4.5.1 is based on the above observation and on the

observation that the random arrival order implies that every time that an element

of OPT arrives in the stream we may assume it is a random element out of all the

OPT elements that did not arrive yet.
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Proposition 4.5.1. For the set S produced by ThresholdGreedy,

E[f (S)] ≥ 1
2 ·

(
γ · [Pr[E] − e−γ/2] · f (OPT) − 2τ

)
.

�e theorem now follows by showing that for every possible value of Pr[E]

the guarantee of the theorem is implied by either Observation 4.5.2 or Proposi-

tion 4.5.1. Speci�cally, the former happens when Pr[E] ≤ 2 −
√

2 − e−γ/2 and the

la�er when Pr[E] ≥ 2 −
√

2 − e−γ/2. �

4.5.2 AlgorithmWithout Access to τ

In this section we explain how to get an algorithm which does not depend

on τ . Instead, Streak (Algorithm 9) receives an accuracy parameter ϵ ∈ (0,1).

�en, it uses ϵ to run several instances of Algorithm 8 stored in a collection denoted

by I . �e algorithm maintains two variables throughout its execution: m is the

maximum value of a singleton set corresponding to an element that the algorithm

already observed, and um references an arbitrary element satisfying f (um ) =m.

�e collection I is updated as follows a�er each element arrival. If previ-

ously I contained an instance of Algorithm 8 with a given value for τ , and it no

longer should contain such an instance, then the instance is simply removed. In

contrast, if I did not contain an instance of Algorithm 8 with a given value for τ ,

and it should now contain such an instance, then a new instance with this value

for τ is created. Finally, if I contained an instance of Algorithm 8 with a given

value for τ , and it should continue to contain such an instance, then this instance

remains in I as is.
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Algorithm 9 Streak( f ,k ,ϵ)
Let m ← 0, and let I be an (originally empty) collection of instances of Algo-
rithm 8.
while there are more elements do

Let u be the next element.
if f (u) ≥ m then

Updatem ← f (u) and um ← u.
end if

Update I so that it contains an instance of Algorithm 8 with τ = x for every
x ∈ {(1 − ϵ )i | i ∈ Z and (1 − ϵ )m/(9k2) ≤ (1 − ϵ )i ≤ mk }, as explained in
Section 4.5.2.
Pass u to all instances of Algorithm 8 in I .

end while

return the best set among all the outputs of the instances of Algorithm 8 in I
and the singleton set {um}.

�eorem 4.5.4. �e approximation ratio of Streak is at least

(1 − ϵ )γ · 3 − e−γ/2 − 2
√

2 − e−γ/2
2 .

�e proof of �eorem 4.5.4 shows that in the �nal collection I there is an

instance of Algorithm 8 whose τ provides a good approximation for aγ · f (OPT),

and thus, this instance of Algorithm 8 should (up to some technical details) produce

a good output set in accordance with �eorem 4.5.1.

It remains to analyze the space complexity and running time of Streak.

We concentrate on bounding the number of elements Streak keeps in its memory

at any given time, as this amount dominates the space complexity as long as we

assume that the space necessary to keep an element is at least as large as the space

necessary to keep each one of the numbers used by the algorithm.

�eorem 4.5.5. �e space complexity of Streak is O (ϵ−1k logk ) elements.
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�e running time of Algorithm 8 is O (N f ) where, abusing notation, f is

the running time of a single oracle evaluation of f . �erefore, the running time

of Streak is O (N f ϵ−1 logk ) since it uses at every given time only O (ϵ−1 logk )

instances of the former algorithm. Given multiple threads, this can be improved to

O (N f +ϵ−1 logk ) by running theO (ϵ−1 logk ) instances of Algorithm 8 in parallel.

4.5.3 Improved Guarantees for Streak

Since the initial publication of the results in this chapter [116], the guaran-

tees on both ThresholdGreedy and Streak have been improved. �ese tighter

bounds are proved in Appendix F.

As a warm up, we provide a bound on a variant of Streak for which γ ,

inverse curvature α̌ (de�ned in Appendix C), and f (OPT) are all known in advance.

�is is a stronger assumption than having access to a good τ (Section 4.5.1).

�eorem 4.5.6. Let f (·) have submodularity ratio γ and inverse curvature α̌ . If

τ =
f (OPT)γ (1−α̌ )

1+γ (1−α̌ ) , then ThresholdGreedy has an approximation ratio of
γ (1−α̌ )

1+γ (1−α̌ )

irrespective of stream order.

Remark 4.5.1. �is result is consistent with �eorem 4.4.1 which does not depend

on α̌ , see the proof of Proposition C.2.8.

Remark 4.5.2. When f (·) is submodular, �eorem 4.5.6 matches the 1/2 approxi-

mation ratio of [22]. However, it is not clear whether this (or any other) algorithm

achieves a be�er approximation for arbitrary (γ ,α̌ ).
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�e following tighter bounds are achieved by utilizing a technical lemma

from [84].

�eorem 4.5.7. In expectation, ThresholdGreedy has an improved approximation

ratio

E [f (S)] ≥ τ

a
·

[
4 + γ

2 − 2
√
γ + 4

]
,

where

a =
√
γ ′/2 + 1 − 1 =

√
2γ ′ + 4 − 2

2 =

√
γ + 4 − 2

2 .

�eorem 4.5.8. In expectation, Streak has an improved approximation ratio

E [f (S)] ≥ (1 − ϵ )γ ·
[
4 + γ

2 − 2
√
γ + 4

]
.

4.6 Experiments

We evaluate the performance of our streaming algorithm on two sparse

feature selection applications.2 Features are passed to all algorithms in a random

order to match the se�ing of Section 4.5.

4.6.1 Sparse Regression with Pairwise Features

In this experiment, a sparse logistic regression is �t on 2000 training and

2000 test observations from the Phishing dataset [139]. �is setup is known to

be weakly submodular under mild data assumptions [73]. First, the categorical

2Code is available at https://github.com/eelenberg/streak.
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features are one-hot encoded, increasing the feature dimension to 68. �en, all

pairwise products are added for a total of N = 4692 features. To reduce computa-

tional cost, feature products are generated and added to the stream on-the-�y as

needed. We compare with 2 other algorithms. RandomSubset selects the �rst k

features from the random stream. LocalSearch �rst �lls a bu�er with the �rst k

features, and then swaps each incoming feature with the feature from the bu�er

which yields the largest nonnegative improvement.

Figure 4.1(a) shows both the �nal log likelihood and the generalization

accuracy for RandomSubset, LocalSearch, and our Streak algorithm for ϵ =

{0.75,0.1} and k = {20,40,80}. As expected, the RandomSubset algorithm has

much larger variation since its performance depends highly on the random stream

order. It also performs signi�cantly worse than LocalSearch for both metrics,

whereas Streak is comparable for most parameter choices. Figure 4.1(b) shows

two measures of computational cost: running time and the number of oracle eval-

uations (regression �ts). We note Streak scales be�er as k increases; for example,

Streak with k = 80 and ϵ = 0.1 (ϵ = 0.75) runs in about 70% (5%) of the time

it takes to run LocalSearch with k = 40. Interestingly, our speedups are more

substantial with respect to running time. In some cases Streak actually �ts more

regressions than LocalSearch, but still manages to be faster. We a�ribute this to

the fact that nearly all of LocalSearch’s regressions involve k features, which are

slower than many of the small regressions called by Streak.

Figure 4.2(a) shows the �nal log likelihood versus running time for k = 80

and ϵ ∈ [0.05,0.75]. By varying the precision ϵ , we achieve a gradual tradeo�
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between speed and performance. �is shows that Streak can reduce the running

time by over an order of magnitude with minimal impact on the �nal log likeli-

hood.

4.6.2 Black-Box Interpretability

Our next application is interpreting the predictions of black-box machine

learning models. Speci�cally, we begin with the Inception V3 deep neural network

[23] trained on ImageNet. We use this network for the task of classifying 5 types

of �owers via transfer learning. �is is done by adding a �nal so�max layer and

retraining the network.

We compare our approach to the LIME framework [24] for developing

sparse, interpretable explanations. �e �nal step of LIME is to �t a k-sparse linear

regression in the space of interpretable features. Here, the features are superpix-

els determined by the SLIC image segmentation algorithm [140] (regions from any

other segmentation would also su�ce). �e number of superpixels is bounded by

N = 30. A�er a feature selection step, a �nal regression is performed on only the

selected features. �e following feature selection methods are supplied by LIME:

1. Highest Weights: �ts a full regression and keep the k features with largest co-

e�cients. 2. Forward Selection: standard greedy forward selection. 3. Lasso: `1

regularization.

We introduce a novel method for black-box interpretability that is similar

to but simpler than LIME. As before, we segment an image into N superpixels.

�en, for a subset S of those regions we can create a new image that contains
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only these regions and feed this into the black-box classi�er. For a given model

M , an input image I , and a label L1, we ask for an explanation: why did model M

label image I with label L1. We propose the following solution to this problem.

Consider the set function f (S) giving the likelihood that image I (S) has label L1.

We approximately solve

max
|S|≤k

f (S) ,

using Streak. Intuitively, we are limiting the number of superpixels to k so that

the output will include only the most important superpixels, and thus, will repre-

sent an interpretable explanation. In our experiments we set k = 5.

Note that the set function f (S) depends on the black-box classi�er and is

neither monotone nor submodular in general. Still, we �nd that the greedy max-

imization algorithm produces very good explanations for the �ower classi�er as

shown in Figure 4.3 and the additional experiments in Appendix G. Figure 4.2(b)

shows that our algorithm is much faster than the LIME approach. �is is pri-

marily because LIME relies on generating and classifying a large set of randomly

perturbed example images.

4.7 Conclusions

We propose Streak, the �rst streaming algorithm for maximizing weakly

submodular functions, and prove that it achieves a constant factor approximation

assuming a random stream order. �is is useful when the set function is not sub-

modular and, additionally, takes a long time to evaluate or has a very large ground

set. Conversely, we show that under a worst case stream order no algorithm with
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memory sublinear in the ground set size has a constant factor approximation. We

formulate interpretability of black-box neural networks as set function maximiza-

tion, and show that Streak provides interpretable explanations faster than pre-

vious approaches. We also show experimentally that Streak trades o� accuracy

and running time in nonlinear sparse regression.

One interesting direction for future work is to tighten the bounds of �e-

orems 4.5.7 and 4.5.8 further, as they are nontrivial but still somewhat loose. For

example, there is a gap between the theoretical guarantee of the state-of-the-art

algorithm for submodular functions and our bound for γ = 1. However, as our

algorithm performs the same computation as that state-of-the-art algorithm when

the function is submodular, this gap is solely an analysis issue. Hence, the real

theoretical performance of our algorithm is be�er than what we have been able to

prove in Section 4.5. �eorem 4.5.6 shows that an algorithm can do signi�cantly

be�er when γ and α̌ known exactly. �is suggests that approximate knowledge

of non-submodular parameters may be useful for designing algorithms with im-

proved guarantees.

Analogous to the results in Chapter 3, another future direction is to design

neural network architectures for which the LIME or Streak objective function sat-

is�es a weak submodularity condition. Recently, [14] characterized perturbation-

stable instances [141] of monotone submodular maximization problems for which

greedy algorithms recover the true optimum. It is worth examining the implica-

tions of this result for machine learning problems, as well as extensions of the

framework to non-submodular set functions.
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Figure 4.1: Logistic Regression, Phishing dataset with pairwise feature products.
Our algorithm is comparable to LocalSearch in both log likelihood and general-
ization accuracy, with much lower running time and number of model �ts in most
cases. Results averaged over 40 iterations, error bars show 1 standard deviation.
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Figure 4.2: 4.2(a): Logistic Regression, Phishing dataset with pairwise feature
products, k = 80 features. By varying the parameter ϵ , our algorithm captures a
time-accuracy tradeo� between RandomSubset and LocalSearch. Results aver-
aged over 40 iterations, standard deviation shown with error bars. 4.2(b): Running
times of interpretability algorithms on the Inception V3 network, N = 30, k = 5.
Streaming maximization runs 10 times faster than the LIME framework. Results
averaged over 40 total iterations using 8 example explanations, error bars show 1
standard deviation.
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(a) (b)

(c) (d)

Figure 4.3: Comparison of interpretability algorithms for the Inception V3 deep
neural network. We have used transfer learning to extract features from Inception
and train a �ower classi�er. In these four input images the �ower types were
correctly classi�ed (from (a) to (d): rose, sun�ower, daisy, and daisy). We ask the
question of interpretability: why did this model classify this image as rose. We are
using our framework (and the recent prior work LIME [24]) to see which parts of
the image the neural network is looking at for these classi�cation tasks. As can be
seen Streak correctly identi�es the �ower parts of the images while some LIME
variations do not. More importantly, Streak is creating subsampled images on-
the-�y, and hence, runs approximately 10 times faster. Since interpretability tasks
perform multiple calls to the black-box model, the running times can be quite
signi�cant.
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Appendix A

Proofs for Chapter 2

A.1 Proof of �eorem 2.3.2

Let1 m be the total number of edges in the original graph G. If e is an edge

in the original graph G, let te be the random indicator a�er sampling. te = 1 if e is

sampled and 0 otherwise. Let H0,H1,H2,H3 denote the set of distinct subgraphs

of the kind H0,H1,H2, and H3 (anti-clique, edge, wedge and triangle) respectively.

Let A, (e ),Λ(e, f ), and ∆(e, f ,д) denote an anti-clique with no edges, a H1 with

edge e , a H2 with two edges e, f , and a triangle with edges e, f ,д respectively in

the original graph G. Our estimators (2.13) are each a function of Yi ’s and each Yi

can be wri�en as a polynomial of at most degree 3 in all the variables te .

Y0 = n0 +
∑
(e )∈H1

(1 − te ) +
∑

Λ(e,f )∈H2

(1 − te ) (1 − t f )+∑
∆(e,f ,д)∈H3

(1 − te ) (1 − t f ) (1 − tд),
(A.1)

1�e material in this appendix is based on the following conference papers: [25] E. R. Elenberg,
K. Shanmugam, M. Borokhovich, and A. G. Dimakis. Beyond Triangles: A Distributed Frame-
work for Estimating 3-pro�les of Large Graphs. In KDD, pages 229–238, 2015. [26] E. R. Elenberg,
K. Shanmugam, M. Borokhovich, and A. G. Dimakis. Distributed Estimation of Graph 4-pro�les.
In WWW, pages 483–493, 2016. �e dissertation author’s primary contribution is applying Kim-Vu
concentration inequalities to graph pro�le sparsi�ers. �e dissertation author also assisted with
other contributions and is the primary contributor of these papers.
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Y1 =
∑
(e )∈H1

te +
∑

Λ(e,f )∈H2

((1 − te )t f + (1 − t f )te )+∑
∆(e,f ,д)∈H3

te (1 − t f ) (1 − tд)+∑
∆(e,f ,д)∈H3

t f (1 − te ) (1 − tд) + tд (1 − te ) (1 − t f ),

(A.2)

Y2 =
∑

Λ(e,f )∈H2

tet f +∑
∆(e,f ,д)∈H3

(tet f ) (1 − tд) + t f tд (1 − te ) + te (1 − t f )tд),
(A.3)

Y3 =
∑

∆(e,f ,д)∈H3

tet f tд, (A.4)

S1 =
∑
(e )∈H1

te , (A.5)

D1 =
∑

Λ(e,f )∈H2

(te + t f ), (A.6)

D2 =
∑

Λ(e,f )∈H2

tet f , (A.7)

T1 =
∑

∆(e,f ,д)∈H3

(te + t f + tд), (A.8)

T2 =
∑

∆(e,f ,д)∈H3

(tet f + t f tд + tдte ), (A.9)

Y1 = S1 + D1 − 2D2 +T1 − 2T2 + 3Y3, (A.10)

Y2 = D2 +T2 − 3Y3. (A.11)

Note that the newly de�ned polynomials have the following expectations:

E[S1] = pn1, E[D1] = 2pn2,

E[D2] = p2n2, E[T1] = 3pn3, E[T2] = 3p2n3.

We observe that in the above even by change of variables ye = (1 − te ), Y1
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and Y2 are not totally positive polynomials. �is means that �eorem 2.3.1 cannot

be applied directly to the Yi ’s or Xi ’s. �e strategy we adopt is to split Y1 and Y2

into many polynomials, each of which is totally positive, and then apply �eorem

2.3.1 on each of them. P = {Y0,Y3,S1,D1,D2,T1,T2} form the set of totally positive

polynomials (proved below). Substituting the above equations into (2.14), we have

the following system of equations that connect Xi ’s and the set of totally positive

polynomials P :

X0 = Y0 −
1 − p
p

(S1 + D1 +T1 − 2D2 − 2T2 + 3Y3)

+ (1 − p)2

p2 (D2 +T2 − 3Y3) −
(1 − p)3

p3 Y3

= Y0 −
1 − p
p

(S1 + D1 +T1)

+ 1 − p2

p2 (D2 +T2) −
1 − p3

p3 Y3.

(A.12)

X1 =
1
p
(S1 + D1 +T1 − 2D2 − 2T2 + 3Y3)

−
2(1 − p)

p2 (D2 +T2 − 3Y3) + 3(1 − p)2

p3 Y3

=
1
p
(S1 + D1 +T1) −

2
p2 (D2 +T2) + 3

p3Y3.

(A.13)

X2 =
1
p2 (D2 +T2 − 3Y3) −

3(1 − p)
p3 Y3

=
1
p2 (D2 +T2) −

3
p3Y3.

(A.14)

X3 =
1
p3Y3. (A.15)

Let αe , βe , and ∆e be the maximum number of H1’s, H2’s, and H3’s contain-

ing an edge e in the original graph G. Let α ,β and ∆ be the maximum of αe ,βe , and
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∆e over all edges e . We now show concentration results for the totally positive

polynomials alone.

Lemma A.1.1. De�ne variables ye = 1 − te . �en Y0 is totally positive in ye . With

respect to the variables ye , E≥1 [Y0] ≤ 3 max{α ,β ,∆}.

Proof. We have the expectation of the following partial derivatives, up to the third

order:

E

[
∂Y0
∂ye

]
= αe + (1 − p)βe + (1 − p)2∆e

≤ 3 max{αe ,βe ,∆e }.

E

[
∂Y0
∂yey f

]
≤ 1 + (1 − p) ≤ 2, E

[
∂Y0
∂yey fyд

]
≤ 1.

From the above equations, we have E≥1 [Y1] ≤ 3 max{α ,β ,∆} for a nonempty

graph. �

To satisfy E≥1 [Y0] ≤ E[Y0], it is su�cient to have

n0 ≥ 3 max{α ,β ,∆}. (A.16)

�is is because Y0 ≥ n0 with probability 1.

LemmaA.1.2. Y3 is totally positive in te . W.r.t the variables te , E≥1 [Y3] ≤ max{1,p2∆}.

Proof. We have the expectation of the following partial derivatives, up to the third

order:

E

[
∂Y3
∂te

]
= p2∆e , E

[
∂Y3
∂tet f

]
= p ≤ 1, E

[
∂Y3
∂tet f tд

]
≤ 1.

From the above equations, we have E≥1 [Y3] ≤ max{1,p2∆}. �
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E≥1 [Y3] ≤ E[Y3] implies

p ≥ max{ 1
3√n3
,∆/n3}. (A.17)

Lemma A.1.3. S1 is totally positive in te . W.r.t. the variables te , E≥1 [S1] ≤ α .

Proof. We have the expectation of the following partial derivatives, up to the sec-

ond order:

E

[
∂S1
∂te

]
= αe , E

[
∂S1
∂tet f

]
= 0.

From the above equations, we have E≥1 [S1] ≤ α . �

E≥1 [S1] ≤ E[S3] implies

p ≥ α/n1. (A.18)

Lemma A.1.4. D1 is totally positive in te . W.r.t the variables te , E≥1 [D1] ≤ β .

Proof. We have the expectation of the following partial derivatives, up to the sec-

ond order:

E

[
∂D1
∂te

]
= βe , E

[
∂D1
∂tet f

]
= 0.

From the above equations, we have E≥1 [D1] ≤ β . �

E≥1 [D1] ≤ E[D1] implies

p ≥ β/(2n2). (A.19)
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Lemma A.1.5. T1 is totally positive in te . W.r.t. the variables te , E≥1 [T1] ≤ ∆.

Proof. We have the expectation of the following partial derivatives, up to the sec-

ond order:

E

[
∂T1
∂te

]
= ∆e , E

[
∂T1
∂tet f

]
= 0.

From the above equations, we have E≥1 [T1] ≤ ∆ . �

E≥1 [T1] ≤ E[T1] implies

p ≥ ∆/(3n3). (A.20)

Lemma A.1.6. D2 is totally positive in te . W.r.t. the variables te , E≥1 [D2] ≤

max{pβ ,1}.

Proof. We have the expectation of the following partial derivatives, up to the sec-

ond order:

E

[
∂D2
∂te

]
= pβe , E

[
∂D2
∂tet f

]
≤ 1.

From the above equations, we have E≥1 [D2] ≤ max{pβ ,1}. �

E≥1 [D2] ≤ E[D2] implies

p ≥ max{β/n2,
1
√
n2
}. (A.21)

LemmaA.1.7. T2 is totally positive in te . W.r.t the variables te , E≥1 [T2] ≤ max{2p∆,1}.
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Proof. We have the expectation of the following partial derivatives, up to the sec-

ond order:

E

[
∂T2
∂te

]
= 2p∆e , E

[
∂T2
∂tet f

]
≤ 1.

From the above equations, we have E≥1 [T2] ≤ max{2p∆,1}. �

E≥1 [T2] ≤ E[T2] implies

p ≥ max{2∆/(3n3),
1
√

3n3
}. (A.22)

Now merging all the conditions (A.16)-(A.22), we get

n0 ≥ 3 max{α ,β ,∆}, p ≥ max
{

1
3√n3
,

1
√
n2
,
∆

n3
,
β

n2
,
α

n1

}
. (A.23)

Applying �eorem 2.3.1 to all the totally positive polynomials, along with
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(A.23), we get

P
(
|Y0 − E[Y0]| > a3

√
E[Y0]E≥1[Y0]λ3

1
)

= O (exp (−λ1 + (2) logm)) ,

P
(
|Y3 − E[Y3]| > a3

√
E[Y3]E≥1[Y3]λ3

2
)

= O (exp (−λ2 + (2) logm)) ,

P
(
|S1 − E[S1]| > a1

√
E[S1]E≥1[S1]λ3

)
= O (exp (−λ3)) ,

P
(
|D1 − E[D1]| > a1

√
E[D1]E≥1[D1]λ4

)
= O (exp (−λ4)) ,

P
(
|T1 − E[T1]| > a1

√
E[T1]E≥1[T1]λ5

)
= O (exp (−λ5)) ,

P
(
|D2 − E[D2]| > a2

√
E[D2]E≥1[D2]λ2

6
)

= O (exp (−λ6 + logm)) ,

P
(
|T2 − E[T2]| > a2

√
E[T2]E≥1[T2]λ2

7
)

= O (exp (−λ7 + logm)) .

(A.24)
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Choose an ϵ > 0. We force the following conditions:

a3
√
E[Y0]E≥1[Y0]λ3

1 = ϵE[Y0],

a3
√
E[Y3]E≥1[Y3]λ3

2 = ϵE[Y3],

a1
√
E[S1]E≥1[S1]λ3 = ϵE[S1],

a1
√
E[D1]E≥1[D1]λ4 = ϵE[D1],

a1
√
E[T1]E≥1[T1]λ5 = ϵE[T1],

a2
√
E[D2]E≥1[D2]λ2

6 = ϵE[D2],

a2
√
E[T2]E≥1[T2]λ2

7 = ϵE[T2].

(A.25)

Let γ > 0. In order for the right hand side of every equation in (A.24) to be

O (exp(−γ logm)), assuming all the bounds in Lemmas A.1.1-A.1.7, it is su�cient

to have

n0
3 max{α ,β ,∆} ≥

a2
3 log6

(
m2+γ

)
ϵ2 ,

p

max{ 1
3√n3
,∆/n3}

≥
a2

3 log6
(
m2+γ

)
ϵ2 ,

p

max{ αn1
,
β

2n2
, ∆

3n3
}
≥

a2
1 log2 (mγ )

ϵ2 ,

p

max{ βn2
, 2∆

3n3
, 1√

n2
, 1√

n3
}
≥

a2
2 log4

(
m1+γ

)
ϵ2 .

(A.26)

We can see that the conditions in (A.26) imply the conditions in (A.23).
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�ese can be simpli�ed to remove some redundancy as follows:

n0
3 max{α ,β ,∆} ≥

a2
3 log6

(
m2+γ

)
ϵ2 ,

p

max{ 1
3√n3
,∆/n3}

≥
a2

3 log6
(
m2+γ

)
ϵ2 ,

p

α/n1
≥

a2
1 log2 (mγ )

ϵ2 ,

p

max{ βn2
, 1√

n2
}
≥

a2
2 log4

(
m1+γ

)
ϵ2 .

(A.27)

�is is due to the fact that a3 ≥ a2 ≥ a1 and m3 ≥ m2. �erefore, subject to

(A.27), all totally positive polynomials Y0,Y3,D1,D2,S1,T1,T2 concentrate within a

multiplicative factor of (1 ± ϵ ) with probability at least 1 −O
(

1
mγ

)
.

Under the above concentration result, let the deviations of Xi ’s be denoted

by δXi . Now we calculate the deviation of X0 using (A.12).

δX0 ≤ ϵE[Y0] + ϵ 1 − p
p

( |E[S1]| + |E[D1]| + |E[T1]|)

+ ϵ 1 − p2

p2 ( |E[D2]| + |E[T2]|) − ϵ 1 − p3

p3 |E[Y3]|

≤ ϵ (n0 + n1 + 3n2 + 7n3)

≤ 7ϵ (n0 + n1 + n2 + n3).

Similarly for other Xi ’s, we get

δX1 ≤ 12ϵ (n1 + n2 + n3) ,

δX2 ≤ 6ϵ (n2 + n3) ,

δX3 ≤ ϵn3.
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�erefore, sampling every edge independently with probabilityp satisfying

all conditions in (A.27), all X ′i s concentrate within an additive gap of (1± 12ϵ )
(
|V |
3

)
with probability at least 1 − 1

mγ . �e constants in this proof can be tightened by a

more accurate analysis.

A.2 Proof of Lemma 2.3.2

�is proof is a straightforward application of �eorem 2.3.1, which is the

main result of [35]. Let Y10 =
∑
�(a,b,c,d )∈H10 tabtbctcdtdatactbd . Clearly Y10 is totally

positive. Let k10,ab , σabc , and νabc be the maximum number of 4-cliques sharing

a common edge tab , wedge Λabc , and triangle ∆abc , respectively. Taking repeated

partial derivatives,

E

[
∂Y10
∂tab

]
= p5k10,ab ,

E

[
∂Y10
∂tabtbc

]
= p4σabc , E

[
∂Y10
∂tabtcd

]
= p4,

E

[
∂Y10
∂tabtbctac

]
= p3νabc , E

[
∂Y10
∂tabtbctcd

]
= p3,

E

[
∂Y10

∂tabtbctactda

]
= E

[
∂Y10

∂tabtbctcdtda

]
= p2,

E

[
∂Y10

∂tabtbctcdtdatac

]
= p, E

[
∂Y10

∂tabtbctcdtdatactbd

]
= 1.

Noting that σabc ≤ min{k10,ab ,k10,bc } ≤ k10, similarly νabc ≤ k10, and p5 ≤

p4 . . . ≤ 1, we have E≥1 [Y1] ≤ max{1,p3k10}. E≥1 [Y10] ≤ E[Y10] = p6N10 implies

p ≥ max{ 6
√

1/N10,
3
√
k10/N10}. (A.28)

125



Choose ϵKV ≥ 0 and let ϵKVE[Y10] = a6
√
E[Y10]E≥1[Y10]λ6. Applying �e-

orem 2.3.1 to Y10 given (2.18) and (A.28), the right hand side of (2.16) becomes

O (exp(−γ logm)) = O (1/mγ ). �erefore, the error of the 4-clique estimator X10 is

δX10 =
1
p6δY10 =

1
p6 (ϵKVp

6N10) = ϵN10

with probability greater than 1 − 1
mγ .
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Appendix B

4-pro�le Sparsi�er Details

Another advantage1 to read-k function families is that they are simpler

to extend to more complex subgraphs. We now state concentration results for the

full 4-pro�le sparsi�er evaluated experimentally in Section 2.4. �e edge sampling

matrix H is de�ned by the relations



E[Y0]
...

E[Y10]


= H



N0
...

N10


⇒



X0
...

X10


= H−1



Y0
...

Y10


, where

H =



1 1 − p (1 − p)2 (1 − p)2 (1 − p)3 (1 − p)3 (1 − p)3 (1 − p)4 (1 − p)4 (1 − p)5 (1 − p)6
0 p 2p (1 − p) 2p (1 − p) 3p (1 − p)2 3p (1 − p)2 3p (1 − p)2 4p (1 − p)3 4p (1 − p)3 5p (1 − p)4 6p (1 − p)5
0 0 p2 0 p2 (1 − p) 0 0 2p2 (1 − p)2 p2 (1 − p)2 2p2 (1 − p)3 3p2 (1 − p)4
0 0 0 p2 2p2 (1 − p) 3p2 (1 − p) 3p2 (1 − p) 4p2 (1 − p)2 5p2 (1 − p)2 8p2 (1 − p)3 12p2 (1 − p)4
0 0 0 0 p3 0 0 4p3 (1 − p) 2p3 (1 − p) 6p3 (1 − p)2 12p3 (1 − p)3
0 0 0 0 0 p3 0 0 p3 (1 − p) 2p3 (1 − p)2 4p3 (1 − p)3
0 0 0 0 0 0 p3 0 p3 (1 − p) 2p3 (1 − p)2 4p3 (1 − p)3
0 0 0 0 0 0 0 p4 0 p4 (1 − p) 3p4 (1 − p)2
0 0 0 0 0 0 0 0 p4 4p4 (1 − p) 12p4 (1 − p)2
0 0 0 0 0 0 0 0 0 p5 6p5 (1 − p)
0 0 0 0 0 0 0 0 0 0 p6



.

1�e material in this appendix is based on the following conference paper: [26] E. R. Elenberg,
K. Shanmugam, M. Borokhovich, and A. G. Dimakis. Distributed Estimation of Graph 4-pro�les.
In WWW, pages 483–493, 2016. It is the dissertation author’s contribution.
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Let t = p−1
p . �en the inverse sampling matrix is given by

H−1 =



1 t t2 t2 t3 t3 t3 t4 t4 t5 t6

0 1
p

2t
p

2t
p

3t2

p
3t2

p
3t2

p
4t3

p
4t3

p
5t4

p
6t5

p

0 0 1
p2 0 t

p2 0 0 2t2

p2
t2

p2
2t3

p2
3t4

p2

0 0 0 1
p2

2t
p2

3t
p2

3t
p2

4t2

p2
5t2

p2
8t3

p2
12t4

p2

0 0 0 0 1
p3 0 0 4t

p3
2t
p3

6t2

p3
12t3

p3

0 0 0 0 0 1
p3 0 0 t

p3
2t2

p3
4t3

p3

0 0 0 0 0 0 1
p3 0 t

p3
2t2

p3
4t3

p3

0 0 0 0 0 0 0 1
p4 0 t

p4
3t2

p4

0 0 0 0 0 0 0 0 1
p4

4t
p4

12t2

p4

0 0 0 0 0 0 0 0 0 1
p5

6t
p5

0 0 0 0 0 0 0 0 0 0 1
p6



. (B.1)

�e binomial coe�cients in these matrices in�uence our concentration bounds,

which we now state:

�eorem B.0.1 (4-pro�le sparsi�er estimators). Consider the sampling process de-

scribed above and in Section 2.3. Let Xi , 0 ≤ i ≤ 10 (and X be a vector of these

estimates), be the actual estimates of 4-pro�les. Let ki be the maximum number of

subgraphs Fi sharing a common edge. Let Yi , 0 ≤ i ≤ 10, be the 4 pro�le counts of

the sparsi�ed graph. �en let Ni , 0 ≤ i ≤ 10, be the actual counts. Choose 0 < δ < 1

and ϵ > 0. Let C = (192)2/2. If

p ≥

(
C log(2/δ )k10

ϵ2N10

)1/12
, p ≥

(
C log(2/δ ) (k9 + 6k10)

ϵ2(N9 + 6N10)

)1/10
,

p ≥

(
C log(2/δ ) (k8 + 4k9 + 12k10)

ϵ2(N8 + 4N9 + 12N10)

)1/8
,

p ≥

(
C log(2/δ ) (k7 + k9 + 3k10)

ϵ2(N7 + N9 + 3N10)

)1/8
, p ≥

(
C log(2/δ ) (k6 + k8 + 2k9 + 4k10)

ϵ2(N6 + N8 + 2N9 + 4N10)

)1/6
,
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p ≥

(
C log(2/δ ) (k5 + k8 + 2k9 + 4k10)

ϵ2(N5 + N8 + 2N9 + 4N10)

)1/6
,

p ≥

(
C log(2/δ ) (k4 + 4k7 + 2k8 + 6k9 + 12k10)

ϵ2(N4 + 4N7 + 2N8 + 6N9 + 12N10)

)1/6
,

p ≥

(
C log(2/δ ) (k3 + 2k4 + 3k5 + 3k6 + 4k7 + 5k8 + 8k9 + 12k10)

ϵ2(N3 + 2N4 + 3N5 + 3N6 + 4N7 + 5N8 + 8N9 + 12N10)

)1/4
,

p ≥

(
C log(2/δ ) (k2 + k4 + 2k7 + k8 + 2k9 + 3k10)

ϵ2(N2 + N4 + 2N7 + N8 + 2N9 + 3N10)

)1/4
,

p ≥

(
C log(2/δ ) (k1 + 2k2 + 2k3 + 3k4 + 3k5 + 3k6 + 4k7 + 4k8 + 5k9 + 6k10)

ϵ2(N1 + 2N2 + 2N3 + 3N4 + 3N5 + 3N6 + 4N7 + 4N8 + 5N9 + 6N10)

)1/2
,

n0 ≤ |V |
2
(
|V |2 −

C log(2/δ )
ϵ2

)
,

then ‖δX‖∞ ≤ ϵ
(
|V |
4

)
with probability at least 1 − δ .

Proof. We apply Proposition 1 a total of 11 times to the sampling-estimator system

de�ned above by H and H−1. In our context, each sampled subgraph count Yi is a

sum of functions in a read-kYi family, where kYi ≤ min{|V | − 2,Ni }. Let ki,e be the

maximum number of subgraphs Fi sharing a common edge e , and let ki = maxe ki,e ,
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for i = 0, . . . ,10. �e Yi ’s have the following parameters:

rY0 =

(
|V |

4

)
, kY0 = |V |,

rY1 = N1 + 2N2 + 2N3 + 3N4 + 3N5 + 3N6 + 4N7 + 4N8 + 5N9 + 6N10,

kY1 = k1 + 2k2 + 2k3 + 3k4 + 3k5 + 3k6 + 4k7 + 4k8 + 5k9 + 6k10,

rY2 = N2 + N4 + 2N7 + N8 + 2N9 + 3N10,

kY2 = k2 + k4 + 2k7 + k8 + 2k9 + 3k10,

rY3 = N3 + 2N4 + 3N5 + 3N6 + 4N7 + 5N8 + 8N9 + 12N10,

kY3 = k3 + 2k4 + 3k5 + 3k6 + 4k7 + 5k8 + 8k9 + 12k10,

rY4 = N4 + 4N7 + 2N8 + 6N9 + 12N10, kY4 = k4 + 4k7 + 2k8 + 6k9 + 12k10,

rY5 = N5 + N8 + 2N9 + 4N10, kY5 = k5 + k8 + 2k9 + 4k10,

rY6 = N6 + N8 + 2N9 + 4N10, kY6 = k6 + k8 + 2k9 + 4k10,

rY7 = N7 + N9 + 3N10, kY7 = k7 + k9 + 3k10,

rY8 = N8 + 4N9 + 12N10, kY8 = k8 + 4k9 + 12k10,

rY9 = N9 + 6N10, kY9 = k9 + 6k10,

rY10 = N10, kY10 = k10.

(B.2)

We show the application of Proposition 1 forY7 throughY9 becauseY10 was

shown in the proof of �eorem 2.3.3 and the other cases are similar:

P
(
|Y7 − (p4N7 + p4(1 − p)N9 + 3p4(1 − p)2N10) | ≥ p4ϵ (N7 + N9 + 3N10)

)
≤ 2 exp

(
−

2p8ϵ2(N7 + N9 + 3N10)

k7 + k9 + 3k10

)
.
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P
(
|Y8 − (p4N8 + 4p4(1 − p)N9 + 12p4(1 − p)2N10) | ≥ p4ϵ (N8 + 4N9 + 12N10)

)
≤ 2 exp

(
−

2p8ϵ2(N8 + 4N9 + 12N10)

k8 + 4k9 + 12k10

)
.

P
(
|Y9 − (p5N9 + 6p5(1 − p)N10) | ≥ ϵ (N9 + 6N10)

)
≤ 2 exp

(
−

2ϵ2(N9 + 6N10)

k9 + 6k10

)
⇒ P

(
|

1
p5Y9 − (N9 + 6(1 − p)N10) | ≥ ϵ (N9 + 6N10)

)
≤ 2 exp

(
−

2p10ϵ2(N9 + 6N10)

k9 + 6k10

)
.

P
(
|Y10 − p

6N10 | ≥ ϵN10
)
≤ 2 exp

(
−

2ϵ2N10
k10

)
⇒ P ( |X10 − N10 | ≥ ϵN10) = P

(
|Y3 − p

6N10 | ≥ p6ϵN10
)
≤ 2 exp

(
−

2p12ϵ2N10
k10

)
.
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Rearranging to solve for p, we have

p ≥

(
log(2/δ )k10

2ϵ2N10

)1/12
, p ≥

(
log(2/δ ) (k9 + 6k10)

2ϵ2(N9 + 6N10)

)1/10
,

p ≥

(
log(2/δ ) (k8 + 4k9 + 12k10)

2ϵ2(N8 + 4N9 + 12N10)

)1/8
,

p ≥

(
log(2/δ ) (k7 + k9 + 3k10)

2ϵ2(N7 + N9 + 3N10)

)1/8
, p ≥

(
log(2/δ ) (k6 + k7 + 2k9 + 4k10)

2ϵ2(N6 + N8 + 2N9 + 4N10)

)1/6
,

p ≥

(
log(2/δ ) (k5 + k7 + 2k9 + 4k10)

2ϵ2(N5 + N8 + 2N9 + 4N10)

)1/6
,

p ≥

(
log(2/δ ) (k4 + 4k7 + 2k8 + 6k9 + 12k10)

2ϵ2(N4 + 4N7 + 2N8 + 6N9 + 12N10)

)1/6
,

p ≥

(
log(2/δ ) (k3 + 2k4 + 3k5 + 3k6 + 4k7 + 5k8 + 8k9 + 12k10)

2ϵ2(N3 + 2N4 + 3N5 + 3N6 + 4N7 + 5N8 + 8N9 + 12N10)

)1/4
,

p ≥

(
log(2/δ ) (k2 + k4 + 2k7 + k8 + 2k9 + 3k10)

2ϵ2(N2 + N4 + 2N7 + N8 + 2N9 + 3N10)

)1/4
,

p ≥

(
log(2/δ ) (k1 + 2k2 + 2k3 + 3k4 + 3k5 + 3k6 + 4k7 + 4k8 + 5k9 + 6k10)

2ϵ2(N1 + 2N2 + 2N3 + 3N4 + 3N5 + 3N6 + 4N7 + 4N8 + 5N9 + 6N10)

)1/2
.

(B.3)

�e �nal condition comes from the result for Y0:

n0 ≤

(
|V |

4

)
−

log(2/δ ) |V |2

2ϵ2 ≤ |V |2
(
|V |2 −

log(2/δ )
2ϵ2

)
. (B.4)

Plugging into our estimators (given by H−1), we get the following error

bounds:

δX0 ≤ ϵ (n1 + n2 + n3) + ϵ (n1 + 2n2 + 3n3 + n2 + 3n3 + n3)

≤ ϵ (2n1 + 4n2 + 8n3) ≤ 8ϵ
(
|V |

3

)
.

δX1 ≤ ϵ (N1 + 2N2 + 2N3 + 3N4 + 3N5 + 3N6 + 4N7 + 4N8 + 5N9 + 6N10)
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+ 2ϵ (N2 + N4 + 2N7 + N8 + 2N9 + 3N10)

+ 2ϵ (N3 + 2N4 + 3N5 + 3N6 + 4N7 + 5N8 + 8N9 + 12N10)

+ 3ϵ (N4 + 4N7 + 2N8 + 6N9 + 12N10)

+ 3ϵ (N5 + N8 + 2N9 + 4N10) + 3ϵ (N6 + N8 + 2N9 + 4N10) + 4ϵ (N7 + N9 + 3N10)

+ 4ϵ (N8 + 4N9 + 12N10) + 5ϵ (N9 + 6N10) + 6ϵ (N10)

≤ ϵ (N1 + . . . + 192N10) ≤ 192ϵ
(
|V |

4

)
.

δX2 ≤ ϵ (N2 + N4 + 2N7 + N8 + 2N9 + 3N10) + ϵ (N4 + 4N7 + 2N8 + 6N9 + 12N10)

+ 2ϵ (N7 + N9 + 3N10)

+ ϵ (N8 + 4N9 + 12N10) + 2ϵ (N9 + 6N10) + 3ϵ (N10)

≤ ϵ (N2 + . . . + 48N10) ≤ 48ϵ
(
|V |

4

)
.

δX3 ≤ ϵ (N3 + 2N4 + 3N5 + 3N6 + 4N7 + 5N8 + 8N9 + 12N10)

+ 2ϵ (N4 + 4N7 + 2N8 + 6N9 + 12N10)

+ 3ϵ (N5 + N8 + 2N9 + 4N10) + 3ϵ (N6 + N8 + 2N9 + 4N10)

+ 4ϵ (N7 + N9 + 3N10) + 5ϵ (N8 + 4N9 + 12N10)

+ 8ϵ (N9 + 6N10) + 12ϵ (N10)

≤ ϵ (N3 + 4N4 + 6N5 + . . . + 192N10) ≤ 192ϵ
(
|V |

4

)
.

δX4 ≤ ϵ (N4 + 4N7 + 2N8 + 6N9 + 12N10) + 4ϵ (N7 + N9 + 3N10) + 2ϵ (N8 + 4N9 + 12N10)

+ 6ϵ (N9 + 6N10) + 12ϵ (N10)

≤ ϵ (N4 + . . . + 96N10) ≤ 96ϵ
(
|V |

4

)
.

δX5 ≤ ϵ (N5 + N8 + 2N9 + 4N10) + ϵ (N8 + 4N9 + 12N10) + 2ϵ (N9 + 6N10) + 4ϵ (N10)
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≤ ϵ (N5 + . . . + 32N10) ≤ 32ϵ
(
|V |

4

)
.

δX6 ≤ ϵ (N6 + N8 + 2N9 + 4N10) + ϵ (N8 + 4N9 + 12N10) + 2ϵ (N9 + 6N10) + 4ϵ (N10)

≤ ϵ (N6 + . . . + 32N10) ≤ 32ϵ
(
|V |

4

)
.

δX7 ≤ ϵ (N7 + N9 + 3N10) + ϵ (N9 + 6N10) + 3ϵ (N10)

≤ ϵ (N7 + 2N9 + 12N10) ≤ 12ϵ
(
|V |

4

)
.

δX8 ≤ ϵ (N8 + 4N9 + 12N10) + 4ϵ (N9 + 6N10) + 12ϵ (N10)

≤ ϵ (N8 + 8N9 + 48N10) ≤ 48ϵ
(
|V |

4

)
.

δX9 ≤ ϵ (N9 + 6N10) + 6ϵ (N10)

≤ ϵ (N9 + 12N10) ≤ 12ϵ
(
|V |

4

)
.

δX10 ≤ ϵN10.

�us the maximum deviation in any estimator is less than 192ϵ
(
|V |
4

)
. Sub-

stituting ϵ̃2 = ϵ2/(192)2 = ϵ2/2C completes the proof.

�
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Appendix C

Non-submodular Parameters

�e following appendix surveys several di�erent relaxations of submodu-

larity, along with several bounds relating these quantities. Most of the de�nitions

and results can be found in [16], [73], [83], and [108].

C.1 De�nitions

As a reminder, the discrete derivative is de�ned as f (B | A) := f (A ∪ B) −

f (A). We assume the ground set to be N and describe properties of a set function

f (·) : 2N 7→ R.

C.1.1 Submodularity Ratio

Unless otherwise speci�ed, throughout the dissertation we call a set func-

tion weakly submodular if the submodularity ratio γ is bounded away from zero

for all sets of interest.

De�nition C.1.1 (Submodularity Ratio, from [16]). Let S,L ⊂ N be two disjoint

sets, and f (·) : 2N 7→ R. �e submodularity ratio of L with respect to S is given by

γL,S :=
∑

j∈S f (j | L)

f (S | L)
.
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�is is parameterized by an integer in two slightly di�erent ways in Chap-

ters 3 and 4. In both de�nitions, the integer represents the cardinality of the sets

under consideration; the de�nitions di�er depending on whether the sets must be

disjoint.

De�nition C.1.2 (From [16]). �e submodularity ratio of a set U with respect to an

integer k is given by

γU,k := min
L,S:L∩S=∅,
L⊆U,|S|≤k

γL,S .

De�nition C.1.3 (From [116]). �e submodularity ratio with respect to an integer

k is given by

γk := min
L,S:

|L|≤k ,|S\L|≤k

γL,S .

In [83], the space of feasible sets was restricted further by considering only

the sets encountered during the execution of a particular algorithm (e.g. Greedy).

Recently a complementary parameter was de�ned over all pairs of disjoint sets.

De�nition C.1.4 (From [108]). �e supermodularity ratio is given by

γ̌ := max
L,S:L∩S=∅

γL,S = min
L,S:L∩S=∅

f (S | L)∑
j∈S f (j | L)

.

Clearly γk = minU:|U|≤k γU,k , and f (·) is modular if and only if γ |N| = γ̌ = 1.

Remark C.1.1 (La�ice Weakly Submodular Functions). �e de�nitions in this sec-

tion di�er from that of [117] for submodular la�ice functions. Rather than general-

izing submodularity, [117] de�nes a subclass of submodular functions.
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De�nition C.1.5 (From [117]). Given a la�ice L with join operation ∨ and meet

operation ∧ (e.g. max and min, respectively), a function f (·) : L 7→ Z is la�ice

weakly submodular if for all A,B ∈ L, f (A) = f (A ∧ B) ⇒ f (A ∨ B) = f (B).

C.1.2 Proportionally Submodular Functions

Next we describe another distinct class of functions called proportional

submodular functions [118, 119], which originally shared the name weakly sub-

modular.

De�nition C.1.6 (From [119]). A normalized, monotone function is proportionally

submodular if for all L,S ⊆ N,

|S| · f (L) + |L| · f (S) ≥ |L ∩ S| · f (L ∪ S) + |L ∪ S| · f (L ∩ S) .

C.1.3 Curvature

Curvature was initially de�ned in [100] to provide tighter bounds than

those of [15] for special classes of submodular functions.

De�nition C.1.7 (Curvature, from [100]). �e curvature of a function is given by

κ := 1 − min
j∈N

f (j | N \ j )
f (j | ∅)

.

�is was later generalized in various ways [83, 131, 132] e.g. by replacing

the empty set and the ground set with two arbitrary sets.

De�nition C.1.8 (Generalized Curvature, from [83]). �e generalized curvature of
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a function is given by

α := 1 − min
L,S:
j∈S\L

f (j | (S \ j ∪ L))
f (j | (S \ j ))

.

Again, we can de�ne a complementary parameter.

De�nition C.1.9 (Generalized Inverse Curvature, from [108]). �e generalized in-

verse curvature of a function is given by

α̌ := 1 − max
L,S:
j∈S\L

f (j | (S \ j ∪ L))
f (j | (S \ j ))

= 1 − min
L,S:
j∈S\L

f (j | (S \ j ))
f (j | (S \ j ∪ L))

.

C.1.4 Subadditivity Ratio

A relaxed form of subadditivity was used in [81] to analyze the perfor-

mance of distributed maximization of non-submodular functions.

De�nition C.1.10 (From [81]). �e bipartite subadditivity ratio with respect to a

set U is given by

νU := min
L,S:L∩S=∅
L∪S=U

f (L) + f (S)
f (U)

.

De�nition C.1.11 (From [81]). �e bipartite subadditivity ratio with respect to an

integer k is given by

νk := min
U⊆N:|U|=k

νU .

Two related quantities were de�ned recently to analyze the performance

of robust non-submodular maximization.
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De�nition C.1.12 (From [108]). �e subadditivity ratio of a function is given by

ν := min
U⊆N

∑
j∈U f (j )

f (U)
.

De�nition C.1.13 (From [108]). �e superadditivity ratio of a function is given by

ν̌ := min
U⊆N

f (U)∑
j∈U f (j )

= max
U⊆N

∑
j∈U f (j )

f (U)
.

C.1.5 Submodularity Index

Recently, [142] de�ned an additive version of the submodularity ratio.

De�nition C.1.14 (Submodularity Index, from [142]). Let S,L ⊂ N be two disjoint

sets, and f (·) : 2N 7→ R. �e local submodularity index of L with respect to S is given

by

ϕL,S :=
∑
j∈S

f (j | L) − f (S | L) .

De�nition C.1.15 (From [142]). �e submodularity index of a set U with respect to

an integer k is given by

ϕU,k := min
L,S:L∩S=∅,
L⊆U,|S|≤k

ϕL,S .

�e function is called super-submodular if ϕ > 0 and quasi-submodular if

ϕ is only slightly nonnegative.

C.1.6 Approximately Submodular Functions

Recently, approximate submodularity was formulated to capture a notion

of noisy oracle access. �ery complexity results for maximizing approximate sub-

modular functions were given in [106].
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De�nition C.1.16 (Approximate Submodularity, from [106]). A function f (·) is

ϵ-approximately submodular if there exists a submodular function д(·) such that for

all S ⊆ N,

(1 − ϵ )д(S) ≤ f (S) ≤ (1 + ϵ )д(S) .

C.2 Relations

Several recent results have described relationships between parameters in

the previous section. For example, it is clear that ν = γ∅,|N| , and more generally we

have the following observations:

Proposition C.2.1. �e following statements are equivalent:

1. f (·) is submodular.

2. γ = 1.

3. α̌ = 0.

Proposition C.2.2. �e following statements are equivalent:

1. f (·) is supermodular.

2. − f (·) is submodular.

3. γ̌ = 1.

4. α = 0.
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Proposition C.2.3. �e following statements are equivalent:

1. f (·) is modular.

2. f (·) is both submodular and supermodular.

Proposition C.2.4. If f (·) is submodular then ν = 1. If f (·) is supermodular then

ν̌ = 1.

Proposition C.2.5 (From [108]). ν ≥ γ |N| ≥ 1 − α̌ and ν̌ ≥ γ̌ ≥ 1 − α .

Proposition C.2.6 (From [108]). θ ≥ ν̌ν .

Proposition C.2.7 (From [83]). �ere exist functions which have submodularity

ratio bounded away from 0, have curvature bounded away from 1, and are not pro-

portionally submodular. Furthermore, there exist proportionally submodular func-

tions which do not have submodularity ratio bounded away from 0 and do not have

curvature bounded away from 1.

Proposition C.2.8. �ere exists a separation between functions with bounded sub-

modularity ratio and functions with bounded inverse curvature.

Proof. �e function de�ned in (4.1) has γ = 1/2 and α̌ = 1. To see this, take S =

{v1,v2,u1}, L = {u2}, and j = {v3}. We note that this explains how �eorems 4.4.1

and 4.5.6 do not contradict each other. �

Proposition C.2.9. �ere exists a separation between functions with bounded sub-

additivity ratio and functions with bounded submodularity ratio.
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Proof. Let N = {x1,x2,x3} and consider the set function

f (S ) =


0, |S | = 0
1, |S | ∈ {1,2}
2, |S | = 3

.

Clearly, ν = 1 > 0 (take U = {x1}) while γ = 0 (take L = {x1} and S = {x2,x3}). �
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Appendix D

Motivating Example:

Feature Selection for Linear Regression

To show the impact1 of submodularity, we construct a linear regression

example. Even in p = 3 dimensions, the greedy forward selection algorithm’s

output can be arbitrarily o� from the optimal R2. Consider the following variables:

y =
[
1 0 0

]T
,

x1 =
[
0 1 0

]T
,

x2 =
[
z
√

1 − z2 0
]T
,

x3 =
[
2z 0

√
1 − 4z2

]T
.

All variables have unit norm and we wish to choose the 2-subset of {x1,x2,x3}

that best estimates y. Since R2
1 = 0, R2

2 = z2, and R2
3 = 4z2, x3 will be selected �rst

(SG1 = {3}) if z > 0. x2 will be chosen next (SG2 = {3,2}), and solving for R2 for this

pair,

R2
3,2 = (yTX3,2) (XT

3,2X3,2)
−1(XT

3,2y)

1�e material in this appendix is based on the following journal publication: [73] E. R. Elenberg,
R. Khanna, A. G. Dimakis, and S. Negahban. Restricted Strong Convexity Implies Weak Submod-
ularity. �e Annals of Statistics, 2018 (to appear). It is the dissertation author’s contribution.

143



=
1

1 − 4z4

[
2z z

] [
1 −2z2

−2z2 1

] [
2z
z

]
=

5z2 − 8z4

1 − 4z4 ,

which goes to zero as z → 0+. However, y = −
√

1−z2

z x1 + 1
zx2 which makes R2

1,2 = 1

for the optimal set {x1,x2} (S2 = {1,2}).

144



Appendix E

Proofs for Chapter 3

E.1 Proof of �eorem 3.4.1

Proof. We proceed1 by upper bounding the denominator and lower bounding the

numerator of (3.2). Let k = |L| + k . First, we apply De�nition 3.3.3 with x = β (L)

and y = β (L∪S) ,

mk

2 ‖β
(L∪S)

− β (L)
‖

2
2 ≤ l (β (L) ) − l (β (L∪S) ) + 〈∇l (β (L) ),β (L∪S)

− β (L)
〉. (E.1)

Rearranging and noting that l (·) is monotone for increasing supports,

0 ≤ l (β (L∪S) ) − l (β (L) ) ≤ 〈∇l (β (L) ),β (L∪S)
− β (L)

〉 −
mk

2 ‖β
(L∪S)

− β (L)
‖

2
2

≤ max
v:v(L∪S)c=0

〈∇l (β (L) ),v − β (L)
〉 −

mk

2 ‖v − β (L)
‖

2
2.

Se�ing v = β (L) + 1/mk∇l (β
(L) )S, we have

0 ≤ l (β (L∪S) ) − l (β (L) ) ≤
1

2mk

‖∇l (β (L) )S‖
2
2. (E.2)

1�e material in this appendix is based on the following journal publication: [73] E. R. Elenberg,
R. Khanna, A. G. Dimakis, and S. Negahban. Restricted Strong Convexity Implies Weak Submodu-
larity. �e Annals of Statistics, 2018 (to appear). �e dissertation author’s primary contributions are
the proofs of submodularity ratio lower bound, proofs of all approximation guarantees for Obliv-
ious and Forward Stepwise algorithms, and proof of su�cient conditions for statistical recovery.
�e dissertation author also assisted with other contributions and is the primary contributor of
this paper.
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Next, consider a single coordinate j ∈ S. �e function at β (L∪{j}) is larger

than the function at any other β on the same support. In particular l (β (L∪{j}) ) ≥

l (yj ), where yj := β (L) + αjβ
(L∪S)
j for some scalar αi . Noting that (x = β (L),y =

yj ) ∈ Ω̃ |L|+1 and applying De�nition 3.3.3,

l (β (L∪{j}) ) − l (β (L) ) ≥ l (β (L) + αjβ (L∪S)
j ) − l (β (L) )

≥ 〈∇l (β (L) ),αjβ
(L∪S)
j 〉 −

M̃ |L|+1
2 |αjβ

(L∪S)
j |2.

Summing over all j ∈ S and se�ing

αj =
〈∇l (β (L) ),β (L∪S)

j 〉

M̃ |L|+1 |β
(L∪S)
j |2

,

we have

l (β (L∪{j}) ) − l (β (L) ) ≥

(
〈∇l (β (L) ),β (L∪S)

j 〉
)2

2M̃ |L|+1 |β
(L∪S)
j |2

⇒
∑
j∈S

l (β (L∪{j}) ) − l (β (L) ) ≥
1

2M̃ |L|+1

∑
j∈S

(
∇l (β (L) )j

)2

=
1

2M̃ |L|+1
‖∇l (β (L) )S‖

2
2.

Substituting the above line and (E.2) into (3.2), the result follows from taking the

minimum over all sets L,S. �

E.2 Proof of Lemma 3.4.1

Proof. Let S = [k]. Since f (·) is monotone, f (j ) ≤ f (S) for j ∈ S. Summing over all

j ∈ S and dividing by k yields the �rst part of the inequality. �e rest of the proof
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requires combining several applications of De�nition 3.3.3 to the underlying like-

lihood function l for carefully chosen x,y. De�ne a k-sparse β by β j = αjβ
(j )
j , j ∈ S

for some positive scalar aj and 0 elsewhere. First we apply De�nition 3.3.3 with

x = 0 and y = β . �is implies

l (β ) ≥ 〈∇l (0),β〉 −
Mk

2
∑
j∈S

|αjβ
(j )
j |

2. (E.3)

Next, applying the same de�nition k times with x = 0 and y = β (j ) and summing

over j ∈ S,

〈∇l (0),αjβ (j )
〉 ≥ αj

(
l (β (j ) ) + m1

2 |β
(j )
j |

2
)

⇒ 〈∇l (0),β〉 ≥
∑
j∈S

αjl (β
(j ) ) + αj

m1
2 |β

(j )
j |

2. (E.4)

Combining (E.3) with (E.4), and se�ing

αj =
m1
2Mk

+ l (β (j ) )

Mk |β
(j )
j |

2
,

we have

l (β ) ≥
∑
j∈S

m1
2Mk

l (β (j ) ) +
m2

1
8Mk
|β (j )
|2 + (l (β (j ) ))2

2Mk |β
(j )
j |

2
. (E.5)

Now applying De�nition 3.3.3 with x = β (j ) and y = 0,

M1
2 |β

(j )
j |

2 ≥ l (β (j ) ) ≥
m1
2 |β

(j )
j |

2. (E.6)

Combining (E.5) and (E.6), we have

l (β ) ≥
∑
j∈S

m1
2Mk

l (β (j ) ) +
m2

1
4MkM1

l (β (j ) ) + m1
4Mk

l (β (j ) )
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=
∑
j∈S

(
3m1
4Mk

+
m2

1
4MkM1

)
l (β (j ) ).

Since l (β (S) ) optimizes l over all vectors with support in S,

f (S) = l (β (S) ) ≥ l (β ) ≥
m1
4Mk

(
3 + m1

M1

) ∑
j∈S

l (β (j ) )

=
m1
4Mk

(
3 + m1

M1

) k∑
j=1

f (j ). �

E.3 Proof of �eorem 3.4.2

Proof. Let S be the set of size k selected by the Oblivious algorithm and S∗ be

the optimal set of size k corresponding to values f OBL and f OPT . By de�nition,∑
j∈S f (j ) ≥

∑
j∈S∗ f (j ). Le�ingC = max{1/k, 3m/4M+m2/4M2)} and combining Lemma

3.4.1 with �eorem 3.4.1,

f OBL = f (S) ≥ C
∑
j∈S

f (j )

≥ C
∑
j∈S∗

f (j ) ≥ Cγ∅,k f (S∗) ≥ C

(
mk

M1

)
f (S∗)

= C

(
mk

M1

)
f OPT . �

E.4 Proof of �eorem 3.4.3

Proof. Let l (·) be the log likelihood function and let SGi be the set selected by the

Forward Stepwise algorithm at iteration i . De�ne A(i ) as the incremental greedy

gain f (SGi ) − f (SGi−1) with A(0) = 0. Denote the remainder set at iteration i as
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SRi = S∗\SGi , and de�ne B (i ) = f (S∗) − f (SGi ), the incremental gain from adding

the optimal set. Lemma E.4.1 relates these two quantities.

Lemma E.4.1. At iteration i , the incremental gain from selecting the next greedy

item is related to the incremental gain from adding the rest of the optimal set S∗ by

the following:

A(i + 1) ≥
γSGi ,k

k
B (i ) .

Proof. Let S = SGi be the set selected by the greedy algorithm at iteration i , S∗ be

the optimal feature set on k variables, and SR be the remainder set S∗\S. SR is a

subset of the candidate variables available to the greedy algorithm at iteration i+1.

Using De�nition 3.3.2 and the fact that k ≥ |SR |,

kA(i + 1) ≥ |SR |A(i + 1) ≥ |SR |max
j∈SR

f (S ∪ j ) − f (S)

≥
∑
j∈SR

[f (S ∪ j ) − f (S)]

≥ γS,|SR |
(
f (S ∪ SR ) − f (S)

)
≥ γS,kB (i ),

where the last inequality follows from the fact that S ∪ SR ⊇ S∗. �

Given �eorem 3.4.1 and Lemma E.4.1, the rest of the proof follows the

standard approximation bound for maximizing a normalized, monotone submod-

ular function (refer to [15] or the survey [134]). Next, observe that A(i + 1) =

B (i ) − B (i + 1). Combining this with Lemma E.4.1 and le�ingC = γSGk ,k/k , we have

the following inequality:

B (i + 1) ≤ (1 −C ) B (i ),
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which implies

B (i ) ≤ (1 −C )i B (0),

for all iterations 1 ≤ i ≤ k . Se�ing i = k and substituting B (k ) = f OPT − f FS and

B (0) = f OPT ,

f OPT − f FS ≤ (1 −C )k f OPT

⇒ f FS ≥ f OPT
[
1 − (1 −C )k

]
≥ f OPT

(
1 − e

−γSGk ,k
)
.

�e claim follows from applying �eorem 3.4.1. �

E.5 Proof of �eorem 3.4.4

Proof. First we prove the following lemma which bounds the ratio of the objec-

tive between optimal sets Sk and Sk−1 in terms of their smoothness and convexity

parameters.

Lemma E.5.1. Let Sk be the optimal subset of size k , and let m be the restricted

strong concavity parameter on Ωk . Let k
′
satisfy M ′/m < k′ < k , where M′ is the

restricted smoothness parameter of l (·) on Ω̃k . �en for large enough k ,

l (β (Sk ′ ) ) ≥ l (β (Sk ) )Θ



(
k′

k

)M ′/m

 ⇒ l (β (Sk/2) ) ≥ l (β (Sk ) )Θ

(
2−M

′/m
)
.

Proof. Let j be the index that minimizes |β (Sk )
j |2. By M′-smoothness on Ω̃k and the

fact that the min is smaller than the average,

l (β (Sk−1) ) ≥ l (β (Sk )
Sk\{j}

)
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≥ l (β (Sk ) ) + 〈∇l (β (Sk ) ),β (Sk )
Sk\{j}

− β (Sk )〉 −
M′

2 ‖β
(Sk )
Sk\{j}

− β (Sk ) ‖
2

2

= l (β (Sk ) ) −
M′

2 |β
(Sk )
j |2.

�is implies

l (β (Sk−1) )

l (β (Sk ) )
≥ 1 −

M′‖β (Sk ) ‖
2
2

2kl (β (Sk ) )
.

Assuming that l (β (∅) ) = 0 and usingm-strong concavity on Ωk ,

l (β (∅) ) − l (β (Sk ) ) ≤ −
m

2 ‖β
(Sk ) − β (∅)

‖
2
2 ⇒ −

‖β (Sk ) ‖
2
2

l (β (Sk ) )
≥ −

2
m

⇒
l (β (Sk−1) )

l (β (Sk ) )
≥ 1 − M′

km
.

�en applying iteratively for M ′/m constant, k large, and M ′/m < k′ < k , as in [16]

we have

l (β (Sk ′ ) ) ≥ l (β (Sk ) )
k∏

j=k ′+1
1 − M′

jm
= l (β (Sk ) )Θ



(
k′

k

)M ′/m

 . �

Observe that the assumptions of Lemma E.5.1 are satis�ed. Combining

with �eorem 3.4.3,

l (β (SGk ) ) ≥ l (β (SGk/2) ) ≥ l (β (Sk/2) )
(
1 − e

−γSGk/2,k/2
)

≥ l (β (Sk ) )Θ
(
2−M

′/m
) (

1 − e
−γSGk/2,k/2

)
⇒ l (β (SGk ) ) ≥ l (β (Sk ) )Θ

(
2−M

′/m′
) (

1 − e−m
′/M ′

)
. �

E.6 Proof of �eorem 3.4.5

Proof. �e key idea at each step i is to lower bound the incremental gain from the

index chosen by OMP. �is is similar to the proof of �eorem 3.4.3, as well as [82] in
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which a matrix completion objective is considered. Let S = SPi be the set chosen by

OMP up to iteration i . Given S, letv be the index that would be selected by running

one additional step of OMP. De�ne D (i +1) = f (SPi+1)− f (S) = l (β
(S∪{v}) )− l (β (S) ),

and de�ne B̃ (i ) = f (S∗) − f (S).

Lemma E.6.1. At iteration i , the incremental gain from selecting the next item via

OMP is related to the incremental gain from adding the rest of the optimal set S∗ by

the following:

D (i + 1) ≥ mi+k

kM̃i+1
B̃ (i ).

Proof. We begin similar to the proof of �eorem 3.4.1. LetM = M̃i+1,m =mi+k , and

ev be the unit vector with one at coordinate v . By De�nition 3.3.3 with x = β (S)

and y = β (S) + αev for any scalar α ,

D (i + 1) ≥ l (y) − l (x) ≥
〈
∇l (β (S) ),αev

〉
−
M

2 α
2

= α ‖∇l (β (S) )‖∞ −
M

2 α
2 ,

since OMP chooses the coordinate which maximizes the gradient. Substituting

α =
‖∇l (β (S) )‖∞

M
,

we have

D (i + 1) ≥ 1
2M ‖∇l (β

(S) )‖
2
∞

Let SR = S∗\S. Since |SR | ≤ k ,

D (i + 1) ≥ 1
2kM

∑
j∈SR

〈
∇l (β (S) ),ej

〉2
=

1
2kM ‖∇l (β

(S) )SR ‖
2
2.
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Substituting (E.2) into the above and noting that S ∪ SR ⊇ S∗, we have

D (i + 1) ≥ m

kM

(
l (β (S∪SR ) ) − l (β (S) )

)
≥

m

kM
B̃ (i ) . �

Given Lemma E.6.1, the rest of the proof follows that of �eorem 3.4.3. �

E.7 Proof of �eorem 3.5.1

Proof. LetC = Cs,r and ∆ = β̂
r
−βs , which is at most an (s+r )-sparse vector. Recall

that by the de�nition of Restricted Strong Concavity on Ωs+r we have

l (β̂
r
) − l (βs ) − 〈∇l (βs ),∆〉 ≤

−ms+r
2 ‖∆‖22 . (E.7)

Furthermore, simple calculations show that

l (β̂
r
) − l (βs ) ≥ (1 −C )[l (0) − l (βs )]. (E.8)

Subtracting 〈∇l (βs ),∆〉 from both sides of (E.8) we have

l (β̂
r
) − l (βs ) − 〈∇l (βs ),∆〉 ≥ −〈∇l (βs ),∆〉 + (1 −C )[l (0) − l (βs )] .

Applying (E.7) yields

−ms+r
2 ‖∆‖22 ≥ −〈∇l (β

s ),∆〉 + (1 −C )[l (0) − l (βs )] .

Next, note that

−〈∇l (βs ),∆〉 ≥ −‖∇l (βs )‖2,s+r ‖∆‖2 .

�us,
−ms+r

2 ‖∆‖22 ≥ −‖∇l (β
s )‖2,k ‖∆‖2 + (1 −C )[l (0) − l (βs )] .
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Recalling that for any positive numbers 2ab ≤ ca2 + b2/c and �ipping the above

inequality,

ms+r
2 ‖∆‖22 ≤

‖∇l (βs )‖22,s+r
ms+r

+
ms+r ‖∆‖

2
2

4 + (1 −C )[l (βs ) − l (0)] .

Rearranging terms we have the �nal result. �

E.8 Proof of Corollary 3.5.1

Proof. Using a result of [74], we have that

‖∇l (βs )‖22,s+r ≤ (s + r )‖∇l (βs )‖2∞ ≤
(s + r )σ 2 logp

n
,

with probability at least 1 − 1/p.

�e minimum eigenvalue of the matrix Σ is 1, while the maximum s-sparse

eigenvalue behaves like 1 + s . Hence, an RIP type condition will not hold. How-

ever, in our se�ing, we simply require a bound on M1. It can be shown using

tail bounds for χ 2-random variables that with high probability M1 ≤ 4. Le�ing

ρ (Σ)2 = maxi Σii , and using a result by Rasku�i et. al. [143], we have that for all

v ∈ Rp ,

‖Xv‖2
√
n
≥ 1/4‖Σ

1/2v‖2 − 9ρ (Σ)
√

logp
n
‖v‖1

≥

(
(1 − 1/c)

λmin(Σ)

16 + (1 − c ) 81ρ (Σ)2 logp
n

(s + r )

)
‖v‖22

⇒ms+r ≥ min
v:‖v‖2=1,
‖v‖0≤s+r

‖Xv‖22
n

≥
1
32 −

162(s + r ) logp
n

,
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with high probability. �erefore, γ ≥ 1
128 −

81(s+r ) logp
2n and with probability at least

1 − p−Ω(1) − e−Ω(n) ,

‖β̂
r
− β∗‖22 ≤

4
m2

s+r

(s + r )σ 2 logp
n

+ 8(s + 1)
ms+r

(1 −Cs,r ) ,

where we have used the fact that l (β∗) − l (0) ≤ λmax(Σ̂s ) ≤ 2(s + 1) with high

probability. Note that using arguments from [120, 144] we can apply the above

results to the se�ing of generalized linear models.

Now let (s + r )σ 2 logp = o(n) and r = Ω(s logn). Combined with Corol-

lary 3.4.1, this implies that ‖β̂
r
− β∗‖22 = n−Ω(1) with probability 1 − p−Ω(1) −

e−Ω(n) . �
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Appendix F

Proofs for Chapter 4

F.1 Proof of Lemma 4.4.1

�e nonnegativity1 and monotonicity of fk follow immediately from the

fact that u (S) and v (S) have these properties. �us, it remains to prove that fk is

0.5-weakly submodular for |Nk |, i.e., that for every pair of arbitrary sets S ,L ⊆ Nk

it holds that ∑
w∈S\L

fk (w | L) ≥ 0.5 · fk (S | L) .

�ere are two cases to consider. �e �rst case is that fk (L) = 2 · u (L) + 1. In this

case S \ L must contain at least dfk (S | L)/2e elements of {ui }ki=1. Additionally, the

marginal contribution to L of every element of {ui }ki=1 which does not belong to L

is at least 1. �us, we get

∑
w∈S\L

fk (w | L) ≥
∑

w∈(S\L)∩{ui }ki=1

fk (w | L) ≥ |(S \ L) ∩ {ui }ki=1 |

≥ dfk (S | L)/2e ≥ 0.5 · fk (S | L) .

1Parts of the material in this appendix are based on the following conference paper: [116]
E. R. Elenberg, A. G. Dimakis, M. Feldman, and A. Karbasi. Streaming Weak Submodularity: Inter-
preting Neural Networks on the Fly. InNIPS, pages 4047–4057, 2017. From that material, the disser-
tation author’s primary contributions are design of the parameter a and the proof of �eorem 4.5.1.
�e dissertation author also assisted with other contributions and is the primary contributor of this
paper. Additional material in this appendix is the dissertation author’s contribution.
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�e second case is that fk (L) = 2 · v (L). In this case S \ L must contain at least

dfk (S | L)/2e elements of {vi }ki=1, and in addition, the marginal contribution to L

of every element of {vi }ki=1 which does not belong to L is at least 1. �us, we get

in this case again

∑
w∈S\L

fk (w | L) ≥
∑

w∈(S\L)∩{vi }ki=1

fk (w | L) ≥ |(S \ L) ∩ {vi }ki=1 |

≥ dfk (S | L)/2e ≥ 0.5 · fk (S | L) . �

F.2 Proof of �eorem 4.4.1

Consider an arbitrary (randomized) streaming algorithm ALG aiming to

maximize fk (S) subject to the cardinality constraint |S| ≤ 2k . Since ALG uses

o(N ) memory, we can guarantee, by choosing a large enough d , that ALG uses no

more than (c/4) ·N memory. In order to show that ALG performs poorly, consider

the case that it gets �rst the elements of {ui }ki=1 and the dummy elements (in some

order to be determined later), and only then it gets the elements of {vi }ki=1. �e next

lemma shows that some order of the elements of {ui }ki=1 and the dummy elements

is bad for ALG.

Lemma F.2.1. �ere is an order for the elements of {ui }
k
i=1 and the dummy elements

which guarantees that in expectation ALG returns at most (c/2) ·k elements of {ui }
k
i=1.

Proof. Let W be the set of the elements of {ui }ki=1 and the dummy elements. Ob-

serve that the value of fk for every subset of W is 0. �us, ALG has no way to

di�erentiate between the elements of W until it views the �rst element of {vi }ki=1,
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which implies that the probability of every element w ∈ W to remain in ALG’s

memory until the moment that the �rst element of {vi }ki=1 arrives is determined

only by w’s arrival position. Hence, by choosing an appropriate arrival order one

can guarantee that the sum of the probabilities of the elements of {ui }ki=1 to be at

the memory of ALG at this point is at most

kM

|W|
≤

k (c/4) · N
k + d

=
k (c/4) · (2k + d )

k + d
≤

kc

2 ,

where M is the amount of memory ALG uses. �

�e expected value of the solution produced by ALG for the stream order

provided by Lemma F.2.1 is at most ck + 1. Hence, its approximation ratio for

k > 1/c is at most
ck + 1

2k =
c

2 + 1
2k < c . �

F.3 Proof of Observation 4.5.3

Algorithm 8 adds an element u to the set S only when the marginal contri-

bution of u with respect to S is at least τ/k . �us, it is always true that

f (S) ≥
τ · |S|
k

. �

F.4 Proof of Proposition 4.5.1

We begin by proving several intermediate lemmas. Recall that γ := γk , and

notice that by the monotonicity of f we may assume thatOPT is of sizek . For every

0 ≤ i ≤ |OPT| = k , let OPTi be the random set consisting of the last i elements of
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OPT according to the input order. Note that OPTi is simply a uniformly random

subset of OPT of size i . �us, we can lower bound its expected value as follows.

Lemma F.4.1. For every 0 ≤ i ≤ k , E[f (OPTi )] ≥ [1 − (1 − γ/k )i] · f (OPT).

Proof. We prove the lemma by induction on i . For i = 0 the lemma follows from

the nonnegativity of f since

f (OPT0) ≥ 0 = [1 − (1 − γ/k )0] · f (OPT) .

Assume now that the lemma holds for some 0 ≤ i − 1 < k , and let us

prove it holds also for i . Since OPTi−1 is a uniformly random subset of OPT of size

i − 1, and OPTi is a uniformly random subset of OPT of size i , we can think of

OPTi as obtained from OPTi−1 by adding to this set a uniformly random element

of OPT \ OPTi−1. Taking this point of view, we get, for every set T ⊆ OPT of size

i − 1,

E[f (OPTi ) | OPTi−1 = T ] = f (T ) +
∑

u∈OPT\T f (u | T )

|OPT \T |

≥ f (T ) + 1
k
·

∑
u∈OPT\T

f (u | T )

≥ f (T ) + γ

k
· f (OPT \T | T )

=

(
1 − γ

k

)
· f (T ) + γ

k
· f (OPT) ,

where the last inequality holds by the γ -weak submodularity of f . Taking expec-

tation over the set OPTi−1, the last inequality becomes

E[f (OPTi )] ≥
(
1 − γ

k

)
E[f (OPTi−1)] + γ

k
· f (OPT)
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≥

(
1 − γ

k

)
·

[
1 −

(
1 − γ

k

)i−1]
· f (OPT) + γ

k
· f (OPT)

=

[
1 −

(
1 − γ

k

)i ]
· f (OPT) ,

where the second inequality follows from the induction hypothesis. �

Let us now denote by o1,o2, . . . ,ok the k elements of OPT in the order in

which they arrive, and, for every 1 ≤ i ≤ k , let Si be the set S of Algorithm 8

immediately before the algorithm receives oi . Additionally, let Ai be an event �x-

ing the arrival time of oi , the set of elements arriving before oi and the order in

which they arrive. Note that conditioned on Ai , the sets Si and OPTk−i+1 are both

deterministic.

Lemma F.4.2. For every 1 ≤ i ≤ k and event Ai , E[f (oi | Si ) | Ai] ≥ (γ/k ) ·

[f (OPTk−i+1) − f (Si )], where OPTk−i+1 and Si represent the deterministic values

these sets take given Ai .

Proof. By the monotonicity and γ -weak submodularity of f , we get∑
u∈OPTk−i+1

f (u | Si ) ≥ γ · f (OPTk−i+1 | Si )

= γ · [f (OPTk−i+1 ∪ Si ) − f (Si )]

≥ γ · [f (OPTk−i+1) − f (Si )] .

Since oi is a uniformly random element of OPTk−i+1, even conditioned on Ai , the

last inequality implies

E[f (oi | Si ) | Ai] =
∑

u∈OPTk−i+1 f (u | Si )

k − i + 1
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≥

∑
u∈OPTk−i+1 f (u | Si )

k

≥
γ · [f (OPTk−i+1) − f (Si )]

k
. �

Let ∆i be the increase in the value of S in the iteration of Algorithm 8 in

which it gets oi .

Lemma F.4.3. Fix 1 ≤ i ≤ k and event Ai , and let OPTk−i+1 and Si represent

the deterministic values these sets take given Ai . If f (Si ) < τ , then E[∆i | Ai] ≥

[γ · f (OPTk−i+1) − 2τ ]/k .

Proof. Notice that by Observation 4.5.3 the fact that f (Si ) < τ implies that Si

contains less than k elements. �us, conditioned on Ai , Algorithm 8 adds oi to S

whenever f (oi | Si ) ≥ τ/k , which means that

∆i =

 f (oi | Si ) if f (oi | Si ) ≥ τ/k ,
0 otherwise .

One implication of the last equality is

E[∆i | Ai] ≥ E[f (oi | Si ) | Ai] − τ/k ,

which intuitively means that the contribution to E[f (oi | Si ) | Ai] of values of

f (oi | Si ) which are too small to make the algorithm add oi to S is at most τ/k .

�e lemma now follows by observing that Lemma F.4.2 and the fact that f (Si ) < τ

guarantee

E[f (oi | Si ) | Ai] ≥ (γ/k ) · [f (OPTk−i+1) − f (Si )]

> (γ/k ) · [f (OPTk−i+1) − τ ]

≥ [γ · f (OPTk−i+1) − τ ]/k . �
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We are now ready to put everything together and get a lower bound on

E[∆i].

Lemma F.4.4. For every 1 ≤ i ≤ k ,

E[∆i] ≥
γ · [Pr[E] − (1 − γ/k )k−i+1] · f (OPT) − 2τ

k
.

Proof. Let Ei be the event that f (Si ) < τ . Clearly Ei is the disjoint union of the

events Ai which imply f (Si ) < τ , and thus, by Lemma F.4.3,

E[∆i | Ei] ≥ [γ · E[f (OPTk−i+1) | Ei] − 2τ ]/k .

Note that ∆i is always nonnegative due to the monotonicity of f . �us,

E[∆i] = Pr[Ei] · E[∆i | Ei] + Pr[Ēi] · E[∆i | Ēi] ≥ Pr[Ei] · E[∆i | Ei]

≥ [γ · Pr[Ei] · E[f (OPTk−i+1) | Ei] − 2τ ]/k . (F.1)

It now remains to lower bound the expression Pr[Ei] · E[f (OPTk−i+1) | Ei]

on the rightmost hand side of the last inequality.

Pr[Ei] · E[f (OPTk−i+1) | Ei] = E[f (OPTk−i+1)] − Pr[Ēi] · E[f (OPTk−i+1) | Ēi]

≥ [1 − (1 − γ/k )k−i+1 − (1 − Pr[Ei])] · f (OPT)

≥ [Pr[E] − (1 − γ/k )k−i+1] · f (OPT) ,

where the �rst inequality follows from Lemma F.4.1 and the monotonicity of f , and

the second inequality holds since E implies Ei which means that Pr[Ei] ≥ Pr[E]

for every 1 ≤ i ≤ k . �
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Proposition 4.5.1 follows quite easily from the last lemma.

Proof of Proposition 4.5.1. Lemma F.4.4 implies, for every 1 ≤ i ≤ dk/2e,

E[∆i] ≥
γ

k
f (OPT)[Pr[E] − (1 − γ/k )k−dk/2e+1] − 2τ

k

≥
γ

k
f (OPT)[Pr[E] − (1 − γ/k )k/2] − 2τ

k

≥
(
γ · [Pr[E] − e−γ/2] · f (OPT) − 2τ

)
/k .

�e de�nition of ∆i and the monotonicity of f imply together

E[f (S)] ≥
b∑
i=1

E[∆i]

for every integer 1 ≤ b ≤ k . In particular, for b = dk/2e, we get

E[f (S)] ≥ b

k
·
(
γ · [Pr[E] − e−γ/2] · f (OPT) − 2τ

)
≥

1
2 ·

(
γ · [Pr[E] − e−γ/2] · f (OPT) − 2τ

)
. �

F.5 Proof of �eorem 4.5.1

In this section we combine the previous results to prove �eorem 4.5.1. Re-

call that Observation 4.5.2 and Proposition 4.5.1 give two lower bounds on E[f (S)]

that depend on Pr[E]. �e following lemmata use these lower bounds to derive an-

other lower bound on this quantity which is independent of Pr[E]. For ease of the

reading, we use in this section the shorthand γ ′ = e−γ/2.

Lemma F.5.1. E[f (S)] ≥ τ
2a (3 − γ

′ − 2
√

2 − γ ′) = τ
a ·

3−e−γ/2−2
√

2−e−γ/2

2 whenever

Pr[E] ≥ 2 −
√

2 − γ ′.
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Proof. By the lower bound given by Proposition 4.5.1,

E[f (S)] ≥ 1
2 ·

{
γ · [Pr[E] − γ ′] · f (OPT) − 2τ }

≥
1
2 ·

{
γ ·

[
2 −

√
2 − γ ′ − γ ′

]
· f (OPT) − 2τ

}
=

1
2 ·

{
γ ·

[
2 −

√
2 − γ ′ − γ ′

]
· f (OPT) − (

√
2 − γ ′ − 1) · τ

a

}
≥

τ

2a ·
{
2 −

√
2 − γ ′ − γ ′ −

√
2 − γ ′ + 1

}
=
τ

a
·

3 − γ ′ − 2
√

2 − γ ′
2 ,

where the �rst equality holds since a = (
√

2 − γ ′ − 1)/2, and the last inequality

holds since aγ · f (OPT) ≥ τ . �

Lemma F.5.2. E[f (S)] ≥ τ
2a (3 − γ

′ − 2
√

2 − γ ′) = τ
a ·

3−e−γ/2−2
√

2−e−γ/2

2 whenever

Pr[E] ≤ 2 −
√

2 − γ ′.

Proof. By the lower bound given by Observation 4.5.2,

E[f (S)] ≥ (1 − Pr[E]) · τ ≥
(
1 − 2 +

√
2 − γ ′

)
· τ

=
(√

2 − γ ′ − 1
)
·

√
2 − γ ′ − 1

2 ·
τ

a
=

3 − γ ′ − 2
√

2 − γ ′
2 ·

τ

a
. �

Combining Lemmata F.5.1 and F.5.2 we get the theorem. �

F.6 Proof of �eorem 4.5.4

�ere are two cases to consider. If γ < 4/3 · k−1, then we use the following

simple observation.

Observation F.6.1. �e �nal value of the variable m is f max := max{ f (u) | u ∈

[N ]} ≥ γ
k · f (OPT).
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Proof. �e waym is updated by Algorithm 9 guarantees that its �nal value is f max.

To see why the other part of the observation is also true, note that the γ -weak

submodularity of f implies

f max ≥ max{ f (u) | u ∈ OPT} = f (∅) + max{ f (u | ∅) | u ∈ OPT}

≥ f (∅) + 1
k

∑
u∈OPT

f (u | ∅) ≥ f (∅) + γ

k
f (OPT | ∅) ≥

γ

k
· f (OPT) . �

By Observation F.6.1, the value of the solution produced by Streak is at

least

f (um ) =m ≥
γ

k
· f (OPT) ≥

3γ 2

4 · f (OPT)

≥ (1 − ϵ )γ · 3(γ/2)
2 · f (OPT)

≥ (1 − ϵ )γ · 3 − 3e−γ/2
2 · f (OPT)

≥ (1 − ϵ )γ · 3 − e−γ/2 − 2
√

2 − e−γ/2
2 · f (OPT) ,

where the second to last inequality holds since 1 − γ/2 ≤ e−γ/2, and the last in-

equality holds since e−γ + e−γ/2 ≤ 2.

It remains to consider the case γ ≥ 4/3 · k−1, which has a somewhat more

involved proof. Observe that the approximation ratio of Streak is 1 whenever

f (OPT) = 0 because the value of any set, including the output set of the algo-

rithm, is nonnegative. �us, we can safely assume in the rest of the analysis of the

approximation ratio of Algorithm 9 that f (OPT) > 0.

Let τ ∗ be the maximal value in the set {(1 − ϵ )i | i ∈ Z} which is not larger

than aγ · f (OPT). Note that τ ∗ exists by our assumption that f (OPT) > 0. More-

over, we also have (1 − ϵ ) · aγ · f (OPT) < τ ∗ ≤ aγ · f (OPT). �e following lemma
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gives an interesting property of τ ∗. To understand the lemma, it is important to

note that the set of values for τ in the instances of Algorithm 8 appearing in the

�nal collection I is deterministic because the �nal value ofm is always f max.

Lemma F.6.1. If there is an instance of Algorithm 8 with τ = τ ∗ in I when Streak

terminates, then in expectation Streak has an approximation ratio of at least

(1 − ϵ )γ · 3 − e−γ/2 − 2
√

2 − e−γ/2
2 .

Proof. Consider a value of τ for which there is an instance of Algorithm 8 in I

when Algorithm 9 terminates, and consider the moment that Algorithm 9 created

this instance. Since the instance was not created earlier, we get thatm was smaller

than τ/k before this point. In other words, the marginal contribution of every

element that appeared before this point to the empty set was less than τ/k . �us,

even if the instance had been created earlier it would not have taken any previous

elements.

An important corollary of the above observation is that the output of every

instance of Algorithm 8 that appears in I when Streak terminates is equal to the

output it would have had if it had been executed on the entire input stream from

its beginning (rather than just from the point in which it was created). Since we

assume that there is an instance of Algorithm 8 with τ = τ ∗ in the �nal collection

I , we get by �eorem 4.5.1 that the expected value of the output of this instance is

at least

τ ∗

a
·

3 − e−γ/2 − 2
√

2 − e−γ/2
2 > (1 − ϵ )γ · f (OPT) · 3 − e−γ/2 − 2

√
2 − e−γ/2

2 .
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�e lemma now follows since the output of Streak is always at least as good as

the output of each one of the instances of Algorithm 8 in its collection I . �

We complement the last lemma with the next one.

Lemma F.6.2. If γ ≥ 4/3 · k−1
, then there is an instance of Algorithm 8 with τ = τ ∗

in I when Streak terminates.

Proof. We begin by bounding the �nal value of m. By Observation F.6.1 this �nal

value is f max ≥
γ
k · f (OPT). On the other hand, f (u) ≤ f (OPT) for every element

u ∈ [N ] since {u} is a possible candidate to be OPT, which implies f max ≤ f (OPT).

�us, the �nal collection I contains an instance of Algorithm 8 for every value of

τ within the set

{
(1 − ϵ )i | i ∈ Z and (1 − ϵ ) · f max/(9k2) ≤ (1 − ϵ )i ≤ f max · k

}
⊇

{
(1 − ϵ )i | i ∈ Z and (1 − ϵ ) · f (OPT)/(9k2) ≤ (1 − ϵ )i ≤ γ · f (OPT)

}
.

To see that τ ∗ belongs to the last set, we need to verify that it obeys the two in-

equalities de�ning this set. On the one hand, a = (
√

2 − e−γ/2 − 1)/2 < 1 implies

τ ∗ ≤ aγ · f (OPT) ≤ γ · f (OPT) .

On the other hand, γ ≥ 4/3 · k−1 and 1 − e−γ/2 ≥ γ/2 − γ 2/8 imply

τ ∗ > (1 − ϵ ) · aγ · f (OPT) = (1 − ϵ ) · (
√

2 − e−γ/2 − 1) · γ · f (OPT)/2

≥ (1 − ϵ ) · (
√

1 + γ/2 − γ 2/8 − 1) · γ · f (OPT)/2

≥ (1 − ϵ ) · (
√

1 + γ/4 + γ 2/64 − 1) · γ · f (OPT)/2

167



= (1 − ϵ ) · (
√
(1 + γ/8)2 − 1) · γ · f (OPT)/2 ≥ (1 − ϵ ) · γ 2 · f (OPT)/16

≥ (1 − ϵ ) · f (OPT)/(9k2) . �

Combining Lemmata F.6.1 and F.6.2 we get the desired guarantee on the

approximation ratio of Streak. �

F.7 Proof of �eorem 4.5.5

Observe that Streak keeps only one element (um) in addition to the ele-

ments maintained by the instances of Algorithm 8 in I . Moreover, Algorithm 8

keeps at any given time at most O (k ) elements since the set S it maintains can

never contain more than k elements. �us, it is enough to show that the collection

I contains at every given time at most O (ϵ−1 logk ) instances of Algorithm 8. If

m = 0 then this is trivial since I = ∅. �us, it is enough to consider the casem > 0.

Note that in this case

|I | ≤ 1 − log1−ϵ
mk

(1 − ϵ )m/(9k2)
= 2 − ln(9k3)

ln(1 − ϵ )

= 2 − ln 9 + 3 lnk
ln(1 − ϵ ) = 2 − O (lnk )

ln(1 − ϵ ) .

We now need to upper bound ln(1−ϵ ). Recall that 1−ϵ ≤ e−ϵ . �us, ln(1−ϵ ) ≤ −ϵ .

Plugging this into the previous inequality gives

|I | ≤ 2 − O (lnk )
−ϵ

= 2 +O (ϵ−1 lnk ) = O (ϵ−1 lnk ) . �
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F.8 Proof of �eorems 4.5.6–4.5.8

We present proofs for �eorems 4.5.6 and 4.5.7. Given the la�er, the proof

of �eorem 4.5.8 is similar to that of �eorem 4.5.4.

F.8.1 Proof of �eorem 4.5.6

�is bound uses the inverse curvature parameter from De�nition C.1.9, re-

cently de�ned in [108].

Proof. Assume γ , α̌ , and f (OPT) are all known, and let S be the set returned by

ThresholdGreedy. Let Si be the set already selected by the algorithm when el-

ement i arrives in the stream. We set τ = f (OPT)γ (1−α̌ )
1+γ (1−α̌ ) . First consider the case

|S| = k . Each selected element has marginal gain greater than τ/k. �is implies

f (S) =
∑
i∈S

f (i | Si ) ≥ τ = f (OPT)
γ (1 − α̌ )

1 + γ (1 − α̌ ) .

Next consider the case |S| < k . Let SR = OPT \ S.

f (OPT) − f (S) = f (SR ∪ S) − f (S) ≤
1
γ

∑
i∈SR

f (i | S) ≤
1

γ (1 − α̌ )
∑
i∈SR

f (i | Si ) .

Since these elements are not selected by the algorithm, we know that each term

in the summation is less than τ/k.

f (OPT) − f (S) ≤
|S|R

γ (1 − α̌ )
τ

k
≤

|S|R

kγ (1 − α̌ )
f (OPT)γ (1 − α̌ )

1 + γ (1 − α̌ )

⇒ f (S) ≥ f (OPT)
[
1 − 1

1 + γ (1 − α̌ )

]
= f (OPT)

[
γ (1 − α̌ )

1 + γ (1 − α̌ )

]
.

�
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F.8.2 Proof of �eorem 4.5.7

We will use the following lemma from [84] and an inequality for approxi-

mating a binomial.

Lemma F.8.1 (adapted from Lemma 2.3 in [84]). For every 0 ≤ i ≤ k ,

E [f (OPTi )] ≥
[
1 −

(
k − i + 1
k + 1

)γ ]
· f (OPT) .

Proposition F.8.1 (Bernoulli’s Inequality). For 0 ≤ γ ≤ 1 and x ≥ −1,

(1 + x )γ ≤ 1 + γx .

First we will use the above ingredients to get a lower bound on E[∆i].

Lemma F.8.2. For every 1 ≤ i ≤ k ,

E[∆i] ≥
γ ·

[
Pr[E] −

(
i

k+1

)γ ]
· f (OPT) − 2τ

k
.

Proof. We begin with (F.1) from the proof of Lemma F.4.4, and lower bound the

expression Pr[Ei] · E[f (OPTk−i+1) | Ei] as follows.

Pr[Ei] · E[f (OPTk−i+1) | Ei]

= E[f (OPTk−i+1)] − Pr[Ēi] · E[f (OPTk−i+1) | Ēi]

≥

[
1 −

(
k + 1 − (k + 1 − i )

k + 1

)γ
− (1 − Pr[Ei])

]
· f (OPT)

≥

[
Pr[E] −

( i

k + 1

)γ ]
· f (OPT) ,

where the �rst inequality follows from Lemma F.8.1 and the monotonicity of f , and

the second inequality holds since E implies Ei which means that Pr[Ei] ≥ Pr[E]

for 1 ≤ i ≤ k . �
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Proposition F.8.2 follows from the last lemma. �en we use this result to

prove �eorem 4.5.7. �eorem 4.5.8 is proved similarly to �eorem 4.5.4, with

�eorem 4.5.7 in place of �eorem 4.5.1.

Proposition F.8.2. For the set S produced by ThresholdGreedy,

E[f (S)] ≥ γ · f (OPT)
[
Pr[E] + γ

2 − 1
]
− 2τ .

Proof. Lemma F.8.2 and Proposition F.8.1 imply for every 1 ≤ i ≤ k ,

E[∆i] ≥
γ

k
f (OPT)

[
Pr[E] −

(
1 − γ + γ · i

k + 1

)]
−

2τ
k
.

�e de�nition of ∆i and the monotonicity of f imply together

E[f (S)] ≥
k∑
i=1

E[∆i]

≥ γ · f (OPT) Pr[E] − γ · f (OPT)
k

k∑
i=1

(
1 − γ + γ · i

k + 1

)
− 2τ

= γ · f (OPT)
[
Pr[E] + γ

2 − 1
]
− 2τ . �

Now to prove �eorem 4.5.7, we combine Observation 4.5.2 and Proposi-

tion F.8.2. In this section, we let a =
√
γ ′/2 + 1 − 1 =

√
2γ ′+4−2

2 and γ ′ = γ/2.

Lemma F.8.3. E[f (S)] ≥ τ
a ·

(
4 + γ ′ − 2

√
2γ ′ + 4

)
= τ

a ·
(
4 + γ/2 − 2

√
γ + 4

)
when-

ever Pr[E] ≥ 3 −
√

2γ ′ + 4.

Proof. By the lower bound given by Proposition F.8.2,

E[f (S)] ≥ γ · f (OPT) [Pr[E] + γ ′ − 1] − 2τ
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≥ γ · f (OPT)
[
2 −

√
2γ ′ + 4 + γ ′

]
− 2τ

= γ · f (OPT)
[
2 −

√
2γ ′ + 4 + γ ′

]
−

2τ
a

(√
γ ′/2 + 1 − 1

)
≥
τ

a
·
(
2 −

√
2γ ′ + 4 + γ ′ − 2

√
γ ′/2 + 1 + 2

)
=
τ

a
·
(
4 + γ ′ − 2

√
2γ ′ + 4

)
,

where the �rst equality holds since a = (
√

2γ ′ + 4 − 2)/2, and the last inequality

holds since aγ · f (OPT) ≥ τ . �

LemmaF.8.4. E[f (S)] ≥ τ
a ·

(
4 + γ ′ − 2

√
2γ ′ + 4

)
= τ

a ·
(
4 + γ/2 − 2

√
γ + 4

)
whenever

Pr[E] ≤ 3 −
√

2γ ′ + 4.

Proof. By the lower bound given by Observation 4.5.2,

E[f (S)] ≥ (1 − Pr[E]) · τ ≥
(
1 − 3 +

√
2γ ′ + 4

)
· τ

=
(√

2γ ′ + 4 − 2
)
·

√
2γ ′ + 4 − 2

2 ·
τ

a
=

2γ ′ + 8 − 4
√

2γ ′ + 4
2 ·

τ

a
. �

Combining Lemmata F.8.3 and F.8.4 we get the theorem. �
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Appendix G

Additional Images

(a) (b)

Figure G.1: In addition2 to the experiment in Section 4.6.2, we also replaced LIME’s
default feature selection algorithms with Streak and then �t the same sparse re-
gression on the selected superpixels. �is method is captioned “LIME + Streak.”
Since LIME �ts a series of nested regression models, the corresponding set func-
tion is guaranteed to be monotone, but is not necessarily submodular. We see that
results look qualitatively similar and are in some instances be�er than the default
methods. However, the running time of this approach is similar to the other LIME
algorithms.

2�e material in this appendix is based on the following conference paper: [116] E. R. Elenberg,
A. G. Dimakis, M. Feldman, and A. Karbasi. Streaming Weak Submodularity: Interpreting Neural
Networks on the Fly. In NIPS, pages 4047–4057, 2017. It is the dissertation author’s contribution.
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(a) (b)

Figure G.2: Here we used the same setup described in Figure G.1.
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(a)

(b)

Figure G.3: Here we used the same setup described in Figure G.1, but compared ex-
planations for predicting 2 di�erent classes for the same base image: (a) – �e high-
est likelihood label (sun�ower). (b) – �e second-highest likelihood label (rose).
All algorithms perform similarly for the sun�ower label, but our algorithms iden-
tify the most rose-like parts of the image.
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