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The coding and feedback inaccuracies of the channel state information (CSI)

in limited feedback multiple-input multiple-output (MIMO) wireless systems can

severely impact the achievable data rate and reliability. The CSI is mathematically

represented as a Grassmann manifold or manifold of unitary matrices. These are

non-Euclidean spaces with special constraints that makes efficient and high fidelity

coding especially challenging. In addition, the CSI inaccuracies may occur due to

digital representation, time variation, and delayed feedback of the CSI. To over-

come these inaccuracies, the manifold structure of the CSI can be exploited. The

objective of this dissertation is to develop a new signal processing techniques on

the manifolds to harvest the benefits of MIMO wireless systems.

First, this dissertation presents the Kerdock codebook design to represent

the CSI on the Grassmann manifold. The CSI inaccuracy due to digital represen-

tation is addressed by the finite alphabet structure of the Kerdock codebook. In

addition, systematic codebook construction is identified which reduces the resource
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requirement in MIMO wireless systems. Distance properties on the Grassmann

manifold are derived showing the applicability of the Kerdock codebook to beam-

forming and spatial multiplexing systems.

Next, manifold-constrained algorithms to predict and encode the CSI with

high fidelity are presented. Two prominent manifolds are considered; the Grass-

mann manifold and the manifold of unitary matrices. The Grassmann manifold

is a class of manifold used to represent the CSI in MIMO wireless systems us-

ing specific transmission strategies. The manifold of unitary matrices appears as a

collection of all spatial information available in the MIMO wireless systems inde-

pendent of specific transmission strategies. On these manifolds, signal processing

building blocks such as differencing and prediction are derived. Using the proposed

signal processing tools on the manifold, this dissertation addresses the CSI coding

accuracy, tracking of the CSI under time variation, and compensation techniques for

delayed CSI feedback. Applications of the proposed algorithms in single-user and

multiuser systems show that most of the spatial benefits of MIMO wireless systems

can be harvested.
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Chapter 1

Introduction

A recent breakthrough in wireless communication is the use of multiple an-

tennas at the transmitter and the receiver, or multiple-input multiple-output (MIMO)

technology shown in Fig. 1.1. Driven by application in MIMO wireless systems,

and in part by applications to commercial wireless systems [1, 41], a new class of

quantization problems on the Grassmann manifold has recently emerged [15, 74,

79]. The Grassmann manifold arise, for example, as the mathematical space repre-

senting channel state information (CSI) under certain performance metrics in single

user and multiuser limited feedback MIMO wireless systems [66]. The motivation

for quantization on the Grassmann manifold is to encode the CSI at the receiver

so that it can be efficiently communicated back to the transmitter through a finite

rate feedback link [39, 67]. Communication theoretic performance measures such

as capacity and bit error rate of MIMO wireless systems are known to depend on

the number of quantization levels or the codebook size used to encode the CSI [67].

The manifold of unitary matrices plays an important role as a mathematical

space representing CSI. While the Grassmann manifold appears as the space repre-

senting the CSI for specific transmission strategies, the manifold of unitary matri-

ces appears as the collection of all spatial dimensions available in a given MIMO

1



Figure 1.1: Illustration of single user MIMO with various propagation paths.

wireless system [65, 94]. Availability of all spatial dimensions can enable capacity

achieving multimode precoding [65]. The quantization of these manifolds is espe-

cially challenging because of its large dimensions and non-Euclidean structure with

special constraints.

In practice, the wireless communication channel may exhibit correlation due

to mobility in the propagation channel, thus resulting in time varying CSI [38, 56].

In addition to quantization error, the time varying CSI and feedback delay may

further aggravate the CSI inaccuracy. The focus of this dissertation is to develop

new signal processing techniques on the manifolds with the goal of improving the

CSI accuracy and provide robustness to time varying CSI and feedback delay.

In the remainder of this chapter, an overview of single user MIMO wireless

systems is given in Section 1.1, an overview of multiuser MIMO wireless systems

is given in Section 1.2, an overview of limited feedback is given in Section 1.3,

2
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Figure 1.2: Block diagram illustrating limited feedback for single user MIMO sys-
tem.

and an overview and motivation for signal processing on manifolds in Section 1.4,

followed by the thesis statement, contributions, the organization of the dissertation,

and notations in Sections 1.5, 1.6, 1.7, and 1.8, respectively.

1.1 Single User MIMO Wireless Systems

A single user limited feedback MIMO wireless systems consists of a trans-

mitter and a receiver using multiple antennas. A general block diagram of the single

user limited feedback MIMO wireless system is shown in Fig. 1.1. It represents a

basic model of point-to-point communication encountered, for example, in cellular

communication systems [2], metropolitan wireless networks [41, 43], and wireless

local area networks [42]. It has been shown that N times the data rate of the same

link with single antenna system is possible when at least N antennas are used at the

transmitter and the receiver [21].

3



The benefits and challenges of MIMO wireless systems both arise from the

multiple propagation path between each pair of antennas from the transmitter to

the receiver, called the MIMO channel. The baseband equivalent sampled model

of the MIMO channel may be written as a matrix with coefficients representing the

effects of fading between the pairs of antennas. The MIMO channel matrix contains

the CSI, which if used at the transmitter, can improve the downlink data rates and

reliability by customizing the transmit signal to the specific MIMO channel [24,64,

67, 94].

One transmission strategy is to use limited feedback unitary precoding where

the signal at the transmitter is multiplied by a unitary vector or a unitary matrix from

a codebook shared between the receiver and the transmitter [64, 67]. Beamforming

corresponds to transmission of single stream of data precoded by an n × 1 unitary

vector [67]. Unitary precoded spatial multiplexing corresponds to sending p < n

data streams precoded by an n × p unitary matrix [64]. The selected precoder is

used to customize the transmit signal to exploit the desired number of strongest spa-

tial modes available in the MIMO channel without changing the transmit power. In

general, the precoder must be designed with the knowledge of the MIMO channel,

usually available at the receiver. Thus, the receiver is tasked with a quantization

and feedback of the precoder information.

It has been shown that under signal to noise ratio metric, the unitary pre-

coders are invariant to unitary rotations thus corresponding to the Grassmann man-

ifold [64, 67, 79]. The square unitary right singular matrix of a MIMO channel

corresponds to the manifold of unitary matrices representing all the available spa-
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Interference

Figure 1.3: Illustration of multiuser MIMO with various propagation paths and
interference.

tial modes in the MIMO channel. The main theme of this dissertation is to develop

high fidelity and practical CSI encoding techniques on these manifolds.

1.2 Multiuser MIMO Wireless Systems

In recent years, multiuser MIMO wireless system has emerged as a new

paradigm in using multiple antennas [23]. It involves a transmitter and multiple

receivers as shown in Fig. 1.3. In the downlink, from the transmitter to multiple

users, the data stream intended for each user is multiplexed spatially while sharing

the same time and frequency. Thus multiuser systems promises improved spectral

resource usage. It has been shown that the achievable sum rate, i.e., the sum of

all data rate delivered to the receivers, multiplies proportional to number of anten-

nas at the transmitter [23]. For maximizing the sum rate, dirty paper coding has

been known to be optimal [14]. Unfortunately, this technique requires non-causal
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CSI which is not realizable in practice. A more practical approach uses transmit

beamforming based on zero forcing. If perfect CSI is available at the transmit-

ter, zero forcing perfectly avoids interferences between users [51]. The method for

CSI feedback in multiuser MIMO wireless systems differs from single user cases

because the precoders used for zero forcing must be designed with the scheduled

user’s CSI. The transmitter collects the CSI from all users to design zero forcing

precoder. The consequence is that CSI quantization error is magnified by the zero

forcing computation, i.e., matrix inverse, resulting in residual interuser interference.

It has been shown using random codebook argument that the feedback bits should

be increased linearly with signal to noise ratio (SNR) to achieve the full sum rate

benefits [51]. Therefore, to harvest the achievable sum rate available in multiuser

MIMO systems, search for high fidelity CSI feedback technique remains to be an

active research area. In Chapter 3, a new Grassmannian predictive coding strat-

egy is shown to provide significant improvement in sum rate using a comparable

number of feedback bits.

1.3 Limited Feedback

As described in Section 1.1 and 1.2, feedback of CSI is important in obtain-

ing achievable benefits of MIMO wireless systems. Limited feedback is a practical

approach to obtain the CSI at the transmitter at the possible cost of CSI inaccuracy

due to quantization error [66]. The quantization of CSI is especially challenging

because of its manifold structure. In addition, CSI inaccuracies may arise due to

time variations and delayed feedback. These sources of inaccuracies motivate to
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take a more sophisticated signal processing approach on the manifold to fully reap

benefits of the MIMO wireless systems.

The most widely employed limited feedback strategy uses codebooks known

to the transmitter and the receiver, shown in Fig. 1.2. The codebook consists of

multiple precoders representing the quantized CSI with indices assigned to them.

In single user systems, the precoder with a maximum product norm with the MIMO

channel matrix is selected [64, 67]. In multiuser system, the codeword with min-

imum chordal distance between the codeword and the normalized channel vector

is selected. Then, the index of the selected precoder is communicated to the trans-

mitter, resulting in the limited feedback. For memoryless feedback, the size of the

codebook determines the number of bits to be fed back. Fortunately, using just a

few bits of feedback, limited feedback precoded systems has been shown to provide

substantial SNR gains over non-precoded systems [79].

Motivated by this simple and effective strategy, current wireless standards

such as IEEE 802.16e [41] and 3GPP LTE [2] have adopted the limited feed-

back strategies. Future wireless standards such as IEEE 802.16m [43] and 3GPP

LTE-Advanced [3] continue to actively consider viable limited feedback strate-

gies. These practical systems are usually implemented on digital integrated circuits

where CSI inaccuracy due to quantization may be aggravated by round off errors

in digital systems. To address CSI inaccuracies due to the implementation, new

codebooks suitable for digital systems are presented in Chapter 2.
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1.4 Signal Processing on Manifolds

The key property of the n× p unitary precoder under SNR metric in single

user MIMO systems, is that it can be right multiplied by an arbitrary p× p unitary

matrix without affecting the system performance [64, 67, 79]. The mathematical

space for such rotationally invariant precoders is represented by the Grassmann

manifold. It is a collection of p-dimensional subspaces embedded in n-dimensional

Euclidean space in which calculus can be performed. Thus each point on the Grass-

mann manifold represents a subspace. There are other equivalent definitions for

Grassmann manifold each with its own insights. For example, it may be defined

as a quotient space of unitary group, i.e., Un/(Un−p × Up), or as collection of

projection matrices. This seemingly complicated mathematical space has attracted

research in analysis [8], quantization [74], coding [104], and optimization [5] on

manifolds.

The manifold of unitary matrices is essentially the unitary group. The mani-

fold designation is used to distinguish the fact that the differential geometric proper-

ties from Lie theory are used. Lie group of unitary matrices is a unitary group with

differential geometric structure that is compatible with group operations [89]. This

is an important distinction from conventional unitary group because the differential

geometric structure provides more freedom to move about on the manifold.

Early work on limited feedback codebook designs has focused on quan-

tizing the Grassmann manifold to obtain a fixed optimal codebook. The optimal

codebook on the Grassmann manifold for block fading Gaussian channel is given

by isotropically distributed points on the manifold. It turns out that this is a classical
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problem in algebraic geometry called sphere packing [13]. Most codebook designs

employ numerical search or vector quantization. Suboptimal systematic codebooks

do exist based on Fourier construction [35]. In Chapter 2 the problems of systematic

codebook construction and generation are addressed.

Real world propagation channels are dynamic due to mobility in the chan-

nel. This has motivated a different direction in codebook designs that is dynamic

and adaptive to the changing environment, thereby reducing the CSI inaccuracies.

Unfortunately, due to the manifold structure of CSI, conventional signal processing

and adaptive techniques do not immediately extend to the Grassmann manifold. A

novel approach to adapt the codebook is to exploit the group theoretic structure of

the Grassmann manifold. Using translation and scaling defined on the Grassmann

manifold, adaptive codebooks have been shown to improve system performances

over fixed codebook regime [34, 85]. The approach taken in this dissertation is

to view the time evolution of the CSI as a time series evolving on the Grassmann

manifold. This is graphically depicted in Fig. 1.4. As depicted in Fig. 1.4, the

Grassmann manifold can be envisioned with a hyper-spherical geometry. Thus lin-

ear signal processing operations such as addition and multiplication are not well

defined. This motivates the need for intrinsic signal processing techniques on the

manifold. Questions arise; How can we quantify the difference or error between

two points? What is a sensible way to predict given two points? In Chapter 3, we

develop basic signal processing tools to arrive at predictive coding algorithm on the

Grassmann manifold.

Finally, the Grassmann manifold characterization of CSI is associated with
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Figure 1.4: Graphical depiction of CSI evolution over time on the Grassmann man-
ifold with non-Euclidean structure.

specific transmission strategy, e.g., beamforming and spatial multiplexing. The

drawback is that multiple codebooks or multiple adaptation techniques have to be

implemented for each mode of transmission strategies. If, however, a single rep-

resentation for all the available spatial features in the MIMO channel can be made

available, the MIMO wireless systems can further benefit from capacity achieving

techniques such as multimode precoding [65]. The collection of all the spatial fea-

tures of a given MIMO channel gives rise to the manifold of unitary matrices. The

manifold of unitary matrices, considered as a manifold in the space of invertible

complex matrices, is a collection of square unitary matrices in which calculus can

be performed. Motivated by the same questions for the Grassmann manifold, basic

signal processing tools, differential coding, and predictive coding techniques on the

manifold of unitary matrices are developed in Chapter 4.
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1.5 Thesis Statement

Correlation and structure of the signals evolving on the Grassmann manifold

and the manifold of unitary matrices can be exploited to obtain high resolution

predictive coding techniques and to improve throughput of MIMO communication

systems.

1.6 Contributions

The contributions of this dissertation may be summarized as follows.

• Kerdock Codebook Design A new single user codebook design suitable for

both beamforming and unitary precoded spatial multiplexing systems is pro-

posed. The proposed codebook has systematic construction, reduced stor-

age, and search enabled by finite alphabet structure. Sylvester-Hadamard

construction and power method to systematically generate the codebooks are

shown. Closed form distance properties of the codebook are derived which

shows that it performs similarly to previously known codebooks. Numerical

results show that symbol error rate and achievable rate similar or better than

previously known floating point codebooks are obtained.

• Signal Processing on the Grassmann Manifold Basic signal processing

building blocks such as differencing, mapping onto the Grassmann mani-

fold, parallel transport, and optimal prediction frameworks are derived. Using

these building blocks, a Grassmannian predictive coding is proposed. Fur-

thermore, a predictive coding algorithm suitable for delayed feedback sys-
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tem is developed with step size prediction to optimize the predicted estimate.

Based on the geometric interpretation of the algorithm, distortion bounds are

derived. Distortion bounds show that the proposed framework provides sub-

stantial distortion improvement over memoryless techniques. Application to

single user limited feedback beamforming system shows that symbol error

rate approaching the perfect CSI case can be obtained. Furthermore, for

limited feedback multiuser MIMO system with zero forcing, the proposed

algorithm achieves multiplexing gain as a function of temporal correlation

exceeding that of memoryless approach.

• Signal Processing on the Manifold of Unitary Matrices Basic signal pro-

cessing building blocks such as differencing, mapping onto the manifold of

unitary matrices, and optimal prediction frameworks are derived. Using these

building blocks, a differential coding and predictive coding are proposed. Er-

ror quantization is performed on the tangent space to the unitary manifold

which reduces the number of parameter by a half. Applications to single user

limited feedback unitary precoded system operating in temporally correlated

channels show that the proposed algorithm provides high fidelity CSI that is

independent of the rank. Unitary precoders derived from the feedback for

various ranks show symbol error rate performance approaching the perfect

CSI case. Furthermore, the proposed predictive coding algorithm applied to

limited feedback-based block diagonalization in multiuser MIMO system is

shown to provide substantial sum rate improvement for mild temporal corre-

lation.
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1.7 Organization

In Chapter 2, design of Kerdock codebook, derivations, and simulation re-

sults are provided. In Chapter 3, manifold-constrained signal processing tools

and predictive coding results for Grassmann manifold are presented. In Chapter

4, manifold-constrained signal processing tools, differential and predictive coding

techniques, and predictions for delayed feedback on unitary manifold are presented.

Finally, concluding remarks and future work are presented in Chapter 5.

1.8 Notations

Lower case bold letters e.g., v, are used to denote vectors and upper case

bold letters e.g., H, are used to denote matrices. The norms of vectors or matrices

are denoted by ‖ · ‖ (or ‖ · ‖2) and ‖ · ‖F for the usual 2-norm and Frobenius norm,

respectively. The trace of a matrix is denoted tr(·). The space of integers, real

numbers, and complex numbers are denoted N, R, and C, respectively, with the

appropriate superscript to denote the dimensions of the space. The real part of a

complex number is denoted by <(·). The n × n identity matrix is denoted by In.

Superscripts T , ∗, and † are used to denote the transposition, Hermitian transpose,

and pseudo inverse, respectively. The n-th column entry of a matrix A is denoted

by [A]n and a subset of columns by [A]1:n. The expectation is denoted E[·].
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Chapter 2

Kerdock Codebook for Limited Feedback MIMO
Systems

2.1 Prior Work

Channel state information (CSI) at the transmitter can provide considerable

capacity and resilience to channel fading in multiple-input multiple-output (MIMO)

systems [66]. A practical solution to provide CSI to the transmitter is a codebook

based feedback strategy, known as the limited feedback [64, 66, 67, 78, 79]. In a

limited feedback system, the receiver searches for the appropriate transmit precoder

from a finite set of precoders, called the codebook, shared by the transmitter and the

receiver. Then, the receiver sends the index of the codeword back to the transmitter

resulting in the feedback of quantized CSI. In practice, three to six bits of feedback

are common to balance the benefits of limited feedback and feedback overhead

tradeoff [2, p. 39], [41, pp. 457-466].

There are several codebook designs in the literature such as those based on

vector quantization [52,79,87], Grassmannian packing [64,67,78], discrete Fourier

transform [64, 67], and quadrature amplitude modulation [90]. Unfortunately, the

codebook design often requires numerical iterations and optimizations. Further-

more, codebooks for beamforming and spatial multiplexing needs to be separately
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stored in a memory. In today’s hand-held devices with limited memory, size, and

power [80], limited feedback codebooks with smaller memory footprint will help to

reduce implementation costs. Furthermore, reduced search computation will ease

stringent computational timing requirement in real-time system and allow the sys-

tem to quickly adapt to highly mobile environments. The codebooks adopted for re-

cent standards illustrates trends towards systematic finite alphabet codebooks [2, p.

39], [41, pp. 457-466].

2.2 Contributions

In this chapter, a new single user codebook design is proposed for limited

feedback unitary precoded MIMO systems, called the Kerdock codebook, due to

the Kerdock code construction with quaternary alphabet [28,33,54]. The main con-

tribution is to identify the Kerdock codebook as a new avenue of codebook design

with additional benefits of systematic construction, reduced storage, and search en-

abled by the finite alphabet construction. Reduced storage is made possible in two

parts: 1) by finite alphabet, and 2) by deriving spatial multiplexing codebook from

beamforming codebook. The distance properties for Kerdock codebook are derived

showing that it performs similarly to previously known codebooks. Two practical

examples of codebooks are shown for two and four transmit antennas using two dif-

ferent constructions: a Sylvester-Hadamard construction [33] and a power construc-

tion [26]. The Sylvester-Hadamard construction gives a good solution for the two

antenna case while the structure in the power construction gives a better solution for

the four antenna case and permits closed form derivation of subspace distance prop-
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Figure 2.1: Block diagram of general limited feedback MIMO System

erties. The proposed construction can be extended to matrices with dimensions that

are power of two. Compared with prior work in [64, 67, 87, 90], our approach pro-

vides systematic codebook construction with finite alphabet where single codebook

can be used for both beamforming and spatial multiplexing transmissions.

2.3 System Model
2.3.1 Discrete-time System Model

A limited feedback precoded MIMO wireless system with Nt transmit an-

tennas and Nr receive antennas is shown in Fig. 2.1. Let k denote the time index

and Ns denote the number of spatial streams being used. The case when Ns = 1 is

called beamforming and the general case when 1 < Ns ≤ Nt is called Ns-stream

spatial multiplexing. The transmit bit stream is sent to the encoder and modu-

lator which outputs a complex transmit vector, s[k] = [s1[k], s2[k], . . . , sNs [k]]T .

The average power is assumed to be constrained as Es[ss
∗] = Es

Ns
INs where Es

is used to denote the expectation with respect to the transmit vector s and Es is
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used to denote the total transmit power. The transmit vector s[k] is multiplied by

the unitary precoder F[k] ∈ CNt×Ns (f [k] ∈ CNt×1 for beamforming) with uni-

tary constraint, F∗[k]F[k] = (1/Ns)INs , producing a length Nt transmit vector

x[k] =
√

Es/NsF[k]s[k]. The precoder F[k] is selected based on the limited feed-

back information.

Assuming perfect synchronization, sampling, and a linear memoryless chan-

nel, the equivalent baseband input-output relationship is

y[k] =
√

Es/NsH[k]F[k]s[k] + n[k]

where H[k] ∈ CNr×Nt is the channel matrix and n[k] is the additive noise vector.

The entries of n[k] are assumed to be complex Gaussian independent and identically

distributed (i.i.d.) according to CN(0, N0). The receive vector y[k] is then decoded

by assuming a perfect knowledge of H[k]F[k] at the receiver to produce the output

vector ŝ.

2.3.2 Codeword Search

Based on the estimate of the channel and the receiver structure, the receiver

chooses the best precoding codeword F̂[k] from a set of N possible codewords in

the codebook F = {F1,F2, . . . ,FN} shared by the transmitter and the receiver.

The codeword index is represented by b = dlog2Ne bits resulting in b-bit feedback.

The beamformer that minimizes the probability of symbol error for maxi-

mum ratio combining receiver is [67]

f̂ [k] = arg max
f∈F
‖H[k]f‖22. (2.1)
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For spatial multiplexing with a zero forcing receiver, the minimum singular

value selection criteria is often used [64]

F̂[k] = arg max
F∈F

λmin{H[k]F} (2.2)

where λmin{·} denotes the minimum singular value of the argument. This selec-

tion criteria approximately maximizes the minimum substream signal to noise ratio

(SNR).

The Grassmannian beamforming criterion states that the beamforming code-

book should be designed such that the minimum pairwise chordal distance is maxi-

mized [67]. Therefore, the chordal distance is used to analyze the distance property

of the beamforming codebook. The chordal distance between codeword vectors, f1

and f2, is given by

dch(f1, f2) = sin(θ1,2) =
√

1− |f∗1 f2|2. (2.3)

For spatial multiplexing, projection 2-norm distance, among many possible distance

metrics [64], is used to evaluate the spatial multiplexing codebooks. It was shown in

[64] that the codebook should be designed by maximizing the minimum projection

2-norm distance

dp2(F1,F2) = ‖F1F
∗
1 − F2F

∗
2‖

=
√

1− λmin{F∗1F2} (2.4)

between a pair of codewords to approximately maximize the minimum substream

SNR.
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2.4 Kerdock Codebook Design

Quaternary alphabet Kerdock codes were originally proposed as error cor-

recting codes [28] and are known to be mutually unbiased bases (MUB) [84]. MUB

contains orthonormal bases satisfying mutually unbiased property. Some of the

known MUB constructions can be found in [26, 59, 84]. It was shown in [60] that

many of the MUB constructions are equivalent and that these constructions have

a close connection with complex projective space and uniform tight frames, both

of which have been used for the construction and analysis of quantized codebooks

for limited feedback MIMO systems. Based on these connections, the utility of

Kerdock codes and MUB as limited feedback codebooks are studied.

If S = [s1 . . . sNt ] and U = [u1 . . . uNt ] are two Nt × Nt orthonormal

bases (i.e. S∗S = INt), the column vectors drawn from each orthonormal basis are

said to satisfy the mutually unbiased property if |〈sn,um〉| = 1/
√
Nt for n,m =

1, . . . , Nt. An MUB is the set S = {S0,S1, . . . } satisfying the mutually unbiased

property. The maximum number of orthonormal bases, i.e. |S|, has been shown

to be less than or equal to Nt + 1 for any Nt; a sufficient condition for equality is

that Nt is a power of a prime [59]. It is presently unknown whether equality occurs

when Nt is not a power of prime and this question remains to be an active area

of research [26]. Several approaches for the construction of size Nt + 1 MUB for

prime powers have been proposed [84].
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2.4.1 Sylvester-Hadamard Construction

One approach for Kerdock code construction was proposed in [33]. The

construction consists of generating an Nt × Nt diagonal matrices Dn for n =

0, 1, . . . , Nt − 1 which are used to transform Nt ×Nt Sylvester-Hadamard matrix.

Each transformed matrix Sn becomes the orthonormal basis. The benefit of this

approach is that algebraic construction of the diagonal matrix using Z4 quadratic

maps is available.

Let Ĥ2 =

[
1 1

1 −1

]
denote the Sylvester-Hadamard matrix. The Nt × Nt

Sylvester-Hadamard matrix such that Nt = 2B is given by the Kronecker product

of B Sylvester-Hadamard matrix

ĤNt = Ĥ2 ⊗ Ĥ2 · · ·︸ ︷︷ ︸
Btimes

. (2.5)

The general strategy for the Kerdock codebook construction is:

1. Construct the diagonal generator matrices Dn for n = 0, 1, . . . , Nt − 1.

2. Compute the basis Sn = (1/
√
Nt)DnĤNt .

3. Let S = [S0 S1 · · · SNt−1].

For brevity, the details of the construction according to [33] are omitted.

2.4.2 Power Construction

Another attractive MUB construction using a single generator matrix was

recently proposed by Gow [26]. The construction uses advanced concepts from
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finite groups and representation theory. In particular, the generating basis arises as

an automorphism of an extra-special 2-group which is a group structure that also

appears in the construction of Kerdock codes [33]. Let Nt be a power of two. The

following theorem was proved by Gow [26]:

Theorem 1. If D is an invertible unitary Nt × Nt matrix that satisfies DNt+1 = I

and the determinant of D is equal to 1, then the powers D,D2, . . . ,DNt+1 = I

generates Nt + 1 pairwise mutually unbiased bases. Furthermore, all entries of D

are in the quaternary alphabet.

Theorem 1 is an existence theorem which states that if D satisfies the in-

dicated mild conditions, then the powers D,D2, . . . ,DNt+1 = I generates Nt + 1

pairwise mutually unbiased bases with quaternary entries. The contribution here is

that a generator D obtained from the Sylvester-Hadamard construction in Section

2.5 is identified.

From the limited feedback codebook design perspective, Theorem 1 repre-

sents a powerful result when the number of transmit antennas are power of 2. Only

the generating base D needs to be stored and the rest of the codebook can be gen-

erated by taking the powers. Note also the inclusion of the identity element which

corresponds to the case of antenna subset selection [32]. Prior codebook designs do

not include the identity element as part of the unified codebook design.

2.4.3 Codebook Arrangement

The construction of multi-stream codebooks using the special structure of S

is shown next. For beamforming, the codebook is constructed by taking the columns
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of each basis

F = {f1 = [S0]1, f2 = [S0]2, . . . , fN = [SNt ]Nt} (2.6)

where N ≤ Nt · (Nt + 1).

For spatial multiplexing, unique column combinations are selected from

each Sn to form the codebook. Note that every column combination yields a unitary

matrix. Specifically, for an Ns-stream spatial multiplexing codebook, the largest

codebook is derived by taking all Ns-column combinations from each Sn. There

are
(
Nt
Ns

)
column subset combinations in each Sn. The maximum number of code-

words that the MUB can take is (Nt+1)×
(
Nt
Ns

)
. Smaller codebook can be obtained,

for example, by taking the subset of the largest codebook which maximizes min-

imum distance between codewords. In Section 3.5, the distance properties of this

codebook are derived. In Section 4.7, this codebook is shown to perform favorably

to same sized Grassmannian codebook through Monte Carlo simulations.

2.5 Kerdock Codebook Examples
2.5.1 Two Transmit Antenna Construction

For the two antenna MIMO system, the Sylvester-Hadamard construction is

used. The resulting bases are

S0 =
1√
2

[
1 1

1 −1

]
,S1 =

1√
2

[
1 1

j −j

]
,S2 =

[
1 0

0 1

]
, (2.7)

where S0 is the scaled Sylvester-Hadamard matrix. The beamforming codebook is

constructed as F = {f1 = [S0]1, f2 = [S0]2, . . . , f6 = [S2]2}.
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2.5.2 Four Transmit Antenna Construction

For the four antenna MIMO system, a power construction based codebook

is used. Starting with the Sylvester-Hadamard construction and making a slight

modification to one of the bases, the following generator matrix satisfies Theorem

1

D =
1

2


−j 0 0 0

0 1 0 0

0 0 −j 0

0 0 0 −1

(Ĥ2 ⊗ Ĥ2

)
. (2.8)

Finally, computing Sn = Dn+1 for n = 0, · · · , 4 yields the following bases

[
S0 S1

]
=

1

2


−j −j −j −j −1 −1 −j j

1 −1 1 −1 −j −j −1 1

−j −j j j −j j −1 −1

−1 1 1 −1 1 −1 j j


[
S2 S3

]
=

1

2


−1 j j 1 j 1 j −1

−1 j −j −1 j −1 j 1

j −1 −1 −j j 1 −j 1

−j 1 −1 −j j −1 −j −1


S4 = I4. (2.9)

For the beamforming system, a codebook of size N = 20 (5-bit codebook)

is obtained. Without antenna selection, the identity element S4 can be deleted

reducing the codebook size to 4 bits. For Ns = 2 spatial multiplexing system,

5 ×
(
4
2

)
= 30 codewords or 5-bit codebook is obtained. For Ns = 3, 5 ×

(
4
3

)
= 20

codewords (5-bit codebook) is obtained. Thus, a finite alphabet codebook which

can be shared for beamforming and spatial multiplexing is obtained. Furthermore,
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the proposed codebooks satisfy the per antenna power constraints because equal

energy is distributed across the transmit antennas. In contrast, Grassmannian code-

books may distribute energy unevenly among the transmit antennas.

2.6 Codebook Storage and Search Complexity

The on-chip memory of baseband processors, often on the order of few kilo-

bytes to a megabyte, are extensively used for storing instructions and intermediate

data that are being processed. The on-chip memory may not have sufficient room

to maintain all the codebooks. Consequently, it is likely that larger codebooks will

be stored on an off-chip memory which takes time to load. Therefore the storage

requirement of a codebook has a significant impact on the implementation. Further-

more, it is well known that a multiplication take more clock cycles than an addition.

Consequently, reducing multiplication in the baseband processor helps to meet the

stringent timing requirement and computational load. The arithmetic logic unit of-

ten supports additional modes of operations such as addition, shift and sign change

which can be used to exploit the benefits of proposed codebook and reduce the

computational clock cycles. While the specific benefits achieved by multiplier-free

codebook are implementation specific, the storage and search complexity of the

proposed codebook in terms of storage bits and arithmetic operations are quantified

next.
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2.6.1 Storage

For codebook storage, the number of real elements needed to store a code-

book for each mode of transmission is considered. If Nb is the number of bits

available in the system to represent a real number, the storage required for a sin-

gle N -entry codebook is 2NbNNtNs bits. Some reduction may be possible due to

specific values taken on by the codeword entries, but only the worst case scenario

is considered for comparison. The Grassmannian codebook [63, 64, 67], without

any structure, result in 2NbNNtNs bits of storage for each codebook. The Fourier

codebook [35] requires the generator matrix and the discrete Fourier transform ma-

trix to be stored resulting in 2Nb(Nt + NtNs) bits for each codebook. Note that

the storage requirement is independent of the codebook size because the generator

matrix is designed for a given codebook size.

For the Nt = 2 Kerdock codebook, a total of 8 bits of storage is required

where 4 bits each are used for the Sylvester-Hadamard matrix and D1. For Nt = 4,

total of 12 bits of storage is required where 4 × 2 bits are used for the diagonal

matrix and 4 bits are used for the Hadamard matrix in (2.8). Note that the Ker-

dock codebook storage is independent of Nb and the same codebook can be used

for beamforming and spatial multiplexing. For a fair comparison, Table 2.1 shows

the number of bits required to store the Kerdock, Fourier, and Grassmannian code-

books for Nt = 4 using N = 16 for beamforming and N = 8 for 2-stream spatial

multiplexing. The Kerdock codebook provides a small fixed storage requirement

independent of the system specific word size.
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Table 2.1: Number of bits required for storing proposed Kerdock, Fourier, and
Grassmannian codebooks for Nt = 4 and using N = 16 for beamforming and
N = 8 for 2-stream spatial multiplexing. A system dependent number of bits
which are used to represent a real number is denoted by Nb.

MUB Fourier Grassmannian

12 40Nb 256Nb

2.6.2 Search Complexity

For search complexity, the number of arithmetic computation required to

arrive at the desired codeword is considered. It is assumed that (2.1) is tested for

beamforming and (2.2) is tested for spatial multiplexing with the estimated channel

matrix. Since the norm computations are common for all codebook entries, the

computation required to compute Hf for (2.1) and HF for (2.2) for each codeword

in the codebook are compared. The proposed Kerdock codebook with quaternary

alphabet reduces the complex multiplication into either a sign change or swapping

the real and imaginary part with sign change, eliminating the need for complex

multiplication.

For beamforming, the Grassmannian and Fourier based codebooks require

NNtNr complex multiplies andNNr(Nt−1) complex additions to find all the can-

didate effective channel gains. Meanwhile, the proposed Kerdock codebook does

not require any complex multiplication and it only requires NNr(Nt − 1) complex

additions. Similarly, for spatial multiplexing, the Grassmann and Fourier based

codebooks require NNsNr
2 complex multiplies and NNr

2(Ns − 1) complex addi-

tions while the proposed Kerdock codebook does not require any complex multipli-
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cation with same number of complex additions. Therefore the Kerdock codebook

eliminates complex multiplications which helps to reduce computational cycles for

resource limited mobile terminals.

2.7 Relationship with Previous Designs

In this section, the distance properties of rank one, two and three Kerdock

codebooks are first derived. Next, the proposed Kerdock codebook is shown to

have full diversity. Finally, an achievable rate analysis of the proposed Kerdock

codebook is provided.

2.7.1 Distance Properties

The distance properties of the codebook can be derived from the mutually

unbiased property.

Lemma 2. For any pair of beamforming Kerdock codewords fk and fl for k, l =

1, 2, . . . , N the chordal distance is either 1 when fk and fl are from the same basis

or
√

1− 1
Nt

when fk and fl are from different bases.

Next, consider the derived spatial multiplexing codebook and examine the

projection 2-norm distance property. For any Nt that is power of two and Ns =

2 spatial multiplexing codebook based on the power construction, the following

property is obtained.

Property 3. Let Fk and Fl, k 6= l, be Nt × 2 matrices composed by taking two
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columns from any power of D. Then,

| det(F∗kFl)| =

{
0, when Fk and Fl are from the same basis
1/
√
Nt, otherwise.

(2.10)

See Appendix 2.10.1 for the proof. The projection 2-norm distance (2.4)

increases as the minimum singular value of F∗1F2 is decreased. Property 3 indicates

that the proposed Kerdock codebook for Ns = 2 has only two possible projection

2-norm distance between the codewords.

Now consider Nt = 4 and Ns = 3 spatial multiplexing codebook.

Property 4. Let Fk and Fl, k 6= l, be 4 × 3 matrices by selecting any 3 columns

from each Sn. Then,

| det(F∗kFl)| = 1/2. (2.11)

See Appendix 2.10.2 for the proof. The result may appear trivial from mutu-

ally unbiased property, but the fact the determinant exhibits this property guarantees

that the codebook exhibits fixed projection 2-norm distance between the codewords.

Unfortunately, the proof only applies for Nt = 4.

2.7.2 Diversity

The diversity order is an important performance metric that indicates the

probability of symbol error trends for high SNR regime. In this chapter, the diver-

sity definition in [67, 105] is used. The Kerdock codebook arranged as in (2.6) is

easily verified to have full rank.
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Theorem 5. The proposed Kerdock codebook using at least one basis has full di-

versity order.

Proof. The proof follows that found in [67] using the fact that the Kerdock code-

book is of full rank since it is composed of unitary matrices. Thus, maximum

diversity is achieved by the Kerdock codebook.

2.7.3 Achievable Rate

The achievable rate of the system using a quantized codebook is an impor-

tant indicator of the quality of the codebook [67, 87]. The ergodic achievable rate

of the system with a unitary precoder is

R = EH

[
log2 det

(
INs +

Es

NsNo

F∗(H)H∗HF(H)

)]
. (2.12)

where EH denotes the expectation with respect to H and F(H) is the selected pre-

coder as a function of H according to the selection criteria (2.1) or (2.2). Perfect

channel knowledge at the receiver and uncorrelated Gaussian signaling for each

stream are assumed. This is the achievable rate upper bound when there are no

channel estimation errors and feedback delay, but not the true capacity since the

transmit covariance is not optimized for power allocation (i.e. water filling solu-

tion). For a fair comparison, the achievable rate with respect to perfect CSI at the

transmitter case of an equal size Grassmannian, Fourier, and Kerdock codebook

are compared in Fig. 2.2. For both the beamforming case (dashed line) and spatial

multiplexing case (solid line), the Grassmannian, Fourier, and Kerdock codes have
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Figure 2.2: Achievable rate for Nt = 4 beamforming system and unitary precoded
spatial multiplexing system using, perfect CSI at the transmitter, Grassmannian,
Fourier, and Kerdock codebooks

the same achievable rates. Therefore there is no loss in achievable rate using the

Kerdock codebook.

2.8 Numerical Results

In this section, simulation results for 1) vector symbol error rate (VSER)

performance of limited feedback beamforming system, and 2) VSER performance

of two stream unitary precoded spatial multiplexing system using the Grassman-

30



0 2 4 6 8 10 12 14 16

10-2

10-1

100
VSER vs SNR using Grassmannian and Kerdock Codebook

SNR (dB)

V
S

E
R

Perfect CSIT BF
4-bit Grass. BF
4-bit Kerdock BF
Perfect CSIT SM
5-bit Grass. SM
5-bit Kerdock SM

Beamforming

Spatial
Multiplexing
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and Kerdock codebook

nian and Kerdock codebooks are given. All simulations are performed for Nt = 4

assuming delay and error free feedback. No forward error correction is used.

The VSER performance of beamforming system using perfect CSI, Grass-

mannian codebook and Kerdock codebook are shown in Fig. 2.3. In all cases, 64-

QAM is used for modulation. The case with perfect CSI at the transmitter provides

the achievable lower bound of VSER. The proposed Kerdock codebook provides

VSER performance closely matching the Grassmannian codebook. Similarly, the
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VSER performance for two stream spatial multiplexing system using 5-bit code-

books are shown in Fig. 2.3. In all cases, 16-QAM modulation and a zero forcing

receiver are used. Remarkably, the proposed Kerdock codebook with 30 codeword

entries slightly outperforms the Grassmannian codebook with 32 entries.

To clearly see the performance difference among the codebook designs,

Fig. 2.4 shows the SNR gap between the perfect CSI at the transmitter case and

the limited feedback approach using Grassmannian, Fourier and Kerdock code-

book at VSER = 10−2 in two stream spatial multiplexing system. As expected,

the Grassmannian codebook outperforms the Fourier codebook. The Kerdock code-

book shows worse performance for the 3-bit codebook because only 8 of 30 possible

codewords are used. As the codebook size is increased from 4 and 5 bits, however,

the Kerdock codebook outperforms the Grassmannian codebook which is quite re-

markable considering the fact that the codebook contains only quaternary alphabet.

This observation indicates that Grassmannian codebook is not exactly optimal.

Overall, the results indicate that the proposed Kerdock codebook performs

very close or better than previously known codebooks with additional benefit of

1) structured construction, 2) finite alphabet, 3) reduced search complexity, and 4)

shared codebook between beamforming and spatial multiplexing.

2.9 Summary

In this chapter, a new avenue of codebook design, called the Kerdock code-

book, for limited feedback unitary precoded MIMO systems was proposed. The

Kerdock codebook is systematically generated with elements drawn from a qua-
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ternary alphabet resulting in reduced storage and search complexity. Furthermore,

it was shown that the structure of the Kerdock codes can be used to derive spatial

multiplexing codebooks from the beamforming codebook. Analysis and simulation

results verified that the Kerdock codebooks provides favorable performance to the

previously known codebooks. Limitations of this work are that the codebook can

only be constructed for number of transmit antennas which are powers of two and

the number of available bases are limited to Nt + 1. An open problem remains in
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constructing odd dimension codebook with quaternary alphabet entries. Our future

work will consider effects of space or time correlated channels and extensions to

multiuser scenarios. In particular, Kerdock codes are also applicable to a multiuser

MIMO system using a unitary basis sets, known as PU2RC [37, 91].1

2.10 Appendix
2.10.1 Proof of Property 3

Proof. Each Fk and Fl can be written as Fk = DpEk and Fl = DqEl where Ek and

El are Nt × 2 column selection matrices. Then F∗kFl = ET
kDq∗DpEl = ET

kDrEl

where r = (q−p)∗when q > p and r = (p−q) when p > q. Due to the construction

Dr is one of the member basis. The left and right multiplication of Dr by ET
k and

El selects a 2× 2 sub-matrix of Dr. Any member Dr has a structure such that any

2×2 sub-matrix selected this way always contains 1) all reals, 2) a pair of reals and

a pair of imaginary, or 3) all imaginary, from the quaternary alphabet. It is easy to

verify, by listing all possibilities, that the determinant of such 2× 2 matrix can only

take values 0 or 1/
√
Nt.

2.10.2 Proof of Property 4

Proof. The det(F∗kFl) is given by the determinant of a 3 × 3 sub-matrix of some

basis Sn. Recall that the adjoint of a square matrix D, denoted adj(D), is given

1After this work was submitted for [47], a similar codebook design with nested property for
multiuser MIMO was proposed in [77]. This work differs in that two codebook design strategies
are proposed in addition to the shared codebook structure for single user beamforming and spatial
multiplexing cases with provable distance properties.
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by adj(D) = D−1 · det(D). Since D is unitary, D−1 = D∗ and det(D) = I.

So, adj(D) = D∗. Therefore, the adjoint matrix also has quaternary alphabet. The

elements of adjoint matrix is the cofactors which are minors, or determinant of 3×3

sub-matrix, with appropriate signs. This shows that every determinant of 3×3 sub-

matrix is in the set {±1,±j} with scaling 1/
√
Nt = 1/2 and the result follows.
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Chapter 3

Signal Processing on the Grassmann Manifold

3.1 Prior Work

Predictive vector quantization (PVQ) is a class of memory based coding

techniques used in applications such as speech, image, and video processing [22,

29, 30, 55]. In PVQ, the error signal between the current observed vector and the

predicted vector based on past observations is quantized. When the observed data to

be encoded are correlated, usually in time or space, and a suitable prediction func-

tion is available, quantizing the error signal leads to lower distortion compared with

memoryless vector quantization [22]. The effectiveness of PVQ rests on the corre-

lation exhibited by the data, the prediction function, and the quantization technique

employed. In speech coding, for example, small blocks of speech signal exhibits

temporal correlation due to human speech production mechanisms [17]. Classical

PVQ technique has been applied for signals in linear vector space where the usual

difference, addition, and prediction are well understood. Unfortunately, when the

signal to be encoded is in a special mathematical space such as the Grassmann

manifold, the usual linear operations are not well defined and a new set of tools

must be established. In particular, an extension of predictive coding for Grassmann

manifold has not appeared in prior literature.
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Motivated by applications in MIMO wireless communication, there has

been research in analyzing [8], quantizing [7, 15, 74], and coding [12, 53, 104]

on the Grassmann manifold driven in part by applications to commercial wire-

less systems [1, 41]. Prior work exists for designing suitable memoryless quantiza-

tion codebooks such as Grassmannian line packing [79], vector quantization [88],

Grassmannian frames [102], and Kerdock codebooks [47]. In practice, though, the

wireless communication channel often exhibits temporal correlation due to mo-

bility in the propagation channel [38, 40, 56, 75, 85, 98]. In [38, 40], modeling

the feedback state transitions allow the net feedback rate to be reduced. Resolu-

tion, however, is fixed by the codebook size. To improve the quantization error,

an adaptive codebook approach was proposed which can adapt to a given channel

distribution [75]. A feedback overhead to retrain or synchronize the pre-computed

codebooks may be needed when the channel distribution changes. Alternatively,

a hierarchical codebook strategy uses two codebooks, coarse and fine, for layered

feedback in temporally correlated channel [56]. Codeword describing the coarse

encoding region is updated infrequently and a finer local codebook is used for fre-

quent feedback. A more flexible approach is to use a progressive refinement strategy

in which rotation and scaling are applied to structured codebook so as to provide

high resolution feedback [34,85]. Finally, a closely related result to this chapter is a

complex Householder transform based predictive vector quantization technique for

correlated normalized channel vectors in multiple-input single-output communica-

tion systems [62]. The current vector channel is decomposed into previous vector

channel and weighted sum of orthogonal subspaces to represent the temporal varia-
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tion. While the algorithm is presented in the form of predictive vector quantization,

the actual operation is successive decomposition and projection using the complex

Householder transform with unit delay as the predictor which was shown to be op-

timal for the specific application.

Feedback delay in practical systems, e.g., due to protocol overhead and

channel estimation interval, may further aggravate CSIT accuracy in time-varying

channels [38,73,99,103]. The eigenmode and singular value coherence times were

evaluated and the sensitivity of throughput in multiuser MIMO systems to feedback

delay was illustrated in [73]. In [38], it was shown that feedback throughput gain

decreases exponentially with increasing feedback delay, suggesting the importance

of considering feedback delay. Indeed, delayed feedback characterized as an addi-

tional error in CSI has shown to degrade the sum rate performance in multiuser

MIMO systems, especially for fast time-varying channels [99]. More recently,

in [103], a mode switching strategy between single user and multiuser MIMO was

proposed conditioned on SNR, normalized Doppler frequency and codebook size.

They showed that the operating region for multiuser MIMO to be in low normalized

Doppler region with large codebook size, suggesting the vulnerability of multiuser

MIMO techniques in time-varying channels with feedback delays.

3.2 Contributions

In this chapter, a predictive coding algorithm is proposed for correlated data

on the Grassmann manifold, called the Grassmannian predictive coding (GPC) al-

gorithm. The proposed algorithm is motivated by the need for higher resolution

38



quantization in limited feedback MIMO wireless systems. The GPC algorithm is

derived using the intrinsic geometry and natural operations defined on the manifold.

The main contributions of this chapter are as follows.

• Grassmannian predictive coding algorithm: A framework for predictive cod-

ing on the Grassmann manifold is proposed. The key idea of the proposed

approach is in using tangent vector to establish the notion of an error sig-

nal and prediction on the manifold. The error tangent vector is decomposed

into an error tangent direction and an error tangent magnitude and several

special codebook designs are proposed. Furthermore, a prediction function

is proposed using parallel transport corresponding to a one step prediction.

Formulating higher order prediction functions remain as an open problem.

The tangent and parallel transport on the Grassmann manifolds has been used

in [18], but it has not been exploited to develop a predictive coding concept.

• Grassmannian predictive coding for delayed feedback: To address the lim-

ited feedback delay in MIMO systems, a new predictive coding architecture,

called adaptive step size GPC algorithm, is proposed where the output of

the predictor is used as the output of the decoder. Adaptive step size Grass-

mannian predictor is used at the encoder which feeds back the predicted step

size to the decoder. The encoder thus use the observed CSI to compute the

prediction error as well as the predicted step size. Both the prediction error

and predicted step size are quantized and transmitted to the decoder via finite

rate feedback channel. An efficient step size feedback strategy is proposed to
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maintain practical feedback rates. The mean squared chordal distance error

performance of the proposed approach is compared with memoryless code-

book approach and the GPC algorithm that illustrates significantly improved

error performance.

• Distortion bounds: Based on a geometric interpretation of the proposed GPC

algorithm, a simple model of the quantization region is obtained. Using met-

ric volume computations on the Grassmann manifold [74], lower and upper

bounds on the quantization error are derived. The obtained bounds are com-

pared with distortion obtained in simulations. Furthermore, the distortion for

the proposed GPC algorithm is shown to be lower than the lower bound of

memoryless quantizer distortion for a given codebook size.

• Application to limited feedback beamforming systems: The proposed GPC

algorithms are applied to single user limited feedback beamforming system

in a temporally correlated wireless channel with and without feedback delay.

The proposed GPC algorithm without feedback delay is compared with mem-

oryless Grassmannian codebook and Householder transform based PVQ with

limited feedback. It is shown that the proposed GPC algorithm provides better

symbol error and achievable rates than prior methods under the same feed-

back rate constraints. The adaptive step size Grassmannian predictive coding

algorithm in the presence of feedback delay was shown to provide improved

symbol error rate performance over memoryless codebook approach.
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• Application to limited feedback multiuser MIMO systems: The proposed GPC

algorithms are applied for limited feedback zero-forcing multiuser MIMO

systems with multiple transmit antennas and a single receive antenna at each

mobile terminal [51]. To isolate the effect of the limited feedback, it is as-

sumed that the users are scheduled a priori. The proposed GPC algorithm

without feedback delay is shown to provide substantial sum rate improvement

over memoryless random codebook technique with same feedback rate [51].

The sum rate improvement, however, depends on the channel correlation.

When the channel is highly correlated, the proposed GPC algorithm is shown

to provide sum rate close to the system with perfect CSI at the transmitter,

i.e., infinite feedback. The adaptive step size GPC algorithm was shown to

provide substantial sum rate improvement even in the presence of feedback

delay. Thanks to the GPC structure, sum rate improvements as a function of

temporal correlation are shown in the presence of feedback delay.

3.3 Grassmann Manifold: Preliminaries

Geometric and linear algebraic properties of the Grassmann manifold will

be fundamental in derivation of the proposed algorithm. In this section, an overview

of the Grassmann manifold is given and necessary tools such as the distance metric,

tangent, mapping from tangent onto the manifold, parallel transport, and prediction

are derived.

Let Un = {X ∈ Cn×n : X∗X = In} be the unitary group formed by n× n

unitary matrices. The Stiefel manifold is the space of unitary n×pmatrices (p < n)
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defined as Vn,p = {X ∈ Cn×p : X∗X = Ip}. Since p < n and there are n− p free

dimensions with respect to the n-dimensional space, it may be equivalently identi-

fied as the quotient group Un/Un−p. The Grassmann manifold, Gn,p, is the set of

subspaces spanned by the columns of Vn,p. It may also be identified as a quotient

space of the Stiefel manifold, Vn,p/Up, or as a quotient space of the unitary group,

Un/(Un−p × Up). A point X ∈ Gn,p may be considered as an equivalence class,

i.e., [X] := {XUp : Up ∈ Up}. For notational brevity, X ∈ Gn,p is used to mean

the equivalence class of matrices whose columns span the same p-dimensional sub-

space. For numerical computation, X ∈ Gn,p is interpreted to be one representative

of the equivalence class. Also, the Grassmann manifold is a smooth topological

manifold with locally Euclidean property and smooth tangent space structure, both

of which will be essential in the derivation of the proposed algorithm [61]. In this

chapter, the Grassmann manifold Gn,1 is considered; the general case for p > 1 is

treated in Chapter 4.

First, the notion of distance between points on the Grassmann manifold

plays a basic role as a metric for error or similarity between points. Let the inner

product of x[1], x[2] ∈ Gn,1 be denoted by ρ = x∗[1]x[2]. Let θ = cos−1(|ρ|) be the

subspace angle between x[1] and x[2] [25]. The chordal distance metric for Gn,1 is

given by [18, 67]

d(x[1],x[2]) =
√

1− |ρ|2

= | sin θ| (3.1)

which is same as (2.3) but with the inner product inside the squared absolute value
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denoted by ρ. For notational brevity, the notation d is used without the arguments

when there is no confusion. Unlike the arc length, given by |θ|, the chordal distance

is differentiable everywhere and provides a close approximation of the arc length

when the points are close [13]. The advantages of using chordal distance for the

packing problem on Grassmann manifold are discussed in [8]. For the codebook

construction problem using the generalized Lloyd algorithm in limited feedback

MIMO systems, it was shown that the Lloyd algorithm is feasible only when the

chordal distance is chosen as the distance measure [106]. Based on these obser-

vations, the chordal distance is used as the distance measure on the Grassmann

manifold throughout this chapter.

Using the chordal distance metric, the correlation of two sequences

{x[k]}k∈N, {yi}i∈N ∈ Gn,1

is defined by ζx,y(n) = Ek[d(x[k],y[k + n])] which can be interpreted as the mean

chordal distance between two sequences on the Grassmann manifold. Two applica-

tions where such sequences arise are described in Section 3.6.3 and 3.6.4.

Based on the smooth manifold structure of the Grassmann manifold, it is

possible to relate two points x[k],x[k+ 1] ∈ Gn,1 by considering the tangent vector

emanating from x[k] to x[k + 1]. The tangent has been used successfully in the

development of Newton and conjugate gradient algorithms with orthogonality con-

straints [18, 68–70]. The tangent method is utilized for its computational benefits

and geometric insight to the problem.

Theorem 6 (Tangent). If x[k], x[k + 1] ∈ Gn,1, then the tangent vector emanating
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from x[k] to x[k + 1] is

e = tan−1
(
d

|ρ|

)
x[k + 1]/ρ− x[k]

‖x[k + 1]/ρ− x[k]‖2
(3.2)

such that ‖e‖2 = tan−1(d/|ρ|) is the arc length between x[k] and x[k + 1] and

~e = (x[k + 1]/ρ− x[k])/(d/|ρ|) is the unit tangent direction vector.

Proof. See Appendix 3.8.1.

Theorem 6 provides a compact formula for the tangent vector on Gn,1. For

notational brevity, the tangent operation is denoted by e = L(x[k],x[k+ 1]). It can

be considered as a length preserving unwrapping of the arc between x[k] and x[k+

1] onto the tangent space at x[k]. Furthermore, it is conveniently expressed as the

product of magnitude component and the normalized directional component. This

decomposition will be exploited for quantization. The tangent vector describes the

shortest distance path along the arc from x[k] to x[k + 1], called the geodesic [18].

The geodesic can be parameterized by one parameter t ∈ [0, 1] using the tangent

vector as the next theorem shows.

Theorem 7 (Geodesic). If x[k], x[k + 1] ∈ Gn,1 and e is the tangent vector em-

anating from x[k] to x[k + 1], then the geodesic path between x[k] and x[k + 1]

is

G(x[k], e, t) = x[k] cos(‖e‖2t) + ~e sin(‖e‖2t) (3.3)

for t ∈ [0, 1] such that G(x[k], e, 0) = x[k] and G(x[k], e, 1) = x[k + 1].

Proof. See Appendix 3.8.2.
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Theorem 7 provides a convenient formula to map a tangent vector back to

the Grassmann manifold. Unfortunately, the geodesic path is only defined between

x[k] and x[k + 1]. In order to introduce the notion of prediction, a tangent vector

with respect to x[k + 1] such that it extends the geodesic path from x[k] and x[k +

1] is needed. Translation of the tangent vector is accomplished by the parallel

transport.

Theorem 8 (Parallel Transport). Let x[k], x[k + 1] ∈ Gn,1 and e be the tangent

vector emanating from x[k] to x[k + 1]. Then, the parallel transported tangent

vector emanating from x[k + 1] along the geodesic direction e is

ê = tan−1
(
d

|ρ|

)
x[k + 1]ρ∗ − x[k]

d
. (3.4)

Proof. See Appendix 3.8.3.

Theorem 8 provides a convenient expression for transporting the base of

the tangent vector from x[k] to x[k + 1]. It can be interpreted as transforming the

tangent vector onto another tangent space connected by the geodesic. The next

theorem shows the general prediction procedure combining the parallel transport

and geodesic formula.

Proposition 9 (General Grassmannian Prediction). Let x[k − 1],x[k] ∈ GN,1 and

let ê be the parallel transported tangent vector emanating from x[k]. The predicted
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vector x̃[k + 1] ∈ GN,1 extending the geodesic direction from x[k − 1] to x[k] is

x̃[k + 1] = x[k] cos(‖ê‖t)

+
x[k]ρ∗ − x[k − 1]

d
sin(‖ê‖t) (3.5)

:= PG(x[k − 1],x[k], t)

where t is the step size parameter and

‖ê‖ = tan−1
(
d

|ρ|

)
(3.6)

with ρ = x∗[k − 1]x[k] and d =
√

1− |ρ|2.

Proof. See Appendix 3.8.4.

Proposition 9 provides a compact form to perform prediction as a function

of two previous points in GN,1 with t ∈ [0, 1] as the step size control parameter.

The parameter t can be used to control how far in the parallel transported tangent

direction to move. In particular, when a full step, i.e., t = 1, is taken, a remarkable

simplification is obtained.

Theorem 10. Let x[k], x[k − 1] ∈ Gn,1. The one step predicted vector x̃ ∈ Gn,1

along the geodesic direction from x[k] to x[k + 1] is

x̃[k + 1] = |ρ|x[k] + ρ∗x[k]− x[k − 1] (3.7)

such that d(x[k], x̃[k + 1]) = d(x[k − 1],x[k]).

Proof. See Appendix 3.8.5.
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The surprising outcome of Theorem 10 is that the predicted vector x̃[k +

1] can be easily computed by the knowledge of x[k] and x[k − 1] using linear

operations. Indeed, if α, β ∈ C and x,y ∈ GN,1, then

(αx + βy)∗(αx + βy) = |α|2 + 2<(α∗βx∗y) + |β|2

and setting this equal to 1, we may verify that α = |x∗y| + y∗x and β = −1 is a

solution. Therefore, (4.17) always results in a unit norm vector despite the simple

form. This greatly simplifies the computation required in the formulation of the

GPC algorithm in section 3.4.

Taking a full step simplifies the calculation of the predictor but there is no

reason a full step must be taken. Thus we consider optimizing the step size t in

Proposition 9 to minimize the mean squared chordal distance error between the

predicted vector and the observed vector. The mean squared chordal distance error

between the predicted vector and the observed vector is

E[d2(x̃[k + 1],x[k + 1])]

= E[1− |x̃∗[k + 1]x[k + 1]|2]

= E[1− |P ∗G(x[k − 1],x[k], t)x[k + 1]|2].

The optimal step size topt is given by

topt = arg min
t∈[0,1]

E[1− |P ∗G(x[k − 1],x[k], t)x[k + 1]|2]

= arg max
t∈[0,1]

E[|P ∗G(x[k − 1],x[k], t)x[k + 1]|2]. (3.8)

Unfortunately, (3.8) does not readily yield a closed form solution. Thus we approx-

imate the optimal step size by computing the average of the instantaneous step size
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that minimizes the chordal distance error. The observed vector x[k + 1] can be ex-

pressed with respect to x[k] using the tangent vector e[k + 1] emanating from x[k]

to x[k + 1] as

x[k + 1] = x[k] cos(‖e[k + 1]‖) +
e[k + 1]

‖e[k + 1]‖
sin(‖e[k + 1]‖). (3.9)

Using (3.6) and (3.9), the term inside the absolute value in (3.8) becomes

x̃∗[k + 1]x[k + 1]

= cos(‖ê‖t) cos(‖e[k + 1]‖)

+
ê∗e[k + 1]

‖ê‖‖e[k + 1]‖
sin(‖ê‖t) sin(‖e[k + 1]‖)

where we have used the fact that x[k]⊥ê and x[k]⊥e[k+1] since both ê and e[k+1]

lies in the tangent space at x[k]. Then, the objective is to maximize

|x̃∗[k + 1]x[k + 1]|2

= cos2(‖ê‖t) cos2(‖e[k + 1]‖)

+
|ê∗e[k + 1]|2

‖ê‖2‖e[k + 1]‖2
sin2(‖ê‖t) sin2(‖e[k + 1]‖)

+ 2
<(ê∗e[k + 1])

‖ê‖‖e[k + 1]‖
cos(‖e[k + 1]‖t) sin(‖e[k + 1]‖t)×

cos(‖e[k + 1]‖) sin(‖e[k + 1]‖)

= J1(ê, e[k + 1]) + J2(ê, e[k + 1], t)
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where J1(ê, e[k + 1]) ≥ 0 is a positive quantity independent of t and

J2(ê, e[k + 1], t)

=
(
cos2(‖e[k + 1]‖)

− |ê∗e[k + 1]|2

‖ê‖2‖e[k + 1]‖2
sin2(‖e[k + 1]‖)

)
cos(2‖ê‖t)

+
<(ê∗e[k + 1])

‖ê‖‖e[k + 1]‖
sin(2‖e[k + 1]‖) sin(2‖ê‖t). (3.10)

Thus, the instantaneous optimal step size is obtained by maximizing J2(ê, e[k +

1], t) given by (3.10). Unfortunately, a unique solution t that maximizes (3.10)

is not available due to the periodicity of the trigonometric functions. To obtain a

closed form solution, we recognize that the range of ‖ê‖ is typically small for our

applications, e.g., ‖ê‖ ≤ 0.1. For small ‖ê‖, the cost function is well approximated

by the first order Taylor series expansion as a function of t. Therefore, we may

write

J2(ê, e[k + 1], t)

= cos2(‖e[k + 1]‖)− |ê∗e[k + 1]|2

‖ê‖2‖e[k + 1]‖2
sin2(‖e[k + 1]‖)

+ 2
<(ê∗e[k + 1])

‖ê‖‖e[k + 1]‖
sin(2‖e[k + 1]‖)‖ê‖t

− 2

(
cos2(‖e[k + 1]‖)− |ê∗e[k + 1]|2

‖ê‖2‖e[k + 1]‖2
sin2(‖e[k + 1]‖)

)
× ‖ê‖2t2 (3.11)

which is a quadratic function of t. Since the coefficient for t2 term is always neg-

ative for small enough values of ‖e[k + 1]‖, the optimal step size t is obtained by
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taking the derivative of (3.11) with respect to t and setting it equal to zero. There-

fore, the optimal step size is given by

topt =
<(ê∗e[k + 1]) sin(2‖e[k + 1]‖)

2‖e[k + 1]‖‖ê‖2 cos2(‖e[k + 1]‖)− |ê∗e[k+1]|2
‖ê‖‖e[k+1]‖ sin2(‖e[k + 1]‖)

(3.12)

Let topt[k + 1] denote the optimal step size to predict x[k + 1]. The step size opti-

mization criterion is stated as follows.

Step Size Optimization Criterion: Pick t such that

topt[k + 1] = arg max
t∈[0,1]

J2(ê, e[k + 1], t). (3.13)

where the closed form solution to topt[k + 1] is given by (3.12).

In practice, the optimal step size will depend on the statistics of the channel

which may vary in time, e.g. do to mobiles moving at different velocities. Thus it

is desirable to estimate and update the step size according to the observed channel

as opposed to using a fixed precomputed value. In this paper, we propose a least

mean square (LMS) based step size predictor which computes the predicted step

size based on the past observations of x and instantaneous topt. The LMS algorithm

was chosen for its computational simplicity as it is undesirable to introduce further

computational delay by employing more advanced techniques such as recursive

least squares.

The main idea is to compute topt[k + 1] after observing x[k + 1] and then

predict the next step size t̃[k+2] based on the past knowledge of topt. Let t̃[·] denote

the predicted step size. Then, the step size prediction error is

et[k + 1] = topt[k + 1]− t̃[k + 1]. (3.14)
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We use the mean squared prediction error E [|et|2] criterion and design a linear

predictor to minimize the mean squared prediction error. Since topt[k] is a scalar

process, an M -th order linear predictor

t̃[k + 1] =
M−1∑
n=0

antopt[k − n] (3.15)

with filter coefficients {an}M−1n=0 is used. If Rt is an M ×M autocorrelation matrix

for topt[k], a =
[
a0 · · · aM−1

]T is a vector of filter coefficients, and r is an M ×

1 vector of cross correlation between the desired optimized step size topt and the

predicted step size t̃, the Wiener-Hopf equation is [31]

Rta = r (3.16)

and the optimal filter coefficients can be found by computing R−1t r. Since the sam-

ple history of topt[k] may not be available, we use the least mean square (LMS)

algorithm to adapt the filter coefficients {an}M−1n=0 based on instantaneous correla-

tion estimates [31]. The pseudo code is shown in Algorithm 7.

Algorithm 1 Adaptive Step Size Prediction

Input: topt[k + 1] =
[
topt[k] · · · topt[k −M − 1]

]T
1: Initialize a[1] =

[
a0[1] · · · aM−1[1]

]T
2: for all k=1,2,. . . do
3: t̃[k + 1] = aT [k]topt

4: et[k + 1] = topt[k + 1]− t̃[k + 1]
5: a[k + 2] = a[k + 1] + µet[k + 1]topt[k + 1]
6: end for

Output: t̃[k + 1]

Therefore, we arrive at an adaptive step size Grassmannian predictor which

consists of step size optimization, LMS algorithm to predict the step size, and the
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Step Size Opt.
&

LMS Predictor

Figure 3.1: Block diagram of proposed fully adaptive Grassmannian predictor with
step size optimization, least mean square (LMS) step size predictor, and the general
Grassmannian prediction (Proposition 9).

general Grassmannian prediction in Proposition 9. A high level block diagram for

the fully adaptive Grassmannian predictor is shown in Fig. 4.1.

3.4 Grassmannian Predictive Coding

In this section, the proposed GPC algorithm is described. First, a general

overview of the algorithm is provided. Second, codebook designs for encoding the

error tangent vector is described. Finally, methods for initialization are described.

3.4.1 GPC Algorithm

Let {x[k]}k∈N ∈ Gn,1 be the correlated input sequence with time index k.

The general operation of the proposed GPC algorithm closely follows that of the

conventional predictive vector quantization technique [22]. Linear operations such

as difference, quantization, addition, and prediction are replaced by equivalent op-

erators on Grassmann manifold derived in Section 3.3. The main idea of predictive
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coding is to quantize the error e[k] between the predicted vector x̃[k] and the current

observed vector x[k]. This is in contrast to quantizing x[k] directly in conventional

one-shot approach. Then, the quantized error is applied to predicted vector to con-

struct the estimate x̂[k] of the current observed vector. The current and previous

estimated vectors, x̂[k] and x̂k−1, are used to compute the predict vector x̃[k + 1].

Since both the encoder and decoder uses estimated vectors for prediction, they both

obtain the same predicted vectors.

Algorithm 2 GPC encoder algorithm

Input: x[k]
1: Initialize x̃[1] and x̂[0]
2: for all k=1,2,. . . do
3: e[k] = L(x̃[k],x[k])
4: (`[k], i[k]) = Q(b[k])
5: x̂[k] = G(x̃[k], cm,`[k]cd,i[k], 1)
6: x̃[k + 1] = P (x̂[k − 1], x̂[k])
7: end for

Output: `[k], i[k]

Fig. 3.2 illustrates the proposed GPC encoder; the pseudo code is provided

in Algorithm 2. At time k, an error tangent vector is computed from the predicted

vector x̃[k] to the current observed vector x[k]. Using (4.12), the error tangent

vector emanating from x̃[k] to x[k] is computed as

e[k] = tan−1
(
d

|ρ|

)
x[k]/ρ− x̃[k]

‖x̃[k]/ρ− x[k]‖2
(3.17)

where ρ = x̃∗[k]x[k] and d =
√

1− |ρ|2. Quantization is performed in two steps.

Let Cm = {cm,`}Nm`=1 with Nm codewords denote the codebook of error tangent

magnitudes in nonnegative reals and Cd = {cd,i}Ndi=1 with Nd codewords denote
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Figure 3.2: Block diagram of predictive encoder on the Grassmann manifold.

the codebook of unit norm error tangent directions in Cn. First, the error tangent

magnitude is quantized according to

`[k] = arg min
i∈{1,2,...,Nm}

|‖e[k]‖2 − cm,i| (3.18)

where `[k] is the index of the selected error tangent magnitude codeword in Cm.

This sets the radius of the quantized error tangent vector. Next, the error tangent

direction codeword that minimizes the chordal distance error between the estimated

and observed vector is computed as

i[k] = arg min
i∈{1,2,...,Nd}

d(G(x̃[k], cm,`[k]cd,i, 1),x[k]) (3.19)

whereG(x̃[k], cm,`[k]cd,i, 1) computes the estimated vector according to the selected

error tangent magnitude codeword cm,`[k] and error tangent direction codeword cd,i

from the codebook Cd. The unit norm tangent direction codeword that yields the
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Figure 3.3: Block diagram of predictive decoder on the Grassmann manifold.

estimate with the minimum chordal distance is selected. For notational brevity, the

two step quantization is denoted by Q : Cn → N×N which takes the error tangent

vector and outputs two codeword indices, i.e., (`[k], i[k]) = Q(e[k]). The indices

of the direction and magnitude codewords are transmitted to the decoder via finite

rate communication channel. Continuing at the encoder, the estimated vector is

x̂[k] = G(x̃[k], cm,`[k]cd,i[k], 1). (3.20)

Finally, the prediction, Theorem 10, is performed using two previous estimates

x̃[k + 1] = |ρ|x̂[k] + ρ∗x̂[k]− x̂k−1 (3.21)

where ρ = x̂∗[k]x̂k−1. For notational brevity, the prediction operation is denoted by

a map P : Gn,1 × Gn,1 → Gn,1 which takes current and previous estimate vectors

and outputs the predicted vector, i.e., x̃[k + 1] = P (x̂k−1, x̂[k]). The encoding

procedure is repeated for each time k + 1, k + 2, . . . .

Fig. 3.3 illustrates the proposed GPC decoder; the pseudo code is shown

in Algorithm 3. The same error tangent magnitude and direction codebooks as the

encoder are assumed to be available. The received indices are decoded in Q−1 to
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Algorithm 3 GPC decoder algorithm

Input: `[k], i[k]
1: Initialize x̃[1] and x̂[0]
2: for all k=1,2,. . . do
3: cm,`[k] · cd,i[k] = Q−1(`[k], i[k])
4: x̂[k] = G(x̃[k], cm,`[k]cd,i[k], 1)
5: x̃[k + 1] = P (x̂[k − 1], x̂[k])
6: end for

Output: x̂[k]

recover cd,i[k] and cm,`[k]. The predicted vector x̃[k] is mapped to the estimated

vector using the codewords as in (3.28). The decoder output is x̂[k]. Similarly

to the encoder, the prediction is performed using (4.17) to obtain x̃[k + 1] for the

next time period. Note that for the first iteration of the decoder, the knowledge of

x̃[k], or equivalently x̂[k − 1] and x̂[k − 2], is needed. Synchronizing the initial

vectors with the encoder is important because if x̃[k] is different from the encoder,

the received error tangent direction and magnitude no longer represents the error

tangent vector. In Section 3.4.3, an efficient strategy is provided for initialization

over finite rate communication channel. With appropriate initialization, symmetric

operation at the encoder and decoder yields the same predicted vector x̃[k] for each

time k. Therefore, initialization only needs to be performed once.

3.4.2 Codebook Design

The codebook design is performed exploiting the structure of the tangent

space. The error tangent vector e[k] at time k is written as the product of the unit

norm tangent direction ~e[k] and the tangent magnitude ‖e[k]‖2. Separating the
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magnitude and direction for quantization is known to provide better dynamic range

coverage [22].

The tangent magnitude ‖e[k]‖2 is dependent on the distance between the

predicted vector and the observed vector, which in turn is dependent on the rate of

change of the input vectors. A simple uniform quantization or more sophisticated

scalar quantization may be used [22]. In this chapter, the uniform quantization ap-

proach is used and more advanced quantization techniques will be considered in

future work. The tangent direction codebook can be designed using Lloyd algo-

rithm [22]; the pseudo code is shown in Algorithm 4. An iterative codebook mod-

ification, i.e., Lloyd iteration, is used on a training set consisting of error tangent

direction vector samples to improve the average distortion of the codebook. Let

τ = {x`}M`=1 be the given training set of error tangent directions and C
(m)
d denote

the codebook at th m-th iteration. The initial codebook C
(1)
d may be obtained by

generating random unit norm vectors. The Lloyd iteration proceeds by obtaining a

partition or cluster using the nearest neighbor condition (3.22). The centroid (3.23)

of each cluster is used as the new codeword. The Lloyd iteration ends when some

pre-specified threshold ε for change in the distortion is achieved.

There are two drawbacks in designing codebook using Lloyd algorithm for

practical applications. First, in applications such as MIMO communication sys-

tems, the receiver may need to perform the codebook training for the observed

channel. Due to limitations in computational resources and time, such training may

be difficult in real time. The Lloyd algorithm generally requires large number of

iterations to arrive at codebook with low quantization error. Second, the final code-
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Algorithm 4 Lloyd algorithm for error tangent direction codebook

Input: Training set τ = {x`}M`=1 and initial codebook C
(1)
d

1: repeat
2: Partition τ into cluster sets using nearest neighbor condition with suitable tie

breaking rule

Ri = {x` ∈ τ : d(x`, c
(m)
d,i ) ≤ d(x`,x

(m)
d,n ),∀n 6= i} (3.22)

3: Compute the centroid xc for the each cluster set Ri [74]

xc(Ri) = arg min
x

M∑
`=1

d2(x`,x), x` ∈ Ri (3.23)

4: Form the new codebook C
(m+1)
d = {xc(Ri)}Ndi=1

5: Compute the average distortion for the new codebook

Dave(m+ 1) =
1

M

Nd∑
i=1

M∑
`=1

d2(x`,xc(Ri))I(x`) (3.24)

where I is the indicator function given by

I(x`) =

{
1, if x` ∈ Ri

0, otherwise
(3.25)

6: until |Dave(m+ 1)−Dave(m)| < ε

Output: C
(m+1)
d
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book needs to be conveyed to the transmitter for the GPC decoder. Communicating

the codebook takes away the communication resource. Both problems can be over-

come by training offline and using a predefined fixed codebook. In Section 4.7,

it is shown that the Grassmannian codebooks [67] work well for the error tangent

direction codebook.

3.4.3 Initialization

To maintain synchronous operation of the encoder and the decoder, it is

important to initialize the encoder and the decoder with the same initial estimated

vectors in the memory. Two approaches may be considered for initialization. One

approach is to perform an initialization process so that the two estimated vectors

x̂k−1 and x̂k−2 are communicated from the encoder to the decoder. Since the com-

plete description of x̂k−1 and x̂k−2 must be communicated to the decoder, there is

system dependent communication overhead. Another approach is to use the one-

shot memoryless quantization technique to set the two vectors. This approach is

attractive since the codeword can be efficiently communicated to the decoder. In

particular, if the same codebook is used for the error tangent direction codebook

and one-shot memoryless quantization codebook, there are no codebook memory

overhead resulting in efficient implementation. A consequence of using memory-

less quantization approach for initialization is that there may be an initial transient

period in which the quantization error is larger than the steady state condition. This

is because the memoryless quantization generally results in a larger quantization

error, as shown in Section 3.5.
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3.4.4 Delayed Feedback Model

Feedback delay is a performance limiting factor for CSI sensitive systems

such as MU-MIMO systems [38, 99, 103]. For example, in commercial wireless

systems, the channel is typically estimated using preambles or specially designed

pilot sequence spaced in time and frequency [2, 38, 41, 93]. Therefore, the conven-

tional assumption of zero delay feedback with update at every channel realization

is essentially a non-causal assumption which is not practical.

In this chapter, a periodic channel estimation interval TH , which may be

multiple symbols or frames in length, is also considered [38]. This is reasonable

considering the time required for the receiver to acquire the signal, compute the

channel estimate and feedback information, place the feedback information into the

reverse link protocol, and process the feedback information at the transmitter for its

intended use. Therefore, the feedback delay, denoted Td, is modelled as the time

between the beginning of a channel and the time in which the CSI becomes available

at the transmitter. Fig. 3.4 graphically illustrates the limited feedback scenario with

and without delay. With delayed limited feedback, the shaded region in Fig. 3.4

corresponds to the time when there is a mismatch in the beamformer used at the

transmitter. In this chapter, the case where Td = TH , referred to as unit delay, is

considered. Finally, feedback rate Rf is used to mean the number of bits used for

feedback every TH .

60



Channel evolution
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Limited feedback
with delay
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Figure 3.4: The timing diagram illustrates practical limited feedback delay in the
system where the beamformer mismatch (shaded region) may occur. The chan-
nel observation and estimation interval is denoted TH and the cumulative feedback
delay is denoted Td.

3.4.5 Predictive Coding for Delayed Feedback

In this section, a new form of predictive coding is proposed in which the

predicted vector is used as the output of the decoder using the adaptive step size

Grassmannian predictor derived in Section 3.4.1. The main idea is to use predictive

coding framework to encode prediction error while simultaneously updating the

predictor with optimal step size. By using the step size optimized predicted vector

as the output, a unit delay between the encoder and the decoder can be accounted

for while providing high resolution output.

The pseudo code and the block diagram for the proposed predictive encoder

are provided in Algorithm 5 and Fig. 3.5, respectively. At time k, an error tangent
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Algorithm 5 Proposed adaptive step size GPC encoder algorithm

Input: x[k]
1: Initialize x̃[1] and x̂[0]
2: for all k=1,2,. . . do
3: e[k] = L(x̃[k],x[k])
4: (`[k], i[k]) = Q(e[k])
5: x̂[k] = G(x̃[k], cm,`[k]cd,i[k], 1)
6: x̃[k + 1] = PG(x̂[k − 1], x̂[k], topt)
7: end for

Output: `[k], i[k]

L

G

Q
cm;`[k]; cd;i[k]

`[k]; i[k]

~x[k]

x̂[k]

e[k]
x[k]

PG

Step Size Opt.
&

LMS Predictor
~t[k]

~t[k]

Figure 3.5: Block diagram of proposed adaptive step size predictive encoder on the
Grassmann manifold.

vector e[k] emanating from the predicted vector x̃[k] to the current observed vector

x[k] is computed using (4.12). Quantization is performed in two steps using two
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codebooks. Let Cm = {cm,`}Nm`=1 with Nm codewords denote the codebook of error

tangent magnitudes in nonnegative reals and Cd = {cd,i}Ndi=1 with Nd codewords

denote the codebook of unit norm error tangent directions in Cn. Please see [48]

for details of the codebook design. First, the error tangent magnitude is quantized

according to

`[k] = arg min
i∈{1,2,...,Nm}

|‖e[k]‖ − cm,i| (3.26)

where `[k] is the index of the selected error tangent magnitude codeword in Cm.

This sets the radius of the quantized error tangent vector. Next, the error tangent

direction codeword that minimizes the chordal distance error between the estimated

and observed vector is computed as

i[k] = arg min
i∈{1,2,...,Nd}

d(G(x̃[k], cm,`[k]cd,i, 1),x[k]). (3.27)

The unit norm tangent direction codeword that yields the estimate with the mini-

mum chordal distance is selected. For notational brevity, we denote the two step

quantization by an operatorQ(e[k]) = (`[k], i[k]) mapping the tangent vector to the

codeword indices. The indices of the direction and magnitude codewords are trans-

mitted to the decoder via finite rate communication channel resulting in feedback

rate of log2(Nd) + log2(Nm) bits. Continuing at the encoder, the estimated vector

is

x̂[k] = G(x̃[k], cm,`[k]cd,i[k], 1). (3.28)

Finally, the adaptive step size Grassmannian prediction is used to obtain the pre-

dicted vector x̃[k + 1] based on past estimates x̂[k − 1] and x̂[k] and predicted
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Figure 3.6: Block diagram of proposed predictive decoder on the Grassmann man-
ifold for delayed feedback systems.

t̃[k + 1]. Unfortunately, the predicted step size parameter results in an additional

feedback requirement. We show in Section 4.7 that the predicted step size can be

fed back with small overhead, either feeding back every TH or less frequently. An-

other alternative is to feedback the LMS filter coefficients and treat the step size

predictor as error whitening filter [17] but we have found that this provides no ad-

ditional performance gain for increased feedback overhead.

Algorithm 6 Proposed adaptive step size GPC decoder algorithm

Input: `[k], i[k]
1: Initialize x̃[1] and x̂[0]
2: for all k=1,2,. . . do
3: cm,`[k] · cd,i[k] = Q−1(`[k], i[k])
4: x̂[k] = G(x̃[k], cm,`[k]cd,i[k], 1)
5: x̃[k + 1] = PG(x̂[k − 1], x̂[k], topt)
6: end for

Output: x̃[k + 1]

The pseudo code and the block diagram for the proposed decoder are pro-

vided in Algorithm 6 and Fig. 3.6, respectively. The error tangent magnitude and
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direction codebooks are assumed to be shared between the encoder and the decoder.

The received indices are decoded in Q−1 to recover cd,i[k] and cm,`[k]. The updated

estimate x̂[k] is computed using the received codeword indices using (3.28). Sim-

ilarly to the encoder, the prediction is performed using the general Grassmannian

predictor with the received step size t̃[k + 1] to obtain x̃[k + 1]. The predicted vec-

tor x̃[k + 1] is the output of the decoder which accounts for the unit delay in the

feedback path.

Finally, initialization is important in memory-based architecture. For the

first iteration of the decoder, the knowledge of x̃[k], or equivalently x̂[k−1], x̂[k−2],

and t̃[k] are needed. Otherwise, the the codeword represents the error tangent vector

with possibly wrong base point. Two approaches for initializing x̂ were considered

in [48]. A practical approach is to use the one-shot memoryless quantization tech-

nique to set the two vectors x̂[k− 1] and x̂[k− 2]. This approach is attractive since

the codewords can be efficiently communicated to the decoder. In particular, if the

same codebook is used for the error tangent direction codebook and one-shot mem-

oryless quantization codebook, there are no codebook memory overhead resulting

in efficient implementation. Since the predictor in the decoder only needs to know

the current step size, quantized t̃[k] can be fed back without additional initialization

overhead.

3.5 Analysis

In this section, the quantization error using small angle approximation is

analyzed, distortion bounds are proven, and prediction gain and coding gain ex-
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pressions are derived for the proposed GPC algorithm on the Grassmann manifold.

3.5.1 Small Angle Approximation

If x[2] ∈ Gn,1 is obtained by sufficiently small changes to x[1] ∈ Gn,1, the

chordal distance between x[1] and x[2] is

d(x[1],x[2]) =
√

1− |x∗[1]x[2]|2

=
√

sin2(∠(x[1],x[2])) (3.29)

≈ ‖x[1]− x[2]‖2 (3.30)

where (3.29) follows from the subspace angle of vectors [25] and (3.30) follows

from the small angle approximation. Thus, for a sufficiently small perturbation

around x[1], the subspace distance between x[1] and x[2] is approximated by the

usual Euclidean distance.

The current observed vector at time k, x[k], may be expressed in terms of

the predicted vector and the error tangent vector as

x[k] = G(x̃[k], e[k], 1)

≈ x̃[k] + ~e[k]‖e[k]‖2

= x̃[k] + e[k] (3.31)

using the small angle approximation. Furthermore,

x∗[k]x[k] ≈ (x̃[k] + e[k])∗(x̃[k] + e[k])

= 1 + 2‖e[k]‖2<(~e∗[k]x̃[k]) + ‖e[k]‖22 (3.32)

≈ 1.
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The second term, ~e∗[k]x̃[k], in (3.32) is zero because the unit norm tangent vector

~e[k] is orthogonal to x̃[k]. Similarly, the estimated signal can be expanded as

x̂[k] = G(x̃[k], cm,`[k]cd,i[k], 1)

≈ x̃[k] + cm,`[k]cd,i[k] (3.33)

where cd,i[k] and cm,`[k] are the selected error tangent direction and error tangent

magnitude codewords, respectively. Both (3.31) and (3.33) reveal that for a small

enough change, both vectors are expressed as an additive correction to the predicted

vector. Thanks to the locally Euclidean property and using the usual 2-norm for the

local difference, the prediction error is then

‖x[k]− x̂[k]‖2 ≈ ‖b[k]− cd,i[k]cm,`[k]‖2. (3.34)

Therefore, the estimation error can be approximated as the normed difference be-

tween the actual tangent vector and the quantized tangent vector. Thus for small

changes in the observed vector, the accuracy of tangent direction and tangent mag-

nitude determines the accuracy of the estimate.

3.5.2 Distortion Bounds

Distortion induced by a quantizer is an important measure of performance.

In what follows, an upper and lower bound on the distortion due to the proposed

GPC algorithm are derived.

Recall that a metric ball Bδ(z) with radius δ centered at z ∈ Gn,1 on the

Grassmann manifold is defined as

Bδ(z) = {y ∈ Gn,1 : d(y, z) ≤ δ} (3.35)
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such that Bδ(z) ⊂ Gn,1. A closed form volume formula for Bδ(z) is given as [16]

Vol(Bδ(z)) = δ2(n−1). (3.36)

Consider Bγ(z) ⊂ Gn,1 with δ ≤ γ and volume of Bδ(z) given by (3.36). Let (dy)

denote the differential form of the Haar measure on Gn,1. The distortion in the ball

normalized by the volume of the ball was shown to be [74, Lemma 1]∫
Bγ(z)

d2(y, z)(dy)

Vol(Bγ(z))
=

(
2(n− 1)

2n

)
γ2. (3.37)

For memoryless quantization, the volume together with a point density and cov-

ering assumption over the entire Gn,1 are used to characterize distortion. For the

proposed GPC algorithm, the Voronoi region is determined by the tangent direction

and tangent magnitude codebooks which makes the covering argument difficult. To

overcome this difficulty, it is assumed that the tangent magnitude codebook pro-

vides concentric annular partitions of the sphere cap centered around the predicted

vector and the tangent direction codebook partitioning each annulus into equiangle

sectors. The bounds are obtained by considering the ball that is enclosed in the

smallest annular sector and the ball that encloses the largest annular sector. Simi-

larly, the distortion upper bound is given by the volume of the ball that covers the

Voronoi cell.

Let γd = mincd,i,cd,k∈Cd,i 6=k d(cd,i, cd,k) denote the minimum chordal dis-

tance between the tangent direction codewords and γm = mincm,i,cm,k∈Cm,i 6=k |cm,i−

cm,k| denote the minimum Euclidean distance between the tangent magnitude code-

words. Similarly, let λd = maxcd,i,cd,k∈Cd,i 6=k d(cd,i, cd,k) denote the maximum
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chordal distance between the tangent direction codewords and

λm = max
cm,i,cm,k∈Cm,i 6=k

|cm,i − cm,k|

denote the maximum Euclidean distance between the tangent magnitude codewords.

Then the following lemma provides the bounds on the distortion for GPC algorithm.

Lemma 11 (Distortion bounds). If γlower = min{γd, γm} and λupper = max{λd, λm},

the lower and upper quantization distortion bound is given by

Dlower =

(
2(n− 1)

2n

)(γlower

2

)2
Dupper =

(
2(n− 1)

2n

)(
λupper

2

)2

. (3.38)

Proof. Assume that the tangent direction and magnitude codebooks maps uniformly

to an equiangle sectors of concentric annulus centered at the predicted vector. The

lower bound is given by the volume of a metric ball that has ball radius which is

smaller of the half minimum chordal distance of tangent direction codebook and

half minimum distance of tangent magnitude codebook. The upper bound is sim-

ilarly obtained by considering the volume of a metric ball which covers a Voronoi

region. The bounds are exact since the metric ball volume formula is accurate [74,

Lemma 1].

Unfortunately, no claim is made on the tightness of the bound since an accu-

rate description of the Voronoi region obtained by the proposed tangent codebook
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remains to be an open problem. In Section 3.6.1, numerical examples are provided

comparing the bounds obtained with actual distortion using fixed codebooks.

Using the obtained lower bound, the reduction in distortion lower bound

compared to memoryless quantization on the Grassmann manifold can be further

quantified. For Gn,1, the lower bound on the fixed rate quantizer on the Grassmann

manifold was shown to be

DGn,1(N) =

(
2(n− 1)

2n

)
N−

1
n−1 (3.39)

where N is the size of the codebook with rate log2(N) bits [15, 74]. Suppose that

γlower is dominated by the tangent direction codebook such that γlower = γd and

that Grassmannian codebook is used for the tangent direction codebook. Then, the

lower bound for the GPC algorithm can be expressed as

Dlower =

(
2(n− 1)

2n

)(
γ2lower

4

)
=

1

4

(
2(n− 1)

2n

)2

N
− 1
n−1

d

=
1

4

(
2(n− 1)

2n

)
DGn,1(Nd) (3.40)

showing that the lower bound is smaller than DGn,1(Nd) when γd < γm. For the

applications considered in this chapter, γm is typically smaller than γd. Hence the

reduction in distortion is typically greater than (3.40) and it is dominated by the

error tangent magnitude quantization.
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3.5.3 Performance Measures

The closed loop prediction gain ratio is often used in vector quantization

literature [22] as a measure of how well the predictor performs with respect to the

changes in the input. The closed loop prediction gain is usually written as the

ratio of mean squared norm of the observed signal over mean squared norm of the

prediction error. For the proposed GPC algorithm on the Grassmann manifold, the

closed loop prediction performance is measured by

Gclp =
E[‖x[k]‖2]

E[d2(x̃[k],x[k])]

=
1

E[d2(x̃[k],x[k])]
(3.41)

where d2(x̃[k],x[k]) denotes the squared chordal prediction error. In fact, (3.41)

can be further expressed as a function of the tangent vector assuming that the small

angle approximation holds. Using (3.30) and (3.31), the distance function in the

denominator can be approximated as d(x̃[k],x[k]) ≈ ‖e[k]‖2. Therefore, the closed

loop prediction gain for GPC algorithm becomes

Gclp =
1

E[‖e[k]‖22]
(3.42)

which shows the dependence of the closed loop prediction gain performance on the

tangent magnitude. The tangent magnitude is in turn dependent on the changes in

the observed process. A closed form relationship between the observed process

and the tangent magnitude is in general difficult to obtain. In Section 3.6.2, some

empirical results of the closed loop prediction gain performance for the proposed

GPC algorithm are shown.
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3.6 Numerical Results

In this section, experimental results are provided to illustrate the perfor-

mance of the proposed GPC algorithm. First, distortions for various codebook sizes

from simulation are compared with the bounds obtained in Section 3.5.2. Then,

numerical results for closed loop prediction gain and chordal distance error are

obtained. Finally, simulation results are shown for two applications: single user

limited feedback beamforming system and zero forcing limited feedback multiuser

MIMO system.

3.6.1 Distortion Bounds

A numerical example is presented illustrating the operational distortion and

compared with the upper and lower bounds given in Lemma 11. Correlated 3 × 1

vectors were generated according to a second order autoregressive model with

memory coefficients α1 = 0.9 and α2 = 0.75 with additive noise distributed ac-

cording to zero mean complex Gaussian with variance (0.01)2. The normalized

vectors were considered to be the samples on G3,1 to which the proposed GPC al-

gorithm was applied. For this experiment, an Nd = 24 tangent direction codebook

was used and the tangent magnitude codebook size was varied from Nm = 22 to

25. Fig. 3.7 shows the operational distortion with upper and lower distortion bounds

obtained in Lemma 11 as a function of the tangent magnitude codebook size. The

lower bound captures the distortion trend over the range of codebook sizes. The

lower bound of a memoryless quantization using a Grassmannian codebook with

codebook sizes of 6, 7, 8, and 9 bits are illustrated so that the total number of bits
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used for the codebook matches that of the proposed GPC algorithm. The proposed

GPC algorithm provides significant improvement in distortion over the memoryless

quantization technique. Unfortunately, the upper bound from Lemma 11 is domi-

nated by the resolution of the 4-bit tangent direction codebook which has higher dis-

tortion than the memoryless quantization with adjusted number of codebook size.

Nevertheless, the result shows that a significant reduction in distortion is achieved

by the proposed GPC algorithm and the achievable distortion can be controlled by

the tangent magnitude codebook which is a simple uniform scalar codebook.

3.6.2 Closed Loop Prediction Gain And Prediction Error

To illustrate the dependence on the tangent direction and tangent magnitude

codebooks, Fig. 3.8 shows the closed loop prediction gains for various error tangent

magnitude codebook sizes and fixed tangent direction codebook of size Nd = 64.

For these numerical examples, correlated 4 × 1 vector sequence was generated ac-

cording to a first order autoregressive model (or Gauss-Markov model [20]) with

correlation coefficient α = J0(2πβ) where J0 is Bessel function of zeroth order

and β is the normalized Doppler frequency. The sequence was generated according

to

h[k] = αh[k − 1] +
√

1− α2z[k] (3.43)

where k is the time index and z[k] is a 4 × 1 vector with each entry drawn from

an independent identically distributed (i.i.d.) zero mean complex white Gaussian

process. The normalized vectors x[k] = h[k]/‖h[k]‖ are a correlated sequence on

the Grassmann manifold. For the tangent direction codebook, an Nd = 26 Grass-
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Figure 3.7: Comparison of operational distortion against the lower and upper bound
for various tangent magnitude codebook size. Lower distortion bound for the mem-
oryless quantizer using Grassmannian codebook is also shown.

mannian codebook [63] was used and the tangent magnitude codebooks were based

on a uniform quantization between 0 and 1 using 2, 3, 4, and 5 bits. For an upper

bound, closed loop prediction gain without quantizing the tangent magnitude is also

shown. The result illustrates the dependence of closed loop prediction gain on tan-

gent magnitude codebook size as a function of correlation parameter β. For highly

correlated data, the tangent magnitude codebook resolution has higher impact on

the closed loop prediction gain. This is because the smallest tangent magnitude
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Figure 3.8: Closed loop prediction gain, Gclp, for G4,1 data with fixed tangent code-
book (Nd = 64) and different tangent magnitude codebooks (Nm = 22, 23, 24, 25)
over various correlation parameter β.

quantization level may be larger than the prediction error leading to an over estima-

tion. If the tangent magnitude codebook is adjusted based on the correlation, e.g.,

quantize in the range of [0, 0.1] instead of [0, 1], this gap may be closed.

Another useful performance measure is the chordal distance error between

the estimated vector x̂[k] and the observed vector x[k]. The chordal distance error

d(x̂[k],x[k]) shows how close the estimated vector is to the observed vector using

the proposed GPC algorithm. In MIMO communication applications considered
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Figure 3.9: Chordal distance comparison over time between memoryless quantizer
using 9-bit Grassmannian codebook and the proposed GPC algorithm using 6-bit
Grassmannian tangent direction codebook and 3-bit tangent magnitude codebook.

in Section 3.6.3 and 3.6.4, the chordal distance error has a direct impact on the

respective communication theoretic performance measures. In Fig. 3.9, the chordal

distance between x̂[k] and x[k] and the chordal distance between the quantized

vector and the observed vector for memoryless quantization using Grassmannian

codebook with N = 26 are shown. Fig. 3.9 illustrates the substantial improvement

in the quantization accuracy compared with memoryless technique.

To further illustrate the quantizer accuracy, the operational mean squared
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using 6-bit tangent direction and 3-bit tangent magnitude codebooks.

chordal distance error (MSE) is shown as a function of β for the proposed GPC

algorithm and memoryless quantizer using Grassmannian codebook in Fig. 4.10.

The memoryless quantizer provides approximately −7 dB of MSE whereas the

proposed GPC algorithm provides as little as −26 dB of MSE which shows that

significant accuracy can be obtained over memoryless quantization techniques. As

the correlation decreases, the MSE approaches that of the memoryless quantization

MSE.
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Similarly, the operational MSE as a function of β are compared for delayed

and non-delayed system [66]. Cases are shown for the memoryless 9-bit Grassman-

nian codebook with and without delay, GPC with naive prediction using delayed x̂

as output [48], the proposed algorithm with two types of step size adaptation, and

the MSE using step size optimized prediction only in Fig. 3.11. First, observe that

the memoryless codebook results in the worst MSE at −10dB. The delayed mem-

oryless codebook degrading slightly for higher values of β. The naive GPC using

delayed x̂ as the output at Rf = 9 bits still outperforms the memoryless case for

most of β. Unfortunately, as the correlation increases, i.e., β decreases, the naive

one step prediction tends to over-predict resulting in saturating MSE. The proposed

adaptive step size GPC, however, achieves substantial MSE improvement across

β. The proposed algorithm with optimized step size, marked with ∗, results in

Rf = 9 + 4 = 13 bits whereas the proposed algorithm with step update every

12TH , marked with �, results in Rf = 9 + 4/12 = 9.33 bits. Thus providing

infrequent step size feedback can still yield substantial MSE improvement while

providing flexibility to control Rf . Finally, the prediction only case uses past time-

series samples on the Grassmann manifold to predict future vectors with step size

prediction. The prediction only case provides the lower bound on the achievable

MSE using the proposed adaptive step size prediction formulation.

3.6.3 Application to Limited Feedback Beamforming System

In this section, the application of the proposed GPC algorithm to single

user limited feedback beamforming [67] system is illustrated. It is assumed that
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parameter β. Memoryless quantization using 9-bit Grassmannian codebook with
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back TH = 12 and Rf = 9.33 bits (�) shows significant MSE improvement across
the range of β.

the transmitter has Nt = 4 transmit antennas and the receiver has a single antenna

(Nr = 1). The channel is assumed to be temporally correlated using the first order

autoregressive model as in Section 3.6.2 where the normalized Doppler frequency

is β = fDTs with Doppler frequency fD and symbol sampling interval Ts. The

Nt × 1 channel vectors are generated according to (3.43). The receiver is assumed
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to have a perfect estimate of the CSI and the feedback is assumed to be delay and

error free. Assuming perfect synchronization and sampling, the baseband input-

output relationship can be written as y[k] =
√
Ph∗[k]f [k]s[k]+n[k] where P is the

total transmit power, f [k] is the beamforming vector, s[k] is the normalized trans-

mit symbols, and n[k] is an additive noise with each entry i.i.d. with distribution

according to CN(0, N0).

Four scenarios are considered for comparison. The first scenario is where

the transmitter has perfect knowledge of the CSI. In this case, the beamformer is

found as the normalized channel vector. The second scenario is the conventional

memoryless limited feedback approach using the Grassmannian codebook [63].

The beamformer f̂ [k] is selected from the Grassmannian codebook F using f̂ [k] =

arg maxf∈F ‖h∗[k]f‖2 [67]. The third scenario uses the Householder based PVQ [62].

The codebook was trained using the closed loop approach for best performance and

it was assumed to be known to both the transmitter and the receiver. The fourth

scenario uses the proposed GPC algorithm. The initial beamformer information is

assumed to be available at the transmitter. For every new channel estimate, the nor-

malized channel vector is fed into the GPC algorithm and the indices of the tangent

direction and magnitude codewords are fed back to the transmitter.

Fig. 3.12 shows the symbol error rate of Nt = 4 beamforming system over

a temporally correlated channel (fDTs = 0.005) where 6 and 9-bit Grassmannian

codebooks [63] were used for conventional memoryless limited feedback strategy.

For the proposed GPC algorithm, a 6-bit tangent direction codebook and a 3-bit

tangent magnitude codebook were used for a total of 9-bit feedback. The perfor-
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Figure 3.12: Vector symbol error rate plot for Nt = 4 beamforming system with
perfect CSI, conventional limited feedback using 6 and 9-bit Grassmannian code-
book, Householder based PVQ using 9-bit codebook, and proposed GPC algorithm
using 6-bit Grassmannian tangent direction codebook and 3-bit tangent magnitude
codebook.

mance of the complex Householder based PVQ using 9-bit codebook is also illus-

trated. At high SNR, the (6 + 3)-bit codebook with GPC algorithm outperforms

the optimized Householder based PVQ and achieves performance very close to the

perfect CSI case. The proposed GPC algorithm uses the same codebook as the

memoryless limited feedback system and the codebook need not be optimized as in

the Householder based PVQ. In Fig. 3.13, the achievable rate for limited feedback
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book over temporally correlated channel with fDTs = 0.005.

beamforming system with perfect CSI, proposed GPC algorithm, and memoryless

technique with Grassmannian codebook are shown. Due to significantly improved

quantization error, the achievable rate of the proposed GPC algorithm essentially

overlaps with that of the perfect CSI case.

Next, the same system with unit feedback delay is considered. Three sce-

narios are considered for comparison. The first scenario is where the transmitter
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has perfect knowledge of the CSI. In this case, the beamformer is found as the

normalized channel vector. The second scenario is the conventional memoryless

limited feedback approach using the Grassmannian codebook with unit feedback

delay. The beamformer f [k] is selected from the Grassmannian codebook F using

(2.1) and applied to the transmission one unit time later [67]. The final scenario

uses the proposed adaptive step size GPC algorithm. We assume that the initial

beamformer information is available at the transmitter. For every new channel es-

timate, the normalized channel vector is fed into the encoder and the indices of the

tangent direction, magnitude, and predicted step size codewords are fed back to the

transmitter.

Fig. 3.14 shows the symbol error rate of Nt = 4 beamforming system over

a temporally correlated channel (fDTH = 0.005) where 9-bit Grassmannian code-

book was used for delay free and delayed memoryless limited feedback strategies.

For the proposed algorithm, a 6-bit tangent direction codebook and a 3-bit tangent

magnitude codebook were used. Thus the feedback rate is constrained to beRf = 9

bits. The proposed algorithm essentially overlaps with perfect CSIT case showing

the high resolution feedback. Both the proposed and the memoryless approach

begins to marginally deteriorate in high SNR regime for delayed feedback. The

proposed algorithm thus provides near perfect CSIT performance under unit delay

assumption.

In this section, it was shown that the proposed GPC algorithms can achieve

symbol error rate very close to the case with perfect CSI at the transmitter. The

achievable rate simulation has shown that, even in the presence of feedback delay,
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Figure 3.14: Vector symbol error rate plot for Nt = 4 beamforming system with
perfect CSI, memoryless limited feedback using 12-bit Grassmannian codebook
with unit delay, and the proposed algorithm using 8-bit Grassmannian tangent di-
rection codebook, 3-bit tangent magnitude codebook, and 4-bit step size codebook.

essentially a perfect CSI performance can be obtained. Furthermore, a fixed Grass-

mannian codebook can be used for tangent direction codebook that does not require

any training or overhead as in the Householder based PVQ method in [62].
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3.6.4 Application to Zero Forcing Multiuser MIMO System

In this section, the application of proposed GPC algorithm to limited feed-

back multiuser MIMO system using zero forcing precoding is illustrated [51]. It is

assumed that the base station has Nt transmit antennas and there are U = Nt mo-

bile users each equipped with single receive antenna. To isolate the impact of using

the predictive coding for limited feedback, U users are already assumed scheduled

from possibly large number of user pool and the problem of user scheduling is not

considered in this dissertation. Let s(u)[k], v(u)[k], and h(u)[k] be the complex trans-

mit symbol, Nt × 1 unit norm beamforming vector, and Nt × 1 channel vector for

u-th user at time index k, respectively. Then, the input-output relationship for u-th

user may be written as

y(u)[k] = h(u)∗[k]v(u)[k]s(u)[k] + h(u)∗[k]
U∑

n=1,n6=u

v(n)[k]s(n)[k] + n(u)[k] (3.44)

where n[k] is an independent complex Gaussian noise with unit variance. The first

term in (3.44) is the desired signal for u-th user while the second summation term

is the interference signal. The signal to interference plus noise ratio (SINR) for the

u-th user can be written as

SINR(u) =
P
Nt
|h(u)∗v(u)|2

1 +
∑

n 6=u
P
Nt
|h(u)∗v(n)|2

. (3.45)

If the transmit signal s(u) is assumed to be Gaussian, the achievable rate for user u

is given by

R(u) = log2(1 + SINR(u)) (3.46)

and the sum rate as R =
∑U

u=1 R
(u).
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The SINR expression (3.45) shows that the amount of interference depends

on the design of the beamforming vectors. Zero forcing uses beamforming vectors

such that they are orthogonal to other user’s channel vectors, i.e., h(u)[k]v(n)[k] = 0

for n 6= u, to null the inter user interference. Let H = [h(u) · · ·h(u)]∗ be the U ×Nt

composite channel matrix. With perfect CSI, the interference can be perfectly elim-

inated by choosing the unit norm beamforming vector as the normalized columns

of pseudo inverse composite channel matrix, i.e., v(u) = [H†]:,u/‖[H†]:,u‖. Thus

zero forcing technique creates interference free U parallel channels providing full

multiplexing gain but with some power loss due to normalization [83].

In limited feedback multiuser MIMO systems, quantized channel vector in-

formation is fed back to the transmitter from each user [36, 51]. Assuming that

perfect channel estimate h(u) is obtained, the quantization of the channel shape

g(u) = h(u)/‖h(u)‖ is considered and it is assumed that the scalar channel gain is

known perfectly [36]. In this regime, the SINR can be rewritten as

SINR(u) =
P
Nt
‖h(u)‖2|g(u)∗v(u)|2

1 +
∑

n6=u
P
Nt
‖h(u)‖2|g(u)∗v(n)|2

. (3.47)

Two observation are noted from (3.47). First, if the channel vector h(u) is an i.i.d.

vector distributed according to CN(0, 1), g(u) is isotropically distributed on the Nt-

dimensional hyper-sphere. Second, due to the absolute value around g(u)∗v(u), the

SINR is independent of arbitrary unitary rotations of the channel direction. That is,

|g(u)∗v(u)|2 = |ejθg(u)∗v(u)|2 for θ ∈ (0, 2π]. Therefore, the space of channel shape

may be identified as the Grassmannian manifold. Thus, the problem is to feedback

channel shapes on the Grassmann manifold from each user u, and use the collected
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channel shape information at the transmitter to design the beamforming vectors by

zero forcing.

In random codebook based limited feedback multiuser MIMO systems, each

user has a normalized channel vector codebook of size NRC which is shared with

the transmitter [36,51]. The transmitter maintains U tables of size NRC codebooks.

Each user selects the codeword with minimum chordal distance from the normal-

ized channel vector estimate. The index of the selected codeword using log2(NRC)

bits is fed back to the transmitter. The transmitter collects the decoded channel

vectors ĥ(u) to form the composite channel matrix Ĥ = [ĥ(u) · · · ĥ(u)]∗. The beam-

forming vectors are computed as v̂(u) = [Ĥ†]:,u/‖[Ĥ†]:,u‖. It was shown in [51]

that sum rate performance becomes interference limited as SNR increases and that

codebook size needs to be increased linearly as a function of SNR to maintain mul-

tiplexing gain. Herein, lies two practical limitation of random codebook technique.

First, coordination of random codebooks among multiple users may be difficult in

practice. Second, the codebook size that approaches the achievable sum rate be-

comes impractical even for moderate SNR. The proposed GPC algorithm solves

both problems.

For the limited feedback multiuser MIMO system using the proposed GPC

algorithm, each user is assumed to have perfect channel vector estimate. Without

loss of generality, it is assumed that encoder and decoder are initialized. Then, each

user performs the prediction as described in Section 3.4 and feedback the indices

of quantized tangent direction and tangent magnitude codewords. The transmitter

uses the received indices and performs the prediction as depicted in Fig. 3.3. Same
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Figure 3.15: Sum rate forNt = U = 4 i.i.d. channel with perfect CSI, i.i.d. channel
with 9-bit Grassmannian codebook, and the proposed GPC algorithm with 6-bit
Grassmannian tangent direction codebook and 3-bit tangent magnitude codebook
for various normalized Doppler frequencies.

procedure is used to compute the beamforming vectors using the output of the GPC

decoder.

To compare the random codebook approach and the proposed GPC algo-

rithm, each user’s vector channel is assumed to be temporally correlated with cor-

relation according to J0(2πfDTs) [98]. Fig. 3.15 illustrates the achievable sum

rate estimate obtained with i.i.d. Gaussian channel with perfect CSI at the trans-
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mitter, 9-bit random codebook limited feedback approach, and the proposed GPC

limited feedback using 6-bit Grassmannian codebook and 3-bit tangent magnitude

codebook for various normalized Doppler frequency fDTs. Contrary to the random

codebook strategy, the proposed GPC algorithm provides significant sum rate gain.

In fact, for fDTs = 0.001, the system starts to become interference limited above

SNR of 20dB illustrating the superior CSI accuracy when the channel is highly

correlated. Furthermore, each user is equipped with the same codebooks which

eliminates the need to store multiple codebooks at the transmitter, thus reducing the

overhead for practical applications.

Next, the sum rate performance of limited feedback zero forcing multiuser

MIMO system using the proposed algorithm in the presence of delay is considered.

Fig. 3.16 and Fig. 3.17 illustrates the achievable sum rate estimates for various

approaches with β = fDTH = 0.04 and 0.02, respectively. The upper limit is the

case with i.i.d. Gaussian channel with perfect CSI at the transmitter. For all the

prediction results, baseline Rf = 10 bits were used where 6 bits were allocated

for tangent direction codeword and 4 bits were allocated for tangent magnitude

codeword. Additional 4 bits are allocated for step size feedback. The standard

LMS prediction approach uses 10 bits to match the baseline feedback rate Rf of

other methods presented.

First, the standard LMS based prediction provides the lowest sum rate which

improves by 3 bits at higher SNR when the normalized Doppler increases to 0.02.

The naive predictive coding using x̃ is marked with � showing significant sum rate

improvement [48]. The proposed adaptive step size predictive coding, however,
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Figure 3.16: Sum rate comparison for Nt = U = 4 and fDTH = 0.04. Plots are
shown for perfect CSI, step size optimized Grassmannian predictive coding (GPC),
proposed adaptive step size GPC with step size feedback every 4TH and 40TH ,
naive one step GPC using x̃ as output, and first order linear prediction.

provides even greater sum rate improvement across SNR and normalized Doppler.

The step size optimized strategy with Rf = 14 bits yields the highest sum rate

showing the upper bound on the achievable sum rate using the proposed prediction

framework. Two alternative step size feedback strategies are also shown. The case

for Rf = 11 bits, marked by ×, illustrates the case where step size is fed back

every 4TH . The case for Rf = 10.1 bits, marked by 2, illustrates the case where
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Figure 3.17: Sum rate comparison for Nt = U = 4 and fDTH = 0.02. Plots are
shown for perfect CSI, step size optimized Grassmannian predictive coding (GPC),
proposed adaptive step size GPC with step size feedback every 4TH and 40TH ,
naive one step GPC using x̃ as output, and first order linear prediction.

the step size is fed back every 40TH . Despite infrequent feedback of the step size,

the achievable sum rate shows the importance of step size adaptation. Therefore,

these numerical results illustrate the effectiveness of the proposed adaptive step

size prediction formulation and that significant sum rate gain is achievable in the

presence of delayed limited feedback.

Next, the sum rate performance for the proposed adaptive step size GPC
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using different codebook sizes (16, 14, 12, and 10 bits) and the conventional mem-

oryless approach using 10 bits are compared in Fig. 3.18. The plot illustrates the

dependence of the performance on codebook size. Reducing the codebook size has

significant effect on the sum rate performance due to coarse representation of the

tangent error vector. Fortunately, at 10 bits of feedback, the proposed adaptive step

size GPC still outperforms the conventional memoryless approach.

Finally, mode switching point for single user MIMO and multiuser MIMO

with the proposed predictive coding in delayed feedback system is considered. In

Fig. 3.19, the achievable throughputs are compared for single user MIMO sys-

tem using Nt = 4 beamforming and multiuser MIMO system with Nt = 4 and

4 users using zero forcing precoding. Carrier frequency is assumed to be 2GHz

with TH = 5ms. The proposed adaptive step size GPC algorithm is used for both

single user and multiuser mode with 16 bits of feedback. The lower SNR cross-

ing point remains at approximately 10dB while the higher SNR switching point

increases from 35.4dB to 71.4dB for slower mobile speed. Fig. 3.19 illustrates that

the range of SNR where multiuser MIMO gives higher throughput can be signifi-

cantly extended compared to memoryless techniques used in [103].

3.7 Summary

In this chapter, a new predictive coding algorithm on the Grassmann mani-

fold was proposed generalizing the classical predictive vector quantization. In ad-

dition, adaptive step size Grassmannian predictive coding was proposed for MIMO

systems with feedback delay. The geometric properties of the Grassmann manifold
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Figure 3.18: Sum rate comparison for Nt = U = 4 at fDTH = 0.0278 (3km/h) for
the proposed adaptive step size GPC using codebook sizes 16, 14, 12, and 10 bits
and conventional memoryless codebook approach using 10 bits. The plot shows
that using 10-bit codebook with the proposed algorithm still provides sum rate im-
provement.

were exploited to derive a prediction function, an error tangent vector, a quantizer,

and a step size optimization framework. Distortion bounds were obtained show-

ing significant distortion improvement over memoryless quantization techniques.

Two immediate applications in limited feedback beamforming system and limited

feedback multiuser MIMO system were simulated. In particular, the proposed GPC

algorithms were shown to provide significant sum rate improvement, even under
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Figure 3.19: Single user and multiuser sum rate comparison for Nt = U = 4 with
fDTH = 0.0556 (6km/h), 0.0278 (3km/h), and 0.0092 (1km/h) assuming carrier
frequency of 2GHz and TH = 5ms. The plot shows that, at lower SNR region and
high SNR region depending on mobile speed, single user (SU) MIMO mode can
outperform multiuser MIMO system.

feedback delay, for multiuser MIMO system using practical codebook sizes.
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3.8 Appendix
3.8.1 Proof of Theorem 6

Proof. It was shown in [44] that the tangent vector between x[1] and x[2] in Gn,1

can be written as

e = tan−1
(∥∥∥∥x[2]

ρ
− x[1]

∥∥∥∥) x[2]/ρ− x[1]

‖x[2]/ρ− x[1]‖2
. (3.48)

The normed term can be simplified as∥∥∥∥x[2]

ρ
− x[1]

∥∥∥∥2
2

=

(
x[2]

ρ
− x[1]

)∗(
x[2]

ρ
− x[1]

)
=

1

|ρ|2
− 1. (3.49)

Therefore, ∥∥∥∥x[2]

ρ
− x[1]

∥∥∥∥
2

=

√
1

|ρ|2
− 1 =

d

|ρ|

where d =
√

1− |ρ|2 is the chordal distance between x[1] and x[2]. Clearly,

‖e‖2 = tan−1(d/‖ρ|) ≥ 0 and ~e = (x[2]/ρ− x[1])/(d/|ρ|) such that e = ‖e‖2~e.

Using the exponential form of trigonometric identities

tan−1(x) = (j/2) ln{(1− jx)/(1 + jx)}

and

cos−1(x) = −j ln(x+
√
x2 − 1)
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, we have

tan−1
(
d

|ρ|

)
=

j

2
ln

1− j
(

d
|ρ|2

)
1 + j

(
d
|ρ|2

)


= −j ln(|ρ|+
√
|ρ|2 − 1)

= cos−1 |ρ|. (3.50)

Since |ρ| is the cosine of the subspace angle between x[1] and x[2], this shows that

the norm of the tangent vector is equal to the arc length, i.e., |θ|with subspace angle

θ [25, p. 603].

3.8.2 Proof of Theorem 7

Proof. For the general case where x[1], x[2] ∈ Gn,p with n > p > 0, the geodesic

between x[1] and x[2] was shown to be [18]

X(t) = x[1]V cos(Σt)V∗ + U sin(Σt)V∗

where UΣV∗ is the compact singular value decomposition of the tangent emanating

from x[1] to x[2]. For the case x[1], x[2] ∈ Gn,1, let e be the tangent vector ema-

nating from x[1] to x[2]. Then, we may assume V = 1 without loss of generality

and identify U with ~e and Σ with ‖e‖2 to obtain

G(x[1], e, t) = x[1] cos(‖e‖2t) + ~e sin(‖e‖2t). (3.51)
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It is clear that G(x[1], e, 0) = x[1]. At t = 1, we have

G(x[1], e, 1) =
x[1]√

1 + d2/|ρ|2

+
x[2]/ρ− x[1]

d/|ρ|
d/|ρ|√

1 + d2/|ρ|2
(3.52)

=
x[2]

ρ
√

1 + d2/|ρ|2
(3.53)

= x[2]

where we have used the identities

sin(x) =
x√

1 + x2

cos(x) =
1√

1 + x2
(3.54)

in (3.52) and the fact that ρ
√

1 + d2/|ρ|2 = 1 in (3.53).

To verify that G(x[1], e, t) for t ∈ [0, 1] is a valid point on the Grassmann

manifold, taking the inner product of G(x[1], e, t) with itself yields 1 for t ∈ [0, 1]

by using the fact that x[1] ⊥ e.

3.8.3 Proof of Theorem 8

Proof. For the general case where x[1], x[2] ∈ Gn,p, n > p > 0, the parallel

transport of tangent E emanating from x[1] along the geodesic direction ∆ with

compact singular value decomposition, UΣV∗, was shown to be [18]

Ê = [−x[1]V sin(Σt)U∗ + U cos(Σt)U∗ + (I−UU∗)] E. (3.55)

It needs to be shown the parallel transport of the tangent vector e emanating from

x[1] to x[2] in the geodesic direction e for the case x[1], x[2] ∈ Gn,1. Without loss
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of generality, we may assume that the singular value decomposition of e is given

with ~e as the left singular vector, ‖e‖2 as the singular value, and 1 for the right

singular vector. Then

~e(t) = [−x[1]~e∗ sin(‖e‖2t) + ~e~e∗ cos(‖e‖2t) + (I− ~e~e∗)] e

= −x[1]‖e‖2 sin(‖e‖2t) + e cos(‖e‖2t). (3.56)

Since G(x[1], e, 1) = x[2], the parallel transported tangent vector emanating from

x[2] is found by evaluating (3.56) for t = 1. Using (4.12) and (3.54), we have

ê = −x[1]‖e‖2 sin(‖e‖2) + e cos(‖e‖2)

=
−x[1] tan−1(d/|ρ|)(d/|ρ|)√

1 + d2/|ρ|2

+
tan−1(d/|ρ|)(x[2]/ρ− x[1])

d/|ρ|
1√

1 + d2/|ρ|2

=
tan−1(d/|ρ|)

(d/|ρ|)
√

1 + d2/|ρ|2

(
x[2]

ρ
− x[1]

(
1 +

d2

|ρ|2

))
= tan−1

(
d

|ρ|

)
x[2]ρ∗ − x[1]

d
(3.57)

which is the desired result.

3.8.4 Proof of Proposition 9

Proof. The predicted vector is obtained as

x̃[k + 1] = G(x[k], ê, t)

= x[k] cos(‖ê‖t) +
ê

‖ê‖
sin(‖ê‖t)

Since
ê

‖ê‖
=

x[k]ρ∗ − x[k − 1]

d
(3.58)
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with ρ = x∗[k− 1]x[k] and d =
√

1− |ρ|2 by (3.4), we obtain the desired formula.

3.8.5 Proof of Theorem 10

Proof. Recall that the parallel transported tangent vector ê emanating from x[2] is

given in (3.4). Computing the geodesic with from x[2] along ê at t = 1 gives

x̂ = G(x[2], ê, 1)

=
x[2]√

1 + d2/|ρ|2
+

x[2]ρ∗ − x[1]√
1 + d2/|ρ|2

= |ρ|x[2] + ρ∗x[2]− x[1]. (3.59)

To see that x̂ ∈ Gn,1, we have

x̂∗x̂ = (|ρ|x[2] + ρ∗x[2]− x[1])∗(|ρ|x[2] + ρ∗x[2]− x[1])

= 1 (3.60)

where we have used the fact that ρ = x∗[1]x[2]. To see that the prediction is distance

preserving, the inner product of x[2] and x̂ gives

x∗[2]x̂ = x∗[2]x[2]|ρ|+ x∗[2]x[2]ρ∗ − x∗[2]x[1]

= |ρ|. (3.61)

Therefore,

d(x[2], x̂) =
√

1− |ρ|2 = d(x[1],x[2]). (3.62)
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Chapter 4

Signal Processing on the Manifold of Unitary
Matrices

4.1 Prior Work

Differential and predictive coding play a prominent role in areas such as

speech, image, and video coding as well as in various applications of data quanti-

zation and compression [17, 19, 22, 55]. Differential coding exploits the correlation

among the data, or equivalently, the memory in the underlying process in which the

data arise. Instead of independently encoding sample by sample, encoding the dif-

ference between samples often reduces the dynamic range for quantization, hence

improving the accuracy of the coded information for a given number of bits. The

exhibited correlation may be due to speech production mechanisms (temporal), ob-

jects in an image with similar adjacent pixel colors (spatial), or moving objects in

a video (spatio-temporal). Similarly, predictive coding also exploits correlation in

the data by encoding the difference between the observed and the predicted data.

Linear predictive coding techniques have been successfully used to obtain high res-

olution source coding in speech, image and video applications. Both differential

and predictive coding are well understood for signals represented in linear vector

space [50, 100]. Unfortunately, differential and predictive coding of time series

evolving on the space of unitary matrices have not appeared before.
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For MIMO applications, most prior research on limited feedback designs

have focused on the quantization of fixed rank channel state information, hence

the focus on Grassmann manifold of p-dimensional subspaces in n-dimensional

space [66]. Chapter 3 dealt with the predictive coding of special case of Grassmann

manifold consisting of 1-dimensional subspaces. Prior work was discussed in Sec-

tion 3.1. The rank of the precoder defines the number of spatial streams transmitted

simultaneously in spatial multiplexing systems with beamforming being the special

case with only one stream of data being sent. This approach has led to numer-

ous codebook design as discussed in previous chapters. In particular, a differential

feedback approaches were proposed in [4, 58]. The idea there was to consider the

change in the precoder matrix over time as a unitary transformation using the group

theoretic approach. In both cases, codebook of unitary matrices that represent in-

cremental transformation, or rotation, of the precoder were proposed. While this

approach is attractive for its simple implementation, the design of unitary matrix

codebook is challenging due to the large number of variables even for moderate

number of antennas. Furthermore, the rank of the precoder is fixed and it is smaller

than the unitary matrices representing the change resulting in more parameters than

the precoders themselves. Unfortunately, fixing the rank of the precoder limits the

available spatial multiplexing gain thus resulting in limited throughput. In fact,

it has been show that an adaptive technique, called multimode precoding, which

adapts the rank of the precoder based on tradeoff between throughput and error rate

is capacity achieving [65]. Furthermore, the cellular standard such as 3GPP has

adopted a nested limited feedback codebook structure such that the transmitter can
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override the rank and reduce the rate for higher reliability [2]. This motivates a new

avenue of limited feedback approach that is independent of the rank. Fortunately,

the optimal unitary precoder was shown to be the p dominant right singular vectors

of the channel matrix [64,94]. Thus, we see that the unitary matrix of right singular

vectors of a given channel contains the necessary spatial information for every rank

unitary precoding.

4.2 Contributions

In this chapter, a differential and predictive coding algorithms are proposed

for correlated data on the manifold of unitary matrices that arise from the right sin-

gular matrix of the MIMO channel. The proposed algorithms are motivated by a

new avenue of limited feedback approach that is rank independent for higher flex-

ibility at the transmitter and the need for higher resolution feedback strategy. The

proposed algorithms are derived using group and differential geometric properties

of Lie group of special unitary matrices. The main contributions of this paper are

as follows.

• Differential and prediction framework for unitary matrix time series: A new

differential and prediction technique are proposed for time series of unitary

matrices. A transformation of unitary matrix into an equivalent special uni-

tary matrix under the signal to noise ratio metric is used. The key idea is to

use the Lie group structure of the special unitary matrix to derive a tangent

space difference between two points. The group symmetry of the Lie group is
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exploited to introduce a notion of one step prediction. Furthermore, a closed

form step size optimization for prediction is obtained to minimize the tangent

space error between the predicted and observed unitary matrix. An adaptive

step size prediction filter is proposed to eliminate the dependence of step size

optimization on the current observation for practicality.

• Differential coding of unitary matrix time series: A framework for differ-

ential coding of correlated unitary matrix time series is proposed. The key

idea is to transform the unitary matrix into a special unitary matrix and com-

pute the tangential error between two successive observations. A strategy for

quantizing the tangential error is proposed by exploiting the skew-Hermitian

symmetry of the tangential error.

• Predictive coding of unitary matrix time series: Using the adaptive step size

predictor, a predictive coding strategy is proposed. The main idea is to en-

code the tangential difference between the predicted matrix and the observed

matrix exploiting the group and differential geometric structure of the Lie

group of special unitary matrices. Simulation results for mean square error

performance of the proposed algorithms are shown.

• Application to limited feedback MIMO Systems: The proposed differential

and predictive coding algorithms are applied to single user limited feedback

MIMO systems. The proposed differential and predictive coding algorithms

are used to encode and feedback the right singular matrix of the MIMO chan-

nel. Based on the feedback information, achievable throughputs and symbol
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error rates for rank 1 (beamforming) and 2 (spatial multiplexing) strategies

are compared with memoryless limited feedback approaches. The proposed

approaches are shown to yield throughput and error rate performance close to

perfect CSI case that is independent of the chosen rank. Furthermore, using

the predicted output at the transmitter, the value of predictive coding strategy

for systems with feedback delay is illustrated.

4.3 System Overview
4.3.1 Discrete-time System Model

For single user limited feedback unitary precoded MIMO wireless system,

the system model in Section 2.3 is considered.

A limited feedback-based block diagonalization for multiuser MIMO wire-

less system is also considered. The base station is assumed to have Nt transmit

antennas and there are U = Nt mobile users each equipped with Nr antennas. To

isolate the impact of predictive coding for limited feedback, U users are assumed

to be scheduled from possibly large number of user pool and the problem of user

scheduling is not considered in this dissertation. The transmitter sends Ns = Nr

streams of data to each user. Although Nr ≥ Ns is possible with appropriate com-

biner at the receiver, the design of combiner is not considered in this dissertation.

Let s(u)[k], F(u)[k], and H(u)[k] be the Ns × 1 transmit vector, Nt × Ns precoding

vector satisfying F(u)∗[k]F(u)[k] = INs , and Nt × Nr channel matrix for u-th user

at time index k, respectively. Then, the input-output relationship for u-th user may
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be written as

y(u)[k] = H(u)∗[k]F(u)[k]s(u)[k] + H(u)∗[k]
U∑

n=1,n6=u

F(n)[k]s(n)[k] + n(u)[k] (4.1)

where n[k] is an independent complex Gaussian noise vector with unit variance.

The first term in (4.1) is the desired signal for u-th user while the second summation

term is the interference signal. The signal to interference plus noise ratio (SINR)

for the u-th user can be written as

SINR(u) =
P
Nt
‖H(u)∗F(u)‖22

1 +
∑

n6=u
P
Nt
‖H(u)∗F(n)‖22

. (4.2)

If the transmit signal s(u) is assumed to be Gaussian, the achievable rate for user u

is given by

R(u) = log2(1 + SINR(u)) (4.3)

and the sum rate as R =
∑U

u=1 R
(u).

The block diagonalization strategy involves linear precoding that suppress

inter user interference when perfect CSI is available. Following the block diagonal-

ization procedure [101], each F(u) is chosen such that H(n)∗F(u) = 0 for n 6= u.

The precoding matrices can be designed by stacking the channel matrices H(u∗) for

u 6= n and finding the basis corresponding to the null space of the stacked channel

matrix. For limited feedback-based block diagonalization, quantized version of the

subspace spanned by the rows of H(u)∗ is used [86]. In this dissertation, limited

feedback of right singular matrix associated with H(u) is considered.

Dropping the user index for notational brevity, the singular value decompo-
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sition of the channel matrix at time k is given by

H[k] = U[k]Σ[k]V∗[k] (4.4)

where U[k] is theNr×Nr unitary matrix of left singular vectors, Σ[k] is theNr×Nt

diagonal matrix of singular values, and V[k] is the Nt ×Nt unitary matrix of right

singular vectors. Note that the V[k] is a square unitary matrix that only depends on

the number of transmit antennas. It has been shown that for Ns-stream transmis-

sion with Ns ≤ min{Nt, Nr} that the optimal unitary precoder is given by the Ns

dominant columns of V[k] corresponding to the Ns largest singular values [64,94].

Therefore, the unitary matrix V[k] contains the spatial dimensions available in a

given channel.

To develop a feedback strategy for V[k], a unitary matrix decomposition

from group theory is used. A unitary matrix V can be represented as a direct prod-

uct of elements in special unitary group and unitary group of dimension 1 [57].

Let Un = {X ∈ Cn×n : X∗X = In} denote the space of n × n unitary matrices

and SUn = {X ∈ Un : det(X) = 1} denote the space of special unitary matri-

ces. Then, V[k] ∈ U can be decomposed as V[k] = S[k]Q[k] where S[k] ∈ SUn

and Q[k] = diag
[
det(V[k]) 1 · · · 1

]
. Thus any unitary matrix can be trans-

formed into a special unitary matrix by right multiplication Q∗[k]. Since Q[k] is

unitary and the performance metrics makes it invariant to unitary transformations,

S[k] ∈ SUn is considered as the equivalent channel state information to be fed back

to the transmitter. As it will be shown in Section 4.4, there is an advantage in using

the differential geometric structure of SUn as opposed to Un. Based on this, the lim-
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ited feedback of derived channel state information S[k] ∈ SUn which is equivalent

under the performance metric to feedback of V[k] ∈ Un is considered.

4.3.2 Performance Metrics

Two types of performance metrics will be used to evaluate the proposed

algorithms. The first type of performance metric is based on signal processing

theoretic performance measures. Specifically, two distance measures are used to

evaluate the distance between the optimal precoder and the precoder obtained by the

proposed algorithms. The first of this type is the chordal distance metric (3.1). The

chordal distance measure is used for rank 1 limited feedback or limited feedback

beamforming systems. For rank 2 and higher, generalization of chordal distance to

Nt ×Ns unitary matrices with Ns < Nt is used. The projection Frobenius norm is

dpF (F1,F2) = 2−1/2‖F1F
∗
1 − F2F

∗
2‖F

= ‖ sin θ‖2. (4.5)

Both chordal distance and projection Frobenius norm are used to evaluate mean

squared error performance and per sample errors over time.

The second type of performance metric is based on communication theo-

retic performance measures; achievable throughput, symbol error rate, and feedback

rate. The feedback rate is defined to be the number of feedback bits per update in-

terval. The feedback rate is used to compare the required feedback throughput for

the proposed algorithms.
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4.4 Lie Groups and Lie Algebras

First, an overview of the Lie group theory is given which provides the

group theoretic and differential geometric concepts used to derive the proposed

algorithms. Then, some key operators are constructed to perform differencing and

projections onto the special unitary matrices. Finally, the notion of prediction on

Lie groups of special unitary matrices is developed and prediction optimization

strategies are shown.

4.4.1 Preliminaries

Recall that a matrix group structure is a set endowed with the usual matrix

multiplication, inverse operator, and the identity element satisfying the closure and

associativity [57]. An n × n unitary group, Un, is a set of matrices satisfying

U∗U = In for U ∈ Cn×n. An n×n special unitary group, denoted SUn, is a subset

of Un with condition that det(U) = 1 for U ∈ Un. For the special unitary group,

the inverse is X−1 = X∗ and the usual identity matrix is given by In. The right

translation of a point Y ∈ SUn about an element X ∈ SUn, RX : SU → SU, can

be defined as

RX(Y) = YX∗. (4.6)

The inverse right translation operator `X : SU→ SU is defined as

R−1X (Y) = YX. (4.7)

The right translation and inverse can be used to translate two points, say X,Y ∈

SUn, such that X is translated to the identity by RX(X) and Y is translated to an-
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other point, say Z = RX(Y). Thus the translation operation enables us to consider

the relationship between points with respect to the identity rather than considering

absolute local relationships. A left translation can be similarly defined and used to

follow the developments to follow but only the right translation will be used in this

dissertation for conciseness.

In addition to the usual group structure, a Lie group is a group that also

has a smooth manifold structure compatible with the underlying group structure.

Formally, a Lie group is defined as follows [27].

Definition 12 (Lie Group). A Lie group G is a differentiable manifold which is also

a group and such that the group product and the inverse map are differentiable.

A differentiable, or smooth, manifold is a space that is locally Euclidean

and on which calculus can be performed [61]. The unitary group and the special

unitary group are well known matrix Lie groups1. In fact, smooth manifolds such

as Stiefel and Grassmann manifolds that frequently arise in recent literatures on

limited feedback MIMO systems [8,48,64,76] and optimization [6,18,71] are cases

of special Lie group with quotient group structure [89].

Since Lie group is a differentiable manifold, a tangent space can be defined

at the identity, denoted sun with lower case Gothic letters, of all matrices E for

which there is a differentiable function f(τ), τ ∈ R, that lies in SUn and satisfies

1All matrix Lie groups are Lie groups, but the converse is not true [27]. The terminology between
the matrix Lie group and the Lie group is not distinguished in this dissertation since the discussion
is limited to matrix groups.
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f(0) = In and f ′(0) = E where ′ denotes the derivative of the function with

respect to τ . The tangent space at the identity of a Lie group is known as Lie

algebra which is a real vector space. For SUn, the corresponding Lie algebra is

defined as sun = {E ∈ Cn×n : E∗ = −E and trace(E) = 0} [27]. Therefore,

the Lie group of SUn has a tangent space of real vector space consisting of skew-

Hermitian matrices with trace zero. Furthermore, the tangent space at various points

on the group can be characterized at the identity using the translation operator on

the group. This is the key distinguishing feature from tangent space of Grassmann

manifold [48] where the tangent space at each point on the Grassmann manifold is

different.

The exponential map plays a fundamental role in passing the information

from the Lie algebra to the Lie group [89].

Definition 13. For an n× n matrix E, define the matrix exponential eE by

eE =
∞∑
m=0

Em

m!
. (4.8)

Letting f(τ) = eτE, it is easy to verify that f satisfies the initial condition

and the derivative constraint. For the Lie group of SUn, eE must be unitary with de-

terminant one. Therefore, E must satisfy (eE)∗ = (eE)−1 for every E by the unitary

condition. By taking a term by term expansion of (4.8), the matrix E must satisfy

the skew-Hermitian property, i.e., E∗ = −E, for eE to be in SUn. Furthermore,

since matrices in SUn have determinant one, det(eE) = etrace(E) yields the property
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that trace(E) = 0. For τ ∈ [0, 1], f(τ) gives the so called one-parameter map of

geodesic path, the shortest distance path on SUn, between two points given by In

and eE, both in SUn.

Given a point near the identity, the difference is computed by find the tan-

gent matrix E representing the differential between the identity and a point, say,

S ∈ SUn. This is accomplished by the matrix logarithm that lifts a point onto the

tangent space [27].

Definition 14. For an n × n special unitary matrix S, define the matrix logarithm

log(S) by

log(S) =
∞∑
n=1

(−1)n+1 (S− IN)n

n
. (4.9)

The direct form of matrix exponential and logarithm are not computation-

ally attractive. For the special unitary group, however, simplified computation

may be obtained by noting that any special unitary matrix S is diagonalizable as

S = UDU∗ where U is another unitary matrix and D = diag
[
λ1 λ2 · · ·λN

]
is

the diagonal matrix with eigenvalues of the form ejθn along the diagonal. Thus, the

matrix logarithm is written as

E = log(S) = U

log(λ1) · · · 0

0
. . . 0

0 · · · log(λn)

U∗ (4.10)

and the matrix exponential as

S = eE = U

e
log(λ1) · · · 0

0
. . . 0

0 · · · elog(λn)

U∗ (4.11)
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by expanding the summation terms to factor out U. Computational aspects of ap-

proximating matrix exponential in general has been considered in [49].

Based on these tools, the basic operators for the proposed algorithms are

developed next. A time series S[k] evolving on SUn, e.g., time evolution of CSI

encountered in MIMO applications, is considered. Given two successive points, the

differential is represented in the tangent space.

Tangent: For S[k − 1],S[k] ∈ SUn, the tangent matrix emanating from S[k − 1] to

S[k] is

E[k] = log(RS[k−1](S[k])) (4.12)

with the property that E[k] = −E∗[k] and trace(E[k]) = 0. For notational brevity,

the tangent operation is denoted by E[k] = L(S[k − 1],S[k]). This operation com-

bines the right translation of S[k] with respect to S[k − 1] such that S[k − 1] cor-

responds to the identity element. Using the group structure only, the relationship

between S[k − 1] and S[k] is given by an n × n unitary transformation involving

Cn2 or R2n2 parameters. Thanks to the skew-Hermitian symmetry, the tangent rep-

resentation results in Rn2 , or half, the number of real parameters. This symmetry is

exploited for quantization of the tangent matrices.

The tangent matrix describes the shortest distance path between S[k−1] and

S[k], called the geodesic. The geodesic can be parameterized by one real parameter

t as follows.

Geodesic: If S[k − 1],S[k] ∈ SUn and E[k] ∈ sun is the tangent matrix emanating
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from S[k − 1] to S[k], the the geodesic path between S[k − 1] and S[k] is

G(S[k − 1],E[k], t) = R−1S[k−1](e
E[k]t)

= eE[k]tS[k − 1] (4.13)

for t ∈ [0, 1] such that G(S[k − 1],E[k], 0) = S[k − 1] and G(S[k − 1],E[k], 1) =

S[k]. The geodesic formula provides a convenient formula to map the tangent ma-

trix back to SUn. Thus the tangent operator and the geodesic operator provides the

mechanism for mapping between group SUn and tangent space sun.

Since the tangent space will be exploited to develop the proposed algo-

rithms, a product of geodesic expression is frequently encountered. Let E1 and

E2 be two tangent matrices. Then, the tangent expression E which describes the

product is

E = log(eE1eE2). (4.14)

Since the skew-Hermitian matrices in sun do not commute, the solution is given by

an infinite series called the Baker-Campbell-Hausdorff formula [27]

E = E1 + E2 +
1

2
[E1,E2] +

1

12
[E1, [E1,E2]]−

1

12
[E2, [E1,E2]] + · · · (4.15)

where [·, ·] denotes the bracket operator defined as [E1,E2] = E1E2−E2E1 which

is a skew-Hermitian preserving operator. In fact, the Lie algebra is usually de-

fined as a real vector space together with the bracket operator which is bilinear,

skew symmetric, and satisfies the Jacobi identity [27]. The interpretation of Baker-

Campbell-Hausdorff formula is that the tangent matrices cannot simply be added,

as one might expect, and that the higher order terms represents the deviation from
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tangent space additivity. For the proposed algorithms and its analysis, the first order

approximation by E ≈ E1 +E2 is shown to give good results. Finally, based on the

first order approximation, the Frobenius norm is used to measure the tangent space

distance as

d(E1,E2) = ‖E1 − E2‖F . (4.16)

4.4.2 Prediction on Lie Groups

To introduce the notion of prediction based on the known tangent informa-

tion, one method is to extend the geodesic path past S[k + 1] in the direction of E.

This is accomplished by the inverse right translation with respect to the new desired

base of the tangent. This is in contrast to the parallel transport needed in the Grass-

mann manifold case in Chapter 3. The reason for this is that Grassmann manifold

does not admit a universal tangent space that can be translated by the group oper-

ation. Therefore, a different tangent needs to be computed at each point. The case

with Lie groups is much simpler thanks to the symmetry of the space. Therefore, a

prediction function on SUn is proposed.

General Prediction Formula: Let S[k − 1],S[k] ∈ SUn and E[k] ∈ sun be

the tangent matrix emanating from S[k − 1] to S[k]. Then, the one step prediction

is

S̃[k + 1] = P (S[k],E[k], t)

= R−1S[k](e
E[k]t)

= eE[k]tS[k] (4.17)
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where the step size parameter t ∈ [0, 1] can be used to control the prediction step.

The simplest method to perform prediction is to assume the step size pa-

rameter t = 1. But there is no reason a full step should be taken. In what follows,

it is shown that the optimal step size can be learned from the past observations to

perform prediction of the step size parameter in such a way to minimize prediction

error.

Let S[k + 1] be the matrix which is to be predicted and S̃[k + 1] be the

predicted matrix based on (4.17). The tangent matrix emanating from S[k] to S[k+

1] is

E[k + 1] = L(S[k],S[k + 1])

= log(RS[k](S[k + 1])). (4.18)

Then, using the geodesic formula, S[k + 1] can be expressed as

S[k + 1] = G(S[k],E[k + 1], 1)

= eE[k+1]S[k]. (4.19)

Then, the prediction error tangent matrix Ee[k + 1] representing the error between

S̃[k + 1] and S[k + 1] is

Ee[k + 1] = L(S̃[k + 1],S[k + 1])

= log(S[k + 1]S̃∗[k + 1])

= log(eE[k+1]S[k]S∗[k]e−E[k]t) (4.20)

= log(eE[k+1]e−E[k]t)

≈ E[k + 1]− E[k]t (4.21)
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where the last approximation is due to (4.15). Therefore, the prediction error is

minimized by minimizing the norm of Ee[k + 1] as the following theorem shows.

Theorem 15 (Step Size Optimization). The optimal instantaneous step size selec-

tion to predict S[k + 1] is

topt = arg min
t∈[0,1]

‖E[k + 1]− E[k]t‖2F (4.22)

where the closed form solution is

topt =
<(tr(E∗[k + 1]E[k]))

tr(E∗[k]E[k])
. (4.23)

Proof. Please see Appendix 4.9.1.

Unfortunately, from a computational point of view, the step size optimiza-

tion can only be performed after observing S[k+ 1]. This is not practical for differ-

ential and predictive coding because as accurate a prediction as possible of S[k+ 1]

is needed before S[k + 1] becomes available. To overcome this problem, a least

mean square (LMS) based predictor is proposed using step size t based on past

history of topt computed after S[k + 1] becomes available.

Let topt[k] denote the optimal step size to predict S[k]. The main idea is to

compute topt[k] after observing S[k] and then predict the next step size t̃[k+1] based

on the past knowledge of topt[k], topt[k − 1], . . . , topt[k −M + 1] where M denotes

the depth of the memory used for prediction of the step size. Then, the step size

prediction error is

et[k + 1] = topt[k + 1]− t̃[k + 1]. (4.24)
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The mean squared prediction error E [|et|2] criterion used to design a linear predic-

tor to minimize the mean squared prediction error. Since topt[k] is a scalar process,

an M -th order linear predictor

t̃[k + 1] =
M−1∑
n=0

antopt[k − n] (4.25)

with filter coefficients {an}M−1n=0 is used. If Rt is an M ×M autocorrelation matrix

for topt[k], a =
[
a0 · · · aM−1

]T is a vector of filter coefficients, and r is an M ×

1 vector of cross correlation between the desired optimized step size topt and the

predicted step size t̃, the Wiener-Hopf equation is [31]

Rta = r (4.26)

and the optimal filter coefficients can be found by computing R−1t r. Since sufficient

sample history of topt[k] may not be available to compute the correlation matrices,

the LMS algorithm is used to adapt the filter coefficients {an}M−1n=0 based on instan-

taneous correlation estimates [31]. The pseudo code is shown in Algorithm 7.

Algorithm 7 Adaptive Step Size Prediction

Input: topt[k + 1] =
[
topt[k] · · · topt[k −M − 1]

]T
1: Initialize a[1] =

[
a0[1] · · · aM−1[1]

]T
2: for all k=1,2,. . . do
3: t̃[k + 1] = a[k]T topt

4: et[k + 1] = topt[k + 1]− t̃[k + 1]
5: a[k + 2] = a[k + 1] + µet[k + 1]topt[k + 1]
6: end for

Output: t̃[k + 1]

Therefore, an adaptive step size unitary predictor which consists of step size

optimization, LMS algorithm to predict the step size, and the general prediction in
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~t[k + 1]
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Step Size Opt.
&

LMS Predictor

Figure 4.1: Block diagram of proposed adaptive step size predictor with step size
optimization, least mean square (LMS) step size predictor, and the general predic-
tion.

(4.17) are obtained. A high level block diagram for the adaptive step size predictor

is shown in Fig. 4.1.

4.5 Differential Coding Algorithm

In this section, the proposed Lie theoretic differential coding technique is

described for time series evolving on the special unitary group. Unlike prior tech-

niques using rotation based differential coding [4, 58], the propose approach com-

putes the tangent space differential between successive measurement on the special

unitary group and perform the quantization on the tangent space. The main bene-

fit of the proposed approach is that the number of real parameters to be quantized

are reduced by a half thanks to the skew-Hermitian symmetry of the Lie algebra.

Unfortunately, the benefit comes with increase in computational complexity.

Let {S[k]}k∈N ∈ SUn be the correlated input with time index k on the n ×

n special unitary group. The main idea of differential coding is to compute the

tangential difference E[k] between the previous estimate Ŝ[k − 1] and the current
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Figure 4.2: Block diagram of differential encoder

observation S[k] at the encoder. The quantized tangential difference is fed to the

decoder to update the previous estimate Ŝ[k−1] to obtain the current estimate Ŝ[k].

Algorithm 8 Differential encoding algorithm

Input: S[k] and Ŝ[k − 1]
1: for all k=1,2,. . . do
2: E[k] = L(Ŝ[k − 1],S[k])
3: q[k] = Q(E[k])
4: Ŝ[k] = G(Ŝ[k − 1],Eq[k], 1)
5: end for

Output: q[k]

Fig. 4.2 illustrates the block diagram; the pseudo code is provided in Al-

gorithm 8. At time k, an error tangent matrix E[k] is computed between the input

signal S[k] and the previous estimate Ŝ[k − 1] using (4.12). The quantization of

the tangent error matrix is performed in two steps. The tangent error matrix is

decomposed into a magnitude component and unit directional component as

E[k] = ‖E[k]‖ E[k]

‖E[k]‖
. (4.27)

Note that the unit directional component preserves the skew-Hermitian structure.

Let Cm = {cm,`}Nm`=1 with Nm codewords denote the codebook of error tangent
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magnitudes in nonnegative reals. Also, let Cd = {Cd,i}Ndi=1 with Nd codewords de-

note the codebook of unit norm directional tangent matrices in sun. The codeword

selection criterion is to minimize the tangent error between the estimate Ŝ[k] and

the observed matrix S[k]. That is, the codeword indices `[k] and i[k] are selected

according to

(`[k], i[k]) = arg min
`∈{1,2,...,Nm},i∈{1,2,...,Nd}

d(G(Ŝ[k − 1], cm,`[k]Cd,i, 1),S[k]).(4.28)

Recall that

G(Ŝ[k − 1], cm,`[k]Cd,i, 1) = ecm,`[k]Cd,iŜ[k − 1] (4.29)

and

S[k] = eE[k]Ŝ[k − 1]. (4.30)

Therefore, the quantization error tangent Ê[k] becomes

Ê[k] = log(S[k]Ŝ∗[k − 1]e−cm,`[k]Cd,i)

= log(eE[k]Ŝ[k − 1]Ŝ∗[k − 1]e−cm,`[k]Cd,i)

≈ E[k]− cm,`[k]Cd,i (4.31)

where the last approximation is due to (4.15). Thus the codeword selection becomes

(`[k], i[k]) = arg min
ell∈{1,2,...,Nm},i∈{1,2,...,Nd}

‖E[k]− cm,`[k]Cd,i‖F (4.32)

which can be computed by searching over Nm ×Nd codeword combinations.

Unfortunately, despite the skew-Hermitian structure of Cd, constructing a

good codebook is a difficult task, especially as the dimension n increases. For

smaller n, the Lloyd algorithm may be employed to construct the error tangent
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direction codebook [22]. Unfortunately, it is well known that codebooks with larger

dimensions requires large number of iterations. For example, consider the case

n = 2. Thanks to the skew-Hermitian symmetry and trace zero property, E[k] can

be written as

E[k] =

[
ja b+ jc

−b+ jc −ja

]
(4.33)

where a, b, and c are real numbers. Then, there are three real numbers representing

the tangent space of SU2. By vectorizing a, b, and c, Lloyd algorithm may be

performed to obtain a reasonable codebook. Therefore, for smaller dimensions

where the codebook for Cd is available, the selection criterion in (4.32) is used. For

larger dimensions, the error tangent magnitude is quantized first according to

`[k] = arg min
i∈{1,2,...,Nm}

|‖E[k]‖2 − cm,i| (4.34)

where `[k] is the index of the selected error tangent magnitude codeword in Cm.

Then, the normalized error tangent direction E[k]/‖E[k] is quantized element by

element to obtain Cd,q using Nq bits per dimension where the total number of bits

used to encode E[k]/‖E[k] isNd = n2Nq bits. Note that due to the symmetry of the

skew-Hermitian matrix, only the upper off-diagonal and the imaginary part of the

diagonal needs to be quantized. For notational brevity, the quantization is denoted

byQ : Cn2 → N such that q[k] = Q(E[k]) consists ofNm+Nd bits representing the

quantized E[k]. Finally, the quantized error tangent matrix is used at the encoder

to obtain the estimate Ŝ[k] to be used at the next time interval. The closed loop

approach, i.e., using the difference between the quantized Ŝ[k] and observed S[k],

as opposed to taking the difference between successive observed signal S[k − 1]
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Figure 4.3: Block diagram of differential decoder

and S[k]. This is because unlike source coding applications where the encoding is

performed in blocks of signals, limited feedback MIMO applications requires per

sample update. Therefore, the closed loop approach provides a better estimate at

the decoder side.

Algorithm 9 Differential decoder algorithm

Input: q[k]
1: Initialize Ŝ[0]
2: for all k=1,2,. . . do
3: Eq[k] = Q−1(q[k])

4: Ŝ[k] = G(Ŝ[k − 1],Eq[k], 1)
5: end for

Output: Ŝ[k]

Fig. 4.3 illustrates the proposed differential decoder; the pseudo code is

provided in Algorithm 9. The quantized error tangent index q[k] is the input to the

decoder. Based on the predefined quantization method, i.e., codebook based or per-

element quantization, the received index q[k] is used to reconstruct the quantized

error tangent matrix Eq[k]. Then, Eq[k] is used in (4.13) with t = 1 to obtain the

estimate Ŝ[k].

Due to the closed loop approach, initial value of Ŝ[0] must be agreed upon
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between the encoder and the decoder. Fortunately, this is easily accomplished by

setting the initial value Ŝ[0] = I.

4.6 Predictive Coding Algorithm

In this section, tools developed thus far are used to develop the proposed

predictive coding framework for time series on SUn.

Let {S[k]}k∈N ∈ SUn be the correlated input as before. The general oper-

ation of the predictive coding follows closely to that of the conventional predictive

coding algorithm [22]. Linear operations such as difference and addition are re-

placed by the tangent and geodesic operations. The main idea of predictive coding

is to use a predicted matrix based on past estimates and quantize the difference be-

tween the predicted matrix and the observed matrix. Given a good predictor, the

benefit of predictive coding is that the prediction error usually has smaller dynamic

range compared to differential coding technique.

Algorithm 10 Predictive encoder algorithm

Input: S[k], topt[k]

1: Initialize S̃[1]
2: for all k=1,2,. . . do
3: E[k] = L(S̃[k],S[k])
4: q[k] = Q(Ek)
5: Ŝ[k] = G(S̃[k],Eq[k], 1)

6: S̃[k + 1] = Popt(Ŝ[k − 1], Ŝ[k], topt[k])
7: end for

Output: q[k]

Fig. 4.4 illustrates the block diagram of the proposed predictive coding en-
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Figure 4.4: Block diagram of predictive encoder

coder; the pseudo code is provided in Algorithm 10. At time k, a prediction error

tangent matrix E[k] from the predicted matrix S̃[k] to S[k] is computed using (4.12).

The prediction error is quantized using the same quantization process described in

Section 4.5. Thus q[k] is obtained with Nm + Nd bits representing the quantized

E[k]. Then q[k] is transmitted to the decoder via a finite rate feedback channel.

Continuing at the encoder, the quantized prediction error Eq[k] is used to obtain the

quantized estimate Ŝ[k] using (4.13). Finally, Ŝ[k] together with Ŝ[k− 1] is used to

obtain the predicted matrix S̃[k+1] using the adaptive step size prediction described

in Section 4.4.2. The adapted step size is also quantized and transmitted to the de-

coder. Note that prediction based on the past estimates rather than the observed

matrices is important because the decoder only has the estimated matrices.

Fig. 4.5 illustrates the block diagram of the proposed predictive coding de-

coder; the pseudo code is provided in Algorithm 11. The method for decoding the

quantized prediction error, i.e., codebook based or element by element quantiza-
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Algorithm 11 Predictive decoder algorithm

Input: q[k], topt[k]

1: Initialize S̃[1]
2: for all k=1,2,. . . do
3: Eq[k] = Q−1(q[k])

4: Ŝ[k] = G(S̃[k],Eq[k], 1)

5: S̃[k + 1] = Popt(Ŝ[k − 1], Ŝ[k], topt[k])
6: end for

Output: Ŝ[k] or S̃[k]

Q-1 G
Eq[k]

q[k] Ŝ[k]

~S[k] Popt

Figure 4.5: Block diagram of predictive decoder

tion, is assumed to be known a priori. The decoder receives q[k] from which the

quantized prediction error Eq[k] is constructed by Q−1(q[k]). Then, the quantized

prediction error is used together with previous estimate Ŝ[k − 1] to obtain the esti-

mated matrix Ŝ[k] using (4.13). The output of the decoder is Ŝ[k]. Finally, using the

step size received from the encoder, prediction is performed as described in Section

4.4.2 to obtain S̃[k + 1] for the next time period. For initialization, the identity can

be used again as the initial predicted matrix, e.g., S̃[0] = I, so that both the encoder

and decoder have the same starting point.
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4.7 Simulation Results

In this section, simulation results of the proposed differential and predic-

tive coding algorithm for limited feedback MIMO communication systems are pre-

sented. First, the channel model used throughout the section is described. Second,

the proposed differential coding strategy is applied to single user limited feedback

MIMO systems. Third, application of predictive coding to limited feedback MIMO

systems and mean squared error performance are illustrated. Finally, sum rate per-

formance of the limited feedback-based block diagonalization in multiuser MIMO

using the proposed predictive coding is shown.

4.7.1 Channel Model

It is assumed that the Nr ×Nt channel matrix H[k] is temporally correlated

according to a first order autoregressive model (or Gauss-Markov model [20,38,58])

with correlation coefficient α = J0(2πβ) where J0 is the Bessel function of zeroth

order and β is the normalized Doppler frequency. The channel matrix at time k is

generated according to

H[k] = αH[k − 1] +
√

1− α2Z[k] (4.35)

where Z[k] is a random matrix drawn from an i.i.d. zero mean complex white Gaus-

sian process. The receiver is assumed to have perfect knowledge of the channel ma-

trix. From the channel matrix, singular value decomposition H[k] = U[k]S[k]V∗[k]

is performed where U[k] is Nr × Nr unitary matrix of left singular vectors as

columns, S[k] is Nr × Nt diagonal matrix of singular values, and V[k] is Nt × Nt
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unitary matrix of right singular vectors as columns. The time series of right singular

matrix V[k] is considered to be the evolution of unitary matrices from which the

special unitary matrices are derived as described in Section 4.3.1.

4.7.2 Differential Coding

In this section, Nt = Nr = 4 limited feedback MIMO system using Ns = 1

and 2 streams with differential coding feedback is considered. The limited feedback

channel is assumed to be error and delay free. Three scenarios are considered for

comparison. The first scenario is where the transmitter has perfect knowledge of

the CSI. In this case, the precoding matrix, or vector for beamforming, is obtained

as Ns dominant columns of V[k]. The second scenario is the Grassmannian memo-

ryless limited feedback approach [64,67]. Finally, the third scenario is the proposed

differential coding strategy. The proposed differential coding uses Nm +Nd bits of

feedback from which a precoder for any Ns can be obtained by selecting the first

Ns columns of Ŝ[k]. All the simulation results are performed for β = 0.001.

Fig. 4.6 and Fig. 4.7 shows the symbol error rate and vector symbol er-

ror rate performance for Ns = 1 and 2, respectively. Note that for each Ns, the

memoryless limited feedback strategy uses different codebooks where as the results

across both figures for the proposed differential coding strategy uses the precoder

from single feedback. Thanks to the improved resolution obtained by the proposed

differential feedback, the symbol error rate curves essentially overlaps with the per-

fect CSI case. Thus the proposed strategy provides improved CSI accuracy with

additional freedom for the transmitter to select the rank of the precoder which may
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Figure 4.6: Symbol error rate comparison for Nt = Nr = 4 limited feedback
MIMO system using Ns = 1 with memoryless limited feedback approach (4 and
6-bit codebooks) and the proposed differential coding strategy using 2 and 3 bits
per dimension with 3 bit tangent magnitude codebook.

be useful, for example, in multimode precoding [65].

4.7.3 Predictive Coding

In this section, the proposed predictive coding for Nt = Nr = 4 limited

feedback MIMO system using Ns = 1 and 2 streams is considered. First, the case

with error-free and delay free limited feedback channel is considered. Again, three

scenarios are considered for comparison; perfect CSI, Grassmannian memoryless

limited feedback, and the proposed predictive coding strategy. All the simulation
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Figure 4.7: Vector Symbol error rate comparison forNt = Nr = 4 limited feedback
MIMO system using Ns = 2 with memoryless limited feedback approach (4 and
6-bit codebooks) and the proposed differential coding strategy using 2 and 3 bits
per dimension with 3 bit tangent magnitude codebook.

results are performed for β = 0.001.

Fig. 4.8 shows the achievable throughput comparison for cases Ns = 1, 2

and 3 using perfect CSI, memoryless limited feedback with 4 and 6 bits of feedback

and the proposed predictive approach using 3 bits per dimension and 3 bits for error

tangent magnitude codebook. The proposed approach essentially overlaps with the

perfect CSI case showing its superior resolution and achievable throughput perfor-

mance. Note that for memoryless limited feedback, each Ns case uses its specific

codebook where as the proposed approach can achieve any one of the rates shown
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Figure 4.8: Achievable throughput comparison for Nt = Nr = 4 and Ns = 1, 2
and 3 limited feedback MIMO system using perfect CSI, memoryless limited feed-
back approach (4 and 6-bit codebooks), and the proposed predictive coding strategy
using 3 bits per dimension with 3 bit tangent magnitude codebook. The achievable
throughput for the proposed approach essentially overlaps with the perfect CSI case.

with one instance of the feedback. For comparison, if 6 bits were used for memo-

ryless feedback for all Ns, the total feedback rate is 24 bits to allow different ranks.

Note that corresponding codebooks needs to be stored at both the transmitter and

the receiver. The proposed predictive coding results in 16 real elements quantized

at 3 bits and an additional 3 bits for error tangent magnitude resulting in 51 bits of

feedback. Unfortunately, the feedback rate is larger than the memoryless approach

but there is essentially no codebook storage overhead with significant performance

benefit.
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Figure 4.9: Symbol error rate comparison for Nt = Nr = 4 and Ns = 1 and
2 limited feedback MIMO system using perfect CSI, memoryless limited feedback
approach (4 and 6-bit codebooks), and the proposed predictive coding strategy using
3 bits per dimension with 3 bit tangent magnitude codebook.

Fig. 4.9 shows the symbol error rate and vector symbol error rate perfor-

mance for Ns = 1 and 2, respectively. The perfect CSI and memoryless limited

feedback results are identical to the results presented for differential coding strat-

egy in Section 4.7.2. The results for predictive coding across both figures were

generated based on the same feedback information. Thanks to the improved res-

olution obtained by the predictive coding, the symbol error rate curves essentially

overlaps with the perfect CSI case. Thus the proposed strategy provides improved

CSI accuracy with additional freedom for the transmitter to select the rank of the
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precoder which may be useful, for example, in multimode precoding [65].

Now suppose that there is a unit time delay in the limited feedback channel.

Then similar to the predictive coding methods proposed in [45, 46], the predicted

matrix S̃[k] may be used as the output of the decoder as the predicted estimate.

The symbol error rate and vector symbol error rate using S̃[k] as the output of the

decoder are shown with the marker 4. The results show that for low SNR, the

predicted output performs well following the perfect CSI curve. Unfortunately, as

the SNR increases, the error rates worsens and shows an error floor above 15dB. It

is conjectured that the prediction based on quantized estimate causes the error rate

to floor at higher SNR. This subject will be investigated in the future work.

To evaluate the performance of the proposed predictive coding algorithm,

Fig. 4.10 illustrates the mean squared error performance of the proposed approaches

over normalized Doppler frequency β. For Ns = 1, the mean squared chordal dis-

tance (3.1) was evaluated. For Ns = 2 and 3, the projection Frobenius norm (4.5)

was used. Fig. 4.10 shows that by using S̃ with fixed step size as the output of the

decoder results in the worst performance. Furthermore, at lower values of β, i.e.,

input more correlated, the MSE starts to saturate. Using Ŝ as the output of the de-

coder with fixed step size prediction, the overall MSE performance is improved by

approximately 5dB. Again, saturation is observed when the input is highly corre-

lated. Finally, using S̃ with adaptive step size optimization, the MSE performance

is improved approximated another 5dB without the saturation effect at lower values

of β. This shows that the adaptive step size strategy is especially effective for more

correlated input.
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Ŝ
Ŝ
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Figure 4.10: Mean squared error (MSE) performance of proposed approaches over
normalized Doppler frequency β. The naive one step prediction using S̃ results in
the worst MSE performance. Using the estimated output Ŝ improves the MSE by
approximately 5dB for all the ranks. The best MSE performance is obtained with
step size optimization which improves the MSE by approximately 5dB for higher
β (less correlated) and it continues to improve for lower β (more correlated).

Finally, the sum rate performance of the limited feedback-based block diag-

onalization in multiuser MIMO system is simulated using the proposed predictive

coding algorithm. For this simulation, a system withNt = U = 4 andNr = Ns = 2

is considered. At each mobile, the right singular matrix corresponding to the ob-

served Nr×Nt channel matrix is computed from which the Nt×Nt special unitary

matrix S[k] is derived. Then, S[k] is fed into the proposed predictive coding al-

gorithm. For this simulation, normalized Doppler frequency of β = 0.0278 and
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0.0556 are considered. In practical systems, β = 0.0278 corresponds to a system

operating at carrier frequency of 2GHz, mobile speed of 3km/h, and channel up-

date interval of 5milliseconds. Similarly, β = 0.0556 corresponds to a system with

mobile moving at 6km/h. For quantization, 3 bits per dimension is used for the

proposed algorithms. Fig. 4.11 shows the sum rate performance with perfect CSI

at the transmitter, proposed predictive coding with t = 1 and adaptive step size

with and without delay, and the Grassmannian codebook approach [86]. The figure

illustrates the superior sum rate performance of the proposed predictive coding al-

gorithm, especially for lower mobile speed. For each mobile speed, the figure also

illustrates the improvement obtained by using the adaptive step size as opposed to

fixed step size t = 1.

4.8 Summary

In this chapter, a new differential and predictive coding framework for time-

series of unitary matrices were proposed. Lie theory was used to derive a tangent

difference, mapping back to the special unitary group, and most importantly a pre-

diction framework with step size optimization exploiting the group and differential

geometric structure. Furthermore, an adaptive step size algorithm using LMS was

proposed for practicality. Applications of the differential and predictive coding in

limited feedback MIMO system was shown to provide near perfect CSI perfor-

mance and additional flexibility for the transmitter to override the rank of the trans-

mission strategy. The main drawback of the proposed algorithms is the increase in

the number of feedback bits. Future work will consider exploiting the structure of
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transmitter, proposed predictive coding algorithms, and memoryless Grassmannian
codebook approach from [86] are shown.

Lie algebra to obtain a more efficient quantization strategy.
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4.9 Appendix
4.9.1 Proof of Theorem 15

Proof. First, expand the Frobenius norm expression on the right hand side of (4.22)

‖E[k + 1]− E[k]t‖2F

= tr [(E[k + 1]− E[k]t)∗(E[k + 1]− E[k]t)]

= tr(E∗[k + 1]E[k + 1])− 2<(tr(E∗[k + 1]E[k]))t

+tr(E∗[k]E[k])t2. (4.36)

This expression is quadratic function of t, so taking the derivative of (4.36)

d‖E[k + 1]− E[k]t‖2F
dt

= 2tr(E∗[k]E[k])t− 2<(tr(E∗[k + 1]E[k]))

and setting it equal to zero yields the optimum step size

topt =
<(tr(E∗[k + 1]E[k]))

tr(E∗[k]E[k])
.
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Chapter 5

Conclusion

5.1 Summary

In this dissertation, a new codebook design and new signal processing foun-

dations, namely, prediction, predictive coding, and prediction step size optimiza-

tion techniques, on Grassmann manifold and manifold of unitary matrices were

proposed for applications to single user and multiuser MIMO wireless systems.

In Chapter 2, a new avenue of structured codebook design, called the Ker-

dock codebook, for limited feedback unitary precoded MIMO systems was pro-

posed. Ideas from mutually unbiased bases and coding theory were used to ar-

rive at a systematic codebook construction and codebook generation techniques.

The proposed Kerdock codebook has elements drawn from a quaternary alphabet,

{±1, ±j}, resulting in reduced storage, reduced computational complexity, and

search complexity. Furthermore, it was shown that both beamforming and spatial

multiplexing codebooks can be derived from a single codebook. Subspace distance

properties of the codebook were proven showing that the codebook possess a fa-

vorable structure similar to Grassmannian codebook. Simulation results for beam-

forming and spatial multiplexing systems showed that despite the finite alphabet

representation, symbol error rate and achievable throughput performance compara-
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ble to the same size Grassmannian and Fourier based codebooks can be obtained.

In Chapter 3, a new signal processing foundation was developed for sig-

nals on the Grassmann manifold. Using the differential geometric structure of the

Grassmann manifold, a simple formulas for tangential difference, mapping onto

the Grassmann manifold, parallel transport, prediction, and optimization of pre-

diction were developed. Using these building blocks, the Grassmannian predictive

coding algorithm was developed. The general algorithmic construction follows the

classical predictive coding algorithm with blocks replaced by Grassmann manifold

counterparts. A new tangent space quantization strategy was proposed which de-

composed the error tangent vector into its magnitude and directional components.

Furthermore, motivated by the delayed limited feedback MIMO system applica-

tions, a modified form Grassmannian predictive coding algorithm with adaptive step

size predictor was proposed in which the predictor output is used as the output of

the decoder. Using this modified Grassmannian predictive coding algorithm, a unit

sample delay between the encoder and the decoder can be compensated. Distor-

tion bound for the Grassmannian predictive coding was proven showing significant

improvement over memoryless quantization techniques. Two immediate applica-

tions in limited feedback beamforming system and multiuser MIMO system were

shown. Simulation results showed that under feedback rate constraint, the proposed

prediction algorithm provides substantial symbol error rate improvement and sum

rate improvement over memoryless feedback approach. For mild temporal chan-

nel correlation, the proposed algorithms can attain near perfect CSI performance

under feedback constraint. For limited feedback multiuser MIMO systems, the pro-
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posed method overcomes the severe sum rate limitation with memoryless feedback

approaches.

In Chapter 4, a new signal processing foundation was developed for signals

on the manifold of unitary matrices. A new decomposition of unitary matrix was

used to obtain a special unitary matrix. Using the group and differential geometric

operation from Lie group theory, basic operations such as differencing, mapping

onto the manifold, and prediction were proposed. In contrast to Grassmannian pre-

diction, the symmetry in Lie groups of special unitary matrices eliminates the need

to perform parallel transport. The interpretation is that tangent space at any point

on the manifold can be translated to the identity where the tangent space is char-

acterized by the Lie algebra. Using the Baker-Campbell-Hausdorff formula, a first

order prediction step size optimization formula was derived. A tangent space quan-

tization strategy was proposed where the skew-Hermitian symmetry was exploited

to reduce the number of parameters by a half. Exploiting the Lie group structure, a

differential coding and predictive coding strategies were proposed. The differential

coding was shown to provide high resolution feedbacks using simple element by

element quantization. Unfortunately, differential coding is only suitable when the

channel between the encoder and the decoder is error and delay free. A unitary pre-

dictive coding algorithm with step size optimization and prediction was proposed.

The mean squared error performance with and without step size showed that step

size optimization improves the mean squared error by approximately 12dB. Appli-

cations of the proposed differential and predictive coding algorithms were shown

for single user limited feedback MIMO systems with transmission rank 1, 2, and
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3. The main benefit of the proposed unitary feedback approach is that one instance

of feedback can be used to obtain high resolution CSI as well as the freedom for

the transmitter to override the transmission rank. The proposed predictive cod-

ing algorithm was also applied to limited feedback-based multiuser MIMO system.

The proposed algorithms were shown to provide significantly improved sum rate in

mildly correlated channel.

5.2 Future Work

Several future research directions are identified below.

Extension of Kerdock Codebook: Recently, multi-cell and cooperative

MIMO systems where multiple base stations collaborate to form a large multiuser

system have been receiving significant interest both from the research community as

well the commercial wireless standards [3, 82, 95–97]. Limited feedback strategies

and codebook designs for cooperative MIMO systems are still largely an open prob-

lem. In cooperative MIMO systems, it is desirable to have a codebook with unitary

constraint for each cooperating base stations as this would separate the beamform-

ing from power allocation for maximum flexibility. The Kerdock codebook, upon

inspection, has Hadamard matrix-like structure within each mutually unbiased ba-

sis. It is possible to take size 2 sub-vector from size 4 codebook. With appropriate

scaling, a unitary vector is obtained. Thus if two Nt = 2 base stations are cooper-

ating, it is possible to use partitions of the Kerdock codebook for each base station,

yet the combined beamformer can result in desired Nt = 4 beamforming vector. It

would be interesting to investigate the structure of the Kerdock codebook further

140



and consider its application in cooperative MIMO systems.

Extensions of Predictive Coding on the Manifold: In Chapters 3 and 4,

a fundamental form of predictive coding algorithms on Grassmann manifold and

manifold of unitary matrices were derived. A direct extension of this work may con-

sider different quantization approaches, more rigorous quantization bounds, feed-

back compression techniques, and alternative prediction strategies. The tangent

space of the manifolds considered in this dissertation deserves further investiga-

tion to gain an understanding of its structure. Exploiting the structure of the tangent

space will likely result in a more efficient quantization techniques, as was done with

the manifolds in this dissertation. For example, what is the smallest codebook that

can be used maintain certain communication theoretic performance criterion? A

further extension may consider the fundamental compressibility of signals arising

on the manifolds. An information theoretic study of signals on manifolds has not

appeared before thus this area appears to be wide open.

Optimal Signal Processing on the Manifold: In Chapters 3 and 4, al-

though the chordal distance metric was used for optimization of prediction func-

tions, the operations used were based on deterministic geometric formulations with-

out a connection to underlying statistics. In order to generalize the basic operations

identified in this dissertation, statistical characterizations as well as optimality cri-

teria will aid in analyzing the impact of these algorithms to applications in MIMO

wireless systems. For example, what is the minimum feedback information rate

needed to achieve certain rate guarantee? A detailed study is needed to understand

the statistical distribution and temporal behavior of CSI derived from channels with
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known statistics. This aspect is complicated by the singular value decomposition

to obtain the CSI. Once the connection can be made between the actual channel

statistics with manifold valued signal, a rich field of statistical signal processing on

a manifold may emerge. Some literatures do exists on directional statistics on man-

ifolds but connecting them with communication theoretic channel statistics may be

challenging [10, 72].

Higher Order Prediction and Interpolation: In Chapters 3 and 4, only

the first order prediction was proposed. In MIMO channels with longer memory,

higher order prediction may prove useful. This will entail defining a smooth func-

tion on the manifold based on past measurements and constructing a prediction

procedure such that some smoothness and optimality criteria are met. Interpolation

on the manifold will require similar tools to construct a smooth function on the

manifold based on measurement samples. The difficulty with interpolation is that

the formulas derived in this dissertation relied on the shortest distance geodesics.

The function to be interpolated may not always be on the geodesic as evidenced

in [11, 81]. A detailed study on differential geometry and Lie group is needed to

quantify deviations of a function on the manifold. Inevitably, statistical character-

ization of the function on the manifold is expected to play a role in defining an

optimal interpolation.

Application to Interference Alignment: Recently, a fully connected K-

user MIMO interference channel with interference alignment has been proposed

[9]. The main idea is to design a beamforming direction from each transmitter such

that each user sees a desired signal subspace and interference subspace where all

142



the interferences are to fall in a common subspace at each receiver terminal. So

far, the problem of designing beamformers has been solved assuming global CSI

and reciprocal channels using iterative algorithms and closed form solutions for

a limited case. Solutions for each beamformer appear to fall in the Grassmann

manifold but the problem is made difficult by the fact that 1) there are K beam-

formers on Grassmann manifold, 2) k2 interconnecting channels, and 3) K receiver

Grassmann manifolds in which the interference must be aligned. Unlike the MIMO

wireless systems presented in this dissertation, K-user interference channel bring a

complex interaction of manifolds. Some promising related result has recently ap-

peared which formulate a consensus optimization problem on the manifold [92].

This problem identifies one of many pertinent future research direction to extend

manifold-constrained signal processing techniques developed in this dissertation.
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