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Abstract. This study investigates the impacts of fire emis-
sion, convection, various climate conditions and transport
pathways on the interannual variation of carbon monoxide
(CO) in the tropical upper troposphere (UT), by evaluat-
ing the field correlation between these fields using multi-
satellite observations and principle component analysis, and
the transport pathway auto-identification method developed
in our previous study. The rotated empirical orthogonal func-
tion (REOF) and singular value decomposition (SVD) meth-
ods are used to identify the dominant modes of CO interan-
nual variation in the tropical UT and to study the coupled
relationship between UT CO and its governing factors. Both
REOF and SVD results confirm that Indonesia is the most
significant land region that affects the interannual variation
of CO in the tropical UT, and El Niño–Southern Oscillation
(ENSO) is the dominant climate condition that affects the re-
lationships between surface CO emission, convection and UT
CO. In addition, our results also show that the impact of El
Niño on the anomalous CO pattern in the tropical UT varies
strongly, primarily due to different anomalous emission and
convection patterns associated with different El Niño events.
In contrast, the anomalous CO pattern in the tropical UT dur-
ing La Niña period appears to be less variable among dif-
ferent events. Transport pathway analysis suggests that the
average CO transported by the “local convection” pathway
(1COlocal) accounts for the differences of UT CO between
different ENSO phases over the tropical continents during
biomass burning season.1COlocal is generally higher over
Indonesia–Australia and lower over South America during
El Niño years than during La Niña years. The other path-
way (“advection within the lower troposphere followed by
convective vertical transport”) occurs more frequently over

the west-central Pacific during El Niño years than during La
Niña years, which may account for the UT CO differences
over this region between different ENSO phases.

1 Introduction

Carbon monoxide (CO), which is a byproduct of the in-
complete combustion of carbon-based fuels, plays an impor-
tant role in atmospheric chemistry and radiation balance. CO
is one of the ozone (O3) precursors (Daniel and Solomon,
1998) and is also the primary sink of the hydroxyl radical
(OH) (Thompson, 1992). With a lifetime of 1–2 months in
the troposphere, CO is an excellent tracer to study the mass
transport of polluted air originating in regions of biomass
burning or fossil fuel combustion (Edwards et al., 2006a).
Thus, understanding the factors that control CO temporal
and spatial variations is important for improving numeri-
cal model simulations and predictions of tropospheric ozone
change and fire-generated pollutant transport.

Besides strong seasonal variations as shown by previous
studies (Novelli et al., 1998; Schoeberl et al., 2006; Liu
et al., 2007, 2010; Huang et al., 2012), CO has also been
shown to have large interannual variability in the troposphere
(Wotawa et al., 2001; Edwards et al., 2006b; Duncan and Lo-
gan, 2008; Liu et al., 2013). Edwards et al. (2006b) found that
the interannual variation of tropospheric CO in the South-
ern Hemisphere (SH) has a significant correlation with the
El Niño–Southern Oscillation (ENSO) precipitation index.
Duncan and Logan (2008) analyzed the factors that regu-
late the trends and interannual variability of tropospheric
CO for 1988–1997 through a model study, and found the
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interannual variation of biomass burning, especially those
major burning events in Indonesia associated with El Niño,
is the main driver of large-scale CO variability in the tropics.
Strong interannual variation of CO in the upper troposphere
(UT) is found to be mainly related to the intense drought-
induced fires in Indonesia and South America (Liu et al.,
2013; Livesey et al., 2013).

Recent studies (e.g., Ashok et al., 2007; Kao and Yu, 2009;
Kug et al., 2009) have shown that the canonical El Niño (east-
ern Pacific warming) has become less frequent, and a differ-
ent kind of El Niño (central Pacific warming) has become
more common during the late 20th century. These two types
of El Niño have distinctively different anomalous large-scale
circulation and convection patterns (Yeh et al., 2009; Su and
Jiang, 2013), which would in turn have different impacts on
CO transport to the UT. What are the differences between the
impacts of different ENSO phases on the interannual varia-
tion of tropical UT CO? The answer to this question may
help to reconcile the discrepancies in previous studies about
how ENSO would affect CO in the UT. For example, Chan-
dra et al. (2009) attributed the change of UT CO to increased
fires and meteorological changes over the Indonesian region
during the 2006 El Niño, while Duncan et al. (2007) sug-
gested that an increase of convective transport of CO emitted
over South America and Africa due to an eastward shift of
convective center in the Pacific closer to these fires source
regions also played an important role in the increase of UT
CO during the 1997 El Niño.

Although fires in tropical Africa and South America have
important influences on the seasonal peaks of UT CO, how
they would affect the interannual variation of UT CO has not
been thoroughly investigated. Gonzi and Palmer (2010) sug-
gested that the fractions of surface CO emissions transported
to the UT are lower over Africa and South America than over
tropical Asia. However, Ricaud et al. (2007) found that deep
convection plays an important role in transporting CO to the
UT over Africa, which suggests a change of emission and
convection over this region could significantly influence UT
CO. Thus, how changes of fire emissions over these two trop-
ical continents contribute to the changes of CO in the UT
needs to be clarified.

Interannual variations of atmospheric circulation can also
influence CO transport pathways (e.g., Duncan et al., 2007;
Liu et al., 2013). The relative importance between changes of
surface emission and transport pathways on the interannual
changes of UT CO and how such relative importance varies
with, for example, different ENSO phases, is still an open
question. Previous studies have shown that CO is transported
from the surface to the UT through two pathways: the “lo-
cal convection” pathway (Thompson et al., 1996; Pickering
et al., 1996; Andreae et al., 2004) and the “lower troposphere
(LT) advection→ convection” pathway (Folkins et al., 1997;
Andreae et al., 2001). The former refers to CO being trans-
ported from the surface to the UT by local deep convection
over fire regions, whereas the latter refers to CO being ad-

vected from a fire region to a convective region within the LT,
and then being uplifted to the UT by deep convection. This
“LT advection→ convection” pathway may be responsible
for the fact that UT CO centers are often located above con-
vective regions rather than fire regions. Huang et al. (2012)
developed a method to automate the identification of these
pathways through a joint use of A-Train multi-satellite mea-
surements. This approach allows us to more efficiently evalu-
ate the relationships between changes of CO emission, trans-
port pathways and CO in the UT.

Most of the previous studies discussed above have a strong
focus on ENSO effects. This study explores an objective
principle-component-analysis-based approach to identify the
dominant modes of the CO interannual variation in the trop-
ical UT and their links to modes of interannual climate vari-
ability, such as ENSO and tropical Atlantic variability. In ad-
dition, the impacts of different ENSO phases on CO transport
to the UT are also evaluated. Section 2 of this paper intro-
duces the data and methods used in this study. Section 3 iden-
tifies the dominant modes of the interannual variation of UT
CO and evaluates the relative importance of CO emission,
convection and continental regions that affect UT CO inter-
annual variation over the tropics. The impacts of CO emis-
sion, convection and sea surface temperature (SST) on UT
CO interannual variation are analyzed in Sect. 4. The circu-
lation pattern changes and the transport pathway differences
associated with different ENSO phases are investigated and
discussed in Sect. 5. The main conclusions of this work are
summarized and discussed in Sect. 6.

2 Data and methodology

2.1 Data

We use CO volume mixing ratio measurements from Aura
Microwave Limb Sounder (MLS) to determine the concen-
tration of CO in the UT, use MLS cloud ice water content
(IWC) and CloudSat cloud water content (CWC) data to de-
termine the strength of deep convection, and use CO emis-
sion data from the Global Fire Emission Database (GFED)
to determine biomass-burning-emitted CO at the surface.

The MLS instrument is a small radio telescope aboard the
Aura satellite, which was launched on 15 July 2004, and has
a sun-synchronous orbit at an altitude of 705 km, with an
Equator crossing time at 1:45 a.m. and 1:45 p.m. local so-
lar time and a 16-day repeat cycle. MLS observes many at-
mospheric components in the upper troposphere and lower
stratosphere (UTLS) by measuring thermal emissions from
broad spectral bands with a limb-viewing geometry (Waters
et al., 2006). MLS measurement has a vertical resolution of
∼ 4 km for IWC and∼ 5 km for CO in the UTLS, and a hor-
izontal resolution of∼ 7 km across-track and 300–400 km
along-track. We use level-2 CO and IWC data derived ac-
cording to the MLS version 3.3 (V3.3) retrieval algorithm
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and screen the data using procedures as recommended in
Livesey et al. (2011). These include the use of MLS IWC
as a filter to exclude cloud-contaminated profiles in CO data
screening. The lowest usable retrieval level for CO and IWC
is 215 hPa, where the estimated single-measurement preci-
sions are∼ 20 ppbv for CO and∼ 1 mg m−3 for IWC. The
earlier version of MLS CO (V2.2) was biased high by a factor
of ∼ 2 at 215 hPa (Livesey et al., 2008), but this bias has been
largely eliminated in V3.3 CO data (Livesey et al., 2011).
Only thick clouds that are typically associated with deep con-
vective cores are observable by MLS (Wu et al., 2008); thus
MLS IWC is used as a proxy of deep convection in this study.

CloudSat was launched on 28 April 2006, which car-
ries the first space-borne 94 GHz cloud profiling radar to
measure vertical profiles of cloud and precipitation prop-
erties, with a vertical resolution of 500 m (Stephens et al.,
2002). The CloudSat measurements are reported on an in-
crement of 240 m, with a total of 125 vertical layers. The
footprint of a single profile is approximately 1.7 km along-
track by 1.3 km across-track, with an along-track sampling
every 1.1 km (CloudSat Project, 2008). In this study, Cloud-
Sat CWC is calculated as the sum of cloud ice water content
and liquid water content observed by CloudSat, and is used
to estimate the strength of convective activity in the transport
pathway analysis.

The emission of CO by fire activity at the surface is ob-
tained from the Global Fire Emission Database version 3
(GFED3) (van der Werf et al., 2010), currently available from
1997 to 2011. The gridded data have 0.5◦

× 0.5◦ spatial res-
olution and monthly temporal resolution, and include both
burned area and fire emissions. Emissions of fire-generated
trace gases are derived by combining satellite information
on burned area (Giglio et al., 2006, 2010), biogeochemi-
cal model estimates of fuel burned, and emission factors for
each species. Burned area was derived primarily from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
on Terra and Aqua satellites (Giglio et al., 2006). In the trans-
port pathway auto-identification method (Huang et al., 2012),
daily along-track co-located satellite observations and CO
emissions are used. Thus, we need to derive daily emission
of CO from GFED3 monthly emission, and the approach we
used is described in Mu et al. (2011).

Besides satellite observation data above, we also use
monthly mean precipitation and SST data. The precipitation
data are from the Global Precipitation Climatology Project
(GPCP) (Adler et al., 2003), which are available from 1979
to 2011 and have a horizontal resolution of 2.5◦

× 2.5◦.
The SST data are obtained from the Optimum Interpola-
tion (OI) SST version 2 (V2) analysis produced by the Na-
tional Oceanic and Atmospheric Administration (NOAA) us-
ing both in situ and satellite data (Reynolds et al., 2002),
available from 1981 to present. The spatial resolution of SST
data is 1◦ × 1◦. In this paper, monthly anomalies of each vari-
able are defined as the deviations from the corresponding
climatological monthly mean. The climate indices used in

this paper are obtained fromhttp://www.esrl.noaa.gov/psd/
data/climateindices/list/andhttp://www.jamstec.go.jp/frcgc/
research/d1/iod/DATA/dmi_HadISST.txt.

To homogenize the horizontal resolutions of the MLS CO,
IWC, SST and GFED CO emission, we averaged these data
into 4◦ latitude × 8◦ longitude grid boxes. The MLS CO
and IWC data were also averaged over each month to get
the monthly mean.

2.2 Methodology

Empirical orthogonal function (EOF) analysis has been
widely used to extract individual modes of variability from
data with complex spatial/temporal structures since the first
introduction by Lorenz (1956). Rotated EOF (REOF) is
a technique simply based on rotating EOFs. It has been
adopted by atmospheric scientists since the mid-1980s (Rich-
man, 1986) as an attempt to overcome some of the EOF
shortcomings (e.g., domain dependence, difficulty of physi-
cal interpretability). Despite the advantages of rotated EOFs,
it should be noted that an orthogonal rotation will find a new
orthogonal basis, but the principal components (PCs) may
not be uncorrelated in the new basis (i.e., the temporal vari-
ations associated with each REOF mode are not necessarily
independent of the rest). In this study, the REOF analysis was
performed using the most well-known and widely used rota-
tion algorithmvarimax(Kaiser, 1958), which is an orthogo-
nal method, and the first 10 EOFs were chosen for rotation.
To identify the dominant modes of the interannual variation
of CO in the tropical UT (30◦ S–30◦ N), we apply the REOF
analysis to the monthly anomalies of CO at 147 hPa, for the
period of August 2004 to July 2012. Singular value decom-
position (SVD; Wallace et al., 1992) analysis is usually ap-
plied to two combined data fields and identifies pairs of cou-
pled spatial patterns, with each pair explaining a fraction of
the total squared covariance between the two fields, which
are typically referred to as the left and right field. Projecting
the principle component of the left/right field to the original
data of its own field yields the homogeneous correlation map,
whereas projecting the principle component of the left/right
field to the original data of the other field yields the hetero-
geneous map that describes the coupled relationship between
the two fields. The heterogeneous correlation map for the left
(right) field represents the correlation between the left (right)
field and the principle component of the right (left) field. In
this study, we apply the SVD analysis to CO at 147 hPa and
different factors (i.e., emission, convection and SST), to in-
vestigate the coupled relationship between UT CO and its
governing factors. In this way, we can evaluate how interan-
nual variations of CO emission, convection and SST influ-
ence the interannual variation of CO in the tropical UT.

The impacts of different climate conditions on the leading
REOF and SVD modes of CO in the tropical UT are evalu-
ated using correlation analysis. Although simple linear corre-
lation analysis cannot fully quantify functional relationships,
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they could provide an initiative estimation of the relative im-
portance of each variable through the magnitude of corre-
lation coefficient. Since some climate indices (e.g., various
ENSO indices) are known to have strong autocorrelation, it is
important to estimate the influence of autocorrelation on the
significance of the correlation coefficients. To address the au-
tocorrelation issue, we use the methods of both Livezey and
Chen (1983, Eqs. 1 and 2) and Bretherton et al. (1999, Eq.
30) to calculate the effective degrees of freedom (EDF) for
two time series, and the results are the same for both meth-
ods.

The pathway auto-identification method developed in
Huang et al. (2012) is used in this study to characterize the
differences of CO transport between El Niño and La Niña
years. This method identifies the “local convection” path-
way when an increase of CO in the UT is detected simul-
taneously with co-located non-zero surface CO emission and
deep convection, and identifies the “LT advection→ convec-
tion” pathway when an increase of CO in the UT is detected
simultaneously only with co-located deep convection (i.e.,
the co-located surface CO emission is zero). This method
streamlines the identification of two CO transport pathways
by combining instantaneous along-track observations of CO
in the UT from the Aura MLS, convective clouds from the
CloudSat radar, and CO emissions derived from the MODIS
fire counts data. Thus, it is very useful and efficient for the
study of CO transport from the surface to the UT. Further
details about this method and its application can be found in
Huang et al. (2012).

3 Regions affecting UT CO interannual variation

Figure 1 shows the results of REOF analysis for the monthly
anomalies of tropical UT CO at 147 hPa from August 2004
to July 2012. The REOF analysis is applied to the monthly
anomalies directly. The first 10 EOF eigenvalues along with
their uncertainties are shown in Fig. 1a. We calculated the un-
certainty of each eigenvalue based on a rule of thumb (North
et al., 1982):

1λk≈

√
2

n
λk, (1)

whereλk is thekth eigenvalue, andn is the number of in-
dependent samples. Only the first three eigenvalues are well
separated from the rest; together they account for 64.5 % of
the total monthly UT CO variance. Individually, they explain
37.6 %, 18.6 % and 8.3 % of the total variance (before rota-
tion). After rotation, the three leading REOF modes explain
28.4 %, 13.9 % and 12 % (totally 54.3 %) of the total vari-
ance, respectively. Thus, the order of variances explained by
the three leading modes did not change; only the magnitudes
have a little change. Either way, the three leading modes to-
gether explain > 50 % of the total variance. The spatial pat-
terns associated with the first three REOF modes are shown
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Fig. 1. REOF analysis results of monthly anomalies of CO at
147 hPa for the period of August 2004–July 2012:(a) the first 10
EOF eigenvalues,(b) the first rotated principle component,(c) spa-
tial pattern of the first REOF mode,(d) the second rotated princi-
ple component,(e) spatial pattern of the second REOF mode,(f)
the third rotated principle component, and(g) spatial pattern of the
third REOF mode. The error bars in(a) represent the uncertainties
of each eigenvalue. The spatial patterns in(c), (e)and(g) are shown
as homogeneous correlation maps.

as homogeneous correlation maps E1, E2 and E3 (Fig. 1c, e,
and g), while the temporal variations of each eigenvector are
represented by the rotated principal components PC1, PC2
and PC3 (Fig. 1b, d and f). E1 shows two high-correlation
centers located over the tropical Indian Ocean, Indonesia and
the South Pacific. Since the square of the correlation repre-
sents the variance explained locally, this mode accounts for
up to 96 % of the variance in the regions of largest amplitude.
This is an expected result, since one advantage of REOFs is
that they could yield localized or simple structures, and thus
highlight the important regions. PC1 is significantly corre-
lated (at 90 % confidence level, the significant correlation is
defined at this level hereinafter) with the ENSO indices, after
considering the EDF associated with autocorrelation (here-
inafter, autocorrelation is considered when needed). For ex-
ample, the correlation coefficient is−0.36 with Niño 4 In-
dex (EDF= 25, P value= 0.07) and 0.32 with Southern
Oscillation Index (SOI) (EDF= 28, P value= 0.08). One
possible reason for the relatively weak correlation is that the
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dynamic processes that govern CO concentrations in the UT
change on an interannual timescale, which leads to com-
plex relationships between tropospheric climate variations
and UT CO that are not well captured by simple correlation
analysis. The two positive peaks of PC1 indicate the strong
impacts of two El Niño events (2004/05 and 2006/07). E2
shows a high-correlation center located over South America
(Fig. 1e), which explains up to 86 % of the variance over this
region. The two positive peaks of PC2 highlight the impacts
of two La Niña events (2005/06 and 2010/11). E3 shows
a high-correlation center over West Africa and tropical At-
lantic Ocean, explaining up to 86 % of the variance (Fig. 1g).
The three peaks of PC3 capture one El Niño event and two
La Niña events (2007/08, 2009/10 and 2010/11). Overall,
this REOF analysis suggests that the interannual variation
of tropical UT CO is significantly affected by changes over
the three tropical land regions and various climate condi-
tions such as ENSO. The changes of UT CO over tropical
Asia have the largest contribution, whereas those over South
America and Africa have a secondary yet significant contri-
bution.

To evaluate the relative importance of emission and con-
vection on the UT CO interannual variation, we analyzed the
time series of monthly anomalies of GFED CO emissions,
MLS CO at 147 hPa and IWC at 215 hPa over South Amer-
ica (15◦ S–12◦ N, 85–32◦ W), central Africa (15◦ S–15◦ N,
20◦ W–50◦ E), SE Asia (10◦ S–15◦ N, 90–160◦ E) and the
tropics (15◦ S–15◦ N, 180◦ W–180◦ E). Here 215 hPa IWC
is used as a proxy of deep convection (Jiang et al., 2007,
2011). Over the tropics (Fig. 2a), UT CO anomaly is signifi-
cantly correlated with CO emission anomaly, and the largest
correlation coefficient occurs at 2-month time lag (r = 0.64).
The correlation with IWC anomaly is relatively weak at zero
time lag (r = 0.31). However, during some periods (e.g., Oc-
tober 2010–January 2011), there is overlap between peaks
of UT CO anomaly and IWC anomaly. This suggests that
while surface CO emission controls most of the UT CO
anomalies, sometimes convective transport is also important.
To evaluate the interannual variation of UT CO in different
subregions, we also examined the three tropical continents.
Over South America (Fig. 2b), UT CO anomaly is signifi-
cantly correlated with CO emission anomaly, and the corre-
lation coefficient is largest at 2-month time lag (r = 0.72).
The IWC anomaly has a weak correlation (r = 0.25) with
UT CO anomaly at zero time lag. This is similar to the trop-
ics, suggesting that the interannual variation of UT CO over
this region mainly follows the changes of surface CO emis-
sion, which is consistent with previous studies (e.g., Liu et
al., 2010). Over central Africa (Fig. 2c), UT CO anomaly is
only significantly correlated with IWC anomaly (r = 0.39),
not with CO emission. This is not surprising, since the CO
transport pattern is different over northern Africa compared
to other regions. In boreal winter, the Harmattan winds trans-
port LT CO from the burning region to the Gulf of Guinea
where CO is lofted by deep convection and then transported
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Fig. 2. Time series of monthly anomalies of MLS CO at 147 hPa
(black), surface CO emission (red) and MLS ice water content
(IWC) at 215 hPa over(a) the tropics (15◦ S–15◦ N, 180◦ W–
180◦ E), (b) South America (15◦ S–12◦ N, 85–32◦ W), (c) central
Africa (15◦ S–15◦ N, 20◦ W–50◦ E), and(d) SE Asia (10◦ S–15◦ N,
90–160◦ E) for the period of August 2004–December 2011.

back across West Africa by horizontal winds in the UT (Liu
et al., 2010). Thus, the relationships between UT CO, sur-
face CO emission and convection are complicated over this
region due to the involved horizontal transport process. Over
SE Asia (Fig. 2d), both CO emission and IWC anomalies
are significantly correlated with UT CO anomaly (0.77 and
−0.66, respectively), suggesting that both CO emission and
convective transport are important in determining the inter-
annual variation of UT CO over this region. The negative
correlation between UT CO and IWC anomalies over this
region is expected from the decrease of convection and in-
crease of CO emission related to the intense drought-induced
fires (e.g., Liu et al., 2013; Livesey et al., 2013).
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Fig. 3.SVD analysis results of 147 hPa CO and CO emission for the
period of August 2004–December 2011:(a) principle components
(PCs) of 147 hPa CO (blue) and CO emission (red) for the first SVD
mode and(b) heterogeneous correlation map of 147 hPa CO (i.e.,
correlation between 147 hPa CO and the PC of CO emission) for
the first SVD mode.

4 Impacts of CO emission, convection and SST on UT
CO interannual variation

We use SVD method to study the coupled relationships be-
tween UT CO anomaly and the anomalies of CO emission,
convection and SST during the period 08/2004–12/2011. In
contrast to the individual EOF analysis performed on the UT
CO (Sect. 3), the SVD analysis on two combined fields will
identify only those modes of behavior in which the two fields
are strongly coupled.

The first SVD mode between 147 hPa CO and CO emis-
sion accounts for 88.1 % of the total squared covariance,
while the squared covariance explained by the rest modes is
much smaller compared to the first mode. Figure 3a shows
the two PCs of 147 hPa CO and CO emission for the first
SVD mode. The correlation coefficient between the two PCs
is 0.6, which is an indicator of the coupling strength. Both
PCs have significant correlation with ENSO index (SOI). The
coupled spatial patterns of the first SVD mode are shown in
Fig. 3b as a heterogeneous correlation map of 147 hPa CO.
It shows a center of high correlation over Indonesia and the
adjacent Indian Ocean, suggesting the coupling between UT
CO and surface CO emission is strongest over this region.
Over South America, the correlation is smaller in magnitude
than over Indonesia, suggesting the coupled relationship is
weaker over this region. The opposite sign between Indone-
sia and South America indicates the impacts of ENSO. We
also examined the second and third SVD modes (not shown
here); these modes contribute little (less than 10 %) to the ex-
plained squared covariance and have only weak correlations
with the climate indices.

Next, we use 215 hPa IWC as a proxy for deep convection
and apply SVD analysis to 147 hPa CO and 215 hPa IWC.
The first three SVD modes account for 65.0 %, 14.3 % and
7.9 % of the total squared covariance, respectively. The cor-
relation coefficient between the two PCs of the first mode
is 0.74 (Fig. 4a). Both PCs have significant correlation with
ENSO indices (Niño 3, Niño 4, Niño 3.4 and SOI). The het-
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(d) SVD2: 14.3% (CO vs IWC)
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Fig. 4. SVD analysis results of 147 hPa CO and 215 hPa IWC for
the period of August 2004–December 2011:(a) principle compo-
nents (PCs) of 147 hPa CO (blue) and 215 hPa IWC (red) for the
first SVD mode,(b) heterogeneous correlation map of 147 hPa CO
(i.e., correlation between 147 hPa CO and the PC of 215 hPa IWC)
for the first SVD mode,(c) PCs of 147 hPa CO (blue) and 215 hPa
IWC (red) for the second SVD mode, and(d) heterogeneous corre-
lation map of 147 hPa CO for the second SVD mode.

erogeneous correlation map of 147 hPa CO (Fig. 4b) shows
a zonal dipole between tropical Asia and South America–
southern Africa, which suggests the coupling between UT
CO and convection is stronger over these regions and mainly
affected by ENSO. For the second SVD mode, the correlation
coefficient between the two PCs is 0.60 (Fig. 4c). The het-
erogeneous correlation map of 147 hPa CO (Fig. 4d) shows a
high correlation center over the tropical Atlantic Ocean and
West Africa, which resembles that of the third REOF mode
of 147 hPa CO (Fig. 1g). Thus, this mode may indicate the
influence of the Atlantic Ocean. The third SVD mode con-
tributes less than 10 % to the explained squared covariance
and is not discussed here.

Finally, we apply SVD analysis to 147 hPa CO and SST to
evaluate the coupled relationship between UT CO and trans-
port induced by climate change. The first three SVD modes
between 147 hPa CO and SST account for 64.9 %, 16.3 %
and 10.1 % of the total squared covariance, respectively. The
correlation coefficients between the two PCs of the three
leading mode are 0.65, 0.64 and 0.73, respectively (Fig. 5a, c
and e). Both PCs of the first SVD mode have significant cor-
relation with ENSO indices (Niño 3, Niño 4, Niño 3.4 and
SOI), with largest correlation shown at Niño 4 of 0.53 with
UT CO and 0.87 with SST. In fact, each of the three het-
erogeneous correlation maps of 147 hPa CO (Fig. 5b, d and
f), and the correlation between PCs of each mode and vari-
ous climate indices, are similar to those of the corresponding
SVD mode between 147 hPa CO and 215 hPa IWC.
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(d) SVD2: 16.3% (CO vs SST)
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(e) PC3 (r = 0.73)
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(f) SVD3: 10.1% (CO vs SST)
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Fig. 5. SVD analysis results of 147 hPa CO and SST for the period
of August 2004–December 2011:(a) principle components (PCs)
of 147 hPa CO (blue) and SST (red) for the first SVD mode,(b)
heterogeneous correlation map of 147 hPa CO (i.e., correlation be-
tween 147 hPa CO and the PC of SST) for the first SVD mode,(c)
PCs of 147 hPa CO (blue) and SST (red) for the second SVD mode,
(d) heterogeneous correlation map of 147 hPa CO for the second
SVD mode,(e) PCs of 147 hPa CO (blue) and SST (red) for the
third SVD mode, and(f) heterogeneous correlation map of 147 hPa
CO for the third SVD mode.

The SVD analyses above suggested that ENSO has signifi-
cant impacts on the coupled relationship between UT CO and
surface CO emission, convection, and SST. The coupling is
strongest over the Indonesian region. The similarity between
SVD analyses of CO-SST and CO-IWC suggests that SST
anomaly plays an important role in deep convection changes,
which affect the vertical transport of CO. In the following
section, we will investigate the impacts of different ENSO
phases on CO transport from the surface to the UT.

5 Impact of ENSO on UT CO interannual variation

Since the launch of Aura, there have been several ENSO
periods: 2004, 2006 and 2009 are typical El Niño years,
while 2005, 2007 and 2010 are typical La Niña years (Ta-
ble 1, based on a threshold of±0.5◦C for the Oceanic
Niño Index (ONI),http://www.cpc.ncep.noaa.gov/products/

Table 1.El Niño and La Niña years since 2004. “CP-El Niño” rep-
resents central Pacific El Niño, and “EP-El Niño” represents eastern
Pacific El Niño.

El Niño years La Niña years

2004/2005 (CP-El Niño) 2005/2006
2006/2007 (EP-El Niño) 2007/2008
2009/2010 (CP-El Niño) 2010/2011

analysis_monitoring/ensostuff/ensoyears.shtml). During the
2004/05 and 2009/10 El Niño, the strong positive SST
anomalies were mainly located in the central Pacific, while
during the 2006/07 El Niño, there were also strong SST
anomalies in the eastern Pacific (Yeh et al., 2009; Lee et al.,
2010; Su and Jiang, 2013).

Since the strongest biomass burning in South America and
central Africa occurs in boreal fall (Huang et al., 2012), here
we choose September–November (SON) as the focused pe-
riod to study the differences of CO transport to the UT be-
tween different ENSO phases. The distributions of seasonal
average CO and IWC anomalies at 215 hPa are shown in Fig-
ure 6. The anomalies are calculated as the seasonal mean of
each year minus the 2005–2011 climatological mean. Over
Indonesia, UT CO anomaly generally shows opposite sign
to that of co-located IWC, which is consistent with the neg-
ative correlation between UT CO and IWC anomalies dis-
cussed in Sect. 3. In general, UT CO shows positive anoma-
lies over the Indonesian region and Indian Ocean in El Niño
years, compared to negative anomalies over the same region
in La Niña years. Over South America, UT CO shows con-
sistently strong positive anomalies in La Niña years, while
the anomalies are not consistent in El Niño years. For ex-
ample, there were moderate positive UT CO anomalies in
2004, compared to strong negative anomalies in 2009. An-
other region that shows distinct ENSO impacts is the central
Pacific (around the dateline), where positive (negative) UT
CO and IWC anomalies are co-located during El Niño (La
Niña) years, suggesting that the two ENSO phases have to-
tally different impacts on the convective transport, which is
important in determining UT CO concentration over this re-
gion. In contrast to the strong variations of UT CO and IWC
anomalies among different El Niño events, the anomaly pat-
terns of UT CO and IWC show much less variation among
different La Niña events.

Why are the patterns of the UT CO anomalies so different
between different ENSO phases? To explore this question,
we carried out the analyses through two ways: one way is
to analyze the differences of surface emission and convec-
tion, and the other way is to analyze the differences of CO
transport pathways. The distributions of GFED CO emission
and GPCP precipitation anomalies are shown in Fig. 7. Dur-
ing the 2004 and 2006 El Niño periods, CO emissions show
positive anomalies over Indonesia and northern Australia

www.atmos-chem-phys.net/14/4087/2014/ Atmos. Chem. Phys., 14, 4087–4099, 2014
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Fig. 6. Seasonal (SON) mean distributions of CO (shaded con-
tour) and IWC (line contour) anomalies in the upper troposphere
(215 hPa) during(a) 2004,(b) 2005,(c) 2006,(d) 2007,(e) 2009
and (f) 2010. The IWC contour interval is 1 mg m−3. The solid
line represents positive IWC anomaly, and the dotted line represents
negative IWC anomaly.

and negative anomalies over South America, which was also
found in previous studies (e.g., Logan et al., 2008; Chandra
et al., 2009). However, in 2009 El Niño, there was a nega-
tive emission anomaly over Indonesia, and a much stronger
negative anomaly over South America than the previous two
events. This may explain the weak CO anomaly over Indone-
sia and strong negative CO anomaly over South America at
215 hPa (Fig. 6). In all three El Niño events, positive precipi-
tation anomalies occurred over the central Pacific, consistent
with the positive 215 hPa IWC anomalies discussed before.
During La Niña periods, CO emissions generally show oppo-
site anomalies over Indonesia, Australia and South America
compared to those during El Niño periods.

To investigate the differences of CO transport pathways
between different ENSO phases, we performed analysis us-
ing the pathway auto-identification method developed in
Huang et al. (2012). Since CloudSat was launched in 2006,
here we only have two El Niño years (2006 and 2009) and
two La Niña years (2007 and 2010) for the analysis. First,
we calculate the relative frequency of each transport path-
way, which is defined as

freqi=
Ni

Ntotal
, (2)

where freqi is the relative frequency of theith pathway
within a 4◦ latitude× 8◦ longitude grid box,Ni is the num-
ber of CO increase cases associated with theith pathway and
Ntotal is the total number of CO increase cases within the
same grid box. The results are shown in Figs. 8 and 9, for
the “local convection” and the “LT advection→ convection”
pathway, respectively. The “local convection” pathway oc-
curred more frequently over South America than over south-
ern Africa, while the frequency was lowest over the Indone-
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Fig. 7. As in Fig. 6, but for surface CO emission (shaded contour)
and precipitation (line contour) anomalies. The precipitation con-
tour interval is 4 mm d−1. The solid line represents positive precipi-
tation anomaly, and the dotted line represents negative precipitation
anomaly.

sian region (Fig. 8). During El Niño periods, although the
UT CO concentration over South America was much higher
in 2006 than in 2009 (Fig. 6), the frequency of “local con-
vection” pathway did not show much difference. During La
Niña periods, the “local convection” pathway occurred more
frequently in 2007 than in 2010 over South America, but the
UT CO was higher in 2010. Thus, the interannual variation
of the frequency of “local convection” pathway appeared to
be not consistent with the interannual variation of UT CO
over South America, and this conclusion also applied to other
tropical continents. Besides, the frequency of “local convec-
tion” pathway did not show a clear difference between dif-
ferent ENSO phases. For the “LT advection→ convection”
pathway, it occurred more frequently over maritime areas
than over continents, especially over the tropical western Pa-
cific and northern Indian Ocean (Fig. 9). The frequency of
“LT advection→ convection” pathway appeared to be higher
over the west-central Pacific (near Indonesia) during El Niño
years than during La Niña years, which may account for the
UT CO differences over this region between different ENSO
phases (Fig. 6).

Second, we calculate the average increase of CO con-
centration at 215 hPa associated with the “local convec-
tion” (1COlocal) and the “LT advection→ convection”
(1COLT-adv) pathway, and the results are shown in Figs. 10
and 11, respectively. In general, the interannual variation of
1COlocal is consistent with the interannual variation of UT
CO over the tropical continents. For example, the higher CO
concentrations over South America during 2006 than 2009
(both are El Niño years), or during 2010 than 2007 (both are
La Niña years), corresponded to the higher1COlocal dur-
ing that year. Besides,1COlocal appeared to be higher over
Indonesia–Australia and lower over South America during El
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Fig. 8. Spatial distributions of the relative frequency (percentage)
of the “local convection” transport pathway within each 4◦ latitude
× 8◦ longitude grid box during(a) SON 2006,(b) SON 2007,(c)
SON 2009 and(d) SON 2010.
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Fig. 9.As in Fig. 8, but for the “LT advection→ convection” trans-
port pathway.

Niño years than during La Niña years, which indicates clear
differences of CO transport between different ENSO phases.
Compared to other years,1COLT-adv was higher over the In-
donesian region in 2006 and over southern South America
(15–30◦ S) in 2010 (Fig. 11). Thus, the interannual variation
of 1COLT-adv cannot explain the interannual variation of CO
in the tropical UT. In addition,1COLT-adv did not show clear
difference between different ENSO phases over the tropics.

To further quantify the differences of CO transport from
the surface to the UT between two different El Niño events
(2006 and 2009), we choose three tropical land regions
– South America (24◦ S–12◦ N, 88–32◦ W), central Africa
(20◦ S–20◦ N, 16◦ W–40◦ E) and Indonesia (10◦ S–10◦ N,
90–160◦ E) – since they represent the main CO source re-
gions and/or UT CO centers. The results are shown in Ta-
ble 2. Over central Africa, although the number of “local
convection” events was smaller in 2006 than in 2009, the
number of “LT advection→ convection” events was larger.
Thus the total number of transport events was nearly equal
between the 2 years. In addition, the average CO increase as-
sociated with either pathway was also comparable between
2006 and 2009. Thus, the overall CO transport over this re-
gion did not show much difference between the 2 years. Over
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Fig. 10.Spatial distributions of the average increase of CO associ-
ated with the “local convection” transport pathway within each 4◦

latitude× 8◦ longitude grid box during(a) SON 2006,(b) SON
2007,(c) SON 2009 and(d) SON 2010.
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Fig. 11. As in Fig. 10, but for the “LT advection→ convection”
transport pathway.

South America, the number of “LT advection→ convection”
events was much larger in 2006 than in 2009, while the num-
ber of “local convection” events was nearly equal. However,
1COlocal was significantly lower in 2009 (58.6 ppbv) than in
2006 (75.5 ppbv), while1COLT-adv was nearly equal. This
may be the reason for the strong negative UT CO anomaly
in 2009 over this region. Over Indonesia, the numbers of
both pathway events were larger in 2009 than in 2006. How-
ever, a much stronger positive anomaly of UT CO occurred
in 2006 (Fig. 6). To explain this, we need to check1CO
associated with each pathway. Indeed,1COlocal was signif-
icantly higher in 2006 (73.8 ppbv) than in 2009 (47.8 ppbv).
Although1COLT-adv was also higher in 2006, the difference
between the 2 years was much less than that of1COlocal. The
reason why fewer transport events were identified in 2006
than 2009 over Indonesia may be due to higher background
CO concentrations in the UT, which are used to determine
CO changes for identifying transport pathways.

6 Conclusions

In this study, we have identified the dominant modes of the
interannual variation of tropical UT CO by using rotated EOF
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Table 2.Results of CO transport pathway analyses over central Africa (AF), South America (SA) and Indonesia (IN). From left to right, the
first column indicates the regions, the second and seventh columns the number of “local convection” events, the third and eighth columns
the average CO increase (ppbv) associated with “local convection” pathway, the fourth and ninth columns the number of “LT advection→

convection” events, the fifth and tenth columns the average CO increase (ppbv) associated with “LT advection→ convection” pathway, and
the sixth and eleventh columns the total number of CO transport events during SON in each year.

2006 SON 2009 SON

loc-conv LT adv-conv total loc-conv LT adv-conv total

no. of events 1CO no. of events 1CO no. of events no. of events 1CO no. of events 1CO no. of events

AF 81 59.88 240 43.52 321 104 53.61 199 47.5 303
SA 154 75.46 358 51.59 512 157 58.6 319 53.23 476
IN 32 73.78 281 53.23 313 43 47.78 344 46.07 387

analysis, and evaluated the coupled relationships between
UT CO and its governing factors (e.g., CO emission and
convection) by using SVD analysis. The differences of CO
emission, convection and transport pathways between differ-
ent ENSO phases are investigated by using satellite observa-
tion data and pathway auto-identification method developed
in our previous study. The main conclusions are summarized
as follows: Indonesia is the most significant tropical land re-
gion that affects UT CO interannual variation, as suggested
by the first REOF mode of UT CO. South America and cen-
tral Africa have a secondary yet significant contribution to
the interannual variation of tropical UT CO. Among the vari-
ous climate conditions, ENSO has significant impacts on the
time evolution of the first REOF mode.

Over South America, the interannual variation of UT CO
is mainly affected by the interannual variation of CO emis-
sion, as suggested by the significant correlation between the
monthly anomalies of UT CO and CO emission. Over central
Africa, UT CO is not closely correlated with emission or con-
vection, partly due to the involved horizontal transport pro-
cess. Over SE Asia, both CO emission and convective trans-
port are important in determining the interannual variation of
UT CO. Over the whole tropics, the interannual variation of
UT CO is mainly affected by the interannual variation of CO
emission, which is similar to that over South America. The
SVD analyses suggest that ENSO has important effects on
the coupled relationships between UT CO and CO emission,
UT CO and convection, as well as UT CO and SST. These
couplings are strongest over the Indonesian region.

The impacts of different ENSO phases on the interannual
variation of CO in the tropical UT are analyzed through two
ways: factor analysis and transport pathway analysis. Dur-
ing boreal fall season, UT CO shows positive anomalies over
the Indonesian region and Indian Ocean in El Niño years,
compared to negative anomalies over the same region in La
Niña years. This is closely related to the in-phase CO emis-
sion anomalies. UT CO shows consistently strong positive
anomalies over South America in La Niña years, which is
associated with positive CO emission anomalies. Over the
central Pacific (around the dateline), positive (negative) UT

CO anomalies occur in El Niño (La Niña) years, mainly due
to positive (negative) convection anomalies. The anomalies
of UT CO and convection show much stronger variations
among different El Niño events than among different La Niña
events.

Through the transport pathway analysis, we found that the
interannual variation of UT CO over the tropical continents
is consistent with that of the average CO increase associ-
ated with the “local convection” pathway, instead of the rel-
ative frequency of this pathway. The relative frequency of
the “LT advection→ convection” pathway appears to be the
factor that accounts for the UT CO differences over the west-
central Pacific between different ENSO phases. Besides, dif-
ferent ENSO phases have different impacts on the average
CO transported by the “local convection” pathway, which ap-
pears to be higher over Indonesia–Australia and lower over
South America during El Niño years than during La Niña
years. Although both 2006 and 2009 are El Niño years, the
SST patterns are totally different. The results of transport
pathway analysis suggest that the average CO transported per
event of “local convection”, instead of the number of trans-
port events, is the factor that accounts for the UT CO differ-
ence between these two El Niño periods over South America
and Indonesia. The contribution from the “LT advection→

convection” pathway is much smaller and negligible com-
pared to the “local convection” pathway.

Although previous studies have found that ENSO has sig-
nificant impact on the interannual variation of UT CO (e.g.,
Edwards et al., 2006b; Duncan and Logan, 2008), this work
is consistent with previous findings by directly evaluating
the UT CO anomaly field. Besides, we found that different
ENSO phases have rather different impacts on spatial pat-
tern of the UT CO, which is related to the differences in CO
transport. Although we have analyzed the impacts of differ-
ent ENSO phases and events on the interannual variation of
tropical UT CO, due to the limited satellite observations, we
only have a relatively short period of data for the transport
pathway analysis; whether these characteristics and differ-
ences apply to other El Niño/La Niña events still needs fur-
ther studies.
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