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This dissertation presents several methods for improving statistical and first prin-

ciples modeling capabilities, with an emphasis on nonlinear, unsteady state batch

processes. Batch process online monitoring is chosen as a main research area here

due to its importance from both theoretical and practical points of view.

Theoretical background and recent developments of PCA/PLS-based online moni-

toring methodologies are reviewed, along with fault detection metrics, and algorithm

variations for different applications. The available commercial softwares are also
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evaluated based on the corresponding application area. A detailed Multiway PCA

based batch online monitoring procedure is used as the starting point for further

improvements.

The issue of dynamic batch profile synchronization is addressed. By convert-

ing synchronization into a dynamic optimization problem, Dynamic Time Warping

(DTW) and Derivative DTW (DDTW) show the best performance by far. To deal

with the singularity point and numerical derivative estimation problems of DTW

and DDTW in the presence of noise, a robust DDTW algorithm is proposed by

combining Savitzky-Golay filter and DDTW algorithm together. A comparative

analysis of robust DDTW and available methods is performed on simulated and

real chemical plant data.

As traditional Multiway PCA-based (MPCA) methods consider batch monitoring

in a static fashion (fail to consider time dependency between/within process variables

with respect to time), an EWMA filtered Hybrid-wise unfolding MPCA (E-HMPCA)

is proposed that considers batch dynamics in the model and reduce the number of

Type I and II errors in online monitoring. Chemical and biochemical batch examples

are used to compare the E-HMPCA algorithm with traditional methods.

First principles modeling is known to be time consuming for development. In

order to increase modeling efficiency, dynamic Design of Experiments (DOE) is

introduced for Dynamic Algebraic Equation (DAE) system parameter estimation.

A new criterion is proposed by combining PCA and parameter sensitivity analysis

(P-optimal criterion). The new criterion under certain assumptions reduce to several

available criteria and is suitable for designing experiments to improve estimation

of specific parameter sets. Furthermore, the criterion systematically decomposes a

complex system into small pieces according to PCA. Two engineering examples (one
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batch, one continuous) are used to illustrate the idea and algorithm.
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Chapter 1

Introduction

All models are wrong, but some are useful - G.E.P. Box

Mathematical modeling has broad applications and a long history as an analy-

sis and decision making tool across many process industries [37]. Despite the long

history, modeling activities experienced rapid growth during the last few decades

due to time and cost constraints for reducing experimental effort and need to im-

prove product quality and meet environmental regulations by applying model-based

technologies [26, 29]. However, whenever model-based techniques are included (con-

trol, optimization, scheduling, monitoring, etc.), modeling is often the most time

consuming step. In other words, lack of high quality models are the bottleneck for

many model-based technology applications.

According to Cameron and Ingram [16], in a survey of 72 experienced

industrial modelers worldwide, “There is a strong belief that modeling

is a good investment. The return on investment is seen as high by 54

percent and very high by a further 16 percent of respondents... The data

clearly illustrate that the respondents’ organizations have realized the

’value adding’ capability that modeling can contribute to system insight
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and directly affect the operational performance of those companies.”

To overcome these difficulties, one crucial way is to build up efficient and generic

modeling tools and procedures for practitioner use, which is the main objective

of this work. In Section 1.1, we summarize the prevailing modeling procedures,

current status of industrial modeling, and general ideas in selecting modeling tools.

The reason of focusing on batch process is also explained. Section 1.2 compares the

two types of modeling techniques (statistical modeling, first principles modeling) in

more detail and Section 1.3 lists the scope of this work and the structure of the

thesis.

1.1 Industrial Process Modeling

With the rapid growth of modeling applications in process industries, there have

been a number of surveys focusing on related topics from modeling to computing

use and to programming skills (for a summary, refer to Table 1 in [16]). In this

study, we extract some important information from these first hand knowledge with

the least bias possible. By doing this, the deficiencies can be identified and further

improvements can be proposed.

1.1.1 General Modeling Steps

According to Foss et al. [29], industrial modeling practices generally include

following steps:

1. Problem statement and initial data collection. The problem statement differs

for market pull and technology push projects, which are beyond the scope here.

Initial data and information collection may greatly affect the result and always

be filtered by the purpose of study.
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2. Modeling environment selection. Generally speaking, there are three types of

simulators: 1. flowsheet (steady state model), 2. equation-oriented system

(non-steady state; dynamic model), 3. block diagram-oriented simulator for

control applications. Figure 1.1 shows the most recent survey results where

other types of models are included. It is obvious that first principles, empirical

(data driven, statistical) and predefined models are the most commonly used

models. Other models are infrequently employed due to applicability reasons

and thus beyond the horizon of this work. However, some surveys point out

Computational Fluid Dynamics (CFD) modeling is more prevalent for im-

portant unit operations (e.g., reactors) [29, 16]. Among these frequently used

model types, predefined models are case specific and the procedures are hard to

generalize. Therefore, our attention focuses on expanding available knowledge

and support for statistical and first principles approaches. Meanwhile, nearly

all the surveys agree that dynamic model analysis is insufficient in available

packages or softwares. It is reasonable to increase dynamic analysis support

for both first principles and statistical modeling approaches.

3. Model structure buildup and simplification. This step is usually based on

literature search and initial data analysis which heavily relies on process un-

derstanding, experience and creativeness.

4. Implementation and verification. Coding and debugging compose the main

part of implementation. Verification checks if the codes reproduce the expected

features of the process. After the mathematical equation is built up, coding

and debugging can be carried out smoothly by using commercial softwares

[29].

5. Validation. Based on different modeling objectives, this step can be different.

For continuous process PID controller design, step response test is good enough

3



Figure 1.1: Types of modeling undertaken, Figure 11 in [16]

to test the validity of the model. For batch process MPC applications, multiple

PRBS test with different initial batch conditions may be required. Also, most

of the time, parameters are associated with a specific model structure defined

a priori, validating the process verifies the correctness of model structure and

parameter.

6. Documentation and life-cycle reuse. In industrial practice, models are only

maintained if considered economically important [29]. This step is carried out

more routinely among vendor companies than operating companies.

All the surveys agreed the steps listed above should be performed iteratively in a

nonlinear fashion [29, 16]. Interestingly, more experienced modelers tend to carry

out the task in a more unstructured and iterative way (Figure 1 in [29]). Following

the above analysis, it is infeasible to regulate all the modeling steps and reason-

able to focus our attention on providing and improving universal tools/methods

for practitioner use. In this study, the two most widely used generic modeling ap-
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proaches, statistical modeling and first principles modeling, are studied and detailed

explanations are provided in Section 1.2 and 1.3.

1.1.2 Modeling Technique Selection

At the beginning of this chapter, the author quoted the famous saying by G.E.P.

Box. With this in mind, the question is how to pick the suitable modeling procedure

and technique that fits our goals. Pearson [71] provided four metrics in judging

model utility for nonlinear control. With minor change, the rule can be used for

most process model judgments:

1. approximation accuracy

2. physical interpretation

3. suitability for application goal

4. ease of development

Historically, low order linear models (e.g., first order plus time delay, second order

plus time delay) enjoy great popularity because of criteria 3 and 4. Moreover, for

many continuous process, linear models have acceptable accuracy around a specified

steady state operation point. Furthermore, the different forms (state space, transfer

function, discrete convolution, etc.) of linear models are equivalent and one can

pick the favorable form according to specific application needs without loosing in-

formation from other model form analysis. e.g., frequency analysis prefers transfer

function; optimal control chooses state space model. Relatively mature tools and

techniques have been developed for linear models across modeling, identification,

control, and optimization applications [80, 57]. These linear models belong to the

empirical model or statistical model family (all time series models are inherently

statistically based).

5



However, for nonlinear processes (e.g. batch), there is no steady state and the

system needs to be modeled by nonlinear structures. Generally speaking, nonlinear

models can be divided into theoretical (first principles) based and statistically based

ones. A detailed analysis on both model structures will be given in Section 1.2. In

short, the equivalent characteristic disappears for most statistical based nonlinear

dynamic models.

From above analysis, it can be concluded that modeling and related application

tools are available for linear or approximately linear processes. Furthermore, many

continuous processes can be treated as linear or linearized around certain operation

conditions. Thus, continuous process modeling is in relatively good shape for many

application purposes (e.g. classic control).

Batch is another important operation mode which is widely used to manufacture

specialty chemicals, metals, electronic materials, ceramics, food, and agricultural

materials, biochemicals and pharmaceuticals [80]. Besides numerous applications,

theoretically, batch processes do not have steady states, usually operate over a

broad set point range and have a very nonlinear behavior. Due to these uniqueness,

linearization based approach is not sufficient and nonlinear modeling is required for

many control, monitoring, and optimization purposes. From both application and

theoretical points of view, efficient model development methods and procedures for

batch process are highly desired.

1.2 First Principles & Statistical Modeling Comparison

In Section 1.1, we reduce the scope of this work down to statistical and first

principles modeling improvement due to their importance across process industries.

In this section, the two modeling approaches are compared side by side from different

6



aspects including model assumptions, classifications, application areas, and ease to

build model.

Model Assumption and Output

First principles modeling is always based on certain physical, chemical, or bio-

logical fundamentals such as reaction kinetics, mass balance, energy balance etc.

As a result, based on different studying systems, the output of modeling would

normally be Algebraic Equations (AE), Differential Algebraic Equations (DAE),

Partial Differential Equations (PDE), SDE (Stochastic Differential Equations) or

some combination of these. The unknown parameters of the mathematical systems

are normally physical properties and reaction rate coefficients which are important

and frequently not completely available [29]. To estimate these physically mean-

ingful parameters, Maximum Likelihood Estimation (MLE) and Least Squares (LS)

are always applied.

Statistical modeling is frequently data driven and there is no physical understand-

ing included. When statistical rules (e.g., principal component analysis) are explic-

itly included, the resulting models can be Principal Component Analysis (PCA)

models, Partial Least Squares (PLS) models, etc. When statistical rules are implic-

itly included, Auto-Regression with eXogenous (ARX) and Finite Impulse Response

(FIR) models are normally resulted. The author used implicit here because the

model structure itself does not based on statistical rules or assumptions but after

certain manipulation, the model parameters actually rely on statistical analysis such

as auto-correlation analysis, conditional distribution analysis, etc [57]. As described

in Section 1.1.2, for linear system, ARX and FIR models are equal to each other but

in nonlinear system, the corresponding derivatives Nonlinear ARX and Nonlinear

FIR lose the equivalence property.

7



Model Applications

First principles models are suitable for both interpolation and extrapolation ap-

plications because of their descriptive nature. As a result, first principles models

can be applied to many application areas including control, optimization, monitor-

ing, scheduling, and operator training. Furthermore, in most cases the model (e.g.,

DAEs) can be applied directly with minor or no further manipulations. Within all

possible applications, first principles modeling is most suitable for nonlinear optimal

control, large scale (plantwide) process optimization, and unit operation simulation

with large nonlinearity and great importance.

Generally speaking, statistical models cannot be used in extrapolation cases. On

the other hand, with proper treatments and manipulations, statistical modeling can

be applied to nearly the same areas as first principles approach. However, based on

different applications, the resulting models can be very different and the correspond-

ing assumptions and techniques are quite different as well. For control applications,

ARX and FIR based models are generally preferred; for monitoring purpose, PCA

and PLS based models are prevailing; for optimization, neural networks and PLS

models can be used. One can see that instead of getting DAE type of model for

all applications, statistical modeling follows different procedures and results in var-

ious models for each application. Researchers have been putting great efforts in

developing model structures and modeling procedures for each applications, e.g.,

[76, 71, 80, 57].

In general, a first principles model has much fewer model building assumptions,

much broader applications and offers greater insights of the objective system than a

statistical model. This is especially true for highly nonlinear continuous and batch

processes.
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Ease to Build Model

First principles models are inherently hard to build due to following reasons: 1.

lack of process knowledge, so the model structure is difficult to set up. 2. lack of

measurements, so the model parameters are hard to identify with accuracy. Due to

above reasons, many iterations and experiments are required to get a high fidelity

first principles model for control related applications.

Statistical models are relatively easy to build when certain modeling goals are

available in terms of time and cost. However, as argued previously, statistical models

may fit for certain applications but fail to offer much process insights, especially for

complex and large scale systems.

”One interviewee states, for example, that empirical models can be de-

veloped at about a tenth of the development cost for mechanistic models.

It is, however, difficult to assess the overall benefit of an empirical model

because much less new process knowledge is developed compared to first

principles based modeling. Typically, such a model cannot be used as

a basis for later applications.” - Foss et al., survey on 16 experienced

industrial modelers in German and Norway [29].

As a summary, Table 1.1 lists the key points compared so far and it can be con-

cluded that both first principles and statistical modeling have their own uniqueness

and application advantages. Furthermore, for a control/process engineer, it is rea-

sonable to start from the modeling objective to choose the best approach.
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Model Type First Principles Statistical

Simulation Usage Interpolation and extrapola-
tion; wide set point changes

Interpolation only; around cer-
tain set point change

Modeling Assump-
tions

Physical/Chemical/Biological
rule based

Data driven, statistical relation
oriented

Suitable Application
Areas

Nonlinear control; Plantwide
optimization; Operator training

Process monitoring by PCA
type of model; Process control
by ARX type of model.

Ease to Build Hard, experiment demanding
and time consuming

Relatively easy, certain proce-
dures are available

Current Difficulty Model structure buildup; Model
parameter estimation

Improve the modeling proce-
dures for each type of model
(specific application objectives)

Table 1.1: First Principles & Statistical Modeling Comparison

1.3 Outline of this work

In Sections 1.1 and 1.2, by analyzing current trends of industrial modeling, the

importance and shortcomings of statistical and first principles modeling are dis-

cussed. The challenges in industrial modeling can be summarized as follows. At

first, for all modeling applications, batch processes are difficult to tackle due to its

nonlinear dynamics and non steady states. At the mean time, batch is an impor-

tant operation mode across many process industries. As a result, most part of this

work is focusing on batch process. Furthermore, for statistical modeling, although

generic procedures are available, there is still plenty of room to improve and polish

the procedure for each application area. For first principles modeling, reducing ex-

perimental time and cost in model structure buildup and parameter estimation are

of special interest.

Chapters 2 to 4 focus on improving the methods for a specific statistical modeling

application: batch process online monitoring. The reason for choosing this topic is

explained in Chapter 2. Then, the key methodologies (PCA and PLS, originated first
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in regression analysis) are introduced. Also, prevailing industrial batch monitoring

procedures and commercial software packages are reviewed. Chapters 3 and 4 focus

on improving two important steps in the whole online batch monitoring procedures,

which are batch trajectory synchronization and batch dynamic consideration for

monitoring. Some case studies are given after theoretical analysis in each chapter.

The final objective of this part is to propose and demonstrate the effectiveness

of an improved computational procedure (algorithm) for industrial batch process

monitoring, and hopefully, the package can be commercialized.

For first principles modeling, a new criteria of DAE system Design of Experiments

(DOE) is proposed by combining sensitivity analysis with PCA. After a concise

introduction of DOE, Chapter 5 introduces the existing techniques and our new

combined criteria in a systematic way. The new criteria includes as special cases the

most widely used criteria, e.g., D-optimal and E-optimal. It is especially suitable for

complex nonlinear system parameter estimation where dozens of parameters needs

to be estimated. The whole DOE and parameter estimation algorithm is tested by

two engineering case studies. Although dynamic DOE for parameter estimation is

the main focus here, DOE for model structure buildup is briefly discussed as well.

By employing DOE, the iteration process and related experimental costs in first

principles modeling is expected to be reduced.

Chapter 6 serves as a conclusion of this work where the key results and future

directions are pointed out.
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Chapter 2

Statistical Modeling for Process

Monitoring

In Chapter 1, the methodology, application areas and challenges of statistical

modeling are reviewed by comparing with the first principles approach. This chap-

ter focuses on introducing some important multivariate statistical process control

(MSPC) techniques, e.g., PCA and PLS, and points out the general difficulties in

real applications, which leads to the specific solutions given in Chapters 3 and 4.

To provide working details on applying MSPC, this chapter is organized as follows.

Section 2.1 provides introductory background information on MSPC. In Section 2.2,

PCA and PLS theories, NIPALS algorithms, and their characteristics are discussed.

Section 2.3 explains the main steps and important terminologies in applying PCA

and PLS to process monitoring. Some commercialized software packages are re-

viewed in Section 2.4. Finally, Section 2.5 introduces the structured batch process

online monitoring procedure and challenges for this application are also discussed.
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2.1 Multivariate Statistical Process Control

Traditionally, statistical process control (SPC) charts such as Shewhart, CUSUM,

and EWMA charts [22, 62] have been used to monitor industrial processes for the

purpose of improving product quality. Such techniques are well developed for man-

ufacturing processes and widely used in univariate systems in which a single process

variable is monitored and normal distributed noise assumption applied. The SPC

models are always based on mean and standard deviation calculations of each vari-

able within a historical period [17]. However, industrial process usually includes

more than one process variable, and univariate SPC charts do not perform as well

for these multivariate systems [62, 54, 63]. For example, in chemical and biologi-

cal systems, hundreds of variables can be recorded regularly in a single operating

unit, resulting in a large data set that is hard to analyze with univariate methods.

Furthermore, because many of the variables are correlated, they must be considered

all together rather than individually. To meet these requirements, MSPC methods

can be employed to reduce the dimension of the large raw data set while extracting

useful information such as the existence of faults or abnormalities.

Since the late 1980s, industry has applied multivariate statistical projection meth-

ods to detect abnormal conditions and to diagnose the root cause of these situations

[87, 76]. In nearly all applications, two basic techniques are applied: principal

component analysis (PCA) and partial least squares (PLS ). PCA is a dimensional

reduction method that identifies a subset of uncorrelated vectors (principal compo-

nents) so as to capture most variance in the data. PLS is a decomposition technique

that maximizes the covariance between predictor and predicted variables for each

component. In some cases, PCA can be applied to a data set before using PLS to

reduce the variable dimension for PLS analysis. This step makes PLS much more ef-

ficient to use, Hoskuldsson [40] and MacGregor and Kourti [62] provide more details
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on PLS.

During the past ten years, MSPC enjoys more and more popularity and has been

applied across many industries including semiconductors [17, 20], chemicals [78],

mining [49], and petrochemicals [2]. Miletic et al. [66] performed a comprehensive

review of the applications of multivariate statistics in the areas of steel and pulp

and paper. Kourti et al. [50] showed the power of MSPC in polymer processing.

In comparison with these industries, the application of MSPC in food, biological,

and pharmaceutical industry is relatively immature. With online analyzers, plants

are able to collect a tremendous amount of historical data. However, efficient tools

are needed to manage these data and extract useful information. MSPC is a good

candidate for this purpose as well as for achieving the manufacturing goals of high

quality, efficiency and low cost. Increasing attention from both academic and indus-

trial researchers has been focused on this promising area and it is also one important

focus of this work. In 2001, Albert and Kinley [1] from Eli Lilly Company applied

principal component analysis to an industrial batch tylosin biosynthesis process. In

2001, Lennox et al. [55] published results on different MSPC approaches for a fed-

batch fermentation system operated by Biochemie Gmbh. An MSPC application

in a pharmaceutical fermentation process was studied by Lopes et al. [58] in 2002.

Also, Chiang et al. [21] compared the performance of three MSPC methods in an in-

dustrial fermentation process at the San Diego biotech facility of the Dow Chemical

Company. Gunther et al. [36] applied PCA to an industrial fed-batch cell culture

process data which are gathered from Amgen Pilot Plant. Although industrial data

or high fidelity simulation data are used, most of the analysis are carried out after

the whole batch is finished (offline).
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2.2 PCA, PLS Theory

2.2.1 Principal Component Analysis

In 1873-1874, Beltrami and Jordan independently derived the singular value de-

composition (SVD) method that underlies PCA [45]. Meanwhile, the earliest work

on PCA was done by Pearson in 1901 and Hotelling in 1933 [45, 43]. One of the

most prevailing algorithm is NIPALS suggested by H. Wold in 1960s [91]. However,

due to its heavy computational requirements, the spread of PCA was limited until

personal computers became available in the 1980s. Since then PCA has been widely

used in many areas, including agriculture, biology, chemistry, climatology, demog-

raphy, ecology, economics, food research, genetics, geology, meteorology, oceanogra-

phy, psychology, and process control [45]. According to the ISI Web of Knowledge

(http://isiknowledge.com), nearly 14,000 technical articles used principal compo-

nent analysis as keywords from 2000 to 2007.

PCA Objective

PCA focuses on finding the largest variance directions in an m dimensional (m

usually large for industrial applications) data space. In order to do this, data matrix

X(n×m,n > m) is projected by [74]:

t = X × p (2.1)

where t(n×1) and p(m×1) are called leading score and loading vector, respectively.

In order to find the direction to maximize data covariance, Eq. 2.2 is built up:

maxJ = tT t = (Xp)T × (Xp) = pTXTXp (2.2)

15



It can be seen that there are two variables (t and p) and only one governing

equation (Eq. 2.1). To solve the minimization problem, another constraint should

be specified. In PCA, the constraint is chosen to be:

pT × p = 1 (2.3)

Applying Lagrange multiplier, the appended index J ′ is:

J ′ = pTXTXp+ λ
(
1− pT p

)
(2.4)

At the minimum of Eq. 2.4, the first partial derivative of J ′ with respect to p

should be equal to zero:
∂J ′

∂pT
= XTXp− λp = 0 (2.5)

which means:

XTXp = λp (2.6)

Thus, λ and p are the leading eigenvalue and eigenvector of the covariance matrix

(XTX), respectively. Similarly, the remaining loading vectors of PCA are equal

to the corresponding eigenvectors of the covariance matrix (XTX). From linear

algebra, it is known that the eigenvectors are orthogonal (pTi × pj = 0, i 6= j) and

Eq. 2.3 suggested p vectors are also normalizated (pTi × pi = 1).

After sequentially calculating ti, pi and concatenating them into score and loading

matrices: T = [t1, t2, . . . , tm] and P = [p1, p2, . . . , pm], we obtain the widely accepted

equation for PCA:

X = T × P T (2.7)
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NIPALS for PCA

From Eq. 2.6, it can be seen that P and T matrices can be calculated by singular

value decomposition (SVD) directly. However, in real applications, nonlinear iter-

ative partial least squares (NIPALS) algorithm proposed by H. Wold [91] is widely

used because its missing data handling ability. Furthermore, NIPALS uses iteration

method to calculate one principal component at a time. Different from finding the

largest variation of the covariance matrix (Eq. 2.2), NIPALS algorithm focuses on

minimizing the following objective function:

min
∥∥X − tpT∥∥

F
(2.8)

where

pT p = 1

and F stands for Frobenius norm.

NIPALS objective function is different from the PCA objective function (Eq. 2.2).

It is necessary to judge if the two objectives are the same. To do this, least squares

solution to Eq. 2.8 is calculated:

pT = (tT t)−1tTX ⇒ p = XT t(tT t)−1 (2.9)

Similarly, the least squares solution to the transpose of Eq. 2.8 (min
∥∥XT − ptT

∥∥
F

)

is

tT = (pT p)−1pTXT ⇒ t = Xp (2.10)

Subsitute 2.10 into 2.9, such that:

p = XT (Xp)(pTXTXp)−1 (2.11)
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We call the scalar (pTXTXp)−1 as λ and Eq. 2.11 changes to:

p = λ−1XTXp ⇒ λp = XTXp (2.12)

which indicates the objective function of NIPALS (Eq. 2.8) is equivalent to extract

largest variation introduced in PCA objective function (Eq. 2.2).

Computationally, NIPALS algorithm can be carried out by iteration and deflation

as described in [34]:

1. select a column vector xj from X as the starting point of ti.

2. calculate pi by Eq. 2.9:

pi = XT ti(tTi ti)
−1

3. calculate ti by Eq. 2.10:

ti = Xpi

4. compare ti used in step 2 and calculated from step 3. If the difference is

smaller than certain convergence rule, go to step 5, otherwise go to step 2.

5. deflate X by X = X − ti × pi, set i = i+ 1 and go to step 1.

Instead of using raw measurement data, preprocessed data are required here.

Preprocessing is crucial to PCA and different preprocessing criteria will lead to

different results as further discussed in Section 2.5. Among many different prepro-

cessing methods, X is scaled into zero mean and unit variance for each column in

most process monitoring applications.

Due to the iterative nature of NIPALS, there might be convergence concerns when

very similar eigenvalues exist in the covariance matrix. Luckily, in real applications,
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the leading ones, which are important for process monitoring, are always different

from each other (usually with different magnitude).

2.2.2 Partial Least Squares

As an important statistical regression technology, PLS was proposed by H. Wold

[91] in 1966 where it was first applied to economic data analysis. Interestingly,

PLS become popular in chemometrics society, which is partially due to his son S.

Wold and H. Martens in the 80s [34]. After that, together with the rapid growth of

computational speeds, PLS became a widely accepted tool in many fields including

engineering, bioinformatics, food and medicine research, genetics, physiology, etc.

PLS Objective

In regression analysis, input and output data matrices X and Y can be related

to model parameters θ and structures f as described in Eq. 2.13:

Y = f(θ,X) + E (2.13)

If f is linear with respect to the parameters, Eq. 2.13 assumes a linear regression

form:

Y = Xθ + E (2.14)

Suppose the dimensions of X and Y are n×m and n× l, respectively. In process

industry, n, m, and l are the number of observations, inputs, and outputs. Normally,

n > (m or l) and Eq. 2.14 is over-determined. Ordinary least squares (OLS) is a

common tool in calculating over-determined system and the objective function can

be written as:

J = minθ (‖Y −Xθ‖F ) (2.15)
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The well-known minimization result is: θ̂ = (XTX)−1XTY . This is an unbiased

estimation and the Frobenius norm of E in Eq. 2.13 is guaranteed to be a minimum

with respect to θ̂. However, OLS fails when X has highly correlated columns be-

cause XTX will be rank deficient so it cannot be inverted. In industrial processes,

correlation may arise from physical relationships (e.g., mass balance, energy balance

[76]).

PLS can solve the collinear problem in OLS which is a more robust and reliable

algorithm and the PLS objective is framed as [73]:

X = tpT + E (2.16)

Y = uqT + F (2.17)

where t, p are n× 1, m× 1, and u, q are n× 1, p× 1 vectors, respectively.

Instead of minimizing E and F , PLS chooses to maximize the correlation between

t and u:

J = max
(
tTu
)

= max
(
uT t
)

(2.18)

subject to the following constraints:

t = Xw, u = Y q

‖w‖2 = 1, ‖q‖2 = 1

Substitute t = Xw, u = Y q, and applying Lagrange multiplier to Eq. 2.18, we

obtain:

J ′ = max
(
wTXTY q

)
+

1
2
λq
(
1− qT q

)
+

1
2
λw
(
1− wTw

)
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To find the minimum, the first partial derivative is taken with respective to w and

q and set them to zero:

∂J ′

∂q
= wTXTY − λqqT = 0 (2.19)

∂J ′

∂w
= qTY TX − λwwT = 0 (2.20)

By rearranging Eq. 2.19 and 2.20, we have:

wTXTY q = λq ⇒ XTY q = λqw (2.21)

qTY TXw = λq ⇒ Y TXw = λwq (2.22)

Substitute Eq. 2.21, 2.22 into original PLS objective function Eq. 2.18 and take

consideration of the constraints (wTw = 1, qT q = 1):

J = max
(
tTu
)

= max
(
wTXTY q

)
= max

(
wTλqw

)
= max (λq) (2.23)

J = max
(
uT t
)

= max
(
qTY TXw

)
= max

(
qTλwq

)
= max (λw) (2.24)

There are some important features from above derivations including: λq = λw;

XTY Y TX and Y TXXTY shares the same eigenvalues (λq×λw) and the associated

eigenvectors are w and q, respectively. Similar to PCA, after one pair of ti, pi, ui,

qi, and wi is identified, the data matrices X and Y are deflated. Then the next pair

will be calculated following the same routine. In this way, the big loading and score

matrices are built up:

X = TP T

Y = UQT
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NIPALS for PLS

Same as for PCA, NIPALS is an efficient, robust and the most widely used al-

gorithm in PLS calculation. The wide popularity of NIPALS is partially due to

the outstanding tutorial paper by Geladi and Kowalski [34]. The general steps of

NIPALS include:

1. select column vectors xj , yj from X and Y as the starting point of ti and ui

2. outer modeling by iteration through:

wi =
XTui
‖XTui‖

ti = Xwi

qi =
Y T ti
‖Y T ti‖

ui = Y qi

3. inner modeling:

bi =
uTi ti

tTi ti

4. compare ti used in step 2 and calculated from step 3. If the difference is

smaller than certain convergence rule, go to step 5, otherwise go to step 2.

5. model deflation by:

pi =
XT ti

tTi ti

X = X − tipTi
Y = Y − bitiqTi

set i = i+ 1 and go to step 1.

This algorithm is named PLS-I and there is another variation called normalized

inner model (PLS-II). In PLS-II, bi is equal to one by carrying out certain nor-
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malization steps in outer modeling. Based on this core structure, there are many

variations focusing on speed, robustness, and accuracy improvements [23].

2.3 Statistical Modeling for Process Monitoring

Section 2.2 indicates PCA and PLS can extract and rank data correlations within

(or between) a matrix according to their importance (size of eigenvalues). In indus-

trial applications, when hundreds of process variables (PVs) are routinely measured,

important correlations capture the features of the plant. In other words, instead of

observing all PVs, monitoring the important correlations is more efficient and precise

as process noise is marked as unimportant or uncorrelated terms by the algorithm

automatically as shown below. In process monitoring applications, PCA and PLS

are applied in a similar fashion so PCA is picked as an example here.

2.3.1 Model Development

Suppose process data are stored in a matrix Xraw, n×m, where n is the number

of observations and m is the number of sensors [76, 17]. After scaling the matrix to

zero mean and unit variance for each column, the data matrix (X) is decomposed

by PCA:

X = [T T̃ ]× [PP̃ ] = T × P + T̃ × P̃ (2.25)

where T , P include score and loading vectors for process features part, corresponding

to large eigenvalues of the covariance matrix of X; T̃ and P̃ contain score and loading

vectors dominated by noises (small eigenvalues). The space spanned by important

loading vectors (P ) is named principal subspace while P̃ spanned residual subspace.

It is crucial to decide the number of principal components (ncp) that goes to

principal subspace (Sp) and residual subspace (Sr). For PCA, there are numerous

methods and according to our experience and the published literature [98, 86, 39],
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Cross Validation [92], Variance of the Reconstruction Error [86], and Parallel Anal-

ysis are proved to be robust and reliable. For PLS, Cross Validation [92] is the most

widely used method.

2.3.2 Model Deployment

After a new observation xraw, (m×1) is collected online, it is normalized by xnew =
xraw−xmean

xstd
where xmean and xstd are the column mean and standard deviation of

Xraw calculated in model building step. This is called online data preprocessing.

xnew is projected to principle and residual subspace by:

xp = PP Txnew (2.26)

xr = (I − PP T )xnew (2.27)

2.3.3 Fault Detection Metrics

Usually, squared prediction error (SPE, or Q statistic) and Hotellings T 2 are

calculated for each rescaled observation (xnew) by:

SPE = ‖xr‖ =
∥∥(I − PP T )xnew

∥∥ (2.28)

T 2 = tnewΛ−1tTnew = xnewPΛ−1P TxTnew (2.29)

T 2 measures the variance of xnew within the principal subspace model while SPE

projects xnew to the residual subspace. For more discussion on the asymmetric role

of T 2 and SPE in process monitoring, please consult [76]. If X follows multivariate

normal distribution, T 2 follows F distribution with npc, n− npc degrees of freedom

and the corresponding upper control limit with α confidence level is:

T 2
α =

npc(n2 − 1)
n(n− 1)

Fnpc,n−npc,α (2.30)
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Similarly, SPE upper control limit with a confidence level α is [44]:

SPEα = θ1

(
cα
√

2θ2h2
0

θ1
+ 1 +

θ2h0(h0 − 1)
θ2

1

)
(2.31)

where
θ1 =

∑m
j=npc+1 λ

i
j , i = 1, 2, 3

h0 = 1− 2θ1θ3
3θ22

An alternative way to calculate upper control limit for SPE is derived in [70]:

SPEα = gχ2
h,α (2.32)

where

g =
θ2

θ1
;h =

θ2
1

θ2

The relationship between the two approaches are explained in [70].

Recently, Yue and Qin [96] proposed the so-called combined metric which com-

bines T 2 and SPE metrics by certain weighting matrices. In process monitoring

applications, SPE is proved to be more sensitive to process faults and preferred over

T 2.

If the calculated metric value is smaller than the corresponding upper control

limit, xraw is classified as good. Otherwise, if several observations (e.g., five) con-

sistently indicate upper control limit violation, process fault is propagating in the

system and an alarm is triggered.

2.3.4 PCA Variations & Applications

Based on these basic algorithms and metrics, there are many variations which have

their specific applications and advantages. Table 2.1 listed some of these variations
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and their usage in chemical and biochemical related applications [98].

Processes Method References Method Features

Time invariant continu-
ous process

PCA Krestal et al. [51] Reduce dimension

Time invariant continu-
ous process

Recursive
PCA

Li et al. [56] Adaptive model updat-
ing

Dynamic continuous
process

Dynamic
PCA

Ku et al. [53] Time correlation be-
tween variables is
considered

Nonlinear continuous
process

Nonlinear
PCA

Dong and McAvoy
[25]

Nonlinearity is consid-
ered

Large-scale process Multiblock
PCA

MacGregor et al. [61] Decompose large plant
into small blocks

Multiscale process Multiscale
PCA

Bakshi [10] Deal with hierarchy
structures

Continuous or batch Model-based
PCA

Rotem et al. [78] First principle model is
used

Batch process Multiway
PCA

Nomikos and McGre-
gor [68, 70, 69]

Data unfolding is applied

Table 2.1: PCA Variations and Applications

2.4 Industrial Software Evaluation

One purpose of this work is to develop a generic software package for industrial

(especially pharmaceutical or biological) batch process monitoring. From a practi-

cal point of view, it is important to evaluate current commercial software features

including supported algorithm, application areas, and integration with other au-

tomation hardware and softwares. The evaluation is based on our direct experience

with some packages, the vendors’ product information, and user guides. Some of

the software can be applied to areas beyond MSPC, however, in this report we will

concentrate on evaluating the product features in process monitoring.
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2.4.1 Software Packages

AspenTech

Aspen Multivariate is designed for developing and deploying sophisticated multi-

variate SPC models that are deployed online using the InfoPlus data historian and

applications platform.

Product Features: Aspen Multivariate software suite requires online data from

InfoPlus (data server of AspenTech) and analyzes them to provide condition moni-

toring, process characterization, instrument and unit fault detection and diagnosis,

as well as process visualization, through a single graphical user interface. Five PCA

algorithms can be chosen. Four trending control charts are available for Aspen Pro-

cess Explorer to visualize and interpret the events, including Hotelling’s T 2 plot and

Q-residual plot.

Application Areas: The five PCA algorithm is not clearly identified and it is

impossible to judge if this package can be applied to batch processes. However, it

appears that this suite can be applied to any continuous process.

Brooks Automation

Brooks Automation Inc. produces both hardware and software. In this work,

only Statistical Process Control software products are analyzed. The name of the

software is Brooks FDC. According to their website, FDC is a real-time advanced

process control application package within the Brooks Sense Decide Respond real-

time solution set.

Product features: The Brooks FDC (Fault Detection and Classification) is a soft-

ware application that enables manufacturing person to monitor production and re-

spond to equipment health issues. The module integrates into 200mm and 300mm

27



factories through the equipment automation interface and supports both standard

sensor and custom data acquisition. Brooks FDC analyzes the data, classifies the

fault and notifies operators to address the issue. FDC develops and models vir-

tual health sensors or uses current available data to represent sensors where they

currently do not exist. Users can troubleshoot and resolve process and equipment

problems upon receiving fault notification from the Brooks FDC auto-notification

module, bringing the benefit of Internet communications to plant-wide processes

and equipment monitoring.

Application Areas: Brooks Automation mainly focuses on semiconductor industry

plus some other discrete manufacturing areas so the software package is suitable

for batch process but due to the uniqueness of the semiconductor manufacturing

processes, the software may not be able to apply to other batch industries.

CAMO

CAMO was founded by Arne Tysso in Norway in 1984. CAMO has headquarters

in Oslo, Norway with offices in Woodbrige, New Jersey USA, and Bangalore, India.

The flagship product of CAMO is the Unscrambler software.

Product Feature: Unscrambler is the major MSPC product from CAMO and its

important features are,

• PCA modeling

• Multivariate Curve Resolution

• PLS regression

• 3-way PLS regression

• Clustering (K-Means)
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• Automatic pretreatments in prediction and classification

Application Areas:

• Pharmaceutical & Biotechnology

• Chemical Manufacturing

• Food & Beverage

• Oil & Gas

• Pulp & Paper

StatSoft

StatSoft was founded in 1984 as a partnership of a group of university professors

and scientists. It is used in mission critical manufacturing applications, in regulated

FDA controlled industries [also to help achieve compliance with CFR Part 11 and

Sarbanes-Oxley (SOX) regulations] and as a foundation of corporate-wide Six Sigma

initiatives. The main product is Statistica, which provides four basic categories of

product lines: Enterprise; Web-based analytic applications; Data mining solutions

and Desktop.

Product Feature: The MSPC solution in Statistica belongs to Enterprise solutions.

In all, an Enterprise-wide SPC system contains Statistical Enterprise-wide SPC Sys-

tem (SEWSS) and Monitoring and Alerting Server (MAS) with some multivariate

statistical algorithm. The specific features include:

• Apply univariate and multivariate statistical methods for quality control, pre-

dictive modeling, and data reduction to complex manufacturing processes

• Determine the most critical process, raw materials, and environment factors

and their optimal settings for delivering products of the highest quality
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• Monitor the process characteristics interactively or automatically during pro-

duction stages, rather than waiting for final testing

• Build, evaluate and deploy predictive models based on the known outcomes

from historical data

Analytical Capabilities and Algorithms:

• Partial Least Squares

• Principal Components

• Neural Networks

• Independent Components Analysis (ICA)

• Support Vector Machines

• Cross-validation

Application Areas: Statistica can be applied to process industries, batch-oriented

manufacturing such as pharmaceutical, chemical, petrochemical, pulp and paper,

food manufacturing, semiconductor, and health care. Five out of the world’s 10

largest pharmaceutical companies use Statistica, not necessarily MSPC application

though.

Umetrics

Umetrics is founded by Svante Wold and Rolf Carlsson with their two graduate

students in 1987 and now it has more than 50 employees. Umetrics focuses on

both statistical process control and design of experiments and have quality software

packages available. In this work, we only examine MSPC related ones.
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SIMCA-P and SIMCA-4000 are multivariate data analysis tools which can only

be used in continuous processes. SIMCA-P+ is an extension of SIMCA-P which

can analyze both continuous and batch processes. SIMCA-Batch On-Line execute

batch models built with the SIMCA-P+. In other words, SIMCA-Batch can get

data online from process through different supported interfaces (e.g., OPC, PI, FIX,

MOPS, Oracle, SQL) or from a file and perform monitoring by deploying the model

from SIMCA-P+.

Product Feature: SIMCA-P+ is analyzed in this section due to its batch handling

ability. First of all, SIMCA-P+ has all features that SIMCA-P has. It can be used

to develop models then transfer to SIMCA-Batch On-line for execution in real-time.

In short, SIMCA-P+ can do:

• Batch model building (PCA or PLS)

• Control charts generation

• Contribution plots generation

• Various data filters

• Missing data treatment

• Report generation

Application Areas: In summary, Umetrics claims their software can be used in:

Pharma R&D, Pharma-PAT, Semiconductor, Plastics, Chemicals, Pulp & Paper,

Steel & Minerals, Food and Manufacturing. Pharma R&D focuses more on design

of experiments while the others have close relationship to MSPC.
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Company Aspentech Brooks
Auto.

CAMO Statsoft Umetrics

Featured
Software

Aspen Mul-
tivariate

FDC Unscramber Statistica SIMPCA-
P+

Specified Ap-
plication area

No Semiconductor No No No

Operation
Type

NA Batch Batch; Con-
tinuous

Batch; Con-
tinuous

Batch; Con-
tinuous

PCA Yes Yes Yes Yes Yes

PLS No NA Yes Yes Yes

Special Algo-
rithms

Five PCA
algorithm

NA 3-way PLS;
K-means

ICA; Neural
Network

Missing
data; Vari-
ous filters

Bioprocess
Solution

Yes but not
MSPC

No No Yes Yes

Table 2.2: MSPC Software Comparison

2.4.2 Package Comparison

Table 2.2 compares several aspects of the software that are of interest. It can

be seen that all software packages support PCA. Furthermore, Aspen Multivariate

relies only on PCA. Also PLS is a widespread tool and most software package have

that capability.

It seems that Aspen Multivariate is not very mature and has only an application

in InfoPlus. Of course, one advantage is that the new software communicates easily

with other Aspentech software and overall integrity can be excellent.

Among these software packages, Statistica shows powerful ability that includes

many advanced algorithms and can be interfaced to other industrial software through

their data server.
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Umetrics has great potential in fault detection and diagnosis and it seems their

products can be used for online process monitoring with their SIMCA-Batch On-

Line or SIMCA-4000 package. Because monitoring is only part of the whole process

control strategy, integrability with other control application softwares remains a

doubt. It may not be a good idea to have more than one software packages to

handle control and monitoring. In order words, if Umetrics combines their products

together and make them easy to communicate with other control software (e.g.,

DeltaV), it may be a good alternative.

Brooks Automation is not analyzed because it mainly focuses on the semiconduc-

tor industry and their MSPC software is designed for their hardware. CAMO is

similar to Umetrics and also has a trial version of their software.

Besides listed commercial oriented softwares, some large companies also have their

own batch MSPC applications including Dow Chemical and AMD. Unfortunately

we cannot get detailed information but they are all PCA, PLS based analysis with

special data preprocessing rules for specific processes.

From above analysis, it can be seen that all the packages include PCA modeling

and deployment features for continuous process monitoring. Continuous process is

always regulated around a steady state and thus PV correlations remain the same

once the system reaches a stable state. These features make PCA applications in

continuous process relatively easy. In contrast, for batch processes, many of the

packages are offline based and lack online calculation ability. Among those having

online batch monitoring feature packages, there are few successful industrial stories.

The challenges are two fold: 1. real time data management which allows data

shared fluently between data collection server (e.g., OPC), data storage server, and

algorithm part. 2. robust and reliable online batch monitoring algorithm that
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can deal with real production challenges like batch nonlinearities, within batch PV

correlation change at different batch phases, batch to batch deviations and so on.

From a chemical engineering point of view, the main focus in this work is to develop

a robust and reliable algorithm.

2.5 Batch Monitoring Procedure

In Section 2.3, some important definitions and algorithms for applying PCA to

continuous processes are given. However, for batch and semi-continuous processes,

there is no steady state and the historical trajectories usually contain consider-

able nonlinearity, so no effective online monitoring technique existed before 1990s.

Nomikos and MacGregor [68, 70, 69] originally introduced the basic ideas of Mul-

tiway PCA and PLS methods for online batch monitoring. Because PCA and PLS

are two dimensional decomposition tools, the three dimensional data collected from

different batches are unfolded into two dimensional before further calculation. An-

other type of approach is based on parallel factor analysis (PARAFAC) or Tucker3

method [15, 82] in which the three dimensional data are analyzed directly without

unfolding.

Multiway PCA is widely used in most known batch applications listed in Section

2.1 and thus it is chosen as the starting point of this work. In this section, the

basic flow chart (Figure 2.1) and important steps in performing Multiway PCA is

given. According to Figure 2.1, Multiway PCA contains offline model building and

online deployment steps. For convenience, the five steps in model development part

are named A1 to A5, and online deployment steps are called B1 to B5. NIPALS

algorithm and principal component number choice (npc) (A4) has been introduced

in Section 2.2 and T 2, SPE control chart definitions (A5, B3 and B4) are given

in Section 2.3. Thus, data synchronization (A2) and unfolding methods (A3) are
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explained and challenges in the whole algorithm are discussed as well.

Figure 2.1: Flow chart of basic Multiway PCA

2.5.1 Batch Data Synchronization (A2, B2)

As pointed out earlier, the unequal length between batches and phases is a com-

mon feature for batch process (Figure 2.2). If PCA is used directly without synchro-

nization, the results can be misleading. In other words, synchronization between

batches is a necessary assumption to perform monitoring [70, 98]. However, rela-

tively little attention has been paid to this area.

Besides traditional data interpolation, Kassidas et al. [46] migrated dynamic

time warping (DTW) method from speech recognition and applied it to polymer-

ization process data synchronization. Recently, a modified derivative-based DTW
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Figure 2.2: PV trajectory from different batches

algorithm is applied to time series data analysis [47]. Cherry [20] compared data

interpolation and DTW in the application of etching process. According to his re-

search, interpolation was good enough for many cases and DTW was suggested for

poorly aligned cases. At the mean time, Cherry admitted data synchronization was

far from a closed topic and needed new algorithms and developments. Moreover,

most chemical and biochemical batches are not aligned well naturally compared

with semiconductor processes. Thus, it is important to evaluate available results

and propose new solutions. A detailed discussion is postponed until Chapter 3.

2.5.2 Three-dimensional data unfolding (A3) [98]

In this section, all the trajectories are assumed to have an equal length as a result

of synchronization (A2). Different from two dimensional data in continuous process

(X matrix in Section 2.3), historical data of batch are usually stored in an I×J×K

matrix (X), where I is the number of batches, J is the variable number, and K is

the sampling times (observations). A characteristic batch profile is shown in Figure

2.3 where large nonlinearities present and multiple phases exist. Recently, Kourti

[48] has pointed out practical concerns that the measurements may not be equally
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spaced and that some variables do not exist throughout the whole processes. These

situations are variations of the general case (K is the same for each batch), but in

this chapter J and K are assumed constants.

Figure 2.3: PV profile of a polymerization process

Sprang et al. [83] provided a critical evaluation for online batch processing and

discussed different data unfolding methods. In summary, there are three ways to

unfold the data: batch-wise, variable-wise, and time-wise (Figures 2.4 to 2.6). Be-

sides Sprang et al., Lee et al. [54], Westerhuis et al. [89], and Kourti [48] have also

compared the three different unfolding methods.

The way by which unfolding method uses leads directly to the variation informa-

tion that PCA extract. Batch-wise unfolding focuses on analyzing the differences

among batches, variable-wise unfolding attempts to discover the variability between

variables, and time-wise unfolding is used to extract the correlation among observa-
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tions at different times. The first two methods are widely used in batch monitoring,

and we will discuss them in detail here.

After unfolding, the mean-centering and rescaling steps are carried out as de-

scribed in Section 2.2 (preprocessing). Centering is performed so the PCA model

represents the deviation from the mean, and the scaling step is necessary to give

each process variable an equal weight prior further analysis. If different weights are

needed for some variables, then a diagonal weighting function multiplies the raw

data after mean centering [70].

Figure 2.4: Unfolding data matrix according to batch-wise X → X(I × JK)

When batch-wise unfolding is used, the mean trajectory reflects the nonlinearities

of the system. After preprocessing, the residual is the deviation of the specific

trajectory from the average profile of the process. The nonlinear behavior of the

batch is removed in this way, which is a big advantage, but the row vector data will

not be complete until the end of a batch (Figure 2.4). In PCA online monitoring, the

score and loading calculations need a complete data set. Thus, one has to predict

the future values for the whole batch [70, 69] in online application, which is time
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consuming and can add uncertainty, especially during a batch’s initial period.

Figure 2.5: Unfolding data matrix according to variable-wise X → X(IK × J)

The variable-wise method discovered by Wold et al. [94] does not need future data

prediction because only the current time data matrix (I ×K) is needed for online

applications (a small data matrix shown in Figure 2.5). The shortcoming of the

variable-wise approach is that the system dynamics are remained in the data set after

preprocessing. Thus, the calculated loadings will contain the correlations between

variables, with large nonlinearity included [48, 54]. Furthermore, Westerhuis et

al. [90] found that variable-wise analysis offers little benefit to monitoring, since it

focuses on the wrong source of variations in the data.

Recently, Lee et al. [54] combined batch-wise and variable-wise methods, named

hybrid-wise unfolding, and applied it successfully to a bioreactor fault detection case.

Then, the data set is unfolded batch-wise, and the mean-centering and scaling steps

are performed. After that, the data are rearranged to the variable-wise structure.

In this way, future data prediction is avoided and data nonlinearity is removed at
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Figure 2.6: Unfolding data matrix according to time-wise X → X(K × IJ)

the same time.

Hybrid-wise unfolding Multiway PCA (HMPCA) is proved to be more sensitive to

small process faults than other unfolding approaches. However, all Multiway PCA

based algorithm neglected the dynamics (time dependent correaltions) within the

batch. Thus, HMPCA based algorithm is chosen as the starting point for further

algorithm development study explained in Chapter 4.

Up to now, all the blocks in Figure 2.1 has been more or less covered. Considering

the features of batch process, algorithm developments focus on data synchronization

(Chapter 3) and batch dynamics treatment (Chapter 4).
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Chapter 3

Batch Profile Synchronization

In Section 2.5, the importance of data preprocessing for batch monitoring is pre-

sented. In short, data synchronization is a foundation assumption for statistical

modeling approaches. By far, data interpolation [20], indicator variable [68, 50], Dy-

namic Time Warping (DTW) [46], and Correlation Optimized Warping (COW)[67]

are the best known methods. Important features of each method are listed in Table

3.1 and analyzed below.

Methods Online Implementable Guaranteed
Synchronization

Computation
Load

Interpolation Synchronize every observation No Low
Indicator Variable Synchronize every observation No Low

DTW Synchronize every observation Yes High
COW Cannot synchronize until a

block of observation is available
Yes High

Table 3.1: Synchronization Methods Comparison

In some cases the Indicator Variable approach does not work well [48] and simple

Interpolation within the data can be employed but it cannot guarantee synchroniza-

tion (the batches may still reach completion at different times). DTW and COW
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are more complicated but they capture the features, match patterns for batches of

different length and have broad applications. COW was proposed in 1998 to correct

chromatograms for shifts in the time axis prior to multivariate modeling [67]. DTW

was first used in speech recognition and introduced for batch data analysis by Kas-

sidas et al. in 1998 [46]. Both COW and DTW translate the alignment problem

into a dynamic optimization problem. The main difference is that COW is based

on segment-wise data correlation analysis and DTW relies on a point to point Eu-

clidean distance calculation. Recently, both methods are compared as preprocessing

methods for chromatographic data analysis [72, 85]. While nearly identical results

were suggested by both methods, COW was slightly preferred because a segment of

data was considered together rather than one point at a time in DTW, such that the

number of possible paths is reduced. Furthermore, DTW may need rigid constraints

and sometimes raw distance calculations are not good enough [85]. However, for on-

line process monitoring purpose, ideally data synchronization should be carried out

in real time when a new observation is available, but COW needs to wait until a

block of data is collected. As a result, COW is suitable for low frequency applica-

tions and DTW is preferred and selected as the starting point for batch monitoring

applications.

In Section 3.1, DTW and Derivative DTW (DDTW) are reviewed. Next, a new

Robust DDTW (RDDTW) algorithm is proposed and Section 3.3 compares different

synchronization methods by using various datasets. A concise summary is given in

Section 3.4.

3.1 Dynamic Time Warping and its derivative

Time series data are a commonly occurrence in physical, social, and economic

systems. In order to compare one sequence with another, it is always desirable to
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align the features (peak, valley, etc.). Dynamic Time Warping (DTW) can cap-

ture the dynamics and match patterns for different time series. After it was first

used in speech recognition, the DTW method was successfully applied to industrial

emulsion polymerization process monitoring [46], spectroscopic profile analysis [72],

semiconductor production monitoring [20], and chromatographic data alignment

[85]. Below, the key algorithm and important features for DTW and its variation

are introduced.

3.1.1 Dynamic Time Warping Algorithm

Assume xref is a reference trajectory (previously defined) and xnew is a new

trajectory to be synchronized. The first step of DTW is to define the Euclidean

distance between each point of the two trajectories as:

d(i(κ), j(κ)) = (xref [i(κ), :]−xnew[j(κ), :])×W×(xref [i(κ), :]− xnew[j(κ), :])T (3.1)

d is the local distance, W is a positive definite weighting matrix that reflects the

repeatability of each process variables for batch synchronization. κ is the number of

grid points along the path (in Figure 3.1, κ = 1, 2, . . . , 7). The lengths of xref and

xnew are t and r, respectively. Then the total distance between the two trajectories

are:

D(t, r) =
∑K

κ=1 d(i(κ), j(κ))
N(w)

(3.2)

where N(w) is a normalization factor. There are many possible point assignments

and the goal is to find the optimal path η that minimizes D(t, r), which can be

denoted as (see the blue line in Figure 3.1):

η = {c(1), c(2), . . . , c(K)} (3.3)
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c(κ) represents a grid point in Figure 3.1, where κ can be treated as another index

used to connect reference (i) and new trajectories (j), e.g. c(1) = [1, 1], c(2) = [1, 2],

. . ., c(7) = [5, 6] in Figure 3.1. K is the total number of points needed for the path

(K = 7 in Figure 3.1).

Before minimizing Eq. 3.2, there are some global and local constraints that should

be addressed.

Global constraints: The two ends of both trajectories (c(1) and c(K)) should be

aligned together:

c(1) = [1, 1]

c(K) = [t, r]

where

c(κ) = [i(κ), j(κ)]

The constraint on aligned path lengths for xref and xnew is:

max(t, r) ≤ K ≤ t+ r

Local constraints: Local constraints are used to make the path continuous and

monotonic. If (i, j) is the κth point on η(c(κ)), then the predecessor point on path

η(c(κ− 1)) can be any one of the three points(the three directions in Figure 3.1):

c(κ− 1) = (i− 1, j), (i− 1, j − 1), or(i, j − 1) (3.4)

In Figure 3.1 and all surface plots of warping path in this chapter, the darker one

block is, the larger feature differences (raw distance for DTW) there is between the
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Figure 3.1: Warping path by DTW

corresponding observations in the reference and new trajectories. After minimizing

Eq. 3.2 subject to the local and global constraints by dynamic programming, the

optimal warping path can be found. Detailed algorithm descriptions can be found

in [47, 46, 77].

3.1.2 Derivative Dynamic Time Warping Algorithm

When a feature (peak, valley, etc.) is slightly higher (or lower) from one trajectory

to another, DTW may suggest aligning one single point on xref to a large number

of points on xnew or the opposite way, as shown in Figure 3.2 (a). We call this

undesirable behavior a singularity. To overcome these problems, Keogh and Pazzani

[47] used the point derivative instead of Euclidian distance to measure the difference
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between two trajectories:

d(i(κ), j(κ)) = (dxref [i(κ), :]− dxnew[j(κ), :])×W × (dxref [i(κ), :]− dxnew[j(κ), :])T

(3.5)

where dxi = xi−xi−1

2 . DDTW can be carried out by replacing Eq. 3.1 by Eq. 3.5

and then carrying out the minimization of Eq. 3.2. Instead of measuring Euclidean

distance, DDTW considers the estimated local derivatives. According to Keogh and

Pazzani [47], the time requirement for DDTW is O(tr), which is the same as DTW,

thus both methods take approximately the same time for computation. Detailed

computation time comparison is made in Section 3.3.

Figures 3.2(a) and (b) compare the synchronization results of DTW and DDTW.

The new trajectory follows x = cos2(t) + sin(t) (in red) and the valley between

time points 6 to 12 in the reference trajectory is moved downward by 2 (in blue).

According to DTW (Figure 3.2(a)), point 8 in the new trajectory is aligned to

five points (7 to 11) in the reference trajectory. This result is consistent with the

shortcomings of DTW described earlier. After replacing point distance by point

derivative, DDTW results are shown in Figure 3.2(b). It can be seen that point 8 in

the new trajectory is only aligned to point 8 in the reference. Comparing Figures

3.2(a) and (b), one can see that the new trajectory is aligned much better by DDTW

than DTW. Figure 3.3 shows the alignment path by DDTW. As expected, a perfect

alignment between these two trajectories should be a diagonal line and Figure 3.3

is very close to this.

From this noise-free case, we can see DDTW seems to correct the singularity point

problem with DTW. However, DDTW may not be as robust as DTW as a result of

numerical derivative estimation. When left point estimation (dx = xi−xi−1

2 ) is used

to estimate point derivatives of the process: x(t) = sin(t) +N(0, 0.04), the quality
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of estimation becomes unacceptable (Figure 3.4). Thus, a robust derivative-based

time warping algorithm is desirable for industrial applications.

3.2 Robust Dynamic Time Warping

In 1964, Savitzky and Golay [79] combined the idea of least squares and moving

window together, which can be used to smooth raw data and predict derivatives

simultaneously. In 1972, errors contained in [79] were corrected by Steinier et al.

[84]. There are more than 1000 citations according to web of science and most of

the applications are in signal processing and analytical chemistry data analysis. The

main advantage of this approach is that it tends to preserve features of the distribu-

tion such as relative maxim, minim and width, which are usually ’flattened’ by other

adjacent averaging techniques (like moving averages). However, most applications

are offline data processing and real-time synchronization application are unavailable

to our best knowledge. In this Section, the SG filter algorithm is discussed then

RDDTW is proposed by combining DDTW with SG filter.

3.2.1 SG Filter

The smoothing problem with a moving window can be reformulated as follows:

2h + 1 equally separated points are to be fit into an mth order polynomial (m <

2h+ 1):

fi =
m∑
k=0

amki
k; i = −h,−h+ 1, ..., 0, ...h− 1, h (3.6)

From the 2h+ 1 raw measurements, we are interested in estimating the noise free

value of the middle point (i = 0) and its derivatives. There are methods to estimate

the left (i = −h) and right (i = h) point values but this will sacrifice estimation
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(a) DTW alignment

(b) DDTW alignment

Figure 3.2: Alignment of two trajectories.
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Figure 3.3: DDTW alignment path of two trajectories.

Figure 3.4: Derivative estimation of a noise corrupted sinusoid.
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accuracy. The jth order derivatives of Eq. 3.6 at i = 0 can be expressed as:

(
djfi
dij

)
i=0

= j!amj (3.7)

Suppose the noise free value of the 2h+ 1 points are X = [x−h, x−h+1, ...xh] such

that the objective function of smoothing is:

J = min
{

(X − F )T × (X − F )
}

(3.8)

The unknowns in Eq. 3.8 are the polynomial coefficients and in order to find

the best fit, the first derivative should be zero (Note: there is no constraint on

polynomial coefficients):

∂J

∂amγ
=

h∑
i=−h

[(
m∑
k=0

amk × ik
)
− yi

]
× iγ + am0 − x0 = 0 (3.9)

By solving Eq. 3.9, we have:

m∑
k=0

amkSγ+k = Fk (3.10)

where

Sγ+k =
h∑

i=−h
iγ+k

Fk =
h∑

i=−h
ik × xi

and γ is the equation number that runs from 0 to m. Eq. 3.10 can be used to deter-

mine the value of polynomial coefficients amk derived in [79, 84]. If the polynomial

order or the number of observations used in the estimation is so large that it is not

listed in [79, 84], Eq. 3.10 can be used as follows. The first step calculates Sr+k

and substitutes it into Eq. 3.10. Together with Fk, all parameters (amk) can be
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expressed by a weighting matrix in terms of observations.

As an example, seven observations are used to determine the first derivative by

fitting a quadratic polynomial with following parameter settings, m = 2; h = (7 −

1)/2 = 3 and k = 1:

dx0 = a21 =
−3x−3 − 2x−2 − 1x−1 + 0x0 + 1x1 + 2x2 + 3x3

28

Taking Eq. 3.7 into account, j = 1 so that j! = 1, thus a21 is the robust quadratic

derivative estimation function parameter with seven observations.

By combining the Savitzky-Golay (SG) filter with DDTW, a robust DDTW algo-

rithm can be proposed. The noisy sinusoid process described in Section 3.1.2 (Figure

3.4) is tested by the SG filter method. A piecewise average (every ten observations)

is taken first as the process dynamics change much slower than the sampling rate.

For comparison purpose, widely used exponential filter is used as the preprocessing

step for left point derivative estimation:

xfilter(i) = x(i)× a+ xfilter(i− 1)× (1− a), a = 0.5

As shown in Figure 3.5(a), both SG and exponential filter showed an excellent

state tracking ability with negligible noise level. However, for derivative estimation

(Figure 3.5(b), SG filter showed significant advantages over exponential filter based

left point method. Though the noise level for raw measurements is reduced by using

exponential filter, left point estimation magnifies the remaining noise significantly.

SG filter fits blocked wise data into polynomials then use polynomial to calculate

derivative which guarantees a better precision. Left point estimation can be treated

as a special case of SG filter with m = 1, and h = 2.
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Two parameters are required for SG filter: polynomial order (m) and number of

observations in a block (2h + 1). In this problem (Figure 3.5(b)), both five point

and seven point second order polynomial SG filter give satisfactory results, thus the

SG filter is not sensitive on the two filter parameters. Filter parameter selection is

further discussed in Section 3.3.

If the process noise does not follow normal distribution, Eq. 3.8 should be re-

formulated into a Maximum Likelihood Estimation rather than a Least Squares

problem. In that case, the solution will depend on noise probability density function

(pdf ) and the solution may not be trivial. However, normal distributed noise is a

commonly used assumption in both industry and academia.

3.2.2 Robust DDTW Algorithm

RDDTW can be treated as a combination of DDTW and robust numerical derivative

estimation. Generally speaking, RDDTW algorithm can be summarized as:

1. Evaluate the raw trajectory. If the raw trajectory has a high frequency noise

level, it is necessary to use piecewise averaging before performing further cal-

culations.

2. Use SG filter to estimate numerical derivatives. In the above example, only a

quadratic polynomial is used. In real applications, one can choose higher order

polynomial together with a larger number of observations. Usually the number

of observations should be at least twice as many as the order of the polynomial

in order to get good results [79]. The number of observations indicates the

rate of change in the dynamics. For example, a second order polynomial is

chosen and if four observations are used to fit the polynomial, it indicates the

four observations follow the polynomial. If ten observations are used to fit,

then it indicates the ten points follow the trend of a second order polynomial.
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(a) original state estimation

(b) derivative estimation

Figure 3.5: SG filter and exponential filter comparison.
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Polynomial order hardly goes beyond fifth for chemical processes due to the

relatively slow dynamics.

3. Use the estimated derivative and the algorithm described in Sections 3.1 to

perform the alignment robustly.

Above steps are suitable for all offline signal processing applications. For batch

online synchronization, once an observation (i) is collected, numerical derivative

estimation for the i − h point will be carried out (2h + 1 is the number of points

used to fit an mth order polynomial), as discussed in Section 3.2.3.

3.2.3 Computational Procedure

In Figure 2.1, the process monitoring applications are divided into offline model

building and online monitoring. This chapter mainly deals with the Data Synchro-

nization block in both cases.

PCA model development :

A Scaling: There is a serial of good batches: (X1)raw, (X2)raw,. . . , (XI)raw and

each batch has J variables. For each variable, calculate its range in every batch

and then take the average value. Finally, divide each variable in all batches

with the average range of the variable. This step ensures every variable has

the same magnitude

Xi(j, :) =
Xi(j, :)raw × i∑I

i=1 range(Xi(j, :)raw)

B Synchronization: There are I good batch data sets and the one (Xi) that

is closest to the average length of all trajectories is selected as the reference

batch. The weighting matrix W is set equal to an identity matrix at the

beginning of the iteration.
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Iterative process:

a Apply the SG filter to estimate local derivatives and calculate the optimal

synchronization path by RDDTW algorithm described in Section 3.2.1

and 3.2.2.

b Apply backward tracking as described in [46].

c Asymmetric synchronization: After backward tracking, the optimal path

will have a different length for both reference and sample. In order to

make the synchronized path length equal to reference, the value of consec-

utive horizontal steps (Figure 3.3) are averaged and aligned with related

reference points. In this way, the sample trajectory will have the same

data length as the reference.

d The synchronized batch profile (Xi) have the same length now, so define

the average trajectory as:

X =
I∑
i=1

Xi

I

e Define the weighting matrix W as follows:

W (j, j) =

(
I∑
i=1

K∑
k=1

[
Xi(k, j)− (X)(k, j)

]2)−1

Normalization:

W =
W × J∑J
j=1W (j, j)

Note, W is a diagonal matrix.

f Go back to step a until W converges. When W converges, store W and

average trajectory (X) for future use.

C Offline PCA model building. This belongs to the next block in Figure 2.1.
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PCA Online Monitoring :

A Scaling: Divide each variable with the corresponding average range in PCA

building step.

B Synchronization: Set the average trajectory of the good batches as the refer-

ence and perform synchronization (same as item c, asymmetric synchroniza-

tion, in model building step) using the weighting matrix (W ) that was stored

from PCA development.

C Online PCA calculation which belongs to the next block in Figure 2.1.

3.3 Case Study

Three examples are used to cover lab experimental data, dynamic simulation

data, and industrial manufacturing data. The purpose is to test the robustness of

the algorithm under different circumstances (signal/noise ratio, sampling frequency,

process dynamic frequency, etc.), and also algorithm performance with different

parameter settings.

3.3.1 Industrial NIR Data

In 2002, the International Diffuse Reflectance Conference (IDRC) published a

shootout data set including spectra from 654 pharmaceutical tablets of two spec-

trometers. Here, two spectra were selected to test our algorithm (Figure 3.6). One

can see the raw trajectories are fairly well-synchronized and only a minor alignment

is needed. The main differences between xref and xnew are the magnitudes of the

trajectory features.

Figure 3.7 compares the alignment results. One can see that DTW shifted the

raw trajectory between wavelength 30 to 80, which is unnecessary. Furthermore,
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Figure 3.6: Raw NIR trajectory from IDRC dataset. Blue: reference trajectory.
Red: trajectory to be synchronized.

flat periods (singularity points) appear at nearly every peak. For this low noise

level case, DDTW and RDDTW give similar results and only minor differences

exist around wavelength 550, which indicates RDDTW and DDTW are equivalent

in this case. Thus, we can conclude that DTW causes singularity points due to

feature differences, and for low noise level cases, both DDTW and RDDTW give

satisfactory results that avoid singularity points.

3.3.2 Dynamic Trajectory Synchronization

Section 3.3.1 gives an offline analytical data synchronization problem and this

section focuses on a dynamic trajectory synchronization problem. Figure 3.8 shows

a process developed by SIMULINK. The system input is composed of a pulse se-

quence and a random number generator. After a one second transport delay, the

input signal passes through a second order and a first order system, sequentially.
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Figure 3.7: Synchronized NIR trajectory. Black dash: DTW. Green dash: DDTW.
Blue dash: RDDTW

Finally, the output from first order system contains random noise. Reference and

new trajectories are generated with different pulse magnitudes (0.7 for reference

and 0.5 for new trajectory, respectively). Normal distributed random numbers were

added to the input (N(0, 0.05)) and output (N(0, 0.01)) variables, respectively.

The simulated trajectories are shown in Figure 3.9 with a sampling rate of sec-

onds. Both trajectories behave similarly but the new trajectory (in blue) is neither

synchronized nor has the same magnitude as the reference (in red). It can be seen

that the noise frequency is not very high and the piecewise average is taken for

every two observations. For all three methods, the local constraint is set to 40. For

RDDTW, seven points with a 3rd order polynomial is used.

Figure 3.10 shows the alignment paths for each method. It is clear that Figure

3.10(a) has many perpendicular and horizontal moves indicating singularity points.
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Figure 3.8: Dynamic simulation example.

Figure 3.9: Reference and new trajectories

59



Furthermore, the alignment path reaches the boundary at times which means syn-

chronization failure. In comparison, DDTW and RDDTW have fewer singularity

points and do not reach the boundary set by bandwidth constraints. After a closer

look at Figures 3.10(b) and (c), DDTW and RDDTW give different alignment paths.

DDTW follows a straight line for the first 80 time periods with a ratio equal to one.

This means few data folding or extracting happens during this phase. From pe-

riod 80 to approximately 100, there is a significant horizontal dominated line. In

comparison, RDDTW roughly go diagonal all through the batch which justifies no

singularity point and the new trajectory is homogeneously shortened to match the

pattern of the reference which is in accordance with intuition.

Aligned trajectories are shown in Figure 3.11. DTW (in blue) shows many flat

periods caused by singularity points. Figure 3.11(a) compared the reference (in red)

trajectory with both DDTW (in green) and RDDTW (in black) results, neither

method has many singularity points. DDTW results still have a significant phase

delay for the first 85 time period compared with reference trajectory which indi-

cates failure. On the contrary, RDDTW shows well-synchronized results all along

the batch. In Figure 3.11(b), warped trajectories are compared with original one.

DTW distorts the original one as shown by the singularity points. As discussed

above, DDTW nearly coincides with the original trajectory for the first 85 time pe-

riods. At the mean time, RDDTW keeps the important features of the original data

(peak height, valley depth, etc) and synchronized well with the reference trajectory

throughout the whole batch.

From above analysis, one can see that DTW fails due to singularity points; DDTW

overcomes this difficulty but the noise level leads to unacceptable alignment results;

RDDTW with seven points and 3rd order polynomial works best.
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(a) DTW (b) DDTW

(c) RDDTW

Figure 3.10: Alignment path for different methods.

The next question is how filter parameters affect the performance of RDDTW.

Due to the slow dynamics of most chemical processes, high order polynomial for a

small number of observations is unnecessary. Here, polynomial order is set to h and

the number of points used to fit the polynomial is 2h+ 1. Thus, the only unknown

parameter left is h and testing results are shown in Figure 3.12. One can see that,

for h = 3, 4, and 5, the synchronization results are all acceptable despite the flat

period for h = 4 around t = 50. The resulting trajectories are well-aligned with

the reference and most features in original trajectories are retained as well. Thus,

RDDTW method is robust to both process noise and filter parameter setting.
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(a) Reference

(b) Original

Figure 3.11: Alignment results comparison.
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Figure 3.12: Alignment results with different parameter setting.

3.3.3 Industrial Data Synchronization

Process data provided by Lubrizol and Emerson Process Management are tested

here (the values are masked). There are more than twenty process variables mea-

sured and for demonstration purpose, one with most interesting features is shown

here (Figure 3.13). The whole trajectory can be roughly divided into four parts

and each part has different lengths, heights, and slopes. The total length of xref

and xnew are different as well. Furthermore, different from previous examples, the

reference and new trajectories crossover each other throughout the batch. These

commonly faced features challenge both distance and derivative based methods in

many ways. For DTW (distance based), the crossings between two trajectories

indicate small distance differences, therefore the algorithm may have difficulty in

discriminant xref and xnew, and results will bias toward the reference trajectory.

For DDTW (derivative based), the process noise may lead to unsatisfactory results.
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For RDDTW (derivative based), the polynomial order needs to capture the impor-

tant feature changes (transient periods between phases) as fast as possible with noise

filtered out. Also, for all methods, the bandwidth constraint is another important

parameter to discuss.

Figure 3.13: Reference and New Trajectories for Lubrizol chemical specialty Process.

Figure 3.14(a) compares the effect of the bandwidth constraints on RDDTW.

When the bandwidth constraint is equal to 30, the synchronized trajectory (in

green) deviated significantly from both reference and original ones. Meanwhile,

if the bandwidth constraint is equal to 100 (in black), the resulting trajectory re-

tained most original data features and was synchronized well with the reference.

The small bandwidth constraint leads to a problem because the important align-

ment feature points are not included in the allowed synchronization region. By

looking at Figure 3.13, the most significant features are the peak and the valley

between time period 80 and 105. We name these key points for synchronization. It
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is important to align the key points with each other. In other words, include key

points in the allowed synchronization region. For this problem, the key points are:

1, 〈81(original), 95(reference)〉 and 2, 〈91(original), 105(reference)〉, represent-

ing the peak and valley. This is illustrated by the surface plots in Figure 3.14(b) to

(d), where the lighter part indicates the allowed region for synchronization. Figure

3.14(b) indicates when the key points are not included, the synchronized path (-o-)

cannot pass through those points that must be aligned. If the key points are included

(Figure 3.14(c) and (d)), RDDTW is able to go through those points and obtain

the correct alignment results. Because the main purpose of setting the bandwidth

constraint is to save computational resources, it is reasonable to set it to a relatively

large value when memory storage is not an issue. Though RDDTW is used here,

DTW and DDTW follow the same rule for the bandwidth constraint choice as key

points are a feature of trajectories.

After setting the bandwidth constraint to a suitable number (100 in this case),

DTW, DDTW and RDDTW are tested. For DTW and DDTW, there is no other

parameter to be specified. For RDDTW, the polynomial order (m) and number of

points to fit the polynomial (2h + 1) need to be specified. In Section 3.3.2, it is

suggested to set the polynomial order to h. This rule is tested here with h = 2, 3,

and 4. First, DTW, DDTW, and RDDTW (h = 2) results are compared in Figure

3.15. In Figure 3.15(a), DTW results mostly overlap with the reference trajectory,

which means the results are heavily biased toward the reference trajectory and

original features such as peak height, rising slope, etc. are lost. For DDTW, the

rising period from time 50 to 90 is not synchronized with the reference and RDDTW

gives a well-synchronized trajectory with less bias toward the reference trajectory. In

Figure 3.15(b), DDTW and RDDTW are plotted against the original trajectory. It is

apparent that DDTW did not shift the original data until time 90, which implies that

under industrial noise conditions, DDTW may have difficulty in accurate derivative
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(a) synchronized traj. (b) bandwidth constraint = 30

(c) bandwidth constraint = 40 (d) bandwidth constraint = 100

Figure 3.14: Alignment path with different bandwidth.

estimation. RDDTW warped the data and retained the important features including

rising ratio, peak height and valley depth.

The last parameter to discuss in RDDTW is h. Figure 3.16 shows the results for

different h and it is clear that different values of h give very similar results, which is

consistent with the results of the dynamic simulation example (Figure 3.12). These

results suggest when the number of points used to fit the polynomial is set to 2h+1,

the algorithm is robust to different polynomial orders (h).
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(a) Reference

(b) Original

Figure 3.15: Alignment results comparison for industrial data case.
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Figure 3.16: Alignment results with RDDTW and different h

Table 4.2 compares the CPU time spent for different algorithms. To highlight

the differences, each algorithm was called 100 times by an Intel 1.7GHz computer.

With increment of bandwidth constraint, all three algorithms take more time as

more point-by-point calculations are required, but all three methods take similar

times (±0.5 second at most) to perform the calculation. DTW as the foundation

algorithm takes the lowest amount of time. DDTW, as indicated in Section 3.1.2,

takes nearly the same time as DTW, which means the left point estimation step is

computationally cheap. For RDDTW, because the polynomial parameter values for

SG filter were stored in a file ahead of time, the online computation step only reads

those values and the extra time taken is negligible. Moreover, different polynomial

orders did not affect the speed too much because the vector multiplication of a 3rd

and a 4th order polynomial is nearly the same computationally. Therefore, by using

RDDTW, the online calculation burden is only slightly increased and the benefit

can be significant.
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Bandwidth Constraint
Times (s)

DTW DDTW RDDTW (m = 4) RDDTW (m = 3)

100 27.65 27.80 28.72 27.75
80 24.35 24.52 24.98 24.79
60 20.97 20.96 20.99 21.28

Table 3.2: CPU Time Comparison by Different Algorithms

3.4 Summary

In this chapter, a new algorithm (RDDTW) is proposed to perform data alignment

for batch processes that can be summarized as three steps:

1. Piecewise averaging according to sampling frequency and process dynamics;

2. SG filter to estimate local numerical derivatives;

3. Dynamic optimization to calculate the alignment path.

Three examples are used and synchronization results show that RDDTW can

significantly reduce the number of singularity points, retain the most important

features of the original trajectory and avoid bias toward the reference profile. In

addition, choosing three algorithm parameters (bandwidth constraint, polynomial

order, and number of points used to fit the polynomial) are discussed and suggestions

are made.

Although the examples shown in this research are mainly chemically related,

RDDTW can be used in other time series analysis such as gesture recognition,

manufacturing, speech processing and medicine.
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Chapter 4

A Combined EWMA-HMPCA

Technique

Section 2.5 and related references [97, 54] proved that Hybrid-wise unfolding Mul-

tiway PCA (HMPCA) is effective for small batch fault cases. However, no matter

which unfolding method is applied, available Multiway PCA (MPCA) methods treat

the monitored processes in a static fashion and do not take process dynamics into

account. These methods assumed that one variable at a specific time is only cor-

related to other process variables at that time and independent of all earlier and

future process variable measurements (time independent). This assumption can be

detrimental to monitoring processes with a small amount of propagating variation or

drift. These faults cannot be identified until their magnitudes reach the static con-

trol limit. Wold [93] utilized the Exponentially Weighted Moving Average (EWMA)

method to detect small levels of variation, and Yoo and Lee [95] combined EWMA

with kernel PCA to consider drifting effects in the process. However, these efforts

are limited to continuous processes.
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Unlike a continuous process, a batch process has a strong time dependency (dy-

namics). Thus, it is necessary to incorporate dynamic effects into modeling to

capture more information of the batch. To do this, Chen and Liu proposed Batch

Dynamic PCA (BDPCA) [18] based on an earlier Dynamic PCA (DPCA) frame-

work for continuous processes [53]. BDPCA has been shown to be sensitive to small

process variations and drifts but it requires much more computational resources

compared with traditional MPCA [99], which will be discussed in Section 4.1.2.

In this chapter, a new method incorporating batch process dynamics into PCA

is proposed by incorporating EWMA with HMPCA (E-HMPCA). In Section 4.1,

HMPCA, Batch Dynamic PCA (BDPCA) and EWMA methods are reviewed. The

EWMA combined HMPCA algorithm is proposed in Section 4.2. Results from three

well-known batch process examples are compared in Section 4.3. Finally, a summary

is given in Section 4.4.

4.1 Related Techniques

4.1.1 HMPCA

In Section 2.5, HMPCA is introduced as the best Multiway PCA approach because

it combines the advantages of both batch-wise unfolding and variable-wise unfolding

approaches. In short, by using HMPCA, batch nonlinearity is reduced while the

future observation prediction step is avoided. After unfolding, the resulting matrix

X, (IK × J) is decomposed by PCA:

X = T × P (4.1)

where T and P are IK×npc and J×npc matrix, respectively. Hence, the scores (T )

preserve the major statistical relations with respect to time and batch. Next, the
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large score matrix is time-sliced into tk(I × npc) components and the corresponding

covariance matrix at each time is Sk = tTk tk
I−1 .

For online monitoring, when a new observation (xnew,k) is taken, T 2 and SPE

control charts are used for analysis:

tnew,k = xnew,k × P (4.2)

T 2
new,k = tnew,kS

−1
k tnew,k ↔ npc(I2 − 1)

I(I − npc)
Fnpc,I−npc (4.3)

SPEnew,k =
(
(I − PP T )xnew,k

)T (I − PP T )xnew,k ↔ vk
2mk

χ2
2m2

k/vk
(4.4)

where mk and vk are mean and variance of the training data at time k. Different

from Eq. 2.31, Eq. 4.4 is used here to calculate the Upper Control Limit (UCL)

for SPE and a related derivation can be found in [70]. It is obvious that hybrid-

wise unfolding approach only requires the current observation (xnew,k) for online

monitoring and no future data estimation is needed. Basically, T 2 considers the

variations in the principal component subspace and SPE measures the magnitude

of the sample projection on the residual subspace. Because the residual subspace

is more sensitive to process abnormality (Section 2.3) and insignificant faults are

tested in this work, the SPE control chart is generally used.

HMPCA has been shown to be more sensitive to small process faults compared

to batch-wise MPCA because the covariance matrix Sk is updated at each time

step instead of being static all along the batch. However, as stated above, Sk in

HMPCA only reflects the process variable correlation at current time (k), thus

process dynamics are not taken into account.

72



4.1.2 Batch Dynamic PCA

To incorporate batch process dynamics into PCA, batch-wise unfolding and data

preprocessing (Figure 2.4) are applied and a time-lagged data window for a complete

batch is constructed as in Eq. 4.5:

Xi
d =


Xi
d(d+ 1)

Xi
d(d+ 2)

...

Xi
d(K)

 =


xi(d+ 1)T xi(d)T . . . xi(1)T

xi(d+ 2)T xi(d+ 1)T . . . xi(2)T

...
...

. . .
...

xi(K)T xi(K − 1)T . . . xi(d+ 1)T

 (4.5)

In Eq. 4.5, i is the number of batch, d is the window length and K is the total

observation number. Xi(d) is an auto-regressive model structure for batch i at a

specific time. With a proper value for d (Eq. 31 in ref [53]), Xi
d can capture the

dynamic behavior of a batch process and the corresponding covariance matrix is:

SiXdXd =

(
Xd
i

)T × (Xd
i

)
K − d+ 1

(4.6)

Each term (Smn) in Eq. 4.6 represents the dynamic relationship between two

variables (m and n) in batch i. Equation 4.6 only considers one batch, thus in order

to consider all batches, the covariances of all I batches are averaged.

SavgXdXd
=

(K − d+ 1)
∑I

i=1 S
i
XdXd

J(K − d)
(4.7)

After the covariance matrix is calculated, the same procedures as batch-wise

MPCA are followed. The calculation of the UCL for T 2 and SPE control charts

can be found in Section 2.3 and related references [18].

The advantages of BDPCA are that it successfully takes batch dynamics into ac-

count and enhances the fault detection ability for small process variations. However,
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it has some disadvantages as well:

1. In BDPCA covariance matrix calculation, one has to perform large data matrix

calculations. For example, the three-dimensional data matrix is I×J× K and

in BDPCA, the dimension of the Xi matrix would be (K − d)× (J × (d+ 1).

Therefore, the covariance (SiXdXd) is a (J × (d+ 1))× (J × (d+ 1)) dimension

matrix.

2. In comparison with batch-wise unfolding MPCA, BDPCA calculates the co-

variance matrix of each batch separately first and then takes the average of

all the batches. The shortcoming of this sequence is that the batch to batch

variation is lost with only the mean trajectory value retained.

4.1.3 EWMA and Multivariate EWMA [59]

First introduced in 1959, EWMA is a widely used tool in process control and

monitoring due to its simple theory and intuitive results. EWMA and Multivariate

EWMA control charts can be defined by the following equation:

yi = λxi + (1− λ)yi−1 = λ
i∑

j=1

(1− λ)(i−j)xj (4.8)

where x is a time series and λ (0 ≤ λ ≤ 1) determines the rate at which older data

enter into the calculation of the EWMA statistics. A large value of λ implies more

weight is given to recent data and less weight to older data (Eq. 4.8). The value

of λ is usually set between 0.05 and 0.3. Generally speaking, a small λ is helpful in

detecting small process variations but increases the delay time of detection, while a

large λ has the opposite effect. Recently, Yoo and Lee [95] applied EWMA combined

PCA to a continuous biological wastewater treatment process with λ = 0.05 and

the algorithm successfully detected small process drifts that were unobservable to a

standard static PCA algorithm.
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It is well-known that EWMA is able to take process dynamics into account and

is sensitive to process drifts and small variations due to its memory effect compared

with traditional statistical control charts [19]. Besides the memory effect, EWMA

reduces the variance of the PV by a factor of λ/(2−λ), which also makes the drifting

more noticeable. However, EWMA cannot be applied directly to batch processes

due to the large nonlinearity of the typical process. For a detailed discussion of

EWMA and its applications, see [59, 19, 80].

4.2 EWMA-HMPCA

Table 4.1 lists the main differences between BDPCA and HMPCA methods. Al-

though BDPCA takes process dynamics into account by using a lag time window,

it fails to consider batch to batch correlation, which is also important for online

monitoring. Furthermore, as discussed in Section 4.1, BDPCA requires large data

matrix calculations compared to HMPCA.

Method Correlation Captured Computational Resources Process Dynamics Considered

BDPCA Time to Time High Yes
HMPCA Batch to Batch; Time to

Time
Low No

Table 4.1: BDPCA and HMPCA Comparison

Thus, HMPCA is a promising method and its only shortcoming is that process

dynamics are not considered, which means the correlation of process variables is

considered in a static way: Sk = tTk × tk/(nbatch − 1). Define T (IK × R) as a time

series that captures the correlations with respect to both time and batch. Thus, our

proposed method uses EWMA algorithm to incorporate process dynamics into the
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score matrix (T ):

tE,k = λtk + (1− λ)tE,k−1 = λ

k∑
j=1

(1− λ)k−jtj (4.9)

By doing this, tE,k is a new time series which depends not only on the current

observation but also previous ones, thus batch dynamics is taken into account. The

new covariance matrix (SE,k) is calculated by the scores at each time:

SE =
tTE,k × tE,k
I − 1

(4.10)

Note that the loading matrix P is kept constant in both HMPCA and E-HMPCA

because it is used to capture the relationship between J variables all along the

batch. However, according to Eq. 4.4, SPE statistics only rely on P because SPE

is proportional to I −PP T . For SPE to consider process dynamics, EWMA is used

to filter the residual subspace projection:

eE,k = λek + (1− λ)eE,k−1 = λ
k∑
j=1

(1− λ)k−jej (4.11)

where

ek = (I − PP T )xk

After introducing EWMA to filter score (T ) and error (e) matrices, one can per-

form monitoring after a new observation (xnew,k) is obtained by projecting it to

newly defined principal component and residual subspaces:

tE,new,k = λtnew,k + (1− λ)tE,new,k−1 = λ
k∑
j=1

(1− λ)k−jtnew,j (4.12)
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where

tnew,k = P Txnew,k

eE,new,k = λenew,k + (1− λ)eE,new,k−1 = λ
k∑
j=1

(1− λ)k−jenew,j (4.13)

where

enew,k = (I − PP T )xnew,k

As a result, the filtered T 2 and SPE control charts can be generated by:

T 2
E,new,k = tE,new,kS

−1
E,ktE,new,k

↔ npc(I2 − 1)
I(I − npc)

Fnpc,I−npc
(4.14)

SPEE,new,k = eTE,new,keE,new,k

↔ (vE,k/2mE,k)χ2
2m2

E,k/vE,k

(4.15)

All the definitions here are consistent with those given in Section 4.1.1. Based on

the MPCA online batch monitoring procedure shown in Figure 2.1, a more detailed

E-HMPCA algorithm flow chart is generated in Figure 4.1. The main differences

between MPCA (Figure 2.1) and E-HMPCA are: the EWMA filtering step is intro-

duced after calculating score (T ) and loading (P ) matrices by NIPALS; RDDTW

methods (Chapter 3) are used for data synchronization.

In our previous work [99], instead of filtering tk and ek matrices, Sk is filtered.

However, filtering ek and tk is more direct as they are time series. Furthermore,

T 2 and SPE control charts are quadratic in tk and ek, respectively (Eqs. 4.14 and

4.15). The advantages of E-HMPCA include:

1. Compared to BDPCA, large matrix calculations are avoided

2. Compared to BDPCA, batch to batch variation is also included
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Figure 4.1: E-HMPCA algorithm

3. Compared to traditional HMPCA, process dynamics are included

4. Similar to HMPCA, this method is easy to implement online because the score

matrix T (KI × R) can be divided into tk (I × R) sub-matrices according to

time

4.3 Case Study

In order to demonstrate the effectiveness of E-MHPCA, three examples are pre-

sented. The first one uses industrial data from a Dupont polymerization process; the

second one is a bioreactor fermentation process and the third one is an exothermic

two phase batch reactor. HMPCA, BDPCA and E-HMPCA are used to analyze the
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examples in an online fashion and comparisons are made from the results. Exam-

ples with small sensor bias and process drifts are tested here and it is known that

the SPE control chart is more sensitive to small faults (Section 4.1), hence SPE

control charts and contribution plots prevail here. To demonstrate the E-HMPCA

algorithm, T 2 charts are used in the polymerization case where obvious fault exists.

4.3.1 Polymerization

This process was first analyzed by Nomikos and MacGregor [70] in developing

batch-wise unfolding MPCA. One batch consists of two phases and each phase lasted

approximately two hours. The first phase included ingredients loading, pre-heating,

and solvent removal and the second phase was mainly polymerization reaction. The

controlled variables are vessel pressure and rate of temperature change. Ten process

variables are measured including: temperature, pressure, and flow rates. For more

information regarding process description, please consult [70]. All three PCA mod-

els (HMPCA, BDPCA and E-HMPCA) are built with 36 normal batches and one

abnormal batch is tested. The faulty batch tested (batch 49 in original database)

produced marginally acceptable product and worse than normal ones.

HMPCA

The raw data are preprocessed by RDDTW, hybrid-wise unfolding, and normal-

ized into zero mean and unit variance, which are covered in previous sections. Par-

allel Analysis (PA) method [41] indicates three PCs should be retained with 53.07%

process variation. Figures 4.2(a) and (b) show the T 2 and SPE calculation results by

HMPCA, which indicate some abnormal situations happening between time period

57 and 65. This result is the same as a batch-wise unfolding PCA result [70]. In

order to find the root cause that leads to this fault, SPE contribution plots for each

variable are presented in Figure 4.2(c). Once an operator finds a fault, an online
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contribution plot can be generated to help analyze which variables have the largest

deviation from normal operating conditions. In the SPE contribution plot, it can be

seen that process variables 6, 7 and 10 exhibit large contributions to the deviation.

It is known that the trajectories of variables 6 to 10 have obvious deviations from

normal situations [70], which demonstrates the effectiveness of the SPE contribution

chart. The monitored process went back to normal after time 65, which indicates

the operational problem was corrected. However, due to the faulty period, the re-

sulting product quality was worse than normal. Based on these observations, it can

be concluded that hybrid-wise unfolding can be applied for this obvious fault case

satisfactorily.

BDPCA

For the BDPCA method, the time-lagged window (d) is set to five. Both R ratio

[92] and Predicted Error Sum of Squares (PRESS) suggest 17 PCs should be retained

in the BDPCA model, which is a very large number. Figure 4.3(a,b) indicates the

fault is detected right after time interval 57. Furthermore, it can be seen that the

SPE chart in BDPCA has a more significant violation of the corresponding UCL

than HMPCA, because process dynamics are taken into account. However, when

looking at the SPE contribution plot, because there are ten process variables and

a five lag window, the total number of bars is (5 + 1) × 10 = 60 (Figure 4.3(c)),

which is hard to interpret. Moreover, the contribution plot is not meaningful as

the bars are nearly at the same height for most of the variables. The contribution

plots failed to explain variable deviations one at a time because the time-dependent

process variable correlations are shown explicitly in BDPCA.
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(a) T 2 control chart (b) SPE control chart

(c) SPE contribution plot at time interval 60

Figure 4.2: Polymerization process online monitoring results by HMPCA

E-HMPCA

Similarly, Figure 4.4 shows the monitoring result of proposed method. Three PCs

are enough to build the statistical model which is significantly smaller than that

for BDPCA (17 PCs). E-HMPCA has nearly the same modeling steps as HMPCA,

regardless of the EWMA step (in Figure 4.1). λ was set to 0.2 for this case. Both

SPE and T 2 control chart shows that a very sharp peak starts at time interval 57.

Meanwhile, the SPE contribution plot also suggests variables 4, 6, 7, and 10 have

the largest contribution to the fault, which is consistent with HMPCA. Compared

with Figure 4.3(c), the contribution plot is easy to read as the time dependent inter-
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(a) T 2 control chart (b) SPE control chart

(c) SPE contribution plot at time interval 60

Figure 4.3: Polymerization process online monitoring results by BDPCA

correlations between PVs are implicitly included in the algorithm by the EWMA

filter.

Overall, the SPE and T 2 charts demonstrate the correctness and effectiveness of

the E-HMPCA algorithm. The three methods indicate there is a fault between time

interval 57 and 65. Because this industrial example has an obvious abnormality at

time = 57, it can be concluded that all three methods give consistent results; among

the three, BDPCA and E-HMPCA give better results in terms of fast detection. In

addition, the E-HMPCA contribution plot (Figure 4.4(c)) is much easier to interpret

82



(a) T 2 control chart (b) SPE control chart

(c) SPE contribution plot at time interval 60

Figure 4.4: Polymerization process online monitoring results by E-HMPCA

and more meaningful compared with BDPCA (Figure 4.3(c)).

4.3.2 Bioreactor Fermentation

A detailed bioreactor model was developed by G. Birol et al. [12] and simulation is

performed on a DeltaV computer control system emulator (http://www.emersonprocess.com).

By using DeltaV, controllers can be tuned/changed easily and various faults can be

generated. The simulated bioreactor volume is shown in Figure 4.5(a) and the time

scale is one thousand times faster than real time [13]. Variations are added to the

process variables to mimic a real industrial plant, so all normal batches will fluctu-
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ate around a mean trajectory. Process variable values are sampled every 2 seconds.

Twelve process variables are monitored regularly, which are batch time, base reagent

flow rate, head pressure, vent flow rate, substrate concentration, biomass concen-

tration, product concentration, broth pH, dissolved oxygen concentration, current

product yield, coolant water valve and broth temperature. In Figure 4.5(b), the

PVs are rescaled to fit in the same figure and it can be seen that this is a one phase

batch with large nonlinearity. PID controllers are used to control dissolved oxygen,

substrate concentration and broth pH. Two types of batch profiles are used to test

the algorithms: 1). Normal batch; 2). Bioreactor pH sensor has small bias during

the entire batch.

Data from eleven normal batches are used for batch-wise MPCA model building.

Recently, Gunther et al. [36] used ten normal batch profiles for PCA modeling and

obtained satisfactory monitoring results. In this work, similarly, a small number of

normal trajectories are used to test not only MPCA-based algorithm but BDPCA

and E-HMPCA. Biological processes usually take a long time to finish a batch so

it is time consuming in collecting data for offline model building. A small number

required for statistical modeling can relief the burden.

HMPCA, BDPCA, and E-HMPCA are used here to address the importance of

introducing dynamics to detect small faults. According to Parallel Analysis (PA)

[41], four PCs with 70% of the variance captured is suggested in both HMPCA and

E-HMPCA model building. The EWMA factor λ is equal to 0.2 in this case. For

BDPCA, four lag window and ten PCs are used with 73% variance captured. Again,

BDPCA requires more computational resources.

Figures 4.6 and 4.7 show the online monitoring results by applying the three

methods. It can be seen that for the normal batch case (Figure 4.6), E-HMPCA

84



Case Methods Type 1 (%) Type 2 (%) Delay

Normal Batch
HMPCA NA 7.12 NA
BDPCA NA 6.9 NA

E-HMPCA NA 3.88 NA

pH Sensor Bias
HMPCA 52.4 NA 20
BDPCA 24.9 NA NA

E-HMPCA 15.5 NA NA

Table 4.2: Bioreactor Fermentation Process Monitoring Results

has a larger proportion of monitored points under UCL and the curves in Figure

4.6(c) is smoother than in Figure 4.6(a). The reason is that EWMA reduces the

process variance by a factor of λ/(2−λ) = 9 so the high frequency noise is partially

canceled out. Generally speaking, few points violate the UCL in all the figures and

we can conclude the process is in control.

Figure 4.7 gives the monitoring results of the pH sensor bias case. One can see

clearly BDPCA and E-HMPCA detect the fault faster than HMPCA. Not only do

more points violate the UCL compared with HMPCA but also the magnitude of

violation is much greater. Among the three, in BDPCA the points violate the UCL

with the largest magnitude. However, E-HMPCA shows more consistent detection

results than BDPCA. Related monitoring statistics are listed in Table 4.2. Quan-

titatively, for the normal batch case, E-HMPCA also shows the smallest amount

of Type 2 (false alarm) rate and the other two have similar results. For the small

pH sensor bias case, E-HMPCA gives less Type 1 (misdetection) errors than do

HMPCA and BDPCA. Furthermore, E-HMPCA and BDPCA have no delay in de-

tecting the fault while traditional HMPCA has a 20 time interval delay (when four

consecutive points violate the corresponding UCL) (Figure 4.7). Among the three,

E-HMPCA shows the best performance with the smallest detection error and no

detection time delay. Also, a small number of normal batch profiles (eleven) gives

satisfactory modeling and monitoring results.
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4.3.3 Two Phase Chemical Batch Reactor

A first order consecutive reaction sequence, A→ B → C, is carried out in a jack-

eted batch reactor as shown in Figure 4.8. The total batch duration can be divided

into two phases. During the first phase, steam is fed into reactor jacket in order to

make the system reach the desired reaction temperature. In the second phase, cool-

ing water is used to remove the reaction heat. Reactor temperature is controlled by

manipulating coolant water flow rate. The process is described in detail by Luyben

[60]. Five process variables are measured: component A concentration; reactor tem-

perature; wall temperature; jacket temperature; and temperature controller output.

The total simulation time is 300 and the sampling interval is one.

Fifty normal batch datasets are used to build a PCA model. In HMPCA, the

PC number is set to two. In BDPCA, the size of the lag window (d) is seven and

the number of retained PCs is chosen to be 12, which is again a large number. In

comparison, E-HMPCA only needs two PCs to capture the process variation with

λ = 0.2. All the PC number selections are based on the PA method.

Two types of faults are generated for testing as described below:

1. Metal wall sensor failure at time interval 100.

2. Activation energy for reaction step 2 (B k2→ C) changes from 20000 to 22000

at time zero.

Before testing the two faulty datasets, another normal batch is tested. All three

methods indicate the process is in control throughout the batch. In the following

sections, the two specific faults are tested by all three methods and results are

compared.
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Case Methods Type 1 (%) Type 2 (%) Delay

Temp. Sensor Failure
HMPCA 2.0 1.0 5
BDPCA 2.5 0 2

E-HMPCA 0.5 0 1

Kinetics Change
HMPCA 71.3 NA ≈210
BDPCA 44.0 NA 41

E-HMPCA 24.3 NA 36

Table 4.3: Chemical Batch Process Monitoring Results

In the first case, the metal wall temperature sensor fails at time interval 100. SPE

control charts are shown in Figure 4.9. It is clear that all three methods detect the

fault somewhere before time 150 and throughout the following batch. Meanwhile,

BDPCA and E-HMPCA detect the fault earlier than MPCA. According to Figures

4.9(b) and (c), the fault is detected right after t = 100 (before 110). In Figure

4.9(a), the obvious spike appears at t = 120. As a result, it can be concluded

that BDPCA and E-HMPCA methods are more sensitive to this fault at the initial

period. Related monitoring statistics are listed in Table 4.3. According to Table 4.3,

E-HMPCA again has the shortest detection delay and the smallest percentage of

Type 1 and 2 errors. Basically, for this obvious fault case, all three methods detect

the fault at an early stage and can be used in online monitoring.

The abnormality of the activation energy change case is small, which makes the

fault detection difficult in comparison with the metal sensor failure case. This is

confirmed by Figure 4.10(a), which shows the HMPCA SPE control chart. One can

see that very few points exceed the UCL and according to this chart, the process

is in control until time 210 (Table 4.3). In Figures 4.10(b) and (c), BDPCA and

E-HMPCA both indicate there is an occurring fault during the batch. Furthermore,

E-HMPCA has the fastest detection (t = 36) and smallest number of Type 1 errors,

according to Table 4.3 and Figures 4.10(b) and (c).
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From above results, it can be concluded that BDPCA and E-HMPCA can cap-

ture the dynamic relationship between process variables and detect the occurrence

of small disturbances, but E-HMPCA has a better fault detection ability for the

activation energy change. Furthermore, E-HMPCA does not need the time-lagged

window, and thus the covariance matrix calculation is easier to perform. Also the

retained PC number is much smaller for E-HMPCA.

4.4 Summary

Some online batch process monitoring methods (HMPCA) only focus on static

batch to batch variations while others take batch dynamics into account by ap-

pending older observations to the current time series (BDPCA), which results in a

large computational load. In this work, a new method (E-HMPCA) is proposed to

include process dynamics and keep the covariance matrix calculation and further

online application simple. The new method introduces an EWMA filter to account

for batch process dynamics by weighting past score (tk) and error (ek) matrices. In

general, E-HMPCA has the following advantages:

1. easy to implement online (same as HMPCA);

2. retains both batch to batch and time to time variance together with process

dynamics;

3. less computationally demanding compared with the lag window approach;

4. needs much fewer principal components and a more useful contribution plot

is available compared with the lag window approach.

Three batch process examples are used to demonstrate the effectiveness of the

new method. E-HMPCA and BDPCA methods detect process faults faster than
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HMPCA, and E-HMPCA performs the best when small process variations are prop-

agated. Furthermore, E-HMPCA enjoys the fewest Type 1 and Type 2 errors for

all tested cases among the three methods.
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(a) Flow sheet of bioreactor fermenter, Fig 6-3e in [13]

(b) Rescaled PVs for bioreactor fermenter

Figure 4.5: Bioreactor fermenter
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(a) SPE control chart for HMPCA

(b) SPE control chart for BDPCA
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(c) SPE control chart for E-HMPCA

Figure 4.6: Bioreactor process online monitoring results for another normal batch
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(a) SPE control chart for HMPCA

(b) SPE control chart for BDPCA
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(c) SPE control chart for E-HMPCA

Figure 4.7: Bioreactor process online monitoring results for pH sensor bias batch
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Figure 4.8: Chemical batch reactor with temperature controller, Figure3.9 in [60]
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(a) SPE control chart for HMPCA

(b) SPE control chart for BDPCA
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(c) SPE control chart for E-HMPCA

Figure 4.9: Temperature sensor failure of chemical batch process
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(a) SPE control chart for HMPCA

(b) SPE control chart for BDPCA
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(c) SPE control chart for E-HMPCA

Figure 4.10: Activation energy change of chemical batch process
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Chapter 5

P-optimal Design Of

Experiments

A mathematical model is only as good as its estimated parameters - Witkowski and

Allen

In Chapter 1, the first principles modeling focuses on theoretical rule based math-

ematic equations that can reproduce the real-world behavior accurately over a broad

range. As widely accepted, first principles modeling is highly creative and innova-

tive work so it is impractical to describe and regulate every modeling procedure.

However, no matter which modeling routine we apply, the resulting mathemati-

cal models are frequently nonlinear algebraic equations (AE), dynamic algebraic

equations (DAE), or partial differential equations (PDE). In chemical engineering

applications, PDEs are seldom used due to two reasons: 1. Computationally expen-

sive, not suitable for online oriented control and monitoring purposes; 2. Chemical

processes are normally well-mixed so the three dimensional location dependency is

not necessary. As a result, AE and DAE systems are the most frequently used first

principles modeling techniques. The model parameters are typically used to describe
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special properties such as reaction orders, adsorption kinetics, etc.

For industrial scale problems, the model parameters normally are not known a

priori and have to be determined from measurements - parameter estimation. How-

ever, it is always expensive to get important variables (e.g., concentrations) mea-

sured. Furthermore, the plant should not be perturbed too much from the steady

state operation conditions, which frequently leads to repetitive measurement results

and does not produce new information. This leads to the problem of designing ex-

periments wisely to get the maximum information for specific modeling purposes

(e.g., model structure selection, parameter estimation) - model-based Design Of Ex-

periments (DOE).

In this work, a new Principal Component Analysis (PCA)-based optimal (P-

optimal) criterion for model-based DOE is proposed that combines PCA with infor-

mation matrix analysis. The P-optimal criterion is a general form that encompasses

most widely-used optimal design criteria such as D-, E- and SV-optimal, and it can

automatically choose the optimal objective function (criterion) to use for a specific

DAE system. Two engineering examples are used to validate the algorithms and

assumptions. The main advantages of P-optimal DOE include ease of reducing the

scale of optimization problem by choosing parameter subsets to increase estimation

accuracy of specific parameters and avoid an ill-conditioned information matrix.

The chapter is organized as follows: In Section 5.1, DOE related background

information are reviewed. Section 5.2 introduced the basic idea of parameter esti-

mation, popular optimal design criteria of DOE, and related PCA knowledge. The

new criterion is proposed in Section 5.3 and case studies are used to compare the

performance of P-optimal criterion and traditional ones in Section 5.4. Section 5.5

serves as a summary.
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5.1 DOE background

As detailed mathematical models are highly desirable in process control, design,

monitoring and optimization applications, first principles modeling is becoming more

and more important for process engineers. However, a reliable model for real sys-

tems under certain conditions (operation constraints) is usually hard to develop and

the procedure is not trivial. Asprey and Macchietto proposed a general modeling

procedure [3]:

• Preliminary system analysis and model structure building based on process

information

• Design optimal experiments according to model structure

• Carry out experiments as designed

• Use experimental data to estimate model parameters and perform model val-

idation by analyzing estimated parameters and available data

Before discussing the detail, DOE here is designed for a specific DAE or AE

system, so called model-based DOE. There exists another large family of DOE, which

is basically factorial analysis based DOE techniques using empirical models. By

analyzing the procedure, DOE is performed before real experiments are carried

out. The objectives of model-based DOE can be model structure selection, model

parameter estimation, etc. From an application point of view, they differ mainly

on setting up the DOE objective function. Because of the similarity between these

applications, this chapter will mainly focus on parameter estimation applications

and model structure selection will be covered briefly.

From the listed procedure, it is obvious that experimental data play a key role not

only for parameter regression but also for model validation. Thus, how to design
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experiments to get good parameter estimation results with a limited experimental

effort is an important issue. Design Of Experiments (DOE) is a statistical tool to

choose the optimal experimental conditions for deterministic models. Following the

pioneering work of Box and Lucas [14], Atkinson and Hunter [9], the advantages from

the use of DOE are well-known, with applications to many areas, e.g., linear discrete

time model frequency domain analysis [57, 35], adsorption kinetics [5], reaction

kinetics [42, 30, 8], biological networks [31, 81], and fermentation processes [3].

From an algorithm development perspective, DOE has been utilized to AE sys-

tems for a long time and was applied to DAE systems in the early 1990s [100, 4].

Many optimal design criteria have been proposed (D-optimal, E-optimal, etc.) and

compared by different case studies; Walter and Pronzato [88] gave a detailed dis-

cussion of available optimal design criteria and their geometrical interpretations.

Recently, Atkinson [6] used DOE for non-constant measurement variance cases and

Galvanin et al. [32] extended the DOE territory to parallel experiment designs.

Despite its many applications and attractive results, DOE still has some short-

comings. DOE may not be applicable to large/medium scale DAE systems due

to numerical difficulties and calculations usually take a long time to converge. No

clear rule set is available in choosing an optimal design criterion for a specific case.

More discussion on the advantages and shortcomings of available DOE methods is

provided in Section 5.2.

This work focuses on a generalized methodology that introduces Principal Com-

ponent Analysis (PCA) into DOE. By combining the two methods, one can elegantly

divide the large system into small pieces and design a series of experiments to avoid

the numerical problems discussed above. Furthermore, the new proposed criterion

reduces to well-known optimal design criteria (D- E-, SV- optimal) under certain
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assumptions and one can choose a subset of model parameters to increase estima-

tion accuracy without changing the form of the objective function (Ds-optimal [7]).

Galvani [32] proposed SV-optimal, which also used Singular Value Decomposition

(SVD). However, further analysis of the relationship of SVD results with model

structure and physical background was not performed.

5.2 Related Techniques

5.2.1 Parameter Estimation

Parameter estimation is a classical problem for many science and engineering

disciplines which can be generalized into the following optimization problem in many

chemical engineering applications:

min
θ

n∑
i=1

q∑
j=1

(ym,i,j − fj(t, xi, θ, u))2 (5.1)

subject to:

Hẋi = fj(t, xi, θ, u)

umin ≤ u ≤ umax

t0 ≤ t ≤ tf
xmin ≤ x ≤ xmax

θmin ≤ θ ≤ θmax

where n and q are the number of experiments and equations, respectively. y stands

for measured variables and subscript m indicates measured value. x is the state

variables of the DAE system. For simplicity, the state variables (x) are assumed

to be measurable, thus y = x. f represents the DAE equations and H is used to

discriminate algebraic and dynamic equations (the corresponding rows for AEs are

zero). θ represents the model parameters and u is the controlled variables. Assume

104



the control profile u is known over a predefined time horizon (tf ). In parameter

estimation, the only unknown in integrating f is θ and normally the boundary

of θ is defined according to physical, chemical laws or process insight. One more

assumption is the measurement noises follow a multivariate normal distribution

(N(0, Vm)), otherwise Eq. 5.1 needs to be rebuilt from MLE according to the specific

noise distribution function. In most cases, however, normally distributed noise is a

safe assumption.

Eq. 5.1 is similar to the classical optimal control problem in which the objective

function usually is:

min
u
x(tf )

The techniques to solve this dynamic system optimization problem can be classi-

fied into sequential and simultaneous. In sequential approaches, only the unknown

variables (e.g., θ for parameter estimation, u for optimal control) are discretized

and manipulated directly by the NonLinear Programming (NLP) solver. After the

unknown variables are updated, the DAE is integrated given the initial condition

(x0) and integration time (t0, tf ). For simultaneous methods, all the state variables

(x) are discretized along t according to orthogonal collocation and approximated

by polynomials between two neighboring discretization grids. Thus, the integration

step is avoided and both state and unknown variables are changed by NLP directly

with certain constraints. A review of these methods can be found in [27].

After the NLP solver converges, the corresponding θ is our best estimate (θ̂)

based on the available measurements. To evaluate the accuracy of the estimation,

the posterior covariance matrix is defined by:

V (θ̂, φ) =

[
q∑
r=1

q∑
s=1

v−1
m,rsJrJs + V −1

0

]−1

(5.2)
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where φ is the design vector which typically contains the measurement time, initial

state condition, control variables, etc. vm,rs is the rth term in the measurement

covariance matrix that can be estimated by:

vm,rs =

∑n
i=1

(
yri − fr(xi, θ̂)

)
×
(
yri − fr(xi, θ̂)

)
n− 1

(5.3)

For AEs, the sensitivity matrix is defined by: Jr = ∂fr/∂θ̂ evaluated at n experi-

mental points (sampling times). For DAEs, V matrix can be treated as a sequential

experimental design result according to Zullo [100]. With Eq. 5.2 kept the same, Jr

contains the sensitivity coefficient of output yr with respect to parameter θ̂ evaluated

at different sampling times (ts):

Jr =



∂yr
∂θ̂1

∂yr
∂θ̂2

. . . ∂yr
∂θ̂m

← t1

∂yr
∂θ̂1

∂yr
∂θ̂2

. . . ∂yr
∂θ̂m

← t2
...

...
. . .

...
∂yr
∂θ̂1

∂yr
∂θ̂2

. . . ∂yr
∂θ̂m

← tn


(5.4)

The diagonal terms of V lead to the estimation confidence region:

σθ̂ = F (α, n,m)× diag(V 1/2) (5.5)

where F (α, n,m) represents F distribution with confidence level α and degrees of

freedom n and m. Intuitively, the smaller the confidence region is, the better θ̂ is.

More discussion on the estimation result evaluation will be given in Section 5.4.

5.2.2 Design Of Experiments

As stated in parameter estimation, the smaller σ is, the better estimation results

are. Moreover, σ is closely related to parameter covariance matrix V (Eq. 5.5).
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Thus, in model-based DOE, Fisher information matrix (M) is defined as the inverse

of the estimated parameter covariance matrix V :

M(θ, φ) =
q∑
r=1

q∑
s=1

v−1
rs JrJs (5.6)

For both static (AE) and dynamic (DAE) systems, the Fisher information matrix

plays a central role in model-based Design Of Experiments (DOE) with the goal

to design a series of experiments based on the model structure. By carrying out

these experiments, the model parameters can be estimated with the best accuracy

[11]. In Section 5.1, DOE is performed before parameter estimation, so the best

estimation (θ̂) should be replaced by some initial guess or best knowledge so far (θ).

The remaining unknown in Eq. 5.6 is the design vector φ, which normally contains

measurement time, initial state condition, control variables, etc.

After taking inverse (Eq. 5.6), the smaller is the estimation covariance matrix (V ),

the larger the information matrix (M) will be. Remember in parameter estimation,

a small V is desired, so in DOE, our goal is to maximize M by manipulating the

design vector (φ). If there is only one model parameter (J is n × 1), M should be

a scalar and so is V . As a result, maximizing the absolute value of M is the only

criteria. However, usually M is an m ×m matrix (m is the number of parameters

in the model), thus there are several ways to define the minimization criteria, as

outlined in previous work on DOE:

D-optimality:

F = min
φ∈Φ

(|V |) = max
φ∈Φ

(|M |) (5.7)

Minimize the determinant of the prediction error covariance matrix and thus the

volume of the covariance matrix ellipsoid.
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E-optimality:

F = minφ∈Φ(b1), b1 ≥ b2 ≥ . . . ≥ bm

= maxφ∈Φ(λm), λ1 ≥ λ2 ≥ . . . ≥ λm
(5.8)

Minimize b1, which is the largest eigenvalue of V . This is equivalent to reducing the

maximum diameter of the covariance ellipsoid of θ.

Ds-optimality:

F = min
φ∈Φ

|V |
|Vs|

(5.9)

where

Vs =

(
q∑
r=1

q∑
s=1

v−1
m,rsJr,eJs,e

)

Vs is the parameter covariance matrix for the parameters of less interest. V and Vs

are m×m and e× e matrices, respectively. The only difference between V and Vs

is that Js,e is composed of the parameters that are of less interest.

From the above analysis, parameter estimation and DOE are both rely on the in-

formation matrix (M(θ, φ)) analysis with different unknown variables. In parameter

estimation, the unknown is θ while in DOE φ is unknown. The dual relationship

between the two is similar to how the Linear Quadratic Regulator (LQR) is related

to the Kalman Filter. Based on the same process model (ζ(t, x, u, θ), LQR focuses

on generating optimal control signals (u) while Kalman Filter estimates the state

variables (x).

In Section 5.1, we know model-based DOE has other applications beyond param-

eter estimation. In first principles modeling area, model structure selection (model

discrimination) is another important topic. Based on available information, one

may end up with multiple process model structure candidates. Model discrimi-

nation means: by running the fewest number of experiments, one can select the
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candidate that matches the process best. To do this, Espie and Macchietto [28]

proposed the corresponding objective function for dynamic system as:

F = max
φ∈Φ

∫ tf

t0

NM∑
i=1

NM∑
j=i+1

Ti,j(φ, t)dt (5.10)

where

Ti,j = (fi(φ, θI , t)− fj(φ, θJ , t))T × (fi(φ, θI , t)− fj(φ, θJ , t))

Here, NM is the number of candidate model structures and other definitions are

the same as in parameter estimation. As continuous sampling is not feasible, the

integration is replaced by
∑

tk
in real applications. φ from Eq. 5.10 results in the

biggest differences among different model structures (fi). Thus, after getting the

real experiment profile (ym), the best candidate model structure predicts ym most

accurately. As indicated in Section 5.1, the objective function is the main difference

between model discrimination and parameter estimation. Therefore this work is

focusing on parameter estimation and model discrimination can be carried out in a

similar way.

As discussed in Section 5.1, model-based DOE has seen numerous applications in

the past few decades, however, there are still some drawbacks that require further

study:

1. DOE sometimes fails to find out the optimal experimental condition for medium

and large scale DAE systems and it usually takes a long time even for small

scale systems. Franceschini and Macchietto [30] applied E-optimal to a biodiesel

production dynamic model identification problem. According to their research,

designing a single set of experiments aimed at improving the estimation of all

parameters together failed as the numerical optimization calculations did not

converge. It is reasonable to design different experiments for a specific group
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of parameters. However, there is no trivial/automatic way to separate the

model parameters into different groups wisely.

2. There are many criteria to choose from (D-optimal; E-optimal; A-optimal; Ds-

optimal etc.) and there is no clear way to tell which one to use for a specific

case.

3. All criteria depend on minimizing the prediction error variance-covariance ma-

trix V in some sense. Because V is calculated from M , M may not be full

rank or it may be ill-conditioned (condition number is greater than 1010). In

this case M may not be invertible and V cannot be numerically calculated.

As a result, working on M instead of V is suggested.

4. It is hard to focus on improving specific parameters in the DAE system. Ds

optimal suggested above leads to a different form of the objective function and

a more complex optimization problem. The different magnitudes of |V | and

|Vs| can lead to scaling problems.

5.2.3 Principal Component Analysis

The algorithm and theory of Principal Component Analysis (PCA) is discussed

in detail in Chapter 2. Here, only the relevant properties are reviewed. PCA

decomposes the data matrix from experiments (X) by the following expression:

X = T TP + E (5.11)

X is an n ×m data matrix, which can be decomposed into score (T , n × npc) and

loading (P , m × npc) matrices, while E is the residual. PCA has very attractive

features including:
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1. ti (the ith column of T ) are orthogonal:

B =
T TT

n− 1
= diag(b1, b2, . . . , bm) (5.12)

where bi is the ith eigenvalue of the covariance matrix (XTX/n − 1) in de-

scending order. ti explains the relationship between each row.

2. pi (the ith column of P ) are orthonormal:

I = P TP = diag(1, 1, . . . , 1) (5.13)

pi focuses on capturing the relationship between each column of X. Because

XTX is symmetric, its eigenvalues and eigenvectors are real.

The first few columns of T and P capture most of the variance existing in X and

when npc (the number of principal components) is equal to min(n,m), E is a zero

matrix. There have been some studies on choosing the optimal number of principal

components (npc) to separate useful information and noise in process monitoring

[75, 99]. The Cumulative Percent Variance (CPV) is one such method and the

threshold for this method can be set to 90%.

CPV (npc) =

(∑npc
j=1 bj∑m
j=1 bj

)
(5.14)

The relationship between PCA and Singular Value Decomposition (SVD) can be

explained by manipulating the equations for PCA (Eqs. 5.15b-5.15c) and comparing
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them with the SVD Eq. 5.15a.

SV D : 1
n−1X

TX = WLCT (5.15a)

PCA : =
1

n− 1
(TP T )T × (TP T ) =

1
n− 1

PT T × TP T (5.15b)

=
1

n− 1
P × (T TT )× P T = PBP T (5.15c)

XTX is a real symmetric matrix such that the left eigenvector (W (m × m)) and

right eigenvector matrix (C(m ×m)) are exactly the same and the corresponding

eigenvalues are stored in L(m×m). As a result:

P = C = W

L = B

5.3 PCA Combined Criterion for DOE

5.3.1 Information Matrix and Parameter Covariance Matrix

For purpose of simplicity, assume there is only one measured output (q = 1) and

the measurement error is identity (vm,rs = 1), such that Eq. 5.2 becomes:

V (θ, φ) =
[
JTJ

]−1
= [M ]−1 (5.16)

The sensitivity matrix J can be viewed as X in the above PCA equations, and

M is proportional to the covariance matrix V (the scaling factor (1/n − 1) in the

covariance is contained in vm,rs). Assume the eigenvalue and eigenvector matrices

of M are Λ and P , respectively. Substituting Eqs. 5.11 and 5.15c into Eq. 5.16, we

obtain:
M = JTJ = (TP T )T × (TP T ) = P · Λ · P T

V = M−1 =
(
P · Λ · P T

)−1 = P−T · Λ−1 · P−1
(5.17)
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Because P is orthogonal: P T · P = I;P−1 · P = I ⇒ P T = P−1

V (θ, φ) = P−T · Λ−1 · P−1 = P · Λ−1 · P T (5.18)

From PCA analysis, in order to get V from M , one can efficiently decompose

M by SVD or NIPALS as described in Chapter 2 and replace Λ in Eq. 5.17 with

Λ−1. In Section 5.2.3, it has been shown the columns of P explain the relationship

between different columns in J . For example, the smallest eigenvalue in M is λm

and its inverse λ−1
m will be the largest eigenvalue for V , which indicates the largest

variance in prediction error covariance matrix. The corresponding eigenvector (pm)

gives the direction of the largest variance in the m dimensional parameter space.

5.3.2 Geometric Interpretation

A geometric interpretation of DOE criteria is shown in Figure 5.1, which shows

the covariance matrix of a two parameter system. Two eigenvectors p2, p1 indicate

the direction of largest and second largest direction of variance. The projection of

long axis (p2 direction) on θ1 and short axis (p1 direction) on θ2 is proportional

to the confidence region of θ1 and θ2, respectively. Thus, in order to shrink the

estimated confidence region, traditionally D-optimal focuses on shrinking the size

of the ellipsoid but it fails when λ1 becomes very large and λ2 is small (the el-

lipsoid degenerates into a line which also minimizes the size criterion). E-optimal

focuses on minimize the longest the axis of the ellipsoid (maximize λ2). However,

this method may not be efficient when several axes have a similar length (multi-

parameter systems). In Figure 5.1, when λ1 is much larger than λ2, the ellipsoid

will degenerate into a line (D-optimal fails) and it is reasonable to look at λ2 alone,

which is E-optimal. Instead, when θ2 is well known, one can only focus on shrinking

the projection of both ellipsoid axes on θ1 direction: min
(
|p1(1)
λ1
| × |p2(1)

λ2
|
)

. In order

to eliminate the absolute value and take advantage of the unit length of pi, we use
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the following expression:

min
(
p1(1)2

λ1
× p2(1)2

λ2

)
= max

(
λ1

p1(1)2
× λ2

p2(1)2

)

Figure 5.1: Geometric interpretation of PCA combined DOE criteria

5.3.3 PCA based optimal Criterion (P-optimal) and its Variation

From Section 5.3.1 and 5.3.2, it is reasonable to formulate the new objective

function as follows:

F = min
φ∈Φ

 m∏
i=m−npc+1

bi ·∑
j

P 2
ji

 (5.19)

where bi are eigenvalues of V in ascending order (bi = 1/λi and λi is in descending

order) and P is the corresponding eigenvector matrix. The advantage of storing
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eigenvalues of V in ascending order is that P can be used directly without transfor-

mation, otherwise P for V needs to be transformed by: PV = PM ·


1

. . .

1

.

npc is the number of optimal number of PCs and j corresponds to the parameters

that are selected to increase estimation accuracy.

Suppose we want to improve the precision of all parameters (j = 1 : m) and all

the PCs are retained by PCA. Then Eq. 5.19 becomes:

F = min
φ∈Φ

 m∏
i=1

bi ·∑
j

P 2
ji


where pi is orthogonal ⇒

∑m
j=1 P

2
ji = 1

F = min
φ∈Φ

(
m∏
i=1

(bi)

)
= min

φ∈Φ
|V | ⇒ D − optimal (5.20)

When only the largest eigenvalue of V is suggested by PCA (i = m) and all

parameters are to be estimated, Eq. 5.19 is:

F = min
φ∈Φ

bm ·∑
j

P 2
jm


where pi is orthogonal ⇒

∑m
j=1 P

2
jm = 1

F = min
φ∈Φ

(bm)⇒ E − optimal (5.21)

When all the PCs are to be used with specific parameters to be estimated (e.g.,

the first s), Eq. 5.19 becomes:

F = min
φ∈Φ

 m∏
i=1

bi · s∑
j=1

P 2
ji

 (5.22)
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SV-optimal was used for parallel and sequential process DOE by Galvanin et al.

[32], which is similar to our approach. After obtaining the eigenvalues of the V ma-

trix (bi), a series of experiments are designed to minimize b1, b2, . . . , bm respectively.

Furthermore, they noticed that by minimizing some eigenvalues, the estimation of

certain parameters will improve, but no analysis was provided. The SV-optimal

can be treated as a special case in our generalized approach by setting i = k and

j = 1 : m.

F = min
φ∈Φ

bk ·∑
j

P 2
jk


where pi is orthogonal ⇒

∑m
j=1 P

2
jk = 1

F = min
φ∈Φ

(bk)⇒ SV − optimal (5.23)

Comparing Eq. 5.23 with Eq. 5.19, SV-optimal cannot be used in designing an

experiment that increases the estimation accuracy of specific parameters that is

explained in bk.

When calculating npc by the method described by Eq. 5.14, one can choose

the eigenvalues of either M or V . When using V , the last npc eigenvalues (kept in

ascending order such that P does not need to be transformed) and the corresponding

eigenvectors should be used to define the objective function. When using M , if the

first k eigenvalues sum to 90%, then the remaining m− k eigenvalues (npc = m− k)

and eigenvectors are used in Eq. 5.18. In real applications, using M to do PC

number selection will prefer D-optimal results while using V will bias the results

toward E-optimal. This is because the first few (most of the time one or two) PCs

is enough to capture most of the variance for either V or M . Normally DOE tries

to increase the estimation precision for most model parameters and usually a single

eigenvalue cannot include information for most parameters (some elements in pi are

close to zero), thus retaining more eigenvalues in the objective function for the first
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few runs is preferred. As a result, in later examples, M is used for calculations and

the computational steps for P-optimal algorithm are summarized in Table 5.1.

1 Initialize model parameters (θ0) and design vector (φ0) (i = 0)

2 Calculate sensitivity matrix (J) (Eq. 5.4) and information matrix (M) (Eq. 5.6)

3 Choose the number of PCs using CPV (Eq. 5.14) and group all parameters into
subsets according to P if necessary

4 Optimize the objective function (Eq. 5.19) and find the optimal experimental design
(φi). If the parameters are divided into groups in step 3, multiple experiments can
be designed in parallel (as discussed in [32])

5 Carry out real experiments and use the data to regress model parameters (θi)

6 Calculate t and χ2 values to justify the quality of the estimated parameter (model
validation). When the quality is not satisfied, set i = i+ 1 and return to step 2

Table 5.1: P-optimal algorithm description

Generally speaking, the new criterion enjoys the following advantages:

1. For medium and large scale DAE system cases, it is always easy to reduce the

scale of the DOE problem by choosing certain parameters out of the entire set

to be the focus.

2. The proposed P-optimal criterion is a general form of most widely-used criteria

such as D- and E- optimality.

3. By introducing PCA to carry out both eigenvalue calculation and selecting the

optimal number of eigenvalues to evaluate, the ill-conditioned M is avoided.

PCA method automatically chooses the optimal number of eigenvalues to be

investigated, in order to filter out unnecessary eigenvalues, and reduces prob-

lem scale.

4. P gives a clue on grouping the estimated parameters (selecting subset j in Eq.

5.19), so it is easy to design an experiment for improving specific parameter

estimation, compared with traditional methods.
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5. The criteria can be easily embedded in parallel and sequential DOE routines.

5.4 Case Study

5.4.1 Yeast Fermentation Reactor Model

Nearly all fermentation processes are based on mass and energy balances. Ne-

glecting heat effects lead to a set of differential equations:

dc

dt
= A · r(c(t))−G · c(t) + u(t) (5.24)

where A (n×m) contains the stoichiometry information of the m reactions described

in r, and G (1 × 1) is the dilution rate and u(n × 1) contains the input/output

information. In this example, a fed-batch model for baker’s yeast is used [24]:

d

dt

 x

s

 =

 1

−1/θ3

 · r(θ, x, s) ·x+u1

 0

u2

−
 x

s

+

 −θ4x

0

 (5.25)

x and s are biomass and substrate concentration, respectively and r is the specific

growth rate, which is assumed to be of the Monod-type:

r(θ, x, s) =
θ1s

θ2 + s
(5.26)

There are four parameters to be estimated while two of them are kinetic rate

coefficients (θ1, θ2) and the other two are yield coefficients (θ3, θ4). The true values

are [0.31, 0.18, 0.55, 0.05], and there is no distribution information regarding the

parameters but there are upper and lower bounds:

0.05 ≤ θ1,2,3 ≤ 0.98

0.01 ≤ θ4 ≤ 0.98
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This classical model has been successfully used to perform D-optimal [3], E-

optimal [32], SV-optimal [32] and mini-max robust-optimal [4] experiment design.

The total batch time is 40 hours and initially four switching points are chosen

for both control inputs (dilution factor u1 and substrate concentration in feed u2):

tsw = 5, 13, 21, 29hour.

The design variables include sampling time (ts), initial concentration for biomass

(x0) and substrate (s0), and control input magnitude for u1 and u2. Assume both

biomass and substrate concentrations can be measured online and the process noise

is N(0, 0.04). Ten samples are taken from each batch and any neighboring two

samples should be taken at least 1 hour apart and at most 20 hours. u1 is bounded

by 0.05 and 0.2 h−1 while u2 lies between 5 and 35 g · l−1. The initial biomass

concentration ranges from 1 to 10 g · l−1 and initial substrate concentration is always

0.1 g · l−1. All of these constraints can be summarized by following inequalities:

0 ≤ ts,1, . . . , ts,10 ≤ 40 hours

1 ≤ ts,i+1 − ts,i ≤ 20 hours; i = 1, 2, . . . , 9

0.05 ≤ u1,j ≤ 0.2 h−1; j = 1, 2, . . . , 5

5 ≤ u2,j ≤ 35 g · l−1; k = 1, 2, . . . , 5

1 ≤ x0 ≤ 10

s0 = 0.1
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The initial design variables are chosen as:

φ(0) :

ts = 2, 6, 10, . . . , 38 hours

u1,j = 0.12 h−1; j = 1, 2, . . . , 5

u2,j = 15 g · l−1; k = 1, 2, . . . , 5

x0 = 5.5

s0 = 0.1

Two different initial parameter estimates are used to test the robustness of the

optimal design criteria: θI = [0.5, 0.5, 0.5, 0.5]; θII = [0.527, 0.054, 0.935, 0.015]. θI

represents the case when no a priori information is available so the guess is in the

middle of the region. θII is the case when the initial information is inaccurate (up

to a 70% error from the true value) [32].

Case I

Figure 2 shows the DOE results using different criteria. For the P-optimal criteria,

the initial information matrix (M0) is:

M0 =


1450 −189.5 −153.5 −165.3

−189.5 27.8 24.9 216.1

−153.5 24.9 29.8 164.7

−165.3 216.1 164.7 1903.5


The corresponding eigenvalue and eigenvector matrices are:

Λ0 = diag(3384.7, 21.0, 5.3, 0.1)
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P0 =


−0.655 −0.333 −0.638 0.234

0.086 0.266 −0.522 −0.801

0.067 0.814 −0.317 0.482

0.749 −0.394 −0.469 0.253


According to CPV, the first eigenvalue of M captures 99% of the variance and

the second to fourth eigenvalues (i = 2, 3, 4) need to be included in the objective

function if all four parameters are to be estimated (j = 1, 2, 3, 4). From P we can

see the values are more or less equally distributed in each column, which means no

eigenvector focuses on increasing the accuracy of a single parameter. As a result,

the objective function for P-optimal is:

F = min
φ∈Φ

 4∏
i=2

(bi ·
4∑
j=1

P 2
ji)

 = max
φ∈Φ

(
4∏
i=2

(
1
bi

)

)
= max

φ∈Φ

(
4∏
i=2

(λi)

)
(5.27)

Figure 5.2 shows the DOE results according to different optimal design criteria.

We note that the three criteria lead to three different experimental approaches. For

feed rate u1, E-optimal and P-optimal suggest bang-bang control while D-optimal

has more gradual step changes before reaching the lower control limits. For substrate

concentration in the feed (u2), the three methods give rather different results. Table

5.2 lists two important values from DOE: Λ and P are the eigenvalue and eigenvector

matrices of information matrix (M), respectively. One can see D-optimal results

lead to a much larger Λ(1, 1) and the product of all the eigenvalues is 4.29 × 108

(volume of the parameter covariance matrix is 0.23 × 10−8). E-optimal focuses on

increasing the value of the smallest eigenvalue which is 2.4, larger than the other

two methods. According to P-optimal, the new method optimizes the product of the

last three eigenvalues, which is 1.07×104. This is larger than the other two methods
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(a) Control inputs designed by D-optimal

(b) Control inputs designed by E-optimal
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(c) Control inputs designed by P-optimal

Figure 5.2: Control inputs and sampling points calculated by different optimal de-
sign criterion. Red: control limits; Blue: designed control inputs; Dash: initial
control guesses; Square: sampling points

(4.65 × 103 for D-optimal; 8.74 × 102 for E-optimal), so in this sense D-optimal is

better than E-optimal.

In Section 5.3, the drawbacks of D- and E- optimal methods have been discussed

and in order to verify these assumptions, Table 5.3 lists the parameter estimation

results by carrying out the corresponding designed experiments. t−test [52] indicates

if the results show a reliable estimation:

t =
θ̂

σθ̂
∈ tα(n−m) (5.28)

where α is the confidence value (0.95, 0.99); σθ̂ is the standard deviation of the

estimation which can be calculated by Eq. 5.5; n and m are the number of individual
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Optimal Criteria Λ(φ) P (φ)

D-optimal


92378 0

3660
10.5

0 1.21



−0.694 0.318 −0.589 −0.264
0.061 −0.158 −0.529 0.831
0.059 −0.849 −0.353 −0.390
0.715 0.392 −0.498 −0.294



E-optimal


8179.6 0

145.7
2.5

0 2.4



−0.658 −0.376 −0.491 0.428
0.109 0.021 −0.741 −0.662
0.075 0.825 −0.353 0.434
0.740 −0.421 −0.292 0.435



P-optimal


10607 0

8880
9.67

0 1.25



−0.66 0.412 0.361 0.506
0.082 −0.481 0.873 −0.478
0.042 −0.809 0.244 0.533
0.739 0.415 0.218 0.481


Table 5.2: DOE Results by Different Criteria for Case I

observations and number of parameters in the model. If the t value is larger than

the threshold value (tα(n − m) = t0.95(10 − 4) = 1.94), the parameter is said to

be reliable, otherwise it is statistically unacceptable. According to Table 5.3, the

P-optimal method estimation results are the closest to the true value (which is

known in this simulation study). The correlation coefficient matrix has a similar

result for all three methods, < θ1, θ2 > and < θ3, θ4 > are highly correlated. In

order to answer why θ2 cannot be estimated with high accuracy, we examine the

elements of P in Table 5.2. The second row represents θ2 and for all three cases,

the third and fourth columns of the row have larger values compared to the other

two columns. The third and fourth columns correspond to the small eigenvalues in

M matrix, which agrees with our PCA analysis (small eigenvalue in M indicates a

larger parameter estimation variance).

In real applications, as θ2 is not statistically acceptable, the P-optimal method

allows designing an experiment to increase its estimation accuracy only. From ana-

lyzing Λ in Table 5.2, again the first eigenvalue is dominant and the remaining three
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Optimal Criteria θ̂ t-test Parameter Correlation

D-optimal 0.2922± 0.0089 32.8 1.000 0.986 0.099 -0.0026
0.1485± 0.1693 0.877* 0.986 1.000 -0.018 -0.118
0.5340± 0.0010 53.4 0.099 -0.018 1.000 0.919
0.0464± 0.0010 116.0 -0.0026 -0.118 0.919 1.000

E-optimal 0.2599± 0.0282 9.2 1.000 0.972 0.189 0.046
0.0883± 0.1959 0.45* 0.972 1.000 0.036 -0.102
0.5618± 0.0055 102.2 0.189 0.036 1.000 0.947
0.0526± 0.0002 263.0 0.046 -0.102 0.947 1.000

P-optimal 0.3070± 0.0085 36.2 1.000 0.935 0.353 0.270
0.1997± 0.2447 0.816* 0.935 1.000 0.059 -0.021
0.5546± 0.0042 132.1 0.353 0.059 1.000 0.964
0.0516± 0.0001 516.0 0.270 -0.021 0.964 1.000

True 0.310 0.180 0.550 0.050

Table 5.3: Parameter Estimation Results by Carrying Out Designed Experiments
for Case I

eigenvalues should be included in the new objective function:

F = min
φ∈Φ

(
4∏
i=2

(bi · P 2
2i)

)
= max

φ∈Φ

(
4∏
i=2

(λi · P−2
2i )

)
(5.29)

and bi and pi are eigenvalues and eigenvectors of:

V (θ̂, φ) =

[
q∑
r=1

q∑
s=1

v−1
rs JrJs + V −1

0

]−1

V0 = M−1
0 is taken from the last design in Table 5.3 because V0 is the a priori

information obtained from earlier estimations. Figure 5.3 shows the control inputs

and sampling times suggested by the sequential design.

The sequential estimation results are:

θ̂ = [0.321± 0.0312 0.1776± 0.0924 0.582± 0.0459 0.0571± 0.0188]T
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Figure 5.3: Control inputs and sampling points calculated by sequential P-optimal
design criterion. Red: control limits; Blue: designed control inputs; Dash: initial
control guesses; Square: sampling points

The corresponding t−test value is [29.48 5.51 36.327 8.670] and the reference

value is 1.75. One can see that all the parameters converged to the true values and

are statistically reliable according to the t−test. Moreover, the estimation accuracy

for θ2 is noticeably enhanced (t value changes from 0.816 to 5.51) and verifies our

design goal, which is increased estimation accuracy of θ2.

Case II

In this case, only D- and P- optimal criteria are considered and E-optimal is

omitted because of its poorer performance in Case I. Figure 5.4 is the control strategy

and corresponding sampling points suggested by DOE. Both methods suggest bang-

bang control for u1 and the only difference is that the switching times are different.

For u2, both criteria also give similar results, which are composed of small set point
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changes. Tables 5.4 and 5.5 listed the designed information matrix results and

nonlinear regression results, respectively. As in Case I, D-optimal leads to a large

leading eigenvalue (1.099 × 105) and the P-optimal criterion focuses on improving

the product of the remaining three eigenvalues. Table 5.5 indicates both methods

give similar regression results while the P- optimal method is slightly better for θ2

estimation, because D-optimal gives a lower bound (0.05).

Because the initial guess is different from Case I, the information matrix (M in

Table 5.4) is larger (in terms of volume) than in Table 5.2; the estimation results

are worse by comparing Table 5.5 with Table 5.3. In Case I, P in Table 5.2 clearly

shows θ2 may not be accurately estimated. However, one examines P in Table 5.4, it

is reasonable to assume that θ2 can be estimated with high accuracy because P (2, 2)

is dominant in the second row of P for both D- and P- optimal criteria. The results

in Table 5.5 again indicate θ2 is not statistically acceptable (using the t − test).

The apparent contradiction can be explained by the fact that the initial parameter

guesses are poor. Using the estimated parameter value of P-optimal criterion in

Table 5.5 (0.3072, 0.0913, 0.5571, 0.0521) and the designed experimental condition

(Figure 5.4(b)), the corresponding P matrix is:

P̃ =


−0.7427 0.5989 −0.2972 0.0375

0.0372 −0.0276 −0.0227 0.9987

0.0529 −0.3884 −0.9193 −0.0336

0.6665 0.6998 −0.2569 −0.0114


As the estimated parameter is closer to the true value compared with the initial

guess, the corresponding P̃ is more reasonable. One can see P̃ (2, 4) is dominant

in the second row, which indicates poor estimation accuracy as we saw in Case I.

Moreover, when one analyzes P̃ column by column, P̃ (2, 4) is dominant in column
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4 with the other three elements very close to zero, which means only θ2 needs to

be estimated with better accuracy. As a result, based on P̃ matrix above, it is

reasonable to design another experiment for θ2. According to CPV, the last three

eigenvalues are included and the objective function is the same as Case I (Eq. 5.27).

Optimal Criteria Λ(φ) P (φ)

D-optimal


109900 0

15264
54563

0 1564



−0.057 0.392 0.905 0.152
0.017 −0.913 0.405 −0.051
−0.090 −0.112 −0.122 0.982
0.994 0.028 0.034 0.099



P-optimal


72456 0

30722
40048

0 3114



−0.082 0.176 0.970 0.146
0.136 −0.972 0.191 −0.021
−0.082 −0.061 −0.144 0.984
0.984 −0.144 0.042 0.097


Table 5.4: DOE Results by Different Criteria for Case II

Optimal Criteria θ̂ t-test Parameter Correlation

D-optimal 0.2985± 0.0130 22.7 1.000 0.694 0.543 0.521
0.0500± 0.1980 0.252* 0.694 1.000 -0.196 -0.237
0.5310± 0.0310 17.48 0.543 -0.196 1.000 0.937
0.0467± 0.0103 5.86 0.521 -0.237 0.937 1.000

P-optimal 0.3072± 0.0130 21.56 1.000 0.605 0.613 0.614
0.0913± 0.2281 0.399* 0.605 1.000 -0.216 -0.248
0.5571± 0.0332 15.89 0.613 -0.216 1.000 0.935
0.0521± 0.0101 5.01 0.614 -0.248 0.935 1.000

True 0.310 0.180 0.550 0.050

Table 5.5: Parameter Estimation Results by Carrying Out Designed Experiments
for Case II

Figure 5.5 gives the sequential design suggested by both methods, and the pa-

rameter estimation results are listed in Table 5.6. Because the P-optimal method

is focusing on design of an experiment for estimating θ2, the corresponding results

have a more accurate value and a tighter confidence region compared with D-optimal

results. Meanwhile, D-optimal has a tighter confidence region for the other three
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parameters because it has no preference in choosing which parameter to improve

accuracy. t − test results suggest all parameters are statistically acceptable after

two sequential designs.

Optimal Criteria θ̂ t-test Parameter Correlation

D-optimal 0.3060± 0.0060 47.15 1.000 0.260 0.835 0.830
0.2035± 0.0567 3.59 0.260 1.000 -0.253 -0.278
0.5317± 0.0210 24.71 0.835 -0.253 1.000 0.964
0.0463± 0.0053 9.29 0.830 -0.278 0.964 1.000

P-optimal 0.3137± 0.0071 42.45 1.000 -0.065 0.891 0.865
0.1801± 0.0520 3.46 -0.065 1.000 -0.425 -0.531
0.5613± 0.0261 21.83 0.891 -0.425 1.000 0.955
0.0538± 0.0071 7.52 0.865 -0.531 0.955 1.000

True 0.310 0.180 0.550 0.050

Table 5.6: Parameter Estimation Results by Sequential DOE for Case II

5.4.2 Polymerization Reaction Model

Polyethylene is the most popular synthetic polymer with over 40 billion tons pro-

duction every year [33]. Among different production techniques, gas phase reaction

over Ziegler-Natta catalysts enjoys the advantage of moderate reaction conditions

and simple downstream separation. Therefore a large proportion of polyethylene is

produced in this way and a key operating constraint of this reactor is to keep the

reactor temperature above the dew point of the reactant to avoid condensation and

below the melting point of the polymer to prevent particle melting and agglomera-

tion. At the same time, the system is prone to unstable steady states, limit cycles,

and excursions toward unacceptably high temperature steady states [64]. Due to

process understanding, optimization, and automation needs, there have been many

efforts on first principles modeling during the last decade [64, 38, 65]. In this

work, a gas phase polymerization reactor model [64] with seven ordinary differen-

tial equations (ODEs) and eight algebraic equations (AEs) is applied. It has been

demonstrated that the model can reproduce the process features listed above and
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has been widely applied in controller design and process optimization.

Figure 5.6 shows the schematic of the gas phase polymerization process [33, 64]. A

feed including ethylene, comonomer, hydrogen, inerts, and catalysts are continuously

added to the system and catalyst is also continuously added through another feed.

Unreacted gas is cooled by a counter current heat exchanger. The ODEs and AEs

used for this dynamic model are listed in Eq. 5.30 and 5.31, respectively. Detailed

model parameters can be found in Appendix II.

d[In]
dt

=
Fin −

[In]
[M1] + [In]

bt

Vg
(5.30a)

d[M1]
dt

=
FM1 −

[M1]
[M1] + [In]

bt −RM1

Vg
(5.30b)

dY1

dt
= Fcac1 − kd1Y1 −

RM1MW1Y1

BW
(5.30c)

dY2

dt
= Fcac2 − kd2Y2 −

RM1MW1Y2

BW
(5.30d)

dT

dt
=
Hf +Hg1 −Hg0 −Hr −Hpol

MrCpr +BWCppol
(5.30e)

dTw1

dt
=

Fw
Mw

(Twi − Tw1)− UA

MwCpw
(Tw1 − Tg1) (5.30f)

dTg1
dt

=
Fg
Mg

(T − Tg1)− UA

MgCpg
(Tw1 − Tg1) (5.30g)

where

bt = VpCv
√

([M1] + [In]) ·RR · T − Pv (5.31a)

RM1 = [M1] · kp0 · exp
[
−Ea
R

(
1
T
− 1
Tf

)]
· (Y1 + Y2) (5.31b)

Cpg =
[M1]

[M1] + [In]
Cpml +

[In]
[M1] + [In]

CpIn (5.31c)

Hf = FM1Cpml(Tfeed − Tf ) + FinCpIn(Tfeed − Tf ) (5.31d)
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Hg1 = Fg(Tg1 − Tf ) · Cpg (5.31e)

Hg0 = (Fg + bt)(T − Tf ) · Cpg (5.31f)

Hr = HreacMW1RM1 (5.31g)

Hpol = Cppol(T − Tf )MW1RM1 (5.31h)

In the original paper [64], the two types of active site have the same characteristics.

In this work, two active sites have different concentrations: ac1 = 0.548mol/kg and

ac2 = 0.750mol/kg and deactivation rates: kd1 = 0.36h−1 and kd2 = 0.72s−1. All

the other model parameters are kept the same as in [33, 64] (refer to Appendix II).

Suppose most thermodynamic properties are known and reaction-related kinetic

parameters are unknown (Table 5.7). This can be mapped into the case where a new

catalyst is introduced to the production system. The only unknown thermodynamic

property is assumed to be the heat capacity of polymer (Cppol). Table 5.7 lists the

true value of the parameters and the initial guesses of each parameter. One can see

the parameters are distributed widely across many magnitudes (0 to 105), which

lead to parameter estimation difficulty.

Model Parameters
ac1 ac2 kp0 Ea kd1 kd2 Cppol

mol/kg mol/kg m3/(mol · h) J/mol h−1 h−1 J/(kg ·K)

True Value 0.548 0.750 0.306 3.768× 104 0.36 0.72 3559

Initial Knowledge [0,1] [0,1] [0,1] [103, 106] [0,1] [0,1] [103, 105]

Initial Guess 0.5 0.5 0.5 0.5× 106 0.5 0.5 5× 104

Table 5.7: Unknown Parameters in Polymerization Model

Due to safety considerations, one can only perturb the catalyst flow rate (u1,

F ssc = 5.8kg/h) and feeding temperature (u2, T ssfeed = 293K) within a tight range

( ±10% around steady state value). All the state variables ([In], [M1], Y1, Y2,

T, Tw1 , and Tg1) are measurable (temperature related variables can be read on-
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line and concentrations are analyzed offline) and the corresponding measurement

noise are: N(0, [4 6.7 0.02 0.02 0.4 0.4 0.1]). Twenty samples are analyzed

during one hundred hours experimental time and each two neighboring samples are

taken longer than two hours and shorter than twenty hours. Four switches are sched-

uled for each control variable (u1 and u2) and the switching times are under certain

constraints shown below. To eliminate the initial transient phase in simulation, the

DOE phase is carried out from 100 to 200 hours:

100 ≤ ts,i ≤ 200 hours; i = 1, 2, . . . , 20

2 ≤ ts,i+1 − ts,i ≤ 20 hours; i = 1, 2, . . . , 19

5.22 ≤ u1,j ≤ 6.38 kg × h−1; j = 1, 2, . . . , 5

5 ≤ tu1,j+1 − tu1,j ≤ 30 hours; j = 1, 2, . . . , 4

263.7 ≤ u2,k ≤ 322.3 K; k = 1, 2, . . . , 5

5 ≤ tu2,k+1 − tu2,k ≤ 30 hours; k = 1, 2, . . . , 4

Pseudo Random Binary Sequence (PRBS) signal is widely used for model identi-

fication in both academia and industry. Suppose a PRBS signal is applied to this

system with switching time equal to ten hours and constant sampling rates (every

five hours), the designed variable will be:

φPRBS :

ts = 105, 110, . . . , 200 hours

u1 = 5.22, 6.38, 6.38, 5.22, 5.22, 5.22, 6.38, 6.38, 6.38, 6.38 kg × h−1

u2 = 263.7, 322.3, 322.3, 263.7, 322.3, 322.3, 322.3, 263.7, 263.7, 322.3 K

tu1 = 105, 115, 125, 135, 145, 155, 165, 175, 185 hours

tu2 = 110, 120, 130, 140, 150, 160, 170, 180, 190 hours
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With this PRBS input and equal sampling rates, the eigenvalue and eigenvector

matrices are:

ΛPRBS = diag(6.0× 107 2.8× 105 9.2× 103 2.2× 103...

3.4× 101 1.6× 101 4.5× 10−3)

PPRBS =



−0.3810 −0.0280 −0.0816 −0.1169 −0.5941 0.5777 0.3834

−0.3810 −0.0280 −0.0816 −0.1169 0.5941 0.5777 −0.3834

−0.7621 −0.0558 −0.1654 −0.2372 0.0000 −0.5767 0.0000

−0.0878 0.9738 0.1932 −0.0820 0.0000 0.0001 0.0000

0.2461 0.0471 −0.3606 −0.5543 0.3834 0.0015 0.5941

0.2461 0.0471 −0.3606 −0.5543 −0.3834 0.0015 −0.5941

0.0076 −0.2065 0.8136 −0.5434 −0.0000 0.0000 −0.0000


One can see that the first eigenvalue is dominant and the corresponding eigen-

vector focuses on explain kp0 (P13 = −0.76) and acs and kds are also included.

Furthermore, the second one is dominated by Ea related terms (P24 = 0.97) and

the third by polymer heat capacity (Cppol). Because E-optimal performance was un-

satisfactory in Section 5.1, only D- and P- optimal are used here and the objective

functions are:

D-optimal :

F1 = min
φ∈Φ

(
7∏
i=1

bi

)
= max

φ∈Φ

(
7∏
i=1

λi

)
(5.32)

P-optimal (all parameters):

F2 = min
φ∈Φ

 7∏
i=2

bi · 7∑
j=1

P 2
ji

 = max
φ∈Φ

(
7∏
i=2

λi

)
(5.33)

133



P-optimal (Ea):

F1 = min
φ∈Φ

(
7∏
i=2

(
bi · P 2

4i

))
= max

φ∈Φ

(
7∏
i=2

(
λi · P−2

4i

))
(5.34)

Two cases are considered in P-optimal, F2 aims to improve the precision of all

the parameters while F3 only focuses on activation energy (Ea) because activation

energy is directly related to optimum operation temperature choice.

Figure 5.7 compares the suggested control set point changes for catalyst flow rate

(u1) and feed temperature (u2) and the sampling times (ts) for different optimum

criteria. It is obvious that D-optimal and P-optimal for all parameters (Figure 5.7(a)

and (b)) give similar suggestions on sampling time. Furthermore, during the frequent

sampling phase (100 < t < 135h), catalyst flow rate set points in both cases are

very similar while P-optimal suggests a two-step movements for feed temperature

and D-optimal suggests bang-bang control. The reason for this small difference

could be due to the continuous operation mode. Compared with batch operation, a

continuous process loses some degrees of freedom for DOE such as initial condition

and time dependency. This is also one of the reasons why parameter identification

is difficult for continuous processes. For case (c), the calculated trajectories differ

from cases (a) and (b), the suggested sampling times are roughly divided into two

parts: 110 − 135h and 190 − 200h, respectively. The control modes are bang-bang

control as well. Interestingly, the frequent sampling time periods are roughly under

maximum operation limits. The difference between (c) and the previous two cases

can be attributed to the significantly different objective functions because the P

matrix is employed to focus on estimate activation energy better.

In order to testify the DOE results, simulation is carried out with measurement

noise indicated above. The parameter estimation results for PRBS test, D-optimal,
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and P-optimal criteria are listed in Table 5.8. Same as Table 5.3, the estimated

parameter value (θ̂), t test and estimated parameter correlation matrix are shown.

It can be seen that the PRBS test gave the worst estimation results with large

confidence regions for nearly all the parameters. As indicated by φPRBS above,

there are nine switching points compared with four for the designed runs but PRBS

still gives unsatisfactory results.

For designed experiments, P-optimal for all parameters indicate a better overall

parameter estimation result than D-optimal with closer to true values and tighter

confidence intervals for almost all parameters. Furthermore, the parameter corre-

lation matrix suggests some very strong linear dependency in D-optimal results as

(θ1, θ2) , (θ1, θ5) , (θ1, θ6) , (θ5, θ6), (θ4, θ7), which indicates unreliable results. These

correlated parameters can be replaced by a single parameter for each pair and still

give a good fit to the D-optimal designed experimental data. This is not surpris-

ing for a continuous process because it is regulated as close to the steady state as

possible, hence it does not provide much excitation. But this will surely increase

the difficulty for parameter identification. Mathematically, the reason of highly cor-

related parameters could be attributed to ill-conditioned information matrix (M)

because the correlation matrix is proportional to the inverse of the M matrix. D-

optimal maximized the dominant eigenvalue, which led to a large condition number

5× 109. In comparison, P-optimal case shows well-decoupled results, which means

the two-step movement between 100 to 140 h for feed temperature in Figure 5.7(b)

increases the nonlinearity of the response, which is helpful for identification. The

condition number reduces to 9× 106.

At the mean time, P-optimal design for activation energy only gives the best

estimation for Ea with the tightest confidence region, although other parameters do

not converge as close to the true value as P-optimal does for all parameters (Eq.
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5.33). It is worthwhile to notice that for this continuous example, few estimation

cases meet the t − test requirement (1.77). Again, a continuous process with fixed

operation condition caused difficulty for DOE and parameter estimation. However,

by using P-optimal for one important parameter only, Ea estimation meets the

criterion (2.01 > 1.77) and an optimum operation temperature can be defined based

on this estimate for later controller design.

ac1 ac2 kp0 Ea kd1 kd2 Cppol

PRBS

θ̂ 0.6478 0.5249 0.3509 42670 0.5719 0.5260 5840

σθ̂ 3.7562 3.5924 0.9840 200200 3.7744 4.1985 18710

t− test(tref = 1.77) 0.1725 0.1461 0.3566 0.2131 0.1515 0.1253 0.3121

Parameter Correlation

1.0000 -0.3111 -0.5028 -0.3488 0.4970 -0.3828 -0.3482

-0.3111 1.0000 -0.6611 0.4444 -0.6692 0.5503 0.3731

-0.5028 -0.6611 1.0000 -0.1029 0.1825 -0.1485 0.0018

-0.3488 0.4444 -0.1029 1.0000 -0.7483 0.7345 0.6626

0.4970 -0.6692 0.1825 -0.7483 1.0000 -0.9718 -0.6219

-0.3828 0.5503 -0.1485 0.7345 -0.9718 1.0000 0.7051

-0.3482 0.3731 0.0018 0.6626 -0.6219 0.7051 1.0000

D-optimal

θ̂ 0.6588 0.5540 0.3080 46300 0.4831 0.4709 5549

σθ̂ 0.6757 0.7283 0.1720 103000 0.5263 0.6717 8600

t− test(tref = 1.77) 0.9750 0.7607 1.7907 0.4495 0.9179 0.7011 0.6452

Parameter Correlation

1.0000 -0.9900 -0.0717 -0.0178 0.9950 -0.9950 0.0127

-0.9900 1.0000 -0.0695 0.0189 -0.9950 0.9950 -0.0105

-0.0717 -0.0695 1.0000 -0.0002 -0.0011 0.0010 -0.0004

-0.0178 0.0189 -0.0002 1.0000 -0.0179 0.0190 0.8456

0.9950 -0.9950 -0.0011 -0.0179 1.0000 -1.0000 0.0128

-0.9950 0.9950 0.0010 0.0190 -1.0000 1.0000 -0.0106
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0.0127 -0.0105 -0.0004 0.8456 0.0128 -0.0106 1.0000

P-optimal (All Parameters)

θ̂ 0.6455 0.6482 0.3035 40100 0.4675 0.5779 5076

σθ̂ 0.6189 0.6858 0.1765 90060 0.3947 0.5351 9480

t− test(tref = 1.77) 1.0430 0.9452 1.7195 0.4453 1.1844 1.0800 0.5354

Parameter Correlation

1.0000 -0.3321 -0.5653 -0.3128 0.5966 -0.5142 -0.3320

-0.3321 1.0000 -0.5870 0.3222 -0.6333 0.5538 0.3544

-0.5653 -0.5870 1.0000 -0.0014 0.0051 0.0044 -0.0011

-0.3128 0.3222 -0.0014 1.0000 -0.5589 0.5365 0.5421

0.5966 -0.6333 0.0051 -0.5589 1.0000 -0.9854 -0.5950

-0.5142 0.5538 0.0044 0.5365 -0.9854 1.0000 0.5925

-0.3320 0.3544 -0.0011 0.5421 -0.5950 0.5925 1.0000

P-optimal (Activation Energy Only)

θ̂ 0.7255 0.5635 0.3053 38190 0.5594 0.4769 5532

σθ̂ 0.7488 0.6786 0.1757 18100 0.5883 0.5928 9060

t− test(tref = 1.77) 0.9741 0.8304 1.7376 2.1099 0.9509 0.8045 0.6106

Parameter Correlation

1.0000 -0.4507 -0.5246 -0.1447 0.6745 -0.7043 0.1719

-0.4507 1.0000 -0.5177 0.0900 -0.6308 0.6842 -0.0193

-0.5246 -0.5177 1.0000 0.0012 -0.0034 -0.0026 -0.0007

-0.1447 0.0900 0.0012 1.0000 -0.2086 0.1360 -0.4300

0.6745 -0.6308 -0.0034 -0.2086 1.0000 -0.9868 0.2477

-0.7043 0.6842 -0.0026 0.1360 -0.9868 1.0000 -0.1379

0.1719 -0.0913 -0.0007 -0.4300 0.2477 -0.1379 1.0000

True Value

θ 0.5480 0.7500 0.3060 37680 0.3600 0.7200 3559

Table 5.8: Parameter Estimation Results for Polymerization Process
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5.5 Summary

A generalized model-based DOE criterion is proposed in this chapter by introduc-

ing PCA into the sensitivity matrix (J) and information matrix (M) analysis. The

main advantages of this method include easy rescaling of a large DAE system into

small components. In addition, it is easy to focus on improving a specific subset

of parameters, and parameters can be grouped according to their sensitivity behav-

ior. Two engineering examples are presented to show the effectiveness of the new

proposed method. According to the analysis, it can be concluded that P-optimal is

more efficient for complex systems than the traditional D-, or E- optimal criteria,

and it is robust to different initial parameter estimates. It may be a good idea to

combine this identification objective function with optimal control objective func-

tion to achieve simultaneous control and identification, which will be the next step

in future work.
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(a) Control inputs designed by D-optimal

(b) Control inputs designed by P-optimal

Figure 5.4: Control inputs and sampling points calculated by different optimal de-
sign criterion. Red: control limits; Blue: designed control inputs; Dash: initial
control guesses; Square: sampling points
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(a) Control inputs designed by D-optimal

(b) Control inputs designed by P-optimal

Figure 5.5: Control inputs and sampling points calculated by different optimal de-
sign criterion. Red: control limits; Blue: designed control inputs; Dash: initial
control guesses; Square: sampling points
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Figure 5.6: Gas phase polymerization system
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(a) Control inputs designed by D-optimal

(b) Control inputs designed by P-optimal for all parameters
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(c) Control inputs designed by P-optimal for activation energy (Ea)

Figure 5.7: Control inputs and sampling points calculated by different optimal de-
sign criterion. Red: control limits; Blue: designed control inputs; Dash: initial
control guesses; Square: sampling points
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Chapter 6

Summary and

Recommendations

6.1 Summary of Contributions

Mathematical modeling is a central activity in the chemical industry and many

other process industries. The success of this activity relies on “people plus pro-

cedures plus tools - in that order of importance [16]”. This work mainly focuses

on building and improving procedures and tools for the most widely used modeling

approaches: statistical and first principles modeling. Meanwhile, most attention has

been focused on batch processes because of its high nonlinear dynamics, non steady

states and broad applications across many process industries.

One goal of this work is to propose and justify a complete and efficient statis-

tical modeling algorithm package for online batch monitoring purpose. To achieve

this goal, seven available commercialized software packages are evaluated and re-

sults suggest batch online application features are largely missing due to real time

data sharing and robust online algorithm development difficulties. By focusing on
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algorithm package development, a detailed Multiway PCA (MPCA) based batch

monitoring procedure is given which serves as the starting point of Chapters 3 and

4.

In Chapter 3, current batch trajectory dynamic synchronization methods are com-

pared and challenges are presented. Dynamic Time Warping (DTW) and Derivative

DTW (DDTW) are the most suitable approaches so far but DTW creates many sin-

gularity points and DDTW fails when the process data are noise corrupted. A new

dynamic optimization algorithm: Robust DDTW (RDDTW) is proposed by com-

bining Savitzky-Golay filter with DDTW. By including SG-filter, the noisy data

were fit into a mth order polynomial then the numerical derivative is taken based on

the polynomial rather than the noisy data. In this way, the precision of numerical

derivative estimation is greatly enhanced. Furthermore, the weighting matrix for

a given polynomial is calculated offline, thus the online synchronization part kept

concise and efficient. Three case studies (NIR, dynamic simulation, and industrial

batch data) further justify that the RDDTW algorithm is robust to process noise,

filter parameter setting and also computationally efficient.

In Chapter 4, a new method to consider batch dynamics (time dependency) is pro-

posed by employing EWMA into Hybrid-wise unfolding MPCA (HMPCA) routine.

Theoretically, the new proposed E-HMPCA algorithm considers process dynamics

by using a weighted low pass filter on score (tk) and residual vector (ek) and does

not require large data matrix calculation as required by lagged window approach

(Batch Dynamic PCA (BDPCA)). New control metrics (T 2, SPE) are proposed

for the new methods. Three batch (polymer, chemical, and biochemical) processes

are employed to compare HMPCA, BDPCA, and E-HMPCA. The results suggest

E-HMPCA has following application advantages: 1. easy to implement online; 2.

computationally efficient; 3. fast detection for small variations; 4. Small type I and
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II errors.

A complete methodology is set up for batch process online monitoring. By col-

laborating with Emerson Process Management, the package is being developed and

beta tested. Figures 6.1 and 6.2 contains snap shots of the beta test results. The

package is working well in industrial process testing.

(a)T 2 contribution plot (b)SPE contribution plot

(c)Main PCA monitoring window

Figure 6.1: Interface for testing PCA model

In Chapter 5, a new dynamic Design of Experiments (DOE) (P-optimal) crite-

ria is proposed for DAE system parameter estimation. The new criteria combines

PCA with dynamic system sensitivity analysis technique. To implement the idea,

nonlinear dynamic optimization is carried out by using numerical integration and

nonlinear optimization. By using the P-optimal criteria, the information matrix
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(a) End of batch estimation for V1 (b) End of batch estimation for V2

(c)Main PLS fast historical data playback window

Figure 6.2: Interface for testing PLS model

(M) can be elegantly divided into smaller compartments according to parameter

sensitivity behavior. Furthermore, it is easy to design an experiment to improve the

precision of a specific subset of parameters. Moreover, the P-optimal criteria may

degenerate into D- or E-optimal criteria under certain conditions. One simple batch

(four parameters, two ODEs) and one complex continuous (seven parameters, seven

ODEs, eight AEs) process examples are applied to demonstrate the algorithm and

idea.

6.2 Recommendations for Future Work

Despite the rapid advancements in first principles and statistical modeling, there

still remain many areas need further research. For statistical modeling, the PCA-

PLS type of generic tools can be applied to many processes efficiently. However,
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these methods fail to include engineering insight and process knowledge. By taking

engineering insights into account, the resulting model could be hybrid (statistical

with first principles to describe mechanical relationship (e.g., mass balance)), there-

fore the detection and diagnosis efficiency should increase. Another approach to

consider engineering insights is to introduce another artificial intelligence layer over

PCA/PLS model. The upper layer can learn physical rules and evaluate control

system overall performance to decide if and how the lower layer statistical model

should be updated based on machine learning technique.

Although case studies in Chapter 3 indicate the RDDTW algorithm is superior

over traditional dynamic synchronization methods, the algorithm may need further

industrial robustness test especially for large transport delay and multiphase batch

(e.g., loading, reaction, and separation compose a three phase batch) processes. For

a large transport delay, it is crucial to set bandwidth constraint to a large value and

for multiphase processes, it is better to perform alignment phase by phase.

On first principles modeling, the benefit by employing DOE is significant in terms

of time and cost saving. However, great efforts are required for full industrial

adoption. Theoretically, the challenges of applying DOE are mainly on numerical

analysis, to be more specific: numerical integration, optimization and DAE system

auto-differentiation. For each topic, there are good software packages, even open

source packages are available. However, to make them robustly work together into

a commercial software and meet industrial requirements is a very challenging task.

Moreover, it is reasonable to combine DOE and optimal control objective together

to achieve simultaneous control and identification. It can be a very difficult task

but will result in a new closed-loop self-regulating control system which is mainly

composed of Model Predictive Control (MPC), Moving Horizon Estimation (MHE),

and DOE. The advantage of this new system could be fast model identification,
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self regulation, and enhanced controller performance to process drift and product

transition.

For other open issues in modeling applications, please refer to Table 3 (Suggestions

for improving current modeling technology) in Foss et al. [29], and Section 4 (The

future: enhancing the practice of industrial process modeling) in Cameron and

Ingram [16].

After demonstrating the benefit of modeling all the time, the author wants to

point out that although modeling is playing a center role in many applications, it

is not the solution to everything. “Yet at the same time, “over-sell” of modeling

capabilities remains a potential trap for advocates [16]”.
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Appendix A

Nomenclature

Abbriviation:

AE Algebraic Equatioin

ARX Auto-Regression with eXogenous

BDPCA Batch Dynamic PCA

COW Correlated Optimized Warping

CPV Cumulative Percent Variance

CUSUM Cumulative Sum

DAE Dynamic Algebraic Equation

DDTW Derivative Dynamic Time Warping

DOE Design Of Experiments

DPCA Dynamic PCA

DTW Dynamic Time Warping

E-HMPCA EWMA combined HMPCA

EWMA Exponentially Weighted Moving Average

FIR Finite Impulse Response

HMPCA Hybrid-wise unfolding Multiway PCA

ICA Independent Component Analysis
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LQR Linear Quadratic Regulator

LS Least Squares

MLE Maximum Likelihood Estimation

MPCA Multiway PCA

MSPC Multivariate Statistical Process Control

NIPALS Nonlinear Iterative Partial Least Squares

NLP Nonlinear Programing

OLS Ordinary Least Squares

PARAFAC Parallel Factor Analysis

PCA Principal Component Analysis

PDE Partial Differential Equation

PID Proportional, Integral, Derivative

PLS Partial Least Squares

PRBS Pseudo Random Binary Sequence

PRESS Predicted Error Sum of Squares

RDDTW Robust Derivative Dynamic Time Warping

SDE Stochastic Differential Equation

SG filter Savitzky Golay filter

SPC Statistical Process Control

SVD Singular Value Decompositoin

UCL Upper Control Limit

pdf Probability density function

Mathematics Symbol:

A Stoichiometry information for fermentation problem

B Eigenvalue matrix of V

C Right eigenvector for SVD

D Accumulated distance in synchronization
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E Residual matrix

F F distribution

G Dilution rate for fermentation problem

H DAE system coefficient matrix

I Number of batch profile

J Number of batch variables

J Sensitivity matrix

K Number of observations in a batch

L Eigenvalue matrix for SVD

M Information matrix

N(θ, σ2) Normal distribution with mean θ and standard deviation σ

P Loading matrix for PCA or PLS

Q Loading matrix for PLS

S Subspace

T Score matrix for PCA

U Score matrix for PLS

V Estimated parameter covariance matrix

W Weighting matrix in synchronization

W Left eigenvector for SVD

X Data matrix (n×m)

Y Data matrix (n× l)

Xraw Raw batch data

X Average trajectory of Xraw

ank Polynomial coefficient in SG filter

b Eigenvalues of V

c Grid point in synchronization

d Local distance in synchronization
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dx Derivative estimation of x series

e Number of parameters of less interests

f(θ,X) Nonlinear regression model

f DAE model

fi Polynomial used in SG filter

h Number of raw measurements for SG filter

l Number of output in Y

m Polynomial order in SG filter

m Number of model parameters in DAE

n Number of observations, experiments

p Loading vector for PCA

p Number of outputs for PLS

q Loading vector for PLS

q Number of equations in DAE system

u Score vector for PLS

u Controlled variables

s Substrate concentration in fermentation model

t Length of reference trajectory

t Score vector for PCA

t time for dynamic systems

r Length of new trajectory

x State variables

xfilter Exponentially filtered trajectory

xref Reference trajectory

xnew New trajectory

y Measured variables

Greeks :
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K Number of points needed for the aligned path

Λ Eigenvalue matrix

α Confidence level

χ2 χ2 distribution

η Optimal aligned path

κ Grid point index of the aligned path

γ Equation index in synchronization

λ Eigenvalue of covariance matrix

φ Design vector

σθ Confidence region of estimation

θ Model parameter vector

θ̂ Estimated parameter value

Subscripts:

0 Starting point or time; Initial knowledge

E EWMA filtered

f Final point or time

i, j, k Index for score, loading matrices

m Measured value

p Principal subspace

pc Principal component

r Residual subspace

s Sample

max Upper bound

min Lower bound

mean Mean value of a vector

std Standard deviation of a vector
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Appendix B

Polymerization Reactor Model

Symbol Parameter Values Units

Vg Volume of gas phase in the re-

actor

500 m3

Vp Bleed stream valve position 0.5

Pv Pressure downstream of bleed

vent

17 atm

BW Mass of polymer in the flu-

idized bed

7× 104 kg

kp0 Pre-exponential factor for

polymer propagation rate

85× 10−3 m3

mol·s

Ea Activation energy 9000× 4.2 J/mol

Cpml Specific heat capacity of ethy-

lene

11× 4.2 J
mol·K

Cv Vent flow coefficient 7.5 atm−0.5 ·mol/s

Cpw Specific heat capacity of water 103 × 4.2 J
kg·K
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CpIn Specific heat capacity of inert

gas

6.9× 4.2 J
kg·K

Cppol Specific heat capacity of poly-

mer

0.85× 103 × 4.2 J
kg·K

kd1 Deactivation rate constant for

site 1

0.36 h−1

kd2 Deactivation rate constant for

site 2

0.72 h−1

MW1 Molecular weight of monomer 28.05× 10−3 kg
mol

Mw Mass holdup of cooling water

in heat exchanger

3.314× 104 kg

Mg Mass holdup of stream gas in

heat exchanger

6060.5 mol

MrCpr Product of mass and heat ca-

pacity of reactor wall

1.4× 107 × 4.2 J
K

Hreac Heat of reaction −894× 103 × 4.2 J
kg

UA Product of heat exchanger co-

efficient with are

1.14× 106 × 4.2 J
K·s

FIn Flow rate of inert gas 5 mol
s

FM1 Flow rate of ethylene 190 mol
s

Fg Flow rate of recycle gas 8500 mol
s

Fw Flow rate of cooling water 3.11× 105 × 18× 10−3 kg
s

Tf Reference temperature 360 K

RR Ideal gas constant 8.206× 10−5 m3·atm
mol·K

R Ideal gas constant 8.314 J
mol·K

ac1 Active site concentration of

catalyst

0.548 mol
kg
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ac2 Active site concentration of

catalyst

0.750 mol
kg

157



Bibliography

[1] Sarolta Albert and Robert D. Kinley. Multivariate statistical monitoring of

batch processes: an industrial case study of fermentation supervision. Trends

in Biotechnology, 19(2):53–62, 2001.

[2] Ashraf AlGhazzawi and Barry Lennox. Monitoring a complex refining process

using multivariate statistics. Control Engineering Practice, 16:294–307, 2008.

[3] S. P. Asprey and S. Macchietto. Statistical tools for optimal dynamic model

building. Computers and Chemical Engineering, 24:1261–1267, 2000.

[4] S. P. Asprey and S. Macchietto. Designing robust optimal dynamic experi-

ments. Journal of Process Control, 12:545–556, 2002.

[5] S. P. Asprey and Yuji Naka. Mathematical problems in fitting kinetic models -

some new perspectives. Journal of Chemical Engineering of Japan, 32(3):328–

337, 1999.

[6] Anthony C. Atkinson. Non-constant variance and the design of experiments for

chemical kinetic models. In S. P. Asprey and S. Macchietto, editors, Dynamic

Model Development, volume 16. Elsevier, 2003.

[7] Anthony C. Atkinson and Barbara Bogacka. Compound , d- and ds-optimum

designs for determining the order of a chemical reaction. Technometrics,

39:347–356, 1997.

158



[8] Anthony C. Atkinson and Barbara Bogacka. Compound and other optimum

designs for systems of nonlinear differential equations arising in chemical ki-

netics. Chemometrics and Intelligent Laboratory Systems, 61:17–33, 2002.

[9] Anthony C. Atkinson and William G. Hunter. The design of experiments for

parameter estimation. Technometrics, 10:271–289, 1968.

[10] Bhavik R. Bakshi. Multiscale pca with application to multivariate statistical

process monitoring. AIChE Journal, 44(7):1596–1610, 1998.

[11] Yonathan Bard. Nonlinear Parameter Estimation. Academic Press, INC, New

York, 1974.

[12] Gulnur Birol, Cenk Undey, and Ali Cinar. A modular simulation package

for fed-batch fermentation: Penicillin production. Computers and Chemical

Engineering, 26:1553–1565, 2002.

[13] Michael Boudreau and Gregory McMillan. Multivariate Statistical Process

Control. ISA, 1st edition, 2006.

[14] G. E. P. Box and H. L. Lucas. Design of experiments in non-linear situations.

Biometrika, 46:77–90, 1959.

[15] Rasmus Bro. Parafac, tutorial and applications. Chemometrics and Intelligent

Laboratory Systems, 38:149–171, 1997.

[16] I. T. Cameron and G. D. Ingram. A survey of industrial process modelling

across the product and process lifecycle. Computers and Chemical Engineer-

ing, 32:420–438, 2008.

[17] Kevin A. Chamness. Multivariate Fault Detection and Visualization in the

Semiconductor Industry. PhD thesis, The University of Texas at Austin, 2006.

159



[18] Jinghui Chen and Chien-Mao Liao. Dynamic process fault monitoring based

on neural network and pca. Journal of Process Control, 12(2):277–289, 2002.

[19] Junghui Chen, Chien-Mao Liao, Franz Ren Jen Lin, and Muh-Jung Lu. Prin-

cipal component analysis based control charts with memory effect for process

monitoring. Ind. Eng. Chem. Res., 40:1516–1527, 2001.

[20] Gregory A. Cherry. Methods for improving the reliability of semiconductor

fault detection and diagnosis with Principal Component Analysis. PhD thesis,

The University of Texas at Austin, 2006.

[21] Leo H. Chiang, Riccardo Leardi, Randy J. Pell, and Mary Beth Seasholtz.

Industrial experiences with multivariate statistical analysis of batch process

data. Chemometrics and Intelligent Laboratory Systems, 81(2):109–119, 2006.

[22] Leo H. Chiang, Evan L. Russell, and Richard D. Braatz. Fault Detection and

Diagnosis in Industrial Systems. Springer, 1st edition, 2001.

[23] B. Dayal and J. F. MacGregor. Improved pls algorithms. Journal of Chemo-

metrics, 11:73–85, 1997.

[24] Holger Dette and Weng Kee Wong. E-optimal designs for the michaelis-menten

model. Statistics & Probability Letters, 44:405–408, 1999.

[25] Dong Dong and Thomas J. McAvoy. Nonlinear principal component analysis-

based on principal curves and neural networks. Computers and Chemical

Engineering, 20(1):65–78, 1996.

[26] T. F. Edgar. Computing practices of new engineers. Control Engineering,

51:8, 2004.

[27] D. M. Espie and S. Macchietto. The optimal design of dynamic experiments.

AIChE Journal, 35:223–229, 1989.

160



[28] D. M. Espie and S. Macchietto. The optimal design of dynamic experiments.

AIChE Journal, 35:223–229, 1989.

[29] B. A. Foss, B. Lohmann, and W. Marquardt. A field study of the industrial

modeling process. Journal of Process Control, 56:325–338, 1998.

[30] Gaia Franceschini and Sandro Macchietto. Validation of a model for biodiesel

production through model-based experiment design. Ind. Eng. Chem. Res.,

46:220–232, 2007.

[31] Kapil G Gadkar, Rudiyanto Gunawan, and Francis Doyle III. Iterative ap-

proach to model identification of biological networks. BMC Bioinformatics,

6:155–174, 2005.

[32] Federico Galvanin, S. Macchietto, and Fabrizio Bezzo. Model-based design of

parallel experiments. Ind. Eng. Chem. Res., 46:871–882, 2007.

[33] Adiwinata Gani, Prashant Mhaskar, and Panagiotis D. Christofides. Fault

tolerant control of a polyethylene reactor. Journal of Process Control, 17:439–

451, 2007.

[34] Paul Geladi and Bruce R. Kowalski. Partial least squares regression: A tuto-

rial. Analytica Chimica Acta, 185:1–17, 1986.

[35] G. C. Goodwin and R. L. Payne. Dynamic Systems Identification: Experiment

Design and Data Analysis. Academic Press, New York, 1977.

[36] Jon C. Gunther, Jeremy S. Conner, and Dale E. Seborg. Fault detection and

diagnosis in an industrial fed-batch cell culture process. Biotechnol. Prog.,

23:851–857, 2007.

[37] K. M. Hangos and I. T. Cameron. Process Modeling and Model Analysis.

Academic Press, INC, London, 2001.

161



[38] H. Hatzantonis, H. Yiannoulakis, A. Yiagopoulos, and C. Kiparissides. Recent

developments in modeling gas-phase catalyzed olefin polymerization fluidized-

bed reactors: The effect of bubble size variation on the reactor’s performance.

Chemical Engineering Science, 55:3237–3259, 2000.

[39] David M. Himes, Robert H. Storer, and Christos Georgakis. Determination of

the number of principal components for disturbance detection and isolation. In

American Control Conference, pages 1279–1283, Baltimore, Maryland, 1994.

[40] Agnar Hokuldsson. Pls regression methods. Journal of Chemometrics, 2:211–

228, 1988.

[41] J. L. Horn. A rationale and test for the number of factors in factor analysis.

Psychometrica, 30(2):73–77, 1965.

[42] Sebastien Issanchou, Patrick Cognet, and Michel Cabassud. Sequential ex-

perimental design strategy for rapid kinetic modeling of chemical synthesis.

AIChE Journal, 51:1773–1781, 2005.

[43] J. Edward Jackson. A User’s Guide to Principal Components. Wiley series in

probability and statistics. Wiley, 2003.

[44] J. Edward Jackson and Govind S. Mudholkar. Control procedures for residuals

associated with principal component analysis. Technometrics, 21(3):341–349,

1979.

[45] Ian T. Jolliffe. Principal Component Analysis. Springer Series in Statistics.

Springer, 2nd edition, 2002.

[46] Athanassios Kassidas, John F. MacGregor, and Paul A. Taylor. Synchro-

nization of batch trajectories using dynamic time warping. AIChE Journal,

44(4):864–875, 1998.

162



[47] Eamonn J. Keogh and Micheal J. Pazzani. Derivative dynamic time warping.

In First SIAM International Conference on Data Mining, Chicago, Illionis,

2001.

[48] Theodora Kourti. Multivariate dynamic data modeling for analysis and sta-

tistical process control of batch processes, start-ups and grade transitions.

Journal of Chemometrics, 17:93–109, 2003.

[49] Theodora Kourti. Monitor. Chemometrics and Intelligent Laboratory Systems,

76:215–220, 2005.

[50] Theodora Kourti, Jennifer Lee, and John F. MacGregor. Experiences with in-

dustrial applications of projection methods for multivariates statistical process

control. Computers and Chemical Engineering, 20(S1):S745–S750, 1996.

[51] J.V. Kresta, J. F. MacGregor, and T.E. Marlin. Multivariate statistical mon-

itoring of process operating performance. Canadian Journal of Chemical En-

gineering, 69:35–47, 1991.

[52] Niels Rode Kristensen, Henrik Madsen, and Sten Bay Jorgensen. An investi-

gation of some tools for process model identification for prediction. In S. P.

Asprey and S. Macchietto, editors, Dynamic Model Development, volume 16.

Elsevier, 2003.

[53] Wenfu Ku, Robert H. Storer, and Christos Georgakis. Disturbance detection

and isolation by dynamic principal component analysis. Chemometrics and

Intelligent Laboratory Systems, 30(1):179–196, 1995.

[54] Jong-Min Lee. Statistical Process Monitoring Based on Independent Com-

ponent Analysis and Multivariate Statistical Methods. PhD thesis, Pohang

University of Science and Technology, 2004.

163



[55] B. Lennox, G. A. Montague, H. G. Hiden, G. Kornfeld, and P. R. Goulding.

Process monitoring of an industrial fed-batch fermentation. Biotechnology and

Bioengineering, 74(2):125–135, 2001.

[56] Weihua Li, H. Henry Yue, Sergio Valle-Cervantes, and S. Joe Qin. Recursive

pca for adaptive process monitoring. Journal of Process Control, 10:471–486,

2000.

[57] L. Ljung. System Identification-Theory For the User. Prentice Hall, Upper

Saddle River, 2 edition, 1999.

[58] J.A. Lopes, J. C. Menezes, J. A. Westerhuis, and A. K. Smilde. Multiblock

pls analysis of an industrial pharmaceutical process. Biotechnology and Bio-

engineering, 80(4):419–427, 2002.

[59] CA Lowry, WH Woodall, CW Champ, and SE Rigdon. A multivariate ex-

ponentially weighted moving average control chart. Technometrics, 34:46–53,

1992.

[60] William L. Luyben. Process modeling, simulation, and control for chemical

engineers. McGraw-Hill, 2 edition, 1989.

[61] John F. MacGregor, Christiane Jaeckle, Costas Kiparissides, and

M. Koutoudi. Process monitoring and diagnosis by multiblock pls methods.

AIChE Journal, 40:826–838, 1994.

[62] John F. MacGregor and Theodora Kourti. Statistial process control of multi-

variate processes. Control Engineering Practice, 3:403–414, 1995.

[63] Robert L. Mason and John C. Young. Multivariate Statistical Process Control

with Industrial Applications. Statistics and applied probability. ASA-SIAM,

Philadelphia, 2002.

164



[64] K. B. McAuley, D. A. Macdonald, and P. J. McLellan. Effects of operating

conditions on stability of gas-phase polyethylene reactors. AIChE Journal,

41:868–879, 1995.

[65] K. B. McAuley, J. F. MacGregor, and A. E. Hamielec. A kinetic model for

industrial gas phase ethylene copolymerization. AIChE Journal, 36:837–850,

1990.

[66] Ivan Miletic, Shannon Quinn, Michael Dudzic, Vit Vaculik, and Marc Cham-

pagne. An industrial perspective on implementing online applications of mul-

tivariate statistics. Journal of Process Control, 14:821–836, 2004.

[67] N. P. V. Nielsen, J. M. Carstensen, and J. Smedsgaard. Aligning of single and

multiple wavelength chromatographic profiles for chemometric data analysis

using correlation optimized warping. Journal of Chromatography A, 805:17–

35, 1998.

[68] Paul Nomikos and John F. MacGregor. Monitoring of batch processes using

multi-way principal component analysis. AIChE Journal, 40:1361–1375, 1994.

[69] Paul Nomikos and John F. MacGregor. Multi-way partial least squares in

monitoring batch process. Chemometrics and Intelligent Laboratory Systems,

30:97–108, 1995.

[70] Paul Nomikos and John F. MacGregor. Multivariate spc charts for monitoring

batch processes. Technometrics, 37:41–59, 1995.

[71] R. K. Pearson. Selecting nonlinear model structures for computer control.

Journal of Process Control, 13:1–26, 2003.

[72] V. Pravdova, B. Walczak, and D. L. Massart. A comparison of two algorithms

for warping of analytical signals. Analytica Chimica Acta, 456:77–92, 2002.

165



[73] S. J. Qin. Recursive pls for adaptive data modeling. Computers and Chemical

Engineering, 22:503–514, 1998.

[74] S. J. Qin. Multivariate Analysis, Monitoring, and Control of Processes Using

Latent Variable Methods. 2007.

[75] S. J. Qin and Ricardo H. Dunia. Determining the number of principal com-

ponents for best reconstruction. In IFAC DYCOPS’98, Greece, 1998.

[76] S. Joe Qin. Statistical process monitoring: Basics and beyond. Journal of

Chemometrics, 17:480–502, 2003.

[77] Henk-Jan Ramaker, Eric N. M. van Sprang, John A. Westerhuis, and Age K.

Smilde. Dynamic time warping of spectroscopic batch data. Analytica Chimica

Acta, 498(1-2):133–153, 2003.

[78] Y. Rotem, A. Wachs, and D. R. Lewin. Ethylene compressor monitoring using

model-based pca. AIChE Journal, 46(9):1825–1836, 2000.

[79] Abraham Savitzky and Marcel J.E. Golay. Smoothing and differentiation of

data by simplified least squares procedures. Analytical Chemistry, 36:1627–

1639, 1964.

[80] Dale E. Seborg, Thomas F. Edgar, and Duncan A. Mellichamp. Process Dy-

namics and Control. John Wiley and Sons, Inc, 2003.

[81] Fabio R. Sidoli, Athanasios Mantalaris, and S. P. Asprey. Toward global

parametric estimability of a large scale kinetic single cell model for mammalian

cell cultures. Ind. Eng. Chem. Res., 44:868–878, 2005.

[82] Age K. Smilde. Three-way analysis. problems and prospects. Chemometrics

and Intelligent Laboratory Systems, 15:143–157, 1992.

166



[83] Eric N. M. van Sprang, Henk-Jan Ramaker, Johan A. Westerhuis, Stephen P.

Gurden, and Age K. Smilde. Critical evaluation of approaches for online batch

process monitoring. Chemical Engineering Science, 57:3979–3991, 2002.

[84] Jean Steinier, Yves Termonia, and Jules Deltour. Smoothing and differen-

tiation of data by simplified least square procedure. Analytical Chemistry,

44:1906–1909, 1972.

[85] Giorgio Tomasi, Frans van den Berg, and Claus Andersson. Correlation opti-

mized warping and dynamic time warping as preprocessing methods for chro-

matographic data. Journal of Chemometrics, 18(5):231–241, 2004.

[86] Sergio Valle, Weihua Li, and S. Joe Qin. Selection of the number of principal

components: The variance of the reconstruction error criterion with a com-

parison to other methods. Industrial and Engineering Chemistry Research,

38:4389–4401, 1999.

[87] Sergio Valle-Cervantes. Plant-wide Monitoring of Processes Under Closed-loop

Control. PhD thesis, University of Texas at Austin, 2001.

[88] E. Walter and L. Pronzato. Qualitative and quantitative experiment design

for phenomenological models - a survey. Automatica, 26:195–213, 1990.

[89] Johan A. Westerhuis, Stephen P. Gurden, and Age K. Smilde. Generalized

contribution plots in multivariate statistical process monitoring. Chemomet-

rics and Intelligent Laboratory Systems, 51:95–114, 2000.

[90] Johan A. Westerhuis, Theodora Kourti, and John F. MacGregor. Comparing

alternative approaches for multivariate statistical analsysis of batch process

data. Journal of Chemometrics, 13:397–413, 1999.

[91] H. Wold. Estimation of principal component and related models by iterative

least squares. Multivariate Analysis. Academic Press, NY, 1966.

167



[92] Svante Wold. Cross-validatory estimation of the number of components in

factor and principal components models. Technometrics, 20(4):397–406, 1978.

[93] Svante Wold. Exponentially weighted moving principal component analysis

and projections to latent structures. Chemometrics and Intelligent Laboratory

Systems, 23:149–161, 1994.

[94] Svante Wold, Nouna Kettaneh, Hakan Friden, and Andrea Holmberg. Mod-

elling and diagnostics of batch processes and analogous kinetic experiments.

Chemometrics and Intelligent Laboratory Systems, 44:331–340, 1998.

[95] Chang Kyoo Yoo and In-Beum Lee. Nonlinear multivariate filtering and bio-

process monitoring for supervising nonlinear biological processes. Process Bio-

chemistry, 41:1854–1863, 2006.

[96] H. Henry Yue and S. Joe Qin. Reconstruction-based fault identification using

a combined index. Industrial and Engineering Chemistry Research, 40:4403–

4414, 2001.

[97] Yang Zhang and Thomas F. Edgar. Bio-reactor monitoring with multiway pca

and model based pca. In AIChE Annual Meeting, San Francisco, CA, USA,

2006.

[98] Yang Zhang and Thomas F. Edgar. Multivariate statistical process control.

In Michael Boudreau and Gregory McMillan, editors, New Directions in Bio-

process Modeling and Control, volume Chapter 8. ISA, 2006.

[99] Yang Zhang and Thomas F. Edgar. On-line batch process monitoring using

modified dynamic batch pca. In ACC, pages 2551–2556, NY, 2007. IEEE.

[100] L. Zullo. Computer aided design of experiments. An engineering approach.

PhD thesis, University of London, 1991.

168



Vita

Yang Zhang was born in Beijing, China on 16 October 1980, the son of Shanlin

Zhang and Yulan Lin. He received Bachelor of Engineering and Master of Engineer-

ing degrees in Chemical Engineering from Tsinghua University in 2003 and 2005,

respectively. In Fall 2005, he began Doctorate degree study under the direction of

Thomas F. Edgar in the University of Texas at Austin.

Permanent Address: 1650 West 6th Street, Apt A.,

Austin, Texas, 78703

This dissertation was typeset with LATEX 2ε1 by the author.

1LATEX 2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, and Ayman El-Khashab.

169


