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Chapter 1

Introduction

The space of maps from a curve C to a space X attracted considerable

interest from both mathematicians and physicists. In string theory: If X is

space time, a particle is indicated by a loop (a string), and as it moves through

time it sweeps out a Riemann surface on X. A basic topological invariant of

a topological space is π2, homotopy classes of maps of S2 into X. (Algebraic)

maps of P1 into X is the obvious analog in algebraic geomety. The quantum

cohomology of a symplectic manifold is a deformation of the ordinary singular

cohomology, defined using counts of (pseudo) holomorphic curves. A striking

example of the importance of maps of P1 into X is given in [Gross-Hacking-

Keel] ([GHK11]), where a conjectural construction of the mirror to an affine

Calabi-Yau manifold (with maximal boundary) is given using just the data of

Gromov-Witten invariants, counting rational curves in X (and prove this in

many cases).

Various studies are imposed on the compactification of both the space

of regular maps from C to X and the space of regular maps from P1 to

Pm, which is the most simple case in the Algebraic Geomtric version of this

problem. One of the most prominent results concerning the space of maps from
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C to X is given by Kontsevich, the moduli space of stable maps. Kontsevich

compactifies the space of regular maps from a smooth curve C to a scheme X

by adding regular morphisms from stable curves to X as the boundary.

The space of degree d regular maps from P1 to Pm is an open subscheme

in the projective space P(⊕mi=0H
0(OP1 , d)) ∼= P(m+1)(d+1)−1, with complicated

boundary divisors. We refer to this projective space as the Naive Space of

Maps. The closed points on the boundary in the Naive Space of Maps define

rational maps from P1 to Pm, and they fail to be regular on the points in P1

where all the (m+ 1) sections vanish.

Alexander Givental studies the space of stable maps from P1 to P1×Pm.

He showes that the stable map space Stab(P1,P1 × Pm) has a birational map

to the Naive Space of Maps. Adam Parker and the Mustata couple study this

birational map in detail, and factor it into simple intermediate steps([MST]).

The Mustata couple utilize their factorization and compute the cohomology

groups of the stable map space Stab(P1,P1×Pm). Yi Hu([YH]) starts from a

totally different direction. He blows up the Naive Space of Maps successively

along a filtration of the the boundary divisors and obtains a smooth scheme

with normal crossing boundary. However, he was unable to realize the blowing-

up as a parametrizing space of a nicely-described geometric family.

The author picked up where Yi Hu left off and tried to find a geo-

metric interpretation for Yi Hu’s blowing-up. She started with the very basic

case where m = 1. Surprisingly, during her observation, she discovered that

although many people researched into the Naive Space of Maps in various
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perspectives, no one realized that the Naive Space of Maps,without any type

of blowing-up’s or more complicated constructions, is, itself, a moduli space,

where the boundary parameterizes maps from certain trees of rational curves,

quite like the stable rational curves of Giventhal-Kontsevich. These rational

curves are named “m-stable” curves in this thesis.

An m-stable curve is a rational curve obtained by gluing trivially thick-

ened P1’s onto a fixed copy of P1 along finitely many discrete points. It comes

naturally with two regular maps to P1.

A flat family over a base S is called an m-stable family if the fibers are

all m-stable curves (with the two regular maps to P1).

The Naive Space of Maps Nd parametrizes the univerrsal family of

m-stable curves. This is proved in the thesis by constructing the universal

family explicitly from blowing up the space Nd × P1 along the base locus of

the evaluation morphism:

ev : Nd × P(D) 99K P(R)

ev(([f0, f1], [x0, x1])) 7→ [f0([x0, x1]), f1([x0, x1])]

This construction can not be extended to the case when m > 1 and the

obstruction is that the family is no longer flat in higher dimensions. However,

it works in other direction.

Consider the space of rational maps from Pr to P1. Similar construc-

tion gives a flat family over the higher dimensional Naive Space of Maps
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P(H0(OPr(d)) ⊕ H0(OPr(d))) and this family is universal. Most facts that

hold for the case r = 1 hold for r > 1. The only piece that is missing with

the higher dimensional case is that the fibers are too complicated to describe

explicitly. The author gives a brief and coarse description of the fibers in this

thesis and keeps hope that she can find the explicit description in her future

study.
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Chapter 2

Nd parametrizes a flat family of morphisms

Let k be an algebraicly closed field and D and R be two vector spaces

over k of dimension 2, then P(D) ∼= P(R) ∼= P1. Let {v0, v1} and {w0, w1} be a

basis of D and R respectively. P(D) and P(R) have homogeneous coordinates

[x0, x1] and [y0, y1] under the given bases.

Definition 2.1. Define the Space of Maps Md(Pr,Pm) as the space of degree

d morphisms from Pr to Pm.

The Naive Space of Maps from Pr to Pm is defined to be Nd(Pr,Pm) :=

P((H0(OPr , d))⊗ km+1) ∼= P(m+1)(r+1
d )−1.

Closed points in Md(Pr,Pm) are (m + 1) forms in H0(OPr , d) up to

a scale factor without common zeros on Pr. It is obvious that Md(Pr,Pm)

is an open subscheme in Nd(Pr,Pm) and Nd(Pr,Pm) is a compactification of

Md(Pr,Pm).

The notions of Md and Nd will be used without clarifying the dimen-

sions of domain and range, as long as it is clear from the context.

In Chapter 2 and Chapter 3, we discuss about maps from P(D) to P(R)

(Md(P1,P1)) and the Naive Space of Maps we are talking about is Nd :=

P(H0(OP(D), d)⊗R) ∼= P((Symd(D
∗)⊗R) ∼= P2(d+1)−1.
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The rational morphism:

ev : Nd × P(D) 99K P(R)

ev(([f0, f1], [x0, x1])) 7→ [f0([x0, x1]), f1([x0, x1])]

called the evaluation morphism is well defined as long as the point

[x0, x1] is not a common zero of the two forms {f0, f1}.

Let {V0, V1} be a basis for D∗, {V i
0V

j
1 }i+j=d is a basis for Symd(D

∗),

and {V i
0V

j
1 w0, V

i
0V

j
1 w1}i+j=d is a basis for Nd. Under this basis, Nd has ho-

mogeneous coordinates [aij, bij]i+j=d in a sense that any closed point in Nd

with coordinates [aij, bij]i+j=d gives a concrete rational morphism from P(D)

to P(R) by sending [x0, x1] to [y0, y1] = [
∑

i+j=d ai,jx
i
0x

j
1,
∑

i+j=d bi,jx
i
0x

j
1], so

the evaluation morphism, expressed in coordinates, will be

ev([aij, bij]i+j=d, [x0, x1]) = [
∑
i+j=d

ai,jx
i
0x

j
1,

∑
i+j=d

bi,jx
i
0x1]

.

The evaluation morphism is defined by the two sections of the line bun-

dle ONd
(1)�OP1(d) over Nd×P(D), which in coordinates are

∑
i+j=d ai,jx

i
0x

j
1

and
∑

i+j=d bi,jx
i
0x1. The base locus of the evaluation morphism Zev is the

subscheme of Nd × P(D) cut out by these two sections.

Now take the blowing up of Nd × P(D) over the base locus Zev of the

rational morphism ev.

Theorem 1 (Zev smooth). Zev is smooth and isomorphic to Nd−1 × P(D).
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Proof. Nd × P(D) is non-singular, if Zev ∈ Nd × P(D) is a local complete

intersection in , then Zev is Cohen-Macaulay ([AG], p.186, Proposition 8.23).

To show that Zev is a local complete intersection, we need to show

that the ideal sheaf of Zev can be locally generated by codim(Zev,Nd×P(D))

elements at every point ([AG], p185 Definition of local complete intersection).

Zev is cut out by two sections of the line bundle ONd
(1)�OP(D)(d) over

Nd×P(D), so the ideal sheaf of Zev is locally generated by two elements (the

two sections).

We want to show that Zev is codimensional two in Nd×P(D) by showing

that each fiber of Zev over P(D) has codimension two.

Consider the following diagram:

Zev Nd × P(D)

P(D)

i

φ
p2

Zev is considered a closed subscheme of Nd × P(D). p2 is the projection of

Nd × P(D) onto its second factor.

The two sections that cut out Zev, expressed in coordinates, are∑
i+j=d ai,jx

i
0x

j
1 and

∑
i+j=d bi,jx

i
0x1.

Fix [x0, x1] ∈ P(D), the fiber φ−1([x0, x1]) is cut out by the two forms
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{
∑d

i=0 aix
i
0x

d−i
1 ,

∑d
i=0 bix

i
0x

d−i
1 }. These two forms are linear forms with sepa-

rate cooridinates in Nd, so the fibers they cut out are irreducible and codi-

mensional two in Nd (They are codimensional two hyperplanes in N).

Now that the fibers of φ are all irreducible with the same dimension, and

that P(D) is irreducible, Zev is irreducible and has dimension (dimφ−1([x0, x1])+

dimP(D), so dimZev = dimNd−2+dimP(D) has codimension 2 in Nd×P(D).

Zev is then a local complete intersection, therefore is Cohen-Macaulay.

Zev is Cohen-Macaulay, P(D) is smooth and dimφ−1([x0, x1]) = dimZev−

dimP(D), ∀[x0, x1] ∈ P(D). By Theorem 14 of flatness condition in Chapter

5, Zev is flat over P(D) under the map φ.

The fibers φ−1([x0, x1]) are non-singular (hyperplanes) ∀[x0, x1] ∈ P(D),

φ is flat, and P(D) is smooth, so we have that Zev is non-singular.

The next thing we want to prove is that Zev is isomorphic to Nd−1 ×

P(D∗). To see this, we want to prove that the following morphism is a closed

embedding and its image is Zev.

ι : Nd−1 × P(D∗) −→ Nd × P(D)

ι([g0, g1], [l]) 7→ ([g0 · l, g1 · l], [x0, x1])

where l is a linear form in P(D∗) and l([x0, x1]) = 0 (l and [x0, x1] determine

each other uniquely up to a scalor factor).

It is obvious that Imι ⊆ Zev by definition. On the set-theoretic level,

∀([f0, f1], [x0, x1]) ∈ Zev,∃[x0, x1] ∈ P(D) where f0 and f1 vanish simulta-
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neously. [x0, x1] determines a linear form l ∈ P(D∗) up to a scalor factor,

which will be a linear common factor of f0 and f1, so we can factor [f0, f1]

into [l · g0, l · g1] with [g0, g1] ∈ Nd−1. Therefore, at the set-theoretic level,

Imι = Zev.

Consider the following diagram:

Nd−1 × P(D∗) Nd × P(D)

P(D)

ι

η
p2

By Theorem 5.3 of closed embedding, ι is a closed embedding, if its

restriction on each fiber over P(D) is a closed embedding.

Take a closed point [x0, x1] ∈ P(D).

η−1([x0, x1]) = Nd−1. p−12 ([x0, x1]) = Nd.

ι|[x0,x1] : Nd−1 → Nd

is defined by ι|[x0,x1]([a′ij, b′ij]i+j=d−1) = [aij, bij]i+j=d,

where aij = −x1a′(i−1)j + x0a
′
i(j−1), bij = −x1b′(i−1)j + x0b

′
i(j−1)

(let a′(−1)d = a′d(−1) = b′(−1)d = b′d(−1) = 0).

This map is obviously linear, so it induces an isomorphism from Nd−1

to its image, and therefore ι|[x0,x1] is a closed embedding on the closed point

[x0, x1] ∈ P(D). In fact, any regular linear morphism from Pm to Pn is a closed
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embedding. By Theorem 5.3, ι is a closed embedding, so Nd−1 × P(D∗) is

isomorphic to its image under ι. We have already shown that set-theoretically,

the image is Zev. But Zev is non-singular, in particular reduced, therefore

ι : Nd−1 × P(D) ↪→ Zev is an isomorphism.

Theorem 2 (C smooth). The universal family C = BlZev(Nd×P(D)) is non-

singular.

Proof. Nd × P(D) and Zev are both non-singular, therefore the blowup C is

non-singular ([AG], p186., Theorem 8.24(a)).

The blowing-up scheme C := BlZev(Nd × P(D)) is isomorphic to the

closure of the graph of the rational morphism ev in Nd×P(D)×P(R) following

Proposition 5.6 which we will prove later.

Theorem 3 (C is flat over Nd). The blowing-up C = BlZev(Nd×P(D)) is flat

over the base Nd.

Proof. By Theorem 5.1 of flatness, C is Cohen-Macaulay (since it is non-

singular) Nd is non-singular, the morphism π : C → Nd × P(D) → Nd is

flat, if the fibers π−1([f0, f1]), ∀[f0, f1] ∈ Nd has dimension = dimC − dimNd

= 1.

The fibers of the projection p2 : Nd × P(D)→ Nd are copies of P(D).

In another word, p−12 ([f0, f1]) = {[f0, f1]} × P(D).
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The morphism p : C → Nd × P(D) is a blowing-up, so p is an iso-

morphism on Nd × P(D) \ Zev, and the fibers of p on Zev are of dimension

(dimNd×P(D)− 1)−dimZev (Fulton intersetion theory), since Zev is regular

embedded in Nd × P(D). Zev is codimenional two in Nd × P(D) (see proof of

Theorem 2.1), so the fibers of p on Zev are of dimension 1.

∀[f0, f1] ∈ Nd, {[f0, f1]}×P(D)∩Zev is either empty or a set of finitely

many isolated points, because both f0 and f1 vanish only on finitely many

points in P(D). Therefore, π−1([f0, f1] = p−1({[f0, f1]} × P(D)) is either a

copy of P(D) or P(D) with dimenion 1 branches, which means that the fibers

π−1([f0, f1]) are of dimension 1, so C is flat over Nd.

11



Chapter 3

m-stable and (1,d) curves

Consider the following data:

1) P(D) with finitely many marked points {pi} and weights {wi};

2) A regular morphism g : P(D)→ P(R) of degree k.

The thickened points at pi with weights wi are subschemes of P(D)

with ideal sheaf Ipwi
= (mpi)

wi+1, where mpi is sheaf of the maximal ideal at

pi. pwi
=: Spec(k[ε]/εwi+1) abstractly as a scheme.

Glue the trivial ribbons pwi
× P(R) onto P(D) along pwi

with the fol-

lowing morphisms:

i1 : pwi
↪→ P(D) the closed immersion of pwi

as a subscheme,

and i2 : pwi
↪→ pwi

× P(R) which is the identity morphism on the first

factor and the restriction of the given morphism g onto pwi
: g|pwi

, or i2 is the

graph of g on pwi
.

The gluing result is a scheme, which will be studied in details in Chapter

5 section 2, and we name it C = P(D)
∐

pwi
(pwi
× P(R)).

C has a natural regular morphism to P(D) and P(R) respectively from

its universal property:

12



φ1 : C → P(D) is the identity morphism on the component P(D) and

a projection onto pwi
on the components of pwi

×P(R). φ1 is regular of degree

1.

φ2 : C → P(R) is the morphism g on the component P(D) and a pro-

jetion onto P(R) composed with the linear isomorphism li on the components

of pwi
× P(R). φ2 is regular of degree d = k +

∑
iwi.

Definition 3.1 (m-stable curve). A rational curve is called an m-stable curve

if it is the gluing scheme with the two natural regular morphisms to P(D) and

P(R) uniquely determined by the given data above.

d = k +
∑

iwi is called the degree of the m-stable curve.

Lemma 1 ((d,1)-curves). An m-stable curve embeds into P(D) × P(R) as a

(d,1)-curve. Conversely, any (d,1)-curve in P(D)×P(R) is an m-stable curve.

Proof. Let C be an m-stable curve, then it has two regular maps φ1 and φ2 to

P(D) and P(R) respectively, construct a morphism φ1×φ2 : C → P(D)×P(R)

of bi-degree (1,d). It is a closed embedding on each of the components of C,

following the universal property of the gluing scheme proven in Chapter 5,

φ1 × φ2 is then a closed embedding of C into P(D) × P(R), so the image of

φ1 × φ2 is a (d,1)-curve in P(D)× P(R).

Conversly, let C be a (d,1)-curve in P(D) × P(R). It has two natural

regular morphism of the degree 1 and d respectively to P(D) and P(R). Any

(d,1)-curve is cut out by a section y0f0([x0, x1]) + y1f1([x0, x1]), where f0, f1 ∈
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H0(OP(D), d). (f0, f1) =
∏

i l
wi
i (g0, g1), where li are linear forms and g0 and

g1 are relatively prime. [g0, g1] defines a regular morphism of degree k =

d − (
∑

iwi) from P(D) to P(R). li have a unique zero on P(D) and free

on P(D). C can be decomposed into isomorphic copies of P(R) and a curve

defined by y0g0([x0, x1]) + y1g1([x0, x1]). The later curve is ismorphic to P(D)

and has a degree k regular morphism to P(R).

Definition 3.2 (family of m-stable curves). A family M of m-stable curves

over a base scheme S is a flat scheme over S with two regular morphisms:

φ :M→ S × P(D), and

ψ :M→ S × P(R),

such that the fibersMS ofM over the closed points in S are m-stable

curves of the same degree.

Definition 3.3 (family of (d,1) curves). A familyM of (d,1)-curves in P(D)×

P(R) over a base scheme S is a flat scheme over S such that every fiber is a

(d,1)-curve in P(D)× P(R).

Definition 3.4 (family of Cartier divisors). Let X be a scheme over a base S

with a fixed line bundle L on X. A flat family of Cartier divisors parametrized

by S in the fixed linear system |L| over X is a Cartier divisor D over X × S

such that for any s ∈ S, Ds ∈ L.

Theorem 4 (equivalence). The following families are equivalent to one an-

other:
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1) family of (d,1)-curves

2) family of m-stable curves

3) flat family of Cartier divisors in the fixed linear system |OP(D)(d)�

OP(R)(1)| over X = P(D)× P(R) parametrized by a base scheme S.

Proof. The equivalence of the first two is directly from the Lemma proven

above.

1) ⇒ 3)

A family of (d,1)-curves in P(D) × P(R) is a flat family of Cartier

divisors over P(D) × P(R) parametrized by the base S. The picard group

Pic(P(D)× P(R)) = Z×Z is discrete, so algebraically equivalent divisors are

linearly equivalent. Any flat family of Cartier divisors are automatically in the

same linear system. Here, the linear system is obviously |OP(D)(d)�OP(R)(1)|

over P(E)× P(R).

3) ⇒ 1)

A flat family of Cartier divisors D in the fixed linear system |OP(D)(d)�

OP(R)(1)| overX = P(D)×P(R) parametrized by S is a flat scheme over S, with

fibers D|s ∈ L = OP(D)(d)�OP(R)(1), which are (d,1)-curves in D×P(R).

Theorem 5 (universal property for divisors). The universal family D of the

flat family of Cartier divisors parametrized by S in the linear system |L| over

X is a flat family of Cartier divisors parametrized by P(H0(X,L)), with fibers

{x ∈ X : σ(x) = 0}, ∀σ ∈ H0(X,L),

15



Theorem 6. φ : C = BlZev(Nd × P(D)) → Nd is the universal family of

m-stable curves.

Proof. Let M over a base S be any family of m-stable curves. By Theorem

4, M is a family of Cartier divisors on X = P(D) × P(R) in a fixed linear

system |L| = |O(d, 1)|. By Theorem 4, for any scheme X with a line bundle

L over X,there exists a universal family D of Cartier divisors on X in the

fixed linear system |L|, parametrized by the projective space P(H0(X,L)), or

P(H0(P(D)× P(R), (d, 1))) in our particular case.

By Theorem 4, C = BlZev(Nd×P(D)) is a flat family of m-stable curves

if and only if it is a flat family of (d,1)-curves in P(D) × P(R). By Theorem

3, C is flat over Nd.

The picard group Pic(P(D)×P(R)) = Z×Z is discrete, so algebraically

equivalent divisors are linearly equivalent. Any flat family of Cartier divisors

are automatically in the same linear system. In order to show that C is a

family of (d,1)-curves curves, we only need to show that at least one fiber of

φ is a (d,1)-curve in P(D)× P(R). The generic fibers of C over Nd are graphs

of regular maps of degree d from P(D) to P(R). They are clearly degree (d, 1)

curves in P(D)× P(R). Therefore, C is a family of (d,1)-curves.

The family C is the pull back family onto Nd of the universal fam-

ily D over P(H0(P(D) × P(R), (d, 1))) under a regular morphism ψ : Nd →

P(H0(P(D)× P(R), (d, 1))), where ψ(s), s ∈ Nd, is the line spanned by a sec-

tion of degree (d, 1) which cuts out the fiber φ−1(s) ⊆ C. We will show that ψ
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is an isomorphism.

Inheriting the notations from Chapter 2, {V0, V1} is a basis of

H0(OP(D)(1)) = D∗, {W0,W1} be a basis of H0(OP(R)(1)) = R∗ and and

{V i
0V

j
1 w0, V

i
0V

j
1 w1}i+j=d is a basis for Nd := P(H0(OP(D), d)⊗ R). Under this

basis, Nd has homogeneous coordinates [aij, bij]i+j=d, which means that each

point s ∈ Nd with coordinates [aij, bij]i+j=d, we have a rational map defined

by [
∑

i+j=d(aijx
i
0x

j
1),

∑
i+j=d(bijx

i
0x

j
1)] from P(D) to P(R).

{W1V
i
0V1j,−W0V

i
0V

j
1 }i+j=d is basis of P(H0(P(D)× P(R), (d, 1))). Let

s ∈ Nd be a generic closed point with coordinates [aij, bij]i+j=d. s is a regular

morphism from P(D) to P(R) defined in coordinates as

[
∑

i+j=d(aijx
i
0x

j
1),

∑
i+j=d(bijx

i
0x

j
1)]. The fiber of s φ−1(s) ⊆ C is the graph of

the regular morphism s. Obviously, in coordinates, the section that cuts out

the fiber φ−1(s) ⊆ C is given by y1(
∑

i+j=d(aijx
i
0x

j
1)) − y0(

∑
i+j=d(bijx

i
0x

j
1)).

In P(H0(P(D) × P(R), (d, 1))) under the given basis, φ−1(s) has coordinates

exactly [aij, bij]i+j=d. Now identify P(H0(P(D)× P(R), (d, 1))) with Nd using

the given bases. The regular morphism ψ is an identity on generic points of

Nd. Nd is separated, ψ is continuous and is identity on generic points, so ψ

is an identity all over Nd.

Now we have that ψ is an isomorphism from Nd to P(H0(P(D) ×

P(R), (d, 1))), so C is isomorphic to the universal family D.
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Chapter 4

Higher dimensional case

Let k be an algebraicly closed field and W and R be two vector spaces

over k with dimension (r+1) and 2 respectively, then P(E) ∼= Pr and P(R) ∼=

P1. Let {v0, v1, · · · , vr} be a basis of E and {w0, w1} be a basis of R. P(E)

and P(R) have homogeneous coordinates [x0, x1, · · · , xr] and [y0, y1] under the

given bases.

As is defined and remarked in Chapter 2, we take Nd as an abuse of

notation to be the Naive Space of Maps Nd(Pr,P1) in this Chapter, and Md as

the space of degree d rational (for r > 1) morphisms from P(E) to P(R). Md is

open in Nd and Nd is a compactication of Md. Nd =: P(H0(OP(E), d)⊗R) ∼=

P((Symd(E
∗)⊗R) ∼= P2(r+1

d )−1.

Similar to the case where r = 1, we have the evaluation morphism:

ev : Nd × P(E) 99K P(R)

ev(([f0, f1], [x0, x1, · · · , xr])) 7→ [f0([x0, x1, · · · , xr]), f1([x0, x1, · · · , xr])].

The evaluation morphism is a rational morphism and its base locus is

Zev = {([f0, f1], [x0, x1, · · · , xr]) ∈ Nd × P(E)}

18



where f0([x0, x1, · · · , xr]) = f1([x0, x1, · · · , xr] = 0.

Let {V0, V1, · · · , Vr} be a basis for E∗, {V i0
0 V

i1
1 · · ·V ir

r }i0+···+ir=d be a

basis for Symd(E
∗), and {V i0

0 V
i1
1 · · ·V ir

r w0, V
i0
0 V

i1
1 · · ·V ir

r w1}i0+···+ir=d be ba-

sis for Nd. Under these bases, Nd has homogeneous coordinates

[ai0,··· ,ir , bj0,··· ,jr ]i0+···+ir=d, in a sense that any closed point in Nd with coordi-

nates [ai0,··· ,ir , bj0,··· ,jr ]i0+···+ir=d gives a concrete rational morphism from P(E)

to P(R) by sending [x0, x1, · · · , xr] to

[y0, y1] = [
∑

i0+···+ir=d

ai0,··· ,irx
i0
0 · · ·xirr ,

∑
j0+···+jr=d

bj0,··· ,jrx
j0
0 · · ·xjrr ]

,

The evaluation morphism, expressed in coordinates, will be

ev([ai0,··· ,ir , bj0,··· ,jr ]i0+···+ir=d, [x0, x1, · · · , xr])

= [
∑

i0+···+ir=d

ai0,··· ,irx
i0
0 · · ·xirr ,

∑
j0+···+jr=d

bj0,··· ,jrx
j0
0 · · ·xjrr ]

where [ai0,··· ,ir , bj0,··· ,jr ] are coordinates of closed points in Nd.

Blow up Nd × P(E) over the base locus Zev of the rational morphism

ev. We have, in the following, a few results and the proofs exactly parallel to

the case where r = 1, which we discussed in details in Chapter 2 and Chapter

3.

Theorem 7. Zev is smooth.

Proof. Nd × P(E) is non-singular, if Zev ⊆ Nd × P(E) is a local complete

intersection, then Zev is Cohen-Macaulay ([AG], p.186, Proposition 8.23).
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To show that Zev is a local complete intersection, we need to show

that the ideal sheaf of Zev can be locally generated by codim(Zev,Nd×P(E))

elements at every point ([AG], p185 Definition of local complete intersection).

Zev is cut out by two sections of the line bundle ONd
(1)�OP(E)(d) over

Nd× P(E), so the ideal sheaf of Zev is locally generated by two elements (the

two sections).

We want to show that Zev is codimensional two in Nd × P(E).

Consider the following diagram:

Zev Nd × P(E)

P(E)

i

φ
p2

Zev is considered a closed subscheme of Nd × P(E). p2 is the projection of

Nd × P(E) onto its second factor.

Fix a closed point [x0, x1, · · · , xr] ∈ P(E), the fiber φ−1([x0, x1, · · · , xr])

is cut out by the two linear forms

{
∑

i0+···+ir=d

ai0,··· ,irx
i0
0 · · ·xirr ,

∑
j0+···+jr=d

bj0,··· ,jrx
j0
0 · · ·xjrr }

with separate cooridinates in Nd and thereofore these two linear forms are

linearly independent. The fibers they cut out are codimensional two linear
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subspaces in Nd. It follows that the fibers are non-singular, and in particularly,

reduced and irreducible.

Now that the fibers of φ are all irreducible with the same dimension,

φ is surjective, and P(E) is irreducible, it follows that Zev is irreducible and

has dimension (dimφ−1([x0, x1, · · · , xr]) + dimP(E), so dimZev = dimNd −

2 + dimP(E) has codimension 2 in Nd × P(E). Zev is then a local complete

intersection, therefore is Cohen-Macaulay.

Zev is Cohen-Macaulay, P(E) is smooth and ∀[x0, x1, · · · , xr] ∈ P(E),

dimφ−1([x0, x1, · · · , xr]) = dimZev − dimP(E). By Theorem 5.1 of flatness

condition, Zev is flat over P(E) under the map φ.

∀[x0, x1, · · · , xr] ∈ P(E), the fibers φ−1([x0, x1, · · · , xr]) are non-singular

and equidimensional, and φ is flat. It follows that φ is smooth ([AG], p269,

Theorem 10.2). Since P(E) is non-singular (smooth over Spec(k)), Zev is non-

singular by composition.

Theorem 8 (C smooth). The universal family C = BlZev(Nd×P(E)) is non-

singular.

Proof. Nd × P(E) and Zev are both non-singular, therefore the blowup C is

non-singular ([AG], p186., Theorem 8.24(a)).

The blowing-up scheme C := BlZev(Nd × P(E)) is isomorphic to the

closure of the graph of the rational morphism ev in Nd×P(E)×P(R) following
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Proposition 5.6 which we will prove later.

Theorem 9 (C is flat over Nd). The blowing-up C = BlZev(Nd×P(E)) is flat

over the base Nd.

π : C → Nd is defined by π = πbl ◦ p2, where πbl is the blowing-up and

p2 is the projection onto the second factor.

C

Nd × P(E)

P(E)

πbl

p2

Proof. C is Cohen-Macaulay (since it is non-singular) and Nd is non-singular,

by Theorem 5.1 of flatness, the composition morphism π is flat, if the fibers

π−1([f0, f1]), ∀[f0, f1] ∈ Nd has dimension = dimC − dimNd = r.

The fibers of the projection p2 : Nd × P(E)→ Nd are copies of P(E).

In another word, p−12 ([f0, f1]) = {[f0, f1]} × P(E).

The morphism p : C → Nd × P(E) is a blowing-up, so p is an iso-

morphism on Nd × P(E) \ Zev, and the fibers of p on Zev are of dimension
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(dim(Nd × P(E))− 1)− dimZev ([IT],p439, B.8.2), since Zev is regularly em-

bedded in Nd × P(E). Zev is codimenional two in Nd × P(E) (see proof of

Theorem 2.1), so the fibers of p on Zev are of dimension 1.

∀[f0, f1] ∈ Nd, ({[f0, f1]} × P(E)) ∩ Zev is a proper subscheme of

{[f0, f1]} × P(E). This is obvious since the two forms that cut out the in-

tersection:

{
∑

i0+···+ir=d

ai0,··· ,irx
i0
0 · · ·xirr ,

∑
j0+···+jr=d

bj0,··· ,jrx
j0
0 · · ·xjrr }

can not both be zero unless (ai0,··· ,ir , bi0,··· ,ir) = 0 or f0 = f1 ≡ 0. The fibers of

C over Nd will be P(E) with dimension 1 branches along a proper subscheme,

and thus have dimension r = dimP(E), which completes the proof.

Theorem 10. 1) C := BlZev(Nd×P(E)) is a flat family of (d, 1)−hypersufaces

⊂ P(E)× P(R) over the base Nd.

2) C := BlZev(Nd×P(E)) is a flat family of of Cartier divisors parametrized

by Nd in the fixed linear system |OP(E)(d)�OP(R)(1)| over P(E)× P(R).

Proof. The flatness of C over Nd is given by Theorem 4.3.

For 1), in order to show that C is a family of (d,1)-hypersufaces, we only

need to show that at least one fiber of φ is a (d,1)-hypersufaces in P(E)×P(R).
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C ⊂ Nd × P(E)× P(R)

Nd × P(E)

P(E)

πbl

p2

Fixing [f0, f1] ∈ Nd and a generic point [x0, x1, · · · , xr] ∈ P(E), πb is a

blowing-up and thus birational on Nd×P(E), so π−1([f0, f1]) has degree 1 on

P(R).

The generic fibers of C over Nd are graphs of regular maps of degree

d from P(E) to P(R). They are clearly degree (d, 1) curves in P(E) × P(R).

Therefore, C is a family of (d,1)-hypersufaces.

1) ⇒ 2)

A family of (d,1)-hypersufaces in P(E)×P(R) is a flat family of Cartier

divisors over P(E) × P(R) parametrized by the base S. The picard group

Pic(P(E)× P(R)) = Z×Z is discrete, so algebraically equivalent divisors are

linearly equivalent. Any flat family of Cartier divisors are automatically in the

same linear system. Here, the linear system is obviously |OP(E)(d)�OP(R)(1)|

over P(E)× P(R).
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2) ⇒ 1)

A flat family of Cartier divisors D in the fixed linear system |OP(E)(d)�

OP(R)(1)| over X = P(E) × P(R) parametrized by S is a flat scheme over S,

with fibers D|s ∈ L = OP(E)(d) � OP(R)(1), which are (d,1)-hypersufaces in

E×P(R).

Theorem 11. φ : C = blZev(Nd × P(E))→ Nd is the universal family of the

flat family of Cartier divisors in the fixed linear system |OP(E)(d)�OP(R)(1)|

over P(E)× P(R).

Proof. The family C is the pull back family onto Nd of the universal fam-

ily D over P(H0(P(E) × P(R), (d, 1))) under a regular morphism ψ : Nd →

P(H0(P(E)× P(R), (d, 1))), where ψ(s), s ∈ Nd, is the line spanned by a sec-

tion of degree (d, 1) which cuts out the fiber φ−1(s) ⊆ C. We will show that ψ

is an isomorphism.

H0(OP(E)(1)) = E∗ and H0(OP(R)(1)) = R∗. Inherit the previous no-

tations and let {V0, V1, · · · , Vr} be a basis for E∗ and {W0,W1} be a basis for

R∗.

Under the basis {V i0
0 V

i1
1 · · ·V ir

r w0, V
i0
0 V

i1
1 · · ·V ir

r w1}i0+···+ir=d, Nd has

homogeneous coordinates [ai0,··· ,ir , bj0,··· ,jr ]i0+···+ir=d.

Let {V i0
0 V

i1
1 · · ·V ir

r W1,−V i0
0 V

i1
1 · · ·V ir

r W0}i0+···+ir=d be a basis of

P(H0(P(D)× P(R), (d, 1))).
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Nd
∼= P(H0(OP(D)(d)) ⊕ H0(OP(D)(d))). {xi0x

j
1}i+j=d is a basis of

H0(OP(D)(d)). Nd then has homogeneous coordinates [aij, bij]i+j=d, which

means that each point s ∈ Nd with coordinates [aij, bij]i+j=d, we have a ratio-

nal map defined by [
∑

i+j=d(aijx
i
0x

j
1),

∑
i+j=d(bijx

i
0x

j
1)] from P(D) to P(R).

{y1xi0x1j,−y0xi0x
j
1}i+j=d is basis of P(H0(P(D) × P(R), (d, 1))). Let

s ∈ Nd be a generic closed point with coordinates [aij, bij]i+j=d. s is a regular

morphism from P(D) to P(R) defined in coordinates as

[
∑

i+j=d(aijx
i
0x

j
1),

∑
i+j=d(bijx

i
0x

j
1)]. The fiber of s φ−1(s) ⊆ C is the graph of

the regular morphism s. Obviously, in coordinates, the section that cuts out

the fiber φ−1(s) ⊆ C is given by y1(
∑

i+j=d(aijx
i
0x

j
1)) − y0(

∑
i+j=d(bijx

i
0x

j
1)).

In P(H0(P(D) × P(R), (d, 1))) under the given basis, φ−1(s) has coordinates

exactly [aij, bij]i+j=d. Now identify P(H0(P(D)× P(R), (d, 1))) with Nd using

the given bases. The regular morphism ψ is an identity on generic points of

Nd. Nd is separated, ψ is continuous and is identity on generic points, so ψ

is an identity all over Nd.

Now we have that ψ is an isomorphism from Nd to P(H0(P(E) ×

P(R), (d, 1))), so C is isomorphic to the universal family E .
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Chapter 5

Fundamentals and backgrounds

5.1 Closed embedding

Theorem 12 (Closed immersion). Consider the following commutative dia-

gram:

X Y

Z

f

φ
ψ

where X,Y and Z are schemes finite type over a field k and f is a projective

morphism.

f is a closed immersion, if and only if ∀z ∈ Z a closed point, the

morphism restricted on the fiber fz : Xz → Yz is a closed immersion.

Proof. It is obvious that if f is a closed immersion, then f restricted on the

fibers over closed points of Z is a closed immersion.

The assumption that f is a closed immersion on each closed point in Z

implies that f restricted on the fiber over each closed point in Z f is injective,
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inparticular, f is quasi finite. Assuming that f is a projective morphism, in

particular f is proper, it follows that f is a finite morphism ([AG] p.280 Ex

11.2).

Closed immersion is a local condition in Y, so we take any closed point

y ∈ Y and its affine neighbourhood B, y ∈ SpecB ⊂ Y . B is a local ring with

my being the maximal ideal. f is finte, so any affine open subset in Y pull

back to an affine open subset in X. Name it SpecA. A is a finite B module.

Let SpecC be the affine open subset in Z where z = ψ(y) lives in. We have

the following diagram:

A B

C

f ]

φ]
ψ]

f ] is finite.

Qutient out (the image of) the maximal ideal mz of the closed point

z ∈ Z and the maximal ideal my of y ∈ Y . We get the following commutative

diagram:
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A/myA B/my

A/mzA B/mzB

f ]x

f ]z

γB γA

mz lives in my under the morphism ψ], since mx is the only maximal

ideal in B, so both γA and γB are surjective. f ]z is surjective follows from the

assumption that fz is a closed immersion. f ]x is forced to be surjective in the

previous diagram.

We can choose C to be a local ring with maximal ideal mz, and f ] is a

C-linear morphism is the same as saying that it is a module homomorphism

over C. Now we can apply Nakayama’s Lemma’s corollary about module en-

dormorphism, which we will state after the proof of this theorem, and conlude

that f ] is surjective.

f to be injective on the topological space of X follows directly from the

assumption that f is an immersion fiber-wise. f ] is surjective locally, so f is

a closed immersion from X to Y .

Proposition 2 (Corollary of Nakayama’s Lemma). Suppose that R is a local

ring with maximal ideal m, and M, N are finitely generated R-modules. If

φ : M → N is an R-linear map such that the quotient φm : M/mM → N/mN

is surjective, then φ is surjective.
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Please refer to [CA] p184 Corollary 4.8
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5.2 Cohen-Macaulay scheme

Theorem 13. If a scheme X is non-singular, then X is Cohen-Macaulay.

Please refer to [AG] p184 Theorem 8.21A (regular implies Cohen-Macaulay).

Theorem 14 (Flatness). Let f : X → Y be a morphism of finite type of

schemes, where X is Cohen-Macaulay and Y is smooth. Then X is flat over

Y if and only if ∀x ∈ X, y = f(x), dimxX = dimyY + dimxXy, where Xy =

f−1(y) is the fiber over y in X under the map f .

Proof. Equidimensional fibers ⇒ flatness:

Let {y1, y2, · · · , ym} be a regular sequence in the ring OY,y for some

integer m , and {x1, x2, · · · , xm} be the pull back of the regular sequence in

OX,x, i.e. xi = f ]x(yi), for i = 1, 2, · · · ,m. Let Y ′ be the subscheme in Y

defined by the sequence {y1, y2, · · · , ym}. Because the sequence is regular,

dimyY
′ = dimyY −m.

X is a Cohen-Macaulay scheme. ∀x ∈ X, the sequence {x1, x2, · · · ,m } ⊆

OX,x is a regular sequence if and only if dimxX
′ = dimxX −m, where X ′ is

the subscheme in X defined by the given sequence. ([IT] p.418 Proposition 6.3)

Now consider the case where Y is a smooth scheme.
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A scheme Y is smooth if and only if for every point in Y , ∃ a regular

sequence defining the maximal ideal of this single point. Let{y1, y2, · · · , ym} ⊆

OY,y be the regular sequence defining {y}, then m = dimyY . Inheritting the

notation from the beginning of the proof, the pullback sequence {x1, x2, · · · ,m } ⊆

OX,x cuts out the fiber Xy of X over y under the morphism f .

By assumption, the dimension of the fiber dimxXy = dimxX−dimyY =

dimxX − m. The assumption that X is Cohen-Macaulay, guarantees that

{x1, x2, · · · ,m } ⊆ OX,x is a regular sequence. ([IT]p.397 Theorem 5.17)

A corollary of the local criterion of flatness states that as long as the

sequence {x1, x2, · · · ,m } ⊆ OX,x is a regular sequence, X is flat over Y on an

open neighbourhood of x if and only if X ′ is flat over Y ′. With the corollary,

the fact that any scheme is flat over a point puts an end to the proof by taking

Y ′ to be {y} the scheme with the single point y.

Therefore, ∀x ∈ X, X is flat on a neighbourhood of x over Y if

dimxX = dimyY + dimxXy giving the result that X is flat over Y .

Flatness ⇒ equidimensional fiber:

One direction is obvious that dimxX 5 dimyY + dimxXy.
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To prove that dimxX = dimyY + dimxXy, we need the fact that the

going-down property holds for flat extension of rings([IT] p.436). Consider

the local rings f ] : OY,y → OX,x. Let IXy be the sheaf of ideal of Xy. From

the gowing-down property, given any chain in OY,y starting from my the sheaf

of ideal of {y}, there exists a chain in OX,x starting from IXy lying over the

given chain, with the observation that IXy lies over my under the morphism

f ]. Therefore, codimxXf = dimyY , which is equivalent to dimxX 5 dimxX−

dimyY .
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5.3 Glueing scheme

Definition 5.1. Let X, Y, Z be schemes of finite type over a commutative ring

A. Z is closed embedded into both X and Y with i1 : Z ↪→ X and i2 : Z ↪→ Y .

The gluing scheme C of X and Y over Z, denoted as C = X
∐

Z Y , is defined

in the following way:

1) The topological space of C is the gluing of the topological spaces of

X and Y under the equivalence relation : ∀z ∈ Z, i1(z) ∼ i2(z). (Take the

disjoint union of X and Y and identify i1(z) with i2(z) for all z ∈ Z.)

2)If locally, X is SpecA, Y is SpecB, and Z is SpecD for some commu-

tative rings A,B,D, then C is SpecK, where K is the kernel of the sujective

homomorphism from A×B to D given by i]1 − i
]
2:

0→ K → A×B → D → 0

. The gluing scheme is universal, in a sense that every regular function over

X and Y that agrees on Z, pushes out to a regular function on C. This is

obvious since locally their pullback onto A and B coincides in D, and thus is

in the kernel of the exact sequence which is a regular function on the gluing

scheme we defined.

Lemma 3. Let A be a commutative ring, and I,J be two ideals in A. The

following sequence is exact:

0→ A/(I ∩ J)→ A/I ⊕ A/J → A/(I + J)→ 0.

Please refer to ([CA] p.187 Proposion 2.4) for proof details.
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Example: If X is cut out by one single equation f in a UFD and Y

by another equation g, and {f, g}form a regular sequence, then C = X
∐

Z Y

is cut out by fg.

The reason is simply based on the fact that (f) ∩ (g) = (fg) if {f, g}

form a regular sequence in a UFD.
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5.4 Blowing up

Theorem 15. Let φ : X 99K Pm be a rational morphism from an integral

scheme X to the projective space of dimension m, and Z be the base locus of

φ. The blowing-up BlZX is isomorphic to Γφ, the closure of the graph of φ in

X × Pm.

Proof. Rational morphisms to the projective space Pm are given by (m + 1)

global sections {si ∈ H0(X,L)}i=0,1,··· ,m, where L is an invertable sheaf over

X globally generated by {si}i=0,1,··· ,m.

φ = [s0, s1, · · · , sm], Z is the subscheme in X cut out by the (m + 1)

sections, so the invertable sheaf L defining φ is infact the ideal sheaf of Z over

X.

BlZX by definition is Proj(⊕n=0Ln). ProjOX(s0, · · · , sm) = X ×Pm,

so BlZX can be considered as a closed subscheme of X × Pm. Γφ is obviously

a closed subscheme of X × Pm. Since X is integral, so is X × Pm, if either of

the closed subscheme contains the other and they have the same dimension,

they should be equivalent.

Let I be the sheaf of ideal of Γφ.

H0(X,L)⊗OX � I ⊗ L

OX [s0, · · · , sm] ∼= SymOX
(H0(X,L))� OX ⊕ I ⊗ L ⊕ · · ·

OX [s0, · · · , sm]⊗OX [s0, · · · , sm]/I ∼= SymOX
(H0(X,L))⊗OX [s0, · · · , sm]/I
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� OX ⊕ L⊕ L2 ⊕ · · ·

Take Proj on both sides. We have an injection from BlZX to the

closure of the graph. They have the same dimension and in the same integral

ambient space, so they are isomorphic to each other.
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