
Copyright

by

Alexander Joseph Zolan

2018

The Dissertation Committee for Alexander Joseph Zolan
certifies that this is the approved version of the following dissertation:

Decomposition and Variance Reduction Techniques for

Stochastic Mixed Integer Programs

Committee:

John Hasenbein, Supervisor

David Morton, Co-Supervisor

Jonathan Bard

Grani Hanasusanto

Alexandra Newman

Decomposition and Variance Reduction Techniques for

Stochastic Mixed Integer Programs

by

Alexander Joseph Zolan

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2018

Dedicated to Eugene

Acknowledgments

I am deeply grateful for the large community of people who have helped me

throughout my time at the University of Texas at Austin. I am indebted to my

parents, Robert and Barbara Zolan, for instilling in me an appreciation of learning

and effort, and to my brothers, Jesse and Matt Zolan, for their encouragement, and

for setting good examples for returns on hard work. I thank the Operations Research

and Industrial Engineering faculty at the University of Texas at Austin for teaching

me the foundations of the research contained in this work, and for offering me the

opportunity to teach other while I was here; special thanks go to my committee

members, Dr. Grani Hanasusanto and Dr. Jonathan Bard, for their targeted feedback

and support. Thanks to the other students in the ORIE program for their camaraderie

and contribution to a great working environment. In particular, I want to thank

Areesh Mittal for his review of drafts of this work, Josh Woodruff for his collaboration

on a collection of projects both in and out of the classroom, and Murat Karatas for

his friendship and perspective. I am grateful for the many collaborators with whom

I worked closely on my assorted research projects during my time as a graduate

student, listed in alphabetical order: Dr. Stephen Frank, Dr. Gavin Goodall, Dr.

Chris Hadlock, Dr. Michael Helwig, Dr. Amanda Hering, Mark Husted, Ernie Kee,

Luigi Gentile Polese, Dr. Bharat Suthar, Dr. Jeremy Tejada, and Dr. Michael Wagner.

In particular, I want to thank Dr. Michael Scioletti for his friendship, support, and

diligence as a collaborator. Finally, I owe thanks to those who have made outsize

v

contributions to the work in this document: to Dr. Alexandra Newman, for spending

an excessive amount of her time connecting me to research and career opportunities,

and for teaching me the foundations of scientific writing; to my supervisors, Dr. John

Hasenbein and Dr. David Morton, for their patience, knowledge, direction, research

opportunities, lessons in writing, and advice on a large collection of topics; and, to my

wife, Erin Wedepohl, for her unwavering support, and for bearing the emotional and

financial burdens that come with having a spouse in graduate school for the better

part of a decade.

Dr. Scioletti developed the prototype GAMS model from Scioletti et al. (2017),

and implemented the various linearization formulations from Gounaris et al. (2009)

to select the formulation we use for the baseline partitioning scheme in Section 2.3.

Alex Zolan developed the improved model in Section 2.3, decomposition procedure in

Section 2.4, and the CPLEX/Python implementation of all models used to generate

the results in Section 2.5, under the supervision of Dr. Morton and Dr. Newman.

Dr. Hering developed the methodology for the base-wide occupancy model in

Section 3.2.2, with support from Dr. Nate Putnam and Dr. Scioletti. Dr. Scioletti

developed the conditional probabilities in Section 3.2.2.3. Alex Zolan developed the

broader framework in Section 3.2.4, the scripts to pull and edit TMY weather files

and use them as input to PVWatts, the Ruby measures in OpenStudio to obtain

building-level load realizations, and the implementation of the models in Section 3.3

in the Python/CPLEX API, under the supervision of Dr. Morton.

The contributions in Chapter 4 were developed by Alex Zolan, under the

supervision of Dr. Hasenbein and Dr. Morton.

vi

Decomposition and Variance Reduction Techniques for

Stochastic Mixed Integer Programs

Publication No.

Alexander Joseph Zolan, Ph.D.

The University of Texas at Austin, 2018

Supervisor: John Hasenbein
Co-Supervisor: David Morton

Obtaining upper and lower bounds on the optimal value of a stochastic integer

program can require solution of multiple-scenario problems, which are computation-

ally expensive or intractable using off-the-shelf integer-programming software. Ad-

ditionally, optimal solutions to a two-stage problem whose second stage spans long

time horizons may be optimistic, due to the model’s inappropriate ability to plan for

future periods which are not known in practice. To that end, we present a framework

for optimizing system design in the face of a restricted class of policies governing

system operation, which aim to model realistic operation. This leads to a natural

decomposition of the problem yielding upper and lower bounds which we can com-

pute quickly. We illustrate these ideas using a model that seeks to design and operate

a microgrid to support a forward operating base. Here, designing the microgrid in-

cludes specifying the number and type of diesel generators, PV systems, and batteries

while operating the grid involves dispatching these assets to satisfy load at minimum

vii

cost. We extend our approach to solve the same problem under load and photovoltaic

uncertainty, and propose a method to generate appropriately correlated scenarios by

simulating building occupancy via a bottom-up approach, then using the occupancy

levels to inform environmental control unit loads on the base. Finally, in a separate

line of work, we optimize the design of the strata for a stratified sampling estimator

to reduce variance. We extend this method to the multivariate setting by optimizing

the strata for a nonuniform Latin hypercube estimator. We then present empirical

results that show that our method reduces the variance of the estimator, compared

to one using equal-probability strata.

viii

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiii

List of Figures xvii

Chapter 1. Introduction 1

Chapter 2. Decomposing Mixed-Integer Programs for Optimal Micro-
grid Design 7

2.1 Introduction and Literature Review 7

2.2 Model Description . 13

2.2.1 (P) Formulation . 13

2.2.2 (M) Formulation: Linearization of (P) 16

2.2.3 Application to Microgrid Design and Dispatch Problem 18

2.3 Reducing Linearization Error in (M) 19

2.3.1 Partitioning Approach . 21

2.3.2 (U) Formulation . 23

2.3.3 Application to Microgrid Design and Dispatch Problem 33

2.4 Decomposition of MIP Formulation 34

2.4.1 (
¯
P) Formulation: Lower Bounds 35

2.4.2 (P̄) Formulation: Upper Bounds 38

2.4.3 Decomposition Algorithm . 40

2.4.4 Application to a Microgrid Design and Dispatch Problem . . . 43

2.4.4.1 Tightening (
¯
U): Lower Bound on Generator Capacity . 43

2.4.4.2 Obtaining Feasible Solutions to Model (P) 43

2.5 Computational Results . 44

ix

2.5.1 Load and Candidate Design Technologies 45

2.5.2 Solution of Model (M) via Decomposition 46

2.5.3 Solution of Model (U) vs. Model (G) 46

2.5.4 Solution of Model (P) . 48

2.6 Conclusions . 52

Chapter 3. Remote Microgrid Design Optimization Under Photovoltaic
And Load Uncertainty 54

3.1 Introduction . 54

3.2 Load and PV Model . 55

3.2.1 FOB Buildings . 56

3.2.2 Occupancy Model . 57

3.2.2.1 Schedule Variability 59

3.2.2.2 Special Events . 59

3.2.2.3 Building Occupancy 60

3.2.3 PV Model and Weather Data 62

3.2.4 Scenario Generation . 63

3.3 Optimization Model . 64

3.3.1 (SP) Formulation . 65

3.3.2 (SP) Formulation: Lower Bounds 68

3.3.3 (SP) Formulation: Upper Bounds 69

3.3.4 Decomposition Algorithm . 69

3.3.5 Scenario Pairing . 70

3.4 Preliminary Results . 73

3.5 Conclusion . 75

Chapter 4. Optimizing the Design of a Latin Hypercube Sampling
Estimator 77

4.1 Introduction . 77

4.2 Nonuniform Stratified Sampling . 79

4.2.1 Assumptions . 80

4.2.2 Nonlinear Programming Formulation 80

4.2.3 Objective Function Reformulation 83

x

4.2.4 Dynamic Programming Algorithm 84

4.3 Nonuniform LHS . 85

4.3.1 Solution Method (i): Dynamic Programming 88

4.3.2 Solution Method (ii): Coordinate Descent 92

4.3.2.1 Second Moment Characterization of LHS Estimator . . 92

4.3.2.2 Objective Function Reformulation 95

4.3.2.3 Nonlinear Programming Formulation 101

4.3.2.4 Coordinate Descent Algorithm 103

4.3.2.5 Permutation Reduction 103

4.4 Results . 108

4.4.1 Stratified Sampling . 109

4.4.2 Nonuniform LHS: Dynamic Programming 112

4.4.3 Nonuniform LHS: Coordinate Descent 113

4.4.4 Application: Maximum Reliability Path 115

4.5 Conclusion . 117

Chapter 5. Future Work 119

Appendices 121

Appendix A. Microgrid Design and Dispatch Problem 122

A.1 Microgrid Design and Dispatch Problem 122

A.1.1 Full (P) Formulation . 122

A.1.1.1 Objective Function . 129

A.1.1.2 System Operations . 129

A.1.1.3 Generator Operations 130

A.1.1.4 PV Operations . 130

A.1.1.5 Battery Operations . 130

A.1.1.6 Nonanticipativity and Boundary Condition 131

A.1.1.7 Nonnegativity and Integer Restrictions 132

A.1.2 Mapping Microgrid Design and Dispatch Problem to Model (P) 132

A.1.3 Mapping Linearization to Model (U) 133

xi

Appendix B. Remote Microgrid Design Optimization Under Photo-
voltaic And Load Uncertainty 136

B.1 Special Events in FOB Occupancy Model 136

B.1.1 Holidays . 136

B.1.2 Rebuilding . 136

B.1.3 Resupply . 137

B.1.4 Turnover Events . 138

B.1.5 Task Force Missions . 138

B.1.6 Training . 138

B.1.7 Fighting Missions . 139

B.1.8 Miscellaneous Single Movers . 139

Bibliography 140

xii

List of Tables

2.1 Computational results for a collection of year-long (|T| = 8760) in-
stances of model (M). Models are solved using CPLEX v. 12.6.2.0,
via Python 2.7.9. • Termination criterion for “Algorithm 1” and “Di-
rect Solution”: min{time limit ≤ 5 hours, optimality gap ≤ 5%}. •
Termination criterion per subproblem: min{time limit ≤ 60 seconds,
optimality gap ≤ 0.5%}; the former time limit was reached in fewer
than 1% of cases. 47

2.2 Computational results of using Algorithm 1 to approximately solve
instances of models (U) and (G) (|T| = 8,760 hrs, |L| = 365), using
the partitioning approach in constraints (2.8) and the one developed
by Gounaris et al. (2009), with |N| = 4 uniform subregions in both
approaches. Models are solved using CPLEX v. 12.6.2.0, via Python
2.7.9. • Termination criterion for Algorithm 1: optimality gap ≤ 5%.
• Termination criterion per subproblem: min{time limit ≤ 60 seconds,
optimality gap ≤ 0.5%}; the former time limit was reached in fewer
than 5% of cases. 48

2.3 Computational results of approximately solving MINLP model (P) (|T|
= 8,760 hrs, |L| = 365). Models (Ū) and (

¯
U) are solved with |N| = 4

uniform subregions using CPLEX v. 12.6.2.0, via Python 2.7.9. The
second column (

¯
z∗) reports the optimal value of (

¯
U). The third col-

umn (z̄∗) reports the objective function value of the feasible solution to
model (P̄) obtained by adjusting solutions to model (Ū) via the proce-
dure in Figure 2.4. • Termination criterion for Algorithm 1: (U) opti-
mality gap ≤ 5%. • Termination criterion per subproblem: min{time
limit ≤ 60 seconds, optimality gap ≤ 0.5%}; the former time limit was
reached in fewer than 5% of cases. 50

2.4 Computational results of approximately solving instances of MINLP
model (P) (|T| = 8,760 hrs, |L| = 365). Models (Ū) and (

¯
U) are

solved with |N| = 4 uniform subregions using CPLEX v. 12.6.2.0, via
Python 2.7.9. Solutions to model (P̄) were obtained by adjusting so-
lutions to model (Ū) via the procedure in Figure 2.4. • Termination
criterion for Algorithm 1: min{time limit ≤ 2 hours, (P) optimality
gap ≤ 5%}. • Termination criterion per subproblem: min{time limit ≤
60 seconds, optimality gap ≤ 0.5%}; the former time limit was reached
in fewer than 5% of cases. 53

xiii

3.1 Summary of the subset of buildings on the TECD 312-soldier camp
that contain ECUs.
a Army and Air Force exchange service
b Military van
c Tactical action center
d Command post
e Very important person . 58

3.2 Summary of special events that impact the FOB population beyond
the typical schedule. 60

3.3 Summary of conditional probabilities of an individual soldier’s building
occupancy, given their state and job description. 61

3.4 Comparison of optimal designs, solution times, and performance mea-
sures obtained by solving the deterministic model under a rigid sched-
ule to those obtained by solving model (SP). Algorithm 1 is used to
obtain solutions to the deterministic model, with model (Ā)=(M̄) and
(
¯
A)=(

¯
M) as described in Section 2.4. The model instances allow at

most 75 kW of PV solar capacity, and allows battery capacity to be
installed in 50 kW increments, up to 200kW. Algorithm 2 is imple-
mented to obtain solutions to model (SP). Models are solved using
CPLEX v. 12.6.2.0, via Python 2.7.9. The performance measures are
estimated using 50 out-of-sample scenarios.
Penalty for shortfall: $100/kWh unmet load.
Termination criteria for each subproblem: min{60 seconds, 0.5% opti-
mality gap.}
Termination criteria for each instance: 5% optimality gap. 74

3.5 Comparison of optimal designs for model (SP) (|Ω| = 5) as shortfall
and fuel costs vary for the Kharga, Egypt case study. Each entry shoes,
in order, the capacity of all diesel generators, batteries, and PV sys-
tems in the optimal design. The model instances allow at most 75 kW
of PV solar capacity, and allows battery capacity to be installed in 50
kW increments, up to 200kW. Algorithm 2 is used to obtain solutions
to model (SP). Models are solved using CPLEX v. 12.6.2.0, via Python
2.7.9.
Termination criteria for each subproblem: min{60 seconds, 0.5% opti-
mality gap.}
Termination criteria for each instance: 5% optimality gap. 75

4.1 Comparison of E[Var[hLHSK]|π] and Var[E[hLHSK]|π], i.e., the compo-
nents of the decomposition of variance, under LHS designs with uni-
form strata and optimized strata obtained by solving model (4.13) for
each of d = 2 components, for a collection of multivariate functions in
which h(ξ) =

∏
i∈I ξ(i). 90

xiv

4.2 Relative efficiency and optimized strata boundary points for a collec-
tion of univariate functions of random variables. Notation z∗ and zu

denote the stratified sampling estimator’s population variance under
optimized and equal-probability strata, respectively. 111

4.3 Empirically obtained point estimates and 95% CI half-widths of rel-
ative efficiencies associated with estimating E[h(ξ)], in which h(x) =∏

i∈I xi, using optimized LHS strata obtained by the dynamic pro-
gramming procedure in Section 4.3.1, compared to LHS with equal-
probability strata and näıve Monte Carlo sampling. Confidence inter-
vals were obtained via 100 repeated experiments, each of which use
M = 10, 000 replicates, K = 100 strata, and L = 1, 000 candidate
breakpoints for each dynamic programming routine. CI half-width val-
ues are reported as a percentage of the corresponding point estimate.
The experiments are implemented in Python 3.5.4 using the WELL512
generator developed by Panneton et al. (2006), via the Stochastic Sim-
ulation in Java library created by L’Ecuyer et al. (2002). Common ran-
dom numbers are generated for each experiment; separate substreams
are used for permutations and for the uniform random variates used
to generate realizations of ξ. 114

4.4 Empirically obtained point estimates of relative efficiency associated
with estimating E[h(ξ)], using optimized LHS strata obtained by the
coordinate descent procedure in Section 4.3.2, compared to LHS with
equal-probability strata for a collection of functions from Mease and
Bingham (2006). Point estimates are obtained via 20 repeated experi-
ments, each of which uses M = 500 replicates, and L = 10·K candidate
breakpoints for each instance. CI half-width values did not exceed 30%
of the point estimate in any case. The experiments are implemented
in Python 3.5.4 using the WELL512 generator developed by Panneton
et al. (2006), via the Stochastic Simulation in Java library created by
L’Ecuyer et al. (2002). Common random numbers are generated for
each experiment; separate substreams are used for permutations and
for the uniform random variates used to generate realizations of ξ. . 115

xv

4.5 Empirically obtained point estimates of mean and variance of the ex-
pected maximum likelihood of evading detection when traversing the
graph in Figure 4.5, using K = 50 optimized LHS strata obtained
by the dynamic programming procedure in Section 4.3.1, compared to
LHS with equal-probability strata and simple Monte Carlo. The prob-
ability of evading detection at each arc is distributed as a beta(1,b)
random variable, with b = 2 for arcs (1,3), (3,6), and (6,9), and b for
all other arcs is provided in the left-most column. The approximation
function, h(·), used for determining optimized strata is the product
of the evasion probabilities for arcs (1,3), (3,6), and (6,9). Point esti-
mates are obtained via M = 200 replicates, using L = 10 ·K candidate
breakpoints for each instance. The experiments are implemented in
Python 3.5.4 using the WELL512 generator developed by Panneton
et al. (2006), via the Stochastic Simulation in Java library created by
L’Ecuyer et al. (2002). Common random numbers are generated for
each experiment; separate substreams are used for permutations and
for the uniform random variates used to generate realizations of ξ. . 118

xvi

List of Figures

1.1 Example of current FOB power distribution under spot generation.
Each generator is sized to exceed the peak load for the subset of the
FOB it serves. 2

1.2 Example of microgrid FOB power distribution. Here, we have cen-
tralized generation which includes diesel generators, a PV array, and
a battery. Generation capacity is sized to peak load across the entire
FOB. 3

2.1 Example of subdividing the McCormick envelope given Y2t = 0.25,
shown on the left-hand side, by partitioning on one variable, in which
we linearize Y1t · Y2t. In this example, Y1t and Y2t have simple bounds
l1 = l2 = 0 and u1 = u2 = 1. The shape on the right-hand side
represents the sub-envelope that defines the feasible region for Y1t and
Zt, with binary subregion activation variables; see subsequent con-
straints (2.8) and associated variables. 20

2.2 Approximation error per equation (2.4), as a function of Y1t under
partitioning schemes for different numbers of uniform subregions, using
partitioning on Y1t only, and on both Y1t and Y2t, respectively. This
figure assumes that the range of both Y1t and Y2t is [0,1]. 23

2.3 Illustration of direct solution of (P) and Algorithm 1 applied to (A)=(P).
Part (a) of the figure depicts how a general purpose MINLP solver
would solve model (P). The bounds

¯
z and z̄ are from a branch-and-

bound algorithm, and that algorithm could use multiple processors.
Based on Algorithm 1, part (b) shows the reconciliation of the sub-
problems of (

¯
P), while part (c) shows that of the subproblems of (P̄). 41

2.4 Flowchart describing procedure to find a feasible solution to (P), using
a solution to (U) as a starting point. 44

2.5 Performance profile for the partitioning scheme of model (U) in which
the number of subregions, |N|, varies between one and six, for our
14 instances. Here, we solve models (

¯
U) and (Ū) via Algorithm 1,

and then use the procedure of Figure 2.4 to obtain solutions to (P̄).
The value rps is calculated using equation (2.12). For |N| = 4, the
performance profile reaches the value of 1.0 at x = 1.193, meaning
that the procedure with |N| = 4 achieves a gap within 1.193 times the
best gap for all six procedures (i.e., using |N| = 1, 2, . . . , 6) across all
14 instances. 51

xvii

2.6 Performance profile of the metric rpst over time for our partitioning
scheme in which the number of subregions, |N|, varies between one and
six, for the 14 instances in our application. The value rpst is calculated
using equation (2.13). Part (a) and part (b) display the geometric and
arithmetic means of rpst, respectively. Here, we solve models (

¯
U) and

(Ū) via Algorithm 1, and then use the procedure of Figure 2.4 to obtain
solutions to (P̄). 52

3.1 OpenStudio renderings of the MILVAN shelter and AirBeam tent that
we assume compose all buildings on the FOB with ECUs. Images (a)
and (b) display an OpenStudio rendering and picture (source: HDT
Global 2016b) of an AirBeam tent, respectively. Images (c) and (d)
display an OpenStudio rendering and the front, left and right side
specifications (source: Department of Defense 2002) for a MILVAN
shelter, respectively. 57

3.2 Comparison of the baseline occupancy model to a sample path of a
model that incorporates a randomized schedule, and separate sample
path that includes both a randomized schedule and special events. . . 62

3.3 Overview of the procedure used to obtain bivariate load and PV power
output sample paths. 64

4.1 Shortest-path problem associated with the dynamic programming so-
lution of model (4.6) under the restriction that each bk comes from a set
of finite, prespecified breakpoints. We create an edge from node (k, `)
to node (k+ 1, `′), for all k = 0, . . . , K− 1, ` = 0, . . . , L, `′ = `, . . . , L,
with length (b`

′ − b`)σ(b`, b`
′
), in which σ2(b`, b`

′
) is defined in equa-

tion (4.7). If node (k, `) is part of the shortest path from (0, 0) to
(K,L), then breakpoint bk = b` is in the obtained optimal solution. . 85

4.2 LHS cell assignments obtained by iteratively solving model (4.25) and
updating the collection of solutions for d = 2, K = 20. A unique color
denotes the cells assigned to each of the LHS designs. 108

4.3 Relative efficiency of optimized vs. equal-probability strata, plotted as
a function of skewness for the collection of univariate functions given
in Table 4.2. 110

4.4 Plot of optimal breakpoints for a collection of functions of a Beta(1,5)
random variable. 110

4.5 Network structure for maximum reliability application. The probabil-
ity of detection at each arc is distributed as a beta(1,b) random variable.116

xviii

Chapter 1

Introduction

We consider the design of a microgrid for a forward operating base (FOB) in

which the design decision specifies the number and type of diesel generators, photo-

voltaic (PV) systems, and batteries with the goal of reducing the total cost of energy.

A FOB is a military outpost that operates independently in a remote location. FOBs

generally require significant logistical support, which often involves moving supplies

by armored convoy through unprotected supply lines. Diesel generators are currently

the primary source of providing electric power to the FOB. The larger the required re-

supply of diesel fuel via logistics convoys, the larger the associated security risk. The

model we consider seeks to reduce this risk by reducing the volume of fuel through

the use of PV systems and batteries in the microgrid design.

Figure 1.1 shows an example of the current method of powering a FOB. This is

typically called “spot generation,” in which a few disconnected diesel generators each

power a few small loads. The diesel generators on FOBs are usually oversized for the

peak load, and this peak load is relatively infrequent, which leads to the generator

running well under capacity most of the time. Because generators are built to operate

at or near full capacity, the system runs inefficiently, which leads to unnecessarily high

fuel costs and potential maintenance issues.

1

Figure 1.1: Example of current FOB power distribution under spot generation. Each generator is sized to exceed the
peak load for the subset of the FOB it serves.

We consider the redesign of the electrical infrastructure of a FOB to match

that of a microgrid, an example of which is shown in Figure 1.2. A microgrid is

a modern, small-scale version of the centralized electricity system that is built for

specific local goals, such as reliability, carbon emission reduction, diversification of

energy sources, and/or cost reduction. Because the FOB is sufficiently small such

that we can ignore power losses across distribution lines, we can treat all generation

as occurring centrally and then being distributed to the loads throughout the FOB.

A microgrid setup offers multiple advantages over spot generation, such as:

• a centralized power source allows some generators to be shut down during off-

peak hours;

• the presence of PV systems and energy storage (e.g., batteries) can reduce the

number of generators needed to meet load; and,

• energy storage can allow the generators to run at capacity anytime they are on,

potentially increasing the efficiency of the system and avoiding maintenance

issues due to wet-stacking.

2

Generators

Battery

PV Array

Figure 1.2: Example of microgrid FOB power distribution. Here, we have centralized generation which includes diesel
generators, a PV array, and a battery. Generation capacity is sized to peak load across the entire FOB.

Scioletti et al. (2017) develop a mixed-integer nonlinear programm (MINLP)

for establishing a design and dispatch strategy for a microgrid that supports a FOB,

modeling the acquisition of different power technologies as integer variables and their

operation using linear and nonlinear expressions. Specifically, the nonlinear relation-

ships consist of a collection of bilinear terms which have no common components.

The model aims to answer the following questions at minimum cost:

• How many, and what type, of diesel generators, PV power systems, and batteries

should be purchased?

• For each timestep, how should these assets be operated to meet the load?

Scioletti et al. (2017) use convex and exact underestimators originally developed

by McCormick (1976) to linearize the bilinear terms, resulting in a mixed integer

linear program (MIP) that, unlike the MINLP, can solve realistic year-long instances

with hourly fidelity to within 5% of optimality in a matter of hours. A second model

developed by Scioletti et al. (2016a) uses a collection of convex sub-envelopes, exactly

3

one of which is selected for each bilinear term through the use of binary decision vari-

ables, which we term subregion activation variables. While these sub-envelopes reduce

the error of the solution with respect to the original MINLP, the binary variables add

a significant computational cost. Additionally, in practical situations, the load over

the entire time horizon will likely not be known, which may cause dispatch solutions

to the MIP model to be optimistic.

In Chapter 2, we make two novel contributions. First, we present an improve-

ment of the fastest-performing linearization scheme from Scioletti et al. (2016a) for

our application that allows for the model to be equivalent to the McCormick envelope

when binary restrictions on the subregion activation variables are relaxed; this tighter

formulation allows us to obtain approximately optimal solutions to the problem more

quickly than with the partitioning scheme described by Scioletti et al., and sufficiently

reduce the approximation error associated with the linearization enough to allow us

to use a perturbation-based heuristic to obtain high-quality solutions to the MINLP.

Second, we implement a policy that requires energy storage assets to revert to the

same level of inventory (i.e., state-of-charge) at regular intervals; this subdivides the

year-long operations problem into subproblems that we may solve in parallel, and re-

duces the timeframe for which we assume the load is known when solving the model.

We present models that produce upper and lower bounds on the optimal value of the

original problem, and we obtain nearly optimal solutions to a collection of instances

in 6 or fewer minutes.

In Chapter 3, we leverage the decomposition technique to present a version of

the microgrid optimization model that incorporates uncertainty in the photovoltaic

4

resources available and the FOB’s hourly electricity demand. We present a bottom-up

approach to simulating base-wide occupancy by starting with a predetermined sched-

ule, then adding variability to mission times and including random special events to

supplement normal FOB operations. We develop a collection of conditional probabil-

ities that we use to simulate the location of each soldier on the base, which informs

the hourly load for each building according to a physics-based building simulation

model. The weather inputs used for the loads are common with those we use to

generate hourly photovoltaic power output in a bivariate sample path; the weather

inputs include historical observations for the location we use in our case study. We

then solve an instance of the stochastic programming model using the sample average

approximation technique developed by Mak et al. (1999), and compare the solution

to our model under uncertainty to that obtained by using a point forecast as input.

The contributions in Chapter 4 compose a separate effort targeted toward the

application of Latin hypercube sampling (LHS). LHS is commonly used to sample

a multivariate function as an alternative to näıve Monte Carlo, because the LHS

estimator is usually more efficient. Most applications of LHS use equal-probability

strata. In this chapter, we present a model that optimizes the stratification of an

LHS estimator. We start with the examples of a stratified sampling estimator and

univariate LHS, and recast the nonconvex, nonlinear programming formulations as

dynamic programs. In these example cases, we use an objective function that fully

characterizes the variance of the LHS estimator. We also present the variance of an

LHS estimator in the multivariate setting, which is computationally intractable as the

number of components and/or strata grows large. We present two separate approxi-

5

mations of the objective functions; one allows us to use a dynamic program to obtain

optimal strata, and the other is solved using a coordinate descent-based heuristic.

Finally, we provide empirical results showing that our methods yield estimators that

exhibit significant variance reduction compared to using equal-probability strata for

a collection of sample functions.

6

Chapter 2

Decomposing Mixed-Integer Programs for Optimal

Microgrid Design

2.1 Introduction and Literature Review

Spot generation is necessary for remote sites at which electric power must

be produced without a connection to the grid, e.g., to administer disaster relief, to

maintain quality of life on Native American reservations, to run mining operations, or

to sustain combat operations. In many cases, each load is satisfied by an individual

diesel generator, and requires a rated capacity slightly greater than the designed peak

demand for that load source. As a result, total system efficiency is low in off-peak

periods, and estimates of the fully burdened cost of fuel can reach $1,000/gallon

when the fuel is transported by air and armored convoy (Erwin 2010). Microgrids

that integrate renewable technologies, such as photovoltaic (PV) systems, energy

storage technologies (e.g., batteries), and diesel generators, are emerging as a means

to power remote sites. Like spot generation, microgrid technology can provide energy

needs, but may include PV and battery modules to limit the use of diesel generators

and increase efficiency. The fuel consumed by a remote site using these technologies,

compared to that by a spot generation strategy, may reduce (i) the required flow of

resupply fuel by ground convoys or helicopters, (ii) the environmental footprint, and

(iii) wear and tear on the diesel generators, among other benefits.

7

The availability of portable generation technologies at a remote site limits the

design to one or more diesel generators and batteries of various sizes, as well as a mod-

ular PV system technology in prespecified capacity increments. The costs of design

and dispatch include (i) generator, PV system and battery procurement, (ii) diesel

fuel consumption, and (iii) generator and battery “lifecycles,” our measurement of the

degradation associated with their use. The design decision specifies the number and

types of generators, PV systems, and batteries in the microgrid. Dispatch decisions

for each time period include which generators to turn on, the power output of all

generators and PV systems, and power allocated to charging or discharging the bat-

teries; for this small, non-market-driven environment, we do not make “commitment

decisions” typical of large, grid-connected power plants.

In our model, decisions are subject to the following sets of constraints: (i) the

design must meet load and spinning reserve requirements for each time period; (ii)

power input and output from dispatched generators and batteries are limited by their

minimum and maximum rated capacities; (iii) the fuel consumed is a known linear

function of each generator’s power output and state (on or off) in each time period;

(iv) battery power input and output is the (bilinear) product of its voltage and the

current into and out of the battery, respectively, where voltage is a function of the

state-of-charge and direction of current; (v) a battery’s state-of-charge is a function

of that of the previous time period and the net current in the present time period,

and is modeled as a percentage of total capacity; (vi) PV systems have a maximum

power output per unit for each time period; and, (vii) spatial constraints limit the

number of units in the design for each type of PV system. This paper presents a

8

model that seeks to design and dispatch such a microgrid to support a remote site at

minimum cost, given known load and PV power output per array at hourly fidelity

for an operating time horizon of one year. We refer to this model as the microgrid

design and dispatch problem.

The literature includes work to assess microgrid operation policies in which

batteries and photovoltaics are modeled as distributed energy resources (e.g., van der

Kam and van Sark 2015, Zhang et al. 2016). However, we assume that the forward

operating base is the size of a football field, obviating the need to enforce alternat-

ing current power flow requirements, nor do we account for line losses that would

be present in a larger system. The selected set of generators, batteries and photo-

voltaics meets alternating current power demand, where (i) generators are connected

directly to an alternating current bus; (ii) batteries are connected to the same bus

via bi-directional converters that account for efficiency, and (iii) the photovoltaics are

modeled using a PVWatts calculator (Dobos 2013) that includes seasonal variations

and assumes a direct current-to-alternating current conversion and maximum power

point tracking. Holding spinning reserves mitigates the intermittent nature of the

photovoltaics; our model requires that a fraction of the photovoltaic power must be

covered, if necessary, through battery or generator operation. We treat the load as

deterministic though our techniques extend to a stochastic environment as we point

out throughout the paper.

Most microgrid design and dispatch models in the literature enforce nonlinear

relationships but restrict operation to a fixed number of potential dispatch strategies,

and simulate operations for one or more load scenarios to estimate the total cost.

9

Because enumerating all designs is intractable for realistic instances, these models

are solved by heuristic search methods, which use, e.g., a simulation procedure to de-

termine whether a design can meet power demand under prespecified dispatch rules.

Simulation, or a rule-based heuristic, is used to dispatch assets to satisfy demand, in

part because nonlinear relationships associated with modeling the incumbent tech-

nologies can render problem instances intractable. These approaches set operating

rules, pre-qualify technology procurements, or use site-specific data to obtain a mi-

crogrid solution that attempts to meet demand at minimum cost.

Green and Manwell (1995) solve a design and dispatch problem with PV, wind,

battery, and diesel generators as candidate technologies by using a time series model

to generate scenarios and running a collection of fixed dispatch schemes for potential

designs. Barley and Winn (1996) evaluate a set of operations strategies for PV-

diesel-battery systems that cycle the batteries to different depths of discharge. The

Hybrid Optimization Model for Electric Renewables, or HOMER (2015), enumerates

a series of dispatch strategies for a user-directed collection of designs. Dufo-López

and Bernal-Agust́ın (2005) use a genetic algorithm to design a PV-diesel system by

implementing a collection of operations policies borrowed from HOMER (2015) and

from Barley and Winn (1996). Katsigiannis and Georgilakis (2008) employ tabu

search to size small, isolated hybrid power systems using cycle-charging dispatch,

which considers combinations of hybrid system technologies. Bala and Siddiqui (2009)

propose to design a PV-diesel hybrid system using genetic algorithms that find a

dispatch strategy to minimize net present cost. Gupta et al. (2011) develop a dispatch

algorithm to maintain a constant power level for diesel generators in a hybrid system,

10

to maximize the use of renewable technologies. While these approaches yield practical,

low-cost designs, they lack proof of (near-) optimality.

Most exact solution methods for optimizing microgrid design and dispatch

arise via a MINLP or MIP model, and are limited in time horizon or other model

fidelity. Morais et al. (2010) present a MIP for the optimal design of a hybrid sys-

tem grid, which considers fuel cells and wind power technologies and solves 24-hour

instances with hourly fidelity. Huneke et al. (2012) and Barbier et al. (2014) present

solutions to year-long instances with hourly fidelity; the former use linear program-

ming to design a microgrid, and the latter optimize the design and dispatch strategy

of a system with wind turbines, batteries, and generators via a MIP. Khodaei et al.

(2015) present a MIP that optimizes the design and dispatch of a microgrid with

generic dispatchable and non-dispatchable assets and energy storage, at hourly fi-

delity, for at least a year of operation, with linear operating constraints; the authors

assume the microgrid is disconnected from the grid for less than one day per year.

Huneke et al. (2012), Barbier et al. (2014) and Khodaei et al. (2015) use battery op-

erating constraints similar to those of Barley and Winn (1996), which do not address

the variable capacity and degradation of the battery.

Optimization models that include both design and dispatch decisions and in-

tegrate hybrid technologies such as batteries, diesel generators, and PV systems are

often presented as MINLPs, which are typically intractable for large instances. Pruitt

et al. (2013) develop a non-convex MINLP to describe the design and dispatch of a

combined heat and power system using solid oxide fuel cells for commercial buildings

for a time horizon of one year.

11

MIPs that employ linearization and approximation techniques to bound and

solve the nonlinear problem can serve as tractable alternatives to MINLPs and yield

solutions which approximate realistic dispatch. The model of Scioletti et al. (2017)

seeks an optimal hybrid system design with diesel generators, PV systems, and bat-

teries as candidate technologies, subject to (i) a set of nonlinear battery power con-

straints that hold for each time period, and (ii) lifecycle degradation as a function

of the battery’s state-of-charge and current for a given time period. This predeces-

sor paper approximates these nonlinear (specifically, bilinear) relationships in a MIP

formulation for the design and dispatch model, which they solve for a collection of

year-long instances at hourly fidelity.

Our first contribution lies in reducing the error associated with linearizing

nonlinear battery power and lifecycle degradation constraints by replacing a single

convex envelope with a series of sub-envelopes, which bound the feasible region of

the approximation variable for the bilinear term and its components. This technique

also allows for the construction of a MINLP-feasible solution to form a high-quality

upper bound. Our second contribution is a decomposition method that divides the

dispatch time horizon into smaller time periods, which yield subproblems that we

solve in parallel to obtain upper and lower bounds on the model’s optimal objec-

tive function value. While we illustrate the method using the microgrid design and

dispatch problem from Scioletti et al. (2017), the approach extends to models that

have a strategic decision that impacts operational decisions over a long time horizon,

including airlift scheduling (Baker et al. 2002) and capital budgeting (Brown et al.

2004).

12

Section 2.2 describes the general model. Section 2.3 explains the approxi-

mation of bilinear terms associated with the product of battery state-of-charge and

current. Section 2.4 details the decomposition method used to obtain upper and

lower bounds on the model’s optimal value. Section 2.5 assesses the performance

of the proposed approximations and decomposition algorithm using a collection of

instances from the literature. Section 2.6 concludes and presents possible extensions

of this work.

2.2 Model Description

Our microgrid design and dispatch problem possesses the following properties:

(i) the goal is to minimize the cost associated with both a time-invariant strategic

decision and a series of time-varying operational (dispatch) decisions; (ii) some op-

erational decisions include relationships modeled with bilinear terms; (iii) the model

is loosely coupled with respect to time in that only a few constraints link consecu-

tive time periods via inventory; and, (iv) after specified time intervals, the inventory

(state-of-charge) variables must “reset” to the same value. In what follows, we use

t ∈ T to index time periods, and the system must reset the inventory variables every

υ time periods, where we assume |T|/υ is an integer.

2.2.1 (P) Formulation

We formulate our microgrid design and dispatch model using constructs that

highlight temporal dependencies and yet are relatively general. This simplifies no-

tation in our subsequent descriptions of both the linearization schemes for bilinear

13

terms and the decomposition methods with accompanying bounds.

Sets

t ∈ T =
{1, 2, . . . , |T|}

time periods

` ∈ L =
{1, 2, . . . , |L|}

time blocks indexing a partition of T; i.e., ∪`∈LT` = T and
T` ∩ T`′ = ∅, ` 6= `

′

T` ⊂ T time periods in block `

X ∈ X strategic design decisions

Yt ∈ Yt(X) operational decisions made in time period t, given decision
X

Functions

f0(·) cost of a design decision

ft(·) cost of an operational decision at time period t

gt(·) net change in inventory associated with an operational
decision at time period t

Parameters

υ number of time periods per block

With these constructs, we have:

T` = {(`− 1)υ + 1, (`− 1)υ + 2, . . . , `υ}, ∀` ∈ L.

Decision Variables

X strategic design decision

R strategic inventory reset value

Yt operational decision at time period t; Y = (Yt)t∈T

¯
Yt inventory at start of time period t;

¯
Y = (

¯
Yt)t∈T

Ȳt inventory at end of time period t; Ȳ = (Ȳt)t∈T

14

Boundary Condition

Y0 initial inventory

(P) Formulation

zP = min
X,R,Y,

¯
Y,Ȳ

f0(X) +
∑
t∈T

ft(Yt) (2.1a)

s.t. X ∈ X (2.1b)

Yt ∈ Yt(X), ∀t ∈ T (2.1c)

Ȳt =
¯
Yt + gt(Yt), ∀t ∈ T (2.1d)

¯
Yt = Ȳt−1, ∀t ∈ T \ {1} (2.1e)

¯
Y(`−1)υ+1 = R, ∀` ∈ L \ {1} (2.1f)

¯
Y1 = Y0 (2.1g)

Through the objective in (2.1a) we seek a minimum-cost set of strategic and op-

erational decisions. This objective includes the cost of battery degradation, which

grows with deeper levels of discharge; therefore, we model lifecycles spent as a func-

tion of battery current and state-of-charge, which involves the product of the two.

Constraint (2.1b) specifies feasible strategic designs, as defined by the set X. Con-

straint (2.1c) restricts operational decisions Yt to those allowable by the design de-

cision X at each time period t; for example, only an asset purchased as part of a

design decision may be operated at time period t. More generally, constraint (2.1c)

includes nonlinear relationships as we detail in Section 2.2.2. Constraint (2.1d) cap-

tures changes in inventory from the start to the end of a given time period. Con-

15

straint (2.1e) reconciles the inventory between the end of one time period and the

beginning of the next. Constraint (2.1f) enforces our reset policy by restricting the

inventory at the boundaries of the time blocks to be the same. The reset policy limits

the number of future time periods the model may use to inform dispatch decisions,

and hence limits the model’s ability to over-optimize dispatch to future variations in

load. Constraint (2.1g) fixes the starting inventory to the boundary condition. The

strategic decisions X and R, along with inventory constraints (2.1e), couple decisions

across time. In Section 2.4, we develop a method that decomposes model (2.1) into

|L| subproblems, in which the respective subproblems correspond to decisions within

blocks T`, ` ∈ L.

2.2.2 (M) Formulation: Linearization of (P)

A subset of the relationships within constraint (2.1c), such as battery lifecycles

spent as a function of current and state-of-charge, include bilinear terms. We can

linearize these bilinear terms using ideas that begin with McCormick (1976) and

include significant subsequent work such as Androulakis et al. (1995). Let Y1t and Y2t

denote two components of operational decision Yt that contribute a nonlinear term to

constraint (2.1c), and let auxiliary decision variable Zt represent the product Y1t ·Y2t.

McCormick (1976) presents an approximation that replaces the bilinear relationship

Zt = Y1t · Y2t, ∀t ∈ T, (2.2)

with a convex envelope to constrain Zt, allowing for the reformulation of (P) as an

approximating MIP, i.e., as a linear mixed-integer program. The approximation used

in McCormick (1976) follows.

16

Additional Decision Variables

Y1t, Y2t two components of operational decision vector Yt that
form a bilinear relationship

Zt linear approximation variable representing the product
Y1t · Y2t

Additional Parameters

u1 upper bound of operational component variable Y1t

l1 lower bound of operational component variable Y1t

u2 upper bound of operational component variable Y2t

l2 lower bound of operational component variable Y2t

Formulation

Zt ≥ u2Y1t + u1Y2t − u1u2, ∀t ∈ T (2.3a)

Zt ≥ l2Y1t + l1Y2t − l1l2, ∀t ∈ T (2.3b)

Zt ≤ l2Y1t + u1Y2t − u1l2, ∀t ∈ T (2.3c)

Zt ≤ u2Y1t + l1Y2t − l1u2, ∀t ∈ T (2.3d)

Our application has time-invariant lower and upper bounds (l1, u1) and (l2, u2) for

Y1t and Y2t, respectively, though this assumption may be relaxed in general. We

refer to the formulation that starts with (P) and replaces equation (2.2), which is a

part of constraint (2.1c), with the relaxation described in constraints (2.3a)-(2.3d) as

model (M), or the McCormick relaxation.

17

2.2.3 Application to Microgrid Design and Dispatch Problem

Model (M) specializes to the microgrid design and dispatch problem by map-

ping the strategic design vector X to the number and type of diesel generators, PV

systems, and batteries in the design, and by mapping the operational decision vector

Yt to power input and output for each asset, and fuel consumption for each time pe-

riod. Decision vectors
¯
Y and Ȳ denote the available battery storage at the start and

end of each time period, respectively. The variable R denotes the available battery

storage at the beginning and end of each specified time block; this reset value is iden-

tical across all time blocks to simplify the dispatch policy and to limit appropriate

adaptation of the dispatch policy to future load. In some applications, this target

may be a prespecified level of inventory; however, in what follows we optimize this

value. Because the load and PV availability exhibit diurnal patterns, we select the

duration of a time block to be a day.

Our application assumes that a diesel generator consumes a fixed amount of

fuel per time period when running, in addition to a variable amount that is a linear

function of power output. Therefore, to maximize efficiency, it is preferable to run a

diesel generator at its rated capacity. However, in response to rapid changes in load,

one generator may run isochronous to the others. For this reason, in the MINLP in

Scioletti et al. (2017), multiple copies of the same generators are modeled as “twins,”

each of which has an independent decision variable for power output at each time

period. While the general problem may include twins of the same battery technology,

the instances in Scioletti et al. (2017) restrict the solution to include at most one

battery; this assumption is tantamount to honoring the policy in which batteries

18

operate in droop, rather than individually, to avoid a situation in which one battery is

used to charge another. This high-level mapping suffices for our immediate purposes;

however, the full microgrid design and dispatch model is detailed in Appendix A.1,

largely following the model of Scioletti et al. (2017).

2.3 Reducing Linearization Error in (M)

The envelope described in constraints (2.3a)-(2.3d) represents the tightest pos-

sible convex relaxation for a bilinear term (Al-Khayyal and Falk 1983); however, the

relaxation in these models may neither yield sufficiently tight lower bounds on (P)’s

optimal value, nor produce implementable solutions to the nonlinear model. Fur-

ther, constructing a feasible solution to (P) by starting with a solution to (M) may

provide a low-quality upper bound on (P). Bergamini et al. (2005) and Karuppiah

and Grossman (2006) tighten this relaxation by subdividing the interval defined by

the simple bounds of each component; we refer to this technique as partitioning. We

introduce binary variables that determine which subregion defines the active con-

straints for Y1t, Y2t, and Zt for each time period, and we refer to these as subregion

activation variables. Figure 2.1 shows an example of such a subdivision when parti-

tioning the domain of Y2t. Both Wicaksono and Karimi (2008) and Gounaris et al.

(2009) derive ways to partition McCormick’s relaxation, noting that the computa-

tional performance of these formulations is impossible to predict; however, Gounaris

et al. (2009) identify ten partitioning schemes that computationally outperform the

other methods they present.

At a computational cost, partitioning reduces the approximation error, which

19

𝑌1𝑡
0 1

1

𝑌1𝑡
0 1

1

𝑍𝑡
feasible
values

(shaded)

M : single convex envelope
McCormick (1976)

G : two sub-envelopes
Gounaris et al. (2009)

𝑌2𝑡 = 0.25 𝑌2𝑡 = 0.25

Note: 𝜆2𝑡 = 1 if 0.5 ≤ 𝑌2𝑡 ≤ 1,
𝜆2𝑡 = 0 otherwise

𝜆2𝑡 = 0
𝜆1𝑡 = 1

𝑍𝑡
feasible
values

(shaded)

Figure 2.1: Example of subdividing the McCormick envelope given Y2t = 0.25, shown on the left-hand side, by
partitioning on one variable, in which we linearize Y1t · Y2t. In this example, Y1t and Y2t have simple bounds
l1 = l2 = 0 and u1 = u2 = 1. The shape on the right-hand side represents the sub-envelope that defines the feasible
region for Y1t and Zt, with binary subregion activation variables; see subsequent constraints (2.8) and associated
variables.

can improve lower bounds on, and allow for the construction of, a higher-quality so-

lution to model (P) when using the resulting linear MIP solution as a starting point.

Partitioning requires binary restrictions to activate sub-envelopes, and introduces

additional variables and constraints that grow linearly with the number of total sub-

regions, both of which may compromise tractability. Vielma et al. (010a) and Vielma

and Nemhauser (010b) present a model for piecewise-linear functions in which the

number of binary variables scales logarithmically with the number of segments; Mis-

ener et al. (2011) use this model to implement a partitioning scheme that they then

apply to the pooling problem, and show that the linear partitioning technique we

adopt is preferable for situations in which the number of partitions is relatively low

(eight or fewer subregions in their work).

20

If one component in the bilinear term can be discretized to a finite number of

reference values in the place of a continuous domain, an exact linearization can be

performed; Dvorkin et al. (2017) perform such a linearization, applied to a model for

the use of energy storage for arbitrage in an electricity market. Similarly, Gupte et al.

(2013) present an exact reformulation for terms that are the product of a nonnegative

integer variable and a nonnegative continuous variable. The former is replaced by its

binary expansion, and a McCormick envelope linearizes the resulting product. The

authors develop the convex hull of the corresponding MIP set.

Castro (2015) presents a univariate partitioning scheme that specifies lower and

upper bounds on both components of the bilinear term for each subregion, and applies

the procedure to a subset of the cases in Gounaris et al. (2009). In Section 2.3.1,

we reformulate a different case from Gounaris et al. (2009) that reduces to a single

McCormick envelope when binary restrictions on the subregion activation variables

are relaxed; our improvement applies to both univariate and bivariate partitioning

schemes.

2.3.1 Partitioning Approach

For a given relaxation of Zt = Y1t · Y2t, we define the approximation error as

a function of Y1t as:

E(Y) = max
Y,Z

Z − Y · Y, (2.4)

in which the maximization over Y2t and Zt is constrained by the simple bounds on

Y2t, and the appropriate subregion depending on the approximation in use (e.g.,

constraints (2.3a)-(2.3d) if model (M) is used). For the McCormick relaxation, E(Y)

21

is maximized at the midpoint of the interval [l1, u1], and this maximized value is one

fourth of the area defined by the simple bounds on Y1t and Y2t, i.e., (u1−l1)·(u2−l2)/4

(Androulakis et al. 1995).

Applying a partitioning scheme to the McCormick relaxation by creating m

uniform subregions on the domain of one variable in the bilinear term (Bergamini

et al. 2005, Karuppiah and Grossman 2006) decreases the worst-case approximation

error by a factor of m to:

1

m

(
(u1 − l1)(u2 − l2)

4

)
.

Hasan and Karimi (2010) present a bivariate partitioning scheme, which cre-

ates m uniform subregions on one variable and n uniform subregions on the other in

the bilinear term. In this setting, the worst-case approximation error decreases by a

factor of mn, to:

1

mn

(
(u1 − l1)(u2 − l2)

4

)
.

Figure 2.2 depicts the maximum approximation error as a function of Y1t, E(Y), when

partitioning on one or both variables. Nonuniform partitions are possible, and even

advisable, if partitioning is done dynamically in the course of solving the problem

(Wicaksono and Karimi 2008). However, we restrict our attention to uniform parti-

tions built a priori, which minimize the worst-case approximation error (Hasan and

Karimi 2010). Dey and Gupte (2015) provide solution quality guarantees for applica-

tions of partitioning schemes to pooling problems, and show empirically that, for their

application, a uniform partitioning scheme outperforms an asymmetric approach.

22

0.0 0.2 0.4 0.6 0.8 1.0
Y1t

0.00

0.05

0.10

0.15

0.20

0.25

E(
Y

1t
)

1 Y1t subregion (M)

2 Y1t subregions

4 Y1t subregions

10 Y1t subregions

2 Y1t, 2 Y2t subregions

4 Y1t, 4 Y2t subregions

Figure 2.2: Approximation error per equation (2.4), as a function of Y1t under partitioning schemes for different
numbers of uniform subregions, using partitioning on Y1t only, and on both Y1t and Y2t, respectively. This figure
assumes that the range of both Y1t and Y2t is [0,1].

Section 2.3.2 presents the constraints we propose by partitioning on the vari-

ables Y1t and Y2t. We replace the McCormick relaxation in (M) with new constraints

from this approach to approximate the bilinear terms in (P), and we refer to the

resulting model as (U) because it underestimates (P).

2.3.2 (U) Formulation

Our scheme partitions the feasible region into subregions according to intervals

in the domain of Y1t, which we index by m ∈M. So, we augment the simple bounds

of u1 and l1 with boundaries for each active subregion u1m and l1m, ∀m ∈M, in which

l1,1 = l1, u1,|M| = u1, and l1,m = u1,m−1, ∀m ∈ M \ {1}; we perform an analogous

23

augmentation of the simple bounds of u2 and l2, which we index by n ∈ N.

We introduce binary subregion activation variables to indicate which con-

straints define the active part of the feasible region for Y1t, Y2t, and Zt when assigned

a value of one; the constraints relax to nominal McCormick bounds otherwise.

Additional Sets

m ∈M =
{1, 2, . . . , |M|}

set of subregions obtained by partitioning the domain of
Y1t

n ∈ N = {1, 2, . . . , |N|} set of subregions obtained by partitioning the domain of
Y2t

Additional Parameters

l1m lower bound for Y1t within subregion m

u1m upper bound for Y1t within subregion m

l2n lower bound for Y2t within subregion n

u2n upper bound for Y2t within subregion n

Additional Decision Variables

λmnt 1 if subregion (m,n) defines the active part of the
feasible region of Y1t, Y2t, and Zt in period t, 0
otherwise [binary]

Formulation

The following set of constraints represents partitioning on both Y1t and Y2t, which

we tailor from formulation NF2g, the fastest-performing partitioning scheme of those

described in Gounaris et al. (2009) when implemented for our application. Scioletti et

al. (2016a) details the performance of alternative partitioning schemes from Gounaris

24

et al. when applied to the microgrid design and dispatch problem.

∑
m∈M

∑
n∈N

λmnt = 1, ∀t ∈ T (2.5a)

Y1t ≥ l1 + (l1m − l1)λmnt, ∀m ∈M, n ∈ N, t ∈ T (2.5b)

Y1t ≤ u1 − (u1 − u1m)λmnt, ∀m ∈M, n ∈ N, t ∈ T (2.5c)

Y2t ≥ l2 + (l2n − l2)λmnt, ∀m ∈M, n ∈ N, t ∈ T (2.5d)

Y2t ≤ u2 − (u2 − u2n)λmnt, ∀m ∈M, n ∈ N, t ∈ T (2.5e)

Zt ≥ u2nY1t + u1mY2t − u1mu2n

− (u1u2 − u1mu2n − (u2 − u2n)l1 − (u1 − u1m)l2)(1− λmnt),

∀m ∈M, n ∈ N, t ∈ T (2.5f)

Zt ≥ l2nY1t + l1mY2t − l1ml2n

− (l1l2 − l1ml2n − (l2 − l2n)u1 − (l1 − l1m)u2)(1− λmnt),

∀m ∈M, n ∈ N, t ∈ T (2.5g)

Zt ≤ l2nY1t + u1mY2t − u1ml2n

+ (u1ml2n − u1l2 + (l2 − l2n)l1 + (u1 − u1m)u2)(1− λmnt),

∀m ∈M, n ∈ N, t ∈ T (2.5h)

Zt ≤ u2nY1t + l1mY2t − l1mu2n

+ (l1mu2n − l1u2 + (u2 − u2n)u1 + (l1 − l1m)l2)(1− λmnt),

∀m ∈M, n ∈ N, t ∈ T (2.5i)

λmnt ∈ {0, 1}, ∀m ∈M, n ∈ N, t ∈ T. (2.5j)

Constraint (2.5a) requires exactly one of the subregion activation variables λmnt to

25

assume a value of one for each time period t. Constraints (2.5b)-(2.5e) restrict Y1t

and Y2t to each variable’s active subregion. If λmnt=1, then subregion (m,n) is active,

and Y1t and Y2t are restricted to the intervals [l1m, u1m] and [l2n, u2n], respectively. If

λmnt=0, the constraints reduce to simple bounds on Y1t and Y2t.

The McCormick relaxation uses four constraints to restrict Zt as a function of

the components Y1t and Y2t and their simple bounds. The partitioning scheme reduces

the size of the active subregion, which allows for a smaller convex envelope, i.e., sub-

envelope, which, in turn, yields a tighter relaxation. Constraints (2.5f) through (2.5i)

bound Zt according to the sub-envelope chosen by the subregion activation variables,

λmnt. If λmnt=1, then Zt is constrained by the convex envelope of the active subregion.

If a subregion is not active, the associated constraints are dominated by McCormick

bounds.

As we show in Proposition 2.3.1, if λmnt = 1, then the partitioning scheme

of Gounaris et al. (2009) generates constraints (2.5), except that the last term in

their analog of constraints (2.5f)-(2.5i) is (u1− l1)(u2− l2)(1−λmnt) whose coefficient

is the smallest value that reduces constraints (2.5f)-(2.5i) to simple bounds on Y1t

and Y2t when λmnt = 0. Our approach differs from Gounaris et al. in that we find

the smallest such value for each individual constraint, rather than a single value to

apply to all constraints. When we use the approach in Gounaris et al. (2009) rather

than constraints (2.5) to approximate the bilinear terms in (P), we call the resulting

model (G). Proposition 2.3.1 characterizes the relative tightness of formulations (U),

(G), and (M). Our formulation is tighter than (G) because when λmnt = 0, our

constraints (2.5) revert to McCormick bounds, while the analogous constraints in (G)

26

relax to simple bounds. To simplify the notation, we drop the t index, and treat Y1,

Y2, and Z as scalar decision variables in the proposition.

Proposition 2.3.1. Let m ∈ M = {1, 2, . . . , |M|}, and l1m, u1m satisfy l1,1 = l1,

u1,|M| = u1, and l1m = u1,m−1, l1,m−1 < l1m, u1,m−1 < u1m, ∀m ∈ M \ {1}. Likewise,

let n ∈ N = {1, 2, . . . , |N|}, and l2n, u2n satisfy l2,1 = l2, u2,|N| = u2, and l2,n = u2,n−1,

l2,n−1 < l2n, u2,n−1 < u2n, ∀n ∈ N \ {1}. Let

S = {(Y1, Y2, Z) : Z = Y1 · Y2, l1 ≤ Y1 ≤ u1, l2 ≤ Y2 ≤ u2},

and

SM = {(Y1, Y2, Z) : Z ≥ u2Y1 + u1Y2 − u1u2,

Z ≥ l2Y1 + l1Y2 − l1l2,

Z ≤ l2Y1 + u1Y2 − u1l2,

Z ≤ u2Y1 + l1Y2 − l1u2,

l1 ≤ Y1 ≤ u1, l2 ≤ Y2 ≤ u2}.

Define

Y1 ≥ l1 + (l1m − l1)λmn, ∀m ∈M, n ∈ N (2.6a)

Y1 ≤ u1 − (u1 − u1m)λmn, ∀m ∈M, n ∈ N (2.6b)

Y2 ≥ l2 + (l2n − l2)λmn, ∀m ∈M, n ∈ N (2.6c)

Y2 ≤ u2 − (u2 − u2n)λmn, ∀m ∈M, n ∈ N (2.6d)

Z ≥ u2nY1 + u1mY2 − u1mu2n − amn(1− λmn), ∀m ∈M,∀n ∈ N (2.6e)

27

Z ≥ l2nY1 + l1mY2 − l1ml2n − bmn(1− λmn), ∀m ∈M,∀n ∈ N (2.6f)

Z ≤ l2nY1 + u1mY2 − u1ml2n + cmn(1− λmn), ∀m ∈M,∀n ∈ N (2.6g)

Z ≤ u2nY1 + l1mY2 − l1mu2n + dmn(1− λmn), ∀m ∈M,∀n ∈ N. (2.6h)

Let

SG = {(Y1, Y2, Z) : (2.6) with amn = bmn = cmn = dmn = (u1 − l1)(u2 − l2),

l1 ≤ Y1 ≤ u1, l2 ≤ Y2 ≤ u2,∑
m∈M

∑
n∈N

λmn = 1, λmn ∈ {0, 1}, ∀m ∈M, n ∈ N}

and

SU = {(Y1, Y2, Z) : (2.6) with amn = u1u2 − u1mu2n − (u2 − u2n)l1 − (u1 − u1m)l2,

bmn = l1l2 − l1ml2n − (l2 − l2n)u1 − (l1 − l1m)u2,

cmn = u1ml2n − u1l2 + (l2 − l2n)l1 + (u1 − u1m)u2,

dmn = l1mu2n − l1u2 + (u2 − u2n)u1 + (l1 − l1m)l2,

l1 ≤ Y1 ≤ u1, l2 ≤ Y2 ≤ u2,∑
m∈M

∑
n∈N

λmn = 1, λmn ∈ {0, 1}, ∀m ∈M, n ∈ N}.

Then, S ⊆ SU ⊆ SG ⊆ SM = SULP ⊆ SGLP , where SULP and SGLP represent the linear

programming relaxation of SU and SG, respectively; i.e., with λmn ∈ {0, 1} replaced

by 0 ≤ λmn ≤ 1, ∀m ∈M, n ∈ N. Moreover, S ⊆ SU , SG ⊆ SM , and SULP ⊆ SGLP can

be strict.

Proof. Let (Y1, Y2, Z) ∈ S. Let λm̄n̄ = 1 for an interval satisfying Y1 ∈

[l1m̄, u1m̄] and Y2 ∈ [l2n̄, u2n̄], breaking ties arbitrarily, and let λmn = 0, ∀m ∈M, n ∈

28

N : (m,n) 6= (m̄, n̄). For (m,n) 6= (m̄, n̄), constraints (2.6a)-(2.6d) yield l1 ≤ Y1 ≤ u1,

l2 ≤ Y2 ≤ u2, and for (m,n) = (m̄, n̄), these constraints yield l1m ≤ Y1 ≤ u1m,

l2n ≤ Y2 ≤ u2n. Consider constraints (2.6e)-(2.6h). For (m,n) = (m̄, n̄), these

constraints yield

Z ≥ u2nY1 + u1mY2 − u1mu2n (2.7a)

Z ≥ l2nY1 + l1mY2 − l1ml2n (2.7b)

Z ≤ l2nY1 + u1mY2 − u1ml2n (2.7c)

Z ≤ u2nY1 + l1mY2 − l1mu2n. (2.7d)

The following shows that constraint (2.7a) holds for (Y1, Y2, Z) ∈ S with Y1 ∈

[l1m̄, u1m̄] and

Y2 ∈ [l2n̄, u2n̄]:

0 ≤ (u1m − Y1)(u2n − Y2)

0 ≤ Y1Y2 − u2nY1 − u1mY2 + u1mu2n

Z ≥ u2nY1 + u1mY2 − u1mu2n.

Similarly, constraints (2.7b)-(2.7d) hold via:

0 ≤(Y1 − l1m)(Y2 − l2n)⇒ Z ≥ l2nY1 + l1mY2 − l1ml2n

0 ≤(u1m − Y1)(Y2 − l2n)⇒ Z ≤ l2nY1 + u1mY2 − u1ml2n

0 ≤(Y1 − l1m)(u2n − Y2)⇒ Z ≤ u2nY1 + l1mY2 − l1mu2n.

Therefore, (Y1, Y2, Z) satisfies constraints (2.6e)-(2.6h) for (m,n) = (m̄, n̄). If (m,n) 6=

(m̄, n̄), the right-hand sides of these constraints for SU are dominated by those of the

29

McCormick relaxation of SM ; i.e.,

(2.6e) : u2nY1 + u1mY2 − u1mu2n − (u1u2 − u1mu2n − (u2 − u2n)l1 − (u1 − u1m)l2)

= u2nY1 + u1mY2 − u1u2 + (u2 − u2n)l1 + (u1 − u1m)l2

≤ u2nY1 + u1mY2 − u1u2 + (u2 − u2n)Y1 + (u1 − u1m)Y2

= u2Y1 + u1Y2 − u1u2 ∀(m,n) ∈M×N \ {(m̄, n̄)}

(2.6f) : l2nY1 + l1mY2 − l1ml2n − (l1l2 − l1ml2n − (l2 − l2n)u1 − (l1 − l1m)u2)

= l2nY1 + l1mY2 − l1l2 − (l2n − l2)u1 − (l1m − l1)u2

≤ l2nY1 + l1mY2 − l1l2 − (l2n − l2)Y1 − (l1m − l1)Y2

= l2Y1 + l1Y2 − l1l2 ∀(m,n) ∈M×N \ {(m̄, n̄)}

(2.6g) : l2nY1 + u1mY2 − u1ml2n + (u1ml2n − u1l2 + (l2 − l2n)l1 + (u1 − u1m)u2)

= l2nY1 + u1mY2 − u1l2 + (l2 − l2n)l1 + (u1 − u1m)u2

≥ l2nY1 + u1mY2 − u1l2 + (l2 − l2n)Y1 + (u1 − u1m)Y2

= l2Y1 + u1Y2 − u1l2 ∀(m,n) ∈M×N \ {(m̄, n̄)}

(2.6h) : u2nY1 + l1mY2 − l1mu2n + (l1mu2n − l1u2 + (u2 − u2n)u1 + (l1 − l1m)l2)

= u2nY1 + l1mY2 − l1u2 + (u2 − u2n)u1 + (l1 − l1m)l2

≥ u2nY1 + l1mY2 − l1u2 + (u2 − u2n)Y1 + (l1 − l1m)Y2

= u2Y1 + l1Y2 − l1u2 ∀(m,n) ∈M×N \ {(m̄, n̄)}.

Therefore, (Y1, Y2, Z) satisfies constraints (2.6e)-(2.6h) when (m,n) 6= (m̄, n̄), and so

(Y1, Y2, Z) ∈ S ⇒ (Y1, Y2, Z) ∈ SU .

Suppose (Y1, Y2, Z) ∈ SU . The constraints of SG are identical to those of SU

for (m,n) = (m̄, n̄), and SU has tighter constraints than SG when (m,n) 6= (m̄, n̄),

30

because the values for amn, bmn, cmn, and dmn in SU are smaller than the analogous

terms specified in the definition of SG; i.e.,

(2.6e) : (u1 − l1)(u2 − l2)− (u1u2 − u1mu2n − (u2 − u2n)l1 − (u1 − u1m)l2)

= (u1m − l1)(u2n − l2) ≥ 0

(2.6f) : (u1 − l1)(u2 − l2)− (l1l2 − l1ml2n − (l2 − l2n)u1 − (l1 − l1m)u2)

= (u1 − l1m)(u2 − l2n) ≥ 0

(2.6g) : (u1 − l1)(u2 − l2)− (u1ml2n − u1l2 + (l2 − l2n)l1 + (u1 − u1m)u2)

= (u1m − l1)(u2 − l2n) ≥ 0

(2.6h) : (u1 − l1)(u2 − l2)− (l1mu2n − l1u2 + (u2 − u2n)u1 + (l1 − l1m)l2)

= (u1 − l1m)(u2n − l2) ≥ 0.

Therefore, (Y1, Y2, Z) ∈ SU ⇒ (Y1, Y2, Z) ∈ SG and

(Y1, Y2, Z) ∈ SULP ⇒ (Y1, Y2, Z) ∈ SGLP .

Suppose (Y1, Y2, Z) ∈ SG, Y1 ∈ [l1m̄, u1m̄], and Y2 ∈ [l2n̄, u2n̄]. We restrict our

attention to the constraints for (m,n) = (m̄, n̄), which dominate those for (m,n) 6=

(m̄, n̄). Using a similar argument to that for S ⊆ SU above, we can show that the

first constraint of SM holds:

0 ≤ (u1m − Y1)(u2n − Y2)

0 ≤ Y1Y2 − u1mY2 + u2n(u1m − Y1) ≤ Y1Y2 − u1mY2 + u2(u1m − Y1)

0 ≤ Y1Y2 − u2Y1 + u1m(u2 − Y2) ≤ Y1Y2 − u2Y1 + u1(u2 − Y2)

Z ≥ u2Y1 + u1Y2 − u1u2.

31

Analogous arguments show that the next three constraints of SM also hold; hence,

(Y1, Y2, Z) ∈ SG ⇒ (Y1, Y2, Z) ∈ SM .

For (m,n) = (|M|, |N|), u1m = u1 and u2n = u2, so amn = 0, and con-

straint (2.6e) replicates the first constraint in SM . Likewise, the pairs (1, 1), (|M|, 1),

and (1, |N|) yield instances of constraints (2.6f), (2.6g), and (2.6h) that are equiva-

lent to the second, third, and fourth constraints in SM , respectively. This shows that

SULP ⊆ SM . However, the extreme points of SM are:

SMe = {(u1, u2, u1u2), (l1, l2, l1l2), (u1, l2, u1l2), (l1, u2, l1u2)},

all of which are points in S and, by extension, SULP . Further, because SULP is convex,

conv(SMe) = SM ⊆ SULP . Therefore, SM = SULP .

For examples showing that the relationships S ⊆ SU and SG ⊆ SM can be

strict, let l1 = l2 = 0, u1 = u2 = 1, |M| = 1, and |N| = 2 with intervals of

equal length. Then, (Y1, Y2, Z) = (0.6, 0.6, 0.4) ∈ SU but (0.6, 0.6, 0.4) /∈ S, and

(0.6, 0.6, 0.6) ∈ SM but (0.6, 0.6, 0.6) /∈ SG. To show SULP ⊆ SGLP can be strict, the

solution (0.5, 0.5, 0.75) ∈ SGLP for λ1,1 = λ1,2 = 0.5, but (0.5, 0.5, 0.75) /∈ SULP . �

Proposition 2.3.1 shows that the set we propose, SU , is a tighter relaxation

of S than those available in the literature (i.e., S ⊂ SU ⊂ SG and SULP ⊂ SGLP) and,

further, that its linear programming relaxation is as tight as possible (i.e., conv(S) =

SM = SULP), where conv(S) = SM is established in Al-Khayyal and Falk (1983). In

our context, the value of Proposition 2.3.1 is that the set S captures how bilinear

terms are treated in model (P), and sets SU , SG, and SM capture how we relax the

32

bilinear terms in models (U), (G), and (M), respectively. Section 2.4 investigates the

computational advantage offered by the tighter model (U).

2.3.3 Application to Microgrid Design and Dispatch Problem

We adopt the most precise battery modeling paradigm of which the authors are

aware at the time of this writing (Scioletti et al. 2016b), in which two sets of physical

constraints in the microgrid design and dispatch problem include bilinear terms: (i)

the battery power input and output at each time period is the product of incoming

or outgoing current, respectively, and voltage, which, in turn, is a linear function

of battery state-of-charge; and, (ii) our application models battery degradation as a

function of current and state-of-charge, which includes the product of the two as a

bilinear term. Hence, the product of battery state-of-charge and incoming or outgoing

current at each time period compose all the bilinear terms in the formulation of (P)

because this accounts for both the battery’s power and the manner in which battery

lifecycle degradation occurs. We map Y1t to the starting state-of-charge and Y2t to the

current discharged from the battery in each time period, and we have an analogous

pairing for the state-of-charge and current used to charge the battery, respectively.

Partitioning on the domain of both Y1t and Y2t causes the model to grow quickly

in size, which can lead to intractable instances. Thus, without loss of generality, we

partition only on Y2t to obtain the following special case of model (U):

∑
n∈N

λnt = 1, ∀t ∈ T (2.8a)

Y2t ≥ l2 + (l2n − l2)λnt, ∀n ∈ N, t ∈ T (2.8b)

33

Y2t ≤ u2 − (u2 − u2n)λnt, ∀n ∈ N, t ∈ T (2.8c)

Zt ≥ u2nY1t + u1Y2t − u1u2n − (u1 − l1)(u2 − u2n)(1− λnt), ∀n ∈ N, t ∈ T

(2.8d)

Zt ≥ l2nY1t + l1Y2t − l1l2n − (u1 − l1)(l2n − l2)(1− λnt), ∀n ∈ N, t ∈ T (2.8e)

Zt ≤ l2nY1t + u1Y2t − u1l2n + (u1 − l1)(l2n − l2)(1− λnt), ∀n ∈ N, t ∈ T (2.8f)

Zt ≤ u2nY1t + l1Y2t − l1u2n + (u1 − l1)(u2 − u2n)(1− λnt), ∀n ∈ N, t ∈ T (2.8g)

λnt ∈ {0, 1}, ∀n ∈ N, t ∈ T. (2.8h)

Constraints (2.8) are the special case of constraints (2.5) in which |M| = 1; hence,

we have removed index m and only use simple bounds l1 and u1 in our application.

The formulation in Appendix A.1 details the mappings of Y1t, Y2t, and Zt to the

state-of-charge and current decision variables in the microgrid design and dispatch

problem.

2.4 Decomposition of MIP Formulation

While the approach we describe in Section 2.3 reduces approximation error

compared to a McCormick linearization, the additional variables and constraints may

compromise tractability. Because models (P), (U), (G), and (M) are loosely coupled

with respect to time, a temporal decomposition can expedite computation. Rock-

afellar and Wets (1991) present the progressive hedging algorithm, which couples a

Lagrangian relaxation of nonanticipativity constraints with a proximal term. Gade

et al. (2014) and Escudero et al. (2016) both form lower bounds on the optimal value

of multi-stage stochastic programs through Lagrangian relaxations of (subsets of)

nonanticipativity constraints. This section introduces our approach to decomposing

34

a larger problem into subproblems that can be solved in parallel to obtain upper and

lower bounds on each model. While our approach can be applied to any of (P), (U),

(G), and (M), for simplicity, we frame the discussion in terms of problem (P), and

we refer to the modified models that yield upper and lower bounds as (P̄) and (
¯
P),

respectively.

The decomposition procedure begins by exploiting the time blocks indexed

by ` ∈ L in model (P) to create a subproblem of the model for each interval; we

create a clone of each strategic decision variable in each subproblem, and we introduce

nonanticipativity constraints that force all subproblem strategic decisions to be equal.

Next, we obtain a lower bound by relaxing the nonanticipativity constraints. We then

obtain an upper bound by selecting and fixing a specific strategic decision, including

fixing the inventory level on the boundaries of each block. Updating the Lagrange

multipliers associated with the relaxed nonanticipativity constraints tightens the lower

bound, and we propose an update scheme that performs well when applied to the

microgrid design and dispatch problem.

2.4.1 (
¯
P) Formulation: Lower Bounds

To decompose model (P) into |L| subproblems that together provide a lower

bound on model (P), we start by allowing for separate strategic decisions, X and

R, per subproblem, and rewriting model (P) as follows, in which we define µ` and

θ` as dual variables for the nonanticipativity constraints on X and R, respectively.

(Typically, nonanticipativity constraints prevent decision variables from adapting to

individual scenarios in a stochastic program. Here, they prevent strategic decisions

35

from adapting to individual time blocks, `.)

Additional Sets

T−` time periods in block `, excluding the first period; i.e.,

T−` = T` \ {(`− 1)υ + 1}, ∀` ∈ L

Additional Decision Variables

X` strategic design decision for subproblem `

R` strategic inventory reset level for subproblem `

Formulation

zP = min
X,X`,R,R`,Y,

¯
Y,Ȳ

1

|L|
∑
`∈L

f0(X`) +
∑
`∈L

∑
t∈T`

ft(Yt) (2.9a)

s.t. X` ∈ X, ∀` ∈ L (2.9b)

Yt ∈ Yt(X
`), ∀t ∈ T`, ` ∈ L (2.9c)

Ȳt =
¯
Yt + gt(Yt), ∀t ∈ T (2.9d)

¯
Yt = Ȳt−1, ∀t ∈ T−` , ` ∈ L (2.9e)

¯
Y(`−1)υ+1 = R`, ∀` ∈ L \ {1} (2.9f)

Ȳ`υ = R`, ∀` ∈ L (2.9g)

X` = X, ∀` ∈ L : µ` (2.9h)

R` = R, ∀` ∈ L : θ` (2.9i)

¯
Y1 = Y0 (2.9j)

Model (2.9) clones the strategic decisions X and R via X` and R`, respectively, but

enforces nonanticipativity constraints (2.9h) and (2.9i), and hence is equivalent to (P)

36

as specified in model (2.1). The objective function in (2.9a) is modified to incorporate

the new X` variables. Constraints (2.9b)-(2.9d) replicate those of (2.1b)-(2.1d), when

the nonanticipativity constraint (2.9h) is included. Constraint (2.9e) captures the

inventory constraint (2.1e) for time periods within a block, i.e., for t ∈ T−` , ` ∈

L. Constraints (2.9f) and (2.9g), along with constraint (2.9i), maintain inventory

across time blocks. Below, we use the dual variables indicated on constraints (2.9h)

and (2.9i) to develop a Lagrangian relaxation of model (2.9). We refer to the following

model as (
¯
P) because it provides a lower bound on model (P)’s optimal value.

(
¯
P) Formulation

¯
zP = min

X`,R`,Y,
¯
Y,Ȳ

1

|L|
∑
`∈L

f0(X`) +
∑
`∈L

∑
t∈T`

ft(Yt) +
∑
`∈L

(µ`X` + θ`R`) (2.10a)

s.t. X` ∈ X, ∀` ∈ L (2.10b)

Yt ∈ Yt(X
`), ∀t ∈ T`, ` ∈ L (2.10c)

Ȳt =
¯
Yt + gt(Yt), ∀t ∈ T (2.10d)

¯
Yt = Ȳt−1, ∀t ∈ T−` , ` ∈ L (2.10e)

¯
Y(`−1)υ+1 = R`, ∀` ∈ L \ {1} (2.10f)

Ȳ`υ = R`, ∀` ∈ L (2.10g)

¯
Y1 = Y0 (2.10h)

We require
∑

`∈L µ
` = 0 and

∑
`∈L θ

` = 0 to avoid an unbounded Lagrangian

relaxation, which eliminates the free variables X and R. We can compute the lower

bound of model (2.10),
¯
zP , by separating model (

¯
P) into |L| subproblems, one for each

time block indexed by ` ∈ L. Proposition 2.4.1 shows that the optimal value of (
¯
P)

37

provides a lower bound on model (P), and extends the reformulation to create models

(
¯
U), (

¯
G), and (

¯
M) to form lower bounds on models (U), (G), and (M), respectively.

The proposition further specifies relationships among these models.

Proposition 2.4.1. Let zP , zU , zG, and zM be the optimal values of (P), (U),

(G), and (M), respectively. Similarly, let
¯
zP ,

¯
zU ,

¯
zG, and

¯
zM be the optimal values

of models (
¯
P), (

¯
U), (

¯
G), and (

¯
M), i.e., of model (2.10) specialized to the bilinear

representation, or linear approximation, under (P), (U), (G), and (M), respectively.

Then, zP ≥
¯
zP , zU ≥

¯
zU , zG ≥

¯
zG, zM ≥

¯
zM , and zP ≥ zU ≥ zG ≥ zM . Further,

assume that the same multipliers µ`, θ`, ∀` ∈ L, are used in models (
¯
P), (

¯
U), (

¯
G),

and (
¯
M). Then,

¯
zP ≥

¯
zU ≥

¯
zG ≥

¯
zM .

Proof. Model (P) as defined in (2.1) is equivalent to model (2.9), and model (
¯
P)

as defined in (2.10) is a Lagrangian relaxation of (2.9) under the restriction on the

multipliers of
∑

`∈L µ
` = 0 and

∑
`∈L θ

` = 0. Thus, zP ≥
¯
zP . An analogous argument

shows that zU ≥
¯
zU , zG ≥

¯
zG, and zM ≥

¯
zM . Using Proposition 2.3.1, we have

zM ≤ zG ≤ zU ≤ zP , and
¯
zM ≤

¯
zG ≤

¯
zU ≤

¯
zP . �

2.4.2 (P̄) Formulation: Upper Bounds

We make two modifications to model (2.9) to obtain an upper bound on (P)’s

optimal value, and call the resulting model (P̄). First, we fix a design decision X̂ ∈ X,

and second, we fix a “reset point” for inventory levels at boundaries of the partition

on T, which we call R̂. We obtain as many as |L| candidate solutions by solving (
¯
P),

and we may select one of these; our implementation retrieves candidates from peak

38

demand intervals and retains that which provides the tightest upper bound upon

solving (P̄).

(P̄) Formulation

z̄P = min
Y,

¯
Y,Ȳ

f0(X̂) +
∑
`∈L

∑
t∈T`

ft(Yt) (2.11a)

s.t. Yt ∈ Yt(X̂), ∀t ∈ T`, ` ∈ L (2.11b)

Ȳt =
¯
Yt + gt(Yt), ∀t ∈ T (2.11c)

¯
Yt = Ȳt−1, ∀t ∈ T−` , ` ∈ L (2.11d)

¯
Y(`−1)υ+1 = R̂, ∀` ∈ L \ {1} (2.11e)

Ȳ`υ = R̂, ∀` ∈ L (2.11f)

¯
Y1 = Y0 (2.11g)

Fixing the design decision at X̂ and inventory reset value at R̂ allows for the removal

of constraints (2.9b), (2.9h) and (2.9i). The boundary conditions (2.11e) and (2.11f)

link the pairs of decision variables
¯
Y and Ȳ that span multiple intervals within the par-

tition on T by fixing their values to the reset point R̂; these replace constraint (2.9i),

and allow model (2.11) to separate by ` ∈ L. The optimal value of (P̄) provides an

upper bound on the optimal value of (P), per Proposition 2.4.2.

Proposition 2.4.2. Let X̂ ∈ X and R̂ be given, and assume that for those X̂ and

R̂, model (P̄) is feasible. Let zP , zU , zG, and zM be the optimal values of (P), (U),

(G), and (M), respectively. Similarly, let z̄P , z̄U , z̄G, and z̄M be the optimal values

of models (P̄), (Ū), (Ḡ), and (M̄), i.e., of model (2.11) specialized to the bilinear

39

representation, or linear approximation, under (P), (U), (G), and (M), respectively.

Then, z̄P ≥ zP , z̄U ≥ zU , z̄G ≥ zG, and z̄M ≥ zM . Further, z̄P ≥ z̄U ≥ z̄G ≥ z̄M .

Proof. By Proposition 2.3.1, feasibility of (P̄) ensures feasibility of (Ū), (Ḡ),

and (M̄) under X̂ and R̂. Consider models (P̄) as defined in (2.11) and (P) as defined

in (2.9). Boundary conditions (2.11e) and (2.11f) are equivalent to constraints (2.9f)

and (2.9g), except that the inventory variable R = R̂ has been fixed. Additionally,

the design decision X = X̂ ∈ X is fixed. Therefore, (P̄) is a restriction of (P), and

hence its optimal value yields an upper bound for (P); i.e., z̄P ≥ zP . Analogous

arguments show z̄U ≥ zU , z̄G ≥ zG, and z̄M ≥ zM . Using Proposition 2.3.1, we have

z̄P ≥ z̄U ≥ z̄G ≥ z̄M . �

2.4.3 Decomposition Algorithm

Algorithm 1 iteratively improves the solutions to the lower and upper bounding

formulations in Sections 2.4.1 and 2.4.2, respectively, tightening the bounds as the

algorithm proceeds. For simplicity, we describe the algorithm as applied to a generic

model, (A), but it may be applied to any of (P), (U), (G), and (M). Additionally,

valid mixtures according to Propositions 2.4.1 and 2.4.2 are possible; for example, we

may use (P̄)=(Ā) and (
¯
U)=(

¯
A) to obtain upper and lower bounds on model (P)=(A).

To obtain ε-optimal solutions to model (A), we iteratively solve models (
¯
A)

and (Ā) using a variation of the progressive hedging method developed by Rockafellar

and Wets (1991). Let X0 and R0 denote a design decision and an inventory level,

respectively, obtained by selecting a candidate from solutions to the subproblems of

model (
¯
A). Then, Algorithm 1 aims to iteratively improve upper and lower bounds

40

on the optimal value of the model, which we call zA, until we obtain a solution whose

optimality gap is within the desired tolerance.

Each iteration in Algorithm 1 updates Lagrange multipliers θ` according to

input parameters ρθ, the distance between each reset inventory level R`, and its time-

weighted mean value; we update multipliers µ` using ρµ and X` under an analogous

method. Algorithm 1 is similar to progressive hedging, but in solving (
¯
A) we do not

include a proximal term in the objective function; therefore, solving (
¯
A) provides a

valid lower bound for zA at every iteration. Figure 2.3 displays the key outputs of

each model under our approach.

(c) Upper Bound (𝑃)

Original problem

Strategic decision 𝑋

Inventory with respect to
time

Processor 1 Processor 2 Processor 3 Processor 4

Output: upper bound and
lower bound from same

problem

𝑈𝐵: 𝑧𝑃

𝐿𝐵: 𝑧𝑃

Upper Bound ()

x x x x x

Subproblems solved in parallel

Processor 1 Processor 2 Processor 3 Processor 4Processor 1 Processor 2 Processor 3 Processor 4

Inventory

fixed at

boundaries

Strategic

decision

fixed

Output:

lower bounds

𝑧 𝑧 𝑧 𝑧

𝑧 𝑧 ,…

Lower Bound ()

Processor 1 Processor 2 Processor 3 Processor 4

Penalty for

strategy

differential

𝑧 𝑋

𝑧 𝑋
 𝑧 𝑋

 𝑧 𝑋

Penalty for

inventory

differential

Subproblems solved in parallel

Output:

Lower bounds 𝑧 𝑧

Strategies 𝑋 𝑋

(b)

(a)

(c) Upper Bound

𝑌 𝑌 𝑌 𝑌

Output:
Upper bound 𝑧𝑃

Operations
𝑌 𝑌

Δ = 𝜌𝜇(𝑋
 − 𝑋)

Δ = 𝜌𝜃(
 −)

(𝑃)

(𝑃)

Penalty for
design

differential

Penalty for
inventory

differential

(b) Lower Bound (𝑃)

𝑋 𝑋 𝑋 𝑋

Design Decision 𝑋

Subproblems solved in parallel

Inventory with
respect to time

Output:
Lower bound 𝑧𝑃

Designs 𝑋 𝑋
Inventories

(a) Original Problem (𝑃)Output:
Upper and lower
bound from same

problem

Design
decision

fixed

x

Subproblems solved in parallel

Processor 1 Processor 2 Processor 3 Processor 4Processor 1 Processor 2 Processor 3 Processor 4

Multiple processors used to solve single large problem

Inventory at
boundaries

fixed

x

Figure 2.3: Illustration of direct solution of (P) and Algorithm 1 applied to (A)=(P). Part (a) of the figure depicts
how a general purpose MINLP solver would solve model (P). The bounds

¯
z and z̄ are from a branch-and-bound

algorithm, and that algorithm could use multiple processors. Based on Algorithm 1, part (b) shows the reconciliation
of the subproblems of (

¯
P), while part (c) shows that of the subproblems of (P̄).

41

Algorithm 1 Decomposition procedure to approximately solve model (A)

procedure Decomposition
Inputs: ε > 0, ρµ > 0, ρθ > 0, k ∈ Z+, κ ∈ Z+,(

¯
A),(Ā) . stopping criterion,

. proximal weights, upper bound search frequency, upper bound search depth,
. models to obtain lower and upper bounds

Outputs: X∗, R∗, z̄A,
¯
zA . ε-optimal design and inventory,

. upper and lower bounds on zA

i← 0;
¯
zA ← −∞; z̄A ←∞ . iteration and initial lower and upper bounds

µ` ← 0, θ` ← 0, ∀` ∈ L . initial Lagrange multipliers for model (
¯
A)

while z̄A −
¯
zA > εz̄A do

Solve (
¯
A) with µ`, θ` to obtain

¯
zi, X

`, R`, ` ∈ L .
¯
zi is a lower bound for zA

. |L| subproblems in (
¯
A) can be solved in parallel

X̄ ← 1
|L|
∑̀
∈L
X`; R̄← 1

|L|
∑̀
∈L
R` . mean of subproblem designs,

. reset inventories
for ` = 1, . . . , |L| do . update Lagrange multipliers

µ` ← µ` + ρµ(X` − X̄); θ` ← θ` + ρθ(R
` − R̄)

if
¯
zi >

¯
zA then

¯
zA ←

¯
zi . update lower bound

if i mod k = 0 then . attempt to find a new upper bound
every k iterations
j ← 0
for ` ∈ L do

if X` not previously used to solve (Ā) then
j ← j + 1
Solve (Ā) with X̂ = X`, R̂ = r(X`) to obtain z̄`i

. z̄`i is an upper bound for zA

. r(X`) is midpoint of bounds on R, given X`

. |L| subproblems in (Ā) can be solved in parallel
if z̄`i < z̄A then . update upper bound and incumbent

Solve (Ā) with X̂ = X`, optimizing R via bisection search
to obtain R`, z̄`i

X∗ ← X`, R∗ ← R`, z̄A ← z̄`i
if z̄A −

¯
zA ≤ εz̄A or j = κ then end-for

i← i+ 1

return (X∗, R∗, z̄A,
¯
zA)

42

2.4.4 Application to a Microgrid Design and Dispatch Problem

In what follows, we detail our methodology to formulate, and update, models

that bound (P) specific to the microgrid design and dispatch problem developed by

Scioletti et al. (2017). We use multiple models from this paper to approximate (P),

and we solve these via Algorithm 1. Specifically, we use a mixture of (P̄) and (
¯
U) to

obtain upper and lower bounds, respectively.

2.4.4.1 Tightening (
¯
U): Lower Bound on Generator Capacity

Design decisions chosen for subproblems in off-peak time periods may be in-

feasible to the year-long problem due to insufficient generator capacity. To address

this and to tighten the lower bound obtained by solving (
¯
U), we develop and solve a

variant of model (
¯
U) in which in each subproblem we minimize the sum of the capac-

ities of all diesel generators selected in the optimal design. That is, we seek a feasible

solution to each subproblem that uses the smallest possible total generator capacity.

The maximum of the optimal objective function values, i.e., the sum of the gener-

ator capacities, from these subproblems is then used to set a lower bound on diesel

generator capacity when iteratively solving model (
¯
U) in Algorithm 1. Enforcing this

minimum generator capacity strengthens constraints (2.10b)-(2.10c) for periods in

which average and peak loads are low relative to those over the time horizon.

2.4.4.2 Obtaining Feasible Solutions to Model (P)

We exploit the limited approximation error associated with model (U) to de-

velop solutions feasible to the nonlinear model (P) by using a solution to model (U) as

43

Input: Design 𝑋, reset state-of-charge 𝑅, and
dispatch decisions 𝑌𝑡 for solution feasible to

, ∀𝑡 ∈ 𝒯. 𝓁 ← 0.

Output: dispatch
decisions 𝑌𝑡 for feasible

solution to (ത𝑃),
∀𝑡 ∈ 𝒯.

For all time periods in 𝒯𝓁, recalculate battery
state-of-charge according to power input and output under model ത𝑃 .

𝓁 ← 𝓁 + 1

Is state-of-charge
below the required minimum for any

𝑡 ∈ 𝒯𝓁?

Is state-of-charge
above the required maximum for any

𝑡 ∈ 𝒯𝓁?

Is spinning reserve not met
for any 𝑡 ∈ ?

𝓁 = ℒ ?

For the smallest such 𝑡, adjust power
input and output so that state-of-charge

is at the required minimum.

For the smallest such 𝑡, adjust power
input and output so that state-of-charge

is at the required maximum.

Is battery input or output
infeasible given its state-of-charge for

any 𝑡 ∈ 𝒯𝓁?

For the smallest such 𝑡, adjust power
input and output so that battery flows
are feasible given the state-of-charge.

For the smallest such 𝑡, adjust power
input and output, or add generators, to

meet spinning reserve requirements.

𝑌𝓁𝜏 = 𝑅?
Adjust power input and output, starting

with period 𝜏, so that 𝑌𝓁𝜏 = 𝑅.

yes

yes

yes

yes

yes

no

no

no

no

no
no yes

Figure 2.4: Flowchart describing procedure to find a feasible solution to (P), using a solution to (U) as a starting
point.

input. The flowchart in Figure 2.4 details the heuristic for obtaining such a solution.

For each subproblem `, the heuristic enforces the nonlinear constraints of model (P)

and recalculates battery state-of-charge for each time period in the subproblem, using

the battery power from the optimized dispatch decisions from model (U). Then, the

heuristic turns diesel generators on or off and adjusts their power output until the

battery power input and output are feasible to (P) for each period t ∈ T`.

2.5 Computational Results

In this section, we first briefly describe the collection of 14 problem instances

from Scioletti et al. (2017). Then, we report computational results for these in-

stances under the partitioning scheme for bilinear terms from Section 2.3 and the

44

decomposition algorithm of Section 2.4. The results: (i) demonstrate the benefit of

Algorithm 1 by comparing the time to solve the McCormick relaxation model (M)

using our method, to that of solving model (M) directly; (ii) exhibit the improve-

ments due to our tightened linearization of bilinear terms by comparing results of

our model (U) and that of Gounaris et al. (G); (iii) validate the use of a partitioning

scheme by using solutions to (U) as a starting point to obtain an upper bound on the

nonlinear model (P); and, (iv) detail the impact of the problem-specific methodology

in Section 2.4.4 on solution quality by comparing the bounds on (U) achieved un-

der subsets of these ideas. For all MIP instances, we used CPLEX v. 12.6.2.0 (IBM

2017) to either solve the model directly or to solve subproblems associated with our

decomposition algorithm. Our implementation of the decomposition algorithm is in

Python 2.7.9 (Rossum 1995), and all results were obtained on a Cray XC40 compute

node with two Intel E5-2690 v3 12-core (Haswell) processors and 64 GB of DDR4

memory.

2.5.1 Load and Candidate Design Technologies

Forward Operating Bases (FOBs) serve as protected locations from which to

project and sustain combat operations, require significant logistical support, and must

produce electrical power without a connection to the grid. While FOBs, or, in general,

the population and land mass of any remote site, vary greatly in size and location, we

obtained data for remote locales with no more than 150 soldiers on a 100m by 100m

area, with peak power load of at most 300kW over an operating time horizon of one

year. This section outlines the source of load and candidate storage and generation

45

assets for our model instances.

The FOB demand profiles were simulated in EnergyPlus (2001), based on an

experiment conducted at the Basecamp Integration Lab at Fort Devens, MA. The

four diesel generator technologies we consider are currently available in the military

inventory, and have power ratings from 15kW to 100kW, with purchase costs be-

tween $25K and $38K. The lone type of PV system we consider is assumed to have

fixed-tilt-and-angle panels with a nameplate rating of 1kW; we assume that spatial

restrictions impose a limit of 75 such systems, at a purchase cost of $2/W. The bat-

tery technologies that we consider are sourced from A123 (2018) and have a purchase

cost of $500/kWh, with a minimum of one hour for a full discharge and three hours

for a full charge.

2.5.2 Solution of Model (M) via Decomposition

We demonstrate the benefit of using Algorithm 1 to solve model (M), over

solving (M) directly. Table 2.1 displays solution times and optimality gaps for our

14 test problems; the decomposition procedure outperforms direct solution in each

instance, decreasing the solution time from a minimum of 56 minutes to a maximum

of six minutes.

2.5.3 Solution of Model (U) vs. Model (G)

We illustrate the impact of our tighter mixed integer linear relaxation, (U),

compared to that of Gounaris et al. (2009), (G), by using Algorithm 1 to solve each

formulation over the 14 instances. Proposition 2.3.1 shows that these problems share

46

Algorithm 1, |L|=365 Direct Solution

¯
zM z̄M Gap Solve Time Gap Solve Time

Instance ($MM) ($MM) (%) (seconds) (%) (seconds)

Bagram 1.961 2.031 3.53 285 4.96 15333

Bamako 1.016 1.050 3.41 52 4.40 8684

Brazzaville 1.241 1.249 0.70 44 4.06 7155

Buenos Aires 1.591 1.631 2.50 94 6.67 18000

Dili 1.438 1.448 0.71 66 4.17 9273

Dushanbe 2.113 2.166 2.52 328 8.08 18000

Boston 3.401 3.466 1.92 222 7.43 18000

Gengneung 2.520 2.575 2.15 195 6.81 18000

Istanbul 2.157 2.200 2.01 154 8.39 18000

Kuwait City 1.627 1.702 4.59 146 10.13 18000

Mexico City 1.127 1.157 2.66 119 9.61 18000

San Salvador 0.967 0.974 0.76 52 4.53 3333

Tallinn 2.567 2.620 2.08 190 9.95 18000

Springfield 3.885 3.978 2.38 245 4.97 11746

Table 2.1: Computational results for a collection of year-long (|T| = 8760) instances of model (M). Models are solved
using CPLEX v. 12.6.2.0, via Python 2.7.9.
• Termination criterion for “Algorithm 1” and “Direct Solution”: min{time limit ≤ 5 hours, optimality gap ≤ 5%}.
• Termination criterion per subproblem: min{time limit ≤ 60 seconds, optimality gap ≤ 0.5%}; the former time limit
was reached in fewer than 1% of cases.

the same set of feasible solutions when the binary restrictions in constraint (2.8h)

hold; however, when this constraint is relaxed, the tighter model (U) allows us to

obtain high-quality lower bounds more quickly. Table 2.2 compares the solution

times from applying Algorithm 1 to models (U) and (G), using the same tolerance of

a 5% optimality gap. These results use |N| = 4 uniform subregions, and we discuss

47

this choice of |N| in Section 2.5.4. Using our tighter relaxation reduces solution times

by about 20% on average.

Time to reach 5% tolerance (seconds)

Instance (U) (G)

Bagram 671 882

Bamako 438 451

Brazzaville 235 260

Buenos Aires 318 339

Dili 358 365

Dushanbe 827 1120

Boston 453 532

Gengneung 871 1375

Istanbul 257 463

Kuwait City 510 520

Mexico City 318 387

San Salvador 221 224

Tallinn 261 305

Springfield 585 652

Table 2.2: Computational results of using Algorithm 1 to approximately solve instances of models (U) and (G) (|T|
= 8,760 hrs, |L| = 365), using the partitioning approach in constraints (2.8) and the one developed by Gounaris et al.
(2009), with |N| = 4 uniform subregions in both approaches.
Models are solved using CPLEX v. 12.6.2.0, via Python 2.7.9.
• Termination criterion for Algorithm 1: optimality gap ≤ 5%.
• Termination criterion per subproblem: min{time limit ≤ 60 seconds, optimality gap ≤ 0.5%}; the former time limit
was reached in fewer than 5% of cases.

2.5.4 Solution of Model (P)

To obtain a feasible solution to the MINLP model (P), we iteratively solve

models (
¯
U) and (Ū), and then use the procedure in Figure 2.4 to obtain solutions

48

to model (P̄). Table 2.3 displays the solution times and optimality gaps achieved on

model (P).

We obtain solutions within 5% of optimality within 20 minutes for all 14

MINLP instances, a significant result for the nonlinear microgrid design and dispatch

problem using this set of technologies on year-long instances. For comparison, Scio-

letti et al. (2017) were unable to achieve 5% optimality gaps for day-long instances

(|T| = 24 hours) in the 14 locations within three hours, using any of the general-

purpose MINLP solvers BARON (Sahinidis 1996), Bonmin (Bonami and Lee 2009),

or Couenne (Belotti 2009), and for nine of the instances, they fail to obtain a feasible

solution within three hours.

We compare the performance related to different values for |N| in the partition-

ing scheme we use to create model (U) by adopting two variants of the performance

profile developed by Dolan and Moré (2002). In the first variant, we compare the

optimality gaps achieved for a one-hour time limit as the number of subregions in

our partitioning scheme varies. Let gps be the optimality gap achieved in one hour

of runtime using p subregions for instance s. Then, our performance ratio, rps, is

defined as

rps =
gps

min
p∈{1,...,6}

{gps}
. (2.12)

Figure 2.5 displays the performance profile of one to six subregions as an estimate of

the cumulative distribution function of the performance ratio, using the 14 instances

from our application as samples. The x-axis in Figure 2.5 specifies a multiplicative

factor on the best optimality gap. So, with |N| = 4 subregions, we can solve 13 out

49

¯
z∗ z̄∗ Gap Solve Time

Instance ($MM) ($MM) (%) (seconds)

Bagram 1.963 2.062 5.00 877

Bamako 1.017 1.061 4.29 883

Brazzaville 1.244 1.268 1.92 443

Buenos Aires 1.594 1.651 3.63 522

Dili 1.442 1.466 1.69 563

Dushanbe 2.114 2.190 3.58 1172

Boston 3.401 3.486 2.50 651

Gengneung 2.521 2.585 2.53 1078

Istanbul 2.157 2.219 2.87 266

Kuwait City 1.629 1.698 4.29 837

Mexico City 1.129 1.176 4.20 525

San Salvador 0.969 0.992 2.31 426

Tallinn 2.568 2.635 2.62 476

Springfield 3.886 3.995 2.80 791

Table 2.3: Computational results of approximately solving MINLP model (P) (|T| = 8,760 hrs, |L| = 365).
Models (Ū) and (

¯
U) are solved with |N| = 4 uniform subregions using CPLEX v. 12.6.2.0, via Python 2.7.9. The

second column (
¯
z∗) reports the optimal value of (

¯
U). The third column (z̄∗) reports the objective function value of

the feasible solution to model (P̄) obtained by adjusting solutions to model (Ū) via the procedure in Figure 2.4.
• Termination criterion for Algorithm 1: (U) optimality gap ≤ 5%.
• Termination criterion per subproblem: min{time limit ≤ 60 seconds, optimality gap ≤ 0.5%}; the former time limit
was reached in fewer than 5% of cases.

of 14 instances within a factor of 1.05 of the best gap obtained by all six procedures.

In our second variant of the performance profile from Dolan and Moré (2002),

we report the optimality gaps achieved by each partitioning scheme as a function of

time in the following manner. Let gpst be the optimality gap achieved in t seconds of

runtime using p subregions to solve instance s. Then, our performance ratio at time

50

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40
x

0.0

0.2

0.4

0.6

0.8

1.0

P[
r p

s
x

:1
s

14
]

1 subregion
2 subregions
3 subregions
4 subregions
5 subregions
6 subregions

Figure 2.5: Performance profile for the partitioning scheme of model (U) in which the number of subregions, |N|,
varies between one and six, for our 14 instances. Here, we solve models (

¯
U) and (Ū) via Algorithm 1, and then use

the procedure of Figure 2.4 to obtain solutions to (P̄). The value rps is calculated using equation (2.12). For |N| = 4,
the performance profile reaches the value of 1.0 at x = 1.193, meaning that the procedure with |N| = 4 achieves a gap
within 1.193 times the best gap for all six procedures (i.e., using |N| = 1, 2, . . . , 6) across all 14 instances.

t, rpst, is defined as

rpst =

min
p∈{1,...,6}

{gpsτ}

gpst
, (2.13)

in which τ = 3, 600 seconds, the time limit for each instance.

Unlike the performance measure of equation (2.12), the measure in equa-

tion (2.13) tracks the optimality gap as a function of time. Both measures are

constructed so that values “higher and to the left” indicate superior performance.

Figure 2.6 displays the geometric and arithmetic means of rpst across the 14 in-

stances. While the partitioning scheme exhibits the tightest optimality gaps using

|N| = 4 subregions for our collection of instances with a one-hour time limit, the

results suggest that |N| = 2 subregions may provide tighter gaps under a stricter

computational budget.

Table 2.4 details the impact of the problem-specific methodology we describe in

51

500 1000 1500 2000 2500 3000 3500
Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
s

{1
,

,1
4}

(r p
st

)(1
/1

4)

(a)

500 1000 1500 2000 2500 3000 3500
Time (seconds)

0.75

0.80

0.85

0.90

0.95

s
{1

,
,1

4}
r p

st

14

(b)
1 subregion
2 subregions
3 subregions
4 subregions
5 subregions
6 subregions

Figure 2.6: Performance profile of the metric rpst over time for our partitioning scheme in which the number of
subregions, |N|, varies between one and six, for the 14 instances in our application. The value rpst is calculated using
equation (2.13). Part (a) and part (b) display the geometric and arithmetic means of rpst, respectively. Here, we
solve models (

¯
U) and (Ū) via Algorithm 1, and then use the procedure of Figure 2.4 to obtain solutions to (P̄).

Section 2.4.4, applied to our 14 instances. The addition of a constraint that provides

a lower bound on diesel generator capacity significantly reduces solution times when

using Algorithm 1 to solve the nonlinear microgrid design and dispatch problem.

2.6 Conclusions

We present a methodology that takes advantage of problems that are loosely

coupled with respect to time and contain some bilinear terms. We present a parti-

tioning scheme that approximates constraints containing bilinear terms with a tighter

relaxation than similar approaches in the literature. We present a decomposition

method that separates the problem into smaller subproblems, using Lagrangian re-

laxation to obtain a lower bound and fixing inventory levels at regular intervals to

obtain an upper bound. We apply the methodology to a microgrid design and dis-

patch problem, solve instances to within 5% of MIP optimality in at most six minutes,

52

Add Minimum

(P̄) and (
¯
U) Only Generator Capacity

Gap Solve Time Gap Solve Time

Instance (%) (seconds) (%) (seconds)

Bagram 17.77 7200 5.00 877

Bamako 5.51 7200 4.29 883

Brazzaville 2.25 325 1.92 443

Buenos Aires 5.74 7200 3.63 522

Dili 1.75 524 1.69 563

Dushanbe 5.36 7200 3.58 1172

Boston 3.98 7184 2.50 651

Gangneung 3.73 620 2.53 1078

Istanbul 4.26 2824 2.87 266

Kuwait City 5.28 7200 4.29 837

Mexico City 4.16 2021 4.20 525

San Salvador 2.61 469 2.31 426

Tallinn 4.34 3570 2.62 476

Springfield 5.57 7200 2.80 791

Table 2.4: Computational results of approximately solving instances of MINLP model (P) (|T| = 8,760 hrs, |L| = 365).
Models (Ū) and (

¯
U) are solved with |N| = 4 uniform subregions using CPLEX v. 12.6.2.0, via Python 2.7.9. Solutions

to model (P̄) were obtained by adjusting solutions to model (Ū) via the procedure in Figure 2.4.
• Termination criterion for Algorithm 1: min{time limit ≤ 2 hours, (P) optimality gap ≤ 5%}.
• Termination criterion per subproblem: min{time limit ≤ 60 seconds, optimality gap ≤ 0.5%}; the former time limit
was reached in fewer than 5% of cases.

and achieve a 5% MINLP gap for all instances within 20 minutes, which significantly

improves on alternative approaches.

53

Chapter 3

Remote Microgrid Design Optimization Under

Photovoltaic And Load Uncertainty

3.1 Introduction

The United States military constructs forward operating bases (FOBs) to serve

as protected locations from which to project combat power and sustain combat op-

erations in remote regions. While most bases employ spot generation, in which a

diesel generator is attached directly to a load, microgrids that combine these indi-

vidual loads and augment generators with photovoltaic (PV) cells and batteries as a

distributed energy system are emerging as a safer and more efficient alternative to

provide the energy needs of an entire FOB. Scioletti et al. (2017) present a model

that seeks the minimum-cost microgrid design and ideal dispatched power to support

a FOB for one year with hourly fidelity under a detailed battery model; this mixed-

integer nonlinear program (MINLP) is intractable with commercial solvers but loosely

coupled with respect to time. A mixed-integer linear program (MIP) approximates

the model, and McCormick envelopes (McCormick 1976) linearize the bilinear terms.

In Section 2.4, we introduce a policy for loosely coupled MIPs in which the system

reverts to equivalent conditions at regular time intervals; this separates the problem

into subproblems that we solve in parallel to obtain upper and lower bounds on the

model’s optimal objective function value.

54

We extend the model from Scioletti et al. (2017) to account for uncertainty

in the FOB’s load and available PV resources. We develop an approach to simulate

the occupancy of each building on the FOB, which we then use to obtain sample

paths of environmental control unit (ECU) loads; these realizations share common,

observed weather inputs with the model we use to generate realizations of PV power

output by technology. We develop models that provide lower and upper bounds on

the new model’s optimal value using the method in Section 2.4. Finally, we solve

these instances using the sample average approximation technique from Mak et al.

(1999), and compare the quality of the solutions to those obtained by optimizing

under point forecasts. Section 3.2 describes the FOB we use for our case study, and

the method we use to generate realizations. Section 3.3 details a compact formulation

of our optimization model and decomposition scheme. Section 3.4 assesses the quality

of our solutions and compares the designs to those obtained by point forecasts of load

and PV.

3.2 Load and PV Model

This section describes the method we use to generate realizations of the sources

of uncertainty in our optimization model, specifically, the hourly FOB load and the

hourly power output of our candidate solar PV technology. Section 3.2.1 describes

the layout of the FOB we use for our case study and the buildings we model to

obtain baseline data. Section 3.2.2 describes the procedure for simulating base-wide,

and then building-level, hourly occupancy by personnel. Section 3.2.3 describes our

sources for weather data, and our method for producing realizations of PV power

55

output by hour for the solar technology we consider. Section 3.2.4 summarizes how

we use these data to obtain bivariate sample paths of FOB load and PV power output.

3.2.1 FOB Buildings

Gildea et al. (2017) provide simulation-based analyses with respect to fuel and

water consumption, and waste reduction, for Technology Enabled Capability Demon-

stration (TECD) camps with varying personnel levels; we use the equipment and

building lists from the 312-personnel camp for our case study. Table 3.1 summarizes

the number and structure of each building type on the base for which an environmental

control unit (ECU) provides heating and cooling to each building. The two structure

types used in the 312-troop camp are (i) a 20′ × 8′ military van (MILVAN) shelter,

which has a capacity of eight personnel and a rigid structure, and (ii) a 20′× 32′ Air-

Beam shelter (HDT Global 2016b), which is soft-walled and has a maximum capacity

of 24 personnel. We create renderings of these two building types via OpenStudio,

a free-to-use modeling software suite developed by the National Renewable Energy

Laboratory. Figure 3.1 compares these renderings to images of each building.

The collection of buildings in Table 3.1 differs from that described in Gildea

et al. (2017) in two ways. First, we assume that the billeting structures are assigned

an equal number of soldiers to that building’s full capacity, and so we only use 20

such buildings instead of the 29 implemented in Gildea et al. (2017). Second, we

restrict our analysis to the two building types above, and replace other structure

types in Gildea et al. (2017) with the one closest in size and capacity of the two we

implement. We assume that each building is equipped with a F100-60K 5-ton ECU

56

(a) (b)

(c) (d)

Figure 3.1: OpenStudio renderings of the MILVAN shelter and AirBeam tent that we assume compose all buildings on
the FOB with ECUs. Images (a) and (b) display an OpenStudio rendering and picture (source: HDT Global 2016b)
of an AirBeam tent, respectively. Images (c) and (d) display an OpenStudio rendering and the front, left and right
side specifications (source: Department of Defense 2002) for a MILVAN shelter, respectively.

(HDT Global 2016a).

3.2.2 Occupancy Model

The occupancy model’s starting point is the hourly schedule for each of the

312 soldiers on our FOB, which is used as input to the analyses developed by Gildea

et al. (2017). Each soldier in the camp is assigned a predetermined hourly schedule

for 30 days, which repeats over the course of our year-long operating time horizon.

We assume: (i) groups of soldiers move together in units of 19-38 people; (ii) units

leave the base for missions at the same time of day as given in the original schedule;

(iii) the proportion of time that soldiers are off-base is the same as in the original

schedule; and, (iv) the activity of every soldier on the base is known throughout the

day. However, we allow the length of time that the soldiers are off-base performing

missions to vary, and we also assume that different events and activities taking place

57

Building Type Number Structure

AAFESa 1 MILVANb

Aid Station 1 MILVAN

Battalion TACc 1 MILVAN

Billet 13 AirBeam

Changing Tent 1 AirBeam

Shower 2 AirBeam

Dining 2 AirBeam

Kitchen 1 MILVAN

Fires CPd 1 MILVAN

Maintenance MILVAN 1 MILVAN

Rifles CP 1 MILVAN

Supply Office 1 MILVAN

Transient (Airbeam) 3 AirBeam

Transient (MILVAN) 5 MILVAN

Recreation 1 MILVAN

VIPe 1 MILVAN

Table 3.1: Summary of the subset of buildings on the TECD 312-soldier camp that contain ECUs.
a Army and Air Force exchange service
b Military van
c Tactical action center
d Command post
e Very important person

on the base temporarily increase or decrease the FOB’s occupancy. These assumptions

allow us to preserve the mean number of soldiers on the base over time from the

analysis in Gildea et al. (2017), but allow the variability in hourly occupancy to more

closely mimic real-world operations than a rigid schedule does.

58

3.2.2.1 Schedule Variability

The hourly occupancy model is based on a 30-day schedule, which is repeated

to construct an 8,760-hour itinerary for each individual soldier. In this nominal

schedule, while a subset of the personnel remain on the base at all hours, most are

members of 19-38 soldier units that leave the base simultaneously for exactly 11

hours, and then return to the base together. Additionally, two civil affairs soldiers

and four medics are off-campus for half of all hours, and these personnel operate

independently of any one unit. In the randomized schedule, the time that each of

these six personnel leaves matches the original schedule, but the number of hours spent

off-base is a randomly selected integer between 7 and 17, instead of a fixed 12-hour

excursion. Similarly, each time a unit leaves for a mission, its duration outside the

FOB varies between 4 and 18 hours with equal probability. These random variables

introduce uncertainty into the base population at any point in time, and hence ECU

loads, while preserving the proportion of time each soldier spends on the FOB in

expectation.

3.2.2.2 Special Events

We further incorporate variability into the hourly base population by modeling

several events that commonly occur on FOBs, but outside of the schedule described in

Section 3.2.2.1, and with uncertain timing. These events allow for groups of soldiers

to enter from outside the base as visitors, or for large numbers of personnel from the

base population to leave the base together. While some of these events occur year-

round, others only occur during periods of high operational tempo, or op-tempo. We

59

assume the duration of high op-tempo may be (i) the entire year, (ii) from February

15th through November 15th, or (iii) from April 1st through September 30th, each of

which takes place with equal probability. Table 3.2 describes each event and the range

of its frequency, duration, and change in FOB population. Appendix B.1 provides

further details on the assumptions associated with each event listed in Table 3.2.

Increase or Range of

Decrease Event Timing Frequency Length Soldiers

Thanksgiving,

Increase Holiday Christmas, Fixed date 24 hours {0,15,30,full population}
Super Bowl

Increase Rebuild High op-tempo 0-2/year 5-9 days [20,35]

Increase Resupply Year-round 2-5/month 5-48 hours [50,100]

Increase Troop turnover Year-round 1-2/year 36-96 hours [100,156]

Increase Task force mission High op-tempo 1 per 1-2 months 6-24 hours [60,100]

Increase Training Year-round 2-3/year 3-7 days [15,35]

Decrease Fighting mission High op-tempo 1/month 20-96 hours [90,180]

Decrease Leave and other Year-round Ongoing Varies {1}

Table 3.2: Summary of special events that impact the FOB population beyond the typical schedule.

3.2.2.3 Building Occupancy

After accounting for variability in the unit departure schedules in Section 3.2.2.1

and special events in Section 3.2.2.2, we can obtain realizations of hourly FOB occu-

pancy for each of the 312 soldiers, as well as for the number of visitors from outside

the base. Next, we determine the building-specific location of soldiers on-base for

each hour. We assume a soldier may be in one of four states: (i) conducting support

operations; (ii) conducting camp security detail; (iii) off-duty; or, (iv) in transition,

which takes place during the first hour upon a soldier’s return from a mission outside

60

the base. Support operations vary by job description, and so we specify the like-

lihood of occupying each building type on the FOB according to each soldier’s job

description while in state (i). We do not model building occupancy for this camp

security detail, which takes place outdoors. We assume that soldiers either off-duty

or in transition take part in similar activities, regardless of job description. Table 3.3

details the conditional probability of each soldier’s building-specific location, given

that soldier’s state and job. If someone occupies any building on the FOB without an

ECU, we treat this event the same as if the soldier were outside. All soldiers visiting

from outside the base are outside with probability 0.5 and in a transient building with

probability 0.5.

Support Operations

Battalion Fires and Company Battery Field First Hour

TAC Platoons Battery Engineers Medical Maintenance Feeding Support Support Maintenance Off-Duty After Mission

AAFES 0.05

Aid Station 0.8 0.05 0.05

Battalion TAC 0.8

Billet 0.3 0.3 0.5 0.2

Shower 0.1

Dining 0.1 0.4 0.1

Kitchen 0.4

Fires CP 0.4 0.05

Maintenance MILVAN 0.2 0.4 0.05

Rifles CP 0.1 0.5 0.4 0.1

Supply Office 0.05 0.2 0.05

Recreation 0.1

VIP

Outside 0.1 0.55 0.6 0.7 0.2 0.8 0.2 0.3 0.6 0.6 0.1 0.5

Table 3.3: Summary of conditional probabilities of an individual soldier’s building occupancy, given their state and
job description.

Figure 3.2 compares the original schedule from Gildea et al. (2017) to one

with variability in the schedule and special events added, and shows that adding

these elements affects both the variability and maximum population of the FOB.

61

Figure 3.2: Comparison of the baseline occupancy model to a sample path of a model that incorporates a randomized
schedule, and separate sample path that includes both a randomized schedule and special events.

3.2.3 PV Model and Weather Data

While several different methods exist for forecasting PV power output (see,

e.g., Dolara et al. 2015, Antonanzas et al. 2016), we develop a collection of year-long

weather datasets using historical sources, and select one at random to serve as input

to our PV and load models. We obtain estimates using PVWatts, a physics-based

software tool that provides the PV power output for a system at hourly fidelity,

using the technology’s characteristics (e.g., nameplate DC rating, tilt, azimuth, and

cell material) and a weather dataset in typical meteorological year (TMY) format as

input; see, e.g., Blair et al. (2014) for more details.

We use a TMY file for our chosen location developed by ASHRAE (2002) as a

starting point. While these files contain hourly observations for all the weather char-

acteristics required by PVWatts, the files available to the public consist of a single

62

year of data in aggregate. We use two separate sources of hourly weather data to sup-

plant key characteristics in the TMY files. NASA’s modern-era retrospective analysis

for research and applications (MERRA) provides hourly historical data for tempera-

ture, wind speed and direction, humidity, and atmospheric pressure (Rienecker et al.

2011, Gelaro et al. 2017), while Copernicus Atmosphere Monitoring Service (CAMS)

provides historical data for global, direct normal, and diffuse solar radiation by hour

for analogous timeframes and locations (Schroedter-Homscheidt et al. 2016). CAMS

and MERRA observations are available from 2004 forward, so we use the hourly ob-

servations from both sources to generate 14 unique weather datasets by editing the

subset of data fields of the TMY file that we can source from CAMS or MERRA with

the appropriate data source for each year. We note that some characteristics, such as

infrared radiation, are only available in the TMY file, and so these data are identical

for each of the 14 year-long observations.

To obtain a PV power output sample path, we use one of the modified TMY

files that include observational data from CAMS and MERRA as our weather source,

and enter the PV output characteristics from our candidate technology as input to

PVWatts, which yields a realization of power output for the year-long weather file at

hourly fidelity.

3.2.4 Scenario Generation

Figure 3.3 displays an overview of the procedure used to obtain bivariate load

and PV power output sample paths. As a preprocessing step, a building-level ECU

load file is created for each building type in Table 3.1, for each (constant) occupancy

63

Select year-long weather
sample at random

Generate sample path of hourly FOB
occupancy

Use conditional probabilities to obtain
hourly occupancy by building

Select required building load files,
based on occupancy and weather, to

obtain load by hour

Use PVWatts to obtain PV
power output realization

Add hourly building loads to obtain
load realization

Output: Correlated bivariate
load and PV sample path

Inputs: Collection of weather files; load files for
each building type, weather file, and

occupancy level

Figure 3.3: Overview of the procedure used to obtain bivariate load and PV power output sample paths.

level, and for each weather file generated by the procedure in Section 3.2.3. Then,

for each sample path, we: (i) select a weather file at random; (ii) use the procedure

in Section 3.2.2 to obtain building-specific occupancy on the FOB for each hour; (iii)

look up the appropriate ECU load for each building’s occupancy level and type at

each hour; (iv) aggregate the ECU and other loads into a single quantity for each

hour; and, (v) use PVWatts to obtain PV power output from the same weather file.

3.3 Optimization Model

The section details our adaptation of the optimization model from Scioletti

et al. (2017) for our application. Similar to the model we describe in Section 2.2.1,

our baseline formulation is written in a compact form with constructs that highlight

64

the temporal dependencies, but here we also focus on the stochastic elements of the

model. We refer to this stochastic programming model with recourse as (SP).

3.3.1 (SP) Formulation

Sets

ω ∈ Ω scenarios

t ∈ T = {1, . . . , |T|} time periods

` ∈ L = {1, . . . , |L|} time blocks indexing a partition of T; i.e., ∪`∈LT` = T and
T` ∩ T`′ = ∅, ` 6= `

′

T` ⊂ T time periods in block `

T−` set of time periods in block `, excluding the first period

X ∈ X feasible design decisions

Y ω
t ∈ Yωt (X,Sωt) feasible dispatch decisions made in scenario ω, time period

t, given decision X and shortfall level Sωt

Functions

f0(·) cost of a design decision

ft(·) cost of a dispatch decision in time period t

gt(·) net change in energy storage (inventory) associated with a
dispatch decision in time period t

ht(·) cost of shortfall in time period t

Parameters

υ number of time periods per block

pω probability associated with scenario ω

With these constructs, we have:

T` = {(`− 1)υ + 1, (`− 1)υ + 2, . . . , `υ}, ∀` ∈ L.

65

Decision Variables

X strategic design decision

R strategic inventory reset value

Xω
` strategic design decision specific to scenario ω, block `

Rω
` strategic inventory reset value specific to scenario ω,

block `
Y ω
t operational dispatch decision at time period t in scenario

ω; Y = (Y ω
t)ω∈Ω,t∈T

¯
Y ω
t inventory at start of time period t in scenario ω;

¯
Y = (

¯
Y ω
t)ω∈Ω,t∈T

Ȳ ω
t inventory at end of time period t in scenario ω;

Ȳ = (Ȳ ω
t)ω∈Ω,t∈T

Sωt shortfall in scenario ω, time period t

Boundary Condition

Y0 initial inventory

(SP) Formulation

zSP = min
X,Xω

` ,R,R
ω
` ,Y,¯

Y,Ȳ,S
f0(X) +

∑
ω∈Ω

pω

(∑
`∈L

∑
t∈T`

(ft(Y
ω
t) + ht(S

ω
t))

)
(3.1a)

s.t. Xω
` ∈ X, ∀` ∈ L, ω ∈ Ω (3.1b)

Y ω
t ∈ Yωt (Xω

` , S
ω
t), ∀t ∈ T, ω ∈ Ω (3.1c)

Ȳ ω
t =

¯
Y ω
t + gt(Y

ω
t), ∀t ∈ T, ω ∈ Ω (3.1d)

¯
Y ω
t = Ȳ ω

t−1, ∀t ∈ T−` , ` ∈ L, ω ∈ Ω (3.1e)

¯
Y ω
t = Rω

` , ∀t = (`− 1)υ + 1, ` ∈ L \ {1}, ω ∈ Ω(3.1f)

Xω
` = X, ∀` ∈ L, ω ∈ Ω : µω` (3.1g)

Rω
` = R, ∀` ∈ L, ω ∈ Ω : θω` (3.1h)

66

¯
Y ω

1 = Y0, ∀ω ∈ Ω. (3.1i)

We seek, via the objective function in (3.1a), a minimum-cost set of design and dis-

patch decisions. This objective includes the cost of procuring technologies, using fuel,

degrading generators and batteries, and shortfall, i.e., unmet load. Constraint (3.1b)

specifies feasible microgrid designs, as defined by the set X. Constraint (3.1c) restricts

dispatch decisions Y ω
t to those allowable by the design decision X and shortfall level

Sωt at each time period t and scenario ω. For example, only an asset purchased as

part of a design decision may be operated at time period t, and any unmet load must

be accounted for as shortfall. The latter condition yields a model with relatively

complete recourse; that is, designs that are unable to meet demand in every time pe-

riod are allowable. Without detailing the reformulation here, we address all nonlinear

constraints within (3.1c) by using the McCormick underestimators from McCormick

(1976) and from model (M) in Section 2.2.2. Constraints (3.1d)-(3.1i) are analogous

to constraints (2.9e)-(2.9j), but are now indexed on scenario ω in addition to time

period t.

With the exception of constraints (3.1g) and (3.1h), model (SP) would de-

compose into |L| · |Ω| separate problems that we could solve in parallel. In Sec-

tions 3.3.2 and 3.3.3, we develop models that address these constraints to obtain

lower and upper bounds on model (SP)’s optimal value.

67

3.3.2 (SP) Formulation: Lower Bounds

To obtain lower bounds on the optimal value of model (SP), we develop a

Lagrangian relaxation of the constraints (3.1g)-(3.1h) using the dual variables for the

nonanticipativity constraints, µω` and θω` .

(SP) Formulation

¯
zSP = min

Xω
` ,R

ω
` ,Y,¯

Y,Ȳ,S

∑
ω∈Ω

pω

(
1

|L|
∑
`∈L

f0(Xω
`) +

∑
`∈L

∑
t∈T`

(ft(Y
ω
t) + ht(S

ω
t))

)
+
∑
ω∈Ω

∑
`∈L

(µω`X
ω
` + θω` R

ω
`) (3.2a)

s.t. Xω
` ∈ X, ∀` ∈ L, ω ∈ Ω (3.2b)

Y ω
t ∈ Yωt (Xω

` , S
ω
t), ∀t ∈ T, ω ∈ Ω (3.2c)

Ȳ ω
t =

¯
Y ω
t + gt(Y

ω
t), ∀t ∈ T, ω ∈ Ω (3.2d)

¯
Y ω
t = Ȳ ω

t−1, ∀t ∈ T−` , ` ∈ L, ω ∈ Ω (3.2e)

¯
Y ω
t = Rω

` , ∀t = (`− 1)υ + 1, ` ∈ L \ {1}, ω ∈ Ω (3.2f)

¯
Y ω

1 = Y0, ∀ω ∈ Ω. (3.2g)

Similar to model (2.10), we require
∑

`∈L
∑

ω∈Ω µ
ω
` = 0 and

∑
`∈L
∑

ω∈Ω θ
ω
` = 0

to avoid an unbounded Lagrangian relaxation, which eliminates the free variables X

and R. The boundary conditions (3.2f) connecting time periods in multiple blocks

now have separate storage reset levels in the relaxation, which allows model (SP) to

separate into |L| · |Ω| subproblems, one for each time block, for each scenario.

68

3.3.3 (SP) Formulation: Upper Bounds

Similar to the procedure in Section 2.4.2, we develop a restriction of model (SP)

in which we fix a design decision, X̂ ∈ X, and a common energy storage level to which

the system must revert at the boundaries of each time block in each scenario; we refer

to this storage level as R̂.

(SP) Formulation

z̄SP = min
Y,

¯
Y,Ȳ,S

f0(X̂) +
∑
ω∈Ω

pω

(∑
`∈L

∑
t∈T`

(ft(Y
ω
t) + ht(S

ω
t))

)
(3.3a)

Y ω
t ∈ Yωt (X̂, Sωt), ∀t ∈ T, ω ∈ Ω (3.3b)

Ȳ ω
t =

¯
Y ω
t + gt(Y

ω
t), ∀t ∈ T, ω ∈ Ω (3.3c)

¯
Y ω
t = Ȳ ω

t−1, ∀t ∈ T−` , ` ∈ L, ω ∈ Ω (3.3d)

¯
Y ω
t = R̂, ∀t = (`− 1)υ + 1, ` ∈ L \ {1}, ω ∈ Ω (3.3e)

¯
Y ω

1 = Y0, ∀ω ∈ Ω. (3.3f)

Constraints (3.3b) and (3.3e) are analogous to constraints (3.1c) and (3.1f), but use

the fixed design, X̂, and the fixed energy storage reset level, R̂. These fixed vari-

ables allow for the removal of constraints (3.1b), (3.1g), and (3.1h), and they allow

model (SP) to separate by ` ∈ L, and by ω ∈ Ω, into |L| · |Ω| subproblems that we

may solve in parallel.

3.3.4 Decomposition Algorithm

Algorithm 2 provides an ε-optimal solution to model (SP) by iteratively solving

model (SP) and model (SP) to obtain lower and upper bounds, respectively, and

69

tightening these bounds as the algorithm proceeds. Similar to Algorithm 1, the

procedure is a variant of the progressive hedging algorithm by Rockafellar and Wets

(1991).

3.3.5 Scenario Pairing

The problem-specific adjustments in Section 2.4.4 include a setting a minimum

generator capacity that tightens the lower bound. We do not include this adjustment,

because model (3.2) allows relatively complete recourse. Instead, to tighten the lower

bound provided by model (SP), we select the time block and scenario pairing with the

highest peak demand, which we call ˆ̀and ω̂, respectively, and we create a subproblem

for all (`, ω)-(ˆ̀, ω̂) pairs, ` ∈ L \ {ˆ̀}, ω ∈ Ω \ {ω̂}. Then, we include a copy of

constraints from block ˆ̀ in scenario ω̂ to each of the (|L| · |Ω| − 1) subproblems.

We add the terms in objective function (3.2a) specific to block ˆ̀ in scenario ω̂ to

each subproblem’s objective function, and we multiply each variable’s coefficient by

1/(|L|·|Ω|−1). In Algorithm 2, we solve (SP) by solving the (|L|·|Ω|−1) subproblems,

which may be done in parallel. Model (3.4) details the formulation for a general block `

and scenario ω.

Additional Parameters

(ˆ̀, ω̂): time block-scenario pair with maximum peak demand

Subproblem Formulation

¯
zω` = min

Xω
` ,R

ω
` ,Y,¯

Y,Ȳ,S
pω

(
1

|L|
f0(Xω

`) +
∑
t∈T`

(ft(Y
ω
t) + ht(S

ω
t))

)
+ µω`X

ω
` + θω` R

ω
`

+
pω̂

|L| · |Ω| − 1

 1

|L|
f0(Xω

`) +
∑
t∈Tˆ̀

(ft(Y
ω̂
t) + ht(S

ω̂
t))

 (3.4a)

70

Algorithm 2 Decomposition procedure to approximately solve model (SP)

procedure Decomposition
Inputs: ε > 0, ρµ > 0, ρθ > 0, k ∈ Z+, κ ∈ Z+ . stopping criterion,
. proximal weights, upper bound search frequency, upper bound search depth,
Outputs: X∗, R∗, z̄,

¯
z . ε-optimal design and inventory,

. upper and lower bounds on zSP

i← 0;
¯
z ← −∞; z̄ ←∞ . iteration and initial lower and upper bounds

µω` ← 0, θω` ← 0, ∀` ∈ L, ω ∈ Ω . initial Lagrange multipliers
. for model (SP)

while z̄ −
¯
z > εz̄ do

Solve (SP) with µω` , θ
ω
` to obtain

¯
zi, X

ω
` , R

ω
` , ` ∈ L, ω ∈ Ω

.
¯
zi is a lower bound for zSP

. (|L| · |Ω|) subproblems in (SP) can be solved in parallel
X̄ ←

∑
ω∈Ω

pω 1
|L|
∑̀
∈L
Xω
` ; R̄←

∑
ω∈Ω

pω 1
|L|
∑̀
∈L
Rω
` . mean of subproblem

. designs, reset inventories
for ` ∈ L, ω ∈ Ω do . update Lagrange multipliers

µω` ← µω` + ρµ(Xω
` − X̄); θω` ← θω` + ρθ(R

ω
` − R̄)

if
¯
zi >

¯
z then

¯
z ←

¯
zi . update lower bound

if i mod k = 0 then . search for new upper bound every k iterations
j ← 0
for ` ∈ L, ω ∈ Ω do

if Xω
` not previously used to solve (SP) then
j ← j + 1
Solve (SP) with X̂ = Xω

` , R̂ = r(Xω
`) to obtain z̄ωi`

. z̄ωi` is an upper bound for zSP

. r(Xω
`) is midpoint of bounds on R, given Xω

`

. |L| · |Ω| subproblems in (SP) can be solved in parallel
if z̄ωi` < z̄ then . update upper bound and incumbent

Solve (SP) with X̂ = Xω
` , optimizing R via bisection search

to obtain Rω
` , z̄ωi`

X∗ ← Xω
` , R∗ ← Rω

` , z̄ ← z̄ωi`
if z̄ −

¯
z ≤ εz̄ or j = κ then end-for

i← i+ 1

return (X∗, R∗, z̄,
¯
z)

71

s.t. Xω
` ∈ X (3.4b)

Y ω
t ∈ Yωt (Xω

` , S
ω
t), ∀t ∈ T` (3.4c)

Y ω̂
t ∈ Yω̂t (Xω

` , S
ω̂
t), ∀t ∈ Tˆ̀ (3.4d)

Ȳ ω
t =

¯
Y ω
t + gt(Y

ω
t), ∀t ∈ T` (3.4e)

Ȳ ω̂
t =

¯
Y ω̂
t + gt(Y

ω̂
t), ∀t ∈ Tˆ̀ (3.4f)

¯
Y ω
t = Ȳ ω

t−1, ∀t ∈ T−` (3.4g)

¯
Y ω̂
t = Ȳ ω̂

t , ∀t ∈ T−ˆ̀ (3.4h)

¯
Y ω
t = Rω

` , t = (`− 1)υ + 1 (3.4i)

¯
Y ω̂
t = Rω

` , t = (ˆ̀− 1)υ + 1 (3.4j)

¯
Y ω̂
t = Ȳ ω̂

t , ∀t ∈ T−ˆ̀ (3.4k)

Ȳ ω
t = Rω

` , t = `υ (3.4l)

Ȳ ω̂
t = Rω

` , t = ˆ̀υ (3.4m)

¯
Y ω

1 = Y0, (3.4n)

¯
Y ω̂

1 = Y0. (3.4o)

The objective function in (3.4) is equal to the sum of 1/(|L| · |Ω| − 1) times the

objective function for the decision variables in block ˆ̀ and scenario ω̂, and the entire

objective function for the decision variables specific to block ` and scenario ω. With

the exception of design constraints (3.4b), Model (3.4) contains exactly two copies

of each of the constraints from model (3.2), one specific to block-scenario pair (`, ω)

and one for the pair (ˆ̀, ω̂). Solving the (|L| · |Ω| − 1) subproblems of the form in

model (3.4) is equivalent to solving model (SP).

72

3.4 Preliminary Results

In this section, we report computational results for the case study of Kharga,

Egypt under a deterministic instance, denoted (M), using a rigid schedule from Gildea

et al. (2017) and under model (SP). The results: (i) demonstrate the relative robust-

ness of design decisions obtained by solving models that incorporate uncertainty in

load and PV resources, compared to those obtained by solving a deterministic model

with a rigid schedule; and, (ii) provide insight on the impact that fuel and shortfall

costs have on the optimal design for our case study. Our case study uses the same

technology set and computational resources as those described in Section 2.5; the

recourse problem consists of |Ω| = 5 scenarios. Given a proposed design decision,

whether by solving a deterministic instance with a rigid schedule or solving (SP), we

estimate expected fuel consumed and unmet load using 50 out-of-sample scenarios.

Table 3.4 compares the optimal design and solution time of the deterministic

model with rigid scheduling to those of model (SP). The results show that the while

both solutions offer similar battery and PV capacity, solving model (SP) yields a

design that is more likely to meet the load under realistic assumptions for FOB

occupancy than those provided by a rigid schedule, at a computational cost.

Table 3.5 displays a summary of the optimal design as the costs of fuel and

shortfall vary. The results show that batteries are added to the design when both

costs are high, while PV is added for high fuel costs.

73

Deterministic Stochastic

model (M) model (SP), |Ω| = 5

Design decision:

Diesel generator capacity (kW) 200 260

Battery capacity (kW/kWh) 100 100

PV capacity (kW) 75 75

Performance measures:

Expected fuel consumed (gal) 35,700 35,800

Expected unmet load (%) 2.552 0.006

Solution time (minutes): 2 27

Table 3.4: Comparison of optimal designs, solution times, and performance measures obtained by solving the de-
terministic model under a rigid schedule to those obtained by solving model (SP). Algorithm 1 is used to obtain
solutions to the deterministic model, with model (Ā)=(M̄) and (

¯
A)=(

¯
M) as described in Section 2.4. The model

instances allow at most 75 kW of PV solar capacity, and allows battery capacity to be installed in 50 kW increments,
up to 200kW. Algorithm 2 is implemented to obtain solutions to model (SP). Models are solved using CPLEX v.
12.6.2.0, via Python 2.7.9. The performance measures are estimated using 50 out-of-sample scenarios.
Penalty for shortfall: $100/kWh unmet load.
Termination criteria for each subproblem: min{60 seconds, 0.5% optimality gap.}
Termination criteria for each instance: 5% optimality gap.

74

Optimal Design’s Diesel/Battery/Solar Capacity, in kW

Fuel cost ($/gal)

Shortfall cost ($/kWh) 5 20 50 100 250 1000

0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

0.1 300/0/0 275/0/75 275/0/75 275/0/75 275/0/75 275/50/75

0.25 330/0/0 275/0/75 275/0/75 275/0/75 275/50/75 260/100/75

0.5 330/0/0 275/0/75 275/50/75 275/50/75 260/100/75 260/100/75

1 330/0/0 275/50/75 275/50/75 275/50/75 260/100/75 260/100/75

2.5 330/0/0 275/50/75 260/100/75 260/100/75 260/100/75 260/100/75

5 330/0/0 275/50/75 260/100/75 260/100/75 260/100/75 260/100/75

10 330/0/0 260/100/75 260/100/75 260/100/75 260/100/75 260/100/75

100 330/0/0 260/100/75 260/100/75 260/100/75 260/100/75 260/100/75

Table 3.5: Comparison of optimal designs for model (SP) (|Ω| = 5) as shortfall and fuel costs vary for the Kharga,
Egypt case study. Each entry shoes, in order, the capacity of all diesel generators, batteries, and PV systems in the
optimal design. The model instances allow at most 75 kW of PV solar capacity, and allows battery capacity to be
installed in 50 kW increments, up to 200kW. Algorithm 2 is used to obtain solutions to model (SP). Models are solved
using CPLEX v. 12.6.2.0, via Python 2.7.9.
Termination criteria for each subproblem: min{60 seconds, 0.5% optimality gap.}
Termination criteria for each instance: 5% optimality gap.

3.5 Conclusion

We present a method to generate scenarios of PV power output and load

that in a correlated manner by using common wather files as input. We present an

extension of the model in Section 2.2.3 that allows for uncertainty in the load and PV

resources, and we leverage the decomposition method from Section 2.4 that separates

the problem into smaller subproblems, using Lagrangian relaxation to obtain a lower

bound and fixing inventory levels at regular intervals to obtain an upper bound. We

apply the methodology to a case study using weather data from Kharga, Egypt, and

solve instances to within 5% of MIP optimality. We show that solutions to models

that account for variability in FOB occupancy in addition to weather are more likely

to meet load than solutions to a deterministic model with a rigid schedule. Finally, we

75

provide insight on how shortfall and fuel costs influence the introduction of renewable

and storage resources into the design.

76

Chapter 4

Optimizing the Design of a Latin Hypercube

Sampling Estimator

4.1 Introduction

Variance reduction techniques are commonly used in Monte Carlo simulation

to reduce the number of samples required to achieve a confidence interval of desired

width when estimating the expectation of a univariate or multivariate function for

cases in which analytical calculations are intractable. In the simpler univariate case,

Neyman (1934) develops a stratified sampling estimator, wherein the support of the

random variable is partitioned into strata. Straightforward extension of this idea to

higher dimensions does not scale well because the number of strata grows exponen-

tially in the dimension, but Latin hypercube sampling (LHS), introduced by McKay

et al. (1979), provides a type of multivariate stratification.

When the underlying d-dimensional random vector has independent com-

ponents, an LHS estimator partitions the support of each component into equal-

probability strata, and exploits independence by randomly ordering samples from

each component to form d-tuples. Iman and Conover (1980) generalize LHS to allow

for cells of unequal probability, and characterize the sampling variance of an LHS

estimator under specific conditions. Stein (1987) describes the asymptotic variance

77

of an LHS estimator, relative to a näıve Monte Carlo estimator, and Owen (1992)

establishes a central limit theorem for LHS. Drew and Homem-de-Mello (2012) show

that the upper bound on the probability of a large deviation under LHS is no higher

than that of näıve Monte Carlo sampling.

LHS and its extensions are seen in a variety of applications. Olsson et al.

(2003) implement LHS in the estimation of structural reliability. Freimer et al. (2012),

Stockbridge and Bayraksan (2016), and Bayraksan (2018) assess the impact of LHS

on reducing the variance and bias when estimating optimal values in stochastic op-

timization problems. Packham and Schmidt (2010) establish a central limit theorem

for LHS with dependent variables, and apply this to the valuation of first-to-default

credit baskets and Asian basket options. Helton and Davis (2003) use the sample

reweighting technique for nonuniform LHS developed by Iman and Conover (1980) to

conduct uncertainty and sensitivity analysis for a two-phase fluid flow model. Mor-

ton et al. (2014) implement nonuniform LHS to ensure the sampling of rare events to

assess risk in nuclear power.

Mease and Bingham (2006) study how to optimize the strata of a nonuniform

LHS estimator, and, to our knowledge, this is the closest work in the literature to

what we propose. They derive first-order optimality conditions when the dimension

and number of samples are small, but they say that this approach does not scale well.

So, they employ a heuristic search involving coordinate descent on a grid for larger

problems.

We similarly begin by formulating a family of nonlinear optimization models.

In particular, we develop methods of choosing nonuniform strata over the support

78

of a random variable with the goal of minimizing sampling variance for stratified

sampling or, in the case of multivariate sampling, LHS. Section 4.2 formulates a non-

linear program to construct a stratified sampling estimator with minimum variance,

and reformulates that optimization model as a tractable dynamic program. The de-

velopment of this stratified sampling estimator is not particularly useful in its own

right. Rather, we view it as a subroutine for developing the two LHS estimators

that we propose in Section 4.3. While we present these estimators as nonlinear pro-

grams, we recast the first as a dynamic program, and employ a heuristic search using

coordinate descent to obtain solutions to the second. Section 4.4 details empirical re-

sults of our stratified sampling and LHS schemes for a collection of sample functions.

Section 4.5 concludes.

4.2 Nonuniform Stratified Sampling

We wish to estimate E[h(ξ)], in which ξ is a univariate random variable and

h : R → R. To do so, we use a stratified sampling routine, which partitions the

support of ξ into contiguous strata, Sk, k = 1, 2, . . . , K, which we also call cells.

Here, each cell has probability mass pk = P[ξ ∈ Sk], and the estimator allocates

a sample size nk to cell k. In this section, we formulate a nonlinear program to

find the cell widths that yield a minimum-variance estimator, restricting attention to

the univariate case. In Section 4.3, we address multivariate sampling under an LHS

framework.

79

4.2.1 Assumptions

We assume ξ is a continuous random variable with known probability density

function (pdf), f(x), and cumulative distribution function (cdf), F (x). We assume

that we have in analytical form, F−1(u), for u ∈ [0, 1], or that we can numerically

evaluate this inverse cdf. We assume that we can compute pk = P[ξ ∈ Sk], for

each cell as well as relevant expectations. Further, we assume we know the desired

number of strata, K, and our total computational budget, N . Our goal is to select

the breakpoints and sample sizes to yield a stratified sampling estimator of minimum

variance.

4.2.2 Nonlinear Programming Formulation

Our stratified sampling estimator has the following form:

hN =
K∑
k=1

pkh̄nk
, (4.1)

in which h̄nk
is a sample mean of nk independent and identically distributed (i.i.d.)

observations of [h(ξ)|ξ ∈ Sk]; that is, i.i.d. observations of h(ξ), conditioned on ξ

being in cell k. We therefore have that

Var[hN] =
K∑
k=1

p2
k

Var[h(ξ)|ξ ∈ Sk]

nk
. (4.2)

The optimization model that we formulate in this section assumes the cells Sk

are of the form Sk = (F−1(bk−1), F−1(bk)), in which 0 = b0 ≤ b1 ≤ b2 ≤ · · · ≤ bK = 1,

and with this construct aims to minimize Var[hN].

80

Sets and Indices

k ∈ K = {1, 2, . . . , K}: indices defining the strata

Functions

h: a univariate function h : R→ R

Data

f : pdf of ξ

F : cdf of ξ

N : total number of samples

Decision Variables

bk: location of breakpoint k in the interval [0, 1] used to create strata

µk: E[h(ξ) | ξ ∈ Sk], where Sk = (F−1(bk−1), F−1(bk))

σ2
k: E[(h(ξ)− µk)2 | ξ ∈ Sk]

pk: P[ξ ∈ Sk] = bk − bk−1

nk: number of samples allocated to cell k

Boundary Conditions

b0 = 0

bK = 1

Note:

We use b, µ, σ2, p, and n to denote the vectors (b0, b1, . . . , bK), (µ1, µ2, . . . , µK), etc.

Formulation

min
b,µ,σ2,p,n

∑
k∈K

p2
kσ

2
k

nk
(4.3a)

81

s.t. µk =

∫ F−1(bk)

F−1(bk−1)
h(x)f(x)dx

bk − bk−1

, ∀k ∈ K, (4.3b)

σ2
k =

∫ F−1(bk)

F−1(bk−1)
(h(x)− µk)2f(x)dx

bk − bk−1

, ∀k ∈ K, (4.3c)

pk = bk − bk−1, ∀k ∈ K, (4.3d)∑
k∈K

nk = N, (4.3e)

pk ≥ 0, nk ≥ 0, ∀k ∈ K. (4.3f)

Discussion

The objective in (4.3a) seeks a stratification of the support of ξ to minimize the

variance of the estimator, as indicated in equation (4.2). Constraints (4.3b) and (4.3c)

define µk and σ2
k, respectively; both constraints are nonlinear in the decision vector, b.

Constraint (4.3d) relates cell k’s width, pk, to the location of its breakpoints, bk and

bk−1. This, coupled with constraint (4.3f) and the boundary conditions, ensures that

0 = b0 ≤ b1 ≤ · · · ≤ bK−1 ≤ bK = 1. Constraint (4.3e) restricts the sum of sample

sizes to the computational budget, N . We have relaxed an integer restriction on the

sample sizes, nk, in constraint (4.3f), which allows an optimal solution to allocate a

fractional number of samples for each cell.

We view model (4.3) as notional in the sense that, if we could compute ex-

actly terms like µk in (4.3b), then we could compute E[h(ξ)] exactly, and we would

not employ Monte Carlo sampling. However, as indicated above, we extend this idea

in the next section to an LHS estimator, in which we assume relevant one-dimensional

integrals are tractable. In what follows, we modify model (4.3) in two ways. First,

we remove nk because we can analytically optimize with respect to n for fixed break-

82

points. Second, we create a discrete set of candidate breakpoints from which strata

may be constructed. These two steps are discussed in Sections 4.2.3 and 4.2.4, re-

spectively.

4.2.3 Objective Function Reformulation

Suppose the breakpoints bk, k ∈ K, are known. Then constraints (4.3b)-(4.3d)

can be removed and the resulting optimization problem is:

min
n

∑
k∈K

p2
kσ

2
k

nk
(4.4a)

s.t.
∑
k∈K

nk = N (4.4b)

nk ≥ 0, ∀k ∈ K. (4.4c)

An optimal solution of model (4.4) is achieved when nk is proportional to pkσk, i.e.,

nk = N

(
pkσk∑
k∈K pkσk

)
;

see, e.g., Neyman (1934). Substituting this value for nk into the objective function

in (4.4a) yields:

1

N

(∑
k∈K

pkσk

)2

. (4.5)

The revised objective function in (4.5) allows model (4.3) to simplify to:

min
b,µ,σ2

∑
k∈K

(bk − bk−1)σk (4.6a)

s.t. 0 = b0 ≤ b1 ≤ · · · ≤ bK−1 ≤ bK = 1 (4.6b)

(4.3b)-(4.3c). (4.6c)

83

The breakpoints bk, k ∈ K, are the primary decision variables in model (4.6),

as variables µk and σ2
k are determined by the specification of these breakpoints. While

model (4.6) is still nonconvex, the additive form of the objective function in (4.6a)

allows for the development of a dynamic programming algorithm that we describe in

Section 4.2.4, at least when we restrict the choices of bk to a prespecified univariate

grid.

4.2.4 Dynamic Programming Algorithm

Let B = {b0, b1, b2, . . . , bL} specify a set of candidate breakpoints, in which

0 ≡ b0 < b1 < b2 < · · · < bL ≡ 1, and where L � K. We consider the restriction

of model (4.6) in which we add the constraint bk ∈ B, k ∈ K. Each term in the

objective function of (4.6a) then has the form (b`
′ − b`)σ(b`, b`

′
), where

σ2(b`, b`
′
) =

∫ F−1(b`
′
)

F−1(b`)
(h(x)− µ(b`, b`

′
))2f(x)dx

b`′ − b`
, (4.7)

and where

µ(b`, b`
′
) =

∫ F−1(b`
′
)

F−1(b`)
h(x)f(x)dx

b`′ − b`
, (4.8)

for ` = 0, 1, . . . , L− 1, `′ = `+ 1, `+ 2, . . . , L.

We can solve this variant of model (4.6) via a dynamic programming algorithm,

which can be visualized using the directed acyclic graph (DAG) shown in Figure 4.1.

The DAG has nodes (k, `) for k = 0, 1, . . . , K, and for ` = 0, 1, . . . , L. For all

k = 0, 1, . . . , K − 1, we create an edge from node (k, `) to node (k + 1, `′), for all

` = 0, . . . , L, `′ = `, . . . , L, with length (b`
′ − b`)σ(b`, b`

′
), in which σ(b`, b`

′
) is defined

84

K, 0

0, 0

1, 0

K, L

0, L

1, L

K, L-1

0, L-1

1, L-1

K, 1

0, 1

1, 1 …

…

⋮ ⋮ ⋮ ⋮

Figure 4.1: Shortest-path problem associated with the dynamic programming solution of model (4.6) under the
restriction that each bk comes from a set of finite, prespecified breakpoints. We create an edge from node (k, `) to

node (k+1, `′), for all k = 0, . . . ,K−1, ` = 0, . . . , L, `′ = `, . . . , L, with length (b`
′−b`)σ(b`, b`

′
), in which σ2(b`, b`

′
)

is defined in equation (4.7). If node (k, `) is part of the shortest path from (0, 0) to (K,L), then breakpoint bk = b`

is in the obtained optimal solution.

in equation (4.7). The shortest path from node (0, 0) to (K,L) then specifies an

optimal solution to model (4.6), under the restriction bk ∈ B, k ∈ K.

We note that computing the edge lengths in the DAG of Figure 4.1 requires

more effort than computing E[h(ξ)], because E[h(ξ)] is given by the sum of (b`
′ −

b`)µ(b`, b`
′
) along any path in the DAG from (0, 0) to (K,L). Therefore, we emphasize

that we do not view this as useful for reducing the variance of stratified sampling

estimators; rather, we view it as a subroutine for an optimized LHS estimator that

we describe next.

4.3 Nonuniform LHS

This section extends the method described in Section 4.2 to higher dimensions

to optimize an LHS estimator. Let ξ = (ξ(1), ξ(2), . . . , ξ(d)) be a vector of indepen-

85

dent random variables, and let h : Rd → R; further, suppose we plan to use LHS

to estimate E[h(ξ)]. Similar to the stratified sampling procedure in Section 4.2, we

partition the support of each random variable ξ(i) into K strata, Sk(i), k ∈ K. How-

ever, for each random variable ξ(i), exactly one value ξk(i) is sampled from each cell,

k ∈ K. Next, the K realizations from ξ(1) are randomly paired, without replacement,

with the realizations from ξ(2). These are, in turn, paired at random with the other

components of ξ, until we generate K d-tuples:

ξk = (ξk(1), ξk(2), . . . , ξk(d)), k ∈ K.

We obtain these d-tuples in the following way. For i ∈ I = {1, . . . , d}, let

(π(i, 1), π(i, 2), . . . , π(i,K)) denote a random permutation of {1, 2, . . . , K}. Then, for

i ∈ I, k ∈ K, let

ξk(i) ∼ [ξ(i) | ξ(i) ∈ Sπ(i,k)(i)].

The set of possible combinations for a K-tuple, generated by π(·), represents a par-

tition of the support of ξ into Kd cells.

Let Γk = Sπ(1,k)(1) × Sπ(2,k)(2) × · · · × Sπ(d,k)(d) be the Cartesian product of

the chosen strata for each random variable ξk(i), i ∈ I, and let

P[ξ ∈ Γk] =
∏
i∈I

P[ξ(i) ∈ Sπ(i,k)(i)], k ∈ K.

In this setting the LHS estimator given by

hLHSK =
∑
k∈K

Kd−1P[ξ ∈ Γk]h(ξk) (4.9)

86

was proposed by Iman and Conover (1980) to extend the work of McKay et al. (1979).

In McKay et al., the support of each random variable has equal-probability strata,

meaning

P[ξ(i) ∈ Sπ(i,k)(i)] =
1

K
, i ∈ I, k ∈ K.

In this case, the weights on h(ξk) in equation (4.9) are simply 1/K. Under nonuniform

LHS, the weights are instead random due to P[ξ ∈ Γk], because the cells Γk are de-

termined by the random permutation, π, and can have unequal probability. In what

follows, we develop two separate solution approaches to find minimum-variance LHS

designs; one leverages the dynamic programming solution method from Section 4.2.4

for multiplicative functions, and the other uses a coordinate descent-based heuristic

for more general functions. We note that unlike in the model for the stratified sam-

pling estimator discussed in Section 4.2, the computational budget is always N = K

for an LHS estimator.

Similar to the assumptions of Section 4.2.1, we wish to obtain an estimator

for E[h(ξ)] with minimum variance, except we assume that ξ is multivariate, with

independent components. For each random variable ξ(i), i ∈ I, we assume we have,

or can numerically evaluate, the inverse cdf, F−1
i (u), for u ∈ [0, 1]. Finally, we assume

that the second moment of each random variable is finite. Our goal is to select a set

of breakpoints that define the strata of each random variable ξ(i), i ∈ I, to minimize

total sampling error under an LHS routine.

87

4.3.1 Solution Method (i): Dynamic Programming

In order to guide design of the cells we use in our LHS estimator, we make the

following approximation:

h(ξ) ≈
∑
i∈I

hi(ξ), (4.10)

in which hi evaluates h with each random variable except for ξ(i) set to a predeter-

mined constant, i.e.,

hi(ξ) = h(a(1), a(2), . . . , a(i− 1), ξ(i), a(i+ 1), . . . , a(d− 1), a(d)).

In the numerical experiments we describe in Section 4.4, we use a(i) = E[ξ(i)], for

i ∈ I. Applying the LHS estimator to the right-hand side of the approximation (4.10)

amounts to performing stratified sampling on each term hi(ξ), where the stratifi-

cation is only on component ξ(i), albeit with one sample per cell. Thus, following

equation (4.2) with nk = 1, k ∈ K,

Var[hLHSK] ≈
∑
i∈I

∑
k∈K

p2
k(i)σ

2
k(i), (4.11)

in which σ2
k(i) is given by

σ2
k(i) = Var [hi(ξ)|ξ(i) ∈ Sk(i)] , (4.12)

for k ∈ K. Minimizing the LHS variance of the right-hand side of approxima-

tion (4.11) leads to d separate optimization problems of the form:

min
b(i),µ(i),σ2(i)

∑
k∈K

(bk(i)− bk−1(i))2σ2
k(i) (4.13a)

s.t. µk(i) =

∫ F−1
i (bk(i))

F−1
i (bk−1(i))

hi(x)fi(x)dx

bk(i)− bk−1(i)
, ∀k ∈ K (4.13b)

88

σ2
k(i) =

∫ F−1
i (bk(i))

F−1
i (bk−1(i))

(hi(x)− µk(i))2fi(x)dx

bk(i)− bk−1(i)
, ∀k ∈ K (4.13c)

0 = b0(i) ≤ b1(i) ≤ · · · ≤ bK−1(i) ≤ bK(i) = 1, (4.13d)

for i ∈ I. Here, fi denotes the marginal pdf of ξ(i), and the vectors b(i), µ(i), and

σ2(i) are as defined in Section 2.2, except that µ(i), and σ2(i) are now defined with

respect to the univariate hi(ξ).

With an objective function that separates by each component of ξ, we can ap-

ply the dynamic programming approach of Section 4.2.4 d times in solving model (4.13).

We assume that we can numerically compute the univariate integrals that define

the O(dKL2) edges that compose the d DAGs; i.e., we can numerically compute

σ2(i)(b`, b`
′
) and µ(i)(b`, b`

′
) as defined by equations (4.7) and (4.8), respectively, for

each component i. The shortest paths from the d DAGs define the Kd cells from

which we obtain LHS samples.

The variance of hLHSK can be expressed as follows:

Var[hLHSK] = E[Var[hLHSK]|π] + Var[E[hLHSK]|π], (4.14)

in which we assume that π = (π(1, 1), . . . , π(d,K)) are random permutations. Taken

as a collection over all d components, these permutations occur with equal probability

over the (K!)d−1 possible LHS designs. The objective function in equation (4.13a),

when summed across all d components, is equivalent to the LHS estimator variance for

d = 1. As indicated above, a general LHS estimator has random weights that depend

on which cells are selected, and so for d > 1 the objective function in equation (4.13a)

approximates E[Var[hLHSK]|π]. Now consider two types of functions: (i) linear in which

89

h(ξ) =
∑

i∈I ciξ(i); and, (ii) product in which h(ξ) =
∏

i∈I ξ(i). Table 4.1 displays

both terms of the LHS estimator variance from equation (4.14) for product functions,

using both uniform and optimized strata for d = 2. The table shows that LHS

designs which minimize the objective function in (4.13a) for each random variable

decreases both E[Var[hLHSK]|π] and Var[E[hLHSK]|π] across a collection of probability

distributions. However, the results of Table 4.1 do not translate well to the case of a

linear function, as Proposition 4.3.1 shows.

Uniform Strata Optimized Strata Uniform/Optimized

E[Var[hLHSK]] Var[E[hLHSK]] E[Var[hLHSK]] Var[E[hLHSK]] E[Var[hLHSK]] Var[E[hLHSK]]

χ2
1 9.50E-01 5.45E-01 9.20E-02 2.60E-02 10.33 20.96

Beta(1,2) 4.31E-04 8.43E-04 2.65E-04 1.59E-04 1.62 5.29

Exponential(1) 2.47E-01 1.80E-01 4.47E-02 5.01E-03 5.52 35.95

Gamma(2,1) 2.23E+00 8.40E-01 8.67E-01 7.92E-02 2.57 10.60

Weibull(2,1) 1.44E-02 1.14E-02 9.21E-03 3.56E-03 1.57 3.21

Table 4.1: Comparison of E[Var[hLHS
K]|π] and Var[E[hLHS

K]|π], i.e., the components of the decomposition of variance,
under LHS designs with uniform strata and optimized strata obtained by solving model (4.13) for each of d = 2
components, for a collection of multivariate functions in which h(ξ) =

∏
i∈I ξ(i).

Proposition 4.3.1. Let (π(i, 1), π(i, 2), . . . , π(i,K)) denote a random permutation of

{1, 2, . . . , K}, for i ∈ I. Let Γk = Sπ(1,k)(1)× Sπ(2,k)(2)× · · · × Sπ(d,k)(d), and let

P[ξ ∈ Γk] =
∏
i∈I

P[ξ(i) ∈ Sπ(i,k)(i)], ∀k ∈ K = {1, 2, . . . , K}.

Define

hLHSK =
∑
k∈K

Kd−1P[ξ ∈ Γk]h(ξk),

and let

h(ξ) =
∑
i∈I

ciξ(i),

90

in which ci ∈ R, ∀i ∈ I. If

P[ξ(i) ∈ Sπ(i,k)(i)] =
1

K
,∀i ∈ I, k ∈ K,

then Var[E[hLHSK]|π] = 0.

Proof:

Our assumption of equal-probability strata yields P[ξ ∈ Γk] = (1/K)d, so we can

rewrite hLHSK as:

hLHSK =
∑
k∈K

1

K
h(ξk).

Our assumption of a linear function yields

E[hLHSK |π] =
1

K

∑
k∈K

∑
i∈I

ciE[ξ(i)|ξ(i) ∈ Sπ(i,k)(i)] =
∑
i∈I

ci

(∑
k∈K

1

K
E[ξ(i)|ξ ∈ Sk(i)]

)
.

Because the inner sum,
∑
k∈K

1
K
E[ξ(i)|ξ(i) ∈ Sk(i)], is equivalent to E[ξ(i)], the final

result is

E[hLHSK |π] =
∑
i∈I

ciE[ξ(i)].

The value of E[hLHSK |π] does not depend on the permutation π, and thus

Var[E[hLHSK |π]] = 0. �

Proposition 4.3.1 shows that Var[E[hLHSK]|π] = 0 for a linear function with

uniform strata, and this contrasts with the results of Table 4.1 for product functions.

As a result, minimizing (4.13a) may come at the cost of increasing Var[E[hLHSK]|π],

especially when h is well-approximated by a linear function. Therefore, to obtain

optimized strata for a wider collection of multivariate functions, we develop a second

approach, rooted in coordinate descent using another type of approximation.

91

4.3.2 Solution Method (ii): Coordinate Descent

This section presents a method to improve the design of cells for LHS estima-

tors compared to uniform strata across a wider collection of multivariate functions

than those for which we use the dynamic programming approach in Section 4.3.1.

The objective function in this setting is the LHS estimator’s second moment, which

we characterize in Section 4.3.2.1 and then approximate in Section 4.3.2.2. Sec-

tions 4.3.2.3 and 4.3.2.4 develop the nonlinear programming formulation and solution

method, respectively, and Section 4.3.2.5 describes a further approximation necessary

to make the approach practical.

4.3.2.1 Second Moment Characterization of LHS Estimator

For d = 1, the variance of an LHS estimator is equivalent to that of the

stratified sampling estimator as given in equation (4.2), with nk = 1, k ∈ K. While

the variance of multivariate LHS estimators has been characterized in various ways

in the literature (see, e.g., Iman and Conover (1980), Stein (1987), Homem-de-Mello

(2008), Drew and Homem-de-Mello (2012)), these characterizations provide insight

as opposed to lending themselves to estimation. Proposition 4.3.3 characterizes the

LHS estimator’s second moment, which we then minimize via the solution method in

Sections 4.3.2.3-4.3.2.5.

Lemma 4.3.2. Let (π(i, 1), π(i, 2), . . . , π(i,K)) denote a random permutation of

{1, 2, . . . , K}, for i ∈ I. Let Γk = Sπ(1,k)(1)× Sπ(2,k)(2)× · · · × Sπ(d,k)(d), and let

P[ξ ∈ Γk] =
∏
i∈I

P[ξ(i) ∈ Sπ(i,k)(i)], ∀k ∈ K = {1, 2, . . . , K}.

92

Define

hLHSK =
∑
k∈K

Kd−1P[ξ ∈ Γk]h(ξk).

Then,

E[(hLHSK)2] = E[Var[hLHSK |π]] + E[(E[hLHSk |π])2].

Proof:

The decomposition of variance yields

Var[hLHSK] = E[Var[hLHSK |π]] + Var[E[hLHSk |π]]

= E[Var[hLHSK |π]] + E[(E[hLHSk |π])2]− (E[E[hLHSk |π]])2,

and the law of total expectation leads to

Var[hLHSK] = E[Var[hLHSK |π]] + E[(E[hLHSk |π])2]− (E[hLHSk])2.

This implies that

Var[hLHSK] + (E[hLHSk])2 = E[Var[hLHSK |π]] + E[(E[hLHSk |π])2]

⇒ E[(hLHSK)2] = E[Var[hLHSK |π]] + E[(E[hLHSK |π])2]. �

Proposition 4.3.3. Let (π(i, 1), π(i, 2), . . . , π(i,K)) denote a random permutation

of {1, 2, . . . , K}, for i ∈ I, and let πq, q ∈ Q, denote the set of all (K!)d−1 pos-

sible collections of d permutations that assign the K cells in an LHS design. Let

Γk = Sπ(1,k)(1)× Sπ(2,k)(2)× · · · × Sπ(d,k)(d), and let

P[ξ ∈ Γk] =
∏
i∈I

P[ξ(i) ∈ Sπ(i,k)(i)], ∀k ∈ K = {1, 2, . . . , K}.

93

Define:

hLHSK =
∑
k∈K

Kd−1P[ξ ∈ Γk]h(ξk)

pkq = P[ξ ∈ Γk|π = πq]

µkq = E[h(ξk)|π = πq].

Then,

E[(hLHSK)2] =
K2d−2

(K!)d−1

∑
q∈Q

∑
k∈K

(pkq)
2 · E[(h(ξk))2|π = πq]

+
2 ·K2d−2

(K!)d−1

∑
q∈Q

∑
k∈K

∑
k′∈K
k′>k

(pkq · pk′q · µkq · µk′q) . (4.15)

Proof:

From Lemma 4.3.2, we have E[(hLHSK)2] = E[Var[hLHSK |π]] +E[(E[hLHSK |π])2], where π

takes on each of the possible (K!)d−1 collections of d permutations in the set Q with

equal probability. The expected sampling variance is:

E[Var[hLHSK |π]] =
1

(K!)d−1

∑
q∈Q

∑
k∈K

(Kd−1)2(P[ξ ∈ Γk|π = πq])
2 · Var[h(ξk)|π = πq].

We move the constant, (Kd−1)2, outside the summation and expand the second term

on the right-hand side to obtain

E[Var[hLHSK |π]] =
K2d−2

(K!)d−1

∑
q∈Q

∑
k∈K

[
p2
kq ·
(
E[(h(ξk))2|π = πq]− µ2

kq

)]
. (4.16)

The second term of interest is

E[(E[hLHSK |π])2] =
1

(K!)d−1

∑
q∈Q

(∑
k∈K

Kd−1 · pkq · µkq

)2

,

94

which we expand to

E[(E[hLHSK |π])2] =
K2d−2

(K!)d−1

∑
q∈Q

∑
k∈K

(
p2
kq · µ2

kq

)
+

2 ·K2d−2

(K!)d−1

∑
q∈Q

∑
k∈K

∑
k′∈K
k′>k

(pkq · pk′q · µkq · µk′q) . (4.17)

Summing the right-hand sides of equations (4.16) and (4.17) yields

E[(hLHSK)2] =
K2d−2

(K!)d−1

∑
q∈Q

∑
k∈K

p2
kq · E[(h(ξk))2|π = πq]

+
2 ·K2d−2

(K!)d−1

∑
q∈Q

∑
k∈K

∑
k′∈K
k′>k

(pkq · pk′q · µkq · µk′q) . �

4.3.2.2 Objective Function Reformulation

To improve the design of cells for LHS estimators compared to uniform strata

across a wider collection of multivariate functions than the test cases in Section 4.3.1,

we consider the following collection of approximations:

h(ξ) ≈ 1

(K!)d−1

∑
q∈Q

∑
k∈K

Kd−1P[ξ ∈ Γk|π = πq]hikq(ξ(i)), ∀i ∈ I. (4.18)

Here, we let q ∈ Q denote the collection of all permutations that assigns the K cells

in an LHS design. Further, in equation (4.18) we let

hikq(ξ(i)) = h(akq(1), . . . , akq(i− 1), ξ(i), akq(i+ 1), . . . , akq(d− 1), akq(d)), (4.19)

P[ξ ∈ Γk|π = πq] =
∏
i∈I

P[ξ(i) ∈ Sπq(i,k)(i)],

and

akq(i) = E[ξ(i)|ξ(i) ∈ Sπq(i,k)(i)], ∀i ∈ I, q ∈ Q, k ∈ K. (4.20)

95

Similar to equation (4.10), a constant is used in the place of all but a single random

variable, ξ(i), but we use a separate approximation for each assigned cell, k ∈ K,

and for each permutation, q ∈ Q. While we assume the set Q consists of all (K!)d−1

cell assignments in the characterization of the LHS estimator’s second moment in

Section 4.3.2.1, as we describe in Section 4.3.2.5, a smaller collection replaces Q in

our numerical experiments.

We note that the right-hand side of equation (4.18) depends on the index i, but

the left-hand side does not. In what follows, we make use of the approximation based

on component i when attempting to optimize the location of the strata for component

i. In this same sense, hikq denotes an approximation of the entire function h, with a

focus on the component i, rather than the i-th term in an additive approximation, as

in the approximation of Section 4.3.1. We also note that for the purpose of optimizing,

we can drop the constant Kd−1/(K!)d−1 term in equation (4.18).

In the context of approximation (4.18), we make the following approximations:

E[h(ξk)|π = πq] ≈ E[hikq(ξ
k(i))|π = πq], ∀i ∈ I, k ∈ K, q ∈ Q, (4.21)

and

E[(h(ξk))2|π = πq] ≈ E[(hikq(ξ
k(i)))2|π = πq]

+
∑
i′∈I
i′ 6=i

(
d

dξ(i′)
hi′kq(akq(i

′))

)2

Var[ξ(i′)|ξ(i′) ∈ Sπq(i′,k)],

∀i ∈ I, k ∈ K, q ∈ Q. (4.22)

The form of these approximations is motivated by the fact that they are exact when h

is a linear function, as shown in Proposition 4.3.4. Moreover, even though, in general,

96

we have a different approximation for each component i, they are all identical when

h is linear.

Proposition 4.3.4. Let (π(i, 1), π(i, 2), . . . , π(i,K)) denote a random permutation

of {1, 2, . . . , K}, for i ∈ I, and let πq, q ∈ Q, denote the set of all (K!)d−1 pos-

sible collections of d permutations that assign the K cells in an LHS design. Let

Γk = Sπ(1,k)(1)× Sπ(2,k)(2)× · · · × Sπ(d,k)(d), and let

P[ξ ∈ Γk] =
∏
i∈I

P[ξ(i) ∈ Sπ(i,k)(i)], ∀k ∈ K.

Define:

hLHSK =
∑
k∈K

Kd−1P[ξ ∈ Γk]h(ξk),

h(ξ) =
∑
i∈I

ciξ(i),

in which ci ∈ R, ∀i ∈ I, and define

hikq(ξ(i)) = h(akq(1), . . . , akq(i− 1), ξ(i), akq(i+ 1), . . . , akq(d)),

in which akq(i) = E[ξ(i)|ξ(i) ∈ Sπ(i,k)(i)], ∀i ∈ I. Then,

(i) E[h(ξk)|π = πq] = E[hikq(ξ
k)|π = πq], ∀i ∈ I, k ∈ K, q ∈ Q, and

(ii) E[(h(ξk))2|π = πq] = E[(hikq(ξ
k))2|π = πq] +

∑
i′∈I
i′ 6=i

(
c2
i′Var[ξ(i′)|ξ(i′) ∈ Sπq(i′,k)(i

′)]
)
,

∀i ∈ I, k ∈ K, q ∈ Q.

97

Proof:

(i) For a linear function, the expectation is

E[h(ξk)|π = πq] = E

[∑
i∈I

ciξ
k(i)

∣∣∣∣∣ π = πq

]
=
∑
i∈I

ciE
[
ξk(i)|π = πq

]
=
∑
i∈I

ciakq(i),

and the approximation in equations (4.19)-(4.20) yields

E[hikq(ξ
k)|π = πq] = E

ciξk(i) +
∑
i′∈I
i′ 6=i

ci′akq(i
′)

∣∣∣∣∣∣∣∣ π = πq

= E

[
ciξ

k(i)|π = πq
]

+
∑
i′∈I
i′ 6=i

ci′akq(i
′)

=
∑
i∈I

ciakq(i)

= E[h(ξk)|π = πq].

(ii) The second moment of an LHS sample for a given randomly generated LHS cell

assignment is

E[(h(ξk))2|π = πq] = E

(∑
i∈I

ciξ
k(i)

)2 ∣∣∣∣∣π = πq

=
∑
i∈I

c2
iE
[
(ξk(i))2|π = πq

]
+ 2

∑
i∈I

∑
i′∈I
i′>i

cici′E[ξk(i) · ξk(i′)|π = πq]

=
∑
i∈I

c2
iE
[
(ξk(i))2

∣∣π = πq
]

+ 2
∑
i∈I

∑
i′∈I
i′>i

cici′akq(i)akq(i
′),

98

while the second moment of the approximation given πq is

E[(hikq(ξ
k))2|π = πq] = E

ciξk(i) +

∑
i′∈I
i′ 6=i

ci′akq(i
′)

2∣∣∣∣∣∣∣∣ π = πq

= c2

iE
[
(ξk(i))2|π = πq

]
+
∑
i′∈I
i′ 6=i

c2
i′a

2
kq(i

′)

+ 2
∑
i∈I

∑
i′∈I
i′>i

cici′akq(i)akq(i
′).

This implies

E[(hikq(ξ
k))2|π = πq] = E[(h(ξk))2|π = πq]−

∑
i′∈I
i′ 6=i

c2
i′

(
E
[
(ξk(i′))2|π = πq

]
− a2

kq(i
′)
)
. �

Corollary 4.3.5 shows that minimizing the right-hand side of equation (4.15) via the

approximations in equations (4.22)-(4.21) minimizes the mean squared error of the

resulting LHS estimator with respect to E[h(ξ)] for a linear function.

Corollary 4.3.5. Let (π(i, 1), π(i, 2), . . . , π(i,K)) denote a random permutation of

{1, 2, . . . , K}, for i ∈ I, and let πq, q ∈ Q, denote the set of all (K!)d−1 possi-

ble collections of d permutations that assign the K cells in an LHS design. Let

Γk = Sπ(1,k)(1)× Sπ(2,k)(2)× · · · × Sπ(d,k)(d), and let

P[ξ ∈ Γk] =
∏
i∈I

P[ξ(i) ∈ Sπ(i,k)(i)], ∀k ∈ K = {1, 2, . . . , K}.

Define:

hLHSK =
∑
k∈K

Kd−1P[ξ ∈ Γk]h(ξk)

99

pkq = P[ξ ∈ Γk|π = πq]

µkq = E[h(ξk)|π = πq]

h(ξ) =
∑
i∈I

ciξ(i),

in which ci ∈ R, ∀i ∈ I,

hikq(ξ(i)) = h(akq(1), . . . , akq(i− 1), ξ(i), akq(i+ 1), . . . , akq(d)),

in which akq = E[ξ(i′)|ξ(i′) ∈ Sπ(i′,k)(i
′)], ∀i′ ∈ I \ {i}. Then, minimizing the quantity

K2d−2

(K!)d−1

∑
q∈Q

∑
k∈K

(pkq)
2 ·

E[(hikq(ξ
k(i)))2|π = πq] +

∑
i′∈I
i′ 6=i

c2
i′Var[ξ(i′)|ξ(i′) ∈ Sπq(i′,k)]

+

2 ·K2d−2

(K!)d−1

∑
q∈Q

∑
k∈K

∑
k′∈K
k′>k

(pkq · pk′q · µkq · µk′q)

(4.23)

minimizes the mean squared error of the estimator hLHSK .

Proof:

Proposition 4.3.3 proves that the objective function in (4.23) is equivalent to the

right-hand side of equation (4.15), and Proposition 4.3.4 proves that the function is

therefore equivalent to E[(hLHSK)2]. Iman and Conover (1980) show that hLHSK is an

unbiased estimator of E[h(ξ)], so (i) minimizing E[(hLHSK)2] minimizes

E[(hLHSK)2]− (E[hLHSK])2 = E[(hLHSK)2]− (E[h(ξ)])2 = Var[hLHSK],

and, in turn, (ii) Var[hLHSK] is equivalent to the mean squared error of hLHSK . �

100

4.3.2.3 Nonlinear Programming Formulation

The terms of the LHS estimator’s second moment in the right-hand side of

equation (4.15) do not separate by stratum, which precludes the use of a dynamic

program similar to the model in Section 4.3.1. We obtain an LHS design by finding

the minimum-variance strata for one random variable at a time while assuming the

breakpoints defining the cells for the other random components are fixed. This leads

to iteratively solving d separate optimization models, which we describe below.

Sets

i ∈ I = {1, . . . , d}: random variables

k ∈ K = {1, . . . , K}: strata

q ∈ Q: cell assignments, i.e., collections of d permutations of K

q ∈ Q̂ ⊆ Q: selected collections of permutations

Functions

h: a multivariate function h : Rd → R
hikq: a univariate function, as defined in equations (4.19)-(4.20)

ḣikq:
dhikq
dξ(i)

Data

πq(i, k): cell assigned to variable i, observation k in permutation q

Sk(i): (F−1(bπq(i′,k)−1(i′)), F−1(bπq(i′,k)(i
′))

akq(i): E[ξ(i)|ξ(i) ∈ Sπq(i,k)(i)]

fi: marginal pdf of ξ with respect to component i

Fi: marginal cdf of ξ with respect to component i

pikq:
∏
i′∈I
i′ 6=i

P[ξ(i′) ∈ Sπq(i′,k)(i
′)]

ukq(i):
∑
i′∈I
i′ 6=i

(ḣi′kq(akq(i
′)))2 · Var[ξ(i′)|ξ(i′) ∈ Sπq(i′,k)(i

′)]

101

Decision Variables

bk(i): selection of breakpoint k in the interval [0,1] used to create
strata on random variable i

µkq(i): E[hikq(ξ(i)) | ξ(i) ∈ Sπq(i,k)(i)]

σ2
kq(i): E[(hikq(ξ(i))− µkq(i))2 | ξ(i) ∈ Sπq(i,k)(i)]

Boundary Conditions

b0(i) = 0

bK(i) = 1

Formulation

min
b(i),µ(i),σ2(i)

∑
q∈Q̂

∑
k∈K

(
p2
kq(i) · (bk(i)− bk−1(i))2 ·

(
σ2
kq(i) + µ2

kq(i) + ukq(i)
))

+ 2
∑
q∈Q̂

∑
k∈K

∑
k′∈K
k′>k

(
(bk(i)− bk−1(i))(bk′(i)− bk′−1(i))

· pkq(i) · pk′q(i) · µkq(i) · µk′q(i)
)

(4.24a)

s.t. µkq(i) =

∫ F−1
i (bk(i))

F−1
i (bk−1(i))

hikq(x)fi(x)dx

bk(i)− bk−1(i)
,∀q ∈ Q̂, k ∈ K (4.24b)

σ2
kq(i) =

∫ F−1
i (bk(i))

F−1
i (bk−1(i))

(hikq(x)− µkq(i))2fi(x)dx

bk(i)− bk−1(i)
,∀ q ∈ Q̂, k ∈ K (4.24c)

0 = b0(i) ≤ b1(i) ≤ · · · ≤ bK−1(i) ≤ bK(i) = 1. (4.24d)

Discussion

Our goal is to obtain strata on random component i that minimizes the objective

102

function in (4.24a), which, for Q̂ = Q, is proportional to the LHS estimator’s second

moment in equation (4.15), approximated via equations (4.19) and (4.20). Con-

straints (4.24b)-(4.24c) are analogous to constraints (4.13b)-(4.13c), but use the ap-

proximate function hikq, which sets constants for each other random variable to a

cell-specific conditional mean in the place of that variable’s mean. The ordering of

breakpoints enforced by constraint (4.24d) is identical to that of constraint (4.13d).

4.3.2.4 Coordinate Descent Algorithm

Because model (4.24) is nonconvex, and its objective function has cross terms

that involve multiple strata, we obtain solutions via Algorithm 3, a coordinate descent-

based heuristic.

4.3.2.5 Permutation Reduction

The number of terms in the objective function in (4.24a) becomes computa-

tionally intractable as d and K grow large if we use |Q̂| = |Q| = (K!)d−1, the full set

of LHS permutations. This section presents a method to find a small, i.e., |Q̂| ≈ K,

collection of permutations that sufficiently cover the multivariate variable space to

approximate the true estimator’s second moment.

Owen (1992) and Tang (1993) develop LHS designs through the use of orthog-

onal arrays, which allows for bivariate stratification of the design. Ye (1998) presents

orthogonal LHS designs, which consist of a collection of vectors that are each orthogo-

nal to each other, and are used to assign samples to cells; the technique yields designs

with low correlation between random components, but can lead to large regions of the

103

Algorithm 3 Attempts to find breakpoints, bk(i), to subdivide each random compo-
nent, ξ(i), i ∈ I = {1, . . . , d}, into strata to form a minimum-variance LHS estimator,
given the number of strata, K, distributions that compose the random vector ξ, and
the multivariate function, h, as input. Let b`, ` ∈ L denote a finite collection of
equidistant candidate breakpoints, such that b` = (`/|L|), and let K = {1, . . . , K}.

procedure CoordinateDescent(h,K,L, ξ, N) . function, strata,
. candidate breakpoints, random variables, maximum iterations

b0
k(i) = b

k|L|
K , ∀i ∈ I, k ∈ K . Initialize bk(i) with uniform strata

n← 1
while n ≤ N do

for i ∈ I do
bn0 (i)← b0, bnK(i)← b|L|

for k ∈ K do
bnk(i)← argmin

b`,`∈L:bnk−1(i)<b`<bn−1
k+1 (i)

{z`} . z` is calculated via

. the objective function in (4.24a), which, in turn,
. is updated with each breakpoint selection

if bnk(i) = bn−1
k (i), ∀i ∈ I, k ∈ K or n = N then

return bnk(i), i ∈ I, k ∈ K

. algorithm terminates if solution does not change

return bnk(i), i ∈ I, k ∈ K

104

multivariate variable space with no observations. Given d, the techniques of Owen

(1992) and Tang (1993) are only feasible for specific values of K, and the orthogonal

array-based procedure does not lend itself well to creating multiple complementary

designs. van Dam et al. (2007) develop a framework for maximin LHS designs in

two dimensions, in which the minimum distance between any two points in the LHS

design is maximized for a collection of different norms used to define the distance

measure. They provide upper bounds on the best possible distance specific for d = 2,

as well as a mixed-integer programming (MIP) formulation in which the distance is

defined as the `1 norm between two cells. van Dam et al. (2009) provide general upper

bounds on the maximin distance for a design when d ≥ 2, and Husslage et al. (2011)

develop designs with an optimal maximin distance for a collection of cases in which

d ≤ 10, K ≤ 300.

In what follows, we develop a MIP formulation that obtains a maximin LHS

design with the `1 norm as our distance measure. The formulation includes a gener-

alization of the one developed by van Dam et al. (2007) for d = 2. To ensure that

the collection of LHS designs covers the multivariate variable space, the formulation

accepts previous solutions to the optimization model as input, and penalizes common

cell assignments to pairs of random variables.

Sets and Indices

i ∈ I: components

k ∈ K: strata

j ∈ J: observations in the LHS design; |J| = |K|
P ⊂ (I× I×K×K): 2-d projections of previous solutions

105

Data

pk: location of stratum k; here, pk = k

w: weight of maximin distance in objective function

Decision Variables

Xijk: 1 if component i of observation j is assigned to stratum
k, 0 o.w.

Pij: position of component i, observation j

Dijj′ : distance between observations j and j′ wrt component i

Bijj′ : 1 if Pij > Pij′ , 0 o.w.

Z: minimum `1 distance between any two observations

Sii′jkk′ : 1 if components i and i′ are assigned to strata k and k′,
respectively, in observation j; 0 o.w.

Formulation

max wZ − (1− w)
∑

(i,i′,k,k′)∈P

∑
j∈J

Sii′jkk′ (4.25a)

s.t.
∑
j∈J

Xijk = 1, ∀i ∈ I, k ∈ K (4.25b)∑
k∈K

Xijk = 1, ∀i ∈ I, j ∈ J (4.25c)

Pij =
∑
k∈K

pkXijk, ∀i ∈ I, j ∈ J (4.25d)

Dijj′ ≤ Pij′ − Pij + 2(K − 1) ·Bijj′ , ∀i ∈ I, j ∈ J, j′ ∈ J : j < j′ (4.25e)

Dijj′ ≤ Pij − Pij′ + 2(K − 1) · (1−Bijj′), ∀i ∈ I, j ∈ J, j′ ∈ J : j < j′

(4.25f)

Z ≤
∑
i∈I

Dijj′ , ∀j ∈ J, j′ ∈ J : j < j′ (4.25g)

Sii′jkk′ ≥ (Xijk +Xi′jk′)− 1, ∀(i, i′, k, k′) ∈ P, j ∈ J (4.25h)

Xijk ∈ {0, 1}, ∀i ∈ I, j ∈ J, k ∈ K (4.25i)

106

Bijj′ ∈ {0, 1}, ∀i ∈ I, j ∈ J, j′ ∈ J : j < j′ (4.25j)

Sii′kk′ ≥ 0, ∀(i, i′, k, k′) ∈ P (4.25k)

Pij unrestricted, ∀i ∈ I, j ∈ J (4.25l)

Dijj′ unrestricted, ∀i ∈ I, j ∈ J, j′ ∈ J : j < j′ (4.25m)

Z unrestricted (4.25n)

Discussion

Our goal, which we quantify via the objective function in (4.25a), is to obtain an

LHS design with the largest possible minimum `1-norm distance between any two

points in the design, and the fewest intersections of cell assignment 2-d projections

with previous solutions. Constraints (4.25b)-(4.25c) restrict the assignment of cells

to valid Latin hypercube designs. Constraint (4.25d) quantifies the position of each

cell assignment via the variable Pijk, and constraints (4.25e) and (4.25f) determine

the distance between two cells with respect to component i by placing exact bounds

on the distance variable, Dijj′ when Pij < Pij′ and Pij > Pij′ , respectively. Con-

straint (4.25g) sets Z to the minimum `1 distance between any two cells in the LHS

design. Constraint (4.25h) tracks common 2-d projections of cell assignments with

those of previous solutions. Constraints (4.25i)-(4.25n) provide binary restrictions

and simple bounds.

We obtain a collection of designs by initializing P = ∅, and iteratively solving

model (4.25) and adding the solution’s cell assignments to P until we have obtained

K designs. Figure 4.2 shows the collection of designs obtained by this procedure for

d = 2 random components and K = 20 strata. The procedure obtains full coverage

107

of the 2-d projection in 20 designs when d = 2.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Figure 4.2: LHS cell assignments obtained by iteratively solving model (4.25) and updating the collection of solutions
for d = 2, K = 20. A unique color denotes the cells assigned to each of the LHS designs.

4.4 Results

In this section, we solve model (4.3) for a collection of univariate functions for

stratified sampling, we solve model (4.13) d times for a collection of multiplicative

functions for LHS, and we generate LHS strata via the heuristic from Section 4.3.2

for a wider collection of multivariate functions. We then compare the sampling error

108

under the strata we obtain to that of equal-probability strata and, in the case of LHS,

to that of näıve Monte Carlo sampling. Finally, we implement our LHS estimator in

a maximum reliability path application. The results demonstrate that sampling with

strata that are optimized to approximately minimize the variance of the corresponding

estimators via the techniques of Sections 4.2 and 4.3 can yield significant variance

reduction compared to using equal-probability strata.

4.4.1 Stratified Sampling

We illustrate the potential of our procedure by first applying the dynamic

programming procedure of Section 4.2.4 to a collection of univariate functions. We

do not perform any Monte Carlo simulation for the results in this section. Rather, we

numerically compute the optimal value of model (4.3), which we denote z∗. Then, we

compute the same objective function, i.e., the variance of a stratified estimator, using

equal-probability strata; we denote that value zu, and we form the relative efficiency

zu/z∗. All experiments use K = 10 cells and L = 100 candidate breakpoints, and we

note that the ratio we report is independent of the total sample size, N .

Table 4.2 displays the results for a collection of univariate functions that use

the notation from Section 4.2.2. Figure 4.3 shows the relative efficiency achieved as

a function of the skewness of each univariate function, and suggests that the value of

optimized nonuniform strata increases with skewness. Figure 4.4 plots the optimal

breakpoints for a subset of the univariate cases, and illustrates the variety of solutions

we obtain from different functions of the same random variable. The maximum time

to create and solve the dynamic program for a test case was less than one minute, using

109

a Cray XC40 compute node with two Intel E5-2690 v3 12-core (Haswell) processors

and 64 GB of DDR4 memory.

0

2

4

6

8

10

12

0 2 4 6 8 10 12

V
ar

ia
n

ce
 R

ed
u

ct
io

n
 F

ac
to

r

Absolute Pearson Skewness:

Figure 4.3: Relative efficiency of optimized vs. equal-probability strata, plotted as a function of skewness for the
collection of univariate functions given in Table 4.2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

exp(x),Beta(1,5) x,Beta(1,5) log(x),Beta(1,5) x^2,Beta(1,5)

Breakpoint index,

O
p

ti
m

a
lb

re
a

kp
o

in
tl

o
ca

ti
o

n
,

Figure 4.4: Plot of optimal breakpoints for a collection of functions of a Beta(1,5) random variable.

110

h(x) Distribution zu/z∗ b = (b0, b1, . . . , bK)

x χ2
1 3.32 [0.00,0.29,0.47,0.61,0.72,0.81,0.88,0.93,0.97,0.99,1.00]

log(x) χ2
1 1.69 [0.00,0.02,0.06,0.13,0.22,0.33,0.46,0.61,0.76,0.90,1.00]

x2 χ2
1 10.48 [0.00,0.51,0.69,0.79,0.86,0.91,0.94,0.96,0.98,0.99,1.00]

ex N(0, 1) 4.02 [0.00,0.22,0.42,0.59,0.72,0.82,0.89,0.94,0.97,0.99,1.00]

x N(0, 1) 1.25 [0.00,0.04,0.12,0.23,0.36,0.50,0.64,0.77,0.88,0.96,1.00]

ex Beta(1,5) 1.86 [0.00,0.18,0.34,0.48,0.61,0.72,0.81,0.88,0.94,0.98,1.00]

x Beta(1,5) 1.52 [0.00,0.16,0.31,0.44,0.56,0.67,0.77,0.85,0.92,0.97,1.00]

log(x) Beta(1,5) 1.59 [0.00,0.02,0.07,0.14,0.23,0.34,0.47,0.61,0.76,0.90,1.00]

x2 Beta(1,5) 3.91 [0.00,0.33,0.52,0.65,0.75,0.83,0.89,0.94,0.97,0.99,1.00]

ex Beta(5,1) 1.30 [0.00,0.04,0.10,0.18,0.27,0.37,0.48,0.60,0.73,0.86,1.00]

x Beta(5,1) 1.52 [0.00,0.03,0.08,0.15,0.23,0.33,0.44,0.56,0.69,0.84,1.00]

log(x) Beta(5,1) 2.13 [0.00,0.01,0.04,0.09,0.16,0.25,0.36,0.49,0.64,0.81,1.00]

x2 Beta(5,1) 1.23 [0.00,0.04,0.10,0.18,0.27,0.37,0.48,0.60,0.73,0.86,1.00]

x Exp(1) 2.13 [0.00,0.19,0.36,0.51,0.64,0.75,0.84,0.91,0.96,0.99,1.00]

log(x) Exp(1) 1.52 [0.00,0.02,0.07,0.15,0.25,0.37,0.51,0.65,0.79,0.92,1.00]

x2 Exp(1) 6.77 [0.00,0.39,0.59,0.72,0.81,0.88,0.93,0.96,0.98,0.99,1.00]

x Gamma(2,1) 1.64 [0.00,0.12,0.26,0.41,0.55,0.67,0.78,0.87,0.94,0.98,1.00]

log(x) Gamma(2,1) 1.38 [0.00,0.02,0.07,0.15,0.26,0.39,0.53,0.67,0.81,0.93,1.00]

x2 Gamma(2,1) 4.16 [0.00,0.27,0.46,0.61,0.73,0.82,0.89,0.94,0.97,0.99,1.00]

x Gamma(5,1) 1.39 [0.00,0.09,0.22,0.36,0.50,0.63,0.75,0.85,0.93,0.98,1.00]

log(x) Gamma(5,1) 1.30 [0.00,0.03,0.10,0.20,0.32,0.45,0.59,0.72,0.84,0.94,1.00]

x2 Gamma(5,1) 2.36 [0.00,0.17,0.34,0.50,0.64,0.75,0.84,0.91,0.96,0.99,1.00]

ex Weibull(2,1) 2.43 [0.00,0.15,0.32,0.48,0.62,0.74,0.84,0.91,0.96,0.99,1.00]

x Weibull(2,1) 1.26 [0.00,0.09,0.21,0.34,0.47,0.60,0.72,0.82,0.91,0.97,1.00]

log(x) Weibull(2,1) 1.52 [0.00,0.02,0.07,0.15,0.25,0.37,0.51,0.65,0.79,0.92,1.00]

x2 Weibull(2,1) 2.13 [0.00,0.19,0.36,0.51,0.64,0.75,0.84,0.91,0.96,0.99,1.00]

Table 4.2: Relative efficiency and optimized strata boundary points for a collection of univariate functions of random
variables. Notation z∗ and zu denote the stratified sampling estimator’s population variance under optimized and
equal-probability strata, respectively.

111

4.4.2 Nonuniform LHS: Dynamic Programming

To illustrate the impact of our method on reducing the variance of a multivari-

ate LHS estimator, we use repeated experiments, implemented in Python (Rossum

1995) using uniform random variates generated via the WELL512 implementation de-

veloped by Panneton et al. (2006) and available in the Stochastic Simulation in Java

library created by L’Ecuyer et al. (2002). We use a product function h(ξ) =
∏

i∈I ξ(i),

and estimate E[h(ξ)] for different values of d across a collection of probability distri-

butions.

We consider three estimators in total: (i) näıve Monte Carlo; (ii) LHS with

equal-probability cells; and, (iii) LHS as defined in equation (4.9). For estimator (iii),

we optimize the strata for each component of ξ by the dynamic programming scheme

of Sections 4.2.4 and 4.3.1.

For each of the three estimators, we form M i.i.d. replicates of the estimator

which, in turn, use K samples. For example, under the LHS estimator of equa-

tion (4.9), we form h̄mK , m = 1, 2, . . . ,M , i.i.d. replicates and form the sample mean

estimator

h̄K,M =
1

M

M∑
m=1

h̄mK . (4.26)

Analogous estimators are formed for the uniform LHS estimator and for näıve Monte

Carlo, and for all three estimators we use common random numbers, i.e., identical

streams of uniform random variates.

We then compare the sample variance of h̄K,M obtained under each method

to obtain empirical relative efficiencies. In the results we report, we use M = 10, 000

112

replicates, K = 100 strata, and L = 1, 000 candidate breakpoints, and we report

95% confidence intervals (CIs) for the relative efficiencies in Table 4.3 by replicating

this experiment 100 times, comparing estimator (iii) with both (i) and (ii). More

specifically, our relative efficiencies correspond to the ratio of sample variances of

1, 000, 000 = 100 · 10, 000 terms, h̄mK , from the right-hand side of equation (4.26) for

estimators (i), (ii), and (iii). We note that while an LHS application would likely use

a much lower value for M , and instead increase K according to the computational

budget, our sample sizes are inflated to illustrate the value of optimizing the LHS

cells in higher dimensions, for which the estimated sampling error can be volatile.

Table 4.3 demonstrates the significant variance reduction offered by the LHS

procedure in Section 4.3.1, when compared to LHS with equal-probability strata. The

lower bound of the 95% confidence interval estimate for the relative efficiency versus

uniform LHS is greater than one for all cases, and it exceeds an order of magnitude

for more than half the test cases. Further, the factor tends to grow as the dimension

d grows larger. The maximum time to create and solve the dynamic programs for a

test case was 15 minutes, using the same computational resources as in Section 4.4.1.

4.4.3 Nonuniform LHS: Coordinate Descent

We use a similar procedure to compare the performance of the LHS estimators

formed by selecting a collection of permutations for set Q by solving model (4.25),

then using Q to find optimized strata via Algorithm 3, which we test by obtaining

estimates of relative efficiency versus probability-equal strata using the collection of

functions in Mease and Bingham (2006). In these experiments, we use M = 500

113

Relative efficiency Relative efficiency

vs. equal-probability strata vs. näıve Monte Carlo

Distribution d Point estimate 95% CI half-width (%) Point estimate 95% CI half-width (%)

χ2
1 2 129.1 0.9 251.1 1.0

χ2
1 4 341.4 5.6 372.5 7.3

χ2
1 6 836.5 12.0 1,477.2 64.6

χ2
1 8 2,510.1 48.1 3,478.3 43.3

Beta(1,2) 2 5.1 0.7 25.3 0.6

Beta(1,2) 4 6.1 1.2 11.9 1.1

Beta(1,2) 6 7.5 1.8 10.6 1.7

Beta(1,2) 8 9.6 2.9 11.3 3.4

Exponential 2 35.8 0.8 104.3 0.7

Exponential 4 57.8 2.7 77.9 2.8

Exponential 6 97.5 5.7 122.6 16.3

Exponential 8 180.1 14.5 219.0 19.8

Gamma(2,1) 2 9.7 0.7 47.0 0.6

Gamma(2,1) 4 11.7 1.7 22.8 1.5

Gamma(2,1) 6 14.7 2.9 21.1 4.0

Gamma(2,1) 8 19.2 5.0 23.8 7.2

Weibull(2,1) 2 2.2 0.8 17.7 0.6

Weibull(2,1) 4 2.3 1.2 6.8 1.1

Weibull(2,1) 6 2.4 1.7 4.8 1.5

Weibull(2,1) 8 2.6 2.2 4.1 2.4

Table 4.3: Empirically obtained point estimates and 95% CI half-widths of relative efficiencies associated with estimat-
ing E[h(ξ)], in which h(x) =

∏
i∈I xi, using optimized LHS strata obtained by the dynamic programming procedure in

Section 4.3.1, compared to LHS with equal-probability strata and näıve Monte Carlo sampling. Confidence intervals
were obtained via 100 repeated experiments, each of which use M = 10, 000 replicates, K = 100 strata, and L = 1, 000
candidate breakpoints for each dynamic programming routine. CI half-width values are reported as a percentage of
the corresponding point estimate. The experiments are implemented in Python 3.5.4 using the WELL512 generator
developed by Panneton et al. (2006), via the Stochastic Simulation in Java library created by L’Ecuyer et al. (2002).
Common random numbers are generated for each experiment; separate substreams are used for permutations and for
the uniform random variates used to generate realizations of ξ.

replicates and 20 repeated experiments. Table 4.4 reports the relative efficiency of

the LHS estimator compared to uniform strata, and demonstrates that our procedure

exhibits improved efficiency across a wide collection of functions for d = 2 and d = 4,

114

using the entire set of permutations in the latter case.

Relative efficiency versus equal-probability strata

K = 4, |Q̂| = 4 K = 20, |Q̂| = 20 K = 3, |Q̂| = 216

Normal Exponential(1) Weibull(0.5,1) Exponential(1) Weibull(0.5,1) Exponential(1)

h(·) d=2 d=2 d=2 d=2 d=4 d=4

ξ(1) 1.29 3.62 37.39 10.26 8.77 2.59

(ξ(1))2 1.72 15.13 18.97 34.2 29.15 8.71

(ξ(1))3 3.00 32.46 10.54 23.74 22.91 21.52

sin(ξ(1)) 1.30 3.62 41.49 10.26 8.76 2.59

sin(3ξ(1)) 3.59 3.6 44.29 10.23 8.15 2.58∑
i∈I ξ(i) 1.03 1.44 3.01 1.03 1.94 1.13∑

i∈I(ξ(i))
2 1.10 3.68 10.35 3.19 4.21 1.92

(
∑

i∈I ξ(i))
2 1.32 4.56 11.85 1.63 3.38 2.19∏

i∈I(ξ(i)) 1.36 8.78 13.81 10.09 27.63 7.51

sin(
∑

i∈I(ξ(i))) 1.25 1.44 2.86 0.78 1.90 1.13

cos(2
∑

i∈I(ξ(i))) 0.99 1.33 1.78 1.29 1.03 0.97

exp(−
∑

i∈I(|ξ(i)− 1|)) 1.36 1.19 0.75 0.91 1.16 1.03

exp(−
∑

i∈I(|ξ(i)|)) 1.38 1.1 1.2 0.71 1.04 1.03

exp(−
∑

i∈I(|ξ(i)− 0.5|)) 1 1.19 1.63 0.91 1.15 1.03

exp(−
∑

i∈I((ξ(i)− 1)2) 0.91 1.03 1.57 1.09 1.29 1.09

exp(−
∑

i∈I((ξ(i))
2) 1.01 1.15 2.17 1.52 1.03 0.73

exp(−
∑

i∈I((ξ(i)− 0.5)2) 1.14 1.19 1.24 0.9 1.14 1.03

Table 4.4: Empirically obtained point estimates of relative efficiency associated with estimating E[h(ξ)], using op-
timized LHS strata obtained by the coordinate descent procedure in Section 4.3.2, compared to LHS with equal-
probability strata for a collection of functions from Mease and Bingham (2006). Point estimates are obtained via 20
repeated experiments, each of which uses M = 500 replicates, and L = 10 ·K candidate breakpoints for each instance.
CI half-width values did not exceed 30% of the point estimate in any case. The experiments are implemented in
Python 3.5.4 using the WELL512 generator developed by Panneton et al. (2006), via the Stochastic Simulation in
Java library created by L’Ecuyer et al. (2002). Common random numbers are generated for each experiment; separate
substreams are used for permutations and for the uniform random variates used to generate realizations of ξ.

4.4.4 Application: Maximum Reliability Path

We implement our procedure in a maximum reliability path application, using

a network structure from Avramidis et al. (1991) which we show in Figure 4.5. In

our model, the decision maker must traverse a path from node 1 to node 9, and there

is a chance of detection when each arc in the graph is traversed. The decision maker

115

seeks a path with the maximum probability of successfully evading detection. We

use optimized LHS, uniform LHS, and näıve Monte Carlo sampling to estimate the

probability of successfully traversing the network with knowledge of the realized arc

detection probabilities prior to path selection.

1

2

3
6

4

5

9

7

8

Figure 4.5: Network structure for maximum reliability application. The probability of detection at each arc is
distributed as a beta(1,b) random variable.

Table 4.5 reports the estimated probability of success and expected value of

information using optimized LHS, uniform LHS, and näıve Monte Carlo sampling.

In this application, we use K=50 strata and M=200 replicates, versus 10, 000 simple

Monte Carlo samples. We develop the arc success probabilities for each instance as

follows. A beta(1,b) random variable governs the chance of detection at each arc, in

which b = 2 for arcs (1,3), (3,6), and (6,9). For all other arcs, b is provided by instance

in the left-most column of Table 4.5. Optimized LHS designs were developed using

116

the dynamic programming procedure in Section 4.3.1, with h(·) equal to the product

of the evasion probabilities of arcs in the maximum reliability path for an instance

in which all arc probabilities are equal to their means. The results show that the

optimized LHS designs offer a more efficient estimator than uniform LHS and simple

Monte Carlo. The benefits of optimized strata are reduced as b approaches 2 for the

arcs outside of the approximation function, as the arcs included in the product for

h(·) become less likely to be present in the chosen path for a randomly generated

graph.

4.5 Conclusion

We have presented a method of minimizing the variance of a stratified sam-

pling estimator by formulating a nonlinear program, and solving this problem exactly

via a dynamic program using a discrete set of candidate stratum boundary points.

We extend this technique to the multivariate setting and reduce the variance of an

LHS estimator compared to equal-probability strata, using an approximation of the

estimator’s variance and solving a dynamic program for each random component.

Finally, we have detailed empirical results that exhibit significant LHS variance re-

duction under this technique, compared to that of equal-probability strata and näıve

Monte Carlo sampling.

117

Probability of success

Optimized LHS Uniform LHS Simple Monte Carlo

b Mean Variance Mean Variance Mean Variance Uniform LHS Var
Optimized LHS Var

Simple MC Var
Optimized LHS Var

30 3.79E-02 7.31E-06 3.79E-02 2.83E-05 3.65E-02 3.06E-03 3.87 418.68

20 3.79E-02 7.27E-06 3.80E-02 2.82E-05 3.66E-02 3.06E-03 3.89 420.76

10 3.83E-02 6.96E-06 3.84E-02 2.68E-05 3.69E-02 3.04E-03 3.85 436.98

9 3.85E-02 6.79E-06 3.85E-02 2.60E-05 3.70E-02 3.04E-03 3.83 447.22

8 3.88E-02 6.50E-06 3.88E-02 2.50E-05 3.72E-02 3.03E-03 3.85 466.10

7 3.92E-02 6.10E-06 3.92E-02 2.38E-05 3.75E-02 3.02E-03 3.91 495.25

5 3.99E-02 5.63E-06 3.99E-02 2.23E-05 3.81E-02 3.01E-03 3.96 534.88

4.5 4.11E-02 5.39E-06 4.10E-02 2.03E-05 3.92E-02 3.01E-03 3.77 557.92

4 4.21E-02 5.31E-06 4.19E-02 1.88E-05 4.01E-02 3.03E-03 3.54 569.77

3.5 4.34E-02 5.37E-06 4.32E-02 1.72E-05 4.14E-02 3.08E-03 3.20 572.41

3 4.54E-02 5.54E-06 4.52E-02 1.56E-05 4.33E-02 3.18E-03 2.82 574.34

2.75 4.84E-02 6.49E-06 4.81E-02 1.45E-05 4.62E-02 3.38E-03 2.23 520.83

2.5 5.05E-02 7.33E-06 5.02E-02 1.43E-05 4.82E-02 3.55E-03 1.95 485.17

2.25 5.32E-02 8.49E-06 5.30E-02 1.45E-05 5.09E-02 3.83E-03 1.71 450.44

2.125 5.90E-02 1.19E-05 5.88E-02 1.69E-05 5.67E-02 4.48E-03 1.42 376.46

2 6.16E-02 1.35E-05 6.15E-02 1.83E-05 5.93E-02 4.79E-03 1.36 355.57

Table 4.5: Empirically obtained point estimates of mean and variance of the expected maximum likelihood of
evading detection when traversing the graph in Figure 4.5, using K = 50 optimized LHS strata obtained by the
dynamic programming procedure in Section 4.3.1, compared to LHS with equal-probability strata and simple Monte
Carlo. The probability of evading detection at each arc is distributed as a beta(1,b) random variable, with b = 2 for
arcs (1,3), (3,6), and (6,9), and b for all other arcs is provided in the left-most column. The approximation function,
h(·), used for determining optimized strata is the product of the evasion probabilities for arcs (1,3), (3,6), and (6,9).
Point estimates are obtained via M = 200 replicates, using L = 10 ·K candidate breakpoints for each instance. The
experiments are implemented in Python 3.5.4 using the WELL512 generator developed by Panneton et al. (2006), via
the Stochastic Simulation in Java library created by L’Ecuyer et al. (2002). Common random numbers are generated
for each experiment; separate substreams are used for permutations and for the uniform random variates used to
generate realizations of ξ.

118

Chapter 5

Future Work

In Chapter 2, we propose a partitioning scheme that approximates constraints

containing bilinear terms with a tighter relaxation than similar formulations in the lit-

erature. Further, we develop a decomposition method that separates the problem into

smaller subproblems, using Lagrangian relaxation to obtain a lower bound and fixing

inventory levels at regular intervals to obtain an upper bound. We present empiri-

cal results that demonstrate that our techniques significantly improve on alternative

approaches. Future work may include the exploration of additional applications for

our partitioning scheme, such as the pooling problem; additionally, we may explore

alternative applications for the decomposition technique we discuss, such as long-term

staffing and scheduling problems.

In Chapter 3, we present a test case of the microgrid design and dispatch

problem under load and PV uncertainty, and preliminary results show that optimal

designs for such a model are more likely to meet load requirements that solving

a deterministic model with a rigid soldier schedule. Future work will include: (i)

developing and solving instances for a collection of additional locations; and, (ii)

introducing uncertainty in the plug loads in each building on the base, in addition to

the uncertainty in ECU loads that we model.

119

In Chapter 4, we present a methodology that optimizes the stratification of an

LHS estimator, and empirical results show that the strata we obtain exhibit improved

variance for a collection of sample multivariate functions, including an application to

the maximum reliability path problem. Topics of future research include the explo-

ration of new applications of the LHS design procedures in Sections 4.3.1 and 4.3.2

to problems in the literature. In particular, we are interested in investigating the

impact of optimizing nonuniform LHS on reducing the bias and variance associated

with the estimator for the cost of an optimal solution to stochastic programming

problems, such as those in Freimer et al. (2012), Stockbridge and Bayraksan (2016),

and Bayraksan (2018), and comparing the performance of our method to that of the

variance reduction techniques the authors use. It would be interesting to explore

conditions under which either procedure in Section 4.3 guarantees variance reduction

compared to LHS using equal-probability cells, for both equation (4.10) and for other

approximations. Finally, extension of the methods in Section 4.3 to design optimal

LHS strata with the independence assumption relaxed is an opportunity for further

research.

120

Appendices

121

Appendix A

Microgrid Design and Dispatch Problem

A.1 Microgrid Design and Dispatch Problem

In this section, we describe our adaptation of the microgrid design and dispatch

problem of Scioletti et al. (2017), the mapping of this detailed notation to that used in

the main text, and the constraints we add to develop model (P). The model notation

below follows that of Scioletti et al., to which we refer the reader for a more detailed

discussion of the model.

A.1.1 Full (P) Formulation

Sets

t ∈ T time periods

` ∈ L =
{1, 2, . . . , |L|}

time blocks indexing a partition of T; i.e., ∪`∈LT` = T and
T` ∩ T`′ = ∅, ` 6= `

′

j ∈ J battery and generator technologies

g ∈ G ⊂ J generator technologies

b ∈ B ⊂ J battery technologies

s ∈ S PV panel types

k ∈ J̃j ⊂ J identical twins of technology j, given by size, type,

and manufacturer

k ∈ G̃g ⊂ G generator twins of type g

k ∈ B̃b ⊂ B battery twins of type b

122

Timing Parameters

τ length of one time period [hours]

υ number of time periods per block [hours]

ν ratio of base operation duration to time horizon length
[fraction]

Optimization Model Penalty Parameters

c̃j cost of procuring one twin of technology type j [$/twin]

cs cost of procuring one panel of technology type s [$/panel]

δft fuel cost penalty in time period t [$/gal]

εj cycle cost penalty for technology type j [$/(hours, cycles)]

Power System Parameters

dPt power demand in time period t [W]

k̄ overage load coefficient [fraction]

ks spinning reserve required relative to PV power [fraction]

Technology Parameters

η+
j , η

−
j electric efficiency of power into and out of technology type j,

respectively [fraction]

¯
pj, p̄j minimum and maximum power rating, respectively, of

technology type j [W]

Generator Parameters

bfg , c
f
g fuel consumption coefficients for generator g [gal

W 2h
, gal
Wh

, gal
h

]

PV Parameters

γst power output of PV technology type s in time period t,
based on solar irradiance [W

panel
]

n̄s maximum allowable number of PV panels of technology type
s [panels]

123

Battery Parameters

avb , b
v
b battery b voltage model coefficients [V]

dsocb , asocb battery b lifetime model coefficients [unitless]

b0
b battery b state-of-charge used in initial condition constraints

[fraction]

crefb battery b manufacturer-specified capacity [Ah]

c+
b , c

−
b battery b charge and discharge capacity rate coefficients,

respectively [hours]

rintb battery b internal resistance [Ohms]

iavgb typical current expected from battery b for both charge and
discharge activities [A]

¯
sb, s̄b battery b state-of-charge minimum and maximum

operational bounds, respectively [fraction]

iL+
b , iU+

b battery b charge current lower and upper bound, respectively
[A]

iL−b , iU−b battery b discharge current lower and upper bound,
respectively [A]

where, for our application, the above parameter values are computed as:

iL+
b = 0, ∀b ∈ B

iU+
b =

crefb
c+
b

, ∀b ∈ B.

iL−b = 0, ∀b ∈ B

iU−b =
crefb
c−b + τ

, ∀b ∈ B

Continuous Variables

Power Variables

P+
jkt, P

−
jkt aggregate power into and out of technology type j, twin k in

time period t, respectively [W]

124

P PV
st aggregate power out of PV technology type s in time period t

[W]

Generator Variables

F̃t amount of fuel used in time period t [gal]

Battery Variables

Bsoc
bkt state-of-charge of battery type b, twin k at end of time period

t [fraction]

I+
bkt, I

−
bkt battery b, twin k current for charge and discharge,

respectively, in time period t [A]

R battery inventory at the beginning and end of each block [Ah]

R` battery inventory at the beginning and end of block ` [Ah]

Boundary Condition

Bsoc
bk,0 initial state-of-charge of battery type b, twin k [fraction]

Binary and Integer Variables

Power Procurement Variables

Wjk 1 if technology j, twin k is procured, 0 otherwise

Xs integer number of PV panels of technology type s procured
[panels]

W `
jk 1 if technology j, twin k is procured in block `, 0 otherwise

X`
s integer number of PV panels of technology type s procured in

block ` [panels]

Generator Variables

Ggkt 1 if technology type g, twin k is operating in time period t, 0
otherwise

Battery Variables

B+
bkt 1 if battery type b, twin k is charging in time period t, 0

otherwise

125

B−bkt 1 if battery type b, twin k is discharging in time period t, 0
otherwise

Problem (P)

Objective Function:

Minimize

1

|L|

∑
`∈L

∑
j∈J

∑
k∈J̃j

c̃jW
`
jk +

∑
`∈L

∑
s∈S

csX
`
s

+ ν
∑
t∈T

δft F̃t + ντ
∑
g∈G

∑
k∈G̃g

∑
t∈T

εgGgkt +

ντ
∑
b∈B

∑
k∈B̃b

∑
t∈T

εb

(
asocb

I+
bkt + I−bkt

2crefb
− dsocb

Z+
bkt + Z−bkt

2crefb

)
(A.1)

subject to

System Operations:

∑
j∈J

∑
k∈J̃j

η−j P
−
jkt −

∑
b∈B

∑
k∈B̃b

P+
bkt +

∑
s∈S

P PV
st ≥ (1 + k̄)dPt , ∀t ∈ T (A.2a)

∑
b∈B

∑
k∈B̃b

η−b p̄bB
soc
bkt +

∑
g∈G

∑
k∈G̃g

(
p̄gGgkt − P−gkt

)
≥ ks

∑
s∈S

P PV
st , ∀t ∈ T (A.2b)

W `
j,k−1 ≥ W `

jk, ∀j ∈ J, k ∈ J̃j : k > 1, ` ∈ L

(A.2c)

Generator Operations:

¯
pgGgkt ≤ P−gkt ≤ p̄gGgkt, ∀g ∈ G, k ∈ G̃g, t ∈ T (A.3a)

F̃t ≥ τ
∑
g∈G

∑
k∈G̃g

(bfgP
−
gkt + cfgGgkt), ∀t ∈ T (A.3b)

Ggkt ≤ W `
gk, ∀g ∈ G, k ∈ G̃g, t ∈ T`, ` ∈ L (A.3c)

Gg,k−1,t ≤ Ggkt, ∀g ∈ G, k ∈ G̃g, t ∈ T : k > 1 (A.3d)

126

P−g,k−1,t ≤ P−gkt, ∀g ∈ G, k ∈ G̃g, t ∈ T : k > 1 (A.3e)

PV Operations:

P PV
st ≤ γstX

`
s , ∀s ∈ S, t ∈ T`, ` ∈ L (A.4a)

X`
s ≤ n̄s, ∀s ∈ S, ` ∈ L (A.4b)

Battery Operations:

P+
bkt = avbB

soc
bk,t−1I

+
bkt + (bvb + iavgb rintb)I+

bkt ∀b ∈ B, k ∈ B̃b, t ∈ T

(A.5a)

P−bkt = avbB
soc
bk,t−1I

−
bkt + (bvb − i

avg
b rintb)I−bkt ∀b ∈ B, k ∈ B̃b, t ∈ T

(A.5b)

Bsoc
bkt = Bsoc

bk,t−1 +
τ(η+

b I
+
bkt − I

−
bkt)

crefb
, ∀b ∈ B, k ∈ B̃b, t ∈ T (A.5c)

¯
sbW

`
bk ≤ Bsoc

bkt ≤ s̄bW
`
bk, ∀b ∈ B, k ∈ B̃b, t ∈ T`, ` ∈ L (A.5d)

Bsoc
bkt ≤ Bsoc

b,k−1,t + (1−W `
bk), ∀b ∈ B, k ∈ B̃b, t ∈ T`, ` ∈ L : k > 1

(A.5e)

Bsoc
bkt ≥ Bsoc

b,k−1,t − (1−W `
bk), ∀b ∈ B, k ∈ B̃b, t ∈ T`, ` ∈ L : k > 1

(A.5f)∑
b∈B

∑
k∈Bb

crefb Bsoc
bk,(`−1)υ = R`, ∀` ∈ L \ {1} (A.5g)∑

b∈B

∑
k∈Bb

crefb Bsoc
bk,`υ = R`, ∀` ∈ L (A.5h)

¯
pbB

+
bkt ≤ P+

bkt ≤ p̄bB
+
bkt, ∀b ∈ B, k ∈ B̃b, t ∈ T (A.5i)

¯
pbB

−
bkt ≤ P−bkt ≤ p̄bB

−
bkt, ∀b ∈ B, k ∈ B̃b, t ∈ T (A.5j)

iL+
b B+

bkt ≤ I+
bkt ≤ iU+

b B+
bkt, ∀b ∈ B, k ∈ B̃b, t ∈ T (A.5k)

iL−b B−bkt ≤ I−bkt ≤ iU−b B−bkt, ∀b ∈ B, k ∈ B̃b, t ∈ T (A.5l)

127

I−bkt ≤ iU−b Bsoc
bk,t−1, ∀b ∈ B, k ∈ B̃b, t ∈ T (A.5m)

B+
bkt +B−bkt ≤ W `

bk, ∀b ∈ B, k ∈ B̃b, t ∈ T`, ` ∈ L (A.5n)

B+
bkt +B−b′k′t ≤ 1, ∀b, b′ ∈ B; k, k′ ∈ B̃b; t ∈ T : b 6= b′, k 6= k′ (A.5o)

Nonanticipativity:

W `
jk = Wjk, ∀j ∈ J, k ∈ J̃j, ` ∈ L (A.6a)

X`
s = Xs, ∀s ∈ S, ` ∈ L (A.6b)

R` = R, ∀` ∈ L \ {1} (A.6c)

Boundary Condition:

Bsoc
bk,0 = b0

bWbk, ∀b ∈ B, k ∈ B̃b (A.7)

Nonnegativity and Integrality:

P+
jkt, P

−
jkt ≥ 0, ∀j ∈ J, k ∈ J̃j, t ∈ T (A.8a)

P PV
st ≥ 0, ∀s ∈ S, t ∈ T (A.8b)

F̃t ≥ 0, t ∈ T (A.8c)

Bsoc
bkt , I

+
bkt, I

−
bkt ≥ 0, ∀b ∈ B, k ∈ B̃b, t ∈ T (A.8d)

R unrestricted (A.8e)

R` unrestricted, ∀` ∈ L (A.8f)

Bsoc
bk,0 ≥ 0, ∀b ∈ B, k ∈ B̃b (A.8g)

Wjk ∈ {0, 1}, ∀j ∈ J, k ∈ J̃j (A.8h)

Xs ∈ Z+, ∀s ∈ S (A.8i)

128

W `
jk ∈ {0, 1}, ∀j ∈ J, k ∈ J̃j, ` ∈ L (A.8j)

X`
s ∈ Z+, ∀s ∈ S, ` ∈ L (A.8k)

Ggkt ∈ {0, 1}, ∀g ∈ G, k ∈ G̃g, t ∈ T (A.8l)

B+
bkt, B

−
bkt ∈ {0, 1}, ∀b ∈ B, k ∈ B̃b, t ∈ T (A.8m)

Discussion

A.1.1.1 Objective Function

We minimize the objective function in (A.1), which includes the cost of (i)

procuring diesel generators, batteries and PV systems, (ii) consuming fuel, and (iii)

using the technologies in dispatch, measured in lifecycles; a generator uses one lifecy-

cle for each hour it is running, while a battery uses lifecycles according to a function of

the charge current and state-of-charge of the battery in each time period. Our imple-

mentation is analogous to assigning values to variable Ljk via constraints (6a) and (14)

from Scioletti et al. (2017); however, we do not impose a restriction on the number

of lifecycles spent per constraint (6c) from their paper. The parameter ν reconciles

the time horizon of the optimization model with that of the FOB’s duration.

A.1.1.2 System Operations

Constraint (A.2a) requires that the dispatch strategy meets demand for each

hour. Constraint (A.2b) enforces a spinning reserve requirement that is equal to

a fraction of PV power output in each time period. Alternative approaches model

spinning reserve requirements as a function of the demand not met by PV systems;

see, e.g., Husted et al. (2018). Constraint (A.2c) breaks symmetry (Sherali and Smith

129

2001).

A.1.1.3 Generator Operations

Constraint (A.3a) restricts power output of generators to their specific mini-

mum and maximum power ratings. Constraint (A.3b) determines fuel consumption

as a function of whether each generator in the microgrid design is running, and, if

so, its power output. While Scioletti et al. (2017) include a second-order term in the

relationship, i.e.,

F̃t ≥ τ
∑
g∈G

∑
k∈G̃g

(afg (P
−
gkt)

2 + bfgP
−
gkt + cfgGgkt), ∀t ∈ T,

their implementation sets the value of the parameter afg to zero. Constraint (A.3c)

connects procurement to dispatch, and constraints (A.3d) and (A.3e) break symmetry.

A.1.1.4 PV Operations

Constraint (A.4a) enforces an upper bound on PV output power per panel

according to the solar irradiance in each hour. Constraint (A.4b) limits the number

of systems in the design according to spatial restrictions.

A.1.1.5 Battery Operations

Constraints (A.5a) and (A.5b) restrict the net power output of the battery to

the product of the battery’s voltage and its net current for each time period; this is

consistent with the battery modeling paradigm developed by Scioletti et al. (2016a).

Our implementation does not use a decision variable for voltage, but rather, uses

the right-hand side of constraint (5g) from Scioletti et al. (2017) to model battery

130

voltage. While the implementation from Scioletti et al. includes the products of

terms B+
bk,t−1 · I

+
bkt and B−bk,t−1 · I

−
bkt in the right-hand sides of our constraints (A.5a)

and (A.5b), respectively. The bounds provided in constraints (A.5k)-(A.5l) require

that I+
bkt = 0 when the battery is not charging, and that I−bkt = 0 when the battery

is not discharging, i.e., B+
bkt · I

+
bkt = I+

bkt and B−bkt · I
−
bkt = I−bkt. As a result, our

constraints (A.5a)-(A.11) are an equivalent formulation to equations (5a), (5b), and

(5g) from the predecessor paper.

Constraint (A.5c) updates the battery state-of-charge according to charge and

discharge currents, the former of which is modified by an efficiency term. Constraint

(A.5d) enforces upper and lower bounds on the battery’s state-of-charge. Constraints

(A.5e) and (A.5f) force all batteries in the design to maintain the same state-of-charge.

Constraints (A.5g)-(A.5h) enforce the reset policy described in Section 2.2.1. Con-

straints (A.5i) and (A.5j) provide upper and lower bounds for net power, while con-

straints (A.5k) through (A.5m) provide similar bounds for net current. Constraints

(A.5n) and (A.5o) preclude simultaneous charging and discharging of batteries.

A.1.1.6 Nonanticipativity and Boundary Condition

Constraints (A.6) require a single design and reset inventory level. In the

lower bound model, (
¯
P), we implement a Lagrangian relaxation of these constraints

with multipliers that we update via Algorithm 1. In the upper bound model, (P̄), we

provide (fixed) values for: Wbk,∀b ∈ B, k ∈ B̃b; Xs,∀s ∈ S; and, R. Constraint (A.7)

enforces a specific initial state-of-charge for each battery in the design.

131

A.1.1.7 Nonnegativity and Integer Restrictions

Constraints (A.8) provide nonnegativity and integer restrictions for the design

and dispatch decision variables. Our implementation relaxes constraint (A.8i) to allow

fractional values for X`
s , ∀s ∈ S, ` ∈ L.

A.1.2 Mapping Microgrid Design and Dispatch Problem to Model (P)

We map the technology purchase decision variables W `
jk, j ∈ J, k ∈ J̃j, and

X`
s , s ∈ S, to the decision vector X` in our formulation and implement R` directly,

for all subproblems ` ∈ L. We map Bsoc
bk,t−1 and Bsoc

bkt , b ∈ B, k ∈ B̃b, to
¯
Yt and

Ȳt, respectively, t ∈ T. We map all other decision variables to Yt, t ∈ T. Con-

straints (A.2c), (A.4b), and (A.8h)-(A.8k) correspond to constraint (2.9b). Con-

straint (A.5c) corresponds to constraints (2.9d)-(2.9e), which are condensed by sub-

stituting the variable for each battery’s starting state-of-charge in period t with that

of its ending state-of-charge at period t − 1. Constraints (A.5g)-(A.5h) correspond

to constraints (2.9f)-(2.9g). Nonanticipativity constraints (A.6) correspond to con-

straints (2.9h) and (2.9i), and the boundary condition (A.7) corresponds to con-

straint (2.9j). All other constraints constitute (2.9c) in model (P). We model the

inventory variables Ȳt as total battery capacity (in Ah) via:

Ȳt =
∑
b∈B

∑
k∈B̃b

crefb Bsoc
bkt , ∀t ∈ T, (A.9)

and calculate
¯
Yt and R similarly. This allows us to use a single value for R when we

perform the bisection search in Algorithm 1.

132

A.1.3 Mapping Linearization to Model (U)

Because voltage is a function of battery state-of-charge, we substitute the

products Bsoc
bk,t−1 · I+

bkt and Bsoc
bk,t−1 · I−bkt with the linearization variables Z+

bkt and Z−bkt,

respectively, and constraints (A.10) and (A.11) enforce the bilinear relationships in

the nonlinear model (P):

Z+
bkt = Bsoc

bk,t−1I
+
bkt, ∀b ∈ B, k ∈ B̃b, t ∈ T (A.10)

Z−bkt = Bsoc
bk,t−1I

−
bkt, ∀b ∈ B, k ∈ B̃b, t ∈ T. (A.11)

We map the state-of-charge variables, Bsoc
bk,t−1, and current variables, I+

bkt, to Y1t and

Y2t, respectively, for each battery, twin and time period; we perform an analogous

mapping for Bsoc
bkt and I−bkt. Rather than just having simple lower bounds, variable I+

bkt

has a lower bound of iL+
b if binary variable B+

bkt is one and otherwise the lower bound

is zero, with an analogous bound of iL−b for I−bkt if B−bkt = 1 and zero otherwise; see

constraints (A.5k)-(A.5l). Likewise, variable Bsoc
bkt has a lower bound of

¯
sb if W `

bk = 1,

and zero otherwise. The following variant of constraints (2.8) incorporates these

restrictions using binary variables B+
bkt, B

−
bkt, and W `

bk:

Sets

n ∈ N set of all subregions in partitioning of support of current

New Battery Parameters

iL+
bn minimum charge current to battery b in subregion n (A)

iU+
bn maximum charge current to battery b in subregion n (A)

iL−bn minimum discharge current from battery b in subregion n (A)

iU−bn maximum discharge current from battery b in subregion n (A)

133

New Battery Variables

Z+
bkt, Z

−
bkt battery b, twin k auxiliary variable for product, and charge and

discharge current, respectively, and starting state-of-charge in
period t [A]

λ+
bknt 1 if charge current for battery b, twin k is in subregion n at period

t, 0 otherwise

λ−bknt 1 if discharge current for battery b, twin k is in subregion n at
period t, 0 otherwise

Constraints∑
n∈N

λ+
bknt = B+

bkt, ∀b ∈ B, k ∈ B̃b, t ∈ T (A.12a)∑
n∈N

λ−bknt = B−bkt, ∀b ∈ B, k ∈ B̃b, t ∈ T (A.12b)

I+
bkt ≥ iL+

b B+
bkt + (iL+

bn − i
L+
b)λ+

bknt, ∀b ∈ B, k ∈ B̃b, n ∈ N, t ∈ T (A.12c)

I+
bkt ≤ iU+

b B+
bkt − (iU+

b − i
U+
bn)λ+

bknt, ∀b ∈ B, k ∈ B̃b, n ∈ N, t ∈ T (A.12d)

I−bkt ≥ iL−b B−bkt + (iL−bn − i
L−
b)λ−bknt, ∀b ∈ B, k ∈ B̃b, n ∈ N, t ∈ T (A.12e)

I−bkt ≤ iU−b B−bkt − (iU−b − i
U−
bn)λ−bknt, ∀b ∈ B, k ∈ B̃b, n ∈ N, t ∈ T (A.12f)

Z+
bkt ≥ iU+

bn B
soc
bk,t−1 + s̄bI

+
bkt − s̄bi

U+
bn W

`
bk − (s̄b −

¯
sb)(i

U+
b − i

U+
bn)(W `

bk − λ+
bknt),

∀b ∈ B, k ∈ B̃b, n ∈ N, t ∈ T`, ` ∈ L

(A.12g)

Z+
bkt ≥ iL+

bn B
soc
bk,t−1 +

¯
sbI

+
bkt − ¯

sbi
L+
bn W

`
bk − (s̄b −

¯
sb)(i

L+
bn − i

L+
b)(W `

bk − λ+
bknt),

∀b ∈ B, k ∈ B̃b, n ∈ N, t ∈ T`, ` ∈ L

(A.12h)

Z+
bkt ≤ iL+

bn B
soc
bk,t−1 + s̄bI

+
bkt − s̄bi

L+
bn W

`
bk + (s̄b −

¯
sb)(i

L+
bn − i

L+
b)(W `

bk − λ+
bknt),

∀b ∈ B, k ∈ B̃b, n ∈ N, t ∈ T`, ` ∈ L

(A.12i)

Z+
bkt ≤ iU+

bn B
soc
bk,t−1 +

¯
sbI

+
bkt − ¯

sbi
U+
bn W

`
bk + (s̄b −

¯
sb)(i

U+
b − i

U+
bn)(W `

bk − λ+
bknt),

134

∀b ∈ B, k ∈ B̃b, n ∈ N, t ∈ T`, ` ∈ L

(A.12j)

Z−bkt ≥ iU−bn B
soc
bk,t−1 + s̄bI

−
bkt − s̄bi

U−
bn W

`
bk − (s̄b −

¯
sb)(i

U−
b − i

U−
bn)(W `

bk − λ−bknt),

∀b ∈ B, k ∈ B̃b, n ∈ N, t ∈ T`, ` ∈ L

(A.12k)

Z−bkt ≥ iL−bn B
soc
bk,t−1 +

¯
sbI
−
bkt − ¯

sbi
L−
bn W

`
bk − (s̄b −

¯
sb)(i

L−
bn − i

L−
b)(W `

bk − λ−bknt),

∀b ∈ B, k ∈ B̃b, n ∈ N, t ∈ T`, ` ∈ L

(A.12l)

Z−bkt ≤ iL−bn B
soc
bk,t−1 + s̄bI

−
bkt − s̄bi

L−
bn W

`
bk + (s̄b −

¯
sb)(i

L−
bn − i

L−
b)(W `

bk − λ−bknt),

∀b ∈ B, k ∈ B̃b, n ∈ N, t ∈ T`, ` ∈ L

(A.12m)

Z−bkt ≤ iU−bn B
soc
bk,t−1 +

¯
sbI
−
bkt − ¯

sbi
U−
bn W

`
bk + (s̄b −

¯
sb)(i

U−
b − i

U−
bn)(W `

bk − λ−bknt),

∀b ∈ B, k ∈ B̃b, n ∈ N, t ∈ T`, ` ∈ L

(A.12n)

Z+
bkt ≤ s̄bI

+
bkt, ∀b ∈ B, k ∈ B̃b, t ∈ T (A.12o)

Z−bkt ≤ s̄bI
−
bkt, ∀b ∈ B, k ∈ B̃b, t ∈ T (A.12p)

λ−bknt, λ
+
bknt ∈ {0, 1}, ∀b ∈ B, k ∈ B̃b, n ∈ N, t ∈ T (A.12q)

Z+
bkt, Z

−
bkt ≥ 0, ∀b ∈ B, k ∈ B̃b, t ∈ T. (A.12r)

Constraints (A.12a)-(A.12n) replicate the linearization constraints (2.8) applied to

the microgrid design and dispatch problem for each battery technology and twin.

Constraints (A.12o)-(A.12p) require that Z+
bkt = 0 when battery b, twin k is not

charging in period t, and that Z−bkt = 0 when the battery is not discharging.

135

Appendix B

Remote Microgrid Design Optimization Under

Photovoltaic And Load Uncertainty

B.1 Special Events in FOB Occupancy Model

This section describes the special events listed in Table 3.2 that impact the

FOB population beyond the schedule described in Section 3.2.2.1.

B.1.1 Holidays

We use the fixed dates of February 4th (Super Bowl), November 25th (Thanks-

giving), and December 25th (Christmas) as holidays for which there is reduced activity

outside of the base. For each of these dates, we assume one of the following takes

place with equal probability: (i) regular operations; (ii) regular operations with 15

fewer soldiers off-base; (iii) regular operations with 30 fewer soldiers off-base; and,

(iv) nobody leaves the base for missions.

B.1.2 Rebuilding

In the event of an attack on the base, we assume that a group of 20-35 engineers

visit the base for 5-9 days to repair the perimeter and any damaged buildings. The

team size and duration of stay assume any of the values in their respective ranges

with equal probability. These events take place only during high op-tempo; zero or

136

one attacks occur with probability 0.45 each, while two attacks occur with probability

0.1.

B.1.3 Resupply

Resupply convoys arrive at the FOB throughout the year. Several factors may

influence the frequency of resupply convoys, so we assume that the number of resupply

convoys varies between two and five in each month, with two and three occurring with

probability 0.35 each, and four and five resupplies occurring with probabilities of 0.20

and 0.10, respectively. If there are very few resupplies within a given month, then we

assume that the convoy must be bigger. Therefore, we let the number of soldiers in

the convoy, which we denote as Ns, vary randomly and as a function of the number

of resupplies, which we denote as Nr, as follows:

Ns = 134− 17 ·Nr + ε,

in which ε ∼ N(0, 10), rounded to the nearest integer. We also assume that the

convoy can arrive at anytime of day and the duration of its stay, which we denote L,

is between 5 and 48 hours according to the following distribution:

P(L = i) =
i−p

u∑
j=l

j−p
, (B.1)

in which l = 5, u = 48, and p = 3, the last of which provides greater weight to shorter

durations.

137

B.1.4 Turnover Events

We assume that one troop turnover event occurs in a given year with probabil-

ity 0.75, and two events occur in a given year with probability 0.25. If two turnovers

occur, we assume the first happens in the first half of the year, and the second occurs

at least six months after the first. We assume the additional number of soldiers varies

between 100 to 156, with any outcome in that range being equally likely. The dura-

tion of overlap is assumed to last between 36 and 96 hours, with outcomes distributed

according to equation (B.1), with l = 36, u = 96, and p = 4.

B.1.5 Task Force Missions

We assume that staging missions occur approximately once every two months

during high op-tempo. Specifically, if the high op-tempo period is all 12 months, 9

months, or 6 months, then the number of staging missions is 5 to 8, 4 to 6, and 3 to 5,

respectively. The number of additional soldiers follows a Triangle(60,80,100) distribu-

tion, rounded to the nearest number. The length of time that the soldiers are staged

at the FOB is between 6 and 24, following the distribution given in equation (B.1)

with l = 6, u = 24, and p = 3.

B.1.6 Training

Training sessions occur when soldiers obtain a new piece of equipment or

software that requires training to operate. These sessions can be held anytime during

the year, and they last anywhere between 3 and 7 days, with 5 days most likely with

a probability of 0.4, 4 and 6 days occur with probability 0.2, and 3 and 7 days occur

138

with probability 0.1. We assume that either 2 or 3 training sessions occur during the

year with equal probability. Any number between 15 and 35 additional soldiers is

equally likely to visit from outside the base for training.

B.1.7 Fighting Missions

A fighting mission is a joint-base effort in which a large proportion of the base

population departs simultaneously. We assume that these occur approximately once

per month during the high op-tempo period. During these events, the number of

soldiers that leave the base is governed by a triangle(90,135,180) distribution, and

the length of time that the soldiers are off-base follows the distribution given in

equation (B.1), with l = 20, u = 96, and p = 3.

B.1.8 Miscellaneous Single Movers

We assume that anywhere between 20 and 40 soldiers depart the base individ-

ually for various reasons and lengths of time throughout the year. The reasons are

for (i) a two-week leave; (ii) a part retrieval, which may take anywhere between 12

and 24 hours; (iii) an illness, which may take anywhere between one and three days

with equal probability; or (iv) an injury, which may take between five and ten days

with equal probability. A random sample between 20 and 40 soldiers is first taken,

and then a reason for their departure is sampled with a 50% chance for leave; a 25%

chance for part retrieval; a 10% chance for illness; and, a 15% chance for injury.

139

Bibliography

A123 (2018). A123 battery manufacturer. http://www.a123systems.com/. accessed 2018-
05-15.

Al-Khayyal, F. A. and J. E. Falk (1983). Jointly constrained biconvex programming. Math-
ematics of Operations Research 8 (2), 273–286.

Androulakis, I. P., C. D. Maranas, and C. A. Floudas (1995). αBB: A global optimization
method for general constrained nonconvex problems. Journal of Global Optimiza-
tion 7 (4), 337–363.

Antonanzas, J., N. Osorio, R. Escobar, R. Urraca, F. M. de Pison, and F. Antonanzas-Torres
(2016). Review of photovoltaic power forecasting. Solar Energy 136, 78–111.

ASHRAE (2002). International weather for energy calculations (IWEC weather files) user’s
manual. Technical report, ASHRAE, Atlanta, Georgia.

Avramidis, A. N., K. W. Bauer, and J. R. Wilson (1991). Simulation of stochastic activity
networks using path control variates. Naval Research Logistics 38, 183–201.

Baker, S. F., D. P. Morton, R. E. Rosenthal, and L. M. Williams (2002). Optimizing military
airlift. Operations Research 50 (4), 582–602.

Bala, B. and S. Siddiqui (2009). Optimal design of a PV-diesel hybrid system for electrifi-
cation of an isolated island in Sandwip, Bangladesh using a genetic algorithm. Energy
for Sustainable Development 13 (3), 137–142.

Barbier, T., M. Anjos, and G. Savard (2014). Optimization of diesel, wind, and battery
hybrid power systems. Technical Report G-2014-02, Group for Research and Decision
Analysis and Department of Mathematics and Industrial Engineering Polytechnique
Montréal.

Barley, C. D. and C. B. Winn (1996). Optimal dispatch strategy in remote hybrid power
systems. Solar Energy 58 (4-6), 165–179.

Bayraksan, G. (2018). An improved averaged two-replication procedure with Latin hyper-
cube sampling. Operations Research Letters 46, 173–178.

Belotti, P. (2009). Couenne: A user’s manual. Technical report, Lehigh University.

Bergamini, M. L., P. Aguirre, and I. E. Grossman (2005). Logic-based outer approximation
for globally optimal synthesis of process networks. Computers and Chemical Engineer-
ing 72 (9), 1914–1933.

Blair, N., A. Dobos, J. Freeman, T. Neises, and M. Wagner (2014). System Advisor Model,

140

SAM 2014.1.14: General description. Technical report, National Renewable Energy
Laboratory.

Bonami, P. and J. Lee (2009, November). BONMIN Version 1.4 User’s Manual.

Brown, G. G., R. F. Dell, and A. M. Newman (2004). Optimizing military capital planning.
Interfaces 34 (6), 415–425.

Castro, P. (2015). Tightening piecewise McCormick relaxations for bilinear problems. Com-
puters and Chemical Engineering 72, 300–311.

Department of Defense (2002, August). Guide to Container Inspection for Com-
mercial and Military Intermodal Containers. http://everyspec.com/MIL-HDBK/

MIL-HDBK-0099-0199/MIL-HDBK-138B_4075/, accessed 2018-07-15.

Dey, S. S. and A. Gupte (2015). Analysis of MILP techniques for the pooling problem.
Operations Research 63 (2), 412–427.

Dobos, A. P. (2013). PVWatts Version 1 Technical Reference. Technical report, National
Renewable Energy Laboratory.

Dolan, E. D. and J. J. Moré (2002). Benchmarking optimization software with performance
profiles. Mathematical Programming 92 (1), 201–213.

Dolara, A., S. Leva, and G. Manzolini (2015). Comparison of different physical models for
PV power output prediction. Solar Energy 119, 83–99.

Drew, S. and T. Homem-de-Mello (2012). Some large deviations results for Latin hypercube
sampling. Methodology and Computing in Applied Probability 14 (2), 203–232.

Dufo-López, R. and J. L. Bernal-Agust́ın (2005). Design and control strategies of PV-Diesel
systems using genetic algorithms. Solar Energy 79 (1), 33–46.

Dvorkin, Y., R. Fernndez-Blanco, D. S. Kirschen, H. Pandi, J. P. Watson, and C. A. Silva-
Monroy (2017, Jan). Ensuring profitability of energy storage. IEEE Transactions on
Power Systems 32 (1), 611–623.

Erwin, S. I. (2010, April). How much does the Pentagon pay for a gallon of
gas? http://www.nationaldefensemagazine.org/archive/2010/April/Pages/

HowMuchforaGallonofGas.aspx, accessed 2016-03-01.

Escudero, L. F., M. A. Gaŕın, and A. Unzueta (2016). Cluster Lagrangean decomposition
in multistage stochastic optimization. Computers and Operations Research 67 (2016),
48–62.

Freimer, M. B., J. Linderoth, and D. J. Thomas (2012). The impact of sampling methods
on bias and variance in stochastic linear programs. Computational Optimization and
Applications 51 (1), 51–75.

Gade, D., G. Hackebeil, S. M. Ryan, J.-P. Watson, R. J.-B. Wets, and D. L. Woodruff
(2014). Obtaining lower bounds from the progressive hedging algorithm for stochastic

141

mixed-integer programs. Technical report, Graduate School of Management, University
of California-Davis, Davis, CA (US).

Gelaro, R., W. McCarty, M. J. Surez, R. Todling, A. Molod, L. Takacs, C. A. Ran-
dles, A. Darmenov, M. G. Bosilovich, R. Reichle, K. Wargan, L. Coy, R. Cullather,
C. Draper, S. Akella, V. Buchard, A. Conaty, A. M. da Silva, W. Gu, G.-K. Kim,
R. Koster, R. Lucchesi, D. Merkova, J. E. Nielsen, G. Partyka, S. Pawson, W. Putman,
M. Rienecker, S. D. Schubert, M. Sienkiewicz, and B. Zhao (2017). The modern-era
retrospective analysis for research and applications, version 2 (MERRA-2). Journal of
Climate 30 (14), 5419–5454.

Gildea, G. S., P. D. Carpenter, B. J. Campbell, J. Quigley, J. Diaz, J. Langley, N. Put-
nam, B. Hargreaves, K. Donahue, W. Lindo, W. F. Harris, and J. A. Miletti (2017,
September). SLB-STO-D analysis report: Modeling and simulation analysis of fuel,
water, and waste reductions in base camps: 50, 300, and 1000 persons. Technical Re-
port AD1039173, Army Natick Soldier Research Development and Engineering Center,
Natick, MA, United States.

Gounaris, C. E., R. Misener, and C. A. Floudas (2009). Computational comparison of
piecewise-linear relaxations for pooling problems. Industrial & Engineering Chemistry
Research 48 (12), 5742–5766.

Green, H. J. and J. F. Manwell (1995). Hybrid2: A versatile model of the performance of
hybrid power systems. Technical report.

Gupta, A., R. Saini, and M. Sharma (2011). Modeling of hybrid energy system Part II:
Combined dispatch strategies and solution algorithm. Renewable Energy 36 (2), 466–
473.

Gupte, A., S. Ahmed, M. S. Cheon, and S. Dey (2013). Solving mixed integer bilinear
problems using MILP formulations. SIAM Journal on Optimization 23 (2), 721–744.

Hasan, M. and I. Karimi (2010). Piecewise linear relaxation of bilinear programs using
bivariate partitioning. AIChE Journal 56 (7), 1880–1893.

HDT Global (2016a, August). F100-60K Commercial ECU. Rev. 2.

HDT Global (2016b, November). HDT AirBeam Temper Shelters. Rev. 1.

Helton, J. C. and F. J. Davis (2003). Latin hypercube sampling and the propagation
of uncertainty in analyses of complex systems. Reliability Engineering and System
Safety 81, 23–69.

Homem-de-Mello, T. (2008). On rates of convergence for stochastic optimization prob-
lems under non-independent and identically distributed sampling. SIAM Journal on
Optimization 19 (2), 524–551.

HOMER (2015). Micropower system modeling with HOMER. http://homerenergy.com/
documents/MicropowerSystemModelingWithHOMER.pdf accessed 2015-08-08.

142

Huneke, F., J. Henkel, J. A. B. González, and G. Erdmann (2012). Optimisation of hy-
brid off-grid energy systems by linear programming. Energy, Sustainability and Soci-
ety 2 (1), 1–19.

Husslage, B. G. M., G. Rennen, E. R. van Dam, and D. den Hertog (2011, Dec). Space-
filling Latin hypercube designs for computer experiments. Optimization and Engineer-
ing 12 (4), 611–630.

Husted, M. A., B. Suthar, G. H. Goodall, A. M. Newman, and P. A. Kohl (2018). Co-
ordinating procurement decisions with a dispatch strategy featuring a concentration
gradient. Applied Energy 219, 394–407.

IBM (2017). CPLEX 12.6.2 User Documentation.

Iman, R. L. and W. J. Conover (1980). Small sample sensitivity analysis techniques for
computer models, with an application to risk assessment. Communications in Statistics
- Theory and Methods 9 (17), 1749–1842.

Karuppiah, R. and I. E. Grossman (2006). Global optimization for the synthesis of in-
tegrated water systems in chemical processes. Computers and Chemical Engineer-
ing 30 (4), 650–673.

Katsigiannis, Y. A. and P. S. Georgilakis (2008). Optimal sizing of small isolated hybrid
power systems using tabu search. Journal of Optoelectronics and Advanced Materi-
als 10 (5), 1241–1245.

Khodaei, A., S. Bahramirad, and M. Shahidehpour (2015). Microgrid planning under un-
certainty. IEEE Transactions on Power Systems 30 (5), 2417–2425.

L’Ecuyer, P., L. Meliani, and J. Vaucher (2002). SSJ: A framework for stochastic simula-
tion in Java. In E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes (Eds.),
Proceedings of the 2002 Winter Simulation Conference, pp. 234–242. IEEE Press.

Mak, W., D. P. Morton, and R. K. Wood (1999). Monte Carlo bounding techniques for de-
termining solution quality in stochastic programs. Operations Research Letters 24 (1),
47–56.

McCormick, G. P. (1976). Computability of global solutions to factorable nonconvex pro-
grams: Part I: Convex underestimating problems. Mathematical Programming 10 (1),
147–175.

McKay, M. D., R. J. Beckman, and W. J. Conover (1979). A comparison of three methods
for selecting values of input variables in the analysis of output from a computer code.
Technometrics 21 (2), 239–245.

Mease, D. and D. Bingham (2006). Latin hyperrectangle sampling for computer experi-
ments. Technometrics 48 (4), 467–477.

Misener, R., J. Thompson, and C. A. Floudas (2011). APOGEE: Global optimization
of standard, generalized, and extended pooling problems via linear and logarithmic
partitioning schemes. Computers and Chemical Engineering 35, 876–892.

143

Morais, H., P. Kádár, P. Faria, Z. A. Vale, and H. M. Khodr (2010). Optimal scheduling of a
renewable micro-grid in an isolated load area using mixed-integer linear programming.
Renewable Energy 35 (1), 151–156.

Morton, D., B. Letellier, J. Tejada, D. Johnson, Z. Mohaghegh, E. Kee, V. Moiseytseva,
S. Reihani, and A. Zolan (2014). Sensitivity analyses of a simulation model for esti-
mating fiber-induced sump screen and core failure rates. In International Conference
on Nuclear Engineering, Volume 6. American Society of Mechanical Engineers.

Neyman, J. (1934). On the two different aspects of the representative method: the method
of stratified sampling and the method of purposive selection. Journal of the Royal
Statistical Society 97 (4), 558–625.

Olsson, A., G. Sandberg, and O. Dahlblom (2003). On Latin hypercube sampling for
structural reliability analysis. Structural Safety 25, 47–68.

Owen, A. (1992). A central limit theorem for Latin hypercube sampling. Journal of the
Royal Statistical Society. Series B (Methodological) 54 (2), 541–551.

Packham, N. and W. M. Schmidt (2010, Spring). Latin hypercube sampling with de-
pendence and applications in finance. The Journal of Computational Finance 13 (3),
81–111.

Panneton, F., P. L’Ecuyer, and M. Matsumoto (2006). Improved long-period generators
based on linear recurrences modulo 2. ACM Transactions on Mathematical Soft-
ware 32 (1), 1–16.

Pruitt, K. A., R. J. Braun, and A. M. Newman (2013). Evaluating shortfalls in mixed-
integer programming approaches for the optimal design and dispatch of distributed
generation systems. Applied Energy 102 (2013), 386–398.

Rienecker, M. M., M. J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M. G.
Bosilovich, S. D. Schubert, L. Takacs, G.-K. Kim, S. Bloom, J. Chen, D. Collins,
A. Conaty, A. Da Silva, W. Gu, J. Joiner, R. D. Koster, R. Lucchesi, A. Molod,
T. Owens, S. Pawson, P. Pegion, C. R. Redder, R. Reichle, F. R. Robertson, A. G.
Ruddick, M. Sienkiewicz, and J. Woollen (2011, Jul 15). MERRA: NASA’s modern-era
retrospective analysis for research and applications. Journal of Climate 24 (14), 3624–
3648. Copyright - Copyright American Meteorological Society Jul 15, 2011; Document
feature - Tables; ; Graphs; Diagrams; Maps; Last updated - 2017-11-18.

Rockafellar, R. T. and R. J.-B. Wets (1991). Scenarios and policy aggregation in optimiza-
tion under uncertainty. Mathematics of Operations Research 16 (1), 119–147.

Rossum, G. (1995). Python reference manual. Technical report, Amsterdam, The Nether-
lands.

Sahinidis, N. V. (1996). BARON: A general purpose global optimization software package.
Journal of Global Optimization 8, 201–205.

144

Schroedter-Homscheidt, M., A. Arola, N. Killius, M. Lefvre, L. Saboret, W. Wandji,
L. Wald, and E. Wey (2016). The Copernicus atmosphere monitoring service (CAMS)
radiation service in a nutshell. 22nd Proceedings of the SolarPACES conference.

Scioletti, M. S. (2016a). A mixed-integer program for the design and dispatch of a hybrid
power generation system. Ph. D. thesis, Colorado School of Mines.

Scioletti, M. S., J. K. Goodman, P. A. Kohl, and A. M. Newman (2016b). A physics-based
integer linear battery modeling paradigm. Applied Energy 176, 245–257.

Scioletti, M. S., J. K. Goodman, A. M. Newman, A. J. Zolan, and S. Leyffer (2017). Optimal
design and dispatch of a system of diesel generators, photovoltaics and batteries for
remote locations. Optimization and Engineering 18 (3), 755–792.

Sherali, H. D. and J. C. Smith (2001). Improving discrete model representations via sym-
metry considerations. Management Science 47 (10), 1396–1407.

Stein, M. (1987). Large sample properties of simulations using Latin hypercube sampling.
Technometrics 29 (2), 143–151.

Stockbridge, R. and G. Bayraksan (2016). Variance reduction in Monte Carlo sampling-
based optimality gap estimators for two-stage stochastic linear programming. Compu-
tational Optimization and Applications 64 (2), 407–431.

Tang, B. (1993). Orthogonal array-based Latin hypercubes. Journal of the American
Statistical Association 88 (424), 1392–1397.

van Dam, E. R., B. Husslage, D. den Hertog, and H. Melissen (2007). Maximin Latin
hypercube designs in two dimensions. Operations Research 55 (1), 158–169.

van Dam, E. R., G. Rennen, and B. Husslage (2009). Bounds for maximin Latin hypercube
designs. Operations Research 57 (3), 595–608.

van der Kam, M. and W. van Sark (2015). Smart charging of electric vehicles with pho-
tovoltaic power and vehicle-to-grid technology in a microgrid; a case study. Applied
Energy 152, 20–30.

Vielma, J. P., S. Ahmed, and G. Nemhauser (2010a). Mixed-integer models for nonsep-
arable piecewise-linear optimization: unifying framework and extensions. Operations
Research 58, 303–315.

Vielma, J. P. and G. Nemhauser (2010b). Modeling disjunctive constraints with a loga-
rithmic number of binary variables and constraints. Mathematical Programming 128,
49–72.

Wicaksono, D. S. and I. A. Karimi (2008). Piecewise MILP under- and overestimators for
global optimization of bilinear programs. AIChE Journal 54 (4), 991–1008.

Ye, K. Q. (1998). Orthogonal column Latin hypercubes and their application in computer
experiments. Journal of the American Statistical Association 93 (444), 1430–1439.

145

Zhang, D., S. Evangelisti, P. Lettieri, and L. G. Papageorgiou (2016). Economic and en-
vironmental scheduling of smart homes with microgrid: DER operation and electrical
tasks. Energy Conversion and Management 110, 113–124.

146

