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This dissertation presents models for integrated energy risk manage-

ment for electric utility companies (EUCs). First, two fundamental market

factors in deregulated electricity markets (electricity demand and price) are

proposed and detailed studies of the correlation between electricity load and

natural gas price reveals some interesting results. Second, an optimal natural

gas supply selection framework based on modern utility theory is proposed.

The framework is the first integrated risk management model to address the

optimal fuel supply problem, which has been much more difficult and critical

to EUCs in deregulated electricity markets. The framework can be extended

for use in various time frame and as a benchmarking tool for trader’s strategy.

Thirdly, a framework to determine the feasible structures and find out the

optimal insurance on generation forced outages (IGFO) contracts for EUCs is

developed and its benefits to EUCs are discussed.
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Chapter 1

Introduction

1.1 Background

For electric utility companies (EUCs), risk management has become a

critical issue since the introduction of deregulation in US electricity markets.

Before deregulation, EUCs enjoyed a regulated rate of return. Consequently,

there were little, if any, incentives for the companies to manage their financial

risk exposures since they were able to transfer the risks to their customers

by charging them ex post surcharges. It was then no surprise to see that

most of their operation and expansion strategies were centered around the

cost minimization objective.

Electricity deregulation in the last decades has fundamentally changed

the way EUCs operate as the rate of return is no longer guaranteed nor fixed,

which implies that EUCs are solely responsible for their financial losses. EUCs

now not only have the obligation to provide quality electricity service to their

customers, but also need to take care of their own financial conditions in

order to survive and grow in the markets. In other words, deregulation brings

possible more opportunities for EUCs, but with risks.

The risks created by deregulation cannot be ignored or underestimated.
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For example, real-time electricity prices, or so-called market clearing price of

energy (MCPE), have exhibited tremendous volatilities in most, if not all the

deregulated electricity markets. If an EUC has a generation forced outage and

does not have adequate generation resources (either self-generation or arranged

energy purchase), it has to rely on real-time balancing energy market to serve

its demand, and could suffer from significant financial losses. In extreme case,

EUCs could end up in bankruptcy simply because of such unexpected events,

or risks.

Electricity deregulation calls for effective risk management for EUCs,

which helps EUCs stay both operationally and financially healthy by hedging

themselves against adverse events such as in the previous example. It could

help maintain the revenue (returns) stability for EUCs and consequently could

facilitate the growth of EUCs and better service to their customers. This dis-

sertation presents models for several key factors in deregulated electricity mar-

kets and proposes some novel frameworks in the integrated risk management

for EUCs.

1.2 Literature Review

Integrated risk management in general involves managing various kinds

of risks such as volumetric risks, price risks, physical supply/delivery risk,

operational risks, and financial risk, etc. In this section, we review some of

the literature that has been dedicated to the various aspects of the integrated

risk management framework for the deregulated electricity markets.
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Risk Management for EUC

Cabero et al [22] proposed an integrated risk management model us-

ing a coherent risk measure, namely Conditional Value at Risk, or CVaR, to

optimize a hydrothermal generation company’s decision. Mo et al [73] pro-

posed an integrated risk management framework for managing revenue risk by

integrating the load scheduling and contract management. Ni et al [74] pre-

sented an optimization based algorithm to provide efficient energy and reserve

offering strategies for a hydrothermal power system. The objective function

is to maximize expected profit while including a penalty for price variance.

Albuyeh and Kumar [5] provided an overview of the decision support tools

that are essential to the deregulated wholesale electricity market participants.

It recognizes the importance of system integration of generation management,

data management to trade managements, etc.

Deregulated Electricity Markets Analysis

Hesmondhalgh [49] reviewed the New Electricity Trading Arrangements

(NETA) in England and Wales. NETA is a decentralized electricity mecha-

nism, which treats electricity as far as possible like any other commodities.

It shows the positive changes happened in the market and compares the ad-

vantages of NETA with other centralized electricity market. Denton et al [33]

described the market risks exposures to EUC in the deregulated electricity

markets. The risks are first categorized in terms of time frame, and then

by nature. Different optimization objectives are described for different time

frames. The needs for integration of various risks are addressed. The authors

3



pointed out drawbacks of some optimization methods and assumptions, as well

the difficulties faced by practitioners. They highlighted the use of expected

profit maximization strategy in short-term planning as well the use of utility

maximization objective and various risk metrics for mid-term and long-term

planning.

Risk Analysis Methodology

Linares [69] proposed a framework to deal with multiple criteria decision

making for power system planning. First various characteristics of available

technologies and fuels are used to generate scenarios. Then risk preferences of

various decision makers are modeled, as well as a consensus one. After select-

ing the best strategy for every decision maker and the consensus one, these

strategies are tested against other decision makers’ risk preference and the op-

timal one is the one that best compromises over all risk preferences. Linares

also mentioned that the deterministic method and the probabilistic method

are not favorable methods in dealing with uncertainties in system planning.

Miranda and Proenca [72] compared the traditional probabilistic choice (PC)

methodology and the risk analysis (RA) approach in system planning. The

conclusion is that probabilistic choice tends to ignore compromised solutions

and produce more risky projects. PC can be used if and only if the applied

subject can be assumed to have a high repetition in the planning life span,

otherwise RA should be performed. Miranda and Proenca also identified that

PC is not convenient in electricity system planning as it tends to ignore com-

promise solutions and produce riskier results, while RA is a better choice [71].

4



Hedging in Electricity Markets

Gabriel et al [41] provided an analysis on the electricity retailer’s settle-

ment risk by using different load forecast strategies. Chung et al [27] presented

analysis of forward contract with bilateral options as a new risk management

product in deregulated electricity markets. This type of contract provides both

the seller and the buyer of the forward contract the options to reject provid-

ing or receiving the energy. Tanlapco et al [96] described a risk minimization

hedging strategy using futures contracts. Optimal hedging ratio, as well two

strategies, namely direct hedging and cross hedging, are discussed. The opti-

mization is based on risk minimization since they assume a very risky environ-

ment, in which case the utility maximization problem may simply collapse to

risk minimization. Brown and Burke [20] analyzes the concept of performance

based rates (PBR), which starts with the electricity market deregulations. It

proposes a revised sequential Monte Carlo simulation to evaluate the system-

wide component failure rate. Utility companies can use this framework to

analyze potential PBR risks and re-negotiate the PBR contract if the result

is unfavorable. Yet no specific criterion is mentioned on how EUC determines

whether it needs to re-negotiate a PBR contract. Gedra [42] reviewed the

properties of callable forward contracts, as well as puttable forward contracts

and the optimal selection strategy of contracts by market participants. Collins

[28] analyzed the economics of electricity hedging in the early California elec-

tricity market. Hedging using NYMEX futures contracts is shown to pose

potentially wide basis risk and a change to use physical futures price index,

5



i.e. California-Oregon Boarder (COB) price index, is proposed.

Resource Planning/Scheduling Implementation

Crousillat et al [29] realized that there are conflicting objectives and

risk in power system planning. The authors recommend that these conflicts

need to be analyzed, quantified and hedged. Siddiqi [88] applied the real op-

tion analysis developed by Smith and Nau [92] in long term project evaluation

and integrated resource planning. Yamin and Shahidephour [103] presented a

risk based self-scheduling strategy for generation companies. Probabilities of

reserves to be called are assigned in risk analysis. Das and Wollenberg [32]

presented a simulation process to evaluate the financial risks of generation

forced outage after bidding is accepted by ISO for multiple generators using

Value at Risk, or VaR, as a risk measure. Dahlgren et al [30] summarized the

applications of risk assessment in energy trading. These assessments include

VaR, CVaR and hedging. Examples are given to demonstrate these applica-

tions. Douglas et al [34] presented a methodology in assessing the short term

load forecast risk. The risk is due to the weather forecast errors and the short

term load forecasting (STLF) model errors and price uncertainty is not in-

cluded. Therefore, it addresses the volumetric risk. Bjorgan et al [13] utilized

modern utility theory in the contract evaluation process. It considers the al-

ternative between futures contracts and spot markets as one hedging option

and self-production as the other. Fuel constraint is considered in the modeling

of the self-production approach. Sheble [86] presented a decision analysis tool

with assigned subjective probabilities for GENCO dispatchers. It realizes the

6



importance of integrating certain business objective in the decision making

process in order to stay competitive in the electricity markets. Andrews [6]

studied different strategies for managing risks in resource planning and com-

pares various risk analysis techniques. Flexibility and robustness were identifed

as the two general classes of proactive technical risk management strategies.

Power Systems Risk Analysis

Popovic and Popovic [79] proposed a fuzzy logic system for supply

restoration in the system fault risk management of the distribution network.

The goal is to determine an optimal restoration network that provides a mini-

mal total expected cost of undelivered energy during the restoration. Dai et al

[31] proposed a sequential mean variance (SMV) model to evaluate the power

system reliability over a mid-term planning period using a risk index, which is

the expected monetary impact. Lian and Billinton [68] described a composite

system operating reserve risk assessment. It includes the dependent events

associated with common mode and station originated outages in the analysis.

But it is just a risk analysis methodology and does not deal with the risk.

Fu et al [40] presented a generic procedure to evaluate the outage risks of the

special protection systems (SPS). No specific decision making rule is proposed.

Fu et al [39] also presented a generic procedure to evaluate the outage risks

of transformer thermal loading capacity. No specific decision making rule is

proposed. Billinton and Chen [12] presented two risk based capacity benefit

factors in wind energy conversion systems (WECS) which are believed to be

able to help system planners and utility managers to access the capacity worth

7



of WECS.

1.3 Motivation

This dissertation addresses the following aspects of the integrated risk

management for EUCs in deregulated electricity markets. The major contribu-

tions are three-fold: market fundamental analysis, integrated supply optimiza-

tion and risk management practice. They are further discussed as follows.

1.3.1 Market Fundamental Analysis

In deregulated electricity markets, electricity demand and price are

the two most important fundamental factors as they used to and should be.

People have recognized that it is important to be able to produce accurate

forecasts of these two factors, but some of the important aspects of modeling

and forecasting these two factors often are ignored.

An accurate STLF system is highly critical in the integrated risk man-

agement for an EUC. Basically almost all the short term operation decisions

such as unit commitment and electricity purchases are based on the daily load

forecasts. Various techniques have been developed and applied in STLF. How-

ever, no literature has been dedicated to the special area of weather sensitive

load. In fact, some of the techniques actually perform the worst at extreme

weather, when the balancing energy prices could be extreme, and therefore fail

to meet the purpose of STLF. The adverse consequences of bad STLF in ex-

treme weather could range from tremendous financial losses to blackouts such

8



as during the most recent rolling black out in ERCOT area in April 17th, 2006.

We are motivated to proposed a knowledge based generic STLF framework to

tackle this problem and it has been integrated into the energy management

system (EMS) of the Lower Colorado Rive Authority.

Wholesale electricity price forecast has been the core piece of the evalu-

ation of various transaction and electricity products. The traditional forecast-

ing techniques are focused on curve fitting without taking into account of the

unique supply/demand relationship in power systems. As a result, the accu-

racy is limited. In the electricity price model proposed in this dissertation, we

use the empirical findings to unveil the two key factors behind the electricity

price dynamics and therefore improve the accuracy and explanatory power of

the model.

Another aspect of the research is to study the potential correlation

between the market fundamentals. In most ISO regions, natural gas is the

fuel of the marginal units and therefore the electricity prices are deemed a

multiple (marginal heat rate, or MHR) of the natural gas prices. Since MHR

is widely believed to be driven by electricity load, it is modeled separately

from natural gas price in common practice. However, is this assumption of

independence between electricity demand and natural gas prices always true?

Our study in ERCOT region shows that it depends.
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1.3.2 Integrated Supply Optimization

Managing the fuel supply (mainly natural gas) in deregulated electric-

ity markets is more challenging than ever before. Traditionally this problem

was focused on operational aspects and most literature targeted at cost min-

imization. This could cause serious problems for EUCs as electricity markets

move into the deregulated era. First, a riskier strategy is more likely to be

adopted using traditional cost minimization framework [72]. Secondly, nat-

ural gas price volatility was not taken into account in the modeling, not to

mention electricity price modeling. Finally, the risk preferences of the man-

agement team was left out. An EUC needs an integrated supply optimization

framework to solve these problems.

The proposed natural gas supply optimization framework is based on

utility theory, which is fundamental to modern management science. The

framework integrates the risk preferences of the management team, the phys-

ical consumption and constraints of the power plants, the financial aspects

of the various energy fundamental factors including price forecasts of natural

gas and electricity, as well as various other factors. Although we only show

an application of monthly natural gas supply optimization, this framework

can be easily extended to address different time span. An extra feature of

this framework is to be able to serve as a benchmarking tool for a trader’s

performance.

The study presented in this dissertation is considered the first inte-

grated supply optimization framework in the deregulated electricity markets.
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1.3.3 Risk Management Practice

Using various financial hedging tools is now common practice for EUCs

in deregulated electricity markets. Insurance on generation forced outages

(IGFO) is one of the novel financial products.

The focus of our study is on determine the feasible structures of an

IGFO in our research. This is important as an ill-structured IGFO could turn

out to be infeasible and waste both time and money of the two counter par-

ties. The study also shows that the proposed framework is able to help EUCs

identify better counter parties and strategies in terms of feasible structures.

In our application, we apply utility theory to identify the feasibility

structures of an IGFO contract. Impacts on the IGFO feasibility from factors

such as risk preference contrast ratio and probability of price jumps, as well

EUC’s decision to combine two IGFO contracts, are studied.

1.4 Dissertation Organization

Chapter 2 discusses two modeling studies, including a short-term load

forecasting (STLF) model for weather sensitive load and a study of day-ahead

spot electricity price dynamics. The studies detail the integration of weather

segmentation into statistical STLF modeling efforts and identify the impact

of system-wide generation forced outage in day-ahead electricity spot price

dynamics. A study on the correlation between natural gas spot price and

electricity demand in the ERCOT region is also presented.
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In Chapter 3, we develop a risk management framework for EUCs who

own and operate natural gas fired power plants (NGFPP). As NGFPPs have

become a major source of electricity generation in the United States, it is crit-

ical for EUCs to optimize their fuel purchase strategy. Electricity deregulation

has brought significant risk exposures to NGFPP owners and operators. The

major contribution of the framework is to achieve the goal of cost-risk bal-

ance in the purchase of natural gas, which the traditional cost-minimization

framework did not consider.

Chapter 4 proposes an evaluation methodology for EUCs to identify the

feasible structures of insurance on generation forced outages (IGFO). IGFO is

usually a bilateral contract between an insurance company (insurer) who un-

derwrites the contract and an EUC (insured) who owns the generation. The

difference in risk aversion of each party determines the feasible structures of

an IGFO. We propose a feasible structure index, or FSI, which is the spread

between the maximum price that the insured is willing to pay and the min-

imum price that the insurer is willing to sell, to help determine the optimal

IGFO structure. Our study provides a framework for calculating FSI and ex-

plores how it could be affected by various factors and behaviors. The study is

important since not every IGFO structure is feasible.

In Chapter 5, we fist summarizes the research presented in this dis-

sertation. We then discuss the transition from traditional cost minimization

framework to the proposed integrated risk management framework. Finally,

we discuss the possible future research.
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Chapter 2

Modeling the Fundamentals in Deregulated

Electricity Market

Load and price are two basic building blocks in the power system eco-

nomics and energy finance areas. Electric load, with some exception of load

as resource (LAR), should be independent of electricity market design. Yet

electricity price, while in some degree has to do with the market design, is

still fundamentally driven by the unique requirement of real-time supply and

demand balance of the power systems. A thorough understanding of these fun-

damental drivers is a foundation of the integrated risk management framework

presented later in the dissertation.

This section first describes a short-term load forecasting (STLF) model

as short term load forecasting has long been an interesting research topic be-

cause most power systems activities including daily system planning are based

on electricity load prediction. Then we put forth some empirical studies on

day-ahead electricity spot price dynamics. Finally, we studied the correlation

between the fuel (natural gas) price and electricity demand in ERCOT.

Section 2.1 discusses some current modeling methods and presents a

forecasting model for weather sensitive load with integration of weather seg-
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mentations. Section 2.2 studies the day-ahead electricity spot price dynamics.

The observations identify system-wide load level as one major driver in the

dynamics and system-wide generation forced outage as another key driver.

Section 2.3 studies the correlation between the natural gas spot price and the

electricity demand in ERCOT region. We find marked correlation exists under

certain situations.

2.1 STLF using Knowledge Based ARX Models

STLF provides electricity load forecast with lead times from minutes

to weeks. An accurate STLF system is essential to the energy management

systems (EMS) of any EUC. STLF has never been easy because of the com-

plexity of electricity load. It not only exhibits the time-series effect, but also

is affected by many exogenous variables, especially weather variables.

Various models and techniques have been developed in this area. Gen-

erally speaking, there are two major approaches. The first or traditional ap-

proach is based on statistical models such as time-series analysis and causal

models [46], [78], [98] and [37]. Another approach uses artificial intelligence

models including artificial neutral networks (ANN) [70], [26], [76], [80], [81],

[77], [97], [61] and [82].

In recent decades, ANN has received a great deal of attention in STLF

applications. However, concerns regarding issues of design, implementation,

and validation of ANN models still remain unclear [51] and [1]. Moreover,

most, if not all, of the research is applied to electricity load that is relatively
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stable and has no frequent or rapid variation.

For weather-sensitive electricity load, dramatic variation may occur

due to weather events such as cold fronts or heat waves. A good example is

residential loads that can increase significantly due to the heating demands

when a cold front occurs. In such cases, the advantage of the ANN model’s

robustness may adversely impact its performance because it may treat such

weather changes as outliers and tend to minimize their effects by smoothing out

the outputs [77]. This may lead to under-forecasting when such weather events

happen and over-forecasting after that. With the black-box like structure of

ANN models, very little insight about how the model responds to such events

can be gained, even for the model developers. Therefore, people have to either

accept the output or reject it [75].

On the other hand, traditional approaches have the advantage of clear

physical interpretations and are able to quickly respond to changes of variables.

The impact of any input variable to the electricity load and the time-series

effect can be easily found by reviewing the models. Such approaches may

provide limited accuracy because of the use of a typical approach in which

only a single model is developed to model electricity load.

We propose an implementation of traditional approaches by perform-

ing knowledge-based weather segmentations and utilizing auto-regression with

exogenous variables (ARX) models. This method not only has clear physical

interpretations that ANN models lack, but it is also able to provide better

forecasts than what we will refer to as typical approaches (TA), which use a
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single statistical model to forecast electricity load and does not distinguish

weather segmentation.

2.1.1 Knowledge-Based Weather Segmentations

Weather variables are the most important factors in modeling weather-

sensitive electricity load. Reference [81] has classified weather patterns into

the following four major patterns:

1. Normal Days: steady weather, hot in summer or cold in winter

2. Abnormal Days: days with irregular weather such as cool days in summer

or warm days in winter

3. Extreme Days: very hot summer days or very cold winter days

4. Transition Days: warm spring days or cold fall days, interpreted as the

beginning of summer or winter, respectively

These segmentations are mostly region-dependent and require that load

forecasters have knowledge of and experience with local weather patterns. This

process may also involve statistical analysis of historical weather data.

In our approach, instead of building a single model for all these pat-

terns, one ARX model is developed for each pattern in order to directly model

the impact of weather changes on electricity load. Such impacts are quite dif-

ferent for each weather pattern. Incorporating the concept of knowledge-based
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weather segmentations into our forecasting models enables us to utilize mul-

tiple ARX models that are individually linear in nature to correctly identify

and sufficiently model the non-linear impact of weather changes on electricity

load.

2.1.2 Scheme for Model Development and Application

The scheme for developing a forecasting system model is shown in Fig-

ure 2.1. In this scheme, outliers in historical data are first excluded to obtain

the clean data for model estimation. Then the data are separated into indi-

vidual weather event categories for developing the individual part of the ARX

model. Finally, a complete knowledge-based ARX model can be obtained by

aggregating the three individual parts.

Figure 2.1: Scheme of Developing Forecasting System.

Figure 2.2 shows the scheme for applying the forecasting system. At

first, all necessary next-day weather forecasts such as temperature and satel-

17



lite images are used to determine the pattern of the next day. After that, a

corresponding part of the ARX model is chosen to produce a final load forecast.

Figure 2.2: Scheme of Applying Forecasting System.

2.1.3 Application

The proposed model has been used to produce winter next-day electric-

ity load forecasting in central Texas area, where most of the load is residential,

for two testing periods in 2/10/04-2/16/04 and 2/22/04-2/28/04. The peak

load during the cold front increased by close to 100% compared to the peak

load for a normal day.

Two weather patterns are defined besides normal winter day pattern.

They are type I cold front day and type II cold front day, defined as follows.

Professional weather services, which provide hourly forecasts of weather pa-

rameters such as temperature and humidity, can be purchased by EUCs to

identify these patterns.

1. Type I cold front days: winter days with a very cold morning and quick
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warm-up later

2. Type II cold front days: winter days with the temperatures remaining

almost flat throughout the day

Three test benchmarks are chosen to compare results:

1. Daily Mean Absolute Percentage Error (DMAPE)

DMAPE =
∑ ∣∣∣∣pi − p̂i

pi

∣∣∣∣ /24 (2.1)

where

p̂i: the value of forecasted electricity load;

pi: the value of actual load.

2. Standard Deviation (St. Dev.) of forecast errors

3. Daily Absolute Maximum Percentage Error (DAMPE)

DAMPE = |pt − p̂t| /pt (2.2)

where t: the time such that |pt − p̂t| = max |pi − p̂i|, i=1, 2, ... 24.

First Test Week

Figure 2.3 shows the next-day load forecast results from both the pro-

posed model and the TA for the week of 02/10/04-02/16/04, along with the

actual load curves.
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Figure 2.3: Forecast Comparisons for the First Test Week

Table 2.1 shows the DMAPE, the St. Dev. and the DAMPE for both

ARX and TA. The comparison indicates that ARX performs better than TA

most of the time.

Table 2.1: Comparisons of Both Models for the First Test Week

Second Test Week

Figure 2.4 shows the comparison of two forecasts with actual load for

the week of 02/22/04 - 02/28/04.

Table 2.2 indicates that the proposed model performs better most of
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Figure 2.4: Forecast Comparisons for the Second Test Week

the time.

Table 2.2: Comparisons of Both Models for the Second Test Week

Summary

A summary of comparisons for the two testing weeks is presented in

Table 2.3. The summary shows a significant improvement of the proposed

model over TA.

Comparison with ANN models

For the second test week, we also use a set of commercial ANN software
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Table 2.3: WMAPE and Standard Deviation for Both Weeks

which uses the same set of training data to perform a forecast. The software

forecasts the total energy and profiles it using forecasted hourly weights. The

forecast by ANN are compared to those of the proposed model and TA. The re-

sults of daily MAPE and Weekly MAPE are shown in Table 2.4. It shows that

while the proposed model produces slightly worse forecasts than ANN during

normal days, it produces significantly better forecasts in abnormal weather

situations. Therefore, introducing knowledge-based weather segmentation has

significantly improved the overall performance of our load forecasting models

(4.5% WMAPE compared to 7.3%). We also believe that if knowledge-based

weather segmentation concept is integrated into ANN modeling, its accuracy

may also be improved, but the ANN model structure for each weather pattern

will still remain a black-box.

Table 2.4: DAMPE and WMAPE of All Models for the Second Test Week
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2.2 Electricity Price Dynamics

Modeling electricity spot market price is important for valuation of

financial transactions in competitive electricity markets. In the deregulated

electricity market, spot price of electricity can be affected by certain pre-

dictable economic factors such as system-wide capacity level, load level, or

generation outages. Therefore, simple curve-fitting models without consider-

ation of the important economic factors sometimes do not perform well and

can be improved [65] and[52].

We studied the impacts of two key factors on electricity spot market

price dynamics: system-wide load-capacity ratio and system-wide generation

forced outages and propose a multivariate electricity spot market price model.

2.2.1 Suggestions of Economic Research

Economic research has been carried out intensively to understand elec-

tricity spot market price dynamics in both economic dispatch, such as sum-

marized in [94], [101], and strategic behavior, as in [64], [43], [18], [17], [19],

[83], [104], [9] and [62].

An important common conclusion from previous economic research is

that the system-wide generation capacity constraint level plays a critical role

in the electricity spot market price dynamics, especially price spikes. The

constraint level is mainly determined by two factors: system-wide load level

and system-wide generation outage level. In the electricity market, higher load

indicates higher demand, higher generation outages indicate reduced supply,
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and both factors can affect the market supply-demand condition immediately.

Figure 2.5 illustrates this conclusion.

Figure 2.5: Dynamic Evolution of the Electricity Spot Market Price

Studies of economic dispatch suggest that generation should be de-

ployed in the ascending order of marginal production costs. Consequently,

both marginal production costs of electricity and market prices should in-

crease as load increases. Furthermore, high load with lower probability and

emergency generation are usually supplied by only a few less frequently used,

less efficient and higher production cost reserve generations. Therefore, the

electricity price jumps when the reserve generations are deployed as marginal

units.
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Market competitions could deteriorate or even disappear as the load

and constraint levels increase. Research suggests that when the number of

competitors is small, strategic behaviors could be triggered [64], [43]. Conse-

quently, market price could be driven further above the actual marginal pro-

duction cost. The gray area in the x-z plane represents such a non-competitive

region, where only few competitors exist. The blue curves show the impact of

generation outages on the shape of the z-shape curve and the level of supply

availability.

2.2.2 Empirical Investigation Results

This section presents an empirical investigation in the ERCOT market

on the impacts of system-wide load-capacity ratio (SLCR) and system-wide

generation forced outages (SGFO) on the electricity spot market price dynam-

ics. The electricity spot market prices used herein are wholesale day-ahead

on-peak electricity prices in 1999 (June-September), published in Megawatt

Daily.

Definition 2.1: System Load Capacity Ratio (SLCR)

SLCR = Systemwide Peak Load/Systemwide Planned Capacity

SLCR is a better system-wide generation capacity constraint level index

than the peak load because the value of peak load by itself cannot truly reflect

the capacity constraint level. With the ERCOT market, for example, a 42
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GW peak load by itself does not contain any information on its impact on

the constraint level. It would have been an extremely high load when total

generation capacity was only 43 GW at 15 years ago. Nowadays, however, it

is considered a low load as total generation capacity is over 75 GW. When

comparing the corresponding SLCR of the 42 GW peak load, it was over 97%

at 15 years ago and 56% now. Apparently, SLCR better represents the capacity

constraint level.

The percentage of available capacity when the peak load occurs can

also be easily calculated using SLCR. For example, 90% SLCR indicates that

90% of system-wide planned capacity has been deployed in order to meet the

peak load demand, and only 10% is left for contingency.

In ERCOT market, the reliability requirement of power systems re-

quires an approximate 12.5% reserve margin [36], which implies that 88.9%

SLCR is the threshold alone which some reserves could start being called upon

for service. As we have pointed out, price jumps are then possible even with-

out market manipulation due to the utilization of older, less efficient power

plants.

Definition 2.2: System wide Generation Forced Outages (SGFO)

SGFO = The System Wide Aggregated Generation Outage Capacity Amount

SGFO data generally is confidential information in the competitive en-

vironment. We estimate SGFO data using generation emission records col-

lected and published by the Environmental Protection Agency (EPA) [59].
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Observation 2.2.A: Existence of the Price Jumps Threshold

Figure 2.6 shows the existence of a price jump threshold. When system-

wide peak load level, or SLCR, passes the threshold, price jumps may occur.

The observation is in accordance with the z-shape curve shown in Figure 2.5.

We introduce the market supply curve, as shown in Figure 2.6(a). Each

point in the curve represents a pair of price ($/MWh, y-axis) and the corre-

sponding system-wide peak load (MW, x-axis). The prices-load relationship

is complicated in Figure 2.6(a).

We define two load regions (high/low-load) using a 46 GW threshold

and then plot the market supply curve in each load region in Figure 2.6(b,

c), making the price-load relation clearer. Figure 2.6(b) shows that price

fluctuates around $30 in the low-load region and starts dispersing as load

increases. Figure 2.6(c) shows that price suddenly becomes very volatile in

the high-load region and jumps over a very wide range. (note that the price

axes have very different scales in Figure 2.6(b) and Figure 2.6(c))

Observation 2.2.B: Price Impact of SGFO

Figure 2.7 shows that the impact of SGFO on the electricity spot market

prices becomes effective in a high-SLCR or high-load region.

Using estimated daily SGFO data, we plot the time series of electricity

spot market prices ($/MWh, gray-bar), ERCOT system-wide peak demand

(MW, blue-curve), and SGFO data (MW, red-curve) in Figure 2.7(a), where

the prices-SGFO relation is unclear. However, when we plot the time series of
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Figure 2.6: Existence of Price Jump Threshold
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Figure 2.7: Time series of market demand, GFO capacity and price index
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price and SGFO data at above a 52 GW load, as in Figure 2.7(b), the impact

of SGFO on the electricity spot market prices becomes clear: price jumps

are highly correlated with SGFO in this high-load region. The 52 GW load

threshold in 1999 corresponds to an SLCR of 90% which is considerably high.

Observation 2.2.C: SLCR and SGFO in Price Dynamics

We show that system-wide peak load or SLCR is the dominant factor

in the electricity spot market price dynamics and SGFO only takes effect

in the high-load/SLCR region in Figure 2.8. In the yellow window, which

represents the low-load/SLCR region, the impact of SFGO is insignificant.

The patterns of two sets of price-load pairs (marked with blue dots and red

dots respectively), with or without significant SGFO, are almost identical. In

the blue window, which represents the high-load/SLCR region, most price

spikes occur when SGFO is significant, represented with the blue dots.

Figure 2.8: SLCR and SGFO in the Price Dynamics
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Figure 2.8 plots market supply curves based on different SLCR and

SGFO levels. We use high/low-load regions with the 46 GW cutoff load defined

in Observation A to reflect SLCR levels according to Definition 2.1. The

corresponding SLCR of the 46 GW load is 80%. The market supply curve

of the high-SLCR region is contained in the blue window, and that of the

low-SLCR region is contained in the yellow window.

We also define two SGFO levels (high/low): a high-SGFO region for

days where SGFO capacity is more than 20% of the total considered capacity,

and a low-SGFO region for the rest. The market supply curve in the high-

SGFO region consists of all red crosses; that of the low-SGFO region consists

of all blue dots.

The price gradually increases with low volatility in the low-SLCR region

regardless of SGFO levels. Several high-SGFO days do occur in this region, but

have not caused price jumps. On the other hand, the prices exhibit extremely

high volatility in the high-SLCR region, also regardless of SGFO levels. In

fact, in the high-load region, about 31% of high-SGFO days are associated with

price jumps over $210, while less than 9% of low-SGFO days are associated

with such price jumps.

2.2.3 Observations Summary

1. SLCR, or peak load, reflects the maximum market demand level. There

exists an SLCR threshold dividing low load/low price volatility region

and high load/high volatility region.
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2. SGFO reflects market supply availability. Its impact on price is less

significant in the low-load region, while its impact becomes significant

in the high load region, where the price is sensitive to system generation

outages.

2.3 Correlation between HSC Natural Gas Spot Price
and ERCOT Electricity Demand

Natural gas fired power plants, or NGFPPs, are usually used as the

peaking units in electricity markets and, in competitive electricity markets, the

on-peak electricity spot price are usually set based on the marginal production

cost of NGFPPs. Because of the engineering characteristics of NGFPP, the

marginal production cost of NGFPPs, or electricity price P, is usually modeled

as follows:

P = MHR× Png (2.3)

where

MHR: marginal generation heat rate of NGFPPs,

Png: the natural gas spot price.

One common practice in modeling electricity spot prices is to treat

MHR and Png as independent variables and model them separately before

multiplying them to produce the spot price [3]. Such assumption is intuitive

as it reflects the engineering characteristics of NGFPPs and makes it easier

for modeling effort. However, such assumption needs to be validated since
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the natural gas spot price is determined by supply-demand of natural gas

and electricity demand, as part of the natural gas consumption, could (and

should) potentially affect the supply-demand in natural gas and consequently

affect Png.

In this section, we study the relationship between the electricity de-

mand in ERCOT and the natural gas spot prices (cash price). This will

provide helpful information on the validity of the modeling in [23]. Also this

analysis serves as a caveat to the modeling efforts in other ISO regions.

2.3.1 Data Description

Natural gas spot price data used in this section are the Houston Ship

Channel (HSC) data collected by Gas Daily, a publication by Platts. HSC is a

major natural gas distribution hub in Texas and the cash price is for next day

delivery. We used the natural logarithm (ln) of the price in the calculation as

the price movement has been widely believed to be log normal [85].

The electricity data used are the aggregated daily electricity energy

consumption in ERCOT region, collected and published by Global Energy.

All data are from January 1st 1998 to December 31st, 2005.

2.3.2 Overall Analysis

The results of this section are shown in Figure 2.9 through Figure 2.12.

Figure 2.9 shows the time series of ERCOT daily electricity consump-

tions and the natural gas spot prices. As we can see, the year of 2003 is the
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Figure 2.9: ERCOT Daily Consumptions and Natural Gas Spot Prices

Figure 2.10: ERCOT daily electricity consumption vs. ln natural gas daily
spot price from 1998 to 2005
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Figure 2.11: ERCOT daily electricity consumption vs. ln natural gas daily
spot price from 1998 to 2002

Figure 2.12: ERCOT daily electricity consumption vs. ln natural gas daily
spot price from 2003 to 2005
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separation point of two price regimes for the cash price. Before 2003, there

was no consistent pattern of up or down. For example, the spike in late 2000

to early 2001 eventually came down to the price level before that. However,

price spikes after 2003 were never followed by a price level lower than the pre-

vious low. That is, starting from 2003, the prices have been climbing along

the support trend, with several noticeable price spikes, especially in early 2003

and late 2005. Based on this observation, we will study the correlation using

2003 as a separation time stamp.

An overview of the correlation between these two data series is shown in

Figure 2.10. Overall the correlation is weak at about 23.2% or equivalently an

R-Square of 5.4% (23.2% =
√

5.4%). When we separate the data before and

after 2003 as shown in Figure 2.11 (1998-2002) and Figure 2.12 (2003-2005),

we can see that such correlation is even weaker. Figure 2.11 shows an 18.93%

correlation between these two data series from 1998 to 2002 and Figure 2.12

shows a 17.02% correlation after 2003.

Observation 2.3.A: Based on these observations of less than 30%

correlations, we can conclude that generally speaking there is no relationship

between these two data series [50].

2.3.3 Natural Gas Supply and Demand Factor

Usually there are two seasons for natural gas in term of natural gas

storage utilization [2]. One is called injection season, which usually lasts from

April to October. The rest of a year is called withdrawal season. The injection

36



or withdrawal of natural gas is determined by the supply and demand in the

natural gas market. In injection season, the natural gas production outpaces

the consumption and the surplus natural gas is injected into underground geo-

logical formation for later use in the withdrawal season when the consumption

is larger than the production.

Since supply is usually larger than demand during injection season,

we should expect a more stable price movement while the opposite for with-

drawal season. Therefore, we study the correlation between HSC cash price

and ERCOT electricity load in both seasons in this section. In our study, the

injection season is defined as April 1st to October 31st and the rest of a year

is the withdrawal season.

2.3.3.1 Injection Season

The results of this section are shown in Figure 2.13 through Figure

2.17.

Figure 2.13 shows an overview of the correlation for all the injection sea-

sons from 1998 through 2005. It shows only about 18.7% correlation between

these two data series during this period, indicating no relationship between

them.

We then separate the data before and after 2003. Figure 2.14 shows

the correlation before 2003. As we can see, the correlation is about 9.4% and

there is no recognizable pattern. Figure 2.15 plots these two data series from

2003. Overall it still shows little correlation between them. Therefore, we are
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Figure 2.13: ln Natural gas spot price vs. ERCOT energy demand at injection
season, 1998-2005

Figure 2.14: ln Natural gas spot price vs. ERCOT energy demand at injection
season, 1998-2002
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Figure 2.15: ln Natural gas spot price vs. ERCOT energy demand at injection
season, 2003-2005

able to make the following observation:

Observation 2.3.B: There is no relationship between these two data

series during injection season from 1998 to 2005.

2.3.3.2 Withdrawal Season

The results of this section are shown in Figure 2.16 through Figure

2.23.

Figure 2.16 shows an overview of the correlation for all the withdrawal

seasons from 1998 through 2005. It shows 54.8% correlation between these two

data series during this period. This is much higher correlation compared to the

injection season, indicating that, due to the weather correlation between the
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Figure 2.16: ln Natural gas spot price vs. ERCOT energy demand - withdrawal
season

Figure 2.17: ln Natural gas spot price vs. ERCOT energy demand at with-
drawal season, 1998-2002
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Figure 2.18: Time series of natural gas price during withdrawal seasons from
1998 to 2002

Figure 2.19: ln Natural gas spot price vs. ERCOT energy demand at with-
drawal season, 1998-2002, threshold $4.3
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Figure 2.20: ln Natural gas spot price vs. ERCOT energy demand at with-
drawal season, 2003-2005

Figure 2.21: Time series of natural gas price during withdrawal seasons from
2003 to 2005
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Figure 2.22: ln Natural gas spot price vs. ERCOT energy demand at with-
drawal season, 2003-2005, threshold $7.8

Figure 2.23: Average prices and threshold
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ERCOT region and the whole US, the ERCOT electricity consumption plays

a more important role in the supply/demand of HSC natural gas market.

As can be easily observed in Figure 2.16, there appears to be two price

regimes with the low price regime centered at around $2.10/mmBTU (equiva-

lent ln price of 0.75) level and the high one at around $5.75/mmBTU (equiva-

lent ln price of 1.75) level. Our analysis shows that the low price regime mostly

contains data from 1998 to 2002 and the high regime contains most data from

2003 to 2005, which is consistent with our previous finding in Section 2.2.

Figure 2.17 plots the HSC natural gas cash prices and ERCOT elec-

tricity load during withdrawal seasons from 1998 to 2002. We can see that the

overall correlation between HSC natural gas cash price and ERCOT electric-

ity load remains relatively low at 45.48%. Figure 2.18 shows the time series

of HSC natural gas cash price during this period and Figure 2.19 plots the

breakdown of these periods into two price regimes with a price threshold at

$4.3/mmBTU. We can see that when gas price is higher than $4.3/mmBTU,

as shown in Figure 2.18 during late 2000 to early 2001 and late 2002, it tends

to stay at the above area for a period. During this period, the correlation

between these two data series is much higher at 59.44% as shown in Figure

2.19, indicating a marked relationship. It also shows that when gas price is

lower, there is barely any relationship between these two as the correlation is

only 27.71%.

Analysis on the data from 2003 to 2005, as shown in Figure 2.20 to

Figure 2.22, shows similar pattern. The overall correlation during this period is
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30.90%, indicating weak relationship between these two data series. However,

as the natural gas cash price spikes across the threshold of $7.8/mmBTU, it

tends to stay for a period of time. Also, during this time, the correlation

between HSC natural gas cash price and ERCOT electricity load is 59.34%,

which is almost the same as that during the period of 1998 to 2002. For

other periods when HSC natural gas cash price is lower, there is no correlation

between these two data series.

We also calculated that the average ln HSC natural gas cash prices

at both price regimes and the price thresholds in both periods and they are

shown in Figure 2.23. We then compared to the average ln price of low price

regime, the threshold is about 0.35 higher and the average ln high price regime

is about 0.71. In terms of actual price, they are 41.91% and 203.40% higher.

Based on these analyses, we have the following observations:

Observation 2.3.C: During withdrawal seasons, there exists a price

threshold such that when HSC natural gas cash prices are higher than the

threshold, there is approximately 60% correlation between these two data se-

ries. The value of the threshold has been higher as the overall level of the HSC

natural gas cash price increases.

Observation 2.3.D: During withdrawal seasons, if we assume the low

price regime represents the normal supply/demand in the HSC natural gas

market, then when the HSC natural gas cash price goes up higher than 42%,

we should expect a marked correlation (about 60%) between HSC natural gas
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cash price and ERCOT electricity load and the average price during the HSC

natural gas price spike is close to 100% higher.

2.3.4 Conclusions

In this section, we analyzed the relationship between HSC natural gas

cash price, a major natural gas price index in ERCOT region, and ERCOT

daily electricity load from 1998 to 2005. From the study, we can draw a general

conclusion and a specific conclusion as follows.

2.3.4.1 General Conclusion

Although in general there is little correlation between these two data

series, there are cases where a marked correlation exits, especially at the oc-

currences of major hurricane events and during withdrawal seasons, when the

correlation can be as high as 60% indicating a fairly close relationship.

In an effort to model electricity prices using heat rate approaches, or

evaluating heat rate options, one should take into account the potential cor-

relations between natural gas spot price and electricity demand. The general

assumption of the independence between the natural gas price and electricity

holds during injection seasons with the exception of unpredictable events such

as hurricanes. However, this assumption should be used with caution at with-

drawal seasons, especially when a jump diffusion model is used in modeling

the natural gas price.

Detailed study on the correlation between the natural gas price and the
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electricity load at the interested ISO region needs be carried out before the

non-correlated assumption is employed.

2.3.4.2 Specific Conclusion

Validating the assumption of independence between the natural gas

price and electricity demand/prices used in the optimal natural gas purchase

strategy in [23] is a big motivation for the analysis of this section and we

can conclude that the assumption is valid. In the ERCOT application of

[23], the natural gas spot price is assumed to follow a mean-reverting process,

independent from the ERCOT electricity price, which is represented by a two

regime marginal heat rate (MHR) model directly driven by electricity load.

Therefore, we are in fact assuming there is no correlation between natural gas

spot price and electricity load, which as has revealed, could be invalid.

Since the application periods (the primary example and two other

months in the comparisons) are in summer and, more importantly, no jump

process is simulated in the natural gas prices movement, we can conclude that

we are able to use the assumption of no correlation between the natural gas

price and electricity load is valid based on the general conclusion of this section.
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Chapter 3

Short-Term Natural Gas Supply Optimization

Natural gas fired power plants (NGFPPs) are important electricity gen-

eration resources in the United States. Optimizing the natural gas supply port-

folio, especially the short-term portfolio, is critical for the day-to-day opera-

tions and the financial performance of NGFPPs. Traditionally such optimiza-

tion problems are solved using cost-minimization based frameworks. However,

such frameworks are facing challenges due to the lack of consideration of as-

sociated financial risks in the current deregulated electricity markets, which

are now born by the electric utility companies (EUCs) who own and operate

NGFPPs.

In this section we present a utility-maximization based framework to

optimize the short-term natural gas supply portfolio for the EUC. It considers

the financial risks associated with the portfolio and incorporates the risk pref-

erences of the EUCs as the decision-maker (DM) in the portfolio optimization

process. An application of the proposed framework is provided and its re-

sults show that the proposed framework is more desirable in terms of risk-cost

trade-off optimization.
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3.1 Introduction

With the evolution of natural gas markets, electric utility companies

(EUCs) can now purchase natural gas for natural gas fired power plants (NGF-

PPs) with great flexibility. For example, natural gas can now be purchased

either through bilateral contracts, or through spot markets [60]. An EUC’s

natural gas portfolio consists of various natural gas contracts with different

pricing and supplying conditions, and could be long-, mid-, or short-term in

terms of time span. Among them, the short-term portfolio, with time frame

ranges from one day to less than a year, is the most operation oriented as it

has direct impacts on how EUCs operate NGFPPs.

Constructing an optimal natural gas portfolio, which is also known as

the optimal supply mix problem, concerns the optimal purchasing, storage,

transportation, and delivery of natural gas. This problem has historically

been formulated based on expected cost-minimization frameworks with little

concern for the associated financial risks, although most of the traditional

frameworks address some other risks such as demand uncertainties [45], [7],

[16], [21] and [44]. Such expected cost-minimization approaches are referred

as traditional approaches in the rest of the section.

In a restructured electricity market, EUCs no longer enjoy regulated

returns and are solely responsible for any financial risk and consequence associ-

ated with their natural gas portfolios. Traditional approaches do not systemat-

ically model the various associated risks, which has made them less suitable for

the evolving markets. Furthermore, the embedded risk neutral assumption
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in the expected cost-minimization framework could lead to riskier decisions

[84] and [71]. An optimal short-term natural gas portfolio is desired that

incorporates risk tolerance.

One theoretical framework based on modern portfolio theory for deter-

mining the optimal allocation between two types of different priced natural

gas is first proposed in [35], but it does not take into account the detailed en-

gineering and practical constraints, nor does it model the possible interactions

with electricity markets. The lack of a theoretically sound and practical frame-

work has resulted in many practitioners in the electricity industry relying on

traditional frameworks or their experience from the regulated markets, while

optimal risk-cost trade-off frameworks have been explored and applied to risk

management in other sectors of deregulated electricity markets citebb42, [33],

[63], and [73].

In this chapter, a utility-maximization based framework for construct-

ing an optimal risk-cost trade-off short-term natural gas portfolio for NGFPPs

is proposed to meet these upcoming challenges in the emerging competitive

power and natural gas markets. The proposed framework improves on tradi-

tional approaches not only by systematically modeling various risk factors and

the risk preferences of EUCs, but also by modeling the interactions between

EUCs and two related markets: the natural gas spot markets and the elec-

tricity spot markets, features which are not present in the previous literature.

As will be shown later in the application, the proposed framework has a clear

advantage in achieving an optimal risk-cost trade-off.
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The remainder of the chapter is organized as follows. Section 3.2

presents the characterization and details of the risks involved and Section 3.3

presents the proposed cost-risk framework. Section 3.4 shows the modeling

approach. An application is shown in section 3.5 to illustrate the procedure

and benefits of using the proposed framework and section 3.6 concludes the

section.

3.2 Risk Characterization

In this section, we discuss the volatility behaviors in both natural gas

prices and demand.

3.2.1 Volatility in natural gas spot markets

The deregulation of the natural gas markets has not only had direct

impacts on the spot prices, but has also brought uncertainties, especially in

recent years when the annualized volatility for natural gas price has been over

60% and increasing [54]. Figure 3.1 shows the time series of the daily settled

spot price of natural gas in Henry Hub since January 2000.1

As will be shown later, the volatility of natural gas spot prices has

impacts on the selection of the optimal portfolio. Therefore, it is important

for EUCs to have correct market outlooks. Market outlooks, which include

the management’s expectation for market index prices and volatilities fore-

1This percentage has been lowered as TXU announced the constructions of several new
coal fired power plants.
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Figure 3.1: Natural gas spot price of Henry Hub since 2000

casts, are critical in using the proposed framework as these are the fundamen-

tal assumptions. The process requires in-depth knowledge of current market

conditions and both fundamental analysis such as economic growth, monthly

weather outlook, natural gas storage levels, etc, and technical analysis includ-

ing studies of historical price paths. Interested readers can refer to [85] for

more details.

3.2.2 Volatility in natural gas demands

Because of the excellent peaking ability of NGFPP, EUCs usually use

them to follow electricity loads.2 NGFPP have become a significant source of

peaking generation. During the last five years, 98% of power plants built were

NGFPP. Furthermore, 95% of announced power capacity addition through

2010 is gas fired [67]. 3

2It is worth pointing out that some types of NGFPP, such as natural gas combined cycle
(NGCC) systems, are usually used as base load units.

3This percentage has been lower since TXU announced its plan for new coal fired plants.
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Short-term electricity demands are affected by various factors and could

be very sensitive to some factors such as weather [26], [24]. Uncertainties in

electricity demands would have immediate impacts on natural gas consumption

of NGFPP and cause significant volatilities as it would affect the optimal unit

commitment. Therefore, it is important to take this issue into consideration.

In the proposed framework, addressing this aspect requires the inte-

gration of accurate short-term load forecasting (STLF) and an optimal unit

dispatch/commitment algorithm, which distinguishes the proposed framework

from traditional approaches in the following two aspects.

Firstly, STLF is conducted and an optimal unit dispatch/commitment

problem is solved to produce expected daily consumptions. Solving the opti-

mal unit dispatch problem requires certain assumptions about the electricity

market such as electricity prices and operation status of the power plants of

EUCs. Discussion of the unit dispatch/commitment problem is beyond the

scope of this chapter and interested readers can refer to [8], [87]. This integra-

tion is able to provide much more details than that of traditional approaches.

Secondly, daily demand variations are introduced through Monte Carlo

simulations, representing the stochastic nature of the natural gas consumption.

As will be shown later, due to the interaction between NGFPP consumption

and various markets, as well as the complex structures of various natural

gas products, it is infeasible to solve the problem analytically. Therefore, we

adopted Monte Carlo simulation as an effective way in modeling and optimiza-

tion. Although such implementation significantly increases the optimization
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workload, it is able to simulate the actual demand fluctuations in a much more

accurate and realistic way.

3.3 Risk-Cost Framework

The proposed risk-cost framework is based on classic return-risk utility

theory framework, which models the risk preferences of the decision-maker

(DM) by measuring the trade-off between risks and expected return.

During the decision making process of optimal natural gas portfolio se-

lection, the DM could choose among feasible portfolios with different expected

profits, i.e. revenue-cost, denoted as r, and associated risks, denoted as σ. For

a particular risk level, there is one or more portfolios that would achieve the

highest expected profit. These portfolios then form the efficient-frontier along

the feasible risk levels as shown by the solid concave curve in Figure 3.2. On

the other hand, DM is indifferent for portfolios that bring the same utility

level for them, which can be represented by an iso-utility curve as shown by

the convex dotted curve in Figure 3.2. The optimal portfolio theory suggests

that optimal choice is the one that is the tangent point between the iso-utility

curve and the efficient frontier, which is shown as the black square dot in

Figure 3.2.

The utility of DM is a function of profit r and risk σ, i.e.

U = U(r, σ) (3.1)

where r = p− c and p is the price and c is the cost.
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Figure 3.2: Classic risk-return framework and the proposed risk-cost frame-
work and their efficient frontiers and the iso-utility curves

Substituting r in (3.1), we have:

U = U(p− c, σ) (3.2)

In the electricity industry, electricity is usually sold at retail at pre-

determined prices, i.e. p has been fixed.4 Therefore, (3.2) has become:

Ũ = Ũ(c, σ) (3.3)

The classic risk-return framework is now transformed into the proposed

risk-cost framework. The graphic representation is also shown in Figure 3.2,

where the originally convex iso-utility (concave efficient frontier) curve be-

comes concave (convex) instead.

4We do not consider the scenario where generation capacity surplus or shortage causes
retail price to fluctuate significantly.
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3.4 Modeling Approach

This section first presents the interactions among natural gas consump-

tion with various markets, followed by brief discussions on modeling risk pref-

erences of EUCs and the integrated simulation-optimization algorithm used in

the proposed framework.

3.4.1 Interaction with Markets

The natural gas consumption of NGFPP is not stand alone or only

related to the natural gas portfolio. In fact, it is closely related to various

markets. Figure 3.3 is a graphical presentation of the relationship among the

natural gas consumption of NGFPPs and the natural gas portfolio, as well as

other markets such as natural gas and electricity markets.

Figure 3.3: Interaction with markets

The wholesale electricity market serves as an important part in the

decision making process. In a deregulated electricity market, EUCs are able

to purchase electricity from bilateral and/or the spot electricity markets to

meet demands. For example, when market implied marginal heat rate, or

MHR, which is the equivalent heat-rate calculated using the clearing price for

energy divided by the prevailing natural gas price, is lower than the marginal

production heat rate of EUCs, EUCs might want to purchase power instead of
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generating themselves. This is related to the so-called spark spread and [95]

provides more detailed discussion.

As illustrated in Section 3.2, electricity market assumptions are re-

quired in producing short-term natural gas demand forecasts. Therefore, mod-

eling electricity markets requires consistent electricity market outlooks as an

embedded assumption.

These interactions bring more complexities in selecting the optimal nat-

ural gas portfolio by introducing more options and they need to be modeled

specifically to reflect the characteristics of each market.

3.4.2 Natural Gas Products in Current Markets

Three major types of natural gas products in current natural gas mar-

kets are considered in the model. They are described and modeled as follows.

Base load gas (BLG)

BLG contracts provide natural gas to the EUCs at a 24/7 non-stop fixed

flow rate throughout the contracted period. The flow rate xBLG, a decision

variable, is determined through negotiation. Its price PBLG, a parameter, is

usually settled at the monthly price index. The daily cost for BLG is:

24× xBLG × PBLG (3.4)

Intra-day gas (IDG)

IDG contracts also provide natural gas to the EUCs at a fixed flow rate

xIDG, a negotiated variable, throughout the contracted period. However, IDG
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only flows at a certain negotiated time-window during a day. For example, an

IDG contract can be set to deliver natural gas during on-peak hour from 7:00

to 22:00. The amount of IDG delivered at hour j is

xIDG
i,j =

{
0 j /∈ HS, ..., HS+T

xIDG j ∈ HS, ..., HS+T (3.5)

where

i: day, i ∈ 1, ..., 30,

j: hour, j ∈ 1, ..., 24,

HS: negotiated starting hour of IDG contract,

T : the length of natural gas delivery for IDG contract.

In actual practice, there is a minimum length requirement for IDG

contracts, usually a 4-hour delivery time-window.

T ≥ TMIN (3.6)

where TMIN : minimum natural flowing period for IDG contract;

IDG is also a fixed priced natural gas product. Since its structure

provides more flexibility for the EUCs, IDG is usually priced at a premium

over settled monthly price index. The daily cost for IDG is:

T × xIDG × P IDG (3.7)

where P IDG: the price of intra-day natural gas ($ /mmBTU).

Swing gas(SWG)
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SWG is the most flexible product as its flow rate is on demand, i.e.

it can swing to follow the consumption at anytime. It is also called floating

priced gas as it is usually priced at a premium over spot gas price, which means

the daily cost for SWG is:

24∑
j=1

xSWG
i,j × P SWG

i (3.8)

where

xSWG: the flow rate of swing gas,

P SWG: the price of swing gas ($ /mmBTU).

3.4.3 Storage Gas (SG)

Besides these three major types of products, there is another type of

natural gas product that is usually not available on the market. That is, the

natural gas from the storage facility (SG).

A storage facility usually is a geologic structure such as a depleted

underground natural gas reservoir or an artificial structure such as pipelines,

which are able to pack the gas at the time of low demand. Although there

are fees associated with activities using the storage facility such as injection

and withdrawal and other limits, storage facilities have provide tremendous

value to EUCs [53] [91]. When storage facilities are not able to accommodate

the excess gas, the EUC would have to sell the excess gas back to the spot

markets.
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For SG, there are physical limitations for withdrawing and injecting

natural gas into SG at any hour. Also there usually is a limit on the aggregated

NG surplus/deficit on the storage facility:

−CSFW ≤
∑
i,j

xSFI
i,j −

∑
i,j

xSFW
i,j ≤ CSFI (3.9)

where

CSFW : the max amount of natural gas deficit allowed from storage

facility at the end of month,

xSFI : the flow rate of natural gas injected to the storage,

xSFW : the flow rate of natural gas withdrawn from the storage,

CSFI : the max amount of surplus natural gas remained in the storage

facility at the end of period.

The daily cost of using SG is:{
24∑

j=1

xSFI
i,j +

24∑
j=1

xSFW
i,j

}
× P SG (3.10)

where P SG: cost for natural gas transactions (injection/withdrawal) in

the storage facility (cent/mmBTU);

3.4.4 Daily cost of natural gas

Since NGFPP must meet its electricity demand at any time, it needs

to either supply enough natural gas for generation or buy electricity from the
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spot markets. That is, natural gas supply and consumption must be balanced

at any time:

xBLG + xIDG
i,j + xSWG

i,j + xSFW
i,j + xElectricityPurchase

i,j

= Li,j + xSFI
i,j ,∀i, j (3.11)

Equation (3.11) indicates that at any day i and hour j, the natural

gas consumption must be equal to the sum of the four types of natural gas

resource (BLG, IDG, SWG and SG) together with the electricity purchase

(translated to the equivalent amount of natural gas required for generation).

SG is used for injection (xSFI
i,j ) when BLG and IDG exceeds the demand Li,j.

In this chapter, we exclude the scenario where excess natural gas could be sold

to the spot markets.

3.4.5 Risk preferences of EUCs

The risk preference of the EUC are the key issue as it reflects the man-

agement’s attitude towards risk-cost trade off and is the core of the framework.

For example, a very conservative EUC management may choose to avoid risk

exposures whenever possible and prefer fixed priced natural gas even if the

floating priced natural gas had a significantly lower expected price.

The empirical DM utility function possesses the following quadratic

form [35]:

Ũ = Aσ2 + bσ − c (3.12)

where Ũ is the utility, σ and c are the financial risk and the expected
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cost of the portfolio, respectively. Parameters A and B are estimated through

a survey. A negative coefficient A indicates that the DM is risk averse, i.e. the

DM achieves his/her maximum utility for a given cost at a certain risk level.

It reflects the degree of risk aversion, i.e. more negative A indicates a more

conservative DM. These two parameters could vary as the management style

varies.

Estimation of risk preferences of EUCs could be assessed by conducting

surveys on the management team. Interested readers can refer to [100] for more

details.

3.4.6 Objective function

The daily cost (DCi) of natural gas is the sum of cost for all natural

gas products:

DCi = 24xBLGPBLG + xIDGTP IDG +
∑24

j=1 xSWG
i,j P SWG

i

+(
∑24

j=1 xSFI
i,j +

∑24
j=1 xSFW

i,j )P SG (3.13)

The objective of the proposed framework is to maximize the expected

utility of EUCs:

max Ũ = Aσ̃2 + Bσ̃ − C (3.14)

where:

C = EXP (
∑

DCi),

σ̃2 = V AR(
∑

DCi).
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3.4.7 Integrated simulation-optimization algorithm

The underlying optimization problem is essentially a mixed integer non-

linear programming, or MINLP , problem. In actual practice, there are cer-

tain restrictions on the natural gas productions. Besides the minimum time

window requirement for IDG as mentioned in Section 3.4-B-2), the incremental

volumes of natural gas for all these types are multiples of a certain step. For

example, orders of a certain type of gas may need to be in multiples of 5,000

mmBTU/Day, i.e. no order of 62,700 mmBTU/Day will be accepted: the vol-

ume nomination needs to be either 65,000 or 60,000 mmBTU/Day. Thanks to

this fact, we are able to enumerate all possible solutions and then solve this

problem using an integrated simulation-optimization algorithm.

Monte Carlo simulation is utilized to generate scenarios of natural gas

prices, market implied MHR, and natural gas consumption of NGFPP. These

are generated using simulation of their estimated parameters, together with the

forecasted market outlooks that were discussed in Section II. Optimization is

then performed to find optimal solution by testing all possible solutions under

generated scenarios. Such integrated simulation-optimization algorithms could

also be found in financial optimization applications [102], [66].

3.5 Applications

This section demonstrates the proposed framework by an application

in selecting optimal portfolio for an EUC in the ERCOT region whose loads

are mostly residential load with peak demand at around 3,000 MW and service
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population of about one million people. The EUC owns and operates several

NGFPP and uses them to follow the electricity consumption.

In this section, the model setup is presented first, followed by the results

and discussions of advantages of the proposed framework over other methods,

and then some caveats.

3.5.1 Model setup

Natural gas products

All the four types of natural gas products (BLG, IDG, SWG and

SG) are included in the portfolio. The price of BLG (PBLG) is set to be

$ 6.0/mmBTU and the price of IDG (P IDG) is set at $ 6.1/mmBTU. The

incremental volume for BLG is 5,000 mmBTU/Day and 2,000 mmBTU/day

for IDG. The SWG (P SWG) is set to have an expected price of $ 5.5/mmBTU

with monthly volatility at $ 0.75/mmBTU. The operation cost of SG is set to

be $ 0.12/mmBTU for both withdrawal and injection.

The interaction with the electricity market affects the amount of natural

gas withdrawn or injected to the SG. The hourly flow rate of natural gas

withdrawn is:

xSFW
i,j = min(F SFW , Li,j − xBLG

i,j − xIDG
i,j )× ω,∀i, j (3.15)

where

F SFW : max flow rate of natural gas withdraw from the storage facility;
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ω: 0 when the market implied MHR is higher than the own marginal

production heat rate, and is 1 otherwise.

Li,j: forecast natural gas consumption at hour j in day i, a stochastic

variable;

The hourly flow rate of natural gas injection is:

xSFI
i,j = min(F SFI , xBLG

i,j + xIDG
i,j − Li,j)× ξ,∀i, j (3.16)

Where

F SFI : max flow rate of injecting natural gas into the storage facility;

ξ is 0 when the market implied MHR is lower than the own production

MHR, 1 otherwise.

Natural gas spot market

EUCs can sell the excess natural gas back to market if SG is not able

to store them. However, we limit the amount of sale to excess amount only,

i.e. EUCs are not allowed to sell more than excess gas even if the market spot

price is higher than the cost of SG. This is simply due to the corporate policy

and it could be different for other EUCs.

We use the mean-reverting process in modeling the spot gas price and

the parameters are estimated using available historical prices. More details and

techniques on modeling natural gas market, such as mean-reverting process,

and estimating related parameters can be found in [14], [15], and [48].

Electricity market
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The interaction between NGFPP and electricity markets, i.e. whether

to use SG or not, is triggered by the electricity market’s implied MHR. When

implied MHR is higher than the marginal production heat rate, NGFPP is

better off by generating electricity itself, otherwise purchasing from the elec-

tricity market is preferred. However, the NGFPP is modeled such that it is

not selling its excess capacity even when the market condition is favorable for

doing so.

Figure 3.4 shows relationship between the actual load of the EUC stud-

ied in our application and the actual ERCOT market implied MHR from June

2004 to August 2004. There are apparently two MHR regimes. One of them,

the lower MHR areas, which we refer to as the normal regime, shows a strong

correlation between market implied MHR and the loads of EUC, while the

other, much higher MHR area, which we refer to as the abnormal regime,

shows the randomness of high MHR over a certain range of load.

Figure 3.4: Two-regimes jump diffusion model of balancing energy prices
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Based on these available historical load and implied MHR data, we

adopt a similar two-regime structural price model to that in [10], [59] but use

the two regime model to represent MHR in ERCOT, instead of modeling elec-

tricity prices as in many other approaches. In particular, based on regression

of data from the normal regime and a uniform probability distribution model

of price in the abnormal regime, we model the MHR as:

MHRt =



4.075× 10−3 × Lt + 0.439 + 1.817× εst

if(Lt ≤ 1, 183) or κt = 0 [normal regime]

ν(13, 50)
if(Lt ≥ 1, 183) or κt = 1 [abnormal regime]

(3.17)

where

MHRt: the implied MHR in the balancing electricity market,

Lt: the demand at time t for the EUC,

εst: a standard normally distributed random variable,

V(13, 50): the uniform distribution between 13 and 50;

1,183 MW: the break point of high heat rate regime and low heat

regime,

κ: an independent random variable with the following distribution:{
p(κ = 1) = 4.61%
p(κ = 0) = 95.39%

(3.18)
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3.5.2 Modeling risk preferences

A survey of the management team of the EUC has been conducted

[35] to determine the DM utility function. The empirical DM utility function

possesses the following quadratic form:

Ũ = −8.0178× 10−5 × σ2 − 3.7688× 10−3 × σ − c (3.19)

where σ is the volatility and c is the cost of the interested project or

portfolio.

3.5.3 Results and discussions

In this section, first we illustrate the obtained optimal natural gas port-

folio structure using a daily snapshot. Then a sensitivity analysis for different

natural gas market outlooks is presented. Finally, we compare the optimal

results with those derived using two other methods.

Optimal portfolio structure

Figure 3.5 illustrates the solved optimal portfolio structure and the

corresponding natural gas consumption profile of a typical day. Although

we only show one day’s profile here, readers should keep in mind that the

optimal portfolio structure is solved using the probability distribution of the

daily consumption profile over a month instead of picking the profile of a

typical day or average day. The differences of using these alternatives will be

discussed in the next section.
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Figure 3.5: Optimal natural gas portfolio

As indicated in Figure 3.5, BLG is the component which forms the base

of the portfolio. It provides natural gas at a fixed flow rate over 24 hour period

and is shown as the black bars. IDG is at the center grey bars ranging from

Hour 13 to Hour 21. The rest of the natural gas consumption need is filled by

SWG. SG is utilized to cycle the natural gas. For the typical profile shown in

Figure 3.5, SG is used to inject excess natural gas from Hour 4 to Hour 9 when

BLG exceeds the consumption needs and the injected gas is withdrawn later in

the day to meet demand. SG helps reducing the volatility of the portfolio by

acting as SWG without paying the spot price. In Figure 3.5, the interaction

with real-time energy market is not shown, but should that purchase happen,

some portion of the swing gas will not be needed.

Impacts of market outlooks

As pointed out in Section 3.2, one important assumption when utilizing
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the proposed framework is the market outlook and volatility estimations by

the EUC. The assumption will affect the intrinsic risk level of the optimal

natural gas portfolio, which reflects on the SWG percentage (floating priced):

the higher the SWG percentage, the more exposure to the natural gas spot

market price risks.

Figure 3.6 shows the impacts of different market outlooks to the EUC

in our example. It plots the SWG percentage of the optimal natural gas

portfolio at different natural gas spot market price volatility outlooks. It shows

clearly that the SWG ratio decreases as the expected volatility increases. In

this particular setup, for example, the percentage of SWG is 35% when the

expected natural gas spot market price volatility is 65 cents. However, the

percentage decreases to 25% when the price volatility estimation increases by

only 10 cents to 75 cents. The decrease is due to the risk averseness of the EUC

in this case, i.e. the EUC will try to reduce the exposure (SWG percentage

drops 10% ) to the market price volatilities if the market is expected to be

more volatile (volatility increases by 10 cents).

The impact of market outlooks depends on the degree of risk averseness

of the EUC. It could be dramatic as shown in Figure 3.6. Therefore, caution

needs to be exercised when developing market outlooks.

Comparisons

The output from the proposed framework is compared to the result

obtained using average daily profile, referred to as the average profile. In
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Figure 3.6: Optimal floating ratio at various volatilities

contrast to the proposed method, using the average daily consumption profile

does not consider the fluctuation of daily natural gas consumption. Such

approach reduces the computation burden and it is much easier to understand

and implement.

The output from the proposed framework is also compared with the

result from an experienced trader who developed a portfolio independently,

referred to as the Trader’s strategy. The trader makes the decision of buying

different natural gas types based on his own experiences and expectations

including his market outlooks, operational constraints, etc. This benchmark

is introduced since this is the typical practice in the current electricity industry

due to the lack of aids from appropriate practical models.

The graphical presentations of the comparisons of three methods for

three different months using the risk-cost framework presented in Section 3.2

are shown in Figure 3.7 and detailed comparisons of risk and cost per mmBTU
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for the three methods are shown in Table 3.1.

Figure 3.7: Comparison of outputs of the proposed framework for three months

Table 3.1: Comparisons of results from three methods

It could be seen clearly from Figure 3.7 and Table 3.1 that neither

the result obtained by using average profile or the trader’s strategy are on the

efficient frontier, which indicates that neither is optimal at the given risk levels.

For example, both methods are riskier than the output from the proposed
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framework in Months 1 and 3 as shown in Table 3.1. In Month 2 the method

of using average profile is more conservative, while the trader’s portfolio is

riskier. The comparisons also show a great feature of the proposed framework

in that it could serve as a benchmark to evaluate the trader’s performance in

constructing the natural gas portfolio, as well as evaluating the trader’s risk

preference. In this case, it is shown that the trader consistently tends to take

more risks.

3.6 Conclusions

A utility-maximization based framework to select the optimal short-

term natural gas supply portfolio for EUCs who own and operate NGFPPs is

proposed in the section. It aids the decision making by systematically modeling

the risk preferences of EUCs and the stochastic nature of various key variables.

It is more desirable than traditional cost-minimization based frameworks be-

cause it is able to provide an optimal risk-cost trade off, which is lacking in

the traditional framework, and it also systematically models key risk factors

through detailed simulations, which is more realistic. Its application in an

EUC is presented and the results have clearly shown the improvements over

other methods. This framework can also be extended to evaluate mid- to

long-term optimal strategy by simply expanding the study time frame. Future

research includes study on how changes in the risk preferences of EUC man-

agement affect the optimal results and how to integrate this framework into

enterprise-wide risk management, etc.
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Chapter 4

Determining Optimal Structure for Insurance

on Generation Forced Outage

Insurance on generation forced outages (IGFO) is usually actuarially

priced under a certainty equivalent framework instead of using complete mar-

ket pricing theory. The feasibility structure index (FSI) of an IGFO is defined

as the spread between the upper bound of the purchase price that the insur-

ance buyer (the electric utility company) is willing to pay and the minimum

selling price that the insurance seller (the insurance company) is willing to

sell. It is an indicator of whether negotiating a certain IGFO structure makes

business sense or not. FSI is not only a function of certain objective factors

such as expected market prices and volatilities, but also of certain subjective

variables, including each party’s risk tolerance level and bilaterally negotiated

deductibles.

In this chapter we study the relation between FSI and these key sub-

jective factors. We also show that higher probability of price spikes and ag-

gregated insurance could effectively narrow the FSI.
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4.1 Introduction

Generation forced outage, or GFO, generally refers to unplanned gen-

eration outages that causes generation units to be de-rated or out of service.

Such events usually cannot be fully predicted or prevented without reliability

centered maintenance such as that of the airline industry, which is uneconomic

for the EUCs in term of costs and benefits.

Before electricity market deregulation, there was not much incentive for

the electricity utility companies (EUCs) to hedge the financial consequences

associated with GFO. When GFO occurred, the associated financial loss could

eventually be recovered by ex post adjustment of tariffs charged to customers.

However, in a competitive power market, EUCs have to bear all the associated

financial loss, which could be tremendous. For example, for a generation

unit with an average output of 200 MW and an average production cost of

$50/MWh, when it is forced out of service for 2 weeks and the average spot

market price for electricity is $80/MWh during the GFO period, the total

replacement cost of energy will be $5.38 millions and the financial loss will be

$2.02 millions.

Because of such possible adverse financial consequences, new financial

tools have been developed to hedge against financial losses associated with

generation forced outages. One such innovative product is the insurance for

generation forced outages, or IGFO. Reference [93] proposes a general structure

of IGFO and used a Markov process model for electricity prices. Reference

[47] discusses the importance of GFO protection with insurance as well as the
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benefits with several real case studies. In real world business practices, IGFO

is viable and some major providers like ACE America are active in the North

America electricity markets [55].

An IGFO contract usually is a bilateral insurance contract between the

insured (usually an EUC) and the insurer (usually an insurance company).

Compared to other traditional hedging products such as vanilla electricity call

options, IGFO has a cost advantage. This is because for call options, price

is the only triggering factor. But a payout of an IGFO contract, as will be

shown later, is triggered by two factors: 1) price and 2) GFO capacity. Such a

double-trigger feature means that the IGFO claims are a subset of the claims

for electricity call options having a comparable strike price, which not only

reduces the cost of IGFO, but still is able to protect EUCs from the most

adverse scenarios, i.e. GFO occurs when the replacement energy is expensive.

A utility maximization based general evaluation framework for IGFO is

presented in [58]. In this chapter, we mainly focus on the feasibility structure

index, or FSI, of IGFO, which is the spread between the maximum purchase

price that the insured is willing to pay and the minimum selling price that

the insurer is willing to sell. As will be shown later, quantifying FSI can help

facilitate EUCs in the decision process by identifying the feasibility of a certain

IGFO contract, better counter parties, and better strategies. We also show

several factors that affect FSI. In the rest of the chapter, the terms insured,

insurance buyer and EUC will be used interchangeably, as well as insurer,

insurance seller and insurance company.
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The remainder of this chapter is organized as follows: Section 4.2 briefly

reviews the general structure of IGFO and the utility maximization based

evaluation framework. Section 4.3 defines FSI and presents related formulas.

Section 4.4 illustrates the concepts and calculations of FSI through a simplified

example. Section 4.5 analyzes various factors that may affect FSI and Section

4.6 concludes this chapter.

4.2 Evaluation of IGFO Contracts

First we show the general structure of IGFO contracts.

An IGFO contract usually is a bilateral contract. Typically, at the

commencement of an IGFO contract, the insurer receives a premium, but

later reimburses the insured a certain amount of money each time the insured

suffers a qualified financial loss as defined by the IGFO contract terms.

There are several variables of an IGFO contract that are usually deter-

mined through negotiation. For example, both parties may stipulate a certain

deductible forced outage capacity and a deductible strike price, as well as a

total limit of reimbursement.1 Such variables are called negotiable variables.

Usually there are two conditions that must be met in order for the

insured to receive an insurance payout during the IGFO covered period:

1. the amount of GFO capacities exceeds the amount of stipulated de-

ductible capacity; and

1In practice, one party, usually the buyer will initiate a set of such desired variables.
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2. the market prices during the outage period are above the stipulated strike

price.

If the time value of money is ignored, the expected value of the IGFO

payouts to the insured is:

I = E[min[C,
N∑

t=1

max(
M∑

j=1

Qj
t −Kq, 0)× h×max(pt −Kp, 0)]− p (4.1)

where,

E: the expected value operator;

C: the payment cap (maximum payment from the insurer);

Qj
t : the outage capacity of generator j in period t ;

Kq: the deductible capacity. The insurer will pay the insured only for

total outage capacity that is higher than this deductible capacity;

pt: the spot market price during period t;

Kp: the strike price. The insurer will pay the insured only if the spot

market price is higher this strike price Kp;

N : the contract period of insurance, e.g. number of days;

M : the number of generators under the IGFO insurance coverage;

h: the number of hours of the day (usually h = 16 if only peak hour

power generation is of interest);

p: the insurance premiums.
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When evaluating an IGFO contract, we first initiate a mathematical

description of the insurance structure, a model of the insured’s utility function,

models of non-negotiable input factors (e.g. electricity spot market prices,

generators forced outage, etc.), and identifies the negotiated variables (strike

price, deductible capacity, payment cap, etc.).

Since the payout distribution of an IGFO is usually asymmetric because

of its double-trigger option structure. In general, due to the complexities of

the involved non-negotiable input factors, e.g. electricity price movements and

GFO processes, the IGFO payout distribution cannot be calculated analyti-

cally. Consequently, the value of an IGFO payout has to be obtained through

numerical methods. Simulation software such as Microsoft(R) Excel based

@Risk can be utilized for simluaton.

Non-negotiable variables are usually modeled as random variables, so

they can be either directly calculated with given preprogrammed stochastic

processes, or they might be input from other modeling packages. For example,

[11] puts forward some structural models of spot market prices that might be

interfaced with this simulation process to generate spot prices.

4.3 Optimal Choice of Feasible IGFO Structure

In this section we first discuss the definition of FSI. Then we present

the calculation of FSI to identify feasible IGFO structures. Finally we briefly

show how to select the optimal IGFO structure after quantifying FSI.
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4.3.1 Definition

One of the fundamental assumptions of the utility maximization based

evaluation framework for IGFO contracts is that the insured will seek opti-

mal negotiated variables, including deductible GFO capacity and strike price,

which maximize its utility by achieving an optimal trade off between paid

IGFO premium and insured GFO risks. Such assumption also holds for the

insurer. That is, the insurer itself needs to achieve the optimal trade-off be-

tween collected insurance premium and insured GFO risks.

Without loss of generality, we assume the risk preference of the insured

or the insurer can be represented by one certain form of utility function. In

this chapter we adopt the quadratic utility function as in [57]:

U(µ, σ, τ) = µ− σ2

τ
(4.2)

where

µ : the expected return (profit/loss);

τ : the risk tolerance coefficient;

σ : the standard deviation of the return (profit/loss).

In general, the GFO process (amounts and frequency) and electricity

market prices are assumed to be exogenous variables. Therefore, for a certain

IGFO structure, i.e. for an already determined particular set of values for

the negotiated parameters, the expected profit/loss µ, as well its standard

deviation σ are functions of the insurance premium p. In other words, the
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insurance premium decides the utility of the IGFO contract after its negotiated

parameters are fixed. The higher the premium is, the lower the utility.

From the perspective of certainty equivalence (CE), when evaluating an

IGFO contract, the EUC will compare the utility gained from paying insurance

premium upfront for covering future risks, namely Uinsured(P ), versus U0
insured,

which is the utility of other available hedging approaches such as entering into a

long term electricity purchasing contracts, self-insurance or buying call options

[105]. The upper bound of the premium P insured that the EUC is willing to

pay is given by the solution to (4.3). If the price of an IGFO contract is higher

than P insured, the insured will not purchase an IGFO.

Uinsured(P insured) = U0
insured (4.3)

On the other hand, the insurer will also compare Uinsurer(P ), which is

the utility gained from getting the insurance premium now and payouts later

to the insured, with the utility of not getting the business, or U0
insurer = 0.

By equating these two utilities the minimum purchasing price P insurer can be

derived as the solution to (4.4). That is, the insurer will rather not have the

business if the premium that the insurer is able to collect is lower than P insurer.

Uinsured(P insurer) = U0
insurer = 0 (4.4)

The feasibility structure index, or FSI, of IGFO, is hereby defined as the

price difference between P insured and P insurer. It is an indicator of whether such

an IGFO contract can possibly be completed or not. If FSI is positive, it indi-

cates that the IGFO contract is possible to be settled. Consequently, the IGFO
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structure is deemed feasible. Otherwise, an IGFO contract is infeasible and

can never be completed.

4.3.2 Decomposition of Payout Distribution

By adopting the quadratic form utility function in (4.2), we assume the

normal distribution of the payout distributions. Therefore, we search for two

normal distributions that, when weighted appropriately, best approximate the

original asymmetric payout distributions from the simulation. The output is

a vector of values θ = (µ1, σ1, µ2, σ2, ω) that corresponds to the parameters of

the approximating normal distributions (µ, σ) and the weighting factor ω.

Although closed form solutions to the decomposition problem can some-

times be found [56], [4], [89] and [90], in general they do not exist. To generalize

the evaluation model, a numerical method based upon Maximum Likelihood

Estimation (MLE) is chosen for decomposing the original receipt distribution

into a mixture of two normal distributions. This is done by solving the prob-

lem in (4.5) below to calculate the elements of θ and the solution is the input

to the utility maximization.

min
J∑

i=1

[
Li − (

ω√
2πσ2

1

e
− (pi−µ1)2

2σ2
1 +

1− ω√
2πσ2

2

e
− (pi−µ2)2

2σ2
2 )

]2

(4.5)

4.3.3 Feasible Structure

According to [58] and as we have just shown, the IGFO contract payout

distribution can be approximated by decomposing it into two independent
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normal distributions with proper weights. This decomposition enables us to

calculate the feasible structure index (FSI) analytically.

Assuming the premium required for a certain IGFO contract is p as in

(4.5), the insured has an expected profit of ω (µ1 − p) for the first decomposed

approximating payout distribution and (1− ω) (µ2 − p) for the second payout

distribution. The utility of the insured can be obtained using (4.6):

U(P ) = −p +

[
ω(µ1 −

σ2
1

τ1

) + (1− ω)(µ2 −
σ2

2

τ1

)

]
(4.6)

where τ1 is the risk tolerance coefficient for the insured.

From (4.3), the upper bound of the price, or P insured, that the insured

is willing to pay for the IGFO contract, can be calculated by (4.7):

P insured =

[
ω(µ1 −

σ2
1

τ1

) + (1− ω)(µ2 −
σ2

2

τ1

)

]
− U0

insured (4.7)

On the other hand, for the insurer, given an IGFO contract premium

p, its utility will be:

U(p) = p−
[
ω(µ1 +

σ2
1

τ2

) + (1− ω)(µ2 +
σ2

2

τ2

)

]
(4.8)

where τ2 is the risk tolerance coefficient for the insurer.

Since U0
insurer = 0 for the case where the insurer does not sell the IGFO

contract, according to (4.4), the minimum selling price P insurer that makes the

insurer indifferent from selling the IGFO contract can be calculated by

P insurer = ω(µ1 +
σ2

1

τ2

) + (1− ω)(µ2 +
σ2

2

τ2

). (4.9)
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FSI can then be derived by subtracting (4.7) from (4.9),

FSI = −τ2 + τ1

τ1τ2

[ωσ2
1 + (1− ω)σ2

2]− U0
insured. (4.10)

Define c as the risk tolerance contrast ratio between these two counter

parties, then (4.10) becomes:

FSI = −1 + c

c
× 1

τ1

× [ωσ2
1 + (1− ω)σ2

2]− U0
insured. (4.11)

This implies that given a particular insurance structure and the risk

tolerance level of the insured, the risk tolerance contrast ratio c will affect

FSI. Therefore, the feasible structures are given by FSI ≥ 0, or

U0
insured ≤ −1 + c

c
× 1

τ1

× [ωσ2
1 + (1− ω)σ2

2]. (4.12)

4.3.4 Optimal IGFO Structure

After identifying the FSI of each IGFO structure, we apply the utility

maximization based framework developed in [58] for the selection of optimal

IGFO structure from the identified feasible IGFO structures.

In this process, since we have found the two approximating normal

distributions for the original payout distribution, the IGFO buyer’s utility can

be easily calculated and stored. Various sets of negotiated variables of feasible

IGFO contracts will then be updated in the evaluation process until all sets

of negotiated variables are updated. The optimal choice will then be the set

of negotiate variable that yields the highest utility for the investor.
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Since the simulated insurance payout distributions is a function of the

negotiated variables, if we let Π denote this vector of negotiated variables, the

optimal choice can be calculated by solving (4.13):

MaxΠU(θ(Π)) (4.13)

The next two sections demonstrate the concepts and the calculation of

the FSI of IGFO contracts using an example of the evaluation and negotiation

of a simplified IGFO contract.

4.4 Numerical Application

In this section we first present the setup in our case study application

and the simulation results. We then show the FSI calculations. Finally, we

show some caveats in applying our framework.

4.4.1 Case Setup and simulation results

In our application we used the same case setup as in [58] where an

EUC is considering an IGFO contract to cover its seven generation units with

total generation capacity of approximately 2,000 MW. The effective period of

the IGFO contract is the on-peak hours (16 hours, from hour 7-22) for four

consecutive months (120 days). The generation forced outage rate is assumed

as 8% of the total generation capacity, or 165MW. The on-peak electricity

price is modeled as a two-state model, with an average price about $55/MWh

at normal state. For simplification purposes, it is further assumed that there
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is no cap for the maximum insurance payment.

Table 4.1 lists the decomposition results for each set of negotiated

variables. Across the rows the strike price (Kp) ranges from $80/MWh to

$120/MWh, with the deductible capacity (Kq) ranges from 124 MW or 6%

of the total generation capacity, to 207 MW or 10% of the total generation

capacity under coverage of the insurance. For illustration purposes only three

capacity values and strike prices are shown.

Table 4.1: Decomposition Results

4.4.2 Feasible IGFO Structures

In the process of deriving the upper bound of the buying price for the

EUC, the base case is set to be the scenario where the EUC chooses to self-

insure and not buy the IGFO product. Such assumption is simply for the

illustration purposes. In actual practice, however, one will need to consider
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the best available option, such as long term power purchase agreement or

electricity price call option, for the base case.

The loss distribution in the base case of no insurance is decomposed

into two approximating normal distributions and they are shown in Table 4.2.

Table 4.2: Distribution Decomposition for Not Insured

Figure 4.1 shows the decomposition result of the original loss distri-

bution (because of no insurance or hedging). As shown in Figure 4.1, the

approximating distribution, which is a combination of two normal distribu-

tions, is very close to the original distribution.

Figure 4.1: Decomposition result of an original payout distribution

The risk tolerance of the EUC is set to be $3 million as in [58] and the
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utility of no insurance is U0
insured = −1.97 × 106 for the EUC. 2 The upper

bound prices that the EUC is willing to pay for various IGFO structures can

be calculated by solving (4.7) and are listed in Table 4.3. Table 4.4 shows the

expected payout of each IGFO contract.

Table 4.3: Upper Bound Prices of IGFO Contracts for the EUC (×1, 000)

Table 4.4: Expected Payouts of Different IGFO Contracts (×1, 000)

Table 4.5 shows the probabilities that the insurance payout at each

structure would exceed the upper bound of the purchase prices that the EUC

is willing to pay. Such probabilities range from 35% to 41% indicating that

there is less than 50% possibility that the EUC will actually profit from buying

the IGFO contract. This reflects the nature of risk averseness of the EUC.

Table 4.5: Probabilities of IGFO Payouts to Exceed the Upper Bound Price

2Utility is a relative measure, although it is calculated based on dollar amounts. There-
fore, the unit is ignored.
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When assuming the insurer has the 80% of the risk tolerance level

as that of the EUC, the minimum premiums required by the insurer can be

calculated by solving (10) and they are shown in Table 4.6.

Table 4.6: Minimum Prices of IGFO Contracts for the Insurer (×1, 000)

Table 4.7 shows the FSI and the utility from IGFO payouts for all the

IGFO structures considered. The first number in the cell is the FSI and the

second number is the utility.

Table 4.7: FSI and Utility for Different IGFO Contracts (× 1,000)

As we can see, the one with a deductible GFO amount of 124MW and

strike price of $80/MWh has a negative FSI ($-4,900). When FSI is negative,

it indicates that the EUC is not willing to pay the enough money to the in-

surer for the IGFO products, even when its utility is high (974,100). Usually it

happens when the strike price is low and/or in this case, the deductible GFO

amount is low and the contract is in-the-money so that the payout probability

is high. This is making sense since buying in-the-money option means buy-

ing some intrinsic value, which can be achieved by buying forward outright.

Insurance product, by definition, are designed for mitigating events with low

probability of occurance but unbearable risks for the insured. Therefore, an
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EUC should normally purchase an out-of-money call option for the insurance

purpose. However, it is not to say that the more out-of-money, the better,

since the utility of buying an out-of-money option decrease with the degree of

out-of-moneyness.

Table 4.7 also shows that FSIs widen as the deductibles increases. The

rationale is as follows. By the definition of the IGFO contract, as the de-

ductibles increase, it becomes less likely for an IGFO payout to be paid out

(or received). Therefore, the risk averseness of these two counter parties will

play key roles in determining if a transaction can be completed or not. For

example, if the insurer perceives less risk than the insured does, the insurer

may be willing to charge less in order to get the business while the insured

may be willing to pay more in order to hedge the risks. This is consistent with

the observation in Table 4.5 where the insured are highly risk averse.

4.4.3 Caveats

As pointed out in [58], for simplification purpose, we assume these

generators are price takers, which means their outages do not impact the

electricity spot price. In actual practice, strong correlation between GFO

and electricity price does exists once the system-wide GFO exceeds a certain

threshold [25] and it should be taken into account in modeling effort.

It is also assumed that no generator gaming is considered. Discussions

on how relaxing these assumptions will affect IGFO evaluation may be an in-

teresting topic for the future research, especially in LMP markets. Another
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assumption of interactions the counterparties is their independency, i.e. ob-

serving the counterparty’s risk preference will not impact a decision maker’s

own risk tolerance level. These two assumptions should be carefully examined

in the actual practice.

Finally, it is worth pointing out that due to the illiquid IGFO mar-

ket, the application and extension of the framework presented in this section

requires extra caution and validation.

4.5 Factors Affecting FSI

In this section, we study three factors that could possibly affect FSI.

They are risk tolerance contrast ratio, price spikes, and insurance aggregation.

Detailed analysis are as follows.

4.5.1 Risk Tolerance Contrast Ratio

The risk tolerance coefficient, τ , of a firm reflects its risk tolerance

level. A company with higher risk tolerance level is more likely to accept

riskier projects than one with lower risk tolerance. The risk tolerance level

of a company could be estimated through certain public information such as

10-k filings. An example of such calculation in the petroleum E&P firms can

be found in [99].

The risk tolerance contrast ratio, c = τinsurer/τinsured, therefore re-

flects the difference of risk averseness between these two IGFO counter par-

ties. When we increase the risk tolerance level contrast ratio between the
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insurer and the insured from 0.5 to 10, we are effectively switching the relative

risk preference of the insurer from being somewhat conservative to being very

aggressive.

Table 4.8 shows the FSI for different IGFO contracts when the risk

tolerance ratio is 0.5 (the insurer is more conservative than the insured) instead

of 1 (the insurer and the insured have the same risk preference) as in the

previous example in Section IV.

Table 4.8: FSI for Different IGFO contract (×1, 000)

In contrast to the results in Table 4.7, the results in Table 4.8 show that

almost half of these contracts are infeasible since insurer’s minimum selling

price is higher than the insured’s maximum buying price due to insurer’s low

risk tolerance. The FSI for the feasible structure a very tight range of only

$1,100 for the one with 165 MW capacity deductible and $100/MWh price

deductible. Table 4.8 also shows the maximum FSI becomes $44,200, down

from the $70,000 shown in Table 4.7, indicating the insured will benefit from

seeking IGFO contract from an insurer with larger risk tolerance level, which

is consistent as (4.10) indicates. Figure 4.2 shows the maximum FSI as risk

tolerance contrast ratio varies from 0.5 to 10.

In Figure 4.2, we can see that the value of the FSI increases from

$44,200 to about $110,000 as the risk tolerance contrast ratio increases from
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Figure 4.2: Maximum FSIs as a function of risk tolerance contrast ratio

0.5 to 10. This result indicates that, in terms of FSI, the EUC benefits from

buying IGFO contracts from insurance companies who are willing to take more

risks because the insurance premium will be more aggressively priced than that

priced by a more risk averse insurer. However, the benefit gradually levels out

once the risk tolerance ratio exceeds 2.

4.5.2 Price Volatilities

Since high electricity price is one of the payout triggers for an IGFO

contract and is assumed to exogenous, this section studies the impact of price

spikes on the IGFO feasible solutions.

Figure 4.3 compares the FSI of the base case with a scenario of higher

probability of price jumps.

The case of higher probability of price jumps shows similar trend to the
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Figure 4.3: FSIs at different price jump probability

base case as the risk tolerance contrast ratio increases, but has much smaller

FSI. This indicates less feasible structures exist if the supply/demand in the

electricity market becomes tighter and more frequent price spikes are expected.

4.5.3 Insurance Aggregation

It is possible for the insured to provide more than one IGFO insurance

contract to multiple buyers during the same time horizon, or for that matter,

for the insured to purchase IGFO for its generators separately or as a bundle.

This section shows how such insurance aggregation could affect FSI.

The study is simplified by duplicating the EUC studied in our applica-

tion, i.e. both firms have identical generation portfolios. We calculate the FSI

of the IGFO contract when these two EUCs form an alliance to pursue a new

IGFO contract that has the same structure as the one each individual would

select. Figure 4.4 shows the FSI of the aggregated IGFO contract.
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Figure 4.4: FSI of the aggregated IGFO contract

It shows that the FSI of the aggregated IGFO contract has a similar

pattern to the single IGFO contract in Figure 4.2, i.e. the feasible structures

increase as the risk tolerance contrast ratio increases.

Figure 4.5 compares the FSI of the aggregated IGFO contract with that

of a single IGFO contract, which we define as the aggregation ratio.

Figure 4.5: Aggregated ratio when replicating IGFO contracts
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It shows that the FSI of insuring two firms is not simply double of that

of a single contract, which should yield an aggregation ratio of 2. Instead, the

aggregation ratio actually decreases monotonically to be below 2 as the risk

tolerance contrast ratio increases to be greater than about 1.4.

This result should hold in general because when aggregating IGFO

contracts for two or more generation portfolios, the risk profile of each portfolio

are pooled together and the risk profiles of the aggregated contract would

become easier to be quantified. For example, consider the case where hundreds

of generation portfolios are aggregated. As a result, decision making becomes

less subjective than in the individual scenario and therefore effectively narrows

the FSI.

In this simplified example, the aggregation ratio being lower than 2

implies that even though the absolute FSI increases as shown in Figure 4.4,

the FSI narrows relatively once the risk tolerance ratio gets higher. Therefore,

in terms of FSI, the EUC is better off aggregating the IGFO contracts of

two generation portfolios if the risk tolerance contrast ratio is lower than 1.4

because it gains relatively greater FSI (210% of the FSI of not aggregating),

otherwise it should separate them.

4.6 Conclusions

It this chapter we studied the FSI of the IGFO contract between EUCs

(the insured) and the insurer, which is important to identify the feasibility

of an IGFO contract. By utilizing the distribution approximation theory to
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approximate the asymmetric distribution of insurance receipts, we present the

analytical formulations of the upper bound of the FSI of an IGFO contract.

Through FSI, we can identify feasible structures of IGFO contracts, the op-

timal IGFO structure is than the feasible structure that maximizes insured’s

utility function. FSI is affected by the risk tolerance ratio of the insurance

company over the insured. We also show that the FSI will narrow if price

spikes are more likely to happen. Finally, we show that when EUCs bun-

dle their IGFO contracts, the effective FSI narrows while the absolute FSI

increases as individual IGFO contract does.
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Chapter 5

Conclusions and Future Research

In this section we first summarize the research we presented in this

dissertation, we then lay out the potential future research stemming from this

dissertation.

5.1 Summary of Current Results

In this dissertation we studied some issues related to the integrated risk

management in EUCs, proposed two integrated risk management frameworks

for EUCs in deregulated electricity markets and most importantly, showed the

successful integration and application of utility theory in this area, which has

been proved to be useful in actual practice.. This dissertation presented re-

search on certain fundamental factors in risk management in the electric power

industry, together with a study on the correlation between two fundamental

factors, in Chapter 2. Then an optimal natural gas supply framework for

EUCs is proposed in Chapter 3. Finally, the feasible structure index (FSI) of

an IGFO contract are defined in Chapter 4 with an application.

In Section 2.1 we proposed a knowledge-based statistical model to fore-

cast weather sensitive electricity load. We have shown that incorporating
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knowledge-based weather segmentation can improve forecast accuracy. The

model has been integrated into the energy management system (EMS) of the

Lower Colorado River Authority, Austin, TX. In Section 2.2 we presented an

empirical study on electricity spot price dynamics, which distinguished the

impact of system-wide generation forced outage. Result of the research has

been incorporated to a successful modeling of ERCOT electricity spot price. In

Section 2.3 we studied the correlation between natural gas price and electricity

demand in ERCOT area.

In Chapter 3 has presented an integrated risk management framework

for optimizing natural gas supply for EUCs who own and operate natural gas

fired power plants (NGFPP). This framework has been the first optimization

model in solving such optimal supply mix problems by systematically inte-

grating and modeling various risk factors and constraints. Unlike traditional

cost-minimization approaches, this novel framework aims to maximize util-

ity for EUCs and achieve optimal cost-risk balance, which is the essence of

integrated energy risk management, but is missed in traditional approaches.

Chapter 4 has introduced a scheme for EUCs to investigate the feasi-

ble structures of insurance on generation forced outages (IGFO). A general

framework was proposed to facilitate analysis of FSI of an IGFO contract. In

Chapter 4, several key factors and behaviors that may impact the FSI have

been identified. The future research, based on the proposed framework, is to

quantify their impacts in details.
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5.2 Integrated Risk Management Framework

The research presented in this dissertation contributes to the literature

of integrated risk management for EUCs, which is a new area in the power

system economics in the light of the emerging electricity market deregulation.

It is an inter-disciplinary area which requires the combined knowledge of power

system engineering, financial engineering, and economic analysis.

This section reviews the transition of EUCs’ operation perspectives

from the traditional approach under the regulated environment to the current

integrated risk management framework. We will present some discussions and

potential research in this area in the next section.

5.2.1 Traditional Approach

Traditionally the operations and planning of EUCs were mostly cen-

tered around the reliability constrained cost minimization analysis with very

little, if any, attention to the impact on their financial risk consequences.

There were two objectives under the regulated environments. The pri-

mary objective was to ensure the power system reliability, which usually was

met by setting a certain reserve margin, e.g. 15% of the load obligation. The

second objective then was to focus on minimizing the total costs.

Figure 5.1 shows the decision making process for EUCs in the regulated

markets. As we have discussed in the Introduction of the dissertation, these

two objectives were mainly due to the then regulated rate of return mecha-
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nism. EUCs were not motivated to worry about their levels of competence or

managing their financial risk exposures.

Figure 5.1: Traditional approach

5.2.2 Transition to Deregulation Markets

As the electricity industry experienced deregulation, many new issues

have emerged during the transitions. The traditional regulated rate of return

is no longer guaranteed, causing most EUCs to switch their focus from the

traditional cost minimization.1 Integrated risk management has gradually

become a standard practice for EUCs in deregulated electricity markets. The

reliability of the electricity system arguably still remains as the first priority

1In some cases, such as in Texas, utility cooperatives and municipal-owned can choose
not to opt-in the deregulation.

101



for EUCs. However, the secondary objective has now become to meet a certain

risk related objective instead of the traditional objective of cost minimization.

In competitive electricity markets, EUCs have to establish and position

themselves as competitively as possible in order to survive, not to mention

grow. As the markets exhibit tremendous volatilities, cost minimization has

become a secondary issue compared to optimal risk management as no EUC

can afford the possible catastrophic outcomes of a risky decision.

Integrated risk management framework is a solution that has been grad-

ually recognized and applied by EUCs to achieve the optimal risk/cost balance

and tackle this objective. The essential feature of an integrated risk manage-

ment framework is for an EUC to identify one or more critical risk factors that

matter the most to the EUC and to position itself into a comfortable risk zone.

Figure 5.2 shows this transition.

The transition from the objective of minimizing cost into the objective

of optimal risks taking is in fact a natural transition. When risks are present,

the fundamental of risk management is to achieve the optimal balance between

the risk exposures and costs. In other words, sound risk management requires

an EUC to be able to manage the risk exposure to a level that allows the EUC

to explore opportunities, but not to spend too much on mitigating risks, or

hedging.

In regulated environments, there was no risk for EUCs to worry about.

Apparently, the objective was then to minimize the costs. However, as the
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Figure 5.2: Transition from traditional approach

electricity markets experienced deregulation and the impacts of risk exposures

become huge, the switch to the consideration of risks is inevitable.

5.2.3 Utility Maximization Based Framework

We have proposed several utility maximization based integrated risk

management models for EUCs and described their application in EUCs in

this dissertation. The underlying concept was to achieve the goal of an opti-

mal, consistent, and true integrated risk management framework for EUCs by

centering decision making on maximizing EUCs management’s utility.

In fact, in the regulated environment, EUCs have been maximizing their

utility by minimizing the costs because there were essentially no risks born by

the EUC at all: their customers bore all the risks! Referring to the transfor-
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mation of classic return-risk framework to cost-risk framework in Section 3.3,

cost minimization was exactly the best and only solution then. Decision mak-

ing was centered on this solution and was consistent with maximizing EUCs

management’s utility in a sense. In deregulated markets, incorporating risks in

the utility maximization process has become a natural transition from the tra-

ditional cost minimization method. Figure 5.3 outlines the unified framework

and its different best practice before and after deregulation.

Figure 5.3: Unified integrated risk management framework

However, one major difference in the practice of deregulated markets

is the constant evolving risk monitoring and analysis. This is because in regu-

lated environments, once a decision has been made based on the expected cost

minimization framework, there was not much variance considered when car-
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rying it out. However, in deregulated electricity markets, as various uncertain

variables change over time, a constant review, analysis, and response to these

changes has become a necessity.

Figure 5.4 shows what are inside the utility maximization framework

in deregulated environments with some of the models and applications that

we presented in the previous chapters of this dissertation.

Figure 5.4: Integrated risk management practice

In Figure 5.4, four major components centering around risks consist of

the integrated risk management for EUCs. There are three components that

are executed by orders. When a risk is identified (component 1), it needs

to be analyzed (component 2), then it is to be responded (component 3).

Meanwhile, a risk monitor mechanism (component 4) is in place to review and

monitor the risks continuously. For example, in Figure 5.4, the natural gas

supply risk is first identified. Then the consequence of the risk, e.g. the risk

of high replacement energy cost, is analyzed. After that, an optimal natural
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gas purcahse strategy is developed to respond to this risk. Meanwhile, the

risk monitor mechanism is in place to continuously review and monitor the

practice, which in this case is the current trader’s strategy.

5.3 Future Research

We have presented several novel, but limited integrated risk manage-

ment models for EUCs in this dissertation. There is much work to be done to

expand their application as deregulated electricity markets evolve. This sec-

tion identifies current limitations and future research for the integrated risk

management framework proposed in this dissertation and other issues.

5.3.1 Integrated Risk Management Framework

Running an EUC requires complicated interacting operations and de-

cision making. By centering these operations and decision makings with a

unified utility maximization based risk management framework, we hope to

achieve optimal risk exposure consistently throughout the operations, which

is the best practice of risk management.

Figure 5.5 shows an example integrated risk management framework in

decision making process for an EUC. By applying utility maximization models

in solving problems 1 through 7, we are sure that the EUC is able to achieve

optimal cost-risk balance in every decision making process seperately, and

consequently, we hope to achieve an enterprise-wide optimal cost-risk balance

for the EUC on a consistent basis.
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Figure 5.5: Example of a framework

There are limitations for the utility maximization based integrated risk

management framework we proposed. These limitations suggestes the follow-

ing two major limits are identified and listed as follows, along with suggested

future research.

First, the framework is based on the assumption that a single utility

function is sufficient to represent the risk preference of the EUC management.

The utility function, including its form and parameters, are currently arbitrary

and prone to estimation errors. Future research should include analysis of

the impacts due to the inaccuracy of the utility function estimation. In other

words, the estimation of the EUC management has potentially become a built-

in risk factor for the integrated risk management framework and needs to be

analyzed in the future. This will be a very challenging task.

Second, we are assuming relative independence of decision makings as

we are seeking the enterprise wide utility maximization by optimizing each

decision making process seperately (such as decision making processes 1-7 in
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Figure 5.5). In other words, we are solving the sub-optimal problems and

combining these parallel solutions as an overall solution. If there is no corre-

lation amongst the various decision making processes, then we have found an

overall optimal solution. The assumption of no correlation, however, should be

relaxed if marked correlations exist among various decision making processes.

This very much deserves an intensive investigation.

5.3.2 Other Issues

A few example of other potential future research topics include:

• Integrate the concept of knowledge based segmentation we developed

in Chapter 2 to modern intelligence systems such as Artificial Neural

Network Models.

• Extend the two critical power system price indexes (SLCR and SGFO)

we developed in Chapter 2 to the price modeling of mid/short- term to

real-time applications.

• The correlation between the natural gas price and electricity demand we

presented in Chapter 2 may have an impact on the modeling and pricing

of energy products such as heat rate options and may deserve attentions

from this perspective.

• Extend the research in Chapter 3 to study the effect of the changes or

estimation errors of the risk preferences of the EUCs management. This
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could lead to better understanding and application of utility theory in

the integrated risk management modelings for EUCs.

• Extend the research in Chapter 4 to refine the pricing and negotiation

strategy for EUCs.
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Appendix 1

Visual C++ Code for IGFO Simulator

#include "stdafx.h"

#include "Real Simulation.h"

#include "Real SimulationDlg.h"

#include "math.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;

#endif

// CAboutDlg dialog used for App About

const float Const_Lstar = 0.823f;

const float Const_OutageRate = 0.1f;

const float de_cap = 0.2 * 2065;

const float Const_Strike = 30.0f;

const float Const_Increase = 0.0f;
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//this parameter is for the control of total baseload

float percentage = 0.80f;

float permitted_outage = 2065*(1-percentage);

const float production_cost = 30.0f;

const float liquidity = 0.15*2065;

float Max(float a, float b);

void Normal(float mean, float std, int amount);

void market_price();

void load(float a, float b, float stdev, float baseload);

void load_markov(float lambda, float miu);

void payoff(float strikeprice, float outage);

float tempe[20000][120];

float de_ca[20000][120];

float pricedata[20000][120];

int markov[20000][120];

float loaddata[20000][120];

float temp_random[20000];

float totalpayoff[20000];
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void histogram(int interval);

int trials = 20000;

class CAboutDlg : public CDialog

{

public:

CAboutDlg();

// Dialog Data

//{{AFX_DATA(CAboutDlg)

enum { IDD = IDD_ABOUTBOX };

//}}AFX_DATA

// ClassWizard generated virtual function overrides

//{{AFX_VIRTUAL(CAboutDlg)

protected:

virtual void DoDataExchange(CDataExchange* pDX);

// DDX/DDV support

//}}AFX_VIRTUAL

// Implementation

protected:

//{{AFX_MSG(CAboutDlg)
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//}}AFX_MSG

DECLARE_MESSAGE_MAP()

};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)

{

//{{AFX_DATA_INIT(CAboutDlg)

//}}AFX_DATA_INIT

}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)

{

CDialog::DoDataExchange(pDX);

//{{AFX_DATA_MAP(CAboutDlg)

//}}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)

//{{AFX_MSG_MAP(CAboutDlg)

// No message handlers

//}}AFX_MSG_MAP

END_MESSAGE_MAP()
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/////////////////////////////////////////////////////

// CRealSimulationDlg dialog

CRealSimulationDlg::CRealSimulationDlg

(CWnd* pParent /*=NULL*/)

: CDialog(CRealSimulationDlg::IDD, pParent)

{

//{{AFX_DATA_INIT(CRealSimulationDlg)

m_aug_a = 0.44f;

m_aug_b = 87.05f;

m_aug_s = 3.99f;

m_baseload = 60.0f;

m_jul_a = 0.45f;

m_jul_b = 89.98f;

m_jul_s = 2.50f;

m_jun_a = 0.42f;

m_jun_b = 88.01f;

m_jun_s = 3.54f;

m_load_a = 0.2f;

m_load_b = 46.36f;

m_load_s = 4.95f;

m_markov_00 = 0.563f;

m_markov_01 = 0.437f;
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m_markov_10 = 0.563f;

m_markov_11 = 0.437f;

m_sep_a = 0.42f;

m_sep_b = 88.01f;

m_sep_s = 3.54f;

m_outage = 0.06f;

m_strike = Const_Strike;

m_trials = 20000;

m_h_interval = 300;

//}}AFX_DATA_INIT

// Note that LoadIcon does not require a subsequent

//DestroyIcon in Win32

m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

}

void CRealSimulationDlg::

DoDataExchange(CDataExchange* pDX)

{

CDialog::DoDataExchange(pDX);

//{{AFX_DATA_MAP(CRealSimulationDlg)

DDX_Text(pDX, IDC_Aug_a, m_aug_a);

DDX_Text(pDX, IDC_Aug_b, m_aug_b);

DDX_Text(pDX, IDC_Aug_S, m_aug_s);
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DDX_Text(pDX, IDC_Baseload, m_baseload);

DDX_Text(pDX, IDC_Jul_a, m_jul_a);

DDX_Text(pDX, IDC_Jul_b, m_jul_b);

DDX_Text(pDX, IDC_Jul_S, m_jul_s);

DDX_Text(pDX, IDC_Jun_a, m_jun_a);

DDX_Text(pDX, IDC_Jun_b, m_jun_b);

DDX_Text(pDX, IDC_Jun_S, m_jun_s);

DDX_Text(pDX, IDC_Load_a, m_load_a);

DDX_Text(pDX, IDC_Load_b, m_load_b);

DDX_Text(pDX, IDC_Load_S, m_load_s);

DDX_Text(pDX, IDC_Markov_00, m_markov_00);

DDX_Text(pDX, IDC_Markov_01, m_markov_01);

DDX_Text(pDX, IDC_Markov_10, m_markov_10);

DDX_Text(pDX, IDC_Markov_11, m_markov_11);

DDX_Text(pDX, IDC_Sep_a, m_sep_a);

DDX_Text(pDX, IDC_Sep_b, m_sep_b);

DDX_Text(pDX, IDC_Sep_S, m_sep_s);

DDX_Text(pDX, IDC_Outage, m_outage);

DDX_Text(pDX, IDC_Strike, m_strike);

DDX_Text(pDX, IDC_Trials, m_trials);

DDX_Text(pDX, IDC_Hist_Interval, m_h_interval);

//}}AFX_DATA_MAP

}
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BEGIN_MESSAGE_MAP(CRealSimulationDlg, CDialog)

//{{AFX_MSG_MAP(CRealSimulationDlg)

ON_WM_SYSCOMMAND()

ON_WM_PAINT()

ON_WM_QUERYDRAGICON()

//}}AFX_MSG_MAP

END_MESSAGE_MAP()

/////////////////////////////////////////////////////

// CRealSimulationDlg message handlers

BOOL CRealSimulationDlg::OnInitDialog()

{

CDialog::OnInitDialog();

// Add "About..." menu item to system menu.

// IDM_ABOUTBOX must be in the system command range.

ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);

ASSERT(IDM_ABOUTBOX < 0xF000);

CMenu* pSysMenu = GetSystemMenu(FALSE);
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if (pSysMenu != NULL)

{

CString strAboutMenu;

strAboutMenu.LoadString(IDS_ABOUTBOX);

if (!strAboutMenu.IsEmpty())

{

pSysMenu->AppendMenu(MF_SEPARATOR);

pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);

}

}

// Set the icon for this dialog.

//The framework does this automatically

// when the application’s main window is not a dialog

SetIcon(m_hIcon, TRUE); // Set big icon

SetIcon(m_hIcon, FALSE); // Set small icon

// TODO: Add extra initialization here

return TRUE;

// return TRUE unless you set the focus to a control

}
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void CRealSimulationDlg::

OnSysCommand(UINT nID, LPARAM lParam)

{

if ((nID & 0xFFF0) == IDM_ABOUTBOX)

{

CAboutDlg dlgAbout;

dlgAbout.DoModal();

}

else

{

CDialog::OnSysCommand(nID, lParam);

}

}

// If you add a minimize button to your dialog,

// you will need the code below to draw the icon.

// For MFC applications using the document/view model,

// this is automatically done for you by the framework.

void CRealSimulationDlg::OnPaint()

{

if (IsIconic())

{
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CPaintDC dc(this); // device context for painting

SendMessage(WM_ICONERASEBKGND,

(WPARAM) dc.GetSafeHdc(), 0);

// Center icon in client rectangle

int cxIcon = GetSystemMetrics(SM_CXICON);

int cyIcon = GetSystemMetrics(SM_CYICON);

CRect rect;

GetClientRect(&rect);

int x = (rect.Width() - cxIcon + 1) / 2;

int y = (rect.Height() - cyIcon + 1) / 2;

// Draw the icon

dc.DrawIcon(x, y, m_hIcon);

}

else

{

CDialog::OnPaint();

}

}

HCURSOR CRealSimulationDlg::OnQueryDragIcon()
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{

return (HCURSOR) m_hIcon;

}

void CRealSimulationDlg::OnOK()

{

CDialog::UpdateData(TRUE);

load_markov(m_markov_01, m_markov_10);

load(m_load_a, m_load_b, m_load_s, m_baseload);

market_price();

payoff(m_strike, m_outage);

histogram(m_h_interval);

MessageBox("Done, please check file");

CDialog::OnOK();

}

void load_markov(float lambda, float miu)

{

for(int j = 0; j < trials; j++)

{

markov[j][0] = 0;

for( int i = 1; i < 120; i++)

{
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float mm = (float)rand()/RAND_MAX;

if(markov[j][i-1] == 0)

{

if(mm < lambda)

markov[j][i] = 1;

else markov[j][i] = 0;

}

if(markov[j][i-1] == 1)

{

if(mm < miu)

markov[j][i] = 1;

else markov[j][i] = 0;

}

}

}

}

void load(float a, float b, float stdev, float baseload)

{

// b = b * (1 +Const_Increase);

baseload = baseload * (1 + Const_Increase);

for(int i = 0; i < trials; i++)

{
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Normal(0, 1, 120);

float mr_load = b + (float)pow(-1, rand())

* (float)rand()/RAND_MAX;

for(int j = 0; j < 120; j++)

{

loaddata[i][j] = mr_load/baseload;

mr_load = mr_load + a*(b - mr_load)

+ stdev*temp_random[j];

}

}

}

void market_price()

{

float Lstar = Const_Lstar;

float a1 = 19.42f;

float b1 = -1.62f;

float stdev1= 2.83f;

float a2 = 544.07f;

float b2 = -422.25f;

float stdev2= 44.71f;
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float price[120];

//initializing data

for(int i = 0; i < trials; i++)

{

for(int j = 0; j < 120; j++)

{

if(loaddata[i][j] < Lstar)

{

Normal(0, stdev1, 1);

price[j] = a1*loaddata[i][j] + b1 + temp_random[0];

}

else

{

if(markov[i][j] == 0)

{

Normal(0, stdev1, 1);

price[j] = a1*loaddata[i][j] + b1 + temp_random[0];

}

else

{

Normal(0, stdev2, 1);

price[j] = a2*loaddata[i][j] + b2 + temp_random[0];
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}

}

pricedata[i][j] = 2.5f*price[j];

//2.5 serves as a fuel factor

}

}

}

void payoff(float strikeprice, float outage)

{

FILE* temp;

temp = fopen("..\\data\\PAYOFF.TXT", "w");

float plants_status[7];

float plant_cap[7];

float plants_loss[7];

plant_cap[0] = 290;

plant_cap[1] = 290;

plant_cap[2] = 445;

plant_cap[3] = 140;

plant_cap[4] = 140;

plant_cap[5] = 340;

plant_cap[6] = 420;

float outagerate= Const_OutageRate;
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float lambda = outage;

float miu = ((1-outagerate)/outagerate)*lambda;

//so that we keep the outage rate P

float total_cap_loss;

float payoff;

for(int i = 0; i < 7; i++)

plants_status[i] = 0;

for(i = 0; i < trials; i++)

{

float totalpay = 0.0f;

float phy_payoff=0.0f;

float phy_payoff_SUM=0.0f;

float payoff_at_80P_obiligation = 0.0f;

//opportunity cost considered

float payoff_at_80P_obiligation_SUM = 0.0f;

//opportunity cost considered

float payoff_at_80P_obiligation_NC = 0.0f;

//opportunity cost not considered

float payoff_at_80P_obiligation_NC_SUM = 0.0f;

//opportunity cost considered

for(int k = 0; k < 120; k++)

{
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total_cap_loss = 0;

for(int j = 0; j < 7; j++)

{

float st = (float)rand()/RAND_MAX;

if(plants_status[j] == 0)

{

if(st < lambda)

{

plants_loss[j] = plant_cap[j];

plants_status[j] = 1;

}

else

{

plants_loss[j] = 0;

plants_status[j] = 0;

}

}

else

{

if(st < miu)

{

plants_loss[j] = 0;

plants_status[j] = 0;
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}

else

{

plants_loss[j] = plant_cap[j];

plants_status[j] = 1;

}

}

total_cap_loss += plants_loss[j];

}

//original situation

payoff = Max(0, (total_cap_loss - de_cap))

*Max((pricedata[i][k] - strikeprice), 0)*16;

//the view from physical side,

float phypayoff = Max(0, (total_cap_loss - de_cap))

*(pricedata[i][k] - strikeprice)*16;

//the situation where 80% is considered

//the percentage is defined above.

//the first scenario, opportunity cost is considered here;

if(pricedata[i][k] > production_cost)

{

if(total_cap_loss > (1- percentage)*2065)

{

payoff_at_80P_obiligation =
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(total_cap_loss -(1-percentage)*2065 + liquidity)

* (pricedata[i][k] - production_cost)*16;

}

else

{

if((2065-total_cap_loss) > liquidity)

//with liquidity and no obligation situation,

//the calculation is different

{

payoff_at_80P_obiligation = 0;

//liquidity * (pricedata[i][k] - production_cost)*16;

}

else payoff_at_80P_obiligation =

(liquidity - (2065- total_cap_loss))

* (pricedata[i][k] - production_cost)*16;

}

}

else

payoff_at_80P_obiligation = 0;

//the second scenario is considered here where

//opportunity cost is not considered here;
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if (total_cap_loss > permitted_outage)

payoff_at_80P_obiligation_NC =

(total_cap_loss -permitted_outage)

* Max((pricedata[i][k] - production_cost),0)*16;

else

payoff_at_80P_obiligation_NC = 0;

//finish scenarios

totalpay += payoff;

phy_payoff_SUM += phypayoff;

payoff_at_80P_obiligation_SUM

+= payoff_at_80P_obiligation;

payoff_at_80P_obiligation_NC_SUM

+= payoff_at_80P_obiligation_NC;

}

totalpayoff[i] = payoff_at_80P_obiligation_SUM;//totalpay;

fprintf(temp, "%.2f\t", totalpayoff[i]);

fprintf(temp, "%.2f\t", phy_payoff_SUM);

fprintf(temp, "%.2f\t", payoff_at_80P_obiligation_SUM);

fprintf(temp, "%.2f\n", payoff_at_80P_obiligation_NC_SUM);

}

fclose(temp);

}
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void histogram(int interval)

{

float AVGPayoff = 0.0f;

if (interval > 300)

interval = 300;

FILE* histogram;

const float Const_HMax = 600000.0f;

histogram = fopen("..\\data\\loss_histogram.txt", "w");

int category[301];

float incr = 0;

float h_min = 0;

float h_max = Const_HMax;

float steps = (h_max - h_min)/interval;

for(int i = 0; i < interval; i++)

category[i] = 0;

for(i = 0; i < trials; i++)

{

if(totalpayoff[i] == 0)

category[0]++;

else for(int k = 0; k < interval; k++)

{

if((totalpayoff[i] > h_min + k*steps)

132



&&(totalpayoff[i] <= h_min + (k+1)*steps))

category[k+1]++;

}

AVGPayoff += totalpayoff[i];

}

AVGPayoff /= trials;

fprintf(histogram, "Interval x 10k\t");

fprintf(histogram, "%.2f\n", AVGPayoff);

for(i = 0; i < interval; i++)

{

fprintf(histogram, "%.2f\t", (h_min+i*steps)/10000);

fprintf(histogram, "%d\n", category[i]);

}

fclose(histogram);

}

float Max(float a, float b)

{

if(a > b)

return a;

else

return b;

}
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void Normal(float mean, float std, int amount)

{

srand((clock()-time(NULL))*(clock()+rand()));

for(int i = 0; i < amount; i++)

{

float x1, x2, y1, w;

static float y2;

static int use_last = 0;

if (use_last)

/* use value from previous call */

{

y1 = y2;

use_last = 0;

}

else

{

do {

x1 = 2.0f * (float)rand()/RAND_MAX - 1.0f;

x2 = 2.0f * (float)rand()/RAND_MAX - 1.0f;

w = x1 * x1 + x2 * x2;

} while ( w >= 1.0 );
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w = (float)sqrt( (-2.0f * log( w ) ) / w );

y1 = x1 * w;

y2 = x2 * w;

use_last = 1;

}

temp_random[i] = mean+y1*std;

}

}
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